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Preface

This volume constitutes the proceedings of the 12th International Conference
on Artificial Intelligence and Soft Computing, ICAISC 2013, held in Zakopane,
Poland, during June 9–13, 2013. The conference was organized by the Polish Neu-
ral Network Society in cooperation with the Academy of Management in �Lódź
(SWSPiZ), the Department of Computer Engineering at the Czestochowa Uni-
versity of Technology, and the IEEE Computational Intelligence Society, Poland
Chapter. Previous conferences took place in Kule (1994), Szczyrk (1996), Kule
(1997), and Zakopane (1999, 2000, 2002, 2004, 2006, 2008, 2010, and 2012) and
attracted a large number of papers and internationally recognized speakers: Lotfi
A. Zadeh, Igor Aizenberg, Shun-ichi Amari, Daniel Amit, Piero P. Bonissone, Jim
Bezdek, Zdzislaw Bubnicki, Andrzej Cichocki, Wlodzislaw Duch, Pablo A. Es-
tévez, Jerzy Grzymala-Busse, Martin Hagan, Akira Hirose, Kaoru Hirota, Janusz
Kacprzyk, Jim Keller, Laszlo T. Koczy, Soo-Young Lee, Robert Marks, Prof.
Evangelia Micheli-Tzanakou, Kaisa Miettinen, Ngoc Thanh Nguyen, Erkki Oja,
Witold Pedrycz, Marios M. Polycarpou, José C. Pŕıncipe, Jagath C. Rajapakse,
Sarunas Raudys, Enrique Ruspini, Jorg Siekman, Roman Slowinski, Igor Spiri-
donov, Ryszard Tadeusiewicz, Shiro Usui, Jun Wang, Ronald Y. Yager, Syozo
Yasui, and Jacek Zurada. The aim of this conference is to build a bridge between
traditional artificial intelligence techniques and recently developed soft comput-
ing techniques. It was pointed out by Lotfi A. Zadeh that: “Soft computing (SC)
is a coalition of methodologies which are oriented toward the conception and de-
sign of information/intelligent systems. The principal members of the coalition
are: fuzzy logic (FL), neurocomputing (NC), evolutionary computing (EC), prob-
abilistic computing (PC), chaotic computing (CC), and machine learning (ML).
The constituent methodologies of SC are, for the most part, complementary and
synergistic rather than competitive.” This volume presents both traditional arti-
ficial intelligence methods and soft computing techniques. This volume is divided
into four parts:

– Neural Networks and Their Applications
– Fuzzy Systems and Their Applications
– Pattern Classification
– Computer Vision, Image and Speech Analysis

The conference attracted 274 submissions from 27 countries and after the review
process, 112 papers were accepted for publication. I would like to thank our
participants, invited speakers, and reviewers of the papers for their scientific
and personal contribution to the conference. The reviewers listed herein were
very helpful in reviewing the papers.



VI Preface

Finally, I thank my co-workers Ĺukasz Bartczuk, Piotr Dziwiński, Marcin
Gabryel, Marcin Korytkowski, and the conference secretary Rafa�l Scherer, for
their enormous efforts to make the conference a very successful event. Moreover,
I would like to acknowledge the work of Marcin Korytkowski, who designed the
Internet submission system.

June 2013 Leszek Rutkowski
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Vicenç Torra, Spain
Burhan Turksen, Canada
Shiro Usui, Japan
Michael Wagenknecht, Germany
Tomasz Walkowiak, Poland
Deliang Wang, USA
Jun Wang, Hong Kong
Lipo Wang, Singapore
Zenon Waszczyszyn, Poland
Paul Werbos, USA
Slawo Wesolkowski, Canada
S�lawomir Wiak, Poland
Bernard Widrow, USA
Kay C. Wiese, Canada
Bogdan M. Wilamowski, USA
Donald C. Wunsch, USA
Maciej Wygralak, Poland
Roman Wyrzykowski, Poland
Ronald R. Yager, USA
Xin-She Yang, United Kingdom
Gary Yen, USA
John Yen, USA
S�lawomir Zadrożny, Poland
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R. Burduk
B. Butkiewicz



X Organization

K. Cetnarowicz
M. Chang
L. Chmielewski
M. Choraś
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Piotr P�loński and Krzysztof Zaremba

Intuitionistic Fuzzy Classifier for Imbalanced Classes . . . . . . . . . . . . . . . . . 483
Eulalia Szmidt, Janusz Kacprzyk, and Marta Kukier

Novel Algorithm for the On-Line Signature Verification Using Selected
Discretization Points Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 493
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Some Aspects of Evolutionary Designing Optimal Controllers . . . . . . . . . . 91
Jacek Szczypta, Andrzej Przyby�l, and Krzysztof Cpa�lka



XVIII Table of Contents – Part II

The Niching Mechanism in the Evolutionary Method of Path
Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
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Wac�law Kuś, and Tadeusz Burczyński
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Abstract. In this paper, we first survey the theoretical and historical 
backgrounds related to ensemble neural network rule extraction. Then we 
propose a new rule extraction method for ensemble neural networks. We also 
demonstrate that the use of ensemble neural networks produces higher 
recognition accuracy than do individual neural networks.  Because the  
extracted rules are more comprehensible. The rule extraction method we use is 
the Ensemble-Recursive-Rule eX traction (E-Re-RX) algorithm. The E-Re-RX 
algorithm is an effective rule extraction algorithm for dealing with data sets that 
mix discrete and continuous attributes. In this algorithm, primary rules are 
generated, followed by secondary rules to handle only those instances that do 
not satisfy the primary rules, and then these rules are integrated. We show that 
this reduces the complexity of using multiple neural networks. This method 
achieves extremely high recognition rates, even with multiclass problems. 

Keywords: Ensemble, neural network, rule extraction, Re-RX algorithm, 
Ensemble method, Recursive neural network rule extraction. 

1 Introduction  

In this paper, we first survey the nature of artificial neural networks (ANNs), the 
origin of neural network rule extraction, incorporation of fuzziness in neural network 
rule extraction, the theoretical foundation of neural network rule extraction, the 
computational complexity of neural network rule extraction, neuro-fuzzy 
hybridization, rule extraction from neural network ensembles, and the background of 
neural network ensembles. Then we describe the three objectives of this paper. 

We propose the Ensemble-Recursive-Rule Extraction (E-Re-RX) algorithm, which 
extracts comprehensible rules [13], [37]. In the E-Re-RX algorithm, the Re-RX 
algorithm [9] is an effective rule extraction algorithm for data sets that comprise both 
discrete and continuous attributes. The extracted rules maintain the high recognition 
capabilities of a neural network while expressing highly comprehensible rules. 
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1.1 Nature of Artificial Neural Networks 

ANNs attempt to replicate the computational power of biological neural networks and 
thereby endow machines with some of the cognitive abilities possessed by biological 
organisms.  However, an impediment to more widespread acceptance of ANNs is the 
absence of the capability to explain to the user, in a human-comprehensible form, how 
the network arrives at a particular decision.  That is, it is very difficult to discuss the 
knowledge encoded within the “black box” of NNs.  Recently, widespread activities 
have attempted to revisit this situation by extracting the embedded knowledge in 
trained ANNs in the form of symbolic rules [14]. 

As a biologically inspired analytical technique, NNs have the capacity to learn and 
model complex nonlinear relationships.  Theoretically, multi-layered feedforward 
NNs are universal approximators and, as such, have an excellent ability to 
approximate any nonlinear mapping to any degree of accuracy [6], [40].  They do not 
require a priori models to be assumed or a priori assumptions to be made on the 
properties of data [8]. 

Generally, ANNs consider a fixed topology of neurons connected by links in a 
predefined manner.  These connection weights are usually initialized by small 
random values.  Knowledge-based networks constitute a special class of ANNs that 
consider crude domain knowledge to generate the initial network architecture, which 
is later refined in the presence of training data. [14]  

Recently, some attempts have been made to improve the efficiency of neural 
computation by using knowledge-based nets. Such nets help to reduce the searching 
space and time while the network traces the optimal solution.  In such a situation,  
one can extract causal factors and functional dependencies from the data domain for 
initially encoding the ANN and later extracting refined rules from the trained  
network [50].  

The term rule generation encompasses both rule extraction and rule refinement.  
Note that rule extraction here refers to extracting knowledge from the ANN while 
using network parameters in the process.  Rule refinement, in contrast, pertains to 
extracting refined knowledge from the ANN that was initialized by using crude 
domain knowledge.  Rules learned and interpolated for fuzzy reasoning and fuzzy 
control can also be considered under rule generation.  In a wider sense, rule 
generation includes the extraction of domain knowledge (e.g., for the initial encoding 
of an ANN) by using nonconnectionist tools such as fuzzy sets and rough sets. [14] 

1.2 Origin of Neural Network Rule Extraction [14] 

Here we first consider the layered connectionist model by Gallant [15] and Saito and 
Nakano [16] for rule extraction in the medical domain. The inputs and outputs consist 
of crisp variables in all cases.  Generally, the symptoms are represented by the input 
nodes, and the diseases and possible treatments correspond to intermediate and/or 
output nodes.  The multilayer network described by Saito and Nakano was applied to  
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the detection of headache. Headache patients respond to a questionnaire regarding the 
perceived symptoms and these constitute the input to the network. 

In 1988, the model by Gallant [15], dealing with sacrophagal problems, uses a 
linear discriminant network (with no hidden nodes) that is trained by the simple 
pocket algorithm. 

Gallant’s model [15] incorporates inferencing and forward chaining, confidence 
estimation, backward chaining, and explanation of conclusions by IF-THEN rules.  
To generate a rule, the attributes with greater inference strength (magnitude of 
connection weights) are selected and a conjunction of the more significant premises is 
formed to justify the output concept. 

Rule extraction techniques generally fall into two categories [44]: direct 
approaches and indirect approaches.  We take the standpoint that indirect approaches 
are more promising. 

In an indirect approach, a predictive model is built from training data, and rules are 
extracted from the model.  ANNs and Support Vector Machines (SVMs) are two of the 
most popular algorithms used to build predictive models. Rule extraction from ANNs 
has been investigated by many researchers [41], [42]. SVM-based rule extraction has 
also been explored extensively due to the high performance of SVMs [43]. 

1.3 Incorporating Fuzziness in Neural Network Rule Extraction 

As an illustration of the characteristics of layered fuzzy neural networks for 
inferencing and rule generation, the models by Hayashi [17], [18] and Hudson et al. 
[19] are described first.  A distributed single-layer perceptron-based model trained 
with the pocket algorithm was used by Hayashi [17], [18] for diagnosing 
hepatobiliary disorders.  All contradictory training data were excluded, as these 
cannot be handled by the model.  The input layer consists of fuzzy and crisp cell 
groups while the output is modeled only by fuzzy cell groups.  The crisp cell groups 
are represented by m cells taking on two values, {(+1, +1, ,…, +1), (-1, -1,…, -1)}.  
Fuzzy cell groups, however, use binary m-dimensional vectors, each taking values of 
{+1, -1}.  Linguistic relative importance terms such as very important and 
moderately important are allowed in each proposition.  Linguistic truth values such 
as completely true, true, possibly true, unknown, possibly false, false, and completely 
false are also assigned by the domain experts, depending on the output values. By 
using different linguistic truth values, a pattern belonging to more than one class can 
be modeled.  Extraction of fuzzy IF-THEN production rules is possible by using a 
top-down traversal involving analysis of the node activation, bias, and the associated 
link weights. 

1.4 Theoretical Foundation of Neural Network Rule Extraction 

A fuzzy system adaptively infers and modifies its fuzzy association from 
representative numerical samples.  Neural networks, in contrast, can blindly generate 
and refine fuzzy rules from training data.  Fuzzy sets are considered to be 
advantageous in the logical field and in easily handling higher order processing.  
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Higher flexibility is a characteristic feature of neural networks produced by learning 
and, hence, NNs are better suited for data-driven processing [20]. 

In 1993, Buckley, Hayashi and Czogala [21] mathematically proved the 
equivalence of neural nets and fuzzy expert systems.  In other words, they proved 
that we can describe the contents of trained neural networks by a set of linguistic IF-
THEN rules.  Moreover, this paper firmly established the theoretical foundation of 
neural network rule extraction. 

Hayashi and Buckley [22] proved that 1) any rule-based fuzzy system may be 
approximated by a neural net, and 2) any neural net (e.g., feedforward net, 
multilayered net) may be approximated by a rule-based fuzzy system.  This kind of 
equivalence between the fuzzy-rule-based system and neural networks was also 
studied [21],[22],[23],[24]. 

1.5 Computational Complexity of Neural Network Rule Extraction 

A salient theoretical discovery in this area is that, in many cases, the computational 
complexity of extracting rules from trained neural networks and the complexity of 
extracting rules directly from data are both NP-hard [25]. 

Bologna [32] claimed that the difficulty of extracting rules is related to the 
dimensionality of the input samples.  More precisely, the dimensionality is related to 
n binary valued input neurons.  We could find up to 2n rules.  Generally, with large-
dimensional problems, several rules may be missed.  In such a situation, the degree 
of matching between the rules and the neutral network classification, also denoted as 
fidelity, is less than 100%. 

It is also worth mentioning that Roy [26] astutely disclosed the conflict between 
rule extraction and traditional connectionism.  In detail, the idea of rule extraction 
from a neural network involves certain procedures, specifically the reading of 
parameters from a network. Such reading is not allowed by the traditional 
connectionist framework on which these neural networks are based.  Roy [26] 
indicated that such a conflict could be resolved by introducing a control-theoretic 
paradigm, which was supported by new evidence from neuroscience about the role of 
neuromodulators and neurotransmitters in the brain. 

1.6 Neuro-fuzzy Hybridization 

Neuro-fuzzy hybridization [51] is done broadly in two ways: a neural network 
equipped with the capability of handling fuzzy information [termed fuzzy-neural 
network (FNN)], and a fuzzy system augmented by neural networks to enhance some 
of the neural network characteristics such as flexibility, speed, and adaptability 
[termed neural-fuzzy system (NFS)]. 

Other kinds of categorizations for neuro-fuzzy models have been reported in related 
literature [28].  Buckley and Hayashi [28] classified fuzzified neural networks 
possessing the following:  1) real number inputs, fuzzy outputs, and fuzzy weights; 2) 
fuzzy inputs, fuzzy outputs, and real number weights; 3) fuzzy inputs, fuzzy outputs, 
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and fuzzy weights.  Hayashi et al. [29] fuzzified the delta rule for the multilayer 
perceptron (MLP) by using fuzzy numbers at the input, output, and weight levels.  

But, the algorithm with the stopping rule has problems. Ishibuchi et al. [30] 
incorporated triangular and trapezoidal fuzzy number weights, and thereby increased 
the complexity of the algorithm.  Some of these problems were overcome by Feuring 
et al. in [31]. 

1.7 Rule Extraction from Neural Network Ensemble  

In the beginning of the 1990s, Hansen and Salamon [38] showed that the 
generalization ability of learning systems based on artificial neural networks can be 
significantly improved through ensembles of artificial neural networks, i.e., training 
multiple artificial neural networks and combining their predictions via voting.  Since 
combining works remarkably well, it became a very popular topic in both neural 
network and machine learning communities [35]. 

In general, a neural network ensemble is constructed in two steps: training a number 
of component neural networks, and then combining the component predictions [36]. 

The rationale for considering a combination of methods is similar to that of 
ensemble NNs [5].  However, ensembling is more robust and mitigates the effect of 
one method that gives bad results and ruins the performance [52]. 

Although many authors have generated comprehensible models from individual 
networks, much less work has been done in the explanation of neural network 
ensembles [32]. 

Bologna proposed the Interpretable Multi-Layer Perceptron (IMLP) and the 
Discretized IMLP (DIMLP) models with generated rules from neural network 
ensembles [33, 34].  The DIMLP is a special neural network model for which symbolic 
rules are generated to explain the knowledge embedded within the connections and the 
activation neurons.  Bologna described how to translate symbolic rules into the DIMLP 
and how to extract rules from one or several combined neural networks. 

Rules are generated from a DIMLP network by the induction of a special decision 
tree and taking into account virtual hyperplane frontiers. 

In [32], Bologna’s rule extraction was compared to other rule extraction techniques 
applied to neural networks. For seven out of eight classification problems, the 
accuracy of his results were equal to or better than those given by other techniques. 

The scale of the computational complexity of his rule extraction algorithm in 
polynomial time is related to the dimensionality of the problem, the number of 
examples, and the size of the network.  Continuous valued attributes do not need to 
be transformed to binary attributes, as is done in many rule extraction techniques.  
That is a clear advantage with respect to decompositional rule extraction algorithms 
with high exponential computational complexity (for comparison, see Section 2.2 of 
[32]).  In practice, the execution time of learning and rule extraction is very 
reasonable. For more mathematical details on the computational complexity, refer to 
Section 3.3 of [32] and Section 6.4 of [34].  

With Rule Extraction From Neural network Ensemble (REFNE) proposed by Zhou 
et al. [35], attributes are discretized during rule extraction, whereas Bologna’s rule 



6 Y. Hayashi 

 

extraction algorithm performs the discretization during learning through the use of 
staircase activation functions.  Furthermore, rules generated by REFNE are limited to 
three antecedents, whereas DIMLP does not impose any constraints.  Another 
important difference is that we extract unordered rules from DIMLP ensembles, 
whereas ordered rules are generated by REFNE.  Bologna’s rule extraction algorithm 
has no parameters; hence, it could be easier for a non-specialist in rule extraction to 
use the DIMLP ensemble rather than those rule extraction techniques that require 
several parameters be set  [32]. 

The REFNE approach proposed by Zhou et al. is designed to extract symbolic rules 
from trained neural network ensembles that perform classification tasks.  REFNE 
utilizes trained ensembles to generate a number of instances and then extracts rules 
from those instances.  REFNE can gracefully break the ties made by individual 
neural networks in prediction [35]. 

In recent years, many approaches for rule extraction from trained neural networks 
have been developed.  A review of these approaches can be generally categorized 
into two classes: function-analysis-based and architecture-based approaches.  The 
function-analysis-based approaches extract rules by regarding the trained networks as 
entities that can be easily modified for extracting rules from trained ensembles instead 
of the networks as entities.  REFNE is derived from a function-analysis-based 
approach, called STARE [46], for extracting rules from trained neural networks [35]. 

The architecture-analysis-based approaches extract rules by disassembling the 
architectures of trained neural networks. Such architectures are those that are 
relatively difficult to modify for extracting rules from trained ensembles. The reason 
is that even if rules could be extracted from each individual network, it is still difficult 
to unite them into a consistent rule set that explains the capability of the ensemble 
because simply gathering them together can only result in a messy hodgepodge of 
rules [35]. 

However, no matter where the approaches for rule extraction from network 
ensembles are derived from, they must pay attention to some specific characteristics 
of ensembles, e.g., the ambiguity in a prediction caused by ties made by individual 
neural networks [35]. 

Zhou et al. [35] presented a pedagogical algorithm for extracting prepositional 
rules from a complicated neural network system.  With different configurations, the 
algorithm can extract rules with high fidelity but moderate accuracy, or high accuracy 
but moderate fidelity.  A particularly interesting issue that has not been addressed 
appears in [35]: which configuration should we prefer?  This question places us in an 
uncomfortable situation:  to sacrifice the fidelity, or to sacrifice the accuracy.  In 
fact, pursuing high fidelity and high accuracy may not be possible in certain 
situations, although this has not been recognized before [27]. 

Zhou et al. [36] analyzed the relationship between the ensemble and its component 
neural networks from the context of both regression and classification. Their work 
revealed that it may be better to ensemble many instead of all the available neural 
networks at hand.  This result is interesting because most approaches ensemble all the 
available neural networks for prediction.  Then, to show the feasibility of their theory, 
an ensemble approach named Genetic Algorithm based Selective ENsemble (GASEN) 
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was presented.  A large empirical study showed that GASEN is superior to bagging [1] 
and boosting [2] in both regression and classification because it utilizes far fewer 
component neural networks but achieves stronger generalization ability [36]. 

In 2012, Hara and Hayashi proposed two ensemble neural network rule extraction 
algorithms.  The former is for two-class classification [13]. The latter is for multiple-
class classification [37]. Both of these algorithms use standard MLPs and the Re-RX 
algorithm proposed by Setiono [9]. Their recognition accuracy is very high. 

For reference, Adeodato et al. [39] showed that the ensemble of MLPs produces 
better results than does the single MLP solution.  For this purpose, the performance of 
the ensemble was compared to the average of the performances of each single MLP. 

1.8 Neural Network Ensembles in This Paper 

In ensemble neural networks, bagging [1], boosting [2], AdaBoosting [47], averaging 
[48], and other techniques have been suggested as ways to split a data set and perform 
multifaceted analyses.  Each of these studies reported classification accuracy 
exceeding that of individual neural networks [3], [4], [10]. 

Because neural network ensembles are multiple individual neural networks, they 
present their own problems: their complexity is greater, rule extraction is more 
difficult, and they use more computing resources than are necessary. In the studied 
neural network ensembles to date, research on methods such as weighted voting [11] 
and averaging [48] for integrating the output has been conducted.  Algorithms that 
use bagging or boosting in the C4.5 algorithm have been presented, but these do not 
directly address the problems, because splitting the data set into parts and applying 
the C4.5 algorithm to them generates rules that determine the class, and so the total 
output is classes applied broadly based on the rules. This in turn means that the rules 
are numerous and redundant. Consequently, we believe that methods such as bagging 
or boosting cannot be assumed to extract rules from an ensemble neural network. 

Nevertheless, neural networks are known to be an effective method for real-world 
classification problems involving nonlinear data. Contrary to the standard explanation 
that neural networks operate as “black boxes,” many studies have been conducted on 
methods for rule extraction [49]. These studies can be seen as an outgrowth of the 
extraordinary advances that have been made in information technology (IT) and the 
ability of IT to easily handle massive volumes of data. Extracting rules from neural 
networks is not simply a matter of breaking open the black box. From the perspective 
of data mining, it increases the opportunities to use neural network technology as data 
mining technology.  

In our proposed algorithm, we selected part of the learning data set , LD, and 
extracted a primary rule set from the learning data subset, LD’. Next, we classified 
our learning data subset into those instances that satisfied the primary rules and those 
that did not. Using the non-satisfying instances, we used the Re-RX [9] algorithm to 
extract a secondary rule set. The primary and secondary rule sets can be regarded as 
the ensemble neural network’s complete rules, which have sufficiently high 
recognition capabilities. 
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We conducted experiments using the CARD data set, the German Credit data set, 
the Thyroid data set, and the Page block data set, which can be obtained from the UCI 
repository [12].  In this paper, we provide a discussion based on the results of 
experiments and a conclusion that states the three open questions. 

2 Purpose of This Paper 

This paper has three major objectives. 
The first objective is to increase recognition rates. Neural networks show high 

recognition accuracy when used as a data mining technique, but they do not show 
sufficiently high recognition accuracy when using a partial data set. In most cases, 
multiclass problems occur where poor recognition rates are seen. In this paper, we 
demonstrate extremely high recognition rates, even with multiclass problems. It is 
understood that one cause of low recognition rates in existing methods is overfitting. 
In our research, we used a randomly extracted learning data subset that was arbitrarily 
taken from the source data set. Using a partial learning data set is effective in 
reducing the number of factors in the source data set that lead to overfitting. 

The second objective is to extract rules from an ensemble neural network. 
Ensemble neural networks are extremely effective in the field of data mining due to 
their strong recognition capabilities, but in fields where high reliability is demanded, 
such as medicine and finance, the recognition capability of ensemble neural networks 
alone is not enough. The solution is to extract rules that express what the ensemble 
neural network recognizes with a high degree of comprehensibility. If the recognition 
results can be expressed as rules, then the technique can even be used in fields that 
demand a high level of reliability. This would expand the range of applications for 
ensemble neural networks in data mining. In our research, we used the E-Re-RX 
algorithm [13], [37] that we are proposing for rule extraction. This algorithm is 
effective for rule extraction when the data set includes both discrete and continuous 
attributes, and the extracted rules show a high degree of comprehensibility. 

The third objective is to minimize the use of computer resources. Ensemble neural 
networks have typically achieved good recognition accuracy by using a large number 
of neural networks, but using a large number of neural networks creates the problem 
of creating unused neural networks.  In our research, we achieved high recognition 
accuracy by using an ensemble neural network consisting of the smallest number of 
neural networks possible, which is two. 

3 Structure of the E-Re-RX Algorithm  

3.1 Origin of Neural Network Ensemble 

A neural network ensemble is a learning paradigm, in which a collection of a finite 
number of neural networks is trained for the same task.  The neural network 
ensemble originates from Hansen and Salamon’s work [38], which showed that the 
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generalization ability of a neural network system can be significantly improved by 
ensembling a number of neural networks, i.e., by training many neural networks and 
then combining their predictions. 

3.2 Re-RX Algorithm 

The Re-RX algorithm [9] is designed to generate classification rules from data sets 
that have both discrete and continuous attributes. The algorithm is recursive in nature 
and generates hierarchical rules. The rule conditions for discrete attributes are 
disjointed from those for continuous attributes. The continuous attributes only appear 
in the conditions of the rules lowest in the hierarchy. 

     The outline of the algorithm is as follows. 

 
Algorithm Re-RX(S, D, C) 
Input: A set of data samples S having discrete attributes D and continuous 

attributes C. 
Output: A set of classification rules. 

1. Train and prune a neural network using the data set S and all its D and C attributes. 
2. Let D’ and C’ be the sets of discrete and continuous attributes, respectively, still 

present in the network, and let S’ be the set of data samples correctly classified by 
the pruned network. 

3. If D’ has associated continuous attributes C’, generate a hyperplane to split the 
samples in S’ according to the values of the continuous attributes C’, then stop. 
Otherwise, by using only the discrete attributes D’, generate the set of 
classification rules R for data set S’. 
For each rule Ri generated: 
If support(Ri)>δ

１ and error(Ri)>δ２, then 

─ Let Si be the set of data samples that satisfy the condition of rule Ri and let Di 
be the set of discrete attributes that do not appear in the rule condition of Ri. 

─ If D’ has associated continuous attributes C’, generate a hyperplane to split the 
samples in Si according to the values of the continuous attributes Ci, then stop. 
Otherwise, call Re-RX (Si, Di, Ci). 

 
In the above, we define the support of (Ri) to be the proportion of samples covered by 
rule Ri and the error of (Ri) to be the proportion of samples it incorrectly classifies. 

3.3 Ensemble-Re-RX (E-Re-RX) Algorithm [13][37] 

In the proposed E-Re-RX algorithm, we first produce the learning data set LD’, which 
is necessary for training the first neural network. LD’ is the set of instances extracted 
at random in an arbitrary proportion from the full learning data set LD. LD’ is input 
into a neural network having one node in its hidden layer. The neural network is 
trained and pruned [7], and the rules are extracted. 
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In this paper, we restrict ourselves to back-propagation neural networks with one 
hidden layer because such networks have been shown to possess a universal 
approximation property [6], [40].  An effective neural network pruning algorithm is a 
crucial component of any neural network rule extraction algorithm.  By removing the 
inputs not needed for solving the problem, the extracted rule set becomes more 
concise. In addition, the pruned network also filters noise that might be present in the 
data. Such noise could be data samples that are outliers or incorrectly labeled. From 
these extracted rules, we re-extract rules in accordance with the Re-RX algorithm, and 
take the final rule set as the primary rules R. 

We divide LD into data sets that do and do not conform to these primary rules. The 
set of instances that do not conform are taken as LDf, which is input into the second 
neural network. The second neural network is similarly trained on LDf and pruned, 
rules are extracted, and rules are then re-extracted in accordance with the Re-RX 
algorithm. These extracted rules are the secondary rules Rf. 

Integrated rules are obtained from extracted rules R and Rf. In the rule integration, 
we focus on the primary rule and the secondary rule for attributes and values that are 
the same. If the attributes and values for the primary rule and the secondary rule 
match exactly, and the class labels are also the same, the secondary rule is integrated 
into the primary rule. For example, assume the following rule is obtained as a primary 
rule. 

R: If D42=0, then predict Class 1. 
The following rule is obtained as a secondary rule.  

Rf: If D42=0, then predict Class 1. 
In this case, all of the attributes, values, and class labels that emerge in the rules 

match.  Therefore, these rules are integrated.  Another case may appear where one 
rule is expressed as either a primary or secondary rule, whereas another primary or 
secondary rule may have some matching attributes and values.  In this case, 
whichever rule can be encompassed by the other is integrated into the other, 
regardless of class labels.  For example, the following is obtained as a primary rule. 

R: If D42=1 and D38=0 and D43=0 and D27=0 and D24=0 and D45=0 
and D2=0 and D21=1, then predict Class 1. 

The following is obtained as a secondary rule. 
Rf: If D24=0 and D2=0 and D45=0 and D21=1, then predict Class 2. 

In this case, all of the attributes and values of the secondary rule are encompassed 
within the primary rule.  Because the secondary rule can be encompassed by the 
primary rule, even though the class labels differ, the secondary rule is integrated into 
the primary rule. The presence of attributes in the primary rule that are absent in the 
secondary rule are considered to result in more accurate class identification. 

With the neural network ensemble, it is possible to determine the final output by 
integrating the outputs of the multiple neural networks.  With the E-Re-RX 
algorithm, it is possible to determine the overall final output by integrating the rules. 
This rule integration enables the reduction of the number of neural networks and 
irrelevant rules.  The essentials of the E-Re-RX algorithm are outlined as follows. 
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Input: Training sets LD’ and LDf 
Output: Integrated rule set obtained by integration of the primary and secondary 

rule sets. 

1. Extract at random an arbitrary proportion of instances from the learning set LD and 
designate this randomly extracted learning set LD’. 

2. Perform training and pruning of LD’ with the first neural network. 
3. Apply the Re-RX algorithm [9] to the output of Step 2 to obtain the primary rules. 
4. Based on these primary rules, generate the set LDf consisting of instances that do 

not satisfy these rules. 
5. Train and prune LDf with the second neural network. 
6. Apply the Re-RX algorithm [9] to the output of Step 5 to output the secondary rules. 
7. Integrate the primary and secondary rules. 

 
The composition of the two standard MLPs is shown schematically in Fig. 1. 

 

Fig. 1. Basic process for extraction of primary and secondary rules of high accuracy from two 
standard MLPs 

3.4 Integration of Rules 

Extracting rules from multiple standard MLPs is assumed to increase the number of 
rules, and some of these extracted rules may be redundant or irrelevant as 
classification rules. 

The accuracy of the rules is maintained and their number is reduced by integrating 
the primary and secondary rules in accordance with the attributes. 

In this paper, the rules extracted from the Re-RX algorithm use the decision tree 
formed by the J4.8 algorithm. By using the J4.8 algorithm for multiple generated rules 
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and particularly for primary and secondary rules, the multiple attributes of the same 
type and value are integrated into rules having more attribute types; that is, the 
primary and the secondary rules are integrated into finer rules. In judgments made 
with a decision tree, rules having a larger number of attribute types are considered to 
be more accurately classified. In this paper, when rules are integrated, a reduced rule 
number is achieved by integration into finer rules. 

That said, in some instances a primary rule will contradict a secondary rule. Here, 
the instance that generates the secondary rule is judged to differ depending on the 
hyperplane and the associated rule generated during primary rule training. Making 
this distinction adequately explains cases in which contradictory rules are extracted. 
In contradictory rules, the attributes and values are exactly the same but the class 
labels differ, or the class labels and attributes that appear in the rules are the same but 
the attribute values differ. In these cases, the rules that appear in the secondary rules 
are integrated into the primary rules. The decision is made based on the number of 
samples in the running data set. More specifically, the running data set LD’ has a 
greater number of samples than the running data set used to generate the secondary 
rules for the LDf. Thus, the primary rules encompass more samples. This means that 
when comparing primary rules and secondary rules on the basis of reliability, the 
primary rules can be regarded as having greater reliability. This is why the secondary 
rules are integrated into the primary rules. 

4 Example 

To illustrate the use of our algorithm, we first apply it to a credit approval data set 
used in a recent benchmark study. The data set is publicly available as the CARD1 
data set. The data set contains a total of 690 samples: 518 training samples and 172 
test samples. Altogether, the samples contain 51 attributes, of which 6 are continuous 
and the rest are binary. Because no detailed explanation is available on what each of 
the attributes represents, continuous input attributes 4, 6, 41, 44, 49, and 51 are simply 
labeled C4, C6, C41, C44, C49, and C51, respectively. The remaining binary-valued 
attributes are labeled D1, D2, D3, D5, D7, …, D40, D42, D43, D45, D46, D47, D48, 
and D50. Therefore, the number of input units is 51, and since the samples are in two 
groups, the number of output units is 2. We extracted 50% (259) of the instances in 
the CARD1 data set at random, and trained and pruned the first neural network by 
using the extracted set designated as LD’. From the resulting network, we extracted 
rules using the decision tree obtained with J4.8 and performed rule re-extraction in 
accordance with the Re-RX algorithm and the re-extraction threshold δ1 = δ2 = 0.05. 
The resulting primary rules are expressed as follows. 

 
R1: If D42=0, then predict Class 1. 
R2: If D42=1 and D7=0 and D19=0 and D43=0, then predict Class 1. 
R3: If D42=1 and D7=0 and D19=0 and D43=1, then predict Class 2. 
R4: If D42=1 and D7=0 and D19=1, then predict Class 1. 
R5: If D42=1 and D7=1, then predict Class 2. 
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Based on these primary rules, we produced the data set for 70 instances, LDf, 
which was then used to train and prune the second neural network. We next 
performed rule re-extraction by using the same procedure applied for the first neural 
network. The resulting secondary rules are expressed as follows. 

 
Rf1: If D42=0, then predict Class 1. 
Rf2: If D42=1 and D13=0, then predict Class 1. 
Rf3: If D42=1 and D13=1, then predict Class 2. 

 
Comparison of the above primary and secondary rules immediately shows that R1 and 
Rf1 represent the same rule. Rf1 was therefore integrated into R1, and the following 
final rule set was the result. 

 
R1: If D42=0, then predict Class 1. 
R2: If D42=1 and D7=0 and D19=0 and D43=0, then predict Class 1. 
R3: If D42=1 and D7=0 and D19=0 and D43=1, then predict Class 2. 
R4: If D42=1 and D7=0 and D19=1, then predict Class 1. 
R5: If D42=1 and D7=1, then predict Class 2. 
Rf2: If D42=1 and D13=0, then predict Class 1. 
Rf3: If D42=1 and D13=1, then predict Class 2. 

 
The correct answer ratios obtained with the learning data set and the test data set 
using these rules were 96.14% and 94.19%, respectively. The value of the test data set 
was 5% higher than the test data set value of 89.53% reported by rule extraction with 
the well-known C4.5 variant as the Re-RX algorithm [9]. Moreover, the number of 
rules was 14 with Re-RX, but only 7 with E-Re-RX because no re-extraction was 
performed. 

5 Results 

Using the same methods, we performed all experiments on the CARD3, German 
Credit, Thyroid, and Pageblock data. All of this data is publicly available from the 
UCI repository [12]. 

The German Credit data set includes 56 discrete attributes and 7 continuous 
attributes. It has 2 classes indicating “good customer” and “bad customer.” The 
Thyroid data set includes 15 discrete attributes and 3 continuous attributes. It has 3 
classes indicating “normal,” “hyper,” and “hypo.” The Pageblock data set includes 6 
discrete attributes and 4 continuous ones. It has 5 classes indicating “text,” 
“horizontal line,” “graphic,” “vertical line,” and “picture.” In each of these data sets, 
as in the CARD1 data, the attributes on each line are labeled with a D for a discrete 
attribute or a C for a continuous attribute. 

Our experimental results are shown in Table 1, which shows the recognition rates 
for the data sets, and Table 2, which shows the number of rules. Our E-Re-RX results 
are presented with reference to Hara and Hayashi [13], [37]. Our Re-RX results are 
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presented with reference to Setiono et al. [9]. Our results for MNNEX, PITS, Neural 
Network Bagging (shown as “NNBagging” in Table 1), and Neural Network 
AdaBoosting (shown as “NN AdaBoosting” in Table 1) are presented with reference 
to Akhand et al. [10]. 

We conducted each of the E-Re-RX experiments by setting δ1 = δ2 = 0.05, except 
for the German Credit experiments, where we set δ1 = δ2 = 0.09. 

6 Discussion 

In these experiments, we found the recognition accuracy offered by the Re-RX 
algorithm [9] to be more than sufficient for Card1 and Card3. We believe this can be 
explained by the fact that we partitioned the learning data set and worked with only 
part of it. In short, by working with a partial data set, we reduced the number of 
instances that lead to overfitting, while keeping a number just high enough for the 
primary rule set. Next, using only the data that did not satisfy the primary rule set, we 
performed another round of rule extraction, which was able to extract rules that could 
not have been extracted from the learning data set and produced a high recognition 
rate. A comparison of the number of rules showed that using an ensemble neural 
network sometimes increased the number of rules. However, by integrating rules, we 
were able to eliminate redundant rules, which seemed to hold the level of redundancy 
to a minimum. 

Table 1. Comparison of recognition accuracy levels achieved by various methods with each 
data set 
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Table 2. Number of rules resulting from the E-Re-RX experiment compared to that resulting 
from the Re-RX experiment 

 

Next, for the German Credit data, we were able to obtain the highest level of 
recognition accuracy with E-Re-RX. In particular, we exceeded the Re-RX algorithm 
by 2%, although it has a high recognition accuracy, and reduced the number of rules 
by a significant 40%.  Here again, we attribute the difference to working with a 
partial learning data set. Using fewer instances, as in LD’, made it possible to classify 
those instances with fewer rules. Likewise, including a fewer instances in LDf 
resulted in fewer extracted rules.  Accordingly, it can be seen that even after rule 
integration, our method resulted in fewer rules extracted than did the Re-RX 
algorithm. 

For the Thyroid data set, we achieved results better than the existing methods: 5% 
better than Neural Network Bagging, and 3% better than Neural Network 
Adaboosting. We attribute this to the fact that we extracted Class 2 and Class 3 rules 
in the primary rule set, and Class 1 and Class 3 rules in the secondary rule set. The 
Thyroid data set consists almost entirely of instances that are Class 3, so in an 
ordinary fitting, a bias will exist toward fitting to Class 3, and so it is assumed to 
sometimes be impossible to fit to Class 1 and Class 2 correctly. Akhand et al. [10] 
reported a maximum value of 94.81%, but found that in the absence of a bias toward 
Class 3, changes in accuracy improvements were dictated by the extent to which 
Class 1 and Class 2 were fitted accurately.  In our research, we were able to extract 
Class 1 and Class 3 rules from the partial data, and the instances that did not satisfy 
these rules were Class 2 in many cases.  We were able to fit to Class 2 efficiently in 
this way and to extract rules with high recognition accuracy, even in a multiclass 
problem. As a result, the accuracy was much higher than that of previous methods. 

Finally, for the Pageblock data set, our results were worse than those by Neural 
Network Adaboosting, but 3% better than those by Neural Network Bagging. Here, 
for reasons that are the same as in the Thyroid data set, dealing with a partial data set 
allowed us to extract Class 1 and Class 2 rules in the primary rule set for instances 
that did not satisfy the primary rules of Class 3, Class 4, or Class 5. In the secondary 
rule set, we were able to extract Class 4 and Class 5 rules, which can be seen to have 
high recognition accuracy.  However, we were unable to extract Class 3 rules in this 
experiment.  This can be attributed to the fact that Class 3 instances made up no more 
than 0.5% of the total data set.  In other words, because Class 3 exerted little 
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influence on the weight correction, it was not possible to classify by Class 3. It is 
thought this can be improved by preparing a data set consisting of instances that do 
not satisfy the primary or secondary rule sets and performing fitting and rule 
extraction to extract rules related to Class 3.  This suggests that an effective approach 
to multiclass problems would be an iterative method in which instances that do not 
satisfy the rules are gathered into a new data set, on which fitting and rule extraction 
are performed iteratively until rules that identify all of the classes have been 
extracted.  This implies a more intensive use of computing resources, but because it 
avoids the problem of setting up an unknown number of neural networks, we still 
consider it to be an effective method. 

7 Conclusion 

We first surveyed the various theoretical and historical backgrounds for neural data 
analysis to investigate the approaches for ensemble neural network rule extraction.  
Next, we set out to address three problems in ensemble neural networks: to increase 
recognition rates, to extract rules from ensemble neural networks, and to minimize the 
use of computing resources.  We proposed a minimal ensemble neural network 
consisting of two standard MLPs, which enabled high recognition accuracy and the 
extraction of comprehensible rules.  Furthermore, this enabled rule extraction that 
resulted in fewer rules than those in previously proposed methods.  The results make 
it possible for the output from an ensemble neural network to be in the form of rules, 
thus breaking open the "black box" of ensemble neural networks.  Ensemble neural 
networks promise a new approach to data mining, and we are confident that our 
results will help make data mining more useful and increase the opportunities to use 
data mining with high recognition accuracy. 

Finally, as future work, we provide the following three open questions on the E-
Re-RX algorithm: 

1) The first is “Can the proposed E-Re-RX algorithm be extended to an ensemble 
neural network consisting of three or more MLPs and extract comprehensible 
rules?” 

2) The second is “Can the proposed E-Re-RX algorithm find various optimal 
parameter values so that we can get comprehensible rules with higher 
recognition accuracy?” 

3) The third is “Can the proposed E-Re-RX algorithm be extended to the use of 
neural network structures other than a standard MLP?” 
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Abstract. In this paper we present a new method of obtaining near-
optimal points sets for interpolation by Gaussian radial basis functions
networks. The method is based on minimizing the maximal value of the
power function. The power function provides an upper bound on the
local RBF interpolation error. We use Latin hypercube designs and a
space-filling curve based space-filling designs as starting points for the
optimization procedure. We restrict our attention to 1-D and 2-D in-
terpolation problems. Finally, we provide results of several numerical
experiments. We compare the performance of this new method with the
method of [6].

Keywords: radial bases function network, interpolation, error bound,
power function, computer experiment design.

1 Introduction

Radial bases functions (RBF) were introduced in the solution of the multivari-
ate interpolation problem (see [26] and references cited therein). Radial basis
function networks are two-layer feed-forward networks with RBFs as activation
functions in the hidden units, and linear activation functions in the output units
[22], [4], [25]. It is well known that Gaussian RBF networks can approximate
any continuous mapping on a compact domain [23]. RBF networks have been
extensively applied to pattern recognition [3], function approximation [23], [18],
probability density function estimation [3], [37], [38], regression function estima-
tion [25], [14], [19], approximating the boundary of an object in a binary image
[29], to speed up deterministic search algorithms used for the local optimization
[1], [2], to global optimization in connection with local deterministic procedures
[15], [30] and creating surfaces using radial basis functions from scattered data
[8], [20], among many others.

The purpose of interpolating RBF networks is to approximate functions f :
Rd →R that are given as data {f(xi)}i=1:N on a finite set X = {x1, . . . ,xN} ⊂
Ω ⊂ Rd of distinct points (centers, nodes, knots) by expression

s(x) =

N∑
i=1

wiϕβ(||x − xi||), (1)

L. Rutkowski et al. (Eds.): ICAISC 2013, Part I, LNAI 7894, pp. 20–31, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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where ||.|| denotes the Euclidean distance between two points in R and ϕβ(r) =
exp(−βr2) is a one dimensional Gaussian function defined for a shape parameter
β = 1

2σ2 > 0. In the interpolant (1) we simply compute the coefficients wi as the
solution of the linear system

AXw = f (2)

where AX = (ϕβ(||xi − xj ||))Ni,j=1 is the information matrix for the set of nodes

X, w = (w1, . . . , wN )T and f = (f1, . . . , fN )T .
Gaussian radial bases functions are infinitely smooth (C∞) and analytic func-

tions. Moreover the Gaussian interpolation matrix AX is positive definite (thus
it is invertible) if the centers are distinct [21]. If AX is positive definite for any
X ⊂ Ω (consisting of distinct points), then ϕβ is said to be positive definite.

Franke [10] found that it is very sensitive to the choice of parameter β. It
is known that the Gaussian radial functions are susceptible to Runge‘s phe-
nomenon, however there exist interpolation node distributions that prevent such
oscillatory behavior of the solution and allow stable interpolation [24]. Usually
interpolation matrix AX is very ill-conditioned, and the weights obtained by solv-
ing (2) yield an interpolation mapping s(x) that exhibits oscillatory behavior in
between data points. Furthermore, the conditioning of the interpolation matrix
grows with the problem size N , since the condition number of interpolation ma-
trix AX, defined as ||AX||2||A−1

X ||2 (where ||.||2 is a spectral metric), depends
mostly on minxi,xj∈X||xi−xj ||. If we fix the number of nodes N the only factor
which is important in the balance between the accuracy of interpolation and the
conditioning of numerical computations is the shape parameter β. The depen-
dence of the condition number on β parameter is less crucial, however too small
values of β (too large values of σ) may result in instability of interpolation due
to a bad conditioning. Moreover, it is possible to use the preconditioning meth-
ods which allows for the stable computation of Gaussian radial basis function
interpolants (see for example [12], [9]).

It is known that, in general, the attainable error and the condition of the
interpolation matrices cannot both be kept small [34]. However, this property is
based on upper bounds of both factors only.

In the interpolation problems a proper choice of interpolation nodes, i.e., the
proper experiment design, is essential for good approximations. It is advisable
to keep the number of interpolation nodes at a reasonable level ( N should be
not too large), because it allows the controlling of the condition number of the
interpolation matrix. Nevertheless, in many cases, the more important factor
is the cost of the function evaluation. For example, in deterministic computer
simulations, which are becoming widely used in science and engineering, the
simulation model is often replaced by an approximating model, based on sim-
ulations in some points. Thus, the problem of node placement design for RBF
interpolation should be considered also in the general context of experiment and
computer experiment design methods. It is known that such type designs should
at least be space-filling in some sense. With no additional assumptions, it is
important to obtain information from the entire design space. Therefore, de-
sign points should be ’evenly spread’ over the entire region. Several space-filling
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criteria are discussed in the literature [33], [17]. The design is often restricted
to a d-dimensional grid of n levels in every dimension, i.e., such that for each
dimension j all nodes coordinate xij are distinct. Such a design is called a Latin
hypercube design (LHD) [33], [30]. The generation of so called low discrepancy
sequences is also often used for space-filling points generation. Faure, Halton
and Sobol sequences, are increasingly popular in computer experiments [33],
[27], [39]. A maximin space-filling design is a set of points such that the sep-
aration distance (i.e. the minimal distance among pairs of points) is maximal.
Notice, that the maximization of the separation distance influences positively
the condition number of the design based RBF interpolation.

In this paper we propose a new method of obtaining near-optimal points
sets for interpolation by Gaussian radial basis functions networks. Motivated by
methods of selecting RBF centers based on placing prototypes of the centers
initially at equidistributed (EQD) points generated along Sierpiński and Hilbert
space-filling curves [28], [19], [39], [36], we propose a minmax optimization pro-
cedure which uses these space-filling curve based space-filling designs as starting
points for minimizing the maximal value of the power function introduced by
Schaback [41], [34], [6], [7].

We restrict our attention to the interpolation problems on a cube in Rd, i.e.,
we assume that Ω = [−1, 1]d.

The paper is organized as follows. Section 2 provides known local error esti-
mates for interpolation by radial basis functions. Section 3 formulates the min-
max optimization problem leading to optimal center location. In section 4 we
present algorithms used for the construction of near-optimal set of interpolation
centers. Section 5 is devoted to numerical tests. Seven out of eight designs ob-
tained using the proposed new method give upper bound values lower than that
generated using the greedy algorithm presented in [6].

2 Interpolation Error Bounds

A general error bound for the interpolation of function f : Rd → R with (1) is
derived (c.f. [41], [34], [40], page 176) using the Lagrange (cardinal) basis for the
interpolation function, i.e.:

s(x) =

N∑
i=1

ui(x)fi,

where ui is a certain continuous function ui : Ω →R, i = 1, . . . , N such that:

ui(xj) = δji, i.e. ui(x) =

{
1 for x = xi

0 for x = xj and j = 1 . . .N and j �= i.
(3)

The existence of a vector u(x) = (u1(x), . . . , uN(x))T for a given x was shown
in [41]. Notice that u depends on ϕβ . Let

R(x) := (ϕβ(||x− x1||), ϕβ(||x− x2||), . . . , ϕβ(||x− xN ||))T .
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Then the vector u(x) is a solution of the system of equations

AXu(x) = R(x). (4)

The interpolation error |f(x)− s(x)| can be bounded by

|f(x)− s(x)| ≤ Pϕβ ,X(x)|f |Nϕβ
(Ω),

where Pϕβ ,X is a power function defined as

Pϕβ ,X(x)2 := ϕβ(0)− 2

N∑
j=1

uj(x)ϕβ(||x− xj ||) +

N∑
i,j=1

ui(x)uj(x)ϕβ(||xi − xj ||)

(5)
and |·|Nϕβ

(Ω) is a norm in the native space generated by the radial basis function

ϕβ (reproducing kernel Hilbert space with ϕβ as its reproducing kernel) [35].
Notice, that one can calculate a value of the power function (5) for any point of
the domain Ω using (4). For a given radial basis function the power function (5)
depends only on a location of data points from X within the domain Ω.

The interpolation matrix AX is ill-conditioned and therefore to solve the sys-
tem (4) we use the singular value decomposition of the matrix AX (c.f. [13]).
Solving (4) for any x ∈ Ω one can calculate a value of the power function (5)
for any point of the domain Ω. Checking whether the obtained u(x) has the
property (3) enables us to choose the shape parameter β for the radial function
ϕβ . Appropriate choice of the value of the shape parameter is a different method
of improving the conditioning of the matrix AX than proposed in [9].

3 A Min-max Problem Formulation

From (2) one can conclude that maxx∈Ω Pϕβ ,X(x) (Ω is a compact set) is the
most important factor in the upperbounding of the interpolation error in the
supremum norm.

Let

X =
(
x
(1)
1 , x

(2)
1 , . . . , x

(d)
1 , . . . , x

(1)
N , x

(2)
N , . . . , x

(d)
N

)
∈ ΩN ⊂ RN ·d

represents an interpolation design X = {xi}Ni=1 where xi = (x
(1)
i , x

(2)
i , . . . , x

(d)
i )

(i = 1, . . . , N). Notice, that in fact, X is a concatenated vector of all design
points contained in the set X.

Let us define function G : RN ·d × Rd → R as

G(X;x) = Pϕβ ,X(x)2. (6)

An optimal design (location of centers) for the radial basis interpolation network
with the radial basis function ϕβ in the domain Ω can be defined as a global min-
imum with respect to maxx∈Ω Pϕβ ,X(x)2. Let us denote F (X) = ||G(X; ·)||sup.
Then the minimization problem to find an optimal design reads:
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min
X∈ΩN

F (X) = min
X∈ΩN

||G(X; ·)||sup = min
X∈ΩN

[max
x∈Ω

G(X;x)]. (7)

4 Algorithms to Solve the Max and the Min Problems

Solving (7) consists of two optimization algorithms. An inner algorithm is used
to find the maximum value of the squared power function Pϕβ ,X(x)2 (6) on
Ω for a given design X. An outer algorithm is used to find a concatenated
vector representing a design X which minimizes F (X) on the domain ΩN , i.e.,
it produces an optimal (or at least near-optimal) interpolation design consisting
of exactly N centers.

The outer optimization problem is a constrained minimization problem. The
values of maxx∈Ω G(Xk;x) are obtained as a result of a simple scan of the domain
Ω. Following the approach presented in [6], we maximize over some very large
discrete set Y ⊂ Ω instead of maximizing on Ω.

To minimize minX∈ΩN F (X) we have used a non-gradient algorithm, as not
much is known about properties of F .

4.1 A Constrained Non-linear Programming Algorithm

Every configuration X in which at least one design point xi (i = 1, . . . , N)
lies on the boundary δΩ of the domain Ω is on the constraint boundary of the
minimization problem (7). The most common approach to deal with constraint
violation is to add a penalty term that depends on how much the constraint is
violated. If a current design contains points that are outside the domain Ω we
have to project these points onto the boundary δΩ.

In numerical experiments presented in this paper Ω = [−1, 1] × [−1, 1]. We
do not use the most common projection method which is the orthogonal projec-
tion defined as X(proj) = arg minY∈δΩ ||X −Y||. Such a projection transforms
points from X that lie outside Ω for which two constraints are violated into the
closest corner of the domain. Such a situation automatically generates a singular
design matrix if there are at least two points that are transformed into the same
corner. It is not a rare situation. The projection for which the overlapping of
transformed centers is less probable is to choose a point on the boundary which
lies on the interval between the point xi to be transformed and the center of the
domain Ω.

Now, we can calculate (6) for X(proj) and add to F (X(proj)) the penalty

proportional to ||X(proj) −X||. Nevertheless, for the sake of simplicity, we omit
a penalty term using only projection. This is motivated by the fact that adding
a penalty term creates an artificial piece of information which is useless from
the optimization point of view. The power function defined outside the domain
Ω provides upperbounds for an interpolation problem defined on other domains
than Ω.
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In numerical experiments we have achieved the best values of the objective
function F using the Rosenbrock algorithm initially described in [31] and mod-
ified by Jacob [16].

4.2 A Stable Calculation of the Objective Function in the Inner
Algorithm

The calculation of (6) which is the objective function for the inner algorithm
requires a stable calculation of the Lagrange representation u(x) for any x ∈ Ω
by solving (4). For N > 40 and for small values of shape parameter β (too large
values of σ, i.e., close to a diameter of the domain space Ω) in Gaussian basis
it may happen that a calculated solution u(x) is not a cardinal solution (see
property (3)).

Problems with a stable solution of (4) for the Gaussian with small values
of a shape parameter were reported in e.g. [9]. Here we propose to choose the
largest possible value of parameter δ that enables us to find a solution u(x)
which guaranties that the property (3) is maintained at the level of the absolute
error of 10−7. In the example presented in the next section (for N = 54) σ value
set to the quarter of the diameter of Xk is sufficient.

4.3 Initial Designs

As mentioned in the previous paragraph we limit our numerical experiments to
Ω = [−1, 1]2. To generate X0 we use four different methods:

1. Space-filling latin hypercube sampling method [33], [30].
2. A uniform design based on the Sierpiński space-filling curve [36].
3. A uniform design based on the Hilbert space-filling curve [36].
4. Quasi-optimal design obtained by the greedy algorithm due to De Marchi,

Schaback and Wendland (DMSW) [6].

The advantage of initial configurations generated with the first three methods
is that they are the initial configuration of N points in Ω ⊂ Rd and N does
not need to be a d-th power of a natural number. The fourth initial distribution
is used in this paper not only as a starting point for the optimization but also
as a reference for comparisons. Up to our knowledge the designs X0 generated
with the algorithm DMSW produce the lowest values of ||Pϕβ ,X(x)2||sup over
Ω among results published in the literature so far for the methods based on
minimizing the power function (5).

5 Numerical Results

5.1 One Dimensional Example

In order to show that the proposed optimization algorithm produces designs that
give a lower interpolation error we interpolate function y = (1+(5x)2)−1 using a
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Gaussian RBF network with 9 centers on the interval [−1, 1]. Radius parameter
σ of Gaussians was set to 1. Figure 1 shows the interpolation curves obtained
for three configurations of centers:

1. obtained by DMSW method [6],
2. centers are scaled zeros of the 9-th Tshebyshev polynomial of the first kind,
3. obtained by our optimization algorithm.

The smallest maximal error is equal to 0.16098 and is obtained by using the
method proposed in the paper. The resulting error is slightly smaller than the
maximal error for the Tshebyshev centers which is equal to 0.16489. The results
obtained by DMSW algorithm [6] are worse with the error supremum equals to
0.21884. The new configuration decreases the Runge phenomenon compared to
the configuration obtained by DMSW algorithm [6].
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Fig. 1. Interpolation of the function y = (1 + (5x)2)−1 with the Gaussain radial basis
function with a shape parameter equals to 1 on 9 nodes from the interval [−1, 1] on
three different node configurations a) obtained by DMSW algorithm [6] b) Tchebyshev
knots c) obtained by our optimization algorithm
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Fig. 2. Interpolation error for the interpolation of the function y = (1+ (5x)2)−1 with
the Gaussain radial basis function with a shape parameter equals to 1 on 9 nodes
from the interval [−1, 1] on three different node configurations a) obtained by DMSW
algorithm [6] b) Tchebyshev knots c) obtained by our optimization algorithm
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5.2 Two Dimensional Example

In this section we present the performance of the proposed design optimization
algorithm launched from 5 randomly generated points forming a Latin hypercube
[33], one optimization started from a Sierpiński filling curve configuration of
centers [36], another one started from a Hilbert filling curve configuration of
centers [36] and one optimization started from the quasi-optimal configuration
of centers generated by DMSW algorithm [6].

To guarantee that the objective function F is not too small and the non-
linear optimisation algorithm runs properly we use a scaling factor of 107 in the
function calculations, i.e., instead of minimizing F we minimize 107F .

Table 1 shows the results obtained for eight different starting configurations:
five initial designs were generated using the Latin hypercube method, one initial
design was a uniform design along the Sierpiński space-filling curve [36], the next
initiali design was s uniform design along the Hilbert filling space curve [36] and
the last one was generated by DMSW quasi-optimal method [6]. As one can see
from this table in four out five different Latin hypercube starting configurations
the proposed scheme was able to decrease the objective function value below
the value calculated for the configuration at the starting configuration gener-
ated using the quasi-optimal method. Also starting from the Sierpiński and the
Hilbert configuration the result was better although it was not better than for
the successful Latin hypercube configurations.

Table 1. Results of numerical experiments for 54 knots placed in Ω = [−1, 1]× [−1, 1].
The first five rows were obtained using the proposed algorithm started from configura-
tions generated using the Latin hypercube method [33]. The sixth row presents results
for the Sierpiński space-filling curve based starting configuration [36]. The seventh row
presents results for the Hilbert space-filling curve based starting configuration [36].
In the eighth row the optimization was started from the quasi-optimal configuration
generated by DMSW method [6]. The first column describes the way the starting con-
figuration was generated, the second one shows the objective function value F at the
starting configuration and the third one shows the number of the objective function
calculations to achieve the value that is shown in the fourth column.

starting configuration starting configuration num. of obj. final configuration
generation method objective f. val. f. calculations objective f. val.

Latin hypercube 1 8693.840221 23778 8.713339
Latin hypercube 2 24004.490524 63693 9.163693
Latin hypercube 3 21275.298287 34164 7.821087
Latin hypercube 4 63583.290885 37070 9.446265
Latin hypercube 5 22191.814212 37195 23.794642

Sierpiński filling curve 15117.265424 42476 13.522486
Hilbert filling curve 24429.318636 36652 12.395903

quasi-optimal 20.815944 36679 10.736679
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The result of the optimization started from de Marchi−Schaback−Wendland configuration
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Fig. 3. Left) The quasi optimal configuration of 54 centers generated using DMSW
method [6]. Right) The configuration obtained by our algorithm started from the quasi
optimal configuration. Both configurations are plotted together with isolines of the
squared power function.
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The result of the optimization started from the Latin hypercube filling configuration
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Fig. 4. Left) An example of latin hypercube configuration of 54 nodes generated using
the algorithm from [33]. Right) The configuration obtained using by our optimization
algorithm started from the the latin hypercube based configuration. Both configura-
tions are plotted together with isolines of the squared power function.
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The result of the optimization started from the Sierpinski filling curve configuration
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Fig. 5. Left) An example of a Sierpinski filling curve configuration of 54 nodes (c.f. [36]).
Right) The design obtained by our optimization algorithm started from the Sierpiński
space-filling curve based configuration. Both designs are plotted together with isolines
of the squared power function.
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The result of the optimization started from the Hilbert filling curve starting configuration
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Fig. 6. Left) An example of a Hilbert filling curve configuration of 54 nodes (c.f. [36]).
Right) The design obtained by our optimization algorithm started from the Hilbert
space-filling curve based configuration. Both designs are plotted together with isolines
of the squared power function.

6 Conclusions

We have presented a scheme of using constrained non-linear programming to
calculate the optimal configurations of centers for a radial basis interpolation
process. From eight designs obtained by the proposed optimization algorithm
seven configurations give objective function values lower than that generated as
an initial configuration by DMSW algorithm [6].

The work in this paper focused on the Gaussian kernel. There are many
other positive definite kernels: inverse multiquadric [21], Wendland function [40],
Sobolev splines [34] and others that can be constructed using a method described
in [35]. It should be mentioned that the method proposed in this paper can be
applied to other strictly positive definite radial bases function systems. Fur-
thermore, the proposed method can be used also when we have to extend the
near-optimal design by a new additional point.

Acknowledgment. Calculations have been carried out in the Wroc�law Cen-
tre for Networking and Supercomputing (http://www.wcss.wroc.pl) grant No
205, using MATLAB 2012.
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Abstract. This paper presents the parallel architecture of the Jordan
network learning algorithm. The proposed solution is based on the high
parallel three dimensional structures to speed up learning performance.
Detailed parallel neural network structures are explicitly shown.

1 Introduction

The Jordan network is an example of dynamical neural networks. Dynamical
neural networks have been investigated by many scientists in the last decade [6],
[7]. To train the dynamical networks the gradient method was used, see e.g. [15].
In the classical case the neural networks learning algorithms are implemented
on serial computer. Unfortunatelly, this method is slow because the learning
algorithm requires high computational load. Therefore, high performance ded-
icated parallel structure is a suitable solution, see eg. [2] - [5], [13], [14]. This
paper presents a new concept of the parallel realisation of the Jordan learn-
ing algorithm. A single iteration of the parallel architecture requires much less
computation cycles than a serial implementation. The efficiency of this new ar-
chitecture is very satisfying and is explained in the last part of this paper. The
structure of the Jordan network is shown in Fig. 1.

The Jordan network has K neurons in the hidden layer and M neurons in
the network output. The input vector contains N input signals and M previous
outputs. Note that previous signals from output are obtained through unit time
delay z−1. Therefore, the network input vector

[
1, x(1)

1
(t), ..., x(1)

N
(t), x(1)

N+1
(t), ..., x(1)

N+M
(t)
]T

(1)

in the Jordan network takes the form

[
1, x(1)

1
(t), ..., x(1)

N
(t), y(2)

1
(t− 1), ..., y(2)

M
(t− 1)

]T
(2)
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Fig. 1. Structure of the Jordan network

In the recall phase the network is described by

s(1)
i

=
N+M∑
k=0

w(1)
ik

x(1)
k

y(1)
k

(t) = f(s(1)
k

(t))

s(2)
j

=
K∑

k=0

w(2)
jk

x(2)
k

y(2)
j

(t) = f(s(2)
j

(t))

(3)

The parallel realisation of the recall phase algorithm uses architecture which
requires many simple processing elements. The parallel realisation of the Jor-
dan network in recal phase is depicted in Fig. 2a and its processing elements in
Fig. 2b. Four kinds of functional processing elements are used in the proposed
solution. The aim of the processing elements (PE) A is to delay outputs sig-
nals, so that values of signals appear on inputs of the network from previous
instances. Processing elements of type B create matrix which includes values
of weights of the first layer. The input signals are entered for rows elements
parallelly, multiplied by weights and received results are summed in columns.
The activation function for each neuron in the first layer is calculated after de-

termination of product w
(1)
i x(1) in processing element of type D. The outputs

of neurons in the first layer are inputs to the second layer simultaneously. The
product w(2)x(2) for the second layer is obtained in processing elements of type
C similarly.
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Fig. 2. Recal phase of the Jordan network and the structures of processing elements

The gradient method [15] is used to train the Jordan network. We minimise
the following goal criterion

J (t) = 1
2

∑M

j=1
ε
(2)2

j (t) = 1
2

∑M

j=1

(
y
(2)
j (t)− d

(2)
j (t)

)2
(4)

were ε
(2)
j is defined as

ε
(2)
j (t) = y

(2)
j (t)− d

(2)
j (t) (5)

For this purpose it is nesessary to calculate derivative of the goal funcion with
respect to each weight. For weights in the second layer we obtain the following
gradient

∇(2)
αβJ (t) =

∂J (t)

∂w
(2)
αβ

=
∑M

j=1
ε
(2)
j (t)

dy
(2)
j (t)

dw
(2)
αβ

(6)

and after some calculations we obtain derivative

dy
(2)
j (t)

dw
(2)
αβ

=

δjα
dy(2)

α (t)

ds
(2)
α

y
(1)
β (t) +

dy
(2)
j (t)

ds
(2)
j

∑K
i=1 w

(2)
ji

dy
(1)
i (t)

ds
(1)
i

∑M
k=1 w

(1)
i,k+N

dy
(2)
k (t−1)

dw
(2)
αβ

(7)

Weights are updated according to the steepest descent algorithm as follows

w
(2)
αβ (t) = w

(2)
αβ (t− 1)− η∇(2)

αβJ (t) (8)
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For the first layer we have

δ
(2)
j (t) = ε

(2)
j (t)

dy
(2)
j (t)

ds
(2)
j

(9)

ε
(1)
i (t) =

∑M

j=1
δ
(2)
j (t)w

(2)
ji (10)

and we obtain the gradient

∇(1)
αβJ (t) =

∂J(t)

∂w
(1)
αβ

=
∑M

j=1 ε
(2)
j (t)

dy
(2)
j (t)

ds
(2)
j

∑K
i=1

[
dy

(1)
i (t)

dw
(1)
αβ

w
(2)
ji

]
=
∑K

i=1
dy

(1)
i (t)

dw
(1)
αβ

ε
(1)
i (t)

(11)

After a few calculations we get

dy
(1)
i (t)

dw
(1)
αβ

=

δiα
dy(1)

α (t)

ds
(1)
α

x
(1)
β (t) +

dy
(1)
i (t)

ds
(1)
i

∑M
k=1 w

(1)
i,k+N

dy
(2)
k (t−1)

ds
(2)
k

∑K
l=1 w

(2)
kl

dy
(1)
l (t−1)

dw
(1)
αβ

(12)

and the weights can be updated by

w
(1)
αβ (t) = w

(1)
αβ (t− 1)− η∇(1)

αβJ (t) (13)

The task of suggested parallel structure will be realisation of all calculations
described by equations (6) - (8) and (11) - (13).

2 Parallel Realisation

In order to determine the derivative in the second layer it is required to know
its previous values. Derivative values will be stored in E PE Fig. 4a. These el-
ements will create 3D matrix of the dimension M ×M × (K + 1), see Fig. 3.
They will be useful for realizing inner sum in equation (7). Presented E PE

multiply the respondent elements of derivative matrix
dy

(2)
j

dwαβ
by corresponding to

them weights of the first layer, see Fig. 3. Then, received produtcts in the entire
column are added to each other. The weights are delivered by columns. The first
column is moved to the extreme right position (as a result of the rotation to the
left) W (1) matrix. After a rotation of columns the previous actions are repeated.
These operations are repeated K times until the first column of the matrix will
revert to the original place. At the same time, the obtained results are sent to

the upper 3D matrix of (F) PE (see Fig. 3 and Fig. 4b), multiplied by w
(2)
ji

dy
(1)
i

ds
(1)
i

and
dy

(2)
j

ds
(2)
j

and accumulated. The obtained results - calculation of equation (7) -

are sent back to the lower 3D matrix. In the next step it is necessary to calculate
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gradients eq.(6). This is depicted in Fig. 5. The element for weights updating in
eq.(8) is shown in Fig. 6.

Suggested solution leads to acceleration of calculations, but it is not optimal
solution yet. It results from the fact that after multiplication of lower 3D matrix
and the weights matrix, serial summation follows. In this case multiplication
and addition is realized in M ×K steps. It is easily seen that changing manner
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Fig. 5. Architecture for calculating of the gradient ∇(2)
αβ for second layer learning and

the structure of the processing element

of entering of values from weights matrix to derivatives matrix we can reduce
the amount of steps required for execution of the multiplication and addition
operations to M + K − 1. The manner of these weights entering is presented
in Fig. 7. The multiplication is realised only for elements from the first column
depicted by the thick line. In the first step only one element from the last row is
taken into account. In the next cycles the number of rows is incremented, and the
rows that have participated in multiplication are subject to rotation. Rotation
is done from step one to the left until all rows reach the starting position. The
rows are no longer included in the multiplication. As a result, the proposed
modifications in subsequent steps, making the multiplication and summation, as
described in the previous scenario. In this case we will receive the sum of the
new inner product without waiting the M steps. For the first layer we need to
calculate the derivatives (12). Note that equations (12) and (7) have identical
structures. Therefore parallel realisation of the first layer learning is analogous to
the second layer learning. The architecture of the first layer learning is shown in
Fig. 8. Of course in this case the dimensions of the structure and processed data
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Fig. 6. The weights updating element
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Fig. 7. Method of entering weights for the second layer learning

correspond to equation (12). After obtaining the derivatives, the value of ε
(1)
i (t)

is calculated, see eq. (9) and (10). The structure for this operation is presented
in Fig. 9. The gradient in eq. (11) is obtained from the analogous structure like
in the second layer (see Fig. 5). All weights are updated in the same time by
elements depicted in Fig. 6.

�

�

�1

1

M

M

N M�

(2)

(2)

k

k

dy

ds1

0

1

i

K

0

1

(1)

(2)

( )i

i

dy t

ds

(1)

(1)

( )idy t

dw��

k

l

K

K

K

�
i1

M N� 1N �

(1)W

K K

1

Fig. 8. Idea of learning of the first layer



Parallel Approach to Learning of the Recurrent Jordan Neural Network 39

(1)

i


(2)

i


(2)

j	(2)

(2)

j

j

dy

ds

(2)W K1

1

1

M

M

�

)()1( twij

(2)

j	

(1)

i


(2)

j	
(2)

i


(2)

(2)

j

j

dy

ds

�

a) c)

b)

Fig. 9. Structure for calculating ε
(1)
i (t) in the first layer (a) and the processing elements

(b) and (c)

0

5

10

15

20

25

30

35

40

1 2 3 4 5 6 7 8 9 10

TP

N

b)

0

100000

200000

300000

400000

500000

600000

700000

800000

1 2 3 4 5 6 7 8 9 10

TS

N

a)

0

5000

10000

15000

20000

25000

1 2 3 4 5 6 7 8 9 10

PF

N

c)

Fig. 10. Number of times cycles in a) classical (serial), b) parallel implementation and
c) performance factor

3 Conclusion

In this paper the parallel realisation of the Jordan neural network was pro-
posed. We assume that all multiplications and additions operations take the same
time unit. For simplicity of the result presentation we assume that K=M=N in
the network. We can compare computational performance of the Jordan par-
allel implementation with sequential architectures up to N=M=10 for inputs
and outputs and up to 10 neurons (K) in the hidden layer of neural network.
Computational complexity of the Jordan learning is of order O(K5) and equals
TS = 2K3M2 + 2K3MN + 2K2M3 + 2K3M + 4K2M2 + 3K2MN + 2KM3 +
7K2M + 4K2N + 8KM2 + KMN + 4K2 + 6M2. In the presented parallel ar-
chitecture each iteration requires only TP = K + M + max(K,M) + 5 time
units (see Fig. 10). Performance factor (PF = TS/TP ) of parallel realisa-
tion of the Jordan algorithm achieves nearly 21000 for N=10 inputs, K=10
neurons in the hidden layer and M=10 of neurons in the output layer and it
grows very fast when these numbers grow, see Fig. 10. We observed that the
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performance of the proposed solution is promising. Analogous parallel aproach
can be used for the advanced learning algorithm of feedforward neural networks,
see eg. [1]. In the future research we plan to design parallel realisation of learning
of other structures including probabilistic neural networks [9]-[11] and various
fuzzy structures[8],[12].
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Abstract. Radial Basis Function Neural Networks (RBFNs) are quite
popular due to their ability to discover and approximate complex non-
linear dependencies within the data under analysis. The performance of
the RBF network depends on numerous factors. One of them is a value of
the RBF shape parameter. This parameter has a direct impact on perfor-
mance of the transfer function of each hidden unit. Values of the transfer
function parameters, including the value of its shape, are set during the
RBFN tuning phase. Setting values of the transfer function parameters,
including its shape can be viewed as the optimization problem in which
the performance of the considered RBFN is maximized. In the paper the
agent-based population learning algorithm finding the optimal or near
optimal value of the RBF shape parameter is proposed and evaluated.

1 Introduction

Artificial Neural Networks are used to solve many different kind of problems such
as classification, signal processing, pattern recognition, prediction, time series
analysis, image preprocessing, speaker identification, etc. The RBF networks
are considered as an universal approximation tool similarly to the multilayer
perceptrons (MLPs). However, radial basis function networks usually achieve
faster convergence since only one layer of weights is required [10].

A RBF network is constructed from a three-layer architecture with a feed-
back. The input layer consisting of a set of source units connects the network to
the environment. The hidden layer consists of hidden neurons with radial basis
functions [10]. RBFNs use different functions at each hidden unit. Neverthe-
less, RBFN design is not straightforward. One of the main problems with neural
networks is the lack of consensus on how to best implement them [18].

RBFNs are generally non-linear and belong to a special class of tools which
performance depends on the distance between an input vector and a center
vector, called centroid, prototype or kernel of the basis function. RBFNs ability
is to approximate complex non-linear mapping directly from the input-output
data [13]. The performance of the RBF network depends on numerous factors.
The basic problem with the RBFNs is to set an appropriate number of radial
basis function, i.e. a number of hidden units. Deciding on this number results in
fixing the number of clusters and their centroids. Another factor, called a shape
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parameter of radial basis function, plays also an important role from the point of
view of accuracy and stability of the RBF-based approximations. In numerous
reported applications RBFs contain free shape parameters, which can be tuned
by users. In [9] it is viewed as a disadvantage and somewhat ironic since the
user is forced to make a decision on the choice of the shape parameter. Such an
approach can also decrease chances to finding the optimal network structure [9].

In [11] it was suggested that the shape of radial basis functions should be
changed depending on the data distribution. Such a flexibility should result
in assuring better approximation effect in comparison with other approaches,
where, for example, radial basis function parameters are set by some ad hoc
criterion. A discussion of several approaches to setting shape parameter values
can be found in [11].

In RBFNs the transfer function is represented by the radial basis function
in each hidden unit. The transfer function is a composition of the activation
function and the output function. A large number of different transfer functions
have been proposed in the literature. Universal transfer functions have been
proposed by Hoffmann [12]. Their feature is an ability to change shape smoothly
from one function form to another. A taxonomy of different transfer functions
used for neural network design can be found in [8]. Several possibilities of using
transfer functions (i.e. activation and output functions) of different types in
neural network models, including regularization of networks with heterogeneous
nodes, are discussed in [8].

The paper deals with the problem of deciding on the RBF shape parameter
values with a view to optimize transfer function design. It is shown how the
agent-based population learning algorithm can be used for the RBF shape pa-
rameter setting through selection of transfer functions and their parameters. In
[5] the agent-based population learning algorithm was used to locate only pro-
totypes within the produced clusters. In the proposed extended version of the
algorithm, firstly clusters are produced. Next, the prototypes are determined. In
the second step the parameters of the output function for each hidden unit are
also determined including the type of the transfer function with its shape.

The goal of the paper is to show through computational experiment that
the agent-based population learning algorithm used to locate prototypes and
to set values of parameters of the radial basis functions can be competitive
in comparison with its earlier version presented in [5], as well as with other
RBFN training algorithms. To validate the approach, an extensive computational
experiment has been carried-out. Performance of the proposed algorithm has
been evaluated using several benchmark datasets from the UCI repository [1].

The paper is organized as follows. Section 2 gives a basic account of the RBF
networks. Idea of the agent-based population learning algorithm is presented
in Section 3. Section 4 explains main features of the proposed implementation
of the agent-based population learning algorithm. Section 5 provides details on
the computational experiment setup and discusses its results. Finally, the last
section contains conclusions and suggestions for future research.



Agent-Based Population Learning Algorithm for RBF Network Tuning 43

2 RBF Neural Network Background

The output of the RBF network is a linear combination of the outputs of the
hidden units, i.e. a linear combination of the nonlinear radial basis function
generating approximation of the unknown function. In case of the classification
problems the output value is produced using the sigmoid function with a linear
combination of the outputs of the hidden units as an argument. In general, the
RBFN output function has the following form:

f(x,w, p) =

M∑
i=1

wiGi(ri, pi), (1)

where M defines the number of hidden neurons, Gi is a radial basis function
associated with i−th hidden neuron, pi is a vector of parameters, which can
include the location of centroids, dispersion or other parameters describing the
radial function.

One of the most popular output functions of the RBF hidden units is the
Gaussian function [3], which has been chosen to best fit data from each cluster.
In such a case the output function takes the following form:

G(r, b) = e−( r
b )

2

, (2)

where r is a norm function denoted as r = ‖x− c‖, where x is an input instance,
c represents a centroid and b is a value of dispersion (or ”width”) of the radial
function. The output function of the RBF hidden unit most frequently is calcu-
lated using the Euclidean distance although other measures of distance can be
also used. Thus, in general case, r refers to the Euclidean norm [9].

The Gaussian function is an example of function where the input instances are
analyzed with respect to the one particular point (centroid) in the data space.
The Gaussian function is also an example of a simple local function. In [8] it has
been concluded that such local functions are useful to produce circular neurons
and a solution especially for classification problems. In [8] it is also shown, that
RBFN constructed using local functions can be very sensitive when the data are
incomplete

Alternatively to the Gaussian function bicentral functions are considered to
be a more promising option. The bicentral functions are formed from N pair
of sigmoids and are defined with respect to two centers ci − ebi and ci + ebi .
The bicentral functions are window type localized functions and are separable.
A feature of the bicentral transfer functions is their flexibility in representing
various probability densities. They can also produce decision region with convex
shapes. These properties result from possibilities of moving the location of two
centers, changing the function dispersion and setting a slope of the function [8].
The bicentral output function has the following form:

G(x, c, b, s) =

N∏
i

σ(esi(xi − ci + ebi))(1− σ(es
′
i (xi − ci − ebi))), (3)
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where c represents a centroid, b is a corresponding width of the radial function,
N is the dimension of the instance (i.e. the number of attributes), s and s′

represent a slope of the function for the left and the right side in any dimension
of the centroid, σ is a sigmoid function with argument z defined as follows:
σ(z) = 1

1+e−βz , where β determines the slope of the function and is equal to s
or s′ respectively.

The RBF network initialization is a process, where the set of parameters
of the radial basis functions, including the number of the radial basis func-
tions, their shapes and the number of centroids with their locations, needs to
be calculated or drawn. It is performed during the RBFN tuning. On the other
hand, RBFNs involve finding a set of weights of links between neurons such that
the network generates a desired output signals. The weights are determined in
the RBF network training process. Both processes can be also viewed as solving
the optimization task, where the optimization objective is to minimize the value
of the target function by finding the optimal values of vector weights and vector
of RBF parameters.

Since the RBF neural network initialization and training belong to the class
of computationally difficult combinatorial optimization problems [10], it is rea-
sonable to apply to solve this task one of the known metaheuristics. In this
paper the agent-based population learning, proposed originally in [2], is applied
as a collaborative approach to neural network tuning (see, for example [15]).
In the paper the agent-based population learning algorithm is proposed for the
purpose of the RBFN initialization including prototype selection and choice of
shape parameters. In next sections details of the proposed approach are included.

3 Agent-Based Population Learning Algorithm

In [2]it has been shown that agent-based population learning search can be used
as a robust and powerful optimizing technique. In the agent-based population
learning implementation both - optimization and improvement procedures are
executed by a set of agents cooperating and exchanging information within an
asynchronous team of agents (A-Team). The A-Team concept was originally
introduced in [15].

The concept of the A-Team was motivated by several approaches like black-
board systems and evolutionary algorithms, which have proven to be able to
successfully solve some difficult combinatorial optimization problems. Within
an A-Team agents achieve an implicit cooperation by sharing a population of
solutions, to the problem to be solved.

An A-Team can be also defined as a set of agents and a set of memories,
forming a network in which every agent remains in a closed loop. Each agent
possesses some problem-solving skills and each memory contains a population
of temporary solutions to the problem at hand. It also means that such an ar-
chitecture can deal with several searches conducted in parallel. In each iteration
of the process of searching for the best solution agents cooperate to construct,
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find and improve solutions which are read from the shared, common memory.
All agents can work asynchronously and in parallel.

Main functionality of the agent-based population learning approach includes
organizing and conducting the process of search for the best solution. It involves
a sequence of the following steps:

- Generation of the initial population of solutions to be stored in the common
memory.

- Activation of optimizing agents which execute some solution improvement
algorithms applied to solutions drawn from the common memory and, sub-
sequently, store them back after the attempted improvement in accordance
with a user defined replacement strategy.

- Continuation of the reading-improving-replacing cycle until a stopping cri-
terion is met. Such a criterion can be defined either or both as a predefined
number of iterations or a limiting time period during which optimizing agents
do not manage to improve the current best solution. After computation has
been stopped the best solution achieved so far is accepted as the final one.

More information on the population learning algorithm with optimization proce-
dures implemented as agents within an asynchronous team of agents (A-Team)
can be found in [2]. In [2] also several A-Team implementations are described.

4 An Approach to the RBF Network Tuning

The paper deals with the problem of RBFN initialization through applying the
agent-based population learning algorithm. The main goal is to find the optimal
set of RBF network parameters with respect to:

- Producing clusters and determining their centroids.
- Determining the kind of transfer function for each hidden units and other

parameters of the transfer function.

4.1 Producing Clusters and Determining Their Centroids

Under the proposed approach clusters are produced at the first stage of the
initialization process. They are generated using the procedure based on the sim-
ilarity coefficient calculated as proposed in [6]. Clusters contain instances with
identical similarity coefficient and the number of clusters is determined by the
value of the similarity coefficient. Thus the clusters are initialized automatically,
which also means that the number of radial basis function is initialized auto-
matically (for details see, for example, [6]).

Next from thus obtained clusters of instances centroids are selected. An agent-
based algorithm with a dedicated set of agents is used to locate centroids within
clusters. In the proposed approach, it is assumed that maximum two centroids
can be selected from each cluster. Obviously, from clusters containing exactly
one instance, only one centroid can be selected.
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4.2 Determining the Kind of Transfer Function

Under the proposed approach the number of cluster centroids determines the
kind of transfer function associated with a given hidden unit. When only one
centroid is selected, the output of the RBF hidden unit is calculated using the
Gaussian function (see equation no. 2). By introducing this condition it is as-
sumed that such hidden have a circular shape of the transfer function.

When the number of selected centroids is greater than one the output of the
RBF hidden unit is calculated using the bicentral function (see equation no. 3).
In this case the algorithm uses a dedicated set of agents responsible for finding
optimal values for the left and the right slope of the transfer function.

The proposed approach may result in producing a heterogenous function net-
work.

4.3 Agent-Based Population Learning Algorithm Implementation

The main feature of the proposed agent-based population learning algorithm
is its ability to select centroids and transfer function parameters in coopera-
tion between agents. Most important assumptions behind the approach, can be
summarized as follows:

- Shared memory of the A-Team is used to store a population of solutions to
the RBFN initialization problem.

- A solution is represented by a string consisting of two parts. The first contains
integers representing numbers of instances selected as centroids. The length
of the first part of the string is equal to, at least, the number of clusters (i.e.
the number of hidden units) and can be greater than the number of hidden
units when one of the clusters is associated with two centroids. The detailed
conditions on the centroid number have been introduced in subsection 4.2.
The second part consists of real numbers for representing left and right slope
of the transfer functions. This part contains 2N parameters per one hidden
unit.

- The initial population is generated randomly.
- Initially, potential solutions are generated through randomly selecting one

or two centroids from each of the considered clusters.
- Initially, the real numbers representing slopes are generated randomly.
- Each solution from the population is evaluated and the value of its fitness is

calculated. The evaluation is carried out by estimating classification accuracy
or error approximation of the RBFN, which is initialized using centroids, set
of transfer function parameter indicated by the solution and trained using
backpropagation algorithm.

The RBFN initialization problem is solved using two groups of optimizing agents.
The first group includes agents executing procedures for centroid selection. These
procedures are a local search with the tabu for prototype selection and a sim-
ple local search. The both procedures modify a solution by replacing a randomly
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selected instance with some other randomly chosen instance thus far not included
within the improved solution, or by modification through adding or removing an
instance from the improved solution. The only difference between them is that
in the first procedure the replacing takes place only for instances which are not
on the tabu list. After the replacement, the move is placed on the tabu list and
remains there for a given number of iterations. Replacement and modification
are performed randomly with the same probability equal to 0.5.

The second group of optimizing agents includes procedures for estimation of
the slope parameters. One of them is the standard mutation which modifies the
second part of a solution by generating new values of element in the string. The
modification is carried out with a mutation rate of pm. If the fitness function
value has improved then the change is accepted. The second procedure is an ap-
plication of the non-uniform mutation. The non-uniform mutation acts through
modifying a solution by repeatedly adjusting value of the randomly selected
element in the string until the fitness function value has improved or until k
consecutive improvements have been attempted unsuccessfully. The value of the
adjustment is calculated as:

	(t′, y) = y(1− q(1−
t′

2N′ )q), (4)

where q is the uniformly distributed real number from (0, 1], N ′ is equal to the
length of the current string with values representing the slop of the transfer
function and t′ is a current number of adjustment. The mutation is performed
with probability pmu. Both mutation procedures have been successfully applied
in [4].

5 Computational Experiment

This section contains the results of several computational experiments carried
out with a view to evaluate the performance of the proposed approach. In par-
ticular, the reported experiments aimed at evaluating quality of the RBF-based
classifiers constructed using the proposed approach. Experiments aimed at an-
swering the question whether the proposed agent-based approach to RBF net-
work tuning (ABRBF Tuning) performs better than classical methods of RBFN
initialization? The proposed approach has been also compared with the earlier
version of the approach called ABRBFN 1 introduced in [5], where the agent-
based population learning algorithm has been used only to perform search for a
location of centroids within each of the Gaussian kernel-based clusters.

In the reported experiments the following RBFN initialization approaches
have been also compared:

- The k-means clustering with the agent-based population learning algorithm
used to locate prototypes (in this case at the first stage the k-means clus-
tering has been implemented and next, from thus obtained clusters, the
prototypes have been selected using the agent-based population learning al-
gorithm) - denoted as k-meansABRBFN .
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- The k-means algorithm used to locate centroids for each of the Gaussian
kernels (in this case at the first stage the k-means clustering has been im-
plemented and the cluster centers have been used as prototypes) - denoted
as k-meansRBFN .

- The random search for kernel selection - denoted as randomRBFN .

Evaluation of the proposed approaches and performance comparisons are based
on the classification and the regression problems. For both cases the proposed
algorithms have been applied to solve respective problems using several bench-
mark datasets obtained from the UCI Machine Learning Repository [1]. Basic
characteristics of these datasets are shown in Table 1.

Each benchmark problem has been solved 50 times, and the experiment plan
involved 10 repetitions of the 10-cross-validation scheme. The reported values of
the quality measure have been averaged over all runs. The quality measure in
case of the classification problems was the correct classification ratio - accuracy
(Acc). The overall performance for regression problems has been computed by
the mean squared error (MSE) calculated as the approximation error over the
test set.

Parameter settings for computations involving ABRBF Tuning are shown
in Table 2. Values of the some parameters have been set arbitrarily in the trials
and errors procedure.

Table 1. Datasets used in the reported experiment

Type Number Number Number Best
Dataset of of of of reported

problem instances attributes classes results

Forest Fires Regression 517 12 - -
Housing Regression 506 14 - -
WBC Classification 699 9 2 97.5% [1] (Acc.)
Credit Classification 690 15 2 86.9% [1] (Acc.)
Sonar Classification 208 60 2 97.1% [1] (Acc.)
Satellite Classification 6435 36 6 -

Table 2. Parameter settings for ABRBF Tuning in the reported experiment

Parameter

Max number of iteration during the search 500
Max number of epoch reached in RBF network training 1000
Population size 60
Probability of mutation for the standard and non-uniform mutation (pm, pmu) 20%
Range values for left and right slope of the transfer function [-1,1]
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The dispersion of the Radial function has been determined as suggested in
[15]: bi = mink,i=1,...,m;k �=i {‖ck − ci‖}, where ck and ci are centers of clusters.

Table 3 depicts the performance comparison involving ABRBF Tuning, its
earlier version (ABRBFN 1 ) and some other approaches to RBF initialization
including the k-means clustering with the agent-based population learning algo-
rithm. From the results it can be observed that the proposed algorithm assures
competitive results in comparison to other approaches. The proposed approach
to the RBF network tuning proves to be quite competitive in case of the regres-
sion problems. In case of the classification problem the ABRBF Tuning has
improved accuracy only for one dataset. In three cases the ABRBF Tuning
algorithm is not better than ABRBFN 1. The experiment results show that
ABRBF Tuning applied to the RBF initialization performs better than k-
meansABRBFN , k-meansRBFN and randomRBFN . Only for one dataset
the k-meansABRBFN produced better results.

The results in Table 3 further demonstrate that the ABRBF Tuning can
be superior to the other methods including MLP, Multiple linear regression,
SVM and C4.5. This statement is supported by the fact that in seven cases the
proposed algorithm has been capable to improve the generalization ability.

Table 3. Results obtained for different variants of the proposed algorithm applied to
the task of the RBNF’s training and their comparison with performance of several
different competitive approaches

Problem: Forest Housing WBC Credit Sonar Satellite
fires

Algorithm: MSE Acc. (%)

ABRBF Tuning 2.07 34.92 94.24 84.05 83.34 83.32
ABRBFN 1 [5] 2.15 35.24 94.56 84.56 82.09 85.05*
k-meansABRBFN [5] 2.29 35.87 95.83 84.16 81.15 83.57*
k-meansRBFN [5] 2.21 36.4 93.9 82.03 78.62 81.4*
randomRBFN [5] 3.41 47.84 84.92 77.5 72.79 74.84*
Neural network - MLP 2.11 [19] 40.62 [19] 96.7 [7] 84.6 [7] 84.5 [7] 83.75 [14]
Multiple linear 2.38 [19] 36.26 [19] - - - -
regression
SVR/SVM 1.97 [19] 44.91 [19] 96.9 [7] 84.8 [7] 76.9 [7] 85.0 [17]
C 4.5 - - 94.7 [7] 85.5 [7] 76.9 [7] -

* Not present in [5].

6 Conclusions

In this paper the agent-based population learning algorithm for RBF neural net-
work tuning is proposed. The task of the algorithm is to find optimal parameters
of the transfer function including the type of the function and its shape, and the
appropriate centroids within initialized clusters for each hidden units of the RBF
network.
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Important feature of the approach is that the number of clusters, location of
centroids and the transfer function parameters are determined in parallel using a
set of dedicated agents. In the reported computational experiment the proposed
algorithm has proved to be not worse from the earlier its version and in some
cases outperforms other techniques for RBF initialization.

Future research will focus on finding more effective configurations of the RBF
networks by extending the approach adding ability to estimate output weights
of the RBFN. A new set of optimizing agents is planned to be implemented.
It is also planned to carry-out more refined statistical analysis of the results to
obtain a better insight into properties of the proposed approach.

In the future it also is planned to implement the proposed agent-based popu-
lation learning algorithm for construction of the cascade correlation neural net-
work. It is believed that that selection of the most promising transfer function
for each candidate unit from a pool of candidates by the agent-based population
learning algorithm can bring benefits in term of the classification accuracy or
the approximation error.
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5. Czarnowski, I., Jȩdrzejowicz, P.: An Approach to Cluster Initialization for RBF
Networks. In: Graña, M., Toro., C., Posada, J., Howlett, R., Jain, L.C. (eds.) Ad-
vances in Knowledge-Based and Intelligent Information and Engineering Systems.
Frontiers in Artificial Intelligence and Applications, vol. 243, pp. 1151–1160. IOS
Press (2012)

6. Czarnowski, I.: Cluster-based Instance Selection for Machine Classification. Knowl-
edge and Information Systems 30(1), 113–133 (2012)

7. Datasets used for classification: comparison of results. In. directory of data sets,
http://www.is.umk.pl/projects/datasets.html (accessed September 1, 2009)

8. Duch, W., Jankowski, N.: Transfer Functions: Hidden Possibilities for Better Neural
Networks. In: Proceedings of the 9th European Symposium on Artificial Neural
Networks (ESANN), Brugge, pp. 81–94 (2001)

9. Fasshauer, G.E., Zhang, J.G.: On Choosing ”Optimal” Shape Parameters for RBF
Approximation. Numerical Algorithms 45(1-4), 345–368 (2007)

http://www.ics.uci.edu/~mlearn/MLRepository.html
http://www.is.umk.pl/projects/datasets.html


Agent-Based Population Learning Algorithm for RBF Network Tuning 51

10. Gao, H., Feng, B., Hou, Y., Zhu, L.: Training RBF Neural Network with Hybrid
Particle Swarm Optimization. In: Wang, J., Yi, Z., Żurada, J.M., Lu, B.-L., Yin,
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Abstract. In the article a simple neural model with local learning for forecast-
ing time series with multiple seasonal cycles is presented. This model uses  
patterns of the time series seasonal cycles: input ones representing cycles pre-
ceding the forecast moment and forecast ones representing the forecasted 
cycles. Patterns simplify the forecasting problem especially when a time series 
exhibits nonstationarity, heteroscedasticity, trend and many seasonal cycles. 
The artificial neural network learns using the training sample selected from the 
neighborhood of the query pattern. As a result the target function is approx-
imated locally which leads to a reduction in problem complexity and enables 
the use of simpler models. The effectiveness of the proposed approach is illu-
strated through applications to electrical load forecasting and compared with 
ARIMA and exponential smoothing approaches. In a day ahead load forecasting 
simulations indicate the best results for the one-neuron network.  

Keywords: seasonal time series forecasting, short-term load forecasting, local 
learning, neural networks. 

1 Introduction 

Time series may contain four different components: trend, seasonal variations, cyclic-
al variations, and irregular component. Seasonality is defined to be the tendency of 
time series data to exhibit some pattern that repeats periodically with variation. Some-
times a time series contains multiple seasonal cycles of different lengths. Fig. 1 shows 
such a time series, where we can observe annual, weekly and daily variations. This 
series represents hourly electrical load of the Polish power system. From this figure it 
can be seen that the daily and weekly profiles change during the year. In summer they 
are more flat than in winter. The daily profile depends on the day of the week as well. 
The profiles of the weekdays are similar to each other in the same period of the year. 
To the characteristic features of this time series its nonstationarity and heteroscedas-
ticity should be included as well. These all features have to be captured by the flexible 
forecasting model. 

The most commonly employed methods to modeling seasonal time series include 
[1]: seasonal autoregressive integrated moving average model (ARIMA), exponential  
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Fig. 1. The load time series of the Polish power system in three-year (a) and one-week (b) 
intervals 

smoothing (ES), artificial neural networks (ANNs), dynamic harmonic regression, 
vector autoregression, random effect models, and many others.  

The base ARIMA model with just one seasonal pattern can be extended for the 
case of multiple seasonalities. An example of such an extension was presented in [2]. 
A combinatorial problem of selecting appropriate model orders is an inconvenience in 
the time series modeling using multiple seasonal ARIMA. Another disadvantage is 
the linear character of the ARIMA model.      

Another popular model – the Holt-Winters exponential smoothing was adapted by 
Taylor so that it can accommodate two and more seasonalities [2]. An advantage of 
the ES models is that they can be nonlinear. On the other hand it can be viewed as 
being of high dimension, as it involves initialization and updating of a large number 
of terms (level, periods of the intraday and intraweek cycles). In [1] more parsimo-
nious formulation of ES is proposed. New exponentially weighted methods for fore-
casting time series that consist of both intraweek and intraday seasonal cycles can be 
found in [3]. 

Gould et al. [4] introduced the innovation state space models that underlie ES  
methods for both additive and multiplicative seasonality. This procedure provides a 
theoretical foundation for ES methods and improves on the current approaches by 
providing a common sense structure to the models, flexibility in modeling seasonal 
patterns, a potential reduction in the number of parameters to be estimated, and model 
based prediction intervals. 
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ANNs being nonlinear and data-driven in nature, may be well suited to the season-
al time series modeling. They can extract unknown and general information from 
multi-dimensional data using their self-learning ability. This feature releases a design-
er from a difficult task of a priori model selection. But new problems appear: the se-
lection of network architecture as well as the learning algorithm. From many types of 
ANN most often in forecasting tasks the multilayer perceptron is used, which has a 
property of universal approximation. ANNs are able to deal with the seasonal time 
series without the prior seasonal adjustment but deseasonalization and also detrending 
is recommended [5].  

The time series decomposition is used not only in ANNs, but also in other models, 
e.g. ARIMA and ES. The components showing less complexity than the original time 
series can be modeled independently and more accurate. Usually the time series is 
decomposed on seasonal, trend and stochastic components. Other methods of decom-
positions apply the Fourier or wavelet transform. The simple way to remove seasonal-
ity is to define the separate time series for each observation in a cycle, i.e. in the case 
of cycle of length n, n time series is defined including observations in the same posi-
tion in successive cycles.  

This paper considers simple neural forecasting model that approximates the target 
function using patterns of seasonal cycles. Defining patterns we do not need to de-
compose a time series. A trend and many seasonal cycles as well as the nonstationari-
ty and heteroscedasticity is not a problem here when using proper pattern definitions. 
The proposed neural model learns in a local learning procedure which allows to mod-
el the target function in the neighborhood of the query pattern. As a result we get a 
local model which is better fitted in this neighborhood. 

2 Patterns of the Time Series Seasonal Cycles 

Our goal is to forecast the time series elements in a period of one seasonal cycle of the 
shortest length. In the case of the time series shown in Fig. 1 this is a daily cycle con-
taining n = 24 elements (hourly loads). The time series is divided into sequences  
containing one seasonal cycle of length n. In order to eliminate trend and seasonal 
variations of periods longer than n (weekly and annual variations in our example), the 
sequence elements are preprocessed to obtain their patterns. The pattern is a vector 
with components that are functions of actual time series elements. The input and out-
put (forecast) patterns are defined: x = [x1 x2 … xn]

T and y = [y1 y2 … yn]
T, respective-

ly. The patterns are paired (xi, yi), where yi is a pattern of the time series sequence 
succeeding the sequence represented by xi. The interval between these sequences is 
equal to the forecast horizon τ. 

The way of how the x and y patterns are defined depends on the time series nature 
(seasonal variations, trend), the forecast period and the forecast horizon. Functions 
transforming series elements into patterns should be defined so that patterns carry 
most information about the process. Moreover, functions transforming forecast se-
quences into patterns y should ensure the opposite transformation: from the forecasted 
pattern y to the forecasted time series sequence.   
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The forecast pattern yi = [yi,1 yi,2 … yi,n] encodes the successive actual time series 
elements z in the forecast period i+τ: zi+τ = [zi+τ,1 z i+τ,2 … zi+τ,n], and the correspond-
ing input pattern xi = [xi,1 xi,2 … xi,n] maps the time series elements in the period i 
preceding the forecast period: zi = [zi,1 zi,2 … zi,n]. Vectors y are encoded using current 
process parameters from the nearest past, which allows to take into consideration 
current variability of the process and ensures possibility of decoding. Some defini-
tions of the functions mapping the original space Z into the pattern spaces X and Y, i.e. 
fx : Z → X and fy : Z → Y are presented in [6]. The most popular definitions are of the 
form: 
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where: i = 1, 2, …, N – the period number, t = 1, 2, …, n – the time series element 
number in the period i, τ – the forecast horizon, zi,t – the tth time series element in the 
period i, iz  – the mean value of elements in period i. 

The function fx defined using (1) expresses normalization of the vectors zi. After 
normalization these vectors have the unity length, zero mean and the same variance. 
When we use the standard deviation of the vector zi components in the denominator 
of equation (1), we receive vector xi with the unity variance and zero mean. Note that 
the nonstationary and heteroscedastic time series is represented by patterns having the 
same mean and variance.     

Forecast pattern yi is defined using analogous functions to input pattern function fx, 
but it is encoded using the time series characteristic ( iz ) determined from the process 

history, what enables decoding of the forecasted vector zi+τ after the forecast of pat-
tern y is determined. To calculate the forecasted time series element values on the 

basis of their patterns we use the inverse function )( ,
1

tiy yf − .  

3 Local Learning  

The training data can have different properties in different regions of the input and 
output spaces thus it is reasonable to model this data locally. The local learning [7] 
concerns the optimization of the learning system on a subset of the training sample, 
which contains points from the neighborhood around the current query point x*. By 
the neighborhood of x* in the simplest case we mean the set of its k nearest neighbors. 
A result of the local learning is that the model accurately adjusts to the target function 
in the neighborhood of x* but shows weaker fitting outside this neighborhood. Thus 
we get model which is locally competent but its global generalization property is 
weak. Modeling the target function in different regions of the space requires re-
learning of the model or even to construct different model, e.g. we can use a linear 
model for linear fragments of the target function while for the nonlinear fragments we  
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can use a nonlinear model. The generalization can be achieved by using a set of local 
models that are competent for different regions of the input space. Usually these mod-
els are learned when a new query points are presented. 

The error criterion minimized in local learning algorithm can be defined as fol-
lows: 

 ))(,()*),,((*)(
1

=

=
N

i

iii fhdKE xyxxx δ , (2) 

where: N – number of training patterns, K(d(xi,x*),h) – kernel function with band-
width h, d(xi,x*) – distance between the query pattern x* and training pattern xi, 
δ(yi,f(xi)) – error between the model response f(xi) and the target response yi when 
input pattern xi is presented (this response can be a scalar value). 

Various kernel functions might be used, including uniform kernels and Gaussian 
kernels which are ones of the most popular. The kernel is centered on the query point 
x* and the bandwidth h determines the weight of the ith training pattern error in (2). 
When we use uniform kernel the training patterns for which d(xi,x*) ≤ h = d(xk,x*), 
where xk is the kth nearest neighbor of x*, have unity weights. More distant patterns 
have zero weights, and therefore there is no need to use these points in the learning 
process.  For Gaussian kernels all training points have nonzero weights calculated 
from the formula exp(–d2(xi,x*)/(2h2)), which means that their weights decrease mo-
notonically with the distance from x* and with the speed dependent on h. In order to 
reduce the computational cost of determination of errors and weights for all training 
points we can combine both kernels and calculate weights according to the Gaussian 
kernel for only k nearest neighbors of x*. The computational cost is now independent 
of the total number of training patterns, but only on the number of considered neigh-
bors k. 

In the experimental part of this paper we use local learning procedure with uniform 
kernel. 

4 Experimental Results 

As an illustrative example of forecasting time series with multiple seasonal cycles 
using neural networks with local learning we study the short-term electrical load  
forecasting problem. Short-term load forecasting plays a key role in control and sche-
duling of power systems and is extremely important for energy suppliers, system op-
erators, financial institutions, and other participants in electric energy generation, 
transmission, distribution, and markets.  

In the first experiments we use the time series of the hourly electrical load of the 
Polish power system from the period 2002–2004. This series is shown in Fig. 1. The 
time series were divided into training and test parts. The test set contained 31 pairs of 
patterns from July 2004. The training part Ψ contained patterns from the period from 
1 January 2002 to the day preceding the day of forecast. 



 Forecasting Time Series with Multiple Seasonal Cycles Using Neural Networks 57 

 

We define the forecasting tasks as forecasting the power system load at hour t = 1, 
2, …, 24 of the day j = 1, 2, …, 31, where j is the day number in the test set. So we 
get 744 forecasting tasks. In local learning approach for each task the separate ANNs 
were created and learned. The training set for each forecasting task is prepared as 
follows: 

• first we prepare the set Ω = {(xi, yi,t)}, where i indicates pairs of patterns from Ψ  
representing days of the same type (Monday, …, Sunday) as days represented by a 
query pair (x*, yt*), 

• then based on the Euclidean distances d(xi, x*) we select from Ω k nearest neigh-
bors of the query pair getting the training set Φ = {(xi, yi,t)} ⊂ Ω ⊂ Ψ. 

For example when the forecasting task is to forecast the system load at hour t on Sun-
day, model learns on k nearest neighbors of the query pattern which are selected from 
x-patterns representing the Saturday patterns and tth components of y-patterns 
representing the Sunday patterns.  

ANN (the multilayer perceptron) learns the mapping of the input patterns to the 
components of output patterns: ft : X → Yt. Number of ANN inputs is equal to the  
x-pattern components. To prevent overfitting ANN is learned using Levenberg-
Marquardt algorithm with Bayesian regularization [8], which minimizes a combina-
tion of squared errors and net weights. The resulting network has good generalization 
qualities. 

In the first experiment we assume k = 12. Since the target function ft is modeled 
locally, using a small number of learning points, rather a simple form of this func-
tion should be expected, which implies small number of neurons. We tested the 
networks: 

• composed of only one neuron with linear or bipolar sigmoidal activation function, 
• with one hidden layer consisting of m = 2, ..., 8 neurons with sigmoidal activation 

functions and one output neuron with linear activation function. Such a network 
architecture can be seen as a universal approximator . 

APE and MAPE (absolute percentage error and mean APE) is adopted here to assess 
the performance of the forecasting models. The results (MAPE for the training and 
test samples and the interquartile range (IQR) of MAPEtst) of the 9 variants of ANNs 
are presented in tab. 1. Test errors for these variants are statistically indistinguishable 
(to check this we use the Wilcoxon rank sum test for equality of APE medians;  
α = 0,05). It is observed that for the two-layered networks in many cases  most 
weights tends to zero (weights decay is a result of regularization),  thus some neurons 
can be eliminated. As an optimal ANN architecture that one with one neuron with 
sigmoidal activation function is chosen. This one-neuron ANN is used in the next 
experiments.   

In the second experiment we examine the network performance depending on the 
number of the nearest neighbors k, i.e. the size of the training set Φ. We change k 
from 2 to 50. The results are shown in Fig. 2, where MAPE for the cases when the 
ANN is trained using all training points representing days of the same type as days 
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represented by query pair, i.e. points from the set Ω, is also shown. As we can see 
from this figure the test error remains around 1 when k ∈ [6, 50]. For these cases MA-
PEtst are statistically indistinguishable when using Wilcoxon test. When we train ANN 
using patterns from the set Ω MAPEtst is statistically distinguishable greater than for k 
∈ [6, 50].   

Table 1. Results of 9 variants of ANNs 

 Number of neurons 
 1 lin 1 sig 2+1 3+1 4+1 5+1 6+1 7+1 8+1 

MAPEtrn 0.80 0.88 1.12 1.11 1.09 1.09 1.08 1.09 1.10 
MAPEtst 1.03 0.98 0.98 0.98 1.00 1.00 1.02 1.02 1.01 
IQRtst 1.09 1.03 1.02 1.03 1.06 1.02 1.05 0.99 1.04 

 

     

Fig. 2. MAPE for the training sets (rings) and test set (crosses) depending on k 

In the local learning approach the thorny issue is the ratio of the training points 
number to the number of free parameters of the network. This ratio for our example 
even for one-neuron ANN is too small (12/25), which means that the model is over-
sized (it has too many degrees of freedom in relation to the problem complexity  
expressed by only a few training points). The regularization which has a form of a 
penalty for complexity is a good idea to solve this problem. Another idea is the fea-
ture selection or feature extraction as a form of dimensionality reduction. The most 
popular method of feature extraction is the principal component analysis (PCA). This 
procedure uses an orthogonal transformation to convert a set of multidimensional 
vectors of possibly correlated components into a set of vectors of linearly uncorre-
lated components called principal components. The number of principal components 
is less than or equal to the dimension of original vectors. In the next experiment we  
transform the 24-dimensional x-patterns into patterns with a smaller number of uncor-
related components using PCA. Fig. 3 shows relationship between MAPE and the 
number of principal components. From this figure it can be seen that the levels of  
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errors are very similar. MAPEtst are statistically indistinguishable for different number 
of principal components. Using only first principal component we can built good 
neural forecasting model for our data. Such a model has only two parameters. The 
percent variance explained by the corresponding principal components are shown in 
Fig. 4. The first principal component explains 30% of the total variance.  
 

 

Fig. 3. MAPE for the training sets (rings) and test set (crosses) depending on the number of 
principal components 

 

Fig. 4. The percent variance explained by the corresponding principal components 

Now we compare the proposed one-neuron ANN with other popular models of the 
seasonal time series forecasting: ARIMA and ES. These models were tested in the 
next day electrical load curve forecasting problem on three time series of electrical 
load: 

• PL: time series of the hourly load of the Polish power system from the period 
2002–2004 (this time series was used in the experiments described above). The test 
sample includes data from 2004 with the exception of 13 untypical days (e.g. holi-
days), 
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• FR: time series of the half-hourly load of the French power system from the period 
2007–2009. The test sample includes data from 2009 except for 21 untypical days, 

• GB: time series of the half-hourly load of the British power system from the period 
2007–2009. The test sample includes data from 2009 except for 18 untypical days. 

In ARIMA the time series were decomposed into n series, i.e. for each t a separate 
series was created. In this way a daily seasonality was removed. For the independent 
modeling of these series ARIMA(p, d, q)×(P, D, Q)m model was used: 

 t
m

t
dDmm BBczBBBB ξθφ )()()1()1)(()( Θ+=−−Φ , (3) 

where {zt} is the time series, {ξt} is a white noise process with mean zero and va-
riance σ2, B is the backshift operator, Φ(.), φ(.), Θ(.), and θ(.) are polynomials of or-
der P, p, Q and q, respectively, m is the seasonal period (for our data m = 7), d and D 
are orders of nonseasonal and seasonal differencing, respectivelly, and c is a constant. 

To find the best ARIMA model for each time series we use a step-wise procedure 
for traversing the model space which is implemented in the forecast package for the 
R system for statistical computing [9]. This automatic procedure returns the model 
with the lowest Akaike's Information Criterion (AIC) value.  

ARIMA model parameters, as well as the parameters of the ES model described 
below, were estimated using 12-week time series fragments immediately preceding 
the forecasted daily period. Untypical days in these fragments were replaced with the 
days from the previous weeks.    

The ES state space models [10] are classified into 30 types depending on how the 
seasonal, trend and error components are taken into account. These components can 
be expressed additively or multiplicatively, and the trend can be damped or not. 
For example, the ES model with a dumped additive trend, multiplicative seasonality 
and multiplicative errors is of the form: 
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where lt represents the level of the series at time t, bt denotes the growth (or slope) at 
time t, st is the seasonal component of the series at time t, μt is the expected value of 
the forecast at time t, α, β, γ ∈ (0, 1) are the smoothing parameters, and φ ∈ (0, 1) 
denotes a damping parameter. 

In model (4) there is only one seasonal component. For this reason, as in the case 
of the ARIMA model, time series is decomposed into n series, each of which 
represents the load at the same time t of a day. These series were modeled indepen-
dently using an automated procedure implemented in the forecast package for the  
R system [9]. In this procedure the initial states of the level, growth and seasonal  
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components are estimated as well as the smoothing and damping parameters. AIC was 
used for selecting the best model for a given time series. 

In Table 2 results of PL, FR and GB time series forecasts are presented. In this ta-
ble the results of forecast determined by the naïve method are also shown. The fore-
cast rule in this case is as follows: the forecasted daily cycle is the same as seven days 
ago. The Wilcoxon test indicates statistically significant differences between MAPEtst 
for each pair of models and each time series, so we can indicate the one-neuron ANN 
as the best model for this data and ES as the second best model.  

Table 2. Results of forecasting 

Model 
PL FR GB 

MAPEtst IQR MAPEtst IQR MAPEtst IQR 
ANN 1.44 1.41 1.64 1.70 1.65 1.70 

ARIMA 1.82 1.71 2.32 2.53 2.02 2.07 
ES 1.66 1.57 2.10 2.29 1.85 1.84 

Naïve 3.43 3.42 5.05 5.96 3.52 3.82 

 
The last experiment concerns time series forecasting up to seven daily periods 

ahead. In such tasks the y-patterns are defined using τ = 1, 2, …, 7. For each horizon τ 
the one-neuron ANN is trained using the same local learning scheme as for τ = 1 de-
scribed above. The forecast errors for PL, FR and GB time series in Fig. 5 are pre-
sented. For FR and GB data ANN gave the lowest errors. For PL data and τ > 2 ES 
model is better, and for τ > 3 also ARIMA model is better. The actual and forecasted 
fragments of the time series are shown in Fig. 6. 

 

 

Fig. 5. The forecast errors for different horizons 

Note that in the case of ARIMA and ES the model parameters are estimated on the 
basis of the time series fragment (12 weeks in our example) directly preceding the 
forecasted fragment. ANN learns on the training set composed of patterns represented 
daily periods from longer history. In local learning case the training patterns are se-
lected using criterion based on the similarity to the current input pattern.    
 

2 4 6
1

2

3

4

Forecast horizon

M
A

P
E

ts
t

PL

 

 

ARIMA

ES
ANN

2 4 6

2

3

4

5

6

FR

Forecast horizon

M
A

P
E

ts
t

2 4 6
1.5

2

2.5

3

3.5

4
GB

Forecast horizon

M
A

P
E

ts
t



62 G. Dudek 

 

 

 

 

Fig. 6. The fragments of load time series and their forecasts for different horizons 

5 Conclusions 

In this article we examine a simple neural model with local learning for forecasting 
seasonal time series. At the initial stage of the forecasting procedure data are prepro-
cessed to get patterns of the time series seasonal periods. An approach based on the 
patterns of the seasonal cycles simplify the problem of forecasting of the nonstatio-
nary and heteroscedastic time series with trend and many seasonal variations. After 
simplification the problem can be modeled using simpler tools. The existence of many 
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seasonal cycles is not a problem when we use forecasting model based on patterns. 
We resign from the global modeling, which does not necessarily brings good results 
for the current query point. Instead, we approximate the target function locally in the 
neighborhood of the query point. The disadvantage of the local learning is the need to 
learn the model for each query point. But since the local complexity is lower than the 
global one, we can use a simple model that is quickly learned.  

This approach is acceptable when we have enough time (some seconds) to learn 
model and prepare forecast. The learning speed is penalized by the selection of the 
nearest neighbors. As shown by simulation studies to model the local relationship 
between input and output patterns the one-neuron model is sufficient. This model 
turned out to be better than the conventional models (ARIMA and exponential 
smoothing) in one-day ahead forecasting of the electrical load time series and compet-
itive in forecasting over longer time horizons.   
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Abstract. The article presents a new approach to the problem of a dis-
crete neural control of an underactuated system, using reinforcement
learning method to an on-line adaptation of a neural network. The con-
trolled system is of the ball and beam type, which is the nonlinear dynam-
ical object with the number of control signals smaller than the number
of degrees of freedom. The main part of the neural control system is the
actor-critic structure, that comes under the Neural Dynamic Program-
ming algorithms family, realised in the form of Dual Heuristic Dynamic
Programming structure. The control system includes moreover the PD
controller and the supervisory therm, derived from the Lyapunov stabil-
ity theorem, that ensures stability. The proposed neural control system
works on-line and does not require a preliminary learning. Computer
simulations have been conducted to illustrate the performance of the
control system.

Keywords: Ball and Beam System, Dual Heuristic Dynamic Program-
ming, Neural Dynamic Programming, Neural Network, Underactuated
System Control, Reinforcement Learning.

1 Introduction

Underactuated systems (US) are included to a group of nonlinear mechanical
systems, that have the number of the independent control signals smaller than
the number of degrees of freedom. That results in difficulties in formulation
of the stable control laws for real systems, where the mathematical object of
the controlled system is highly nonlinear or partially unknown. The examples
of the US are the ball and beam system [4, 3, 5], a ball on plane system, an
inverted pendulum, a cart-pole system [1], a manipulator with elastic joints [12],
a overhead trolley crane and a rotary crane [2], a submarine, a surface ship,
a helicopter or an aircraft. US are often analysed in the literature, because that
type of objects is widely meet in technical solutions of e.g. transportation, and
there is no developed an universal control method of them.

