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Abstract. Probabilistic neural network (PNN) consists of the number
of pattern neurons that equals the cardinality of the data set. The model
design is therefore complex for large database classification problems. In
this article, two effective PNN reduction procedures are introduced. In
the first approach, the PNN’s pattern layer neurons are reduced by means
of a k-means clustering procedure. The second method uses a support
vector machines algorithm to select pattern layer nodes. Modified PNN
networks are compared with the original model in medical data classi-
fication problems. The prediction ability expressed in terms of the 20%
test set error for the networks is assessed. By means of the experiments,
it is shown that the appropriate pruning of the pattern layer neurons in
the PNN enhances the performance of the classifier.

Keywords: probabilistic neural network, k-means clustering, support
vector machines, classification, prediction ability.

1 Introduction

The probabilistic neural network (PNN), proposed by Specht [1] is a direct im-
plementation of the Bayes classifier. It can quickly learn from input data but re-
quires one neuron in the pattern layer for each training example [2]. PNNs have
found their implementation in variety of classification fields. It was presented
in image classification and recognition [3], [4], earthquake magnitude prediction
[5] or medical diagnosis and prediction [6]–[9]. The important contribution was
provided in [10] where PNN was applied to pattern classification in time-varying
environment.

Since PNN consists of a single node for each data, various modifications of
the network have been proposed. For example, in [11], by estimating probability
density functions as a mixture of the Gaussian densities with varying covariance
matrices it was possible to design PNN so that it used fewer nodes than training
patterns. The work in [12] presented learning vector quantization technique for
finding representative patterns to be used as neurons in PNN. In [13], the authors
presented a Generalized Fisher algorithm for PNN and showed that it required
significantly fewer nodes and interconnection weights than original model. The
reference in [3] presented the reduction of the size of the training data for PNN

L. Rutkowski et al. (Eds.): ICAISC 2013, Part I, LNAI 7894, pp. 118–129, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



Probabilistic Neural Network Structure Reduction 119

by hierarchical clustering. Here, the reciprocal neighbors technique was applied
which allowed to gather the examples which were closest to each other. In [14],
the quantization method for PNN structure was proposed. The input space was
divided into a fixed-size hyper-grid and within each hyper-cube a representa-
tive cluster centres were computed. Therefore, the number of training vectors in
each hyper-cube was reduced to one. The research in [15] presented the auto-
matic construction of PNN by the use of a dynamic decay adjustment algorithm.
The model was dynamically built during training which automatically optimized
the number of hidden neurons. The work reported in [4] proposed PNN with no
distance matrix needed for storing the pairwise distances between input exam-
ples and the vector to be classified. It was achieved by maintaining the nearest
neighbor table of indices of the nearest cluster for each cluster. In [16], a super-
vised PNN structure determination algorithm was introduced. The procedure
employed genetic algorithm for pattern layer neuron selection.
It is necessary to note that the PNN model is equipped with the intrinsic smooth-
ing parameter of the pattern layer neurons activated by Gaussian function. It
must be estimated on the basis of a classification performance. Three approaches
are usually regarded: single parameter for whole PNN, separate parameter for
each variable (dimension) or single parameter for each class. In the research, a
diverse procedures have been developed to solve the problem [2], [6], [16], [17].
In this article, two alternative approaches of the structure minimization of the
probabilistic neural network are introduced. The first method is based on the
application of k-means clustering algorithm to input data in order to determine
the optimal number of centroids as the representation of the pattern layer neu-
rons. In the second solution, the support vector machine procedure is applied
which, out of the entire training database, provides the set of support vectors.
The support vectors form then the layer of pattern nodes of PNN. Both tech-
niques are tested on the medical data sets.
This paper is composed of the following sections. Section 2 discusses probabilistic
neural network highlighting its basics, a structure and a principle of operations.
In Section 3, the reduction of PNN structure by means of a k-means clustering
and support vector machines algorithm is proposed. Section 4 briefly describes
the input data used in the research. Additionally, the performance of the stan-
dard and the modified PNN models is here verified. Finally, in Section 5, the
conclusions are presented.

