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Abstract. This paper describes development of a nonlinear Model Pre-
dictive Control (MPC) algorithm. The algorithm is very computationally
efficient because for control signal calculation an explicit control law is
used, no on-line optimisation is necessary. The control law is implemented
by a neural network which is trained off-line by means of a particle swarm
optimisation algorithm. Inefficiency of a classical gradient-based training
algorithm is demonstrated for the polymerisation reactor. Moreover, the
discussed MPC algorithm is compared in terms of accuracy and compu-
tational complexity with two suboptimal MPC algorithms with model
linearisation and MPC with full nonlinear optimisation.
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1 Introduction

Model Predictive Control (MPC) is a computer control strategy in which the
control action is optimised over some future time horizon [8,15]. Thanks to the
fact that a dynamic model is used for prediction of the future behaviour of
the process, MPC algorithms, unlike any other control technique, can easily
take into account constraints imposed on process inputs (manipulated variables)
and outputs (controlled variables), which usually decide on quality, economic
efficiency and safety. Secondly, MPC can be efficiently used for multivariable
processes, with many inputs and outputs. As a result, MPC algorithms have
been successfully used for years in many areas [14].

Because behaviour of numerous processes is typically nonlinear, nonlinear
models, rather than simple linear ones, are used for prediction in MPC [3,10,15].
Although different types of nonlinear models can be used in MPC, neural models
are particularly interesting. In order to reduce complexity of on-line calculations,
suboptimal MPC algorithms are more and more popular in which the neural
model is successively linearised on-line and the obtained linear approximation is
used for prediction. Thanks to linearisation, the control signal can be calculated
on-line from an easy to solve quadratic programming task [5,7,11,15]. To further
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reduce computational burden an explicit variant of the suboptimal MPC algo-
rithm can be used in which constraints are treated somehow heuristically, but it
makes it possible to replace quadratic programming with an explicit control law.
The coefficients of this law are calculated on-line from a simple matrix decompo-
sition task and a solution of a set of linear equations [6]. The necessity of model
linearisation and matrix inversion can be also eliminated as shown in [4], in such
a case the explicit control law is implemented by a neural network trained off-
line. Data sets necessary for training and validation of such a neural network are
generated by the classical explicit MPC algorithm. Unfortunately, development
of the classical algorithm is an essential part of the design procedure, which may
be a disadvantage.

In this paper alternative development of the explicit neural MPC algorithm is
discussed. Unlike the algorithm presented in [4], the neural network is not trained
to approximate behaviour of the classical explicit MPC algorithm, but the net-
work used for control law calculation is trained directly off-line. Because such an
optimisation problem may be difficult, non-convex and multimodal, a particle
swarm optimisation algorithm is used. Efficiency of the discussed approach is
demonstrated for the polymerisation process. Particle swarm optimisation ap-
proaches have been extensively used for global optimisation [1]. In control system
engineering they have been used for off-line tuning parameters of the PID con-
troller [12] and for on-line nonlinear optimisation in MPC algorithms [13,16].

2 Model Predictive Control Algorithms

In MPC algorithms [8,15] at each consecutive sampling instant k, k = 0, 1, 2, . . .,
a set of future control increments is calculated

�u(k) = [�u(k|k) �u(k + 1|k) . . .�u(k + Nu − 1|k)]
T

(1)

It is assumed that �u(k+ p|k) = 0 for p ≥ Nu, where Nu is the control horizon.
The objective of the algorithm is to minimise differences between the reference
trajectory yref(k + p|k) and predictions ŷ(k + p|k) over the prediction horizon
N ≥ Nu, i.e. for p = 1, . . . , N . Assuming that constraints are imposed on the
value and the rate of change of the input variable, future control increments (1)
are determined from the following MPC optimisation task

min
�u(k)

{
N∑
p=1

(yref(k + p|k) − ŷ(k + p|k))2 + λ

Nu−1∑
p=0

(�u(k + p|k))2

}

subject to (2)

umin ≤ u(k + p|k) ≤ umax, p = 0, . . . , Nu − 1

−�umax ≤ �u(k + p|k) ≤ �umax, p = 0, . . . , Nu − 1

where λ > 0 is a weighting coefficient. Only the first element of the determined
sequence (1) is applied to the process, i.e. u(k) = �u(k|k) + u(k − 1). At the
next sampling instant, k + 1, the prediction is shifted one step forward and the
whole procedure is repeated.
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3 Explicit Neural MPC Algorithm Using Particle Swarm
Optimisation