The determination of control strategy that forces the US to complete the partly
specified motion, is a challenging task, that requires to use of methods based on

L. Rutkowski et al. (Eds.): ICAISC 2013, Part I, LNAI 7894, pp. 64–75, 2013.
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system’s model knowledge or complex computational algorithms using e.g. arti-
ficial intelligence methods like neural networks (NN). The ball and beam system
is willingly use to test performance of various control strategies. It consists of a
boll rolling on the top of a long beam, that is fixed in a one side, and the second
one can be moved using various technical solutions, what changes the angle of the
beam rotation and results in motion of the ball. The ball and beam system has one
crucial property, unstable open loop. For the fixed input signal (the beam angle)
the output of the system (ball position), increases without limits. The problem is
to generate the control signal for the actuator causing the beam rotation, that sta-
bilise the ball in the desired position of the beam. There are few methods of control
studied in the literature, that solve this problem by linearisation of the controlled
system model and applying linear control methods like Proportional Derivative
Integral (PID) control strategy as an example of non-model based control strat-
egy or Linear Quadratic Regulator as an example of model based optimal control
strategy [8]. Other studies base on the nonlinear model of the ball and beam and
apply PD control strategies with compensation of model nonlinearities realised in
the form of analytical calculations [14]. Another approaches uses PD controller
coupled with algorithms that approximate the object nonlinearities, like model
based adaptation algorithm [4] or NN [5], using some simplifications by replacing
the classical problem of ball’s position regulation, by the tracking control problem
of the desired beam’s angle computed analytically, that leads to the ball’s stabil-
isation in the desired position. There were also, among other things, successful
trails of implementation of Reinforcement Learning (RL) algorithms into US con-
trol problems [1, 3], but the learning process of actor-critic structure’s NNs was
of trial and error type or consists in alternate periodical off-line learning of actor
and critic NNs. The presented innovative approach to the beam and ball stabil-
isation problem uses discrete Neural Dynamic Programming [1, 3, 9–11] method
realised in a form of actor-critic structure in Dual Heuristic Dynamic Program-
ming (DHP) configuration, which comes under RL algorithms. The actor’s NN
weights are adapted on-line, using signals generated by two critic’s NNs, on the
basis of the assumed value function. The actor generates the suboptimal control
law, supported by the control signal of PD controller and the control signal gener-
ated by the supervisory term, derived from the Lyapunov stability theorem, that
ensures a stability of the closed system loop. The main advantages of the proposed
control system are successful stabilisation of the ball on the basis of only known
desired position (regulator problem), on-line adaptation of the NNs’ weights and
lack of the trial and error learning or initial leaning process necessity. Actor and
critic structures were realised in the form of the Random Vector Functional Link
(RVFL) NNs with random fixed input weights and sigmoidal bipolar activation
functions. The research project presented in the article continues authors’ earlier
works, related to the control of nonlinear systems, using NDP methods in DHP
configuration [6, 7] and control of the ball end beam system using model based
adaptive algorithm [4] or NN [5]. The article is organised as follows: the first sec-
tion includes a short introduction to the USs control problems, the second section
presents the ball and beam system and formulates its discrete dynamics model.
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The third section includes description of the DHP structure and used NNs, the
following section presents the control system and stability analysis. The next sec-
tion shows results of the numerical test, the last section summarises the research
project.

2 The Dynamics of the Ball and Beam System

The dynamics of the ball and beam system, schematically shown in Fig. 1, is
modelled using Appell’s transformation [4, 5] and can be written in the form

M (a, q) q̈ + C (a, q, q̇) q̇ + G (q) + τd (t) = u , (1)

where q = [dA ϕ]T , dA – the distance between the A point of the ball and the end
of the beam, ϕ – the angle of the beam rotation, M (a, q), C (a, q, q̇), G (q) –
matrices and vector, that derive from the dynamics of the ball and beam system,

τd (t) – the vector of bounded disturbances, u – the control vector, u =
[
0 u[2]

]T
.
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Fig. 1. Scheme of the ball and beam system

Using Euler’s derivative approximation and a state vector in a form z{k} =[
zT
1{k}, z

T
2{k}

]T
, where z1{k} denotes to continuous vector q, a discrete notation

of the ball and beam system’s dynamics was obtained in a form

z1{k+1} = z1{k} + z2{k}h ,
z2{k+1} = −M−1

(
a, z1{k}

) [
C
(
a, z1{k}, z2{k}

)
z2{k} + G

(
a, z1{k}

)
+

+τd{k} − u{k}
]
h + z2{k} ,

(2)

where h – a time discretization parameter, k – an index of iteration steps. The
control problem of the ball and beam system is defined as searching for the
control law, that minimises errors e{k} defined in the form

e1{k} = z1{k} − zd1{k} , (3)

e2{k} = z2{k} − zd2{k} , (4)
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where the desire state is equal zd =
[
zT
1 , z

T
d2

]T (
z{k} → zd, k →∞

)
, and the

control algorithm remains stable. As long as in the synthesis of the control
system is considered problem of the regulator, the desired state is equal zd =[
dAd{k}, 0, 0, 0

]T
, where dAd{k} is fixed in desired intervals. The filtered tracking

error s{k} is defined on the basis of eq. (3) and (4) in the form

s{k} = e2{k} + Λe1{k} , (5)

where Λ – constant, positive defined diagonal matrix.
On the basis of the ball and beam discrete dynamics model (2) and eq. (3) – (4),
the filtered tracking error in step k + 1 is defined

s{k+1} = −Y f

(
a, z{k}

)
+Y d

(
z{k}, zd{k+1}

)
−Y τ{k} +M−1

(
a, z1{k}

)
hu{k} ,

(6)
where

Y f

(
a, z{k}

)
= M−1

(
a, z1{k}

)
h
[
C
(
a, z{k}

)
z2{k} + G

(
a, z1{k}

)]
,

Y τ{k} = M−1
(
a, z1{k}

)
h τ d{k} ,

Y d

(
z{k}, zd{k+1}

)
= z2{k} − zd2{k+1} + Λ

[
z1{k} + z2{k}h− zd1{k+1}

]
=

z2{k} − zd2{k} − zd3{k}h + Λ
[
z1{k} − zd1{k} + z2{k}h− zd2{k}h

]
=

s{k} + Y e

(
z{k}, zd{k}, zd3{k}

)
,

Y e

(
z{k}, zd{k}, zd3{k}

)
= Λe2{k}h− zd3{k}h ,

(7)
where zd3{k} is the vector of the second difference of zd1{k}, that derives from

the discrete form of the vector zd2{k+1}. The vector Y f

(
a, z{k}

)
contains all

nonlinearities of the ball and beam system.

3 Neural Dynamic Programming Algorithm

NDP algorithms are a group of Forward Dynamic Programming (FDP) methods
[9–11], which derives from the Bellman DP idea. It was possible to develop NDP
algorithms family, thanks to appearance and rapid expansion in the control the-
ory of NNs, which are able to approximate any nonlinear function with given
accuracy. Then, in the early eighties [1], appeared an idea to use NNs to approx-
imate forward the value function from the classical DP, instead of calculating it
off-line, before the generated control law was applied to the controlled object.
The group of structures derived using this approach was named NDP algorithms,
and came under group of RL methods. The NDP algorithms family includes six
algorithms [11] of which we had selected one and implemented it into the de-
manding ball and beam control task. The method of NNs weights adaptation
using so called ”learning with a critic”, or RL, is very effective and gives positive
results in complex control tasks, where other methods are not applicable.

The objective of the applied DHP algorithm in the proposed control system
is to determine the sub-optimal control law, that minimises the value function
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V
(
s{k},u{k}

)
[9–11], which is the function of the state s{k} and the control u{k}

in a general case

V{k}
(
s{k},u{k}

)
=

N∑
k=0

γkLC{k}
(
s{k},u{k}

)
, (8)

where N – the last step of the finite discrete process, γ – a discount factor
(0 ≤ γ ≤ 1), LC

(
s{k},u{k}

)
– the local cost function in the step k.

The local cost function was assumed in the form

LC{k}
(
s{k},u{k}

)
= 1

2s
T
{k}Rs{k} + 1

2u
T
{k}Qu{k} , (9)

where R, Q – the positive defined diagonal matrices.
The NDP algorithm in DHP configuration is schematically shown in Fig. 2.
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Fig. 2. Scheme of the DHP structure

It consists of the predictive model of the plant and two parametric structures
realised in the form of NNs:

– critic – in the DHP algorithm estimates the derivative of the value function
eq. (8) in respect to the state vector. The value function depends on the two
elementary state vector s{k}, so its derivative according to the state takes
the form

λ{k} =

⎡⎢⎢⎣
∂V{k}
∂s[1]{k}
∂V{k}
∂s[2]{k}

⎤⎥⎥⎦ , (10)
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what results in realisation of the critic in the form of two RVFL NNs

λ̂[j]{k,l}
(
xCj{k},WCj{k,l}

)
= W T

Cj{k,l}S
(
DT

CxCj{k}
)
, (11)

where j = 1, 2, l – an index of the internal loop iteration, WCj{k,l} – the

vector of output weights of j-th critic’s NN, xCj{k} = κC

[
1, s[j]{k}

]T
– the

input vector of the j-th critic’s NN, κC – constant diagonal matrix of positive
input scaling coefficients, S

(
DT

CxCj{k}
)

– the vector of sigmoidal bipolar
neurons activation functions, DC – the matrix of fixed input weights selected
randomly in the NN initialization process. Critics’ weights are adapted by
the gradient method of the quality ratings built on the basis of the Temporal
Difference errors, defined in the form

eC{k,l} =
∂LC{k}

(
s{k}

)
∂s{k}

+
∂u{k}
∂s{k}

∂LC{k}
(
s{k}

)
∂u{k}

+ (12)

+γ

[
∂s{k+1}
∂s{k}

+
∂u{k}
∂s{k}

∂s{k+1}
∂u{k}

]
λ̂{k+1}

(
xCj{k+1},WCj{k,l}

)
+

−λ̂Cj{k}
(
xCj{k},WCj{k,l}

)
,

where s{k+1} derives from the predictive model of the ball and beam

s{k+1} = −Y f

(
a, z{k}

)
+Y d

(
z{k}, zd{k}, z3d{k}

)
+M−1

(
a, z1{k}

)
hu{k} .

(13)
Critic’s weights are adapted according to equation

WCj{k,l+1} = WCj{k,l} − ΓAeC[j]{k}S
(
DT

CxCj{k}
)
, (14)

where ΓC – a positive defined diagonal matrix of NNs’ adaptation rates.
– actor – generates the sub-optimal control law for the ball and beam system.

The control object is an underactuated system, and there is only one control
signal accessible, because of that the actor is realised in the form of one
RVFL NN

uA{k,l}
(
xA{k},WA{k,l}

)
= W T

A{k,l}S
(
DT

AxA{k}
)
, (15)

where WA{k,l} – the vector of output weights of the actor’s NN, xA{k} –
the input vector to the actor’s NN, that consists of scaled values as the state
of the closed system loop s{k}, errors e{k}, desired zd{k} and realised z{k}
state values, DA – the matrix of fixed input weights selected randomly in
the NN initialization process. Scheme of the actor RVFL NN is shown in
Fig. 3. Actor’s weights are adapted using gradient method of the quality
rating defined in the form

eA{k,l} =
∂LC{k}

(
s{k}

)
∂u{k}

+ γ
∂s{k+1}
∂u{k}

λ̂{k+1,l}
(
xC{k+1},WC{k,l}

)
, (16)

according to equation similar to eq. (14).
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Fig. 3. Scheme of the RVFL NN

Interesting future of the NDP algorithms is adaptation process of NNs’
weights. It is realised in a form of internal loop with iteration index l. In ev-
ery k-th step of the discrete control process, there are executed calculation con-
nected to actor’s and critic’s weights adaptation, according to conception shown
in Fig. 4.
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Fig. 4. Conception of the NDP structure adaptation process

At the beginning of the k-th iteration step l = 0. On the basis of available
information, actor NN’s weights are adapted according to assumed adaptation
law by minimisation of the error rate (16). This part of the algorithm is called
”Control Law Improvement Routine” [11], it leads to enumerate values of the
actor NN (WA{k,l+1}). The next step is called ”Value Function Determination
Operation”, it consist in adaptation of critic’s weights, according to assumed
adaptation law, by minimisation of the error rate (12) based on the Temporal



RL in Discrete Neural Control of the Underactuated System 71

Difference errors. It leads to calculation of WCj{k,l+1}. Then internal loop it-
eration index l is increased and next cycle of the NDP structure internal loop
adaptation starts. The internal loop is break, when quality rating eA{k,l} (16)
is smaller than assumed boundary (eA{k,l} < EA, EA – a positive constant),
or l ≥ lAC , where lAC - is assumed maximal number of internal loop iteration
cycles. After matching one of this conditions, WA{k,l+1} becomes WA{k+1,l},
WCj{k,l+1} becomes WCj{k+1,l}. After that index k is increased, actor generates
control signal and receives information about a new state.

4 Stability Analysis

The presented control system consists of actor-critic structure, that generates the
control signal uA{k}, the PD controller with control signal uPD{k}, the supervi-
sory term, derived using Lyapunov stability theorem (uS{k}), and the additional
control signal ue{k}, that derives from the discretization of the ball and beam
model process. The scheme of the proposed control system with DHP actor–
critic structure is shown in Fig. 5. The overall control signal is assumed in the
form

u{k} =
1

h
M
(
a, z1{k}

) {
−uA{k}+I∗uS{k}−uPD{k}−ue

(
z{k}, zd{k}, zd3{k}

)}
,

(17)
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Fig. 5. Scheme of the neural control system with DHP structure

where particular control signals and matrices take the form

uPD{k} = KD s{k} ,

KD =

[
0 0

KD[2,1] KD[2,2]

]
,

I∗
S =

[
0 0

I∗S[2,1] I
∗
S[2,2]

]
,

ue{k} =
[
Λe2{k}h− zd3{k}h

]T
[0 1]

T
,

(18)
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and uS{k} =
[
uS[1]{k} uS[2]{k}

]T
, ue{k} =

[
0 ue[2]{k}

]T
, KD – the fixed matrix of

the PD controller gains, I∗
S – the matrix of the supervisory control term, I∗S[2,j] =

1 for
∣∣s[j]{k}∣∣ ≥ φ[j] and I∗S[2,j] = 0 when

∣∣s[j]{k}∣∣ < φ[j], φ[j] – a constant,

j = 1, 2. For I∗S[2,j] = 1, and (17) inserted into (6), we obtain

s{k+1} = s{k} − Y f

(
a, z{k}

)
− Y τ{k} − uA{k} + I∗

SuS{k} − uPD{k} . (19)

Let us assume the positive definite Lyapunov candidate function

L =
1

2
sT s , (20)

its derivative can by discretised and assume in the form

ΔL{k} = sT{k}
[
s{k+1} − s{k}

]
. (21)

Substituting (19) into (21) we obtain

ΔL{k} = sT{k}

[
−Y f

(
a, z{k}

)
+
[
Ye[1]{k} 0

]T − Y τ{k}+

−uA{k} + I∗
SuS{k} − uPD{k}

]
.

(22)

For the vector of disturbances bounded to Y τ{k} < bd[j], where bd[j] – positive
constant, the difference of the Lyapunov candidate takes the form

ΔL{k} ≤ −sT{k}KDs{k} +
2∑

j=1

∣∣s[j]{k}∣∣ [ ∣∣Yf [j]

(
a, z{k}

)∣∣+ ∣∣uA[j]{k}
∣∣+ bd[j]

]
+
∣∣s[1]{k}∣∣ ∣∣Ye[1]{k}

∣∣+ 2∑
j=1

s[j]{k}uS[j]{k} .

(23)
The supervisory therm control signal is assumed in the form

uS[1]{k} = −sgn
(
s[1]{k}

) [
F[1] +

∣∣Ye[1]{k}
∣∣+ bd[1] + η[1]

]
,

uS[2]{k} = −sgn
(
s[2]{k}

) [
F[2] +

∣∣uA[2]{k}
∣∣+ bd[2]

]
+ η[2] ,

(24)

where η[j] – a small positive constant. The difference of the Lyapunov function is

negative definite. The designed control algorithm guarantees reduction of
∣∣s[j]{k}∣∣

for
∣∣s[j]{k}∣∣ ≥ φ[j]. For initial condition

∣∣s[j]{k=0}
∣∣ < φ[j] we get

∣∣s[j]{k}∣∣ < φ[j]

for ∀k ≥ 0, j = 1, 2.

5 Results of the Numerical Test

The numerical test of the proposed neural control system was performed using
Matlab/Simulink software simulation environment. In this section, for the sake
of simplicity, index k is omitted and the time discretisation parameter h=0.01
[s]. The objective of the control system was to stabilise the ball in the require
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position, where the vector of the desired state of the ball and beam system was
zd = [dAd, 0, 0, 0]

T
, and the ball’s desired position dAd = 0.0 [m] for t ∈< 0, 20)

[s], dAd = 0.7 [m] for t ∈< 20, 40) [s],dAd = 0.5 [m] for t ∈< 40, 60) [s], dAd = 0.15
[m] for t ∈< 60, 80) [s], dAd = 0.4 [m] for t ∈< 80, 100) [s]. The initial position
of the ball was equal dA = 0.1 [m], and the initial angle of the beam rotation
ϕ = 0 [rad], for t = 0 [s].

According to the assumed control law (17), the overall control signal u[2],
shown in Fig. 8.a), consists of the actor’s NN control signal uA[2], Fig. 8.b), the
PD control signal, Fig. 8.c), the supervisory term’s control signal and the control
signal ue[2], both in Fig. 8.d). The actor’s NN weights are adapted fast, because
of its method of RL in the inner loop of the algorithm, what cause, that the
actor’s NN control signal takes the dominant part in the overall control signal.
The values of the PD control signal and other additional control signals are small
in the comparison to the actor’s control signal. Its values increase temporarily
only when the disturbances occur (the change of the desired ball’s position).
Peak values of signals presented in figures are caused by a discrete changes of
the zd1[1], what tends to high values of its derivative, it could be easily eliminated
by a fluent change of this value, but it would change the problem’s conditions.
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The desired (zd1[1]) and realised (z1[1]) positions of the ball are shown in
Fig. 7.a), the desired (zd1[2] = 0) and realised (z1[2]) angles of the beam’s turn
are shown in Fig. 7.b). The ball’s position, after some stabilisation time, pursues
its desired value.
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Fig. 7. a) Desired (zd1[1] - dashed line) and realised (z1[1] - continuous line) position of
the ball, b) desired (zd1[2] = 0 - dashed line) and realised (z1[2] - continuous line) angle
of the beam rotation.

Values of the DHP actor’s NN (WA) and critic’s NN (WC2) weights are
shown in Fig. 8.
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Fig. 8. a) weights of the DHP actor’s NN (WA), b) weights of the critic’s 2 NN (WC2)

In the numerical test were used zero initial weights. Values of weights remained
bounded during the test.

6 Conclusion

We proposed the discrete neural control system for the ball stabilisation with
NDP structure in DHP configuration. The presented control algorithm con-
sists of the actor-critic structure, realised in form of RVFL NNs, the PD con-
troller and the supervisory term, which ensures stability of the control process.
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The proposed control system presents new approach to the ball and beam stabili-
sation problem, where NNs’ weights learning process uses idea of RL, it proceeds
on-line, and thanks to a method of weights adaptation in the internal loop, it
boosts learning process, prevents to time consuming trial end error learning and
exclude necessity of the preliminary learning. The numerical test pointed out
performance of the proposed solution, even with the worst case of learning pro-
cess with zero initial output-layer weights of NNs, what is especially important
taking into account specific of the controlled US. The proposed control system
with NDP algorithm is stable, values of errors and weights of NNs are bounded.
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Abstract. Linguistic communication takes a major role in human com-
munication and information exchange. Information is usually transferred
in a text form - sentences. Text descriptions allow us define new terms,
gather knowledge and learn more quickly thanks to the associative mech-
anisms that work in our brains. Automatic and intelligent text processing
and compression are very important nowadays. This paper introduces a
novelty associative way of storing, compressing and processing sentences.
This paper describes an associative linguistic habit neural graphs (AL-
HNG) that are able to store and activate various important associative
relations between letters and words simultaneously in many sentences.
These graphs enable us to semi-automatically define various terms and
contextually process text corrections after the knowledge collected from
previously read texts. The ALHNG construction has a linear compu-
tational complexity. The association and triggering interconnected ele-
ments in any given context have a constant computational complexity.
It also compresses sentences in a very effective way.

Keywords: linguistic habit graphs, associative linguistic habit neural
graphs, associative neurocomputation, text compression, associative ar-
tificial intelligence AAI, bio-inspired techniques for text mining.

1 Introduction

Information is crucial for the World today, due to the fact that it enables in-
terconnection and development. Various relations of objects and actions can be
better used thanks to the flow of information. Information exchange let us to join
and cooperate more effectively. Knowledge of individuals also rapidly increases
as a result of a faster information exchange [11]. Information can be transferred
by various media and in various forms: texts, pictures, images, movies, sounds,
voice, music, touches, smells, tastes etc. Not all media can transmit information
quickly or to a long distance. Not all information are precise and unambigu-
ous. Information reception and interpretation strongly depend on the recipient’s
reception abilities and his actual knowledge [5]. Knowledge is a product of as-
sociation and memorizing abilities of biological brains. Information is triggered
off by other previously incoming information and its context. The context can
be divided into external (coming from actions in space and time in the imme-
diate past and present) and internal (coming from individual association and
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knowledge). Every individual builds up his own knowledge and contexts for the
next associations during his lifetime. The actual knowledge of each individual
strongly determines how new incoming data will be associated and interpreted.
Many misunderstandings comes from a different knowledge (learned facts and
relations or memorized experiences) and variously formed associations in brains
of various individuals [6].

The human brain is an unbelievably effective computational mechanism. Its
neurons fire up at the most several dozen times a second solving uneasy com-
putational tasks. There is no time and no place for nested loops and other time
consuming classic algorithms and computational techniques known from today
computer science. Nowadays algorithms spend a vast amount of time on search-
ing through various data collections. Data in these collections are poorly inter-
connected with each other and cannot actively interact, therefore it is necessary
to use various searching algorithms and data transformations to obtain some
pieces of information from such collections. The strategy of the biological brains
differs considerably in the mechanism of data connection, storing and searching
techniques. There is approximately a few thousand connections for each neuron
on average. As a matter of fact, sagacious or talented people in general have even
more connections in some parts of their brains. It means that the connections
play a major role in thinking, intelligence and also in data processing. These con-
nections are not accidental but they reflect important relations between neurons
and these what they represent. The richness of connections within the brain is
able to interconnect many related data and their combinations. Precious time is
not lost for searching and looping. Thanks to this rich interconnection network,
the brain can be very effective in computation and unbelievably fast in solv-
ing intricate tasks that are computationally or numerically unsolvable or hardly
solvable using classical computational techniques because of the high computa-
tional complexity of searching algorithms and techniques that secondary try to
find data relations instead of activation of previously memorized relations and
their strength. The brains not only memorize these relations but also allow the
data to automatically and autonomously activate them in given external and
knowledge based internal contexts.

This paper focuses on a specialized graph constructions that is able to reflect,
memorize and weigh natural relations between letters and words in human lan-
guages. The natural letter and word order is used to construct a neural graph
that is able to associate and memorize the natural human linguistic habits. They
can learn from texts written by people and transform the information of orders,
frequencies and contexts into the graph structure and its labels and weights.
Moreover, each vertex in this graph is active as well as each neuron in a bi-
ological brain. The active graph vertexes - called here neurons - and edges -
called here connections - are used to represent and then to recall the order and
contextual dependencies between letters and words in corrected texts. There is
used a biological technique for text mining, defining of various terms and for
text corrections.
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This paper introduces a novelty Associative Linguistic Habit Neural Graphs
(ALHNG) that are able to gather linguistic habits of many individuals and use
them to define terms of a language, interconnect them in a way people do, show
and trigger off the most probable following words in a given context and help to
semi-automatically correct mistakes in texts. This neural graph represents many
active connections between letters and words of a given language that can be
automatically triggered off as a result of activation of any combination of other
neurons representing a given phrase of the internal context. The ALHNG graph
obtains information from texts that have been written by people and learns.
There is a possibility to build up the graph also for an individual person and
use it to recognize if a given text has been written by a person. Nevertheless,
the main goal of this paper is to demonstrate the use of this graph for a semi-
automatic text correction.

Currently, there are used various dictionaries, Levenstein metric and some
grammatical rules for text correction by most of the word processors [8] [12].
There are many approaches and mechanisms in order to collect and store this
information. Language models based on n-grams of words (also enriched with
POS tags) are well known for more than 20 years and used for speech recognition,
machine translation and automatic text tagging [1], [4], [9]. There are many
other approaches how to construct models to the analysis of the text, such as:
mentioned before n-grams, formal and transaction grammar, rule-based systems
[10], corpus-driven methods [7] etc.

Today, the text analysis is not deep as well as advanced to detect many lin-
guistic mistakes and misused words. Nowadays, text processors and even search
engines that try to correct a text which is filled with mistakes, are only able
to suggest separated words or phrases. They are usually unable to suggest the
word order, more likely or used words or phrases in a given context of other
words. Moreover, if the analysed word is found in the dictionary a correction is
usually not suggested at all even if the analysed word is completely mistaken
in a given context. To find out better solution to the text correction problem
there have to be used a kind of knowledge that would be able to determine and
suggest what words or phrases should probably be written in a given context.
There are too many combinations of word orders and many contexts in order to
store and analyse them when using classical text algorithms and databases. It
would take too much time, memory space and other computational resources to
be attractive to mass users.

Our research is focused on an attempt to use the existing texts in order to
build algorithms which will be able to find out and process as many relations
between words as possible using specialized associative graphs. Furthermore,
important relations between words in any sentence can be quickly checked in
the known context as well as being used for correcting inappropriate word uses.
That can be used for a correction of inappropriate word uses. A construction of
the maximum extended and general Associative Linguistic Habit Neural Graph
(ALHNG) for English and Polish language has been undertaken to realize this
goal. The ALHNG is built on the basis of many text corpora from various sources.
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The intelligent semi-automatic text correction is one of the common, impor-
tant and practical problem that can be satisfactorily solved by the ALHNG
graphs. This graph is rather insufficient, however, it can aid the writer to find
out various mistakes in the text. It can also suggest various options of correction
in the context of other words in the sentence he wrote. Moreover, the various
suggested options are weighted by the frequency of their uses by other people
in the past and by a given context of the other words in the analysed sentences.
Thanks to the associative connections in this graph, the checking process and
determining the subgraph of the most probable corrections are always available
in the constant computational complexity. Therefore it is possible to use this
solution even on powerless computers and mobile phones if this graph only fits
in the RAM memory.

2 Text Storing, Representation and Compression

Nowadays, many methods and algorithms for text processing and compression
are known. Texts can be stored in arrays, lists, streams, files and as a part of some
objects and classes. A huge amount of texts and other data are stored usually
in databases. Databases relations and scripting languages make it possible to
emphasize, select or mark some parts of texts and combine them. Some selected
parts of texts can be also related to each other or hyper-textually connected.
The number of related parts of texts are far less than the average number of
connections between biological neurons.

Various parts of texts represent objects, properties, actions etc. They are con-
nected by its neighbourhood and proximity in texts. Reading texts can influence
the context of our thinking, therefore modifying it and triggering off associated
and memorized data that can usually form some parts of information. The main
goal of texts is triggering off associations in our brains. It lets the brain change
its context of thinking, learn or notice something new or important. Some parts
of texts can be more significant than the others. A stream of text can be also
produced during associative processes that take place in our brains. They reflect
the most significant associations in a given context of thinking. The brains do
not make all pieces of information available at any time. The information can
be retrieved only by triggering it by a suitable context in associative processes.
Texts can be produced as a dynamic product of associative processes that have
been triggered in the brain in a given context. Brains have no stocks of memory,
no table nor list structures where texts can be stored in a way they are stored in
computer RAM or other memory or storage media. Today computer memories
are passive, i.e. data are only stored but they are autonomously unable to ac-
tively influence other data. This strategy is fundamentally justified by nowadays
computational methodologies and computer constructions where only algorithms
in a form of computer programs can read, evaluate, modify data, write and store
results of computations in various kinds of such passive memories. Data could
influence each other and modify themselves aside from a program processing in
the today computational methodologies. Otherwise, the programs could not by
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able to find appropriate data and their algorithmically determinate logic and
routines could be confused, destroyed and unable to further run. All data are
fully under the control of programs and algorithms in classical computer science.

Brains have no such computational strategies, no fixed programs of solving
tasks, no permanently stored data and their relations. They let data and their
discriminative combinations to interconnect and actively influence. The strength
of such connections can be dynamically modified by incoming data all the time.
Synaptic biochemical mechanisms make it possible to quickly and temporarily
change the influence of connected neurons in order to quickly and temporarily
store some new relations. Neurons can trigger genetic programs and activate var-
ious plasticity processes that lead to change or create new connections, change
the discrimination threshold or input combinations they are sensitive to. Each
neuron represents and discriminates some combinations of inputs but this defi-
nition can change in time. Together with changes in neurons, associations and
computational results of the whole network change as well. We can state that
the whole brain program still dynamically slightly changes during all thinking
processes and after the influence of incoming data combinations. There is no cer-
tainty for associative programs or memorized data combination permanence or
stability. Thanks this active associative mechanism our brains are flexible about
learning, tuning and adapting to changing situation however at the cost of lim-
ited memorizing and recalling abilities. The major goal of thinking is to find out
valuable associated information for a given task and context on a basis of the
individual knowledge that has been formed after incoming data and information
in the past.

The introduced ALHNG graph does not reflect all biological features so it
is able to be stable and permanent development which increases its associative
abilities suitable to the amount of read texts and their transformation into its in-
ner structure and parameters. This graph is an aggregated representation of read
sentences. The graph contains information about the frequencies and authentic-
ity of word orders in the read texts. The connections between neurons represent
various level of the backward contexts for all represented words. The neurons
of this graph can be externally activated in various combinations and time se-
quence triggering off other connected neurons with various intensity suggesting
the next possibly words for the given context of externally activated neurons.
Each inflectionally different word is represented exactly as the ones in this graph.
Moreover, each word is represented as a letter sequence and these sequences are
partially shared by various similar words. The relations and order of words are
represented by various levels of weighted connections. The representation cost
is low and the compression rate is high. Furthermore, such representation lets
us to get all possible word successors in a constant computational complexity.
Finally, we can quickly get information about all similar and related words and
use them to semi-automatically define any word or word sequence represented
in this graph after all read texts.
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3 ALHNG Neural Network Construction

The ALHNG is a kind of neural network that has a graph structure. It consists
of neurons (graph vertixes) that represent letters, apostrophes and some special
neurons that lead to the first letters of words (word start neuron) and to the first
words of sentences (sentence start neuron). The graph structure of this neural
network is constructed a few times during the readings of the text corpora.
All read words are segmented into separate letters and transformed into letter
neurons that are interconnected in the way that reflects the sequence of letters
in these words (Fig. 1). The same letter can be represented by a few letter
neurons but in various context of various words. The letter neurons are not
duplicated in the same contexts of the same previous sequences of letter neurons.
In this case, only the weight of existing connections are incremented by one.
Each word consisting of letters and sometimes an apostrophe is represented by
an interconnected sequence of letter neurons. The letter neuron representing the
last letter in the given word is also called the word neuron. The word neurons
are secondary interconnected in many ways to reflect word orders and previous
word contexts in read sentences. Each word is represented exactly by a single
word neuron in this graph. Various inflectional forms are treated as various
words and are represented by various word neurons. The representation of any
word in this graph is never duplicated. The word neurons are marked grey in
Fig. 1 and 2. The letter tree is a very thrifty way for representing many words
and their same initial letters. The thrift of such representation grows with a
number of represented words. The similar words are closely related by the same
initial letters. Each word neuron can be reached in a constant computational
complexity. Usually all inflectional forms can be simple and quickly retrieved.

Fig. 1. The very small piece of the ALHNG neural network structure showing the letter
neuron tree with connections reflecting letter sequences in the selected words
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Fig. 2. The small piece of the ALHNG neural network structure with interconnections
between the following words in the presented sentence

The main strength of ALHNG is at the connections between the word neurons.
The word neurons are interconnected by ASEQ and ACON connections, where
ASEQ means an associative sequence and ACON means an associative context.
First of all, the word neurons are naturally ASEQ connected after the sequences
words from read sentences of the text corpora (Fig. 2). All connections (edges
of the graph) are direct and weighted by the frequency of these word sequences.
To unambiguously read sentences using this graph, it is necessary to add some
extra context connections (ACON) interconnecting previous words with the next
word to explicitly point out the next word in the read sequence and the given
word order. The associative context connections are added only if the context
of the previous word neuron is ambiguous to determine which neuron should
be activated next in the context of the previously activated word neurons after
the read text corpora. Figure 2 shows the ASEQ connections between the word
neurons for the sample sentence: ”I know that James didn’t do this.” Extra
contextual connections (ACON) of various levels depend on other word sequences
in the other sentences of given text corpora. The bigger text corpora is the more
contextual connections are necessary. The thrift of such representation also grows
with a number of represented sentences. Figure 3 shows how the number of
contextual connections changes in the reference to the number or words and
sentences in the text corpora.

Figure 4 shows up six selected steps of ALHNG network construction where
gradually new connections are added. First, the ASEQ connections are added
for each word sequence after the read sentences. These connections join together
words in their natural sequence in which they are in sequences. After a few steps
some word sequences become ambiguous in this graph topology, therefore the
next contextual connections should be added. If an ambiguous process occurs,
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Fig. 3. The comparison of context connection levels and number of such interconnec-
tions for various text corpora

then some ACON context connections are added between previous and the next
word neurons in order to support the next neurons to be activated first and make
the activation sequence unambiguous and correct reflecting the read sentences
from the text corpora. The context connections (ACON) can be of different lev-
els. The context connections are added as long as the actual read word sequence
is ambiguous and there are still some previous word neurons that can be used as
context for next ambiguous activation of word neurons. Usually, a few previous
words are enough to make the word sequence unambiguous even for the huge
text corpora as is shown in Fig. 3. The level of contextual connection (ACON)
is defined as the number of the word neurons in the actually read sentence they
are between contextually connected word neurons. In step 1.2 in Fig. 4 there is
added the contextual connection between the word neurons ”so” and ”went”.
There is only the single word neuron ”i” between them in this sequence so the
level of the contextual connection between these two words is equal one.

The ALHNG neural network shown in Fig. 4 is constructed for the following
sentences: ”I haven’t lived here for two weeks. So I went back. He would go
for it. Tom said it was a good idea.” The connection labels show the type of
connection: the direct ASEQ connections ”1” and contextual ACON connections
”2” in Fig. 4.
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Fig. 4. The steps of the ALHNG neural network construction during the first and
second read of the text consisting of four sentences where some ASEQ and ACON
connections are added

4 Semi-automatic Associative Text Correction

The process of semi-automatic associative text correction starts always from
activation of ”Sentence start neuron” (Fig. 5). Next, the following neurons of
corrected sentence are activated. The context of previously activated word neu-
rons displays the next alternative word neurons that usually appear in this con-
text (Fig. 5) by using ASEQ and ACON context connections. The connections
are strengthen by the frequencies of them, which are computed after the text



Associative Text Representation and Correction 85

Fig. 5. The following steps of activating word neurons of the corrected sentence in the
context of the previously activated word neurons

Fig. 6. The comparison of the correction results obtained for two word processors, one
leading search engine and the described neural network ALHNG

corpora during the construction of ALHNG neural network. The activated neu-
rons stimulate the next connected neurons taking into account the weights com-
puted after frequencies of such word sequences (2). The stimulation of the neuron
(1) is defined using external stimulation (extIn), internal stimulation (inIn) and
his previous state in the time step t−1. The weight (2) is defined by the frequency



86 A. Horzyk and M. Gadamer

of this connection (fi) between word neurons and is normalized by the sum of
frequencies of all other input connections of a given neuron.

x(t) =
x(t− 1)

2
+ extIn(t) +

J∑
j=1

wj ∗ intInj(t) (1)

wi =
fi∑J
j=1 fj

(2)

As a matter of fact, both ASEQ and ACON connections are activated from
neurons every time. It was assumed that the neuronal excitation of the word
neurons is reduced by half of the previous excitation in each step (1). In this
way the contextual connections have far less influence on the next word neurons
activation with the growing level of this contextual connection. The closer the
context is, the bigger impact on excitation level of the next word neurons will
occur. If the activation of the word neuron does not suit the possible word
neurons, the correction to the most similar or frequent word will be suggested. If
the suggested word neurons are followed by the word neurons representing next
words in the corrected sentence, the suggestion is strengthen even more. This
algorithm of semi-automatic correction works well under the assumption that
the ALHNG neural network has been constructed after a possibly huge amount
of text corpora. The results of correction of the incorrect sentence are shown in
Fig. 5.

The experiments show that many nowadays correction tools do not notice
mistaken words that are in their dictionaries even if the mistaken words have no
meaning in a given context. The corrections made by ALHNG neural network
have been compared to corrections obtained by well-known computer application
like: MS Word, Libre Office Writer and search engine Google (Fig. 6).

5 Summary and Conclusion

In this paper the novelty ALHNG neural network and their use for semi-automatic
correction have been described. The new correction abilities have been achieved
thanks to the use of the described active associative mechanism implemented in
the graph structure of the presented neural network. These investigations have
shown that direct connections between related objects like letters and words have
great significance and should be used to construct even more effective algorithms.
This strategy also is probably used in natural neural networks in our brains and
let us to associate data so fast. The experiments have shown that the correction
can be better if the context of previous words is used. The context can be learned
using ALHNG neural network and a huge amount of text corpora. The obtained
results are usually much better than corrections obtained by nowadays leading
applications and search engines that have implemented some algorithms for text
corrections.
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Abstract. Some aspects of state variable estimator improvement is pro-
posed in the paper. The estimator approximates stator current compo-
nents in the rotor flux reference frame with the help of neural networks.
Some modification of the training procedure is considered that leads to
the estimator accuracy improvement. Provided tests confirmed this fea-
ture but further steps are necessary to increase state variables estimation
in the low supplying frequency range.

1 Introduction

In many vector controlled induction motor drives applications rotor speed mea-
surement or estimation is not necessary for adjustment of its operating point
effectively. Such a case relates to traction drives where torque value is rather
used than a vehicle speed. Moreover the absence of the rotor speed measurement
increases robustness and reliability of the drive. Therefore control strategies that
use other than rotor speed state variables are especially welcome. For the vector
control strategy, the most needed state variable of the motor is the rotor flux
in terms of its phase angle and amplitude as it allows any of advanced control
schemes to be implemented.

Among various techniques to estimate rotor flux, the Model Reference Adap-
tive System approach looks to be the most promising as it offers higher accuracy
due to closed-loop operation [4]. However considered scheme suffers from variety
of drawbacks like: integration drift, sensibility to noise present in the measured
signals or parameters variation of the motor. On the other hand, in a control
circuit, much useful are stator current components in the rotor flux reference
frame which can be easily calculated knowing rotor flux position and amplitude.
Such a scheme, presented in [5], simplifies and improves estimation part of the
control circuit, but requires rotor flux position detection which involves all the
above mentioned drawbacks related to this task. Although there are other effec-
tive methods applicable in this case using fuzzy modeling [1][2][3], proposed NN
estimator of stator current components in the rotor flux reference frame seems
to be an interesting solution as it employs completely different approach to the
problem. The intention of the paper is to find out how artificial intelligence tools
are useful in the stator current components estimation in the rotor reference
frame and how accurate is the estimator in the whole frequency and load range
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and feasible in the vector control strategy. The idea of such an estimator al-
though mentioned in [7] has not been investigated widely. Only in [7][8][9] some
results of the neural network estimator were presented but its accuracy has not
been evaluated enough to confirm its usefulness in the vector control scheme.
It looks like there is no possibility to find a compromise in network weights ad-
justment, when implemented in the straightforward way, to fulfill high accuracy
estimation of the required state variables in the whole input frequency range.
Therefore the paper investigates some possibility to improve the accuracy of the
estimator particularly in the low frequency range. Firstly some knowledge ex-
traction from available input signals is presented which improves the accuracy
of the estimator. Unfortunately, this modification of the input vector selection
is not sufficient in the low input frequency range. Then another idea is proposed
which assumes some division of the input frequency into subranges with indepen-
dent, separately trained NN higher accuracy estimators. Finally, the latter idea
has been aggregated to create one neural network estimator with hidden layer
weights defined by a polynomial function. Due to estimated stator current com-
ponents the vector controlled induction motor drive is considerably simplified,
while offering sensor less operation.

2 MRAS-Based Induction Motor State Variables
Estimator

Considered MRAS (Model Reference Adaptive System) estimator uses reference
model based on the following equations of the rotor flux components in the
stationary reference frame:

Ψrd =
Lr

Lm

[∫
(usD −RsisD) dt− L′

sisD

]
(1)

Ψrq =
Lr

Lm

[∫
(usQ −RsisQ) dt− L′

sisQ

]
(2)

where Lm, Lr, Ls are: magnetizing inductance, rotor self inductance and stator
transient inductance. However adaptive model is defined as:

Ψ̂rd =
1

Tr

∫ (
LmisD − Ψ̂rd − ωrTrΨ̂rq

)
dt (3)

Ψ̂rq =
1

Tr

∫ (
LmisQ − Ψ̂rq − ωrTrΨ̂rd

)
dt (4)

where Tr is rotor time constant.
When both models are connected in well known closed loop system, they

estimate rotor flux and motor speed. Unfortunately, due to pure integrators that
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exist in both models, the system fails to work properly for the sake of offsets and
measurement inaccuracies in the sampled voltages and currents. This problem
can be corrected with the help of a low pass filter to approximate the integrator
but it fails at low speed range due to unavoidable phase shift at these frequencies.
Other solution, proposed in [6] is based on drift and dc-offset compensator using
feedback integrator. This idea, although effective, cures not origin of the problem
but final effect of the estimator performance.

Solution proposed in [5] is based on the above mentioned MRAS estimator
with slight modification. As opposed from the classical way of obtaining tuning
signal where both: amplitude and phase of rotor flux components are compared,
in the modified estimator only the phase angle is used to produce stator current
components in the rotor flux reference frame (ixy). These components then form
a tuning signal which PI controller converts to the rotor speed. It is expected
that proposed estimator should have better features than the classical one as
used phase angle of the rotor flux is less susceptible to the integration drift. The
idea of the estimator shows Fig. 1.

Fig. 1. Stator current components MRAS estimator

Expected features of the modified estimator have been partly confirmed. The
estimator presents fine accuracy in the whole input frequency range but some
sensitivity to rotor flux angle calculation error due to the integration drift is
still on [5]. Encountered problems with classical MRAS-type estimator turned
authors attention to a promising estimation technique using neural networks
structures.

3 Neural Network Estimator Based on Stator Voltage
and Current Components

As some authors reported an excellent performance of the NN estimators [8][9],
first and straightforward approach to the problem was to consider only various
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combinations of stator voltage and current components and their delayed values
as input vector. For this rather complex problem relatively big neural network
was proposed with two hidden layers, 10 neurons each. For the tests the induction
motor with the following parameters was considered:

Pn = 1100W,Un = 380V,Rs = 6.88Ω,Rr = 6.35Ω,Lls = 34 × 10−3H,Llr =
34× 10−3H,Lm = 450× 10−3H, rated torque Tn = 7.6Nm

Data set for training and tests purposes covered frequency range 5-50 Hz
and there were 360 samples in each operating point, being a combination of the
frequencies: 5, 10, 20, 30, 40, 50 Hz and three load torque levels of the motor
(no load, half load and full load). Obtained results show table 1.

Table 1. Results of the training of the stator current components in the rotor flux
reference frame estimator

Input vector Output vector Network structure MSE

isd, isq , usd, usq isx, isy 4-10-10-2 2.34× 10−4

isd, isq , usd, usq, i
−1
sd , i−1

sq isx, isy 6-10-10-2 1.41× 10−4

isd, isq , usd, usq, u
−1
sd , u−1

sq isx, isy 4-10-10-2 1.38× 10−4

isd, isq , usd, usq, i
−1
sd , i−1

sq , u−1
sd , u−1

sq isx, isy 4-10-10-2 2.34× 10−4

These rather poor results in training were also confirmed in the simulation
tests in Matlab-Simulink environment. The training error is practically indepen-
dent of the input vector selection and is mostly generated in the low excitation
frequency range of the motor (below 10 Hz). It appears that considered neu-
ral structures due to strong non-linear nature of induction motor are unable to
assure high enough accuracy of the approximated state variables.

The next step in the estimator design is to compare results obtained from the
network for the different frequencies of the current and voltage, applied to the
input of the neural network. The second parameter changed in the tests was the
load level of the motor. Selected values were 0, 4 and 8 Nm. Obtained results
show table 2.

Table 2. Accuracy of the neural network in selected points of frequency and load

f[Hz] M[Nm] Isxε%max Isxε%avg Isxε%min Isyε%max Isyε%avg Isyε%min

50 0 1.13 0.12 -0.72 19.66 -5.69 -37.76
50 4 6.15 2.47 -0.66 7.06 -1.70 -4.14
50 8 15.00 4.22 -3.85 15.61 6.06 -1.85
25 0 0.00 -1.19 -1.74 11.27 -11.29 -30.85
25 4 10.71 4.53 -3.70 21.84 8.38 1.60
25 8 30.59 10.56 -16.97 61.66 28.24 11.06
10 0 27.82 19.99 9.22 155.42 -204.80 -458.86
10 4 42.72 27.47 9.61 81.47 28.45 -4.97
10 8 168.45 11.66 -161.07 130.08 67.01 14.62
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As seen in it, the neural network shows the highest accuracy at the nominal
frequency of the motor, so the error in this range is the smallest. When going
down with the frequency, the estimation error are becoming higher. For the
frequency f=10 Hz they are not acceptable. So, some procedure to solve the
problem needs to be applied.

As previously presented, the neural network exhibits low relative errors for
frequencies near nominal one and the whole load range. We can even accept errors
down to 25 Hz. But with the frequency going further down, the relative error
is increasing, reaching average level around 204,8% for the frequency 10 Hz and
no load conditions. It seems, that such a neural network has application limited
to near nominal frequency range and no one advanced control scheme can be
considered. Such a conclusion is an effect of strong non-linearity of the induction
motor model, especially in the low frequency range. This feature of the induction
motor transfers to the behaviour of the presented neural network. Extended tests
of different neural networks configuration (not presented in the paper) proved
that there is no single network that may follow the estimation task in the whole
frequency range. Therefore the idea of several neural networks that may be
trained and operate in subranges of the required frequency appeared. To proceed
this idea different neural networks were trained and tested to see their behaviour
and accuracy in the low frequency range. Fortunately, they were accurate enough
in their subranges. Moreover, initial configuration of the neural network (4-10-
10-2), proved to be accurate enough in tested frequency subranges. In case of
covering the whole frequency by a few neural networks, responsible for their
sub-ranges, the complete state variables estimator needs to consider switching
between networks when crossing subranges. The big question is how smooth
these switching can be and would it influence the stability of the control system?
Another idea how to cope with problem is to describe the values of the weights for
subranged neural networks with a help of approximation functions. This solution
should assure smoothness of the transfer between the networks. Unfortunately,
it appeared not to be so straight forward. Firstly, obtained diagram of the input
weight changes along the operating frequency looks quite complicated (Fig. 2)
and difficult to approximate with any polynomial function.

The diagrams were gained for random selected initial weight values. To solve
this problem some changes in the training procedure of the subranged networks
were introduced. It was noticed that the training procedure for the subranged
networks goes better when it is started from the highest frequency (50 Hz) and
proceeds gradually down to the lowest (e.g. 5 Hz) and initial values for the
subsequent networks are obtained from the higher frequency trained neighbour.
As seen in Fig. 3 obtained diagrams reached some regularity and are promising
in terms of tuning approximating functions.

Considering features of the diagrams we can take that the neurons input
weights are constant at frequency range 30-50 Hz and the bias weights are the
same for the 20-50 Hz range. As a consequence of this assumption, the approxi-
mation function for the input weights and biases can be selected for the frequency
range 0-30 Hz and 0-20 Hz respectively.
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Fig. 2. Diagram of input weights changes for random selected initial values

Fig. 3. Diagram of input weights changes for extended low frequency range

Fig. 4. Diagram of input weights changes for modified training procedure
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The last sentence can conclude the whole approach to the problem if not
considering suspicious wide change of the input weights in the 0-30 Hz range. In
the previous tests the neural networks were trained only for selected frequencies
(5, 10, 20 and 30 Hz) with the assumption that the networks work fine within
the ranges and the approximation functions reflect the nature of the weight
changes. To prove that another tests were attempted with additional networks
for in-between frequencies: 7.5 and 15 Hz.

As seen in Fig. 4, weight changes diagram looks slightly different which indi-
cates that 0-30 Hz frequency range needs to be divided into smaller that 5 Hz
subranges to reach higher accuracy of the estimator. Moreover, previous conclu-
sion concerning constant weights in the frequency range 30-50 Hz is maintained.

4 Implementation in a DSP System

Proposed NN estimator of the stator current components in the rotor reference
frame was the basis of the control scheme. It plays crucial role in the control
structure and significantly simplifies the estimation process of the flux and torque
components of the stator current. The main blocks of the structure are generated
with a help of fuzzy neural generators [7]. Proposed new structure belongs to field
oriented methods, which allows the internal parameters of the machine to be fully
controlled even in transient states. The calculations of the implemented in ADDU
21161L system NN estimator take only 21.36 μs living enough computational
power for remaining blocks of the structure. The other parts of the structure
are being implemented and will be intensively tested soon. These parts include
blocks that are responsible for keeping the best relationship between isx and isy
in terms of motor efficiency, especially important in the electric vehicle drive.

5 Conclusions

The paper considers NN estimator of the flux and torque components of stator
current. When applied in the straightforward way its accuracy in the low fre-
quency range is not acceptable. Proposed solution to improve its performance
seems to be successful as achieved accuracy is much higher in the considered fre-
quency range. Provided simulation and real tests confirm encouraging features of
the estimator although further improvements are necessary in the low frequency
range. It plays crucial role in the efficiency optimal control structure for elec-
tric vehicle. It is believed that its features can be extended to motor parameter
changes resistance and noise immunity to get real robust and reliable estimator
that can be used in considered and other applications.
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Abstract. Extending on previous work, the Echo State Network (ESN)
and Tikhonov Regularisation (TR) training algorithms were implemented
for both the CPU, an Intel i7-980; and the GPU, an Nvidia GTX480.
The implementation used all 4 cores of the CPU, and all 480 cores of the
GPU. The execution times of these implementations were measured and
compared. In the ESN case, speed-ups were observed at reservoir sizes
greater than 1,024. The first significant speed-ups of 6 and and 5 were
observed at a reservoir size of 2,048 in double and single precision respec-
tively. In the case of Tikhonov Regularisation, no significant speed-ups
were observed.

Keywords: echo state network, GPU, Tikhonov regularisation.

1 Introduction

The Echo State Network (ESN) was introduced by Jaeger in 2001 [1]. In 2002,
Maass conceived of the Liquid State Machine (LSM) [2]. These efforts mark the
beginning of what is now referred to as Reservoir Computing [3]. At the core
of a Reservoir Computer (RC) is a randomly generated dynamical system – a
reservoir of dynamics. The output of an RC is a linear combination of signals
tapped from this reservoir. An RC may also (but not necessarily) accept inputs
which perturb the reservoir. [1, 2, 3]

This work extends on previous work to implement the Echo State Network
on the Graphics Processing Unit (GPU) [4]. The following sections detail the
implementation of the ESN and an offline training algorithm based on Tikhonov
Regularisation. Section 2 presents the Echo State Network, the Tikhonov Regu-
larisation algorithm, and the GPU. Details of the GPU implementation are given
in Sect. 3, and the method for testing the behaviour of this implementation in
Sect. 4. The results of these experiments are given in Sect. 5.

2 Background

2.1 The Echo State Network

The Echo State Network (ESN) is a form of Recurrent Neural Network (RNN)
topology that lends itself to offline training via linear regression. At the core of an
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ESN is a sparse, randomly connected RNN comprising sigmoidal neurons. This
is referred to as the “reservoir”. The output of the ESN is composed of linear
neurons that tap signals from the RNN. It is the linear output that facilitates
ESN training via linear regression. [1, 3]

Equations (1) & (2) define the behaviour of the network. Equation (1),

x (n) = f (Winu (n) + Wx (n− 1) + Wofby (n− 1)) , (1)

describes the state of the neurons in the reservoir x at time n after receiving an
input u (n− 1). Here Win represents the input weights, W the reservoir weights,
Wofb the optional output feedback, and f (. . .) a sigmoidal activation function.
The state of the reservoir is then used in (2),

y (n) = fout

(
Wout

[
u (n)
x (n)

])
, (2)

to calculate the ESN output y (n). Here Wout are the output weights and
fout (. . .) is the linear activation function. [1]

At the core of the Echo state Network is its reservoir, represented by the weight
matrix W given in (1). This is a sparse and randomly generated matrix. [1].
Equation (3),

ρ = max (|λ (W) |) , (3)

gives the spectral radius of W. This is the largest absolute eigenvalue of W, and
is typically scaled to a value less than, but close to one. Equation (4),

W =
ρWrand

max (|λ (Wrand) |) , (4)

can be used to scale a random matrix, Wrand, to a desired spectral radius,
ρ. [1, 5]

Linear regression can be used to train an Echo State Network offline. Only
the output matrix, Wout, is trained. One approach to obtain the output matrix
Wout is a form of linear regression known as Tikhonov Regularisation (TR) or
Ridge Regression. Equation (5),

Wout = YtargetX
T
(
XXT + α2I

)−1
, (5)

describes TR used to calculate Wout. Here Ytarget is the training target, α is a
regularisation constant and X,

X =

[
u (1) . . . u (n) . . . u (N)
x (1) . . . x (n) . . . x (N)

]
, (6)

is a history of the state vector and input vector for N time steps collected while
processing training input data with (1). [1, 3, 5, 6]

Equation (5) requires a square matrix inversion. The matrix may not be in-
vertible, however, singular value decomposition can be used to find a pseudo-
inverse. [7, 8]
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2.2 The General Purpose Graphics Processing Unit

The General Purpose Graphics Processing Unit (GPGPU, or just GPU) is a
highly parallel computing platform available to desktop and laptop users. Toolk-
its for working with GPUs include the open and cross-platform OpenCL; Nvidia’s
Cuda [9]; and AMD’s Heterogeneous Computing Platform, the GPU component
is based on OpenCL. Due to the availability of an Nvidia platform with Cuda-
based Blas and Sparse mathematics libraries, Nvidia hardware and tools were
used in this work. The Nvidia GPU and the Cuda programming model are briefly
described in this section.

The Nvidia Cuda Programming Model. Nvidia refers to their GPGPUs
as single instruction multiple thread devices (SIMT). The same instruction is
executed in parallel on different pieces of data, as per Flynn’s single instruction
multiple device (SIMD) architecture. However, the SIMT model also allows for
conditional branching1. On an Nvidia Cuda device, a programmer writes a kernel
of code that defines these instructions. [10, 11]

On execution, a kernel is run in multiple SIMT threads. Each thread has
access to private local memory, shared memory visible to a group of threads
(called a thread block), and global memory. At run time, a kernel has access
to the thread’s thread index. This can be used to determine which addresses of
memory to access. The thread index is a vector of up to three dimensions, and is
unique for each thread within the thread block. The dimensionality of the thread
index and, therefore, the thread block, allows the programmer to model vector,
1D; matrix, 2D; or volume, 3D calculations.

3 Implementation Details

3.1 The Toolchain

Two Echo State Network and Tikhonov Regularisation implementations were
built, one targeting the CPU, the other the GPU. Table 1 summarises the tools
used for each implementation. The remainder of this section details a selection
of these tools.

Cuda C++. This is a programming language designed for use with the Nvidia
Cuda toolchain. It is an extension of a subset of the existing C++ ISO/IEC
14882:2003 standard. The primary goal of this language is to facilitate the pro-
gramming of Single Instruction Multiple Thread (SIMT) code. Using Cuda C++,
a developer can compose kernels. These kernels are executed on the GPU with
instruction-level parallelism across multiple threads (See Sect. 2.2).

1 Such branching typically impacts negatively on the efficiency of the GPU. [10]
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Table 1. ESN and GPU implementation tools

GPU CPU
ESN TR ESN TR

Language C++, Cuda C++ r4.2 GNU Octave
Compiler gcc 4.6.2, nvcc r4.2 Interpreted
Libraries Cuda, Cublas, Cusparse, Curand

Magma 1.2
Atlas 3.8.4

Blas 3.3.1, Lapack 3.3.1

The Cuda Libraries. These are distributed gratis with the Nvidia drivers.
The libraries used for this project include release 4.2 of the Cuda, Cublas, Cus-
parse, and Curand libraries. The Cuda library coupled with the Nvidia Cuda
Compiler facilitate the use of C++ language level extensions for kernel devel-
opment. The Cublas library provides GPU implementations of the well known
Blas level 1, 2, and 3 routines. The Cusparse library provides GPU implementa-
tions of some sparse matrix storage formats and operations. The Curand library
provides pseudo-random number generation routines.

The Nvidia Cuda Compiler. Also known as nvcc, the Nvidia Cuda Compiler
is used to compile Cuda C++ code. It is capable of producing both architecture
specific, and compute-capability dependent code. In the latter case, the compiler
generates a first-pass compilation, preparing a distributable for Just-In-Time
(JIT) compilation. JIT compilation occurs on first execution of the code on
the target GPU. With the correct settings on the target PC, the resulting JIT
compiled binaries are cached for later use, and are updated with a change to the
Nvidia drivers.

TheAtlas Library. This is also known as the Automatically Tuned Linear Alge-
bra Software library. It is a free software project to provide tuned Blas and Lapack
routines. In this instance, the Atlas library interfaces with the reference Fortran77
implementation of Blas, and its accompanying Lapack implementation.

The Magma Library. Magma is a free software project to migrate Lapack
routines to the GPU. Magma currently implements hybrid CPU/GPU versions
of Lapack routines calling, in this instance, a mixture of Cublas, Magma Lapack,
and the Fortran77 reference Lapack routines.

GNU Octave. Octave is a high-level interpreted programming language for
linear algebra. The GNU Octave environment/interpreter is free software. In
this instance Octave interfaces with the Atlas library to perform linear algebraic
operations.
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3.2 Implementing the ESN and TR Algorithms

The Echo State Network and Tikhonov Regularisation algorithms were imple-
mented for the GPU and CPU using the toolchain described in Sect. 3.1. Blas,
Sparse, Lapack, and Pseudo Random Number libraries, along with bespoke ker-
nels were used to implement (1), (2), (3), (4),(5), and (6). The details of the
GPU implementation follow, and are summarised in Table 2.

Table 2. ESN and GPU implementation details

Operation Implementation

Reservoir
generation,
(3) & (4)

Wrand Curand pseudo-random number generator

λ (Wrand) Magma eigenvalue extraction

ρWrand
...

Cublas scalar-vector multiplication

ESN state
calculation,
(1)

Winu (n), Wofby (n− 1) Cublas matrix-vector multiplication

Wx (n− 1) Cusparse matrix-vector multiplication
(with W stored in compressed sparse row,
CSR, format [12, 13])

f (. . .+ . . .+ . . .) Single bespoke kernel

ESN output
calculation,
(2)

[
u (n)
x (n)

]
Cuda memory copy

fout (Wout [. . .]) Cublas matrix-vector multiplication (fout is
linear)

Tikhonov
Regularisa-
tion,
(5)

XXT + α2I Cublas matrix-matrix & scalar-vector mul-
tiplication, vector addition

(. . .)−1 Magma SVD, Cublas matrix-matrix mul-
tiplication, bespoke diagonal matrix inver-
sion kernel

YtargetX
T (. . .) Cublas matrix-matrix multiplication

Calculating the ESN Reservoir State. Described in (1), this implementa-
tion uses Cublas matrix-vector multiplication to perform Winu (n) and Wofby(n−
1). As W is sparse (see Sect. 2.1), Wx (n− 1) is performed using Cusparse
matrix-vector multiplication. W is stored in compressed sparse row (CSR) for-
mat [12, 13]. A single bespoke kernel executes the activation function f (. . .), and
the addition of factors Winu (n), Wx (n− 1), and Wofby (n− 1). Here, f (. . .)
is a hyperbolic tangent. When a user initiates an ESN reservoir state calculation,
they can choose to provide multiple time-steps of input data, e.g. training data,
and collect the input and reservoir state vectors in host memory as per (6). This
state history can be later used to train the ESN as per (5).

There is a limit to the amount of input data that may be used, this is depen-
dent on the size of the ESN, and the memory available on the GPU. Similarly,
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if the reservoir state vector history is to be used for training, then the size of
the history will be limited by the size of the GPU memory, and the accompa-
nying matrices described in (5). The implementation does not currently warn of
memory limitations.

Calculating the ESN Output. The ESN output, (2), is calculated using
Cublas and Cuda memory copy operations. A Cuda device-side memory copy is
used to stack the vectors u (n) and x (n). A Cublas matrix-vector multiplication
is used to perform

Wout

[
u (n)
x (n)

]
.

The Tikhonov Regularisation Algorithm. Described in (5), this was imple-
mented using Cublas and Magma libraries. Blas matrix-matrix and scalar-vector
multiplications were used to obtain

(
XXT + α2I

)
. To invert this result, singu-

lar value decomposition is used [8, 7]. This was implemented using Magma pro-
vided SVD, Cublas matrix-matrix multiplication, and a bespoke diagonal-matrix
pseudo-inverse kernel.

Reservoir Generation. To generate a reservoir of a given spectral radius and
connectivity, (3) & (4) were implemented. This required the pseudo-random
number generating library, Curand, to create Wrand with the desired connec-
tivity, and a Magma routine to extract its eigen-values. Cublas scalar-vector
multiplication was used to scale Wrand as per (4).

4 Experimental Configuration

The goal of these experiments is to gather information that will help users de-
cide when best to perform Echo State Network and Tikhonov Regularisation
algorithms on a GPU, and when best to use a CPU. Four experiments have
been devised, two of which have been executed. Two further experiments are
described in Sect. 7. The two executed experiments examine the relative speed
performance of CPU and GPU based ESN and TR algorithms in both double
and single precision. The methods and equipment used to perform this evaluation
follow.

4.1 Hardware

To perform this comparison, a multi-core Intel Core i7-920 was used as the
CPU, and an Nvidia GTX480 as the GPU. Both are representative of high-end
commodity hardware in their respective domains. Comparative information on
these processors is presented in Table 3.
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Table 3. Selected CPU and GPU parameters

Intel Core i7-920 Nvidia GTX480

Core count 4 480
Thread count 8 23,040
Core clock speed 2.67GHz 1.401GHz
Warp size – 32
Concurrent kernels – 1
Memory2 6GiB 1.5GiB
Memory clock speed 1.066 GHz 1.848GHz
Shared memory per block – 48KiB
PCI bus speed3 – 2.5GiT/s

4.2 Measurement Variables

Selected variables were isolated to measure the Echo State Network and Tikhonov
Regularisation speed performance. To measure ESN speed performance, three
independent variables were isolated – reservoir size, calculation precision and
hardware type. The same independent variables were isolated for TR speed per-
formance measurements, with an additional fourth variable, the number of ex-
ecution time-steps. This is the number of columns, N , in (6). The remaining
variables were controlled. A summary of the values used in the experiment is
given in Table 4, where irrelevant variables are indicated with a “–”.

Table 4. ESN and TR speed comparison variables

Variable ESN Values TR Values

Hardware {Intel i7-980, Nvidia GTX-480}
Calculation precision {double, single}
ESN reservoir size

{
24, 25, . . . , 211

}
ESN execution time steps 210

{
24, 25, . . . , 216

}
ESN input size 24

ESN output size 24

ESN output feedback present –
ESN reservoir connectivity 10% –
ESN reservoir spectral radius (ρ) 0.9 –
Tikhonov regularisation factor (α) – 0.1

4.3 Measurement Method

To ensure statistically valid measurements, each timing measurement was re-
peated 20 times. The first 10 timing measurements were discarded to reduce

2 Host-side random access memory compared with GPU-side global memory.
3 GiT/s (gibitransfers per second) is equivalent to gibibytes per second and includes
PCI protocol overheads.
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the impact of any just-in-time compiled elements. For each point in independent
variable space, a mean and standard deviation execution time was recorded.

5 Results

The execution times of the Echo State Network are given in Fig. 1. Tikhonov Reg-
ularisation executions times are given in Figs. 2 & 3. From these measurements,
ESN and TR mean speed-up times are presented in Tables 5 & 6 respectively.
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5.1 Echo State Network Speed Performance

In the ESN case, the GPU implementation gives a speed-up at reservoir sizes of
1024 and 2048 (Table 5). The largest speed-up, 5.9923, is observed for a reservoir
size of 2048 in double precision. The largest slow-down is 0.2107 at a reservoir
size of 16 in single precision.

Table 5. Echo State Network execution: Observed GPU speed-up. The largest and
smallest speed-ups are given in bold.

Reservoir Size ESN Execution: ESN Speed-up
Double Precision Single Precision

16 0.2130 ± 0.1314 0.2107 ± 0.1048
32 0.2368 ± 0.1483 0.2486 ± 0.1076
64 0.2602 ± 0.0600 0.2227 ± 0.1153
128 0.2944 ± 0.0416 0.2944 ± 0.0392
256 0.3499 ± 0.1034 0.3590 ± 0.0891
512 0.6151 ± 0.1308 0.5498 ± 0.1500
1024 2.0243 ± 0.0314 1.4407 ± 0.1164
2048 5.9923 ± 0.0563 4.9652 ± 0.0893

For small ESNs, it is likely that host-GPU memory transfers dominate ESN
calculation time. Also, it is probable that the GPU is not fully occupied, and
therefore not performing at full capacity or efficiency. The slower clock speed
of the GPU will also contribute to a slower than CPU execution time. As the
ESNs become larger, it is likely that the occupancy of the GPU improves, and
the dominance of host-GPU memory transfers decreases. The CPU, running 4
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cores and 8 threads, reaches its computational capacity earlier than the GPU,
which has 480 cores and 23,040 threads. GPU thread occupancy and the impact
of memory transfers is yet to be measured.

5.2 Tikhonov Regularisation Speed Performance

In the TR case, the speed-up of the extreme reservoir sizes was calculated. The
speed-ups for r = 16 and r = 2048 are given in Table 6.

Table 6. Tikhonov Regularisation execution: Observed GPU speed-up. The largest
and smallest speed-ups are given in bold.

History Size TR Execution: GPU Speed-up
r = 2048 r = 16

Double Single Double Single
Precision Precision Precision Precision

16 1.6961 ± 0.0156 1.0357± 0.0107 0.0197± 0.3367 0.0266 ± 0.1029
32 1.0022 ± 0.0187 1.0675 ± 0.0062 0.0273 ± 0.0158 0.0306 ± 0.0270
64 0.9499 ± 0.0067 1.1372 ± 0.0079 0.0305 ± 0.0364 0.0329 ± 0.0423
128 0.9498 ± 0.0045 1.1199 ± 0.0048 0.0340 ± 0.0456 0.0397 ± 0.0566
256 0.8814 ± 0.0066 1.0737 ± 0.0054 0.0435 ± 0.0342 0.0467 ± 0.0458
512 0.8012 ± 0.0076 1.0735 ± 0.0077 0.0495 ± 0.0303 0.0498 ± 0.1220
1024 0.7910± 0.0076 1.1291 ± 0.0067 0.0608 ± 0.0196 0.0693 ± 0.0406
2048 0.9824 ± 0.0091 1.1499 ± 0.0059 0.0879 ± 0.0095 0.1059 ± 0.0201
4096 1.0605 ± 0.0075 1.1310 ± 0.0061 0.1398 ± 0.0149 0.1690 ± 0.0277
8192 1.3258 ± 0.2617 1.1621 ± 0.0158 0.2366 ± 0.0024 0.2950 ± 0.0040
16384 2.3569 ± 0.0929 1.3997 ± 0.2584 0.4067 ± 0.0031 0.5010 ± 0.0325
32768 2.6813± 0.0118 1.4287 ± 0.1147 0.6557 ± 0.0307 0.8196 ± 0.0361
65536 – 1.6864± 0.2362 0.8561± 0.2424 1.2571 ± 0.0289

In the r = 16 case one speed-up of 1.2571 occurred at a history size of 65,536
in single precision, all other measures gave a slow-down. The largest slow-down,
0.0197, was observed for a history size of 16 in double precision. It should be
noted that several of the calculated speed-ups in this set have accumulated stan-
dard deviations that are larger than the mean, implying that the variability of
measurements at these points is too high to give an accurate measure.

In the r = 2048 case speed-ups were observed at most measurement points,
excluding from a history size of 64 to 2,048 in the double precision case. The
greatest speed-up, 2.6813, was observed at a history size of 32,768 in double
precision. The largest single precision speed-up, 1.6864 was observed at a history
size of 65,536. The greatest slow-down 0.7910 was observed at a history size of
1024 in the double precision case. It should be noted that in the r = 2048, double
precision case, the measurement at history size 65,536 could not be taken as the
GPU had reached its global memory limits.



106 T. Keith and S.J. Weddell

The slow-down observed may be partly attributed to host-GPU memory trans-
fers that take place. The current implementation uses Magma’s SVD imple-
mentation. The Magma SVD requires inputs from, and returns outputs to host
memory; whereas the TR implementation generates SVD inputs and processes
SVD outputs on the GPU. This necessitates additional host-GPU memory trans-
fers. While it is likely that these transfers impact the GPU TR execution time,
the actual impact of these transfers is yet to be assessed.

6 Conclusion

The Echo State Network and Tikhonov Regularisation training algorithms were
implemented for both the CPU, an Intel i7-980; and the GPU, an Nvidia GTX480.
The execution times of these implementations were measured and compared.

In the ESN case, speed-ups were observed at reservoir sizes greater than 1,024.
The first significant speed-ups of 5.9923 and 4.9652 were observed at a reservoir
size of 2,048 in double and single precision respectively.

In the case of Tikhonov Regularisation, no significant speed-ups were ob-
served, and memory limitations were seen for large reservoir state history sizes.
This may be due to host-GPU memory transfers required to perform singular
value decomposition.

7 Future Work

Experimental refinement, two further experiments, and profiling work is planned.
Large variations are observed at some measurement points (See Sect. 5.2), which
warrants further investigation. This may be an indication that the measurement
“warm-up” time was insufficient. Two further experiments will be conducted.
These aim to compare the execution times of the CPU and GPU implementations
as reservoir connectivity changes, and when performing a full train-test cycle on
chaotic time-series data. Finally, the GPU implementation will be profiled. This
may yield information on inefficiencies in the design of the program, and therefore
guide us to points of optimisation.
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Abstract. This paper investigates the use of particle swarm optimiza-
tion (PSO) with repeating splits and merges at predetermined intervals.
After a split, there is no exchange of information between the particles,
which belong to different swarms. Hence, even though one particle may
be trapped in a local minimum, the others are not affected. If the other
particles find a better solution, the trapped particle can escape the local
minimum when the particles are merged. In order to verify the efficacy of
the proposed method, we applied it to the learning of a neural network
for solving the inverse kinematics problem of a manipulator with uncer-
tain parameters. The back-propagation rule requires the Jacobian of the
forward kinematics, but this cannot be calculated due to uncertainties.
Because PSO does not require the derivative of the objective function, it
is suitable for this problem. A simulation result shows that the proposed
method can obtain more accurate inverse kinematics than either global
best (gbest) PSO or local best (lbest) PSO.

Keywords: particle swarm optimization, split and merge, neural net-
work, inverse kinematics.

1 Introduction

Inverse kinematics comprises the computations needed to find the joint angles for
a given Cartesian position and orientation of an end-effector. The solution can be
used to determine joint motions that will correct measured errors in the position
of an end-effector, and thus to effectively control the manipulator. However, this
computation is difficult because the relationship between the joint angles and
the position of the end-effector is nonlinear. Closed-form solutions are known for
only a few simple manipulators. Hence, the gradient method is used to obtain a
numerical solution [1]. However, if there is uncertainty in the parameters of the
kinematics, neither analytical nor numerical solutions can be computed. Multi-
layer neural networks can approximate any continuous nonlinear mapping [2],
and so neural network methods have been studied for obtaining a model of
inverse kinematics [3, 4]. When we apply the back-propagation rule, which is
commonly used for updating the coupling weights, the Jacobian of the forward
kinematics is required [5]. If the manipulator has uncertain parameters, however,
we cannot calculate the Jacobian.

L. Rutkowski et al. (Eds.): ICAISC 2013, Part I, LNAI 7894, pp. 108–117, 2013.
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Particle swarm optimization (PSO), which was inspired by the social behavior
of flocking birds and schooling fish, was proposed by Kennedy and Eberhart [6].
The particles, which are candidates for the solution, move about in the solution
space, seeking to find a global solution by following a simple law of exchanging
information with each other. PSO does not require the derivative of the objective
function. Several researchers have proposed solving inverse kinematics problems
by using a neural network based on PSO [7–9]. However, Kennedy has pointed
out that although global best (gbest) PSO converges quickly, it may become
trapped in a local minimum [10].

In order to prevent the swarm being trapped in a local minimum, we introduce
splitting and merging of the particles at predetermined intervals. After a split,
there is no exchange of information between the separated particles. Hence,
even though one particle may be trapped in a local minimum, the others are
not affected. If another particle finds a better solution, the trapped particles can
escape the local minimum after merge.

This paper is structured as follows. Section 2 provides a brief introduction
to PSO and then describes in detail the proposed splitting and merging of the
particles. In Section 3, we explain the inverse kinematics problem and solve it
by using a neural network based on PSO. In Section 4, we perform a simulation
for a three-link manipulator. Finally, we present our conclusions in section 5.

2 PSO with Induced Splitting and Merging

In this section, we summarize PSO, which was originally introduced by Kennedy
and Eberhart [6]. It is known that the particles tend to converge quickly and the
swarm loses its diversity. This hinders the search for a global solution. In order
to maintain the diversity of the swarm, we induce splitting and merging of the
particles.

2.1 Overview of Particle Swarm Optimization

PSO was inspired by the social behavior of flocking birds and schooling fish. A
group of P agents, called particles, search through the domain D ⊆ Rn. The
position of each particle is denoted by xp ∈ D, (p = 1, · · · , P ), and the set of
particles is referred to as the swarm S = {x1, · · · ,xP }. Each particle in the
swarm moves through the domain D in search of the global minimum x0 of
the objective function F (x) ∈ R. The searching trajectory for each particle is
determined by a simple law that incorporates its momentum, its memory, and
the information shared between the particles in its neighborhood. Different types
of neighborhoods have been explored [10, 12], but the standard neighborhood is
global, i.e., all particles share the best position that is found by any particle in
the swarm.

In each iteration, the next position of each particle is determined by its current
position xp(t) and velocity vp(t + 1), as shown in (1):

xp(t + 1) = xp(t) + vp(t + 1) , (1)
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where t denotes the iteration. The next velocity of each particle is determined
by its current velocity vp(t) (momentum), the best position ever found by that
particle pbestp(t) (memory), and best position ever found by the swarm gbest(t)
(shared information), as shown in (2):

vp(t + 1) = γvp(t) + C1rand1

(
pbestp(t)− xp(t)

)
+ C2rand2(gbest(t)− xp(t)) , (2)

where γ, C1, and C2 are positive constants and rand1 and rand2 are random
numbers from a uniform distribution in the range [0, 1]. In order to prevent the
velocity from becoming very large, upper and lower limits can be set. Hence, the
velocity update rule is given by

vpi(t + 1) =

⎧⎪⎨⎪⎩
vmin, vpi(t + 1) < vmin

vpi(t + 1), vmin < vpi(t + 1) < vmax

vmax, vpi(t + 1) > vmax,

(3)

where vpi is the i-th component of vp and vmax and vmin are the upper and lower
limits, respectively.

A schematic of a search conducted with PSO is illustrated in Fig. 1.
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Fig. 1. Illustration of PSO

The PSO algorithm is as follows:

1) Randomly generate the initial position xp(0) and velocity vp(0) for each of
the particles.

2) Evaluate the objective function for each particle, and set the initial personal
best (pbest) and global best as follows: pbestp(0) = xp(0) and gbest(0) =
arg maxxp F (xp(0)).
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3) Update the velocity and position by using (2) and (1).

4) Evaluate the objective function at the new position.

5) Update the personal best, if F (xp(t + 1)) < E(pbestp(t)).

6) Update the global best, if minp F (xp(t + 1)) < F (gbest(t)).

7) Go to 3) until the maximum iteration is satisfied.

We call this algorithm gbest PSO.

2.2 Splitting and Merging of the Swarm

Kennedy has pointed out that gbest PSO converges quickly, but it may become
trapped in a local minimum [10]. This happens because the swarm loses diversity
since the search is always performed as a single swarm. In order to prevent the
swarm being trapped in a local minimum, we introduce splitting and merging
of the particles at predetermined intervals. After a split, there is no exchange
of information between the separated particles. Hence, even though one particle
may be trapped, the others are not affected. If another particle finds a better
solution, the trapped particles can escape from local minimum after merging the
particles.

There are various methods, such as k-means clustering, for splitting particles.
It is expected that clustering does not preserve the diversity of the swarm, but
is similar to the situation of searching with only a few particles. This is because
clustering organizes the particles into groups whose members are similar in some
way. We propose a method that divides the particles based on their Euclidean
distance from gbest (Fig. 2). The particles in the swarm that are farthest from
gbest are regarded as heterogeneous ones. When the particles are split, the best
solution in each swarm becomes the gbest of it. When the particles are merged,
the best gbest of each swarm becomes the gbest of whole swarm.

gbest
swarm1

swarm2

swarm3

gbest1
swarm1

swarm2

swarm3

gbest2

gbest3

Boundaries of the swarm

Fig. 2. Split of the particles
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To apply our method, it is necessary to determine the swarm’s boundaries,
which are determined by the states of the particles. In practice, we calculate the
Euclidean distance of each from gbest, Dp = ‖xp−gbest‖, and sort the particles
in ascending order according to Dp. After sorting, we denote the particle index
as τ(p), where τ(·) is the permutation of the index. The boundaries are set by
the largest distance ΔDτ(p) = Dτ(p)+1 −Dτ(p). Fig. 3 illustrates a split.

4 5 3 1 2
gbest

index of particle

swarm 1 swarm 2

gbest

Search Domain

Boundary

1

2

3

4
5 "Sort according to Euclidean distance"

D5(Dτ(5))

ΔDτ(5)

Fig. 3. Boundaries based on the Euclidean distance

In the example shown in the figure, there are five particles that are split
into two swarms. In k-means clustering, the two swarms would be {x1,x3}
and {x2,x4,x5}. In our method, however, the two swarms are {x3,x4,x5} and
{x1,x2}.

3 Solving Inverse Kinematics of Manipulator by NN-PSO

Inverse kinematics comprises the computations necessary for finding the joint
angles for a given Cartesian position and orientation of an end-effector. This
computation is difficult because the relation between the joint angles and the
position of the end-effector is nonlinear. The gradient method is used to find a
numerical solution [1]. However, if there is uncertainty in the parameters for the
kinematics, we cannot compute the analytically or numerical solutions. Hence,
the computation of inverse kinematics based on the learning of neural networks
has been proposed.

In this section, we describe the inverse kinematics problem and how it can be
solved by using a neural network. The difficulty in applying the back-propagation
rule for inverse kinematics is discussed. The advantages of applying PSO for the
learning of a neural network are explained.

3.1 Inverse Kinematics of a Manipulator

For a given manipulator with K degree of freedom, a joint configuration estab-
lishes the unique position and orientation in Cartesian space of the end-effector.
We denote the joint variables by q = [q1, · · · , qK ]T. Also, we define the position
variables that describe the manipulator tasks by r = [r1, · · · , rL]T, where r and
q are related by the forward kinematics equation

r = f(q). (4)
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The inverse kinematics problem is to find the inverse mapping of (4):

q = f−1(r) . (5)

Due to the nonlinearity of f(·), obtaining a closed-form solution is impossible for
most manipulators. Moreover, if there is uncertainty in any of the parameters
of the manipulator, then we cannot obtain the inverse kinematics by a direct
numerical approach.

3.2 Neural Network for Solving Inverse Kinematics

A multi-layer neural network can approximate any continuous nonlinear map-
ping [2]. Hence, the inverse kinematics can be obtained by using a neural network.

Control Object

rd1

rdi

rdL

z1

zj

zm

h1

hj

hm

q1

qi

qK

r1

ri

rL

wji vkj

g1 g2

f

Δr

Fig. 4. Network structure and control object

Fig. 4 shows the neural network and control object for solving the inverse
kinematics problem. A desired trajectory rd(t) = (rd1(t), · · · , rdL(t))T, where
t = 1, · · · , T represents the data number, is given as input to a multi-layered
neural network. We delete the data number in order to simplify the notation
in the following statement. Let the input signal to the hidden layer be z =
(z1, · · · , zm)T and the coupling weight from the input layer to the hidden layer
be wji. The mapping g1 from rd to z is expressed as

z =

⎛⎜⎝
∑L+1

i=1 w1irdi
...∑L+1

i=1 wmirdi

⎞⎟⎠ = g1(rd) , (6)

where rd,L+1 = 1 is the bias input and wj,L+1 is the threshold. Let the output of
the hidden layer be h = (h1, · · · , hm)T and the transformation from the input
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to the output in the hidden layer be the sigmoid function σ(·). The output of
the hidden layer is expressed as

hj =
1

1 + exp(−zj)
= σ(zj). (7)

The output of the neural network and the coupling weight from the hidden layer
to the output layer are represented as q = (q1, · · · , qK)T and vkj , respectively.
The mapping g2 from z to q is expressed as

q =

⎛⎜⎝
∑m+1

j=1 v1jhj

...∑m+1
j=1 vKjhj

⎞⎟⎠ =

⎛⎜⎝
∑m

j=1 v1jσ(zj) + v1,m+1

...∑m
j=1 vKjσ(zj) + vK,m+1

⎞⎟⎠ = g2(z) , (8)

where hm+1 = 1 is the bias input and vj,m+1 is the threshold.
Let the forward kinematics be f and the realized trajectory be r = f(q). The

inverse model f−1 is obtained on the neural network if Δr = rd−r = 0. The goal
of this scheme is to reduce the output error E(w, v) = ‖Δr(w, v)‖ by updating
the coupling weights. If we apply the back-propagation rule that is commonly
used to update the coupling weights, the Jacobian ∂f/∂q is required [5]. However,
we cannot calculate the Jacobian if there is uncertainty in the control object.
Therefore, we use PSO to update the coupling weights, since it does not require
the derivative of the object function, i.e., the Jacobian ∂f/∂q. The position of the
particle is the collection of weights, x = (w11, · · · , wm,L+1, v11, · · · , vK,m+1)T.
The dimension of the solution domain becomes m× (L + 1) + K × (m + 1).

4 Simulation

In order to verify the efficacy of splitting and merging the particles, we applied
this method to the inverse kinematics problem for a three-link manipulator that
moves in the horizontal plane (Fig. 5). The forward kinematics is expressed as
follows:

r1 = l1 cos q1 + l2 cos(q1 + q2) + l3 cos(q1 + q2 + q3) (9)

r2 = l1 sin q1 + l2 sin(q1 + q2) + l3 sin(q1 + q2 + q3) , (10)

where (r1, r2) and (q1, q2, q3) represent the end-effector position and the joint
angles, respectively. In addition, l1, l2, and l3 are the lengths of each of the
links.

A three-layered neural network was prepared. The input and output layers
were composed of two and three neurons, respectively. We evaluated for desired
trajectories rd(t) (linear, rectangular, or figure-eight form), as shown in Fig. 6,
and uniformly distributed random points rd1 ∈ [0.1, 0.6], and rd2 ∈ [0.2, 0.3].
The objective function is the root-mean-square (RMS) error between the desired
trajectory and the position of the end-effector,

RMS =

√√√√ 1

T

T∑
t=1

{(rd1(t)− r1(t))2 + (rd2(t)− r2(t))2} . (11)
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Fig. 5. Three-link manipulator
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Fig. 6. Desired trajectory

The parameters of the simulation are listed in Table 1. In this simulation, the
inertia weight γ and the acceleration constants C1, C2 were set by the construc-
tion factor method (CFM), which was presented by Clerc and Kennedy [11]. We
set the interval for splitting and merging based on experiment.

Table 1. Simulation parameters

length of link 1 l1 = 0.3[m]
length of link 2 l2 = 0.35[m]
length of link 3 l3 = 0.4[m]
amount of data T = 100
number of neurons in the hidden layer m = 6
range of initial weight uniform random number in [−10, 10]
maximum iterations 5000
splitting and merging interval 100
number of particles P = 21
number of clusters C = 3
inertia weight γ = 0.729
acceleration constant C1, C2 = 1.4955
limitation on velocity Vmin = −0.1, Vmax = 0.1

We measured the RMS error after updating was terminated for 1,000 sets
of initial weights that had different values. We compared gbest PSO, local best
(lbest) PSO with ring topology, and our split-and-merge PSO. In split-and-merge
PSO, the particles were split by k-means clustering and the proposed method.

Fig. 7 shows the accumulated histogram of the RMS error for each method.
The horizontal axis represents the RMS error when the iteration terminated.
The vertical axis represents the cumulative relative frequency. For all the de-
sired trajectories, the proposed method provides the accurate inverse kinematics.
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Fig. 7. Accumulated histogram of the RMS error

As mentioned in the above section, splitting and merging by using k-means clus-
tering did not obtain a better performance, although we performed simulations
with several different sets of intervals. Since ring topology provides a mecha-
nism for slowing down information propagation in the particle population, it
cannot obtain a better performance in this experiment. Many iterations would
be required if we wanted to obtain a more accurate inverse model by using lbest
PSO.

5 Conclusion

In this paper, we proposed splitting and merging particles in a swarm. After a
split, the particles do not exchange information, and so a particle that may be
trapped in a local minimum is able to escape from local minimum after merging.
Simulation results showed that the proposed method performs much better than
conventional PSO.

We experimented with different values before setting the constant interval for
splitting and merging. Further work is needed to determine how to adjust the
interval depending on the state of the particles. In addition, we will compare the
performance of our algorithm with other method based on multiple swarms [15].
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Abstract. Probabilistic neural network (PNN) consists of the number
of pattern neurons that equals the cardinality of the data set. The model
design is therefore complex for large database classification problems. In
this article, two effective PNN reduction procedures are introduced. In
the first approach, the PNN’s pattern layer neurons are reduced by means
of a k-means clustering procedure. The second method uses a support
vector machines algorithm to select pattern layer nodes. Modified PNN
networks are compared with the original model in medical data classi-
fication problems. The prediction ability expressed in terms of the 20%
test set error for the networks is assessed. By means of the experiments,
it is shown that the appropriate pruning of the pattern layer neurons in
the PNN enhances the performance of the classifier.

Keywords: probabilistic neural network, k-means clustering, support
vector machines, classification, prediction ability.

1 Introduction

The probabilistic neural network (PNN), proposed by Specht [1] is a direct im-
plementation of the Bayes classifier. It can quickly learn from input data but re-
quires one neuron in the pattern layer for each training example [2]. PNNs have
found their implementation in variety of classification fields. It was presented
in image classification and recognition [3], [4], earthquake magnitude prediction
[5] or medical diagnosis and prediction [6]–[9]. The important contribution was
provided in [10] where PNN was applied to pattern classification in time-varying
environment.

Since PNN consists of a single node for each data, various modifications of
the network have been proposed. For example, in [11], by estimating probability
density functions as a mixture of the Gaussian densities with varying covariance
matrices it was possible to design PNN so that it used fewer nodes than training
patterns. The work in [12] presented learning vector quantization technique for
finding representative patterns to be used as neurons in PNN. In [13], the authors
presented a Generalized Fisher algorithm for PNN and showed that it required
significantly fewer nodes and interconnection weights than original model. The
reference in [3] presented the reduction of the size of the training data for PNN
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by hierarchical clustering. Here, the reciprocal neighbors technique was applied
which allowed to gather the examples which were closest to each other. In [14],
the quantization method for PNN structure was proposed. The input space was
divided into a fixed-size hyper-grid and within each hyper-cube a representa-
tive cluster centres were computed. Therefore, the number of training vectors in
each hyper-cube was reduced to one. The research in [15] presented the auto-
matic construction of PNN by the use of a dynamic decay adjustment algorithm.
The model was dynamically built during training which automatically optimized
the number of hidden neurons. The work reported in [4] proposed PNN with no
distance matrix needed for storing the pairwise distances between input exam-
ples and the vector to be classified. It was achieved by maintaining the nearest
neighbor table of indices of the nearest cluster for each cluster. In [16], a super-
vised PNN structure determination algorithm was introduced. The procedure
employed genetic algorithm for pattern layer neuron selection.
It is necessary to note that the PNN model is equipped with the intrinsic smooth-
ing parameter of the pattern layer neurons activated by Gaussian function. It
must be estimated on the basis of a classification performance. Three approaches
are usually regarded: single parameter for whole PNN, separate parameter for
each variable (dimension) or single parameter for each class. In the research, a
diverse procedures have been developed to solve the problem [2], [6], [16], [17].
In this article, two alternative approaches of the structure minimization of the
probabilistic neural network are introduced. The first method is based on the
application of k-means clustering algorithm to input data in order to determine
the optimal number of centroids as the representation of the pattern layer neu-
rons. In the second solution, the support vector machine procedure is applied
which, out of the entire training database, provides the set of support vectors.
The support vectors form then the layer of pattern nodes of PNN. Both tech-
niques are tested on the medical data sets.
This paper is composed of the following sections. Section 2 discusses probabilistic
neural network highlighting its basics, a structure and a principle of operations.
In Section 3, the reduction of PNN structure by means of a k-means clustering
and support vector machines algorithm is proposed. Section 4 briefly describes
the input data used in the research. Additionally, the performance of the stan-
dard and the modified PNN models is here verified. Finally, in Section 5, the
conclusions are presented.

2 Probabilistic Neural Network

Assume, we are given an input vector x ∈ Rn which belongs to one of the prede-
fined classes g = 1, 2, . . . , G. Let the probability of the vector x belonging to the
class g equals pg, the cost associated with classifying the vector into class g is cg
and that the probability density functions: y1(x), y2(x), . . . , yG(x) for all classes
are known. Then, according to the Bayes theorem, when g �= h, the vector x is
classified to the class g, if pgcgyg (x) > phchyh (x). Usually pg = ph and cg = ch,
thus one can infer that if yg(x) > yh(x), then the vector x belongs to the class g.
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In real data classification problems, data set distribution is usually unknown
and an approximation of the probability density function yg(x) has to be deter-
mined. This can be achieved using the Parzen method [18] where the probability
density function for multiple variables can be expressed as follows

y (x) =
1

l

l∑
i=1

Wi (x,xi) , (1)

where Wi (x,xi) = σ−1
1 . . . σ−1

n F
(
σ−1
1 (xi1 − x1) , . . . , σ−1

n (xin − xn)
)
, F (·) is

the weighting function which has to be appropriately selected [19], l is the number
of input patterns, and σ1, . . . , σn denote standard deviations computed relative
to the mean of n variables x1, . . . , xn. Usually, the Gaussian function is a common
choice for weighting in (1).

The formula in (1) defines the structure and the operation of PNN. If we
consider a Gaussian function as the activation for the probability density function
and assume that this function is computed for the examples of class g then
Parzen’s definition takes the following form

yg (x) =
1

lg (2π)
n/2

(detΣg)
1/2

lg∑
i=1

exp

(
−1

2
(xg,i − x)

T
Σ−1

g (xg,i − x)

)
, (2)

where Σg = diag
(
σ2
g,1, . . . , σ

2
g,n

)
is the covariance matrix, lg is the number of the

examples of class g, σg,j denotes the smoothing parameter associated with j-th
variable and the g-th class, and xg,i is the i-th training vector (i = 1, . . . , lg)
from the class g. The formula presented in (2) provides one of g = 1, . . . , G
summation neurons of PNN structure. The elements of the preceding layer, the
pattern neurons, feed the component to the sum which is measured over each
of the examples of g-th class. Therefore, lg hidden neurons constitute the input
for g-th summation neuron. Finally, the output layer determines the output for
the vector x in accordance with the Bayes’s decision rule based on the outputs
of all the summation layer neurons

G∗ (x) = arg max
g
{yg (x)} , (3)

where G∗ (x) denotes the predicted class for the pattern x. Thus, the pattern
layer requires l = l1 + . . . + lG nodes.

In this paper, single smoothing parameter for each attribute and class is ap-
plied. The choice of this variant of σ selection imposes, in accordance with for-
mula (2), the inevitability of storing a G × n matrix of σ’s. Hence, the g-th
summation neuron yields to the decision layer the output signal (2) but with
σg,j as the intrinsic parameter. Therefore, the smoothing parameter is computed
for the j-th variable of each class g. Such an approach gives the possibility of
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emphasizing the similarity of the vectors belonging to the same class. The values
of σ’s are determined using the conjugate gradient method.

3 PNN Reduction Methods

In this section, two approaches of PNN structure simplification are presented.
Both solutions consist in decreasing the number of pattern neurons of the net-
work. The first method is based upon k-means procedure. The second idea uti-
lizes the support vectors for PNN training.

3.1 The Use of k-Means Clustering for PNN Structure Reduction

The k-means algorithm is a data clustering method [20] which is considered to
be one of the top ten algorithms in data mining [21]. The procedure finds k
clusters, such that all the records within each cluster are similar to each other
and distinct from records in other clusters. The grouping process relies on the
iterative minimization of the sum of squared distances computed between input
vectors and the cluster center. An initial set of clusters is defined, and the cluster
centres are repeatedly updated until no modification of their coordinate values
takes place.

The first approach in PNN structure reduction uses k-means algorithm in
a simple iterative way. The number of clusters of class g in s-th iteration is
determined according to the formula

is,g = round
( s

N
ηlg

)
, s = 1, . . . , N − 1, (4)

where η is a fraction of training data (1−η is the part for testing) and round (x)
is the function that rounds the real positive number x to the nearest integer. In
this paper, we assume η = 0.8, and N = 10. It is important to notice, that only
is,g pattern layer neurons of class g are involved in computation of the signal
for the summation layer neuron. The Algorithm 1 summarizes the proposed
method.

Algorithm 1. PNN architecture optimization based on k-means clustering.

Randomly determine training and test sets
for s = 1 to N − 1 do

for g = 1 to G do
Compute is,g cluster centres for training set

end

Train PNN on cs =
∑G

g=1 is,g cluster centres

Read σ
(1)
1 , . . . , σ

(G)
n which minimize PNN training error

Calculate test error Etest for PNN on test set

end
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Now, if we define the reduction ratio R as a quotient of the number of pattern
neurons by the size of the training data set for the PNN

R (s) =

∑G
g=1 is,g

ηl
∼=

s

N
, s = 1, . . . , N − 1, (5)

then the optimal ratio in the sense of the stated problem is R (s∗) for

s∗ = arg min
1�s�N−1

Etest (s) , (6)

where Etest (s) is the test error obtained by the s-th cluster’s variant and s∗ is
computed numerically.

3.2 The Use of Support Vector Machines for PNN Structure
Reduction

Support vector machine (SVM) [22] is one of the most accurate methods among
all well-known classification algorithms [21]. It constructs an optimal classifier
for the input vector xi (i = 1, . . . , l) from the class labelled yi = ±1. Two types of
SVM algorithms are usually applied in data mining problems: C-SVM model and
ν-SVM model [23]. In this research, C-based SVM is used. The C-SVM training
amounts to the solution of the following quadratic programming optimization
(QP) problem ⎧⎪⎨⎪⎩

max
ααα

W (ααα) = −1

2
〈ααα,Hααα〉+ 〈ααα,1〉

0 � ααα � C · 1, 〈ααα,y〉 = 0,

(7)

where 〈·, ·〉 denotes the scalar product, ααα = [α1, . . . , αl]
T

is the vector of Lagrange
multipliers, H = {yiyjK (xi,xj)} is l × l matrix, K (·, ·) is the kernel function,

y = [y1, . . . , yl]
T

is the vector of class labels, 0 = [0, . . . , 0]
T

and 1 = [1, . . . , 1]
T

.
Once the solution of (7) is obtained in terms of ααα vector, the optimal classifier
is formulated

class (x) = sign

(
l∑

i=1

αiyiK (xi,x) + b

)
. (8)

The input vectors xi having αi > 0 are called support vectors (SVs). They con-
stitute a sufficient sub-set out of given input data for a sample prediction. As it
can be observed, the solution of the QP problem in (7) involves the constraint
for αi which requires the choice of unknown C parameter. The value of C coef-
ficient introduces additional capacity control for the classifier. The adjustment
of C provides greater or smaller number of support vectors what, in turn, in-
fluences the classification accuracy. In this research, by setting different values
of C constraint, we are capable of obtaining different sets of support vectors.
Depending on the considered data set and the value of C, the number of pattern
neurons of PNN changes.
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The final classification outcome also depends on the kernel function K (·, ·)
applied in (8). Much study in recent years has been devoted to adopting different
kernels for SVM [24]–[26]. In this contribution, the Gaussian kernel function is
applied with the spread constant (sc) as the parameter:

K (x,y) = exp

(
−‖x− y‖2

2 (sc)
2

)
. (9)

An appropriate range of the spread constant has to be estimated which is realized
numerically with the assumption of achieving the highest generalization ability
of the classifier.

For C and sc parameters, the final sets of values AC and Asc are assumed,
respectively. The SVM based PNN reduction methodology is summarized in form
of Algorithm 2.

Algorithm 2. PNN architecture optimization based on SVM

Randomly determine training and test sets
for C ∈ AC and sc ∈ Asc do

Perform SVM classification on training set
Select support vectors SVs
Train PNN on SVs

Read σ
(1)
1 , . . . , σ

(G)
n which minimize PNN training error

Calculate test error Etest for PNN on test set

end

The particular values for both, AC and Asc are provided in Section 4.2.

4 Results

In the simulations, seven UCI machine learning repository medical data sets
are used [27]: Wisconsin breast cancer (WBC): 683 instances with 9 attributes
(binary classification), Pima Indians diabetes (PID): 768 cases having 8 features
(binary classification), Haberman’s survival (HS): 306 patients and 3 measured
variables (binary classification), Cardiotocography (CTG): 2126 measurements
on 23 attributes (three state classification), Thyroid (T): 7200 instances with
21 attributes (three state classification), Dermatology (D): 358 cases each of
34 features (six data sets classification) and diagnostic Wisconsin breast cancer
(DWBC): 569 instances having 30 variables (binary classification). Additionally,
authors’ real ovarian cancer (OC) data set is used in the simulations: it represents
199 women after ovarian cancer treatment with 17 parameters registered for
each case. The data is obtained from the Clinical Department of Obstetrics and
Gynecology of Rzeszow State Hospital in Poland. The analysis of treatment of
ovarian cancer and its hormonal and genetic aspects are studied in [28].
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In all cases, no data preprocessing (normalization, feature extraction) is per-
formed. After random selection of 20% of the input data for testing purposes,
training and test sets are preserved for all the data and each method what makes
both approaches comparable.

The following sections present the comparison of the prediction ability mea-
sured for the standard PNN model and the networks for which the number of
pattern neurons is reduced by means of two proposed approaches: the application
of k-means method to cluster the data, and the use of the support vectors as the
new database. The prediction ability of the examined classifiers is determined
on the basis of the test error (Etest) computed on the 20% of input examples
randomly extracted from each of given data sets. The number of the test vectors
for WBC, PID, HS, CTG, T, D, DWBC and OC data sets is equal 137, 154, 61,
425, 1440, 72, 456 and 40, respectively. The bottom rows of Tables 1–4 present
the test error for original PNN.

4.1 Experimental Results after the Use of Algorithm 1

Tables 1–4 illustrate the test error computed after data clustering according to
Algorithm 1 for all considered data sets. The sum

∑G
g=1 is,g defines the total

number of pattern layer neurons. It can be observed that in each data classifi-
cation case, by reducing the number of pattern neurons of PNN, it is possible
to find the smaller test error than the one computed with the use of all pattern
neurons of the model. It is also worth to note that, in all data classification cases,
the decrease of the test error takes place more than once.

The most gainful reduction ratio R can be read from the Tables 1–4, e.g. for
WBC data set it takes the value R = 55/(0.8 ∗ 683) ∼= 0.1. Therefore, instead
of 683 cases of original data we can use their substitutes but about 10 times
smaller in number.

Table 1. The number of cluster centres used in determining PNN structure and the
test error for WBC data set (left table) and PID data set (right table)

s is,1 is,2
Pattern

Etest [%]
neurons

1 36 19 55 6.569
2 71 38 109 8.029
3 107 57 164 10.949
4 142 76 218 15.328
5 178 96 274 14.599
6 213 115 328 10.219
7 248 134 384 9.489
8 284 153 437 11.679
9 320 172 492 7.299

All 355 191 546 9.489

s is,1 is,2
Pattern

Etest [%]
neurons

1 40 21 61 62.337
2 80 43 123 29.220
3 120 64 184 29.220
4 160 86 246 38.311
5 200 107 307 31.168
6 240 128 368 28.571
7 280 150 430 29.220
8 320 171 491 33.766
9 360 193 553 32.467

All 400 214 614 31.818
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Table 2. The number of cluster centres used in determining PNN structure and the
test error for HS data set (left table) and CTG data set (right table)

s is,1 is,2
Pattern

Etest [%]
neurons

1 18 7 25 24.590
2 36 13 49 24.590
3 54 20 74 26.229
4 72 26 98 27.868
5 90 33 123 26.229
6 108 39 147 26.229
7 126 46 172 26.229
8 144 52 196 27.868
9 162 59 221 57.377

All 180 65 245 31.147

s is,1 is,2 is,3
Pattern

Etest [%]
neurons

1 132 24 14 170 19.058
2 265 47 28 340 21.411
3 397 71 42 510 28.470
4 530 94 56 680 36.941
5 662 118 71 851 35.294
6 794 142 85 1021 11.529
7 927 165 99 1191 15.529
8 1059 189 113 1361 12.470
9 1191 212 127 1530 16.941

All 1324 236 141 1701 15.529

Table 3. The number of cluster centres used in determining PNN structure and the
test error for T data set (left table) and D data set (right table)

s is,1 is,2 is,3
Pattern

Etest [%]
neurons

1 13 29 533 575 60.625
2 27 59 1067 1153 43.402
3 40 88 1600 1728 89.166
4 53 118 2133 2304 7.222
5 67 147 2667 2881 6.458
6 80 176 3200 3456 7.638
7 93 206 3733 4032 80.833
8 106 235 4266 4607 6.597
9 120 265 4800 5185 94.5141

All 133 294 5333 5760 11.181

s is,1 is,2 is,3 is,4 is,5 is,6
Pattern

Etest [%]
neurons

1 9 6 5 4 4 2 30 26.388
2 18 11 10 8 8 3 58 15.277
3 27 17 14 11 11 5 87 18.055
4 36 23 19 15 15 6 114 11.111
5 45 29 24 19 19 8 142 12.500
6 53 34 29 23 23 10 172 11.111
7 62 40 34 27 27 11 201 8.333
8 71 46 38 30 30 13 229 13.888
9 80 51 43 34 34 14 258 18.055

All 89 57 48 38 38 16 286 13.888

Table 4. The number of cluster centres used in determining PNN structure and the
test error for DWBC data set (left table) and OC data set (right table)

s is,1 is,2
Pattern

Etest [%]
neurons

1 17 29 46 23.009
2 34 57 91 25.664
3 51 86 137 9.735
4 68 114 182 43.363
5 85 143 228 30.973
6 102 172 274 50.442
7 119 200 319 35.398
8 136 229 365 49.558
9 153 257 410 21.239

All 170 286 456 32.743

s is,1 is,2
Pattern

Etest [%]
neurons

1 11 5 16 60.000
2 21 11 32 25.000
3 32 16 48 32.500
4 42 22 64 17.500
5 53 27 80 7.500
6 63 32 95 30.000
7 74 38 112 20.000
8 84 43 127 12.500
9 95 49 144 20.000

All 105 54 159 15.000
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4.2 Experimental Results after the Use of Algorithm 2

The second approach of PNN reduction consists in extracting the set of support
vectors (SVs) out of the entire original data set and setting SVs as the net-
work’s pattern neurons. The process of SVs selection is performed according to
Algorithm 2. The verification of C and sc settings requires a vast number of
experiments.

The grid search for both C constraint and sc spread constant is performed:
AC = {10−1, 100, 101, 102, 103, 104, 105, 106} and Asc = {0.08, 0.2, 0.3, 0.5,
0.8, 1.2, 1.5, 2, 5, 10, 50, 80, 100, 200, 500}. The optimal values of (C∗,sc∗) are
computed as follows:

(C∗, sc∗) = arg min
(C,sc)∈AC×Asc

{Etest (C, sc)} (10)

where Etest is the test error and C∗, sc∗ are computed numerically.
The results are shown in Tables 5–6. From these tables one can read the

number of support vectors used to construct the PNN’s pattern layer and the
lowest test errors calculated by the modified network. Two bottom rows indi-
cate the test error for the original PNN and best results obtained by means of
Algorithm 1.

One can observe that the use of the support vectors as the pattern neurons
provides the decrease in the test error of PNN in all data classification cases.

Table 5. The number of support vectors used in determining PNN structure and the
test error for WBC, PID, HS and CTG data sets

sc
WBC PID HS CTG

C∗ = 104 C∗ = 102 C∗ = 100 C∗ = 103

SVs Etest [%] SVs Etest [%] SVs Etest [%] SVs Etest [%]

0.08 43 13.138 319 64.935 135 26.229 162 86.117
0.2 48 15.328 314 64.935 134 26.229 144 48.705
0.3 47 14.598 310 64.935 136 26.229 142 26.588
0.5 47 10.218 304 64.935 133 26.229 152 11.294
0.8 48 18.978 300 64.935 137 26.229 172 25.176
1.2 49 13.868 303 64.935 138 26.229 207 32.705
1.5 54 10.948 305 64.935 134 26.229 240 18.823
2 71 14.598 302 44.155 135 26.229 288 7.058
5 182 9.489 300 48.051 139 26.229 557 24.47
10 244 8.029 333 36.363 142 26.229 909 22.352
50 329 10.218 551 31.168 171 27.868 1601 14.823
80 357 10.218 593 31.818 181 36.065 1662 15.058
100 361 9.489 607 31.818 183 32.786 1673 17.176
200 368 9.489 614 31.818 200 31.147 1682 17.176
500 368 9.489 614 31.818 220 32.786 1690 15.529

All 546 9.489 614 31.818 245 31.147 1701 15.529
Best k-means 55 6.569 368 28.571 25 24.590 1021 11.529
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Table 6. The number of support vectors used in determining PNN structure and the
test error for T, D, DWBC and OC data sets

sc
T D DWBC OC

C∗ = 101 C∗ = 103 C∗ = 106 C∗ = 10−1

SVs Etest [%] SVs Etest [%] SVs Etest [%] SVs Etest [%]

0.08 785 40.138 86 34.722 31 21.239 112 15.000
0.2 764 15.208 110 11.111 36 62.832 113 15.000
0.3 765 11.458 133 12.500 36 7.965 117 12.500
0.5 755 16.388 158 8.333 39 27.434 119 17.500
0.8 754 8.958 186 6.944 47 19.469 121 15.000
1.2 790 8.125 214 8.333 54 10.619 130 17.500
1.5 815 9.167 239 8.333 65 23.894 137 20.000
2 874 7.500 262 9.722 78 57.522 139 17.500
5 1014 14.931 285 13.888 174 55.752 148 15.000
10 1103 6.875 286 13.888 276 49.558 153 15.000
50 1701 68.125 286 13.888 456 32.743 157 15.000
80 2045 40.763 286 13.888 456 32.743 158 15.000
100 2242 23.958 286 13.888 456 32.743 158 15.000
200 2954 71.458 286 13.888 456 32.743 158 15.000
500 4209 7.916 286 13.888 456 32.743 158 15.000

All 5760 11.181 286 13.888 456 32.743 159 15.000
Best k-means 2881 6.458 201 8.333 137 9.735 80 7.500

5 Conclusions

In this article, we considered the problem of the minimization of the number of
PNN pattern layer neurons. This problem was solved along with the maximiza-
tion of the generalization ability of the network. For this purpose we proposed
two heuristic algorithms. The first solution relied on k-means input data clus-
tering and the use of the cluster centres as the pattern layer neurons. In the
second method, by performing SVM data classification, we determined the set
of support vectors and we merely allowed the support vectors to represent the
nodes in the pattern layer.

The reduced PNN models were compared with standard PNN in the classifi-
cation problem of seven commonly available medical databases and one authors’
own data set. In each case, the networks prediction ability was verified by com-
puting the test error on 20% of the samples randomly separated from entire
data set. The results presented in this contribution confirmed the validity of
PNN structure reduction of both proposed methods. It was shown that in all
data classification tasks, the reduction of the number of pattern layer neurons
improved the prediction ability of the network.

It is highly probable to obtain better results, i.e.: both, smaller number of
pattern neurons and the lower generalization error, after shrinking the grid
search.
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Because of the limited space of the article, the results are only shown for Etest.
Similar study was performed for additional performance measures: the sensitiv-
ity, the specificity and the area under the receiver operating characteristic. The
values of these measures were also better for reduced PNN.
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Abstract. This paper describes development of a nonlinear Model Pre-
dictive Control (MPC) algorithm. The algorithm is very computationally
efficient because for control signal calculation an explicit control law is
used, no on-line optimisation is necessary. The control law is implemented
by a neural network which is trained off-line by means of a particle swarm
optimisation algorithm. Inefficiency of a classical gradient-based training
algorithm is demonstrated for the polymerisation reactor. Moreover, the
discussed MPC algorithm is compared in terms of accuracy and compu-
tational complexity with two suboptimal MPC algorithms with model
linearisation and MPC with full nonlinear optimisation.

Keywords: Process control, Model Predictive Control, neural networks,
optimisation, particle swarm optimisation, soft computing.

1 Introduction

Model Predictive Control (MPC) is a computer control strategy in which the
control action is optimised over some future time horizon [8,15]. Thanks to the
fact that a dynamic model is used for prediction of the future behaviour of
the process, MPC algorithms, unlike any other control technique, can easily
take into account constraints imposed on process inputs (manipulated variables)
and outputs (controlled variables), which usually decide on quality, economic
efficiency and safety. Secondly, MPC can be efficiently used for multivariable
processes, with many inputs and outputs. As a result, MPC algorithms have
been successfully used for years in many areas [14].

Because behaviour of numerous processes is typically nonlinear, nonlinear
models, rather than simple linear ones, are used for prediction in MPC [3,10,15].
Although different types of nonlinear models can be used in MPC, neural models
are particularly interesting. In order to reduce complexity of on-line calculations,
suboptimal MPC algorithms are more and more popular in which the neural
model is successively linearised on-line and the obtained linear approximation is
used for prediction. Thanks to linearisation, the control signal can be calculated
on-line from an easy to solve quadratic programming task [5,7,11,15]. To further
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reduce computational burden an explicit variant of the suboptimal MPC algo-
rithm can be used in which constraints are treated somehow heuristically, but it
makes it possible to replace quadratic programming with an explicit control law.
The coefficients of this law are calculated on-line from a simple matrix decompo-
sition task and a solution of a set of linear equations [6]. The necessity of model
linearisation and matrix inversion can be also eliminated as shown in [4], in such
a case the explicit control law is implemented by a neural network trained off-
line. Data sets necessary for training and validation of such a neural network are
generated by the classical explicit MPC algorithm. Unfortunately, development
of the classical algorithm is an essential part of the design procedure, which may
be a disadvantage.

In this paper alternative development of the explicit neural MPC algorithm is
discussed. Unlike the algorithm presented in [4], the neural network is not trained
to approximate behaviour of the classical explicit MPC algorithm, but the net-
work used for control law calculation is trained directly off-line. Because such an
optimisation problem may be difficult, non-convex and multimodal, a particle
swarm optimisation algorithm is used. Efficiency of the discussed approach is
demonstrated for the polymerisation process. Particle swarm optimisation ap-
proaches have been extensively used for global optimisation [1]. In control system
engineering they have been used for off-line tuning parameters of the PID con-
troller [12] and for on-line nonlinear optimisation in MPC algorithms [13,16].

2 Model Predictive Control Algorithms

In MPC algorithms [8,15] at each consecutive sampling instant k, k = 0, 1, 2, . . .,
a set of future control increments is calculated

	u(k) = [	u(k|k) 	u(k + 1|k) . . .	u(k + Nu − 1|k)]
T

(1)

It is assumed that 	u(k+ p|k) = 0 for p ≥ Nu, where Nu is the control horizon.
The objective of the algorithm is to minimise differences between the reference
trajectory yref(k + p|k) and predictions ŷ(k + p|k) over the prediction horizon
N ≥ Nu, i.e. for p = 1, . . . , N . Assuming that constraints are imposed on the
value and the rate of change of the input variable, future control increments (1)
are determined from the following MPC optimisation task

min
�u(k)

{
N∑
p=1

(yref(k + p|k)− ŷ(k + p|k))2 + λ

Nu−1∑
p=0

(	u(k + p|k))2

}
subject to (2)

umin ≤ u(k + p|k) ≤ umax, p = 0, . . . , Nu − 1

−	umax ≤ 	u(k + p|k) ≤ 	umax, p = 0, . . . , Nu − 1

where λ > 0 is a weighting coefficient. Only the first element of the determined
sequence (1) is applied to the process, i.e. u(k) = 	u(k|k) + u(k − 1). At the
next sampling instant, k + 1, the prediction is shifted one step forward and the
whole procedure is repeated.
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3 Explicit Neural MPC Algorithm Using Particle Swarm
Optimisation

Let the dynamic neural model of the process be described by

y(k) = f(x(k)) = f(u(k − τ), . . . , u(k − nB), y(k − 1), . . . , y(k − nA)) (3)

where integers nA, nB, τ define the order of dynamics, τ ≤ nB. In such a case
predictions ŷ(k + p|k) are nonlinear functions of the calculated policy (1) and
the whole optimisation problem (2) is nonlinear, frequently non-convex. That is
why suboptimal MPC algorithms are frequently used in which at each sampling
instant on-line a linear approximation of the model (3) is calculated. Thanks to
linearisation, the MPC optimisation task (2) becomes a quadratic programming
problem.

3.1 The Explicit Control Law

If the constraints are removed from the MPC optimisation task (2), one has

min
�u(k)

{
J(k) =

∥∥yref(k)− ŷ(k)
∥∥2 + ‖	u(k)‖2Λ

}
(4)

where

yref(k) =
[
yref(k + 1|k) . . . yref(k + N |k)

]T
ŷ(k) = [ŷ(k + 1|k) . . . ŷ(k + N |k)]T

are vectors of length N , Λ = diag(λ, . . . , λ) is a matrix of dimensionality Nu×Nu.
It can be shown [5] that if the linear approximation of the neural model is used
for prediction, the output predictions are linear functions of the future control
sequence 	u(k)

ŷ(k) = G(k)	u(k) + y0(k) (5)

where the matrix G(k) of dimensionality N ×Nu contains step-response coeffi-

cients of the linearised model, the vector y0(k) =
[
y0(k + 1|k) . . . y0(k + N |k)

]T
is the free trajectory which depends only on the past. Using the prediction equa-
tion (5), the optimisation problem of the explicit MPC algorithm (4) becomes

min
�u(k)

{
J(k) =

∥∥yref(k)−G(k)	u(k)− y0(k)
∥∥2 + ‖	u(k)‖2Λ

}
Due to the fact that the minimised cost function J(k) is quadratic, optimal
control moves can be calculated analytically, without any optimisation. One
obtains the explicit control law

	u(k) = K(k)(yref(k)− y0(k)) (6)

where
K(k) = (GT(k)G(k) + Λ)−1GT(k) (7)

is a matrix of dimensionality Nu ×N .
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At each sampling instant k of the classical explicit MPC algorithm the fol-
lowing steps are repeated on-line:

1. The linear approximation of the neural model for the current operating point
is found [5].

2. Step response coefficients which comprise the matrix G(k) are calculated [5].

3. The nonlinear free trajectory y0(k) is calculated using a neural model of the
process [5].

4. The matrix K(k) is calculated from Eq. (7).

5. The future control increments 	u(k) are found from Eq. (6).

6. The first element of the obtained vector 	u(k) is applied to the process.

7. Iteration number is increased (k := k + 1), the algorithm goes to step 1.

The same neural model is used for linearisation and the free trajectory calcula-
tion. Matrix inversion in Eq. (7) is calculated in a numerical efficient way using
the LU (Low-Upper) matrix decomposition with partial pivoting [6].

