
A Study on the Scalability of Artificial Neural

Networks Training Algorithms Using
Multiple-Criteria Decision-Making Methods

Diego Peteiro-Barral� and Bertha Guijarro-Berdiñas

Dept. of Computer Science, University of A Coruña,
Campus de Elviña s/n, 15071, A Coruña, Spain

{dpeteiro,cibertha}@udc.es
http://www.lidiagroup.org/

Abstract. In recent years, the unrestrainable growth of the volume of
data has raised new challenges in machine learning regarding scalability.
Scalability comprises not simply accuracy but several other measures
regarding computational resources. In order to compare the scalability
of algorithms it is necessary to establish a method allowing integrating
all these measures into a single rank. These methods should be able to
i) merge results of algorithms to be compared from different benchmark
data sets, ii) quantitatively measure the difference between algorithms,
and iii) weight some measures against others if necessary. In order to
manage these issues, in this research we propose the use of TOPSIS as
multiple-criteria decision-making method to rank algorithms. The use of
this method will be illustrated to obtain a study on the scalability of five
of the most well-known training algorithms for artificial neural networks
(ANNs).

Keywords: Machine learning, scalability, artificial neural networks,
multiple-criteria decision-making methods.

1 Introduction

In machine learning, scalability is defined by the effect that an increase in the size
of the training set has on the computational performance of an algorithm (accu-
racy, training time and allocated memory). So the challenge is to find a tradeoff
among them or, in other words, getting “good enough” solutions as “fast” as
possible and as “efficiently” as possible. This issue becomes critical in situations
in which there exist temporal or spatial constraints like: real-time applications
dealing with large data sets, unapproachable computational problems requiring
learning, or initial prototyping requiring quickly-implemented solutions.

� This work was supported by Secretaŕıa de Estado de Investigación of the Spanish
Government under projects TIN 2009-02402 and TIN2012-37954, and by the Xunta
de Galicia through projects CN2011/007 and CN2012/211, all partially supported
by the European Union ERDF. Diego Peteiro-Barral acknowledges the support of
Xunta de Galicia under Plan I2C Grant Program.

L. Rutkowski et al. (Eds.): ICAISC 2013, Part I, LNAI 7894, pp. 162–173, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://www.lidiagroup.org/


A Study on the Scalability of ANNs Using MCDM Methods 163

A sample of the interest generated by large-scale learning was revealed with
the organization of the workshop PASCAL Large Scale Learning Challenge [1] at
the 25th International Conference on Machine learning (ICML’08). It was con-
cerned with the scalability and efficiency of machine learning algorithms with
respect to computational, memory and communication resources. In order to
deal with large data sets, it is essential to minimize training time and allocated
memory while maintaining accuracy. However, up to now, most machine learning
algorithms do not provide an appropriate balance among them. Most algorithms
tend to look with favor on one of these variables against others. A more recent
sample of the relevance of scalability in learning, also known as “big learning”,
was disclosed with the conference of the Neural Information Processing Systems
Foundation (NIPS’2011), aiming to provide a forum for exchanging solutions
that address big learning problems. The relevance of these conferences for re-
searchers and practitioners is meaningful.

In recent years, several researchers have addressed the issue of scalability of
machine learning algorithms [2–4]. Scalability is wider than simple evaluations
of accuracy. Scalability involves many aspects such as error, training time and
memory requirements that should be merged into a single evaluation framework
in order to rank algorithms. Such framework should be able to handle three
different aspects: i) merging results of algorithms to be compared from different
benchmark data sets, ii) being able to quantitatively measure the difference
between algorithms, and iii) being able to weight some measures against others
if necessary. In order to manage these issues, we propose to use a multiple-criteria
decision-making method to rank algorithms. In this research, this framework will
be applied to experimentally assess the scalability of five of the most popular
training algorithms for ANN: gradient descent, gradient descent with momentum
and adaptive learning rate, scaled conjugate gradient, Levenberg-Marquardt and
stochastic gradient descent. To the best knowledge of the authors, this is a novel
research that will shed light on the scalability of ANN training algorithms.