Let the dynamic neural model of the process be described by

y(k) = f(x(k)) = f(u(k − τ), . . . , u(k − nB), y(k − 1), . . . , y(k − nA)) (3)

where integers nA, nB, τ define the order of dynamics, τ ≤ nB. In such a case
predictions ŷ(k + p|k) are nonlinear functions of the calculated policy (1) and
the whole optimisation problem (2) is nonlinear, frequently non-convex. That is
why suboptimal MPC algorithms are frequently used in which at each sampling
instant on-line a linear approximation of the model (3) is calculated. Thanks to
linearisation, the MPC optimisation task (2) becomes a quadratic programming
problem.

3.1 The Explicit Control Law

If the constraints are removed from the MPC optimisation task (2), one has

min
�u(k)

{
J(k) =

∥∥yref(k) − ŷ(k)
∥∥2 + ‖�u(k)‖2Λ

}
(4)

where

yref(k) =
[
yref(k + 1|k) . . . yref(k + N |k)

]T
ŷ(k) = [ŷ(k + 1|k) . . . ŷ(k + N |k)]T

are vectors of length N , Λ = diag(λ, . . . , λ) is a matrix of dimensionality Nu×Nu.
It can be shown [5] that if the linear approximation of the neural model is used
for prediction, the output predictions are linear functions of the future control
sequence �u(k)

ŷ(k) = G(k)�u(k) + y0(k) (5)

where the matrix G(k) of dimensionality N ×Nu contains step-response coeffi-

cients of the linearised model, the vector y0(k) =
[
y0(k + 1|k) . . . y0(k + N |k)

]T
is the free trajectory which depends only on the past. Using the prediction equa-
tion (5), the optimisation problem of the explicit MPC algorithm (4) becomes

min
�u(k)

{
J(k) =

∥∥yref(k) −G(k)�u(k) − y0(k)
∥∥2

+ ‖�u(k)‖2Λ
}

Due to the fact that the minimised cost function J(k) is quadratic, optimal
control moves can be calculated analytically, without any optimisation. One
obtains the explicit control law

�u(k) = K(k)(yref(k) − y0(k)) (6)

where
K(k) = (GT(k)G(k) + Λ)−1GT(k) (7)

is a matrix of dimensionality Nu ×N .
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At each sampling instant k of the classical explicit MPC algorithm the fol-
lowing steps are repeated on-line:

1. The linear approximation of the neural model for the current operating point
is found [5].

2. Step response coefficients which comprise the matrix G(k) are calculated [5].

3. The nonlinear free trajectory y0(k) is calculated using a neural model of the
process [5].

4. The matrix K(k) is calculated from Eq. (7).

5. The future control increments �u(k) are found from Eq. (6).

6. The first element of the obtained vector �u(k) is applied to the process.

7. Iteration number is increased (k := k + 1), the algorithm goes to step 1.

The same neural model is used for linearisation and the free trajectory calcula-
tion. Matrix inversion in Eq. (7) is calculated in a numerical efficient way using
the LU (Low-Upper) matrix decomposition with partial pivoting [6].

3.2 The Algorithm with Direct Calculation of the Matrix K1(k)

The explicit MPC algorithm discussed in the following part of the paper is much
simpler than the rudimentary explicit algorithm described in the previous sub-
section. First, the first element of the vector �u(k) (i.e. the quantity �u(k|k))
is only calculated. In place of the control law (6) the formula

�u(k|k) = K1(k)(yref(k) − y0(k)) (8)

is used where K1(k) is the first row of the matrix K(k). Secondly, the non-
linear model is not linearised on-line, step-response coefficients of the linearised
model and the dynamic matrix G(k) are not calculated on-line, the inverse
matrix (GT(k)G(k) + Λ)−1 is not calculated on-line. The vector K1(k) =

[k1,1(k) . . . k1,N (k)]
T

for the current operating point is directly calculated by
a neural network which is called a neural approximator. The algorithm uses two
neural networks: NN1 is a dynamic model of the process, NN2 is a neural ap-
proximator. At each sampling instant k of the algorithm the following steps are
repeated on-line:

1. The nonlinear free trajectory y0(k) is calculated using a neural model of the
process (the network NN1).

2. The vector K1(k) is calculated using the neural approximator (the network
NN2).

3. The current control increment �u(k|k) is found from Eq. (8).

4. The obtained solution is projected onto the admissible set of constraints.

5. The obtained solution is applied to the process.

6. Iteration number is increased (k := k + 1), the algorithm goes to step 1.



134 M. �Lawryńczuk

Although the control laws (6) and (8) can be easily derived forgetting the con-
straints imposed on the manipulated variable in the general MPC optimisation
task (2), the obtained value of the control signal may not satisfy real limitations
of the actuator. That is why the following constraints imposed on the currently
calculated control signal are taken into account

umin ≤ u(k|k) ≤ umax, −�umax ≤ �u(k|k) ≤ �umax

The control increment �u(k|k) calculated from Eq. (8) is hence projected onto
the admissible set of constraints

if �u(k|k) < −�umax �u(k|k) = −�umax

if �u(k|k) > �umax �u(k|k) = �umax

u(k|k) = �u(k|k) + u(k − 1)

if u(k|k) < umin u(k|k) = umin

if u(k|k) > umax u(k|k) = umax

u(k) = u(k|k) (9)

3.3 Training the Network NN2 Using Particle Swarm Optimisation

Elements of the vector K1(k), i.e. scalars k1,p(k) for p = 1, . . . , N , are calculated
on-line by the neural approximator–the network NN2 for the current operating
point of the process. The operating point is defined by control signals applied to
the process at some previous sampling instants and measurements of the output
signal for the current and some previous instants. The quantities k1,p are hence
functions of the following arguments

k1,p = gp(u(k − 1), . . . , u(k − ñB), y(k), . . . , y(k − ñA))

where integers ñA and ñB define the current operating point. In this study the
MultiLayer Perceptron (MLP) network with one hidden layer and linear outputs
[2] is used as the NN2 network. It has ñA+ ñB+1 inputs. Outputs of the network
are described by the following equation

k1,p(k) = w2
p,0 +

K∑
i=1

w2
p,iϕ

(
w1

i,0 +

ñB∑
j=1

w1
i,ju(k − j)

+

ñA∑
j=0

w1
i,ñB+j+1y(k − j)

)
(10)

where K is the number of hidden nodes, ϕ denotes the transfer function of the
hidden units (e.g. ϕ = tanh), weights of the first layer are denoted by w1

i,j for

i = 1, . . . ,K, j = 1, . . . , ñA + ñB + 1, biases of the first layer are denoted by w1
i,0

for i = 1, . . . ,K, weights of the second layer are denoted by w2
p,i for p = 1, . . . , N ,

i = 1, . . . ,K, biases of the second layer are denoted by w2
p,0 for p = 1, . . . , N .
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The training procedure for the network NN2 is as follows. First, a series of
random changes of the reference trajectory is assumed. These changes comprise
the training data set, the number of the training patterns is S. Similarly, the
validation data set is generated. Next, parameters of the network, i.e. weights,
are optimised through simulations of the explicit MPC algorithm for the assumed
training changes of the reference trajectory. The optimisation problem is defined
for S training patterns

min
w1

i,j , w2
p,i

{
SSE =

S∑
k=1

[
(yref(k) − y(k))2 + λ(�u(k|k))2

]}

subject to (11)

�u(k|k) = K1(k)(yref(k) − y0(k))

umin ≤ u(k|k) ≤ umax

−�umax ≤ �u(k|k) ≤ �umax

where y(k) denotes the output of the simulated process for consecutive sampling
instants k = 1, . . . , S, elements of the vector K1(k) are calculated form Eq. (10).
Satisfaction of inequality constraints is enforced by the projection procedure (9).
The optimisation task (11) is nonlinear, it may be non-convex and multimodal.
That is why classical, gradient-based optimisation algorithms are likely to ter-
minate at local minima. A straightforward choice is to use global optimisation
methods. In this study the particle swarm optimisation algorithm is used.

