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Abstract. In this paper, we first survey the theoretical and historical 
backgrounds related to ensemble neural network rule extraction. Then we 
propose a new rule extraction method for ensemble neural networks. We also 
demonstrate that the use of ensemble neural networks produces higher 
recognition accuracy than do individual neural networks.  Because the  
extracted rules are more comprehensible. The rule extraction method we use is 
the Ensemble-Recursive-Rule eX traction (E-Re-RX) algorithm. The E-Re-RX 
algorithm is an effective rule extraction algorithm for dealing with data sets that 
mix discrete and continuous attributes. In this algorithm, primary rules are 
generated, followed by secondary rules to handle only those instances that do 
not satisfy the primary rules, and then these rules are integrated. We show that 
this reduces the complexity of using multiple neural networks. This method 
achieves extremely high recognition rates, even with multiclass problems. 

Keywords: Ensemble, neural network, rule extraction, Re-RX algorithm, 
Ensemble method, Recursive neural network rule extraction. 

1 Introduction  

In this paper, we first survey the nature of artificial neural networks (ANNs), the 
origin of neural network rule extraction, incorporation of fuzziness in neural network 
rule extraction, the theoretical foundation of neural network rule extraction, the 
computational complexity of neural network rule extraction, neuro-fuzzy 
hybridization, rule extraction from neural network ensembles, and the background of 
neural network ensembles. Then we describe the three objectives of this paper. 

We propose the Ensemble-Recursive-Rule Extraction (E-Re-RX) algorithm, which 
extracts comprehensible rules [13], [37]. In the E-Re-RX algorithm, the Re-RX 
algorithm [9] is an effective rule extraction algorithm for data sets that comprise both 
discrete and continuous attributes. The extracted rules maintain the high recognition 
capabilities of a neural network while expressing highly comprehensible rules. 
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1.1 Nature of Artificial Neural Networks 

ANNs attempt to replicate the computational power of biological neural networks and 
thereby endow machines with some of the cognitive abilities possessed by biological 
organisms.  However, an impediment to more widespread acceptance of ANNs is the 
absence of the capability to explain to the user, in a human-comprehensible form, how 
the network arrives at a particular decision.  That is, it is very difficult to discuss the 
knowledge encoded within the “black box” of NNs.  Recently, widespread activities 
have attempted to revisit this situation by extracting the embedded knowledge in 
trained ANNs in the form of symbolic rules [14]. 

As a biologically inspired analytical technique, NNs have the capacity to learn and 
model complex nonlinear relationships.  Theoretically, multi-layered feedforward 
NNs are universal approximators and, as such, have an excellent ability to 
approximate any nonlinear mapping to any degree of accuracy [6], [40].  They do not 
require a priori models to be assumed or a priori assumptions to be made on the 
properties of data [8]. 

Generally, ANNs consider a fixed topology of neurons connected by links in a 
predefined manner.  These connection weights are usually initialized by small 
random values.  Knowledge-based networks constitute a special class of ANNs that 
consider crude domain knowledge to generate the initial network architecture, which 
is later refined in the presence of training data. [14]  

Recently, some attempts have been made to improve the efficiency of neural 
computation by using knowledge-based nets. Such nets help to reduce the searching 
space and time while the network traces the optimal solution.  In such a situation,  
one can extract causal factors and functional dependencies from the data domain for 
initially encoding the ANN and later extracting refined rules from the trained  
network [50].  

The term rule generation encompasses both rule extraction and rule refinement.  
Note that rule extraction here refers to extracting knowledge from the ANN while 
using network parameters in the process.  Rule refinement, in contrast, pertains to 
extracting refined knowledge from the ANN that was initialized by using crude 
domain knowledge.  Rules learned and interpolated for fuzzy reasoning and fuzzy 
control can also be considered under rule generation.  In a wider sense, rule 
generation includes the extraction of domain knowledge (e.g., for the initial encoding 
of an ANN) by using nonconnectionist tools such as fuzzy sets and rough sets. [14] 

1.2 Origin of Neural Network Rule Extraction [14] 

Here we first consider the layered connectionist model by Gallant [15] and Saito and 
Nakano [16] for rule extraction in the medical domain. The inputs and outputs consist 
of crisp variables in all cases.  Generally, the symptoms are represented by the input 
nodes, and the diseases and possible treatments correspond to intermediate and/or 
output nodes.  The multilayer network described by Saito and Nakano was applied to  
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the detection of headache. Headache patients respond to a questionnaire regarding the 
perceived symptoms and these constitute the input to the network. 

In 1988, the model by Gallant [15], dealing with sacrophagal problems, uses a 
linear discriminant network (with no hidden nodes) that is trained by the simple 
pocket algorithm. 