The remainder of this paper is structured as follows: section 2 describes the
training algorithms, section 3 presents the measures of scalability used in this
research, section 4 describes the MCDM method used, section 5 presents the
experimental procedure followed, and section 6 shows the results obtained, and
section 7 shows the conclusions and future lines of research.

2 Training Algorithms for ANN

This section gives a brief overview of the five training algorithms for ANNs
considered in this research: gradient descent, gradient descent with momentum
and adaptive learning rate, scaled conjugate gradient, Levenberg-Marquardt and
stochastic gradient descent.

2.1 Gradient Descent

Gradient descent is one of the simplest training algorithms for ANNs. In the
batch version, the algorithm starts with a random weight vector denoted by w(0).



164 D. Peteiro-Barral and B. Guijarro-Berdiñas

Then, it iteratively updates the weight vector such that, at step τ , it moves a
short distance in the direction of the greatest rate of decrease of the error, that
is in the direction of the negative gradient, evaluated at w(τ) [5]:

Δw(τ) = −η∇Ew(τ)

where the parameter ∇ is the learning rate and E is the error function evaluated
at w(τ). Note that the gradient is re-evaluated at each step. It is expected that
the value of E will decrease at each step.

2.2 Gradient Descent with Momentum and Adaptive Learning Rate

The performance of the gradient descent algorithm is very sensitive to the proper
setting of the learning rate η. If the learning rate is set too high, the algorithm
can oscillate and become unstable. If the learning rate is too small, the algorithm
takes too long to converge. Note that it is not practical to determine the optimal
setting for the learning rate before training. With standard gradient descent, the
learning rate is held constant throughout training. However, the performance of
the gradient descent algorithm can be improved if it allows the learning rate to
change during the training process. An adaptive learning rate attempts to keep
the learning step size as large as possible while keeping learning stable.

Another very simple technique for improving the performance of the gradient
descent algorithm is to add a momentum term [6]. The modified gradient descent
formula is given by:

Δw(τ) = −η∇Ew(τ) + μΔw(τ−1)

This term adds inertia to the motion through weight space smoothing out the
oscillations of the algorithm whilst speeding up the convergence. Moreover, the
momentum term can be helpful in reducing the likelihood of finding a local
minima.

2.3 Scaled Conjugate Gradient

With simple gradient descent, the direction of each step is given by the local
negative gradient of the error function, and the step size is determined by an
arbitrary learning rate parameter. A better procedure would be to consider some
search direction in weight space, and then find the minimum of the error function
along that direction. The minimum along the search direction d(τ) then gives the
next value for the weight vector:

w(τ+1) = w(τ) + δ(τ)d(τ)

where the parameter λ((τ)) is chosen to minimize:

E(λ) = E(w(τ) + λd(τ))

This gives an automatic procedure for setting the step length [7].



A Study on the Scalability of ANNs Using MCDM Methods 165

2.4 Levenberg-Marquardt

The Levenberg-Marquardt [8, 9] algorithm was designed specifically for minimiz-
ing a sum-of-squares error (E = 1

2

∑
n ε

2
n = 1

2‖ε‖2). Suppose we are currently at
point wold in weight space and we move to a point wnew . If the displacement
wnewwold is small then the error vector ε can be expanded to first order in Taylor
series:

ε(wnew) = ε(wold) + Z(wnew − wold)

where the matrix Z is defined with elements

(Z)ni =
∂εn

∂wi

If the error is minimized with respect to the new weights wnew then:

wnew = wold − (ZTZ)−1ZT ε(wold)

where the Hessian can be written in the form H = ZTZ. Since there is no guar-
antee that the Hessian H is positive definite, a correction term can be introduced
to cover this problem by

H = H + δI

where I is the identity matrix and δ is a parameter which value changes during
training to guarantee the positive definiteness of the Hessian matrix.

The weight update formula could be applied iteratively in order to try to
minimize the error function. The problem is that the update term could turn
out to be relatively large. This problem is addressed by seeking to minimize the
error function whilst at the same time trying to keep the step size small so as to
ensure that the linear approximation remains valid.