3.2 The Algorithm with Direct Calculation of the Matrix K1(k)

The explicit MPC algorithm discussed in the following part of the paper is much
simpler than the rudimentary explicit algorithm described in the previous sub-
section. First, the first element of the vector 	u(k) (i.e. the quantity 	u(k|k))
is only calculated. In place of the control law (6) the formula

	u(k|k) = K1(k)(yref(k)− y0(k)) (8)

is used where K1(k) is the first row of the matrix K(k). Secondly, the non-
linear model is not linearised on-line, step-response coefficients of the linearised
model and the dynamic matrix G(k) are not calculated on-line, the inverse
matrix (GT(k)G(k) + Λ)−1 is not calculated on-line. The vector K1(k) =

[k1,1(k) . . . k1,N (k)]
T

for the current operating point is directly calculated by
a neural network which is called a neural approximator. The algorithm uses two
neural networks: NN1 is a dynamic model of the process, NN2 is a neural ap-
proximator. At each sampling instant k of the algorithm the following steps are
repeated on-line:

1. The nonlinear free trajectory y0(k) is calculated using a neural model of the
process (the network NN1).

2. The vector K1(k) is calculated using the neural approximator (the network
NN2).

3. The current control increment 	u(k|k) is found from Eq. (8).

4. The obtained solution is projected onto the admissible set of constraints.

5. The obtained solution is applied to the process.

6. Iteration number is increased (k := k + 1), the algorithm goes to step 1.
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Although the control laws (6) and (8) can be easily derived forgetting the con-
straints imposed on the manipulated variable in the general MPC optimisation
task (2), the obtained value of the control signal may not satisfy real limitations
of the actuator. That is why the following constraints imposed on the currently
calculated control signal are taken into account

umin ≤ u(k|k) ≤ umax, −	umax ≤ 	u(k|k) ≤ 	umax

The control increment 	u(k|k) calculated from Eq. (8) is hence projected onto
the admissible set of constraints

if 	u(k|k) < −	umax 	u(k|k) = −	umax

if 	u(k|k) > 	umax 	u(k|k) = 	umax

u(k|k) = 	u(k|k) + u(k − 1)

if u(k|k) < umin u(k|k) = umin

if u(k|k) > umax u(k|k) = umax

u(k) = u(k|k) (9)

3.3 Training the Network NN2 Using Particle Swarm Optimisation

Elements of the vector K1(k), i.e. scalars k1,p(k) for p = 1, . . . , N , are calculated
on-line by the neural approximator–the network NN2 for the current operating
point of the process. The operating point is defined by control signals applied to
the process at some previous sampling instants and measurements of the output
signal for the current and some previous instants. The quantities k1,p are hence
functions of the following arguments

k1,p = gp(u(k − 1), . . . , u(k − ñB), y(k), . . . , y(k − ñA))

where integers ñA and ñB define the current operating point. In this study the
MultiLayer Perceptron (MLP) network with one hidden layer and linear outputs
[2] is used as the NN2 network. It has ñA+ ñB+1 inputs. Outputs of the network
are described by the following equation

k1,p(k) = w2
p,0 +

K∑
i=1

w2
p,iϕ

(
w1

i,0 +

ñB∑
j=1

w1
i,ju(k − j)

+

ñA∑
j=0

w1
i,ñB+j+1y(k − j)

)
(10)

where K is the number of hidden nodes, ϕ denotes the transfer function of the
hidden units (e.g. ϕ = tanh), weights of the first layer are denoted by w1

i,j for

i = 1, . . . ,K, j = 1, . . . , ñA + ñB + 1, biases of the first layer are denoted by w1
i,0

for i = 1, . . . ,K, weights of the second layer are denoted by w2
p,i for p = 1, . . . , N ,

i = 1, . . . ,K, biases of the second layer are denoted by w2
p,0 for p = 1, . . . , N .



Development of Explicit Neural Predictive Control Algorithm 135

The training procedure for the network NN2 is as follows. First, a series of
random changes of the reference trajectory is assumed. These changes comprise
the training data set, the number of the training patterns is S. Similarly, the
validation data set is generated. Next, parameters of the network, i.e. weights,
are optimised through simulations of the explicit MPC algorithm for the assumed
training changes of the reference trajectory. The optimisation problem is defined
for S training patterns

min
w1

i,j , w2
p,i

{
SSE =

S∑
k=1

[
(yref(k)− y(k))2 + λ(	u(k|k))2

]}
subject to (11)

	u(k|k) = K1(k)(yref(k)− y0(k))

umin ≤ u(k|k) ≤ umax

−	umax ≤ 	u(k|k) ≤ 	umax

where y(k) denotes the output of the simulated process for consecutive sampling
instants k = 1, . . . , S, elements of the vector K1(k) are calculated form Eq. (10).
Satisfaction of inequality constraints is enforced by the projection procedure (9).
The optimisation task (11) is nonlinear, it may be non-convex and multimodal.
That is why classical, gradient-based optimisation algorithms are likely to ter-
minate at local minima. A straightforward choice is to use global optimisation
methods. In this study the particle swarm optimisation algorithm is used.

4 Simulation Results

The considered example process is a polymerisation reaction taking place in
a jacketed continuous stirred tank reactor [9]. The reaction is the free-radical
polymerisation of methyl methacrylate with azo-bis-isobutyronitrile as initiator
and toluene as solvent. The output NAMW (Number Average Molecular Weight)
is controlled by manipulating the inlet initiator flow rate FI. The reactor exhibits
significantly nonlinear behaviour. It cannot be controlled efficiently by classical
MPC schemes based on constant linear models [5,7,9,15].

The fundamental model (a set of ordinary differential equations solved using
the Runge-Kutta RK45 method) is used as the real process during simulations.
At first, the dynamic neural model NN1 of the MLP type is developed. It has
the general structure

y(k) = f(u(k − 2), y(k − 1), y(k − 2))

As input and output variables have different orders of magnitude, they are scaled
as u = 100(FI − FI0), y = 0.0001(NAMW − NAMW0) where FI0 = 0.028328,
NAMW0 = 20000 correspond to the initial operating point. The sampling time is
1.8 min. The network has 6 hidden nodes with the ϕ = tanh transfer function. For
training the BFGS (Broyden-Fletcher-Goldfarb-Shanno) optimisation algorithm
is used. Model development is thoroughly discussed in [5].
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Fig. 1. The first 500 samples of the training data set (left) and the first 500 samples
of the validation data set (right), the complete sets have 2000 samples

Table 1. Accuracy of the neural approximator NN2 for gradient-based and particle
swarm optimisation algorithms

Optimisation algorithm SSEtraining SSEvalidation

Gradient-based optimisation 5.273419 × 1011 4.179207 × 1011

Particle swarm optimisation 2.515997 × 1010 3.319000 × 1010

In order to train the neural approximator (the network NN2), a series of
random changes of the reference trajectory is generated. Both training and vali-
dation data sets have 2000 samples, the first quarters of them (for good presen-
tation) are shown in Fig. 1. The prediction horizon is N = 10. The network has
2 inputs (u(k − 1) and y(k)), 3 hidden nodes with the ϕ = tanh transfer func-
tion and 9 outputs, due to process delay the quantity k1,1(k) is always 0. The
optimisation problem (11) is solved by means of the gradient-based algorithm
(the BFGS algorithm with shifted penalty function) and the particle swarm op-
timisation algorithm (the population size is 25, the maximum number of epochs
is 2000). Numerical values of the obtained SSE (the Sum of Squared Errors)
objective function are given in Table 1. The trajectories obtained as a result of
optimisation in two compared algorithms much better demonstrate inefficiency
of the classical approach and efficiency of the particle swarm optimisation algo-
rithm. Fig. 2 shows the first quarters of input and output trajectories obtained
in the gradient-based and particle swarm optimisation algorithms. In the first
case the optimisation routine finds the solution which is a shallow local minima.
Unfortunately, the explicit MPC does not follow the assumed reference trajec-
tory. Conversely, the particle swarm optimisation algorithm finds parameters of
the neural approximator NN2 which gives good closed loop trajectories.

Next, the following four nonlinear MPC algorithms are compared:

a) the discussed explicit MPC algorithm with neural approximation and parti-
cle swarm optimisation used for off-line training of the network NN2,
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a)

b)

Fig. 2. The first 500 samples of input (FI) and output (NAMW) trajectories for the
validation data set trajectory NAMWref obtained in the explicit MPC algorithm: a) for
optimisation of the neural approximator NN2 the gradient algorithm is used, b) for
optimisation the PSO algorithm is used

b) the classical explicit MPC algorithm with Nonlinear Prediction and Lin-
earisation (MPC-NPL), with on-line successive linearisation of the neural
dynamic model (the NN1 network) and LU matrix decomposition [6],

c) the MPC-NPL algorithm with on-line successive linearisation of the neural
dynamic model (the NN1 network) and quadratic programming [5,7,15],

c) the MPC-NO algorithm with on-line nonlinear optimisation in which the
neural dynamic model (the NN1 network) is used for prediction without any
simplifications [7,15].

Parameters of all MPC algorithms are the same N = 10, λ = 0.2, in the last three
approaches Nu = 3. The manipulated variable is constrained: Fmin

I = 0.003,
Fmax
I = 0.06,	Fmax

I = 0.005. Fig. 3 shows trajectories obtained in the discussed
explicit MPC algorithm and in the classical explicit MPC-NPL algorithm with
on-line successive linearisation and LU matrix decomposition repeated at each
sampling instant. Table 2 shows accuracy of all compared algorithms in terms of
the SSE index and their computational complexity (in Millions of FLoating Op-
erationS) for the whole simulation scenario (100 iterations). For the polymerisa-
tion process the all three suboptimal algorithms give control accuracy very close
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Fig. 3. Simulation results: the discussed explicit MPC algorithm (solid line) and the
classical explicit MPC-NPL algorithm with on-line successive linearisation and LU
matrix decomposition (dashed line)

Table 2. Accuracy (SSE) and computational load (MFLOPS) of compared nonlinear
MPC algorithms

Algorithm SSE MFLOPS

Discussed explicit MPC with neural approximation 2.218638 × 109 0.164554
Explicit MPC-NPL with on-line LU decomposition 2.211703 × 109 0.217110
MPC-NPL with on-line quadratic programming 2.211703 × 109 0.404686
MPC-NO with on-line nonlinear optimisation 2.210627 × 109 4.109900

to that of the ”ideal” computationally demanding MPC-NO approach. More-
over, the discussed explicit MPC algorithm works very similarly as the classical
explicit MPC-NPL algorithm with on-line successive linearisation of the neural
dynamic model and LU matrix decomposition. At the same time it is very com-
putationally efficient: it is 25% more efficient when compared with the classical
explicit algorithm and as much as 60% more efficient in comparison with the
MPC-NPL algorithm with on-line quadratic programming.

5 Conclusions

The explicit MPC algorithm discussed in this paper is very computationally
efficient because, unlike the classical explicit approach [6], successive on-line
model linearisation and matrix calculations are not necessary. The current value
of the control signal is calculated using a simple explicit formula and the neural
approximator. Such a network can be trained off-line to mimic behaviour of the
classical explicit MPC algorithm [4]. In this work an alternative development
of the explicit neural MPC algorithm is discussed. The neural approximator is
trained directly off-line, without the necessity of designing the classical explicit
algorithm. As the resulting optimisation problem may be difficult, non-convex
and multimodal, the particle swarm optimisation algorithm is used.
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Abstract. This paper presents a new methodology of designing of non-
linear dynamic neural model in the state-space representation. Further-
more, an application of the Unscented Kalman Filter to the training of
the designed neural model is also shown. The final part of this work pro-
vides an illustrative example of the application of the proposed methodol-
ogy to the identification and robust fault detection of the tunnel furnace.

Keywords: Dynamic GMDH neural network, state-space representa-
tion, non-linear dynamic system identification, Unscented Kalman Filter,
robust fault detection.

1 Introduction

The effectiveness of the Fault Detection and Isolation (FDI) systems [1–3] and
Fault Tolerant Control schemes (FTC) [4–6] mostly depends on the quality of
the models obtained in the process of the system identification. The Artificial
Neural Networks (ANNs) are often applied in the process of the dynamic non-
linear system identification [2, 7–9].

Unfortunately, ANNs have some disadvantages, which limit the effectiveness
of the developed FDI and FTC systems. The most important disadvantage is
inefficient quality of the neural model following from the inappropriate selection
of the network architecture and the errors following from inaccurate estimation of
the neurons parameters. The high quality of the neural model is crucial because
it is used in the FDI systems to generate the residuals which should be close to
zero in the fault-free case, and it should be distinguishably different from zero
in the faulty case. Under such an assumption, the faults are detected by the
application of a fixed threshold on the residual signal. Unfortunately, appearing
of the neural model uncertainty or measurements noise can lead to false alarms
or undetected faults. Among other disadvantages, only rare approaches ensure
the stability of the neural models during the process of the dynamic system
identification and usually not available description of a neural model in the
state-space representation. Moreover, there is a limited number of approaches
that allow mathematically to describe the neural model uncertainty [10, 11] and

L. Rutkowski et al. (Eds.): ICAISC 2013, Part I, LNAI 7894, pp. 140–149, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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this factor has the main impact on effectiveness of the contemporary FDI and
FTC systems.

To tackle this problem the Group Method of Data Handling (GMDH) ap-
proach can be employed [11–14]. The concept of this approach relies on replacing
the complex neural model by the set of the hierarchically connected partial mod-
els (neurons). In this paper a new structure of the multi-input and multi-output
dynamic neuron in the state-space representation is proposed. This description
enables to obtain constrains of the parameter estimates which warranty the
stability of dynamic GMDH neural model. In order to obtain the constrained
parameter estimates and the neural model uncertainty the Unscented Kalman
Filter (UKF) [15] was applied. This knowledge enable to calculate the adaptive
threshold which should contain the real system response in the fault-free mode.
An occurrence of the fault is signaled when system output crosses the adaptive
threshold.

2 The Synthesis of GMDH Neural Models

Let us assume that in the general case each neuron in the GMDH network has
the following form:

ŝ
(l)
i,j,k = F

(
r
(l)
i,k,p

(l)
i,j

)
, (1)

where: r
(l)
i,k ∈ Rnr for i = 1, ..., nR are the neuron input vectors formed as the

combinations of the neural model inputs r
(l)
i,k = [u

(l)
i,k, . . . , u

(l)
j,k]T , ŝ

(l)
i,j,k ∈ Rns for

j = 1, ..., nN are the neurons outputs vectors formed as the combinations of the

network outputs [ŷ
(l)
i,k, . . . , ŷ

(l)
j,k]T , p

(l)
i,j ∈ Rnr×ns denotes the parameter estimate

matrix, F(·) is an activation function, and l is the number of layer the GMDH
network.

The process of the synthesis of the first layer of the GMDH neural network

begins from the creation of a set of nR vectors of neuron inputs r
(l)
i,k based on the

combinations of the model inputs uk ∈ Rnu belonging to the training data set T .

The number of the vectors r
(l)
i,k depends on the number of model inputs nu and

the number of the neuron inputs nr. Each i-th vector r
(l)
i,k constitutes the neurons

stimulation which results in the formation of j-th neurons and their outputs

ŝ
(l)
i,j,k, which are the estimates of the modeled system outputs. The number nN

of these neurons, for the each subsequent i-th vector r
(l)
i,k, depends on the number

of modeled output signals ny and an assumed number of the neurons inputs nr.
In the case of the GMDH neural network the behaviour of each partial model

should reflect the behaviour of the system being identified. It follows from the
rule of the GMDH algorithm that the parameters of each partial model are esti-
mated in such a way that its output is the best approximation of the real system
output. In this situation, the partial model should have the ability to repre-
sent the dynamics. To tackle this problem, in this paper a dynamic neuron in
the state-space representation is defined. The proposed dynamic neuron consists
of two submodules: the linear state-space module and the activation module.
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The behavior of the linear state-space part of a dynamic neuron is described by
the following equation:

zk+1 = Azk + Bri,k, (2)

s̃i,j,k = Czk + Dri,k, (3)

where ri,k ∈ Rnr and s̃i,j,k ∈ Rns are the inputs and outputs of the linear
state-space submodule of the dynamic neuron. A ∈ Rnz×nz , B ∈ Rnz×nr , C ∈
Rns×nz , D ∈ Rns×nr , zk ∈ Rnz , where nz represents the order of the dynamics.
Additionally, the matrix A has an upper-triangular form, i.e.

A =

⎡⎢⎢⎢⎣
a11 a12 · · · a1,nz

0 a22 · · · a2,nz

...
. . .

...
0 0 · · · anz,nz

⎤⎥⎥⎥⎦ . (4)

This mean that the dynamic neuron is asymptotically stable iff:

| ai,i |< 1, i = 1, ..., nz. (5)

Moreover:
C = diag(c1, ..., cns , 0, ..., 0︸ ︷︷ ︸

nz−ns

). (6)

The linear state-space submodule output is used as the input for the activation
module:

ŝi,j,k = F(s̃i,j,k). (7)

with F(·) = [f1(·), ..., fns(·)]T where fi(·) denotes a non-linear activation func-
tion (e.g., a hyperbolic tangent).

In order to estimate the unknown parameters of the dynamic neurons the Un-
scented Kalman Filter (UKF) [15] can be applied. In the subsequent part of the
paper, it will be shown that, the UKF-based constrained parameter estimation
warranties the asymptotically stable neurons of the GMDH model. Moreover,
an application of this algorithm to the parameter estimation process enables to
obtain the uncertainty of the partial models, simultaneously. After the estima-
tion, the parameters of the neurons are not modified during the further network
synthesis. The obtained parameter estimates and their uncertainty enable calcu-
lation of the neuron responses and the adaptive threshold, which can be applied
in the robust fault detection scheme.

At the next stage of GMDH network synthesis, a validation data set V is used

to calculate the processing error Q(ŝ
(l)
i,j) of each partial model in the current l-th

network layer.

Q =

⎡⎢⎢⎢⎢⎣
Q(ŝ

(l)
1,1,k) . . . Q(ŝ

(l)
1,j,k) . . . Q(ŝ

(l)
1,nN ,k)

. . . . . . . . . . . . . . .

Q(ŝ
(l)
i,1,k) . . . Q(ŝ

(l)
i,j,k) . . . Q(ŝ

(l)
i,nN ,k)

. . . . . . . . . . . . . . .

Q(ŝ
(l)
nR,1,k) . . . Q(ŝ

(l)
nR,j,k) . . . Q(ŝ

(l)
nR,nN ,k)

⎤⎥⎥⎥⎥⎦ (8)
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Based on the chosen evaluation criterion [16], it is possible to select the best-
fitted neurons in the layer. Selection methods in the GMDH neural networks play
the role of a mechanism of structural optimization at the stage of constructing a
new layer of neurons. According to the chosen selection method, elements that
introduce too big processing error are removed. In order to achieve this goal the
following method based on the soft selection can be applied:

Input : Q – the matrix of the quality indexes of all dynamic neurons in the
l-th layer, no – the number of opponent neurons, nw – the number of winnings
required for i-th neuron selection.
Output : The set of neurons after selection.

(1) Select j = 1 column of matrix Q representing the quality indexes of all nR

neurons modeling j-th vector of system outputs si,j,k created on the basis
of all i = 1, . . . , nR vectors of system inputs ri,k.

(2) Conduct series of ny competitions between each i-th neuron in the j-th
column and no randomly selected neurons (the so-called opponent) from the
same column. The i-th neuron is the so-called winner neuron when:

Q(ŝ
(l)
i,1,k) ≤ Qo(ŝ

(l)
i,1,k), (9)

where o = 1, . . . , no and Qo denotes a quality index of the opponent neuron;
(3) Select the neurons for the (l+1)-th layer with the number of winnings bigger

than nw (the remaining neurons are removed);
(4) Repeat the steps (1)–(3) for j = 2, . . . , nN column of matrix Q representing

the quality indexes of all neurons modeling the remaining j = 2, . . . , nN

vectors of system outputs ŝ
(l)
i,1,k.

After the selection procedure, the outputs of the selected neurons become the
inputs to the neurons in the subsequent layer. During the synthesis of the GMDH
neural network, the number of layers suitably increases (Fig. 1).
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ŝ
(nl)
nR,nN ,k

Neuron

Neuron

Neuron

Neuron

selected

selected

selected

selected

Neurons selectionNeurons selection

Fig. 1. Synthesis of the GMDH neural network
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In the next stage of GMDH network synthesis the termination condition test-

ing is performed. For this reason the quality indexes Q(ŝ
(l)
i,j) for all neurons

included in the l layer are calculated. The quality index Q
(l)
j,min represents the

processing error for the best neuron in this layer which approximates the j-th
vector of system outputs:

Q
(l)
j,min = min

i=1,...,nR

Q(ŝ
(l)
i,j) for j = 1, . . . , nN . (10)

The values Q(ŝ
(l)
i,j) can be determined with the application of the defined eval-

uation criterion, which was used in the selection process. The synthesis of the
network is completed when each of the calculated quality indexes reaches the
minimum:

Q
(lopt)
j,min = min

l=1,...,nl

Q
(l)
j,min for j = 1, . . . , nN . (11)

The termination of the synthesis appears independently for each vector of

system outputs ŝ
(l)
i,j and as a result a set of quality indexes, corresponding to

each vector of system outputs is obtained Q1, Q2, . . . , QnN .

3 Parameters Estimation of Dynamic Neurons

Let us define a state vector (in order to simplify the notation, the indexes
(l)
i in

the r
(l)
i,k and

(l)
i,j in ŝ

(l)
i,j,k are omitted):

xk =

[
pk

zk

]
, (12)

which is composed of the parameter vector of the neuron pk as well as of the
state of the neuron, which is described in a form:

zk+1 = A(pk)zk + B(pk)rk, (13)

s̃k = C(pk)zk + D(pk)rk, (14)

ŝk = F(s̃k). (15)

The vector pk is composed of the diagonal elements of the matrix A, i.e.

pk = [a11, ..., an,n, ...]
T , (16)

while the remaining elements of pk are composed of the remaining parameters
of A, as well as all elements of B, C and D. Thus, the dimension of pk is:

np =
(nz × nz) + nz

2
+ nz × nr + ns + ns × nr. (17)
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It should be also pointed out that instead of A (B,C,D) the notation A(pk)
(B(pk),C(pk),D(pk)) is introduce which clearly denotes the dependence on pk.

Finally, the state-space model is:

xk+1 =

[
pk

A(pk)zk + B(pk)rk

]
+ �k =

G(xk, rk) + �k,

(18)

sk =F(C(pk)zk + D(pk)rk) + υk =

H(xk, rk) + υk.
(19)

where G : Rn × Rnr → Rn and H : Rn × Rnr → Rns are the process and obser-
vation models, respectively. rk ∈ Rnr and sk ∈ Rns are the inputs and outputs
data, ρ(x0), ρ(�k−1), ρ(υk) are the Probability Density Function (PDF), where
x0 ∈ Rn is the initial state vector, �k−1 ∈ Rn is the process noise, and υ0 ∈ Rn

is the measurement noise. It is assumed that the process noise and the measure-
ment noise are uncorrelated. Moreover, mean and covariance of ρ(�k−1) and
ρ(υk) are known and equal to zero and Q, R.

The profit function which is the value of the conditional PDF of the state
vector xk ∈ Rn given the past and present measured data s1, . . . , sk is defined
as follows:

J(xk) � ρ(xk|(s1, . . . , sk)). (20)

The parameter and state estimation problem can be defined as the maximization
of (20). In order to solve the following problem the UKF can be applied [17].
UKF employs the unscented transform, which approximates the mean ŝk ∈ Rns

and covariance P ss
k ∈ Rns×ns of the random vector sk obtained from the non-

linear transformation sk = H(xk), where xk is a random vector, which mean
x̂k ∈ Rn and covariance P xx

k ∈ Rn×n are assumed to be known.
The task of training of dynamic neuron relies on the estimation of parameters

vector xk which satisfies the following interval constraint:

−1 + δ ≤ eTi xk ≤ 1− δ, i = 1, ..., n (21)

where: ei ∈ Rnp+n whereas e1 = [1, 0, ..., 0]T , e2 = [0, 1, ..., 0]T , ..., enp+n =
[0, 0, ..., 1]T , and δ is a small positive value. These constrains follow directly
from the asymptotic stability condition (5). While δ is introduced in order to
make the above mentioned problem tractable.

The neural model has a cascade structure what follows from the fact that
the neuron outputs constitute the neuron inputs in the subsequent layers. The
neural model which is the result of the cascade connection of dynamic neurons
is asymptotically stable, when each of neurons is asymptotically stable [18]. So,
a fulfilment of (5) (being a result of (21)) for each neuron allows obtaining an
asymptotically stable dynamic GMDH model. Thus, the objective of the interval-
constrained parameter-estimation problem is to maximize (20) subject to (21).

In order to perform the neuron training process it is necessary to truncate the
probability density function at the n constraint edges given by the rows of the
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state interval constraint (21) such that the pseudomean x̂t
k,k of the truncated

PDF is an interval-constrained state estimate with the truncated error covariance
P xx

k,k. The probability density function truncation procedure allows avoiding the
explicit on-line solution of a constrained optimization problem at each time
step. Moreover, it assimilates the interval-constraint information in the state
estimate x̂t

k|k and the error covariance P xxt
k|k . The details of the of PDF truncation

procedure in the paper [15] can be found.
The application of the UKF allows obtaining the state estimates as well as

the uncertainty of the GMDH model in the form of a matrix P xxt which can
then be applied to the calculation of the adaptive threshold and to perform a
robust fault detection:

ŷmi,k = Fi

(
cix̂k − t

α/2
nt−np

σ̂i

√
ciP

xxtcTi

)
, (22)

ŷMi,k = Fi

(
cix̂k + t

α/2
nt−np

σ̂i

√
ciP

xxtcTi

)
, (23)

where ci stands for the i-th row (i = 1, ..., ns) of the matrix C of the output

neuron, σ̂i is the standard deviation of the i-th fault-free residual and t
α/2
nt−np

is
the t-Student distribution quantile.

4 Experimental Results

The objective of this section is to design a GMDH model according to the
approaches described in the previous sections and its application to the ro-
bust fault detection of the tunnel furnace. The considered tunnel furnace is
designed to mimic, in the laboratory conditions, the real industrial tunnel fur-
naces, which can be applied in the food industry or production of ceramics among
others. The furnace is equipped with three electric heaters and four tempera-
ture sensors, so it can be considered as a three-input and four-output system
(t1, t2, t3, t4) = f(u1, u2, u3), where the t1, . . . , t4 represent measurements of the
temperatures from sensors and values u1, . . . , u3 denote the input voltages al-
lowing to control the heaters. The data set used for the identification consists
of 2600 samples and was filtered with the Matlab Signal Processing Toolbox.
The output signals were scaled linearly taking into consideration the response
range of the output neurons (e.g. for the hyperbolic tangent neurons this range
is [−1, 1].

The parameters of the dynamic neurons in the state-space representation were
estimated with the application of the UKF training algorithm presented in the
section 3. The selection of best performing neurons in terms of their processing
accuracy was realized with the application of the soft selection method based on
the following evaluation criterion:

QV =

nV∑
k=1

(sk − ŝ
(l)
n,k)2/

nV∑
k=1

s2k. (24)
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Table 1. Values of QV(t̂1)− QV(t̂4) for the best neurons in the subsequent layers for
the validation data

Layer QV(t̂1) QV(t̂2) QV(t̂3) QV(t̂4)

1 0.1000 0.0880 0.0798 0.0902
2 0.0322 0.0510 0.0498 0.0602
3 0.0302 0.0317 0.0266 0.0334
4 0.0261 0.0212 0.0199 0.0224
5 0.0283 0.0244 0.0229 0.0256

Fig. 2. Temperatures t1 − t4 of the tunnel furnace and the corresponding adaptive
thresholds obtained with the dynamic GMDH model

Table 2. Values of QV(t̂1)−QV(t̂4) for the non-linear dynamic GMDH obtained with
the application of the UKF and ARS

Algorithm QV(t̂1) QV(t̂2) QV(t̂3) QV(t̂4)

UKF 0.0261 0.0212 0.0199 0.0224
ARS 0.1540 0.0934 0.2834 0.1398

Table 2 presents the values of the evolution criterion for the subsequent layers,
i.e. these values are obtained for the best performing neurons in a particular
layer of the GMDH neural network. The results show that the gradual decrease
of the value of the evaluation criterion QV occurs when a new layer of the GMDH
network is introduced. It follows from the increase of the model complexity as
well as its modelling abilities. However, when the model is too complex (5-th
layer of the network), the QV increases. Additionally, for the sake of comparison,
in the table the results obtained with the application of the Adaptive Random
Search (ARS) algorithm with the orthogonal projection, introduced in order to
keep the neurons stable [19] are also presented. Moreover, figure 2 show the
temperatures t1− t4 of the tunnel furnace and the adaptive thresholds obtained
with the application (22-23) for the validation data (no fault case).
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Fig. 3. Detection of the faulty temperature sensor with the application of the adaptive
threshold

After the synthesis of the GMDH model, it is possible to employ it for the ro-
bust fault detection of the tunnel furnace. Figure (3) presents the measurements
of the temperature t1 from the faulty sensor (simulated during 120 seconds)
and the adaptive threshold obtained with the application of the GMDH neural
network. As it can be seen fault is detected for k = 1400 when value of the
temperature t1 crosses the adaptive threshold.

5 Conclusions

The objective of this paper was concerned with designing the robust fault detection
system based on the dynamic GMDH neural network. The state-space representa-
tion of the neurons and application of the UKF to parameters estimation allows to
obtain the stable non-linear dynamic GMDH neural model. Moreover, the appli-
cation of the UKF enables to calculate the adaptive threshold of the GMDH model
and apply it to the robust fault detection of the dynamic systems. In the experimen-
tal part of the paper the results of application of the proposed approach to the iden-
tification and robust fault detection of the tunnel furnace are presented. Moreover,
the comparison of the identification results shows ascendancy of the UKF over the
ARS algorithm. Finally, the resulting robust fault detection scheme is successively
applied to detection of faulty temperature sensor in the tunnel furnace.
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Abstract. We propose a fraud detection method based on the user
accounts visualization and threshold-type detection. The visualization
technique employed in our approach is the Self-Organizing Map (SOM).
Since the SOM technique in its original form visualizes only the vectors,
and the user accounts are represented in our work as the matrices storing
a collection of records reflecting the user sequential activities, we propose
a method of the matrices visualization on the SOM grid, which consti-
tutes the main contribution of this paper. Furthermore, we propose a
method of the detection threshold setting on the basis of the SOM U-
matrix. The results of the conducted experimental study on real data in
the field of telecommunications fraud detection confirm the advantages
and effectiveness of the proposed approach.

Keywords: fraud detection, Self-Organizing Map, threshold classifica-
tion, visualization, telecommunications data visualization.

1 Introduction

The Self-Organizing Map (SOM) is an example of the artificial neural network
architecture. It was by introduced by T. Kohonen in [1] as a generalization and
extension of the concepts proposed in [2]. This algorithm can be also interpreted
as a visualization technique, since the algorithm performs a projection from mul-
tidimensional space to 2-dimensional space, this way creating a map structure.
The location of points in 2-dimensional grid aims to reflect the similarities be-
tween the corresponding objects in multidimensional space. Therefore, the SOM
algorithm allows for visualization of relationships between objects in multidi-
mensional space. An exhaustive and detailed description of the SOM method
can be found in [3].

We employ the SOM method in the fraud detection framework. Fraud detec-
tion using a visualization technique is a particularly profitable approach, since it
assures the two significant advantages. First of all, a graphical representation of
an analyzed dataset is eligible for convenient and fast analysis and interpretation,

L. Rutkowski et al. (Eds.): ICAISC 2013, Part I, LNAI 7894, pp. 150–161, 2013.
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even by a non-expert, who can formulate some conclusions or at least suspicions
due to the analyzed data (for example, the person may notice certain fraudu-
lent activity). Second of all, the efficient and effective visualization technique
(like, for example, the SOM) combined with a chosen classification algorithm
(performing the actual detection) leads to satisfactory detection results.

1.1 Related Work

There is a number of fraud detection problems, including financial frauds [4–6],
Internet frauds [7–9], and telecommunications frauds [10–13], to name but a few.
A common major difficulty associated with all those fraud detection fields is that
there is a large amount of data that needs to be analyzed, and simultaneously,
there is only a small number of fraudulent samples, which could be used as the
training data for the supervised methods. Consequently, this problem essentially
inhibits and limits an application of the supervised techniques. The SOM ap-
proach proposed for fraud detection in this work is an unsupervised method,
therefore, it is robust to the mentioned before difficulty, and consequently, it is
especially useful in the fraud detection framework.

The general problem of fraud detection has been reviewed in [14, 15].
The visualization approach to fraud detection appears relatively rarely in the

literature, and the problem apparently has not yet gained the deserved atten-
tion. In the paper [7], a neural visualization of network traffic data for computer
intrusion detection is proposed. The system introduced in [7] applies neural pro-
jection architectures to detect anomalous situations taking place in a computer
network. By its advanced visualization facilities, the proposal of [7] provides an
overview of the network traffic, as well as identification of anomalous situations
tackled by computer networks. The authors of [6] consider six classes of data
mining techniques, i.e., classification, regression, clustering, prediction, outlier
detection, and visualization, in context of the fraud detection issue. According
to one of the conclusions of [6], data visualization provides an easily understand-
able presentation of data and converts complicated data characteristics into clear
patterns, which allow users to view the complex patterns or relationships uncov-
ered in the data mining process.

However, both of the mentioned works ([7] and [6]) refer to a specific fraud
detection field – computer intrusion detection in [7] and financial fraud detection
in [6]. Furthermore, both these papers deal with the detection of single fraudulent
user activities. Nevertheless important is the problem of detection of the entire
fraudulent user accounts resulting from a sequential repeatedly committed user
fraudulent behavior, which is the issue considered in our paper (the term “user
account” is explained in Section 3).

1.2 Our Proposal

In this paper, we propose a fraud detection based on the SOM visualization and
classification. Consequently, the proposed approach consists of the two main
steps:
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Step 1. SOM visualization of the multidimensional data of the user accounts.
Step 2. The actual fraud detection on the basis of the threshold-type binary

classification algorithm.

In Step 1, the entire user accounts are visualized in 2-dimensional space of
the SOM grid. The user accounts are numerically represented as data matrices
storing a collection of records reflecting the user activities. In other words, the ac-
counts are the data objects characterized by features possessing their own inner-
dimensionality (consequently, creating the matrices). Since the standard SOM
technique visualizes only single vectors, it is necessary to formulate a method of
the user accounts visualization on the SOM grid, which is the main proposal of
this paper (described in details in Section 4).

In Step 2, the threshold-type binary classification algorithm performs the final
detection of fraudulent accounts. In our paper, we propose also a method of the
classification threshold setting on the basis of the SOM U-matrix.

The advantage of the introduced method is that it is a general fraud detection
approach, i.e., it is not oriented to certain particular field or application, and it
can be easily adopted in every information system collecting the data deriving
from users sequential activity. Furthermore, our approach is an unsupervised
technique, thus, avoiding the problems associated with insufficient training data,
which essentially affect the final detection results of supervised data mining
methods (mentioned in Section 1.1).

The experimental study conducted on real data in the field of fraud detection
in telecommunications verifies and confirms the usefulness and effectiveness of
the proposed approach, and it demonstrates the benefits associated with the
preliminary data visualization, which transforms the input high-dimensional in-
formation into a 2-dimensional image – easy and convenient for analysis and in-
terpretation, even by non-experts. Although our experiments have been carried
out on the specific telecommunications dataset, the proposed approach itself is
more general, and it can be easily applied in case of different datasets containing
the data reflecting the users repeatedly evinced behavior.

1.3 The Remainder of This Paper

The rest of this paper is organized as follows: in Section 2, the SOM algorithm
is described; in Section 3, the representation of the user data is described and
explained; in Section 4, the main proposal of our paper, i.e., a method of the
user accounts visualization on the SOM, is presented; in Section 5, the actual
fraud detection is described; in Section 6, the experimental results are reported;
while Section 7 summarizes the whole paper, and points out certain directions
of the future research.

2 Self-Organizing Map

The SOM algorithm provides a non-linear mapping between a high-dimensional
original data space and a 2-dimensional map of neurons. The neurons are ar-
ranged according to a regular grid, in such a way that the similar vectors in
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input space are represented by the neurons close in the grid. Therefore, the
SOM technique visualize the data associations in the input high-dimensional
space.

It was shown in [16] that the results obtained by the SOM method are equiv-
alent to the results obtained by optimizing the following error function:

e (W) =
∑
r

∑
xμ∈Vr

∑
s

hrsD (xμ, ws) (1)

≈
∑
r

∑
xμ∈Vr

D (xμ, wr) + K
∑
r

∑
s�=r

hrsD (wr , ws) , (2)

where xμ are the objects in high-dimensional space, wr and ws are the prototypes
of objects on the grid, hrs is a neighborhood function (for example, the Gaussian
kernel) that transforms non-linearly the neuron distances (see [3] for other choices
of neighborhood functions), D (·, ·) is the squared Euclidean distance, and Vr is
the Voronoi region corresponding to prototype wr. The number of prototypes is
sufficiently large so that D (xμ, ws) ≈ D (xμ, wr) + D (wr, ws).

According to equation (2), the SOM error function can be decomposed as the
sum of the quantization error and the topological error. The first one minimizes
the loss of information, when the input patterns are represented by a set of
prototypes. By minimizing the second one, we assure the maximal correlation
between the prototype dissimilarities and the corresponding neuron distances,
this way assuring the visualization of the data relationships in the input space.

The SOM error function can be optimized by an iterative algorithm consisting
of two steps (discussed in [16]). First, a quantization algorithm is executed. This
algorithm represents each input pattern by the nearest neighbor prototype. This
operation minimizes the first component in equation (2). Next, the prototypes
are arranged along the grid of neurons by minimizing the second component in
the error function. This optimization problem can be solved explicitly using the
following adaptation rule for each prototype [3]:

ws =

∑M
r=1

∑
xμ∈Vr

hrsxμ∑M
r=1

∑
xμ∈Vr

hrs

, (3)

where M is the number of neurons, and hrs is a neighborhood function (for
example, the Gaussian kernel of width σ (t)). The width of the kernel is adapted
in each iteration of the algorithm using the rule proposed by [17], i.e., σ (t) =

σi (σf/σi)
t/Niter , where σi ≈ M/2 is typically assumed in the literature (for

example, in [3]), and σf is the parameter that determines the smoothing degree
of the principal curve generated by the SOM algorithm [17].

3 User Account Representation

The term “user account”, in our work, denotes a set of data records assigned to a
one particular individual user. A record stores the information describing certain
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single operation or activity of the individual. In other words, a user account
reflects certain sequential activity of a single user. Depending on the information
system considered the records and the sets of records may somewhat vary. For
example, in case of the telecommunications information system, the record will
store the data characterizing a single call. This kind of call description is often
referred to as the Call Data Record (CDR) – storing the basic information, or
Call Detailed Record (the same CDR abbreviation) – storing the precise detailed
information. And consequently, a telecommunication account will assemble a set
of the CDRs.

Each record consists of some number of fields, which are a unit inseparable
portion of information. For example, in case of the telecommunications system,
the basic CDR may consist of: start-time, destination, and duration.

A set of records creates a data matrix representing a user account. Taking
into consideration the standard data mining terminology, and casting the user
account onto such framework, we can interpret the account as an object (pattern,
observation) consisting of multidimensional features. In other words, one can say
that the features have their own inner-dimensionality. And, in Section 4, we will
demonstrate, how to visualize the user accounts on the SOM grid.

4 SOM Visualization of the User Accounts

The user accounts are represented by data matrices assembling a sequence of
records. Typically, the number of records is a lot larger than the number of
fields in a single record. Hence, a data matrix representing a single user account
has the following form: ⎛⎜⎝f11 · · · f1m

...
fn1 · · · fnm

⎞⎟⎠ , (4)

where n is the number of records (the number of inner-dimensions of features),
m is the number of features (fields) in a single record, and n� m.

A single user account can be visualized on the SOM by executing the following
two steps:

Step 1. SOM visualization of all features of the account.
Step 2. Computing the centroid of the features on the SOM grid, and as a result,

obtaining a one 2-dimensional point visualizing the entire account.

In Step 1, we visualize all features of a single user account, i.e., we project the
columns of the matrix given in (4) onto the SOM grid.

In Step 2, we visualize the entire account as the geometrical center (centroid)
of all account features projected on the SOM.

Regarding the relation n� m in (4), it is much more beneficial to reduce the
inner-dimensionality of features (fields of the records) by projecting them onto



Employing Self-Organizing Map for Fraud Detection 155

the SOM grid as the first operation, and next, to compute the centroids of the
visualized 2-dimensional features in order to obtain the account visualization.

The process of the user account visualization using the SOM technique is
presented in Fig. 1, where f1, f2, and f3 denote the three example features,
which are also the vertices of a triangle. The centroid of the triangle (laying on
the intersection of its geometrical medians) is the desired target visualization of
the entire account.

f2

f1

f3

Account Visualization

Fig. 1. Visualization of an example user account

As it is shown in Fig. 1, the final account visualization does not necessarily
need to correspond to a particular neuron on the SOM grid. The account is
simply represented by a pair of coordinates, and on the basis of these coordinates,
it is recognized by the employed classification algorithm (described in Section 5)
as non-fraudulent or fraudulent.

5 Fraud Detection

After the user accounts in an analyzed dataset are visualized on the SOM grid,
one needs to detect the fraudulent ones among them. This can be accomplished
using a chosen binary classification algorithm. The fraudulent accounts visualized
on the SOM are treated in our study as outliers. Therefore, the fraud detection
in our work comes down to the outlier detection problem. A useful tool in the
outlier detection is the simple threshold-type binary classification technique.
In our study, we propose to apply that algorithm, because it is an effective
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approach, when operating on the SOM grid (2-dimensional space), and also, its
computational simplicity makes it an efficient method. We do not focus on the
classification problem itself, however of course, one may consider employing the
different classification algorithms, also, the mathematically more advanced ones.

The classification method utilized in this paper is presented graphically in
2-dimensional space (like in case of the SOM visualization space) in Fig. 2. An
example SOM grid is depicted as the background. The method detects the fraud-
ulent accounts visualized beforehand on the SOM grid. The accounts localized
inside the circle illustrating the classification threshold are considered to be non-
fraudulent, while the accounts laying outside the circle (account 5 and account
9) are detected as fraudulent. The center of the circle is chosen as the centroid
of the SOM grid, while the radius of the circle is set according to the method
described in Section 5.1.

1

2

3
4

10

6

7
8

5

9

Fig. 2. Graphical illustration of the threshold-type binary classification method

5.1 Classification Threshold Setting

We propose to set the classification threshold to the value of the dissimilarity be-
tween the SOM grid centroid and the SOM neuron corresponding to the maximal
value in the U-matrix corresponding to that SOM. The U-matrix is a graphical
presentation of SOM. Each entry of the U-matrix corresponds to a neuron on
the SOM grid, while value of that entry is the average dissimilarity between the
neuron and its neighbors. Therefore, the series of high values in the U-matrix
(so called “ridges” of the U-matrix) represent the borderlines separating the data
clusters on the SOM grid.
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In our study, one needs to separate the non-fraudulent and fraudulent user
accounts. Therefore, we expect to have only one ridge in the U-matrix of our
SOM, and the classification threshold should possibly most accurately reflect
that ridge.

Naturally, one may wonder about using some clustering technique in order
to detect fraudulent accounts. It is, of course, possible, however, in our work,
we decided to use the described threshold-type binary classification algorithm,
because of its computational simplicity, efficiency, and empirically confirmed
efficacy. Moreover, in our experimental research, it was convenient to obtain the
Receiver Operating Characteristics (ROC) curves evaluating the investigated
approaches, by simply shifting the threshold value (see Section 6.3).

6 Experiments

In our experimental study, we have evaluated the proposed fraud detection
method on the basis of the comparison with the classical Gaussian-Mixture-
Model-based (GMM-based) fraud detection technique. The experiments have
been conducted on the telecommunications dataset, i.e., the telecommunications
frauds have been being detected.

6.1 Dataset Description

We have used the dataset consisting of 100 accounts of selected telecommunica-
tion users in the city of Warsaw in Poland. The data was collected in the time
interval between 1.03.2008 and 1.04.2008. A single call has been represented by
the call data record (CDR). Each CDR contains the information about a specific
call, made by a specific user. Hence, CDR consists of certain fields, such as: des-
tination, start-time, or duration. Notice that the abbreviation CDR refers to the
“call data record,” and not to the “call detail record” – the output log of the Pri-
vate Branch Exchange (PBX) that holds all the detailed data of each phone call
made. This is because we have utilized in our experimental study only the three
mentioned basic features of a phone call, i.e., the destination, the start-time,
and the duration of a call. Among the all 100 investigated telecommunication
accounts 10 were fraudulent.

6.2 GMM-Based Fraud Detection Method

As the reference method, we have used the traditional GMM-based fraud de-
tection approach [18]. According to the principles of the method, for each user
account, the GMM model is built, and the fraudulent accounts are chosen as the
ones significantly deviated from the reference user account, which reflects the
most typical user traits and behaviors. The degree of deviation from the reference
account is determined using an arbitrary set threshold. In case of the analyzed
telecommunications dataset, each GMM model consisted of three Gaussian prob-
ability distributions corresponding to three CDR fields. The prior probabilities
of each GMM model were equal, i.e., they were set to the value 1

3 .
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6.3 Evaluation Criterion

As the evaluation criterion, we have used the Receiver Operating Characteristics
(ROC) curves. This is a traditional way to investigate the performance of the
fraud detection methods [19]. The ROC curves show the fraud detection proba-
bility (true positive rate) versus the false alarm probability (false positive rate).
The perfect point on the ROC graph is the (0, 1) point, which corresponds to
detection of all frauds with simultaneous zero false alarms rate. Therefore, the
perfect ROC is the curve containing that point. The closer to that result is the
ROC curve, the better is the assessed detection method. On the other hand,
the point (1, 0) reflects the lowest detection performance. In order to evaluate
a specific curve, the Area Under ROC (AUROC) metric is used. It simply mea-
sures the area under the curve, and the perfect value of AUROC is 1. Also an
important value in assessment of the ROC curve is the highest fraud detection
rate corresponding to the zero false alarms rate (HDZF), and, the lowest false
alarms rate corresponding to the maximal (i.e., 1) fraud detection rate (LFMD).
The perfect value of HDZF is 1, and the perfect value of LFMD is 0.

In order to obtain the ROC curves evaluating the two examined methods, the
threshold value of the classification algorithm (in case of our method) and the
threshold measuring the deviation from the reference user account (in case of
the GMM-based method) have been uniformly decreased.

6.4 Experimental Results

The results of our experiments are shown in Figs. 3, 4(a), and 4(b). Figure 3
presents the U-matrix of the SOM visualizing the investigated telecommunica-
tions dataset. The marking letters ‘N’ denote the non-fraudulent accounts, while
the marking letters ‘F’ denote the fraudulent accounts. Figures 4(a) and 4(b)
show the ROC curves corresponding to the GMM-based method (Fig. 4(a)) and
to the proposed method (Fig. 4(b)).

After setting the classification threshold of our method to the constant value
chosen according to the method described in Section 5.1, the fraud detection
rate was 0.9, while the false alarms rate was 0.1.

As it is easily noticeable in Fig.3, the proposed SOM visualization of the user
accounts can clearly point out the large majority of the fraudulent accounts. Our
visualization maps the input complicated high-dimensional data onto a regular
2-dimensional SOM grid. Therefore, the information provided be our method
can be easily and intuitively analyzed and interpreted, even by a non-expert,
who will be strongly suggested to properly mark the fraudulent accounts in the
dataset.

Furthermore, our experimental research confirmed the superiority of the pro-
posed approach over the standard GMM-based fraud detection method. The
superiority was ascertained on the basis of the generated ROC curves and com-
puted AUROC values (0.844 vs. 0.936).
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Fig. 4. ROC curves of the two examined fraud detection methods
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7 Summary and Future Research

In this paper, a fraud detection approach was proposed. The approach employs
the SOM technique in order to visualize the user accounts. Since the user ac-
count are numerically represented by matrices (vectors of features possessing
their own inner-dimensionality), and the standard SOM approach visualizes only
single vectors, we proposed a method of matrices visualization on the SOM grid,
which was the main contribution of the paper. After the projection of the user
accounts on the SOM, the fraudulent accounts were detected using the threshold-
type binary classification algorithm. Furthermore, we proposed a method of the
classification threshold setting by finding the ridge in the U-matrix of a given
SOM.

The results of our experimental study conducted in the field of telecommuni-
cations fraud detection confirmed the effectiveness of the proposed approach by
showing the advantages of fast and convenient fraud detection on the basis of the
graphical data representation, and by reporting the superiority of our method
over the classical GMM-based fraud detection technique.

In the future research, one may consider applying certain different methods
performing the actual detection (described in Section 5). For example, SOM
clustering (with the enforced number of two clusters) could be performed. Also,
the separation borderline between the non-fraudulent and fraudulent accounts
could be more accurately fitted to the ridge in the U-matrix of a given SOM
– it could be certain more complicated geometrical line than the circle chord.
Moreover, one can utilize a reference user account (reflecting the most typical
user traits and behaviors) as the center of the classification circle threshold. This
could provide more accurate detection results.

Finally, the experiments on other datasets (for example, financial frauds or In-
ternet frauds) would make the experimental evaluation of the proposed method
more thorough and reliable, and they would confirm the assertions and conclu-
sions of this work.
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Abstract. In recent years, the unrestrainable growth of the volume of
data has raised new challenges in machine learning regarding scalability.
Scalability comprises not simply accuracy but several other measures
regarding computational resources. In order to compare the scalability
of algorithms it is necessary to establish a method allowing integrating
all these measures into a single rank. These methods should be able to
i) merge results of algorithms to be compared from different benchmark
data sets, ii) quantitatively measure the difference between algorithms,
and iii) weight some measures against others if necessary. In order to
manage these issues, in this research we propose the use of TOPSIS as
multiple-criteria decision-making method to rank algorithms. The use of
this method will be illustrated to obtain a study on the scalability of five
of the most well-known training algorithms for artificial neural networks
(ANNs).

Keywords: Machine learning, scalability, artificial neural networks,
multiple-criteria decision-making methods.

1 Introduction

In machine learning, scalability is defined by the effect that an increase in the size
of the training set has on the computational performance of an algorithm (accu-
racy, training time and allocated memory). So the challenge is to find a tradeoff
among them or, in other words, getting “good enough” solutions as “fast” as
possible and as “efficiently” as possible. This issue becomes critical in situations
in which there exist temporal or spatial constraints like: real-time applications
dealing with large data sets, unapproachable computational problems requiring
learning, or initial prototyping requiring quickly-implemented solutions.
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A sample of the interest generated by large-scale learning was revealed with
the organization of the workshop PASCAL Large Scale Learning Challenge [1] at
the 25th International Conference on Machine learning (ICML’08). It was con-
cerned with the scalability and efficiency of machine learning algorithms with
respect to computational, memory and communication resources. In order to
deal with large data sets, it is essential to minimize training time and allocated
memory while maintaining accuracy. However, up to now, most machine learning
algorithms do not provide an appropriate balance among them. Most algorithms
tend to look with favor on one of these variables against others. A more recent
sample of the relevance of scalability in learning, also known as “big learning”,
was disclosed with the conference of the Neural Information Processing Systems
Foundation (NIPS’2011), aiming to provide a forum for exchanging solutions
that address big learning problems. The relevance of these conferences for re-
searchers and practitioners is meaningful.

In recent years, several researchers have addressed the issue of scalability of
machine learning algorithms [2–4]. Scalability is wider than simple evaluations
of accuracy. Scalability involves many aspects such as error, training time and
memory requirements that should be merged into a single evaluation framework
in order to rank algorithms. Such framework should be able to handle three
different aspects: i) merging results of algorithms to be compared from different
benchmark data sets, ii) being able to quantitatively measure the difference
between algorithms, and iii) being able to weight some measures against others
if necessary. In order to manage these issues, we propose to use a multiple-criteria
decision-making method to rank algorithms. In this research, this framework will
be applied to experimentally assess the scalability of five of the most popular
training algorithms for ANN: gradient descent, gradient descent with momentum
and adaptive learning rate, scaled conjugate gradient, Levenberg-Marquardt and
stochastic gradient descent. To the best knowledge of the authors, this is a novel
research that will shed light on the scalability of ANN training algorithms.

The remainder of this paper is structured as follows: section 2 describes the
training algorithms, section 3 presents the measures of scalability used in this
research, section 4 describes the MCDM method used, section 5 presents the
experimental procedure followed, and section 6 shows the results obtained, and
section 7 shows the conclusions and future lines of research.

2 Training Algorithms for ANN

This section gives a brief overview of the five training algorithms for ANNs
considered in this research: gradient descent, gradient descent with momentum
and adaptive learning rate, scaled conjugate gradient, Levenberg-Marquardt and
stochastic gradient descent.

2.1 Gradient Descent

Gradient descent is one of the simplest training algorithms for ANNs. In the
batch version, the algorithm starts with a random weight vector denoted by w(0).
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Then, it iteratively updates the weight vector such that, at step τ , it moves a
short distance in the direction of the greatest rate of decrease of the error, that
is in the direction of the negative gradient, evaluated at w(τ) [5]:

Δw(τ) = −η∇Ew(τ)

where the parameter ∇ is the learning rate and E is the error function evaluated
at w(τ). Note that the gradient is re-evaluated at each step. It is expected that
the value of E will decrease at each step.

2.2 Gradient Descent with Momentum and Adaptive Learning Rate

The performance of the gradient descent algorithm is very sensitive to the proper
setting of the learning rate η. If the learning rate is set too high, the algorithm
can oscillate and become unstable. If the learning rate is too small, the algorithm
takes too long to converge. Note that it is not practical to determine the optimal
setting for the learning rate before training. With standard gradient descent, the
learning rate is held constant throughout training. However, the performance of
the gradient descent algorithm can be improved if it allows the learning rate to
change during the training process. An adaptive learning rate attempts to keep
the learning step size as large as possible while keeping learning stable.

Another very simple technique for improving the performance of the gradient
descent algorithm is to add a momentum term [6]. The modified gradient descent
formula is given by:

Δw(τ) = −η∇Ew(τ) + μΔw(τ−1)

This term adds inertia to the motion through weight space smoothing out the
oscillations of the algorithm whilst speeding up the convergence. Moreover, the
momentum term can be helpful in reducing the likelihood of finding a local
minima.

2.3 Scaled Conjugate Gradient

With simple gradient descent, the direction of each step is given by the local
negative gradient of the error function, and the step size is determined by an
arbitrary learning rate parameter. A better procedure would be to consider some
search direction in weight space, and then find the minimum of the error function
along that direction. The minimum along the search direction d(τ) then gives the
next value for the weight vector:

w(τ+1) = w(τ) + δ(τ)d(τ)

where the parameter λ((τ)) is chosen to minimize:

E(λ) = E(w(τ) + λd(τ))

This gives an automatic procedure for setting the step length [7].
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2.4 Levenberg-Marquardt

The Levenberg-Marquardt [8, 9] algorithm was designed specifically for minimiz-
ing a sum-of-squares error (E = 1

2

∑
n ε

2
n = 1

2‖ε‖2). Suppose we are currently at
point wold in weight space and we move to a point wnew . If the displacement
wnewwold is small then the error vector ε can be expanded to first order in Taylor
series:

ε(wnew) = ε(wold) + Z(wnew − wold)

where the matrix Z is defined with elements

(Z)ni =
∂εn

∂wi

If the error is minimized with respect to the new weights wnew then:

wnew = wold − (ZTZ)−1ZT ε(wold)

where the Hessian can be written in the form H = ZTZ. Since there is no guar-
antee that the Hessian H is positive definite, a correction term can be introduced
to cover this problem by

H = H + δI

where I is the identity matrix and δ is a parameter which value changes during
training to guarantee the positive definiteness of the Hessian matrix.

The weight update formula could be applied iteratively in order to try to
minimize the error function. The problem is that the update term could turn
out to be relatively large. This problem is addressed by seeking to minimize the
error function whilst at the same time trying to keep the step size small so as to
ensure that the linear approximation remains valid.

2.5 Stochastic Gradient Descent

In the stochastic version of gradient descent, the error function is evaluated for
just one sample at a time. The weights update rule is:

Δw(τ) = −η∇En
w(τ)

where the different samples n in the training set are selected at random order.
It is expected a steady reduction in error since the average direction of motion
in weight space should approximate the negative of the local gradient [5]. An
important advantage of the stochastic approach over batch methods arises if
there is a high degree of redundant information in the data set. Another potential
advantage of the stochastic approach is that it has the possibility of escape from
local minima.
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3 Scalability Measures

Performance measures such as mean squared error or class accuracy are inade-
quate to evaluate the performance of learning algorithms in large data sets since
they do not take into account all aspects involved in scalability.

Scalability measures must take into consideration error, time and memory
constraints. Thus, the goal is to find a learning algorithm that obtains the lowest
error in the shortest time using the smaller number of samples. However, there
are no standard measures of scalability. In order to overcome this issue, those
measures defined in the PASCAL large scale learning challenge [1] will be used in
this research. In this challenge, six scalar measures were defined based on three
figures (see Figure 1).
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Fig. 1. Performance measures in terms of scalability, where the six scalar measures are
marked in italic on the three figures.

– Figure 1(a) shows Training time vs Test error. It is obtained by displaying
the evolution of the test error along certain time budgets and employing the
largest dataset the algorithm can deal with. We compute the following scalar
measures based on this figure:

• Err : minimum test error (standard class error [10] for classification and
MSE [10] for regression tasks).

• AuTE : area under Training time vs Test error curve.
• Te5% : the time t for which the test error e falls below a threshold

e−Err
e < 0.05.
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– Figure 1(b) shows Training set size vs Test error. It is obtained by displaying
the different training set sizes, 10[2,3,4... ], and the corresponding test errors
achieved. Based on this curve, we compute:
• AuSE : area under Training set size vs Test error curve.
• Se5% : the size s for which the test error e falls below a threshold e−Err

e <
0.05

– Figure 1(c) shows Training set size vs Training time. It is obtained by dis-
playing the different training set sizes and the corresponding training time
needed by the algorithm. We compute the following scalar measure based on
this curve:
• Eff : slope b of the curve by using a least squares fit to axb.

Following PASCAL, algorithms should be ranked for each of these six measures
and compute the score of each algorithm as its average position with regard to
the six rankings. For example, an algorithm that ranks first in three measures
and second in the remaining three will obtain a final score of 1+1+1+2+2+2

6 = 1.5.
Note, however, that this procedure do not take into consideration the magnitude
of the measures but simply the ranking. This may lead to unfair results, mostly
if some algorithms perform notably good or bad. In order to overcome this issue,
the use of a multiple-criteria decision-making method is proposed.

4 Multiple-Criteria Decision-Making

Classification algorithms are normally evaluated in terms of multiple criteria.
But how can multiple criteria be handle into a single evaluation model? Multiple-
criteria decision-making [11] (MCDM) is focused on addressing the aforemen-
tioned issue. MCDM methods evaluate classifiers from different aspects and
produce rankings of classifiers [12]. A multi-criteria problem is formulated using
a set of alternatives {a1, a2, . . . , am} and criteria {k1, k2, . . . , kn}. The decision
matrix is formulated as ⎛⎜⎜⎜⎝

x11 x12 . . . x1n
x21 x22 . . . x2n

...
...

. . .
...

xm1 xm2 . . . xmn

⎞⎟⎟⎟⎠
where xij represents the performance measure of the ith alternative in the jth
criterion.

Among many MCDM methods that have been developed up to now, Tech-
nique for Order of Preference by Similarity to Ideal Solution (TOPSIS) [13] is a
well-known method that will be used in this research. TOPSIS finds the best al-
gorithms by minimizing the distance to the ideal solution whilst maximizing the
distance to the anti-ideal one. The extension of TOPSIS proposed by Opricovic
and Tzeng [14] and Olson [15] is used in this research. The steps of the method
are described as follows:
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1. Compute the decision matrix consisting of m alternatives and n criteria. For
alternative Ai, i = 1, . . . ,m, the performance measure of the jth criterion
Cj , j = 1, . . . , n, is represented by xij .

2. Compute the normalized decision matrix. The normalized value rij is calcu-
lated as

rij =
xij√∑m
i=1 x

2
ij

3. Establish a set of weights w, where wj is the weight of the jth criterion and∑n
j=1 wj = 1, and compute the weighted normalized decision matrix. The

weighted normalized value vij is computed as

vij = rijwj

4. Find the ideal alternative solution S+ and the anti-ideal alternative solution
S−, which are computed as,

S+ = {v+1 , . . . , v+n } =

=
{(

max
i
vij |i ∈ I ′

)
,
(

min
i
vij |i ∈ I ′′

)}
and

S− = {v−1 , . . . , v−n } =

=
{(

min
i
vij |i ∈ I ′

)
,
(

max
i
vij |i ∈ I ′′

)}
respectively, where I ′ is associated with benefit criteria and I ′′ is associated
with cost criteria.

5. Compute the distance of each alternative from the ideal solution and from
the anti-ideal solution, using the Euclidean distance,

D+
i =

√√√√ n∑
j=1

(vij − v+j )2

and

D−
i =

√√√√ n∑
j=1

(vij − v−j )2

respectively
6. Compute the ratio R+

i equal to the relative closeness to the ideal solution,

R+
i =

D−
i

D+
i +D−

i

7. Rank alternatives by maximizing the ratio R+
i
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4.1 Combining Divergent Rankings

While the rankings of alternatives on several data sets may agree, it is common
the case in which they disagree. Thus, the problem of handling multiple criteria
is translated into a problem of handling multiple rankings.

In this research, we propose to rank the alternatives in a secondary ranking
that combines divergent rankings by re-applying the MCDM method using as
inputs the values of the MCDM on the primary rankings. In this manner, the
MCDM method is arranged in a two-step pipeline in which the output values of
the primary rankings are used as inputs in the secondary ranking (see Figure 2).

MCDM

MCDM

MCDM

...

Decision
matrix 1

Decision
matrix n

Primary
ranking
values

Secondary
ranking
values

Fig. 2. Combination of divergent rankings obtained on different data sets

5 Experimental Study

The aim of this research is to experimentally evaluate the scalability of five of
the most popular training algorithms for ANNs using a MCDM method.

5.1 Data Sets

Training algorithms were applied to two common tasks in machine learning:
classification and regression. Table 1 shows the data sets used in this research
with a brief description of their features: number of inputs, classes, training
samples and test samples, and learning task.

Table 1. Characteristics of each dataset

Dataset Inputs Classes Training Test Task

Connect-4 42 3 60, 000 7, 557 Classification
Covertype 54 2 100, 000 50, 620 Classification
KDDCup99 42 2 494, 021 311, 029 Classification
Friedman 10 1 1, 000, 000 100, 000 Regression
Lorenz 8 1 1, 000, 000 100, 000 Regression
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Connect-4, Covertype and KDD Cup 99 data set are available at the UCI
Machine Learning Repository [16]. On the other hand, Friedman and Lorenz are
artificial datasets. The former is defined by the equation y = 10sin(πx1x2) +
20(x3 − 0.5)2 + 10x4 + 5x5 + σ(0, 1) where the input attributes x1, . . . , x10 are
generated independently from a uniform distribution on the interval [0, 1]. On
the other hand, Lorenz is defined by the simultaneous solution of three equations
dX
dt = δY −δX, dYdt = −XZ+rX−Y, dZdt = XY −bZ, where the systems exhibits

chaotic behavior for δ = 10, r = 28 and b = 8
3 .

5.2 Experimental Procedure

The following procedure was done in order to evaluate the scalability of the
training algorithms:

– Divide the data set using holdout validation. This kind of validation is suit-
able because the size of the data sets is very large.

– Set the number of hidden units of the ANNs to twice plus one the num-
ber of inputs. Following [17], going beyond this number should not make
any difference. Also, it is important to remark that the aim here is not to
investigate the optimal topology but to evaluate the scalability of training
algorithms and thus, it is interesting to use networks as large as possible.
Set the parameters of the ANNs to default values (learning rate 0.001, goal
accuracy 0.01, maximum number of epochs 1000, etc.).

– For each data set, train the ANNs and compute the six scalar measures of
scalability defined in Section 3: Err, AuTE, Te5%, AuSE, Se5% and Eff.

– Rank the algorithms using TOPSIS method. The values of the weights corre-
sponding with each criterion are assigned equally. Note also that all measures
are cost criteria, i.e. the smaller the better.

– Combine the primary ranking results of the different data sets (see Table 1)
in a secondary, final ranking using TOPSIS.

6 Results and Discussion

Table 2 shows the results of the five training algorithms on the five data sets
using the six scalar measures of scalability. Based on these six measures, TOPSIS
obtains a ranking value also shown in Table 2 (the larger the value the better).

The results showed in this table demonstrate the change in approach when
the learning algorithms are evaluated in terms of scalability. Notice that in many
cases algorithms with lower test error rank worse than others. For example, Table
2(a) shows that LM obtains a much lower error than GD (-15%) and GDX (-8%).
However, LM ranks worse than GD and GDX. In spite of its good accuracy, the
long training time of LM makes this algorithm worse in terms of scalability.

Table 3 summarizes the TOPSIS values of each algorithm on each data set.
As can be seen, there is no agreement on the ranking among the different data
sets. In order to provide a single answer a secondary ranking is applied using as
inputs the TOPSIS values of the five algorithms on the five data sets.
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Table 2. Performance results of Connect-4, Covertype, KDD Cup 99, Frieadman and
Lorenz data sets and primary TOPSIS values

(a) Connect-4 data set.

Name TOPSIS Err AuTE Te5% AuSE Se5% Eff

GD 0.9057 0.38 5.16e1 1.08e2 0.97 1.00e2 0.43
GDX 0.7189 0.31 3.71e1 7.98e1 0.92 6.00e4 0.40
LM 0.2110 0.23 3.79e2 7.80e2 0.77 1.00e4 0.77
SCG 0.9389 0.21 7.01e1 2.62e2 0.77 1.00e4 0.50
SGD 0.7099 0.16 5.32e1 2.36e2 0.54 6.00e4 0.54

(b) Covertype data set.

Name TOPSIS Err AuTE Te5% AuSE Se5% Eff

GD 0.8765 0.38 1.24e2 2.78e2 1.20 1.00e3 0.49
GDX 0.8674 0.42 4.74e1 1.01e2 1.32 1.00e4 0.41
LM 0.2431 0.24 6.41e2 1.74e3 0.94 1.00e4 0.84
SCG 0.6308 0.20 1.64e2 5.80e2 0.81 1.00e5 0.55
SGD 0.6426 0.13 1.21e2 7.83e2 0.62 1.00e5 0.58

(c) KDDCup99 data set.

Name TOPSIS Err AuTE Te5% AuSE Se5% Eff

GD 0.8341 0.13 4.29e1 5.53e1 0.43 1.00e2 0.50
GDX 0.8130 0.15 2.55e1 5.93e1 0.46 1.00e3 0.44
LM 0.3923 0.11 2.21e2 1.24e3 0.46 1.00e4 0.80
SCG 0.6808 0.14 1.10e2 3.54e2 0.51 1.00e4 0.55
SGD 0.4603 0.00 8.85e0 1.35e3 0.07 4.94e5 0.59

(d) Friedman data set.

Name TOPSIS Err AuTE Te5% AuSE Se5% Eff

GD 0.6424 8.33 2.19e3 7.51e1 36.77 1.00e3 0.37
GDX 0.7805 4.41 1.83e3 7.20e1 24.57 1.00e5 0.37
LM 0.9079 0.11 1.11e3 8.74e2 8.57 1.00e5 0.59
SCG 0.9150 0.79 1.67e3 1.71e2 10.33 1.00e5 0.44
SGD 0.3442 0.21 2.24e4 1.12e4 6.88 1.00e5 0.68

(e) Lorenz data set.

Name TOPSIS Err AuTE Te5% AuSE Se5% Eff

GD 0.9676 0.74 4.82e2 6.17e1 2.98 1.00e2 0.36
GDX 0.6022 2.66 2.45e2 2.04e1 13.63 1.00e4 0.26
LM 0.9380 0.00 3.26e3 5.19e2 0.00 1.00e5 0.54
SCG 0.9939 0.01 5.61e2 1.38e2 0.05 1.00e4 0.43
SGD 0.3828 0.01 6.54e3 9.96e3 0.69 1.00e6 0.67
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Table 3. Summary of the primary TOPSIS rankings

Name
Connect-4 Covertype KDDCup99 Friedman Lorenz
Value Rank Value Rank Value Rank Value Rank Value Rank

GD 0.9057 2 0.8765 1 0.8341 1 0.6424 4 0.9676 2
GDX 0.7189 3 0.8674 2 0.8130 2 0.7805 3 0.6022 4
LM 0.2110 5 0.2431 5 0.3923 5 0.9079 2 0.9380 3
SCG 0.9389 1 0.6308 4 0.6808 3 0.9150 1 0.9939 1
SGD 0.7099 4 0.6426 3 0.4603 4 0.3442 5 0.3828 5

Table 4. Secondary TOPSIS ranking

Name Rank TOPSIS Connect-4 Covertype KDDCup99 Friedman Lorenz

GD 1 0.9543 0.9057 0.8765 0.8341 0.6424 0.9676
GDX 3 0.8562 0.7189 0.8674 0.8130 0.7805 0.6022
LM 5 0.3147 0.2110 0.2431 0.3923 0.9079 0.9380
SCG 2 0.9354 0.9389 0.6308 0.6808 0.9150 0.9939
SGD 4 0.3218 0.7099 0.6426 0.4603 0.3442 0.3828

Table 4 shows the results of the secondary ranking. Note that this method not
only provides a ranking but it give information about how close are algorithms
one each other. As can be seen, GD is ranked first but TOPSIS also indicates
that it is closely followed by SCG. These two algorithms show a good tradeoff
between accuracy and training time. On the other hand, SGD and LM are ranked
fourth and fifth, respectively. Despite usually obtaining the best accuracy in
classification and regression tasks, their long training time has a negative impact
on their performance. Halfway, GDX is ranked third. It usually obtains a worse
performance than SGD and LM but in a much shorter lapse of time.

Finally, we established in TOPSIS the set of weights equally, i.e. the impor-
tance of every criterion is considered to be the same. Note that this procedure
can be easily adapted to other sort of problems in which one or several crite-
ria may be more relevant than others. This is also true in the second step of
the methodology in which the rankings obtained on each data set are merged
in a single ranking. In this case, for example, we may be interested in promote
classification problems rather than regression problems.

7 Conclusions

Most published researches concerning learning algorithms simply assess their
performance in terms of accuracy. In this paper, the scalability of five of the most
popular training algorithms for ANNs has been evaluated: GD, GDX, LM, SGD
and SCG. Since there are no standard measures of scalability, those defined in
the PASCAL Large Scale Learning Challenge were used. These measures assess
the scalability of algorithms in terms of error, computational effort, allocated
memory and training time.
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The evaluation of the algorithms in terms of multiple criteria led us to apply
a MCDM method. In particular, TOPSIS was used in this research. Moreover,
we proposed a two-step approach to combine divergent rankings coming from
the evaluation of the training algorithms on different data sets. Moreover, the
use of a MCDM method allows to measure the distance among algorithms whilst
easily use the weights to enhance some criteria against the others.

For future work, we plan to extend this research to different MCDM methods.
In this case, we would have to face the combination of different rankings obtained
by different methods on different data sets.
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Abstract. In this paper, we present a preliminary experimental study
of the generalization abilities of feedforward neural networks with me-
dian neuron input function (MIF). In these networks, proposed in our
previous work, the signals fed to a neuron are not summed but a me-
dian of input signals is calculated. The MIF networks were designed to
be fault tolerant but we expect them to have also improved generaliza-
tion ability. Results of first experimental simulations are presented and
described in this article. Potentially improved performance of the MIF
networks is demonstrated.

1 Introduction

Artificial neural networks have been applied in many different fields, including
pattern recognition, function approximation, signal or image processing, etc.,
because their ability to model complex input-output relationships. However, it
is widely known that their generalization abilities strongly depend on many fac-
tors, such as network size and architecture, number of training samples, training
algorithm and its parameters. It is also commonly believed that nets with too
much capacity (having too many parameters and larger VC-dimension) overfit
the training data [3]. In fact, this dependence is not so simple [2,5], and there
exist many algorithms improving generalization abilities of neural networks [17].
Standard and commonly used techniques are Bayessian regularization [9,11] and
early stopping based on cross-validation [1,12]. We do not intend to present here
a novel approach outperforming existing solution. The main goal of this article is
to investigate generalization ability, considered as additional advantage of using
new feedforward networks with median input functions.

In our previous work, we proposed novel feedforward neural network architec-
ture with median neuron input function (MIF) [16]. In such networks the sum-
mation of input signals is replaced with median, which could possibly make the
network more tolerant to node faults. Experimental studies revealed that MIF
networks are indeed fault tolerant. Though designed to tolerate links (weights)
or nodes (neurons) failures, the MIF networks can be expected to present more
advantageous features. In this article, we want to investigate their generaliza-
tion ability, assuming that replacing summation with the median may potentially
improved network performance.

L. Rutkowski et al. (Eds.): ICAISC 2013, Part I, LNAI 7894, pp. 174–182, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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2 Median Neuron Input Function

In the classic neuron model, weighted inputs are fed to the summing junction.
Then the weighted sum, is transmitted to the transfer function block, which pro-
duces the neuron output. It is clear then, that every change of individual input
elements can have an obvious impact on the effect of neuron computation. How-
ever, for a neuron where the summation is replaced with more robust operation,
this is not necessarily true. In other words: the neuron output, if generated with
median neuron input, can be less sensitive to the changes in the inputs, than in
the case of simple sum.

The MIF neuron output is defined as [16]:

yout = f(med{wixi}Ni=1), (1)

where f(·) denotes neuron transfer function (e.g sigmoid or linear), xj are neuron
inputs, wi is the ith input weight and N denotes input size. The main disadvan-
tage of the MIF neuron is that calculating its output is computationally more
expensive (median vs. sum). Another problem may appear when such networks
are to be trained with gradient-based learning algorithms. The median input
function is not differentiable in all its domain, so the gradient cannot be eas-
ily estimated. This is why, we proposed to use an approximation based on the
gradient for a simple sum. As our previous efforts demonstrated, such approach
seems to be very effective not only for median neuron input functions, but also
for error performance criterions based on the median of residuals.

The idea is then as follows: whenever a gradient of median function is needed,
we assume that the derivative depends on each neuron input. It results in a
training step, where the entire vector of input weights is modified, including
those directly influencing the median value. Additional advantage (save its com-
putational simplicity) is that in practice, the training progress converges faster,
avoiding, to certain degree, flat regions of the gradient.

Let us consider, for simplicity, a simple feedforward neural network with one
hidden layer. We assume that a training set consists of n pairs:
{(x1, t1), (x2, t2), . . . , (xn, tn)}, where xi ∈ RN and ti ∈ RM . For the given
input vector xi = (xi1, xi2, . . . , xiN )T , the output of the jth neuron of the hidden
layer may be written as:

zij = f1(med{wjkxik − bj}Nk=1) = f1(uij), for j = 1, 2, . . . , L, (2)

where f1(·) is the activation function of the hidden layer, wjk is the weight be-
tween the kth net input and jth neuron, and bj is the bias of the jth neuron (hid-
den layer consists of L neurons). Network output vector yi = (yi1, yi2, . . . , yiM )T

is then given as:

yiv = f2(med{w(2)
vj zij − b(2)v }Lj=1) = f2(uiv), for v = 1, 2, . . . ,M. (3)

Here w
(2)
vj is the weight between the vth neuron of the output layer and the jth

neuron of the hidden layer, b
(2)
v is the bias of the vth neuron of the output layer,
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and f2(·) denotes the activation function. We want to minimize simple MSE
(mean squared error) criterion::

EMSE =
1

n

n∑
i=1

(r)2i , (4)

where r2i are squared residuals:

r2i =

M∑
v=1

(yiv − tiv)2. (5)

We assume, to illustrate the basis of training the MIF network, that all the
network weights are updated according to the gradient-descent learning algo-
rithm. Such assumption can be made without loss of generality, because this
approach may be easily extended to any other gradient-based learning method,
using backpropagation strategy to calculate the gradient of the error, regarding
the network’s weights. For the considered network with one hidden layer, the
weights are updated iteratively, taking steps proportional to the negative of the
gradient, written as follows:

Δwjk = −α∂EMSE

∂wjk
= −α∂EMSE

∂ri

∂ri
∂wjk

, (6)

Δw
(2)
vj = −α∂EMSE

∂w
(2)
vj

= −α∂EMSE

∂ri

∂ri

∂w
(2)
vj

, (7)

where the term α denotes a learning coefficient. When calculating the gradients
one should remember that uij and uiv consists also of median operation. For
the case of gradient calculation, the median is replaced with simple sum, so the
derivatives of the residua are assumed to be given as:

∂ri
∂wjk

= f ′2(uiv)w
(2)
vj f

′
1(uij)xik , (8)

and
∂ri

∂w
(2)
vj

= f ′2(uiv)zij , (9)

where f ′1(·) and f ′2(·) denote the derivatives of the activation functions in hid-
den and output layer, respectively. Such simplification, as it was experimentally
demonstrated, makes the training process effective [16].

Why is the MIF network more tolerant to node faults of stuck-at-0 type than
the network with summation? The explanation of this phenomenon seems to be
rather simple. We assume, that during the training process, the information is
distributed more uniformly between the network weights. This is why one may
expect that such network should be potentially also more robust to overfitting.
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3 Experimental Results

To test the resistance to overfitting of the MIF networks (and to compare it
to other network types), we decided to examine the structures on three train-
ing tasks, namely: function approximation, time series prediction and pattern
recognition. Such tasks should not be too complex, in order to allow networks
of larger size to overfit training data.

3.1 Testing Methodology

To fully reveal the overfitting phenomenon, we decided to corrupt the data for
function approximation and time series prediction with small Gaussian noise of
the form N(0.0, 0.2). For the classification problem such addition was unneces-
sary because of the overlapping classes borders.

For each task, we tested several network architectures with different number
of hidden neurons (as described in the Tables). For the function approxima-
tion task network performances for two numbers of training patterns were also
examined. To test generalization abilities of the MIF networks, we decided to
compare five different approaches to network training. The first one was an or-
dinary feedforward network without validation (FFN), the second one was the
MIF network (also without validation). The networks with early stopping, based
on validation incorporated into the training process, were also examined as tra-
ditional validation network (VFFN), and MIF network with validation (VMIF).
For the network with validation, 30% of the training data constituted validating
set, on which the network performance was tested during training process.

Another tested method was the robust LMLS (Least Mean Log Squares) al-
gorithm [8,15]. Robust learning methods [14] are considered to be less sensitive
to outlying data points and different kinds of noise. These methods do not fit
the training patterns as close, as possible, so one may expect that they could be
also less sensitive to overfitting in the presence of noise.

All the tested networks were trained with the same resilient backpropaga-
tion algorithm [13] (similar results we obtained also for the conjugated gradient
learning method [6]). It is worth to notice, that applying the well-known and
popular Levenberg-Marquardt algorithm [7] would not be a proper choice, be-
cause its fast convergence may cause problems when training with validation [5].
Moreover, it can be used only with squared error criterion, so it cannot be com-
bined with the LMLS method. To make the comparison reliable, all the training
parameters were the same for each tested network. Simulation results measured
by a mean squared error (MSE), calculated on testing data sets, were averaged
over 20 runs and gathered in Tables 1–4 and presented in the Figures 1–4.

3.2 Function Approximation

The first testing task was to approximate one-dimensional sine function given
as:

y = sin(πx). (10)
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Table 1. The averaged MSE for the networks trained to approximate sine function
(step size 0.05)

Hidden neurons 5 10 15 20 25
Algorithm Mean S.D. Mean S.D. Mean S.D. Mean S.D. Mean S.D.
FFN 0.0240 0.0114 0.0435 0.0171 0.1007 0.0634 0.3002 0.1843 0.3527 0.3406
MIF 0.0250 0.0212 0.0388 0.0102 0.0825 0.0412 0.0750 0.0208 0.1087 0.0734
VFFN 0.0977 0.1185 0.1301 0.1530 0.2715 0.1668 0.4931 0.2112 0.3625 0.1964
VMIF 0.1512 0.1554 0.0286 0.0292 0.0866 0.1525 0.0592 0.0369 0.0998 0.0609
LMLS 0.0338 0.0245 0.0464 0.0179 0.0904 0.0448 0.2599 0.1726 0.2990 0.1685

Table 2. The averaged MSE for the networks trained to approximate sine function
(step size 0.01)

Hidden neurons 5 10 15 20 25
Algorithm Mean S.D. Mean S.D. Mean S.D. Mean S.D. Mean S.D.
FFN 0.0032 0.0014 0.0069 0.0019 0.0097 0.0049 0.0160 0.0061 0.0204 0.0154
MIF 0.0063 0.0113 0.0046 0.0013 0.0060 0.0022 0.0110 0.0033 0.0112 0.0063
VFFN 0.0181 0.0160 0.0166 0.0055 0.0242 0.0164 0.0362 0.0201 0.0596 0.0681
VMIF 0.0159 0.0137 0.0058 0.0019 0.0091 0.0056 0.0135 0.0068 0.0118 0.0056
LMLS 0.0070 0.0113 0.0110 0.0138 0.0094 0.0031 0.0161 0.0071 0.0187 0.0120

To prepare the data, the independent variable was sampled in the range [−1, 1]
with a step 0.05 or 0.01 and dependent variable was calculated based on
equation (10).

Looking at the Tables 1 (case 1, less training patterns) and 2 (case 2, more train-
ing patterns), one may notice very similar results. First of all, the regular network
with validation presents the worst performance in both cases. The MIF network
with validation acts well when the network size is large but is much less efficient
for the smallest (minimal) network. Regular networks without validation and net-
work trained with the LMLS algorithm perform relatively well for smaller network
sizes but their performance dramatically drops for larger networks, especially in
the case when the number of training examples is smaller. What is interesting, the
performance of the MIF network seems to be, on average, the best. Its performance
for the minimal size is slightly worse than for the regular network (but much bet-
ter than for the MIF with validation) and it outperforms all the other approaches
(save the MIF with validation) for larger sizes.

3.3 Time Series Prediction

As a time series prediction task, we decided to use well-known chaotic Mackey-
Glass flow series [10,17], defined by differential equation:

dx

dt
= 0.2

xτ
1 + xτ 10

− 0.1x, (11)

where xτ is the value of variable x at time t− τ . Setting x(0) = 1.2 and τ = 17
we obtained non-periodic and non-convergent time series. We used 4 previous
observations to predict the next series value.

The averaged results for the prediction task were gather in the Table 3. Simi-
larly to the approximation task, the classic approach with validation presents the
worst performance. Once again, the MIF network with validation provides poor
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Fig. 1. The averaged MSE for the networks trained to approximate sine function (step
size 0.05)

Fig. 2. The averaged MSE for the networks trained to approximate sine function (step
size 0.01)

performance for smaller and relatively good performance for larger networks.
Differences between regular network without validation and network trained
with the LMLS algorithm are almost imperceptible. The best performance is
obtained, in almost each case, for the MIF network (outperformed only for the
largest size by the MIF with validation).

Table 3. The averaged MSE for the networks trained on time series prediction

Hidden neurons 2 5 10 20
Algorithm Mean S.D. Mean S.D. Mean S.D. Mean S.D.
FFN 0.0532 0.0392 0.0732 0.0344 0.0901 0.0201 0.1147 0.0383
MIF 0.0442 0.0336 0.0655 0.0326 0.0700 0.0284 0.1002 0.0524
VFFN 0.3942 0.4409 0.1071 0.0815 0.2383 0.1264 0.3500 0.2515
VMIF 0.1686 0.1302 0.1011 0.0694 0.0864 0.0491 0.0975 0.0312
LMLS 0.0517 0.0349 0.0741 0.0298 0.0868 0.0191 0.1194 0.0470
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Fig. 3. The averaged MSE for the networks trained on time series prediction

Fig. 4. The averaged MSE for the networks trained trained on the classification problem

3.4 Classification Problem

The task was defined as a classification problem with two classes, where data
points were generated from two-dimensional normal distributions with identi-
cal standard deviations. The means of these distributions were in the distance
of 2 standard deviations, so the classes were in practice, partially overlapping.
We do not present here classification rates, because testing data were also ran-
domly generated. The performance of training approaches is based again on the
averaged MSE (Table 4).

As it was expected, the situation for the classification is different than in the
previous cases. Now, the validation-based early stopping could reveal its advan-
tages [17]. Three approaches without validation present much worse performance
than those with validation included in the training process. However, it is worth
to notice, that the MIF networks with validation outperforms classic networks
with validation for each network size.
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Table 4. The averaged MSE for the networks trained on the classification problem

Hidden neurons 5 10 15 20
Algorithm Mean S.D. Mean S.D. Mean S.D. Mean S.D.
FFN 0.0810 0.0071 0.0844 0.0078 0.0923 0.0105 0.1029 0.0166
MIF 0.0872 0.0309 0.0883 0.0188 0.0958 0.0238 0.0993 0.0221
VFFN 0.0656 0.0019 0.0665 0.0034 0.0767 0.0105 0.0812 0.0123
VMIF 0.0637 0.0020 0.0654 0.0031 0.0673 0.0035 0.0692 0.0038
LMLS 0.0733 0.0039 0.0870 0.0151 0.1000 0.0304 0.0947 0.0165

4 Summary and Conclusion

This paper presented a preliminary study of the generalization abilities of feedfor-
ward network with median neuron input functions. As our experiments demon-
strated, the MIF networks can have, in certain conditions, better performance
than traditional approaches. Moreover, designed to be tolerant to neuron faults,
they can be also considered as a simple tool to increase network generaliza-
tion ability, especially when the network size is larger than the minimal size
sufficient for a given problem. Our future efforts should be focused on more
extensive experimental study on the MIF network generalization, as well as the-
oretical investigation, aiming at explaining the phenomenon of their improved
performance.
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Abstract. Biologically plausible artificial neural networks represent a
promising novel approach in bio-inspired computational systems. In these
systems, the models are based on existing knowledge of neurophysiolog-
ical processing principles. Research in this field has increased in the last
few years and has generated new viewpoints, propositions and models
that are closer to the known features of the human brain. Some re-
searchers have recently focused their studies on this innovative field in
order to establish a consensus on what an artificial neural network is
in the domain of biological realism. Domain specific synthetic data sets
are generally used in the evaluation of those artificial neural networks
because they simulate predictive tasks and potential problems caused by
human intervention. This paper deals with the analysis of influence of the
anomalies generated by human intervention in credit approval process.
Such anomalies modify real classification, performance and accuracy. In
this analysis, we evaluated a real data set that represents human ac-
tions over personal credit approval and fraud identification by using a
biologically more plausible artificial neural network proposal.

Keywords: spike response model, point neuron activation function,
spiking neuron model, spike-timing-dependent plasticity.

1 Introduction

Research in biologically plausible artificial neural networks concerns itself with
the theoretical analysis and computational modeling of characteristics of the
cerebral cortex. It considers recent knowledge about the brain and needs a com-
prehension with clarity of the brain functionalities. The importance of this type
of research is an attempt to create artificial models that are closer to the hu-
man brain so as to better understand the workings of natural biological neural
networks.

The biological characteristics implementation in artificial neural network mod-
els sometime needs assumptions, simplifications and constraints to ensure good
computational performance and better problem resolution. Thereby, several arti-
ficial neural network models implementations do not consider some of the natural
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neural network aspects, but instead specifically meet computational criteria and
lead to reduce the natural biological inspiration of artificial models. Further-
more, in bio-inspired systems analyses are applied to datasets that represent
non-real human decision-making tasks or simulated tasks. In other words, they
are synthetic or built datasets that do not represent real situation of a human
intervention, because they are controlled situations.

Recently, Silva and Rosa [18] proposed unifying the views of Maass [10],
O’Reilly [13], Rosa [15] and Silva and Rosa [17] on biological plausibility for
artificial neural networks, which were based on the principles of Ramón y Cajal
and Hebb (see table 1). In addition, consideration was taken of Knudsen and
O’Reilly’s position on the lack of biological realism in supervised learning [2] (see
table 1). In order to consolidate their proposition, Silva and Rosa [18] developed
a network model that covers all principles previously discussed therefore could
be considered more biologically plausible.

This paper aims to present an evaluation of the computational performance
of the more biologically realistic artificial neural model by using a database that
represents real predictive tasks and comparing the behavior of the real task
with that generated by the model. We also present an analysis of computational
influences on training and pattern recognition of the more realistic biological
mechanisms implemented in the model. Furthermore, we show how assumptions,
constraints and simplifications may lead to weak biological representation.

2 The Alleged Biologically Plausible Artificial Neural
Network Model

In this evaluation, we used Topological Transition Spiking Logistic and Response
Model (tTslrm) that it based on model proposed by Silva and Rosa [18] in the
unification of the views of Maass [10], O’Reilly [13], Rosa [15] and Silva and
Rosa [17] on biological plausibility. Considered biologically more plausible, the
model is characterized by: being a finite directed graph where the vertices rep-
resent the neurons and the edges represent the synapses [1]; having a response
function based on Spiking Response Neuron Model [10]; employing the super-
vised learning algorithms GeneRec (Generic Recirculation) and unsupervised
learning STDP (Spike-Timing-Dependent Plasticity) [4] [16] [19] proposed by
O’Reilly [14] and Gerstner and Kistler [4], respectively; and having a control
function that represents the elements that act on the binding affinities between
transmitters and receptors of pre- and postsynaptic neurons [15] (see table 2).

The main modification in Silva and Rosa [18] model was the replacement of
the point neuron activation function [14] in supervised learning algorithm by a
new logistic sigmoid function variation. This new variation replaced the mem-
brane potential parameter (Vm) in point neuron activation function (see equa-
tion 1) by Spiking Response Neuron Model response function or kernel potential
function [10] (see equation 3). This modification was possible due to subtrac-
tion of the activation states in plus and minus phase, made by the generalized
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Table 1.Main principles and hypothesis that support biological plausibility in artificial
neural networks

Principles Author Description

and Hypothesis

Dynamic Polarization Ramón y Cajal “Electric signals inside a nervous cell flow only in a direction: from neuron

reception (often the dendrites and cell body) to the axon trigger zone” [8]

Connectional Specificity Ramón y Cajal “Nerve cells do not communicate indiscriminately with one another or form

random networks” [7]

Brain plasticity Donald O. Hebb “When an axon of cell A is near enough to excite a cell B and repeatedly or

persistently takes part in firing it, some growth process or metabolic change

takes place in one or both cells such that A’s efficiency, as one of the cells

firing B, is increased.” [5]

Supervised Learning Eric I. Knudsen “One way that experience shapes constituent networks of the brain is

through supervised learning” [9]

Supervised Learning Randall C. O’Reilly Bi-directional activation propagation can operate essentially as an

Error-driven Learning, using some of signals required for teaching that are

available [13]

Table 2. Control function variables definition by Rosa [15]

Elements Symbol Description

gene expression γv the new controller of gene expression (at target cell)

binding affinity degree ϕv the new binding affinity degree of receptor (at target cell)

amount of substrate ψu the increasing of the amount of substrate (at origin cell)

type of post-synaptic potential ρu,v the type of post-synaptic potential (excitatory or inhi-

bitory) in relation to the type of transmitter and receptor,

by means of direct action

Legend: Subscripts u and v represent pre and post-synaptic neuron, respectively.

recirculation algorithm (GeneRec), which implicitly calculates the derivative of
the activation function [14]. A similar strategy has been used in Backpropa-
gation algorithm, but the derivative of the activation function is calculated in
explicit form where its use is necessary, differently from GeneRec. In this way,
it is possible to use any arbitrary activation function without having to use
its derivative [14]. Based on previous proposal and in the equations (1) or its
simplified form (2) and (3)), we have:

yj(t) =
γ[Vm(t)−Θ]

γ[Vm(t)−Θ] + 1
(1)

yj(t) =
1

(1 + 1
γ[Vm(t)−Θ])

(2)
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where Vm represents membrane potential; γ represents gain or learning rate; and
Θ represents activation threshold.

ξu,v(t) =
(e(−

t−δ
τm

) − e(−
t−δ
τs

))

1− ( τs
τm

)
(3)

In equation 3, called Spiking Response Model response function or kernel poten-
tial function [10], u and v represent pre and post-synaptic neuron, respectively;
τs represents the synapse time constant; τm represents the membrane time con-
stant; t represents the current time; δ represents the time delay constant in
axonal transmission; and Θ represents activation threshold.

According to O’Reilly [14], the rate code output (eq. 1) simulates the average
output of a spiking neurons population. Therefore, we can do Vm(t) ≈ ξu,v(t)
and replace term Vm(t) in equation (2) by ξu,v(t) equation.

yj(t) =
1

(1 + 1

γ[
(e

(− t−δ
τm

)−e
(− t−δ

τs
)
)

1−(
τs
τm

)
−Θ]

)
(4)

yj(t) =

γ
(1−( τs

τm
)) [e

(− t−δ
τm

) − e(−
t−δ
τs

) − (1 − ( τs
τm

))Θ]

γ
(1−( τs

τm
)) [e

(− t−δ
τm

) − e(−
t−δ
τs

) − (1− ( τs
τm

))Θ] + 1
(5)

Hence it implies that eq. (1) is specific case of eq. (5) when we replace τs = 0

that leads (− t−δ
τs

) → −∞ and e(−
t−δ
τs

) → 0. According to these considerations
we can then write

yj(t) =

γ
(1−(0)) [e

(− t−δ
τm

) − 0− (1 − (0))Θ]

γ
(1−(0)) [e

(− t−δ
τm

) − 0− (1− (0))Θ] + 1
(6)

yj(t) =
γ[e(−

t−δ
τm

) −Θ]

γ[e(−
t−δ
τm

) −Θ] + 1
(7)

Comparing equations (1) and (7), we have that both equations are similar,

Vm(t) ≈ e(−
t−δ
τm

) – in this specific case – and it does not consider synapse time
term (τs = 0) in eq. (1) or eq. (2). Therefore, this simplification, as equation
(2) shows, may be considered less biologically plausible since synapse time does
exist in natural processes [8]. To sum up, we showed mathematically that certain
model simplification may reduce biological plausibility.

3 Evaluation

The evaluation of real predictive tasks was conducted using two real bases for
personal credit approval. These bases represent real predictive tasks as they con-
tain results of human intervention in some attributes and classes. These human
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interventions may alter the quality of the base or generate noise and/or outli-
ers, but the outliers may also represent fraudulent behavior on the part of the
applicant or commercial establishment in question.

The personal credit base (PC) is composed of 22 attributes and 5 classes1 (see
table 3). Among the attributes there is one called “in review” representing whether
there is human action (personal credit specialists) involved in approving or refus-
ing the credit application, and if there is, the reason for this intervention. This
attribute was not used in training and was removed from patterns presented in
recognition as it may have led to misleading results. This data set also has a class
called “in review”, but its aim is to represent the need for specialist intervention
in the final decision – approved or refused or bureau –, or in other words, a human
action after classification by the credit approval procedural system.

The Fraud bases – Fraud (FD) and Fraud Outliers (FO) –, similar to
the PC base, are composed of 22 attributes, but 6 classes2 (see table 3). The
additional class, called “fraud”, represents effective fraud behavior through a
priori knowledge.

The bases that reflect real predictive tasks have a high degree of complexity due
to different mental behavior among those people involved (applicant, attendant,
specialist or groups of specialists in the business). Besides this, there are visual
indicators of the applicant’s behavior or generalizations based on previous behav-
ioral situations (feeling) that lead the specialists to alter their more likely responses
and that are not explicit in the database. In addition, there is a behavior created
to take advantage of established rules or avoid negative behavioral situations.

Table 3. Dataset Description That Represents the Real Predictive Tasks

Dataset Patterns Input Patterns

Attributes by Classes

PC approved refused analysis bureau

2017 22 + 4 Classes 138 731 1106 42

FD approved refused analysis bureau fraud

2017 22 + 5 Classes 138 692 980 42 165

FO approved refused analysis bureau fraud

2008 22 + 5 Classes 133 691 980 41 163

Legend: PC = Personal Credit database focusing in Credit Approval; FD = Personal Credit database
focusing in Fraud Objects Classification; e FO = Personal Credit database focusing in Fraud Outliers
Classification.

1 Personal Credit (PC) database classes descriptions: approved – automatic approval
or by an expert action; refused – automatic refusal or by an expert action; bureau
– refusal by an outside contractor expert action; and inreview – redirect to expert
group for analysis.

2 Fraud (FD) and Fraud Outliers (FO) database classes descriptions: approved – auto-
matic approval without fraud behavior or by an expert action; refused – automatic
refusal or by an expert action; bureau – refusal by an outside contractor expert ac-
tion; inreview – redirect to expert group for analysis; and fraud – refusal by fraud
behavior.
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In the pre-evaluation of the Topological Transition Spiking Logistic and Re-
sponse Model (tTslrm) use was made of the binary matrix dataset Optical
Recognition of Handwritten Digits (see table 4) of the University of California -
Irvine (UCI) [11] in order to establish a reference for computational performance
indicators for the tTslrm network. The UCI base was chosen for its complexity
and because there was no need for previous knowledge of the attributes or rule
definitions. This could have generated a specific behavior or inconsistent and
incomprehensible results in the analysis of the base to establish this reference.

Table 4. Dataset Description used in the initial validation

Dataset Patterns Input Patterns

Attributes by Classes

HD 000 001 002 003 004 005 006 007 008 009

1934 32x32 189 198 195 199 186 187 195 201 180 204

Legend: HD = Optical Recognition of Handwritten Digits of UCI dataset [11].
Observation: UCI’s dataset was chosen because it is complex and does not require a priori knowl-
edge of the attributes or rules definition.

In both evaluations we used the strategy of ten-fold cross validation associ-
ated with the Stratified Folds technique in order to assure proportionality of
the patterns in each pair of files training-recognition generated from the original
dataset [3] [6]. In this way we eliminated distortions caused by a higher inci-
dence of a certain type of class in the samples. However, in the Fraud Outliers
base, the strategy was applying a test dataset with 9 objects (tuples) considered
anomalies (outliers or noises). In the evaluation of computational performance
results of the model in these bases we used recall, precision, F-measure and
accuracy indicators.

Other data used here are the parameters necessary for configuration of the
tTslrm and its two learning algorithms – GeneRec [12,14] and STDP [4]. These
parameters are described in table 5.

Once the reference indexes were established for the computational efficiency
of the model (see table 6) by means of the UCI base, we went on to evaluate
the personal credit base with a focus on the authorization of credit approval
supported in the following classes: Approved, Refused, Bureau and Analysis.
The result of this analysis showed both high accuracy and performance of the
tTslrm in the classification of objects of this type (see table 6), in spite of the
high complexity of bases representing real predictive tasks.

The evaluation of the dataset aimed at the identification of fraudulent behav-
ior showed a slight drop in performance, coverage and accuracy, but also showed
a slight increase in precision, maintaining a good computational performance
(see table 6). These variations can be explained by the fact that an object that
has a fraudulent behavior may be refused by the human action of a specialist
even before it is identified as fraud.
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Table 5. Parameters employed in learning and recognition steps [17]

Parameter Symbol Value or Interval

generec learning rate η 0.28

STDP learning rate A 0.011 to 0.99

balancing factor between two learning type Kbl 0.6

error rate - 3 × 10−4

weights w 0.0 to 1.0

membrane time constant τm 40 to 2000 ms

synapse time constant τs 20 to 1000 ms

pulse firing threshold Θ 0.1 to 0.8 mV

time constant used to calculate the neural refractoriness τ 2000 to 8000 ms

time delay constant in axonal transmission δ 20 to 200 ms

gene expression γv 0 to 1

amount of substrate ψu 1 to n normalized

affinity degree of receptor ϕv 0 to 1

type of transmitter and receptor ρu,v 3 or 5

Legend: u = pre-synaptic neuron; v = post-synaptic neuron.

Human actions on a base with real predictive tasks are highly visible when
trying to classify outliers generated by the intervention of a specialist (in our
case). This behavior may be observed in the results obtained from the analysis
of the Fraud Outliers base, which was trained with the Fraud base with the
removal of 9 objects considered outliers (generating Fraud Outliers base) – 5
approved, 1 refused, 1 Bureau and 2 frauds – and was applied to recognition
the dataset composed of the 9 objects removed from the Fraud base. The low
accuracy and performance (see table 6) were caused by the 5 approved objects
as their approval was due to the human intervention of a specialist with external
contractual knowledge outside the criteria for authorization. However, if it is
considered that the class attributed by the classifier was the analysis class and
the attribute “in review” showed that the approval was through the action of
a specialist, the accuracy of the base rises significantly and the performance
of the model returns to the level of the results obtained in the Fraud base as
shown in the results of the base Fraud Outliers Adjusted (FA) (see in table 6).
This shows that the tTslrm displays high computational performance, even in
complex bases that deal with real predictive tasks, often presenting anomalies,
noises and outliers.

To sum up, the more biologically plausible artificial neural network model
tTslrm displays excellent computational performance in analyses of synthetic
or real datasets that represent real predictive tasks or not, as shown in the table 6.
As well as this, it confirms the need to apply models of biologically more plausible
artificial neural networks to datasets resulting from real predictive tasks. This is
because the influence of biological aspects, ever closer to the characteristics of
the cerebral cortex in the learning activities of the models, provides fine tuning in
the representation of knowledge, enabling models to achieve high computational
performance.
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Table 6. Outcomes from the application of the 10-fold cross validation technique show
that tTslrm network display better performance and accuracy in Personal Credit
(PC) and Fraud bases (FD) than Handwritten Digits (HD)

dataset recall precision F-measure accuracy

HD 0,9700±0,0136 0,9674±0,0211 0,9686±0,0131 0,9449±0,0244

PC 0,9819±0,0112 0,9869±0,0078 0,9844±0,0051 0,9692±0,0099

FD 0,9658±0,0250 0,9872±0,0096 0,9761±0,0122 0,9536±0,0230

FO 0,4444 1 0,6154 0,4444

FA 0,8889 1 0,9412 0,8889

Legend: Data sets: HD = UCI Optical Recognition of Handwritten Digits; PC = Original Personal
Credit database; FD = Fraud in Personal Credit database; FO = Fraud in Personal Credit database
for Outliers Analysis; and FA = Fraud in Personal Credit database for Outliers Analysis by classes
adjusted in recognition samples. indexes: Efficiency = recall; effectiveness = precision; performance
= F-measure; and efficacy = accuracy.

4 Concluding Remarks

The computation influence of the biologically plausible elements implemented in
the model tTslrm modified the network’s behavior in solving the problem of
real predictive tasks. We may cite the behavior generated by more realistic bio-
inspired learning, which is a combination of error-based learning and Hebbian
learning. This combination greatly influenced the learning process of the artificial
neural network because the supervised learning acted by adjusting the weight
in such a way as to resolve the task, while the Hebbian learning functioned as
an optimizer by increasing the contrast of the representations by means of a
positive contribution for the more active units and a negative contribution for
the less active units, aligned with Hebb’s postulate (see table 1). In this case, the
behavior generated by learning resulted in a positive contribution and increased
the quality of the computational performance indexes – accuracy and F-measure.

Other biologically plausible elements implemented that influenced the tTslrm
computationally were the variables γv, ϕv and ψu of the control function (see ta-
ble 2) because they alter the weights through their internal products. This leads
the network to increase computational complexity as the weights had to take on
very small or very large values to compensate for the values of the variables in
weight adjustment in the network training processes.

The comparison between equations (1) and (7) showed that the simplification
was not included a complete representation of spike rate process, i.e., it was
not considering both synapse and membrane time terms because of equation (1)
assumption.

The high level of complexity of the Personal Credit, Fraud and Fraud Outliers
bases, representative of real predictive tasks, enabled a more refined qualitative
evaluation of the tTslrm. Analysis of the Personal Credit base showed high
potential in the task of pattern recognition in any type of task, real or synthetic
(see fig. 1). Analysis of the Fraud base demonstrated the ability of the model
to identify abnormal behavior generated by human intervention with a priori
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Fig. 1. Ten Fold Cross-Validation results. Detail of the result in Personal Credit and
Fraud bases for the recognizing pattern process.

knowledge (see fig. 1). Also, the analysis of the Fraud Outliers base showed the
influence of a priori, contractual and external knowledge on electronic autho-
rization criteria.

Finally, the analyses conducted with the tTlsrm in real predictive task bases
for personal credit approval, with a focus on authorization and fraud, showed
improvement in performance and accuracy of the network, enabling a deeper
analysis of human behavior on a base for personal credit approval, leading to a
better understanding of business behavior. In addition, the ability of the tTlsrm
was shown in analysis of datasets that represent real predictive tasks.
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Abstract. Our aim is to propose a method for selecting a radial basis
functions terms to be included into a neural net model. As it is frequently
met in practice, we consider the case of a deficit in the admissible number
of observations (learning sequence) in comparison with a much larger
number of candidate terms. The proposed approach is based on a random
sieve that aims at selecting only necessary RBF’s by a hierarchy of a
large number of random mixing of candidate RBF’s and testing their
significance. The results of simulations are also reported.
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1 Introduction

RBF neural nets have been the subject of intensive research for many years. We
refer the reader to a selected collection of more recent papers and monographs
[8], [5], [12], [15], [4], [10] [6], [7], [20], [21], [22], [32], where references to earlier
works can be found.

In opposite to the present paper, most of the proposed methods require more
observations than candidate terms. Here, we admit a much larger initial size of
an RBF net than the length of a learning sequence. One can wonder how it can
be possible to select terms in such cases. The idea is based on random projec-
tions of a part of the RBF’s and considering them as one term with randomly
selected parameters (or a random mixture of RBF’s). Then, we repeatedly test
the validity of such a mixture of terms, repeating also their random projections.

There are some relationships of our approach with group testing [13] for select-
ing a regression function terms (see [14] for a survey of group testing approaches).
Notice, however, that in [13] the grouping is done according to values of terms,
while here we propose grouping by their random mixing.

Methods that are based on penalizing too many terms, such as AIC, BIC, Cp,
GIC as well as cross-validation or bootstrap (see [9] for these and other criteria)
either require candidate nets to be nested or lead to the need of comparing all
the subsets of candidate terms. With the exception of so called forward term
selection (as done in regression function estimation) they are not applicable in
our case of a larger initial net structure than the length of a learning sequence.

L. Rutkowski et al. (Eds.): ICAISC 2013, Part I, LNAI 7894, pp. 193–204, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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An aspect – rarely considered in the literature – is a choice of inputs in a
learning sequence for a net structure selection. The exceptions in this respect
include: [1], [17] and the bibliography cited there in.

Random projections have proved their usefulness in solving many highly di-
mensional problems (see [27], [28], [29], where also the references to the proba-
bilistic background of random projections can be found).

Simultaneously with this paper in [26] we have proposed a method for selecting
an optimum experiment design when a random projections method is used for
selecting terms in a regression function estimation. A method sketched briefly
in [26] differs from the one presented here in several respects:

1. the algorithm presented here is dedicated for RBF nets,
2. it is improved in comparison to the one in [26] by adding preliminary re-

duction of the net structure, which leads to more efficient use of a learning
sequence,

3. it can be used not only for selecting proper RBF’s to be introduced to a net,
but also for the choice of independent variables.

2 Problem Statement

For simplicity of the exposition we consider the following version of a RBF net:

y(x) =
r∑

j=1

ajKer(||x−Cj ||/h1) +
K̃∑

k=1

bkKer(||x− ck||/h2), (1)

where x ∈ Rd is a vector of the net inputs, y(x) is its output (univariate for
simplicity of the exposition), while Ker : R1 → R1 is a nonnegative kernel
function such that

∫∞
−∞Ker(t) dt = 1,

∫∞
−∞ tKer(t) dt = 0,

∫∞
−∞ t

2Ker(t) dt <
∞, the Gaussian kernel being the most popular. In (1) the RBF net is split
into two parts. The first one has centers at points Cj ∈ Rd, weights Cj , j =
1, 2, . . . , r and smoothing parameter h1 > 0. This part plays a special role,
because we consider it as a part of an RBF net that is expected to be present
in the final RBF net structure. In applications this part may represent a general
trend, while the second summand in (1) is intended to model more subtle details.

For this reason, we usually select the number of neurons in this part K̃ much
larger than r, which is the number of terms in the first part. Consequently, RBF
centers ck ∈ Rd, k = 1, 2, . . . , K̃ are placed more densely than centers Cj ’s,
while the smoothing parameter h2 should be smaller than h − 1 in order to
better approximate fine details.

We assume that we have a learning sequence (xi, yi), i = 1, 2, . . . , n at our
disposal, where xi ∈ Rd’s are input vectors, while yi’s are observed outputs
of a certain surface or a system that our RBF net is expected to approxi-
mate. In order to tune (1) to approximate yi’s by y(xi)’s we have to choose
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weights ai’s. We also have to select proper terms in the second part of (1) and
tune the corresponding weights. In more detail, our aim is to find

K∑
m=1

bk(m)Ker(||x− ck(m)||/h2), (2)

whereK is much smaller than K̃ and a sequence of indexes k(m),m=1, 2, . . . , K,

which a subsequence of all indexes k = 1, 2, . . . , K̃. In other words, our aim is
to select a sub-net of (1) of the form:

y(x) =

r∑
j=1

aj Ker(||x−Cj ||/h1) +

K∑
m=1

bk(m)Ker(||x− ck(m)||/h2) (3)

and to tune its parameters in such a way that
∑n

i=1(yi − y(xi))
2 is minimized.

In our problem statement 0 ≤ K < K̃ is also a decision variable. In order to en-
sure the possibility of estimating aj , j = 1, 2, . . . , r and bk(m), m = 1, 2, . . . , K
we have to confine to K such that r +K ≤ n.

Our task is difficult, because of our assumption that the length n of the
learning sequence is much smaller than K̃. This assumption implies that we
must admit errors in selecting a structure of our RBF net.

We leave outside the scope of this paper the problems of proper selection of
smoothing parameters 0 < h2 ≤ h1 assuming that they are reasonably chosen.
We refer the reader to [8], [32], and the bibliography cited therein for methods
of selecting smoothing parameters. Concerning the choice of centers ck’s, Cj ’s
positions notice that the approach proposed here contains implicitly a way of
selecting centers positions ck(m), m = 1, 2, . . . , K from a much larger collection

ck, k = 1, 2, . . . , K̃. After selecting them, one can adjust their positions as well
as positions of Cj ’s using more traditional methods that are well suited for a
fine positions adjustment of a relatively small number of RBF centers.

It is convenient to introduce a shorthand notations:

N1) for the first sub-net v(x) = [v1(x), v2(x), . . . , vr(x)]T , where T denotes

the transposition, vj(x)
def
= Ker(||x − Cj ||/h1), j = 1, 2, . . . , r and a =

[a1, a2, . . . , ar]T ,

N2) for the second sub-net w(x) = [w1(x), w2(x), . . . , wK̃ ]T , wk(x)
def
=

Ker(||x− ck||/h2), k = 1, 2, . . . , K̃.

Note that v : Rd → Rr and w : Rd → RK̃ .
Using this notation our RBF net can be rewritten as follows:

y(x) = aT v(x) + bT w(x), (4)

where b
def
= [b1, b2, . . . , bK̃ ]T . In our approach to selecting RBF net structure

we shall use the so called t-Student statistical test. Its proper usage requires the
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assumption that our initial RBF net has a sufficiently rich structure that allows
for generating our learning sequence as follows:

yi = (a0)T v(xi) +

K∑
m=1

b0k(m) wk(m)(xi) + εi i = 1, 2, . . . , n, (5)

where a0 ∈ Rr and b0k(m), m = 1, 2, . . . , K are unknown parameters, while
output observations yi contain additive i.i.d. random errors εi, i = 1, 2, . . . , n.
We assume that εi ∼ N (0, σ2ε ) for formal derivations, although one can use our
algorithm on heuristic grounds, even if these assumptions are violated.

3 Random Projections of Model Terms and Outline of
Their Selection

Details of the proposed method are presented in the next section, while here we
present a general idea.

Our starting point is the following model

ȳ(x, a, β, s) = aT v(x) + β sT w(x), (6)

where a ∈ Rr are unknown weights of our preliminary RBF net, β ∈ R is
an unknown weight of randomly mixed RBF’s w(x). Random mixing of these

terms is done by multiplying them by random vector s ∈ RK̃ which is drawn
at random by the experimenter from the multivariate Gaussian distribution:
N (0, σ2s IK̃), σs > 0, where IK̃ is K̃ × K̃ identity matrix. Later on, we shall
write s ∼ N (0, σ2s IK̃).

Remark 1. Model (6) resembles a model that was proposed in [2] for selecting
terms in a regression function (see also [31] page 131) as well as models used in
the dimensionality reduction (see [24] and the bibliography cited therein). How-
ever, the fundamental difference is in that here s is selected at random and only
β is estimated, while in [2] both β and s are estimated, which confines the pos-
sibility of applying the latter approach when K̃ + r << n, as assumed here. In
[24] parameters of several deterministic projections of x itself are estimated.

Before starting our random sieve of RBF’s in w(x) it is expedient to test whether
our preliminary net, spanned by RBF’s contained in v(x) is properly selected.
Notice that we can use classical tools of regression analysis (see, e.g., [31]),
because the number of terms in v(x) is smaller than the length of a learning
sequence. In particular, one can estimate a by minimizing

∑n
i=1(yi−aT v(xi))

2

and then test the hypothesis that particular components of a are zero. After
reducing those RBF’s that correspond to nonessential parameters, we can start
our random sieve.

For fixed s, estimates â, β̂ of parameters a and β are obtained by ordinary
least squares (OLS), i.e., minimizing

min
a,β

n∑
i=1

[yi − ȳ(xi, a, β, s)]
2
, (7)
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Then, we state the null hypothesis: H0 : β = 0. Under assumptions: (5) and
εi ∼ N (0, σ2ε ) we can test it by the well known t-test for regression parameters
(see, e.g., [23]). The rejection of H0 means that our observations contradict
the hypothesis that β = 0. This is an indicator that the mixture sT w(x) may
contain terms that are useful in modeling the learning sequence by our RBF net.
To convince ourselves, new s is drawn N (0, σ2s IK̃) and the estimation (7) and
the test are repeated rep times, say.

If H0 was rejected a sufficient number of times (0.2 rep, say), we conclude that
w(x) may contain terms that are worth introducing into the model. Otherwise,
we stop the algorithm, concluding that only aT v(x) are essential and we have
to re-estimate a by OLS.