Gallant’s model [15] incorporates inferencing and forward chaining, confidence 
estimation, backward chaining, and explanation of conclusions by IF-THEN rules.  
To generate a rule, the attributes with greater inference strength (magnitude of 
connection weights) are selected and a conjunction of the more significant premises is 
formed to justify the output concept. 

Rule extraction techniques generally fall into two categories [44]: direct 
approaches and indirect approaches.  We take the standpoint that indirect approaches 
are more promising. 

In an indirect approach, a predictive model is built from training data, and rules are 
extracted from the model.  ANNs and Support Vector Machines (SVMs) are two of the 
most popular algorithms used to build predictive models. Rule extraction from ANNs 
has been investigated by many researchers [41], [42]. SVM-based rule extraction has 
also been explored extensively due to the high performance of SVMs [43]. 

1.3 Incorporating Fuzziness in Neural Network Rule Extraction 

As an illustration of the characteristics of layered fuzzy neural networks for 
inferencing and rule generation, the models by Hayashi [17], [18] and Hudson et al. 
[19] are described first.  A distributed single-layer perceptron-based model trained 
with the pocket algorithm was used by Hayashi [17], [18] for diagnosing 
hepatobiliary disorders.  All contradictory training data were excluded, as these 
cannot be handled by the model.  The input layer consists of fuzzy and crisp cell 
groups while the output is modeled only by fuzzy cell groups.  The crisp cell groups 
are represented by m cells taking on two values, {(+1, +1, ,…, +1), (-1, -1,…, -1)}.  
Fuzzy cell groups, however, use binary m-dimensional vectors, each taking values of 
{+1, -1}.  Linguistic relative importance terms such as very important and 
moderately important are allowed in each proposition.  Linguistic truth values such 
as completely true, true, possibly true, unknown, possibly false, false, and completely 
false are also assigned by the domain experts, depending on the output values. By 
using different linguistic truth values, a pattern belonging to more than one class can 
be modeled.  Extraction of fuzzy IF-THEN production rules is possible by using a 
top-down traversal involving analysis of the node activation, bias, and the associated 
link weights. 

1.4 Theoretical Foundation of Neural Network Rule Extraction 

A fuzzy system adaptively infers and modifies its fuzzy association from 
representative numerical samples.  Neural networks, in contrast, can blindly generate 
and refine fuzzy rules from training data.  Fuzzy sets are considered to be 
advantageous in the logical field and in easily handling higher order processing.  
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Higher flexibility is a characteristic feature of neural networks produced by learning 
and, hence, NNs are better suited for data-driven processing [20]. 

In 1993, Buckley, Hayashi and Czogala [21] mathematically proved the 
equivalence of neural nets and fuzzy expert systems.  In other words, they proved 
that we can describe the contents of trained neural networks by a set of linguistic IF-
THEN rules.  Moreover, this paper firmly established the theoretical foundation of 
neural network rule extraction. 

Hayashi and Buckley [22] proved that 1) any rule-based fuzzy system may be 
approximated by a neural net, and 2) any neural net (e.g., feedforward net, 
multilayered net) may be approximated by a rule-based fuzzy system.  This kind of 
equivalence between the fuzzy-rule-based system and neural networks was also 
studied [21],[22],[23],[24]. 

1.5 Computational Complexity of Neural Network Rule Extraction 

A salient theoretical discovery in this area is that, in many cases, the computational 
complexity of extracting rules from trained neural networks and the complexity of 
extracting rules directly from data are both NP-hard [25]. 

Bologna [32] claimed that the difficulty of extracting rules is related to the 
dimensionality of the input samples.  More precisely, the dimensionality is related to 
n binary valued input neurons.  We could find up to 2n rules.  Generally, with large-
dimensional problems, several rules may be missed.  In such a situation, the degree 
of matching between the rules and the neutral network classification, also denoted as 
fidelity, is less than 100%. 

It is also worth mentioning that Roy [26] astutely disclosed the conflict between 
rule extraction and traditional connectionism.  In detail, the idea of rule extraction 
from a neural network involves certain procedures, specifically the reading of 
parameters from a network. Such reading is not allowed by the traditional 
connectionist framework on which these neural networks are based.  Roy [26] 
indicated that such a conflict could be resolved by introducing a control-theoretic 
paradigm, which was supported by new evidence from neuroscience about the role of 
neuromodulators and neurotransmitters in the brain. 

1.6 Neuro-fuzzy Hybridization 

Neuro-fuzzy hybridization [51] is done broadly in two ways: a neural network 
equipped with the capability of handling fuzzy information [termed fuzzy-neural 
network (FNN)], and a fuzzy system augmented by neural networks to enhance some 
of the neural network characteristics such as flexibility, speed, and adaptability 
[termed neural-fuzzy system (NFS)]. 