2 Probabilistic Neural Network

Assume, we are given an input vector x ∈ R
n which belongs to one of the prede-

fined classes g = 1, 2, . . . , G. Let the probability of the vector x belonging to the
class g equals pg, the cost associated with classifying the vector into class g is cg
and that the probability density functions: y1(x), y2(x), . . . , yG(x) for all classes
are known. Then, according to the Bayes theorem, when g �= h, the vector x is
classified to the class g, if pgcgyg (x) > phchyh (x). Usually pg = ph and cg = ch,
thus one can infer that if yg(x) > yh(x), then the vector x belongs to the class g.
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In real data classification problems, data set distribution is usually unknown
and an approximation of the probability density function yg(x) has to be deter-
mined. This can be achieved using the Parzen method [18] where the probability
density function for multiple variables can be expressed as follows

y (x) =
1

l

l∑

i=1

Wi (x,xi) , (1)

where Wi (x,xi) = σ−1
1 . . . σ−1

n F
(
σ−1
1 (xi1 − x1) , . . . , σ

−1
n (xin − xn)

)
, F (·) is

the weighting function which has to be appropriately selected [19], l is the number
of input patterns, and σ1, . . . , σn denote standard deviations computed relative
to the mean of n variables x1, . . . , xn. Usually, the Gaussian function is a common
choice for weighting in (1).

The formula in (1) defines the structure and the operation of PNN. If we
consider a Gaussian function as the activation for the probability density function
and assume that this function is computed for the examples of class g then
Parzen’s definition takes the following form

yg (x) =
1

lg (2π)
n/2

(detΣg)
1/2

lg∑

i=1

exp

(
−1

2
(xg,i − x)

T
Σ−1

g (xg,i − x)

)
, (2)

where Σg = diag
(
σ2
g,1, . . . , σ

2
g,n

)
is the covariance matrix, lg is the number of the

examples of class g, σg,j denotes the smoothing parameter associated with j-th
variable and the g-th class, and xg,i is the i-th training vector (i = 1, . . . , lg)
from the class g. The formula presented in (2) provides one of g = 1, . . . , G
summation neurons of PNN structure. The elements of the preceding layer, the
pattern neurons, feed the component to the sum which is measured over each
of the examples of g-th class. Therefore, lg hidden neurons constitute the input
for g-th summation neuron. Finally, the output layer determines the output for
the vector x in accordance with the Bayes’s decision rule based on the outputs
of all the summation layer neurons

G∗ (x) = argmax
g

{yg (x)} , (3)

where G∗ (x) denotes the predicted class for the pattern x. Thus, the pattern
layer requires l = l1 + . . .+ lG nodes.

In this paper, single smoothing parameter for each attribute and class is ap-
plied. The choice of this variant of σ selection imposes, in accordance with for-
mula (2), the inevitability of storing a G × n matrix of σ’s. Hence, the g-th
summation neuron yields to the decision layer the output signal (2) but with
σg,j as the intrinsic parameter. Therefore, the smoothing parameter is computed
for the j-th variable of each class g. Such an approach gives the possibility of
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emphasizing the similarity of the vectors belonging to the same class. The values
of σ’s are determined using the conjugate gradient method.

3 PNN Reduction Methods

In this section, two approaches of PNN structure simplification are presented.
Both solutions consist in decreasing the number of pattern neurons of the net-
work. The first method is based upon k-means procedure. The second idea uti-
lizes the support vectors for PNN training.

3.1 The Use of k-Means Clustering for PNN Structure Reduction

The k-means algorithm is a data clustering method [20] which is considered to
be one of the top ten algorithms in data mining [21]. The procedure finds k
clusters, such that all the records within each cluster are similar to each other
and distinct from records in other clusters. The grouping process relies on the
iterative minimization of the sum of squared distances computed between input
vectors and the cluster center. An initial set of clusters is defined, and the cluster
centres are repeatedly updated until no modification of their coordinate values
takes place.