If H0 was rejected sufficiently many times, we have to identify which terms
are important. To this end vector w(x) will be repeatedly divided (roughly) in
half in further derivations. To define subdivisions it is convenient to introduce an
overloaded notation defined as follows K̃//2 is : if K̃ is even, then K̃//2 = K̃/2,

otherwise, K̃//2 is understood as the largest integer less than K̃/2 for wL(x)

vectors and as the smallest integer larger than K̃/2 for wR(x) vectors. The same
convention is used for further subdivisions wLL(x), wLR(x) etc. and for random
vectors sL, sR ∼ N (0, σ2s IK̃//2), assuming that they have the same dimensions

as the corresponding wL(x), wR(x), wLL(x), wLR(x) vectors. Furthermore, we
assume that random vectors sL, sR, sLL, sLR etc. are mutually independent.

The corresponding left and right parts of w(x) will be denoted by wL(x),
wR(x), wLL(x), wLR(x), wRL(x), wRR(x) etc. In subsequent steps the following
RBF nets will be used:

¯̄y(x, a, βL, βR,S) = aT v(x) + βL sTL wL(x) + βR sTR wR(x), (8)

where a ∈ Rr, βL, βR ∈ R, sL, sR ∈ RK̃//2, S
def
= [sL, sR], w1(x), w2(x) ∈

RK̃//2

We state the hypothesis that in (8) H0L : βL = 0 and analogously H0R : βR =

0. We draw sL and sR at random and we find the estimate â, β̂L and β̂R by

min
a, βI , βR

n∑
i=1

[yi − ¯̄y(xi, a, βL, βR,S)]
2
. (9)

and t test is applied for β̂L and β̂R. Then we store the results of testing and sL
and sR are again drawn at random and (9) and t tests are repeated rep times,
say. Simultaneously, we increment counters, denoted as cL, and cR, each time
when H0L : βL = 0, respectively H0R : βR = 0, is rejected. If, for preselected
threshold 0 < θ < 1, we have cL < θ rep and cR < θ rep, then STOP – there are
no additional RBF’s that are essential for our net.. Otherwise, if cL ≥ θ rep and
cL > cR we split wL(x) in half and we repeat the above steps for model

¯̄̄y(x, a, βLL, βLR, . . .) = aT v(x) + βLL sTLLwLL(x) + βLR sTLRwLR(x), (10)

(or for its ’right’ counterpart). Simultaneously, if also cR ≥ θ rep, we keep wR(x)
terms for further considerations as prospective, otherwise we skip wR(x) in
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further steps. If our algorithm attains the stage that wLR...RL(x) contains only
one element we add it, after t test, to the list of candidates to be introduced to
our RBF net. If the list of prospective terms is not empty, we enter it as a new
w(x) list and repeat the entire procedure. Finally, we have a list of candidates
that is used as the extension of v(x), the parameters of the extended RBF net
are re-calculated and undergo t tests. A more detailed description of the above
approach is given in the next section.

4 Detailed Description of the Algorithm.

Below, we present a detailed description of the random sieve algorithm. The
notations are the same as in the previous section. In parenthesis we provide
suggested values of parameters that were verified in simulations as useful.

Preparations:
– Collect observations (xi, yi), i=1, 2,. . . , n.

– Select RBF centers Cj, j = 1, 2, . . . , r and ck, k = 1, 2, . . . , K̃.
– Select kernelKer (Gaussian) and smoothing parameters 0 < h1 < h2 (h1

and h2 should be selected taking the number of observations into account
and a fine tuning based on cross-validation should be performed).

– Form vectors v(x) and w(x) according to N1) and N2).
– Select parameters: σs > 0 (σs = 3) for generating random vectors s etc.
– Choose working significance level 0 < α < 1 (α = 0.1) that is used in

t-test for random sieve and final check significance level 0 < αf < α < 1
(αf = 0.05).

– Choose the number of random projections rep ≥ 1 (rep = 200), i.e., the
number of repetitions of random projections and t-test before deciding
whether a group of RBF’s is prospective or not.

– Select the threshold 0 < θ < 1 (θ = 0.2) as the fraction of positive
trials required to consider a group of RBF’s as perspective (see [3] for
the explanations on critism when multiple testing is used).

Initialization:
– Set counter c0 = 0. It counts how many times H0 was rejected for a

group of RBF’s under consideration.
– Prepare three empty lists: candidates (of RBF’s to be added to a net),
prospective (RBF’s worth to be considered as the most perspective) and
waiting (the list of RBF’s to be considered later).

– Check whether v(x) does not contain unnecessary RBF’s. To this end,
solve the following OLS problem: mina

∑n
i=1(yi−aT v(xi))

2 and test the
sequence of hypothesis H0 : a(j) = 0, j = 1, 2, . . . , r. This is realizable
due to our assumption that r < n. Remove from v(x) those vj(x) for
which H0 : a(j) = 0 was not rejected1. Rename the obtained vector as
v(x) again and again denote its length by r.

1 If the resulting list of preliminary RBF’s is empty, select at least one additional
candidate RBF and add it to this list.
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Step 1. Draw at random s ∈ RK̃ , s ∼ N (0, σ2s IK̃). Form RBF net (6) and

calculate â(s) and β̂(s) by OLS. Test the hypothesis: β̂(s) = 0 at the level
α. If the hypothesis is rejected, the set c0 = c0 + 1.

Step 2. Repeat Step 1 rep times. If c0 < θ rep, STOP with the message: proba-
bly there are no RBF’s from the list w(x) to be added, otherwise, go to Step
3.

Step 3. Enter all the terms from w(x) to the prospective list.
Step 4. Split the prospective list in half. Replace wL(x) in (8) by the left part

of this list and wR(x) by the right half. Set counters cL = 0, cR = 0.
Step 5. Generate random Gaussian vectors sL and sR of the same lengths as

the current wL(x) and wR(x) and calculate â(S), β̂L(sL) and β̂R(sR) by

minimizing (9). Test the hypothesis: β̂L(sL) = 0 (respectively, β̂R(sR) = 0)
and set cL = cL + 1 (respectively, set cL = cL + 1), if it is rejected.

Step 5. Repeat Step 5 rep times. If cL < θ rep AND cR < θ rep, go to Step 6.
Otherwise, if cL ≥ cR and
Step 5a. if current wL(x) contains more than one term, then replace all

the content of prospective list by wL(x) and add wR(x) to the waiting
list, but only if cR ≥ θ rep, otherwise, reject wR(x) from considerations
and go to Step 4,

Step 5b. if current wL(x) contains exactly one term, than add it to the
candidate list and add wR(x) to the waiting list, but only if cR ≥ θ rep,
otherwise, reject wR(x) from further considerations. Then replace the
content of the prospective list by all the waiting list, set the waiting
list to be empty and go to Step 4.

If cL < cR, perform Steps 5a) and 5b), replacing the roles wL(x) and wR(x).
Step 6. Final decisions:

– If list candidates is empty, STOP with the message: probably there are
no RBF’s from w(x) to be added.

– If the length of the candidates list is larger than 0 but not larger than
(n−r), then add this list to v(x), estimate the parameters of the extended
RBF net and test their significance at the level αf . Reject nonsignificant
RBF’s, re-calculate parameters a and selected bk’s and STOP, providing
the final list of RBF’s.

– If the length of the candidates list is larger than (n− r), then the candi-
date list is still too long in comparison to available data. It is desirable
to enlarge the learning sequence, replace w(x) by the list of candidates
and go to Step 3. If we cannot get additional learning examples, we can
still replace w(x) by the list of candidates and go to Step 3, but this
time it is more probable than certain essential RBF’s will be left outside
the final net structure.

Remark 2. The above algorithm can also be used for simultaneous selection
of RBF’s and input variables. To this end, it suffices to replace vj(x)’s by
Ker(||SelD[x − Cj ]||/h1) and wk(x) by Ker(||SelD[x − ck]||/h2), where the
selector function SelD[.] is defined as follows. D is a subset of those indexes
{1, 2, . . . , d} of input variables that are not set to zero by function Sel. For ex-
ample, if d = 4 and D = 1, 4, then SelD[[x(1), x(2), x(3), x(4)]] = [x(1), 0, 0, x(4)].
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5 Simulations

The aim of our simulations was to verify performance of the algorithm using an
example of moderate size. For clarity of the interpretation we have simulated a
simple RBF net with input variables on the unit square. Preliminary positions
of Gaussian RBF’s, i.e., those included in v(x) were in the nodes of the following
grid: (i 0.2, j 0.2), i, j = 0, 1, . . . , 5. Thus, v(x) contained r = 36 elements, but

Fig. 1. ”True” surface (left panel) and its reconstruction by one of the randomly sieved
BRF net (right panel)

Fig. 2. A collection of randomly sieved RBF nets for approximating the surface shown
in Fig. 1 (left panel)
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Fig. 3. The second collection of randomly sieved RBF nets for approximating the
surface shown in Fig. 1 (left panel)

only two of them (higher hills in Fig. 1) had weights 2.5 in our simulations,
the rest of the weights were set to zero. As candidates w(x) to be entered to
the net we take RBF’s with centers at the grid: (i 0.1, j 0.1), i, j = 0, 1, . . . , 10.

Thus, K̃ = 121 and we have r + K̃ = 157 RBF’s to be selected. To this end
only n = 50 observations (xi, yi)’s were generated, where xi’s are generated
as the Hammersley sequence (see Tablet1). The reason for selecting a quasi-
random sequence of the Halton and Hammersley type is that it has proved to be
useful in other tasks such as regression estimation (see [19], [30]). Their usefulness

results from a better conditioning of the matrixM
def
=
∑r

i=1 v(xi)v
T (xi), which

has κ(M)
def
= λmax(M)

λmin(M) = 9622 and we can avoid using a regularization. For

comparison, when xi’s are generated as uniform random variables, then κ(M)
is of the order 106 and a kind of regularization is necessary (see, e.g., [15] for a
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discussion on this topic). Also classical design points (see [16]) lead to a good
conditioning of M , but this is achieved by the necessity of applying a large
number of them.

The rest of the parameters were selected as follows h1 = 0.025, h2 = 0.005
and they were not optimized, σs = 3, σε = 0.1.

Two RBF’s (contained in w(x)) should be introduced to the net that is visible
in Fig. 1 (left panel) as the smallest hill and as the hole, with weights 0.75 and
−0.75, respectively. The two large hills (with weights 2.5) were present in a
preliminary part of the net, i.e., in v(x).

We shall say that our algorithm achieved:

– full success (FS), if it detected all four RBF’s and there were no spurious
terms detected,

– partial success (PS), if only one additional RBF from w(x) was detected plus
two RBF’s from v(x), independently whether additional terms in improper
positions were found or not.

The results of the simulations are summarized in Table 1 (left panel). They seem
to be satisfactory, since we had three times more RBF’s to be considered than
observations and in about eighty percent of runs at least one from two RBF’s that
were hidden in the noise was detected. The execution time was varied between
runs and it took from 9 to 122 seconds on a standard PC with the i7 processor.

Table 1. Left panel – the percentage of full (FS) and partial successes (PS). Right
panel – a sequence of 50 Hammersley points used in simulations.

Success FS PS FS+PS

% 18.2 63.6 81.8

6 Concluding Remarks

An important feature of the proposed approach is the dimensionality reduction
that comes from random projections of candidate RBF’s. The idea of using
random projections for this purpose was introduced by the first author in [25] in
the context of usually even larger models arising in the identification of nonlinear
time series. This aspect of the present paper as well as bounds on the probabilities
of properly selecting all necessary RBF’s, while avoiding introducing spurious
ones are outside the scope of this paper.
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One can consider other strategies of running calculations of divided and ran-
domly projected sub-nets that are more suitable for parallel computers. The
proposed approach can also be useful in signal restoration (see, e.g., [11]) for
selecting sin terms that are used for a signal approximation.
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Abstract. In this work we provide a spectral comparison of functional
networks in fMRI data of brain activity and artificial energy-based neural
model. The spectra (set of eigenvalues of the graph adjacency matrix)
of both networks turn out to obey similar decay rate and characteristic
power-law scaling in their middle parts. This extends the set of statistics,
which are already confirmed to be similar for both neural models and
medical data, by the graph spectrum.

Keywords: fMRI, functional networks, neural networks, graph spec-
trum.

1 Motivation

Recent focus on graph-theoretical description of large-scale real networks caused
an avalanche of reports concerning real brain structures and artificial neural net-
works in this context. Among frequently analysed statistics, degree distribution,
transport efficiency, clustering, fault tolerance [3] seem to be most frequently
regarded. This seems hardly surprising as they are fairly simple to compute and
provide clear conceptual meaning.
In this work we go slightly beyond this classical set of features and focus on the

set of eigenvalues of the analysed network (graph spectrum). Such analyses are
far less common in theoretical researches concerning ANN1 and next to absent
in experimental neuroscience, though they can still provide a wide qualitative
description of the graph, for instance bi-partioning [6]. We provide numerical
results concerning spectra of functional graphs from open-accessed fMRI data
from BIRN2 as well as simplified activation-flow of recurrent network. We note a
striking similarity between the decay of eigenvalues in functional networks from
both sources.
The outline of the paper: in Sec. 2 we describe the methodology and re-

sults obtained from fMRI functional graphs. In Sec. 3 we briefly reiterate an
1 Abbreviations used throughout the paper: ANN — Artificial Neural Network, fMRI
— functional Magneric Resonance Imagining, AF — Activation Flow (model), ER
— Erdős-Rényi (graph), WS — Watts-Strogatz (graph), AB — Albert-Barabasi
(graph).

2 http://www.birncommunity.org/resources/data/

L. Rutkowski et al. (Eds.): ICAISC 2013, Part I, LNAI 7894, pp. 205–214, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://www.birncommunity.org/resources/data/
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activation-flow model of ANN [13] and recall its spectral properties [14]. The
results are compared and discussed in Sec. 4. Sec. 5 concludes the paper and
points out potential future research.

2 Spectra of fMRI Functional Brain Graphs

For the study of functional brain graphs, we used fMRI data provided by Biomed-
ical Informatics Research Network (BIRN): we downloaded the data from the
open-accessed Function BIRN Data Repository (for more information see the
website http://www.birncommunity.org/resources/data/). The data contain
a raw stream of output of the medical devices, which measured blood-oxygen
level in the cells of brain during execution of simple tasks. The fMRI data studied
in this paper come from the two-folded run of sensorimotor task, performed by
a right handed, non-smoking, healthy women. In Fig. 1 we present the images,
which are fragments of obtained scans.
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Fig. 1. Representative fMRI scans from the first sensorimotor task at the time t = 4
out of 85 timesteps

The raw data are presented as a set of voxels. Each voxel v, for a given time t ∈
{1, . . . , nt}, is described by three coordinates x ∈ {1, . . . , nx}, y ∈ {1, . . . , ny},
z ∈ {1, . . . , nz}. By vtxyz we denote a value of a voxel v with coordinates x, y, z,
at a time t. In our analysis we use two datasets. Each dataset consists of 85 three-
dimensional data, that represent human brain activity; each volume for a given
timestep t = 1, . . . , 85. For a further analysis we use representative fragments of
the size 34 × 40 × 20 of volumes imaging human brain, for t = 1, . . . , 85, each
frame taken every 3 seconds, so the whole measurement lasted 4:15 minutes.
Based on the fMRI data D = {vtxyz | x = 1, . . . , nx; y = 1, . . . , ny; z =

1, . . . , nz; t = 1, . . . , nt} ⊂ Znx×Zny ×Znz ×Znt , we define a functional activity
multigraph G = (V,E) as follows. For each voxel v, with its coordinates (x, y, z),
the average activity matrix A = [ai] ∈Mn×1(R), where n = nx ·ny ·nz, is defined
as

A(i := z · nx · ny + y · nx + x) = ai =
1

nt

nt∑
t=0

vtxyz .

Using this matrix we define the adjacency matrix of the functional network
Adj = [adij ] ∈Mn×n(R≥0), n = nx · ny · nz as

Adj(i, j) = adij =

{
|ρ(i, j)| ·

√
A(i) · A(j) if |ρ(i, j)| ≥ Θ

0 otherwise
, (1)

http://www.birncommunity.org/resources/data/
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where i and j are the voxel indicates, ρ stands for Pearson correlation coefficient
of the activity of the voxels, and Θ is a threshold parameter picked between 0.1
and 1. Fig. 2 depicts fragments of the correlation matrices before thresholding.
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(b) Second sensorimotor task

Fig. 2. The fragments of the correlation matrices for the sensorimotor tasks

We can now proceed to the definition of the functional activity multigraph
G = (V,E). The number of the vertices is equal to the number of voxels in D,
and each vertex is labelled with coordinates of the corresponding voxel. Between
vertices labelled as a and b, there is an edge with a weight equal to Adj(a, b), iff
Adj(a, b) > 0. Note, that for some thresholds Θ, the obtained graph may not be
connected. In that case, as a resulting graph G we assign its maximal connected
component, so |V | ≤ n; see the first two columns of the Table 1 for examples.
The vertex degree distributions of the functional graphs, obtained from de-

scribed data for thresholds Θ = 0.7 and Θ = 0.9 are given in Fig. 3. We note that
they obey a power law formula, which is in agreement with results of Eguiluz et
al., see [7], although the threshold values are slightly higher in our case.
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Fig. 3. Vertex degree distribution of the functional brain network during the sensori-
motor tasks for the two thresholds Θ = 0.7, and Θ = 0.9

We are interested in computing the spectrum spec(Adj), that is the set of all
eigenvalues of the adjacency matrix:

spec (Adj) = {λ ∈ C : ∃x ∈ Cn, such that Adj · x = λ · x} . (2)
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Fig. 4. Spectra of the functional brain networks during the sensorimotor tasks for
various thresholds Θ

Table 1. Statistics of the positive values of the spectra of the two fMRI datasets
(the first and second sensorimotor task, respectively), for varying threshold. Columns
from the leftmost denote: threshold, size of the network, minimum eigenvalue, average,
median, maximum eigenvalue, variance

Θ Size min mean median max variance

0.9 3544 0.882 1029.1 533.5 62.87 · 103 4.74 · 106
0.8 10545 0.150 1739.5 717.8 327.43 · 103 32.30 · 106
0.7 16435 0.199 2375.4 949.4 682.98 · 103 85.87 · 106

0.6 21084 0.029 2879.5 1210.9 1052.26 · 103 160.05 · 106
0.5 24541 0.051 3248.5 1489.4 1413.60 · 103 250.33 · 106
0.4 26919 0.085 3426.2 1705.5 1758.03 · 103 351.79 · 106
0.3 27200 0.000 3580.5 1952.9 2082.54. · 103 490.56 · 106
0.2 27200 0.034 3176.1 1577.9 2372.76 · 103 599.33 · 106
0.9 6770 0.111 2118.8 779.4 329.58 · 103 48.37 · 106
0.8 13268 0.081 3420.0 1255.7 1268.18 · 103 272.40 · 106
0.7 18284 0.099 3751.7 1466.1 2107.08 · 103 509.93 · 106

0.6 22184 0.105 3739.1 1512.3 2746.26 · 103 698.150 · 106
0.5 24967 0.080 3614.3 1522.9 3221.10 · 103 853.56 · 106
0.4 26888 0.011 3343.6 1416.2 3563.98 · 103 976.57 · 106
0.3 27200 0.025 3098.1 1337.1 3799.74 · 103 1.138 · 109
0.2 27200 0.003 2552.4 907.1 3950.20 · 103 1.240 · 109

Note that, since the matrix Adj is symmetric, all the eigenvalues are real, i. e.
spec (Adj) ⊂ R, see [6]. The resulting positive eigenvalues were sorted decreas-
ingly and showed in the loglog plots, see Fig. 4. The plots of the spectra for
the thresholds Θ = 0.3, 0.4, 0.5, 0.6 are almost overlapping with the results for
threshold Θ = 0.7, therefore they are omitted.
The statistics for positive eigenvalues of the resulting graphs are summarized

in the Table 1. Interestingly, for larger threshold values the plots exhibit small
fluctuation toward developing a power law dependency in the middle part, and
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than truncate exponentially. The segment of this behaviour is quite small but
noticeable, especially for Θ = 0.7.
The exact threshold value Θ needs to be adjusted ’manually’. Threshold val-

ues selected too strictly may cause removal of vital edges, too generously may
preserve unused resources and, in the end, yield a structural, rather than func-
tional graph. In both of the cases the resulting functional network tend to lose
its critical properties. Similar loss of criticality outside fixed control parameter
was observed in [9], but also fMRI-based researches focus solely on the values,
that yield critical state, see for an instance [7].

3 Spectra of Activation-Flow-Based Model

The prohibitive complexity of the brain dynamics drew us to design a simplified
model, which is able to mimic at least some of its characteristic features in the
graph-theoretical terms. The activation-flow model, discussed in [13], already
turned out to develop a scale-free degree dependency (ibidem.) as well as some
features, which are typical for the small-world graphs, see [12].
In a nutshell, the model consists of a number of abstract neurons v ∈ V

described by their spatial locations and accumulated activity σv ∈ N≥0. The
neurons are connected with symmetric synapses with the probability propor-
tional to |v1, v2|−α, where v1, v2 are neurons to be connected, |−,−| is Euclidean
distance, and α is a decay exponent. We denote the set of synapses by E . Each
connection has its gaussian-drawn weight wuv ∈ R, which indicates its excita-
tory (wuv > 0) or inhibitory (wuv < 0) nature. The activity is allowed to be
moved between the neurons within following constraints: it cannot be negative
(∀v∈V σv ≥ 0) and its total sum is constant

∑
v∈V σv = Const. The constant

total activity mimics the critical state of the network, so that it neither vanishes
nor explodes, see [4]. As a result we can describe the state of the network by its
activity configuration σ̄ = [σv]v∈V . We define an energy function E : Z|V| → R

on this configuration space as follows

E(σ̄) =
∑

{v1,v2}∈E
wv1v2 |σv1 − σv2 |. (3)

If the energy is to be minimized, we can see that two neurons connected with
positive weight (excitatory) synapse shall tend to share similar levels of activity,
while those connected with inhibitory one (wv1v2 < 0) will prefer high differences
in accumulated σ-s (high activity in v1 silences v2).
The activity is allowed to flow around the network through synapses according

to a stochastic, energy-driven dynamics. At each timestep of the evolution, a sin-
gle unit of activity is transferred between a pair of neurons, which can be read as
a change form configuration σ̄ to σ̄′. If such transfer reduces the energy, than it is
unconditionally accepted. Otherwise (when E(σ̄′)−E(σ̄) > 0) it is accepted with
probability exponentially decaying with the growth of the energy. The evolution
is run until the network reaches a stable state of the activity configuration, or for



210 K. Zając and J. Piersa

a predefined number of time steps. It is not difficult to see relations to the Boltz-
mann machines dynamics [1], except for adjustments to account for multi-state
(rather than binary) neurons. The time-scale of the simulation can be roughly
estimated as 109 iterations/(104neurons · 103 1

s (spiking frequency)) � 102s. The
estimation is rather crude, but puts the model somewhere nearby the time of
fMRI scans, see Sec 2.
Let duv denote the total number of accepted transfers of activity from u to v,

which occurred during the dynamics. Define a spike-flow or functional activity-
flow graph of the system as a subgraph of (V ,G) with multiple edges induced by
these synapses of E , which had a vital number of transferred units of activity,
that is G1 := (V , E1), where E1 = {e = {u, v} ∈ E : duv + dvu ≥ θ}, with
θ standing for a threshold parameter. Note that, the thresholding parameter
θ (lower-case), while has a similar meaning of removal unused resources as in
section 2, denoted by capital Θ, but not necessarily the same value and they
should not be confused. The edge multiplicities in the functional graphs are
equal to the the total activity with flew through the synapse, in other words for
e = {uv} we have

M(e) :=

{
duv + dvu if e ∈ E1
0 otherwise.

(4)

Recall that the theoretical analyses of spectra for alike model with deterministic
winner-take-all dynamics and in full graphs were studied by Schreiber [15], who

predicted what i-th principal eigenvalue of the graph should behave as
c

i2
. Nu-

merical results concerning of activation flow model were studied in [14] and to
some extend confirmed this power law-scaling though with an exponential cut-off
of the eigenvalue tail. Interestingly, spectra of recurrent networks with fully con-
nected graph (unlike geometrically-dependent, as in this work) also confirmed
similar scaling, but among small number of principal eigenvalues only, see [11].
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Fig. 5. Log-log plot of the spectrum of the functional graph in activation-flow model,
i-th eigenvalue vs i. Eigenvalues are sorted decreasingly. The highlighted middle part of
the plot indicates a power scaling (eigi ∝ i−2). The network consists of approx. 2 · 104
neurons.
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Table 2. Simple statistics of the spectrum of the AF model for varying sample sizes.
Columns from the leftmost denote: size of the network (number of neurons), minimum
positive eigenvalue, mean, median, maximum eigenvalue, variance.

Size min mean median max variance
3048 .133 815.3 256.4 11694.2 1.7 · 106
3754 .074 960.5 267.3 18015.7 2.8 · 106
4557 .006 953.2 264.8 13209.6 2.8 · 106
12530 .040 1962.2 301.6 54041.2 1.9 · 107
21460 .026 2298.1 287.7 74826.1 3.3 · 107

The plot of i-th eigenvalue vs. i is depicted in Fig 5. In addition Tab. 2
summarizes the basic statistics of the spectra for various data, though we note,
that such statistics can be highly misleading when compared directly. Indeed,
entries in adjacency matrix depend of threshold θ and number of transfers de, and
one might expect that the latter is proportional to the total number of activity
in the network (the more total activity is, the more transfers can occur). It is
not difficult to see, that if the total sum of σ-s is increased c times than we
have: (Ac) · x = (Ax) · c = (λx) · c = (λc) · x. So when the initial activity
is multiplied by constant c, than the eigenvalues are also multiplied by c. As
a result we conclude that the simple numerical statistics, however interesting,
might be deceiving and one should look at the whole shape of the spectrum. In
particular, since the power-law-formula distribution Xp, does not have a finite
second moment for p ≥ −3 and even first moment for p ≥ −2, both mean and
variance can be highly misleading statistics.

4 Discussion

Before proceeding to direct comparison we first briefly provide the spectral prop-
erties of the best-known graph models, adapted in large scale networks.
First we would like to recall Erdős-Rényi graph model [8], which for a given set

of vertices and the probability p ∈ (0..1) randomly and independently includes
each of possible

(
n
2

)
edges into the final graph with probability p: P({u, v} ∈

E) = p.
Next random graph to be discussed is a Watts-Strogatz model [16]. Starting

from n vertices organized into a ring, each connected with k nearest neighbours,
every edge is randomly rewired with probability p ∈ [0..1]. Clearly for p = 0
the resulting graph is an unaltered initial periodic lattice, while for p = 1 one
obtains random ER-graph.
Last of the graph models, to be discussed, was designed by Albert and Barabasi

[2]. The construction procedure begins with small clique and iteratively adds
new vertices (vi in i-th step) into the graph, each connected to m existing nodes
picked selectively: P({vi, u} ∈ E) = deg(u)∑

w∈V deg(w) . The growth is terminated upon
reaching desired network size.
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(a) Erdős-Rényi model
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(b) Watts-Strogatz model
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(c) Albert-Barabasi model

Fig. 6. Reference spectra of ER, WS and AB random graphs

Spectra of above reference models are presented in Fig. 6. One should note
here, that all the reference models are unweighted single-edge graphs, while
the discussed activation-flow model is clearly a multigraph. However, there is a
shortage of random graph models, which would account for edge multiplicity.
Nonetheless, the shapes of the spectra clearly distinct from obtained functional

graph in activation flow model as well as fMRI-obtained network. It seems to
be a foregone conclusion in the case of Erdős-Rényi and Watts-Strogatz models,
as the obey binomial degree distribution sequences, while the AF model and
fMRI turned out to obey a power low decay [13]. The shapes are also different
for Albert-Barabasi model, despite the fact that this one is known to reproduce
graphs with power law-degree sequences [2]. Interestingly, the fMRI results seem
to be able to partially replicate some fluctuations in shape of the Watts-Strogatz
spectrum. WS graphs for the probability parameter 10−3 < p < 10−1 are known
to be small-world graphs (see [16]), but their degree distribution is approximately
binomial. We conclude that the obtained spectra are unlike any of the described
random graph models, though perhaps random multigraph models would turn
out more accurate in predicting.
Instead, as discussed in Section 2, for the threshold value Θ = 0.7 the obtained

fMRI functional graphs exhibit a developed power law decay of eigenvalues again
in their middle part and than a clear exponential truncation of the eigenval-
ues. Interestingly, this feature is strikingly similar to one returned by functional
graphs of the activation flow model. Somehow unsettling, the segment of validity
of such scaling is significantly smaller for fMRI graphs, for the model from Sec.
3 this value was numerically estimated at the 60%, see [14].
Additionally, recall that both functional networks obey a power-law degree

distribution, and they share roughly similar way of extraction of the functional
network. The statistics, as shortlisted in Tables 1 and 2 follow generally the same
tendency, although vary between exact values by even an order of magnitude.
However we note that, the power-law distributions may not have finite second
or even first moments (see Fig. 7), so one must be careful when inferring just by
these values.
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Fig. 7. Empirical distribution of the positive eigenvalues of the model discussed in
Sec. 3. Bean lengths are approximately 75 units wide and the plot consists of 1000
beans. Each bean is marked with rhombus, rather than a bar due to log-plot issues.
Approximated slope, was fit with least-squares.

5 Conclusion

To conclude, we compared fMRI imagings with artificial model of neural activity
in the terms of shape of the eigenvalues of the functional network. We clearly
ruled out random graphs of type Erdős and Rényi, Watts-Strogatz or preferential
attachment as equivalent model. Instead, the complex dynamics and resource
thresholding turn out to be able to reproduce similar results. We still miss an
answer whether the power-law scaling should be truncated at some point as the
results seem to suggest, or it is just an artefact stemming from small sample
size.
In this paper we extend the functional brain network analysis with the spec-

tral properties. Moreover, we compare the spectral properties of functional brain
network obtained from freely accessed fMRI data, with artificial models, includ-
ing activation-flow model, developed in [13]. In the further work it would be
interesting to compare the fMRI graph and the functional activity-flow graph
in the terms of graph spectral distance (see [10]). Moreover, one can describe
the differences between these graphs, using spectral reconstruction techniques,
see [5]. This approach can enhance the structure of the functional activity-flow
graph to better simulate the behaviour of human brain.
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Abstract. A new encoding scheme is presented for a fuzzy-based nonlinear sys-
tem identification methodology, using the subtractive Fuzzy C-Mean clustering 
and a modified version of non-dominated sorting genetic algorithm. This me-
thod is able to automatically select the best inputs as well as the structure of the 
fuzzy model such as rules and membership functions. Moreover, three objective 
functions are considered to satisfy both accuracy and compactness of the model.  
The proposed method is then employed to identify the inverse model of a highly 
nonlinear structural control device, namely Magnetorheological (MR) damper. 
It is shown that the developed evolving Takagi–Sugeno-Kang (TSK) fuzzy 
model can identify and grasp the nonlinear dynamics of inverse systems  
very well, while a small number of inputs and fuzzy rules are required for this 
purpose.  

Keywords: TSK fuzzy system, inverse modelling, MR damper, Subtractive 
clustering, Fuzzy C-Mean Clustering. 

1 Introduction 

Structural control shows great potential for reducing vibrations in various civil struc-
tures under dynamic loading. Magneto-Rheological (MR) dampers are one of the 
most promising new devices that are widely used as semi-active control devises. 
Therefore, and for the purpose of modelling and simulation, a forward model of MR 
damper is needed. Recently, inverse model of MR damper is also used in conjunction 
with classical controller to convert the desired force to a proper voltage to be sent to 
MR damper [1].  However, the hysteretic behaviour of nonlinear dynamical friction 
mechanism of the MR fluid, makes the identification of both forward and inverse 
model of this semi-active device significantly difficult. 

The Takagi–Sugeno-Kang (TSK) fuzzy model uses IF–THEN rules to approximate 
a wide class of nonlinear systems by fuzzy blending of local linear approximations. 
This method employs linear models in the consequent part of the Fuzzy System (FS). 
The schematic structure of a T–S fuzzy model is shown in Figure 1. 
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Fig. 1. Structure of a TSK Fuzzy Model (r: number of inputs; k: number of rules) 

Various methods, such as clustering algorithms, linear least squares and nonlinear 
optimisation methods are used for tuning of antecedent and consequent parameters of 
the FS [2, 3]. To accommodate new input data, adaptive online learning of TSK fuzzy 
models has been developed in [4]. From another point of view, the design of a fuzzy 
model can be formulated as a search problem in an appropriate multidimensional 
space, where every point represents a possible fuzzy model. Due to the capability of 
search within irregular and multidimensional spaces, evolutionary algorithms (EAs), 
such as GA and evolutionary strategies have been extensively used. 

In conventional EA-based fuzzy modelling methods, the structure of the FS, e.g., 
the suitable inputs, are prescribed and parameters of the rules and MFs are optimized. 
[5]. However, selecting the most relevant inputs, among numerous possible options, is 
an important and challenging problem for construction of an FS. Therefore, some 
studies on finding the best possible combination of relevant inputs are reported [2, 6]. 
However such encoding scheme, deals with a large number of to-be-tuned parameters, 
causing a huge computational burden and hence making the optimization process very 
time consuming. Furthermore, application of such method requires a good knowledge 
on the expected bounds of every parameter at the outset of the design, which may not 
be available. On the other hand, the excessive number of inputs and rules, not only 
affects the compactness and transparency of the underlying model, but also increases 
the complexity of the computations necessary for real-time implementation of the 
resulting model. 

In order to develop an accurate, yet compact FS, in this paper, an evolving TSK 
fuzzy model is introduced. The proposed method is based on subtractive clustering 
technique combined with fuzzy c-mean clustering method (FCM) and a new modified 
version of non-dominated sorting genetic algorithm (MNSGAII). For this purpose, an 
encoding scheme, using a bi-section chromosome is introduced. The first section of 
the chromosome encodes the selected inputs and the second one encodes the rules and 
the MFs parameters. The best chromosome is searched and evolved through the 
MNSGAII with three objective functions, i.e., number of inputs, number of rules and 
RMS error between the target and predicted outputs. 
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2 Preliminaries  

2.1 TSK Fuzzy Structure 

Most neural fuzzy systems employ the inference method proposed by Mamdani in 
which the consequent parts are defined by fuzzy sets. A Mamdani-type fuzzy rule has 
the form:    ,     , …    ,      ,  .    
where  and represent a Gaussian membership function with mean and devia-
tion, respectively, of the ith dimension and the jth rule node. The consequent  of 
the jth rule is aggregated into one fuzzy set for the output variable y. In addition, Ta-
kagi, Sugeno and Kang introduced a modified inference scheme which in the first two 
parts of the fuzzy inference process, fuzzifying the inputs and applying the fuzzy 
operator, are exactly same as Mamdani model [7]. However, instead of fuzzy sets 
being used, the conclusion part of a rule in TSK fuzzy model, is a linear combination 
of the crisp inputs, as follows:    ,     , …    ,     
where  and  represent a Gaussian membership function with mean and devia-
tion, respectively, of the ith dimension and the jth rule node. Since the consequent of a 
rule is crisp, the defuzzification step becomes obsolete in the TSK inference scheme. 
Instead, the model output is computed as the weighted average of the crisp rule out-
puts. This computation is less expensive than calculating the center of gravity. 

2.2 Subtractive Clustering 

The subtractive clustering algorithm considers each of the available data points as a 
possible candidate for the centres of the data clusters. For this purpose, a matrix con-
sisting of n sets of m-dimensional input–output data, {x , . . , x }, normalized within 
the hypercube of dimension M is considered.  

The density measure for every data point, xi, is defined as 

D exp x xr 2⁄ , (1)

where,   denotes the Euclidean distance and r  is the prescribed radius of the 
hyperspheres, within which the neighbouring points are considered to be more impor-
tant than the others. Hence, a data point will have a high density value if it has many 
neighboring data points. The data point, xC , with the highest density, DC , is then 
selected as the first cluster centre. 

In order to select the next cluster centre, the data points near the first cluster centre, xC , should be forced to be less important. For this purpose, the modified densities are 
defined as: 
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D D DC exp x xCr 2⁄ .  (2)

The constant  specifies a neighbourhood of xC where the modified density must 
become smaller. Generally,  should be selected larger than , e.g. 1.5  (Chiu 
1994). Now, the next data point, xC , with the largest modified density is selected as 
the next cluster centre, and so on. 

2.3 FCM Based TSK Model Identification  

Fuzzy C-Mean is one of the strongest clustering algorithms that can be used to identi-
fy the clusters. The objective function of the FCM is defined by: , ∑ ∑ ,  (3)

where  denotes the point in data space, k =1, 2,..., N ; N denotes the number of 
data points;  stands for the final cluster center, i =1,2,..., c ; c corresponds to the 
number of fuzzy rules; 0,1  is the fuzzy membership degree of the kth data 
pair pertaining to the ith fuzzy subset. 

It is assumed that  is constrained with following equation: ∑ 1, 1,2, … , .  (4)

The C-means algorithm for clustering in n dimensions produces C-means vectors that 
present c classes of data. The problem of finding the fuzzy clusters in the data set is 
now solved as a constrained optimization problem using FCM algorithm, considering 
the minimization of the function in Eq.(3) over the domain data set and taking into 
account the constrains in Eq.(4). The results of FCM imply the clustering centers 
together with the corresponding membership degrees. The main steps for identifying 
the TSK fuzzy model based on FCM are given as follows: 

Step 1:  Given c, m, and the initial clustering centers for all k =1, 2,..., N and i =1, 
2,..., c . Set an initial fuzzy c-partition matrix  to indicate the membership 
value for the ith cluster representatives. 

Step 2: Calculate the following equation: ∑∑ , 1,2, … ,    (5)

Step 3 Update U to adjust 

  (6)

Step 4 Check for termination. If 

  (7)

stop; otherwise, let k = k +1 and return to step 2.  
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Step 5: Identify the consequent parameters using orthogonal leas squares (OLS) 
method. We have: 

  (8)

where , … , , , … , , … , , … , ,and, … , , , … , , , … ,  signifies the consequent parameters. 
In regard to the least squares solutions, .  (9)

Here we convert   into an orthogonal matrix [WT W]. By implementing itera-
tion and conversion algorithms, the 1  coupled equations become mutually 
independent, thereby calculating the consequent parameters . 

2.4 Modified Non-dominated Sorting Genetic Algorithm II for Optimization 
of Integer-Real Parameters Handling 

Genetic algorithms (GAs) are general purpose population based stochastic search 
techniques which mimic the principles of natural selection and genetics laid down by 
Charles Darwin. The way the variables are coded is clearly essential for GAs’ effi-
ciency. Real coded genetic algorithms (RCGAs), which use real numbers for encod-
ing, have fast convergence towards optimal than binary and grey coded GAs. Also, 
RCGAs overcomes the difficulty of ‘‘Hamming Cliff” as in binary coded GAs. 

In the case when, the adjustable parameters are integer, many applications of GAs 
are available in the literature, some of them use binary coded GA while some others 
use real coded representation. Recently, a robust GA namely MI-LXPM, for solving 
integer and mixed integer nonlinear programming problems is introduced by Kusum 
Deep et.al [8]. The proposed algorithm however uses a single objective function. In 
this paper, the main features of MI-LXPM, including Laplace Crossover, Power Mu-
tation together with the truncation procedure for handling the integer parameters have 
been adopted into one of the most common multi objective GA, Non-Dominated Sort-
ing Genetic Algorithm type II (NSGAII) to find a non-dominated sorting Pareto front 
for designing an accurate and compact TSK fuzzy inverse model of MR damper. 

3 Proposed Hybrid Learning Algorithm  

As outlined before, subtractive clustering can be used for initial estimation of the 
number of clusters as well as the centers. In order to find the efficient clusters for each 
dimension, m, in the input space, the only variable parameter that must be chosen 
appropriately is the neighbourhood radius . Furthermore, to design an accurate yet 
compact model, a minimal number of inputs which are the most relevant ones to the 
model should be selected carefully. To this end, the aforementioned genetic algorithm 
is used to intelligently select the required inputs as well as the initial clusters to be 
modified by FCM to obtain an accurate and concise TSK fuzzy model.  



220 M. Askari, J. Li, and B. Samali 

 

3.1 Genetic Encoding Scheme 

All the inputs in m dimensions are considered to be involved into the fuzzy model for 
which the corresponding ras are incorporated into a single chromosome, as shown in 
Figure 2. The length of the chromosome, representing the fuzzy model, would then be 
equal to 2n+1, where n is the number of candidate inputs. 

The first part of chromosome indicates the selected inputs, where the value 1 in 
each gene shows that the corresponding input is used in the fuzzy model and then the 
corresponding ra in the second part of chromosome is searched for. If the value of 0 is 
assigned to the gene m in the first part, it means that the proposed input would not be 
selected and hence the gene n+ m in the next part is irrelevant. 

 

Fig. 2. Encoding scheme for individual chromosomes 

Based on the encoding scheme proposed above, the proposed TSK fuzzy learning 
algorithm is developed as follows: 

Step 1: Encode all the parameters into one chromosome using the proposed encod-
ing scheme. 

Step 2: Generate the initial population of the chromosomes. 
Step 3: Find the initial clusters from the collected data using subtractive clustering 

method and based on the selected inputs and their corresponding neighbourhood ra-
dius values of each chromosome. 

Step 4: Update the clusters by FCM for each chromosome (Use the number and the 
initial cluster’s centers achieved in step 3). 

Step 5: Derive a TSK fuzzy model out of each chromosome, using the proposed 
obtained clusters in step 4 and least squares estimator. 

Step 6: Based on the resulting rules, fuzzy input structure and the MF parameters, for 
every chromosome, evaluate three objective functions, namely, the number of inputs, 
the number of rules and the modelling RMSE. In fact, considering the first two factors as 
objective functions leads us to have a concise model while the last objective function is 
the representative of accuracy and can be computed from the following equation, where 
L is the number of data points,  is the predicted output and  is the target output: 

1
  (10)

Step 7: Rank all the chromosomes based on the objective function values. 
Step 8: Choose parents using tournament selection method, to be used in the next 

step for crossover and mutation. 
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Spencer et al. (1997) proposed a new phenomenological model based on a Bouce–
Wen hysteresis model for a prototype MR damper developed by the Lord Corpora-
tion. The simple mechanical model of the MR damper is shown in Figure 3 and is 
governed by the following complex equations: F c y k x x   (11)

y 1c c αz c x k x y   (12)

z γ|x y|z|z| β x y |z| A x y  (13)α α α u  (14)c c c u  (15)c c c u  (16)u η u v   (17)

According to the model shown in Figure 3, the force, f, of the damper is obtained if 
the patterns of displacement x and voltage v are prescribed. However, most of the 
time, it is hard to have access to a clean displacement signal. On the other hand, in-
stalling the accelerometers into the structure is easy and therefore the acceleration 
signal is available. For this reason and to derive an applicable model of the MR dam-
per, the acceleration data as well as the voltage data will be collected in this study, 
from the aforementioned mathematical model.  

A set of typical parameters of the 1000kN MR damper is presented in Table1. Note 
that the maximum operational voltage of this MR damper is 10 V, which is defined as 
the saturation voltage of the damper and is obtained experimentally. Moreover, the 
situation of 0 V will also be common during operation of the MR damper. Therefore, 
range of the voltage signal is set as 0–10 V, in this paper. Likewise, the displacement 
range of the MR damper is 20 cm while its frequency ranges from approximately 
0–5 Hz. 

Table 1. Typical Parameters of a 1000kN MR Damper 

Parameter Values  Parameters Values /  110.0  α N/cm 46.2 /    114.3  α N/cm V  41.2  /  0.002  γ cm  164.0 /  8359.2  β cm  164.0 /  7482.9  A 1107.2  /  0.0097  n 2   0  η s  100 
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Signals of generated accelaration and voltage for training the fuzzy model are 
shown in Figure 4. A time step of 0.005 second is used to produce a total of 10,000 
data set through 50s simulation.  

 

Fig. 4. Collected Data 

4.2 Inverse Model of MR Damper 

In this section, a TSK inverse model of MR damper has been obtained using the pro-
posed method in pervious section.  

For the current study, it is assumed that the input vector for the TSK fuzzy model 
consists of 16 input variables. The 16 candidates to the model include the past and 
current accelerations 13 , 12 , 11 , … , 1 , , 
as well as  forces ( −1) and  where t denotes the time step. The output is the 
predicted voltage v(t). Figure 5 shows the final obtained Pareto front. As can be seen, 
there is a trade-off between model complexity and accuracy. It must be mentioned 
that, if the complexity is not very important for the designer, the point with the mini-
mum RMS error can be selected as the final solution or the optimization can be run 
with the only objective of error minimisation. Here however, the red point is chosen 
as the compromised solution to consider both accuracy and compactness of the model. 
This solution results in a simple fuzzy model with only seven inputs, eighteen rules 
and an acceptable RMS error of 0.44. This error is calculated using predicted and real 
voltages. The predicted voltage of the designed model should be then sent to the for-
ward model to generate the applied force. Figure 6, is the comparison between the 
target force and the generated one where the good tracking of the original signal using 
the new approach is depicted. The RMS error between the target and the predicted 
force is about 37.87 kN which compared to the maximum capacity of the proposed 
MR damper (1000kN) is acceptable (less than 4%). 
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Fig. 5. Pareto Front for Fuzzy Model of Inverse MR Damper 

 

 

Fig. 6. The comparison between the target and generated voltage 

 

Fig. 7. The comparison between the target and generated force 
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4.3 Model Validation 

To validate the accuracy of the developed TSK fuzzy model, in identifying the in-
verse dynamic behaviour of an MR damper, a set of validation data is generated from 
the mathematical model of a 10000kN MR damper (Formulas 11-17). Therefore 
10000 data points are collected over 10s simulation with time increment of 0.001. 
Figure 8 shows the histories of validation data for acceleration, voltage and force. 

 

Fig. 8. Validation data 

Using the proper validation set of data, including acceleration and voltages, the 
predicted forces are as shown in Figure 9, which almost follows the target force gen-
erated by the mathematical model. The maximum error here is 75N which is 7.5% of 
the maximum target force. 
 

 

Fig. 9. Comparison between the predicted and target voltages and forces (Validation data) 
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It should be mentioned that, based on the dynamics of MR damper, when the dis-
placement is zero, the generated force, regardless of the voltage, will be zero as well. 
Therefore, when the generated force is zero, the voltage could be anything and that is 
why the predicted voltage in some points are very different to the target although the 
generated force derived from the predicted voltage, is very close to the target one. 

5 Conclusion 

A new TSK fuzzy modelling approach, using the evolving combination of subtractive 
clustering, FCM and modified NSGA-II is presented. The latter, is a great help to 
handle the mixed-integer optimisation problems as we deal with both integer, and 
non-integer adjustable parameters in this study.  Using this approach, the most suita-
ble minimal inputs and rules are searched simultaneously, such that the resulting 
fuzzy model is of compact size and acceptable accuracy. The proposed methodology 
is then applied to emulate the inverse dynamic behaviour of a 1000kN MR damper. 
Results show that the model is able to predict the required voltage of MR damper 
using the acceleration and force history, making the application of MR dampers for 
control engineering purposes more practical, as the linear control theory can be ap-
plied directly. 
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Abstract. In this paper a new hybrid method for modelling of non-
linear dynamic systems is proposed. It uses fuzzy logic system together
with state variables technique to obtain the local linear approximation
performed continuously for successive operating points. This approach
provides good accuracy and allows the use of very convenient and well-
known method from linear control theory to analyse the obtained model.

1 Introduction

Models of various physical phenomena are often used in practice. This is because
the possession of the real object model allows to build precise control system,
failure prediction and knowledge extraction from the modelled object [17]. Un-
fortunately, often only simplified models of the analysed objects are available
which have too low precision and therefore they are not very useful in practice.
The simplified models are often linear and they usually do not include all the
phenomena. As a result, these models are accurate enough in certain (i.e. linear)
operating points only. However, they are very useful, considering the fact of the
possibility of use the well-known methods of the control theory, which refer to
the linear models.

While the objects in the real world are usually nonlinear it would be very
useful to have an improved (i.e. more precise) linear model which will be able to
model accurately enough the nonlinear phenomenon. In the literature this issue
is widely investigated. For example in [3, 12, 13] there is proposed method for
modelling of dynamic systems using the theory of the state variables with use
the method of sector-nonlinearity. The modelling is based on identification of
the sectors which are the basis for the local linear approximation of a nonlinear
object. Other authors ([21]) propose the use of models of the plants which have
a known structure and parameters of the linear part of the plant and a static
nonlinearity that is not known. The proposed isolated nonlinearities allows to
obtain the accurate model of the plant, based on the initially known simplified
linear model. However this method transforms the linear model into the non-
linear one and lost the advantage of the linear modelling.

In this paper we propose a new method of the nonlinear modelling in which
the linear model is improved by the way which allows to increase their accuracy
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and maintaining the advantage of the linear model. In contrast to the sector
nonlinearities method [3, 12, 13] our method uses fuzzy rules to modelling vari-
ability of individual (selected) coefficients of the matrix (from the used algebraic
equations and a state variables theory) instead of using them to modelling of
nonlinearity of object sectors as a whole. Thus, the output of fuzzy rules used in
the model will be referenced more to the variability of some model parameters
than to indicate the sectors of its nonlinearity. This implies undeniably benefit
which includes possibility of interpretation of dependence between values of de-
fined coefficients (which are functions of the model parameter/s) and points of
work.

This paper is organized into six sections. In the next section an idea of the
proposed modelling method is presented. In Section 3 we describe intelligent
system for nonlinear modelling. Section 4 shows the evolutionary generation of
the models of nonlinear dynamic systems and Section 5 presents experimental
results. Conclusions are drawn in Section 6.

2 Idea of the Proposed Method

Let’s consider the nonlinear dynamic system described by the linear algebraic
equation and based on the the state variables technique ([15]), i.e.

x(k + 1) = (I + A · T ) · x(k) + B · T · u(k), (1)

y = C · x, (2)

where A,B and C are system input and output matrices, I is the identity matrix
with appropriate size, x,u,y are vectors of state variables, input and output
signals respectively. This model presents a local linear approximation of the
nonlinear object in an arbitrary chosen operating point. It refers to continuous
objects noted in discrete form with time step T , connected with the current
time t by the dependency t = kT , where k = 1, 2, .... Modelling with use of the
dynamic phenomena description as state variables and fuzzy rules is based on
the observable canonical form of the state equations [15].

The significant improvement (in the sense of increasing the accuracy) of such
model is possible when the local linear approximation will be performed contin-
uously for each current operating point ([17]). More precisely, the system matrix
in linear model will be corrected by adding a correction matrix PA in such a
way to increase the model accuracy, i.e.:

x(k + 1) = (I + (A + PA(k)) · T ) · x(k) + B · T · u(k), (3)

where PA(k) is the corrections matrix for system matrix A. Despite the fact that
operating point changes over time during the process, a local re-determination
of coefficients matrix in any new point is possible. For the discretization with
the suitable short time step T that solution is enough accurate, even if the first
order approximation is used.
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3 Intelligent System for Nonlinear Modelling

In proposed method the coefficients of the correction matrix PA(k) are generated
by multi-input, single-output fuzzy system [1, 2, 5–11, 14, 18–20, 22]. This idea
is graphically depicted on fig. 1.

Interpretable fuzzy systems

x(k + 1) =

⎛
⎝I+

⎛
⎝A+

⎡
⎣ 0 0 · · · p1,nA

0 0 · · · · · ·
0 0 · · · pn,n

A

⎤
⎦
⎞
⎠ · T

⎞
⎠ · x(k)

+ B · T · u(k)

Fig. 1. The idea of the hybrid modelling method based on fuzzy logic system and
modelling technique with the use of state variables

Each of the systems has a collection of N fuzzy IF−THEN rules in the form:

Rr : IF x1 is Ar
1 AND . . . AND xn is Ar

n THEN y is Br, (4)

where x = [x1, . . . , xn] ∈ X ⊂ Rn is a vector of input signals, y ∈ Y ⊂ R is an
output value, Ar

1, A
r
2, . . . , A

r
n and Br(y), r = 1, . . . , N are fuzzy sets characterized

by membership functions μAr
i
(xi) and μBr , i = 1, . . . , n, r = 1, . . . , N .

Each fuzzy rule (4) determines fuzzy set B
r ⊂ R whose membership function

is given by following formula

μBr(y) = μAr→Br (x, y) = T

{
n

T ∗
i=1

(
μAr

i
(xi)
)
, μrB(y)

}
, (5)

where T and T ∗ are t-norms operators (not necessarily the same) [19]. As a result
of aggregation of the fuzzy sets Br we obtain the fuzzy set B′ with membership
function given by

μB′(y) =
N

S
r=1

{μBr (y)} , (6)

where S denotes t-conorm operator [19]. The defuzzification can be realized by
the center of area method defined in the discrete form by following formula

y =

N∑
r=1
yrB · μB′(yrB)

N∑
r=1

μB′(yrB)

, (7)

where yrB are centers of the membership functions μBr (y), r = 1, . . . , N .
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4 Evolutionary Construct of the Matrix of the Corrections

In order to create interpretable model of the dynamic processes we use the
evolutionary strategy (μ, λ) (see e.g. [4, 10]). The purpose of this is to obtain
the parameters of systems described in the previous sections. In the process of
evolution we assumed, that:

– In single chromosome X all parameters of fuzzy systems (7) are coded in
following way:

X =

⎛⎜⎜⎝
xA1,1,1, σ

A
1,1,1, · · · , xA1,1,n, σA1,1,n, yB1,1, σB1,1, · · · ,

xA1,N,1, σ
A
1,N,1, · · · , xA1,N,n, σ

A
1,N,n, y

B
1,N , σ

B
1,N , · · · ,

xAM,1,1, σ
A
M,1,1, · · · , xAM,1,n, σ

A
M,1,n, y

B
M,1, σ

B
M,1, · · · ,

xAM,N,1, σ
A
M,N,1, · · · , xAM,N,n, σ

A
M,N,n, y

B
M,N , σ

B
M,N

⎞⎟⎟⎠ , (8)

where xAm,r,i and σAm,r,i are parameters of the input fuzzy sets Ar
i , m =

1, . . . ,M ; r = 1, . . . , N ; i = 1, . . . , n, and xBm,r and σBm,r are parameters of
the output fuzzy sets Br for m-th fuzzy system; M - number of nonzero
elements of correction matrix PA.

– Fitness function is based on difference between output signals x̂1, x̂2 gener-
ated by the created model at step k + 1 and corresponding reference x1, x2
values:

fitness(X) =

√√√√ 1

2 ·K

K∑
k=1

(
(x1(k + 1)− x̂1(k + 1))2+
(x2(k + 1)− x̂2(k + 1))2

)
, (9)

where K is a number of reference values. Starting values for the model are
reference values at step 1. In practical implementation, the actual refer-
ence values will be obtained by the non-invasive observation, for example by
processing a data packets, which are sent in the real-time in the Ethernet
network (see e.g. [16]).

– Genes in chromosomes X were initialized according with method described
in [10].

Detailed description of the evolutionary strategy (μ + λ), used to train neuro-
fuzzy systems, can be found in [4, 10].

5 Experimental Results

In our paper we considered the well-known harmonic oscillator as an example to
demonstrate the usefulness of the proposed modelling method:

d2x

dt2
+ 2ζω

dx

dt
+ ω2x = 0, (10)

where ζ, ω are oscillator parameters, and x(t) is a reference value of the modelled
process as function of time. The main parameter of the oscillator ω (angular
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 2

 6.5

-1 -0.5  0  0.5  1

ω

x1

Fig. 2. The value of ω parameter as the function of state variable x1

frequency) is intentionally modified in some operating points in simulation to
make the object nonlinear, as depicted in Fig. 2. In our simulations ζ is the
constant value ζ = 0.

We used the following state variables: x1(t) = dx(t)/dt and x2(t) = x(t). In
such case the system matrix A is described as follows:

A =

[
0 −ω2

1 0

]
, (11)

and matrix of the corrections PA is in the form:

PA =

[
0 p12(x)
0 p22(x)

]
. (12)

In our method we assume that the system matrix A is known, so the goal of
the modelling was to recreate the unknown parameters of correction matrix
p12(x) and p22(x) in such a way that the model reproduces the reference data
as accurately as possible. Because in general case the analytical dependences
used to generate the reference data are not known in order to recreate unknown
parameters we used multi-input, single-output fuzzy systems. As the input of
each system the measurable output signals of modelled process x̂1(k) and x̂2(k)
were used. The outputs of fuzzy systems were used as the values of correction
matrix parameters p12(x) and p22(x). The accuracy of the model was determined
by comparing values of its output signals x̂1(k) and x̂2(k) with reference values
x1(k) and x2(k). The error was computed according to formula (9).

In our simulations the neuro-fuzzy systems (7) with Gaussian membership
functions and algebraic t-norm were used. In order to determine membership
functions parameters (mean value and standard deviation) we used evolutionary
strategy (μ, λ) which is characterized by the following parameters: μ = 50, λ =
300, pm = 0.077 and pc = 0.7 and the number of generations = 2000.
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Fig. 3. Comparison between the reference and estimated data
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Fig. 4. Comparison between the actual and modelled by fuzzy system values of matrix
coefficients
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The neuro-fuzzy systems (7) obtained as results of evolutionary process are
characterized by 5 rules, 2 inputs (x̂1(k) and x̂2(k)) and single output. The ex-
perimental results are depicted in Fig. 4-6. The accuracy of nonlinear modelling
obtained in out simulations (the average RMSE) was lower than 0.002.

It should be noted that difference between the reference and estimated data
are negligible (Fig. 3). In addition, differences between actual and modelled by
the fuzzy system (7) values of matrix PA coefficients are also acceptable.

6 Conclusion

In this paper a new method for modelling of nonlinear dynamic systems was
proposed. This method is based on the local linear approximation performed
continuously for successive operating points. It allows to use the very convenient
and well-known method from linear control theory to analyse the obtained model.

Moreover, the proposed hybrid modelling method, based on fuzzy logic system
and state variables technique, gives the potential possibility to the interpretation
of accumulated knowledge.

The simulation shows the fully usefulness of the proposed method.

Acknowledgment. The project was financed by the National Science Center
on the basis of the decision number DEC-2012/05/B/ST7/02138.
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Abstract. This theoretical contribution studies mathematical proper-
ties of plausibility conflict of belief functions. The analysis is performed
for belief functions defined on 2-element frames, then the results are
generalized to general finite frames. After that, an analogous analysis
of Liu’s degree of conflict is presented, to enable its comparison to the
plausibility conflict. To be more efficient, a simplification of formula and
computation of Liu’s degree of conflict is suggested.

A series of examples and graphical demonstrations are included.

Keywords: belief functions, Dempster-Shafer theory, internal conflict,
conflict between belief functions, plausibility conflict, degree of conflict,
uncertainty.

1 Introduction

Belief functions are one of the widely used formalisms for uncertainty represen-
tation and processing that enable representation of incomplete and uncertain
knowledge, belief updating, and combination of evidence. They present a prin-
cipal notion of the Dempster-Shafer Theory or the Theory of Evidence [16].

When combining belief functions (BFs) by the conjunctive rules of combina-
tion, conflicts often appear which are assigned to ∅ by non-normalized conjunc-
tive rule ∩© or normalized by Dempster’s rule of combination ⊕. Combination
of conflicting BFs and interpretation of conflicts is often questionable in real
applications, thus a series of alternative combination rules was suggested and a
series of papers on conflicting belief functions was published, e.g. [2,5,15,18].

In [9], new ideas concerning interpretation, definition, and measurement of
conflicts of BFs were introduced. We presented three new approaches to inter-
pretation and computation of conflicts: combinational conflict, plausibility con-
flict, and comparative conflict. Differences were made between conflicts between
BFs and internal conflicts of single BF; a conflict between BFs was distinguished
from the difference between BFs.

The presented contribution studies mathematical properties of the plausibility
conflict of BFs introduced in [9]. Properties of both internal conflicts and conflicts
between BFs are analyzed. To complete the topic, an analogical analysis of Liu’s
degree of conflict is performed and comparison of the degree of conflict with the
plausibility conflict is presented.

L. Rutkowski et al. (Eds.): ICAISC 2013, Part I, LNAI 7894, pp. 235–246, 2013.
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2 State of the Art

2.1 General Primer on Belief Functions

We assume classic definitions of basic notions from theory of belief functions
[16] on finite frames of discernment Ωn = {ω1, ω2, ..., ωn}, see also [4–9]; for
illustration or simplicity, we often use 2- or 3-element frames Ω2 and Ω3.

A basic belief assignment (bba) is a mapping m : P(Ω) −→ [0, 1] such
that

∑
A⊆Ωm(A) = 1; the values of the bba are called basic belief masses

(bbm). m(∅) = 0 is usually assumed. A belief function (BF) is a mapping
Bel : P(Ω) −→ [0, 1], Bel(A) =

∑
∅�=X⊆Am(X). A plausibility function Pl(A) =∑

∅�=A∩Xm(X). There is a unique correspondence among m and corresponding
Bel and Pl thus we often speak about m as of belief function.

A focal element is a subsetX of the frame of discernment, such thatm(X) > 0.
If all the focal elements are singletons (i.e. one-element subsets of Ω), then
we speak about a Bayesian belief function (BBF); in fact, it is a probability
distribution on Ω. If all the focal elements are either singletons or whole Ω
(i.e. |X | = 1 or |X | = |Ω|), then we speak about a quasi-Bayesian belief function
(qBBF), that is something like ’un-normalized probability distribution’, but with
a different interpretation. If there is the only focal element A ⊂ Ω, i.e. m(A) = 1,
we speak about categorical belief function; in the case of m(Ω) = 1 we speak
about vacuous belief function (VBF); in the case of m(A) > 0 and m(Ω) =
1−m(A) we speak about simple support belief function. If all focal elements are
nested, we speak about consonant belief function; if all focal elements have a
non-empty intersection, we speak about consistent belief function1.

Dempster’s (conjunctive) rule of combination ⊕ is given as (m1 ⊕m2)(A) =∑
X∩Y=AKm1(X)m2(Y ) for A �=∅, where K= 1

1−κ , κ=
∑

X∩Y=∅m1(X)m2(Y ),
and (m1⊕m2)(∅) = 0, see [16]; putting K = 1 and (m1⊕m2)(∅) = κ we obtain
the non-normalized conjunctive rule of combination ∩©, see e. g. [17].

Let us recall Un the uniform Bayesian belief function2 [9], i.e., the uniform
probability distribution on Ωn, and normalized plausibility of singletons3 of Bel:

the BBF Pl P (Bel) such, that (Pl P (Bel))(ωi) = Pl({ωi})∑
ω∈Ω Pl({ω}) [3,7]. Smets’

pignistic probability is given by BetP (ω) =
∑

ω∈X⊆Ω
1

|X|
m(X)

1−m(∅) [17].

An indecisive BF (or nondiscriminative BF) is a BF, which does not prefer any
ωi ∈ Ωn, i.e., BF which gives no decisional support for any ωi, i.e., BF such that
h(Bel) = Bel ⊕ Un = Un, i.e., Pl({ωi}) = const., i.e., (Pl P (Bel))({ωi}) = 1

n ,
[11].

1 Note that any categorical BF is simple support BF, that any simple support BF is
consonant, and that any consonant BF is consistent. Note, further, that the reverse
implications do not hold true.

2 Un which is idempotent w.r.t. Dempster’s rule ⊕, and moreover neutral on the set
of all BBFs, is denoted as nD0′ in [7], 0′ comes from studies by Hájek & Valdés.

3 Plausibility of singletons is called contour function by Shafer in [16], thus P l P (Bel)
is a normalization of contour function in fact.
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2.2 Belief Functions on 2-Element Frame of Discernment

Our analysis of conflicts is motivated by Hájek-Valdés algebraic analysis of BFs
on 2-element frame Ω2 = {ω1, ω2} [13,14], further elaborated by the author of
this study, e.g. in [4,6]. Thus we present some of related notions which are used
here.

There are only three possible focal elements {ω1}, {ω2}, {ω1, ω2} and any nor-
malized basic belief assignment (bba) m is defined by a pair (a, b) = (m({ω1}),
m({ω2})) as m({ω1, ω2}) = 1 − a − b; this is called Dempster’s pair or simply
d-pair in [4,6,13,14] (it is a pair of reals such that 0 ≤ a, b ≤ 1, a+ b ≤ 1)4.

Extremal d-pairs are the pairs corresponding to BFs for which either m({ω1})
= 1 or m({ω2}) = 1, i.e., (1, 0) and (0, 1). The set of all non-extremal d-pairs is
denoted as D0; the set of all non-extremal Bayesian d-pairs (i.e. d-pairs corre-
sponding to Bayesian BFs, where a+ b = 1) is denoted as G; the set of d-pairs
such that a = b is denoted as S, the set where b = 0 as S1, analogically the set
where a = 0 as S2 (simple support BFs). Vacuous BF is denoted as 0 = (0, 0) and
there is a special BF (d-pair) 0′ = (12 ,

1
2 ) = U2, see Figure 1. (VBF 0 is neutral

w.r.t. Dempster’s rule, i.e. for any BF Bel it holds that Bel⊕0 = Bel = 0⊕Bel;
similarly 0′ is neutral in G, i.e., (a, 1− a)⊕ 0′ = (a, 1− a) = 0′ ⊕ (a, 1− a), and
generally Bel ⊕ Un = Bel = Un ⊕Bel for any BBF Bel on Ωn).

Fig. 1. Dempster’s semigroup D0. Homomorphism h is in this representation a pro-
jection to group G along the straight lines running through the point (1, 1).

In D0, we need further: h(a, b) = (a, b) ⊕ 0′ = ( 1−b
2−a−b ,

1−a
2−a−b ), in general

h(Bel) = Bel ⊕ Un = Pl P (Bel).
Let us denote D≥0

0 = {(a, b) ∈ D0 | (a, b) ≥ 0, i.e.,a ≥ b} and analogically
D≤0′

0
= {(a, b) ∈ D0 | (a, b) ≤ 0′, i.e., a ≤ b}. And analogically subsets of G:

4 Analogically, we can represent any BF on Ωn as a 2n−2-tuple (a1, a2, ..., a2n−2), or as
a 2n−1-tuple (a1, a2, ..., a2n−2 ; a2n−1) if we want to underline value m(Ω) = a2n−1 .
For non-normalized BFs we can use (a1, a2, ..., a2n−2 ; a2n−1 | e), where e = m(∅).
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G≤0′ and G≥0′ ; G≤0′ = {(a, 1 − a)∈D0 | (a, 1 − a)≤ 0′, i.e., a ≤ 0.5}, G≥0′ =
{(a, 1− a)∈D0 | (a, 1− a)≥0′, i.e.,a ≥ 0.5}.

For more details and algebraic results see [4,6,13,14]. For the first results of
generalization to Ω3 see [11]. The situation is much more complicated there, as
instead of 2-dimensional triangle for Ω2 there is 6-dimensional simplex for Ω3,
there are two kind of dimensions, and adequately more complicated structures.

2.3 Conflict of Belief Functions

When combining two BFs Bel1, Bel2 given by m1 and m2 conflicting belief
masses m1(X) > 0, m2(Y ) > 0, where X ∩ Y = ∅, often appear. The sum of
products of such conflicting masses corresponds to m(∅) when non-normalized
conjunctive rule of combination ∩© is applied and m = m1 ∩©m2. This sum is
called weight of conflict between belief functions Bel1 and Bel2 in [16], and it is
commonly used when dealing with conflicting belief functions. Unfortunately, the
name and interpretation of this notion does not correctly correspond to reality.
We often obtain positive sum of conflicting belief masses even if two numerically
same belief functions5 are combined, see e.g. examples discussed by Almond [1]
already in 1995 and by Liu [15], for another examples see [9].

Liu further demonstrates [15] that neither distance nor difference are adequate
measures of conflicts between BFs. Thus she uses a two-dimensional (composed)
measure degree of conflict cf(m1,m2) = (m∩©, difBet

m2
m1

), see Section 4. Never-
theless the nature of conflict is not captured there.

Internal conflicts. IntC(mi) which are included in particular individual BFs
are distinguished from conflict between BFs C(m1,m2) in [9]; the entire sum of
conflicting masses is called total conflict; and three approaches to conflicts were
introduced: combinational, plausibility and comparative.

Unfortunately there are not yet any precise formulas, but only bounding in-
equalities for combinational conflicts: 1

2TotC(m,m)) ≤ IntC(m) ≤ TotC(m,m),

TotC(m1,m2)− (IntC(m1)+IntC(m2)) ≤ C(m1,m2) ≤ TotC(m1,m2).

Internal plausibility conflict of BF Bel. is defined as

Pl-IntC(Bel) = 1−maxω∈ΩPl({ω}),

where Pl is the plausibility equivalent to Bel.
Let us denote by ΩPlC(Bel1, Bel2) the set of elements ω ∈ Ωn with conflicting

Pl P masses ΩPlC(Bel1, Bel2)={ω∈Ωn | (Pl P (Bel1)(ω)− 1
n )(Pl P (Bel2)(ω)

− 1
n ) < 0} [9]. Plausibility conflict between BFs Bel1 and Bel2 is then defined by

the formula

Pl-C(Bel1, Bel2) = min(Pl-C0(Bel1, Bel2), (m1 ∩©m2)(∅) ),

5 All BFs combined by ⊕ and ∩© are assumed to be mutually independent, even if they
are numerically same.
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where

Pl-C0(Bel1, Bel2) =
∑

ω∈ΩPlC(Bel1,Bel2)

1

2
|Pl P (Bel1)(ω)− Pl P (Bel2)(ω)|.

If (Pl P (Bel1)(ωi) − 1
n )(Pl P (Bel2)(ωi) − 1

n ) ≥ 0 for all ωi ∈ Ωn then BFs
Bel1 and Bel2 on Ωn are mutually non-conflicting (there is no conflict between
them). The reverse statement does not hold true, see e.g. Example 1. (Example 5
in [9], Example 8 in [8]). BFs (a, b) and (c, d) on Ω2 are mutually non-conflicting
iff (a− b)(c− d) ≥ 0.

Example 1. Let us suppose Ω6, now; and two intuitively non-conflicting BFs m1

and m2.
X : {ω1} {ω2} {ω3} {ω4} {ω5} {ω6} {ω1, ω2, ω3, ω4}

m1(X) : 1.00
m2(X) : 1.00

Pl P (m1) = (1.00, 0.00, 0.00, 0.00, 0.00, 0.00),
Pl P (m2) = (0.25, 0.25, 0.25, 0.25, 0.00, 0.00), ΩPlC(mi,mj) = {ω2, ω3, ω4}, as
Pl P (m2)(ωi) = 1

4 >
1
6 for i = 2, 3, 4, whereas Pl P (m1)(ωi) = 0 < 1

6 for
i = 2, 3, 4, (the other elements are non-conflicting: Pl P (m1)(ω1) = 1 > 1

6 ,
Pl P (m2)(ω1) = 1

4 >
1
6 , Pl P (m1)(ωi) = 0 = Pl P (m2)(ωi) for i = 5, 6;

Pl-C(m1,m2) = min(0.375, 0.00) = 0.00.

The idea of comparative conflictness / non-conflictness is based on a specification
of bbms to smaller focal elements such that fit to focal elements of the other BF
as much as possible. The comparative conflict between BFs Bel1 and Bel2 is
defined as the least difference of such more specified bbms derived from the
input m1 and m2.

2.4 Couples of Totally Non-conflicting Belief Functions

From [9] we know, that if two BFs have non-empty intersection
⋂

m1(X)>0X ∩⋂
m2(X)>0X �= ∅ of all their focal elements (specially if all their focal elements

are nested), then they are both internally and mutually non-conflicting. A non-
conflicting character of consonant BFs (nested focal elements) is mentioned al-
ready in [16]. On Ω2 the following special case holds true for all three types of
conflicts (combinational, plausibility and comparative conflicts).

Fact 1. Any couple of BFs (a, 0), (c, 0) ∈ S1 or (0, b), (0, d) ∈ S2 is a totally
non-conflicting couple of BFs. (There is neither internal conflict nor conflict
between BFs.) There are no other totally non-conflicting pairs of BFs on Ω2.

3 Properties of Plausibility Conflict

3.1 Internal Plausibility Conflict

Let us start with BFs without internal plausibility conflict. There is no plausi-
bility internal conflict in BF (a, b) on Ω2 iff (Pl P (a, b))(ωi) = 1 iff a = 0 or
b = 0.
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Proposition 1. (i) Belief functions without internal conflict defined on Ω2 are
just BFs from S1 and S2.
(ii) Belief functions without internal conflict defined on Ωn are just BFs such
that

⋂
m(X)>0X �= ∅, i.e., iff there exists ωi ∈ Ωn, such that Pl({ωi}) = 1, it

holds true that ωi ∈
⋂

m(X)>0X, i.e. for consistent BFs.

Proposition 2. (i) Plausibility internal conflict Pl-IntC linearly6 increases
from 0 to 1/2 for BFs from semigroup S (from 0 to 0′), G≤0′ (from (0, 1) to 0′)
and G≥0 (0′ in upper index) (from (1, 0) to 0′).
(ii) Plausibility internal conflict increases from 0 to mini(h(a, b))(ωi) for BFs
from h-line containing (a, b) (from the h-line’s intersection with Si to its inter-
section with G).
(iii) Plausibility internal conflict is constant on vertical lines for BFs from D≤0

0

(0′ in upper index) (i.e. (a, b, such that a ≤ b), whereas it is constant on hori-
zontal lines on D≥0

0
, see dashed lines in Figure 2.

(iv) In general, plausibility internal conflict Pl-IntC increases from 0 to (n −
1)/n for BFs from 0 to Un, and for BFs from categorical BFs to Un; Pl-IntC
increases from 0 to 1−maxω∈Ωn(h(Bel)({ω})) for all BFs with the same h(Bel).

Situation of plausibility internal conflict of BFs on Ω2 is graphically presented
in Figure 2. The directions of the arrows show the directions in which internal
conflict decreases. A lines without arrows along S1 and S2 represent constant
(zero) internal conflict of BFs from these subsemigroups, dashed lines represent
positive constant internal conflict.

Fig. 2. Plausibility internal conflict
Fig. 3. Plausibility conflict between fixed
BF (u, v) and general BF (a, b) on Ω2

6 k multiplication of internal conflict follows k multiplication of a in (a, a) ∈ S and

(a, 1− a) ∈ G≤0′ and of b in (1− b, b) ∈ G≥0.
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3.2 Plausibility Conflict between Belief Functions

Let us start our presentation of plausibility conflict between BFs Pl-C on Ω2 as
it it is easily imaginable and nicely presentable on a figure.

Let us assume combination of any BF on Ω2 with fixed BF (u, v) now. Three
situations were studied in [10]: (u, v) = 0′, (u, v) ∈ G and a general (u, v)
0 < u+ v < 1. Let us present only the general case here, see Figure 3.

There is no plausibility conflict between (u, v) and any BF (a, b) such that
(u− v)(a− b) ≥ 0, i.e., when (a, b) is in the same subsemigroup D≥0

0 or D≤0′
0 as

(u, v) is, (see the white area on Figure 3). On the other hand, there is positive
plausibility conflict between (u, v) and any BF (a, b) such that (u−v)(a− c) < 0
(see the grey area). Pl P (u, v) = h(u, v) = ( 1−v

2−u−v ,
1−u

2−u−v ), similarly for (a, b),

BFs are plausibility non-conflicting if and only if ( 1
2−h1(u, v))(12−h1(a, b)) ≥ 0,

thus iff (u− v)(a− b) ≥ 0.
Plausibility conflict between (u, v) and (a, b) increases from | 12 −

1−u
2−u−v | to

| 12 −
1−u

2−u−v | + 1
2 for any BFs from G,Si; in detail from ε surrounding of 0′

to the corresponding conflicting extremal BF in G, respectively from ε sur-
rounding of 0 to the corresponding conflicting extremal BFs in S′

is. Similarly,
Pl-C((u, v), (a, b)) increases for BFs on h-lines closer to the corresponding con-
flicting extremal element, while conflict between (u, v) and (a, b) is same for
all BFs laying on the same h-line, see Figure 3, arrows represent decreasing of
conflicts between (a, b) and (u, v), in the grey area (D≤0

0 ) which contains BFs
conflicting with given (u, v), for detail see [10].

Plausibility conflict between general BFs Bel and a given BelUV on Ωn in-
creases from Pl-C(BelUV , Un) to Pl-C(BelUV , Un) + n−1

n for any BFs from ε
surroundings of 0, Un and indecisive BFs to the corresponding conflicting cate-
gorical BF. Pl-C(Bel, BelUV ) is constant for all BFs with the same h(Bel).

4 Liu’s Degree of Conflict

4.1 Definition and Properties of Liu’s Degree of Conflict

To complete the topic we have to include also a comparison of the presented
approach with Liu’s ”degree of conflict among belief functions” [15]. Similarly to
comparative conflict, Liu does not consider an internal conflict in her approach.
As we have analysed only conflict between two belief functions till now, we will
do the same also with Liu’s degree of conflict.

Let us recall degree of conflict cf which is defined as cf(mi,mj) = (m⊕(∅),
difBetP

mj
mi ) in [15], where m⊕(∅) should be rather m∩©(∅) (more precisely

(mi ∩©mj)(∅)) in fact, and the second component difBetP
mj
mi is defined as

difBetP
mj
mi = maxA⊆Ω(|BetPmi(A)−BetPmj (A)|). We can simplify this using

the following lemma.

Lemma 1. For any belief functions Beli, Belj given by bbas mi, mj the follow-
ing holds true:

difBetPmj
mi

= Diff(BetPmi, BetPmj ) =
1

2

∑
ω∈Ω

|BetPmi({ω})−BetPmj ({ω})|.
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Specially, it holds that difBetP
(a,b)
(c,d) = Diff((1+a−b

2 , 1+b−a
2 ), (1+c−d

2 , 1+d−c
2 )) =

1
2 (|a− b− c+ d|) on Ω2.

Proof. difBetP
mj
mi = maxA⊆Ω(|BetPmi(A)−BetPmj (A)|). Let us suppose that

max to be effected for AM ⊂ Ω. Let BetPmi(AM ) ≥ BetPmj (AM ); it is possible
to show that AM ⊆ {ω |BetPmi({ω}) ≥ BetPmj ({ω})} and {ω |BetPmi({ω}) ≤
BetPmj ({ω})} ⊆ AM .
BetPmi(AM )−BetPmj (AM ) =

∑
ω∈AM

(BetPmi({ω})−BetPmj ({ω})),
BetPmi(AM )−BetPmj (AM ) =

∑
ω∈AM

(BetPmi({ω})−BetPmj ({ω})),
BetPmi(AM )−BetPmj (AM ) = 1−BetPmi(AM )− (1−BetPmj (AM )) =
−
∑

ω∈AM
(BetPmi({ω})−BetPmj ({ω})),

|BetPmi(AM )−BetPmj (AM )| = |
∑

ω∈AM
(BetPmi({ω})−BetPmj ({ω}))|. Due

to BetPmi({ω})≥BetPmj({ω}) for all ω∈AM and BetPmi({ω})≤BetPmj ({ω})
for all ω ∈ AM , we have:
|BetPmi(AM )−BetPmj (AM )| =

∑
ω∈AM

|BetPmi({ω})−BetPmj ({ω})|
|BetPmi(AM )− BetPmj (AM )| =

∑
ω∈AM

|BetPmi({ω})− BetPmj ({ω})|. Thus∑
ω∈Ω |BetPmi({ω})−BetPmj ({ω})| =

∑
ω∈AM

|BetPmi({ω})−BetPmj ({ω})|+∑
ω∈AM

|BetPmi({ω})−BetPmj({ω})|=2·
∑

ω∈AM
|BetPmi({ω})−BetPmj({ω})|.

Analogously for BetPmi(AM ) ≤ BetPmj (AM ). ��
As a side effect, we have a simplification of computational complexity of cf :
instead of computing 2n differences of pignistic probabilities of general subsets
of Ω using difBetP

mj
mi , it is enough to compute n differences of singletons us-

ing Diff(BetPmi , BetPmj ), moreover pignistic probabilities of all singletons we
need for obtaining of BetP (A) for computation of pignistic probabilities of gen-
eral subsets of the frame in the original case.

Corollary 1. Having already computed pignistic probabilities BetPi and BetPj
of belief functions Beli and Belj defined by bbas mi,mj , computational complex-
ity of the first component of degree of conflict cf was reduced to O(n).

Back to conflicts again: What may be a non-conflicting pair of BFs here? It
seems that such a pair, where degree of conflict is zero, i.e. where there is no
conflict. As there are two components of cf , no conflict would appear only when
both of them are zero, thus 0 would not be non-conflicting even with conso-
nant BFs. Hence we will consider min(m∩©(∅), difBetPmj

mi ) = min((m∩©(∅),
Diff(BetPmi, BetPmj ). Thus 0 is non-conflicting with any BF, and there is no
problem with full conflicts as min(1, 1) = 1 (minimum does not decrease full
conflicts).

For behaviour of cf , resp. of its components (m∩©(∅) and Diff(BetPmi ,
BetPmj ) on Ω2, see Figures 4 and 5 where combination of a fixed (u, v) with
any BF from Ω2 is presented. The only non-conflicting BFs are 0 and those
with BetP (a, b) = BetP (u, v), thus (taking v = 1 − u) cf ignores neutrality –
non-conflictness of 0′ resp. Un on BBFs. Hence it, consequently, cannot consider
non-conflictness of different BFs which prefer/oppose same element(s) of Ω. Dis-
junctive non-conflicting areas: stand alone 0 and {(a, b)|BetP (a, b) = (u, 1− u)}
do not seem to be intuitive, or reasonably interpretable.
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Fig. 4. m∩©(∅) for m∩© = (a, b)∩©(u, v),
where (a, b) is a general BF and (u, v) is
a fixed general BF, both on Ω2

Fig. 5. DifBetP
(a,b)

(u,v)
of general BF (a, b)

and fixed general BF (u, v) on Ω2

4.2 Comparison of Plausibility Conflict with Degree of Conflict cf

As we can see from Figures 3, 4, and 5 main difference is in non-conflicting BFs,
see the following examples.

Example 2 (Difference of plausibility conflict from cf on Ω2).

m3 = (0.50, 0.46), Pl P (m3) = (0.519231, 0.480769), BetP (m3) = (0.52, 0.48),
m4 = (0.95, 0.01), Pl P (m4) = (0.951923, 0.048077), BetP (m4) = (0.97, 0.03),
ΩPlC(m3,m4) = ∅, Pl-C(m3,m4) = 0,
difBetPm3

m4
= 0.45, m∩©(∅) = 0.442;

m5 = (0.50, 0.50), Pl P (m5) = (0.50, 0.50), BetP (m5) = (0.50, 0.50),
m6 = (1.00, 0.00), Pl P (m6) = (1.00, 0.00), BetP (m6) = (1.00, 0.00),
ΩPlC(m5,m6) = ∅, Pl-C(m5,m6) = 0,
difBetPm5

m6
= 0.50, m∩©(∅) = 0.50.

We can see big and maximal difBetP and m∩©(∅) at BF, which have 0 mutual
plausibility conflict, as maximal difBetP of non-conflicting BFs is 0.5 onΩ2, and
n−1
n on Ωn, in general. For higher absolute values of difBetP of non-conflicting

BFs we need larger frames of discernment, see the next example.

Example 3 (Difference of plausibility conflict from cf on Ω5, Ω10, Ω100).

Ω5 : X : {ω1} {ω2} {ω3} {ω4} {ω5} {ω1, ω2} {ω3, ω4, ω5} Ω5

mi(X) : 0.70 0.04 0.01 0.01 0.01 0.10 0.03 0.10
mj(X) : 0.20 0.13 0.14 0.14 0.14 0.04 0.06 0.15

Pl P (mi) = (0.576923, 0.153846, 0.089744, 089744, 089744),
BetP (mi) = (0.77, 0.11, 0.04, 0.04, 0.04),
Pl P (mj) = (0.221590, 0.181818, 0.198864, 0.198864, 0.198864),
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BetP (mj) = (0.25, 0.18, 0.19, 0.19, 0.19),
ΩPlC(mi,mj) = ∅, Pl-C(mi,mj) = 0,
difBetPmi

mj
= 0.52, m∩©(∅) = 0.5328, cf(mi,mj) = (0.52, 0.5328)

Ω10 : X : {ω1} {ω2} {ω3} ... {ω10}

mi(X) : 0.910 0.010 0.010 ... 0.010
mj(X) : 0.325 0.075 0.075 ... 0.075

Pl P (mi) = (0.910, 0.010, 0.010, 0.010, 0.010, 0.010, 0.010, 0.010, 0.010, 0.010),
BetP (mi) = (0.910, 0.010, 0.010, 0.010, 0.010, 0.010, 0.010, 0.010, 0.010, 0.010),
Pl P (mj) = (0.325, 0.075, 0.075, 0.075, 0.075, 0.075, 0.075, 075, 075, 075),
BetP (mj) = (0.325, 0.075, 0.075, 0.075, 0.075, 0.075, 0.075, 075, 075, 075),
ΩPlC(mi,mj) = ∅, Pl-C(mi,mj) = 0,
difBetPmi

mj
= 0.585, m∩©(∅) = 0.6975, cf(mi,mj) = (0.585, 0.6975).

Ω100 : X : {ω1} {ω2} {ω3} ... {ω100}

mi(X) : 0.9010 0.0010 0.0010 ... 0.0010
mj(X) : 0.0199 0.0099 0.0099 ... 0.0099

xy
Pl P (mi) = (0.901, 0.001, 0.001, ...., 0.001), BetP (mi) = (0.901, 0.001, 0.001, ....,
0.001), Pl P (mj) = (0.0199, 0.0099, 0.0099, ...., 0.0099), BetP (mj) = (0.0199,
0.0099, 0.0099, ...., 0.0099), ΩPlC(mi,mj) = ∅, Pl-C(mi,mj) = 0,
difBetPmi

mj
= 0.8811, m∩©(∅) = 0.98119, cf(mi,mj) = (0.8811, 0.98119).

On the other hand we should show an examples, with significantly less both
difBetPmi

mj
and m∩©(∅) than in the previous examples, but with BFs having

positive plausibility conflict, comparable with cf(mi,mj):

Example 4 (Accordance of plausibility conflict and cf on Ω2 and Ω5).

m7 = (0.30, 0.20), Pl P (m7) = (0.535353, 0.464646), BetP (m7) = (0.55, 0.45),
m8 = (0.25, 0.35), Pl P (m8) = (0.464286, 0.535714), BetP (m8) = (0.45, 0.55),
ΩPlC(m7,m8) = {ω1, ω2} = Ω2, Pl-C(m7,m8) = min(0.069, 0.11) = 0.069,
difBetPm7

m8
= 0.1, m∩©(∅) = 0.11;

Ω5 : X : {ω1} {ω3} {ω4} {ω1,ω2} {ω3,ω4} {ω1,ω2,ω3} {ω1,ω5} {ω2,ω5} {ω3,ω5} {ω4,ω5} Ω5

mi(X) : 0.15 0.15 0.05 0.40 0.10 0.05 0.15
mj(X) : 0.15 0.15 0.15 0.40 0.15

Pl P (mi) = (0.350, 0.275, 0.200, 0.125, 0.050),
BetP (mi) = (0.386̄, 0.236̄, 0.236̄, 0.120, 0.020),
Pl P (mj) = (0.122449, 0.122449, 0.122449, 0.224490, 0.408163),
BetP (mj) = (0.105, 0.105, 0.105, 0.230, 0.455),
ΩPlC(mi,mj)={ω1, ω2 ω4 ω5}, Pl-C(mi,mj)=min(0.418878, 0.525)=0.418878,
difBetPmi

mj
= 0.545, m∩©(∅) = 0.525, cf(mi,mj) = (0.545, 0.525).

Example 5 (Accordance of plausibility conflict and cf of highly conflicting BFs
on Ω2).
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m15=(0.98, 0.01), Pl P (m15)=(0.980198, 0.019802),BetP (m15)=(0.985, 0.015),
m16=(0.01, 0.98), Pl P (m16)=(0.019802, 0.980198),BetP (m16)=(0.015, 0.985),
ΩPlC(m15,m16) = {ω1, ω2} = Ω2, Pl-C(m15,m16) = min(0.960396, 0.9605) =
0.960396, difBetPm15

m16
= 0.97, m∩©(∅) = 0.9605.

4.3 Summary of Analysed Approaches

The plausibility conflict seems to be better of the presented approaches. It dis-
tinguishes internal conflicts of BFs from the conflict between them. It respects
neutrality of 0 and of Un on Bayesian BFs, conflict neutrality of indecisive BFs,
and also mutual non-conflictness of BFs which prefer/oppose same elements of
frame of discernment. This approach has applicable formulas for computation of
size of conflict.

The only disadvantage of the plausibility conflict is its simple utilization
of Diff for computation of values of conflicts. E.g. difference of (a1, b1) =
(0.48, 0.52) and (c1, d1) = (0.98, 0.02) is the same as that of (a2, b2) = (0.26, 0.74)
and (c2, d2) = (0.76, 0.24), whereas the first conflict should be less as (a1, b1) is
close to neutral 0′, thus only ’a part’ of the difference should be really conflicting,
whereas both (a2, b2), (c2, d2) have almost the same difference from 0′ thus their
almost entire mutual difference should really be conflicting.

Similarly to plausibility approach, Liu’s degree of conflict also has applicable
formulas, but her approach does not distinguish internal conflict of BFs, it does
not respect neutrality of Un for BBFs, and poses hard interpretable disjunctive
areas of BFs non-conflicting with a given one. A difference is also used there.

5 Conclusion

Mathematical properties of the plausibility conflict of belief functions (BFs) are
analyzed in this study. Both internal plausibility conflict Pl-IntC inside BFs and
plausibility conflict between BFs Pl-C are studied. Analysis and comparison
to Liu’s degree of conflict cf [15] is included. As a side effect of this study,
computational complexity of degree of conflict cf was reduced.

Liu’s degree of conflict distinguishes conflict between BFs from m∩©(∅) and
from distance/difference of BFs. Plausibility conflict goes further to the nature
of conflict; it captures mutual non-conflictness of BFs which prefer/oppose same
elements of the frame of discernment. Further it also distinguishes internal con-
flict of single belief functions from conflict between them.

Nevertheless, the presented representation of conflict between BFs is still not
fully corresponding to the complete nature of conflict as some kind of a differ-
ence is partially included in the definition of both of degree of conflict and in
plausibility conflict.

All of the theoretical results can be used as a basis for better understanding
of conflicts of BFs in general and for further study of conflict to improve the
presented approaches or to create a new approach capturing the nature of conflict
of belief functions as much as possible.
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Abstract. A new approach to the rule-base evidential reasoning based
on the synthesis of fuzzy logic, Atannasov’s intuitionistic fuzzy sets the-
ory and the Dempster-Shafer theory of evidence is proposed. It is shown
that the use of intuitionistic fuzzy values and the classical operations
on them directly may provide counter-intuitive results. Therefore, an in-
terpretation of intuitionistic fuzzy values in the framework of Dempster-
Shafer theory is proposed and used in the evidential reasoning. Using the
real-world example, it is shown that such an approach provides reason-
able and intuitively obvious results when the classical method of rule-base
evidential reasoning cannot produce any reasonable results.

Keywords: Rule-base evidential reasoning, Atannasov’s intuitionistic
fuzzy sets, Dempster-Shafer Theory.

1 Introduction

The methods of rule-base evidential reasoning are based on the synthesis of
the tools of Fuzzy Sets theory (FST ) and the Dempster-Shafer theory (DST ).
The integration of FST and DST within symbolic, rule-based models primarily
was used for solving control and classification problems [4,5,15,22,26]. These ap-
proaches seem to be justified in the solution of control and classification problems
when outputs can be presented by real values.

On the other hand, if we deal with decision support systems, system’s outputs
can be only the names or labels of corresponding actions or decisions, e.g., the
names of medical diagnoses. It is clear that in such cases, the methods based on
conventional fuzzy logic, developed for the controlling can not be used at least
directly. A more suitable for the building decision support systems seems to
be the so-called RIMER approach proposed in [24,25] based on the Evidential
Reasoning approach [23].

In the framework of RIMER approach, the final outcome obtained as the
aggregation of belief rules is presented as O = {(Dj , βj)}, where βj , j = 1 to N ,
is the aggregated degree of belief in the decision (hypothesis, action, diagnosis)
Dj . Therefore, the decision characterised by the maximal aggregated degree
of belief is the best choice. So the RIMER approach can be used for building
decision support systems. Nevertheless, there are two restrictions in the RIMER
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approach that reduce its ability to deal with uncertainties that decision makers
often meet in practice.

The first restriction is that in the framework of RIMER approach, a degree
of belief can be assigned only to a particular hypothesis, not to a group of them,
whereas the assignment of a belief mass to a group of events is a key principle
of the DST .

The second restriction is concerned with the observation that in many real-
world decision problems we deal with different sources of evidence and the com-
bination of them is needed. The RIMER approach does not provide a technique
for the combination of evidence from different sources.

It is important that usually the advantages of the approaches based on the
rule-base evidential reasoning were demonstrated using simple numerical ex-
amples and only a few examples of solving real-world problems using these ap-
proaches were found in the literature [5,21,19]. The methods used in these papers
are charged with two above mentioned restrictions of RIMER approach. The
method used in [16] is free of the second restriction while the first one is retained.

In [11,13,17], a new approach free of both above mentioned restrictions was
developed and used for the solution of real-world problems.

It is important that in all above mentioned approaches to the rule-base eviden-
tial reasoning, the conventional fuzzy logic was used. For example, the following
rule may be used: If x is Low Then D, where Low is some fuzzy class defined
by the corresponding membership function μLow(x), D is a name of decision.
Nevertheless, in practice we often deal with the intersecting fuzzy classes, e.g.,
Low and Middle and therefore we often have μLow(x) > 0 and μMiddle(x) > 0.
Then if μLow(x) > μMiddle(x) we state that x isLow and information of nonzero
μMiddle(x) is lost, whereas the difference between μMiddle(x) and μLow(x) may
be very small.

In the current paper, we will show that such loss of information may lead to
incorrect results in the rule-base evidential reasoning and a new method for the
solution of these problems based in the synthesis of Atanassov’s intuitionistic
fuzzy sets (A-IFS) [1] and DST will be developed.

For these reasons, the rest of paper is set out as follows. Section 2 presents the
basic definition of DST and A-IFS, the commonly used arithmetical operations
on intuitionistic fuzzy values IFV s and the representation of these operations in
the framework ofDST needed for the subsequent analysis. In Section 3, we present
our new approach to the rule-base evidential reasoning based on the synthesis of
A-IFS and DST and perform its advantages using examples obtained with the
use of expert system for diagnostic of type 2 diabetes developed on the base of our
approach. Finally, the concluding section summarises the paper.

2 Preliminaries

2.1 The Basic Definitions of DST

The origins of the Dempster-Shafer theory (DST ) go back to the work by A.P.
Dempster [8] who developed a system of upper and lower probabilities. Following
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this work his student G. Shafer [18] provided a more thorough explanation of
belief functions.

Assume A are subsets of X. It is important to note that a subset A may
be treated also as a question or proposition and X as a set of propositions or
mutually exclusive hypotheses or answers. A DS belief structure has associated
with it a mapping m, called basic probability assignment (bpa), from subsets of
X into a unit interval, m : 2X → [0, 1] such that m(∅) = 0,

∑
A⊆X

m(A) = 1. The

subsets of X for which the mapping does not assume a zero value are called focal
elements.

Shafer [18] introduced a number of measures associated with DS belief
structure.

The measure of belief is a mapping Bel : 2X → [0, 1] such that for any subset
B of X it can be presented as Bel(B) =

∑
∅�=A⊆B

m(A).

A second measure introduced by Shafer [18] is a measure of plausibility. The
measure of plausibility associated with m is a mapping Pl : 2X → [0, 1] such that
for any subset B of X it can be presented as Pl(B) =

∑
A∩B �=∅

m(A). It is easy to

see that Bel(B) ≤ Pl(B). DS provides an explicit measure of ignorance about
an event B and its complementary B as a length of an interval [Bel(B),Pl(B)]
called the belief interval (BI). It can also be interpreted as imprecision of the
“true probability” of B [18].

The core of the evidence theory is the Dempsters rule of combination of ev-
idence from different sources. The rule assumes that information sources are
independent. With two belief structures m1,m2, the Dempster’s rule of combi-
nation is defined as follows:

m12(A) =

∑
B∩C=A

m1(B)m2(C)

1−K ,A �= ∅,m12(∅) = 0, (1)

where K =
∑

B∩C=∅
m1(B)m2(C) is called the degree of conflict which measures

the conflict between the pieces of evidence. Zadeh [27] underlined that this rule
involves counter-intuitive behaviors in the case of considerable conflict.

It is important to note that the Dempster’s rule is commutative and asso-
ciative, but not idempotency operators. Nevertheless, in spite of the lack of
idempotency, the Dempster’s rule is successfully used in different real-world ap-
plications.

2.2 The Basics of A-IFS

The concept of A-IFS (the reasons for such notation are presented in [9]) is
based on the simultaneous consideration of membership μ and non-membership
ν of an element of a set to the set itself ( see formal definition in [1]). It is pos-
tulated that 0 ≤ μ+ν ≤ 1. Following to [1], we call πA(x) = 1−μA(x)−νA(x) the
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hesitation degree of the element x in the set A. Hereinafter, we shall call an
object A = 〈μA(x), νA(x)〉 intuitionistic fuzzy value (IFV ).

The operations of addition ⊕ and multiplication ⊗ on IFV s were defined by
Atanassov [2] as follows. Let A = 〈μA, νA〉 and B = 〈μB, νB〉 be IFV s. Then

A⊕B = 〈μA + μB − μAμB, νAνB〉 , (2)

A⊗B = 〈μAμB , νA + νB − νAνB〉 . (3)

These operations were constructed in such a way that they produce IFV s. Using
operations (2) and (3), in [7] the following expressions were obtained for any
integer n=1,2,..:
nA = A⊕...⊕A = 〈1− (1 − μA)n, νnA〉, An = A⊗...⊗A = 〈μnA, 1− (1− νA)n〉.
It was proved later that these operations produce IFV s not only for integer

n, but also for all real values λ > 0, i.e.

λA =
〈
1− (1− μA)λ, νλA

〉
, (4)

Aλ =
〈
μλA, 1− (1− νA)λ

〉
. (5)

The operations (2)-(5) have good algebraic properties [20]:
An important problem is the comparison of IFV s. Therefore, the specific

methods which are rather of heuristic nature were developed to compare IFV s.
For this purpose, Chen and Tan [6] proposed to use the so-called score function
(or net membership) S(x) = μ(x) − ν(x). Let A and B be IFV s. It is intu-
itively appealing that if S(A) > S(B) then A should be greater (better) than
B, but if S(A) = S(B) this does not always mean that A is equal to B. There-
fore, Hong and Choi [14] in addition to the above score function introduced the
so-called accuracy function H(x) = μ(x) + ν(x) and showed that the relation
between functions S and H is similar to the relation between mean and variance
in statistics. Xu [20] used the functions S and H to construct order relations
between any pair of intuitionistic fuzzy values A and B as follows:

If (S(A) > S(B)), thenB is smaller thanA;
If (S(A) = S(B)), then
(1) If ( H(A)=H(B)), thenA=B;
(2) If (H(A) < H(B)), thenA is smaller thanB.

(6)

In [12], we have shown that operation (2)-(5) and (6) have some undesirable
properties which may lead to the non-acceptable results in applications:

1. The addition (2) is not an addition invariant operation. Let A, B and C be
IFV s. Then A < B (in sense of (6)) does not always lead to (A⊕C) < (B⊕C).
2. The operation (4) is not preserved under multiplication by a real-valued λ > 0,
i.e., inequality A < B (in sense of (6)) does not necessarily imply λA < λB.
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2.3 Interpretation of A-IFS in the Framework of DST

It was shown in [10] that DST may serve as a good methodological base for
interpretation of A-IFS. It was proved in [10] that IFV A = 〈μA(x), νA(x)〉
may be represented by the belief interval BIA(x) = [BelA(x), P lA(x)], where
BelA(x) = μA(x) and PlA(x) = 1 − νA(x) (see [10] for formal definitions and
more detail). This interpretation makes it possible to represent mathematical
operations on IFV s as operations on belief intervals. The use of the semantics of
DST makes it possible to enhance the performance of A-IFS when dealing with
the operations on IFV s. In [12], two sets of operations on IFV s based on the
interpretation of intuitionistic fuzzy sets in the framework of DST are proposed
and analysed. The first set of operations is based on the treatment of belief
interval as an interval enclosing a true probability. The second set of operations
is based on the treatment of belief interval as an interval enclosing a true power of
some statement (argument, hypothesis, ets). It was shown in [12] that the non-
probabilistic treatment of belief intervals representing IFV s performs better
than the probabilistic one and operations based on the probabilistic and non-
probabilistic treatments of belief intervals representing IFV s perform better
than operations on IFV s defined in the framework of conventional A-IFS.

Therefore, here we shall use only the treatment of belief interval as an interval
enclosing a true power of some statement.

Let X = {x1, x2, ..., xn} be a finite universal set. Assume A is a subset of
X. It is important to note that in the framework of DST a subset A may be
treated also as a question or proposition and X as a set of propositions or
mutually exclusive hypotheses or answers. In such a context, a belief interval
BI(A) = [Bel(A), P l(A)] may be treated as an interval enclosing a true power
of statement (argument, proposition, hypothesis, etc) that xj ∈ X belongs to
the subset A ⊆ X . Obviously, the value of such a power lies in interval [0,1].

Therefore, a belief interval BI(A) = [Bel(A), P l(A)] as a whole may be
treated as an imprecise (interval-valued) statement (argument, proposition, hy-
pothesis, etc) that xj ∈ X belongs to the set A ⊆ X .

Based on this reasoning, we can say that if we pronounce this statement, we
can obtain some result, e.g., as a reaction on this statement or as an answer to
some question, and if we repeat this statement twice, the result does not change.

Such a reasoning implies the following property of addition operator:
BI(A) = BI(A)⊕B BI(A)⊕B ...⊕B BI(A).
This is possible only if we define the addition ⊕B of belief intervals as fol-

lows: BI(A) ⊕B BI(A)=
[
Bel(A)+Bel(A)

2 , Pl(A)+Pl(A)
2

]
. So the addition of belief

intervals is represented by their averaging.
Therefore, if we have n different statements represented by belief intervals

BI(Ai) then their sum ⊕B can be defined as follows:

BI(A1)⊕B BI(A2)⊕B ....⊕B BI(An) =

[
1

n

n∑
i=1

Bel(Ai),
1

n

n∑
i=1

Pl(Ai)

]
. (7)
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The other operation on belief intervals are presented in [12] as follows:

BI(A)⊗B BI(B) = [Bel(A)Bel(B), P l(A)Pl(B)], (8)

λBI(A) = [λBel(A), λP l(A)], (9)

where λ is a real value in the interval [0, 1] as for λ > 1 this operation does not
always provide a true belief interval. This restriction is justified enough since
we define operations on belief intervals to deal with decision making problems,
where λ usually represents the weight of local criterion, which is lesser than 1.

BI(A)λ = [Bel(A)λ, P l(A)λ], (10)

BI(A)BI(B) = [Bel(A)Pl(B), P l(A)Bel(B)]. (11)

It is justified in [12] that to compare belief intervals it is enough to compare
their centres.

It is proved in [12] that introduced operations on belief intervals are free of
undesirable properties (1),(2) of conventional operations on IFV s.

3 The Synthesis of Fuzzy Logic and A − IFS in the
Rule-Based Evidential Reasoning

To present our approach in a more transparent form, in this section we shall use
a relatively simple example of building the expert system for diagnosing type 2
diabetes which makes it possible to show the features of the proposed approach
and avoid here the use of complicated general expressions.

The following tests are recommended by the World Health Organization (WHO)
for diagnosis of the type 2 diabetes:

Test 1. A fasting plasma glucose test measures blood glucose in a person who
has not eaten anything for at least 8 hours.

Test 2. An oral glucose tolerance test measures blood glucose after a person
fasts at least 8 hours and 2 hours after the person drinks a glucose- containing
beverage.

These tests are used to detect diabetes and pre-diabetes. Although, WHO
proposes crisp intervals for blood glucose which correspond to the health (H),
Pre-diabetes (H,D) and diabetes (D), in practice doctors use for diagnostics,
e.g., such fuzzy concepts as Low, Medium and Big blood glucose, which can be
presented by corresponding membership functions as in Fig.1, where μL, μM,μB
correspond to the μLow, μMedium, μBig, respectively. Here we shall treat the di-
agnosis Pre-diabetes as an intermediate one when a doctor hesitates in choice be-
tween the Health and Diabetes diagnoses. Therefore, the diagnosis Pre-diabetes
in the spirit of DST can be treated as the compound hypothesis (H,D). Based
on the known approaches to the rule-base evidential reasoning [11,23] we get the
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Fig. 1. Test 1 (blood glucose x1) and Test 2 (blood glucose x2)

following rules:

IF x1 is Low Thenm
∗
1(H) = μL(x1),

IF x1 isMediumThenm
∗
1(H,D) = μM (x1);

IF x1 isBig Thenm
∗
1(D) = μB(x1),

IF x2 is Low Thenm
∗
2(H) = μL(x2),

IF x2 isMediumThenm
∗
2(H,D) = μM (x2);

IF x2 isBig Thenm
∗
2(D) = μB(x2),

(12)

where bpas m∗
1(H), m∗

1(H,D), m∗
1(D) and m∗

2(H), m∗
2(H,D), m∗

2(D) should be
additionally normalised. For x1 = x∗1 and x2 = x∗2 (see Fig.1) using the above
rules (12) from the first test we get the diagnosis H (with m∗

1(H) = μ1
L

(x∗1) )
and from the second one - (H,D) (with m∗

2(H,D) = μ1
M

(x∗2) ).
Since these two tests are different sources of evidence, to obtain the final

diagnosis they should be combined using an appropriate combination rule. Nev-
ertheless, the above approach may lead to the controversial, counterintuitive
results. That may be explained as follows. In the test 1, we take into account
only diagnosis H, whereas the diagnosis (H,D) is possible as well with a non-zero
value of membership function μ1M (x∗1). Similarly, in the test 2 we are not taking
into account the possible diagnosis D.

Summarizing , we can say that the known methods of rule-base evidential
seasoning lead to the loss of important information which may affect the final
results.

To avoid this problem, we propose to use the tools of intuitionistic fuzzy set
theory. To clarify the basics of proposed approach, consider an example which
can be treated as an extension of reasoning used by Atannasov [3] to explain the
essence of A− IFS.

Let us consider a general presidential election where 30% of eligible population
votes for the first candidate (X) and 50% - for the second one (Y). The rest of the
votes, 20%, are for none or lost for some other reason. For the first candidate X
one can state that the membership μ(X) of the eligible population to those who
supports the first candidate is equal to 0.3; the membership μ(Y ) to those who
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doesn’t support the first candidate because they prefer the second candidate is
equal to 0.5; Therefore, we can say that ν(X) = μ(Y ) is the non-membership to
those who support the candidate X. Similarly, for the second candidate we have
ν(Y ) = μ(X) and the uncertain part also known as hesitation degree π(X,Y ) is
equal to 0.2.

This reasoning may be used for the presentation of intersecting membership
functions. Let us consider the Fig. 1.

It is seen that x∗1 belongs to the fuzzy class Low with the membership equal
to μ1L(x∗1), but at the same time it belongs to the competing fuzzy classMedium
with the membership equal to μ1M (x∗1) . Therefore, based on the above reason-
ing, we can say that the non-membership ν1L(x∗1) of x∗1 to the fuzzy class Low
is equal to μ1M (x∗1) as with this degree of membership it belongs to the com-
peting class Medium. Using the same reasoning for the class Medium we can
present the final result by two IFV s:

〈
μ1L(x∗1), ν1L(x∗1)

〉
,
〈
μ1M (x∗1), ν1M (x∗1)

〉
, where

μ1L(x∗1)=ν1M (x∗1) and μ1M (x∗1)=ν1L(x∗1). Similarly, for the test 2 (see Fig. 1) we get
the following result:

〈
μ2M (x∗2), ν2M (x∗2)

〉
,
〈
μ2B(x∗2), ν2B(x∗2)

〉
, where μ2M (x∗2)=ν2B(x∗2)

and μ2B(x∗2)=ν2M (x∗2).
It is easy to see that the examples presented in Fig. 1 are constructed in such a

way that always μ1L(x1)+ν1L(x1) ≤ 1, μ1M (x1)+ν1M (x1) ≤ 1, μ1B(x1)+ν1B(x1) ≤ 1
and μ2L(x2)+ν2L(x2) ≤ 1, μ2M (x2)+ν2M (x2) ≤ 1, μ2B(x2)+ν2B(x2) ≤ 1. Therefore,
in the framework of proposed approach, the hesitation degrees πL(x1), πM (x1),
πB(x1) and πL(x2), πM (x2), πB(x2) can be analysed as well.

An important question arises: does the fundamental property of A − IFS
(μ(x) + ν(x)) ≤ 1 hold for all cases when we deal with the intersecting fuzzy
classes? Below we shall show that this property holds only if membership func-
tions of competing fuzzy classes satisfy jointly some reasonable and justified
conditions which are not so important in the framework of traditional approach.
Let us consider some illustrative examples. In Fig. 1, we can see that competing
membership functions intersect in the points where the values of membership
functions are less or equal to 0.5, and therefore the fundamental property of
A − IFS (μ(x) + ν(x)) ≤ 1 holds. In Fig. 2, we can see that if competing
membership functions intersect in the points where the values of membership
functions are equal to 0.5 we have (μL(x) + νL(x)) = 1, (μM (x) + νM (x)) = 1
and (μB(x) + νB(x)) = 1. Obviously there are no any hesitation degrees in this
case.

On the other hand, if the membership functions intersect in the point where
their values are greater than 0.5 (see Fig.2), the fundamental property of A −
IFS may be violated. It is easy to see that in the interval [x1, x3] we have
(μB(x) + νB(x)) > 1. In our opinion, this non-acceptable result is obtained as
the membership functions μM (x) and μB(x) were built improperly. Really, all
x ∈ [x1, x2] belong completely to the fuzzy class Medium and therefore they
cannot belong to the another class, whereas we have μB(x) ≥ 0 in this interval.
Maybe, this type of reasoning seems to be too restrictive ones, but it reflects
well the specificity of the decision making based on the intersecting membership
functions representing competing fuzzy classes, such as Low, Medium, Big, ets.



The Use of Intuitionistic Fuzzy Values 255

Fig. 2. The example of an inappropriate building of membership functions

To avoid the above-mentioned problem, the membership functions of competing
fuzzy classes should be constructed in such a way that if one of them is equal to
1 then the other one should be equal to 0.

Using the notation of A − IFS and DST (the basic probability assignment
(bpa), m) we can represent the rules for the example presented in Fig. 1 as
follows:

IF (x1 = x∗1)Thenm1(H) =
〈
μ1L(x∗1), ν1L(x∗1)

〉
,

m1(H,D) =
〈
μ1M (x∗1), ν1M (x∗1)

〉
,m1(D) =

〈
μ1B(x∗1), ν1B(x∗1)

〉
,

IF (x2 = x∗2)Thenm2(H) =
〈
μ2L(x∗2), ν2L(x∗2)

〉
,

m2(H,D) =
〈
μ2M (x∗2), ν2M (x∗2)

〉
,m2(D) =

〈
μ2B(x∗2), ν2B(x∗2)

〉
.

(13)

Of course, in this case we have: m1(D) =
〈
μ1B(x∗1), ν1B(x∗1)

〉
= 〈0, 1〉, m2(H) =〈

μ2L(x∗2), ν2L(x∗2)
〉

= 〈0, 1〉 .
The next step is the combination of obtained bpas. Taking into account that

operations ⊕ and ⊗ on IFV s provide IFV s as well, there is no need, in our
case, for the normalisation of Dempster’s combination rule (1). Therefore, in our
example, the combined bpas may be presented as follows:

m12(H) = m1(H)⊗m2(H)⊕m1(H)⊗m2(H,D)⊕m2(H)⊗m1(H,D),
m12(D) = m1(D)⊗m2(D)⊕m1(D)⊗m2(H,D)⊕m2(D) ⊗m1(H,D),
m12(H,D) = m1(H,D)⊗m2(H,D).

(14)
Since the operation ⊕B and ⊗B on belief intervals provide belief intervals too,
there in no need to normalise the Dempster’s combination rule (1), when be-
lief intervals are used for representation of IFV s. To obtain the corresponding
combination rule it is enough to substitute operations ⊕ and ⊗ in (14) with
⊕B and ⊗B and replace intuitionistic fuzzy-valued bpas by corresponding belief
intervals.

To represent the advantages of proposed approaches, consider the critical
example presented in Fig.3. Using conventional fuzzy logic, from (12) we get
bpas m∗

1(H) = 0.55, m∗
1(H,D) = 0, m∗

1(D) = 0 and m∗
2(H) = 0, m∗

2(H,D) =
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Fig. 3. Critical example

0, m∗
2(D) = 0.6. Since after normalisation we obtain m1(H) = 1, m1(H,D) =

0, m1(D) = 0 and m2(H) = 0, m2(H,D) = 0, m2(D) = 1, the degree of conflict
K between the pieces of evidence is equal to 1 and therefore the classical Demp-
ster’s combination rule (1) cannot be used. Therefore, the use of conventional
fuzzy logic in the rule-base evidential reasoning cannot provide any reasonable
result in the considered real-world example.

On the other hand, according to the doctor’s opinion, in our case the diagno-
sis Pre-diabetes seems to be more justified than Diabetes and Diabetes is more
preferable than Health. The Pre-diabetes is intuitively obvious for the doctor
in the considered example. Moreover, in his informal, but based on common
sense analysis, the doctor considered the values m1(H) = 0.55, m1(H,D) =
0.45, m1(D) = 0 and m2(H) = 0, m2(H,D) = 0.4, m2(D) = 0.6 as the argu-
ments in favour of corresponding diagnoses. It is easy to see that the sum of
arguments in favour of Pre-diabetes m1(H,D) + m2(H,D) is grater than the
sum of arguments in favour of Diabetes m1(D) +m2(D) which is greater than
m1(H) +m2(H).

Nevertheless, from (13) and (14) we obtain the following intuitionistic fuzzy-
valued result:
m12(H) = 〈0.22, 0.19〉 , m12(H,D) = 〈0.18, 0.82〉 , m12(D) = 〈0.27, 0.175〉.

To compare obtained IFV s, the rules (6) was used. The following values of
score function have been obtained
S(m12(H)) = 0.027, S(m12(H,D)) = −0.64, S(m12(D)) = 0.095.
Since S(m12(D)) > S(m12(H)) > S(m12(H,D)) then (see (6)) we obtain the

counter-intuitive diagnosis-Diabetes.
Then using in (13) and (14) the belief intervals representing correspond-

ing IFV s and operations ⊕B and ⊗B instead of ⊕ and ⊗ in (14) we get
the following resulting belief intervals m12(H) = [0.073, 0.073] , m12(H,D) =
[0.18, 0.18] , m12(D) = [0.09, 0.09] (factually, we have obtained real-valued re-
sults, but this a specificity of our example and usually we obtain interval-valued
results).

Since in our case, m12(H,D) > m12(D) > m12(H) we obtain the intuitively
obvious diagnosis - Pre-diabetes.
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Summarising, we can say that the interpretation of A−IFS in the framework
of DST makes in possible to use more information in the evidential- reasoning,
and as a consequence to obtain reasonable results when the synthesis of classical
fuzzy logic and DST is failed. The counter-intuitive results obtained with the
use of (13) and (14) when operations the ⊕ and ⊗ are used may be caused by
bad properties of these operations (see subsection 2.2).