4 Simulation Results

The considered example process is a polymerisation reaction taking place in
a jacketed continuous stirred tank reactor [9]. The reaction is the free-radical
polymerisation of methyl methacrylate with azo-bis-isobutyronitrile as initiator
and toluene as solvent. The output NAMW (Number Average Molecular Weight)
is controlled by manipulating the inlet initiator flow rate FI. The reactor exhibits
significantly nonlinear behaviour. It cannot be controlled efficiently by classical
MPC schemes based on constant linear models [5,7,9,15].

The fundamental model (a set of ordinary differential equations solved using
the Runge-Kutta RK45 method) is used as the real process during simulations.
At first, the dynamic neural model NN1 of the MLP type is developed. It has
the general structure

y(k) = f(u(k − 2), y(k − 1), y(k − 2))

As input and output variables have different orders of magnitude, they are scaled
as u = 100(FI − FI0), y = 0.0001(NAMW − NAMW0) where FI0 = 0.028328,
NAMW0 = 20000 correspond to the initial operating point. The sampling time is
1.8 min. The network has 6 hidden nodes with the ϕ = tanh transfer function. For
training the BFGS (Broyden-Fletcher-Goldfarb-Shanno) optimisation algorithm
is used. Model development is thoroughly discussed in [5].
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Fig. 1. The first 500 samples of the training data set (left) and the first 500 samples
of the validation data set (right), the complete sets have 2000 samples

Table 1. Accuracy of the neural approximator NN2 for gradient-based and particle
swarm optimisation algorithms

Optimisation algorithm SSEtraining SSEvalidation

Gradient-based optimisation 5.273419 × 1011 4.179207 × 1011

Particle swarm optimisation 2.515997 × 1010 3.319000 × 1010

In order to train the neural approximator (the network NN2), a series of
random changes of the reference trajectory is generated. Both training and vali-
dation data sets have 2000 samples, the first quarters of them (for good presen-
tation) are shown in Fig. 1. The prediction horizon is N = 10. The network has
2 inputs (u(k − 1) and y(k)), 3 hidden nodes with the ϕ = tanh transfer func-
tion and 9 outputs, due to process delay the quantity k1,1(k) is always 0. The
optimisation problem (11) is solved by means of the gradient-based algorithm
(the BFGS algorithm with shifted penalty function) and the particle swarm op-
timisation algorithm (the population size is 25, the maximum number of epochs
is 2000). Numerical values of the obtained SSE (the Sum of Squared Errors)
objective function are given in Table 1. The trajectories obtained as a result of
optimisation in two compared algorithms much better demonstrate inefficiency
of the classical approach and efficiency of the particle swarm optimisation algo-
rithm. Fig. 2 shows the first quarters of input and output trajectories obtained
in the gradient-based and particle swarm optimisation algorithms. In the first
case the optimisation routine finds the solution which is a shallow local minima.
Unfortunately, the explicit MPC does not follow the assumed reference trajec-
tory. Conversely, the particle swarm optimisation algorithm finds parameters of
the neural approximator NN2 which gives good closed loop trajectories.

Next, the following four nonlinear MPC algorithms are compared:

a) the discussed explicit MPC algorithm with neural approximation and parti-
cle swarm optimisation used for off-line training of the network NN2,
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a)

b)

Fig. 2. The first 500 samples of input (FI) and output (NAMW) trajectories for the
validation data set trajectory NAMWref obtained in the explicit MPC algorithm: a) for
optimisation of the neural approximator NN2 the gradient algorithm is used, b) for
optimisation the PSO algorithm is used

b) the classical explicit MPC algorithm with Nonlinear Prediction and Lin-
earisation (MPC-NPL), with on-line successive linearisation of the neural
dynamic model (the NN1 network) and LU matrix decomposition [6],

c) the MPC-NPL algorithm with on-line successive linearisation of the neural
dynamic model (the NN1 network) and quadratic programming [5,7,15],

c) the MPC-NO algorithm with on-line nonlinear optimisation in which the
neural dynamic model (the NN1 network) is used for prediction without any
simplifications [7,15].