The first approach in PNN structure reduction uses k-means algorithm in
a simple iterative way. The number of clusters of class g in s-th iteration is
determined according to the formula

is,g = round
( s

N
ηlg

)
, s = 1, . . . , N − 1, (4)

where η is a fraction of training data (1−η is the part for testing) and round (x)
is the function that rounds the real positive number x to the nearest integer. In
this paper, we assume η = 0.8, and N = 10. It is important to notice, that only
is,g pattern layer neurons of class g are involved in computation of the signal
for the summation layer neuron. The Algorithm 1 summarizes the proposed
method.

Algorithm 1. PNN architecture optimization based on k-means clustering.

Randomly determine training and test sets
for s = 1 to N − 1 do

for g = 1 to G do
Compute is,g cluster centres for training set

end

Train PNN on cs =
∑G

g=1 is,g cluster centres

Read σ
(1)
1 , . . . , σ

(G)
n which minimize PNN training error

Calculate test error Etest for PNN on test set

end
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Now, if we define the reduction ratio R as a quotient of the number of pattern
neurons by the size of the training data set for the PNN

R (s) =

∑G
g=1 is,g

ηl
∼= s

N
, s = 1, . . . , N − 1, (5)

then the optimal ratio in the sense of the stated problem is R (s∗) for

s∗ = arg min
1�s�N−1

Etest (s) , (6)

where Etest (s) is the test error obtained by the s-th cluster’s variant and s∗ is
computed numerically.

3.2 The Use of Support Vector Machines for PNN Structure
Reduction

Support vector machine (SVM) [22] is one of the most accurate methods among
all well-known classification algorithms [21]. It constructs an optimal classifier
for the input vector xi (i = 1, . . . , l) from the class labelled yi = ±1. Two types of
SVM algorithms are usually applied in data mining problems: C-SVM model and
ν-SVM model [23]. In this research, C-based SVM is used. The C-SVM training
amounts to the solution of the following quadratic programming optimization
(QP) problem ⎧

⎪⎨

⎪⎩

max
ααα

W (ααα) = −1

2
〈ααα,Hααα〉+ 〈ααα,1〉

0 � ααα � C · 1, 〈ααα,y〉 = 0,

(7)

where 〈·, ·〉 denotes the scalar product, ααα = [α1, . . . , αl]
T
is the vector of Lagrange

multipliers, H = {yiyjK (xi,xj)} is l × l matrix, K (·, ·) is the kernel function,

y = [y1, . . . , yl]
T
is the vector of class labels, 0 = [0, . . . , 0]

T
and 1 = [1, . . . , 1]

T
.

Once the solution of (7) is obtained in terms of ααα vector, the optimal classifier
is formulated

class (x) = sign

(
l∑

i=1

αiyiK (xi,x) + b

)
. (8)

The input vectors xi having αi > 0 are called support vectors (SVs). They con-
stitute a sufficient sub-set out of given input data for a sample prediction. As it
can be observed, the solution of the QP problem in (7) involves the constraint
for αi which requires the choice of unknown C parameter. The value of C coef-
ficient introduces additional capacity control for the classifier. The adjustment
of C provides greater or smaller number of support vectors what, in turn, in-
fluences the classification accuracy. In this research, by setting different values
of C constraint, we are capable of obtaining different sets of support vectors.
Depending on the considered data set and the value of C, the number of pattern
neurons of PNN changes.
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The final classification outcome also depends on the kernel function K (·, ·)
applied in (8). Much study in recent years has been devoted to adopting different
kernels for SVM [24]–[26]. In this contribution, the Gaussian kernel function is
applied with the spread constant (sc) as the parameter:

K (x,y) = exp

(
−‖x− y‖2

2 (sc)
2

)
. (9)

An appropriate range of the spread constant has to be estimated which is realized
numerically with the assumption of achieving the highest generalization ability
of the classifier.

For C and sc parameters, the final sets of values AC and Asc are assumed,
respectively. The SVM based PNN reduction methodology is summarized in form
of Algorithm 2.