Other kinds of categorizations for neuro-fuzzy models have been reported in related 
literature [28].  Buckley and Hayashi [28] classified fuzzified neural networks 
possessing the following:  1) real number inputs, fuzzy outputs, and fuzzy weights; 2) 
fuzzy inputs, fuzzy outputs, and real number weights; 3) fuzzy inputs, fuzzy outputs, 
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and fuzzy weights.  Hayashi et al. [29] fuzzified the delta rule for the multilayer 
perceptron (MLP) by using fuzzy numbers at the input, output, and weight levels.  

But, the algorithm with the stopping rule has problems. Ishibuchi et al. [30] 
incorporated triangular and trapezoidal fuzzy number weights, and thereby increased 
the complexity of the algorithm.  Some of these problems were overcome by Feuring 
et al. in [31]. 

1.7 Rule Extraction from Neural Network Ensemble  

In the beginning of the 1990s, Hansen and Salamon [38] showed that the 
generalization ability of learning systems based on artificial neural networks can be 
significantly improved through ensembles of artificial neural networks, i.e., training 
multiple artificial neural networks and combining their predictions via voting.  Since 
combining works remarkably well, it became a very popular topic in both neural 
network and machine learning communities [35]. 

In general, a neural network ensemble is constructed in two steps: training a number 
of component neural networks, and then combining the component predictions [36]. 

The rationale for considering a combination of methods is similar to that of 
ensemble NNs [5].  However, ensembling is more robust and mitigates the effect of 
one method that gives bad results and ruins the performance [52]. 

Although many authors have generated comprehensible models from individual 
networks, much less work has been done in the explanation of neural network 
ensembles [32]. 

Bologna proposed the Interpretable Multi-Layer Perceptron (IMLP) and the 
Discretized IMLP (DIMLP) models with generated rules from neural network 
ensembles [33, 34].  The DIMLP is a special neural network model for which symbolic 
rules are generated to explain the knowledge embedded within the connections and the 
activation neurons.  Bologna described how to translate symbolic rules into the DIMLP 
and how to extract rules from one or several combined neural networks. 

Rules are generated from a DIMLP network by the induction of a special decision 
tree and taking into account virtual hyperplane frontiers. 

In [32], Bologna’s rule extraction was compared to other rule extraction techniques 
applied to neural networks. For seven out of eight classification problems, the 
accuracy of his results were equal to or better than those given by other techniques. 

The scale of the computational complexity of his rule extraction algorithm in 
polynomial time is related to the dimensionality of the problem, the number of 
examples, and the size of the network.  Continuous valued attributes do not need to 
be transformed to binary attributes, as is done in many rule extraction techniques.  
That is a clear advantage with respect to decompositional rule extraction algorithms 
with high exponential computational complexity (for comparison, see Section 2.2 of 
[32]).  In practice, the execution time of learning and rule extraction is very 
reasonable. For more mathematical details on the computational complexity, refer to 
Section 3.3 of [32] and Section 6.4 of [34].  

With Rule Extraction From Neural network Ensemble (REFNE) proposed by Zhou 
et al. [35], attributes are discretized during rule extraction, whereas Bologna’s rule 
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extraction algorithm performs the discretization during learning through the use of 
staircase activation functions.  Furthermore, rules generated by REFNE are limited to 
three antecedents, whereas DIMLP does not impose any constraints.  Another 
important difference is that we extract unordered rules from DIMLP ensembles, 
whereas ordered rules are generated by REFNE.  Bologna’s rule extraction algorithm 
has no parameters; hence, it could be easier for a non-specialist in rule extraction to 
use the DIMLP ensemble rather than those rule extraction techniques that require 
several parameters be set  [32]. 

The REFNE approach proposed by Zhou et al. is designed to extract symbolic rules 
from trained neural network ensembles that perform classification tasks.  REFNE 
utilizes trained ensembles to generate a number of instances and then extracts rules 
from those instances.  REFNE can gracefully break the ties made by individual 
neural networks in prediction [35]. 

In recent years, many approaches for rule extraction from trained neural networks 
have been developed.  A review of these approaches can be generally categorized 
into two classes: function-analysis-based and architecture-based approaches.  The 
function-analysis-based approaches extract rules by regarding the trained networks as 
entities that can be easily modified for extracting rules from trained ensembles instead 
of the networks as entities.  REFNE is derived from a function-analysis-based 
approach, called STARE [46], for extracting rules from trained neural networks [35]. 

The architecture-analysis-based approaches extract rules by disassembling the 
architectures of trained neural networks. Such architectures are those that are 
relatively difficult to modify for extracting rules from trained ensembles. The reason 
is that even if rules could be extracted from each individual network, it is still difficult 
to unite them into a consistent rule set that explains the capability of the ensemble 
because simply gathering them together can only result in a messy hodgepodge of 
rules [35]. 