4 Conclusion

In this paper, a new method for the rule-base evidential reasoning based on
the synthesis of A − IFS, fuzzy logic and the DST is proposed and analysed
using the critical real-world example of type 2 diabetes diagnostics. It is shown
that the direct use of intuitionistic fuzzy values and classical operations on them
may lead to the counter-intuitive results. This may be a consequence of bad
properties of classical operation on intuitionistic fuzzy values. It is shown that
the interpretation of A − IFS in the framework of DST makes in possible to
use more information in the evidential reasoning and as a consequence to obtain
reasonable results when the synthesis of classical fuzzy logic and DST is failed.
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Abstract. Financial stock time series are presented together with the so-called
Japanese candlesticks. Model of Ordered Fuzzy Numbers is shortly presented
and its use in presentation of Japanese candlesticks. Then the ogive, the graphical
representation of the cumulative relative frequency of transactions is introduced,
as the next characteristic of price time series. Linear operations on ogive curves
are defined. It is shown that ogive is reflecting some properties of stock time
series additional to the Japanese candlestick.

Keywords: time series, Ordered Fuzzy Number (OFN), Step Ordered Fuzzy
Numbers (SOFN), Japanese candlestick, ogive.

1 Introduction

Economics is the social science that studies the production, distribution and consump-
tion of goods and services. One of the basic tools used in economics are economic
models. A model is a theoretical construction which represents economic processes
with a set of variables and a set of logical and quantitative relationships between them.
The application of these variables in models involves the knowledge of their numeri-
cal values. However, in reality many economic variables are difficult to be measured
with precision. For example information appearing in the financial market is the most
uncertain since what happens in the world has an effect on quotations of financial in-
struments. On the other hand, how the information influences the market is decided by
investors by taking a long or short position in the market. In addition imprecise terms,
such as high economic growth, high unemployment, low inflation are commonly used.

One method to model imprecise terms is application of fuzzy sets and numbers, in
particular Ordered Fuzzy Numbers (OFN). In this paper we confine our interest to fi-
nancial market and to attempt to model financial stock data represented by time series
and some histograms. In our approach the Japanese Candlesticks will be modeled using
OFN and some their generalized concepts, taking into account the histograms of trans-
actions in particular price intervals (cf. Appendix for the short presentation of OFN).
The use of OFN allows modeling uncertainty associated with financial data. Thanks to
well-defined arithmetic of ordered fuzzy numbers, one can reach models of fuzzy time
series. Our investigations are aimed at the construction of a decision support system in
future. It will be the subject of further research.

L. Rutkowski et al. (Eds.): ICAISC 2013, Part I, LNAI 7894, pp. 259–270, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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2 Model of Japanese Candlestick

On present financial market formal methods on which decision support systems (DSS)
are based have their sources in 3 groups: technical analysis, fundamental analysis and
portfolio one. In the present paper we focus our attention on the methods following
the technical analysis. Most tools in this range follow historical data of prices (i.e. the
quotations of financial instruments such as stock prices or currency pair) and their char-
acteristic moments (points). It is commonly assumed that trends, or patterns, in histor-
ical data are rather regular and may repeat. Those facts may be regarded as a basis in
designing a particular DSS for financial market.

On financial market one can observe two type of investors. In the first group the
fundamental analysis is most often in use, while in the second group tools of the basis
technical analysis play the main role. Participants of each group must make a subjective
assessment either of macroeconomic factors or signals of technical analysis. For all of
them the human factor is a cause of uncertainty as well.

On the stock market analyzing graphs that describe price and volume changes, one
can try to identify configurations that change with time and on this basis to make a
forecast about future trends. According to the literature, cf.[11], one distinguishes two
formation types: formations that forecast change in the actual (present) trends and for-
mations that forecast a continuation of the present trends.

Fig. 1. Japanese candlesticks of WIG20 index in the period September 29 - November 7, 2012

Making investment decisions based on observation of each single quotation is very
difficult or even impossible, when price changes tens times a minute. The human mind
does not handle large numbers or macro ideas well. The data required to produce a
standard bar chart consists of the open, high, low, and close prices for the time period
under study. A bar chart consists of vertical lines representing the high to low range in
prices for that day. The high price refers to the highest price that the issue traded during
that day. Likewise, the low price refers to the lowest price traded that day. For years, the
only other price element used in bar charting was the close price. Most bar charts have
been always displayed with a volume histogram at the bottom.
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To illustrate movements in the price of a financial instrument over time and to make
their decisions the investors of the second group very often uses price charts such as
Japanese Candlestick Chart (cf. Fig.1). On Fig.1 we present Japanese candlestick chart
of WIG20 on Warsaw Stock Exchange Market.

Japanese candlestick charts [7] do not require anything new or different as far as
data are concerned. Open, high, low, and close are all that is needed to do candlestick
charting. The Japanese Candlestick chart are four dimensional time series taken with
given frequency, i.e. for one day, for one hour, for a quoter of an hour, for one minute,
or so. Each entry in the series gives four prices: low, open, close and high, respectively.
One should notice that using this type of price chart, a large part of the information
about the temporal process is lost, since in a given time period (i.e. one hour or a quoter
of an hour) the price must have changed hundreds of times. The open-high-low-close
chart (also OHLC chart, or simply bar chart) and Japanese Candlestick are most often
used in technical analysis. Both types of charts are presented in Fig. 2.

The box in Fig. 2 that makes up the difference between the open and close prices, is
called the real body of the candlestick. The height of the body is the range between the
day’s open price and the day’s close price. When this body is black, it means that the
closing price was lower than the opening price. When the closing price is higher than
the opening, the body is white.

When drawing candlestick charts by hand, the Japanese use red instead of white to
represent the up days (close higher than open). With the use of a computer, this is not
feasible because red would be printed as black on most printers and you could not tell
the up days from the down days.

Fig. 2. Japanese candlesticks: Left - open, Right - black

In this work as a financial data we mean the quotations of financial instruments
(e.g. stock prices or currency pair). In practice, quotations of financial instruments are
represented using price charts [7,11].

3 Japanese Candlesticks and OFN

In the last paper [10] the authors proposed an original concept of financial fuzzy time se-
ries models, based on financial data in the form of Japanese Candlestick Charts. In their
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approach the Japanese candlesticks were modeled using Ordered Fuzzy Numbers. They
called them Ordered Fuzzy Candlesticks (OFC). The use of Ordered Fuzzy Numbers
has allowed the authors modeling uncertainty associated with financial data. They use
two classes of possible shape functions: affine and Gauss-type, to model representative
pair of OFN.

Let us consider a time series {Xt : t = 1, 2, .., n} of a financial instrument represent-
ing price changes as a function of time steps. It is not important, at the moment, how
long the time distance between subsequent time steps is: it could be a day, an hour or a
minute. To designate the center of the Ordered Fuzzy Candlestick (OFC) the authors of
[10] use classical average known in financial mathematics of time seriesXt. They were

Simple Average SA =
1

n

n∑
i=1

Xi ,

Linear Weighted Average LWA =
1
n∑

j=1

j

n∑
i=1

iXi , (1)

Exponential Average EA =
1

n∑
j=1

(1− α)n−j

n∑
i=1

(1− α)n−iXi ,withα ∈ (0, 1) .

Notice that two last averages have the fading memory property: the recent prices have
a bigger impact on the average that the very first ones. In [10] they use two classes of
possible shape functions: affine and Gauss-type, to model representative pair of OFN.
However, to fix the critical points of those functions they introduce two pairs of addi-
tional parameters C1, C2, given by the standard deviation of Xt, and S1, S2 from the
set {SA,LWA,AE}, such that S1 ≤ S2 .

Then, in the case of open candlestick (i.e.X1 ≤ Xn) the values f(0) = high(Xt)−
C1, f(1) = S1, g(1) = S2, and g(0) is given by some integral constraint with two ad-
ditional parametersA,B, in such a way that S1, S2 ∈ [low(Xt), high(Xt)]. They have
assumed that the function g is increasing, while h decreasing, and both are continuous.

Then, in the case of closed (black) candlestick (i.e. Xn ≤ X1) the values f(0) =
high(Xt) + C2, f(1) = S2, g(1) = S1, and g(0) is given by some integral constraint.
They have also assumed that the function f is increasing, while g decreasing, and both
are continuous. We can see that Ordered Fuzzy Candlestick corresponding to closed
Japanese Candlestick has different orientation than that corresponding to open one.

The authors of [10] have made some experimental studies, constructing their OFC
for selected time series of quotations of EUR/USD for 1-hour period from the January
2011. They have also shown that for two different time series Xt and Yt having the
same Japanese candlestick, because the main prices (i.e. OHLC) are the same, how-
ever the OFC are different. It shows that the model they accepted introduces additional
information to Japanese candlestick.

Thanks to well-defined arithmetic of OFN the authors of [10] have constructed mod-
els of fuzzy time series, such as e.g. an autoregressive process , where all input values
are OFC, while the coefficients and output values are arbitrary OFN, in the form of
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classical equations, without using rule-based systems. Finally, some applications of
those models for modeling and forecasting selected financial time series were presented
in [10].

In our approach we introduce different type of fuzzy candlesticks equipped with
additional information based on the histogram corresponding to given time series of
prices. Moreover, we claim that the characteristic points of OFN used by those au-
thors have some drawbacks, since making operation of additions on OFC different main
prices are summed up.

Now to our method we use Ordered Fuzzy Numbers to represent four prices [6]. Our
method is based on trapezoidal type numbers (cf. Fig. 3), in which four characteristic
values are written in the order of prices: low, open, close, high. If a pair of functions
(f, g) has to represent Japanese Candlestick, then f(0) = low(Xt), f(1) = open(Xt),
g(1) = close(Xt), and g(0) = high(Xt).

Fig. 3. Japanese candlesticks represented by OFN, Left - open(increasing), Right - black (de-
creasing)

To model the Japanese candlestick the support of OFN (f, g), i.e. [f(0), g(0)] rep-
resents the maximal range of the prices between low(Xt) and high(Xt). The kernel
of the OFN represents the range of prices between the open and closed, ones. We will
show in the paper that the OFN can be successfully applied in the presentation of stock
prices giving transparent image of the stock exchange. In addition, as in the case of
Japanese candlestick, charts built on Ordered Fuzzy Numbers produce suitable infor-
mation on which investors can make investment decisions. Such information, however,
requires sometimes particular confirmation by means of other tools such as technical
analysis indicators and related how the situation will develop in the stock exchange.

One of the most popular and frequently used by investors tools are moving averages,
which can be related to the opening prices, closing, low or high, and calculated within
a certain number of periods of the past. Average of the close price is the most popular,
of course . When we use the description of stock prices by the Ordered Fuzzy Numbers
then a simple moving average (SMA) can be defined by the formula:

SMAn =
1

n
(P0 + P1 + · · ·+ Pm−1) ,

where Pi, i = 0, ...,m− 1 are Ordered Fuzzy Numbers describing the earlier periods
of stock prices, P0 is OFN from the last period,m is the number of periods.
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An additional advantage of presenting stock exchange data with Ordered Fuzzy
Numbers is that when we want to analyze specific prices, such as closing price, it is
enough to connect the appropriate points of the Ordered Fuzzy Numbers and get line
charts. This can be also illustrated. At last, but not the least we have defuzzification
functionals (cf. Appendix) for our disposal.

4 Cumulative Histogram and Its Ogive

Let us make the splitting of a fixed price range P = [P0, PF ) intoK subintervals

[P0, PF ) =

K−1⋃
i=0

[pi, pi+1) ,where P0 = p0 < p1 < ... < pK = PF . (2)

Take the histogram of the time series presented above and denote by ei+1 the frequency
of operations (transactions) made in the price range [pi, pi+1), i = 0, 1, ..,K − 1 . We
will introduce a stepwise function h(x), x ∈ P given by the formula

h(x) = ehi+1 , whenx ∈ [pi, pi+1) , i = 0, 2, ..,K − 1 . (3)

Fig. 4. Two price charts with the same OHLC and the same black candlestick on Fig. 5

If we sum up all transactions for this time series, i.e.
K−1∑
i=0

ei+1 and call it Sh, we

may introduce the second function hR which measures the relative frequency of this
time series given by the formula

hR(x) =
h(x)

Sh
=
ehi+1

Sh
whenx ∈ [pi, pi+1) , i = 0, 2, ..,K − 1 . (4)

In our situation we may wish to highlight the proportion of transactions that lie below
each subinterval. In such case after [7]) (cf. p. 48) we introduce the so-called ogive,
i.e. the cumulative relative frequency distribution which is defined identically to the
probability distribution, i.e. for x ∈ [pi, pi+1) cumulative relative frequency is
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Fig. 5. Japanese and trapezoidal candlesticks for both price charts from Fig.4

Fig. 6. Price charts with the same OHLC and the same open candlestick on Fig. 7

Fig. 7. Japanese and trapezoidal candlesticks for both price charts from Fig.6
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chi+1 =
i+1∑
j=1

ehj
Sh
. (5)

We notice that for x in the last subinterval [pK−1, pK) the value chK = 1. Hence at the
point pK in the definition of the function ogive, in order to keep the information about
the number of all transactions for this time series we put different value, namely Sh. So
our definition of the ogive hC for the time series Xt and its histogram h(x) will be

hC(x) = chi+1 ,whenx ∈ [pi, pi+1) , i = 0, 1, 2, ...,K − 1 , (6)

and hC(x) = Sh ,whenx = pK .

In the last subinterval the existing number of all transactions will allow to define the
operation of addition of two ogive functions and the multiplication by a positive scalar.

We introduce the operation of addition of two cumulative relative frequency distribu-
tions as follows. Let Yt, t = 1, 2, .., be another time series with values in the price range
P , and g(x) its histogram while Sg is the sum of all transactions, then, in view of (4),

the relative histogram gR will be gR(x) =
g(x)

Sg
=
egi+1

Sg
, whenx ∈ [pi, pi+1) , i =

0, 2, ..,K − 1, where egi+1 is defined in the similar way to ehi+1 in (4).
Let gC(x) be the ogive for g(x), i.e. gC(x) = cgi+1 when x ∈ [pi, pi+1) , i =

0, 1, 2, ...,K− 1 , and gC(x) = Sg ,whenx = pK , where cgi+1 is defined in the similar
way to chi+1 in (5). The operation of addition is defined pointwiese as follows

(hC + gC)(x) =: (h+ g)C(x) =

{
whhc(x) + wggC(x) , when x ∈ [p0, pK)

Sh + Sg , when x = pK
(7)

withwh + wg = 1 ,wherewh =
Sh

Sh + Sg
, wg =

Sg
Sh + Sg

.

This definition may be used to define the scalar multiplication of any hC by a positive
constant λ ∈ R+, as

λhC(x) =

{
hC(x) when x ∈ [p0, pK) , p0 = P0
λSh when x = pK , pK = PF

. (8)

We can see that the multiplication by a positive scalar of an ogive does not change the
graph of the original ogive; only change takes place in the last entry at the final point
(interval end point): it is the total number of transactions, here equal λSh.

The ogive of a given time series with splitting its price range P into subintervals (cf.
(2) reminds us the gradual element defined and discussed in [1,2]. However, here the
ogive is the step function, which can be, of course, approximated by a piecewise linear,
as we are doing on our graphs above and below. The operation on ogive functions is
different from that on gradual elements, as we can see in (7-8).

Notice that to each ogive function we can relate a convex fuzzy number with the
support contained in the right-open interval [P0, PF ), and apply all defuzzification func-
tionals, those classical for CFN. It is rather obvious that the center of gravity defuzzifi-
cation functional is more appropriate than any other functional. In the present examples
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Fig. 8. Ogive functions corresponding to the price charts in Fig.4

Fig. 9. Ogive functions corresponding to the price charts in Fig.6

Fig. 10. Example of Step Ordered Fuzzy Number A = (f, g): Left -(a) function f , (b) function
g, Right - membership functions of A
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all classical four defuzzification functionals: MOM, LOM, FOM and ROM will give
for ogive function the same value.

Here we show that the ogive keeps an additional information about time series (price
chart)Xt additional to the Japanese candlestick. To end this let us consider two different
time series Xt and Yt having the same Japanese candlestick, because the main prices
(i.e. OHLC) are the same, however the OFC are different. The ogive functions for both
of them are shown on Fig. 6.

We can see that in our model ogive functions together with trapezoidal OFN candle-
sticks give two independent descriptors of time series (price charts) of financial stock
data.

5 Conclusions

The paper presents an application of a new model of fuzzy numbers called Ordered
Fuzzy Numbers and ogive functions in characterization of stock-exchange problems.
According to the authors, it opens up great opportunities to use OFN in the economic
modelling. This is illustrated on the example of the using of OFN to describe stock
prices. The description allows quickly and easily find price patterns in the same way
like the candlestick charts. In addition, arithmetic in OFN model makes easy calculate
indicators of the technical analysis, such as the simple moving average, which is pre-
sented in the work. Moreover, the ogive shows its applicability in characterizing price
charts. Further research will focus on a combination of share price presented by Ordered
Fuzzy Numbers and the volume of transactions.
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12. Kosiński, W.: On defuzzyfication of ordered fuzzy numbers. In: Rutkowski, L., Siekmann,
J.H., Tadeusiewicz, R., Zadeh, L.A. (eds.) ICAISC 2004. LNCS (LNAI), vol. 3070, pp.
326–331. Springer, Heidelberg (2004)
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Appendix

Proposed recently by the second author and his two coworkers: P.Prokopowicz and D.
Ślȩzak [8,14,15] an extended model of convex fuzzy numbers [18] (CFN), called Or-
dered Fuzzy Numbers (OFN), does not require any existence of membership functions.
In this model we can see an extension of CFN - model, when one takes a parametric
representation of fuzzy numbers know since 1986, [3] of convex fuzzy numbers.

Definition 1. By an Ordered Fuzzy Number we understand a pair of functions(f, g)
defined on the unit interval [0, 1], which are functions of bounded variations.

Notice that if under particular assumptions concerning properties of f and g, namely
- f ≤ g are both invertible, i.e. inverse functions f−1 and g−1 exist,
- f is increasing, and g is decreasing, and such that f ≤ g (pointwise),
then we can construct a membership functions μ(x) of a convex fuzzy number with the
help of the inverses of f and g.

On OFN, denoted by RBV , four algebraic operations have been proposed between
fuzzy numbers and crisp (real) numbers, in which componentwise operations are present.
In particular

fC(y) = fA(y) � fB(y), gC(y) = gA(y) � gB(y) , (9)
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where "�" works for "+", "·", and "÷", respectively, and where A÷B is defined, if the
functions |fB| and |gB| are bounded from below. Notice that the subtraction of B is the
same as the addition of the opposite of B, i.e. the number (−1) · B, and consequently
B−B = 0. From this follows that any fuzzy algebraic equationA+X = C with given
A and C as OFN possesses a solution, that is OFN, as well. Moreover, to any convex
and continuous fuzzy number correspond two OFNs, they differ by the orientation: one
has positive, say (f, g) , another (g, f) has negative.

A relation of partial ordering in the space of all OFN, denoted by R, can be
introduced by defining the subset of ‘positive’ Ordered Fuzzy Numbers: a number
A = (f, g) is not less than zero, and by writing

A ≥ 0 iff f ≥ 0, g ≥ 0 . (10)

In this way the setRBV becomes a partially ordered ring.
In dealing with applications of fuzzy numbers we need set of functionals that map

each fuzzy number into real, and in such a way that is consistent with operations on
reals. Those operations are called defuzzifications. To be more strict we introduce

Definition 2. A map φ from the space RBV of all OFN’s to reals is called a de-
fuzzification functional if is satisfies: 1) φ(c‡) = c , 2) φ(A + c‡) = φ(A) + c , 3)
φ(cA) = cφ(A) , for any c ∈ R and A ∈ R . where c‡(s) = (c, c) , s ∈ [0, 1], repre-
sents crisp number (a real) c ∈ R.

From this follow that each defuzzification functional must be homogeneous of order
one, restrictive additive, and some how normalized.

Step Ordered Fuzzy Numbers. It is worthwhile to point out that a class of ordered
fuzzy numbers (OFNs) represents the whole class of convex fuzzy numbers.

Important consequence of this fact is the possibility of introducing a subspace of
OFN composed of pairs of step functions. If we fix a natural numberK and split [0, 1)

into K − 1 subintervals [ai, ai+1), i.e.
K−1⋃
i=1

[ai, ai+1) = [0, 1), where 0 = a1 < a2 <

... < aK = 1, and define a step function f of resolution K by putting ui on each
subinterval [ai, ai+1), then each such function f is identified with a K-dimensional
vector f ∼ u = (u1, u2...uK) ∈ RK , the K-th value uK corresponds to s = 1, i.e.
f(1) = uK . Taking a pair of such functions we have an Ordered Fuzzy Number from
RBV . Now we introduce

Definition 3. By a Step Ordered Fuzzy Number A of resolution K we mean an
ordered pair (f, g) of functions such that f, g : [0, 1]→R areK-step functions.

We useRK for denotation the set of elements satisfying Def. 3. The example of a Step
Ordered Fuzzy Number and its membership function are shown in Fig. 10.

It is obvious that each element of the spaceRK may be regarded as an approximation
of elements from RBV , by increasing the numberK of steps we are getting the better
approximation. The norm of RK is assumed to be the Euclidean one of R2K , then we
have a inner-product structure for our disposal.
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Abstract. Diversity of opinion is an empirical fact often appearing in social net-
works. In the paper known statistical methods of evaluation is substituted by
fuzzy concepts, namely Step Ordered Fuzzy Numbers (SOFN). SOFN are exten-
tions of Ordered Fuzzy Numbers (OFN) introduced by Kosiński, Prokopowicz
and Ślȩzak in 2002. In 2011 Kacprzak and Kosiński observed that SOFN may be
equipped with a lattice structure. In consequence, Boolean operations like con-
junction, disjunction and, what is more important, diverse types of implications
can be defined on SOFN. In this paper we show how SOFN can be applied for
modelling diversity of beliefs even in fuzzy expressions.

Keywords: diversity of opinion, Ordered Fuzzy Number (OFN), Step Ordered
Fuzzy Numbers (SOFN), Opinion Mining (OM).

1 Introduction

Social networking websites such as Facebook, Twitter or LinkedIn have changed the
Image of the Web over the last few years. Popular social networking sites have sur-
passed Search Engines (Google) for the most visited pages. The Web has become
more a social media tool than a tool for information searching. At the same time
the volume of content on the social media, blogs, etc. is growing at an exponential
rate. With such an explosive growth of content, it is useful to feat this knowledge.
The main goal is to retrieve the data from the social network contents and to put this
knowledge to practical use in the form of prediction and prevention. That is why the
Text Mining (TM) and Social Network Analysis (SNA) has become a necessity [3],
[26], [27] for analysing not only information but also the connections across the in-
formation. The main objective of TM is to enable scientists to identify the necessary
information as efficiently as possible, finding the relationships between available in-
formation by applying algorithmic, statistical, and data management methods to this
knowledge.

The amount of information available in textual resources on the Web is huge and
growing. For this reason, Information Extraction (IE) that aims at automatic or semi-
automatic collection of structured data of specific type from textual corpora of given
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domain (such as medicine, economics, etc.) is in the mainstream of academic and in-
dustrial research.

However, information arriving via Web is different and different humans have dif-
ferent opinion about it. Hence the problem of diversity arises. Diversity of belief is an
empirical fact. A large and growing body of work has used this diversity to explain var-
ious everyday life phenomena. Our paper deals with evaluating diversity of opinion of
beliefs.

The first part of our paper introduces a short presentation of Ordered Fuzzy Numbers.
The next part presents our approach to use Ordered Fuzzy Numbers to evaluate the level
of truth or the human’s belief, if the sentence is expressed by a human. If the sentence
is expressed by an agent in a multi-agent system then we could try to evaluate the
agent’s belief about the agents’ belief. The paper is the first step in the application of
the fuzzy logic which stands behind the Step Ordered Fuzzy Numbers in modelling
the Diversity of Humans’ Belief. The conclusion summaries our study and introduces
future challenges for our project.

2 Fuzzy Numbers

In real life we often use notions like bad weather, high temperature, small women, high
humidity, obese man, or a firm which does well. Let us focus on these expressions.
When we say that somebody is obese, when we talk about obesity? As a criterion we
may consider body mass index (BMI) - a measurement which compares weight and
height. However, in every day chatting, nobody calculates this index and then such an
assessment deeply depends on a performer of the claim. For example, if a talker is
from the United States of America then he surely does not say that obese is a person
who weigh 80 kg and is 165 centimeters tall. Whereas a Frenchman will decidedly
sticks that this person is at least overweight. Therefore the evaluation whether or not
somebody is obese is very subjective and depends on diverse features of a performer
of this action. Expressions which are not clear-cut and for which it is difficult to assign
one from the values true or false, occur not only in human communication but also in
software engineering, e.g., in rules exploited in fuzzy controllers. To capture diversity
of approaches concerning expressions like “obesity”, in literature are considered multi-
valued logics [22, 23] or fuzzy logics [29]. The ways of modelling of uncertainty of
software agents is broadly discussed in [12].

In this paper we propose new approach in which ordered fuzzy numbers (OFN) are
applied. In our approach we use Ordered Fuzzy Numbers to evaluate the level of truth
or the human’s belief, if the sentence is expressed by a human in the natural language,
i.e. in the fuzzy way.

The theory of fuzzy numbers [6] is that set up by Dubois and Prade [7], who pro-
posed a restricted class of membership functions, called (L,R)–numbers with shape
functions L and R. However, approximations of fuzzy functions and operations are
needed if one wants to follow Zadeh’s [29] extension principle. It leads to some draw-
backs that concern properties of fuzzy algebraic operations, as well as to unexpected and
uncontrollable results of repeatedly applied operations. These problems are resolved in
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Ordered Fuzzy Numbers. OFN were invented by Kosiński, Prokopowicz and Ślȩzak in
the previous decade [16–20].

The definition of OFN uses the extension of the parametric representation of convex
fuzzy numbers.

2.1 Ordered Fuzzy Numbers

Proposed by the second author and his two coworkers: P.Prokopowicz and D. Ślȩzak
[16–20] an extended model of convex fuzzy numbers [24] (CFN), called ordered fuzzy
numbers (OFN), does not require any existence of membership functions. In this model
we can see an extension of CFN - model, when one takes a parametric representation
of fuzzy numbers know since 1986, [9] of convex fuzzy numbers.

Definition 1. By an Ordered Fuzzy Number we understand a pair of functions(f, g)
defined on the unit interval [0, 1], which are functions of bounded variations.

Notice that if

1. f ≤ g are both invertible, i.e. inverse functions f−1 and g−1 exist,
2. f is increasing, and g is decreasing, and such that
3. f ≤ g (pointwise),

then we can construct a membership functions μ(x) of a convex fuzzy number with the
help of the inverses of f and g. In general, however, those conditions may not hold and
membership function needs not to exist.

On OFN, denoted by RBV , four algebraic operations have been proposed between
fuzzy numbers and crisp (real) numbers, in which componentwise operations are present.
In particular if A = (fA, gA), B = (fB, gB) and C = (fC , gC) are mathematical ob-
jects called Ordered Fuzzy Numbers, then the sum C = A + B, product C = A · B,
divisionC = A÷B and scalar multiplication by real r ∈ R, are defined in natural way:

r ·A = (rfA, rgA) ,

and

fC(y) = fA(y) � fB(y), gC(y) = gA(y) � gB(y) , (1)

where "�" works for "+", "·", and "÷", respectively, and where A÷B is defined, if the
functions |fB| and |gB| are bounded from below. Notice that the subtraction of B is the
same as the addition of the opposite of B, i.e. the number (−1) · B, and consequently
B−B = 0. From this follows that any fuzzy algebraic equationA+X = C with given
A and C as OFN possesses a solution, that is OFN, as well. Moreover, to any convex
and continuous fuzzy number correspond two OFNs, they differ by the orientation: one
has positive, say (f, g) , another (g, f) has negative.

A relation of partial ordering in the space RBV can be introduced by defining the
subset of ‘positive’ Ordered Fuzzy Numbers: a number A = (f, g) is not less than
zero, and by writing

A ≥ 0 iff f ≥ 0, and g ≥ 0 . (2)
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In this way the set RBV becomes a partially ordered ring. Notice, that for each two
fuzzy numbersA = (fA, gA), B = (fB, gB) as above, we may define A∧B =: F and
A ∨B =: G, both fromR, by the relations F = (fF , gF ) and

if fF (s) = inf{fA(s), fB(s)} , gF (s) = inf{gA(s), gB(s)} , for∀s ∈ [0, 1]. (3)

Similarly, we defineG = A ∨B.
In dealing with applications of fuzzy numbers we need set of functionals that map

each fuzzy number into real, and in such a way that is consistent with operations on
reals. Those operations are called defuzzifications. To be more strict we introduce

Definition 2. A map φ from the space RBV of all OFN’s to reals is called a defuzzifi-
cation functional if is satisfies:

1. φ(c‡) = c ,
2. φ(A+ c‡) = φ(A) + c ,
3. φ(cA) = cφ(A) , for any c ∈ R and A ∈ RBV .

where c‡(s) = (c, c) , s ∈ [0, 1], represents crisp number (a real) c ∈ R.
From this follow that each defuzzification functional must be homogeneous of order

one, restrictive additive, and some how normalized.

2.2 Step Ordered Fuzzy Numbers

It is worthwhile to point out that a class of ordered fuzzy numbers (OFNs) represents
the whole class of convex fuzzy numbers.

Important consequence of this fact is the possibility of introducing a subspace of
OFN composed of pairs of step functions. If we fix a natural numberK and split [0, 1)

into K − 1 subintervals [ai, ai+1), i.e.
K−1⋃
i=1

[ai, ai+1) = [0, 1), where 0 = a1 < a2 <

... < aK = 1, and define a step function f of resolution K by putting ui on each
subinterval [ai, ai+1), then each such function f is identified with a K-dimensional
vector f ∼ u = (u1, u2...uK) ∈ RK , the K-th value uK corresponds to s = 1, i.e.
f(1) = uK . Taking a pair of such functions we have an Ordered Fuzzy Number from
RBV . Now we introduce

Definition 3. By a Step Ordered Fuzzy Number A of resolution K we mean an
ordered pair (f, g) of functions such that f, g : [0, 1]→R areK-step functions.

We useRK for denotation the set of elements satisfying Def. 3. The example of a Step
Ordered Fuzzy Number and its membership function are shown in Fig. 1 and Fig. 2
(where for the better image the vertical intervals connecting steps of the functions have
been drawn). The set RK ⊂ RBV has been extensively elaborated by our students in
[10] and [21]. We can identifyRK with the Cartesian product of RK × RK since each
K-step function is represented by its K values. It is obvious that each element of the
spaceRK may be regarded as an approximation of elements fromRBV , by increasing
the number K of steps we are getting the better approximation. The norm of RK is
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Fig. 1. Example of a step ordered fuzzy number A = (f, g) ∈ RK , (a) f , and (b) g

Fig. 2. Membership function of the above Step Ordered Fuzzy Number A = (f, g) ∈ RK

assumed to be the Euclidean one of R2K , then we have a inner-product structure for our
disposal.

On the space RK a representation formula for a general non-linear defuzzification
functionalH : RK ×RK → R satisfying the conditions 1.– 3., can be given as a linear
composition of arbitrary homogeneous of order one, continuous functionG of 2K − 1
variables, with the 1D identity function, i.e.

H(u, v) = uj + (4)

G(u2 − uj, ..., uK − uj , v1 − uj, ..., vK − uj) ,
with u = (u1, ..., uK) , v = (v1, ..., vK) ,

and some 1 ≤ j ≤ K . It is seen that G is given by F in which its j-th argument was
put equal to zero. Of course vj can substitute uj in (4).

3 Lattice Structure on RK

Let us consider the set RK of Step Ordered Fuzzy Numbers with operations ∨ and ∧
such that for A = (fA, gA) and B = (fB, gB),

A ∨B = (sup{fA, fB}, sup{gA, gB}),
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A ∧B = (inf{fA, fB}, inf{gA, gB}).

In [13] we have shown that the algebra (RK ,∨,∧) defines a lattice structure.

3.1 Binary SOFN

Let us introduce a subsets N of RK such that each element of N is a binary vector.
Then we have both a join and a meet in N . In fact, for every pair of numbers from
the set {0, 1} we can determine max and min and it is always 0 or 1. Therefore N
creates a complete lattice. In such a lattice we can distinguish the greatest element 1
represented by the vector = (1, 1, ..., 1) and the least element 0 represented by the
vector (0, 0, ..., 0).

In our previous paper [13] we have proved that the algebra (N ,∨,∧) is a complete
lattice.

3.2 Complement and Negation

In a lattice in which the greatest and the least elements exist it is possible to define
complements. We say that two elements A and B are complements of each other if and
only if A ∨ B = 1 and A ∧ B = 0. The complement of a number A will be marked
with ¬A and is defined as follows:

Definition 4. Let A ∈ N be a Step Ordered Fuzzy Number represented by a binary
vector (a1, a2, . . . , a2K). By the complement of A we understand

¬A = (1 − a1, 1− a2, . . . , 1− a2K).

A bounded lattice for which every element has a complement is called a complemented
lattice. Moreover, the structure of Step Ordered Fuzzy Numbers {N ,∨,∧} forms a
complete and complemented lattice in which complements are unique. In fact it is a
Boolean algebra. In the example with K = 2 a set of universe is created by binary
vectors

N = {(a1, a2, a3, a4) ∈ R4 : ai ∈ {0, 1} , for i = 1, 2, 3, 4}.

The complements of elements are ¬(0, 0, 0, 0) = (1, 1, 1, 1),¬(0, 1, 0, 0) = (1, 0, 1, 1),
¬(1, 1, 0, 0) = (0, 0, 1, 1) etc.

Now we can rewrite the definition of the complement in terms of a new mapping.

Definition 5. For any A ∈ N we define its negation as

N(A) := (1− a1, 1− a2, . . . , 1− a2K) , ifA = (a1, a2, . . . , a2K).

One can refer here to known facts from the theory of fuzzy implications (cf. [1, 2, 8])
and to write the strong negation N in terms of the standard strong negation NI on the
unit interval I = [0, 1] defined byNI(x) = 1−x , x ∈ I , namelyN((a1, a2, . . . , a2K)) =
((NI(a1), NI(a2), . . . , NI(a2K)).
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3.3 Implications

In the classical Zadeh’s fuzzy logic the definition of a fuzzy implication on an abstract
lattice L = (L,≤L) is based on the notation from the fuzzy set theory introduced in
[8].

Definition 6. Let L = (L,≤L, 0L, 1L) be a complete lattice. A mapping I : L2 → L
is called a fuzzy implication on L if it is decreasing with respect to the first variable,
increasing with respect to the second variable and fulfills the border conditions

I(0L, 0L) = I(1L, 1L) = 1L , I(1L, 0L) = 0L . (5)

Now, possessing the lattice structure of RK (SOFN) and the Boolean structure of our
lattice N , we can repeat most of the definitions know in the Zadeh’s fuzzy set theory.
The first one is the Kleene–Dienes operation, called a binary implication, already in-
troduced in our previous paper [13] as the new implication (cf. Definition 4 in [13])

Ib(A,B) = N(A) ∨B , for anyA,B ∈ N . (6)

In other words, the result of the binary implication Ib(A,B), denoted in [13] by A →
B, is equal to the result of operation sup for the numberB and the complement of A:

A→ B = sup{¬A,B}.

Next we may introduce the Zadeh implication by

IZ(A,B) = (A ∧B) ∨N(A) , for anyA,B ∈ N . (7)

Since in our latticeRK the arithmetic operations are well defined we may introduce the
counterpart of the Lukasiewicz implication by

IL(A,B) = C ,whereC = 1 ∧ (1 +B −A) . (8)

In the calculating the RHS of (8) we have to regard all numbers as elements of RK ,
since by adding the Ordered Fuzzy Number A from N to the crisp number 1 we may
leave the subset N ⊂ RK. However, the operation ∧ will take us back to the lattice
N . It is obvious that in our notation 1N = 1 . The explicit calculation will be: if
C = (c1, c2, . . . , c2K)), A = (a1, a2, . . . , a2K), B = (b1, b2, . . . , b2K), then ci =
min{1, 1− ai + bi}, where 1 ≤ i ≤ 2K .

It is obvious that all implications Ib, IZ and IL satisfy the border conditions (5) as
well as the 4th condition of the classical binary implication, namely I(0N , 1N) = 1N .

4 Modelling Diversity of Beliefs with SOFN

In this section we show how diversity of opinion (and belief) can be modelled by means
of Step Ordered Fuzzy Numbers. Assume a given number of users of a social networks
are expressing their opinion about some facts. Moreover, they are trying to formulate
some sentences in the form of reasoning, called in computer science - associative rules.
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Their statements are expressed in the natural language hence we should extend our
model with a set L of linguistic variables. By linguistic variables we mean variables
which values are from the set of words or sentences of a natural (or artificial) language.
Formally it is a foursome

l = (Z, T, U,m)

where

– Z is a name of variable l,
– T is a set of fuzzy terms which can be assigned to l,
– U is a digital interval of values of l,
– m is a rule (function) which assigns Ordered Fuzzy Numbers to terms from the set
T .

For example, let l describes air temperature, then fuzzy terms which can be assigned
to l are low, medium, high, digital values for air temperature are assumed to be from
the interval [5, 30]. Those fuzzy terms may be represented by Ordered Fuzzy Numbers.
Hence each human in our group from the social network can attached his/her OFN’s
representation of the same linguistic variable via the rulem.

Since a current state of the weather changes and people react differently in the same
weather conditions in various situations for various people different representations of
mmay be accepted for the same fuzzy term. In this way, for people from USA or France
distinct criteria for obesity are possible for formal modelling.

Now, consider a system with three peopleA,B,C. They express their opinion about
possible decision for jogging depending on the air temperature and the air humidity.
The linguistic variable: air humidity, will have fuzzy values : very low, acceptable,
unacceptable,

The tasks of humans A and B are to evaluate the air temperature and the humidity
of the whether, exchange digital values for fuzzy expressions and then provide these
data to make their decision. The decision operates on the third linguistic variable, i.e.,
jogging speed. Values of this variable are from the interval [5,15] and are described by
terms slow, fast, very fast,

Application of SOFN in modelling humans’ opinion has great advantage since allows
for manipulating fuzzy expressions rather then strict digital values. It makes possible
to design an automatic system of evaluation of humans’ opinion and to form a tool for
diversity evaluation.

Let us assume that our SOFN are 6 dimensional. Each subsequent pair of its com-
ponents describe the level of true, hence we have 4 value logic, if we have 3 linguistic
variables . Let vl be a valuation function which for every formula assigns an ordered
fuzzy number and assume that (111111) means absolutely true and (000000) means
absolutely false. Values between (111111) and (000000), like e.g. (10100) express dif-
ferent kinds of half-truth. We may assume that 11 corresponds to true value, 10 partially
true (1/2 true), and 01– to partially not true (1/2 not true).

The most important problem when we consider fuzzy beliefs of humans is how to
check properties of such defined situation. The question is about a language in which
we can evaluate whether some property is true or not. Let us discus it now. Assume
that in the above example the next human D appears. It tries to guess the decision of
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human C, i.e., human D needs to learn what action C decided to perform. D beliefs
that if A says that the temperature is low and B says that the humidity is very low then
C decides to run very fast. To create a formula describing this property use here a
commonly accepted language of epistemic logic based on Kripke structure [11]. In this
formalism we can write

BD(A−says−low) ∧BD(B−says−verylow) → BD(C−says−veryfast)

whereBD(T ) informally means that humanD beliefs that T holds. Our aim is to verify
whether this formula is true in a model of the system from the example.

Furthermore, we know that human D is not sure about beliefs of humans A and
B and assumes that terms low and very low are interpreted by OFN. Notice that D
may depart from the truth but not so much. However, if we take into account classical
two-valued logic then the formulaBD(A−says−low)∧BD(B−says−verylow) is not
true. It stems from the fact that beliefs of D about beliefs of A and B are not true. For
some digital values they agree but for another not. Although the OFN representations
are not the same they are very similar. In two-valued logic we lose this important infor-
mation. Therefore, we propose to use new, innovative approach in which Step Ordered
Fuzzy Numbers are applied. In Section 3 we showed that SOFN creates a lattice with
Boolean operations of conjunction, disjunction and implication. Therefore it is possible
to employ these numbers as a logical values for OFN. Let vl be a valuation function
which for every formula assigns an Ordered Fuzzy Number and assume that (111111)
means absolutely true and (000000) means absolutely false. Values between (111111)
and (000000), like e.g. (10100) express different kinds of half-truth. Below is given a
hypothetical assignment:

(a) vl(BD(A−says−low)) = (101101)
(b) vl(BD(B−says−verylow)) = (100111)
(c) vl(BD(C−says−runfast)) = (000000)

Analyze intuitions concerning these values. In (a) it is assumed that the humanD does
not know exactly for which digital values from [5,30] term close is ascribed since
the assigned value does not equal to (11111). However, if the interval [5,30] is di-
vided into 3 parts then in parts one and three the human D agrees (at least partially)
with the human B. Similar interpretation is for value (100111) assigned to formula
BD(B−says−slow). In (c) it is assumed that the humanD has no idea what and when
the human C says about jogging. Based on these values we can determine value of the
whole formula by using each of our implications introduced earlier. In each case the
final true value will be the same:

vl(BD(A−says−low) ∧BD(B−says−verylow) →
BD(C−says−veryfast)) = ¬(100101) ∨ (000000) = (011010) .

It means that the human D guesses faultlessly the kind of activity of the human C.
Such information surely cannot be expressed by classical logical values true and false.
Although multi-valued and fuzzy logics can deal with more than two values such a
precise knowledge can be captured only by Ordered Fuzzy Numbers.
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5 Conclusion

The paper lays the foundations of new logic based on Step Ordered Fuzzy Numbers
which will be very helpful in capturing how humans can reason about fuzzy expres-
sions. This is innovative approach to modelling human’s beliefs and their uncertainty
about beliefs of other humans. We show motivation for introducing such a new logic.
The application of it we mainly find in analyzing humans’ communication when knowl-
edge base of humans is represented by a set of Ordered Fuzzy Numbers expressing
diverse humans’ attitudes. Furthermore, SOFN, when are applied as logical values for
propositions and other formulas of the applied language, give much more informa-
tion than that something is true or false. We hope that this innovative approach is very
promising in specification and verification of diversity of opinion. It could be also very
useful in reasoning about software agents which are decision support systems. For ex-
ample, we can analyze activity of agents which assist clients with their decisions in
e-shops, i.e., agents which support users of a system in making decisions and choosing
a right product.
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Abstract. This paper presents an FPGA hardware implementation of a
special case of the fuzzy rule-based system, called P1-TS. The novelty of
this work is recursive hardware architecture. The recursive implementa-
tion of the rule-based system allows us to build a versatile digital circuit
for which FPGA logic resources requirements are small and indepen-
dent on the number of input variables. The number of inputs is only
limited by the capacity of the memory that stores the consequents of
the rules. In our implementation, increasing the number of variables by
1 approximately doubles calculation time of the hardware device. We
use floating-point arithmetic which ensures a higher dynamic range and
makes that there is no need to focus on normalizing variables values to
fixed word length.

Keywords: polynomial fuzzy rule-based system, fuzzy hardware, FPGA,
recursion.

1 Introduction

Fuzzy logic models are currently successfully used in many engineering appli-
cations including modeling, control and identification of dynamical systems,
robotics, technical and medical diagnosis, expert systems and data mining. Di-
verse techniques can be applied to implement the models of fuzzy systems, de-
pending on application demands, e.g. the desired response time. The simplest
way of implementation is a program designed for general-purpose computer.
However, the hardware implementations are best suited for high-speed demands
[1], [2].

In the book [3], the analytical theory of the fuzzy rule-based systems was
presented. It was proved that for some class of the Takagi-Sugeno-Kang mod-
els, in which the input variables are represented by linear and complementary
membership functions of the fuzzy sets, the system of their “If-then” rules is
equivalent to a multi-linear function, being a special case of the Kolmogorov-
Gabor polynomial. It was shown that such class of systems, denoted by P1-TS,
can be successfully applied in many fields, e.g. for PID-like optimal control of
the nonlinear dynamical processes (cf. [4]), identification of some class of the
nonlinear dynamical processes, navigation of the mobile robots, and so on.

L. Rutkowski et al. (Eds.): ICAISC 2013, Part I, LNAI 7894, pp. 282–293, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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It is well known that the fuzzy systems in general suffer from the “curse
of dimensionality” problem [5]. In the multiple-input-single-output (MISO) P1-
TS system, by adding an extra dimension to the input space, we observe a
twofold increase in the number of fuzzy “If-then” rules. Different approaches
have been proposed to solve the rule explosion problem in the fuzzy rule-based
systems [6]. In [3] it was shown that in the polynomial fuzzy systems, the curse
of dimensionality problem can be substantially alleviated by means of recursion
and meta-rules.

While applying fuzzy logic techniques for real-time complex applications, we
should use an effective and high-speed approach in the hardware design method-
ology (cf. [7], [8], [9]). Recently, the field-programmable gate-array (FPGA) has
attracted more attention than before, providing a possible solution in this is-
sue. The advantages of the FPGA include their programmable hard-wired fea-
ture, fast time-to-market, shorter design cycle, embedding processors, low power
consumption, and higher density for the implementation of the digital system.
FPGA provides a compromise between the special-purpose application-specified
integrated-circuit hardware and general purpose processors.

It should be added that the traditional implementations of fuzzy systems us-
ing FPGA work well as long as there are only two or three inputs. If the number
of inputs is increased by one, then Look-Up-Table (LUT) using traditional im-
plementation methods becomes very difficult to handle. The size of the LUT
grows exponentially as inputs are added [10] and this is the consequence of the
curse of dimensionality problem.

To avoid the above problems, in this contribution we introduce a new method
of FPGA implementation of the MISO P1-TS system. The paper is organized
as follows. In Section 2, the basic notions concerning P1-TS system with many
inputs and one output and two theorems are given. Section 3 describes the
hardware recursive implementation of the system, including the basic floating-
point components, hardware recursive architecture, communication module and
FPGA prototype description. Section 4 concludes the paper.

2 P1-TS System

Let us consider a MISO rule-based system with input variables z1, ..., zn, and
the output S. Every input is from the nondegenerete interval zk ∈ [−αk, βk],
(βk + αk > 0, k = 1, . . . , n). The set Dn = [−α1, β1] × . . . × [−αn, βn] defines
a hypercuboid. For any input zk, we define two membership functions of fuzzy
sets Nk = N (zk), and Pk = P (zk), where P is an algebraic complement to N :

N (zk) =
βk − zk
αk + βk

, P (zk) = 1−N (zk) , k = 1, . . . , n. (1)

This system is defined by 2n rules in the form of implications

If z1 is Ai1 and ... and zn is Ain , then S = qj , (2)
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where (i1, . . . , in) ∈ {0, 1}n and

Aik =

{
Nk, for ik = 0
Pk, for ik = 1

, k = 1, . . . , n. (3)

We assume that the consequents qj of the rules in (2) are real numbers, i.e. a
zero-order Takagi-Sugeno model is considered. The above rule-based system we
will call P1-TS one.

Theorem 1. Let us define the following multilinear function

f0 (z) =
∑

(p1,...,pn)∈{0,1}n

θp1,...,pnz
p1

1 · · · zpn
n , (4)

where θ(·) ∈ R. For every function of the type (4) there exists a MISO P1-TS
system such that its output S (z) = f0 (z), ∀ z ∈ Dn and (1) – the inputs of this
system are components of z, (2) – two linear membership functions defined by (1)
are assigned to each component of the vector z, and (3) – the system is defined
by 2n fuzzy rules in the form of (2) – (3). By solving 2n linear equations one
can find all consequents qj of the rules. For a nonzero volume of the hypercuboid
Dn, the unique solution always exists. (The proof is given in [3]).

Theorem 2. For any natural n ≥ 2, the crisp output of any P1-TS system with
the inputs z1, . . . , zn can be computed recursively

Sn = Nn (zn)Sn−1 (z1, . . . , zn−1 | q1, . . . , q2n−1)

+ Pn (zn)Sn−1 (z1, . . . , zn−1 | q2n−1+1, . . . , q2n) , (5)

where

– Sn = Sn (z1, . . . , zn | q1, . . . , q2n) is the crisp output of the P1-TS system
with n input variables and the consequents of the rules constituting the vector
[q1, · · · , q2n ]

T
, described by the following fuzzy rules

R1 : If P1 and zn is Nn, then S = q1,
...
R2n−1 : If P2n−1 and zn is Nn, then S = q2n−1 ,

R2n−1+1 : If P1 and zn is Pn, then S = q2n−1+1,
...
R2n : If P2n−1 and zn is Pn, then S = q2n ,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(6)

and P1, . . . , P2n−1 are antecedents of the rules in the P1-TS system with
the inputs z1, . . . , zn−1, i.e.

If z1 is N1 and . . . and zn−1 is Nn−1︸ ︷︷ ︸
P1

, then S = q1,

...
If z1 is P1 and . . . and zn−1 is Pn−1︸ ︷︷ ︸

P2n−1

, then S = q2n−1 .

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
(7)
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– Nn (zn) and Pn (zn) are membership functions for the input variable zn ∈
[−αn, βn] defined by (1),

– Sn−1 (z1, . . . , zn−1 | q1, . . . , q2n−1) is the crisp output of the P1-TS system
described by the fuzzy rules (7), with the inputs (z1, . . . , zn−1) ∈ Dn−1 and

the consequents of the rules constituting the vector [q1, · · · , q2n−1 ]T ,
– Sn−1 (z1, . . . , zn−1 | q2n−1+1, . . . , q2n) is the crisp output of the P1-TS system

described by the fuzzy rules (7), with input variables (z1, . . . , zn−1) ∈ Dn−1,

where its consequents are replaced by [q2n−1+1, . . . , q2n ]
T

. (The proof is given
in [3]).

When the number of inputs is large, we can use the meta-rules, i.e. the rules
which are equivalent to some subset of the single rules expressed in the form
of (2) – (3). Sometimes we consider a special case of the rule-based system, in
which αk = 0 and βk = 1 for k = 1, . . . , n, i.e. Dn = [0, 1]

n
. In such a case the

inputs take the values from the interval [0, 1], therefore, we can call the rule-
based system “logical” one, since the labels of fuzzy sets Nk are interpreted as
almost false, and the labels of fuzzy sets Pk are interpreted as almost true. Such
systems process the information expressed in continuous, multi-valued logic.

3 Hardware Implementation of P1-TS System

P1-TS system can be hardware implemented in a few different ways. One of
them is based on direct-parallel realization of equation (4) for a specific number
of input variables. The advantage of such implementation is high speed of data
processing; many arithmetic operations, e.g. addition and multiplication, are
done simultaneously. Nevertheless, the disadvantages of such implementation are
great difficulties in the description of P1-TS system for higher number of inputs
and high requirements of FPGA logic resources. Namely, increasing a number of
input variables by one doubles required amount of the hardware resources.

In this paper we prefer the other way of hardware implementation of P1-
TS system, which is based on recursive procedure, expressed by equation (5).
Such implementation is relatively easy to describe using hardware description
languages (HDLs), e.g. Verilog or VHDL. However, P1-TS implementation in
this case is slower than direct one, because all arithmetic operations are done
sequentially. Nevertheless, FPGA logic resource requirements are very low and
independent on the number of input variables. Moreover, the number of input
variables is only limited by the capacity of the memory that stores the conse-
quents values of the rules. Taking into account advantages and disadvantages of
possible P1-TS system hardware implementations, the “recursive” method has
been chosen.

3.1 Basic Floating-Point Components

In our hardware implementation of P1-TS system, we propose to use single pre-
cision floating-point arithmetic (IEEE 754 standard [11]), instead of most com-
mon used – fixed point one. FPGA implementation of floating-point arithmetic
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Fig. 1. Architecture of the floating point multiplier and divider

is more complicated and requires more logic resources [12], [13], but ensures
higher dynamic range and makes that there is no need to focus on normalizing
variables values to fixed word length. In order to realize P1-TS system based on
recursion expressed by Theorem 2, four fundamental floating-point operations
are required: addition, subtraction, multiplication and division. FPGA imple-
mentations of such operations are usually available as the IP cores (Intellectual
Property cores), supplied by the FPGA vendors. However, in this case, the IP
cores are vendor-dependent and cannot be used under different FPGA design
software and implemented in different FPGA chips, e.g. Altera, Xilinx or Actel.
To ensure maximum portability of HDL description of P1-TS system between
different FPGAs we have developed our own Verilog HDL description of floating-
point components, which realize basic arithmetic operations. Architecture of the
components is discussed below.

Floating point multiplication is the simplest of four basic arithmetic opera-
tions. In general, the multiplication of two numbers is accomplished by multi-
plication of the mantissas and adding of the exponents. Simplified architecture
of the floating-point multiplier is depicted in Fig. 1. The crucial block which
architecture has an essential influence on the performance of the floating-point
component, is the fixed-point multiplier A3. As this block, 3-stages pipelined
multiplier, which consists of four 12-bit fast array multipliers and two adders,
has been applied (general idea of fast array multiplier is described in [14]). Nor-
malization block in Fig. 1 is a shift register, conditionally right-shifting the re-
sult of the mantissas multiplication. Final result of floating-point multiplication
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is rounded to nearest even mode [11]. Rounding requires 3 additional bits, com-
puted in A3 block: guard bit, round bit and sticky bit. Executing of floating-point
multiplication takes 5 clock cycles.

The structure of the floating-point divider is roughly the same as the multi-
plier, shown in Fig. 1. In general, the division of two numbers is accomplished
by division of the mantissas and subtraction of the exponents. Therefore, in case
of the divider, blocks A1 . . . A3 perform different functions: A1 is a subtractor,
A2 is an adder and A3 block accomplishes fixed point division. As a division
method used in A3 block, the simple serial algorithm described in detail in [12]
has been exploited. Normalization block performs conditionally left-shift oper-
ation. Round to the nearest even mode is implemented as well. Floating-point
divider needs 26 clock cycles to establish division result.

Floating point addition is more complex than multiplication. Two numbers
can only be added if the exponents are the same. Thus, pre-normalization process
is required which aligns the mantissa of absolute smaller value of two operands.
Next, aligned mantissas are added if two floating point operands have the same
sign, otherwise subtracted. Finally, the new mantissa needs to be normalized
and the new exponent has to be calculated and adjusted, according to the result
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of mantissa normalization. Subtracting of two operands can be done by adding
them with inverted sign of the second operand.

Simplified architecture of floating-point adder/subtractor is shown in Fig. 2.
Group of multiplexers and comparator CMP1 in the top of the drawing, points
the operand with smaller absolute value. Subsequently, mantissa of this operand
is pre-normalized in R1 block by right shifting for the number of times depending
on the difference between the exponents values. Normalization of added/sub-
tracted mantissas is done by the leading one detector (LOD) block and the
left-shift R2 block. As a LOD, specific combinatorial circuit, determining the
position of leading one in the result of aligned mantissas addition/subtraction,
has been used. Both shift registers R1 and R2 establish its operation results
within one clock cycle. Overall floating-point operation performed by the module
from Fig. 2, takes only 5 clock cycles.

3.2 Recursive Implementation of P1-TS System

Simplified block diagram of the hardware recursive implementation of P1-TS
system for n input variables is shown in Fig. 3. Bolded lines in the diagram
represent multi-bit buses, whereas generic lines stand for the single-bit signals.
P1-TS module consists of several function blocks, performing specific operations.
The most important block, which accomplish recursive algorithm, is the control
unit (CU) equipped with consequents memory (CM) and multi-level hardware
stack. CM block stores consequents values of the rules. Control unit requires
additional arithmetic unit (AU) block, which performs the following calculations

AU Y =
B − Z
A+B

· AU X1 +
A+ Z

A+ B
· AU X2. (8)

Input variables A, B and Z of the AU block are provided by the block IVDAU
(input values determining for arithmetic unit), connected with the block IVBM
(input values boundaries memory). IVDAU block stores αk and βk values for the
input variable zk and assigns these values to the A, B and Z variables, depending
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Fig. 4. Operation diagram of the arithmetic unit

on the index k. The index k is represented by the C PTR pointer generated by
the CU block, e.g. if C PTR has the value of 0 then (A,B,Z) = (α1, β1, z1), etc.

Arithmetic unit realizes equation (8) and exploits floating-point operations.
All components described in Subsection 3.1 has been applied to perform this
equation. FPADD in Fig. 4 stands for floating-point adder/subtractor, FPMUL
is a floating-point multiplier and FPDIV denominates floating-point divider. In
order to speed up the calculations, arithmetic unit uses three FPADD blocks,
two FPMUL blocks and two FPDIV blocks. Operation diagram, which describes
in detail how the calculation are performed by the AU block, is depicted in Fig.
4. Two addition A + Z and A + B, and one subtraction B − Z are executed
simultaneously. Subsequently, two divisions and two multiplications are executed
in parallel, as well. Such arrangement of operations shortens overall calculation
time by almost 50%.

The control unit is described by the algorithmic state machine (ASM) chart
presented in Fig. 5. After activating START signal which initializes computa-
tions, the number of currently used input variables (n) is rewritten to the index
register IDX, consequents memory pointer Q PTR is cleared and ASM goes form
IDLE state (0) to the state 1. In this state, the value of IDX register is compared
to 1 (the lowest level of recursion). If it is not equal to 1, ASM goes to the state
2 and subsequently 3, where - in sequence - value of the internal register TMP
is pushed into the stack, IDX register is decremented and a concatenation of
Q PTR, IDX and a direct value is pushed into the stack, as well. The direct
value contains the state number to which ASM will go after executing state 8.
ASM returns to the state 1 after state 3. If the comparison in the state 1 gives
positive result, ASM goes to states 4 . . . 8, where arithmetic unit is engaged.
After completion of arithmetic operation (AU DONE = 1), data overrun of
the stack is checked. If the stack is not empty, last pushed values are popped
from the stack. After executing state 8 ASM goes to the state 9 or 10, depend-
ing on the value pushed into the stack in the state 3 or 11. If the next state
is 9, then the arithmetic unit is also launched, but with different input values
than in the states 4 and 5. In the states 10 and 11 the computation result of
the arithmetic unit and a concatenation, similar to this one from the state 3,
are pushed into the stack. New value is also assigned to the Q PTR register.
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Fig. 5. Simplified ASM chart for the control unit

ASM ends up its operation if stack will be empty after executing states 4 . . .
6. In this case the output Y of the control unit will contain the crisp output
value of the P1-TS system. Let us note that Q PTR pointer incremented by 1
acts like a bottom index of the consequents of the rule. Value of the particular
consequent for Q PTR index is read from consequents memory and, in the ASM
chart, is denoted as Q[Q PTR].

3.3 Communication Module

To facilitate practical use of the P1-TS module, additional communication
module has been developed. The module provides data transfer between P1-
TS module and PC computer. Its basic function is to load the values of the rules
consequents to the consequents memory and store them in an external flash
memory. Communication module also allows setting up a number of actually
used input variables, and for debugging purposes – transferring values of input
variables, initializing computations and reading back the result, as well.

Simplified block diagram of the communication module is depicted in Fig. 6.
The main component of the module is the command realization block (CRB).
Commands from PC computer, such as moving single consequent to the selected
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Fig. 6. Block diagram of the communication module

memory location or rewriting consequents memory content to non-volatile flash
memory, etc., are transmitted via UART block, which consists of UART trans-
mitter (UARTTX), receiver (UARTRX) and direct digital frequency synthesizer
(DDFS). DDFS block provides clock frequency for UART transmitter/receiver
and determines the data transfer rate. Currently, data are transferred with 115.2
kb/s. Communication between the module and PC is based on Intel HEX pro-
tocol [15]. Therefore, two important block of communication module are Intel
HEX decoder (IHD) and encoder (IHE). To ensure reliable data transfer, each
transmitted Intel HEX record, which also contain a checksum, has to be acknowl-
edged by the receiver, i.e. the communication module or PC. Other components
of the communication module are message generator (MG), consequents memory
access controller (CMAC), NAND flash memory controller (NFMC) and dual-
port block RAM memory (DPBRAM). The consequents of the P1-TS system
are stored in an external NAND flash memory. On power up or in reply to PC
command, content of the flash memory is copied to dual port block RAM, which
has much shorter access time than the external NAND flash. Consequents mem-
ory is, in fact, located in the communication module and implemented as a dual
port block RAM (dedicated memory block inside FPGA). First port of the block
RAM is directly connected to the control unit of P1-TS module, while second
port is driven to the CMAC block.

3.4 FPGA Prototype

P1-TS module along with the communication module have been implemented
in a prototype board with Xilinx Spartan-6 FPGA (XC6SLX100-3FGG676),
primary developed for FPGA-based programmable controller [16]. A photo of
FPGA prototype board with simple panel board is presented in Fig. 7.

P1-TS and communication modules were created as a set of IP cores, described
in Verilog HDL [17]. Their implementation in XC6SLX100 FPGA utilizes small
amount of logic resources: 4671, 6-input, slice LUTs (7.4% of total available
LUTs) and 2498 slice registers (1.9% of available registers). Implemented circuit
can be clocked with maximum frequency of 97 MHz. Table 1 shows the real
computation time required by the developed hardware implementation for 2 to
16 input variables.
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Fig. 7. Photo of FPGA prototype board

Table 1. Computation time of the FPGA hardware implementation for different num-
ber of input variables of the P1-TS system. The module was tested with 90 MHz
frequency.

# input Clock Computation
variables cycles time [μs]

2 182 2.02

3 432 4.8

4 932 10.35

5 1932 21.46

6 3932 43.68

7 7932 88.13

8 15932 177.02

# input Clock Computation
variables cycles time [μs]

9 31420 349.11

10 62906 698.95

11 125878 1398.64

12 251822 2798.02

13 503710 5596.77

14 1007486 11194.28

15 2018038 22422.64

16 4030142 44779.35

4 Conclusions

Recursive implementation of the P1-TS system allows us to build a versatile
digital circuit for which FPGA logic resources requirements are small and inde-
pendent on the number of input variables. The number of inputs is only limited
by the capacity of the memory that stores the consequents of the rules. Cur-
rently implemented version of P1-TS module utilizes dual port RAM block of
64k 32-bit locations (256 KB). Therefore, maximum number of inputs is limited
to 16. However, it is very easy to increase the capacity of RAM by combining
together more memory blocks and in consequence, the number of available input
variables can be higher with the same logic resources utilization.

The programmable logic controllers are much slower than our device. For
example for the output generation of the P1-TS system with 4 inputs, GE Fanuc
VersaMax controller needs 36.7 ms, Siemens S7-1200 – 2.4 ms and soft-PLC
Beckhoff CP6607 – 139 μs, whereas our hardware device needs only 10.3 μs.
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In our implementation, increasing the number of variables by 1 approximately
doubles calculation time of P1-TS output.

The developed system can be used as a control device for real-time
applications.

Acknowledgments. This work was supported in part by the National Science
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Abstract. The aim of this paper is present the usage of (μ + λ) Evo-
lutionary Strategy to evolve the architecture, and primarily the connec-
tion weights, for Fuzzy Flip-Flop Neural Networks. Due to the specific
transfer function of this fuzzy-based neural network and its numerical
derivatives, Back Propagation algorithm can be used for the training
process, but it has very week convergence rates. Therefore Evolutionary
Strategy as a heuristic learning algorithm will be applied here. In the
article some numerical properties of proposed approach will be exposed.
They will concern on natural example such as function approximation
and data classification. It exhibits better results in terms of faster con-
vergence and least square-error. Finally some conclusions and ideas for
future work will be under discussion.

Keywords: recurrent neural network, fuzzy flip-flop neural network,
fuzzy neuron, evolutionary strategy, supervising learning procedure.

1 Introduction

This paper outlines the author’s research related to the use of genetic algorithms
[11, 28] , and in particular evolutionary algorithms [2] to optimize the parameters
of the Fuzzy Flip-Flop Neural Network. This type of the network was introduced
by Professor Hirota and his scientific team in 1980 [9, 10, 24]. Unfortunately, for
nearly twenty years it was almost exclusively the subject of theoretical work [8].
The main reason for this was the lack of access to high-speed computing ma-
chines, and consequently absence of universal algorithms of supervised learning.
In particular, it was difficult to consider the possibility of using a specialized
algorithm for adaptation of parameters based on even the simplest heuristics.

This fuzzy network is a very special case of a recursive network [27], and its
construction is based on a combination of the idea of the classical neural networks
but with activation function based on the principle of a J-K flip-flop or D flip-flop
[21], where the classical binary logic was replaced by fuzzy operators [6, 7]. With
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this modification, the fuzzy neural networks have much better properties related
to pattern recognition and knowledge discovery. This network is characterized
by more accurate approximation of processes and structures in the human brain
such as neurons and memory.

Uniqueness and diversity of the activation functions conditioned lack of effec-
tive application of well-known classical learning methods, such as at least one of
the most popular Back Propagation Learning procedure [27]. The main obstacle
for using such a well-known method of supervised training for this neural net-
works is the absence of analytical derivative operator based on the information
on the current value of the activation function - as it is the case with the use of
functions like sigmoid, hyperbolic tangent or linear. In the literature there is only
one known procedure of effective learning algorithm for the fuzzy neural network
described above. It is the Bacterial Memetic Algorithm [5, 26] introduced by the
group of Professor Laszlo T. Koczy [21]. Algorithm presented in this article will
be second one, and obtained results can serve as a reference for future work in
this area.

2 Fuzzy Flip-Flop Neuron

At the beginning short discussion of main methodology investigated here will
be presented. First, let us consider typical - known from the digital technique -
J-K Flip-Flop shown in Figure 1. It has two primary inputs J and K, the clock
input, the outputs Q and negation of the output signal Q. Output Qn+1 at state
n + 1 is calculated on the basis of the binary inputs J , K, and the previous
output (state) Qn, according to logical formula

Qn+1 = (J ∨K) ∧ (J ∨Qn) ∧ (K ∨Qn). (1)

Fig. 1. J-K Flip Flop

The over bar notation denotes negation in classical logic defined asK = 1−K.
The feedback in this J-K flip-flop is realized by connecting the negation of output
to the input K (Kn = Qn−1). Then, the output depends only on the inputs J
and the previous state Qn−1.

The above described Flip-Flop, based on digital signals 0 and 1 and the func-
tions ∨ and ∧ are well-known logical (binary) operators. For the generaliza-
tion of the Flip-Flop to continuous signals, the fuzzy logic has been introduced.
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The above operators were replaced by their equivalents used in the axioms of
fuzzy logic set theory [13]. Therefore a binary operator and was replaced by
a function of the fuzzy t-norms and the binary operator or appropriate - the
previously accepted t-norm - co-norm. For simplicity this paper has adopted
notation i for t-norms and u for the corresponding co-norms. This convention is
common in the literature related to the Fuzzy Flip-Flop Neural Networks [16].

Thus the function performed by a fuzzy flip-flop takes the following formula:

Qn+1 = (J u Qn) i (J u Qn) i (Qn u (1 −Qn)) (2)

The Fuzzy J-K Flip-Flop can be treated as an artificial recurrent neuron where
signal J represents weighted inputs and Q can be treated as an output from
neuron.

In the above formula the negation was used in accordance with the principle
of this operation used in fuzzy logic (K = 1 − K). The feedback connection
(Kn+1 = 1 − Qn) is a very important part of the fuzzy neuron. In this way
the feedback is implemented within each of the considered neurons. It allows
a network based on this solution much better resemble the natural process of
information processing that is similar to the natural neural network implemented
in the brain. Additional problem - for modelling such created a network - is to
determine the fuzzy initial state of neurons associated with the idea of Flip-Flops
as the activation function [22].

2.1 Trigonometric operators

In the present work the neurons with activation function based on the trigono-
metric t-norm and co-norm were used:

i(x, y) =
2

π
arcsin(sin(x

2

π
) sin(y

2

π
) (3)

u(x, y) =
2

π
arccos(cos(x

2

π
) cos(y

2

π
) (4)

It is relatively simple function. Its important advantage is the absence of addi-
tional parameters in formula, as it occurs e.g. in Yager operators. Formal proof
showing that formulated trigonometric fuzzy functions fulfill the conditions of t-
norms and s-norms can be found in [21]. Detailed studies related to the selection
of such fuzzy functions can be found in [22]. In Figure 2 the graphs of described
trigonometric relations u(x, y) and i(x, y) are presented.

For such a fuzzy neuron structures one should still examine the stability of the
output signal as a function of the next iterations. This problem occurs in many
neural networks with feedback such as the Hopfield Network [25]. The Figure 3
illustrates the dependence of the fuzzy neuron output in subsequent steps of the
time at a constant level of the input signal J .



Fuzzy Flip-Flop Neural Networks Supervising Learning 297

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
0

0.2

0.4

0.6

0.8

1

y
x

i(x
,y

)

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
0

0.2

0.4

0.6

0.8

1

y
x

u(
x,

y)

Fig. 2. Graphs of fuzzy trigonometric operations of intersection (t-norm) and union
(s-norm) used in J-K Flip-Flop Neuron

Fig. 3. Stabilization of the output signal of the fuzzy neuron

Such simulations were repeated for different input signal. In all investigated
cases the speed of stabilization was almost identical. From these experiments
one can conclude that the discrete time in which the stabilization of the output
signal was obtained, is between 15-25 iterations. In the present study it has been
set as 20 iterations, which corresponds - in digital technique - to 20 steps of clock
cycles.

3 Structure of FFF Artificial Neural Network

The neural network is a powerful tool for many scientific and practical problems.
The main property of this method is its automatic adjustment to some patterns
and consequently a possibility to generalize the relationship between the output
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and the input driven from the data shown in the learning process. Neural network
structure consists of two layers - input and output, in addition, between them
some number of layers, so called hidden layers may exist. Each layer has a certain
fixed number of neurons. In subsequent layers, neurons are connected to the
previous layer with neurons in one to all manner. In the investigated case at
the hidden layer neurons are the only Fuzzy Flip-Flop type, while in the output
layer classical neurons are found exclusively, with linear activation function.

For the artificial fuzzy neuron presented in the last Section, with each synaptic
the real coefficient called the weight of the connections is associated. It is marked

as w
(k)
j,i , where k is the layer number, i number of the neuron (in the current

layer) and j describes neuron number in the previous layer.
A neuron derive its stimulation from the weighted sum of input signals con-

nected, where the weights inform about the importance of these connections.

To this value the so-called bias b
(k)
i is added. It is responsible for the shift -

the threshold - of the signal. The result of stimulation is converted to the out-
put of neuron by its the activation function. The standard activation functions
are threshold function, linear, sigmoidal and hyperbolic tangent. In described
methodology, the neuron output is obtained by using the Fuzzy J-K flip-flop
with feedback as a activation function (2). The detailed structure of fuzzy neu-
ral network is shown in Figure 4.

Fig. 4. Fuzzy J-K Flip Flop Neural Network

Due to the strong non-linearity of the activation function - resulting from the
fuzzy logic operators used in the hidden layers of neural network, the quality of
approximation of function realised by the network, is strongly dependent on the
number of neurons in each layer.
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4 Evolutionary Strategy for Fuzzy Neural Networks

Evolutionary Strategies (ES) [12] are based on a population of chromosomes that
have characteristics related to elements in investigated task. The dimension of
strings of genes is directly linked to the considered feature space. Adaptation of
the individuals is determined by a target function called a fitness function. In
the reported cases the fitness function is the approximation Mean Squared Error
(MSE) or in the case of the classification task - number of misclassification on
the training data. The population is subjected to crossovers (recombinations)
and mutations (perturbations) in general causing improvement of individuals
fitness.

In the (μ+λ) strategy population P has μ chromosomes, initially with random
characteristics (values for each feature). In each iteration i from the population
P randomly selected λ items are copied to the parents population O. First,
new individuals are created by making a certain number of recombinations on
elements from the population O, consequently they inherit a combination of
attributes of their parents. Next, new individuals are created by the mutation
operation, which is a random change of genes characteristics. From the com-
bination of μ -the initial chromosomes and the new set of λ individuals (after
the recombination and mutation) μ of the fittest are chosen. In this way, the
cardinality of the new population is constant. These steps are repeated a certain
amount of iterations. Finally from the population the best individual as the solu-
tion of the optimization problem is chosen. The whole algorithm was illustrated
with the following pseudo-code.

Procedure of the Evolution Strategy μ+ λ

procedure Evolution Strategy (m+l)

begin

i = 0

initialization P(i)

evaluation P(i)

while (termination condition not achieved)

T(i) = reproduction P(i)

O(i) = recombination /crossover/ and mutation T(i) /perturbation/

evaluation O(i)

P(i+1) = m the best chromosomes form set sum of P(i) and O(i)

i = i+1

end

end.

In the studied case, after setting up the structure of fuzzy neural network, the ap-
pearance of chromosome is determined automatically. During the artificial neural
network training process, all parameters (like weights and biases) must be con-
sidered but also for the genetic operations in ES some additional parameters
are required. These include the first order coefficients of standard deviation to
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determine the range of mutation and also some optional parameters associated
with the fuzzy activation function are needed. In the considered case these last
were not introduced because of use of trigonometric fuzzy operators, but when
in the methodology Dombi’s, Frank’s, Yager’s or Hamacher’s operators [13] are
used, theirs parameters should be taken into account as well. In some scientific
works (e.g.[5]) the parameter which is the initial value in the case for considered
network representing by Q0 has been encoded also in a chromosome. During the
study, it was observed that the proposed algorithm is not very sensitive to the
above parameter, therefore, constant for each simulation random value from the
interval [0.35, 0.7] was assumed.

The data-structure of individuals was referred to ES-chromosomes. Formally
a population P of n individuals was described as follows:

P = (ch) = (ch1, ch2, ..., chn) (5)

where the i-th ES-chromosome chi is defined as

chi = (ob, ESpar) (6)

with parameters describing investigated neural object ob and ES parameters
ESpar:

ob = (W,B, ffunpar)
ESpar = (σ1, σ2, ..., σm)

(7)

Here m denotes number of parameters in ob structure. This structure contains
all information connected with investigated Fuzzy Flip-Flop Neural Network.
Therefore sub-structure W contains all weights, B biases and finally ffunpar
describe shape of fuzzy norms and co-norms, using some of its parameters. As
mentioned before in some fuzzy functions these parameters can be omitted e.g.
trigonometrical fuzzy norm.

During evolution, some evolutionary operators as three staged mutation (per-
turbation), recombination and reproduction (consisting random selection with
replacement) were applied [2] .

In real-life biological populations principle, descendants resemble their parents
in a certain way and small changes from one generation to another are more often
found than significant one. Therefore mutation operator for ES is defined as an
addition of normal distributed random numbers to genes values. Both parts
of the ES-chromosome: the object-parameters and the strategy-parameters are
mutated as follows

obnewi = ob ∗ s(σi)

ESparnewi = ESpari ∗ s(σi)
(8)

where s is based on random generator with normal distribution and σi values
(for i=1, 2, ...,m).
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Similarly to effects of gene-recombination in nature, several recombination
operators are defined for Evolutionary Strategies. At the beginning of studies on
ES these operators have not been used. For the study described in this paper,
this evolutionary operation is present and it is based on averaged values of
vectors ob and ESpar separately. For two chromosomes ch1 = (ob1, ESpar1)
and ch2 = (ob2, ESpar2) the recombination operator is defined as follows. In the
first step new coefficient r ∈ [0, 1] is generated using random value generator with
uniform distribution. In next step the recombination occurs for each elements of
chromosome

obnew1 = ob1 ∗ r + ob2 ∗ (1− r)
obnew2 = ob2 ∗ r + ob1 ∗ (1− r)

ESparnew1 = ESpar1 ∗ r + ESpar2 ∗ (1 − r)
ESparnew2 = ESpar2 ∗ r + ESpar1 ∗ (1 − r)

(9)

During the study, it was found that it is disadvantageous to use an algorithm of
the recombination based on global crossover methodology i.e. using more than
two randomly selected parents to produce one offspring. In this investigated case,
it implicates low rates of convergence and obtained networks were characterized
by poor generalization. As a simple termination condition, a maximal assumed
number of iteration cycles were used.

More details can be found in the bibliography describing the evolutionary
algorithms such as [2, 4, 12].

5 Numerical Simulation

Verification of correctness of the method presented in this paper for supervised
learning neural network algorithm based on evolutionary strategy (μ + λ) was
conducted with numerical simulation. In the numerical verification for testing
4 data sets were used: a single and a double sine functions, a trigonometric
functions of two variables and a classification of Iris flowers [14, 18]. Due to
editorial constraints selected results of numerical simulations have been shown.

In each of the examined cases of this numerical verification, the main task
of the neural network were to obtain the desired response based on a collection
training data. In the approximation problem this response is associated with
searched approximation formula. During consideration the classification problem
the output of neural network corresponds with discrimination function.

At the beginning, the proposed procedure was tested by approximation of one
variable function given by the following formula f(x) = 0.5 cos(2πx) + 0.5. The
training set was generated on the basis of regular points from interval x ∈ [0, 1]
with step 0.02, therefore the set cardinality was equal 51 items. For such formu-
lated task a 1-3-1 Fuzzy Neural Network was used. As a result of numerical tests
it was established that the Evolutionary Strategy works best for the following
parameters: μ = 15, λ = 5 during 26 learning epochs with range of mutations
0.1. The best results were equivalent to an error of approximation at level 10−6.
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For obvious reasons, not all parameters - studied in this research - and not all
aspects of evolution has been reported here.

Next experiment, consisted at approximation of function containing two differ-
ent components, given by formula f(x) = 0.5 sin(2πx) sin( 2π

0.35x) + 0.5. A neural
network with the structure of 1-5-1 was used. Thus it was characterized by 16
parameters that had to established in the optimization process. 100 training data
from the interval x ∈ [0, 1] were prepared for the learning phase. In the process
of learning with use of the Evolutionary Strategy a following result 10−6 of MSE
approximation was obtained. In this case the best instance of ES algorithm was
running with parameters as follow: μ = 17, λ = 4. The result has been obtained
after only 18 iterations of learning.

Another example - with the approximation as a subject task - was a two dimen-
sional function given by following equation f(x) = 0.5 sin(2πx1)5 sin( 2π

0.35x2)3 +
0.5. This time the points from training data were generated on a regular square
grid (x ∈ [−1, 1]× [−1, 1]) with the spacing 0.2, therefore, in the simulation 484
learning elements has been used. In this case 2-4-4-1 network structure was chosen,
having altogether s 37 parameters. The network was trained by using the evolu-
tionary algorithm with parameters μ = 40, λ = 23 and 17 learning epochs. As
a result of learning seen in Figure 5 approximation error MSE at level 10−3 was
obtained.

Fig. 5. Result of approximation of two dimensional function

Further research was conducted on the real data set Iris Plants Database [1],
taken from the well-known repository the Center for Machine Learning and In-
telligent Systems at the University of California, Irvine, at [29]. This data records
the lengths and widths of petals and sepals of three species of iris setosa canaden-
sis, versicolor and virginica; the first two classes are linearly separable. Here the
task of neural network is to obtain classification function f : x �→ {1, 2, 3}.
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The set of data is composed of three classes of equal size represented by 150
elements altogether, but the learning and testing samples have not been defined.
The structure of the investigated network was set to 4-3-2-3 and consequently
it had 32 parameters (weighs and biases). SE algorithm was used with the pa-
rameters μ = 50, λ = 30 during 25 epochs. Depending on the division between
the data sets for learning and testing groups, the quality of the classification
ranged from 85 % for the partition ratio of 0.5 to 94.4 % correct classification
for training set containing 90% of the examples.

Similar studies were carried out with the Evolutionary Strategies: (1 + 1) as
well as (μ, λ) [12]. In these cases obtained results were much worse than presented
in this publication.

6 Conclusion

Numerical verification showed the positive property of Fuzzy Flip-Flop Neural
Networks with heuristic algorithm applied for the supervised learning.

At this introductory study during verification phase, approximation test of
several functions and a simple classification based on data obtained from the
collection of benchmark data were under consideration. The results of such eval-
uation do not differ from other studies [5], and in some cases were found to be
better. It must be emphasized that the proposed learning method is much sim-
pler than the existing based on Bacterial Memetic Algorithm. It should also be
noted that in the examples of approximation in this study neural network with
significantly lower complexity (less number of layers) than in the cited studies
were used. For this reason, proposed methodology does not require such a large
amount of computing resources and consequently the calculation time was also
improved.

The Fuzzy Flip-Flop Neural Network with heuristic algorithm for supervised
learning can be applied as a complete tool for modelling dynamic systems, pat-
tern recognition, and other information technology tasks [19] in particular, proce-
dures of analysis and data mining [23]. For the methodology under consideration
some new application e.g. the control system in electrical systems (engineering)
[15], decision support such as marketing (economics) [20], as well as fault detec-
tion [17] will be studied in the near future.

Further basic research will be related to the use of other algorithms inspired
by natural biological processes applied to the adaptation of weights and changes
in network topology [3] and the creation of procedures employing parallel or
distributed approach based on multi-agent systems.
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Abstract. In safety, reliability as well as risk analysis and management, infor-
mation often is uncertain and imprecise. The approach to air incident analysis 
under uncertain and imprecise information presented in our paper is inspired by 
the possibility theory. Notably, in such analyses these are both: static and dy-
namic components that have to be included. As part of this work, static analysis 
of a serious incident has been performed. In order to do this, probability scale 
which is based on fuzzy set theory has been given. The scenarios of transforma-
tion of incident into accident have been found and their fuzzy probabilities have 
been calculated. Finally, it has been shown that elimination of one of premises 
for transformation of the incident into accident significantly reduces the possi-
bility of this transformation. 

Keywords: serious incident, fuzzy probability, events tree, fuzzy inference, air 
traffic safety. 

1 Introduction 

Air communication is commonly thought as the most safe transport type. Because 
passenger safety is the main priority of all subjects engaged in air transport, technical, 
organization, procedure barriers are established in order to avoid air accidents. Some-
times these facilities fail; in most cases because of human error. To learn lessons from 
these failures, accidents are investigated in order to find their causes. Such investiga-
tion is usually qualitative [8].  

In the paper, a quantitative analysis of serious incidents is proposed. The "serious 
incident" is usually a very dangerous event when some barriers against accident have 
failed to meet their goal. They are very important sources of knowledge about safety 
assurance systems in air transport. We want to estimate the probability that a given 
incident would transform into accident. With that kind of study at disposal, one can 
conclude whether safety facilities are sufficient or have to be extended. In order to 
evaluate this probability, estimation of safety barrier reliability has to be carried out. 
Unfortunately, in most cases there are no sufficient data to infer statistically about the 
frequency of events for the accident scenario. Unfortunately, it is highly unlikely to 
find that data. There are two reasons of such situation. First is that some of these 
events occur very rarely, and additionally, in past the events without significant con-
sequences were not usually recorded. The second one is human factor with such 
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measures that are difficult to evaluate as different reactions probabilities and error 
activity probability. Such measures are charged with uncertainty and subjective esti-
mations. Only methods to obtain such knowledge are expert estimates. These estima-
tions are not precise and not sufficient to probabilistic analysis.  

In safety, reliability, and risk analysis and management, information often is uncer-
tain and imprecise. In book [10] three approaches to reliability and safety with uncer-
tain and imprecise information are presented: probability and statistics, fuzzy set 
theory,  possibility theory (inspired by the above). 

In paper [1] the following approaches for representation of uncertainty are listed:  
probability, imprecise (interval) probability, probability bound analysis, possibility 
theory (foundations: probability, statistics, fuzzy sets), Dempster-Shafer evidence 
theory. 

The approach to air incident analysis presented in our paper is inspired by the pos-
sibility theory.  

In air incident analysis both types of components have to be included: static and 
dynamic. Static analysis can be executed by means of fault trees with fuzzy probabili-
ties  [16, 17] and event trees with fuzzy probabilities [7]. Fuzzy probability is called 
possibility. The Dynamic analysis is executed in the time domain. More precisely, the 
analysis may be carried out using minimal and maximal values of time parameters 
similarly to the safety study of some railroad crossing in [9]. The other approach is 
probabilistic when time parameters are represented by probability distributions as in 
[2] where time coordination of distance protections in high voltage power transmis-
sion line was considered. The next kind of analysis will be based upon fuzzy set and 
will become the topic of the paper. 

In this paper, the serious incident which occurred at the Chopin airport in Warsaw 
in 2007 year would be analyzed. Only static analysis will be executed, while dynamic 
one will be the topic of the following paper. In order to find the probability that given 
incident would transform into accident, the analysis of event trees by fuzzy probabili-
ties will be performed.  

2 Serious Air Traffic Incident No. 344/07 

An analysis of incidents using fuzzy inference is illustrated with the example of a 
serious air traffic incident which occurred in August 2007 at the Warsaw Chopin air-
port between Boeing 767 and Boeing 737 aircraft. Its cause was classified as a "hu-
man factor" and the causal group H4 – "procedural errors" [18]. 

2.1 Description of the Circumstances of the Incident 

In the incident on 13th of August 2007 participated two aircraft – Boeing 737 (B737) 
and the Boeing 767 (B767), which more or less at the same time were scheduled for 
take-off from the Warsaw Chopin airport. As the first, clearance for line-up and wait 
on runway 29 was issued to B737. As a second, clearance for line-up and wait on 
runway 33 was given to the B767 crew. The latter aircraft was the first to obtain per-
mission to take-off. A moment after confirmation of permission to take-off, both air-
crafts began the start procedure at the same time. The B737 crew wrongly assumed 
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that the start permission was addressed to them. They probably thought that since they 
had received the permission to line up the runway first, they would be also the first to 
be permitted to start. In addition, the categories of wake turbulence caused that from 
the traffic efficiency point of view, it would be better to start B737 before B767. De-
cision of the controller, however, was different. The air traffic controller (ATC) did 
not watch the planes taking-off, because at this time he was busy agreeing a helicopter 
take-off. The situation of simultaneous start was, nevertheless, observed by the pilot 
of ATR 72, who was waiting in the queue for departure. He reacted over the radio. 
After this message, B767 pilot looked right and saw B737 taking-off. Then, on his 
own initiative, braked off and began a rapid deceleration, which led to stopping the 
plane 200 meters from the intersection of the runways. The assistant controller heard 
the ATR 72 pilot radio message and informed the controller that B737 operated with-
out authorization. The controller, who originally did not hear the information on the 
radio, after 16 seconds from the start, recognized the situation and strongly ordered 
B737 to discontinue the take-off procedure. The B737 crew performed braking and 
stopped 200 m from the intersection of the runways. 

2.2 Premises Conducive for Accident 

In the presented example it can be noticed that it is sufficient to impose only one addi-
tional risk factor (or a combination of two factors), and the incident would become, in 
fact, an accident. There are several premises conducive for an accident [15]. 

1. Weather conditions (visibility) are so bad that it is impossible to see the actual traf-
fic situation. This applies to B767, ATR 72 crews, and the air traffic controller.  

2. ATR 72 pilot does not watch the situation on the runways, just waiting for permis-
sion to line-up the runway.  

3. ATR 72 pilot observes the situation, but does not immediately inform about it on 
the radio, instead he discusses it with other members of his own crew.  

4. B767 crew, busy with their own take-off procedure, does not pay attention to the 
message transmitted over the radio by the ATR 72 pilot.  

5. B767 crew takes a wrong decision to continue the take-off, despite noting B737 
aircraft. Such decision could arise, for example, with this reasoning: "there is no 
possibility to stop before the intersection, let B737 stop - after all, we have a per-
mission to start, maybe we can pass the intersection before the B737", etc.  

6. Assistant controller does not pay attention to the information given by radio by the 
ATR 72 pilot, or does not respond to it properly - does not inform the controller.  

7. B737 crew does not react properly to the air traffic controller command and does 
not interrupt the take-off procedure. 

2.3 Scenarios Leading to Accident 

As indicated above, only a small number of conducive events is necessary for trans-
formation of an incident into an accident. There are several scenarios that are consi-
dered in the context of this work. Logical dependencies between the scenarios leading 
to accidents and premises conducive for them, are schematically shown in Table 1. In 
this paper we assume designation of premises Ei, where 1, … ,7  and e.g. E1 = 
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"Insufficient visibility". We also have adopted following designations: 1 - a premise 
occurred, 0 - a premise did not occur, n.r. - the occurrence of premise is irrelevant to 
the transformation of an incident into an accident or there is only one reasonable pre-
mise value.  

Table 1. Scenarios of transformation of the incident 344/07 into an accident 

 1. Insuf-
ficient 

visibility 
(E1) 

2. ATR 
72 does 
nt moni-
tor (E2) 

3. ATR 
72 does 
not warn 

(E3) 

4. B767 
does not 
hear the 
warning 

(E4) 

5. B767 
does not 
brake off 

(E5) 

6. Assis-
tant does 

not 
inform 

(E6) 

7. B737 
does not 
interrupt 
take-off 

(E7) 
Scenario 1 1 n.r. n.r. n.r. n.r. n.r. n.r. 
Scenario 2 0 1 n.r. n.r. n.r. n.r. n.r. 
Scenario 3 0 0 1 n.r. n.r. n.r. n.r. 
Scenario 4 0 0 0 1 n.r. 1 n.r. 
Scenario 5 0 0 0 1 n.r. 0 1 
Scenario 6 0 0 0 0 1 1 n.r. 
Scenario 7 0 0 0 0 1 0 1 

 
The above scenarios of take-off continuation were determined using the event tree, 

whom analysis, for the sake of limited paper size, has been omitted. 

2.4 Method of Incident Analysis 

Estimating the probability of each scenario would allow to determine the probability 
of the accident occurring as a result of this incident. Unfortunately, realization of most 
of these scenarios, depends on immeasurable values not available for statistical analy-
sis. For example, in scenario 2 it is impossible to determine, using measurement  
methods, how often staff focuses exclusively on their procedures and draws little 
attention to external events. The situation is similar in scenarios 5, 6 or 7, in which we 
have to deal with human error. Of course, such errors do happen, but it is difficult to 
estimate the statistical probability of them. We do not know the actual number of such 
errors (we know at most those errors which have consequences in air traffic events), 
nor we know the number of opportunities to commit them, so there is no reference 
necessary to estimate their frequency. In literature we can find some models for esti-
mating the likelihood of operators (pilots and controllers) errors, with respect to the 
causes of aviation accidents. For example, [3] uses MIDAS human performance mod-
el together with a model for estimating the risk of accidents TOPAZ to analyze simi-
lar issues - probability of a collision at the junction of the runway and taxiway. 
The above mentioned reasons are the basis for seeking probabilities of events condu-
cive for accident in the area of expert assessments. These obviously are often ambi-
guous and imprecise, which makes us propose the use of fuzzy methods in the  
analysis of incidents. In this paper, we focus on finding expressions for the fuzzy 
probability of an accident, given that under these circumstances, the consequences 
would be catastrophic. For scenarios that lead to the continuation of take-off, formu-
las for the fuzzy likelihood of their realization will be presented, and the probability 
will be calculated. The basis will be the event tree analysis by fuzzy probability. 
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3 Probability Scale  

In [13] the example of probability classification scheme was proposed. It is shown in 
Table 2 which contains both qualitative and quantitative definitions of likelihood 
categories of aircraft on-board system failure. A similar approach is presented in [5].  

Table 2. Probability of occurrence definitions ([13]) 

 
Extremely improb-

able 
Very rare Rare Probable Frequent 

Qualitative 
definition 

Should virtually 
never occur in the 

whole fleet life 

Unlikely to 
occur when 
considering 

several systems 
of the same 

type, but never-
theless has to be 

considered as 
being possible 

Unlikely to occur 
during the total 

operational life of 
each system but 

may occur several 
times when consi-

dering several 
systems of the 

same type 

May occur once 
during total 

operational life 
of one system 

May occur once 
or several times 
during opera-

tional life 

Quantitative 
definition 

< 10-9 per flight 
hour 

10-7 to 10-9 per 
flight hour 

10-5 to 10-7 per 
flight hour 

10-3 to 10-5 per 
flight hour 

1 to 10-3 per 
flight hour 

 
Values of both scales are not precise. Experts can interpret them in different man-

ners. These values can be expressed using fuzzy set theory [9, 12]. Event tree analysis 
by fuzzy probability has been described in paper [7]. In this paper, fuzzy sets for 
fuzzy probabilities are expressed by discrete membership functions with a few real 
values. In our paper, membership functions of fuzzy sets for fuzzy probabilities are 
trapezoidal. Such functions are used in fault tree analysis by fuzzy probabilities in 
[16, 17]. 

Linguistic variable Probability is shown in Fig. 1, where it is illustrated in loga-
rithmic scale. The variable has the following values: extremely improbable (EI), very 
rare (VR), rare (RE), probable (PR), frequent (FR). For values VR, RE i PR,  trape-
zoidal functions with parameters (a,b,c,d) are as follows: 

; , , ,
  0,             ,       1,   ,       0,           

                              (1) 

where , ,  
For values EI and FR , trapezoidal functions are the following: 

; , , ,    0,      1,     ,   0,                                       (2) 
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; , , , 0,                ,            1,0,                                           (3) 

In Table 2, probability scale for aircraft on-board system failure in flight is shown.  
These systems are very reliable. In the analyzed incident, unreliability concerns main-
ly human factor. In contemporary air traffic systems, human error frequency is much 
higher than aircraft on-board system failure frequency. Hence, new scale has been 
accepted with values of linguistic variable Probability given by parameters (a,b,c,d)  
as in Table 3, and illustrated in Fig. 1. 

Table 3. Parameters of membership functions of linguistic variable Probability values 

 a b c d 

 10-9 10-9 10-8 10-7 

 10-8 10-7 10-6 10-5 

 10-6 10-5 10-4 10-3 

 10-4 10-3 10-2 10-1 

 10-2 10-1 1 1 

 

  

Fig. 1. Linguistic variable Probability in logarithmic form 

4 Static Analysis of Scenarios Leading to Air Accident  

We denote by P1, P2, ..., P7 the probability of occurrence of premises conducive to 
formation of an aviation accident, and by P(S1), P(S2), ..., P(S7) - the probability of 
realization of scenarios leading to the transformation of the incident into accident. 
Fuzzy probabilities P1, P2, ..., P7 will be determined on the basis of the literature, 
analysis of statistical data and expert assessments obtained for the present study. Such 
estimates are generally difficult to obtain and subject to a large margin of error, even 
if they are of fuzzy nature and therefore inherently imprecise. A broader discussion of 
the problems involved in the risk analysis of complex anthropotechnical systems, 
particularly in relation to air traffic, can be found in [4]. 

0

1

-9 -8 -7 -6 -5 -4 -3 -2 -1 0

Extremely improbable Very rare

Rare Probable

Frequent
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P1 - the probability that the weather conditions are unfavorable and do not allow 
incident participants to notice hazards. Determining this probability will be based on 
the analysis of meteorological data for the Warsaw Chopin Airport in the last six 
years. Daily observations from the 33th week of the year and the 8th month of the 
year (including August 13) were considered together. The results of this analysis are 
shown in Table 4. 

Table 4. Weather conditions for the Chopin Airport [19] 

 

maximum 
precipita-

tion  
[mm/h] 

minimum 
precipita-

tion 
[mm/h] 

mean 
precipita-

tion 
[mm/day] 

maxi-
mum 

visibility 
[km] 

mini-
mum 

visibility 
[km] 

mean 
visibility 

[km] 

weather 
events 

8th 
month 

36 0 2,07 30 6 13,7 
rain, fog, 

thunderstorm  
33th 
week 

21 0 1,84 27,5 6 13,9 
rain, fog, 

thunderstorm  
13.08 
2007 

4 0 1,8 9,6 9,6 9,6 
rain, fog, 

thunderstorm  

 
Table 4 shows that in spite of fog and precipitation occurring during this period, 

visibility conditions are good enough that they do not interfere with observation of 
airfield. Therefore we assume fuzzy probability P1 equal to "very rare". Of course, the 
analysis taking into account autumn, winter or night conditions will require the adop-
tion of probability P1 close to the opposite end of the scale. 

P2 - the probability that ATR 72 pilot does not observe the situation on runways. 
Under normal conditions, taxiing and preparing to take-off is very demanding and 
requires to focus on own tasks. There is no time for any observation of the environ-
ment. In the general case P2 should be assumed equal to "frequent". But in this partic-
ular case, waiting in a queue for a take-off (especially lasting a long time) reduces the 
deficit of time and allows observation of the environment. In addition, the B737 was 
to take-off from the same runway as ATR 72, and preceded it on the taxiway, so the 
observation was natural and necessary activity. ATR 72 also heard the radio commu-
nication of all participants of the event. Considering the above, we assume the fuzzy 
probability P2 to be equal "probable".  

P3 - describes the probability of the event, that the pilot who spotted the danger 
does not inform about it. As in that incident professionally trained  pilots were in-
volved, it must be assumed that the fuzzy probability P3 is set to "very rare".  

P4 - the probability of the event, that the B767 crew does not pay attention or does 
not properly understand the message of danger. ATR 72 pilot's message was not clear 
- it only indicated the existence of an unusual situation. Somewhat similar probability 
was estimated in [14], where one of analyzed threats was an undetected warning of 
runway occupancy sensor. In this paper, we assume that the fuzzy probability P4 val-
ue becomes "probable".  

P5 - describes the event of failure of emergency braking maneuver. Given the ob-
viousness of this maneuver, but also proximity of the speed v1, determining the boun-
dary speed above which one should continue with the take-off, we assume that the 
fuzzy probability P5 is equal to "probable" . 
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P6 - determines the probability of no preventive action from ATC. Given that the 
controller was busy with other activities, but also the fact that his main task is to en-
sure the air traffic safety, the probability of failure to respond to the signals of danger 
P6 must be considered within the scope of "very rare".  

P7 - the probability of refusal to execute the controller's command. Conscious  
refusal seems impossible. However, the B737 crew could not understand the instruc-
tions, or the speed v1 could be exceeded, in which case an effective response is im-
possible. Given the above, we assume that the probability of fuzzy probability P7 is 
set to "rare". 

All fuzzy probabilities adopted for analysis are shown in Table 5. 

Table 5. Fuzzy probability of premises conducive for accident 

Premise Fuzzy probability 
E1 - Insufficient visibility (P1) very rare (VR) 

E2 - ATR 72 does not monitor (P2) probable (PR) 
E3 - ATR 72 does not warn (P3) very rare (VR) 

E4 - B767 does not hear the warning (P4) probable (PR) 
E5 - B767 does not brake off (P5) probable (PR) 

E6 - Assistant controller does not inform (P6) very rare (VR) 
E7 - B737 does not interrupt take-off (P7) rare (RE) 

 
Probabilities of realization of scenarios are as follows: 

     (4)1 ·     (5)1 · 1 ·   (6)1 · 1 · 1 · ·           (7)1 · 1 · 1 · · 1 ·            (8)1 · 1 · 1 · 1 · ·         (9)1 · 1 · 1 · 1 · · 1 ·      (10)

 
Let us denote by K the event that both aircraft will continue the take-off, and by P(K) 
the probability of that event, which is given by the expression: 1 · 1 · 1 · · 1 ·1 · · 1 ·                              (11) 

Let us consider two trapezoidal fuzzy numbers , , ,  and  , , , . Their addition, subtraction, and multiplication, respectively,  are 
represented by trapezoidal fuzzy numbers , , , , , , , , · , · , · , ·  [16, 17].  
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Fuzzy probability of realization of scenarios P(S1), ..., P(S7) and fuzzy probability 
that both aircraft will continue the take-off is given in table 6. 

Table 6. Fuzzy probabilities of scenarios realization 

 a b c d 
P(S1) 10  10 10 10
P(S2) 9,9999 · 10  10  10  10  
P(S3) 8,9999 · 10  9,9 · 10 9,99 · 10 9,999 · 10  
P(S4) 8,9998 · 10  9,9 · 10 9,99 · 10 9,999 · 10  
P(S5) 8,9997 · 10  9,9 · 10 9,99 · 10 9,999 · 10  
P(S6) 8,0998 · 10  9,801 · 10 9,98 · 10 9,998 · 10  
P(S7) 8,0998 · 10  9,801 · 10  9,98 · 10  9,998 · 10  
P(K) 1,0002 · 10  1,0002 · 10 1,0004 · 10 1,0022 · 10  

 
In order to calculate the value of linguistic variable Probability for fuzzy probabili-

ty P(K), one can apply Jacard’s similarity of two fuzzy sets. Jacard’s  similarity of 
fuzzy sets A, B with membership functions μA, μB is defined by [11]: 

, ,,                                        12  

As we adopted logarithmic scale for linguistic variable Probability, the formula for 
Jacard's similarity calculations was modified to the following form: 

, , log, log                                13  

For each value of linguistic variable Probability EI, VR, etc., similarity with trape-
zoidal fuzzy number P(K) was calculated and is given in Table 7.   

Table 7. Jacard's similarity calculation results 

Value of linguistic variable Probability (ProbVal) ,  

extremely improbable (EI) 0 
very rare (VR) 0 

rare (RE) 6,6646 · 10
probable (PR) 9,9967 · 10
frequent (FR) 7,7038 · 10

 
In the analyzed air traffic incident none of the premises Ei did actually occur. 

However, there is no certainty that this is a permanent property. Institutions responsi-
ble for the air traffic safety take many preventive actions to eliminate the factors that 
contribute to accidents and incidents. The important question is, which factors should 
be eliminated first and which merit the most attention. For each premise Ei, we want 
to find fuzzy probability |  that both aircraft will continue the take-off pro-
vided this premise is not true. These fuzzy probabilities will allow evaluation of  
consequences of preventive activities.  
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| 1 · 1 · · 1 · 1 ·· 1 ·                                     (14) | 1 · 1 · · 1 · 1 ·· 1 ·                                     (15) | 1 · 1 · · 1 · 1 ·· 1 ·                                     (16) | 1 · 1 · 1 · · 1 ·
                                            (17) | 1 · 1 · 1 · · 1 ·
                                            (18) | 1 · 1 · 1 · · 1 ··                                         (19) | 1 · 1 · 1 · · 1 ··                                         (20) 

Jacard’s similarity between | , where 1, … ,7 , and values of linguistic 
variable Probability is given in Table 8. 

Table 8. Jacard’s similarity between | , where 1, … ,7 , and values of linguistic 
variable Probability 

 
|  | ,  

a b c d EI VR RE PR FR 

i=1 
1,0001· 10  

1,0001· 10  
1,0003· 10  

1,0021· 10 0 0 
6,6652· 10 9,9971· 10  

7,7031· 10  

i=2 2,0192· 10  
2,201· 10  

4,019· 10  
2,2199· 10 2,9378· 10 5,6335· 10 2,7520· 10 4,7242· 10  

0 

i=3 1,0001· 10  
1,0001· 10  

1,0003· 10  
1,0021· 10 0 0 

6,6652· 10 9,9971· 10  
7,7031· 10  

i=4 1,0002· 10  
1,0002· 10  

1,0003· 10  
1,0012· 10 0 0 

6,6651· 10 9,9979· 10  
7,6988· 10  

i=5 1,0002· 10  
1,0002· 10  

1,0003· 10  
1,0012· 10 0 0 

6,6651· 10 9,9979· 10  
7,6988· 10  

i=6 1,0002· 10  
1,0002· 10  

1,0004· 10  
1,0022· 10 0 0 

6,6646· 10 9,9967· 10  
7,7037· 10  

i=7 1,0002· 10  
1,0002· 10  

1,0002· 10  
1,0002· 10 0 0 

6,6655· 10 9,9991· 10  
7,3938· 10  
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Calculations for the basic variant (Tables 6 and 7) show that the fuzzy likelihood of 
take-off continuation is most compliant with a value "probable" (PR) of linguistic 
variable Probability. 

Analysis of the results of calculations in Table 8 shows that elimination of premis-
es E1, E3, E4, E5, E6 and E7 does not change the above mentioned fuzzy evaluation of 
the possibility of transformation from incident into accident. The most important in 
this case is the premise E2 - "ATR72 does not monitor". It turns out that preventive 
action aiming at the elimination of this premise moves the evaluation of linguistic 
variable Probability into the area between "rare" (RE) and "very rare" (VR) values. 
This means a significant increase in the level of safety. Elimination (or reduction of 
the likelihood) of the premise E2 is practically possible. Pilot training should be car-
ried out to increase the understanding of the need to monitor the airfield during the 
taxiing procedure and while waiting for permission to take-off. One can also consider 
the introduction of recommendation to carefully observe other traffic into the operat-
ing instructions. 

5 Summary 

In the paper serious incident which occurred at the Chopin airport in Warsaw in 2007 
year has been analyzed. While the static analysis has been carried out, the dynamic 
one will be treated in the next paper. Probability scale for events has been given and it 
is five values one. For the values the suitable fuzzy sets have been defined. Scenarios 
of transformation of the incident into an accident have been found using event tree. 
Fuzzy probability of the transformation has been calculated. Finally, it has been 
shown that elimination of one of premises for transformation of the incident into acci-
dent significantly reduces the possibility of this transformation. 
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Abstract. In this paper we compare two algorithms that are capable
of generating fuzzy partitions from data so as to verify a number of
interpretability constraints: Hierarchical Fuzzy Partitioning (HFP) and
Double Clustering with A* (DC*). Both algorithms exhibit the distin-
guishing feature of self-determining the number of fuzzy sets in each fuzzy
partition, thus relieving the user from the selection of the best granular-
ity level for each input feature. However, the two algorithms adopt very
different approaches in generating fuzzy partitions, thus motivating an
extensive experimentation to highlight points of strength and weakness
of both. The experimental results show that, while HFP is on the av-
erage more efficient, DC* is capable of generating fuzzy partitions with
a better trade-off between interpretability and accuracy, and generally
offers greater stability with respect to its hyper-parameters.

1 Introduction

Fuzzy rule-based systems (FRBSs) are tools that enable knowledge representa-
tion and inference through fuzzy rules denoted by linguistic terms. The main
point of strength of FRBSs is the possibility of establishing a semantic similar-
ity (or co-intension) between the fuzzy sets that are used in their rules and the
implicit semantics of the linguistic terms that are used to denote them. In this
way the users of a FRBS can read and understand fuzzy rules, as well as revise
and integrate rules with domain knowledge. In other words, the FRBS can be
interpretable for users [1].

However, when FRBSs are acquired from data through some learning scheme,
the semantic co-intension between fuzzy sets and linguistic meanings is often lost.
This happens because fuzzy sets are usually shaped in order to optimize a specific
performance measure, usually defined in terms of accuracy error. Nevertheless,
the loss of semantic co-intension in a rule base determines a FRBS that is no
longer interpretable. The development of specific learning algorithms is intended
to overcome the interpretability loss in FRBSs acquired from data. Mainly, these
learning schemes drive the adaption process so that a number of interpretability

L. Rutkowski et al. (Eds.): ICAISC 2013, Part I, LNAI 7894, pp. 318–328, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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constraints is satisfied. The choice of the interpretability constraints used to
guide the learning process is usually application-dependent; nevertheless some
of them have a general scope and are widely used in literature [2].

Many learning algorithms for acquiring an interpretable FRBS require to fix
the granularity of fuzzy partitions, i.e. the number of fuzzy sets that partition
each input feature: the aim of such algorithms is to find the best shapes of the
fuzzy sets in the partition so as to optimally balance accuracy and interpretabil-
ity of the final system. However, the optimal number of fuzzy sets for each fea-
ture is often unknown and could be different for different features. As a result,
in many cases a trial-and-error approach is used to select the best granularity
for each feature.

An alternative approach is to adopt algorithms that select the best granular-
ity for each feature in the learning scheme. Few algorithms are capable of self-
determining the granularity level for each feature: in this paper we consider Hi-
erarchical Fuzzy Partitioning (HFP) [3] and Double Clustering with
A* (DC*) [4]. HFP is included in the well-known FisPro tool, which is widely
used for modeling interpretable fuzzy systems [5]. It is also used in GUAJE, a
suite that involves several tools working together to realize a complete work-flow
for designing interpretable fuzzy systems [6]. With respect to HFP, DC* adopts
a completely different approach for generating fuzzy partitions. Thus an interest-
ing issue is to evaluate both HFP and DC* on a number of benchmark problems.
The aim of this paper is to provide a comparison of the two algorithms in order
to highlight points of strength and weakness that can be useful in the selection of
the best alternative on the basis of the nature of data. The comparative analysis
is performed employing a number of benchmark datasets that can be processed
by both algorithms (taking into account that DC* requires numerical features
and is limited to classification problems).

In Section 2, both HFP and DC* are briefly sketched and in Section 3 the
experimental plan is described. The experimental results are reported in Section
4 along with a comparative discussion of the points of strength and weakness of
both algorithms. Some concluding remarks in Section 5 end the paper.

2 Generation of Interpretable Fuzzy Partitions

Both HFP and DC* share the ability of defining interpretable fuzzy partitions
from data and do not require any a-priori specification of the granularity of the
partitions. The two algorithms tackle the partitioning problem by following very
different approaches, but adopt the same set of general-purpose interpretability
constraints:

Normality each fuzzy set must have a prototype, i.e. one element with full
membership;

Convexity each fuzzy set is convex, i.e. all α-cuts are closed intervals;
Continuity fuzzy sets are defined by continuous membership functions;
Distinguishability the similarity of two fuzzy sets in the partition is less than

a threshold;
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Completeness each element of the universe of discourse belongs to at least one
fuzzy set with a degree greater than a threshold;

Leftmost/rightmost fuzzy sets the bounds of the universe of discourse are
prototypes for some fuzzy sets.

Strong fuzzy partitions composed by trapezoidal fuzzy sets1 are fuzzy partitions
where it is guaranteed that, when each element inside the universe of discourse
is considered, the sum of its membership degrees to all fuzzy sets of the partition
adds up to one. Strong fuzzy partitions are widely used since they satisfy all the
previously mentioned interpretability constraints2; thus they have been adopted
also for the experimentation conducted in this paper.

2.1 Hierarchical Fuzzy Partitioning (HFP)

HFP aims at generating a family of interpretable fuzzy partitions from data.
Members of this family are distinguished by their degree of interpretability and
accuracy; the user can successively select the partitions that best balance accu-
racy and interpretability according to his/her needs.

Preliminarily, HFP cycles over each data feature and operates a one-dimen-
sional clustering of data samples to define a first fuzzy partition for each feature.
In the worst case a fuzzy set per data sample is generated; however clustering is
used to accelerate HFP by generating fuzzy partitions with a number of fuzzy
sets considerably smaller than the number of data samples.

The main stage of HFP is to iteratively merge adjacent fuzzy sets so that the
new partition is as much similar as the previous partition (the one preceding the
merging process). This is accomplished by defining a specific partition measure
that is based on computing distances between fuzzy sets: the couple of fuzzy sets
to be merged is selected in order to minimize the variation of this partition mea-
sure. Fuzzy set merging is carried out so as to guarantee strong fuzzy partitions
and the iterative merging process is stopped when only one fuzzy set is defined
on each feature.

The merging process is carried out over each input feature independently, re-
sulting in a hierarchy of partitions for each feature. A combination of partitions
(one for each feature) defines a granulation of the data space, where each in-
formation granule is defined by the Cartesian product of fuzzy sets belonging
to different partitions. A selection process of the information granules is carried
out by summing the membership degrees of all data samples to each granule
(Σ-count): the information granules whose Σ-count is below a threshold are dis-
carded. The remaining information granules can be used to define the rules of
a FRBS. To avoid the combinatorial explosion of FRBSs that can be generated
by picking a partition in each hierarchy, a heuristic procedure is implemented

1 Triangular fuzzy sets are special cases of trapezoidal fuzzy sets.
2 It is assumed that similarity is assessed through the possibility measure and the

thresholds required for distinguishability and completeness are both fixed to 0.5.
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to generate a sequence of FRBSs defined by combinations of partitions with de-
creasing granularity. The sequence of combinations of partitions is then returned
by HFP.

2.2 Double Clustering with A* (DC*)

The objective of DC* is to find the simplest and interpretable fuzzy partition
on each input feature that best describes the available data, provided that such
data have a class label. Once fuzzy partitions are created, the corresponding
fuzzy rules are defined.

As implied by the name, DC* is mainly composed of two phases. Firstly, a
quantization process is carried out by the LVQ1 algorithm [7] performed over
the whole input space: the process aims at providing a compressed representa-
tion of data (given by the code-book vectors, also called prototypes), taking into
account class information. In the second phase a clustering on each dimension
is performed, taking into account the reciprocal positioning of all the proto-
types’ projections, together with the related class labels. That leads DC* to face
a combinatorial optimization problem which is tackled through the A* search
algorithm [8].

A number of elements are relevant to specify the A* algorithm, including the
search space, the initial state, a successor operator, the goal test, the cost func-
tion and the heuristic function. To characterize the search space in the context
of the DC*, the concepts of cut and box must be introduced. A cut is a midpoint
between two adjacent prototypes’ projections belonging to different classes; by
combining cuts of different features a box is defined, which may include zero or
more prototypes. If all prototypes included in a box belong to the same class (or
if the box is empty), the box is said pure, otherwise it is tagged as not pure (see
the example in fig. 1).

A candidate solution for the optimization problem at hand is represented by
a configuration of cuts, including zero or more cuts for each input feature. The
goal test is satisfied if all the boxes corresponding to the cuts of a candidate
solution are pure. The search space is the set of all the candidate solutions and
the initial state corresponds to the candidate solution with zero cuts for each
feature. The successor operator, applied to a candidate solution, generates a set
of new candidate solutions: a candidate solution belongs to this set if it has one
cut (on any feature) more than the initial candidate solution.

The cost function simply counts the number of cuts in a candidate solution,
while the heuristic function estimates the number of cuts that are strictly nec-
essary to obtain a configuration producing pure boxes. The estimate is a lower
bound of the real number of cuts that are required, thus making the heuristic
function admissible for the convergence and optimality of the A* algorithm.

The A* algorithm uses a priority queue to store the generated candidate so-
lutions that must be evaluated against the goal test. In particular, the specific
version of the algorithm implemented for the experimental sessions described in
the present paper adopts a multilevel priority queue: this represents an improve-
ment with respect to previous versions of the algorithm [9]. The first level of
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Fig. 1. A bi-dimensional input space with six prototypes of three different classes
(square, circle, triangle). The application of two cuts (chosen among the candidate
cuts) provides a partition of the input space in four boxes: three pure boxes (one of
them is empty) and one not-pure box.

the queue stores the sum of the values related to the cost and heuristic func-
tions, so that candidate solutions can be sorted by considering the number of
their cuts and the number of the (estimated) cuts required to achieve a goal
solution. Candidate solutions showing the same score at the first level can be
further sorted at the second level in order to penalize candidate solutions with
cuts that are reciprocally too close. This is achieved by considering the minimum
distance of the cut that generated the candidate solution (through the applica-
tion of the successor operator) from the adjacent cuts. In this way, a ranking is
produced where solutions with well separated cuts (and, therefore, wide boxes)
are prioritized, thus improving the generalization ability.

The result of the A* search is an optimal configuration of cuts defined over the
input features. We have implemented a simple procedure to define strong fuzzy
partitions for each input feature based on trapezoidal fuzzy sets3, so that such
partitions can be compared with those obtained by HFP. In fig. 2 an example of
fuzzy partition is depicted.

Similarly to HFP, fuzzy sets on each partition are combined together to form
multi-dimensional information granules. Clearly, each information granule corre-
sponds to a box of the solution returned by A*; therefore each information gran-
ule can be labeled with the class of the corresponding box. As a consequence,
fuzzy rules can be immediately defined by taking the information granules that
correspond to non-empty boxes as antecedents and the corresponding class labels
as consequents.

Few hyper-parameters are required for running DC*: they coincide with those
required for running LVQ1. The most important hyper-parameter is the code-book
3 The original version of DC* produces Gaussian fuzzy sets.



Automatic Design of Interpretable Fuzzy Partitions 323

Fig. 2. Example of fuzzy partition obtained from cuts c1, c2, c3, c4

cardinality, i.e. the number of prototypes to be defined by LVQ1. This value corre-
sponds to the maximum number of fuzzy rules in the final model (more prototypes
may belong to the same box, producing a single rule). This hyper-parameter has
an immediate interpretation as it regulates the desired granularity of the resulting
FRBS: the lower this number, the coarser the rules, which are more readable but
possibly less accurate. On the other hand, the higher is the code-book cardinality,
the finer is the rule granularity, which may result in a better accuracy counterbal-
anced by a higher complexity.