2.5 Stochastic Gradient Descent

In the stochastic version of gradient descent, the error function is evaluated for
just one sample at a time. The weights update rule is:

Δw(τ) = −η∇En
w(τ)

where the different samples n in the training set are selected at random order.
It is expected a steady reduction in error since the average direction of motion
in weight space should approximate the negative of the local gradient [5]. An
important advantage of the stochastic approach over batch methods arises if
there is a high degree of redundant information in the data set. Another potential
advantage of the stochastic approach is that it has the possibility of escape from
local minima.



166 D. Peteiro-Barral and B. Guijarro-Berdiñas

3 Scalability Measures

Performance measures such as mean squared error or class accuracy are inade-
quate to evaluate the performance of learning algorithms in large data sets since
they do not take into account all aspects involved in scalability.

Scalability measures must take into consideration error, time and memory
constraints. Thus, the goal is to find a learning algorithm that obtains the lowest
error in the shortest time using the smaller number of samples. However, there
are no standard measures of scalability. In order to overcome this issue, those
measures defined in the PASCAL large scale learning challenge [1] will be used in
this research. In this challenge, six scalar measures were defined based on three
figures (see Figure 1).

0.00

0.05

0.10

0.15

0.20

0.25

0.30

10-110-210-3 100 101 102
Te5%

Err

Algorithm

AuTE

T
e
s
t
 
e
r
r
o
r

Training time (s)

(a) Training time vs Test error.

0.00

0.05

0.10

0.15

0.20

0.25

0.30

103102101 104 105 106

AuSE

Se5%

Algorithm

Training set size

T
e
s
t
 
e
r
r
o
r

(b) Training set size vs Test error.

103102

102

101

100

10-1

10-2

10-3

10-4
101 104 105 106

Algorithm

Training set size

T
r
a
i
n
i
n
g
 
t
i
m
e
 
(
s
)

Eff

(c) Training set size vs Training time.

Fig. 1. Performance measures in terms of scalability, where the six scalar measures are
marked in italic on the three figures.

– Figure 1(a) shows Training time vs Test error. It is obtained by displaying
the evolution of the test error along certain time budgets and employing the
largest dataset the algorithm can deal with. We compute the following scalar
measures based on this figure:

• Err : minimum test error (standard class error [10] for classification and
MSE [10] for regression tasks).

• AuTE : area under Training time vs Test error curve.
• Te5% : the time t for which the test error e falls below a threshold

e−Err
e < 0.05.



A Study on the Scalability of ANNs Using MCDM Methods 167

– Figure 1(b) shows Training set size vs Test error. It is obtained by displaying
the different training set sizes, 10[2,3,4... ], and the corresponding test errors
achieved. Based on this curve, we compute:
• AuSE : area under Training set size vs Test error curve.
• Se5% : the size s for which the test error e falls below a threshold e−Err

e <
0.05

– Figure 1(c) shows Training set size vs Training time. It is obtained by dis-
playing the different training set sizes and the corresponding training time
needed by the algorithm. We compute the following scalar measure based on
this curve:
• Eff : slope b of the curve by using a least squares fit to axb.

Following PASCAL, algorithms should be ranked for each of these six measures
and compute the score of each algorithm as its average position with regard to
the six rankings. For example, an algorithm that ranks first in three measures
and second in the remaining three will obtain a final score of 1+1+1+2+2+2

6 = 1.5.
Note, however, that this procedure do not take into consideration the magnitude
of the measures but simply the ranking. This may lead to unfair results, mostly
if some algorithms perform notably good or bad. In order to overcome this issue,
the use of a multiple-criteria decision-making method is proposed.

4 Multiple-Criteria Decision-Making

Classification algorithms are normally evaluated in terms of multiple criteria.
But how can multiple criteria be handle into a single evaluation model? Multiple-
criteria decision-making [11] (MCDM) is focused on addressing the aforemen-
tioned issue. MCDM methods evaluate classifiers from different aspects and
produce rankings of classifiers [12]. A multi-criteria problem is formulated using
a set of alternatives {a1, a2, . . . , am} and criteria {k1, k2, . . . , kn}. The decision
matrix is formulated as

⎛

⎜
⎜
⎜
⎝

x11 x12 . . . x1n

x21 x22 . . . x2n

...
...