Parameters of all MPC algorithms are the same N = 10, λ = 0.2, in the last three
approaches Nu = 3. The manipulated variable is constrained: Fmin

I = 0.003,
Fmax
I = 0.06, �Fmax

I = 0.005. Fig. 3 shows trajectories obtained in the discussed
explicit MPC algorithm and in the classical explicit MPC-NPL algorithm with
on-line successive linearisation and LU matrix decomposition repeated at each
sampling instant. Table 2 shows accuracy of all compared algorithms in terms of
the SSE index and their computational complexity (in Millions of FLoating Op-
erationS) for the whole simulation scenario (100 iterations). For the polymerisa-
tion process the all three suboptimal algorithms give control accuracy very close
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Fig. 3. Simulation results: the discussed explicit MPC algorithm (solid line) and the
classical explicit MPC-NPL algorithm with on-line successive linearisation and LU
matrix decomposition (dashed line)

Table 2. Accuracy (SSE) and computational load (MFLOPS) of compared nonlinear
MPC algorithms

Algorithm SSE MFLOPS

Discussed explicit MPC with neural approximation 2.218638 × 109 0.164554
Explicit MPC-NPL with on-line LU decomposition 2.211703 × 109 0.217110
MPC-NPL with on-line quadratic programming 2.211703 × 109 0.404686
MPC-NO with on-line nonlinear optimisation 2.210627 × 109 4.109900

to that of the ”ideal” computationally demanding MPC-NO approach. More-
over, the discussed explicit MPC algorithm works very similarly as the classical
explicit MPC-NPL algorithm with on-line successive linearisation of the neural
dynamic model and LU matrix decomposition. At the same time it is very com-
putationally efficient: it is 25% more efficient when compared with the classical
explicit algorithm and as much as 60% more efficient in comparison with the
MPC-NPL algorithm with on-line quadratic programming.

5 Conclusions

The explicit MPC algorithm discussed in this paper is very computationally
efficient because, unlike the classical explicit approach [6], successive on-line
model linearisation and matrix calculations are not necessary. The current value
of the control signal is calculated using a simple explicit formula and the neural
approximator. Such a network can be trained off-line to mimic behaviour of the
classical explicit MPC algorithm [4]. In this work an alternative development
of the explicit neural MPC algorithm is discussed. The neural approximator is
trained directly off-line, without the necessity of designing the classical explicit
algorithm. As the resulting optimisation problem may be difficult, non-convex
and multimodal, the particle swarm optimisation algorithm is used.
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7. �Lawryńczuk, M.: A family of model predictive control algorithms with artificial
neural networks. International Journal of Applied Mathematics and Computer
Science 17, 217–232 (2007)

8. Maciejowski, J.M.: Predictive control with constraints. Prentice Hall, Harlow
(2002)

9. Maner, B.R., Doyle, F.J., Ogunnaike, B.A., Pearson, R.K.: Nonlinear model predic-
tive control of a simulated multivariable polymerization reactor using second-order
Volterra models. Automatica 32, 1285–1301 (1996)

10. Morari, M., Lee, J.H.: Model predictive control: past, present and future. Comput-
ers and Chemical Engineering 23, 667–682 (1999)

11. Nørgaard, M., Ravn, O., Poulsen, N.K., Hansen, L.K.: Neural networks for mod-
elling and control of dynamic systems. Springer, London (2000)

12. Pillay, N., Govender, P.: Particle swarm optimization of PID tuning paremeters:
optimal tuning of single-input-single-output control loops. LAP Lambert Academic
Publishing (2010)

13. Pourjafari, E., Mojallali: Predictive control for voltage collapse avoidance using
a modified discrete multi-valued PSO algorithm. ISA Transactions 50, 195–200
(2011)

14. Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technol-
ogy. Control Engineering Practice 11, 733–764 (2003)

15. Tatjewski, P.: Advanced control of industrial processes, Structures and algorithms.
Springer, London (2007)

16. Yousuf, M.S.: Nonlinear predictive control using particle swarm optimization: ap-
plication to power systems. VDM Verlag (2010)


	Development of Explicit Neural Predictive Control Algorithm Using Particle SwarmOptimisation
	1 Introduction
	2 Model Predictive Control Algorithms
	3 Explicit Neural MPC Algorithm Using Particle Swarm Optimisation
	3.1 The Explicit Control Law
	3.2 The Algorithm with Direct Calculation of the Matrix
	3.3 Training the Network NN2 Using Particle Swarm Optimisation

	4 Simulation Results
	5 Conclusions
	References