3 Experimentation

The overall setup of the experimental sessions is described in this section. The
aim of the experimentation is to perform a fair comparative test between HFP
and DC*. The test involves the use of two freely available tools: WEKA4 3.6.7
[10] and FisPro5 3.4 [5]. The first is a suite of machine learning algorithms for
data mining tasks: it is used to perform a stratified ten-fold partition of the
datasets involved in the experimentation. The latter is an open source software
for fuzzy inference system design and optimization: it includes an implementa-
tion of HFP and a tool for the subsequent generation of FRBSs. FisPro is also
exploited to carry out the performance evaluation of all the derived FRBSs. Fig-
ure 3 depicts the comparative experimentation framework highlighting the role
of WEKA and FisPro, together with the contribution of DC*.

Ten datasets are involved in the experimental sessions: all of them have been
selected from the UCI repository6 and include numerical, classified data without
missing values. The datasets are heterogeneous in their scope, in order to perform
the experimentation process on data showing different characteristics. A brief
description of the involved datasets is provided in table 1.

In view of the ultimate validation to be accomplished at the end of the experi-
mentation, the first step consists in a stratified ten-fold partition of the datasets,
performed using WEKA: given a seed value, the tool randomly creates the data
partitions providing the learning sets and the test sets. For each fold a different
experiment is carried out.
4 Weka is available at http://www.cs.waikato.ac.nz/ml/weka/
5 FisPro is available at http://www.inra.fr/mia/M/fispro/FisPro_EN.html
6 http://archive.ics.uci.edu/ml/

 http://www.cs.waikato.ac.nz/ml/weka/
http://www.inra.fr/mia/M/fispro/FisPro_EN.html
http://archive.ics.uci.edu/ml/
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Fig. 3. Comparative experimentation framework

Each learning set is meant to be processed by both HFP and DC*. After the
generation of partitions, the corresponding FRBSs are defined. Since HFP gen-
erates a family of partitions, only two partitions are eventually selected for com-
parison: the most accurate —denoted as “minErr”— and the most interpretable
(i.e. the partition with the smallest number of rules), denoted as “minRules”.
Furthermore, HFP requires the specification of a number of hyper-parameters,
which have been fixed to their default value.

On the other hand, the behavior of DC* mainly depends on the number
of prototypes required by LVQ1, which has been varied for each experimenta-
tion, while the following hyper-parameters are fixed for all experimental sessions:
a) initial learning rate = 0.01; b) maximum number of epochs = 1000; c) shifting
threshold value = 10−4. For each dataset, several executions of DC* are per-
formed, doubling the number of prototypes at each run. In particular, the first
run is computed with a number of prototypes equal to the number of classes
(one prototype per class). At each successive run, the number of prototypes is
doubled and proportionally distributed among the classes. With few exceptions,
the process is iterated until the number of prototypes is at least equal to the
number of rules of the most accurate FRBS identified by HFP.
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Table 1. Dataset characteristics. *The second feature has been removed because it
exhibits a constant value. **Class “4” has been removed since it is not represented by
any sample.

Dataset samples features classes
Iris 150 4 3

Wine 178 13 3
Breast Cancer Wisconsin 683 9 2
Pima Indians Diabetes 368 8 2

Vertebral Column (2 classes) 310 6 2
Vertebral Column (3 classes) 310 6 3

Ionosphere 351 33(34)* 2
Cardiotocography (CTG) 2126 21 3

Glass Identification 214 9 6(7)**
Statlog-Shuttle 58000 9 7

To evaluate the accuracy of the final FRBSs —both from HFP and DC*— a
module within FisPro is applied on the test sets. Since a ten-fold cross validation
scheme is adopted, the performance for each dataset can be expressed in terms
of average values related to ten different classification models.

4 Results and Discussion

A number of considerations can be drawn from the analysis of the experimental
results which are globally illustrated in tables 2 and 3. For each dataset, the
table reports the results related to the couple of FRBSs generated by HFP and
selected for comparison (the one providing the best accuracy performance and
the one including the lower number of rules) and to a number of FRBSs generated
by DC* (each of them obtained by doubling the number of prototypes at every
new generation).

It can be verified how the simplest models derived (namely, the 2-rules FRBSs
produced by HFP and the FRBSs generated by applying DC* with one prototype
per class) are characterized by poor values of accuracy performance. On the other
hand, by increasing the structural complexity of the models, it is possible to
observe a consequent reduction of the error values. In other words, the well known
effects connected with the accuracy/interpretability trade-off can be recognized
in the results reported in the table.

To allow a fair comparison, the maximum number of DC* prototypes (stand-
ing as the upper limit on the maximum number of rules to be generated) is set
for each dataset by taking into account the number of rules composing the most
effective FRBS derived through HFP (wherever it is possible). In this way, HFP
and DC* are oriented to potentially produce models with a similar number of
rules so that the accuracy analysis can be more revealing.

In terms of accuracy DC*, outperforms HFP on six datasets. More interest-
ingly, when we turn to consider the accuracy/interpretability trade-off, it can be
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Table 2. A general picture of the experimental results (first part). Each column reports
the average results (over 10-fold cross validation) ± the standard deviation. For DC*
the number p of prototypes used in the first stage is also reported. In bold, the best
results in terms of accuracy/interpretability tradeoff are highlighted.

Dataset ALGORITHM Rules Features mean #MF Err %

Iris

HFP minErr 8.5±0.81 3±0 2.09±0 5.33±7.20
minRules 2±0 1±0 2±0 33±14.00

DC*
p = 3 3±0 2±0 2±0 30.7±14.93
p = 6 3.6±0.49 2±0 2±0 21.3±13.27
p = 12 3±0 1.6±0.49 2.4±0.49 6.67±6.67

Wine

HFP minErr 39.6±20.29 5.4±1.11 2.31±0.19 7.22±3.72
minRules 2±0 1±0 2±0 32±5.41

DC*

p = 3 2.9±0.3 2±0 2±0 43.3±7.50
p = 6 3.1±0.3 2±0 2±0 23.8±5.97
p = 12 3.5±0.5 2±0 2±0 21.3±11.00
p = 24 4.8±1.25 2.3±0.45 2±0 19.1±4.06

WBC

HFP minErr 34.7±18 4.9±0.83 2.02±0.05 4.85±2.09
minRules 2±0 1±0 2±0 16.5±6.74

DC*

p = 2 2±0 1±0 2±0 13.7±4.84
p = 4 2±0 1±0 2±0 12.8±4.56
p = 8 2±0 1±0 2±0 13.7±4.84
p = 16 2±0 1±0 2±0 13.7±3.49
p = 32 3.1±1.58 1.5±0.67 2±0 6.47±3.03
p = 48 3.5±1.5 1.7±0.64 2±0 6.62±3.56

Pima

HFP minErr 39±16.64 5.8±1.17 2.29±0.15 28±4.55
minRules 2±0 1±0 2±0 35±4.03

DC*

p = 2 2±0 1±0 2±0 35.6±4.08
p = 4 2±0 1±0 2±0 36.9±4.83
p = 8 2.2±0.6 1.1±0.3 2±0 37.3±5.64
p = 16 2.6±0.8 1.4±0.49 2±0 32.6±9.38
p = 32 7.6±2.54 3.3±0.46 2±0 22.2±6.66

Vertebral 2

HFP minErr 5.5±3.61 2.3±0.64 2±0 26±7.66
minRules 2±0 1±0 2±0 33±10.28

DC*
p = 2 2±0 1±0 2±0 34.7±9.53
p = 4 2±0 1±0 2±0 32.2±10.66
p = 8 2±0 1±0 2±0 25.3±8.31

observed how the DC* methodology is able to provide the simplest models, ex-
hibiting the smallest numbers of rules and involved features (the average number
of MFs per model is almost the same when both algorithms are applied). Such
a superiority is verified for each dataset and in some cases the gain in terms of
structural complexity is highly appreciable. In this sense, the models produced
by DC* appear to be preferable even when their accuracy performance values are
slightly lower than those reported by the HFP-generated FRBSs. As a further
remark, it can be noticed how DC* provides better results also in terms of model
stability, as showed by the standard deviation values reported to complete the
information regarding the average numbers of rules, involved features and MFs.
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Table 3. (cont’d from table 2)

Dataset ALGORITHM Rules Features mean #MF Err %

Vertebral 3
HFP minErr 4.6±1.28 2.1±0.3 2.05±0.15 43±8.63

minRules 2±0 1±0 2±0 47±9.16

DC* p = 3 3±0 2±0 2±0 51.3±7.28
p = 6 3.9±0.3 2±0 2±0 33.4±11.63

Ionosphere

HFP minErr 300±637.02 5±3.02 2±0 16±6.20
minRules 2±0 1±0 2±0 31±11.43

DC*
p = 2 2±0 1±0 2±0 39.7±8.60
p = 4 2±0 1±0 2±0 23.1±10.26
p = 8 2.2±0.6 1.1±0.3 2±0 15.7±12.54

CTG 3

HFP minErr 120.8±95.21 7.9±1.87 2.16±0.08 17.4±2.48
minRules 2±0 1±0 2±0 20.4±2.50

DC*
p = 3 2.7±0.46 2±0 2±0 42.3±6.34
p = 6 3±0 2±0 2±0 26.3±7.46
p = 12 3.3±0.46 2.3±0.46 2±0 13.6±8.50

Glass
HFP minErr 15.4±5.28 5.6±0.92 2.13±0.17 51±15.52

minRules 2±0 1±0 2±0 57±11.38

DC* p = 6 6±0 3±0 2±0 63.8±15.10
p = 12 8.4±1.11 3.7±0.46 2±0 43.3±13.71

Shuttle
HFP minErr 81.5±22.84 22.83±0.49 2.87±2.76 3.67±1.51

minRules 2±0 1±0 2±0 21.4±0.43

DC* p = 7 7±0 3±0 2±0 57.9±19.53
p = 14 10±1.18 4±0 2±0 19.6±2.71

Some additional details, concerning the experiments on particular datasets,
can be highlighted. While in a couple of cases (related to the Shuttle and Wine
datasets) the iterative application of DC* with doubled number of prototypes
has been quit to avoid an excessive growth of the computational burden, in some
other circumstances the process has been stopped by reason of the huge number
of rules generated by HFP. This is the case, for instance, of the Ionosphere and
CTG 3 datasets, where DC* is able to overcome HFP in terms of performance ac-
curacy while producing classifiers with a reduced number of rules. Better results
from HFP could be potentially achieved by fine-tuning of the hyper-parameters.
However, this would have involved a heavy trial-and-error process further com-
plicated by the need of selecting partitions from the returned sets.

Finally, the overall analysis of the obtained results lets us underline some
peculiarities of the DC* algorithm. Firstly, it is able to produce FRBSs with
reduced features: their number is lower than both the total number of features
in each dataset and the number of features characterizing the HFP-generated
models. The second peculiarity of DC* consists in the capability to operate the
optimization process mentioned in section 2.2 producing FRBSs with a number
of rules which is significantly lower than the number of prototypes (corresponding
to the maximum number of attainable rules).
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5 Conclusions

The experimental results reported in the paper show that both DC* and HFP
exhibit different points of strength that make them valid approaches for gen-
erating interpretable FRBSs. In particular, DC* is superior in terms of accu-
racy/interpretability tradeoff because it is capable of designing very compact
FRBSs with appreciable classification errors that are only slightly higher or
even smaller than the most accurate models provided by HFP. Furthermore,
DC* requires very few hyper-parameters, the most important one regulating the
granularity of the acquired knowledge by fixing the upper bound in the number
of rules to define. However, DC* is not very sensitive to this hyper-parameter:
this avoids the necessity of fine-tuning and guarantees a descriptive stability of
the resulting FRBSs.

As concerning HFP, this algorithm shows more flexibility since it is not lim-
ited to classification problems and, on the average, it is more efficient than DC*
because its computational complexity is polynomial on the number of data sam-
ples. On the other hand, since the theoretical computational complexity of DC*
is exponential in the worst case (on the number of prototypes times the data
dimensionality), in some experiments DC* did not terminate in reasonable time.
The efficiency of DC* can be improved by a refinement of the heuristic function
used in the second stage of DC* where A* is applied; this is matter of current
research.
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Abstract. In this paper we propose a new method for evolutionary
selection of parameters and structure of neuro-fuzzy system for nonlinear
modelling. This method allows maintain the correct proportions between
accuracy, complexity and interpretability of the system. Our algorithm
has been tested using well-known benchmarks.

1 Introduction

In the fuzzy systems the knowledge is represented in the form of fuzzy rules.
Thanks to that the knowledge can be interpretable. Neuro-fuzzy systems combine
the natural language description of fuzzy systems and the learning properties
of neural-networks (see e.g. [2]-[4], [9]-[12], [24], [27], [31]-[38], [41], [42], [47],
[53]-[57], [68], [69]). Therefore, neuro-fuzzy systems are often used for nonlinear
modelling. Neuro-fuzzy systems are most commonly used for direct modelling
of input-output dependencies ([19], [60], [65]). In other approach neuro-fuzzy
system may be used to generate the coefficients of the matrices of the state-
vector equation ([46]). In both cases the accuracy and interpretability of the
system are important [26].

In the literature various methods have been presented to increase interpretabil-
ity of the intelligent systems. These methods can be applied in the context of
non-linear modelling. One of the possible approaches is tuning with the use of
genetic algorithms ([33], [37]) or multiobjective optimization ([7], [67]). Other
approach is based on the reduction of the system before or after the learning
process ([25], [58]). In addition, the literature describes many ways of the sys-
tem initialization (for example by use the clustering algorithms, self-organized
networks etc.) ([1], [63]).

In this paper we propose a new method for designing and complexity reduction
of neuro-fuzzy systems for nonlinear modelling. Our method is based on the
evolutionary strategy (μ, λ). It is used to learn the parameters of the system and
the selection of the structure of the system. In the process of learning we want to
obtain the system with good accuracy of the nonlinear modelling and a simple
and clear rule base. This has been achieved through appropriate design of the
fitness function.

L. Rutkowski et al. (Eds.): ICAISC 2013, Part I, LNAI 7894, pp. 329–344, 2013.
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This paper is organized as follows: in Section 2 a neuro-fuzzy system of the
Mamdani type for nonlinear modelling is described. In section 3 a description
of new method for designing and complexity reduction of neuro-fuzzy systems
is shown. Simulation results are described in Section 4. Finally, in Section 5
conclusions are presented.

2 Neuro-fuzzy System for Nonlinear Modelling

We consider multi-input, multi-output neuro-fuzzy system mapping X→ Y,
where X ⊂ Rn and Y ⊂ Rm. The fuzzifier performs a mapping from the ob-
served crisp input space X ⊂ Rn to the fuzzy sets defined in X. The most com-
monly used fuzzifier is the singleton fuzzifier which maps x̄ = [x̄1, . . . , x̄n] ∈ X
into a fuzzy set A′ ⊆ X ([50], [52], [51]). The fuzzy rule base consists of a collec-
tion of N fuzzy IF... THEN... rules in the form

Rk :

[(
IF
(
x1 isAk

1

) ∣∣∣wA
k,1 AND . . .AND

(
xn isAk

n

) ∣∣∣wA
k,n

THEN
(
y1 isBk

1

)
, . . . ,

(
ym isBk

m

)
) ∣∣wrule

k

]
, (1)

where x = [x1, . . . , xn] ∈ X, y = [y1, . . . , ym] ∈ Y,Ak
1 , . . . , A

k
n are fuzzy sets char-

acterized by membership functions μAk
i

(xi), i = 1, . . . , n, k = 1, . . . , N , Bk
1 , . . . ,

Bk
m are fuzzy sets characterized by membership functions μBk

j
(yj), j = 1, . . . ,m,

k = 1, . . . , N , wA
k,i, i = 1, . . . , n, k = 1, . . . , N , are weights of antecedents, wrule

k ,
k = 1, . . . , N , are weights of rules.

The fuzzy inference determines a mapping from the fuzzy sets in the input
space X to the fuzzy sets in the output space Y. Each of N rules (1) determines
fuzzy sets B̄k

j ⊂ Y ([50], [52], [51]).
The aggregation operator, applied in order to obtain the fuzzy set B′

j is based
on fuzzy sets B̄k

j , k = 1, . . . , N . The defuzzifier performs a mapping from the
fuzzy sets B′

j to a crisp point ȳj , j = 1, . . . ,m, in Y ⊂ R. The center of area
(COA) method is defined in the discrete form by the following formula ([50],
[48], [52], [51])

ȳj = defj =

R∑
r=1
ȳdefj,r · μB′

j

(
ȳdefj,r

)
R∑

r=1
μB′

j

(
ȳdefj,r

) , (2)

where ȳdefj,r , j = 1, . . . ,m , r = 1, . . . , R, are discretization points, R is a number
of discretization points [48].

In Mamdani approach formula (2) takes the form

ȳj =

R∑
r=1
ȳdefj,r ·

N

S∗
k=1

{
T
{ n

T ∗
i=1

{
μAk

i
(x̄i) ;wA

k,i

}
, μBk

j

(
ȳdefj,r

)}
;wrule

k

}
R∑

r=1

N

S∗
k=1

{
T
{ n

T ∗
i=1

{
μAk

i
(x̄i) ;wA

k,i

}
, μBk

j

(
ȳdefj,r

)}
;wrule

k

} , (3)
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where t-norm T {·} is a generalization of the usual two-valued logical conjunction
(studied by classical logic), t-conorm S {·} is a generalization of the usual two-
valued logical disjunction, T ∗ {·} is a weighted t-norm and S∗ {·} is a weighted
t-conorm ([30], [50], [48], [52], [51]).

In the next section a new learning algorithm for evolution of flexible neuro-
fuzzy system (3) is proposed. In the process of evolution (evolution of parame-
ters) we will find all parameters of the neuro-fuzzy system:

– {x̄Ai,k, σ
A
i,k}, i = 1, . . . , n, k = 1, . . . , N - parameters of Gaussian membership

functions μAk
i

(xi) of the input fuzzy sets Ak
1 , . . . , A

k
n,

– {ȳBj,k, σ
B
j,k}, k = 1, . . . , N , j = 1, . . . ,m - parameters of Gaussian membership

functions μBk
j

(yj) of the output fuzzy sets Bk
1 , . . . , B

k
m,

– wA
k,i, i = 1, . . . , n, k = 1, . . . , N - weights of antecedents,

– wrule
k , k = 1, . . . , N - weights of rules,

– ȳdefj,r , j = 1, . . . ,m , r = 1, . . . , R - discretization points.

Moreover, in the process of evolution (evolution of structure) we will find number
of inputs n, number of antecedents, number of rules N , number of consequents
and number of discretization points R.

3 Description of the New Method for Designing and
Complexity Reduction of Neuro-fuzzy Systems

The principles of the new method can be summarized as follows:

– The method may be used directly for modelling of dynamic system or it may
be used indirectly for modelling proposed in [46].

– The method allows to learn parameters and select automatically the neuro-
fuzzy system structure used to nonlinear modelling. The selection of the
system structure is based on the selection of number of inputs, number of
antecedents, number of rules, number of consequents and number of dis-
cretization points in the system. The process is done during system param-
eters learning process.

– The algorithm was designed in such a way, that in evolution process the un-
necessary inputs, antecedents, rules, consequents and discretization points
are eliminated. The unnecessary elements of the system are considered ele-
ments that reduction does not affect the accuracy of the system.

– The method works to increase the interpretability of the system. It is con-
ducted in such a way that it promoted the results from the whole population
in which the input fuzzy sets and the whole rules are the most differentiated
(the least similar) and as simple as possible (containing the small number of
inputs, antecedents, rules, consequents and discretization points).

The structure of the neuro-fuzzy system is described by formula (3) and its
parameters are found using the evolutionary strategy (μ, λ) and the Pittsburgh
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approach ([5], [13], [21], [40], [48]). The evolutionary strategy (μ, λ) starts with a
random generation of the initial parents population P containing μ individuals.
Next, a temporary population T is created by means of reproduction, whose pop-
ulation contains λ individuals, while λ ≥ μ. Reproduction consists in a multiple
random selection of λ individuals out of population P (multiple sampling) and
placing the selected ones in temporary population T. Individuals of population
T undergo crossover and mutation operations as a result of which an offspring
population O is created, which also has size λ. The purpose of the repair proce-
dure of the population O is to correct the parameters if they reach inadmissible
values. The new population P containing μ individuals is selected only out of
the best λ individuals of population O. For more details on the evolutionary
strategy (μ, λ) please see [13], [20], [48].

3.1 Evolution of Parameters

We apply evolutionary strategy (μ, λ) for learning all parameters in the system
described by formula (3). In a single chromosome, according to the Pittsburgh
approach, a complete linguistic model is coded in the following way

Xpar
ch =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

x̄A1,1, σ
A
1,1, . . . , x̄

A
n,1, σ

A
n,1, . . .

x̄A1,Nmax, σ
A
1,Nmax, . . . , x̄

A
n,Nmax, σ

A
n,Nmax,

ȳB1,1, σ
B
1,1, . . . , ȳ

B
m,1, σ

B
m,1, . . .

ȳB1,Nmax, σ
B
1,Nmax, . . . , ȳ

B
m,Nmax, σ

B
m,Nmax,

wA
1,1, . . . , w

A
n,1, . . . w

A
1,Nmax, . . . , w

A
n,Nmax,

wrule
1 , . . . , wrule

Nmax

ȳdef1,1 , . . . , ȳ
def
1,Rmax, . . . , ȳ

def
m,1, . . . , ȳ

def
m,Rmax

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
=
{
Xpar

ch,1, . . . , X
par
ch,L

}
, (4)

where L = Nmax · (3 · n+ 2 ·m+ 1) + Rmax, ch = 1, . . . , μ for the parent
population or ch = 1, . . . , λ for the temporary population, Nmax is the maxi-
mum number of rules, Rmax is the maximum number of discretization points.
The maximum number of rules Nmax should be selected to the problem indi-
vidually. When the number of the rules Nmax is too hig,h it can decrease the
system interpretability. The purpose of the evolution strategy is to automatically
select the number of rules from the range [1, Nmax]. Analogically, the maximum
number of discretization points Rmax should also be selected to the problem
individually. The purpose of the evolution strategy is to automatically select the
number of discretization points from the range [1, Rmax]. The purpose of evolu-
tion strategy (μ, λ) is also to select the number of antecedents and consequents
within each rule from rule base. The number of antecedents in each of the rules
is within the range [1, n], and the number of consequents in each of the rules
is within the range [1,m]. The reduction of the system is done with the use of
additional chromosome Xred, which is described in the detail in the Section 3.2.

The self-adaptive feature of the algorithm is realized by assigning to each gene
a separate mutation range described by the standard deviation
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σparch =
(
σparch,1, . . . , σ

par
ch,L

)
, (5)

where ch = 1, . . . , μ for the parent population or ch = 1, . . . , λ for the temporary
population.

For temporary population we use the recombination (crossover) and the mu-
tation operations:

– Crossover with averaging the values of the genes

Xpar′
ch1,g = 1

2 ·
(
Xpar

ch1,g +Xpar
ch2,g

)
, Xpar′

ch2,g = Xpar′
ch1,g , (6)

and

σpar
′

ch1,g = 1
2 ·
(
σparch1,g + σparch2,g

)
, σpar

′
ch2,g = σpar

′
ch1,g , (7)

where g = 1, . . . , L.
– Mutation

σpar
′

ch,g = σparch,g · exp (τ ′ ·N (0, 1) + τ ·Nch,g (0, 1)) , (8)

and

Xpar′
ch,g = Xpar

ch,g + σpar
′

ch,g ·Nch,g (0, 1) , (9)

where σparch,g, ch = 1, . . . , λ, g = 1, . . . , L, denotes current value of the muta-

tion range of the ch-th chromosome of the g-th gene, σpar
′

ch,g, ch = 1, . . . , λ,
g = 1, . . . , L, denotes a new value of the mutation range, N (0, 1) is the num-
ber drawn from the normal distribution, Nch,g (0, 1) is the number drawn
from the normal distribution of the ch-th chromosome, of the g-th gene, and
τ ′, τ denote constants chosen prior to the evolution process. The following
formulas can be found in the literature [20]

τ ′ =
C√
2L
, (10)

and

τ =
C√
2
√
L
, (11)

where C takes value 1 the most frequently. In order to avoid convergence of
the mutation range to 0, we use the following formula

σpar
′

ch,g = max
{
ε0, σ

par′
ch,g

}
, (12)

where ε0 is a small positive number chosen prior to the evolution process.
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3.2 Evolution of Structure

Evolution of structure is based on the evolutionary strategy (μ, λ) and classical
genetic algorithm. At the beginning we take the maximum number of rules,
antecedents, consequences, inputs, and discretization points. In the next step,
we reduce our system using the evolutionary strategy. For this purpose we use an
extra chromosome Xred

ch . Its genes take binary values and indicate which rules,
antecedents, inputs, and discretization points are selected. The chromosome Xred

ch

is given by

Xred
ch =

⎧⎪⎪⎨⎪⎪⎩
A1

1, ..., A
1
n, ..., A

Nmax
1 , ..., ANmax

n ,
B1

1 , ..., B
1
m, ..., B

Nmax
1 , ..., BNmax

m ,
rule1, ..., ruleN ,

ȳdef1,1 , ..., ȳ
def
1,Rmax, ..., ȳ

def
m,1, ..., ȳ

def
m,Rmax

⎫⎪⎪⎬⎪⎪⎭ =
{
Xred

ch,1, ..., X
red
ch,Lred

}
,

(13)

where Lred = Nmax·(n+m+1)+m·Rmax is the length of the chromosome Xred
ch ,

where ch = 1, . . . , μ, for the parent population or ch = 1, . . . , λ, for the tem-
porary population. Its genes indicate which rules (rulek, k = 1, . . . , Nmax), an-
tecedents (Ak

i , i = 1, . . . , n, k = 1, . . . , Nmax), consequents (Bk
j , j = 1, ...,m, k =

1, ..., Nmax), inputs (x̄i, i = 1, . . . , n), and discretization points (ȳr, r = 1, . . . ,
Rmax) are taken to the system.

For temporary population we use the recombination (crossover) and the mu-
tation operations analogically to those in the classical genetic algorithm ([48],
[59]):

– Single-point crossover, with probability pc ∈ [0, 1] chosen prior to the evolu-
tion process.

– Mutation, with probability pm ∈ [0, 1] chosen prior to the evolution process.

3.3 Chromosome Population Evaluation after Crossover and
Mutation

Each individual Xch of the parental and temporary populations is represented
by sequence of chromosomes

〈
Xpar

ch , σ
par
ch ,X

red
ch

〉
, given by formulas (4), (5) and

(13). The genes of the two first chromosomes take real values, whereas the genes
of the last chromosome takes integer values.

The system aims to minimize the following fitness function

ff (Xch) = ffaccuracy (Xch) · ffcomplexity (Xch) · ffsimilarity (Xch) , (14)

where, individual components are defined as follows:

– The component ffaccuracy (Xch) determines the accuracy of the system (3)
i.e. average normalized system error for all outputs and all data from learning
sequence
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ffaccuracy (Xch) =
1

mch

mch∑
j=1

1
Z

Z∑
z=1

|dz,j − ȳz,j |

max
z=1,...,Z

{dz,j} − min
z=1,...,Z

{dz,j}
, (15)

where mch is a number of output coded in the chromosome ch, Z is the
number of samples of learning sequence, dz,j is the desired value of the output
signal of the system, ȳz,j is the real value of output signal. The purpose of
normalization the component ffaccuracy (Xch) was to ensure even influence
on every component of the function (14).

– The component ffcomplexity (Xch) determines complexity of the system (3)
i.e. the number of reduced elements of the system in relation to their number

ffcomplexity (Xch) = wffcomplexity +
1

Lred

Lred∑
g=1

Xred
ch,g, (16)

where Lred is the number of elements of the system which can be reduced,
Xred

ch,g is a chromosome gene Xch describes reduction of g gene.
Thestabilityof thecomponentffcomplexity (Xch) is donebyadding thevari-

ablewffcomplexity .Thenffcomplexity(Xch)∈(wffcomplexity , wffcomplexity+1].
The value ofwffcomplexity was set experimentally.

– The component ffsimilarity (Xch) determines the similarity between the in-
put and output fuzzy sets coded in the tested chromosome

ffsimilarity (Xch) =

wffsimilarity+

+

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

mch∑
j=1

Nmaxch−1∑
k1=1

Nmaxch∑
k2=k1+1

sim

⎛⎝Xpar
ch

{
Bk1

j

}
Xpar

ch

{
Bk2

j

} ,

⎞⎠
mch

+
nch∑
i=1

Nmaxch−1∑
k1=1

Nmaxch∑
k2=k1+1

sim

(
Xpar

ch

{
Ak1

i

}
Xpar

ch

{
Ak2

i

} ,

)
nch

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
2

(
Nmaxch

2

)
, (17)

where Nch is the number of rules coded by the chromosome ch, nch is the
number of input of particular chromosome ch, Xpar

ch

{
Ak

i

}
is the part of

the chromosome Xpar
ch , which codes parameters of the input fuzzy set Ak

i ,
Xpar

ch

{
Bk

j

}
is the part of the chromosome Xpar

ch , which codes parameters of
the output fuzzy set Bk

j .
The stability of the component ffsimilarity (Xch) is done by adding the vari-

able wsimilarity . Then ffsimilarity (Xch) ∈ (wffsimilarity , wffsimilarity + 1].
The value of wffcomplexity was set experimentally.
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The similarity of fuzzy sets in (17) can be defined with use of many dif-
ferent methods ([15], [28]). In our simulations the method presented in [15]
was used.

3.4 Initialization of the Initial Parents Population

Initial values of genes in the initial parent population are the following:

– Genes in chromosome Xpar
ch , ch = 1, . . . , μ, corresponding to the input fuzzy

sets Ai
k, k = 1, . . . , N , i = 1, . . . , n, (x̄Ai,k and σAi,k) and genes corresponding

to the output fuzzy sets Bk
j , j = 1, . . . ,m, k = 1, . . . , N , (ȳBj,k and σBj,k) were

initialized based on the method described in [23].
– Genes in chromosome Xpar

ch , ch = 1, . . . , μ, corresponding to discretization
points ȳr, r = 1, . . . , R, are chosen as random numbers.

– Genes in chromosome Xred
ch , ch = 1, . . . , μ, are chosen as random numbers

from [0, 1].
– Genes in chromosome Xred

ch , ch = 1, . . . , μ, corresponding to weights of an-
tecedents wA

i,k, i = 1, . . . , n, k = 1, . . . , Nmax, are chosen as random numbers
from [0, 1].

The components of the mutation range σparch , ch = 1, . . . , μ, are equal to 1 before
the evolution process.

4 Simulation Results

In the simulations two problems were considered: chemical plant problem [62]
and Box and Jenkins gas furnace problem [6]. In both cases system with good
accuracy and clear fuzzy rules was searched.

4.1 Chemical Plant Problem

We consider a model of an operator’s control of a chemical plant. The plant
produces polymers by polymerisating some monomers. Since the start up of the
plant is very complicated, men have to perform the manual operations at the
plant. Three continuous inputs are chosen for controlling the system: monomer
concentration, change of monomer concentration and monomer flow rate. The
output is the set point for the monomer flow rate.

The characteristic features of the used evolution strategy (μ, λ) can be sum-
marized as follows:

– The number of parent population μ = 128.
– The number of temporary population λ = 256.
– Constants C = 1.2, ε0 = 0.01.
– The algorithm performs 2000 steps (generations).
– The mutation probability was set as pm = 0.1.
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Table 1. The accuracy of the various methods for chemical plant problem

Method Average RMSE
Pal and Chakraborty ([43]) 0.0092
Lin and Cunningham ([39]) 0.0079
Rutkowski ([49]) (N = 6) 0.0042

Rutkowski and Cpałka ([14]) (N = 6) 0.0035
our result (N = 3) 0.0061

Fig. 1. Inputs and outputs fuzzy sets of the neuro-fuzzy system (3) for the chemical
plant problem

– The crossover probability was set as pc = 0.8.
– The value of wffcomplexity was set as 1.
– The value of wffsimilarity was set as 1.

The characteristic features of the used neuro-fuzzy system (3) can be summarized
as follows:

– As membership function the Gauss function was used.
– The t-norm of the minimum type was used to aggregation of antecedents.
– The t-norm of the minimum type was used as inference operators.
– The t-conorm of the maximum type was used to aggregation of the rules.
– Maximum number of rules was set as Nmax = 5.
– Maximum number of discretization points was set as Rmax = 10.

The rules of the obtained neuro-fuzzy system are described by the formula:

⎧⎨⎩
R(1) :

[
IF
(
x1isA1

1

) ∣∣wτ
1,1AND

(
x3isA1

3

) ∣∣wτ
1,3 THEN

(
y1isB1

1

)] ∣∣wrule
1

R(2) :
[
IF
(
x2isA2

2

) ∣∣wτ
2,2AND

(
x3IisA2

3

) ∣∣wτ
2,3 THEN

(
y2isB2

1

)] ∣∣wrule
2

R(3) :
[
IF
(
x3isA3

3

) ∣∣wτ
3,3 THEN

(
y3isB3

1

)] ∣∣wrule
3

. (18)

The simulation results can be summarized as follows:
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– In the simulation the good accuracy was achieved with the small number of
rules (N=3).

– In the system working with three rules 4 antecedents was reduced (A2
1, A3

1,
A1

2, A3
2), which additionally increased the interpretability of the system.

– In the evolutionary system remain 4 discretization points (R>N). Further-
more, the number of discretization points does not decrease the interpretabil-
ity of the system.

– The system allows to arrange simple and clear fuzzy sets (Fig. 1).

4.2 Box and Jenkins Gas Furnace Problem

The Box and Jenkins gas furnace data consists of 296 measurements of the gas
furnace system: the input measurement u(k) is the gas flow rate into the furnace
and the output measurement is the CO2 concentration in the outlet gas. The
sampling interval is 9 s.

Table 2. The accuracy of the various methods for Box and Jenkins gas furnace problem

Method Number of inputs/rules RMSE
Box and Jenkins [6] 6/- 0.4494

Sugeno and Yasukawa [62] 3/6 0.4358
Wang and Langari [64] 6/2 0.2569
Sugeno and Tanaka [61] 6/2 0.2607

Lin and Cunningham [39] 5/4 0.2664
Kim et al [29] 6/2 0.2190

Delgado et al [18] 2/4 0.4100
Yoshinari [66] 2/6 0.5460

Rutkowski and Cpałka [50] 6/4 0.2416
our result 4/3 0.2956

The characteristic features of the used evolution strategy (μ, λ) can be sum-
marized as follows:

– The number of parent population μ = 128.
– The number of temporary population λ = 256.
– Constants C = 1.2, ε0 = 0.01
– The algorithm performs 2000 steps (generations).
– The mutation probability was set as pm = 0.15.
– The crossover probability was set as pc = 0.85.
– The value of wffcomplexity was set as 1.
– The value of wffsimilarity was set as 1.

The characteristic features of the used neuro-fuzzy system can be summarized
as follows:

– As membership function the Gauss function was used.
– The t-norm of the algebraic type was used to aggregation of antecedents.
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Fig. 2. Inputs and outputs fuzzy sets of the neuro-fuzzy system (3) for Box and Jenkins
gas furnace problem

– The t-norm of the algebraic type was used as inference operators.
– The t-conorm of the algebraic type was used to aggregation of rules.
– Maximum number of rules was set as Nmax = 5.
– Maximum number of discretization points was set as Rmax = 10.

The rules of neuro-fuzzy system are described by the formula:

⎧⎪⎪⎨⎪⎪⎩
R(1) :

[
IF
(
xisA1

1

) ∣∣wτ
1,1 THEN

(
y1isB1

1

)] ∣∣wrule
1

R(2) :
[
IF
(
x1isA2

1

) ∣∣wτ
2,1AND

(
x5isA2

5

) ∣∣wτ
2,5 THEN

(
y2isB2

1

)] ∣∣wrule
2

R(3) :

[
IF
(
x1isA3

1

) ∣∣wτ
3,1 AND

(
x3isA3

3

) ∣∣wτ
3,3 AND(

x6isA3
6

) ∣∣wτ
3,6 THEN

(
y3isB3

1

) ] ∣∣wrule
3

. (19)

The simulation results can be summarized as follows:

– In the simulation the good accuracy was achieved with the small number of
rules (N=3) and small number of inputs (n = 4).

– In the system working with three rules 6 antecedents (A1
3, A1

5, A1
6, A2

3, A2
6,

A3
5) and two inputs (x̄2, x̄4) was reduced, which additionally increased the

interpretability of the system.
– In the evolutionary system remain 4 discretization points (R>N). Further-

more, the number of discretization points does not decrease the interpretabil-
ity of the system.

– The system allows to arrange clear and simple fuzzy sets (Fig. 2).

On the Fig. 3 the dependence of the RMSE error and number of L parameters
were presented. It can noticed that in case of assumed number of learning steps
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Fig. 3. The dependence between RMSE and the number of system parameters (3) for
the following problems: a) chemical plant problem, b) Box and Jenkins gas furnace
problem. The results of the best chromosomes are marked with circles.

Fig. 4. Exemplary weights representation in the neuro-fuzzy system (3) (dark areas
correspond to low values of weights and vice versa) for the following problems: a)
chemical plant problem, b) Box and Jenkins gas furnace problem

(generations) the systems which have the smaller number of the parameters work
with higher accuracy than the other ones (please see case L = 18 on the Fig 3.a
and case L = 20 on the Fig 3.b). It results from the fact that simpler system
is easier to be taught. In both cases the results with best RMSE value wasn’t
picked. It results from not clearly arranged fuzzy sets and smaller amount of
reduced elements in the system.

5 Conclusions

In this paper a new method for learning of neuro-fuzzy systems construction for
the nonlinear modelling was proposed. It allows to obtain a good accuracy of sys-
tem work, possibly simple rules and low complexity of the system. The method
is based on the evolution strategy (μ, λ) with the appropriately selected chro-
mosome fitness function. The simulation results confirmed the appropriateness
of the work of the system.
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Abstract. The goal of the paper is to present an original concept of rep-
resentation of financial high frequency data using Ordered Fuzzy Num-
bers. This approach allows the transition from high frequency data (e.g.
ticks, minutes) to lower frequency data (e.g. daily) while maintaining
more information about price movement at assumed time interval than
using the popular price charts (e.g. Japanese Candlestick chart). The
financial data are modeled using Ordered Fuzzy Numbers called further
by Ordered Fuzzy Candlesticks. The use of them allows also modeling
uncertainty associated with financial data. How to construct and use Or-
dered Fuzzy Candlesticks are presented in the main part of this paper.

1 Introduction

Modern financial data sets may contain tens of thousands of quotes in a single
day time stamped to the nearest second. Making investment decisions based on
observation of each single quotation is very difficult or even impossible. Therefore
a large part of investors very often use price charts analysis to make decisions.

The price charts (e.g. Japanese Candlestick chart) are used to illustrate move-
ments in the price of a financial instrument over time. Notice, that using the
price chart, a large part of the information about the process is lost, e.g. using
Japanese Candlestick chart with daily frequency, for one day, we know only four
prices (i.e. open, low, high and close), while in this time the price has changed
hundreds of times. In spite of this Japanese Candlestick charting techniques are
very popular among traders and allow for achieve more than average profits.
More details about the Japanese Candlesticks and trading techniques based on
them can be found in [14].

In our previous paper [13] we showed how we can using fuzzy logic (i.e. ordered
fuzzy numbers), to model uncertainty associated with financial data and to keep
more information about price movement. The idea, construction methods and
example of application of Ordered Fuzzy Candlesticks are specifically discussed
in this work. In addition some new concepts are also presented.
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c© Springer-Verlag Berlin Heidelberg 2013



346 A. Marsza�lek and T. Burczyński

2 From Financial Data to Ordered Fuzzy Candlestick

2.1 Ordered Fuzzy Numbers (OFN)

Ordered Fuzzy Numbers introduced by Kosiński et al. in series of papers [4–8]
are defined by ordered pairs of continuous real functions defined on the interval
[0, 1] i.e. A = (f, g) with f, g: [0, 1] → IR as continuous functions. Furthermore,
the basic arithmetic operations on ordered fuzzy numbers are defined as the
pairwise operations of their elements.

Let A = (fA, gA), B = (fB, gB) and C = (fC , gC) are ordered fuzzy numbers.
The sum C = A+ B, subtraction C = A−B, product C = A · B, and division
C = A÷B are defined by formula

fC(y) = fA(y) ∗ fB(y), gC(y) = gA(y) ∗ gB(y)

where ∗ works for +, −, · and ÷, respectively, and where C = A÷B is defined,
if the functions |fB| and |gB| are bigger than zero. In a similar way, multiply an
ordered fuzzy number A by a scalar λ ∈ IR, i.e. C = λ · A is defined by formula

fC(y) = λ · fA(y), gC(y) = λ · gA(y)

This definition leads to some usefull properties. The one of them is existence of
neutral elements of addition and multiplication. This fact causes that not always
the result of an arithmetic operation is a fuzzy number with a larger support.
This allows to build fuzzy models based on ordered fuzzy numbers in the form
of the classical equations without losing the accuracy.

Moreover, a universe O of all ordered fuzzy numbers can be identified with
C0([0, 1]) × C0([0, 1]), hence the space O is topologically a Banach space [7].
A class of defuzzification operators of ordered fuzzy numbers can be defined,
as a linear and continuous functionals on the Banach space O, thanks to the
general representation theorem (of Banach-Kakutami-Riesz) they are uniquely
determined by a pair of Radon measures (ν1, ν2) on [0, 1], as

Def(A) =

1∫
0

fAdν1 +

1∫
0

gAdν2

where Def(A) is the value of a defuzzification operator at the ordered fuzzy
number A = (fA, gA).

In addition, note that a pair of continuous functions (f, g) determines different
ordered fuzzy number than the pair (g, f). In this way, we appointed an extra
feature to this object, named the orientation. Depending on the orientation, the
ordered fuzzy numbers can be divided into two types: a positive orientation, if
the direction of ordered fuzzy number is consistent with the direction of the axis
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Ox and a negative orientation, if the direction of the ordered fuzzy number is
opposite to the direction of the axis Ox.

2.2 Ordered Fuzzy Candlesticks

Generally, in this approach, a fixed time interval of financial high frequency data
is identified with ordered fuzzy number and it is called Ordered Fuzzy Candlestick
(OFC). The general idea is presented in Fig. 1. Notice, that the orientation of
the ordered fuzzy number shows whether the ordered fuzzy candlestick is long
or short. While the information about movements in the price are contained in
the shape of the f and g functions. In the following sections we will show how
the ordered fuzzy candlestick can be constructed.

Fig. 1. General idea of concept of Orderd Fuzzy Candlestick

Ordered Fuzzy Candlestick with a Fixed Shape. One possibility is to
construct an ordered fuzzy candlestick with assumption fixed shape of f and g
functions (e.g. linear, etc.).

Let {Xt: t ∈ T } be a given time series and T = {1, 2, . . . , n}. The ordered
fuzzy candlestick is defined as an ordered fuzzy number C = (f, g) which satis-
fies the following conditions 1 - 4 or 5 - 8.

For Long Candlestick

1. X1 ≤ Xn

2. f : [0, 1]→ IR is continuous and increasing on [0, 1]

3. g: [0, 1]→ IR is continuous and decreasing on [0, 1]
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4. S1 < S2, f(1) = S1, f(0) = min
t∈T

Xt − C1, g(1) = S2 and g(0) is such that

the ratios
Fg
A

and
Ff
B

are equal.

For Short Candlestick

5. X1 > Xn

6. f : [0, 1]→ IR is continuous and decreasing on [0, 1]

7. g: [0, 1]→ IR is continuous and increasing on [0, 1]

8. S1 < S2, f(1) = S2, f(0) = max
t∈T

Xt + C2, g(1) = S1 and g(0) is such that

the ratios
Ff
A

and
Fg
B

are equal.

In the above conditions the center of ordered fuzzy candlestick (i.e. added in-
terval) is designated by parameters S1, S2 ∈ [mint∈T Xt,maxt∈T Xt] and can be
compute as different kinds of averages (e.g. arithmetic, weighted or exponential).
While C1 and C2 are arbitrary nonnegative real numbers, which further extend
the support of fuzzy numbers and can be compute e.g. as standard deviation or
volatility of Xt. The parameters A and B are positive real numbers, which de-
termine the relationship between the functions f and g. They can be calculated
as the mass of the desired area with the assumed density (see Fig. 1). Numbers
Ff and Fg are the fields under the graph of functions f−1 and g−1, respectively.

Example 1: Trapezoid OFC. Suppose that f and g are linear functions in form

f(y) = (f(1)− f(0)) y + f(0) and g(y) = (g(1)− g(0)) y + g(0),

then the ordered fuzzy candlestick C = (f, g) is called a trapezoid OFC, especially
if S1 = S2 then also can be called a Triangular OFC.
Let Xt be a given time series. Suppose that X1 ≤ Xn then we have

f(y) = (S1 −minXt + C1)y + minXt − C1

g(y) = (S2 − g(0))y + g(0) where g(0) =
A

B
(S1 −minXt + C1) + S2.

Whereas if X1 > Xn then we have

f(y) = (S2 −maxXt + C2)y + maxXt + C2

g(y) = (S1 − g(0))y + g(0) where g(0) =
B

A
(S2 −maxXt − C2) + S1.

Example 2: Gaussian OFC. The ordered fuzzy candlestick C = (f, g) where
the membership relation has a shape similar to the Gaussian function is called
a Gaussian OFC. It means that f and g are given by functions

f(y) = f(z) = σf
√
−2 ln(z) +mf and g(y) = g(z) = σg

√
−2 ln(z) +mg,

where e.g. z = 0.99y + 0.01.
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Let Xt be a given time series. Suppose that X1 ≤ Xn then we have

f(z) = σf
√
−2 ln(z) +mf where mf = S1, σf =

minXt − C1 − S1√
−2 ln(0.01)

≤ 0.

g(z) = σg
√
−2 ln(z) +mg where mg = S2, σg = −A

B
σf .

Whereas if X1 > Xn then we have

f(z) = σf
√
−2 ln(z) +mf where mf = S2, σf =

maxXt + C1 − S2√
−2 ln(0.01)

≥ 0.

g(z) = σg
√
−2 ln(z) +mg where mg = S1, σg = −B

A
σf .

The examples of realizations of Trapezoid and Gaussian Ordered Fuzzy Can-
dlecticks are presented in Fig. 2.

Fig. 2. Examples of Trapezoid and Gaussian OFC

Empirical Ordered Fuzzy Candlestick. In this paper we propose a new
type of fuzzy candlesticks, in which functions f and g can be take any shape.
The empirical OFC is also ordered fuzzy numbers but its member functions are
defined in similar way as the empirical distribution in the statistical sciences.

Let {Xt: t ∈ T } be a given time series and T = {1, 2, . . . , n}. The values of
parameters S1, S2 and C1, C2 are determined based on a time series of Xt. The
new time series of Yt is created from time series of Xt by sorting in ascending.

Next, the two time series Y
(1)
t and Y

(2)
t are created as

Y
(1)
t = {Yi:Y0 ≤ Yi ≤ S1} t ∈ {0, 1, . . . ,K1}

Y
(2)
t = {Yi:S2 ≤ Yi ≤ Yn} t ∈ {0, 1, . . . ,K2}
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Now, based on these time series we define the two discrete functions on interval
[0, 1] with step dx = 1

M (i.e. M + 1 points) as

Ψ1(k · dx) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Y

(1)
0 − C1 if k = 0

Y
(1)

[ k
dx ]

if k ∈ {1, 2, . . . ,M − 1}

S1 if k = M

Ψ2(k · dx) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Y

(2)
K2

+ C2 if k = 0

Y
(2)

K2−[ k
dx ]

if k ∈ {1, 2, . . . ,M − 1}

S2 if k = M

Then the empirical OFC is an ordered fuzzy number C = (f, g) where the func-
tions f and g are continous approximation of functions Ψ1 and Ψ2, respectively
for long candlestick, whilst for short candlestick Ψ2 and Ψ1, respectively. The
example of realization of the Empirical Ordered Fuzzy Candlectick is presented
in Fig. 3.

Fig. 3. Example of Empirical OFC

2.3 Ordered Fuzzy Autoregressive Models (OFAR(p))

An classical autoregressive model (AR(p)) is one where the current value of
a variable, depends upon only the values that the variable took in previous
periods plus an error term [16]. The presented approach, an ordered fuzzy au-
toregressive model of order p, denoted as OFAR(p), in natural way is fully fuzzy
AR(p) and can be expressed as

Xt = α0 +

p∑
i=1

αiXt−i + εt,

where Xt−i are the ordered fuzzy candlesticks at a time period t, αi are fuzzy
coefficients given by arbitrary ordered fuzzy numbers and εt is an error term.
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Estimation of OFAR(p) Models. The Least Squares Method is proposed
for estimation fuzzy parameters αi in OFAR(p) model and one is defined using
a distance measure. The measure of the distance between two ordered fuzzy
numbers is expressed by formula

d(A,B) = d ((fA, gA), (fB, gB)) = ‖fA − fB‖L2 + ‖gA − gB‖L2 ,

where ‖ · ‖ is a metric induced by the L2-norm. Hence, the least-square method
for OFAR(p) is to minimize the following objective function

E =
∑
t

d

(
Xt, α0 +

p∑
i=1

αiXt−i

)
.

So-defined function does not guarantee that received coefficients will be ordered
fuzzy numbers, so we have to control coefficients in the course of estimation.

Forecasting Using OFAR(p) Models. Forecasts of the OFAR(p) model are
obtained recursively in a similar way as for the calssical AR(p) model. Let t be
the starting date for forecasting. Then, the 1-step ahead forecast for Xt+1 is

Xt+1 = α0 +

p∑
i=1

αiXt+1−i.

The result of forecast is ordered fuzzy number, which includes three kinds of
predictions:

– point forecast: given by value of a defuzzification operator,
– interval forecast: given by subset of support of the ordered fuzzy number

in classical meaning,
– direction forecast: given by orientation of the ordered fuzzy number.

3 Conclusion and Future Works

The novel approach to modeled financial high frequency data using an ordered
fuzzy numbers is presented in this paper. We described the representation of
financial data using concept of the ordered fuzzy candlesticks. Moreover, the
proposed ordered fuzzy autoregressive models allows to forecasting financial time
series in the simple form of classical equations. The future work can be related to
the extension of the ordered fuzzy candlesticks concept and some experiments
with the prediction of financial time series using proposed time series models
based on ordered fuzzy numbers. Our approach can be also successfully applied
for many other area of financial modeling, e.g. modeling of volatility and risk
management.
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Abstract. The paper presents modified formalism to perform fuzzy operations 
on correlated assessments. The application of the standard formalism used in 
Zadeh’s fuzzy logic requires an arbitrary setting of triangular norms and some-
times provides ridiculous results which are inconsistent with the gathered expe-
rimental data. The author discovered that the membership function’s value may 
be treated as the mean of statements individually evaluated into YES or NO by 
a panel of human judges with identifiable identity. It leads to a fundamental 
change because a pair of triangular norms selected for fuzzy logic is proven and 
not arbitrarily set. The paper proposes generalization of the fuzzy description 
into a form of a binary vector. It moves evaluation of statements with fuzzy  
logic variables into the space of vectors of Boolean components. The new inter-
pretation gives fuzzy variables and values an identity, which is necessary for 
operations with correlations. Additionally, due to a binary vector data structure, 
it potentially allows to perform computations utilizing collective intelligence 
methods such as genetic algorithms. 

Keywords: fuzzy sets, fuzzy logic, binomial sequences, subjective assessments. 

1 Introduction 

The comfort of passengers in vehicles is one of the most significant dynamic perfor-
mance characteristics of rail vehicles and therefore of utmost importance. The ride 
comfort is determined by many factors, inner (related to particular person) and outer 
(related to vehicle environment and ride dynamic). A vibration is the factor recog-
nized with significant importance. The human response to vibration is highly variable 
and depends on magnitude, frequencies, direction and duration of vibrations. 

ISO Standard 2631 [1] and British Standard 6841 [2] precisely define procedures 
for prediction of vibration discomfort basing on measured vibration at the seat pan, 
the seat back and the feet of seated person. The standards use RMS (root mean 
square) of measured acceleration of vibration. 

Experimental studies [3] revealed that doubling vibration magnitude requires six-
teen-fold reduction of duration to maintain equivalence comfort feeling. It led to in-
troduction of RMQ (root mean quadruple) of measured acceleration of vibration. Both 
RMS and RMQ are averages of acceleration over time interval. It may lead to false 
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prediction of discomfort if the vibration signal is not stationery. The remedy for this 
problem is Vibration Dose Value [1, 4] which is related to RMQ but not averaged 
over time. It means that VDV measures cumulative dose of vibration. Other ap-
proaches to comfort assessment base on whole three-dimensional vector of vibration 
acceleration like e.g. CEN ENV12299 [5] introducing NMV measure. 

BS 6841 and ISO 2631 standards introduce discomfort scale defined as a set of 
overlapped classes of RMS named: not uncomfortable (less than 0.315), a little un-
comfortable (0.315÷0.63), fairly uncomfortable (0.5÷1.0), uncomfortable (0.8÷1.6), 
very uncomfortable (1.25÷2.5), extremely uncomfortable (greater than 2.0). It clearly 
leads to fuzzy assessment. Analogically, CEN ENV 12299 defines its discomfort 
scale as a set of non-overlapped classes of its measure NMV named: very comfortable 
(less than 1.5), comfortable (1.5÷2.5), medium (2.5÷3.5), uncomfortable (3.5÷4.5), 
very uncomfortable (greater than 4.5). 

Grzegożek, Szczygieł and Król [6] began the study on rail vehicles in 2009. They 
designed and performed a passive experiment to collect data describing physical con-
ditions of ride and associated subjective assessment of comfort. Fourteen people were 
driving in a tram and synchronously evaluating ride comfort using electronic panels. 
The comfort was evaluated on the discrete ordinal scale of 1 to 5. At the same time 
tram’s deck computer were recording  through sensors values of acceleration in three 
perpendicular axes. The analysis of collected data detected the discrepancies between 
predictions based on standards [1, 2, 4, 5] and empirical results [6]. Standard models 
clearly proved to be too simplified and building of more complex model is very desir-
able. Current work is focused on an ordinal logistic regression models [7]. 

Basing on collected data [6], author start to construct a predicting model involving 
fuzzy logic into regression like used in similar design of experimts (DoE) approach 
[8]. In contrast, however, it turned out that the data do not allow the consistent use of 
a single pair of triangular norms [9-11]. Detailed analysis of the raw data revealed that 
the significant correlation of collected pairwise data is a cause of the problem. Typical 
data conversion to the fuzzy form loses information about the correlation. Lack of this 
information manifests by instability of selection for best-fitting pair of triangular 
norms. 

Bellman and Zadeh [12] has already stated that it is impossible to choose a pair of 
triangular norms that match all the issues. In the author's opinion, the ambiguity of the 
choice reflects hidden information about the correlation of variables. In most cases, 
this information is not available and then remains – as usually – the matching the best 
pair of triangular norms for the empirical data. In this case, the fuzzy model appears 
as a latent variables model with hidden information about correlation. 

However, if the correlation information is available, it would be a mistake to ig-
nore it. Author proposes a formalism in which a binary vector of assessments is a 
basic data structure and the scalar fuzzy measure appears at the end of calculations as 
the average value of this vector’s components. The overall idea is that the entire se-
quence of calculations is carried out with the use of binary assessment vectors, and 
the scalar fuzzy measure is calculated at the final. The details of this proposal are 
discussed later in this article. 
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2 Proposal of the Formalism 

2.1 Zadeh’s Approach – A Starting Point 

Fuzzy sets algebra and coupled fuzzy logic were defined by L. Zadeh in 1965 [13]. 
The basic element of formalism is a concept of a membership function μ. The func-
tion is defined for a particular crisp set taken from a space X: 

 : [0, 1]A →Xμ  (1) 

where X is non-empty space and notation μA means membership function of a fuzzy 
set A. Formally, the fuzzy set A is defined as a set of pairs – elements from the space 
X and assigned memberships: 

 ( ) }{ , ( ) : ( ) [0,1]A Ax x x xμ μ= ∈ ∧ ∈A X  . (2) 

A membership function’s value is interpreted as a level of element’s belonging to a 
fuzzy set. The value of 0 means lack of belonging, the value of 1 – a full belonging, 
intermediate values – partial belonging. There are unary and binary algebraic opera-
tions introduced for the such defined fuzzy set. Operations are induced by operations 
on coupled membership functions: 

1. intersection of fuzzy sets 

 
( ) }{ , : ( ) T( ( ), ( ))BA B A B Ax x x x xμ μ μ μ∩ ∩∩ = ∈ ∧ =A B X  (3) 

where T : [0,1] [0,1] [0,1]× →   is one of so called t-norms [9-11]. An example of 

t-norm is ( ) min( ( ), ( ))A B A Bx x xμ μ μ∩ = . 

2. union of fuzzy sets 

 ( ) }{ , : ( ) ( ( ), ( ))A B A B A Bx x x S x xμ μ μ μ∪ ∪∪ = ∈ ∧ =A B X   (4) 

where S : [0,1] [0,1] [0,1]× →   is one of so called t-conorm [9-11]. An example of 

t-conorm is ( ) max( ( ), ( ))A B A Bx x xμ μ μ∪ = . 

3. complement of fuzzy set 

 
( ) }{ , : ( ) 1 ( )Ax x x xμ μ μ= ∈ ∧ = −

A A
A X

 
 (5) 

The pair of triangle norms should be selected for a particular problem depending on 
its specific features. It is a known difficulty noticed already by Bellman and Zadeh 
[12]. There is no possibility to define fuzzy sets algebra operations in a form being 
universal and applicable in all situations. Restrictions originated from this difficulty 
were identified and analyzed by Klement, Mesiar and Pap [14]. There are dual pairs 
defined for triangle norms: t-norm and t-conorm. They must comply with general 
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assumptions of norm in metric spaces. Comprehensive descriptions based on func-
tional equations theory results may be found in [15, 16]. Such defined fuzzy sets al-
gebra has some features of classic sets algebra: idempotency, commutativity, associa-
tivity although the  law of excluded middle and law of contradiction do not hold: 

∪ ≠A A X  and ∩ ≠ ∅A A . 
The algebra ( ( ), , , )−∪ ∩F X , where ( )F X   denotes family of all fuzzy sets in 

space X, is not Boolean algebra but weaker De Morgan algebra [17, 18]. The algebra
( ( ), , , )−∨ ∧Fz X , where Fz(X) denotes family of all membership functions over space 

X, is not Boolean algebra but also De Morgan algebra [17, 18]. There is alternative 
concept around fuzzy sets involving two functions. Atanassov [19, 20] proposed to 
couple two features with element from space X: membership and non-membership. 
The completeness up to 1 is named hesitance. This concept is known as intuitions 
fuzzy sets (IFS). Difficulties with continuous membership function in clustering prob-
lems lead to three-level discretised membership which is known as shadowed fuzzy 
sets (SFS), proposed by Pedrycz [21]. Fuzzy sets in R1 have a main technical impor-
tance and if such sets comply with special assumptions then they are named fuzzy 
numbers [22]. The implementation of fuzzy number algebra is difficult to utilize and 
many different approaches were proposed e.g. trapezoidal and its derivatives [23-24]. 
Regardless of successes, the concept of fuzziness and its relatives are strongly criti-
cized by many mathematicians and statisticians e.g. de Finetti [25]. The main objec-
tions are imprecision in ‘fuzziness’ definition and redundancy in comparison to  
well-known probabilistic uncertainty. On the other way, the users’ objections are 
focused on calculus difficulties and choice of triangular norms what are arbitrary 
selected to a particular problem. 

2.2 Difficulties in Fuzzy Numbers Calculus 

The main purpose of author’s investigation was adoption of fuzzy methods into de-
sign of experiment domain. During this work many difficulties were found in imple-
mentation of calculus but more fundamentally also. The existing fuzzy number theory 
mutations could not allow to evaluate expression where the same fuzzy variable is 
involved in many places. All appearances of the variable are treated as completely 
uncorrelated and it generates results for contextually forbidden combinations of fuzzy 
number elements. There are many ridiculous contradictions not allowed in classic 
arithmetic. 

The main problem is identity of the value. For a real number its identity is its val-
ue, position on R1 scale. There is not equivalent identity for a fuzzy set. Thus all poss-
ible combinations of elements are involved while evaluating fuzzy expression. It has 
no sense for any physical variable. Fuzzy set describes uncertainty about value of the 
variable, but the variable itself can be in only one state at the moment, not in two or 
more different states. Adoptions of fuzzy number calculus are mainly concentrated on 
fuzzy functions of real (crisp) arguments. This allows to avoid mentioned correlation 
problem [26]. Regardless of this imperfect arithmetic, there are many trials to build 
even formal fuzzy statistics [27]. Author assessed that the reason of his efforts failing 
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was the lack of fuzzy value identity and the loss of correlation information. Thus the 
constructing of fuzzy value identity should be the first. The fuzzy sets algebra (and 
derived fuzzy numbers algebra also) recognize two fuzzy sets as equal if and only if 
for each element of the space X membership functions are equal also: 

 ( ) ( )x x xμ μ= ⇔ ∀ ∈ =A BA B X  . (6) 

Such defined fuzzy sets equality disallows identity assigning to fuzzy values and con-
sideration of correlation levels. The scalar membership function is insufficient for 
such description of a fuzzy value. It is necessary to create a formalism which allows 

( ) ( )x x x∀ ∈ =A BX μ μ  even though ≠A B . The substitute should be consistent with 

existing fuzzy sets and fuzzy logic formalism in asymptotic form or particular case. 

2.3 Outline of Proposed Sequential-Binary Concept 

Author proposes that value of membership function should be treated as a weighted 
result of voting where some human voting panel is involved. Individual vote is binary 
as only ‘YES’ or ‘NO’. Theoretically number of the panel may be even infinite but 
countable. The main proposal is an assumption: a sequence of votes on the truth of ‘p’ 
sentence is the only description of this truth. The membership function is replaced 
with potentially infinite binary sequence. The membership function becomes only 
simpler form of the sequence presentation but without sequence pattern information. 
Equality of two membership functions should be replaced by an equality of two bi-
nary sequences in all positions. Additionally it allows to differentiate behavior of 
fuzzy values in binary operations between them. 

In such approach, fuzzy sets algebra and fuzzy logic algebra operations are induced 
as Boolean operations on paired elements of binary sequences. It quite similar to op-
erations involved during fuzzy sets aggregations described by Klement, Mesiar and 
Pap [14]. Properties of similar Bernoulli infinite sequences was investigated by de 
Finetti [25]. In the remaining part of the article, the proposed formalism will be 
named YAAFL (Yet Another Approach to Fuzzy Logic). 

2.4 Formal Definition of Proposed Formalism 

Let triple (Ω, S, P) is a probabilistic space. Let elementary events space 0 1{ , }ω ωΩ = , 

where ω0 denotes decision ‘NO’ and ω1 – ‘YES’. Let S denotes σ-field on Borel sets 
in Ω. Every set belonging to S is named event.  Let P denotes non-negative real func-
tion on domain S and co-domain [0, 1] with following values for events from S:
P( ) 0∅ = , 0P({ }) 1ω μ= − , 1P({ })ω μ= , 0 1P({ } { }) 1ω ω∪ = . P is named probability 

distribution. Let B denotes binary subset of R1: B {0,1}= . 

Let X1, …, Xn denotes binomial independent random variables which comply with 
following conditions: X : Bii n∀ ≤ Ω→ { : X ( ) }ii n x x Sω ω∀ ≤ ∀ ∈ < ∈R . 
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Let {X }n  denotes n-element random sequence. The membership n-bit sequence is 

defined as a realization of random sequence for particular event{X }( ) Bn
n ω ∈ , where 

Bn is a space of all possible n-bit membership sequences. For such defined sequences 
algebra operations may be induced from Boolean algebra operations on sequences 
elements’ pair: 

1. intersection of membership sequences {Xn} and  {Yn} 

 { } { }( ) { }X Y ( ) X ( ) Y ( )n n n nω ω ω∩ = ∧ , (7) 

2. union of membership sequences {Xn} and {Yn} 

 { } { }( ) { }X Y ( ) X ( ) Y ( )n n n nω ω ω∪ = ∨ ,  (8) 

3. negation of the membership sequence {Xn} 

 { } { }X ( ) X ( )n nω ω=  . (9) 

Such defined algebra (B , , , )n ∩ ∪   is Boolean algebra. The weighted Hamming 

measure for membership sequence {Xn}(ω) is formulated: 

 { }( )
1

1
X ( ) X ( )

n

n n
in

μ ω ω
=

=  .  (10) 

Semantically such defined weighted measure μ is consistent with existing Zadeh’s 
membership function but it is necessary to note that all operations of YAAFL formal-
ism should be provided on membership sequences. A projection of the sequence into 
scalar value may be used only for synthetic information. 

3 Description of Achieved Results 

3.1 Logic Laws Complying 

Let {Xn} denotes membership sequence in Bn space. The law of excluded middle 

∪ =A A X   and law of contradiction ∩ =∅A A   hold. This is the main difference 
in comparison to existing Zadeh’s formalism. The proof is presented below. 

Consider the product of this sequence and its negation: 

 { } { }( ) { }X X ( ) X ( ) X ( )n n n nω ω ω∩ = ∧ .  (11) 

The right side of equality is calculated according to the rules of Boolean algebra, so 
finally: 

 { } { }( ) { }X X ( ) 0n n nω∩ = .  (12) 
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The value of membership function for this expression is also scalar zero: 

 { } { }( )( )X X ( ) 0n nμ ω ω∩ = ∀ ,  (13) 

which is different from the result obtained in the case of scalar membership function. 
On the other hand, consider the sum of the sequence and its negation: 

 { } { }( ) { }X X ( ) X ( ) X ( )n n n nω ω ω∪ = ∨ .  (14) 

The right side of equality is calculated according to the rules of Boolean algebra, so: 

 { } { }( ) { }X X ( ) 1n n nω∪ = .  (15) 

The value of membership function for this expression is also scalar one: 

 { } { }( )( )X X ( ) 1n nμ ω ω∪ = ∀ ,  (16) 

This result is also different than in the case of scalar membership function. 

3.2 Conformity with Triangular Norms 

Min-max Norms  
Let{ }Xn  and { }Yn  denotes membership sequences in Bn space. If both sequences 

are sorted in the same direction (it means that all 1’s are on heads or tails of se-
quences) then weighted Hamming measures for intersection and union of both se-
quences are equal to min-max norms. It describes variables with correlations close to 
+1. The proof is presented below. 

Let the mapping Desc : B Bn n→  sorts membership sequence in descending order 

(1s – firstly, 0s – later), where the effect of the mapping is defined by the formula: 

 { }( )
1

Desc : 1 1 0
n

n n i j n
m

x z i k z k j n z k x
=

 = ∀ ≤ ≤ = ∧ ∀ < ≤ = ∧ = 
 

 .  (17) 

Let { }Xn  and { }Yn  be any n-element sequences in the space Bn. Consider the 

product of sorted sequences: 

 

{ }( ) { }( )

1 1

Desc Desc

: 1 1 0 min( , )

n n

n n

n i j m m
m m

x y

z i k z k j n z k x y
= =

 
 
 

∩ =

= ∀ ≤ ≤ = ∧ ∀ < ≤ = ∧ =  
  (18) 

The membership function of such product is equal to: 
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 { }( ) { }( )( ) { }( )( ) { }( )( )( )Desc Desc min Desc , Descn n n nx y x yμ μ μ∩ =   (19) 

as it was to prove. Now consider the sum of sorted sequences: 

 

{ }( ) { }( )

1 1

Desc Desc

: 1 1 0 max( , )

n n

n n

n i j m m
m m

x y

z i k z k j n z k x y
= =

 
 
 

∪ =

= ∀ ≤ ≤ = ∧∀ < ≤ = ∧ =  
  (20) 

The membership function of such product is equal to: 

 { }( ) { }( )( ) { }( )( ) { }( )( )( )Desc Desc max Desc , Descn n n nx y x yμ μ μ∪ =   (21) 

as it was to prove. Such case maximizes the Hamming norm of the product and mini-
mizes the Hamming norm of the sum. 

Łukasiewicz’s Norms  
Let { }Xn  and { }Yn  denotes membership sequences in Bn space. If both sequences 

are sorted in the reverse order (it means that all 1’s are on head of the one sequence 
and tail of the latter) then weighted Hamming measures for intersection and union of 
both sequences are equal to Łukasiewicz’s (logical) norms. It describes variables with 
correlations close to –1. The proof is presented below. 

Let the mapping Asc : B Bn n→  sorts membership sequence in ascending order 

(0s – firstly, 1s – later), where the effect of the mapping is defined by the formula: 

 { }( )
1

Asc : 1 0 1
n

n n i j n
m

x z i k z k j n z k n x
=

 = ∀ ≤ ≤ = ∧ ∀ < ≤ = ∧ = − 
 

 .  (22) 

Let the mapping Desc : B Bn n→  sorts membership sequence in descending order 

and be defined as in formula (eq.17). Let { }Xn  and { }Yn  be any n-element se-

quences in the space Bn. Consider the product of sorted sequences 

{ }( ) { }( )Desc Ascn nx y∩ . The result of this product is highly dependent on whether 

the subsequences of 1s will overlap or not. If subsequences are not overlapped, then 
the product will be sequence of 0s: 

 { }( ) { }( ) { }
1 1

Desc Asc 0
n n

i j n n
i j

x y n x y
= =

+ <  ∩ =  .  (23) 

Similarly, a membership function take the value of zero: 

 { }( ) { }( ) { }( ) { }( )( )Desc Asc 1 Desc Asc 0n n n nx y x yμ μ μ+ <  ∩ = .  (24) 

If subsequences are overlapped, then the products will be in the following form: 
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 { }( ) { }( ) { }
1 1

Desc Asc
n n

i j n n n
i j

x y n x y z
= =

+ ≥  ∩ =  ,  (25) 

where z values are defined by the formula: 

 

1

1 1

1

0

1

0

n

n
k

n n

i n n
k k

n

n
k

i n y

z n y i x

i x

=

= =

=

 ≤ −



= − < ≤



>




 



  (26) 

Membership function takes the value: 

 
{ }( ) { }( )

{ }( ) { }( )( ) { }( ) { }( )
Desc Asc 1

Desc Asc Desc Asc 1

n n

n n n n

x y

x y x y

μ μ

μ μ μ

+ ≥ 

 ∩ = + −
  (27) 

In conclusion, combining both results, the membership function for the product of 
reverse sorted sequences is: 

 { }( ) { }( )( ) { }( ) { }( )( )Desc Asc max 0, Desc Asc 1n n n nx y x yμ μ μ∩ = + −   (28) 

as it was to prove. Now consider the sum { }( ) { }( )Desc Ascn nx y∩  of reverse sorted 

sequences. The result of this sum is also highly dependent on whether the subse-
quences of 1s will overlap or not. If subsequences are overlapped, then the sum will 
be sequence of 1s: 

 { }( ) { }( ) { }
1 1

Desc Asc 1
n n

i j n n
i j

x y n x y
= =

+ ≥  ∪ =  .  (29) 

The membership function of such sum is equal to: 

 { }( ) { }( ) { }( ) { }( )( )Desc Asc 1 Desc Asc 1n n n nx y x yμ μ μ+ ≥  ∪ = .  (30) 

If subsequences are not overlapped, then the products will be in the following form: 

 { }( ) { }( ) { }
1 1

Desc Asc
n n

i j n n n
i j

x y n x y z
= =

+ <  ∪ =  ,  (31) 

where z values are defined by the formula: 
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1

1 1

1

1

0

1

n

n
k

n n

i n n
k k

n

n
k

i x

z x i n y

n y i

=

= =

=

 ≤



= < ≤ −



− <




 



  (32) 

Similarly, the sum of membership function takes the following form: 

 
{ }( ) { }( )

{ }( ) { }( )( ) { }( )( ) { }( )( )
Desc Asc 1

Desc Asc Desc Asc

n n

n n n n

x y

x y x y

μ μ

μ μ μ

+ < 

 ∪ = +
  (33) 

In conclusion, combining both results, the membership function for the sum of re-
verse sorted sequences is: 

 { }( ) { }( )( ) { }( ) { }( )( )Desc Asc min 1, Desc Ascn n n nx y x yμ μ μ∩ = +   (34) 

as it was to prove. Such case minimizes the Hamming norm of the product and maxi-
mizes the Hamming norm of the sum. 

Algebraic Norms  
If both sequences have random pattern of sequence then expected value of weighted 
Hamming measures for intersection and union of both sequences are equal to alge-
braic norms. It describes uncorrelated variables i.e. with correlations close to 0. Let 

{ }Xn  and { }Yn  denotes two randomly independent membership sequences in prob-

abilistic space (Ω, S, P) with probability respectively: 

 P(X 1)i xi μ∀ = = ,  (35) 

 P(Y 1)i yi μ∀ = = . 

Expected values of Hamming measure for the product and the sum of membership 
sequences are equal to algebraic norms: 

 ( ){ } ( ){ }( )( )E X Yn n x yμ ω ω μ μ∩ = ,  (36) 

 ( ){ } ( ){ }( )( )E X Yn n x y x yμ ω ω μ μ μ μ∪ = + − . 

The proof is presented below. The expected value of Hamming measure for the prod-
uct of sequences is given by: 
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 { } { }( )( )
1

1
E X ( ) Y ( ) X ( ) Y ( )

n

n n n n
i

E
n

μ ω ω ω ω
=

 ∩ =  
 
 .  (37) 

Any two elements in each sequence are independent. Similarly, between the strings. 
Therefore: 

 { } { }( )( ) ( ) ( )
1

1
E X ( ) Y ( ) E X ( ) E Y ( )

n

n n n n
in

μ ω ω ω ω
=

∩ =    (38) 

and then: 

 { } { }( )( )E X ( ) Y ( )n n x yμ ω ω μ μ∩ =   (39) 

as it was to prove. The proof for the sum is carried out similarly. 

4 Conclusions 

In this paper is presented the modified fuzzy logic algebra. There is a replacement of 
membership function: n-element binary membership sequence. Such description al-
lows to describe fuzzy value by membership sequence pattern (if identifiable) or by 
traditional scalar membership function. The fuzzy logic for membership sequences is 
formally Boolean algebra as opposed to Zadeh’s fuzzy logic for scalar membership 
functions being De Morgan algebra. There is introduced a mathematical formulation 
of the proposed formalism, the induced algebraic operations are also defined. 
A weighted Hamming measure for membership sequences is defined as semantically 
equivalent to Zadeh’s membership function. There are shown binary patterns of 
membership sequences where weighted Hamming measure for intersection and union 
of membership sequences is equal to typical pairs of triangular norms such as the 
min-max, the logical and the algebraic ones. It appears that a binary vector data struc-
ture allows to utilize collective intelligence methods such as genetic algorithms. 

It would be desirable to investigate the following problems: 

─ an identification of other possible sequence patterns leading to known triangular 
norms, 

─ an estimation of the minimal length of a membership sequence for an assumed 
precision of evaluations and an assumed risk of two fuzzy values identity collision 
in Bn space. 
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Abstract. The publication shows the way of implementing arithmetic
operations on fuzzy numbers based on Ordered Fuzzy Numbers calcu-
lation model [12], [13], [14]. This model allows to perform calculations
on fuzzy numbers in a way that the outcomes meet the same criteria as
the outcomes of calculations on real numbers. In this text, to the four
basic operations with Ordered Fuzzy Numbers, a logarithm and expo-
nentiation was added. Several examples of the calculations are included,
the results of which are obvious and typical of real numbers but not
achievable with the use of conventional computational methods for fuzzy
numbers. From these examples one can see that the use of Ordered Fuzzy
Numbers allows to obtain outcomes for real numbers in spite of using
the fuzzy values.

Keywords: fuzzy number, Ordered Fuzzy Numbers, arithmetic calcu-
lations on fuzzy numbers, logarithm of fuzzy numbers, exponent of fuzzy
numbers.

1 Introduction

The abilities to analyze and process information is an important factor in the
development in every field. In many real problems, however, we find cases where
the data that we are able to obtain are imprecise or uncertain. People deal with
such data by linguistic description such as heavy weight, cold, little water, far
away, etc. The need for using more formal methods appears when one needs to
save such data in a digital way in order to automate further processing.

More appropriate tool in such situations is the theory of fuzzy sets [1], which
allows to describe imprecise information mathematically. Furthermore, in the
case of modeling imprecise quantitative data such as: about 4, more or less 2,
etc. fuzzy numbers are used.

There are many mathematical models for analyzing the data. A large number
of numerical methods supporting processing the information were defined. Un-
fortunately, the existing computational model of fuzzy numbers makes it difficult
to apply all the tools in the processing of imprecise data. This is due to the fact

L. Rutkowski et al. (Eds.): ICAISC 2013, Part I, LNAI 7894, pp. 365–375, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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that in most applications numerical operations on fuzzy values, are based on
the so-called Zadehs extension principle [2]. It introduces a formal apparatus for
transferring operations (also arithmetic) from ordinary sets to fuzzy sets. Unfor-
tunately, the use of the extension principle involves inconvenient consequences,
particularly in the case of repeating series of actions. The main problem here
is the expansion of the fuzzy number support with the subsequent actions. Re-
gardless of whether we add or subtract numbers, they becoming ”fuzzier”. Con-
sequently, after a few calculations we can receive impractical outcomes with a
very wide support. These operations properties are also related to other negative
consequences, such as the difference A−A does not allow to obtain the neutral
element of addition, which is the number zero. Another important drawback is
the lack of a simple method for solving the elementary equation of A+X = B
(where A and B are non-singleton fuzzy numbers). These negative calculations
characteristics impede the application of even basic calculations in the numerical
analysis of the imprecise data, not to mention the more complex ones.

Remark 1. Crisp values can be represented as fuzzy numbers with the use of the
so-called singletons. This publication focuses, however, on the general character-
istic of fuzzy values, so any further discussion in the context of fuzzy numbers
will apply to situations in which we are dealing with the general form of a fuzzy
number, not its particular case - a singleton.

One of the commonly accepted models of fuzzy numbers is the proposal in-
troduced by Dubois and Prade [3]. It is based on the fact of considering the
membership function of fuzzy numbers as a pair of two shape functions describ-
ing the left and right fuzzy spread. This model is called (L,R) fuzzy numbers.
(L,R) numbers gained great popularity due to good interpretation and relatively
easy implementation of basic operations such as adding. Calculations are also
based on the Zadehs extension principle, which as mentioned before is connected
with several significant adverse consequences.

To improve the computational properties of fuzzy numbers several additional
solutions were introduced. They are usually connected with defining additional
operations or constraints ([6][7][11]).

An alternative solution is to use Ordered Fuzzy Numbers mathematical model
[12] [13]. This publication focuses precisely on this model, and in particular on
methods of carrying out calculations. A better understanding of the OFN model
requires a new approach to modeling fuzzy values, which can cause some diffi-
culties. However, an important benefit is the ability to perform all arithmetical
calculations with the same relations between the results, as in the case of oper-
ations on real numbers.

2 Ordered Fuzzy Numbers (OFN)

In the series of papers [12], [13], [14],[16],[18],[19], [21], [22] were introduced and
developed main concepts of the idea of Ordered Fuzzy Numbers. Following these
papers fuzzy number will be identified with the pair of functions defined on the
interval [0, 1].



Calculations on Fuzzy Numbers with the OFNs Model 367

Definition 1. The Ordered Fuzzy Number (OFN in short) A is an ordered pair
of two continuous functions

A = (fA, gA) (1)

called the UP-part and the DOWN-part, respectively, both defined on the closed
interval [0, 1] with values in R.

If the both functions f and g are monotonic (Fig.1 a) ), they are also invertible
and possess the corresponding inverse functions defined on a real axis with the
values in [0, 1]. Now, if these two opposite functions are not connected, we linking
them with constant function (with the value 1). In such way we receive an
object which directly represents the classical fuzzy number. For the finalization
of transformation, we need to mark an order of f and g with an arrow on the
graph (see Fig.1 b) ). Notice that pairs (f, g) and (g, f) are the two different
Ordered Fuzzy Numbers, unless f = g . They differ by their orientation.

The interpretations for this orientation and its relations with the real world
problems are explained in the [21] and [22].

It is worth to point out that a class of Ordered Fuzzy Numbers (OFNs) repre-
sents the whole class of convex fuzzy numbers ([4],[8],[9],[10],[17], with continuous
membership functions.

f

g

a)

f -1 g -1

b)

Fig. 1. a)Ordered Fuzzy Number from definition, b)Ordered Fuzzy Number as convex
fuzzy number with an arrow

There are publications about OFNs, where propositions of the new methods
for the fuzzy systems can be found. The papers [18],[19],[20] contains examples
of the new inference methods based on the OFNs. The works [15],[23] are about
defuzzyfication methods.
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3 Arithmetic Operations

Operations on Ordered Fuzzy Numbers we define as operations with the UP and
DOWN parts as follows:

Definition 2. Let A = (fA, gA), B = (fB, gB) and C = (fC , gC) are mathe-
matical objects called Ordered Fuzzy Numbers. The sum C = A+B, subtraction
C = A−B, product C = A ·B, and division C = A÷B are defined by formula

fC(y) = fA(y) � fB(y) ∧ gC(y) = gA(y) � gB(y) (2)

where ”�” replaces operations ”+”, ”−”, ”·”, and ”/”. Moreover A/B s deter-
mined only if the OFN B does not contain zero. The y ∈ [0, 1] is the domain of
functions f and g.

It is also worth noting that the subtraction is equal to the addition of the opposite
number, where the opposite number is obtained by multiplying the given value
by the −1 (real number - singleton). By using the above-mentioned method in
calculation of A−A we obtain exact zero (crisp number).

Remark 2. Determining whether a given OFN contains (or not) r value (real
number) is a mental shortcut. To be more precise, this phrase should be under-
stood as a situation in which we consider whether any of the functions (UP or
DOWN part) forming OFN have value r for any argument.

3.1 More Operations

Going further in the direction of arithmetical operations, we can offer definition
of exponentiation and counting logarithms in the similar way as in basic four
operations.

Definition 3. Let A = (fA, gA), B = (fB, gB) and C = (fC , gC) are OFNs.
The result of exponentation A raised to the power of B written AB is defined by
formula

fC = fA
fB ∧ gC = gA

gB . (3)

The logarithm of a number is the exponent by which another fixed value, the
base, has to be raised to produce that number.

Definition 4. Let A = (fA, gA), B = (fB, gB) and C = (fC , gC) are OFNs.
The logarithm of a number A with respect to base B written logAB is defined by
formula

fC = logfB (fA) ∧ gC = loggB (gA). (4)

Of course, as in the case of real numbers as with the OFNs, appropriate re-
strictions should be applied. During exponentiation when the exponent is not an
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integer, the main limitation is the exclusion as a base these OFNs that contain
negative values. With logarithms, in turn, the limitations are as follows:

- OFN which is a base and an exponent can contain only non-negative values;
- in addition, the base of the logarithm cannot include number 1.

4 Calculations on OFNs

In this chapter a number of examples showing the arithmetic sequences of cal-
culations will be presented. Examples focus on such transformations, which in
cases of real numbers could be reduced and brought to one of the numbers that
is a part of the transformation. However, because OFN was used in the calcula-
tions, partial results will be presented in order to make it easier to keep track of
what is happening at each stage of the calculations.

4.1 Solving Equations

These examples show the solution of the equation X = A + B where A and B
are known values. Here ones attention should be drawn to two options:

a) when B has a grater support than A (Fig.2),
b) when A has a greater support than B (Fig.3).

It is inasmuch important that in the set of convex fuzzy numbers for option
a) there is a solution, although it cannot be obtained by a simple arithmetic
operation. However, for the option b) the solution does not exist, because there
is no such fuzzy number, which could be added to the value A, to obtain the
outcome of the number with ”narrow” support. With the use of the OFN model
both options are resolved in the same manner, by simple calculation of X =
B −A, which is presented in the examples on Fig.2 and Fig.3.
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Fig. 2. Equation where B is wider than A
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4.2 Distributivity

The following two examples should be considered together. The first one (Fig.4)
shows as the result of calculation A(B − C), and the next AB − AC (Fig.5).
With the use of OFN model the two results are the same, which corresponds
to similar computation on real numbers. However, it would not provide us such
results with the use of typical calculations with fuzzy numbers.

Fig. 4. Result of A(B −C)

Fig. 5. Result of AB − AC is the same like in Fig.4

4.3 Sum of Fractions

In this example (Fig.6), we see a situation where the sum of fractions B
C + (C−B)

C
comes down to the number 1 with the use of real numbers. The same thing also
happens when in the same way we operate with OFNs.
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Fig. 6. Example when sum of the OFNs fractions is equal to crisp 1
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4.4 Multiplication of Fractions

The next example (Fig.7) shows the calculations 3A
2 ·

2B
3A for a situation, in which

the actual outcome with real numbers can be achieved by reducing repeated nu-
merators and denominators without any calculations. After investigating the
specific actions we can see that by using OFNs we could also simplify the calcu-
lations.
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4.5 Exponentiation

This example shows (Fig.8) the calculations of exponential function AB where
the base and the exponent is a fuzzy number.

Fig. 8. OFN to the power of OFN

4.6 Exponentiation and Multiplying

The following two examples can be considered together. The first example shows
the calculation, in which for the real numbers as a result we get a base of oper-
ation raising number to the power A1/4 · A3/4. As anyone can see on the Fig.9
the same is obtained when A is OFN.

Next example refers to the previous one but here are OFNs in the place of
real numbers. Between exponents, there is the following relationship: the first

exponent is B
C , and the other is (C−B)

C . In one of the previous examples (see
Fig.6) it has already been shown that their sum is 1 (crisp). Additionally we
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Fig. 9. Multiplying exponents which sum is equal 1

expect that, an every number raised to the power 1 gives in a result the base of
exponentiation. We see (Fig.9) that is true also, with multiplication of the OFNs,
where we have the same base and the exponents sum to unity, the outcome is
the base, as with real numbers.

4.7 Logarithm

Here we have two examples also. First example (Fig.10) shows calculations on
OFNs with the use of logarithmic function. In the next example we see (Fig.11)
a series of transformations that for real numbers should generate an outcome
which equals number A. The same thing is obtained when we use the OFN
model.

Fig. 10. Example of logarithm

Fig. 11. Properties of logarithm preserved with OFNs

4.8 Comments for Examples

It is worth noting that the presentation of these few examples does not intend
to prove mathematical relationships between calculations on OFN model and
calculations on real numbers. The purpose of these examples is to show OFNs
computational mechanisms and the fact that the outcomes are also fuzzy num-
bers, which can be interpreted as imprecise data.
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However, when it comes to the accordance of the operations in OFN model
with the ones on real numbers, it is a consequence of the definition of mathemat-
ical operations. Such results can be achieved because when introducing a new
model, operations on fuzzy numbers were moved directly to operations on real
numbers. After a closer investigation of the definitions (Def.2 and Def.3) it can
be noted that the operations on the parts of OFN are executed through opera-
tions on functions representing these parts. The operations on the functions are,
in turn, operations on their values. Thus, if the space of function value is the
space of real numbers (as with all OFNs), then, in fact, operations on functions
are carried out through operations on those numbers.

4.9 Improper OFNs

It is worth noting that the objects as shown in the figure (Fig.12) are also consis-
tent with the definition of OFN. As one can see, their shape can not be defined
as a function. They are called improper OFNs. In case when there is a need
to read the membership values in the form of classical fuzzy number, one can
use the definition of membership function for OFNs (see [22]), which indicates
a clear solution for such structures. Here it should be also noted that despite
the unusual (as for fuzzy numbers) shape, such OFNs still contain important
information needed for the calculations. Moreover, according to the interpreta-
tion proposed in [22], this information may have a broader meaning depending
on the context of carried out operations.

1 BA

Fig. 12. Examples of results

5 Summary

OFNs constitute an important step in the development of calculation apparatus
for uncertain or imprecise data. The new model is a tool allowing to transfer
calculation characteristics from real numbers to fuzzy numbers, without defining
separate follow-up actions, which are not in real numbers set, and avoiding the
continuous expansion of the support with subsequent arithmetic operations.

Presented examples demonstrate the easiness and flexibility of calculations
that can be applied to imprecise data processing. Although we operate on ob-
jects representing fuzzy numbers, we obtain the same relationships between the
calculations and the outcomes of operations as with real numbers.

Such calculation properties allow taking the next step in processing impre-
cise values. With the use of OFNs we can transfer known mathematical models
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created for describing the world with the help of precise figures under the cir-
cumstances when we have data available only in the form of fuzzy numbers.
Calculations of such relationships, apart from introducing a new model do not
require further actions to improve the outcomes or to define new actions.

To sum up, it can be stated that by using the OFN model in terms of calcu-
lations we bring together possibilities of processing precise and imprecise data.
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16. Koleśnik, R., Prokopowicz, P., Kosiński, W.: Fuzzy Calculator – usefull tool for pro-
gramming with fuzzy algebra. In: Rutkowski, L., Siekmann, J.H., Tadeusiewicz, R.,
Zadeh, L.A. (eds.) ICAISC 2004. LNCS (LNAI), vol. 3070, pp. 320–325. Springer,
Heidelberg (2004)



Calculations on Fuzzy Numbers with the OFNs Model 375

17. Buckley James, J., Eslami, E.: An Introduction to Fuzzy Logic and Fuzzy Sets.
Physica-Verlag, A Springer-Verlag Company, Heidelberg (2005)

18. Prokopowicz, P.: Methods based on the ordered fuzzy numbers used in fuzzy con-
trol. In: Proc. of the Fifth International Workshop on Robot Motion and Control,
RoMoCo 2005, Dymaczewo, Poland, pp. 349–354 (June 2005)

19. Prokopowicz, P.: Using Ordered Fuzzy Numbers Arithmetic in Fuzzy Control. In:
Cader, A., Rutkowski, L., Tadeusiewicz, R., Zurada, J.M. (eds.) Proc. of the 8th
International Conference on Artificial Intelligence and Soft Computing, Zakopane,
Poland, pp. 156–162. Academic Publishing House EXIT, Warsaw (2006)

20. Prokopowicz, P.: Adaptation of Rules in the Fuzzy Control System Using the Arith-
metic of Ordered Fuzzy Numbers. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A.,
Zurada, J.M. (eds.) ICAISC 2008. LNCS (LNAI), vol. 5097, pp. 306–316. Springer,
Heidelberg (2008)
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Abstract. The paper presents a certain approach to the design and op-
eration of fuzzy cognitive maps (FCM) of a new type, which is specified
by the name of Relational Fuzzy Cognitive Map (RFCM). This approach
is based on the introduction into the model a description, which is based
on fuzzy numbers and fuzzy relations, so you can avoid some of the prob-
lems related to the designing (especially learning) classical structures of
FCMs. Properties of fuzzy numbers arithmetic cause that the learning
process as well as the subsequent operation of such a model run dif-
ferently than in classical models known from the literature. There are
conceptual and technical difficulties connected with this issue, but that
can be overcome with the use of the methods described in the work. The
proposed approach provides a complete fuzziness of all parameters at
every stage of designing the model.

Keywords: fuzzy relations, fuzzy numbers, fuzzy numbers arithmetic,
relational fuzzy cognitive map, intelligent modeling.

1 Introduction

The idea of Fuzzy Cognitive Map (FCM) was introduced in 1986 [4] with regard
to the model, which used a descriptive approach to fuzzy logic [14]. In later
years, as the appearance of subsequent modifications of this approach (eg [6])
new methods of learning have been developed and FCMs have been implemented
to further areas [1,2,10,12,13]. Today it is one of the important branches of
computational intelligence, which is applicable to the classification, prediction,
and monitoring of complex systems with incomplete or imprecise information.
It is particularly useful in the analysis of the impact of selected parameter on
the other parameters of the system. Incompleteness of information may result
from the high complexity of the analyzed system, or from the lack of knowledge
about its structure (which makes it difficult to build a classical mathematical
model based on systems of differential equations). Imprecision is defined as the
use of the description or the use of subjective, linguistic measures, which may be
offset by the introduction of fuzzy techniques. The basis of work of most modern
applications of FCMs was construction based on sets of decision rules such as:

IF (X1 = LV1)AND(X2 = LV2)AND ... (Xn = LVn) THEN Xj = LVj (1)

L. Rutkowski et al. (Eds.): ICAISC 2013, Part I, LNAI 7894, pp. 376–387, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



The Use of Fuzzy Numbers in Designing RFCMs 377

where: LV – one of linguistic values used in the model of FCM.
Rule-based method for the construction of the FCM, the principle of which

is shown by (1), is effective, but its use is associated with a number of practi-
cal problems. First, a set of rules, in principle, must be created by an expert,
what makes it difficult to fully automate the design process. Secondly, the FCM
learning is a difficult process because it also should be based on the construc-
tions of the IF − THEN type. In most modern learning methods for FCM
various ”subterfuges” are applied to replace fuzzy linguistic values with their
numerical equivalents, allowing you to convert a rule-based structure (1) on a
set of algebraic equations, but such ways legitimize a departure from primary
advantages of fuzzy logic, which is the mapping of concept values using string
variables expressing imprecision. Thirdly, the modification of FCM model (1)
is difficult because of the assumption implies the need to modify all the rules,
which implies the re-engagement of experts to develop actually the entire model
from the ground, and this is a time-consuming and prone to errors. In addition,
there is also the difficulty of choosing the correct number of linguistic values de-
scribing both linguistic concepts and causal connections between them. In fact,
the only way is to rely on the opinions of experts, which greatly limits the ability
to automate the process of selection of parameters.
The proposed structure of RFCM, in which the basis of the operation is a set

of: fuzzy numbers, fuzzy relations and operations of arithmetic on fuzzy numbers
and fuzzy relations, allows to obtain the final structure similar, in a sense, to
the FCM. The main difference is keeping the fuzzy nature of all elements of the
model at each stage of the process of its designing and operation. This is possible
by using a special mathematical apparatus that allows to automate the design
and learning of the model, so this model is more flexible and easier to practical
application. In the RFCM model normalized values of concepts are represented
by fuzzy numbers, and causal connections between concepts – by fuzzy relations.
Such solutions have not been previously used due to the difficulty of practical
application of the mathematical apparatus of fuzzy algebra in discrete environ-
ment of computer algorithms. Moreover, there weren’t methods of automated
design of fuzzy relations with the desired properties. The presented approach
includes solutions for both those problems.

2 Basic Operations of Fuzzy Numbers Algebra

Fuzzy number is a fuzzy set with the specified characteristics [3]. Fuzzy arith-
metic provides tools [3] to perform algebraic operations (such as addition, sub-
traction, etc.) on such sets. Thanks to its application one can move away from
rule-based principles of creation and work of models of fuzzy cognitive maps and
replace them with partially automated approach based on algebraic equations.
Analyzed type of the model has a discrete nature (due to computer processing
algorithms), and hence the discrete nature of such equations. In described solu-
tion three algebraic operations on fuzzy numbers and relations are used: addition
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and subtraction of fuzzy numbers and fuzzy composition of fuzzy number and
fuzzy relation:
– fuzzy addition (operator ⊕):

μA⊕B(y) = max
y1,y2

y=y1+y2

min{μA(y1), μB(y2)} , (2)

– fuzzy subtraction (operator  ):

μA�B(y) = max
y1,y2

y=y1−y2

min{μA(y1), μB(y2)} , (3)

– fuzzy composition (operator ◦):

μA◦R(y) = max
x∈A

{min [μA(x), μR(x, y)]} . (4)

where:A,B – fuzzy numbers; μX(y) – value of a membership function of the fuzzy
numberX in point y of the support;R – fuzzy relation; μR(x, y) – value of a mem-
bership function of the fuzzy relation R in point (x, y) of the relation base.
Operations (2)-(4) concern the discrete models. Particularly noteworthy is

max-min fuzzy composition operation (4). This operation is known in the theory
of discrete mathematics, but rather refers to operations on vectors and matrices.
It has been adapted to the needs of fuzzy arithmetic in such a way that the input
vector is created with the “numerators” of fuzzy singletons describing the fuzzy
number A. A natural consequence of this approach is, of course, assumption
that the dimension of the matrix describing the fuzzy relation R is the same as
cardinality of the support of the fuzzy number A.

3 General Form of Relational Fuzzy Cognitive Map

The general structure of a Relational Fuzzy Cognitive Map (RFCM) is similar
to the FCM. It can be presented in the form of a digraph as shown in Fig. 1.

Fig. 1. Graphical representation of RFCM structure. X1-Xn – fuzzy (normalized) val-
ues of concepts; n – number of concepts; Ri,j – representation of the set of fuzzy
relations between concepts; i, j = 1, ..., n.
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Occuring in Fig. 1 “Concepts” are selected, key (from the point of view of the
modeling purposes) quantities that describe the analyzed system. These can be
physical quantities, but they can also be of abstract nature and play a supporting
role. In general, input and output concepts are not distinct, though, if the need
arises, one can enter such a division.
Such a model can be described by a pair of sets (5):

< X,R > (5)

where: X = [X1, X2, ..., Xn]T – vector of fuzzyfied values of concepts (in the
form of fuzzy numbers); R = {Ri,j}i,j=1,...,n – RFCM parameters – matrix of
fuzzy relations between concepts (Ri,j – fuzzy relation between concepts Xi and
Xj).
Mathematical description of work of the model from Fig. 1 lies in calculat-

ing the fuzzy values of individual concepts in the subsequent steps of discrete
time. Presented model of RFCM has, essentially, dynamic character (due to
multi-directional closed-loop feedbacks between concepts) and therefore, though
different methods are possible, it looks like the best approach is the one based
on taking into account the non-linear rate of change of concept values (6):

Xj(t+ 1) = Xj(t)⊕
n⊕

i=1
i�=j

[(Xi(t) Xi(t− 1)) ◦Ri,j ] (6)

where: Xj(t) – fuzzy value of analyzed (j-th) concept in step t of discrete time;
Ri,j – fuzzy relation between concepts i-th and j-th; n – number of concepts;
i, j = 1, ..., n.
RFCM model described by equation (6) gives the impression of a simple, but

the setting of its key elements can present difficulties which make its practical
implementation impossible. The rest of the work will be devoted to this very
issue.

3.1 Designing Fuzzy Relations

For proper operation of the RFCM model described by equation (6) proper
design of the shapes of fuzzy relations between the concepts has crucial meaning.
The general form of such a relation between sets A and B is shown in Fig. 2.
As can be seen, each element of such a structure must be separately set to

achieve the desired effect. This task would be much easier if one could develop
a functional dependence being the basis for the constructing such a relation. It
is possible with a comprehensive treatment of methods of fuzzyfication for all
quantities in the model – the values of the concepts and relations. The basis of
the arithmetic approach to constructing the RFCM is a developed method of
creating fuzzy relations on the base of certain general functional form (7):

μR(a, b) = fR

(
p1· b− p2· r(a)

p3·σ

)
(7)
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Fig. 2. Graphical representation of fuzzy relation RA,B between two sets: A =
{a1, a2, ..., a9} and B = {b1, b2, b3, b4} - in the form of points determining levels of
the relation.

where: a, b – corresponding points of supports of fuzzy numbers A i B connected
with relation R (in RFCM models these supports are identical); fR – base func-
tion dependent on the selected class of the membership function; σ – fuzziness
coefficient; r(a) – functional coefficient of power of fuzzy relation R; p1, p2, p3 –
coefficients dependent on the selected class of the membership function.
The “class” of a membership function mentioned in (7) should be understood

as one of the main types of characteristic functions of a fuzzy set [5,8,9]. Func-
tions of the classes: Λ, Π, π and a Gauss function, hereinafter called a function
of class G, are best suited for this purpose. The function of class G has the
advantage of easiness of modification of the fuzziness coefficient. For a single
fuzzy relation between concepts i and j it can be written as (8):

μRi,j (si, sj) = e−x2

(8)

where: x =
sj−ri,j(si)

σi,j
; μRi,j – membership function of the fuzzy relation Ri,j

between concepts i and j; si, sj – supports of fuzzy values of concepts i and j;
ri,j(si) – coefficient of power of fuzzy relation Ri,j (in the functional form); σi,j
– fuzziness coefficient of fuzzy relation Ri,j .
It should be stressed that coefficient of power of relation ri,j(si) appearing in

equation (8) is a function of the support, and the supports are sets of the same
k points, that are: si = {si(1), si(2), ..., si(k)} = sj = {sj(1), sj(2), ..., sj(k)}, where
k – number of the uviversum sampling points.
The simplest form of function ri,j is a linear form (9):

ri,j(si) = ri,j · si (9)

where: ri,j – directional coefficient of function of power coefficient of fuzzy rela-
tion between concepts i and j.
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An exemplary graphical representation of a fuzzy relation with the member-
ship function of class G, for which the power coefficient ri,j is defined according
to (9) is shown in Fig. 3:

Fig. 3. Graphical representation of fuzzy relation with the membership function of
class G from (8), in which: ri,j = 0.5, σi,j = 0.4, k = 41, fuzzyfied on the support of
the range [−1, 1].

Using a similar technique one can create fuzzy relations based on membership
functions of other classes, it should be remembered, however, that the change
of class of the fuzzy relation will change the result of the max-min composition
from equation (4), as shown in Figs. 4 and 5. On the other hand, regardless of
the assumed classes (each fuzzy relation can be built based on the membership
function of any class), this method of creating fuzzy relations facilitates automa-
tion of learning algorithms whose job it is to adapt the model parameters to the
needs of the current goal of the modeling.
The above-described approach is comprehensive, i.e. it must include not only

the creation of fuzzy relations, but also an adequate method of fuzzyfication of
values of concepts and proper selection of the other parameters of the model.

3.2 Fuzzyfication of Values of Concepts

The values of concepts are, in general, fuzzyfied with known methods which use
membership functions, however, as fuzzy numbers, used to describe the concepts,
are fuzzy sets of a certain specificity [5], can use for this purpose only the mem-
bership functions of the classes:G, Λ or π. ClassG, as described by the smallest
number of parameters, seems to be the most convenient for the purposes of the
automation of the design process (the membership function of fuzzy number A
in Fig. 4 is of class G). Due to the discrete nature of computer processing, the
value of the concepts are presented as sets of fuzzy singletons whose membership
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Fig. 4. Exemplary fuzzy value of concept A – membership function of class G, center
A = 0.25, fuzziness coefficient σA = 0.3, support range [−1, 1], number of the universum
sampling points k = 9.

a)

b)

c)

Fig. 5. Results of max-min fuzzy composition of fuzzy number A from Fig. 4 with
fuzzy relations characterized by the same power coefficients (r = 0.8 and comparable
dispersions for different types of the membership functions. a) relation of type G, b)
relation of type Λ, c) relation of type Π.
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levels are determined on the basis of appropriate membership function of, for
example, class G – such as (10):

μXi(s) = e
−
(

s−Xi
σi

)2

(10)

where: Xi – fuzzy value of the i-th concept; s – the support; Xi – the center
(normalized real value) of the i-th concept; σi – fuzziness coefficient of the i-th
concept; i = 1, ..., n; n – number of concepts.
The graphical representation of the concept value fuzzyfied according to (10)

is presented in Fig. 6.

Fig. 6. The graphical representation of fuzzy value of a concept with the membership
function of class G, where: X = 0.6; σ = 0.25; k = 6; the support of the range [0, 1].

The points marked in Fig. 6 illustrate consecutive fuzzy singletons of fuzzy
number that represent fuzzy value X of a certain concept, where, on the support
[0, 1], 6 consecutive sampling points were evenly placed.

3.3 The Support Parameters

As mentioned earlier, the model structure must be created comprehensively. This
applies mainly to the support parameters which must be common to all the con-
cepts and fuzzy relations.This is due to the specific nature of fuzzy arithmetic
operations, described by equations (2)-(4). From the general assumptions of the
RFCMmodel, that the cores (centers) of fuzzy numbers describing concepts need
to be in the range [−1, 1], but the use of such a range of the support would be
insufficient. The method of defuzzyfication of fuzzy numbers based on weighted
average, that is proposed for use in the model, is sensitive to asymmetry of the
fuzzy number relative to its center. Such asymmetry (and hence - defuzzyfica-
tion error) increases as the center moves toward the limit of the support range.
The support should therefore be wide enough to membership levels of fuzzy sin-
gletons of concept values were at the edge of a low enough so as not to have a
major impact on the outcome of defuzzyfication. On the other hand, although
there are other methods, defuzzyfication by the weighted average method has
certain advantages connected with representing the physical properties of the
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fuzzy number and it is convenient to use this method. Of course, the support
can not be expanded freely, because increasing the span will lengthen the time
of calculation. The experiments have shown that the support range [−2, 2] is
sufficient. Number of the support sampling points k is equivalent to the number
of linguistic values used for the description of all fuzzy quantities in the model.
It must be constant and the same for all quantities. The choice of k value is
an important issue because its increase improves the accuracy of the model but
increases the calculation time.It is therefore advantageous use of a low value of
k, however, it is related to the deterioration of the model accuracy. Basically,
the parameters of initially created model must be undergone an additional adap-
tation in order to increase the accuracy. This is done by the way of supervised
learning.

3.4 Supervised Learning in RFCM Model

For classic construction of FCM there were developed many, mainly supervised
learning methods (they are briefly described in [7]). Most of them employ a
simplified model showing the connections between concepts in the form of a
matrix of real numbers containing the weights of these connections. Then, the
learning mechanism modifies the weights in order to help the selected concepts
to achieve assumed values. Such an approach is not feasible in RRMK model,
in which each causal connection between concepts is represented by a discrete
fuzzy relation built on the basis of more than one parameter (from at least 2 (for
membership function type G) to at least 4 (for membership function type π)).
The general idea is similar, i.e. it is based on the analysis of a certain criterion
– the closeness coefficient, which may take the form of (11):

J(Q) = Φ
(
‖Xi(t)− Zi(t)‖

)
⇒ min

Q
(11)

where: Φ() – selected optimization function (e.g. square); X i(t), Zi(t) – defuzzy-
fied and crisp (given) trajectories of changes of value of the i-th concept; ‖ ‖ –
selected norm; t - discrete time.
Quantity Q, that appears in (11), is a vector of the changed parameters de-

pendent on the assumed method of creating the fuzzy relations. For the relation
of type G it can take the form (12):

Q = [{ri,j}, {σi,j}, k]
T (12)

where: k – number of the support sampling points; {ri,j} – directional coeffi-
cients of functional power coefficients of fuzzy relations Ri,j ; {σi,j} - fuzziness
coefficients of fuzzy relations Ri,j ; i, j = 1, ..., n; n – number of concepts in the
model.
For the purposes of the RFCM learning there was developed algorithm of

successive approximations with variable step of changes of the parameters that
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can be included into the group of population methods. Generally speaking, his
work lies in making successive small changes in selected elements of vectorQ with
simultaneous tracking the criterion (11). Its formal form is shown in equation
(13):

Ri,j(t+ 1) = Ri,j(t)⊕ΔRi,j(t) (13)

where: ΔRi,j(t) – “increment” of fuzzy relation Ri,j ; Ri,j(0) – fuzzy relation
with initial values of parameters.
Due to the volume limitations, this paper doesn’t contain closer description

of the learning algorithm. More details were presented in [11].

4 Exemplary Model of RFCM

The study involved a hypothetical system consisting of four concepts. In this
system, the concept no 1 was stimulated with a signal of a value of 0.5, which
caused a change in the values of all the concepts. Obtained in this way normalized
reference waveforms are shown in Fig. 7.

Fig. 7. Reference courses of the analyzed system. Z1-Z4 – normalized values of
concepts.

Then the initial RFCM structure was designed, in which all fuzzy relations are
of class G and have a common initial values of parameters: ri,j = 0, σi,j = 0.4.
There was assumed the support with the range [−2, 2], k = 17 and, for simplic-
ity, there were assumed common parameters for fuzzyfying the concepts: class
of the membership function G and fuzziness coefficient σI = 0.6. Such prepared
model was subjected to a process of learning using algorithm of successive ap-
proximations with a variable step of parameter changes - basing on the reference
waveforms, using function in the form of (14) as a learning criterion in accordance
with (11).

J(Q) =

√√√√ 1

n

n∑
i=1

1

T

T∑
t=1

(
Xi(t)− Zi(t)

)2
(14)
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where: T – the total number of discrete time t steps taken into account; n –
number of concepts.
The result is the model with the parameters presented in Tab. 1.

Table 1. Final results of the RFCM learning process

r X1 X2 X3 X4

X1 0.00 -0.31 -0.17 0.13
X2 0.08 0.00 -0.19 0.03
X3 -0.12 0.16 0.00 -0.20
X4 0.15 -0.06 0.16 0.00

σ X1 X2 X3 X4

X1 0.40 0.36 0.32 0.38
X2 0.43 0.40 0.35 0.40
X3 0.43 0.53 0.40 0.60
X4 0.45 0.64 0.40 0.40

The model, obtained in the way of the learning process, was stimulated with
the use of the same set of signals as the reference system. The resulting wave-
forms, together with waveforms of reference, are shown in Fig. 8.

Fig. 8. Courses obtained by the RFCM model in comparison with adequate reference
courses. Z1-Z4 – reference values; X1-X4 – RFCM values (after defuzzyfication).

5 Conclusion

The use of fuzzy numbers arithmetic to the design and operation of Relational
Fuzzy Cognitive Map allows creating the effectively working models of complex
systems characterized by a high degree of uncertainty or imprecision, especially
systems with dynamic internal structure. Its use enables the construction of
a fully automated algorithms of designing (especially in terms of learning) the
fuzzy structure of the model. Such an approach, however, requires the use of new
methods to design fuzzy relations between fuzzy concepts. A study of selected
classes of membership functions showed high efficiency of presented method.
Work is currently underway on improving the methods of adaptation of fuzzy
relations.
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Abstract. Metaset is a new concept of set with partial membership
relation. It is directed towards computer implementations and applica-
tions. The degrees of membership for metasets are expressed as binary
sequences and they may be evaluated as real numbers too.

The forcing mechanism discussed in this paper is used to assign cer-
tainty values to sentences involving metasets. It turns out, that for a
sentence involving finite first order metasets only its certainty value com-
plements the certainty value of its negation. This is not true in general:
sentences expressing properties of metasets may have positive uncertainty
value. We supply an example of a sentence which is totally uncertain.

Keywords: metaset, partial membership, classical set theory, intuition-
istic fuzzy set.

1 Introduction

Metaset is a new concept of set with partial membership relation [6]. It is based
on the classical set theory [3], [4] and it is directed towards computer implemen-
tations. Its scope of practical applications [5] are similar to intuitionistic fuzzy
sets [1].

In this paper we investigate certainty values of sentences expressing facts
concerning metasets. In particular we focus on their significant feature which is
the capability of expressing uncertainty. We present the example of the sentence
whose certainty value and the certainty value of its negation are equal 0. The
uncertainty value of such sentence is equal 1. We then show that for sentences
involving finite first order metasets only, the certainty value complements the
certainty value of its negation, i.e., they sum up to unity – the truth value. This
means that such sentences admit no uncertainty.

The capability of expressing uncertainty allows for representing intuitionistic
fuzzy sets [1] by metasets [7]. By the main result of this paper – which says
that the uncertainty value vanishes for finite first order metasets – we claim that
we cannot directly represent arbitrary intuitionistic fuzzy sets by metasets in
computers, i.e., using finite metasets. However, we can represent [8] finite fuzzy
sets [11].

L. Rutkowski et al. (Eds.): ICAISC 2013, Part I, LNAI 7894, pp. 388–399, 2013.
© Springer-Verlag Berlin Heidelberg 2013
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2 Metasets

Informally, a metaset is a set whose elements have associated degrees of mem-
bership. We formalize this idea by means of ordered pairs. Each member of a
metaset – viewed as a classical set – is encapsulated in an ordered pair. The first
element of the pair is the member and the second element is a node of the binary
tree, which specifies its degree of membership. For simplicity, we present results
for first order metasets here. A generalization is outlined in the section 6.

Definition 1. A set which is either the empty set ∅ or which has the form:

τ = { 〈σ, p〉 : σ is a set, p ∈ � }

is called a first order metaset (fo-metaset).

The binary tree � is the set of all finite binary sequences, i.e., functions whose
domains are finite ordinals, valued in 2:1

� =
⋃
n∈�

2n . (1)

We define the ordering ≤ in the tree � to be the reverse inclusion of functions
seen as sets. Thus, for p, q ∈ � such, that p : n �→ 2 and q : m �→ 2, we have p ≤ q
whenever p ⊇ q, i.e., n ≥ m and p�m = q. The root � is the largest element of �
in this ordering: it is included in each function and for all p ∈ � we have p ≤ �.

A level in � is the set of all sequences with the same length. Each level has
a number. The level with the number n is the set 2n. The level 0 consists of the
empty sequence � only.

A branch in � is an infinite binary sequence, i.e., a function � �→ 2. A branch
intersects all levels in �, and each of them only once.

Nodes of the tree � are sometimes called conditions. If p ≤ q ∈ �, then
we say that the condition p is stronger than the condition q, and q is weaker
than p. A stronger condition is meant to designate a stipulation which is harder
to satisfy than the one described by a weaker condition. For instance, “very
cold” and ”slightly cold” are stronger conditions than just “cold”, since they
carry more information concerning the temperature.

The class of first order metasets is denoted by M1. The first element σ of an
ordered pair 〈σ, p〉 contained in a fo-metaset τ is called a potential element of
τ , since it is a member of τ to a degree p which usually is less than certainty.
A potential element may be simultaneously paired with multiple different con-
ditions which taken together comprise its membership degree in the fo-metaset.
From the point of view of the set theory a fo-metaset is a relation between a
crisp set and a set of nodes of the binary tree. Therefore, we adopt the following
terms and notation concerning relations. For the given metaset τ , the set of its
potential elements:

dom(τ) = { σ : ∃p∈� 〈σ, p〉 ∈ τ } (2)

1 For n ∈ �, let 2n = { f : n �→ 2 } denote the set of all functions with the domain n
and the range 2 = { 0, 1 } – they are binary sequences of the length n.
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is called the domain of the metaset τ , and the set:

ran(τ) =
{
p : ∃σ∈dom(τ) 〈σ, p〉 ∈ τ

}
(3)

is called the range of the metaset τ .
The class of finite first ordered metasets is denoted by MF1. Metasets in this

class are particularly important for computer applications, where representable
entities are naturally finite. Thus,

τ ∈MF1 iff |dom(τ)| < ℵ0 ∧ |ran(τ)| < ℵ0 . (4)

3 Interpretations

An interpretation of a first order metaset is a crisp set extracted out of the
metaset by means of a branch in the binary tree. For the given fo-metaset, each
branch in � determines a different interpretation. All the interpretations taken
together make up a collection of sets with specific internal dependencies, which
represents the fo-metaset by means of its crisp views. In practical applications
these particular views are treated as various experts’ opinions on some vague
term represented by the fo-metaset.

Properties of crisp sets which are interpretations of the given first order
metaset determine the properties of the fo-metaset itself. We use the forcing
mechanism (sec. 4) for transferring relationships between sets which are interpre-
tations onto the fo-metaset. A good example is the definition of the membership
relation which relies on membership among interpretations (sec. 4.2).

Definition 2. Let τ be a first order metaset and let C ⊂ � be a branch. The set

τC = {σ ∈ dom(τ) : 〈σ, p〉 ∈ τ ∧ p ∈ C }

is called the interpretation of the first order metaset τ given by the branch C.

Any interpretation of the empty fo-metaset is the empty set, independently of
the branch. The process of producing the interpretation of a fo-metaset consists
in two stages. In the first stage we remove all the ordered pairs whose second
elements are conditions which do not belong to the branch C. The second stage
replaces the remaining pairs – whose second elements lie on the branch C – with
their first elements. As the result we obtain a crisp set.