However, no matter where the approaches for rule extraction from network 
ensembles are derived from, they must pay attention to some specific characteristics 
of ensembles, e.g., the ambiguity in a prediction caused by ties made by individual 
neural networks [35]. 

Zhou et al. [35] presented a pedagogical algorithm for extracting prepositional 
rules from a complicated neural network system.  With different configurations, the 
algorithm can extract rules with high fidelity but moderate accuracy, or high accuracy 
but moderate fidelity.  A particularly interesting issue that has not been addressed 
appears in [35]: which configuration should we prefer?  This question places us in an 
uncomfortable situation:  to sacrifice the fidelity, or to sacrifice the accuracy.  In 
fact, pursuing high fidelity and high accuracy may not be possible in certain 
situations, although this has not been recognized before [27]. 

Zhou et al. [36] analyzed the relationship between the ensemble and its component 
neural networks from the context of both regression and classification. Their work 
revealed that it may be better to ensemble many instead of all the available neural 
networks at hand.  This result is interesting because most approaches ensemble all the 
available neural networks for prediction.  Then, to show the feasibility of their theory, 
an ensemble approach named Genetic Algorithm based Selective ENsemble (GASEN) 
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was presented.  A large empirical study showed that GASEN is superior to bagging [1] 
and boosting [2] in both regression and classification because it utilizes far fewer 
component neural networks but achieves stronger generalization ability [36]. 

In 2012, Hara and Hayashi proposed two ensemble neural network rule extraction 
algorithms.  The former is for two-class classification [13]. The latter is for multiple-
class classification [37]. Both of these algorithms use standard MLPs and the Re-RX 
algorithm proposed by Setiono [9]. Their recognition accuracy is very high. 

For reference, Adeodato et al. [39] showed that the ensemble of MLPs produces 
better results than does the single MLP solution.  For this purpose, the performance of 
the ensemble was compared to the average of the performances of each single MLP. 

1.8 Neural Network Ensembles in This Paper 

In ensemble neural networks, bagging [1], boosting [2], AdaBoosting [47], averaging 
[48], and other techniques have been suggested as ways to split a data set and perform 
multifaceted analyses.  Each of these studies reported classification accuracy 
exceeding that of individual neural networks [3], [4], [10]. 

Because neural network ensembles are multiple individual neural networks, they 
present their own problems: their complexity is greater, rule extraction is more 
difficult, and they use more computing resources than are necessary. In the studied 
neural network ensembles to date, research on methods such as weighted voting [11] 
and averaging [48] for integrating the output has been conducted.  Algorithms that 
use bagging or boosting in the C4.5 algorithm have been presented, but these do not 
directly address the problems, because splitting the data set into parts and applying 
the C4.5 algorithm to them generates rules that determine the class, and so the total 
output is classes applied broadly based on the rules. This in turn means that the rules 
are numerous and redundant. Consequently, we believe that methods such as bagging 
or boosting cannot be assumed to extract rules from an ensemble neural network. 

Nevertheless, neural networks are known to be an effective method for real-world 
classification problems involving nonlinear data. Contrary to the standard explanation 
that neural networks operate as “black boxes,” many studies have been conducted on 
methods for rule extraction [49]. These studies can be seen as an outgrowth of the 
extraordinary advances that have been made in information technology (IT) and the 
ability of IT to easily handle massive volumes of data. Extracting rules from neural 
networks is not simply a matter of breaking open the black box. From the perspective 
of data mining, it increases the opportunities to use neural network technology as data 
mining technology.  

In our proposed algorithm, we selected part of the learning data set , LD, and 
extracted a primary rule set from the learning data subset, LD’. Next, we classified 
our learning data subset into those instances that satisfied the primary rules and those 
that did not. Using the non-satisfying instances, we used the Re-RX [9] algorithm to 
extract a secondary rule set. The primary and secondary rule sets can be regarded as 
the ensemble neural network’s complete rules, which have sufficiently high 
recognition capabilities. 
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We conducted experiments using the CARD data set, the German Credit data set, 
the Thyroid data set, and the Page block data set, which can be obtained from the UCI 
repository [12].  In this paper, we provide a discussion based on the results of 
experiments and a conclusion that states the three open questions. 

2 Purpose of This Paper 

This paper has three major objectives. 
The first objective is to increase recognition rates. Neural networks show high 

recognition accuracy when used as a data mining technique, but they do not show 
sufficiently high recognition accuracy when using a partial data set. In most cases, 
multiclass problems occur where poor recognition rates are seen. In this paper, we 
demonstrate extremely high recognition rates, even with multiclass problems. It is 
understood that one cause of low recognition rates in existing methods is overfitting. 
In our research, we used a randomly extracted learning data subset that was arbitrarily 
taken from the source data set. Using a partial learning data set is effective in 
reducing the number of factors in the source data set that lead to overfitting. 