. . .
...

xm1 xm2 . . . xmn

⎞

⎟
⎟
⎟
⎠

where xij represents the performance measure of the ith alternative in the jth
criterion.

Among many MCDM methods that have been developed up to now, Tech-
nique for Order of Preference by Similarity to Ideal Solution (TOPSIS) [13] is a
well-known method that will be used in this research. TOPSIS finds the best al-
gorithms by minimizing the distance to the ideal solution whilst maximizing the
distance to the anti-ideal one. The extension of TOPSIS proposed by Opricovic
and Tzeng [14] and Olson [15] is used in this research. The steps of the method
are described as follows:



168 D. Peteiro-Barral and B. Guijarro-Berdiñas

1. Compute the decision matrix consisting of m alternatives and n criteria. For
alternative Ai, i = 1, . . . ,m, the performance measure of the jth criterion
Cj , j = 1, . . . , n, is represented by xij .

2. Compute the normalized decision matrix. The normalized value rij is calcu-
lated as

rij =
xij√∑m
i=1 x

2
ij

3. Establish a set of weights w, where wj is the weight of the jth criterion and∑n
j=1 wj = 1, and compute the weighted normalized decision matrix. The

weighted normalized value vij is computed as

vij = rijwj

4. Find the ideal alternative solution S+ and the anti-ideal alternative solution
S−, which are computed as,

S+ = {v+1 , . . . , v+n } =

=
{(

max
i

vij |i ∈ I ′
)
,
(
min
i

vij |i ∈ I ′′
)}

and

S− = {v−1 , . . . , v−n } =

=
{(

min
i

vij |i ∈ I ′
)
,
(
max

i
vij |i ∈ I ′′

)}

respectively, where I ′ is associated with benefit criteria and I ′′ is associated
with cost criteria.

5. Compute the distance of each alternative from the ideal solution and from
the anti-ideal solution, using the Euclidean distance,

D+
i =

√
√
√
√

n∑

j=1

(vij − v+j )
2

and

D−
i =

√
√
√
√

n∑

j=1

(vij − v−j )2

respectively
6. Compute the ratio R+

i equal to the relative closeness to the ideal solution,

R+
i =

D−
i

D+
i +D−

i

7. Rank alternatives by maximizing the ratio R+
i



A Study on the Scalability of ANNs Using MCDM Methods 169

4.1 Combining Divergent Rankings

While the rankings of alternatives on several data sets may agree, it is common
the case in which they disagree. Thus, the problem of handling multiple criteria
is translated into a problem of handling multiple rankings.

In this research, we propose to rank the alternatives in a secondary ranking
that combines divergent rankings by re-applying the MCDM method using as
inputs the values of the MCDM on the primary rankings. In this manner, the
MCDM method is arranged in a two-step pipeline in which the output values of
the primary rankings are used as inputs in the secondary ranking (see Figure 2).

MCDM

MCDM

MCDM

...

Decision
matrix 1

Decision
matrix n

Primary
ranking
values

Secondary
ranking
values

Fig. 2. Combination of divergent rankings obtained on different data sets

5 Experimental Study

The aim of this research is to experimentally evaluate the scalability of five of
the most popular training algorithms for ANNs using a MCDM method.

5.1 Data Sets

Training algorithms were applied to two common tasks in machine learning:
classification and regression. Table 1 shows the data sets used in this research
with a brief description of their features: number of inputs, classes, training
samples and test samples, and learning task.

Table 1. Characteristics of each dataset

Dataset Inputs Classes Training Test Task

Connect-4 42 3 60, 000 7, 557 Classification
Covertype 54 2 100, 000 50, 620 Classification
KDDCup99 42 2 494, 021 311, 029 Classification
Friedman 10 1 1, 000, 000 100, 000 Regression
Lorenz 8 1 1, 000, 000 100, 000 Regression



170 D. Peteiro-Barral and B. Guijarro-Berdiñas

Connect-4, Covertype and KDD Cup 99 data set are available at the UCI
Machine Learning Repository [16]. On the other hand, Friedman and Lorenz are
artificial datasets. The former is defined by the equation y = 10sin(πx1x2) +
20(x3 − 0.5)2 + 10x4 + 5x5 + σ(0, 1) where the input attributes x1, . . . , x10 are
generated independently from a uniform distribution on the interval [0, 1]. On
the other hand, Lorenz is defined by the simultaneous solution of three equations
dX
dt = δY −δX, dYdt = −XZ+rX−Y, dZdt = XY −bZ, where the systems exhibits
chaotic behavior for δ = 10, r = 28 and b = 8

3 .