A fo-metaset may have multiple different interpretations – each branch in the
tree determines one. Usually, many of them are pairwise equal, so the number
of different interpretations is much less than the number of branches. Finite
fo-metasets always have a finite number of different interpretations. There are
metasets whose interpretations are all equal, even when they are not finite.

In this paper we deal with finite first order metasets. For such metasets we
consider the greatest level number of the level whose conditions may affect in-
terpretations.
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Definition 3. The deciding level for a finite first order metaset τ , denoted by
lτ , is the greatest level number of conditions in ran(τ):

lτ = max { |p| : p ∈ ran(τ) } .

If τ = ∅, then we take lτ = 0.

Since p ∈ � is a function, then |p| is its cardinality – the number of ordered
pairs which is just the length of the binary sequence p. It is also equal to the
level number to which it belongs. Thus, lτ is the length of the longest sequence
in ran(τ). Conditions on levels below lτ do not affect interpretations of τ .

Lemma 1. Let τ be a finite first order metaset and let C′ and C′′ be branches.
If initial segments of size lτ of C′ and C′′ are equal:

∀n≤lτ C′(n) = C′′(n) ,

then τC′ = τC′′ .

Proof. Since there are no conditions on levels below lτ in ran(τ), and by the
assumption, we obtain { 〈σ, p〉 ∈ τ : p ∈ C′ } = { 〈σ, p〉 ∈ τ : p ∈ C′′ }. Therefore,
τC′ = { σ : 〈σ, p〉 ∈ τ ∧ p ∈ C′ } = {σ : 〈σ, p〉 ∈ τ ∧ p ∈ C′′ } = τC′′ .

4 Forcing

In this section we define and investigate a relation between a condition and a
sentence. This relation, called forcing relation [2], is designed to describe the
level of confidence or certainty assigned to the sentence. The level is evaluated
by means of nodes of �. The root condition � specifies the absolute certainty,
whereas its descendants represent less certain degrees. The sentences are classical
set theory formulas, where free variables are substituted by fo-metasets and
bound variables range over the class of first order metasets.

Given a branch C, we may substitute particular fo-metasets in the sentence
σ ∈ τ with their interpretations which are ordinary crisp sets, e.g.: σC ∈ τC . The
resulting sentence is a set-theory sentence expressing some property of the sets
τC and σC , the membership relation in this case. Such sentence may be either
true or false, depending on τC and σC .

For the given fo-metaset τ each condition p ∈ � specifies a family of interpre-
tations of τ : they are determined by all the branches C containing this particular
condition p. If for each such branch the resulting sentence – after substituting
fo-metasets with their interpretations – has the same logical value, then we may
think of conditional truth or falsity of the given sentence, which is qualified by
the condition p. Therefore, we may consider p as the certainty degree for the
sentence.

Let Φ be a formula built using some of the following symbols: variables
(x1, x2, . . .), the constant symbol (∅), the relational symbols (∈,=,⊂), logical
connectives (∧,∨,¬,→), quantifiers (∀, ∃) and parentheses. If we substitute each
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free variable xi (i = 1 . . . n) with some metaset νi, and restrict the range of each
quantifier to the class of first order metasets M1, then we get as the result the
sentence Φ(ν1, . . . , νn) of the metaset language, which states some property of
the metasets ν1, . . . , νn. By the interpretation of this sentence, determined by
the branch C, we understand the sentence Φ(ν1C , . . . , ν

n
C ) denoted shortly with

ΦC . The sentence ΦC is the result of substituting free variables of the formula Φ
with the interpretations νiC of the metasets νi, and restricting the range of bound
variables to the class of all sets V. In other words, we replace the metasets in
the sentence Φ with their interpretations. The only constant ∅ in Φ as well as in
ΦC denotes the empty set which is the same set in both cases: as a crisp set and
as a metaset.

Definition 4. Let x1, x2, . . . xn be all free variables of the formula Φ and let
ν1, ν2, . . . νn be first order metasets. We say that the condition p ∈ � forces
the sentence Φ(ν1, ν2, . . . νn), whenever for each branch C ⊂ � containing the
condition p, the sentence Φ(ν1C , ν

2
C , . . . ν

n
C ) is true. We denote the forcing relation

with the symbol �. Thus,

p � Φ(ν1, . . . νn) iff for each branch C % p holds Φ(ν1C , . . . ν
n
C ) .

We use the abbreviation p � Φ for expressing the negation ¬(p � Φ). In such
case, not for each branch C containing p the sentence ΦC holds, however, such
branches may exist. Furthermore, the symbol �∈ in the formula μ �∈ τ will stand
for ¬(μ ∈ τ), and similarly, μ �= τ will stand for ¬(μ = τ).

The key idea of the forcing relation lies in transferring properties from crisp
sets onto fo-metasets. Let a property described by a formula Φ(x) be satisfied
by all crisp sets of the form νC , where ν is a metaset and C is a branch in �. In
other words, Φ(νC) holds for all the sets which are interpretations of the metaset
ν given by all branches C in �. Then we might think that this property also
“holds” for the metaset ν, and we formulate this fact by saying that � forces
Φ(ν). If Φ(νC) holds only for branches C containing some condition p, then we
might think that it “holds to the degree p” for the metaset ν; we say that p
forces Φ(ν) in such case. Since we try to transfer – or force – satisfiability of
some property from crisp sets onto fo-metasets, we call this mechanism forcing.2

The next example shows how to transfer the property of being equal onto two
specific fo-metasets.

The following two lemmas expose the most fundamental and significant fea-
tures of the forcing relation. The first says that forcing is propagated down the
branch, i.e., if a condition p forces Φ, then stronger conditions force Φ too. How-
ever, weaker conditions do not have to force it. It should be understood that the
stronger conditions carry more detailed information above the weaker ones.

Lemma 2. Let p, q ∈ � and let Φ be a sentence. If p forces Φ and q is stronger
than p, then q forces Φ too:

p � Φ ∧ q ≤ p → q � Φ .
2 This mechanism is similar to, and in fact was inspired by the method of forcing in
the classical set theory [2]. It has not much in common with the original.
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Proof. If q ≤ p, then each branch containing q also contains p. If C is any such
branch and p � Φ, then ΦC holds. Because it is true for all C % q, then we have
q � Φ.

A finite maximal antichain of conditions stronger than p ∈ � propagates forcing
upwards to the condition p. A set R ⊂ � is called an antichain when all its
members are pairwise incomparable. It is a maximal antichain in �, when each
q ∈ � is comparable to some element of R. It is a maximal antichain below p,
when each q ≤ p is comparable to some element of R and all the members of R
are stronger than p.

Lemma 3. Let p ∈ �, R ⊂ � and let Φ be a sentence. If R is a finite maximal
antichain below p and each q ∈ R forces Φ, then p also forces Φ.

Proof. p � Φ whenever for each branch C % p holds ΦC . Since R is a finite maxi-
mal antichain whose elements are stronger than p, then each branch containing
p must also contain some element q ∈ R. Each such q forces Φ, so for any branch
C % p we have ΦC .

4.1 Forcing and Certainty Degrees

If we treat conditions as certainty degrees for sentences, then the stronger con-
dition specifies the degree which is less than the degree specified by the weaker
one (assuming the conditions are different). Indeed, by the above lemmas r � Ψ
is equivalent to the conjunction r · 0 � Ψ ∧ r · 1 � Ψ (where r · 0 and r · 1 denote
the direct descendants of r) meaning that the certainty degree specified by r is
equal to the “sum” of certainty degrees specified by both r · 0 and r · 1 taken
together. But if it happens that r · 0 � Ψ and r · 1 � Ψ , then also r � Ψ . In
such case the r · 0 contributes only a half of the certainty degree specified by r
– another half of it could be contributed by r · 1, but is not in this case. The
root �, being the largest element in �, specifies the highest certainty degree.
The ordering of certainty degrees is consistent with the ordering of conditions
in �. We stress that the term certainty degree is used informally in this paper.
We define now other precise terms for measuring the certainty of sentences.

For the given sentence Φ, the following set TΦ is called the certainty set for Φ.

TΦ = { p ∈ � : p � Φ } . (5)

It contains all the conditions which force the given sentence and it gives a mea-
sure of certainty that the sentence is true. Members of this set are called certainty
factors for Φ. Each certainty factor contributes to the overall degree of certainty
that the sentence is true, which is represented by the certainty set.

By the lemma 2, if there exists a p ∈ � which forces Φ, then there exist
infinitely many other conditions which force Φ too. Among them are all those
stronger than p. Therefore, the whole certainty set is equivalent to the set of its
maximal elements. Since,

p � Φ → ∃q≥p q ∈ max{TΦ} ∧ q � Φ , (6)
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then each p ∈ TΦ\max{TΦ} is redundant. The substantial information concerning
the conditions which force Φ is contained in max{TΦ} exclusively. Forcing of Φ
by any stronger conditions may be concluded by applying the lemma 2. Thus
we come to the following concept of certainty degree for sentences.

Definition 5. Let Φ be a sentence. The set of maximal elements of the certainty
set for Φ:

‖Φ‖ = max { p ∈ � : p � Φ }
is called the certainty grade for Φ. If the certainty set is empty, then the certainty
grade is empty too.

When the certainty set is equal to the whole tree �, then the certainty grade is
the singleton containing only the root: ‖Φ‖ = {� }. We may evaluate certainty
of sentences numerically too.

Definition 6. Let Φ be a sentence. The following value is called the certainty
value for Φ:

|Φ| =
∑

p∈‖Φ‖

1

2|p|
.

One may easily see that whenever no p forces Φ, then |Φ| = 0 and if each p ∈ �
forces Φ, then |Φ| = 1. Therefore, |Φ| ∈ [0, 1].

4.2 Membership and Non-membership

We do not give thorough presentation of relations for metasets in this paper.
For completeness, we supply only the definitions of conditional membership and
non-membership. Other relations, like conditional equality and non-equality, are
defined similarly – by means of the forcing mechanism.

In fact, we define an infinite number of membership relations. Each of them
designates the membership satisfied to some degree specified by a node of the
binary tree. Moreover, any two fo-metasets may be simultaneously in multiple
membership relations qualified by different conditions.

Definition 7. We say that the metaset μ belongs to the metaset τ under the
condition p ∈ �, whenever p � μ ∈ τ . We use the notation μ εp τ .

In other words, μ εp τ whenever for each branch C ⊂ � containing p holds μC ∈
τC . The conditional membership reflects the idea that a metaset μ belongs to a
metaset τ whenever some conditions are fulfilled. The conditions are represented
by nodes of �.

Each p ∈ � specifies another relation εp. Different conditions specify member-
ship relations which are satisfied with different certainty factors. The lemmas 2
and 3 prove that the relations are not independent. For instance, μ εp τ is equiv-
alent to μ εp · 0 τ ∧ μ εp · 1 τ , i.e., being a member under the condition p is
equivalent to being a member under both conditions p · 0 and p · 1 which are the
direct descendants of p.
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We introduce another set of relations for expressing non-membership. The
reason for this is due to the fact that p � μ ∈ τ is not equivalent to p � μ �∈ τ .
Indeed, p � μ ∈ τ means, that it is not true that for each branch C containing p
holds μC ∈ τC , however such branches may exist. On the other hand, p � μ �∈ τ
means that for each C % p holds μC �∈ τC . That is why we need another relation
“is not a member under the condition p”.

Definition 8. We say that the metaset μ does not belong to the metaset τ under
the condition p ∈ �, whenever p � μ �∈ τ . We use the notation μ ε/p τ .

Thus, μ ε/p τ , whenever for each branch C containing p the set μC is not a
member of the set τC . Contrary to the classical case, where a set is either a
member of another or it is not at all, for two fo-metasets it is possible that they
are simultaneously in different membership and non-membership relations.

For metasets σ, τ , the membership grade of σ in τ is just the certainty grade
of the sentence σ ∈ τ , represented by the set ‖σ ∈ τ‖. The membership value is
|σ ∈ τ |. Similarly, the non-membership grade is ‖σ �∈ τ‖ and non-membership
value is |σ �∈ τ |. The membership and non-membership values, when considered
as functions of σ, resemble membership and non-membership functions of an
intuitionistic fuzzy set [1]. We now investigate the problem of uncertainty, in
particular uncertainty of membership, which is the core of intuitionistic fuzzy
set idea.

5 Certainty and Uncertainty

Let Φ(x1, . . . , xn) be a formula with all free variables shown and let μ1, . . . , μn
be finite first order metasets. If we substitute each free variable xi in the formula
Φ with the corresponding metaset μi and restrict the range of each quantifier to
the class MF1 then we call the resulting sentence Φ(μ1, . . . , μn) a MF1-sentence.

If a sentence involves metasets which are not finite, then it is possible, that
neither the sentence nor its negation is forced by any condition. The following
example demonstrates fo-metasets σ, τ such, that both p � σ ∈ τ and p � σ �∈ τ ,
for all p ∈ �. Of course, each interpretation of the sentence is either true or false.

Example 1. Let σ =
{
〈n, p〉 : p ∈ � ∧ n = Σi∈dom(p) p(i)

}
, τ = { 〈�,�〉 }. Re-

call, that conditions are functions p : m �→ 2 with domains in �. Each ordered
pair in σ is comprised of an arbitrary condition p ∈ � and the natural number
n ∈ �, which is equal to the number of occurrences of 1 in the binary represen-
tation of p: n = Σi∈dom(p) p(i). In other words

σ = { 〈n, pn〉 : n ∈ � and pn has exactly n occurrences of 1 } .

For instance: p0 may be [0], [00], etc., p1 may be of form [100], [01], [0010].
If C is a branch containing a finite number of 1s and infinite number of 0s,

i.e., Σi∈ωC(i) = n < ∞, then σC = { 0, . . . , n }, so σC �∈ τC = {� }. If, on the
other hand, C contains infinite number of 1s, then σC = �, since for any n ∈ �
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there exists at least one condition pn ∈ C such, that n = Σi∈dom(pn) pn(i) and
〈n, pn〉 ∈ σ. In such case we have σC ∈ τC . Thus, for an arbitrary p ∈ � holds
p � σ ∈ τ as well as p � σ �∈ τ , since for C containing infinitely may 1s the
membership holds in interpretations, whereas for the remaining ones – it does
not hold.

Let Φ denote the sentence σ ∈ τ . The example shows that although for each
branch C either ΦC or ¬ΦC holds, the certainty sets for both Φ and ¬Φ are
empty. Therefore, also certainty values |Φ| and |¬Φ| are equal 0. The difference
1 − (|Φ| + |¬Φ|) is the measure of uncertainty of the sentence Φ. Since it is
equal to 1 in this case, then we say that Φ is totally uncertain – we cannot say
anything about truth or falsity of Φ. The example 1 may be modified so, that
both certainty values |Φ|, |¬Φ|, as well as the uncertainty value 1− (|Φ|+ |¬Φ|)
are positive [7].

We now show that for any MF1-sentence Φ the certainty value for Φ com-
plements the certainty value for ¬Φ, i.e., their sum is equal to 1. It means that
MF1-sentences admit no uncertainty.

Let Φ(x1, . . . , xn) be a formula with all free variables shown and let τ i ∈MF1,
for i = 1, . . . , n. Let lΦ denote the greatest of the deciding levels of all τ i:

lΦ = max { lτ i : i = 1, . . . , n } . (7)

We call lΦ the deciding level for the MF1-sentence Φ. It has the following prop-
erty.

Theorem 1. If Φ is a MF1-sentence and lΦ is the deciding level for Φ, then the
following holds

p ∈ 2lΦ → p � Φ ∨ p � ¬Φ .

Proof. Let τ1, . . . , τn ∈ MF1 be all fo-metasets occurring in Φ (not bound by
quantifiers). Take arbitrary p ∈ 2lΦ and let us assume that p � Φ. By the
definition there exists a branch C % p such, that ¬ΦC is true. Let C′ be another
branch containing p. There are no elements which are less than p in any of the sets
ran(τ i), i = 1, . . . , n. Therefore, C ∩ ran(τ i) = C′ ∩ ran(τ i) and by the lemma 1

we conclude τ iC = τ iC′ for each τ i. Clearly, ¬Φ(τ1C , . . . , τ
n
C ) ∧

∧i=n
i=1 τ

i
C = τ iC′ implies

¬Φ(τ1C′ , . . . , τnC′). Since for each branch C′ % p holds ¬Φ(τ1C′ , . . . , τnC′), then p � ¬Φ.

Lemma 4. Let Φ be a MF1-sentence and let lΦ be the deciding level for Φ. Let
FΦ =

{
p ∈ 2lΦ : p � Φ

}
. The following holds:

|Φ| =
∑
p∈FΦ

1

2|p|
.

Proof. By the definition 6 we have |Φ| =
∑

p∈‖Φ‖
1

2|p|
. If p ∈ FΦ, then there

exists a q ∈ ‖Φ‖ such, that p ≤ q. Let FΦ�q = { p ∈ FΦ : p ≤ q }. We claim, that

1

2|q|
=
∑

p∈FΦ�q

1

2|p|
. (8)
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Indeed, by the lemma 2, FΦ�q contains all the conditions in the deciding level

2lΦ , which are stronger than q, since all of them force Φ. Applying the formula
1

2|p| = 1
2|p · 0| + 1

2|p · 1| appropriate number of times we obtain (8). To complete
the proof note, that FΦ =

⋃
q∈‖Φ‖ FΦ�q.

Corollary 1. If Φ is a MF1-sentence, then |Φ|+ |¬Φ| = 1.

We may easily calculate certainty values for MF1-sentences applying the the-
orem 1. Let TΦ =

{
p ∈ 2lΦ : p � Φ

}
and NΦ =

{
p ∈ 2lΦ : p � ¬Φ

}
. By the

theorem we have TΦ ∪NΦ = 2lΦ – these sets fill the whole deciding level. Since
there are 2lΦ elements on the lΦ-th level, then

|Φ| =
|TΦ|
2lΦ

and |¬Φ| =
|NΦ|
2lΦ

. (9)

We apply here lemmas 2, 3 and take into account that 1
2|p| = 1

2|p · 0| + 1
2|p · 1| for

any p ∈ �.

6 Generalization

For the sake of simplicity, we presented results for the class of first order metasets.
However, they are valid for metasets in general. Details, as well as other gen-
eralizations of these results can be found in [10]. For completeness, we mention
the general definition of metaset and interpretation.

Definition 9. A set which is either the empty set ∅ or which has the form:

τ = { 〈σ, p〉 : σ is a metaset, p ∈ � }

is called a metaset.

Formally, this is a definition by induction on the well founded relation ∈. By
the Axiom of Foundation in the Zermelo-Fraenkel set theory (ZFC) there are
no infinite branches in the recursion as well as there are no cycles.3 Therefore,
no metaset is a member of itself. From the point of view of ZFC a metaset is
a particular case of a �-name (see also [4, Ch. VII, §2] for justification of such
type of definitions).

The definition of interpretation for general metasets is recursive too.

Definition 10. Let τ be a metaset and let C ⊂ � be a branch. The set

int(τ, C) = { int(σ, C) : 〈σ, p〉 ∈ τ ∧ p ∈ C }

is called the interpretation of the metaset τ given by the branch C.

3 The Axiom of Foundation in ZFC says that every non-empty set x contains an
element y which is disjoint from x:

∀x �=∅ ∃y∈x ¬∃z (z ∈ x ∧ z ∈ y) .
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The definition 4 of forcing applies without change to metasets in general –
the restriction to first order metasets was not really necessary.

With the above general definitions we prove in [10], that for a MF-sentence
Φ the union ‖Φ‖ ∪ ‖¬Φ‖ is a maximal finite antichain in �. A MF-sentence
differs from a MF1-sentence in that all metasets involved are hereditarily finite
sets4 instead of just first order finite. Note, that a maximal finite antichain in
� intersects all branches in the tree, so in such case each branch contains a
condition which either forces Φ or ¬Φ. This result is more general and it implies
the theorem 1.

7 Metasets and Intuitionistic Fuzzy Sets

If σ, τ ∈ MF1, then the membership value of σ in τ is equal to |σ ∈ τ | and
the non-membership value of σ in τ is equal to |σ �∈ τ |. By the corollary 1
we know that |σ ∈ τ |+ |σ �∈ τ | = 1. However, if any of σ, τ is not a finite fo-
metaset, then this sum may be less than 1, or even equal 0, like in the example 1.
The complement to 1 of this sum: 1− |σ ∈ τ | − |σ �∈ τ |, is called the uncertainty
value of membership. This resembles intuitionistic fuzzy sets [1]. An intuitionistic
fuzzy set is a triple 〈X,μ, ν〉, where μ : X �→ [0, 1] is the membership function
and ν : X �→ [0, 1] is the non-membership function. They satisfy requirement
μ(x) + ν(x) ≤ 1, for each x ∈ X . The difference 1− (μ(x) + ν(x)) is called the
hesitancy degree. In [7] we demonstrate the method for representing intuitionistic
fuzzy sets by means of metasets. For the given intuitionistic fuzzy set 〈X,μ, ν〉
we construct a sequence of metasets { ρx }x∈X and an additional metaset Ω such,
that |ρx ∈ Ω| = μ(x) and |ρx �∈ Ω| = ν(x), for each x ∈ X . We also show how to
evaluate the uncertainty grade to obtain the uncertainty value of membership
for the metasets { ρx }x∈X and Ω. We conclude, that the uncertainty value of
membership of ρx in Ω is equal 1− (μ(x) + ν(x)), for each x ∈ X .

By the corollary 1, the metasets ρx and Ω cannot be finite first order metasets.
Indeed, the uncertainty of membership vanishes for such metasets. Therefore, we
conclude that intuitionistic fuzzy sets cannot be directly represented by metasets
in computers, where all representable entities are naturally finite.

On the other hand, it is possible to represent ordinary finite fuzzy sets [11]
by means of metasets either using the method outlined above [7] and assuming
that the hesitancy degree is 0, or with another method introduced in [8].

8 Summary

We have introduced the concept of metaset – set with partial membership rela-
tion. We have defined the fundamental techniques of interpretation and forcing
and we have shown how to evaluate certainty values for sentences of the metaset
language, in particular certainty values of membership and non-membership.

4 A set is hereditarily finite whenever it is a finite set and all its members are heredi-
tarily finite sets.
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We have proved, that for sentences involving finite first order metasets ex-
clusively, the certainty value of a sentence complements the certainty value of
its negation. We have demonstrated the example showing, that it is not true
in general: a sentence involving infinite metasets may have positive uncertainty
value. For sentences expressing membership this resembles the hesitancy degree
of intuitionistic fuzzy sets [1].

The class of finite metasets is especially important due to the fact, that
metasets implementable in computers are naturally finite. Therefore, the pre-
sented results are significant for computer applications of metasets [5].
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Raś, Z.W., Berka, P., Elomaa, T. (eds.) ISMIS 2009. LNCS (LNAI), vol. 5722, pp.
602–611. Springer, Heidelberg (2009)

6. Starosta, B.: Metasets: A New Approach to Partial Membership. In: Rutkowski, L.,
Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.)
ICAISC 2012, Part I. LNCS (LNAI), vol. 7267, pp. 325–333. Springer, Heidelberg
(2012)

7. Starosta, B.: Representing Intuitionistic Fuzzy Sets as Metasets. In: Atanassov,
K.T., et al. (eds.) Developments in Fuzzy Sets, Intuitionistic Fuzzy Sets, General-
ized Nets and Related Topics. Foundations, vol. I, pp. 185–208. Systems Research
Institute, Polish Academy of Sciences, Warsaw (2010)

8. Starosta, B.: Fuzzy Sets as Metasets. In: Proc. of XI International PhD Workshop
(OWD 2009), Conference Archives PTETIS, vol. 26, pp. 11–15 (2009)
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Abstract. Numerous authors have proposed functions to quantify the
degree of similarity between two fuzzy numbers using various descrip-
tive parameters, such as the geometric distance, the distance between
the centers of gravity or the perimeter. However, these similarity func-
tions have drawbacks for specific situations. We propose a new similarity
measure for generalized trapezoidal fuzzy numbers aimed at overcoming
such drawbacks. This new measure accounts for the distance between
the centers of gravity and the geometric distance but also incorporates
a new term based on the shared area between the fuzzy numbers. The
proposed measure is compared against other measures in the literature.

1 Introduction

The theory of fuzzy sets was first introduced by Zadeh [14]. It is a multivalued
logic developed to deal with imprecise or vague data based on degrees of truth
rather than the usual Boolean true or false logic. It is useful for modeling concepts
in a environment concerning inaccurate or vague measurements.

Fuzzy logic is useful for building a linguistic terms scale that experts will use
to measure imprecise parameters. For instance, a nine-member linguistic terms
set is introduced in [12]. These linguistic terms are usually associated with a
triangular or trapezoidal fuzzy number [15]. Fuzzy number arithmetic, defined
in conformity with the model in question, is then used to make computations
(addition, multiplication, substraction, ranking...) using the fuzzy information
provided by experts (see, e.g. the arithmetic proposed in [13] for linguistic va-
lues trapezoidal fuzzy numbers or the one in [4,6] for generalized trapezoidal
fuzzy numbers). For advance in research in fuzzy number arithmetic and logical
operators, see [11].

Partial or final results of computations with fuzzy numbers lead to new (tri-
angular or trapezoidal) fuzzy numbers that often need to be expressed again by
a linguistic term. Consequently, we have to identify the linguistic term on the
previously defined scale whose associated fuzzy number is most similar to the
one derived from computations.

Different metrics can be used to establish the similarity between fuzzy num-
bers, based on their distance, form or size. These parameters can be aggregated
in mathematical expressions that define the degree of similarity between two
fuzzy numbers.

L. Rutkowski et al. (Eds.): ICAISC 2013, Part I, LNAI 7894, pp. 400–411, 2013.
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However, all similarity measures proposed by different authors have draw-
backs, because the parameters used are not always best suited to the circum-
stances of the problem and the type of fuzzy number that the model uses. In
this paper, we propose a similarity measure for generalized trapezoidal fuzzy
numbers with good properties that overcomes the drawbacks of other similarity
measures proposed in the literature.

In Section 2, we review the similarity measures proposed in the literature,
analyzing their advantages and drawbacks. In Section 3, we propose a new sim-
ilarity measure. We demonstrate that the new similarity measure has the same
good properties as earlier measures and other additional properties that over-
come their drawbacks. In Section 4, we compare the proposed measure with the
measures outlined in this section, taking as a reference the set of 30 pairs of gen-
eralized fuzzy numbers provided in [13]. Finally, some conclusions are provided
in Section 5.

2 Overview of Similarity Measures

First we introduce preliminary concepts to formalize similarity measures. We
then review the major similarity measures proposed in the literature and more
recent measures derived from them in chronological order, identifying their most
interesting properties, as well as their drawbacks.

Generalized trapezoidal fuzzy numbers were first proposed by Chen [4,5]. A
generalized trapezoidal fuzzy number with support in the interval [0, 1] is a
tuple (a1, a2, a3, a4; wÃ) with 0 ≤ a1 ≤ a2 ≤ a3 ≤ a4 ≤ 1, and wÃ ∈ [0, 1]
together with a membership function (μÃ : R −→ [0, wÃ]),

μÃ =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0 if x < a1
wÃ(x−a1)

a2−a1
if a1 < x < a2

wÃ if a2 < x < a3
wÃ(x−a4)

a3−a4
if a3 < x < a4

0 if a4 < x

,

indicating the degree of membership of any value x ∈ R to the fuzzy number Ã.
We denote by TF [0, 1] the set of all these fuzzy numbers.

In particular, if wÃ = 1, then we say that Ã is a normalized fuzzy number,
and denote by TF [0, 1; 1] the set of these fuzzy numbers.

A similarity measure is a function S : TF [0, 1]×TF [0, 1] −→ [0, 1] indicating
the degree of similarity between two fuzzy numbers. This value must match the
intuitive perception that we have of the fuzzy numbers that we are comparing.
The closer this value is to 1, the more similar the fuzzy numbers will be.

The first ideas about the similarity of normalized fuzzy numbers with support
in [0, 1] stemmed, of course, from the distance notion. If we define a distance

d(Ã, B̃) ∈ [0, 1] between fuzzy numbers Ã, B̃ ∈ TF [0, 1; 1], then generally S =
1 − d is a similarity function. Chen [5] defined the degree of similarity between
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two normalized fuzzy numbers Ã = (a1, a2, a3, a4; 1) and B̃ = (b1, b2, b3, b4; 1)
using the geometric distance as

S(Ã, B̃) = 1−

4∑
i=1

| ai − bi |

4
. (1)

This measure has a number of interesting properties: Property 1 (S(Ã, B̃) =

S(B̃, Ã)), Property 2 (S(Ã, B̃) = 1 ⇔ Ã= B̃) and Property 3 (if Ã=(a, a, a, a; 1),

B̃ = (b, b, b, b; 1) then S(Ã, B̃) = 1− | a− b |).
Tran and Duckstein [11] defined a distance, which was computed as a weighted

sum of distances between two intervals across all the α-cuts from 0 to 1. This
distance was also used in [8] to measure the intensity of dominance between
trapezoidal fuzzy weights representing the preferences of DMs within MAUT.
However, neither Chen’s nor Tran and Duckstein’s measures can be used to
determine the similarity between generalized fuzzy numbers.

Chen and Chen [2] extended the similarity measure to the set TF [0, 1] adding
to Eq. (1) the distance between the centers of gravity of the compared numbers

[1]. Thus, the similarity measure between the numbers Ã = (a1, a2, a3, a4;wÃ)

and B̃ = (b1, b2, b3, b4;wB̃) is determined by the expression

S(Ã, B̃) =

⎡⎢⎢⎣1−

4∑
i=1

| ai − bi |

4

⎤⎥⎥⎦× [1− | XÃ −XB̃ |
]B(SÃ,SB̃)×

[
min{YÃ, YB̃}
max{YÃ, YB̃}

]
,

(2)

where (XÃ, YÃ) and (XB̃, YB̃) are the centroids of Ã and B̃, respectively, i.e.

XÃ =

⎧⎪⎨⎪⎩
YÃ(a3+a2)+(wÃ−YÃ)(a4+a1)

2wÃ
, if wÃ �= 0

a4+a1

2 , if wÃ = 0

, YÃ =

⎧⎪⎨⎪⎩
wÃ

(
a3−a2
a4−a1

+2
)

6 , if a4 �= a1
wÃ

2 , if a4 = a1

,

(3)

B(SÃ, SB̃) =

{
1, if SÃ + SB̃ > 0
0, otherwise

, SÃ = a4 − a1 and SB̃ = b4 − b1.

The factor [1− | XÃ −XB̃ |]B(SÃ,SB̃) is used to distinguish pairs of the form

Ã = (a, a, a, a;wÃ) and B̃ = (b, b, b, b;wB̃) from the remaining pairs of gen-
eralized fuzzy numbers. This extends the previous measures published in 1996
to generalized fuzzy numbers, and provides a fourth property: Property 4 (if

Ã = (a, a, a, a; 0), B̃ = (a, a, a, a; 1) then S(Ã, B̃) = 0).
Indeed, the first fuzzy number is clearly not the real number a, whereas the

second fuzzy number clearly is the real number a. So, the similarity between
them is evidently zero.

However, this measure has a small drawback since it assigns a degree of simi-
larity S(Ã, B̃)=0 to fuzzy numbers Ã = (a, a, a, a; 0) and B̃ = (a, a, a, a; 10−1010).
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Can we be sure that these numbers are completely different?, i.e. as different as
the numbers of property 4? Obviously not. Then, we need a measure that dis-
tinguishes these numbers in a fairer way.

Wei and Chen [12] proposed a new measure using the perimeter concept of
generalized trapezoidal fuzzy numbers:

S(Ã, B̃) =

⎡⎢⎢⎣1−

4∑
i=1

| ai − bi |

4

⎤⎥⎥⎦×
[
min{P (Ã), P (B̃)}+min{wÃ, wB̃}
max{P (Ã), P (B̃)}+max{wÃ, wB̃}

]
, (4)

where P (Ã) =
√

(a1 − a2)2 + w2
Ã

+
√

(a3 − a4)2 + w2
Ã

+ (a3 − a2) + (a4 − a1),

and analogously for P (B̃).
Like the measure proposed by Chen and Chen [2], this new measure also

verifies the four properties but again has the above drawback. This was the
ground proffered by Xu et al. [13] for proposing a new measure based, like the
measure published by Chen and Chen [2], on the concept of center of gravity. Xu
et al. consider two weights w, 1 − w ∈ (0, 1) to attach more or less importance
to the concepts used:

Sw(Ã, B̃) = 1− w
∑
| ai − bi |

4
− (1− w)

√
(XÃ −XB̃)2 + (YÃ − YB̃)2√

1.25
.

This action effectively mitigates the drawback of the measures by Chen and
Chen[2] and Wei and Chen [12], since it assigns a high degree of similarity to
fuzzy numbers of the form (a, a, a, a, 0) and (a, a, a, a, ε) with ε near zero, and

also provides a new property: Property 5 (S(Ã, B̃) = 0 (and Ã < B̃) ⇔ Ã =

(0, 0, 0, 0; 0) and B̃ = (1, 1, 1, 1; 1)).
However, Xu et al. sacrificed properties 3 and 4 to achieve this fifth prop-

erty. For example, if we consider w = 0.5, then the degree of similarity of
(0.1, 0.1, 0.1, 0.1; 1) and (0.1, 0.1, 0.1, 0.1; 0) is 0.7763 with respect to the fourth

property. For (a, a, a, a; 1) and (b, b, b, b; 1), we have S(Ã, B̃) = 1 − 0.5 | a − b |
−0.5 |a−b|√

1.25
�= 1− | a− b |, with respect to the third property.

Another drawback of Xu et al.’s measure is as follows. If we consider the trape-
zoidal fuzzy numbers shown in Fig. 1, Ã =(0,0.1,0.3,0.4;1), B̃ =(0.25,0.4,0.6,

0.75;1) and C̃=(0.75,0.775,0.825,0.85;1), then the degree of similarity of C̃ and

Ã with respect to B̃, with w = 0.5, is 0.7156 in both cases. Therefore, the num-
bers C̃ and Ã are just similar to the central number B̃. However, B̃ should
clearly be more similar to Ã than C̃ on the basis of its shape, size, and more
importantly, the shared area.

Apart from Chen and Xu et al.’s measures, numerous authors have defined
the degree of similarity between two trapezoidal fuzzy numbers, without giv-
ing up any of the five described properties. Note, for example, the Sridevi and
Nadarajan’s extension [10], a fuzzy distance that replaces the geometric distance
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Fig. 1. A drawback of Xu et al.’s measure

in the measure proposed by Chen and Chen[2],

S(Ã, B̃) =

⎡⎢⎢⎣
4∑

i=1

μd(x)

4

⎤⎥⎥⎦× [1− ∣∣XÃ −XB̃

∣∣]B(SÃ,SB̃) ×
[
min{YÃ, YB̃}
max{YÃ, YB̃}

]
,

with μd(x) =

{
1− x

d , if 0 ≤ x ≤ d
0, otherwise

, d ∈ (0, 1], x =| ai − bi | and (XÃ, YÃ) and

(XB̃, YB̃) the centroids of the compared fuzzy numbers. Parameter d represents
the level of precision required to measure the similarity between the two fuzzy
numbers. The measure by Sridevi and Nadarajan sacrifices the third and the
fifth property.

More recently, Gomathi and Sivaraman [7] proposed a new measure. This
measure sacrifices only the fifth property but again has the same the drawback
as the measures by Chen and Wei and Chen. It modifies the measure proposed
by Wei and Chen by using the geometric instead of the arithmetic mean of the
difference of the vertices of the fuzzy numbers under comparison. Moreover, it
considers a straightforward function including the vertices and heights of the
fuzzy numbers rather than their perimeters in order to reduce computational
time with respect to the measure by Wei and Chen but achieve similar results:

S(Ã, B̃) =

⎡⎣ 4

√√√√ 4∏
i=1

(1− | ai − bi |)

⎤⎦× [ min{Q(Ã), Q(B̃)}+min{wÃ, wB̃}
max{Q(Ã), Q(B̃)}+max{wÃ, wB̃}

]
,

(5)

where Q(Ã) =
√

(a2 − a1)2 + (a3 − a2)2 + (a4 − a3)2 + w2
Ã
.

3 A New Similarity Function

The most common parameters in the similarity measures are the geometric dis-
tance, the distance between the centers of gravity and the perimeter. In the
measure that we propose, we incorporate the shared area between the general-
ized fuzzy numbers with respect to the total area of these fuzzy numbers. The
closer this value is to 1, the more similar are the compared fuzzy numbers.

We also directly use the difference between the height of the generalized
fuzzy numbers, since although the distance between the centroids to some extent
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already considers this parameter, failures have been observed when measuring
the similarity between some pairs of fuzzy numbers whose height is close to zero,
as discussed in Section 2.

We define the degree of similarity of the generalized trapezoidal fuzzy numbers
Ã = (a1, a2, a3, a4;wÃ) and B̃ = (b1, b2, b3, b4;wB̃) as follows:

– if max{(a4 − a1), (b4 − b1)} �= 0, then

S(Ã,B̃) = (1− | wÃ−wB̃|)×
(

1− (1− α− β)×
(

1−
∫ 1

0
μÃ∩B̃(x)dx∫ 1

0 μÃ∪B̃(x)dx

)

−α
∑
| ai−bi|

4
− β

d[(XÃ, Y Ã), (XB̃, Y B̃)]

M

)
,

– otherwise,

S(Ã,B̃) = (1− | wÃ−wB̃|)×
(

1−
(

1− α− β
2

+α

)
×
∑
| ai−bi|

4
−

−
(

1− α− β
2

+β

)
×
d[(XÃ, Y Ã), (XB̃ , Y B̃)]

M

)
,

where α+β < 1, μχ̃ is the membership function of χ̃,M = max
[0,1]×[0, 12 ]

{d(x, y), (x′, y′))},

μÃ∩B̃(x) = min
0≤x≤1

{μÃ(x), μB̃(x)}, μÃ∪B̃(x) = max
0≤x≤1

{μÃ(x), μB̃(x)}, (XÃ, YÃ),

(XB̃, YB̃) are computed as in Eqs. (3), and d is a distance in R2.
From now on, we analyze the properties of the proposed similarity measure

Proposition 1. S(Ã, B̃) ∈ [0, 1].

Proof. Since the weights sum 1, it suffices to see that (1− | wÃ − wB̃ |) ≤ 1,∫
1
0
μÃ∩B̃

(x)dx∫
1
0
μÃ∪B̃(x)dx

≤ 1,
∑

|ai−bi|
4 ≤ 1,

d[(XÃ,YÃ),(XB̃ ,YB̃)]

M ≤ 1, which is trivial. ��

Proposition 2. S(Ã, B̃) = S(B̃, Ã).

Proof. Trivial. ��

Proposition 3. S(Ã, B̃) = 1 ⇔ Ã = B̃.

Proof. The reverse implication is obvious. Consider the direct implication. If
max{(a4−a1), (b4−b1)} �= 0, then S(Ã,B̃)= 1, and, since both factors of S(Ã,B̃)
are less than or equal to 1, theoretically

1−(1−α−β)

(
1−

∫ 1

0
μÃ∩B̃(x)dx∫ 1

0 μÃ∪B̃(x)dx

)
−α
∑
| ai − bi |

4
−β
d[(XÃ, YÃ), (XB̃, YB̃)]

M
= 1

⇒ (1−α−β)

(
1−

∫ 1

0 μÃ∩B̃(x)dx∫ 1

0 μÃ∪B̃(x)dx

)
+α

∑
| ai − bi |

4
+β
d[(XÃ, YÃ), (XB̃, YB̃)]

M
= 0,
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and, as the three summands are positive or zero, necessarily:
∫ 1
0
μÃ∩B̃

(x)dx∫ 1
0
μÃ∪B̃

(x)dx
=

1,
∑

|ai−bi|
4 = 0 and

d[(XÃ,YÃ),(XB̃ ,YB̃)]

M = 0. Thus, Ã = B̃.

If max{(a4 − a1), (b4 − b1)} = 0, then we have analogously that
∑

|ai−bi|
4 =

0 and
d[(XÃ,YÃ),(XB̃ ,YB̃)]

M = 0. Thus, Ã = B̃. ��

Proposition 4. If M = 1 and Ã = (a, a, a, a; 1) and B̃ = (b, b, b, b; 1), then

S(Ã, B̃) = 1− | a− b |.

Proof. Trivial. ��

We will see afterwards that the use of distances with M =1 has additional
advantages.

Proposition 5. If Ã = (a, a, a, a; 0) and B̃ = (a, a, a, a; 1), then S(Ã, B̃) = 0.

Proof. Trivial. ��

Proposition 6. If S(Ã, B̃) = 0 and Ã ≤ B̃, then | wÃ − wB̃ |= 1 or Ã =

(0, 0, 0, 0;wÃ) and B̃ = (1, 1, 1, 1;wB̃), with wÃ, wB̃ ∈ [0, 1].

Proof. Let us assume that | wÃ−wB̃ |�= 1, then if max{(a4−a1), (b4− b1)} �= 0

S(Ã,B̃)= 0 ⇒ (1− α− β)
(

1−
∫

1
0
μÃ∩B̃(x)dx∫

1
0
μÃ∪B̃(x)dx

− 1
)

+ α
(∑

|ai−bi|
4 − 1

)
+

+β
(

d[(XÃ,YÃ),(XB̃ ,YB̃)]

M − 1
)

= 0

and, since they are summands of [0, 1], they must each be zero, i.e.∫ 1

0 μÃ∩B̃(x)dx∫ 1

0 μÃ∪B̃(x)dx
= 0,

∑
| ai − bi |

4
= 1 and

d[(XÃ, YÃ), (XB̃, YB̃)]

M
= 1.

It follows from the second expression that | ai− bi |= 1 ∀i, and, as Ã ≤ B̃, we
have bi = ai + 1 ∀i, and, since ai, bi ∈ [0, 1], necessarily ai = 0, bi = 1 ∀i.

If max{(a4 − a1), (b4 − b1)} = 0, then:

1− (
1− α− β

2
+ α)

∑
| ai − bi |

4
− (

1− α− β
2

+ β)
d[(XÃ, YÃ), (XB̃, YB̃)]

M
= 0

and an analogous analysis would be applied. ��

Other noteworthy observations about the proposed measure are:

1. For α + β = 1, and d the Euclidean distance on R2, we have Xu et al.’s
measure for trapezoidal fuzzy numbers such that | wÃ − wB̃ |=0.

2. The measure penalizes the fact that two sets are disjoint using a weight
(1− α− β).
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3. As demonstrated in propositions 2-5, the proposed measure verifies the
first four properties if we use a distance d with M = max

[0,1]×[0, 12 ]
{d((x, y),

(x′, y′))} = 1, like, for example, the distance l∞((x1, y1), (x2, y2)) = max
{| x1 − x2 |, | y1 − y2 |}. The fifth property holds only partially, since there
are other pairs of fuzzy numbers whose similarity is zero in addition to the
numbers Ã = (0, 0, 0, 0; 0) and B̃ = (1, 1, 1, 1; 1)

4. The proposal has the following property:
lim
ε→ 0

S((a, a, a, a; 0), (a, a, a, a; ε))=

1 and
lim
ε→ 1

S((a, a, a, a; 0), (a, a, a, a; ε)) = 0, which overcomes that draw-

back of the measures proposed by Chen and Chen[2] and Wei and Chen [12],
outlined in Section 2.

For example, the similarity between Ã = (a, a, a, a; 0) and B̃ = (a, a, a, a;

10−1010) is S(Ã, B̃) ≈ 1, which appears to be more reasonable than the null
value assigned by the measures proposed by Chen and Chen[2] and Wei and
Chen [12].

5. The set TF [0, 1; 1] = {(a, b, c, d; 1) ∈ TF [0, 1]} is a subset of TF [0, 1], espe-
cially interesting in many domains of decision theory, since experts will often
identify a linguistic term scale represented by numbers in TF [0, 1; 1]. How-
ever, certain considerations are required regarding the distance d used in the
similarity measure. For convenience’s sake we write (a, b, c, d) ≡ (a, b, c, d; 1)
to denote the elements in TF [0, 1; 1]. Suppose that the spheres identified by
the distance d are not rectangular1. If we restrict to TF [0, 1; 1], a good mea-
sure of similarity should identify (0,0,0,0) and (1,1,1,1) as the most different

elements. However, there exists Ã ∈ TF [0, 1; 1] such that S((0, 0, 0, 0), Ã) <
S((0, 0, 0, 0), (1, 1, 1, 1)). For example, if we take Xu et al.’s measure (2010),
Sw, with w = 0.5, S0.5((0, 0, 0, 0), (1, 1, 1, 1)) = 0.052.

As the spheres in the Euclidean distance in R2 are circles, if we represent
the circle centered at the centroid of (0,0,0,0), i.e. at (0,0.5), whose radius
is the distance to the centroid of (1,1,1,1), i.e. at (1,0.5), we obtain a re-
gion beyond this circumference containing the centroid of another number
in TF [0, 1; 1]. This number will be farther from (0,0,0,0) than (1,1,1,1) itself.

More specifically, we know that the centroid of any number in TF [0, 1; 1] is
located in the band [0, 1]× [1/3, 1/2], [4]. The circle intersects the line y = 1

3

at x =
√

35
36 . Then, any number (a,1,1,1) with a >

√
35
36 is less similar to

(0,0,0,0) than (1,1,1,1) itself. For instance, S0.5((0.99, 1, 1, 1), (0, 0, 0, 0)) =
0.049 < 0.52 = S0.5((0, 0, 0, 0), (1, 1, 1, 1)). However, this is not a problem
if the spheres defined by a distance are rectangular. For example, with the
distance l∞, whose spheres are square, we can ensure that the elements that
differ most from TF [0, 1; 1] are (0,0,0,0) and (1,1,1,1).

Another appropriate pseudo-distance is d((x1, y1), (x2, y2)) =| x1 − x2 |,
whose spheres are vertical bands. We denote this distance by l∗. As the

1 The sphere with center a and radius r with distance d is A(a, r) = {x ∈ Rn :
d(x, a) = r}.
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centroids are located in the band [0, 1]× [1/3, 1/2] [1], the range of variation
on the abscissa is much greater than the ordinate. These distances mostly
attach more importance to the position on the horizontal axis of the trape-
zoidal fuzzy numbers, which is, together with the shared area, one of the
main parameters to be taken into account when identifying a linguistic term
from the given fuzzy scale.

4 Comparative Analysis

We have compared the proposed measure using the distance l∞ and the pseudo-
distance l∗, with α = β = 1

3 , with the measures by Chen and Chen [2], Wei and
Chen [12], Xu et al. [13] and Gomathi and Sivaraman [7], outlined in Section
1. We have applied the measures to compute the similarity of 30 pairs of fuzzy
numbers previously proposed by Xu et al. in [13], see Fig. 2. The results are
shown in Table 1.

Fig. 2. Sets of fuzzy pairs for comparison

First, there are not great differences in the proposed measure when using l∗
and l∞, see Table 1, since

l∞
(
(XÃ, YÃ), (XB̃, YB̃)

)
�= l∗

(
(XÃ, YÃ), (XB̃ , YB̃)

)
⇔
∣∣YÃ − YB̃∣∣ > ∣∣XÃ −XB̃

∣∣ .
However,

∣∣YÃ − YB̃∣∣ < 1
2 −

1
3 = 1

6 , and therefore
∣∣XÃ −XB̃

∣∣ > 1
6 , is a sufficient

condition for both measures to coincide [1]. Also, whenever
∣∣XÃ −XB̃

∣∣ < 1
6 ,

both measures will be very similar but not necessarily equal.
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We also realize that there are missing values in Table 1. The similarity of the
fuzzy numbers involved in cases 24, 25, 26 and 28 cannot be computed using
the measure proposed by Chen and Chen [2] since the height of both fuzzy
numbers is 0. Then, the term max{YÃ, YB̃} would be 0, leading to a division
by 0, see Eq. (2). On the other hand, cases 26 and 28 cannot be addressed by
the measures proposed by Wei and Chen [12] and Gomathi and Sivaraman [7],
since the perimeter of both fuzzy numbers is also 0 and, again, we would have
division by 0, see Eqs. (4) and (5), respectively.

In Fig. 5 we graphically compare the similarity measures. The proposed mea-
sures (with l∗ and l∞, respectively) are always located at the ordinate axe, while
the compared measure is located at the abscissa. Each point represent the de-
gree of similarity output by the two compared measures for one out of the 30
pairs of fuzzy numbers. The farther the points are from the bisector of the first
quadrant, the greater the difference between the measures compared.

Fig. 3. Charts comparing measures

Most of points in the graphs are located between the lines y = x and y = x− 1
3 .

It can be easily explained since the proposed measures penalize with weight
1 − α − β = 1

3 the similarity of pairs of disjoint fuzzy numbers, as pointed out
in the observations about the proposed method in Section 3.

We see that the biggest controversy is output when comparing the proposed
measure with the measure proposed by Xu et al. [13], in which a large number of
points considerably away from the bisector of the first quadrant. This matches
up with the data in Table 1, in which values in the column corresponding to
this measure are quite higher than the corresponding to the other. The higher
differences appear when the two fuzzy numbers considered have very different
heights, like cases 14, 19 and 24, where the values output by all measures are
quite similar but for the measure by Xu et al.
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Table 1. Comparison with other similarity measures

Set [2] [12] [13] [7] l∗ l∞ Set [2] [12] [13] [7] l∗ l∞
1 0.84 0.95 0.96 0.97 0.91 0.89 16 1 1 1 1 1 1

2 0.31 0.58 0.62 0.60 0.40 0.40 17 0.75 0.78 0.97 0.76 0.73 0.72

3 0.55 0.78 0.81 0.80 0.54 0.54 18 0.48 0.63 0.81 0.61 0.56 0.55

4 0.17 0.31 0.84 0.24 0.14 0.12 19 0 0.17 0.75 0.10 0.10 0.10

5 0 0.16 0.77 0.09 0 0 20 0 0.79 1 0.95 0.66 0.66

6 0 0 0.67 0 0 0 21 0.76 0.59 0.92 0.66 0.49 0.49

7 1 1 1 1 1 1 22 0 0 0.83 0 0.12 0.11

8 0.36 0.6 0.62 0.6 0.40 0.40 23 0 0.19 0.82 0.12 0.12 0.18

9 0.64 0.8 0.81 0.8 0.55 0.55 24 * 0.9 0.90 0.73 0.60 0.5998

10 0.8 0.82 0.96 0.80 0.75 0.72 25 * 0 0.93 0 0.61 0.62

11 0 0.16 0.77 0.08 0 0 26 * * 0.81 * 0.53 0.53

12 0.44 0.32 0.86 0.36 0.25 0.23 27 0.45 0.45 0.89 0.45 0.48 0.48

13 0.40 0.52 0.89 0.46 0.56 0.56 28 * * 1 * 1 1

14 0 0.19 0.80 0.10 0.12 0.11 29 0 0 1 0 1 0.99

15 0 0.98 1 0.94 0.66 0.66 30 0 0 0 0 0 0

We also note the large discrepancy with the measure by Chen and Chen [2] in
cases 15, 20 and 29. This discrepancy is due to the drawback associated to this
measure, outlined in Section 2, is overcome in the proposed one (Section 3), i.e.,
a high degree of similarity should be output to the fuzzy numbers of the form
(a, a, a, a, 0) and (a, a, a, a, ε) with ε near zero.

Finally, the measure by Gomathi and Sivaraman [7] significantly differs from
the proposed in the sets 25 and 29. This measure also differs with the measures
by Chen (even more than with the proposed) in sets 20 and 15.

5 Conclusions

Quantifying the degree of similarity between two fuzzy numbers is necessary in
a great variety of applications of fuzzy logic, specially when a linguistic terms
scale has been defined and a fuzzy number resulting from different computations
has to be compared with the fuzzy numbers associated to the linguistic terms
to identify the most similar one.

We have proposed a new similarity measure for generalized trapezoidal fuzzy
numbers based on the difference of heights and the shared area between the num-
bers involved in relation to the total area of both, in addition to the distance
between the centers of gravity and the geometric distance, which have already
been considered by other authors. The result is a measure of similarity with
many good properties, which outperforms the other measures in the sense that
it can properly compare pairs of fuzzy numbers that the other methods can not
address or do not fit well. Specifically, the proposed measure outperforms the
measure by Chen since fuzzy numbers with null height can now be compared.
It also outperforms measures by Wei and Chen and by Gomathi and Sivaraman
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since it can compare fuzzy numbers with null perimeter. Moreover, the proposed
measure keeps good properties of the other measures and establishes a more
realistic similarity when comparing fuzzy numbers of the form (a, a, a, a, 0) and
(a, a, a, a, ε), with ε near zero. Regarding the measure by Xu et al., it is outper-
formed by the proposed measure since properties 3 and 4 are accomplished and
the additional drawback of this method illustrated in Section 2 is overcome.

However, the proposed measure does not necessarily identify the fuzzy num-
bers Ã = (0, 0, 0, 0, 0) and B̃ = (1, 1, 1, 1, 1) as the most different, i.e., there are
other numbers in TF [0, 1] whose similarity is zero as well, i.e. property 5 is only
satisfied in one direction. In any case, both the number and quality of the prop-
erties we won and the difficulties that the proposed measure exceeds represent
benefits greater than the losses from the partially satisfaction of property 5.

Acknowledgment. The paper was supported by Madrid Government project
S-2009/ESP-1685 and the Ministry of Science project MTM2011-28983-CO3-03.
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Abstract. This paper presents a new approach to color digital picture
recognition, especially classification of pictures described by linguistic
terms. Fuzzy granulation is proposed to express a picture as a composi-
tion of fuzzy granules that carry information about color, location, and
size, each of these attributes represented by fuzzy sets characterized by
membership functions. With regard to the color, the CIE chromaticity
triangle is applied, with the concept of fuzzy color areas. The classifi-
cation result is obtained based on fuzzy IF-THEN rules and fuzzy logic
inference employed in a fuzzy system.

1 Introduction

Color digital pictures are very popular nowadays. The number of such pictures we
collect are still growing. In addition, the picture resolution increases. Therefore,
we need new methods for searching, recognition, and retrieving a particular
picture from a large collection of them.

Color is a very important attribute of digital pictures. It carries significant
information that helps to distinguish, recognize, compare, and classify different
pictures or objects presented on various pictures. As a matter of fact, color
should be considered as a triplet, i.e. hue (pure color), saturation, and lightness;
we describe the color properties in Section 2. However, the name ”color” is
commonly used as a synonym of ”hue”. Hence, in the case where it can be
accepted, sometimes we also treat these two terms interchangeably.

In this paper, with regard to the color digital pictures, fuzzy granulation
approach – introduced by Zadeh [19] – is proposed to describe fuzzy location of
pixels as well as fuzziness of their color. Thus, we can consider a color digital
picture as a collection of pixels or groups of pixels which we call macropixels,
and treat them as fuzzy sets [16]. In the framework of the fuzzy granulation,
the macropixels can be viewed as fuzzy granules that carry information about
the color, location, as well as size of the macropixels. Hence, a color digital
picture is a composition of the fuzzy granules that represent fuzzy relations
(see e.g. [11]) between the attributes of color, location, and size. In addition,
interactions between the granules are expressed by their fuzziness that results in
the overlapping of the granules within the picture.

L. Rutkowski et al. (Eds.): ICAISC 2013, Part I, LNAI 7894, pp. 412–425, 2013.
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The fuzzy granulation approach applied to color digital pictures may be very
useful for problems of picture classification where classes are distinguished based
on linguistic description. Such a problem is considered in Section 8, and its
solution can be obtained based on fuzzy IF-THEN rules formulated in this section
and applied to a fuzzy inference system (see e.g. [11]).

In Section 7, the fuzzy granulation approach is outlined, with regard to im-
age processing and color digital picture recognition, referring to other sections,
especially to Section 6 where the idea of macropixels is introduced. The new
approach, based on the fuzzy granulation, is more precisely described, including
some mathematical formulas, in Section 8.

Sections 2, 3, and 4 concern the color attribute while Section 5 as well as
Section 6 are interested in the location of pixels in a digital picture. As mentioned
earlier, Section 2 provides general information about color, hue, and color models
(that take into account saturation and lightness). Section 3 describes a particular
type of color models that is the CIE chromaticity triangle which is applied in
the problem considered in this paper. In Section 4, we focus our attention on
the color areas of the CIE chromaticity triangle, viewed as fuzzy regions (fuzzy
sets) characterized by membership functions. In Section 5, fuzzy sets and their
membership functions are proposed to represent the pixel locations. Section 6
refers to the third attribute of the granules, i.e. size.

In Section 9, some conclusions and final remarks are included, as well as
further research directions outlined. This paper presents a new concept of fuzzy
granulation approach to color digital picture recognition that can be extended
in many directions and applied to various new problems formulated in the area
of image processing and recognition.

2 Color Properties and Models

The pure color is called ”hue”. Usually, colors with the same hue are distin-
guished with descriptive adjectives such as ”light blue”, ”pastel blue”, ”vivid
blue”, ”dark blue”, which refer to their lightness and/or chroma (saturation).
Exceptions inlude ”brown” which is a dark ”orange”, and ”pink” that is a light
red with reduced chroma. Hue is one of the main properties of a color. Satura-
tion (also called chroma) and lightness (also called brightness, value, or tone)
are two additional properties of a color. Hue is the term for the pure spectrum
of colors that appear in the rainbow as well as in the visible spectrum of white
light separated by a prism.

Theoretically all hues can be mixed from three basic hues, known as primaries.
There are different definitions of the primary colors. i.e. painters primaries, print-
ers primaries, and light primaries; for details, see e.g. [1].

However, the visible spectrum consists of much more colors than a computer
monitor can display. The well known RGB (red, green, blue) refers to the ap-
plication in computer screens where colored light is mixed. If all three light
primaries are mixed the theoretical result is white light. The RGB is an additive
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color model, combining red, green, and blue light. In computers the RGB color
model is used in numerical color specifications.

It has been observed that the RGB colors have some limitaitons. The RGB
is hardware-oriented and non-intuitive which means that people can easily learn
how to use the RGB but they rather think of hue, saturation and lightness, and
how to translate them to the RGB.

Two most common representations of points in the RGB color model, based
on hue, saturation and lightness, are HSL and HSV. The former stands for
”hue”, ”saturation”, and ”lightness”, while the latter for: ”hue”, ”saturation”,
and ”value”. The HSV is also called HSB (where B stands for ”brightness”). A
third model, common in computer vision applications, is HSI, for ”hue”, ”satu-
ration”, and ”intensity”. The HSV, HSB, HSL color models are slight variations
on the HSI theme.

Saturation defines a range from pure color to gray at a constant lightness level.
A pure color is fully saturated. Lightness indicates the level of illumination, and
defines a range from dark (no light) to fully illuminated.

In a color space, colors can be identified numerically by their coordinates.
There are precise rules for converting between the HSL and HSV spaces, defined
as mappings of the RGB. The convertion between them should remain the same
color; however it is not always true with regard to different color spaces (e.g.
RGB to CMYK that is a subtractive color model, used in color printing). Since
RGB and CMYK are both device-dependent spaces, there is no simple or gen-
eral conversion formula that converts between them. The CMYK color model
is based on the printers primaries, i.e. cyan, magenta, and yellow. In addition,
the key (black) component is used. Color printing typically employ ink of the
four colors (including black). Mixing the three printers primaries theortically
results in black, but imperfect ink formulations do not give true black, which is
why the additional key component is needed. It is worth noticing that secondary
mixtures of the CMY primaries (cyan, magenta, yellow) results in red, green,
blue.

It is worth emphasizing that the RGB model is usually employed for produc-
tion of colors while the HSI for description of colors. Conversion between RGB
and HSI is also possible; see e.g. [4], [5].

Some color spaces separate the three dimensions of color into one luminance
dimension and a pair of chromaticity dimension. For example, the chromaticity
coordinates x and y are used in the xyY space, in the CIE color model, described
in the next section.

Luminance is the physical measure of brightness; the standard unit of lumi-
nance is candela per square meter. Luminance is the amount of visible light
leaving a point on a surface in a given direction. We can simply say that lumi-
nance is the amount of light reflected from a hue (on a physical surface or an
imaginary plane). Brightness is the perception elicited by the luminance of a vi-
sual target. A given target luminance can elicit different perceptions of brighness
in different contexts.
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Formerly the term ”brightness” was used as a synonym for ”luminance”.
Lightness was the term used in the CIE world (see Sections 3), and thought
of as synonym for reflectivity as well as intensity.

The CIE procedure converts the spectral power distribution of light from an
object into a brightness parameter Y and two chromaticity coordinates x, y.
The brightness parameter Y is a measure of luminance which is light intensity
factored by the sinsitivity of the normal human eye.

Chromaticity is an objective specification of the quality of a color regardless
of its luminance. The CIE diagram removes all intensity information, and uses
its two dimensions to describe hue and saturation.

More information on this subject we can find in many publications refering
to color theory, computer vision, etc.; many interesting details are available on
the Internet, including Wikipedia.

3 The CIE Chromaticity Triangle and Fuzzy Color Areas

The CIE color model was developed to be completely independent of any device
or other means of emission or reproduction and is based as closely as possible on
how humans perceive color. This model was introduced in 1931 by the CIE that
stands for Comission Internationale de l’Eclairage (International Commission on
Illumination).

The CIE chromaticity diagram represents the mapping of human color percep-
tion in terms of two CIE parameters x and y, called the chromaticity coordinates,
which map a color with respect to hue and saturation.

Color names have been assigned to different regions of the CIE color space
(chromaticity triangle) by various researchers; see e.g. [3], [4]. These are ap-
proximate colors that represent rough categories, and not to be taken as precise
statements of color. Therefore, we can treat them as fuzzy sets, and boundaries
between the regions may be viewed as not crisp but belonging to the distinct
areas with a certain membership value.

The original CIE 1931 color space was updated in 1960 and 1976 so that
the chromacity spacing would be more perceptually uniform, and also more
convenient for industrial applications (e.g. food, paint, etc.). The main advantage
of the 1976 CIE chromaticity diagram is that the distance between points on the
diagram is approximately proportional to the perceived color difference.

In this paper, we apply the original CIE chromaticity triangle, with the la-
beled regions presented in [3], [4]. Thus, we employ 23 fuzzy regions of the CIE
color space, assosiated with the following colors (hues): red, pink, reddish orange,
orange pink, orange, yellowish orange, yellow, greenish yellow, yellow green, yel-
lowish green, green, bluish green, bluegreen, greenish blue, blue, purplish blue,
bluish purple, purple, reddish purple, purplish pink, red purple, purplish red,
white.

The CIE chromaticity diagram shows the range of perceivable hues for the
normal human eye. We can say that the chromaticity diagram plots the entire
gamut of human-perceivable colors by their x, y coordinates. The inverted-U
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shaped locus boundary (that is the upper part of the horseshoe shaped bound-
ary) represents spectral colors (wavelengths in nm). The lower-bound of the locus
is known as the ”line of purples” and represents non-spectral colors obtained by
mixing light of red and blue wavelengths. Colors on the periphery of the locus
are saturated, and become progressively desaturated in the direction towards
white somewhere in the middle of the plot.

Any color within a triangle defined by three primaries (red, green, blue) can
be created (or recreated) by additive mixing of varying proportion of those pri-
mary colors. The area of the triangle is much less than the entire chromaticity
diagram. The triangle (located in the CIE diagram), which is the gamut of ad-
ditive coverage with RGB primaries, represents the colors that can be displayed
by a particular monitor (not including any brightness information). Another
gamut (a smaller area), included in the RGB triangle, indicates the range avail-
able to commercial four-color printing process; see [15]. It is important knowing
that different display technologies (e.g. CRT, LCD, plasma, inkjet printers, laser
printers) may have inherently different color gamuts. Printers can display much
less colors than monitors. It is worth noticing that in some areas the RGB gamut
is ”outside” that of the CMYK space (applied in color printing).

As a matter of fact, there are different types of RGB spaces depending on
the technical reasons, professional requirements, and display devices. The most
common are Adobe, Apple, ProPhoto, and sRGB (created cooperatively by HP
and Microsoft in 1996), as well as CIE RGB i.e. the above mentioned gamut
located in the CIE diagram. For details, see e.g. [6], [8].

4 Membership of Pixels to the Color Areas of the CIE
Triangle

Color digital pictures are composed of pixels (picture elements, i.e. smallest units
of 2-dimensional images). The pixels have a color associated with each of them.
Using the RGB color model in computers, the color of a pixel is expressed as an
RGB triplet (r, g, b) where each of the components (RGB coordinates) can vary
from zero to a defined maximum value (e.g. 1 or 255). An RGB triplet (r, g, b)
represents the 3-dimensional coordinate of the point of the given color within
the cube created by 3 axes (red, blue, and green) with values within [0,1] range.
In this model, every point in the cube denotes the color from black (0,0,0) to
white (1,1,1). The triplets (r, g, b) are viewed as ordinary Cartesian coordinates
in a euclidean space.

The (r, g, b) coordinates can be transformed into the CIE chromaticity tri-
angle, i.e. to the color areas located on the 2-dimensional space (of the CIE
diagram) with (x, y) coordinates. Detailed information concerning the transfor-
mation from RGB to XY Z space and vice versa as well as color gamut represen-
tation in the CIE diagram of different RGB color spaces is presented e.g. in [6].
It is also possible to convert RGB coordinates between sRGB and other types
of RGB spaces; see [7]. Mathematical formulas describing the transformation
from XY Z space to xyz and then to xy can be found in many publications,
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e.g. [4]. The transformation is also explained and the mathematical equations
are included in [14].

For considerations in this paper, it is sufficient to use the following equations

x = f1(r, g, b), y = f2(r, g, b) (1)

which in this general form describe the transformation from the RGB color space
(3-dimensional) to the 2-dimensional xy space of the CIE chromaticity diagram.
Of course, for the calculations we employ the precisely defined functions (1),
presented in the publications cited above.

Knowing the functions (1), we can transform each triplet (r, g, b) associated
with particular pixels of a digital color picture to the CIE chromaticity triangle
(the gamut). In this way, we can assign a proper color area of the CIE diagram
to every pixel of the picture.

Each pixel of the picture (color image) is characterized by two attributes: color
and location. The former refers to the (r, g, b) and (x, y) in the corresponding
area of the CIE gamut. The latter concerns the spatial location within the picture
and will be discussed in the next section.

Let us denote:

Ω – digital color picture
M – number of pixels in the picture Ω
pj – j-th pixel in the picture Ω, where j = 1, ...,M
cj = (rj , gj , bj) – triplet (r, g, b) for pixel pj , where j = 1, ...,M

As mentioned in Section 3, the color areas (regions) of the CIE chromaticity
triangle may be treated as fuzzy regions, with fuzzy boundaries between those
areas. This means that the fuzzy color areas are fuzzy sets of points (x, y) that
belong to them with membership grades expressed by a value from the inter-
val [0.1]. Thus, a point (x, y) may fully belong to a color region (membership
value equals 1), partially belong (membership greater than 0 and less than 1) or
not belong (membership equals 0). The membership functions of the fuzzy sets
may be defined in different ways. An algorithm for creation such membership
functions for the fuzzy color areas of the CIE triangle is proposed in [14].

Let ΔCIE denotes the CIE chromaticity triangle, and {H1, H2, ..., Hn} - crisp
color areas (regions with sharp boundaries) of the ΔCIE . Hence, we have the
following equation

ΔCIE =

n⋃
i=1

Hi (2)

In the case of the regions presented in [3], [4] and mentioned in Section 3, the
number of the color areas, n=23, and there are 23 labels (color names) listed in
Section 3 assigned to each region Hi, for i = 1, ..., 23.

As explained in Section 3, the color areas Hi, for i = 1, ..., n, can be viewed
as fuzzy regions. Let us denote them as {H̃1, H̃2, ..., H̃n}. The fuzzy sets {H̃i},
for i = 1, ..., 23, like the corresponding crisp sets {Hi}, are defined in the 2-
dimensional space (of the CIE diagram) with (x, y) coordinates. This space is
called the universe of discourse for the fuzzy sets. Both the crisp sets {Hi} and
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fuzzy sets {H̃i} are sets of points (x, y). Each of these points (elements, objects)
may belong to only one of the crisp sets {Hi} but can partially belong to more

than one fuzzy set {H̃i}, for i = 1, ..., n, where n=23. When the fuzzy sets are
considered, their membership functions must be known (see [16], [11]). Let us
denote them as μH̃i

(x, y). As mentioned earlier, those membership functions are
determined in [14].

With regard to a digital color picture, Ω, for every pixel, pj , j = 1, ...,M ,
its color atribute value, cj = (rj , gj , bj), can easily be transformed to the
point (xj , yj) in the ΔCIE , by use of formulas (1). Hence, we can determine

the membership values of cj to the fuzzy sets {H̃i}, for i = 1, ..., n, as μH̃i
(cj) =

μH̃i
(xj , yj).

In [12], the CIE chromaticity triangle is employed, and membership degrees of
particular hues in color digital pictures are used in a classification task. However,
with regard to the practical application under consideration in that case, we are
not interested in the location of pixels of particular color. Thus, this is a different
problem; in this paper, the pixel location is very important.

5 Fuzzy Location of Pixels in a Digital Picture

Let us again consider a digital picture, Ω, composed of pixels, pj , for j = 1, ...,M ,
but in this case we are interested in locations of the pixels within the image.
Moreover, the locations will be viewed as fuzzy areas reprezented by fuzzy sets.
This concept is shown in Fig. 1 where membership functions that define the
fuzzy regions are portrayed. Trapezoidal membership functions are assumed to
characterize the left, central, and right parts of the picture, respectively, denoted
as SL, SM , SR and WD,WC ,WU , for both s and w axes. As a matter of fact,

SΩ = {SL, SM , SR}, WΩ = {WU ,WC ,WD} (3)

are fuzzy sets with following membership functions:
{μSL(s), μSM (s), μSR(s)} and {μWU (w)), μWC (w)), μWD (w)}, respectively, for
the picture Ω. Now, let us consider the Cartesian product

QΩ = SΩ ×WΩ (4)

and the fuzzy sets depicted in Table 1. The 2-dimensional fuzzy sets presented in
this table are Cartesian products of 1-dimensional fuzzy sets (3). These fuzzy sets
are characterized by membership functions obtained as the minimum or product
of two corresponding membership functions of the fuzzy sets (3); according to
the definition of the Cartesian product of two fuzzy sets (see e.g. [18], [11]). The
fuzzy sets portrayed in Table 1 describe the fuzzy locations of pixels in a digital
picture Ω.

In Section 4, we considered the color attribute, cj , of pixels pj, for j = 1, ...,M ,
of a digital picture Ω. Now we focus our attention on the location attribute of the
pixels. Let us denote: S = {1, 2, ...,Ms}, W = {1, 2, ...,Mw}, whereM =MsMw;
see Fig. 1. Then, the location attribute of a pixel pj in the picture Ω, denoted
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Table 1. Two-dimensional fuzzy sets that represent pixel locations in a digital picture

Left Upper Left Central Left Down

SL ×WU SL ×WC SL ×WD

Middle Upper Middle Central Middle Down

SM ×WU SM ×WC SM ×WD

Right Upper Right Central Right Down

SR ×WU SR ×WC SR ×WD

Fig. 1. Membership functions of fuzzy locations

as qj , is expressed by coordinates (s, w) that determine the point in the space
S ×W corresponding to the pixel location. It is very easy to assign the proper
coordinates (s, w) to every pixel pj , where s ∈ S and w ∈W . It is obvious that,
for all j = 1, ...,M , the pixel location qj(s, w) ∈ QΩ. In particular, this attribute
of a pixel pj belongs to the fuzzy sets illustrated in Table 1 and Fig. 1, with
different membership values, depending on their membership functions.

6 An Idea of Macropixels

In Sections 4 and 5, single pixels of a digital picture have been considered with
regard to two attributes: color and location, respectively. However, nowadays the
number of pixels employed to represent digital pictures are usually very large.
Moreover, we observe that it becomes larger and larger in digital cameras. This
means that we collect more and more digital color pictures of hight spatial resolu-
tion of the images. Processing a large number of hight resolution images requires
so many mathematical operations per pixel that is often a hight computational
load even for today’s powerful computers. Therefore, in this section, instead of
individual pixels an idea of groups of pixels, called ”macropixels”, is proposed.
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A digital color picture is viewed as a 2-dimensional array of single pixels ar-
ranged in columns and rows. In this way, the digital pictures discussed in Sections
4 and 5 have been described; see Fig. 1. To create the macropixels, we divide
the whole image (digital picture) to identical rectangles that play the role of
the macropixels. This means that the width and hight of the picture, S and W ,
respectively, are divided into intervals that build the rectangles (macropixels).
Two algorithms may be proposed: incremental and decremental. The former
means that the algorithm starts with individual pixels and then the rectangles
that contain neighboring pixels are created. The latter algorithm starts with the
whole image that is divided into smaller parts (rectangular macropixels). In the
incremental algorithm, at the first iteration many small macropixels are con-
structed. The next iterations produce less number of macropixels of bigger size.
In the decremental version of this algorithm, we start with the large macropixele
equal to the whole picture, then next iterations produce smaller macropixels. We
can say that on the one hand we can treat the macropixels as individual pixels
while on the other hand we can view the macropixels as the whole picture.

Speaking more precisely, with regard to the decremental algorithm, every
macropixel is treated as the whole picture, in each iteration, when it is divided
into macropixels of a smaller size. Referring to the incremental algorithm, new
macropixels of bigger size are viewed as the whole picture composed of pixels.
This case concerns the proces of creating the macropixels. When the macropix-
els have already been constructed we can treat them as individual pixels that
are characterized by two attributes: color and location. In this way, in many
applications, we can focus our attention on the macropixels of specific color and
location, instead of every pixel of the image.

Like with regard to the pixels, the color and location attributes of macropixels
are viewed as fuzzy concepts. The color attribute of macropixels can be consid-
ered in the same way as presented for pixels in Section 4, with regard to the CIE
chromaticity diagram. However, we should explain how to determine the color of
macropixels based on the color attribute values, cj , of the pixels pj that belong
to these macropixels. Every macropixel is composed of the individual pixels that
are subsets of the pixels {pj}, for j = 1, ...,M , that form the whole picture Ω.

Let us assume that the picture Ω consists of Mk macropixels, Ωk, for k =
1, ...,Mk. Every macropixel, Ωk, can be viewed as an individual pixel reffering to
its membership to the color regions, {H̃i}, for i = 1, ..., n, in the CIE diagram.

We can propose several methods to determine the color value of the macropixel,
Ωk, for k = 1, ...,Mk. Among others, we can take into consideration the aver-
age value of the membership of the individual pixels that create the macropixel
to the CIE color regions. In this paper, we focus our attention on an approxi-
mate color of a group of neighboring pixels (macropixel) rather than the color
of individual pixels.

The location attribute of the macropixels can be considered with regard to
the approach presented in Section 5 for individual pixels. The macropixels, Ωk,
for k = 1, ...,Mk, may be viewed as fuzzy pixels that belong to the fuzzy sets
portrayed in Fig. 1 and Table 1.
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In this section, we propose the macropixels of rectangular shape and the same
size. However, we can introduce another attribute of the macropixels, in addition
to the color and location, that is the size. Taking into account a group of pixels
(macropixel) of a specific color and location (expressed by fuzzy values), the
third attribute, i.e. the size may include very useful information with regard to
the problem described in Section 8.

7 Fuzzy Granulation

Fuzzy granulation approach, as mentioned in Section 1, has been introduced by
Zadeh [19]. Some information one can also find in e.g. [11]. New ideas concerning
the fuzzy granulation approach have been developed by Pedrycz, especially with
regard to neural networks (see e.g. [9]), also in application to pattern recognition
[10].

According to Zadeh [17], [18], [19], linguistic variables are concomitant with
the concept of granulation. As the author explained in [18], granulation, in fuzzy
logic, involves a grouping of objects into fuzzy granules, with a granule being
a clump of objects drawn together by similarity. In efect, granulation may be
viewed as a form of fuzzy quantization, which in turn may be seen as an instance
of fuzzy data compression. In the non-fuzzy case, quantization is the same as
crisp granulation where granules are not fuzzy.

Image processing is one of examples where information granulation may be
applied and play an important role in pattern recognition [10]. In this case, the
similarity of objects that are candidats for grouping into a granule usually refers
to the closeness of pixels located spatially close to each other. In the concept of
information granulation, the granules can take a form of sets, fuzzy sets, rough
sets, etc., but most often are concentrated on the use of fuzzy sets.

In this paper, we apply the concept of fuzzy granulation to digital color pic-
tures. The idea of macropixels, described in Section 6, is strictly related to the
fuzzy granulation approach. The fuzzy color areas of the CIE diagram, discussed
in Sections 3 and 4, as well as the fuzzy locations, proposed in Section 5, can be
considered in the framework of the fuzzy granulation.

The macropixels may be viewed as fuzzy granules that represent groups of
pixels similar with regard to their location in a digital picture. When pixels of
the same (or similar) color are located within a macropixel, we have a granule
of the same color and location. In addition, as mentioned in Section 6, the third
attribute, i.e. the size of the macropixels may be taken into account. Thus, we
can see a digital color picture as a collection of macropixels associated with
corresponding granules that carry information about color, location, and size.
This concept is especially useful with regard to the problem considered in this
paper and discribed in Section 8.

From the color point of view, the fuzzy regions of the CIE chromaticity tri-
angle may be treated as fuzzy granules. In this case, the granules are groups of
points with similar color (hue). Referring to the location, the fuzzy sets defined in
the space (4) and presented in Table 1 with the illustration in Fig. 1, form fuzzy
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granules of the points (pixels) characterized by the same fuzzy location. Both
kinds of the fuzzy granules are labeled with values of linguistic variables, i.e.
linguistic names of color and location. Fuzzy IF-THEN rules with these linguis-
tic variables are applied in the fuzzy granulation approach. Thus, information
concerning colors and locations of pixels are granulated in a fuzzy way in order
to inference a result of the picture recognition problem, formulated in Section 8.

8 A New Approach to Color Digital Picture Recognition

Let us consider the following problem. Having a large collection of color digi-
tal pictures, we would like to find a picture (or pictures) presenting an object
characterized by three attributes – size, color, and location – with fuzzy values
(e.g. a big object of a color close to red, located somewhere in the center). In
order to recognize such a picture (or a group of similar pictures), we can employ
the idea of macropixels (described in Section 6) along with the fuzzy approach
to color (see Section 4) and location (see Section 5). The fuzzy granulation, as
mentioned in Section 7, is especially useful with regard to this problem. Informa-
tion granules, in this case, contain information about size, color, and location.
Macropixels of different sizes and the same (or similar) color and location form
the information granules.

Referring to the color, location, and size, we have the following fuzzy granules:

– For the color — {Ci} = {H̃i}, for i = 1, ..., n, where n = 23, with the
membership functions μH̃i

(cj) = μH̃i
(xj , yj), for j = 1, ...,M , see Section 4

– For the location — {Ql}, for l = 1, ..., L, where Q1 = SL × WU , Q2 =
SL × WC , Q3 = SL × WD, Q4 = SM × WU , Q5 = SM × WC , Q6 =
SM ×WD, Q7 = SR ×WU , Q8 = SR ×WC , Q9 = SR ×WD, where L = 9,
in Table 1, with the membership functions of fuzzy sets (3) shown in Fig. 1;
for details concerning the membership functions of 2-dimensional fuzzy sets
(3) see Section 5, of course – we can consider the case of more than 9 fuzzy
sets for the location

– For the size — {Zm}, for m = 1, ...,K, i.e. fuzzy sets with membership
functions that describe the size of macropixel Ωk, for k = 1, ...,Mk (see
Section 6) as e.g. ”small”, ”medium”, ”big” (K = 3) or ”very small”, ”small”,
”medium”, ”big”, ”very big” (K = 5), relatively to the size of the digital
color picture Ω.

Now, we assume that we have Mk macropixels of different sizes, created in the
way described in Section 6. The membership functions of the macropixel size
can be defined as trapezoidal-shaped functions (like in Fig. 1) or e.g. triangular
or Gaussian functions. Precise definitions of the membership functions have to
correspond to the above mentioned linguistic names e.g. big or small size.

The fuzzy granules, for the color, location, and size, deal with a single dimen-
sion (attribute). When a granule of the 3-dimension is considered, we take the
Cartesian product of the corresponding fuzzy sets (1-dimensional granules) in
each dimension (coordinate). In this way, we obtain the following fuzzy granules:

Gk = Ck ×Qk × Zk, k = 1, ...,Mk (5)
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where Ck ⊂ {H̃i}, for i = 1, ..., n, Qk ⊂ {Ql}, for l = 1, ..., L, Zk ⊂ {Zm}, for
m = 1, ...,K.

According to the definition of the Cartesian product of fuzzy sets, a triangular
norm (t-norm) must be applied to determine the fuzzy granule (5); for details,
see e.g. [11].

The fuzzy granule (5) is a multidimensional fuzzy set that represents a fuzzy
relation between color, location, and size (attributes of the macropixels). In the
fuzzy granulation approach, a digital color picture is viewed as a composition
of the fuzzy granules that carry information about the color, location, and size,
as well as interactions between them (expressed by the fuzziness that results in
overlapping of the granules).

With regard to the problem of picture recognition, described at the begining
of this section, fuzzy IF-THEN rules of the following form can be formulated:

IF c is Ci AND q is Ql AND z is Zm THEN class Dr

where (c, q, z) is a point belonging to the space of fuzzy granules (5), and Dr,
for r = 1, ..., R, denotes distinguished classes in the classification problem of the
digital color pictures. For example, Dr may be a class of the pictures presenting
a big object of a color close to red, located somewhere in the center.

The classification problem can be solved by use of a fuzzy system with the
inference method based on fuzzy logic and the fuzzy IF-THEN rules; for details
see e.g. [11]. In this way, we expect to obtain a group of pictures belonging to
the specific class (e.g. with a big object of a color close to red, somewhere in the
center of the picture). Then, having relatively small number of such a pictures
(after the classification), it is much easier to find the one that we are searching
for. Of course, it is possible to get just the only one picture from a large collection
of others.

It is worth emphasizing that the approach proposed in this paper is granular
oriented rather than pixel processing. Fuzziness of the granules enables to use
linguistic descriptions of digital color pictures and the inference based on fuzzy
IF-THEN rules. In the classification problem of picture recognition, considered
in this section, it is not necessary to process every pixel of the digital picture.
Instead, we can take into account only macropixels of a specific location and
size, e.g. a big macropixel in the center of the picture, and classify them with
regard to their color.

Referring to the color of macropixels, we can employ the method presented
in [12], where an amount of specific colors (hues) in the whole digital picture is
determined based on the CIE chromaticity triangle, ignoring the location of the
color pixels. Now, we can apply this method to macropixels treated as the whole
picture in the algorithm described in [12].

9 Conclusions and Final Remarks

The problem addressed in Section 8 may be treated as an example of a group of
problems concerning recognition of color digital pictures. Various specific tasks
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can be formulated and solved within the framework of the fuzzy granulation
approach. Among others, it seems to be very useful in image segmentation,
where a digital image is partitioned into segments (groups of pixels, known as
superpixels); see e.g. [2].

In this paper, we consider the problem of color digital pictures recognition
that can be viewed as a special case of image processing and image recognition.
As mentioned in Section 1, we are interested in a large collection of the color
digital pictures that are images, of course, but typical, taken by popular digital
cameras, not e.g. medical images. Therefore, we use the name ”picture” rather
that ”image”, in order to focus our attention on the application to usual photos.
Moreover, the important issue is that we are now not going to recognize the
exact image presented in the picture but only its specific part described by an
approximate color and location.

It should be emphasized that the main idea concerning the problems consid-
ered in this paper is to describe a picture by linguistic terms that refer to color,
location, and size, i.e. the attributes of macropixels. Then, our task is to recog-
nize (and e.g. classify) pictures with specific features, expressed by the linguistic
description, such as ”a big object of a color close to red, located somewhere in
the center of the picture”. Thus, our aim is not to recognize details of the image
but only selected features with approximate (fuzzy) values.

Further research on this subject may concern to include the third dimension
of the CIE chromaticity triangle, that is the luminance. We expect that this can
improve the recognition results with regard to the color attribute.

In addition, different shapes of the macropixels may be considered, so other
shapes of their membership functions must be applied. In this way, we can obtain
a better model of interactions between the granules. This should result in better
representation of an image included in a digital color picture.

Then, we can extend our research to the very interesting problem of image
understanding (see e.g.[13]) based on the fuzzy granulation approach introduced
in this paper.

The granulation approach that we propose to color digital picture recognition
differs from the granular computing in pattern recognition, presented in [10].
However, we can adopt some ideas in our future research, and use fuzzy granules
to summarize a collection of pictures.
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Abstract. One-class classification is considered as one of the most chal-
lenging topics in the contemporary machine learning. Creating Multiple
Classifier Systems for this task has proven itself as a promising research
direction. Here arises a problem on how to select valuable members to the
committee - so far a largely unexplored area in one-class classification.
This paper introduces a novel approach that allows to choose appropriate
models to the committee in such a way that assures both high quality of
individual classifiers and a high diversity among the pool members. We
aim at preventing the selection of both too weak or too similar models.
This is achieved with the usage of an multi-objective optimization that
allows to consider several criteria when searching for a good subset of
classifiers. A memetic algorithm is applied due to its efficiency and less
random behavior than traditional genetic algorithm. As one-class classi-
fication differs from traditional multi-class problems we propose to use
two measures suitable for this problem - consistency measure that allow
to rank the quality of one-class models and introduced by us sphere in-
tersection measure that serves as a diversity metric. Experimental results
carried on a number of benchmark datasets proves that it outperforms
traditional single-objective approaches.

Keywords: machine learning, one-class classification, ensemble prun-
ing, classifier selection, diversity, random subspace, memetic algorithm,
multi-objective optimisation.

1 Introduction

One-class classification (OCC) is a specific subfield of machine learning. During
the classifier training step there are at disposal only objects from a single class,
called the target concept. It is assumed that at the exploitation phase of such a
classifier there may appear new, unseen objects, called outliers. Therefore OCC
aims at establishing a boundary that separates the target objects from possible
outliers [22]. The term single-class classification was introduced in [11], but also
outlier detection or novelty detection [3] are used to name this field of study.
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OCC is a difficult task and there are many open problems related to it. One
of the most prominent is how the target class boundary should be tuned - in
case of being too general unwanted outliers would be accepted, in case of being
too matched to the training set a strong overfitting may occur. From this one
may see that it is risky to rely only on a single given model. In recent years there
have been several successful attempts on how to improve the quality of one-class
recognition systems. One of them is the ensemble approach utilizing outputs of
more than one model.

Multiple classifier systems (MCSs) despite the well established status they
are the subject of ongoing intense research. Among many factors entangled in
the design process of MCS one of the uttermost importance is how to select
classifiers to ensure the high quality of the ensemble. Combining similar classifiers
do not contribute to the system being constructed, apart from increasing the
computational complexity. In some cases (e.g. voting fusion methods) it may
even decrease the quality of the committee. Therefore selected members should
display characteristics unique to each of them in order to improve the quality of
the collective decision. There are two main research trends in this area - how to
assure the diversity among the individual classifiers in the pool [14] and how to
measure it efficiently [2].

One should bore in mind that diversity itself is not the perfect criterion for
classifier selection. It is easy to imagine a situation in which two classifiers have a
high diversity in comparison to each other but at the same time one of them (or
even both) is of low quality. When using diversity for the ensemble pruning such
models would be selected but at the same time the quality of the MCS will drop.
In an ideal situation the committee should consist of models that are competent
and mutually complementary i.e., each of the classifiers should display a high
individual accuracy and a high diversity when compared to other members.

It must be mentioned that there are two different views on the applications
of one-class classifiers:

– as a tool for solving problems in which objects other than the ones originating
from the target class are hard or even impossible to obtain, e.g. in machine
fault diagnosis where generating all possible malfunctions of the system is
too cost and time consuming - the paper follow this view on the OCC,

– as a tool for decomposition of a multi-class classification task [24].

The paper proposes a new way of the classifier selection designed for the spe-
cific nature of OCC. We propose to utilize simultaneously two criteria - one
responsible for the predictive quality of classifiers and one for the diversity of
the ensemble. This way we prevent our committee from consisting of models too
weak or too similar to each other. Due to the specific nature of OCC accuracy
itself cannot be used - instead we utilize an unsupervised consistency criterion
that is suitable for this task. For measuring the diversity we introduce a novel
measure based on minimization of the intersection between the spherical clas-
sifiers. A multi-objective memetic algorithm is used to chose the best subset of
classifiers from the available pool. The extensive experimental results, backed up
with the test of a statistical significance prove the usefulness of our proposition.
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2 Combining One-Class Classifiers

The problem of building MCSs on the basis of one-class still awaits for proper
attention. There are some papers dealing with the proposals on how to com-
bine one-class classifiers [24], but most of them are oriented on the practical
application [5], not on theoretical advances.

One-class boundary methods, such as used in this paper Support Vector Data
Description (SVDD) [20], are based on computing the distance between the
object x and the decision boundary that encloses the target class ωT . To apply
fusion methods we require the support function of object x for a given class.
We propose to use the following heuristic solution:

F̂ (x, ωT ) =
1

c1
exp(−d(x|ωT )/c2), (1)

which models a Gaussian distribution around the classifier, where d(x|ωT ) is an
Euclidean distance metric between the considered object and a decision bound-
ary, c1 is the normalization constant and c2 is the scale parameter. Parameters
c1 and c2 should be fitted to the target class distribution. One may easily see
that used distance metric plays an important role in the process of combining
one-class classifiers [16].

After such a mapping it is possible to combine OCC models based on their
support functions [19]. Let us assume that there are L OCC classifiers in the
pool. In this paper we use the mean of the estimated probabilities which is
expressed by:

ymp(x) =
1

L

∑
k

(Pk(x|ωT ). (2)

This fusion method assumes that the outliers distribution is independent of x
and thus uniform in the area around the target concept.

3 Model Selection for One-Class Classification

Classifier selection (known also as ensemble pruning) plays an important role
in the process of the MCS design. There are two main criteria that should be
considered while choosing models for the committee:

– accuracy - adding weak classifiers with a low competence will decrease the
overall quality of the MCS;

– diversity - adding similar classifiers will contribute nothing to the ensemble
apart from increasing the computational cost.

One should note that both of them have some drawbacks - highly accurate clas-
sifiers may be similar to each other, while highly diverse classifiers may display a
weak individual quality. Both of these criteria are commonly used in the process
of classifier selection for multi-class cases. Yet for the specific nature of OCC
there is little work so far on how to evaluate usefulness of a pool of models to
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a committee. In [4] it is suggested to prune the ensemble according to the indi-
vidual accuracies of classifiers, while authors of this paper introduced dedicated
diversity measures for this task [12,15].

In this paper we use two independent criteria - consistency measure to rank
classifiers according to their quality (as we have no outlier objects at the classifier
building step we cannot use simple accuracy measure) and sphere intersection
which we introduce as a novel diversity measure tuned to the nature of OCC.

3.1 Consistency Measure

The consistency measure indicates how consistent a pool of classifiers is in re-
jecting fraction f of the target data [21]. One may compute it by comparing the

rejected fraction f with an estimate of the error on the target class ε̂t:

Cons(Π l) = |ε̂t − f |, (3)

where Π l is the tested pool of classifiers. This is an unsupervised measure well
suitable for OCC problems as we need only the estimation of error on the target
class - no information about outliers is required.

3.2 Sphere Intersection Measure

Intuitively a high diversity of an ensemble may be achieved when each of the
classifiers have a different area of competence. From this one may easily see
that two classifiers with similar areas of competence will not contribute much
to the quality of the committee. Taking into consideration the specific nature
of boundary one-class classifiers we may assume that two predictors with high
overlap of decision boundaries may be deemed as ones with a low diversity.
Therefore we propose a diversity measure designed specifically for spherical one-
class classifiers (such as considered in this paper SVDD), based on a degree of
overlap between individual classifiers [9].

In case of classifier overlapping there may be two situations - where classifiers
overlap pairwise and when more than a pair of classifiers overlap. Examples of
such situations are presented in Fig. 1.

We propose to measure the diversity of the ensemble by measuring the overall
degree of overlap between all classifiers in the pool. Firstly we need to calculate
the volume of a single spherical classifier:

VS(a,R) =
2π

D
2 RD

Γ (D/2 + 1)
, (4)

where D is the dimensionality of the training set T S, a is the center of the
sphere, R is the radius the sphere and Γ is the gamma function.

Therefore the volume of all L classifiers from the pool is equal to the sum of
their individual volumes:

Vsum =
∑L

i=1 VS(ai, Ri). (5)
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Fig. 1. Example of possible sphere intersections - two spheres overlapping (pairwise)
and more than two spheres overlapping (K-spheres intersection)

In case of a lack of overlap between the spheres in the committee the volume of
an ensemble is equal to the sum of the volumes of all individual classifiers:

Vens = Vsum ⇔
∀i�=j i,j=1,...,L VS(ai, Ri) ∩ VS(aj , Rj) = ∅. (6)

We assume that maximum diversity is achieved for the situation presented in
(6) i.e. when no overlap between individual classifiers exist.
In case of E pairwise overlaps the volume of an ensemble is given by the following
formulae:

Vens =
∑L

i=1 VS(ai, Ri)−
∑E

e=1 VOe ⇔
∃i�=j i,j=1,...,L VS(ai, Ri) ∩ VS(aj , Rj) �= ∅. (7)

The spherical cap [7] is a part of a hypersphere defined by its height hc ∈ [0, 2R]
and its radius rc ∈ [0, 2R]. In the [9] a following equation for D dimensional
spherical cap has been proposed:

Vcap(R, hc, D) =
π(D−1)/2RD−1

Γ ((D − 1)/2 + 1)

βmax(R,hc)∫
0

sinD−1(β)dβ, (8)

where
βmax(R, hc) = arcsin(

√
(2R− hc)(hc/R2)). (9)

From this we may write the volume of a single pairwise overlap VOe as a sum of
their spherical caps:

VOe(R, hc) = Vcap1 + Vcap2. (10)
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In case when more than two classifiers overlap the computation of the volume
of the overlap becomes more complex. One may simplify this problem by count-
ing only pairwise overlaps, but this would lead to counting some parts of the
overlapping region K times for K intersecting spherical classifiers.

The volume of non-pairwise overlap can be bounded between the volume
of classifiers with only pairwise overlaps and the volume of classifiers with no
overlapping:

L∑
i=1

VS(ai, Ri)−
E∑

e=1

VOe ≤ Vens ≤
L∑

i=1

VS(ai, Ri). (11)

Basing on the presented upper and lower bound one may derive an approximation
of the volume of the ensemble with non-pairwise overlapping:

Vens ≈
L∑

i=1

VS(ai, Ri)−
1

2

E∑
e=1

VOe . (12)

The maximum error of such an approximation is no greater than 1
2

∑E
e=1 VOe .

With presented above equations we propose to measure the diversity by com-
paring the volume of the ensemble to the sum of all individual classifiers, as-
suming that with increase of the intersection degree the diversity falls down:

DIVSIoc(Π l) =
Vens
Vsum

. (13)

4 Proposed Method

In this paper we propose to select OCC classifiers to the committee accord-
ing to the combination of both of these criteria, hoping that this will allow to
combine their strong points while becoming more robust to flaws exhibited by
each of them. To achieve this we propose to use a multi-objective optimization,
conducted with the usage of a memetic algorithm (MA) [6].

MAs may be seen as a hybrid solution that fuses together different meta-
heuristics in hope to use gain advantage from combining their strong points.
The idea of MAs is based on the individual improvement plus population co-
operation. Unlike traditional Evolutionary Algorithms (EA), MAs are biased
towards exploiting all the knowledge about the problem under study. By this
they may be seen as less random and more directed search method. The so-
called No-Free-Lunch Theorem for optimization [25] proven that the quality of
the search algorithm lies on the amount and quality of the knowledge that is
available. MAs start slowly to gain the attention of machine learning filed [17].

In this paper we use a MA that is a hybrid approach using both EA and
tabu search to exclude re-visiting previously checked points in solution space.
Additionally to allow for searching simultaneously for classifiers with high con-
sistency and diversity we use a multi-objective MA [10], aiming at maximizing
both of these criteria.
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Let us formulate the multi-objective optimization criterion as:

minimize g(Π l) = (−Cons(Π l) +DIVSIoc(Π l)), , (14)

where Π l is the given pool of classifiers that will undergo an ensemble pruning
procedure, Cons(Π l) stands for the overall consistency of the given ensemble
and DIVSIoc(Π l) is the diversity of the considered ensemble expressed by the
mentioned Sphere Intersection Measure. The revert sign before the consistency
value is due to the fact that it should be maximized while the lowest value of
sphere intersection shows the highest ensemble diversity.

An individual in the MA population represents a classifier ensemble Ch=[C],
where component C represents L classifiers at our disposal in the pool:

C = [C1, C2, ..., CL], (15)

and is a binary vector with 1s indicating the chosen individual classifiers (i.e.,
if we have 10 classifiers then 0010110010 would indicate that classifiers 3, 5, 6,
and 9 are chosen for the ensemble).

For this MA standard operators for EAs such as individual selection, muta-
tion, cross-over etc. apply. Additionally a tabu search is applied at the end of
each iteration to additionally tune the available individuals.

The control parameters of the MA algorithm are as follows:

– Nc - the upper limit of algorithm cycles,
– Np - the population quantity,
– β - the mutation probability,
– γ - the crossover probability,
– Δm - the mutation range factor,
– V - the upper limit of algorithm iterations without quality improvement.
– T - the size of the tabu list.
– NT - the number of cycles for improvement of individuals via the tabu search.

By this we achieve two goals: we use a more stable search procedure than in our
previous works [13] and we utilize two criteria for classifier selection in hope to
find the most suitable candidates for the OCC ensemble.

In the next section we present the experimental evaluation of our proposal.

5 Experimental Results

5.1 Aims of the Experiment

The aims of the experiment was to check the quality of the proposed method on
several benchmark datasets and compare the multi-objective classifier selection
for one-class ensembles with other approaches - based only on the diversity
criterion and only on the consistency criterion. This way we may easily see
if increasing the complexity of the OCC MCS by including a multi-objective
optimization is a worthwhile task.
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5.2 Set-Up

For the experiment a Support Vector Data Description [20] with a polynomial
kernel is used as a base classifier. The pool of classifiers were homogeneous, i.e.
consisted of classifiers of the same type.
The pool of classifiers consisted in total of 30 models build on the basis of a
Random Subspace [8] approach with each subspace consisting of 60 % of original
features.

The parameters used for the weight optimisation were set as follows:Nc = 300,
Np = 50, β = 0.7, γ = 0.3, Δm = 0.2, V = 20, T = 7 and NT = 15.

The combined 5x2 cv F test [1], tuned to OCC problems according to a scheme
presented in [12], was carried out to asses the statistical significance of obtained
results.

All experiments were carried out in the R environment [23] and computer
implementations of the classification methods used were taken from dedicated
packages built into the above mentioned software. This ensured that results
achieved the best possible efficiency and that performance was not diminished
by a bad implementation. Diversity measures and combination methods were
implemented by authors.

5.3 Datasets

We have chosen 10 binary datasets in total - 9 coming from UCI Repository and
an additional one, originating from chemoinformatics domain and describing the
process of discovering pharmaceutically useful isoforms of CYP 2C19 molecule.
The dataset is available for download at [18].

The objects from the minor class were used as the target concept, while objects
from the major class as outliers.

Details of the chosen datasets are given in Table 1.

Table 1. Details of datasets used in the experimental investigation. Numbers in paren-
theses indicates the number of objects in the minor class in case of binary problems.

No. Name Objects Features Classes

1 Breast-cancer 286 (85) 9 2
2 Breast-Wisconsin 699 (241) 9 2
3 Colic 368 (191) 22 2
4 Diabetes 768 (268) 8 2
5 Heart-statlog 270 (120) 13 2
6 Hepatitis 155 (32) 19 2
7 Ionosphere 351(124) 34 2
8 Sonar 208 (97) 60 2
9 Voting records 435 (168) 16 2
10 CYP2C19 isoform 837 (181) 242 2
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5.4 Results

The results are presented in Tab. 2. ALL stands for a committee consisting of
all available models’ CONS for a classifier selection approach according to the
consistency criterion, DIV for a classifier selection according to the diversity
criterion and CONS + DIV for the proposed multi-objective approach. Small
numbers under each method stands for the indexes of models from which the
considered one is statistically better.

Table 2. Results of the experimental results with the respect to the accuracy [%] and
statistical significance

No. ALL1 CONS2 DIV3 CONS+DIV4

1. 53.24 55.53 57.74 60.03

− 1 1,2 1,2,3

2. 86.09 87.98 88.01 89.91

− 1 1 1,2,3

3. 69.20 74.35 76.02 76.02

− 1 1,2 1,2

4. 58.54 59.62 61.45 63.85

− − 1,2 1,2,3

5. 83.12 87.33 84.22 89.57

− 1,3 − 1,2,3

6. 57.72 62.94 63.41 68.00

− 1 1 1,2,3

7. 71.94 74.56 74.07 76.29

− 1 1 1,2,3

8. 85.23 88.80 90.11 92.45

− 1 1,2 1,2,3

9. 86.81 89.54 87.05 90.13

− 1,3 − 1,3

10. 73.09 77.78 80.31 82.06

− 1 1,2 1,2,3

5.5 Results Discussion

The experimental investigations clearly prove the quality of the proposed method.
In 8 out of 10 benchmark tests the multi-objective classifier selection outperformed
in a statistically significant way both of the methods based on a single criterion.
This shows that combining two criteria increases the robustness of the OCC MCS
to selection of weak classifiers, reducing the drawbacks of both methods.

In case of two benchmarks there were no statistical differences between the
proposed approach and one of the reference. Yet the multi-criteria solution never
displayed worser performance than any of the single-criterion selectors.

In case of several datasets (e.g. Breast-Wisconsin) there were no difference
when using the accuracy or diversity criterion - but the proposed approach al-
lowed for further boost of the final accuracy of the MCS. This proves that one
may overcome the weak sides of both competence measures when using them
together.
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Finally the pruned ensemble (regardless which criterion was used) always
outperformed in a statistically significant way the committee with all classifiers
combined. This shows that classifier selection in OCC ensembles is a very im-
portant step towards improving their quality.

6 Conclusions

The paper discussed the idea of pruning one-class ensembles. In this work we
have introduced a novel approach for selecting OCC models to the committee
using the fusion of two separate criteria - consistency and diversity. A multi-
objective memetic algorithm was used to select classifiers to the OCC ensemble
in such a way that they at the same time display a high recognition quality
and are not similar to each other. This was done to check if using more than
one criterion simultaneously will allow to better exploit the available pool of
classifiers.

Experimental investigations, executed on benchmark datasets, proved the
quality of our approach. The multi-objective classifier selection in 8 out of 10
cases it outperformed the single-criterion methods in a statistically significant
way. This shows that using both diversity and consistency for OCC classifier
selection is a promising research direction.
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13. Krawczyk, B., Woźniak, M.: Designing cost-sensitive ensemble – genetic approach.
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kris7topher@gmail.com, buza@cs.bme.hu

http://www.cs.bme.hu

Abstract. The growing interest in time-series classification can be at-
tributed to the intensively increasing amount of temporal data collected
by widespread sensors. Often, human experts may only review a small
portion of all the available data. Therefore, the available labeled data
may not be representative enough and semi-supervised techniques may
be necessary. In order to construct accurate classifiers, semi-supervised
techniques learn both from labeled and unlabeled data. In this paper,
we introduce a novel semi-supervised time-series classifier based on con-
strained hierarchical clustering and dynamic time warping. We discuss
our approach in the framework of graph theory and evaluate it on 44 pub-
licly available real-world time-series datasets from various domains. Our
results show that our approach substantially outperforms the state-of-
the-art semi-supervised time-series classifier. The results are also justified
by statistical significance tests.

Keywords: time-series, semi-supervised classification, constrained clus-
tering, hubs, dynamic time warping.

1 Introduction

In the last decades, various types of sensors became cheaper and spread widely.
Most of them record the values of some attributes continuously over time which
results in extremely high number of very large time series. While such huge
amounts of temporal data have never been seen before, they motivate the grow-
ing interest in time-series research. In the financial domain, for example, due to
their huge volume, even storage of temporal data is challenging [14]. In general,
one of the most prominent problems associated with temporal data is classi-
fication of time-series which is the common theoretical background of various
recognition and prediction tasks ranging from handwriting, speech [20] and sign
language recognition over signature verification [8] to problems related to medi-
cal diagnosis such as classification of electroencephalogram (EEG, ”brain wave”)
and electrocardiograph (ECG) signals [2].

While the amount of temporal data grows drastically, in many cases, human
experts only have the chance to review and label a small portion of all the
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available data. Therefore, the labeled data may not be representative enough
which may result in suboptimal classifiers. This problem is amplified by the high
intrinsic dimensionality of time-series [16],[17]. As in high dimensional spaces the
data becomes inherently sparse – a phenomenon often referred to as the curse of
dimensionality – it is even more difficult to find a representative training set. In
order to alleviate this problem, besides learning from the labeled data, we aim to
use additional unlabeled data to construct more accurate time-series classifiers.

In this paper, we introduce a novel semi-supervised time-series classifier based
on constrained hierarchical clustering [13] and dynamic time warping [20]. We
call our approach SUCCESS: Semi-sUpervised ClassifiCation of timE SerieS. We
discuss semi-supervised classification in the framework of graph theory: in par-
ticular, we show that semi-supervised classification is analogous to the minimal
spanning tree problem. We explain our algorithm within this framework and ex-
plain its differences to the state-of-the-art semi-supervised time-series classifier.
We evaluate our approach on 44 publicly available real-world time-series datasets
from various domains. Our results show that our approach substantially outper-
forms the state-of-the-art semi-supervised time-series classifier. The results are
also justified by statistical significance tests.

The remainder of the paper is organized as follows. In Section 2, we introduce
the field of semi-supervised time-series classification and review the most impor-
tant related works. Section 3 presents our approach followed by the experiments
in Section 4. We conclude in Section 5.

2 Background

Both semi-supervised learning and time-series classification have been actively
researched in the last decades. From the point of view of our current study, most
relevant works deal with constrained clustering, cluster-and-label paradigm, self-
training and semi-supervised classification of time-series. We will review these
fields in the subsequent sections.

For an overview of further semi-supervised techniques and time-series classi-
fication approaches we refer to [3], [21], [25] and the references therein.

2.1 Constrained Clustering

With clustering the data, we mean the automatic identification of groups of
similar instances. Such groups are called clusters. In case of constrained clus-
tering, the algorithm is provided with some pieces of a priori information in
the form of cannot-link-constraints (or must-link-constraints) that describe that
some instances can not be (or must be) in the same cluster. In case of hierarchi-
cal agglomerative clustering (HAC) algorithms, each instance initially belongs
to a separate cluster. Clusters are then merged in an iterative process. In each
iteration, the two most similar clusters are merged. The process is finished when
the number of clusters has reached the expected number of clusters (or when
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Fig. 1. Unconstrained and constrained single-link hierarchical agglomerative clustering
with the dendograms illustrating the merge steps performed during the iterative process

the two most similar clusters are too far from each other respectively). The
expected number of clusters (or the distance threshold) is an external parameter
set by the user. In case of single link, the similarity of two clusters is determined
by the distance of their closest instances. Must-link (ML) and cannot-link (CL)
constraints were shown to improve clustering accuracy and robustness [11], [13]
compared to the case of unconstrained hierarchical clustering. Unconstrained
and constrained single-link hierarchical agglomerative clustering algorithms are
illustrated in Figure 1.

2.2 Cluster-and-Label

In the cluster-and-label approach, unconstrained or constrained clustering is per-
formed first. Clusters are then mapped to classes by some algorithm. A possible
mapping can be constructed by majority vote, i.e., each cluster gets mapped to
the class of which the most labeled instances it contains.

Cluster-and-label performs well if the particular clustering algorithm captures
the true structure of the data. Dara et al. [5] and Demiriz et al. [6] applied the
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Fig. 2. Simple self-training algorithm

cluster-and-label paradigm with self-organizing maps and genetic algorithms for
semi-supervised classification.

2.3 Self-training

Self-training is one of the most commonly used semi-supervised algorithm. Self-
training is a wrapper method around a supervised classifier, i.e., one may use self-
training to enhance various classifiers. To apply self-training, for each instance
x to be classified, besides its predicted class label, the classifier must be able
to output a certainty score, i.e., an estimation of how likely the predicted class
label is correct.

Self-training is an iterative process during which the set of labeled instances
is grown until all the instances become labeled. Let L1 denote the set of initially
labeled instances, and, more generally, let Lt denote the set of labeled instances
in the t-th iteration (t ≥ 1). In each iteration of self-training, the base classifier
is trained on the labeled set Lt. Then, the base classifier is used to classify
the unlabeled instances. Finally, the instances with highest certainty scores are
selected. These instances, together with their predicted labels, are added to the
set of labeled instances, in order to construct Lt+1 the set of labeled instance for
the next iteration. In the simplest case, one instance is added in each iteration,
the pseudocode of this algorithm is shown in Figure 2. In context of nearest
neighbor classification, the algorithm are illustrated in Figure 3. Other variants
of self-training include e.g. Yarowsky’s algorithm [23].

2.4 Semi-supervised Classification of Time-series

One of the most surprising recent results in the time-series classification do-
main is that simple nearest neighbor classifiers using a special distance measure
called dynamic time warping (DTW) are generally competitive with, if not bet-
ter than, many complicated approaches [7]. Therefore, we build our approach on
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Fig. 3. Self-training with nearest neighbor. There are two classes, circles and triangles.
Bold symbols correspond to instances of the initially labeled training set L1, while
unlabeled instances are marked with crosses, see Subfigure (a). Subfigures (c) – (e)
show the first three iterations of Self-Training. The final output of self-training is
shown in Subfigure (f).

the DTW-based nearest neighbor classification of time-series. DTW was origi-
nally introduced for speech recognition [20]. The key feature of DTW is that is
allows for siftings and elongations while it compares two time-series. We refer to
[3] for a detailed description of DTW.

Despite its relevance, there are just a few works on the semi-supervised classifi-
cation of time-series. Wei and Keogh proposed a self-training based approach [22]
which was enhanced by Ratanamahatana et al. [18] by the introduction of a new
stopping criterion. Nguyen et al. used k-Means and principal component analysis
for semi-supervised time-series classification [15]. All these works focused on the
case when labeled instances are only available for one of the classes. In contrast,
we assume that there are some labeled instances for each class, like in the ex-
ample shown in Figure 3. Furthermore, our approach is much simpler than that
of Nguyen et al., as we do not use dimensionality reduction. Instead, we com-
pare time-series directly by DTW. Zhong used self-training with Hidden Markov
Models [24] for the semi-supervised classification of small time-series datasets.
In contrast to previous works, we base our approach on the cluster-and-label
paradigm and use a constrained hierarchical single link clustering algorithm.
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3 Our Approach: SUCCESS

We consider the semi-supervised classification problem, in which a set of labeled
time-series L = {(xi, yi)}li=1 and a set of unlabeled time-series U = {xi}ni=l+1 is
available as train data to a classifier. The labeled time series (elements of L) are
called seeds. We wish to construct a classifier that can accurately classify any
time-series, i.e., not only elements of U . For this problem, we propose a novel
semi-supervised time-series classification approach, called SUCCESS. SUCCESS
has the following phases:

1. The labeled and unlabeled instances of the training set are clustered with
constrained single-linkage hierarchical agglomerative clustering. While doing
so, we measure the distance of two instances (time-series) as their DTW-
distance and we include cannot-link constraints for each pair of labeled seeds
even if the both seeds have the same class labels.

2. The resulting top-level clusters are labeled by their corresponding seeds.
3. The final classifier is 1-nearest neighbor trained on the resulting labeled data.

This classifier can be applied to unseen test data.

While the components of the algorithm (like DTW or single-link clustering)
are well-known, we emphasize that the algorithm as a whole is new for semi-
supervised time-series classification. Next, we explain the difference between
self-training and our approach using the framework of graph theory.

3.1 A Graph-Theoretic View of Semi-supervised Time-Series
Classification

The presented semi-supervised time-series classification algorithms can be con-
sidered as algorithms that aim at finding the minimum spanning tree of a graph.

Consider the set of all, labeled and unlabeled, train instances X = L ∪ U =
{xi}ni=1. Let G = (X,V ) be an undirected complete graph, the vertices of which
correspond the instances of the database, and the weights of the edges correspond
the distance of two instances (DTW-distance in our case): wi,j = d(xi, xj).

We define a spanning forest as a set of trees T = {Ti}li=1 that satisfy the
following properties:

– The trees are disjoint, i.e. ∀i : xi ∈ V (Ta) ∧ xi ∈ V (Tb) ⇒ a = b.

– The trees together span the entire set of instances, i.e.
⋃l

i=1 V (Ti) = X .
– The ith tree contains the i labeled instances, i.e. ∀1 ≤ i ≤ l : xi ∈ V (Ti).

Note that we consider forests where the number of trees equals the number of
labeled instances, and each tree corresponds to a labeled instance.

A spanning forest is a minimum spanning forest if the sum of its edge weights
W (T ) =

∑l
i=1

∑
e∈E(Ti)

w(e) is minimal.

Let us define the graph G� = (X ∪ {�}, E�), which is an extension of G with
a super-vertex �. This super-vertex � is connected to the labeled examples with
0-weight edges, i.e., E� = E ∪ {{xi, �} : 1 ≤ i ≤ l}, and w({xi, �}) = 0 for all
vertices xi.
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Consider the tree T � which contains � and the new edges from �, ant the union
of the trees in a minimum spanning forest T of G. The sum of edge-weights in
T � is not greater than that of a minimum spanning tree of G�, therefore, T � is
a minimum spanning tree of G�.

The self-training algorithm with the 1-nearest neighbor classifier can be viewed
as a specific way of finding a minimum spanning tree of G�. In particular, if all
the edge weights wi,j in G are strictly positive, except the weights of edges
that connect � and the seeds, instance based self-training is equivalent to run-
ning Prim’s algorithm [4] with � as the root node. In the first l iterations, the
algorithm adds the labeled instances {xi}li=1 to the tree. In every subsequent
iteration, the set nodes in the growing tree equals the set of already labeled
instances.

Therefore, we can see that self-training corresponds to Prim’s minimal span-
ning tree algorithm. Next, we show that our approach, SUCCESS, in contrast,
corresponds Kruskal’s algorithm [4].

Notice that the forest which is gradually joined by Kruskal’s algorithm is a set
of clusters at some level of a single-linkage (SLINK) hierarchical agglomerative
clustering dendrogram.

Due to � and the 0-weight edges connecting � with the labeled instances, in the
first l iterations, Kruskal’s greedy algorithm will select all the labeled instances
into the minimal spanning tree. Therefore, after the l-th iteration, the tree has
l branches, each one corresponding to a labeled instance. In the subsequent
iterations the tree grows along these branches, however, no new branch is created
from node � as all of the edges of � are already contained in the tree after
the l-th iteration. We call the aforementioned branches main branches. When
the algorithm terminates, each of the main branches corresponds to a cluster.
This is analogous to having cannot-link constraints in the hierarchical clustering
between each pair of labeled instances.

4 Experiments

In order to assist reproducibility, we provide a detailed description of the exper-
iments we performed.

Methods – We compared our approach, SUCCESS, against Wei’s approach [22],
which is one the most prominent state-of-the-art semi-supervised time-series clas-
sifiers. While Wei’s approach is based on self-training, SUCCESS is based on the
cluster-and-label paradigm as explained before.