The second objective is to extract rules from an ensemble neural network. 
Ensemble neural networks are extremely effective in the field of data mining due to 
their strong recognition capabilities, but in fields where high reliability is demanded, 
such as medicine and finance, the recognition capability of ensemble neural networks 
alone is not enough. The solution is to extract rules that express what the ensemble 
neural network recognizes with a high degree of comprehensibility. If the recognition 
results can be expressed as rules, then the technique can even be used in fields that 
demand a high level of reliability. This would expand the range of applications for 
ensemble neural networks in data mining. In our research, we used the E-Re-RX 
algorithm [13], [37] that we are proposing for rule extraction. This algorithm is 
effective for rule extraction when the data set includes both discrete and continuous 
attributes, and the extracted rules show a high degree of comprehensibility. 

The third objective is to minimize the use of computer resources. Ensemble neural 
networks have typically achieved good recognition accuracy by using a large number 
of neural networks, but using a large number of neural networks creates the problem 
of creating unused neural networks.  In our research, we achieved high recognition 
accuracy by using an ensemble neural network consisting of the smallest number of 
neural networks possible, which is two. 

3 Structure of the E-Re-RX Algorithm  

3.1 Origin of Neural Network Ensemble 

A neural network ensemble is a learning paradigm, in which a collection of a finite 
number of neural networks is trained for the same task.  The neural network 
ensemble originates from Hansen and Salamon’s work [38], which showed that the 
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generalization ability of a neural network system can be significantly improved by 
ensembling a number of neural networks, i.e., by training many neural networks and 
then combining their predictions. 

3.2 Re-RX Algorithm 

The Re-RX algorithm [9] is designed to generate classification rules from data sets 
that have both discrete and continuous attributes. The algorithm is recursive in nature 
and generates hierarchical rules. The rule conditions for discrete attributes are 
disjointed from those for continuous attributes. The continuous attributes only appear 
in the conditions of the rules lowest in the hierarchy. 

     The outline of the algorithm is as follows. 

 
Algorithm Re-RX(S, D, C) 
Input: A set of data samples S having discrete attributes D and continuous 

attributes C. 
Output: A set of classification rules. 

1. Train and prune a neural network using the data set S and all its D and C attributes. 
2. Let D’ and C’ be the sets of discrete and continuous attributes, respectively, still 

present in the network, and let S’ be the set of data samples correctly classified by 
the pruned network. 

3. If D’ has associated continuous attributes C’, generate a hyperplane to split the 
samples in S’ according to the values of the continuous attributes C’, then stop. 
Otherwise, by using only the discrete attributes D’, generate the set of 
classification rules R for data set S’. 
For each rule Ri generated: 
If support(Ri)>δ

１ and error(Ri)>δ２, then 

─ Let Si be the set of data samples that satisfy the condition of rule Ri and let Di 
be the set of discrete attributes that do not appear in the rule condition of Ri. 

─ If D’ has associated continuous attributes C’, generate a hyperplane to split the 
samples in Si according to the values of the continuous attributes Ci, then stop. 
Otherwise, call Re-RX (Si, Di, Ci). 

 
In the above, we define the support of (Ri) to be the proportion of samples covered by 
rule Ri and the error of (Ri) to be the proportion of samples it incorrectly classifies. 

3.3 Ensemble-Re-RX (E-Re-RX) Algorithm [13][37] 

In the proposed E-Re-RX algorithm, we first produce the learning data set LD’, which 
is necessary for training the first neural network. LD’ is the set of instances extracted 
at random in an arbitrary proportion from the full learning data set LD. LD’ is input 
into a neural network having one node in its hidden layer. The neural network is 
trained and pruned [7], and the rules are extracted. 
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In this paper, we restrict ourselves to back-propagation neural networks with one 
hidden layer because such networks have been shown to possess a universal 
approximation property [6], [40].  An effective neural network pruning algorithm is a 
crucial component of any neural network rule extraction algorithm.  By removing the 
inputs not needed for solving the problem, the extracted rule set becomes more 
concise. In addition, the pruned network also filters noise that might be present in the 
data. Such noise could be data samples that are outliers or incorrectly labeled. From 
these extracted rules, we re-extract rules in accordance with the Re-RX algorithm, and 
take the final rule set as the primary rules R. 

We divide LD into data sets that do and do not conform to these primary rules. The 
set of instances that do not conform are taken as LDf, which is input into the second 
neural network. The second neural network is similarly trained on LDf and pruned, 
rules are extracted, and rules are then re-extracted in accordance with the Re-RX 
algorithm. These extracted rules are the secondary rules Rf. 