5.2 Experimental Procedure

The following procedure was done in order to evaluate the scalability of the
training algorithms:

– Divide the data set using holdout validation. This kind of validation is suit-
able because the size of the data sets is very large.

– Set the number of hidden units of the ANNs to twice plus one the num-
ber of inputs. Following [17], going beyond this number should not make
any difference. Also, it is important to remark that the aim here is not to
investigate the optimal topology but to evaluate the scalability of training
algorithms and thus, it is interesting to use networks as large as possible.
Set the parameters of the ANNs to default values (learning rate 0.001, goal
accuracy 0.01, maximum number of epochs 1000, etc.).

– For each data set, train the ANNs and compute the six scalar measures of
scalability defined in Section 3: Err, AuTE, Te5%, AuSE, Se5% and Eff.

– Rank the algorithms using TOPSIS method. The values of the weights corre-
sponding with each criterion are assigned equally. Note also that all measures
are cost criteria, i.e. the smaller the better.

– Combine the primary ranking results of the different data sets (see Table 1)
in a secondary, final ranking using TOPSIS.

6 Results and Discussion

Table 2 shows the results of the five training algorithms on the five data sets
using the six scalar measures of scalability. Based on these six measures, TOPSIS
obtains a ranking value also shown in Table 2 (the larger the value the better).

The results showed in this table demonstrate the change in approach when
the learning algorithms are evaluated in terms of scalability. Notice that in many
cases algorithms with lower test error rank worse than others. For example, Table
2(a) shows that LM obtains a much lower error than GD (-15%) and GDX (-8%).
However, LM ranks worse than GD and GDX. In spite of its good accuracy, the
long training time of LM makes this algorithm worse in terms of scalability.

Table 3 summarizes the TOPSIS values of each algorithm on each data set.
As can be seen, there is no agreement on the ranking among the different data
sets. In order to provide a single answer a secondary ranking is applied using as
inputs the TOPSIS values of the five algorithms on the five data sets.



A Study on the Scalability of ANNs Using MCDM Methods 171

Table 2. Performance results of Connect-4, Covertype, KDD Cup 99, Frieadman and
Lorenz data sets and primary TOPSIS values

(a) Connect-4 data set.

Name TOPSIS Err AuTE Te5% AuSE Se5% Eff

GD 0.9057 0.38 5.16e1 1.08e2 0.97 1.00e2 0.43
GDX 0.7189 0.31 3.71e1 7.98e1 0.92 6.00e4 0.40
LM 0.2110 0.23 3.79e2 7.80e2 0.77 1.00e4 0.77
SCG 0.9389 0.21 7.01e1 2.62e2 0.77 1.00e4 0.50
SGD 0.7099 0.16 5.32e1 2.36e2 0.54 6.00e4 0.54

(b) Covertype data set.

Name TOPSIS Err AuTE Te5% AuSE Se5% Eff

GD 0.8765 0.38 1.24e2 2.78e2 1.20 1.00e3 0.49
GDX 0.8674 0.42 4.74e1 1.01e2 1.32 1.00e4 0.41
LM 0.2431 0.24 6.41e2 1.74e3 0.94 1.00e4 0.84
SCG 0.6308 0.20 1.64e2 5.80e2 0.81 1.00e5 0.55
SGD 0.6426 0.13 1.21e2 7.83e2 0.62 1.00e5 0.58

(c) KDDCup99 data set.

Name TOPSIS Err AuTE Te5% AuSE Se5% Eff

GD 0.8341 0.13 4.29e1 5.53e1 0.43 1.00e2 0.50
GDX 0.8130 0.15 2.55e1 5.93e1 0.46 1.00e3 0.44
LM 0.3923 0.11 2.21e2 1.24e3 0.46 1.00e4 0.80
SCG 0.6808 0.14 1.10e2 3.54e2 0.51 1.00e4 0.55
SGD 0.4603 0.00 8.85e0 1.35e3 0.07 4.94e5 0.59

(d) Friedman data set.