Algorithm 2. PNN architecture optimization based on SVM

Randomly determine training and test sets
for C ∈ AC and sc ∈ Asc do

Perform SVM classification on training set
Select support vectors SVs
Train PNN on SVs

Read σ
(1)
1 , . . . , σ

(G)
n which minimize PNN training error

Calculate test error Etest for PNN on test set

end

The particular values for both, AC and Asc are provided in Section 4.2.

4 Results

In the simulations, seven UCI machine learning repository medical data sets
are used [27]: Wisconsin breast cancer (WBC): 683 instances with 9 attributes
(binary classification), Pima Indians diabetes (PID): 768 cases having 8 features
(binary classification), Haberman’s survival (HS): 306 patients and 3 measured
variables (binary classification), Cardiotocography (CTG): 2126 measurements
on 23 attributes (three state classification), Thyroid (T): 7200 instances with
21 attributes (three state classification), Dermatology (D): 358 cases each of
34 features (six data sets classification) and diagnostic Wisconsin breast cancer
(DWBC): 569 instances having 30 variables (binary classification). Additionally,
authors’ real ovarian cancer (OC) data set is used in the simulations: it represents
199 women after ovarian cancer treatment with 17 parameters registered for
each case. The data is obtained from the Clinical Department of Obstetrics and
Gynecology of Rzeszow State Hospital in Poland. The analysis of treatment of
ovarian cancer and its hormonal and genetic aspects are studied in [28].
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In all cases, no data preprocessing (normalization, feature extraction) is per-
formed. After random selection of 20% of the input data for testing purposes,
training and test sets are preserved for all the data and each method what makes
both approaches comparable.

The following sections present the comparison of the prediction ability mea-
sured for the standard PNN model and the networks for which the number of
pattern neurons is reduced by means of two proposed approaches: the application
of k-means method to cluster the data, and the use of the support vectors as the
new database. The prediction ability of the examined classifiers is determined
on the basis of the test error (Etest) computed on the 20% of input examples
randomly extracted from each of given data sets. The number of the test vectors
for WBC, PID, HS, CTG, T, D, DWBC and OC data sets is equal 137, 154, 61,
425, 1440, 72, 456 and 40, respectively. The bottom rows of Tables 1–4 present
the test error for original PNN.

4.1 Experimental Results after the Use of Algorithm 1

Tables 1–4 illustrate the test error computed after data clustering according to
Algorithm 1 for all considered data sets. The sum

∑G
g=1 is,g defines the total

number of pattern layer neurons. It can be observed that in each data classifi-
cation case, by reducing the number of pattern neurons of PNN, it is possible
to find the smaller test error than the one computed with the use of all pattern
neurons of the model. It is also worth to note that, in all data classification cases,
the decrease of the test error takes place more than once.

The most gainful reduction ratio R can be read from the Tables 1–4, e.g. for
WBC data set it takes the value R = 55/(0.8 ∗ 683) ∼= 0.1. Therefore, instead
of 683 cases of original data we can use their substitutes but about 10 times
smaller in number.

Table 1. The number of cluster centres used in determining PNN structure and the
test error for WBC data set (left table) and PID data set (right table)

s is,1 is,2
Pattern

Etest [%]
neurons

1 36 19 55 6.569
2 71 38 109 8.029
3 107 57 164 10.949
4 142 76 218 15.328
5 178 96 274 14.599
6 213 115 328 10.219
7 248 134 384 9.489
8 284 153 437 11.679
9 320 172 492 7.299

All 355 191 546 9.489

s is,1 is,2
Pattern

Etest [%]
neurons

1 40 21 61 62.337
2 80 43 123 29.220
3 120 64 184 29.220
4 160 86 246 38.311
5 200 107 307 31.168
6 240 128 368 28.571
7 280 150 430 29.220
8 320 171 491 33.766
9 360 193 553 32.467

All 400 214 614 31.818
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Table 2. The number of cluster centres used in determining PNN structure and the
test error for HS data set (left table) and CTG data set (right table)

s is,1 is,2
Pattern

Etest [%]
neurons

1 18 7 25 24.590
2 36 13 49 24.590
3 54 20 74 26.229
4 72 26 98 27.868
5 90 33 123 26.229
6 108 39 147 26.229
7 126 46 172 26.229
8 144 52 196 27.868
9 162 59 221 57.377