Integrated rules are obtained from extracted rules R and Rf. In the rule integration, 
we focus on the primary rule and the secondary rule for attributes and values that are 
the same. If the attributes and values for the primary rule and the secondary rule 
match exactly, and the class labels are also the same, the secondary rule is integrated 
into the primary rule. For example, assume the following rule is obtained as a primary 
rule. 

R: If D42=0, then predict Class 1. 
The following rule is obtained as a secondary rule.  

Rf: If D42=0, then predict Class 1. 
In this case, all of the attributes, values, and class labels that emerge in the rules 

match.  Therefore, these rules are integrated.  Another case may appear where one 
rule is expressed as either a primary or secondary rule, whereas another primary or 
secondary rule may have some matching attributes and values.  In this case, 
whichever rule can be encompassed by the other is integrated into the other, 
regardless of class labels.  For example, the following is obtained as a primary rule. 

R: If D42=1 and D38=0 and D43=0 and D27=0 and D24=0 and D45=0 
and D2=0 and D21=1, then predict Class 1. 

The following is obtained as a secondary rule. 
Rf: If D24=0 and D2=0 and D45=0 and D21=1, then predict Class 2. 

In this case, all of the attributes and values of the secondary rule are encompassed 
within the primary rule.  Because the secondary rule can be encompassed by the 
primary rule, even though the class labels differ, the secondary rule is integrated into 
the primary rule. The presence of attributes in the primary rule that are absent in the 
secondary rule are considered to result in more accurate class identification. 

With the neural network ensemble, it is possible to determine the final output by 
integrating the outputs of the multiple neural networks.  With the E-Re-RX 
algorithm, it is possible to determine the overall final output by integrating the rules. 
This rule integration enables the reduction of the number of neural networks and 
irrelevant rules.  The essentials of the E-Re-RX algorithm are outlined as follows. 
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Input: Training sets LD’ and LDf 
Output: Integrated rule set obtained by integration of the primary and secondary 

rule sets. 

1. Extract at random an arbitrary proportion of instances from the learning set LD and 
designate this randomly extracted learning set LD’. 

2. Perform training and pruning of LD’ with the first neural network. 
3. Apply the Re-RX algorithm [9] to the output of Step 2 to obtain the primary rules. 
4. Based on these primary rules, generate the set LDf consisting of instances that do 

not satisfy these rules. 
5. Train and prune LDf with the second neural network. 
6. Apply the Re-RX algorithm [9] to the output of Step 5 to output the secondary rules. 
7. Integrate the primary and secondary rules. 

 
The composition of the two standard MLPs is shown schematically in Fig. 1. 

 

Fig. 1. Basic process for extraction of primary and secondary rules of high accuracy from two 
standard MLPs 

3.4 Integration of Rules 

Extracting rules from multiple standard MLPs is assumed to increase the number of 
rules, and some of these extracted rules may be redundant or irrelevant as 
classification rules. 

The accuracy of the rules is maintained and their number is reduced by integrating 
the primary and secondary rules in accordance with the attributes. 

In this paper, the rules extracted from the Re-RX algorithm use the decision tree 
formed by the J4.8 algorithm. By using the J4.8 algorithm for multiple generated rules 

 



12 Y. Hayashi 

 

and particularly for primary and secondary rules, the multiple attributes of the same 
type and value are integrated into rules having more attribute types; that is, the 
primary and the secondary rules are integrated into finer rules. In judgments made 
with a decision tree, rules having a larger number of attribute types are considered to 
be more accurately classified. In this paper, when rules are integrated, a reduced rule 
number is achieved by integration into finer rules. 

That said, in some instances a primary rule will contradict a secondary rule. Here, 
the instance that generates the secondary rule is judged to differ depending on the 
hyperplane and the associated rule generated during primary rule training. Making 
this distinction adequately explains cases in which contradictory rules are extracted. 
In contradictory rules, the attributes and values are exactly the same but the class 
labels differ, or the class labels and attributes that appear in the rules are the same but 
the attribute values differ. In these cases, the rules that appear in the secondary rules 
are integrated into the primary rules. The decision is made based on the number of 
samples in the running data set. More specifically, the running data set LD’ has a 
greater number of samples than the running data set used to generate the secondary 
rules for the LDf. Thus, the primary rules encompass more samples. This means that 
when comparing primary rules and secondary rules on the basis of reliability, the 
primary rules can be regarded as having greater reliability. This is why the secondary 
rules are integrated into the primary rules. 