Name TOPSIS Err AuTE Te5% AuSE Se5% Eff

GD 0.6424 8.33 2.19e3 7.51e1 36.77 1.00e3 0.37
GDX 0.7805 4.41 1.83e3 7.20e1 24.57 1.00e5 0.37
LM 0.9079 0.11 1.11e3 8.74e2 8.57 1.00e5 0.59
SCG 0.9150 0.79 1.67e3 1.71e2 10.33 1.00e5 0.44
SGD 0.3442 0.21 2.24e4 1.12e4 6.88 1.00e5 0.68

(e) Lorenz data set.

Name TOPSIS Err AuTE Te5% AuSE Se5% Eff

GD 0.9676 0.74 4.82e2 6.17e1 2.98 1.00e2 0.36
GDX 0.6022 2.66 2.45e2 2.04e1 13.63 1.00e4 0.26
LM 0.9380 0.00 3.26e3 5.19e2 0.00 1.00e5 0.54
SCG 0.9939 0.01 5.61e2 1.38e2 0.05 1.00e4 0.43
SGD 0.3828 0.01 6.54e3 9.96e3 0.69 1.00e6 0.67



172 D. Peteiro-Barral and B. Guijarro-Berdiñas

Table 3. Summary of the primary TOPSIS rankings

Name
Connect-4 Covertype KDDCup99 Friedman Lorenz
Value Rank Value Rank Value Rank Value Rank Value Rank

GD 0.9057 2 0.8765 1 0.8341 1 0.6424 4 0.9676 2
GDX 0.7189 3 0.8674 2 0.8130 2 0.7805 3 0.6022 4
LM 0.2110 5 0.2431 5 0.3923 5 0.9079 2 0.9380 3
SCG 0.9389 1 0.6308 4 0.6808 3 0.9150 1 0.9939 1
SGD 0.7099 4 0.6426 3 0.4603 4 0.3442 5 0.3828 5

Table 4. Secondary TOPSIS ranking

Name Rank TOPSIS Connect-4 Covertype KDDCup99 Friedman Lorenz

GD 1 0.9543 0.9057 0.8765 0.8341 0.6424 0.9676
GDX 3 0.8562 0.7189 0.8674 0.8130 0.7805 0.6022
LM 5 0.3147 0.2110 0.2431 0.3923 0.9079 0.9380
SCG 2 0.9354 0.9389 0.6308 0.6808 0.9150 0.9939
SGD 4 0.3218 0.7099 0.6426 0.4603 0.3442 0.3828

Table 4 shows the results of the secondary ranking. Note that this method not
only provides a ranking but it give information about how close are algorithms
one each other. As can be seen, GD is ranked first but TOPSIS also indicates
that it is closely followed by SCG. These two algorithms show a good tradeoff
between accuracy and training time. On the other hand, SGD and LM are ranked
fourth and fifth, respectively. Despite usually obtaining the best accuracy in
classification and regression tasks, their long training time has a negative impact
on their performance. Halfway, GDX is ranked third. It usually obtains a worse
performance than SGD and LM but in a much shorter lapse of time.

Finally, we established in TOPSIS the set of weights equally, i.e. the impor-
tance of every criterion is considered to be the same. Note that this procedure
can be easily adapted to other sort of problems in which one or several crite-
ria may be more relevant than others. This is also true in the second step of
the methodology in which the rankings obtained on each data set are merged
in a single ranking. In this case, for example, we may be interested in promote
classification problems rather than regression problems.

7 Conclusions

Most published researches concerning learning algorithms simply assess their
performance in terms of accuracy. In this paper, the scalability of five of the most
popular training algorithms for ANNs has been evaluated: GD, GDX, LM, SGD
and SCG. Since there are no standard measures of scalability, those defined in
the PASCAL Large Scale Learning Challenge were used. These measures assess
the scalability of algorithms in terms of error, computational effort, allocated
memory and training time.