All 180 65 245 31.147

s is,1 is,2 is,3
Pattern

Etest [%]
neurons

1 132 24 14 170 19.058
2 265 47 28 340 21.411
3 397 71 42 510 28.470
4 530 94 56 680 36.941
5 662 118 71 851 35.294
6 794 142 85 1021 11.529
7 927 165 99 1191 15.529
8 1059 189 113 1361 12.470
9 1191 212 127 1530 16.941

All 1324 236 141 1701 15.529

Table 3. The number of cluster centres used in determining PNN structure and the
test error for T data set (left table) and D data set (right table)

s is,1 is,2 is,3
Pattern

Etest [%]
neurons

1 13 29 533 575 60.625
2 27 59 1067 1153 43.402
3 40 88 1600 1728 89.166
4 53 118 2133 2304 7.222
5 67 147 2667 2881 6.458
6 80 176 3200 3456 7.638
7 93 206 3733 4032 80.833
8 106 235 4266 4607 6.597
9 120 265 4800 5185 94.5141

All 133 294 5333 5760 11.181

s is,1 is,2 is,3 is,4 is,5 is,6
Pattern

Etest [%]
neurons

1 9 6 5 4 4 2 30 26.388
2 18 11 10 8 8 3 58 15.277
3 27 17 14 11 11 5 87 18.055
4 36 23 19 15 15 6 114 11.111
5 45 29 24 19 19 8 142 12.500
6 53 34 29 23 23 10 172 11.111
7 62 40 34 27 27 11 201 8.333
8 71 46 38 30 30 13 229 13.888
9 80 51 43 34 34 14 258 18.055

All 89 57 48 38 38 16 286 13.888

Table 4. The number of cluster centres used in determining PNN structure and the
test error for DWBC data set (left table) and OC data set (right table)

s is,1 is,2
Pattern

Etest [%]
neurons

1 17 29 46 23.009
2 34 57 91 25.664
3 51 86 137 9.735
4 68 114 182 43.363
5 85 143 228 30.973
6 102 172 274 50.442
7 119 200 319 35.398
8 136 229 365 49.558
9 153 257 410 21.239

All 170 286 456 32.743

s is,1 is,2
Pattern

Etest [%]
neurons

1 11 5 16 60.000
2 21 11 32 25.000
3 32 16 48 32.500
4 42 22 64 17.500
5 53 27 80 7.500
6 63 32 95 30.000
7 74 38 112 20.000
8 84 43 127 12.500
9 95 49 144 20.000

All 105 54 159 15.000
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4.2 Experimental Results after the Use of Algorithm 2

The second approach of PNN reduction consists in extracting the set of support
vectors (SVs) out of the entire original data set and setting SVs as the net-
work’s pattern neurons. The process of SVs selection is performed according to
Algorithm 2. The verification of C and sc settings requires a vast number of
experiments.

The grid search for both C constraint and sc spread constant is performed:
AC = {10−1, 100, 101, 102, 103, 104, 105, 106} and Asc = {0.08, 0.2, 0.3, 0.5,
0.8, 1.2, 1.5, 2, 5, 10, 50, 80, 100, 200, 500}. The optimal values of (C∗,sc∗) are
computed as follows:

(C∗, sc∗) = arg min
(C,sc)∈AC×Asc

{Etest (C, sc)} (10)

where Etest is the test error and C∗, sc∗ are computed numerically.
The results are shown in Tables 5–6. From these tables one can read the

number of support vectors used to construct the PNN’s pattern layer and the
lowest test errors calculated by the modified network. Two bottom rows indi-
cate the test error for the original PNN and best results obtained by means of
Algorithm 1.

One can observe that the use of the support vectors as the pattern neurons
provides the decrease in the test error of PNN in all data classification cases.