4 Example 

To illustrate the use of our algorithm, we first apply it to a credit approval data set 
used in a recent benchmark study. The data set is publicly available as the CARD1 
data set. The data set contains a total of 690 samples: 518 training samples and 172 
test samples. Altogether, the samples contain 51 attributes, of which 6 are continuous 
and the rest are binary. Because no detailed explanation is available on what each of 
the attributes represents, continuous input attributes 4, 6, 41, 44, 49, and 51 are simply 
labeled C4, C6, C41, C44, C49, and C51, respectively. The remaining binary-valued 
attributes are labeled D1, D2, D3, D5, D7, …, D40, D42, D43, D45, D46, D47, D48, 
and D50. Therefore, the number of input units is 51, and since the samples are in two 
groups, the number of output units is 2. We extracted 50% (259) of the instances in 
the CARD1 data set at random, and trained and pruned the first neural network by 
using the extracted set designated as LD’. From the resulting network, we extracted 
rules using the decision tree obtained with J4.8 and performed rule re-extraction in 
accordance with the Re-RX algorithm and the re-extraction threshold δ1 = δ2 = 0.05. 
The resulting primary rules are expressed as follows. 

 
R1: If D42=0, then predict Class 1. 
R2: If D42=1 and D7=0 and D19=0 and D43=0, then predict Class 1. 
R3: If D42=1 and D7=0 and D19=0 and D43=1, then predict Class 2. 
R4: If D42=1 and D7=0 and D19=1, then predict Class 1. 
R5: If D42=1 and D7=1, then predict Class 2. 
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Based on these primary rules, we produced the data set for 70 instances, LDf, 
which was then used to train and prune the second neural network. We next 
performed rule re-extraction by using the same procedure applied for the first neural 
network. The resulting secondary rules are expressed as follows. 

 
Rf1: If D42=0, then predict Class 1. 
Rf2: If D42=1 and D13=0, then predict Class 1. 
Rf3: If D42=1 and D13=1, then predict Class 2. 

 
Comparison of the above primary and secondary rules immediately shows that R1 and 
Rf1 represent the same rule. Rf1 was therefore integrated into R1, and the following 
final rule set was the result. 

 
R1: If D42=0, then predict Class 1. 
R2: If D42=1 and D7=0 and D19=0 and D43=0, then predict Class 1. 
R3: If D42=1 and D7=0 and D19=0 and D43=1, then predict Class 2. 
R4: If D42=1 and D7=0 and D19=1, then predict Class 1. 
R5: If D42=1 and D7=1, then predict Class 2. 
Rf2: If D42=1 and D13=0, then predict Class 1. 
Rf3: If D42=1 and D13=1, then predict Class 2. 

 
The correct answer ratios obtained with the learning data set and the test data set 
using these rules were 96.14% and 94.19%, respectively. The value of the test data set 
was 5% higher than the test data set value of 89.53% reported by rule extraction with 
the well-known C4.5 variant as the Re-RX algorithm [9]. Moreover, the number of 
rules was 14 with Re-RX, but only 7 with E-Re-RX because no re-extraction was 
performed. 

5 Results 

Using the same methods, we performed all experiments on the CARD3, German 
Credit, Thyroid, and Pageblock data. All of this data is publicly available from the 
UCI repository [12]. 

The German Credit data set includes 56 discrete attributes and 7 continuous 
attributes. It has 2 classes indicating “good customer” and “bad customer.” The 
Thyroid data set includes 15 discrete attributes and 3 continuous attributes. It has 3 
classes indicating “normal,” “hyper,” and “hypo.” The Pageblock data set includes 6 
discrete attributes and 4 continuous ones. It has 5 classes indicating “text,” 
“horizontal line,” “graphic,” “vertical line,” and “picture.” In each of these data sets, 
as in the CARD1 data, the attributes on each line are labeled with a D for a discrete 
attribute or a C for a continuous attribute. 

Our experimental results are shown in Table 1, which shows the recognition rates 
for the data sets, and Table 2, which shows the number of rules. Our E-Re-RX results 
are presented with reference to Hara and Hayashi [13], [37]. Our Re-RX results are 
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presented with reference to Setiono et al. [9]. Our results for MNNEX, PITS, Neural 
Network Bagging (shown as “NNBagging” in Table 1), and Neural Network 
AdaBoosting (shown as “NN AdaBoosting” in Table 1) are presented with reference 
to Akhand et al. [10]. 

We conducted each of the E-Re-RX experiments by setting δ1 = δ2 = 0.05, except 
for the German Credit experiments, where we set δ1 = δ2 = 0.09. 

6 Discussion 

In these experiments, we found the recognition accuracy offered by the Re-RX 
algorithm [9] to be more than sufficient for Card1 and Card3. We believe this can be 
explained by the fact that we partitioned the learning data set and worked with only 
part of it. In short, by working with a partial data set, we reduced the number of 
instances that lead to overfitting, while keeping a number just high enough for the 
primary rule set. Next, using only the data that did not satisfy the primary rule set, we 
performed another round of rule extraction, which was able to extract rules that could 
not have been extracted from the learning data set and produced a high recognition 
rate. A comparison of the number of rules showed that using an ensemble neural 
network sometimes increased the number of rules. However, by integrating rules, we 
were able to eliminate redundant rules, which seemed to hold the level of redundancy 
to a minimum. 