A Study on the Scalability of ANNs Using MCDM Methods 173

The evaluation of the algorithms in terms of multiple criteria led us to apply
a MCDM method. In particular, TOPSIS was used in this research. Moreover,
we proposed a two-step approach to combine divergent rankings coming from
the evaluation of the training algorithms on different data sets. Moreover, the
use of a MCDM method allows to measure the distance among algorithms whilst
easily use the weights to enhance some criteria against the others.

For future work, we plan to extend this research to different MCDM methods.
In this case, we would have to face the combination of different rankings obtained
by different methods on different data sets.

References

1. Sonnenburg, S., Franc, V., Yom-Tov, E., Sebag, M.: PASCAL Large Scale Learning
Challenge. Journal of Machine Learning Research (2009)

2. Strigl, D., Kofler, K., Podlipnig, S.: Performance and scalability of gpu-based con-
volutional neural networks. In: 18th Parallel, Distributed and Network-Based Pro-
cessing (PDP), pp. 317–324. IEEE (2010)

3. Casey, K., Garrett, A., Gay, J., Montgomery, L., Dozier, G.: An evolutionary ap-
proach for achieving scalability with general regression neural networks. Natural
Computing 8(1), 133–148 (2009)

4. Peteiro-Barral, D., Bolón-Canedo, V., Alonso-Betanzos, A., Guijarro-Berdiñas, B.,
Sánchez-Maroño, N.: Toward the scalability of neural networks through feature
selection. Expert Systems with Applications 40(8), 2807–2816 (2013)

5. Bishop, C.M.: Neural networks for pattern recognition (1995)
6. Plaut, D.C., Nowlan, S.J., Hinton, G.E.: Experiments on learning by back propa-

gation (1986)
7. Møller, M.F.: A scaled conjugate gradient algorithm for fast supervised learning.

Neural Networks 6(4), 525–533 (1993)
8. Levenberg, K.: A method for the solution of certain non-linear problems in least

squares. Quarterly Journal of Applied Mathmatics 2(2), 164–168 (1944)
9. Marquardt, D.W.: An algorithm for least-squares estimation of nonlinear parame-

ters. Society for Industrial & Applied Mathematics 11(2), 431–441 (1963)
10. Weiss, S.M., Kulikowski, C.A.: Computer systems that learn: classification and pre-

diction methods from statistics, neural nets, machine learning, and expert systems.
Morgan Kaufmann, San Francisco (1991)

11. Zeleny, M.: Multiple criteria decision making, vol. 25. McGraw-Hill, NY (1982)
12. Gang, K., Lu, Y., Peng, Y., Yong, S.: Evaluation of classification algorithms using

mcdm and rank correlation. International Journal of Information Technology &
Decision Making 11(01), 197–225 (2012)

13. Hwang, C.L., Yoon, K.: Multiple attribute decision making: methods and applica-
tions: a state-of-the-art survey, vol. 13. Springer, New York (1981)

14. Opricovic, S., Tzeng, G.H.: Compromise solution by MCDM methods: A com-
parative analysis of VIKOR and TOPSIS. European Journal of Operational Re-
search 156(2), 445–455 (2004)

15. Olson, D.L.: Comparison of weights in TOPSIS models. Mathematical and Com-
puter Modelling 40(7-8), 721–727 (2004)

16. Frank, A., Asuncion, A.: UCI machine learning repository (2010)
17. Hecht-Nielsen, R.: Neurocomputing. Addison-Wesley (1990)


	A Study on the Scalability of Artificial Neural Networks Training Algorithms Using
Multiple-Criteria Decision-Making Methods

	1 Introduction
	2 Training Algorithms for ANN
	2.1 Gradient Descent
	2.2 Gradient Descent with Momentum and Adaptive Learning Rate
	2.3 Scaled Conjugate Gradient
	2.4 Levenberg-Marquardt
	2.5 Stochastic Gradient Descent

	3 Scalability Measures
	4 Multiple-Criteria Decision-Making
	4.1 Combining Divergent Rankings

	5 Experimental Study
	5.1 Data Sets
	5.2 Experimental Procedure

	6 Results and Discussion
	7 Conclusions
	References