Table 5. The number of support vectors used in determining PNN structure and the
test error for WBC, PID, HS and CTG data sets

sc
WBC PID HS CTG

C∗ = 104 C∗ = 102 C∗ = 100 C∗ = 103

SVs Etest [%] SVs Etest [%] SVs Etest [%] SVs Etest [%]

0.08 43 13.138 319 64.935 135 26.229 162 86.117
0.2 48 15.328 314 64.935 134 26.229 144 48.705
0.3 47 14.598 310 64.935 136 26.229 142 26.588
0.5 47 10.218 304 64.935 133 26.229 152 11.294
0.8 48 18.978 300 64.935 137 26.229 172 25.176
1.2 49 13.868 303 64.935 138 26.229 207 32.705
1.5 54 10.948 305 64.935 134 26.229 240 18.823
2 71 14.598 302 44.155 135 26.229 288 7.058
5 182 9.489 300 48.051 139 26.229 557 24.47
10 244 8.029 333 36.363 142 26.229 909 22.352
50 329 10.218 551 31.168 171 27.868 1601 14.823
80 357 10.218 593 31.818 181 36.065 1662 15.058
100 361 9.489 607 31.818 183 32.786 1673 17.176
200 368 9.489 614 31.818 200 31.147 1682 17.176
500 368 9.489 614 31.818 220 32.786 1690 15.529

All 546 9.489 614 31.818 245 31.147 1701 15.529
Best k-means 55 6.569 368 28.571 25 24.590 1021 11.529
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Table 6. The number of support vectors used in determining PNN structure and the
test error for T, D, DWBC and OC data sets

sc
T D DWBC OC

C∗ = 101 C∗ = 103 C∗ = 106 C∗ = 10−1

SVs Etest [%] SVs Etest [%] SVs Etest [%] SVs Etest [%]

0.08 785 40.138 86 34.722 31 21.239 112 15.000
0.2 764 15.208 110 11.111 36 62.832 113 15.000
0.3 765 11.458 133 12.500 36 7.965 117 12.500
0.5 755 16.388 158 8.333 39 27.434 119 17.500
0.8 754 8.958 186 6.944 47 19.469 121 15.000
1.2 790 8.125 214 8.333 54 10.619 130 17.500
1.5 815 9.167 239 8.333 65 23.894 137 20.000
2 874 7.500 262 9.722 78 57.522 139 17.500
5 1014 14.931 285 13.888 174 55.752 148 15.000
10 1103 6.875 286 13.888 276 49.558 153 15.000
50 1701 68.125 286 13.888 456 32.743 157 15.000
80 2045 40.763 286 13.888 456 32.743 158 15.000
100 2242 23.958 286 13.888 456 32.743 158 15.000
200 2954 71.458 286 13.888 456 32.743 158 15.000
500 4209 7.916 286 13.888 456 32.743 158 15.000

All 5760 11.181 286 13.888 456 32.743 159 15.000
Best k-means 2881 6.458 201 8.333 137 9.735 80 7.500

5 Conclusions

In this article, we considered the problem of the minimization of the number of
PNN pattern layer neurons. This problem was solved along with the maximiza-
tion of the generalization ability of the network. For this purpose we proposed
two heuristic algorithms. The first solution relied on k-means input data clus-
tering and the use of the cluster centres as the pattern layer neurons. In the
second method, by performing SVM data classification, we determined the set
of support vectors and we merely allowed the support vectors to represent the
nodes in the pattern layer.

The reduced PNN models were compared with standard PNN in the classifi-
cation problem of seven commonly available medical databases and one authors’
own data set. In each case, the networks prediction ability was verified by com-
puting the test error on 20% of the samples randomly separated from entire
data set. The results presented in this contribution confirmed the validity of
PNN structure reduction of both proposed methods. It was shown that in all
data classification tasks, the reduction of the number of pattern layer neurons
improved the prediction ability of the network.

It is highly probable to obtain better results, i.e.: both, smaller number of
pattern neurons and the lower generalization error, after shrinking the grid
search.
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Because of the limited space of the article, the results are only shown for Etest.
Similar study was performed for additional performance measures: the sensitiv-
ity, the specificity and the area under the receiver operating characteristic. The
values of these measures were also better for reduced PNN.
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