Table 1. Comparison of recognition accuracy levels achieved by various methods with each 
data set 
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Table 2. Number of rules resulting from the E-Re-RX experiment compared to that resulting 
from the Re-RX experiment 

 

Next, for the German Credit data, we were able to obtain the highest level of 
recognition accuracy with E-Re-RX. In particular, we exceeded the Re-RX algorithm 
by 2%, although it has a high recognition accuracy, and reduced the number of rules 
by a significant 40%.  Here again, we attribute the difference to working with a 
partial learning data set. Using fewer instances, as in LD’, made it possible to classify 
those instances with fewer rules. Likewise, including a fewer instances in LDf 
resulted in fewer extracted rules.  Accordingly, it can be seen that even after rule 
integration, our method resulted in fewer rules extracted than did the Re-RX 
algorithm. 

For the Thyroid data set, we achieved results better than the existing methods: 5% 
better than Neural Network Bagging, and 3% better than Neural Network 
Adaboosting. We attribute this to the fact that we extracted Class 2 and Class 3 rules 
in the primary rule set, and Class 1 and Class 3 rules in the secondary rule set. The 
Thyroid data set consists almost entirely of instances that are Class 3, so in an 
ordinary fitting, a bias will exist toward fitting to Class 3, and so it is assumed to 
sometimes be impossible to fit to Class 1 and Class 2 correctly. Akhand et al. [10] 
reported a maximum value of 94.81%, but found that in the absence of a bias toward 
Class 3, changes in accuracy improvements were dictated by the extent to which 
Class 1 and Class 2 were fitted accurately.  In our research, we were able to extract 
Class 1 and Class 3 rules from the partial data, and the instances that did not satisfy 
these rules were Class 2 in many cases.  We were able to fit to Class 2 efficiently in 
this way and to extract rules with high recognition accuracy, even in a multiclass 
problem. As a result, the accuracy was much higher than that of previous methods. 

Finally, for the Pageblock data set, our results were worse than those by Neural 
Network Adaboosting, but 3% better than those by Neural Network Bagging. Here, 
for reasons that are the same as in the Thyroid data set, dealing with a partial data set 
allowed us to extract Class 1 and Class 2 rules in the primary rule set for instances 
that did not satisfy the primary rules of Class 3, Class 4, or Class 5. In the secondary 
rule set, we were able to extract Class 4 and Class 5 rules, which can be seen to have 
high recognition accuracy.  However, we were unable to extract Class 3 rules in this 
experiment.  This can be attributed to the fact that Class 3 instances made up no more 
than 0.5% of the total data set.  In other words, because Class 3 exerted little 
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influence on the weight correction, it was not possible to classify by Class 3. It is 
thought this can be improved by preparing a data set consisting of instances that do 
not satisfy the primary or secondary rule sets and performing fitting and rule 
extraction to extract rules related to Class 3.  This suggests that an effective approach 
to multiclass problems would be an iterative method in which instances that do not 
satisfy the rules are gathered into a new data set, on which fitting and rule extraction 
are performed iteratively until rules that identify all of the classes have been 
extracted.  This implies a more intensive use of computing resources, but because it 
avoids the problem of setting up an unknown number of neural networks, we still 
consider it to be an effective method. 

7 Conclusion 

We first surveyed the various theoretical and historical backgrounds for neural data 
analysis to investigate the approaches for ensemble neural network rule extraction.  
Next, we set out to address three problems in ensemble neural networks: to increase 
recognition rates, to extract rules from ensemble neural networks, and to minimize the 
use of computing resources.  We proposed a minimal ensemble neural network 
consisting of two standard MLPs, which enabled high recognition accuracy and the 
extraction of comprehensible rules.  Furthermore, this enabled rule extraction that 
resulted in fewer rules than those in previously proposed methods.  The results make 
it possible for the output from an ensemble neural network to be in the form of rules, 
thus breaking open the "black box" of ensemble neural networks.  Ensemble neural 
networks promise a new approach to data mining, and we are confident that our 
results will help make data mining more useful and increase the opportunities to use 
data mining with high recognition accuracy. 

Finally, as future work, we provide the following three open questions on the E-
Re-RX algorithm: 

1) The first is “Can the proposed E-Re-RX algorithm be extended to an ensemble 
neural network consisting of three or more MLPs and extract comprehensible 
rules?” 

2) The second is “Can the proposed E-Re-RX algorithm find various optimal 
parameter values so that we can get comprehensible rules with higher 
recognition accuracy?” 

3) The third is “Can the proposed E-Re-RX algorithm be extended to the use of 
neural network structures other than a standard MLP?” 
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