Datasets – We evaluated both Wei’s approach and SUCCESS on 44 publicly
available real-world datasets from the UCR time-series repository [10].
These datasets originate from various domains ranging from handwriting recogni-
tion [19] and user identification with graphical passwords [1] over biological shape
recognition [9] and electrocardiograph classification to gesture recognition [12].
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Table 1. Summary of the results. The number of datasets on which our approach
wins/looses against Wei’s approach. The numbers in parenthesis show how many times
the difference is statistically significant.

Unlabeled Train Test

Wins 29 (14) 30 (6)
Ties - 2
Looses 15 (5) 12 (3)

The names of these datasets as well as the number of classes are shown in the first
two columns of Table 2.

Comparison Protocol – We run experiments separately on each of the 44
datasets. For each experiment, we split the data into 3 disjoint subsets: the
first one, denoted as L, contains around 10% of the instances. The second split,
U , contains around 80% of the instances while the remaining instances are in
the third split. We used the first split, L, as the initially labeled instances of the
semi-supervised algorithm. U served as the set of unlabeled training instances the
labels of which were unavailable to the algorithm but the instances themselves
were available at training time. The third split was used as test data that was
completely unavailable to the algorithm at the training time. The instances of the
test set were classified one by one without updating the classification model. We
measured the performance both on the set of unlabeled training instances (U)
and on the test set. This allowed us to simulate two, slightly different, real-world
situations. Measuring the performance on U corresponds to the case of having
a large set of unlabeled instances and a small set of labeled instances with the
goal of correctly classifying the unlabeled instances. Measuring the performance
on the test set simulates the situation where we have a large set of unlabeled
instances and a small set of labeled instances and we aim at constructing a
classifier that should be used to classify new instances that may be different
from the unlabeled instances available at training time.

We used misclassification ratio to measure the performance of the baseline
and our approach. For each dataset, we repeated all experiments 10 times, i.e.,
we split the data into the above three splits 10 times by random and measured
the performances of our approach and the baseline. In Table 2, we report av-
erage performances. In order to check whether the differences are statistically
significant, we used t-tests at significance level α = 0.05.

Results – We show the average misclassification ratios on the 44 datasets in Ta-
ble 2. We use the + symbol to denote that an approach statistically significantly
outperformed its competitor. The results of our experiments are summarized
in Table 1. As it can be seen, in clear majority of the datasets, our approach,
SUCCESS, outperforms Wei’s approach. For each dataset, we also performed
experiments with 20% of the data being labeled train data L (and 70% being
the unlabeled train data U respectively) and we observed very similar results.
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Table 2.Misclassification ratio of Wei’s approach and SUCCESS. Bold font denotes the
winner, + denotes statistically significant difference. (While determining the winner,
we took the non-shown digits into account as well.)

Dataset Number Unlabeled train Test
of classes Wei SUCCESS Wei SUCCESS

50 Words 50 0.432 0.398+ 0.436 0.414
Adiac 37 0.607 0.582+ 0.601 0.595
Beef 5 0.683 0.656 0.617 0.600
Car 4 0.484 0.457 0.458 0.450
CBF 3 0.007 0.002 0.005 0.003
ChlorineConcentration 3 0.373 0.062+ 0.350 0.101+
CinC ECG Torso 4 0.021 0.001+ 0.019 0.001+
Coffee 2 0.429 0.368+ 0.460 0.440
Cricket X 12 0.477 0.425+ 0.465 0.444
Cricket Y 12 0.463 0.405+ 0.433 0.396+
Cricket Z 12 0.443 0.395+ 0.459 0.423+
DiatomSizeReduction 4 0.018 0.017 0.031 0.025
ECG200 2 0.237 0.225 0.239 0.195
ECGFiveDays 2 0.051 0.021+ 0.053 0.030
FaceFour 4 0.201 0.191 0.182 0.200
FacesUCR 14 0.080 0.062+ 0.083 0.070+
Fish 7 0.424 0.449 0.403 0.434
GunPoint 2 0.089 0.039 0.075 0.045
Haptics 5 0.671+ 0.706 0.704 0.730
InlineSkate 7 0.693 0.679 0.683 0.663
ItalyPowerDemand 2 0.063 0.073 0.066 0.076
Lighting2 2 0.355 0.322 0.342 0.317
Lighting7 7 0.463 0.477 0.536 0.529
Mallat 8 0.042 0.041 0.042 0.037
MedicalImages 10 0.379 0.386 0.394 0.393
MoteStrain 2 0.124 0.129 0.115 0.107
OliveOil 4 0.300 0.315 0.367 0.383
OSULeaf 6 0.550 0.512+ 0.532 0.466+
Plane 7 0.050 0.049 0.038 0.038
SonyAIBORobotS. 2 0.052+ 0.090 0.060+ 0.110
SonyAIBORobotS.II 2 0.088 0.094 0.079 0.087
StarLightCurves 3 0.119+ 0.200 0.140+ 0.200
SwedishLeaf 15 0.330+ 0.369 0.364 0.379
Symbols 6 0.033 0.022+ 0.025 0.019
SyntheticControl 6 0.051 0.029 0.065 0.045
Trace 4 0.054 0.001+ 0.050 0.000
TwoLeadECG 2 0.004 0.001 0.003 0.001
TwoPatterns 4 0.000 0.000 0.000 0.000
uWaveGestureX 8 0.276 0.284 0.284 0.286
uWaveGestureY 8 0.356 0.368 0.377 0.377
uWaveGestureZ 8 0.359+ 0.378 0.368+ 0.385
Wafer 2 0.009 0.009 0.009 0.009
WordsSynonyms 25 0.414 0.378+ 0.410 0.382
Yoga 2 0.148 0.149 0.152 0.151
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5 Conclusion

In this paper, we proposed SUCCESS, a novel semi-supervised time-series clas-
sifier. We discussed the relation between the minimal spanning tree problem and
semi-supervised classification. We pointed out the analogy between a state-of-
the-art semi-supervised time-series classifier and Prim’s algorithm as well as our
approach and Kruskal’s greedy algorithm. We performed exhaustive experimen-
tal evaluation that showed that our approach is able to outperform that state-
of-the-art semi-supervised time-series classifier on many real-world datasets.

Besides time-series, huge amounts of other types of sequential data are being
collected, e.g., DNA-sequence of a persons and other organisms. Therefore, as
future work, one may consider to use similar approaches for the semi-supervised
classification of other types of sequential data.
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0009. We acknowledge the DAAD-MÖB Researcher Exchange Program.

References

1. Malek, B., Orozco, M., Saddik, A.E.: Novel shoulder-surfing resistant haptic-based
graphical password. In: Proceedings of EuroHaptics 2006 (2006)

2. Buza, K., Nanopoulos, A., Schmidt-Thieme, L., Koller, J.: Fast Classification of
Electrocardiograph Signals via Instance Selection. In: First IEEE Conference on
Healthcare Informatics, Imaging, and Systems Biology (HISB) (2011)

3. Buza, K.A.: Fusion Methods for Time-Series Classification. Ph.D. thesis (2011)
4. Cormen, T., Leiserson, C., Rivest, R., Stein, C.: Introduction to Algorithms. The

MIT Press (2001)
5. Dara, R., Kremer, S., Stacey, D.: Clustering unlabeled data with soms improves

classification of labeled real-world data. In: Proceedings of the 2002 International
Joint Conference on Neural Networks, IJCNN 2002, vol. 3, pp. 2237–2242 (2002)

6. Demiriz, A., Bennett, K., Embrechts, M.J.: Semi-supervised clustering using ge-
netic algorithms. In: Artificial Neural Networks in Engineering, ANNIE 1999, pp.
809–814. ASME Press (1999)

7. Ding, H., Trajcevski, G., Scheuermann, P., Wang, X., Keogh, E.J.: Querying and
mining of time series data: experimental comparison of representations and distance
measures. PVLDB 1(2), 1542–1552 (2008)

8. Gruber, C., Coduro, M., Sick, B.: Signature Verification with Dynamic RBF Net-
works and Time Series Motifs. In: 10th International Workshop on Frontiers in
Handwriting Recognition (2006)

9. Jalba, A., Wilkinson, M., Roerdink, J., Bayer, M., Juggins, S.: Automatic diatom
identification using contour analysis by morphological curvature scale spaces. Ma-
chine Vision and Applications 16, 217–228 (2005),
http://dx.doi.org/10.1007/s00138-005-0175-8

10. Keogh, E.J., Xi, X., Wei, L., Ratanamahatana, C.A.: The UCR Time Series Clas-
sification/Clustering Homepage (2006),
http://www.cs.ucr.edu/~eamonn/time_series_data/

http://dx.doi.org/10.1007/s00138-005-0175-8
http://www.cs.ucr.edu/~eamonn/time_series_data/


SUCCESS: Semi-supervised Classification of Time-Series 447

11. Kestler, H.A., Kraus, J.M., Palm, G., Schwenker, F.: On the effects of constraints
in semi-supervised hierarchical clustering. In: Schwenker, F., Marinai, S. (eds.)
ANNPR 2006. LNCS (LNAI), vol. 4087, pp. 57–66. Springer, Heidelberg (2006)

12. Ko, M.H., West, G., Venkatesh, S., Kumar, M.: Using dynamic time warping for
online temporal fusion in multisensor systems. Information Fusion 9(3), 370–388
(2008), special Issue on Distributed Sensor Networks,
http://www.sciencedirect.com/science/article/pii/S1566253506000674

13. Miyamoto, S., Terami, A.: Semi-supervised agglomerative hierarchical clustering
algorithms with pairwise constraints. In: FUZZ-IEEE, pp. 1–6. IEEE (2010)

14. Nagy, G.I., Buza, K.: SOHAC: Efficient storage of tick data that supports search
and analysis. In: Perner, P. (ed.) ICDM 2012. LNCS, vol. 7377, pp. 38–51. Springer,
Heidelberg (2012), http://dx.doi.org/10.1007/978-3-642-31488-9_4

15. Nguyen, M.N., Li, X., Ng, S.K.: Positive unlabeled leaning for time series classifi-
cation. In: Walsh, T. (ed.) IJCAI, pp. 1421–1426. IJCAI/AAAI (2011)

16. Radovanovic, M., Nanopoulos, A., Ivanovic, M.: Hubs in space: Popular nearest
neighbors in high-dimensional data. Journal of Machine Learning Research 11,
2487–2531 (2010)

17. Radovanovic, M., Nanopoulos, A., Ivanovic, M.: Time-series classification in many
intrinsic dimensions. In: SDM, pp. 677–688. SIAM (2010)

18. Ratanamahatana, C.A., Wanichsan, D.: Stopping criterion selection for efficient
semi-supervised time series classification. In: Lee, R.Y. (ed.) Soft. Eng., Arti. Intel.,
Net. Para./Distr. Comp. SCI, vol. 149, pp. 1–14. Springer (2008)

19. Rath, T., Manmatha, R.: Word Image Matching using Dynamic Time Warping.
In: Proceedings of the IEEE Computer Society Conference on Computer Vision
and Pattern Recognition, vol. 2, pp. II-521–II-527. IEEE (2003)

20. Sakoe, H., Chiba, S.: Dynamic Programming Algorithm Optimization for Spoken
Word Recognition. Acoustics, Speech and Signal Processing 26(1), 43–49 (1978)

21. Seeger, M.: Learning with labeled and unlabeled data. Tech. rep., University of
Edinburgh (2001)

22. Wei, L., Keogh, E.J.: Semi-supervised time series classification. In: Eliassi-Rad, T.,
Ungar, L.H., Craven, M., Gunopulos, D. (eds.) KDD, pp. 748–753. ACM (2006)

23. Yarowsky, D.: Word-sense disambiguation using statistical models of roget’s cate-
gories trained on large corpora. In: COLING, pp. 454–460 (1992)

24. Zhong, S.: Semi-supervised sequence classification with hmms. IJPRAI 19(2),
165–182 (2005)

25. Zhu, X.: Semi-supervised learning literature survey (2007)

http://www.sciencedirect.com/science/article/pii/S1566253506000674
http://dx.doi.org/10.1007/978-3-642-31488-9_4


A New Method of Improving Classification

Accuracy of Decision Tree in Case
of Incomplete Samples

Bartosz A. Nowak, Robert K. Nowicki, and Wojciech K. Mleczko

Institute of Computational Intelligence, Czestochowa University of Technology,
Al. Armii Krajowej 36, 42-200 Czestochowa, Poland

{bartosz.nowak,robert.nowicki,wojciech.mleczko}@iisi.pcz.pl

Abstract. In the paper a new method is proposed which improves the
classification accuracy of decision trees for samples with missing values.
This aim was achieved by adding new nodes to the decision tree. The
proposed procedure applies structures and functions of well-known C4.5
algorithm. However, it can be easily adapted to other methods, for form-
ing decision trees. The efficiency of the new algorithm has been confirmed
by tests using eleven databases from UCI Repository. The research has
been concerned classification but the method is not limited to classifica-
tion tasks.

Keywords: missing values, C4.5, classification, decision tree.

1 Introduction

In the current stage of the development of computer science, especially compu-
tational intelligence, we dispose of many methods designed to data processing
and decision making. The important positions are occupied by non-parametric
techniques [8,24,25,26], neural networks [1,10,11,23], fuzzy systems [12,22], rela-
tional systems [30], classifiers based on Pawlak rough sets [17,19] and decision
trees [1,4,27] as well as any hybrid methods [6,7,18,29,31,32]. Actually, all of
them have been already adapted to process also incomplete input data. In this
area hybrid solutions play important role, especially rough fuzzy systems [15,16]
and other high level fuzzy methods [33,34,35]. However, this paper concerns
decision trees only.

As in the case of many other decision system, structure of the decision tree
is determined by a set of samples applied at design time, i.e. learning set. Each
sample concerns single state or observation, and described by a defined set of
attributes. Generally, separated samples belong to one or more class, or to none
of considered classes. In the paper we assume that every learning sample belongs
to exactly one of the considered classes. Moreover, we accept that values of some
attributes describing the samples are missing. This subject has been considered
by a lot of authors. In many papers there are many various solutions for it.
Among others, in [36,37] authors use the internal node strategy in building cost-
sensitive decision trees. Another proposition has been formulated in [2]. Authors

L. Rutkowski et al. (Eds.): ICAISC 2013, Part I, LNAI 7894, pp. 448–458, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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use a fuzzy random forest, which is an ensemble of fuzzy decision trees. In a
case of missing values on the attribute used in a branch, the sample is further
processed by every sub-node with degree of fulfilment divided by number of sub-
nodes. A similar solution is proposed in [9], but in application for classification
data streams by a fuzzy decision tree. A little more sophisticated approach exist
in a popular algorithm C4.5 [20], where degrees of fulfilment are multiplied
by factors equal to probabilities of use corresponding sub-nodes.

In the paper authors propose an algorithm that adds alternative nodes to
a decision tree in order to improve accuracy of classification in the case when
the sample have missing values of attributes. This approach differs from the
method in CART [3], where surrogate splits are used, but no new nodes are
added to the decision tree. The proposed method applies algorithm C4.5 [20,21],
but it is independent from C4.5, therefore authors in the paper have omitted
description of C4.5, and the proposed bellow algorithm may also work slightly
changed with different methods for building and pruning of decision trees.

The paper is organised as follow. Section 2 contains the genesis of the proposed
algorithm, the main idea and details of the method. Section 3 presents the process
of experiments and obtained results. It contains also the example of wrapped tree
for the simplest benchmark - well known iris classification. The last section is a
summary, conclusions and final remarks.

2 Proposed Method

This section presents genesis of proposed algorithm and details of them. We
called them WrapTree, because it wrapped the original decision tree by addi-
tional branches and nodes which improve the classification accuracy of decision
in the case of missing values.

The starting point of the research was the idea of decision tree forest. In
this solution many decision trees are created, each for different set of available
features. In such ensemble, during classification of a sample only one decision
tree is active. It is the tree prepared for work with specific set of attributes
compatible with set of available attributes in current sample. If the compatible
tree is unavailable, e.g. due to limited system size, the sample is rejected or
processed by most appropriate tree using some more sophisticate methods.

During the preliminary studies about forests of trees the following observations
have been done:

1. There are many cases when decision trees, which were created with different
set of attributes (Va, Vb) are the same, because they use the same subset
of attributes (Vc, Vc ⊆ Va ∧ Vc ⊆ Vb)

2. In some cases decision tree, created with some set of attributes (Va), contains
only one leaf, mainly because of the pruning. In that case there seems to be
no reason to create trees with smaller sets of attributes (Vb � Va) than
mentioned one-element tree.

3. In the most cases the parts of decision trees close to the root are identical
in trees made for various sets of available attributes.
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Our goal is to propose the algorithm creating a single tree wrapped by sup-
plementary branches and nodes dedicated to serving the samples with missing
features. The reference tree is built for serving complete samples by any known
method e.g. C4.5. After wrapping process the resultant tree should assume clas-
sification accuracy comparable to mentioned above tree forest. It occurs also in
the case of missing features. The total number of branches and nodes should be
significantly lower.

Due to mentioned cases, our algorithm does not store identical trees more than
once, use original tree as a base for new decision trees, and does not add new
nodes for any branches, when it is unnecessary. These features reduce greatly
time and resources needed to create the decision tree in comparison to a method,
which create decision trees separately for each chosen sets of available attributes.

Because final decision tree is the equivalent to composition of many decision
trees, which have been created with different sets of attributes, there is necessity
to add proper method checking if chosen attribute has non-missing value.

2.1 Extending of Reference Tree

As was mentioned above, the reference decision tree is prepared by any known
algorithm, e.g. C4.5. However, such a tree must be extended to be able to work
with supplementary branches and nodes which will be prepared by the pro-
posed algorithm. As a result the reference decision tree will contain four types
of branches, i.e.

– Numerical — determine if the value of examined attribute is greater than
defined threshold or not. This type of branches occurs only when former
branches on the processed path excluded case of inaccessibility of exam-
ined attribute value, i.e. the examined in branch attribute has been former
examined for the same sample.

– Symbolic — determine if the attribute takes defined value or label or not. As
previous one this type of branch occurs if, basing on previous branches, we
are sure that value of examined feature is available in the processed sample.

– Numerical or lack — if value of the examined attribute is available they
determine if the value of examined attribute is greater than the defined
threshold or not. When value of examined attribute is not available the
alternative subtree is assigned.

– Symbolic or lack — if value of examined attribute is available they determine
if the attribute takes the defined value or label or not. When value of the
examined attribute is not available, the alternative subtree is assigned.

Both types of numerical branches have applied in a reference tree shown in Fig. 1.

2.2 Adding of New Nodes

The alternative subtrees, wrapped the reference tree, are created by the proposed
procedure (WrapTree) presented below. This procedure is recursive. It adds to
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Fig. 1. Results of the algorithm for G volmax = 0, 1, 2, iris database, 135 samples
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some branches of existing decision tree an alternative node. These newly created
nodes are used afterwards as a root of a new decision tree, which are created by C4.5,
but with limited set of available attributes.

Procedure. WrapTree

Input: a node of decision tree (tree node(act)), set of already used attributes
(P (act)), set of excluded attributes (G(act)), set of samples (X(act)),
vector of samples weights (w(act)), maximal size of the G(act)

and intensity of a algorithm (constant G volmax).
Result: Modification of the node tree node(act) or its child.

1 if tree node(act) is a leaf then return;

2 if ||G(act)|| ≥ G volmax then return;

3 if
∑

xs:xs∈X(act) w
(act)
s < 1 then return;

4 v(act) = decision attribute of tree node(act);

5 if v(act) /∈ P (act) then
// new attribute

6 create an empty node (tree node(alt)) alternative to tree node(act);

7 create a decision sub-tree using tree node(alt) as a root, with samples X(act),

their weights w(act) and set of available attributes V −
{
G(act) ∪

{
v(act)

}}
;

8 PruneTree(tree node(alt), X(act), w(act));

9 WrapTree(tree node(alt), P (act),G(act) ∪ {v(act)}, X(act), w(act), G volmax);

10 P (act) = P (act) ∪ {v(act)};
11 foreach child node tree node(sub) of tree node(act) do

12 determine X(sub),w(sub) for tree node(sub); // in two variants

13 WrapTree(tree node(sub), P (act),G(act), X(act), w(act), G volmax);

The procedure requires the following input parameters set by operator: con-
stant integer parameter G volmax greater than 0, but not greater than the num-
ber of attributes (n), pointer to node of a decision tree (tree node(act)), sets of
already used (P (act)) and excluded (G(act)) attributes, set of samples (X(act))
and vector of their weights (w(act)). In the first execution of the procedure, root
node is pointed, all samples with their initial weights (usually all of them equal
to 1) and empty sets of already used and excluded attributes.

Parameter G volmax defines the intensity of the algorithm, and affects the
number of nodes added. We can estimate that the obtained by our procedure

wrapped tree is equivalent of an ensemble (forest) of 1 +

(
n
1

)
+

(
n
2

)
... +(

n
G volmax

)
trees, created using various sets of attributes. The first tree of

such forest is created using complete samples. The other trees are build us-
ing samples with combination of n − G volmax to n − 1 available attributes.
When G volmax = 1, then proposed algorithm create one decision tree, that is
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Table 1. Properties of the used data sets

data set no. of samples no. of attributes no. of classes

dermatology 366 34 6
ecoli 336 7 8
glass 214 9 2
ionosphere 351 34 2
iris 150 4 3
page-blocks 5473 10 5
parkinsons 195 22 2
pendigits 10992 16 10
pima diabetes 768 8 2
vowel 528 10 11
wisconsin 699 9 2

equivalent to a composition of n + 1 trees (Treea, a = 1 . . . n + 1). The first
one is the reference tree, prepared for complete samples served. The following
trees (Treea, a = 2 . . . n + 1) are created omitting one attribute (va−1). When
G volmax = n, the algorithm makes tree that is equivalent to composition of de-
cision trees created for every possible combination of available sets, including
empty set.

Procedure WrapTree in each execution concerns on the single node of the de-
cision tree and may recursively execute itself on sub-nodes. In the beginning
(commands 1-3) WrapTree checks if at least one of stopping condition is fulfilled.
These stopping conditions are: verify if the current node is a leaf, and does not
have sub-nodes; check if defined maximal level of recursion (G volmax) has been
achieved, verify if a sum of samples weights is too small. After that, the proce-
dure checks if an attribute in the current node has been already used (command
5), if not, then: adds a new empty node (tree node(alt)), and connects it to cur-
rent node; create a new sub tree (command 7) using the same set of samples and
their weights, but set of attributes reduced by excluded attributes (G(act)) and
attribute of current node (v(act)); then prune that tree (command 8), after that
execute WrapTree (command 9) for created and pruned sub-tree with the same
settings, but with set of forbidden attributes enlarged by the current attribute
(v(act)); later adds current attribute to set of already used attributes (command
10). It is worth to mention, that commands 7-8 use C4.5 algorithm, but they can
be easily substituted by other decision tree building algorithms. After creation
of alternative node procedure processes each sub-node (command 11), which are
not the alternative node. At first, procedure determine set of samples and their
weights, which should be directed to this sub-node (command 12), and then ex-
ecute WrapTree (command 13) with determined before set of samples and their
weights. In the paper two variants of the method to determine samples and their
weights for sub-node (command 12) are proposed, which differ when learning
samples have missing values:
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1. X(sub) = all samples, that have available current attribute (v(act)) and ful-
filled condition in tree node(act) for child node tree node(sub).

w
(sub)
s =

{
w

(act)
s if xs ∈ X(sub)

0 else,

where xs is a sample with index s.
2. X(sub) = all samples, that have available value for current attribute (v(act))

and fulfilled condition in tree node(act) for child node tree nodesub; or miss-
ing value for current attribute (v(act)).

w
(sub)
s =

⎧⎪⎨⎪⎩
w

(cur)
s if xs ∈ X(sub) ∧ v(act) ∈ Ps
w

(cur)
s · p(cur,sub) if xs ∈ X(sub) ∧ v(act) ∈ Gs

0 else,
where Ps is a set of attributes with non-missing values for sample xs, Gs is a
set of attributes with missing values for sample xs, p

(cur,sub) is a probability,
that learning samples which reached tree node(act), and had available val-
ues for attribute v(act), were sent to tree node(sub). This method is similar
to used in C4.5 [20].

By default the first method were used, which has lower accuracy of classification
samples in learning set in case of missing values in learning and testing set, but
produce smaller decision trees.

Table 2. Efficiency of classification

number of missing values in sample 1 3
G volmax 0 1 0 1 3
dataset

dermatology .883 .894 .863 .892 .892
ecoli .594 .656 .465 .486 .528
glass .882 .882 .790 .837 .838
ionosphere .881 .879 .871 .853 .845
iris .947 .953 .767 .693 .813
page-blocks .766 .825 .614 .646 .714
parkinsons .851 .838 .778 .838 .838
pendigits .941 .959 .910 .921 .929
pima diabetes .687 .681 .628 .657 .637
vowel .703 .765 .510 .566 .605
wisconsin .929 .948 .946 .943 .946

winner 3 8 1 2 9

3 Experiments and Results

All experiments performed to 10-fold cross validation. It states, that whole set
of samples is divided into 10 subsets with nearly equal number of samples. All
experiments are repeated 10 times and every final result are average for 10 tests.
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In each test consecutive subset is chosen as the testing set and remaining 9
subsets as the learning set.

The algorithm was tested using data sets (Table 1) from UCI Repository [14].
Each sample belonged to exactly one class and all attributes were numerical. In
the paper efficiency of classification is computed not as simple accuracy of clas-
sification but as average accuracy of classification for samples in each class,

efficiency =
1

m

∑
j=1...m

⎛⎝ 1

||ωj ||
∑

xs:xs∈ωj

correctly classified(xs)

⎞⎠ , (1)

where m is a number of samples, ωj is j class, ||ωj || is number of testing samples
that belongs to ωj , correctly classified(xs) is a logical function, which states
if sample xs was properly classified.

For testing purposes databases were prepared in two variants (a number
of missing values in sample = {1,3}), according to number of attributes with
missing values for each sample. Distribution of missing values within data sets
was pseudo-random, but constructed system tried to enforce the same number
of missing values for each attribute.

Table 3. Number of nodes in decision tree

number of missing values in sample 1 3
G volmax 0 1 0 1 3
dataset

dermatology 32.2 179.0 54.8 239.4 2236.7
ecoli 57.4 216.1 76.8 207.5 664.2
glass 14.0 53.7 19.8 60.4 204.2
ionosphere 27.2 153.1 27.4 143.0 1294.1
iris 21.2 44.5 39.8 63.5 100.8
page-blocks 128.8 627.7 131.2 534.4 2914.1
parkinsons 22.6 89.0 20.4 79.8 457.0
pendigits 908.0 5737.6 1796.8 7782.7 61448.3
pima diabetes 24.0 88.8 12.8 50.4 271.3
vowel 190.0 875.0 302.0 994.0 4695.0
wisconsin 33.2 131.5 51.8 167.1 563.9

average difference – +338,9% – +261,0% +2045,3%

Experiments were performed with standard for C4.5 parameters of building
tree and pruning. Parameter G volmax was set to values: 0, which means that
algorithm WrapTree was disabled; 1 and 3. Parameter G volmax = 3 was tested
only for samples with 3 missing parameters, because all decision tree created
with G volmax greater than number of missing values in testing sample works
exactly the same.
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Table 4. Number of the used nodes during classification

number of missing values in sample 1 3
G volmax 0 1 0 1 3
dataset

dermatology 5.4 5.2 7.3 6.0 5.9
ecoli 8.3 6.0 17.6 10.3 6.3
glass 4.0 3.8 7.6 5.6 4.8
ionosphere 5.6 5.4 6.6 6.0 5.9
iris 6.4 4.3 23.3 10.2 4.9
page-blocks 11.8 8.6 19.1 11.0 7.8
parkinsons 4.6 4.3 5.1 4.3 4.2
pendigits 13.2 10.3 28.7 15.5 11.0
pima diabetes 5.3 4.4 5.6 5.0 4.4
vowel 11.8 8.3 29.7 14.2 9.0
wisconsin 5.3 4.4 11.1 7.0 5.4

average difference – -17.5% – -32.3% -44.6%

Results of the experiments are shown in tables: Table 2 – average efficiency
of classification of each class according to 1, Table 3 – mean number of nodes
in decision tree, Table 4 – average number of nodes used during classification
of testing samples.

4 Final Remarks

In the paper, authors presented a new method for improving accuracy of classifi-
cation by decision trees in case of samples with missing values. The effectiveness
of a solution has been confirmed by series computer simulations. As expected,
the tests showed that size of decision trees significantly increased after proposed
procedure execution. The size is notwithstanding smaller than corresponding
tree forest. Moreover, the wrapped tree use smaller number of nodes than other
solution designed to process samples with missing features.

The future works with presented idea will concerns extending the interpretabil-
ity of the knowledge contained in the tree. In this subject the inspiration could be
a proposition that comes from fuzzy systems [5]. Also the ensembles of wrapped
trees combined with other types of classification [28] could be promising. They
could use e.g. AdaBoost or bagging metaalgorithms [13].
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Abstract. The problem of data stream mining is widely studied in the
literature. Especially difficult to solve is the problem of mining data with
occurring concept drift. The most commonly used algorithms are those
based on decision trees. In this article we investigate the performance of
a few algorithms of constructing decision trees for data stream classifica-
tion, not explicitly designed to deal with changing distribution of data.
We show how to adapt these methods to deal with concept drift and we
compare the obtained results.

1 Introduction

In the data mining community one of the most challenging tasks is the extraction
of knowledge from data streams [1]-[3], [19], [20], [23]. Data stream is a possibly
infinite sequence of data. Therefore traditional data mining algorithms are not
applicable in this field and they need to be modified significantly to handle data
streams. Data stream mining algorithms can be divided into a few categories.
One of them consist of one-pass algorithms in which each data element is pro-
cessed at most once. An example of such an algorithm is the Very Fast Decision
Tree algorithm (VFDT) [6]. The another group are algorithms working on data
chunks. Data elements are collected in the chunk, on which a traditional data
mining algorithm is applied. The obtained results are then either synthesized
with output from previous chunk or have an effect on data elements in the fol-
lowing data chunk. Most ensemble algorithms belong to this group. The next
group worth consideration are algorithms with the sliding window. The sliding
window is an object in which only the number |W | of recent elements from the
stream is collected. If a new data element is read from the stream, it updates the
current results and is put inside the sliding window. If the sliding window is of
fixed volume, the oldest element from the window is deleted and its effect on the
results is canceled out at this point. If the volume of the window changes over
time, the oldest element is deleted every time the number of elements in the win-
dow exceeds its currently desired size. An example of an algorithm with sliding
window technique is the Concept-adapting Very Fast Decision Tree algorithm
(CVFDT) [8].

As in the case of traditional data mining, the most important techniques
used to extract information from data streams are clustering and classification.
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This paper is focused only on the latter. The task of classification can be defined
as follows: given the training dataset Z = {Xi = (xi, yi), i ∈ {1, . . . , N}},
xi =

[
x1i , . . . , x

D
i

]
∈ A1 × · · · × AD, yi ∈ Λ, where Aj is the set of possible

values of attribute aj and Λ = {k1, . . . , kK} is the set of K different classes,
find a function h : A1 × · · · × AD −→ Λ which for any element x ∈ A1 × · · · ×
AD returns its corresponding class y ∈ Λ with probability as high as possible.
If the class of the element x is unknown, the classifier h is used to predict
the corresponding class. There are many methods for data classification, e.g.
artificial neural networks, decision trees or the k-nearest neighbor algorithm.
Among them decision trees stand out mainly with two desired features: they
provide satisfactorily high accuracies and are easily interpretable by the user.

Decision tree consists of nodes and leaves. To each node lq (where l1 is the
root of the tree) one of the attributes aj , j ∈ {1, . . . , D}, is assigned. The node
is split according to chosen attribute into its children nodes. If the tree is non-
binary, the number of children is equal to the cardinality of set Ai (therefore
non-binary trees make sense only for attributes with nominal values). In this
case each children corresponds to a single possible value vλj , λ ∈ {1, . . . , |Aj |},
from set Ai. If the tree is binary, the number of children is equal to 2. In this
case the set Ai is partitioned into two disjoint subsets AL

i and AR
i = Ai\AL

i .
The two children nodes correspond to these two subsets.

In each node lq sufficient statistics nrjλ(lq) of data elements are stored, denot-
ing the number of elements of the class kr, with the value of attribute aj equal
to vλj . If the attribute is numerical, its domain is divided into Bj bins and each
bin is considered as one discrete value. Sufficient statistics represent the subset
Z(lq) of the training set Z, which is collected in node lq. They are used to deter-
mine the best attribute to split the node. The choice is made on a basis of some
impurity measure function. For example in the ID3 algorithm an information
entropy is used. In the Classification and Regression Tree algorithm (CART)
the Gini index is used as the impurity measure and this measure is considered
in presented paper. If nr(lq) denotes the number of elements with class kr in set
Z(lq) and n(lq) is the cardinality of set Z(lq), then the Gini index of set Z(lq)
is given by

Gini(Z(lq)) = 1−
K∑
r=1

(
nr(lq)

n(lq)

)2

. (1)

Let us now define the set ZAL
j

(lq) as a subset of elements from set Z(lq) for

which the value of attribute aj belongs to AL
j . Then the weighted Gini index for

attribute aj and partition of its values (AL
j ,AR

j ) for set Z(lq) (in case of binary
trees) is given by

GiniAL
j

(Z(lq)) =
nAL

j
(lq)

n(lq)
Gini(ZAL

j
(lq)) +

nAj\AL
j

(lq)

n(lq)
Gini(ZAj\AL

j
(lq)), (2)
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where nAL
j

(lq) is the cardinality of set ZAL
j

(lq). Then the weighted Gini index

for attribute aj is defined as the maximum of (2) over all possible partitions of
set Aj

Giniaj (Z(lq)) = max
AL

j ∈Pj

{GiniAL
j

(Z(lq))}, (3)

where Pj is the set of all possible subsets of Aj .
At this point one can define the Gini gain function, which is simply a difference

between formulas (1) and (3)

Glq (aj) = Gini(Z(lq))−Giniaj (Z(lq)). (4)

Finally, an attribute aMAX , which maximizes formula (4), is chosen to split the
node

aMAX = arg max
aj

{Glq (aj)}. (5)

If all elements in the considered node are of the same class, then the node is
not split and becomes a leaf. Leaves are used to assign a class to unlabeled data
elements.

In case of traditional algorithms for decision trees construction the attribute
aMAX is determined on a basis of set Z(lq), which size depends only on the
size of the whole training set Z. In case of data streams the set Z is potentially
infinite and in the specified moment in time obviously only finite subset of it
is available in the considered node. Therefore, the main problem is to establish
the number of elements n(lq) sufficient to determine if the best attribute derived
from the available data sample is the same as it would be in the case of infinite
data set. The recipe for how to do it is presented in section 2. In particular, the
McDiarmid Tree (McDT) algorithm is presented.

Another problem encountered in data stream mining is the concept drift. This
problem was widely considered in literature [3], [7], [11]-[18], [22]. As the subse-
quent data elements from the stream arrive sequentially to the system, their con-
cept, i.e. the probability distribution of attribute values and classes, can change
over time. Therefore, the decision tree built in a basis of past data elements can
be inappropriate to classify future elements. The decision tree should posses the
ability to rebuild its structure dynamically if the data concept changes. Several
techniques for concept drift handling in case of decision trees are presented in sec-
tion 3. A special attention is paid for the concept-adaptive version of the McDT
algorithm (CMcDT). The modification is based on the idea of the CVFDT algo-
rithm. In section 4 the experimental results are presented. Section 5 draws the
conclusions.

2 The McDiarmid Tree Algorithm

Well known in the scientific community algorithm the Hoeffdings Decision Trees,
presented by P. Domingos and G. Hulten in [6], was the basis for many existing
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algorithms. To solve the problem of determining the best attribute to make a split
authors used statistical tool called the Hoeffding’s bound. However it was shown
in [19] that this method can not be applied in this case. Authors pointed the fact
that this bound is applicable only for numerical data while the incoming data
could be categorical. Moreover this bound can not be used in conjunction with
split measures like information gain or Gini index. This is due to the fact that
those measures can not be expressed as a sum of independent random variables
and use only the frequencies of data elements. Therefore authors propose to
use the McDiarmid’s inequality instead of Hoeffding’s bound (see [19]). The
presented algorithm is based on the Hoeffding Tree algorithm. The difference is
the value of parameter ε. When for the purpose of determining the quality of a
split the impurity measure information gain is used, then the value of parameter
ε is obtained as follows [19]

ε = CGain(K,n(lq))

√
ln(1/δ)

2n(lq)
, (6)

where

CGain(K,n(lq)) = 6(K log2 en(lq) + log2 2n(lq)) + 2 log2K. (7)

If the impurity measure Gini index is applied then the value of parameter ε is
calculated from the formula [19]

ε = 8

√
ln(1/δ)

2n(lq)
. (8)

The pseudocode of the McDiarmid tree algorithm is placed below. For conve-
nience the following notations will be introduced:

– A - set of all attributes
– aj - the j-th attribute from set A
– aMAX1 - attribute with the highest value of G(·)
– aMAX2 - attribute with the second highest value of G(·)

The McDiarmid tree algorithm

Inputs: Z is a sequence of examples,
A is a set of discrete attributes,
G(·) is a split evaluation function,
δ is one minus the desired probability of choosing

the correct attribute at any given node.
Output: McDT is a decision tree.

Procedure McDiarmidTree(Z,A, G, δ)
Let McDT be a tree with a single leaf l1 (the root).
For each class kr
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For each attribute aj ∈ A
For each value vλj of attribute aj

Let nrjλ(l1) = 0.
For each example X in Z

Sort X into a leaf l using McDT .
For each attribute aj ∈ A

For each value vλj of attribute aj
If value of example X for attribute aj equals vλj
and X comes from class kr

Increment nrjλ(l).
Label l with the majority class among the examples
seen so far at l.
If the examples seen so far at l are not of the same class

Compute Gl(aj) for each attribute aj ∈ A using
the counts nrjλ(l).

Let aMAX1 be the attribute with the highest Gl.
Let aMAX2 be the attribute with the second-highest Gl.
Compute ε using equation (6) for
information gain or (8) for Gini gain.
If Gl(aMAX1)−Gl(aMAX2) > ε, then

Replace l by an internal node that splits on aMAX1.
For each branch of the split

Add a new leaf lm
For each class kr

For each attribute aj ∈ A
For each value vλj of aj

Let nrjλ(lm) = 0.
Return McDT .

3 Concept Drift Handling with Decision Trees

In [8] the authors proposed a method for classification of data streams called the
CVFDT algorithm. This method is designed to handle the concept drift. In line
with construction of the main decision tree, the algorithm tries to develop alter-
native subtrees in some nodes. If the alternative tree occurs to provide higher
accuracy than the original subtree, then the latter is simply replaced by the
former. Another important modification introduced in the CVFDT algorithm is
the sliding window. The temporary state of the decision tree is based only on
the |W | recently read data elements, where |W | is the size of the window. If the
data element stored in the window becomes deprecated its effect on the classifier
is immediately canceled. Based on the pseudocode of the McDT algorithm pre-
sented in previous section, its concept-adapting version, the CMcDT algorithm,
can be described in several points:

a) The classifier consists of the original tree and of potential alternative sub-
trees. The number of alternative trees in each node is not limited. Moreover,
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nodes in alternative trees can itself contain alternative subtrees. As in the
McDT algorithm, data elements are sorted through the original tree accord-
ing to their values of attributes. If any node lq on the path from the root
to the leaf contains non empty set of alternative subtrees ALT (lq), the data
element is recursively sorted through each element from set ALT (lq).

b) Nodes created in the tree (also in the alternative trees) receive their own
unique, monotonically increasing ID number. For each data element Xi the
maximum identifier IDmax,i among all visited nodes is noticed. The element
Xi and the number IDmax,i are then put together as one record into the
sliding window.

c) If the number of elements stored in the window exceeds its currently desired
volume |W |, the last record from it is taken, i.e. Xlast, IDmax,last. Then the
ForgetExample procedure, described below, is executed.

Procedure ForgetExample(McDT ,A,Xlast,IDmax,last)
Sort Xlast through McDT
Let P be the set of nodes traversed in the sort
For each node l in P

If ID number of node l is not greater that IDmax,last, then
For each attribute aj in A

For each value vλj of attribute aj
If value of example Xlast for attribute aj equals vλj and
Xlast comes from class kr, then

Decrement nrjλ(l)
For each tree Talt in ALT (l)

ForgetExample(Talt,A,Xlast,IDmax,last)

Next the record Xlast, IDmax,last is deleted from the window. The proce-
dure ForgetExample cancels the effect of old data elements on the state of
classifier, as they may not correspond to the current data concept.

d) After every f data elements from the stream are processed, algorithm checks
at each node l (which is not a leaf) if a new alternative subtree should be cre-
ated. This is done by executing the procedure CheckSplitValidity described
below. The procedure is run for the original tree and recursively for all the
alternative trees.

Procedure CkeckSplitValidity(McDT ,A,δ)
For each node l in McDT that is not a leaf

For each tree Talt in ALT (l)
CheckSplitValidity(Talt,δ)

For each attribute a in A
Compute Gl(a)

Let asplit be the split attribute at l
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Let am1 be the attribute with the highest Gl other than asplit
Let am2 be the attribute with the highest Gl other than am1

Let ΔGl = Gl(am1)−Gl(am2)
If ΔGl ≥ 0 and no tree in ALT (l) already splits on am1 with
the same partition AL

m1 at its root, then
Compute ε using equation (8) and δ
If ΔGl > ε, then

Create a new node lnew, for which the parent
is the same as for node l
ALT (l) = ALT (l) + {lnew}
For each children node (leaf) lm of lnew

ALT (lm) = ∅
For each class kr, each attribute aj and each value vλj

nrjλ(lm) = 0

For each node l the value of Gini gain is computed. Then the attribute am1

with the highest value of Gini gain, without taking into account the split at-
tribute asplit of node l, is considered. If attribute am1 provides higher value
of Gini gain than attribute asplit does and there is no tree in ALT (l) that
already splits on am1, then the procedure continues. Let am2 denote the
attribute with the highest value of Gini gain, without taking into account
attribute am1 (in particular am2 may be equal to asplit). If the difference
between Gl(am1) and Gl(am2) is greater than the value of ε computed from
equation (8), then it is a signal that am1 may be, with great certainty, better
attribute to split node l than the current attribute asplit. A new subtree is
created, with root lnew which splits according to attribute am1, and it is
inserted into set ALT (l).

e) Each existing alternative tree has to be checked from time to time whether
it provides higher accuracy than the corresponding original subtree. For this
reason each node l, containing nonempty set of alternative trees, is switched
to the test mode after collecting mstart data elements. When the node is in
this mode, which is held untilmstop data elements are collected, it updates its
sufficient statistics nrjλ(l) but does not produce new alternative trees. For this
mstop data elements accuracy of the subtree with root at node l is calculated.
The accuracy is also calculated, on the same mstop data elements, for each
alternative tree from ALT (l). If the most accurate alternative tree Talt,max

occurs to be more accurate than the original subtree, the node l is simply
replaced by Talt,max and the other alternative trees are deleted. After the
mstop data elements the test mode in node l is switched off. The algorithm is
equipped with the pruning mechanism to discard alternative trees which are
not promising. If the test mode ends with no replacement, for each alternative
tree Ti(l) from ALT (l) the difference between the accuracies achieved for Ti
and for the original subtree is calculated. If the current difference is greater
than the smallest difference ever achieved for considered tree Ti(l) in previous
tests by more than 1%, then Ti(l) is pruned from the set ALT (l) and is not
considered in future tests.
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Another method to deal with streaming data with concept drift is to apply
the ensemble of algorithms [4], [9], [10]. It is used to improve the accuracy of a
simple algorithm. There are number of ways of building and connecting basic
algorithms to obtain better accuracy. In this paper the performance of the en-
semble modified FID3 algorithm (emFID3), presented in [10], on the streaming
data with occurrence of a change of class distribution is analyzed.

4 Experimental Results

In this section efficiency of the McDT, CMcDT and emFID algorithms in han-
dling concept drift is examined. The McDT and CMcDT algorithms are applied
with configuration δ = 0.1, f = 100, mstart=500, mstop=100. The CMcDT al-
gorithm is used in both versions, with and without sliding windows. The emFID
algorithm is applied with the size of data chunk equal to 1000, number of trees
in ensemble fixed to 50 and the maximum depth of the tree set to 20.
In each experiment a two class problem is considered and synthetic data are
used. The data are generated from uniform distribution on a previously defined
D-dimensional hypercube. A class of an instance is assigned by location of ele-
ments relative to the hyperplane given by

D∑
d=1

wdxd = w0, (9)

where [x1, . . . ,xD] is a point in D-dimensional Euclidean space and [w1, . . . , wD]
is the vector perpendicular to the hyperplane. Data elements Xi for which
D∑

d=1

wdx
d
i ≥ w0 are assigned to the first class, in other case elements are as-

signed to the second class. The values wd, for d = 0, 1, . . . , D, evolve during
each experiment to simulate a change of data concept. The number and type of
changes is different for each of the experiments.
To evaluate performance of the McDT and CMcDT algorithms, the testing set
of 2000 data elements is generated from current distribution when it is required.

4.1 Experiment 1

In the first experiment the 2-dimensional data are considered. The data are
generated from the cube [0, 1]2. The number of instances in the experiment is
set to 500000 and the distribution of data is changed 3 times. The hyperplane
changes over every 125000 data elements. It starts from hyperplane given by
equation

x1 = 0.5 (10)

and every change is a rotation of the hyperplane by 45 degrees relative to the
point (0.5, 0.5). In the CMcDT algorithm the sliding window size is set to 10000.
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Fig. 1. Accuracy obtained for the classifiers for 2-dimensional data with concept drift
described in 4.1

Table 1. Final accuracies of classifiers for 2-dimensional data with concept drift de-
scribed in 4.1

Algorithms McDT CMcDT all CMcDT w=10K emFID3

Accuracy 0.8735 0.9505 0.9335 0.9334

In Figure 1 the accuracies obtained for subsequent data elements are pre-
sented. For data from 1 to 125000 and from 250000 to 375000 only one split is
required to achieve high accuracy very close to 100%. Therefore all the classifiers
obtain the high accuracy very fast. In the last part of data the alternative tree
mechanism allows the CMcDT algorithm to outperform the McDT algorithm.
The CMcDT algorithm replaces a part of original tree by the alternative tree,
what results with immediate gain of accuracy. On the other hand the McDT
algorithm has many more nodes in the tree, therefore it needs many more data
elements to fit to the current data concept. In Table 1 the final accuracies of
classifiers are summarized. As can be seen the highest accuracy is obtained for
the CMcDT algorithm.

4.2 Experiment 2

In a second experiment the 2-dimensional data are considered. The set of 106

data elements is generated. The first 500000 data elements come from the square
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[0, 1]2. The hyperplane dividing this area into two subareas with different classes
is taken in the form

√
3

3
x1 + x2 −

1

2

(√
3

3
+ 1

)
= 0. (11)

The hyperplane contains the point (x1,x2) = (0.5, 0.5). After the 500000 data
elements the change of data concept occurs. The next data elements are generated
from the square [0.5, 1.5]2. The hyperplane for this part of data is given by

√
3

3
x1 + x2 −

(√
3

3
+ 1

)
= 0, (12)

which is moved with respect to hyperplane (11) by the vector [0.5, 0.5]. The
sliding window size in the CMcDT algorithm is set to 10000. The results are
presented in Fig. 2. The final accuracies obtained for all classifiers are collected
in Table 2.

The character of data concept used in this experiment does not allow to create
an alternative tree in the CMcDT algorithm. Therefore, the accuracies for the
McDT and the CMcDT (without window) algorithms are the same (since the

Table 2. Final accuracies of classifiers for 2-dimensional data with concept drift de-
scribed in 4.2

Algorithms McDT CMcDT all CMcDT w=10K emFID3

Accuracy 0.8932 0.9116 0.8458 0.92

Fig. 2. Accuracy obtained for the classifiers for 2-dimensional data with concept drift
described in 4.2
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created trees in both cases are exactly the same). The difference is in the CMcDT
algorithm with sliding window. The window cancels the effect of deprecated data.
Hence, after the occurrence of concept drift, the acceptable accuracy could be
quickly restored in this case. The final accuracy, according to Table 2, is the
highest for the emFID3 algorithm. However, the value obtained for the CMcDT
algorithm is comparable.

4.3 Experiment 3

In a third experiment the 15-dimensional data are considered. The 106 data
are generated from the cube [0, 1]15. The hyperplane is chosen randomly and is
changed 3 times every 250000 data elements. Each hyperplane passes through
the point [0.3, . . . , 0.3]. In the CMcDT algorithm the sliding windows size is set
to 50000. The results are presented in Fig. 3 and Table 3.

Fig. 3. Accuracy obtained for the classifiers for 15-dimensional data with concept drift
described in 4.3

Table 3. Final accuracies of classifiers for 15-dimensional data with concept drift
described in 4.3

Algorithms McDT CMcDT all CMcDT w=50K emFID3

Accuracy 0.588 0.5796 0.7142 0.8818
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The performance of the algorithm depends heavily on distribution of data. For
the considered distributions data allow to make a split and to increase accuracy
only twice. Moreover in the CMcDT algorithm no alternative trees are created.
In such a case both the McDT and the CMcDT algorithms have drawbacks
caused by expired data elements. After every split a set of data is divided into
two subsets. Hence each children node is reached by data elements less often than
its parent node. That makes it more difficult to fit the tree to a current concept
by expansion. Moreover it needs a lot of data to update sufficient statistics
in nodes. Use of sliding windows allows to follow the trend of data. However,
because of bounded number of considered data elements, it permits a split only
in favorable situations, like in the last concept. The emFID3 algorithm does not
manifest the problems mentioned above and, as a result, obtains the highest final
accuracy.

4.4 Experiment 4

In a fourth experiment the 15-dimensional data are considered. The set of 106

data elements is generated. The first 500000 data elements come from the hyper-
cube [0, 1]15. The hyperplane dividing this area into two subareas with different
classes is taken in the form

15∑
i=1

wixi −
1

2

15∑
i=1

wi = 0. (13)

The weights wi are chosen randomly from the set [−1, 1]. The hyperplane con-
tains the point (x1, . . . ,x15) = (0.5, . . . , 0.5). After the 500000 data elements the
change of data concept occurs. The next data elements are generated from the
hypercube [0.5, 1.5]15. The hyperplane for this part of data is given by

15∑
i=1

wixi −
(

15∑
i=1

wi

)
= 0. (14)

This hyperplane is parallel to hyperplane (13) and contains the point
(x1, . . . ,x15) = (1, . . . , 1). The size of sliding window in the CMcDT algorithm
is set to 10000.

As can be seen in Fig. 4 the McDT algorithm needs a lot more data to fit
to the current concept. The CMcDT algorithm creates an alternative tree after
the change of concept, what allows to obtain higher accuracy. Use of sliding
window provides faster adaptation to the new data concept and ensures higher
final accuracy.

In Table 4 the final accuracies obtained for different classifiers are presented.
The results for the McDT and the CMcDT algorithms are similar. The ensemble
algorithm outperforms the others.
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Fig. 4. Accuracy obtained for the classifiers for 15-dimensional data with concept drift
described in 4.4

Table 4. Final accuracies of classifiers for 15-dimensional data with concept drift
described in 4.4

Algorithms McDT CMcDT all CMcDT w=10K emFID3

Accuracy 0.7486 0.7688 0.7818 0.88

5 Conclusions

In this paper the task of data stream classification was considered. Specifically
the problem of concept drift handling in decision trees was investigated. The
McDiarmid Tree algorithm was combined with methods put forward formerly in
the CVFDT algorithm. Particularly the sliding window and the alternative trees
mechanisms were applied. Performance of the proposed algorithm (i.e. the CM-
cDT algorithm) was then compared with the McDT algorithm and the emFID3
algorithm. The experimental results show that the methods presented in this pa-
per make the concept drift handling by decision trees possible. Simulations also
showed that the ensemble algorithm provides higher accuracy than the one-pass
algorithm or the algorithm with sliding window. However, the emFID3 algorithm
is much more time and memory consuming.
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Abstract. Neural Gas is a neural network algorithm for vector quan-
tization. It has not arbitrary established network topology, instead its
topology is changing dynamically during training process. Originally,
the Neural Gas is an unsupervised algorithm. However, there are sev-
eral extensions that enables Neural Gas to use the information about
sample’s class. This significantly improves the accuracy of obtained clus-
ters. Therefore, the Neural Gas was successfully used in classification
problems. In this paper we present a novel method to learn the Neural
Gas with fully and partially labelled data sets. Proposed method simu-
lates the neuron’s hesitation between membership to the classes during
the learning. Hesitation process is based on neuron’s class membership
probability and Metropolis-Hastings algorithm. The proposed method
was compared with state-of-art extensions of Neural Gas on supervised
and semi-supervised classification tasks on benchmark data sets. Exper-
imental results yield better or the same classification accuracy on both
types of supervision.

Keywords: Neural Gas, Supervised clustering, Semi-supervised cluster-
ing, Classification, Metropolis-Hastings algorithm.

1 Introduction

Neural Gas (NG) is an algorithm for cluster analysis [2], first presented by Mar-
tinez and Shulten [11]. In contrary to well known Self-Organising Maps [10] it has
not arbitrary established network topology, instead its topology is changing dy-
namically during the training process. There are many extensions of NG mainly
focused on finding optimal neurons number [3] or using more sophisticated sim-
ilarity measures than Euclidean [14], [5]. Originally, NG optimises clusters in
unsupervised way, although there are various examples that use NG in classifi-
cation tasks [14], [17]. The methods that enables use of NG for classification can
be divided into three groups.

The first group of methods uses standard NG in an unsupervised manner.
After training for each neuron the class label is designated based on major vote
of sample’s class, which belongs to the neuron. This method is also so-called
’winner-takes-all’ (WTA) strategy [14].

L. Rutkowski et al. (Eds.): ICAISC 2013, Part I, LNAI 7894, pp. 474–482, 2013.
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The second approach combines information about class label in binary coded
manner in attribute vector [13]. Each neuron has two types of weights, cor-
responding to attributes and class. The part of input vector with class infor-
mation is presented only during training. In testing phase, the information of
neuron class label is coded in class weights. This can be interpreted as a fuzzy
class membership. There are several approaches to measure similarity between
neuron’s weights and input vector [18], [19].

Third group of methods arbitrary assigns neurons to the class label [14]. The
neuron is learned only with samples from the corresponding class. During the
testing, the output class label is designed upon the closest neuron’s class. There
are some more sophisticated methods of learning with arbitrary assigned neurons
in NG[5], [7], [4].

Contemporary, more often in data mining are situations that class labels are
not available for all samples in data set. This is because labelling data by human
expert can be expensive. Learning with partially labelled data is so-called semi-
supervised [8].

In this paper we present a novel method for controlling supervision in Neu-
ral Gas algorithm. It is based on neuron’s class membership probability and
Metropolis-Hastings (MH) algorithm [12], [6]. The MH is well known from Sim-
ulated Annealing (SA) method [9]. Proposed method can be used on both data
type: fully and partially labelled. We so-called proposed method as ’Hesitant
Neural Gas’ (HNG). Recently, we proposed a similar method for controlling
learning of neurons in Self-Organising Maps [15].

Firstly, we provide a description of Neural Gas algorithm and three methods to
use it for classification (one from each group). Secondly, the Hesitant Neural Gas
algorithm is described. Then, the comparison of the HNG with other methods
is presented on fully and partially labelled sets. Additionally, on fully labelled
sets HNG is compared to Learning Vector Quantization (LVQ) algorithm [10],
which is a state-of-art method in prototype-based supervised classification.

2 Methods

Let’s denote data set as D = {(xi, ci)}, where xi is an attribute vector, x ∈
Rd and ci is a discrete class number of i-th sample, i = [1, 2, ...,M ] and c =
[1, 2, ..., C]. Sometimes the class number will be encoded as a binary vector and
denoted as yi, where yij = 1 for j = ci and yij = 0 otherwise.

2.1 Neural Gas

In the Neural Gas algorithm each neuron is described by weights vector wj ,
where j = {1, 2, .., N}. For each input sample Di are computed distances to
neurons by following equation:

Dist(wj , Di) = (xi −wj)
T (xi −wj). (1)
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Then distances are sorted and for each neuron a kj rank is assigned, k =
{0, 1, 2, .., N − 1}. The rank kj = 0 is assigned to the closest neuron, whereas
consecutive k are for neurons with greater distance. The kj = N−1 is for the fur-
thest neuron. Then, weight update step is executed. The weights of each neuron
are updated with the following formula:

w′
j = wj + ηe−kj/λ(xi −wj), (2)

where η is a learning rate and λ is a neighbourhood range. The η is decreasing
during learning:

η = η0e
−t/σ, (3)

where t is a current epoch number and σ controls speed of decreasing. Network
is trained till chosen number of learning procedure iterations tstop is exceeded. In
original Neural Gas presented by Martinez and Schulten [11] there were also op-
timised edges, which connect similar neurons. This can be useful for visualization
purposes. However, this is not in the scope of this paper.

2.2 WTA Neural Gas

In the WTA Neural Gas after unsupervised training process the class member-
ship for each neuron is computed. The neuron’s class label is designated base
on major votes of sample’s class for which neuron was selected as the closest
(kj = 0). The disadvantage of this method are so-called ’empty neurons’, when
neuron has no assigned label. This situation is observed, when neuron has never
been selected as the closest during training but is selected for the testing sample.
In case of partially labelled data set, only labelled samples participate in class
voting.

2.3 Fuzzy Neural Gas

The other approach to use NG as classifier is so-called ’Fuzzy Neural Gas’. In
the training process, it takes into consideration the class vector yj additionally
to input attributes. Each neuron contains part of weights corresponding to the
attributes wx

j and class wy
j . The similarity measure between input sample and

neuron is computed during learning process by equation:

Disttrain(wj , Di) = γ(wx
j − xi)

T (wx
j − xi) + (1− γ)(wy

j − yi)
T (wy

j − yi). (4)

The γ coefficient controls the balance between distance from attributes and class.
The update step is performed with equations:

wx′
j = wx

j + ηγe−kj/λ(xi −wx
j ), (5)

wy′
j = wy

j + η(1 − γ)e−kj/λ(yi −wy
j ). (6)
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In the testing phase, to the network is presented an input vector only with at-
tributes. This step is also so-called ’exploitation phase’. The distance is computed
by:

Disttest(wj , Di) = (wx
j − xi)

T (wx
j − xi). (7)

The output class label is designated based on position of maximum value in
the wy

j weights of the closest neuron. For semi-supervised learning, the second
part of equation (4) is considered only when sample’s class label is available,
otherwise is omitted.

2.4 Class Neural Gas

The last approach arbitrary assigns neurons to the classes. In the training process
neurons take part in the learning only with samples from corresponding class.
During testing, all neurons are considered for distance computation. The output
class label is designated from the closest neuron. We so-called this method as
’Class Neural Gas’ (CNG). In case of learning with samples without class label
all neurons participate in the distance computation during training and testing.

2.5 Proposed Method - Hesitant Neural Gas

In the proposed method, neuron’s class membership is described by a probability.
We note Pj(h) as a probability of j-th neuron’s membership in class number h.
In the training phase, for each sample is selected a group of neurons that will
take part in the weights optimisation. Selection is described by a matrix T , where
T i
j = 1 means that j-th neuron will participate in the learning with i-th sample,

T i
j = 0 otherwise. Neurons are selected in two steps. First choose neurons having

maximum probability for the class matching the class ci of the input sample:

T
i(1)
j =

{
1 if arg maxh(Pj(h)) = ci;
0 otherwise.

(8)

In the second step, remaining neurons are considered, with T
i(1)
j = 0. The deci-

sion on joining into the training with i-th sample is taken upon MH algorithm.
The probability of joining is computed using following equation:

J i
j = 1− exp(−ρPj(ci)tstop/t), (9)

where ρ is the parameter that controls the intensity of hesitation, ρ ∈ [0, 1].
The greater ρ value, the more neurons are selected additionally to learning in
the MH step. In the eq.(9) the number of training iteration t is used, therefore
neurons will be selected less frequently at the end of learning process than at its
beginning. This can be interpreted as a hesitation of the neuron, which decreases

during the training. Whether the MH decision will be positive (T
i(2)
j = 1), we

draw random number a from an uniform distribution, a ∈ [0, 1]. The neuron will
be added to the training group if a value is smaller than J i

j :

T
i(2)
j =

{
1 if a < J i

j ;
0 otherwise.

(10)
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The final decision on neuron selection is a logical ’or’ of the decisions from two

steps: T i
j = T

i(1)
j ∨ T i(2)

j . Neurons with T i
j = 0 will not take part in distance

computation step neither in weights update step. After all training samples pre-
sentation, neuron’s class membership probability is updated. During the training
for each i-th sample the neighbourhood value e−kj/λ is added to the neuron’s
probability of membership in a given class:

P ′
j(h) =

N∑
i

T i
je

−kj/λ, for h = ci. (11)

Note, that the neighbourhood is considered only if j-th neuron was selected for
training with i-th sample. The neighbourhood value represents the belonging of
the neuron to the input sample’s class. After all iterations in a given epoch, the
probability is normalized and updated with formula:

Pj(h) =
P ′
j(h)∑C

l=1 P
′
j(l)
. (12)

In case of partially labelled data, we assume that all neurons take part in the
training for samples without class label, thus T i

j = 1 for all neurons. However,
unlabelled samples do not take part in probability of class membership update
(eq. 11). For labelled samples the procedure described above is used.

3 Results

To test performance of the Hesitant Neural Gas method on fully labelled data, we
will compare it to the Learning Vector Quantization algorithm (LVQ) [10], WTA
NG, Fuzzy NG, Class NG, Hesitant NG. The LVQ is not used in comparison on
partially labelled data sets. The comparison is made on 6 real data sets. We used
data sets ’Wine’, ’Ionosphere’, ’Iris’, ’Sonar’, ’Glass’ from the ’UCI Machine Lear-
ing Repository’ 1 [1], and set ’Faces’ are from the ’The ORL Database of Faces’2.
Data sets are described in Table 1. In all experiments we train algorithms with
number of iterations tstop = 200. We use learning rate η1 = 0.1, exponentially
decreasing to η200 = 0.001. The neighbourhood range was λ = 1. All algorithms
were initialized with random samples. For all data sets, we arbitrarily chose the
neurons number - selecting optimal network size is not in the scope of this paper.
The selected values are presented in Table 1. The total number of neurons for
each algorithm type is equal. Additionally, the ρ parameter for the HNG must
be tuned. We checked several values of ρ, ρ = {0.05, 0.25, 0.5, 0.75, 1.0}. The op-
timal value was selected by cross-validation. Selected ρ values for each data set
are presented in Table 1. To demonstrate the impact on number of positive MH
decision depending on different ρ values, we count the number of positive MH
decisions in each learning epoch for all neurons in the network for all considered

1 http://archive.ics.uci.edu/ml/
2 http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html

http://archive.ics.uci.edu/ml/
http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
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Table 1. Description of data sets used to test performance, number of neurons used
to each data set and optimal ρ in the Hesitant Neural Gas. (∗In ’Faces’ data set, the
number of attributes was reduced with PCA.)

Train
examples

Test
examples

Attributes Classes # neurons MH ρ

Faces 320 80 50∗ 40 80 0.75

Sonar 166 42 60 2 36 1

Glass 171 43 9 6 24 0.05

Iris 120 30 4 3 12 0.25

Ionosphere 280 71 34 2 24 0.5

Wine 142 36 13 3 12 0.25

ρ values. The demonstration is made on ’Iris’ set and presented in the Fig.1.
It can be observed that, the greater ρ value is, the more positive MH decisions
are made and the more frequently neuron takes part in the training with the
sample from the class different than its major class. For each data set we made
10 repetitions to avoid effect of local minima. At each time training and testing
subsets were redrawn. For comparison measure, we take a percentage of incor-
rect classifications. The obtained mean results on testing subsets are presented
in the Table.2. The results were obtained using all labels from data sets in the
training.

Table 2. Percent of incorrect classification on the testing subsets. Networks were
learned with fully labelled samples. Results are mean and σ over 10 runs.

LVQ
WTA

Neural Gas
Fuzzy

Neural Gas
Class Neural

Gas
Hesitant

Neural Gas

Faces 8.25±3.34 21.38±4.62 18.50±6.66 4.00±2.55 4.50±2.44

Sonar 14.52±7.48 23.1±5.39 19.76±6.92 13.33±6.07 13.57±5.50

Glass 31.16±6.95 34.42±5.98 37.67±9.29 35.35±5.46 29.77±9.79

Iris 4.00±2.11 4.33±4.46 3.67±1.89 4.00±2.11 4.00±2.11

Ionosphere 10.99±2.95 9.44±3.26 8.73±3.44 8.17±2.18 7.89±2.75

Wine 5.00±3.66 5.28±2.76 3.06±2.43 3.06±2.43 3.33±2.87

All sets error 73.92 97.95 91.39 67.91 63.06

The overall classification error on all data sets was the smallest for the pro-
posed HNG method. However, the CNG was the best method on three sets. It
gains the lowest error on ’Faces’, ’Sonar’ and ’Wine’ sets. The HNG was the
best method on two sets: ’Sonar’ and ’Ionosphere’. The FNG method was the
best on two data sets, namely: ’Iris’ and ’Wine’. The HNG and CNG obtained
smaller overall error than the LVQ algorithm. Although, the LVQ method was
better than WTA-NG and FNG. The WTA-NG has the poorest accuracy on all
sets, which can be expected as only this method does not use information about
class labels directly in the learning.
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Fig. 1. Number of positive MH decisions in Hesitant Neural Gas algorithm taken in
each training iteration for different ρ values on ’Iris’ data set
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To test performance of the proposed HNG method on partially labelled data,
we used only part of available labels from the training subsets in the learning
process, in per cent r = {12.5, 25, 37.5, 50, 75, 87.5, 100}. The results are pre-
sented in the Fig.2. The HNG method achieved the smallest classification error
for ’Faces’, ’Sonar’, ’Glass’ and ’Iris’ data sets when less than a half of available
labels were used during the learning, r < 50. For ’Ionosphere’ and ’Wine’ data
sets when r was smaller than 50, the FNG has the slightly better performance
than the HNG. When small number of labels was used (r < 50), it can be ob-
served that the CNG has the largest classification error on all data sets. Though,
when the number of used labels grows the performance of the CNG significantly
increases. This can be caused by arbitrary assigning class labels to the neuron.
When the number of samples with class labels is smaller than number of samples
without labels, the impact of labelled samples on neurons’ weights is not enough
to force unlabelled samples to belong to correct neurons. For ’Iris’ and ’Wine’
data sets, for r > 50 all methods seems to give similar results. These sets are
rather simple, therefore all methods obtained similar local minima.

4 Conclusions

In this paper we present a novel method that extends Neural Gas algorithm
for supervised and semi-supervised learning. It is so-called the ’Hesitant Neu-
ral Gas’. It controls the neuron’s weights optimisation by selecting a group of
neurons which will participate in the training of the presented sample. At first,
neurons with the same as sample’s class are selected. In the next step, the hesita-
tion mechanism is introduced, which enables neurons with different class to take
part in weights optimisation. The hesitation is based on neuron’s class mem-
bership probability and Metropolis-Hastings algorithm. The hesitation intensity
is controlled by ρ parameter and current training epoch number. The number
of MH positive decisions decrease during learning, which can be interpreted as
making neurons more confident. For unlabelled samples all neurons participate
in the training. The proposed HNG method was compared to other state-of-art
extensions of NG and LVQ algorithm on classification tasks. The results confirm
that proposed method obtains better or similar accuracy than other methods on
both types of supervision. Matlab implementation of the HNG algorithm is avail-
able at http://home.elka.pw.edu.pl/~pplonski/hesitant_neural_gas.
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Abstract. Imbalanced classes are a real challenge for the classifiers. Imbalanced
classes are the classes smaller than other classes but not necessary small ones.
Most often the smaller classes are more interested from an user point of view
but more difficult to be seen by a classifier. In this paper, which is a continuation
of our previous works, we discuss a classifier using some inherited features of
Atanassovs intuitionistic fuzzy sets (A-IFSs for short) making them a good tool
for recognizing imbalanced classes. We illustrate our considerations on bench-
mark examples paying attention to detailed behavior of the classifier proposed
(several measures besides general accuracy are examined). We use simple cross
validation method (with 10 experiments). Results are compared with a fuzzy clas-
sifier known as a good one from literature. We also consider a problem of granu-
lation (symmetric or asymmetric granulation, and a number of the intervals used)
and its influence on the results.

Keywords: Classification, imbalanced classes, intuitionistic fuzzy sets,
intuitionistic fuzzy classifier.

1 Introduction

Constructing a good classifier for the imbalanced classes is a difficult task. An im-
balanced class does not need to be a small class – it may be a class with lots of ele-
ments but still far less that the other class. Usually, a two-category problem (Duda [15])
positive/negative called also legal/illegal classification problem with a relatively
small class is considered. Constructing a classifier for such classes is both an inter-
esting theoretical challenge and a problem often met in different types of real tasks.
Examples are given by Kubat at al. [19], Fawcett and Provost [16], Japkowicz [18],
Lewis and Catlett [20], Mladenic and Grobelnik [21], He and Garcia [17]. To solve the
imbalance problems usually up-sampling and down-sampling are used but both meth-
ods interfere in the structure of the data, and in a case of overlapping classes even the
artificially obtained balance does not solve the problem (some data points may appear
as valid examples in both classes).

This paper is a continuation of our previous works (cf. Szmidt and Kukier [34], [35],
[36]) on intuitionistic fuzzy approach to the problem of classification of imbalanced and
overlapping classes. We consider a two–class classification problem (legal – relatively
small class, and illegal – a bigger class).

L. Rutkowski et al. (Eds.): ICAISC 2013, Part I, LNAI 7894, pp. 483–492, 2013.
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The classifier using A-IFSs has its roots in the fuzzy set approach proposed by Bald-
win at al. [10]. In that approach the classes are represented by fuzzy sets generated from
the relative frequency distributions representing the data points used as examples of the
classes [10]. In the process of generating fuzzy sets a mass assignment based approach
is adopted (Baldwin at al. [7], [10]). For the obtained model (fuzzy sets describing the
classes), using a chosen classification rule, a testing phase is performed to assess the
performance of the proposed method.

Considering the intuitionistic fuzzy classifier we perform the same steps as in a case
of the above mentioned fuzzy classifier. The main difference lies in making use of A-
IFSs for the representation of classes, and in exploiting A-IFSs structure to obtain a
classifier which better recognizes the relatively small classes.

The crucial step of the method is a representation of the classes by A-IFSs (first,
training phase). The A-IFSs are generated from the relative frequency distributions rep-
resenting the data considered – according to the procedure given by Szmidt and Bald-
win [24]. Having in mind recognition of the smaller class as good as possible we use
the information about the hesitation margins making it possible to improve the results
of data classification in the (second) testing phase.

The obtained results in the testing phase were examined using confusion matrices
making possible to explore detailed behavior of the classifiers (not only in the sense of
general error/accuracy). We have used simple cross validation method (with 10 experi-
ments). Obtained results are compared with a fuzzy classifier. Two benchmark data sets
are used - “Glass”, and “Wine” (cf. [41]).

We have also taken into account other measures of classifier errors, namely, geo-
metric mean, and so called F-value (Section 3.1). The last two measures were used
to assess the influence of the parameters used in one of the important steps when con-
structing the classifier, namely, granulation. We compared results for symmetric and
asymmetric granulation, and for increasing number of intervals. The influence of gran-
ulation on the results has been verified using data sets “Glass”, and “Wine”, “Heart”
and “Breast Cancer” (cf. [41]).

2 Brief Introduction to A-IFSs

One of the possible generalizations of a fuzzy set inX (Zadeh [39]) given by

A
′

= {< x, μA′ (x) > |x ∈ X} (1)

where μA′ (x) ∈ [0, 1] is the membership function of the fuzzy set A
′
, is an A-IFS

(Atanassov [1], [3], [4]) A is given by

A = {< x, μA(x), νA(x) > |x ∈ X} (2)

where: μA : X → [0, 1] and νA : X → [0, 1] such that

0<μA(x) + νA(x)<1 (3)

and μA(x), νA(x) ∈ [0, 1] denote a degree of membership and a degree of
non-membership of x ∈ A, respectively.
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Obviously, each fuzzy set may be represented by the following A-IFS

A = {< x, μA′ (x), 1 − μA′ (x) > |x ∈ X} (4)

An additional concept for each A-IFS inX , that is not only an obvious result of (2) and
(3) but which is also relevant for applications, we will call (Atanasov [3])

πA(x) = 1− μA(x) − νA(x) (5)

a hesitation margin of x ∈ Awhich expresses a lack of knowledge of whether x belongs
to A or not (cf. Atanassov [3]). It is obvious that 0<πA(x)<1, for each x ∈ X .

The hesitation margin turns out to be important while considering the distances
(Szmidt and Kacprzyk [26], [27], [31], entropy (Szmidt and Kacprzyk [28], [32]), sim-
ilarity (Szmidt and Kacprzyk [33]) for the A-IFSs, etc. i.e., the measures that play a
crucial role in virtually all information processing tasks.

Hesitation margins turn out to be relevant for applications - in image processing (cf.
Bustince et al. [12], [11]) and classification of imbalanced and overlapping classes (cf.
Szmidt and Kukier [34], [35], [36]), group decision making, negotiations, voting and
other situations (cf. Szmidt and Kacprzyk papers).

In our further considerations we will use operatorDα(A) (Atanassov [3]) with α ∈
[0, 1]:

Dα(A) = {〈x, μA(x) + απA(x), νA(x) + (1− α)πA(x)〉 |x ∈ X} (6)

Operator Dα(A) makes it possible to “see” better imbalanced classes (information
about hesitation margins is most important here).

3 Intuitionistic Fuzzy Classifier

Details concerning construction of an intuitionistic fuzzy classifier are presented in
Szmidt and Kukier [34], [35], [36]. Here we only remind the basic steps. First, it is
necessary to convert training data expressed as relative frequency distributions into A-
IFSs (cf. Szmidt and Baldwin [22], [23], [24]) describing legal and illegal classes in the
space of all the attributes. The problem of granulation (symmetric or asymmetric model,
number of intervals for the attributes) is described in details in Szmidt and Kukier [34],
[35], [36]) In effect each data instance is described as an intuitionistic fuzzy element
(all three terms are taken into account: membership value μ, non-membership value ν,
and hesitation margin π). Taking into account that the hesitation margins assign (the
width of the) intervals where the unknown values of memberships lie, we use operator
Dα(A) (6) so that the elements of the class we are interested in, could be seen as good
as possible (details in Szmidt and Kukier [34], [35], [36]). For our purposes, i.e., to
“see” better the smaller class, the values of α (6) are from interval [0.5, 1]. For α = 0.5
we obtain a fuzzy classifier. It is worth stressing that the case α = 1 does not produce
the best results. We built such models for each attribute separately, and next, aggregate
the results (see Szmidt and Kukier [34], [35], [36]).
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3.1 The Models of a Classifier Error

Traditionally accuracy of a classifier is measured as the percentage of instances that
are correctly classified, and error is measured as the percentage of incorrectly classi-
fied instances (unseen data). But when the considered classes are imbalanced or when
misclassification costs are not equal both the accuracy and the error are not sufficient.

Confusion Matrix
The confusion matrix (Table 1) is often used to assess a two–class classifier. The mean-
ing of the symbols is

Table 1. The Confusion Matrix

Tested Tested
Legal Illegal

Actual Legal a b
Actual Illegal c d

a – the number of correctly classified legal points,
b – the number of incorrectly classified legal points,
c – the number of incorrectly classified illegal points,
d – the number of correctly classified illegal points,
In result, the most often used measures to assess a classifier are:

Acc =
legalls and illegals correctly classified

total
=

a+ d

a+ b+ c+ d
(7)

TPR =
legalls correctly classified

total legalls
=

a

a+ b
(8)

FPR =
illegals incorrectly classified

total illegals
=

c

c+ d
(9)

Another, often used measure of error is geometric mean (Kubat et al. [19]):

GM =
√
TPR ∗ PPV (10)

where PPV = legalls correctly classified
total legalls = a

a+c . Measure GM ”treats” the same
TPR and PPV .

If we wish to point out which one of TPR and PPV is most important for us, we
may use another measure, so called F − value:

FV =
(1 + β2)TPR ∗ PPV
β2PPV ∗ TPR (11)

For better recognizing relatively small classes, parameter β should be greater than 1.
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Table 2. Results for Glass, α = 0.7, asymmetric granulation

No class Acc FS Acc IFS TPR FS TPR IFS FPR FS FPR IFS
1 average 79.4 76.3 0.56 0.9 0.09 0.31

standard deviation 3.3 3.3 0.12 0.04 0.05 0.05
2 average 74.8 60.9 0.48 0.85 0.48 0.85

standard deviation 3.6 4.2 0.11 0.09 0.11 0.09
3 average 90.8 84.9 0 0.21 0.01 0.09

standard deviation 1.0 3.7 0 0.14 0.01 0.04
5 average 93.3 93.3 0.09 0.17 0.01 0.01

standard deviation 1.0 1.2 0.09 0.12 0.01 0.01
6 average 95.6 97.0 0.12 0.42 0 0

standard deviation 1.2 1.1 0.18 0.23 0 0
7 average 92.7 94.7 0.44 0.68 0.01 0.02

standard deviation 1.4 1.7 0.14 0.17 0.01 0.01

3.2 Results Obtained

First, we present the results obtained from an intuitionistic fuzzy classifier recognizing
elements from two benchmark data sets – “Glass”, and “Wine” (cf. [41]). To verify the
classifier we use simple cross validation method (with 10 experiments). The examined
data set was separated in each iteration into a training set and test set (50/50) by se-
lecting examples randomly. For each experiment the mean of the accuracy measures,
and their standard deviation were calculated. Results obtained by an intuitionistic fuzzy
classifier are compared with the results obtained by a fuzzy classifier.

In Tables 2–3 there are results for “Glass” identification database (cf. [41]) with 214
instances, 7 classes (4th class is empty), 10 attributes.

Table 3. Results for Glass, α = 0.7, symmetric granulation

no class Acc FS Acc IFS TPR FS TPR IFS FPR FS FPR IFS
1 average 71.5 60.3 0.25 0.94 0.05 0.57

standard deviation 2.8 3.2 0.13 0.06 0.04 0.05
2 average 73.0 54.0 0.46 0.91 0.11 0.67

standard deviation 2.6 3.2 0.14 0.07 0.07 0.07
3 average 89.4 44.4 0.06 0.84 0.03 0.59

standard deviation 2.6 4.1 0.09 0.12 0.04 0.05
5 average 94.0 92.4 0.56 0.74 0.03 0.06

standard deviation 2.2 3.3 0.2 0.15 0.02 0.04
6 average 96.2 94.3 0.48 0.64 0.01 0.04

standard deviation 1.5 2.6 0.22 0.22 0.01 0.03
7 average 94.7 92.5 0.8 0.86 0.03 0.07

standard deviation 1.9 1.5 0.12 0.1 0.02 0.02

In Table 2 asymmetric granulation was applied with α = 0.7. Accuracy (7) for fuzzy
classifier AccFS is better than for intuitionistic fuzzy classifier AccIFS for classes
1–3, is the same for both classifiers for class 5, and is better for intuitionistic fuzzy
classifier for classes 6–7. But in all cases TPRIFS is better than TPRFS which
means that intuitionisticc fuzzy classifier “sees” better the class we are interested in.
Improving of TPR for intuitionistic fuzzy classifier is at cost of bigger values of FPR
for classes 1–3. But it is worth stressing that for classes 5–7 we obtain both better
accuracy and TPR for intuitionistic classifier whereas FPR is practically the same.
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Table 4. Results for intuitionistic fuzzy classifier as a function of number of intervals, symmetric
granulation

data base no of intervals Acc IFS GM TPR FV
Wine 3 3 28.1 0.522 1.0 0.652

5 79.775 0.775 1.000 0.870
7 89.888 0.866 1.000 0.930

10 94.382 0.926 1.000 0.960
15 96.629 0.961 1.000 0.976
20 96.629 0.980 1.000 0.976
25 96.629 0.980 0.958 0.950
30 95.506 0.980 0.958 0.943

Heart 2 3 34.228 0.381 1.000 0.479
5 40.940 0.416 1.000 0.506
7 40.940 0.416 1.000 0.506

10 42.953 0.428 1.000 0.514
15 46.980 0.445 0.944 0.509
20 55.034 0.467 0.944 0.548
25 61.745 0.511 0.889 0.559
30 62.416 0.541 0.833 0.536

Glass 5 3 80.769 0.509 1.000 0.636
5 83.654 0.540 1.000 0.673
7 81.731 0.463 0.857 0.577

10 93.269 0.655 0.857 0.750
15 93.269 0.655 0.857 0.750
20 93.269 0.598 0.714 0.658
25 93.269 0.598 0.714 0.658
30 94.231 0.630 0.714 0.676

In Table 3 there are results for the same database “Glass”, with the same parameter
α = 0.7 but with symmetric granulation. The accuracy of intuitionistic fuzzy classifier
AccIFS is lower than accuracy of fuzzy classifier AccFS with symmetric granulation
for classes 1–3. On the other hand, the values of PRIFS are considerably better than
the counterpart values of TPRFS. Unfortunately, better values of TPRIFS, i.e., bet-
ter recognition of relatively smaller class by intuitionistic fuzzy classifier, accompany
considerably bigger values of of FPRIFS. In other words, intuitionistic fuzzy clas-
sifier with symmetric granulation better recognizes relatively small classes but general
accuracy, and recognition of other classes is worse.

It is also interesting to notice the problem of granulation in the sense of the number
of the intervals used. Results of experiments with several data bases (chosen classes)
are in Tables 4 and 5. We can see both for a symmetric (Table 4) and an asymmetric
granulation (Table 4) that in general it is not the truth in a case of the imbalanced classes
that the more intervals used the better. When we start from small number of intervals,
even general accuracy of the classifier for some tested classes increases first (Wine 3,
Glass 5, Glass 3), gains its maximum, and next decreases. The situation is even worse
for TPR – practically, for all the tested classes, the best values of TPR are obtained
for small number of the intervals, and the more intervals the values of TPR decrease.
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Table 5. Results for intuitionistic fuzzy classifier as a function of number of intervals, asymmetric
granulation

data base no of intervals Acc IFS GM TPR FV
Heart 3 3 30.201 0.376 0.944 0.443

5 34.228 0.395 0.944 0.457
7 39.597 0.410 0.944 0.478
10 42.953 0.421 0.944 0.491
15 57.047 0.476 0.889 0.533
20 61.074 0.508 0.611 0.410
25 69.128 0.561 0.444 0.345
30 71.812 0.615 0.444 0.357

Glass 3 3 23.077 0.318 0.318 0.360
5 39.423 0.208 0.208 0.250
7 61.538 0.214 0.214 0.267
10 79.808 0.298 0.272 0.238
20 92.308 0.385 0.385 0.256
25 91.346 N/A N/A N/A
30 91.346 N/A N/A N/A

Breast Cancer 1 3 79.532 0.903 1.000 0.941
5 95.029 0.954 0.991 0,980
7 95.614 0.966 0.986 0,979
10 95.322 0.966 0.982 0.975
15 95.906 0.971 0.982 0.977
20 96.199 0.971 0.986 0.980
25 95.906 0.971 0.982 0.977
30 96.199 0.971 0.986 0.977

Observations of GM confirm the fact that just increasing the number of intervals is
not the best practice while constructing a classifier for recognizing imbalanced classes.
The same conclusion is confirmed when observing FV values (for parameter β = 2
which means slight preference for relatively smaller class). The situation described is
the result of the fact that when using more intervals during granulation, instances from
relatively smaller classes are even more substantially dominated in a separate interval
(worse “visible”). The only solution is a careful process of assigning the number of the
intervals when constructing the classifier as each data base, and each class in a data base
is specific.

4 Conclusions

A simple yet effective intuitionistic fuzzy classifier was tested on some imbalanced and
overlapping data. Results obtained confirm that the intuitionistic fuzzy classifier fulfills
our main demand, i.e., “sees” better relatively smaller classes. The results are better than
for a fuzzy classifier known from literature as a good one for recognizing imbalanced
classes. We may pay for it in lower accuracy of recognizing all instances because bigger
classes might be seen worse. But it is not a rule – sometimes both relatively smaller
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class and bigger classes are recognized better by intuitionistic fuzzy classifier than by
the counterpart fuzzy classifier.

We have also tested an influence of the number of the intervals applied (in the process
of granulation) on the results. Several measures were tested. It turns out that increasing
the number of intervals does not mean improving the results as the elements of the
smaller classes can be even more dominated in very narrow intervals.

Acknowledgment. Partially supported by the Ministry of Science and Higher
Education Grant UMO-2012/05/B/ST6/03068.
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Abstract. Identity verification based on on-line signature is a com-
monly known biometric task. Some methods based on the on-line sig-
nature biometric attribute used for identity verification use information
from partitions of the signature. Efficiency of these methods is relatively
high. In this paper we would like to present a new approach to signature
trajectories partitioning, based on selection of the discretization points
groups. The new method was compared to other methods, with use of
the SVC2004 public on-line signature database.

1 Introduction

Signature is a biometric attribute commonly used in identity verification process.
This attribute may be categorized into two groups - off-line (static) signature
and on-line (dynamic) signature. Off-line signature contains only information
about shape of the signature. Systems which use this type of signature may
be used for example for verification identity of person who signed some kind
of documents. On-line signature contains many additional information about
dynamics of signing process. This kind of signatures are acquired with use of some
digital input device, e.g. graphic tablet. Dynamic signatures are more reliable
than static ones, because they are more difficult to forge (see e.g. [6]).

One of the most effective method of identity verification with use of dynamic
signature is method based on signature trajectories partitioning (see e.g. [9],
[11]). In [11] velocity signal is split into three bands and strokes which belong
to the medium-velocity band are used for discrimination purposes. Method pre-
sented in [9] assumes division of velocity and pressure signals into two parts.
After this process four partitions are created. Each partition contains template
created from trajectories of training signatures which belong to the partition.
Then selection of the most discriminative partition (called stable partition) is
performed. Stable partition is selected on the basis of similarities between each
training signature of the user and the template. The template from selected
partition is compared to the test signature during verification process. Identity
verification is performed on the basis of this comparison, signature is classified
as genuine or forgery. Our approach to identity verification, presented in [31],
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also refers to partitioning of signature trajectories. In our method all partitions
are considered during verification process, because we assume that all partitions
may contain useful information about signer. All partitions have also weights
of importance calculated individually for each signer, therefore partitions which
are more characteristic for the user will be more important during verification
process. During classification phase classifier based on the t-conorm with the
weights of arguments is used (see [1]-[4], [23]). This approach is more effective
than approach with use only one partition.

In this paper we present a new method of signature partitioning based on
selection of discretization points groups. This method also divide signature tra-
jectories into few partitions which are weighted by weights of importance and
are used during classification process. Classification is performed with use a
neuro-fuzzy system (see e.g. [2]-[3], [7], [12]-[15], [17]-[18], [22]-[28]).

This paper is organized into four sections. In Section 2 the new approach
to signature trajectories partitioning with selection of the discretization points
groups is presented. Simulation results are presented in Section 3. Conclusions
are drawn in Section 4.

2 Signature Verification Based on discretization Points
Groups

2.1 General Idea of the Algorithm

In this paper we propose a new method of signature partitioning. The method
may be summarized as follows: (a)In our approach partitions are used during the
training and classification phase. (b)Classification process is performed with use
of weights of importance. Weights are calculated individually for each signer and
for each partition. Partitions are created in a new way, so that the interpretation
of weights is different from the weights considered in [31]. (c)Proposed classifier
bases on flexible neuro-fuzzy system with weights of antecedents (see e.g. [2]-[3],
[22]). The weights of importance are associated with the parts of the signatures.
The conception of use of weights in triangular norms and neuro-fuzzy systems
is described in [5], [22].

The algorithm is performed as follows:

- Step 1. Partitioning of signatures. Signatures are partitioned with use
of the method which creates vertical partitions, selecting best discretization
points groups. Each of vertical partitions has the same width. Number of
vertical partitions is the same for each user (see Fig. 1).

- Step 2. Template generation. In this step templates for each partition
are generated. Templates are created on the basis of signatures generated by
signer during training data acquisition phase. Each template contains aver-
age values of signature signals. This step is performed only during training
phase.
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- Step 3. Calculation of signatures similarity in each partition. In
this phase similarities between each signature of the user and template are
calculated. The similarities are calculated for each partition.

- Step 4. Computation of the weights of importance. During this step
weights of importance for each partition are created. Values of weights are
based on mean distance between training signatures and template and also
on similarity in distances between training signatures and template. This
step is performed only during training phase.

- Step 5. Creation decision boundary for each partition. During this
step linear decision boundary between genuine signatures and forged signa-
tures is created individually for the user (see [31]). This step is performed
only during training phase. Genuine signatures of the other users may be
used as forged signatures (see e.g. [29]).

- Step 6. Determination of the fuzzy rules used in classification
phase. Fuzzy rules describe a way of test signature classification. The rules
based on the fuzzy sets, which use decision boundaries determined in the
step 5. Therefore they may be interpretable.

- Step 7. Classification. In this step signature is classified as genuine or
forgery. Classification process is performed on the basis of distances between
template and sample signature in the partitions. This step is performed only
during test phase. In the verification process flexible neuro-fuzzy system
of the Mamdani type is used. Each of the antecedents of this classifier is
associated with the weight determined in Step 2.

We can see that steps 1-6 are performed during training phase, while steps 1,3,7
are performed during test phase.

2.2 Determination of Partitions and Weights of Partitions

First, partitioning of the signatures is performed. The new approach presented in
this paper assumes partitioning based on selected time intervals of signing. This
approach is possible to implement because lengths of the all signature signals
are the same through the pre-processing. Pre-processing of the signatures is
performed after the acquisition phase. Lengths of the signatures are fitted by the
Dynamic Time Warping algorithm (see e.g. [16]) which use velocity or pressure
signal. Next, each signal is divided into parts of the same width. Membership
of the k -th sample of the j -th signature of the i-th user to the p-th partition is
described as follows:

part
{s}
i,j,k =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 for 0 < k ≤ K

PN{s}
2 for K

PN{s} < k ≤ 2K
PN{s}

...
PN{s} for (PN{s}−1)K

PN{s} < k ≤ K

, (1)

where s is a signal type (velocity or pressure) used during alignment phase, i is
the user number (i = 1, 2, . . . , I), j is the signature number (j = 1, 2, . . . , J), K
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is a number of samples, k is the sample number (k = 1, 2, . . . ,K) and PN{s} is
a number of partitions. In this method we have assumed, that PN{v} = PN{z}.
Partitioning method is shown in Fig. 1.
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Fig. 1. Signature partitioning

After partitioning, templates of the signatures are generated. Generation of
the templates is based on the training signatures. Templates are concerned with
the user and assigned to the partition. Generation of an element of template
ta

{s}
p,i,k, p = 1, 2, . . . , PN{s}, i = 1, 2, . . . , I, k = 1, 2, . . . ,K, for the k -th time

step of the p-th partition of the i-th signer for signatures aligned with use of s
signal (v velocity or z pressure) and a trajectory (x or y) is calculated by the
formula:

ta
{s}
p,i,k =

1

J

J∑
j=1

a
{s}
p,i,j,k, (2)

where a{s}p,i,j,k, p = 1, 2, . . . , PN{s}, i = 1, 2, . . . , I, j = 1, 2, . . . , J , k = 1, 2, . . . ,K,
is trajectory (x or y) value in the k -th sample of the p-th partition of the j -th
signature of the i-th signer. Template ta

{s}
p,i , p = 1, 2, . . . , PN{s}, i = 1, 2, . . . , I,

of the p-th partition of the i-th signer for signatures aligned with use of s signal
(v velocity or z pressure) and a trajectory (x or y) is described by the following
equation:

ta
{s}
p,i =

[
ta

{s}
p,i,1, ta

{s}
p,i,2, ..., ta

{s}
p,i,k

]
. (3)

Next, distances between each template and each signature trajectory are cal-
culated. Distance da{s}p,i,j , p = 1, 2, . . . , PN{s}, i = 1, 2, . . . , I, j = 1, 2, . . . , J ,
between template of the p-th partition of the i-th signer generated for signa-
tures aligned with use of s signal (v velocity or z pressure) and a trajectory (x
or y), and the j -th signature of the i-th signer is described as follows:
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da
{s}
p,i,j =

√√√√ K∑
k=1

(
ta

{s}
p,i,k − a

{s}
p,i,j,k

)2
, (4)

where a{s}p,i,j,k, p = 1, 2, . . . , PN{s}, i = 1, 2, . . . , I, j = 1, 2, . . . , J , k = 1, 2, . . . ,K,
is a a trajectory (x or y) value in the k -th sample of the p-th partition of the
j -th signature of the i-th signer.

Next, distances between templates and signatures in two dimensional space are
calculated. Distance d{s}p,i,j , p = 1, 2, . . . , PN{s}, i = 1, 2, . . . , I, j = 1, 2, . . . , J ,
between the j -th signature trajectory of the i-th signer and template of the i-th
signer in the p-th partition generated for signatures aligned with use of s signal
is calculated by the formula:

d
{s}
p,i,j =

√(
dx

{s}
p,i,j

)2
+
(
dy

{s}
p,i,j

)2
. (5)

Next, weights of importance for each partition are calculated. First step to com-
pute weights of importance is calculation of mean distances between signatures
and template in partitions. Mean distance between signatures of the i-th signer
and template of the i-th signer in the p-th partition d̄{s}p,i , p = 1, 2, . . . , PN{s},
i = 1, 2, . . . , I, related to signal s (v velocity or z pressure) is calculated by the
formula:

d̄
{s}
p,i =

1

J

J∑
j=1

d
{s}
p,i,j . (6)

Then, standard deviation of distances in each partition should be calculated.
Standard deviation of signatures σ{s}p,i , p = 1, 2, . . . , PN{s}, i = 1, 2, . . . , I, of
the i-th user from the p-th partition related to signal s (velocity or pressure) is
calculated using the following equation:

σ
{s}
p,i =

√√√√ 1

J

J∑
j=1

(
d̄
{s}
p,i − d

{s}
p,i,j

)2
. (7)

Next, weights of importance are calculated. Weight w
′{s}
p,i , p = 1, 2, . . . , PN{s},

i = 1, 2, . . . , I, of the p-th partition of the i-th user related to signal s (velocity
or pressure) is calculated by the following formula:

w
′{s}
p,i = d̄

{s}
p,i σ

{s}
p,i . (8)

After that, weights should be normalized. Normalization of weight is used to sim-
plify the classification phase. Weight w{s}

p,i , p = 1, 2, . . . , PN{s}, i = 1, 2, . . . , I,
of the p-th partition of the i-th user related to signal s (velocity or pressure) is
normalized by the following equation:
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w
{s}
p,i = 1−

0.9 · w
′{s}
p,i

max
{
w

′{s}
1,i , . . . , w

′{s}
PN{s},i

} . (9)

Use of coefficient 0.9 in formula (9) causes that partition with the lowest value
of weight of importance is also used in classification process.

Next, selection of location of decision boundary and determination of the
value dlrnmax{s}p,i , p = 1, 2, . . . , PN{s}, i = 1, 2, . . . , I, s ∈ {v, z} is performed
(see [31]). The determined values have an impact on spacing of fuzzy sets,
which represent values {low, high} assumed by the PN{v} + PN{z} linguistic
variables "the truth of the i-th user signature from p-th partition of s signal"
(p = 1, 2, . . . , PN{s}, s ∈ {v, z}).

2.3 Signature Classification

In the last step signature verification is performed. In this step flexible Mamdani-
type neuro-fuzzy system is used (see e.g. [2]-[3], [22]). Our system works on the
basis of two fuzzy rules presented as follows:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
R1 :

[
IF
(
dtst

{s}
1,i isA1

1,i
{s}
) ∣∣∣w{s}

1,i OR . . .(
dtst

{s}
PN{s},iisA

1
PN{s},i

{s}
) ∣∣∣w{s}

PN{s},i THENyiisB
1

]

R2 :

[
IF
(
dtst

{s}
1,i isA2

1,i
{s}
) ∣∣∣w{s}

1,i OR . . .(
dtst

{s}
PN{s},iisA

2
PN{s},i

{s}
) ∣∣∣w{s}

PN{s},i THENyiisB
2

] , (10)

where

- dtst{s}p,i , s ∈ {v, z}, p = 1, 2, . . . , PN{s}, i = 1, 2, . . . , I, are input linguis-
tic variables, whose numeric value is a distance between the test signature
trajectory of the i-th signer and decision boundary in the p-th partition for
signatures aligned with use of s signal.

- A1
p,i

{s}, A2
p,i

{s}, p = 1, 2, . . . , PN{s}, i = 1, 2, . . . , I, are input fuzzy sets
related to the signal s ∈ {v, z} shown in Fig. 2.

- yi, i = 1, 2, . . . , I, is input linguistic variable interpreted as reliability of
signature.

- B1, B2 are output fuzzy sets shown in Fig. 2.
- w{s}

p,i , p = 1, 2, . . . , PN{s}, i = 1, 2, . . . , I, s ∈ {v, z}, are weights of the p-th
partition of the i-th user related to signal s.
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Fig. 2. Input and output fuzzy sets of the flexible neuro-fuzzy system of the Mamdani
type for signature verification

Signature is considered true if the following assumption is satisfied:

ȳi =

S∗

⎧⎨⎩ μA2
1,i

{s}

(
dtst

{s}
1,i

)
, . . . ,

μA2

PN{s},i

{s}

(
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{s}
PN{s},i

)
;w

{s}
1,i , . . . , w

{s}
PN{s},i
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⎫⎬⎭+
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⎧⎨⎩ μA1
1,i

{s}

(
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{s}
1,i

)
, . . . ,

μA1

PN{s},i

{s}

(
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{s}
PN{s},i

)
;w

{s}
1,i , . . . , w

{s}
PN{s},i

⎫⎬⎭

⎞⎟⎟⎟⎟⎟⎟⎠

> cthi,

(11)
where

- S∗ {·} is a weighted t-conorm of the algebraic type (see [2]).
- ȳi, i = 1, 2, . . . , I, is the value of the output signal of applied neuro-fuzzy

system described by rules (10). Detailed description of the system can be
found in [2]. Formula (11) is the result of the general relationship describing
the transformation of the input signal of Mamdani-type system.

- cthi ∈ [0, 1] - coefficient determined experimentally during training phase
for each user to eliminate disproportion between FAR and FRR error (see
[29]). The parameters cthi ∈ [0, 1], computed individually for the i-th user,
i = 1, 2, . . . , I, are used during verification process in the test phase.

In future research we plan to use probabilistic neural networks for classification
of dynamic signature ([8], [19]-[21]).
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3 Simulation Results

Public SVC 2004 database (see [29]) was used during simulation. The database
contains 40 signers and for each signer 20 genuine and 20 forgery signatures. The
test was performed five times, every time for all signers stored in the database.
During training phase 5 genuine signatures (numbers 1-10) of each signer were
used. During test phase 10 genuine signatures (numbers 11-20) and 20 forgery
signatures (numbers 21-40) of each signer were used. All the methods were im-
plemented in the authorial testing environment to compare the results.

In the Table 1 we present simulation results. FAR (False Acceptance Rate)
and FRR (False Rejection Rate) values are commonly used in biometrics (see
e.g. [10]). It should be noted, that method based on vertical partitions achieves
the best results.

Table 1. Results of simulation performed by our system

Method Average
FAR

Average
FRR

Average
error

Khan et al. [9] 12.30 % 13.90 % 13.10 %
Zalasiński and Cpałka [31] 11.13 % 11.45 % 11.29 %
Our method 11.35 % 9.80 % 10.57 %

4 Conclusions

In this paper a new method of signature partitioning is presented. The method
assumes division of signals on the basis of discretization points time index val-
ues. All partitions are used during training and verification process. They are
described by weights of importance which contain information about reliabil-
ity of the partition. Achieved high accuracy of signature verification proves the
correctness of the proposed method.
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Abstract. This paper centers on a novel approach aiming at speech en-
hancement in hearing aids. It consists in creating -by making use of per-
ceptual concepts, and a supervised learning process driven by a genetic
algorithm (GA)- a gain function (G) that not only does it enhance the
speech quality but also the speech intelligibility in noisy environments.
The proposed algorithm creates the enhanced gain function by using a
Gaussian mixture model fueled by the GA. To what extent the speech
quality is enhanced is quantitatively measured by the algorithm itself
by using a scheme based on the perceptual evaluation of speech quality
(PESQ) standard. In this “blind” process, it does not use any initial
information but that iteratively quantified by the PESQ measurement.
The GA computes the optimized parameters that maximize the PESQ
score. The experimental work, carried out over three different databases,
shows how the computed gain function assists the hearing aid in enhanc-
ing speech, when compared to the values reached by using a standard
hearing aid based on a multiband compressor-expander algorithm.

Keywords: Gaussian mixture model, genetic algorithms, perceptual
evaluation of speech quality, speech enhancement, digital hearing aids.

1 Introduction

According to the latest scientific statistics of the World Health Organization,
hearing loss has become a global major healthcare concern. Nowadays, almost
275 million people worldwide, which amounts to approximately 4 % of the total
population, suffer from hearing loss [1], and regrettably, this number of deaf and
hard of hearing people is increasing at an alarm rate not only because of the
aging of the world’s population, but also because of the growing exposure to
excessive noise in their quotidian life.

The good news is that 90 % of hearing loss cases could be mitigated by using
some kind of hearing aid, whereas 10 % of them would require medical or surgical
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504 L. Álvarez et al.

intervention. The bad news is that only about 5 % of people, who could be
benefited from hearing aids, wear it in their daily life. In this regard, it has
been shown that hearing-aid users repeatedly complain about the difficulty of
understanding speech when they are immersed in background noise [2]. Many
times, the users can “hear” but they cannot understand the speech signal. They
typically require a signal-to-noise-ratio (SNR) of about 5-10 dB higher than
that required by normal hearing listeners to achieve the same level of speech
understanding [3]. With this in mind, it seems evident that there is a latent
reason to work towards the objective of enhancing speech in digital hearing aids.

A common approach aiming at speech enhancement in hearing-aid users, when
they are surrounded by environmental sounds, is based on “noise reduction
schemes”. These methods are divided into two groups: single- and multi- mi-
crophone noise reduction algorithms [4]. They both aim at increasing the SNR
and thereby increasing the speech intelligibility, lowering the listening effort and
improving the perceived quality of the acoustic environment. However, both ap-
proaches suffer from serious drawbacks for being implemented in real time in
an in-the-market, average-performance hearing aids. On the one hand, a cru-
cial requirement of most single-microphone noise reduction algorithms is the
estimation of the noise spectrum. Since most realistic noisy environments are
characterized by non-stationarity, it is necessary to frequently adjust the noise
spectrum to maintain an effective noise reduction processing. A reasonable way
is to perform this adjustment whenever target speech is absent. This obviously
demands to develop a speech pause detection algorithm, which is strongly lim-
ited by some design restrictions, imposed by the digital signal processor (DSP)
on which digital hearing aids are based. On the other hand, multi-microphone
schemes need to wirelessly transmit to the left and right ears some parame-
ters involved in the noise reduction algorithm, which has not been efficiently
solved yet at a reasonable computational cost in average-performance digital
hearing aids.

These are the main reasons why we propose in this paper a novel approach
aiming at speech enhancement in noisy environments in hearing aids. It basi-
cally consists in automatically generating by making use of a supervised learning
process, driven by a genetic algorithm (GA), a “gain function” G (also called
“gain matrix”), which aims at enhancing speech in hearing-aid users when they
are immersed in environmental noise. In the effort of designing the mentioned
gain function, the proposed approach measures objectively the quality of a set of
speech signals generated by the hearing aid, which depend on the gain function,
by using a scheme based on the perceptual evaluation of speech quality (PESQ)
[5]. Fig. 1 will assist us in more clearly introducing our approach, along with the
structure of the paper. As it is illustrated, the aforementioned algorithm com-
pares the amplified output signal produced by the hearing aid, so (subscript o
meaning “output”), with a reference, high quality signal, sc (subscript c meaning
“clean”). Please note that this reference signal is included in a database, and
consequently, the process of designing the gain function must be accomplished
by an adequate database of speech-in-quiet signals. The output signal so is
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basically the reference signal sc after 1) having been corrupted with noise (n),
and 2) after having been modified by the hearing aid. Using both signals (sc
and so), the PESQ block generates a score ranging from −0.5 (“bad”) to 4.5
(“excellent”). The higher the score is, the better the speech “perceived by the
human auditory system” is. The output signal produced by the hearing aid (so)
depends on the gain function of the hearing aid. As it will be explained in Sec-
tion 2, the proposed approach creates the gain function, G, by using a Gaussian
mixture model (GMM) driven by a GA. This model (and in turns, the PESQ
score) depends on a number of parameters. This GA computes the optimized pa-
rameters that maximize the global PESQ score for the speech sounds included
in the database. The paper is completed with a variety of experimental work
that suggests the feasibility of the mentioned approach to enhance speech in
hearing aids.

Training
set

+ PESQ GA

Parameters

Hearing aid

Noise 
generator

G
Sc + n SO

Fig. 1. Simplified block diagram illustrating the way the proposed method works

2 Blind Modeling of the Gain Function

2.1 Motivation

Put it simple, a digital hearing aid consists of a bank of sound compressors, one
for each frequency band k = 1, . . . , NB, where NB is the number of frequency
bands available in the DSP. With this in mind, the sound signal that enters the
hearing aid, labeled sc(t), is divided into a number of L frames and the DSP
computes the short-time-Fourier-transform (STFT) of each frame. Thus, for the
sake of simplicity, SC(k, l) will represent here the k-th frequency component of
the STFT of the l-th frame corresponding to sc(t). Note that l = 1, . . . , L labels
the index over the L frames into which any sound signal is segmented. Within
this scenario, each sample SC(k, l) is multiplied in the DSP by a gain value that
depends on the level (dB) of the input sound frame and the frequency band.

Thus, the gain matrix G which contains all the parameters required to com-
pletely compute the gain value for any level of the input signal in any frequency
band, can be formally expressed as follows:

G = f(X, k) (1)
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where X is the level (dB) of the input signal (frame, in the context of the
application at hand), and k = 1, . . . , NB labels the index over the NB frequency
components of the STFT of the input frame.

Computing the gain, as a function of the level of the input frame (X) and
the frequency band (k), can require intensive computational cost. To illustrate
this statement, we can imagine a standard hearing aid in which the compression-
expansion technique in each frequency band, in the easiest form, is performed by
means of piecewise linear approximation strategies (this is commonly known as
“multiband compressor-expander algorithm” [6]), and using, for instance, three
segments. This simple scenario would demand to compute five parameters to
define the gain curve for each frequency band. If NB = 64 bands are considered,
the total number of parameters included in matrix G would be 64× 5 = 320.

In the effort of reducing this number of parameters to be optimized, we pro-
pose to model the complete gain G (and not its separate pieces), as a “smooth”
function in a “blind” method that is described in the paragraphs below. Prior
to this, it is convenient to remark we say the method is “blind” in the sense we
do not introduce any initial information but that related to perceptual concepts
(just those that can be numerically quantified by the PESQ measurement).

2.2 Gaussian Mixture Model

With the aforementioned concepts in mind, the initial, blind structure of the
gain G can be formally expressed by using a GMM [7], which basically consists
in a properly weighted combination of Gaussian components as shown below:

G ≈ p(x) =

M∑
i=1

wi · N (mi,Ci) (2)

where:

– p(x) is the probability density function of the Gaussian mixture
– x = [x1, x2, . . . , xd] is a d -dimensional data vector
– M represents the number of Gaussian components
– wi labels the amplitude or weight of the i-th Gaussian component
– N is a multivariate normal or Gaussian distribution (with mean value mi

and covariance matrix Ci), whose density function is as follows:

N =
1

(2π)(d/2)|Ci|1/2
exp

{
−1

2
(x −mi)

TC−1
i (x −mi)

}
. (3)

The complete GMM is thus parameterized by the mean vectors, the covariance
matrices and the mixture weights from all Gaussian component densities. These
aforementioned unknown parameters will be computed by making use of a GA.
Please note that in this work, the mixture model has to approximate the gain
matrix G as a function of the level (dB) of the input frame and the frequency
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band (k). Thus, the data vector x results here in a 2-dimensional continuous
vector (that is, d = 2), in which the first dimension represents the level (dB) of
the input frame and the second dimension represents the frequency band.

Completing this section demands to emphasize that a key advantage of this
approach is that the number of parameters to be optimized is drastically reduced
since now that number does not depend either on the number of frequency bands
available in the DSP or the different levels of the input frame. This can be clearly
noticed by having a look at the number of parameters to be optimized when us-
ing, for instance, a 3-piece linear approximation which results in 320 (see Section
2.1 for further details), and the number of parameters demanded when modeling
the gain function by making use of a GMM that results in 6 parameters (in the
case of a two dimensional 1-GMM1), 12 parameters (in the case of a two dimen-
sional 2-GMM) or 18 parameters (in the case of a two dimensional 3-GMM).
Finally, it is worth mentioning here that it has been shown experimentally that
a number of Gaussian components higher than 3 (that is, M > 3) does not
cause a significant improvement in the results although it would require larger
computational resources.

2.3 Case-Study: Real-Time Implementation

The DSP used to carry out the experiments is Toccata Plus [9]. This DSP is
composed of two coprocessors: 1) the weighted overlapp-add (WOLA) filter-bank
coprocessor that performs the time/frequency decomposition and 2) the “core
processor” dealing with the remaining tasks, such as, for instance, compensating
the hearing loss.

At a first glance, implementing in the DSP the gain function (G) could be
approached from the two viewpoints that follow. The first one consists in storing
in data-memory the optimized parameters of the GMM found by the GA, and
by making use of Equation (2), computing in the DSP the proper value of the
gain to be applied to reduce the noise. The main advantage of this approach
is that it requires less use of data-memory storage. The very serious associated
drawback is, however, that it is very difficult its practical implementation in a
DSP because it requires intensive computational cost. The second approach is as
follows: 1) computing G offline; 2) tabulating G for any level (dB) of the input
sound frame and any frequency band; and 3) storing the tabulated values of G
in the DSP data-memory. The main advantage of this second approach is that it
requires much lower computational cost at the expense of increasing the amount
of data-memory used. However, as it will be shown later on, this stronger use of
data-memory is perfectly feasible. These are basically the reasons why we have
chosen this approach in order to illustrate the feasibility of the core idea we
propose in this paper.

Thus, using this second approach, the subsequent questions arising are how
many different levels (dB) of the input frame and frequencies should be consid-
ered? And consequently, how many different values of gain should be considered?

1 Henceforth,M -GMM labels a Gaussian mixturemodel withM Gaussian components.
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Since the WOLA filter-bank output provides NB = 64 frequency bands and the
16-bit A/D and D/A converters exhibit a dynamic range of 96.3 dB, we have
set the dynamic margin ranging from 1 to 96 dB for the level of the input signal
(in steps of 1 dB, which has been found to have enough precision in our experi-
ments), and ranging from 1 to 64 for the frequency bands involved. Within this
framework, the total number of tabulated values for G to be stored in the data
memory has been found to be 64× 96 = 6144. Since, each value requires 2 bytes
(1 word), the total memory required would be 12288 bytes (∼ 12 Kbytes, or
equivalently, ∼ 6 Kwords). Since the total data-capacity of the DSP is 8-Kword,
this approach does not exceed the restrictions imposed by the DSP.

Finally, for properly completing this section, Table 1 shows the computational
cost, C (clock cycles), and the average load, L (%), required for programming
in the Toccata Plus DSP each functional block involved in a hearing loss com-
pensation algorithm that makes use of a gain matrix as the one proposed in
this paper. As shown, the total computational cost and load average (%) needed
to implement the whole digital hearing aid functionalities (including the gain
function G) has been found to be 3.931 clock cycles and 51.2 %, respectively.

Table 1. Total computational cost (in clock cycles) and load average (%) required,
for implementing in the Toccata Plus DSP, the hearing loss compensation algorithm
including the gain function (G) proposed in this work

Block/assembler instruction
Total cost Load average

(clock cycles) (%)

Call 2 0.03
Push 21 0.27

Hearing loss compensation algorithm
3885 50.58

including the gain matrix (G)
Call 21 0.27
Ret 2 0.03

Total 3931 51.18

3 Experimental Work and Results

Prior to the description of the experimental work and the results obtained in
this paper (Section 3.2), it is worth having a look at the experimental setup and
the databases used for the experiments (Section 3.1).

3.1 Experimental Setup

A total of three speech-in-noise databases have been used. These databases are
described in the following paragraphs.
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– Database 1. This database is made of 30 clean speech sentences, randomly
selected from [10]. These 30 clean speech sentences have been degraded by
additive white Gaussian noise at SNR = 0, 5, 10 and 15 dB, as schematically
illustrated in Fig. 1. These values of SNRs have been taken from [11]. With
this in mind, this database actually consists of 120 speech-in-noise files. For
properly training and testing the proposed approach, it is necessary for the
database to be divided into two different sets. For this reason, for each study-
case SNR, 10 files (35 %) have been picked randomly as training data, and
the remaining 20 files (65 %) have been used for the purpose of testing. This
division has been made ensuring that the relative proportion of files of each
category is preserved for each set.

– Database 2. It is composed of 30 clean speech sentences extracted from
the noisy speech corpus (NOIZEUS), available in [11]. As in “database 1”,
these clean speech sentences have been degraded by additive white Gaussian
noise at SNR = 0, 5, 10 and 15 dB. This database has been used because
it contains phonetically balanced sentences with relatively low word-context
predictability.

– Database 3. This database is composed of the same 30 clean speech sen-
tences used to design “database 2”, but in this case, these clean speech
sentences have been corrupted by eight different real-world noises at SNR
= 0, 5, 10 and 15 dB. The real-world noises have been taken from the AU-
RORA database [12]. This database was compiled by Loizou [11].

The files included in the three aforementioned databases have been properly
modified by using a hearing aid simulator, modeled in [13], and by using a subject
with a flat 40 dB hearing loss. The results obtained by using this hearing aid
simulator have been labelled “Mult. compressor-expander HA” in the numerical
results. In the effort of exploring the performance of the gain function proposed
in this work, we have compared these results with those obtained when the
hearing aid simulator makes use of the gain function proposed here (instead of
using a multiband compressor-expander algorithm). In order to obtain this gain
function, “database 1” has been used to train the algorithm described in Section
2, whereas both “database 2” and “database 3” have been used to assess the
performance of the obtained solutions with “database 1”.

Regarding the GA context, any individual is a real-number vector with the
structure I ≡ [v1, v2, v3, . . . , v6], for the easiest case in whichM = 1 (that is, only
1 Gaussian component has been used for the GMM). In this regard, v1 designates
the weight of the Gaussian mixture, v2 and v3 represent the elements of the mean
vector and finally, v4, v5 and v6 label the elements of the covariance matrix. If
the mixture consists of a greater number of components, such as, for instance,
M = 2, the dimension of each individual is 12 (the first six parameters define
the parameters of one Gaussian component and the following six parameters
define the parameters of the second Gaussian component) and so on. Table 2
summarizes the main design parameters the GA makes use of, where M labels
the number of Gaussian components used in the mixture.
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Table 2. Design parameters the GA makes use of

Parameters Value

Initial population (p0) 150×M
Crossover probability (pc) 0.8
Mutation probability (pm) 0.1
Max. no. of generations 50

Max. no. of iterations in which the score remains unchanged 20

Completing this description of the batches of experiments demands to mention
that the experiments have been repeated 10 times. It has been found that the
variance of the results obtained by 10 runs of the GA is kept below 0.01, and
consequently, aiming at saving computational resources, it is not worthwhile to
run the experiments a larger number of repetitions.

3.2 Numerical Results

Fig. 2(a), 2(b) and 2(c) represent the mean value and the standard deviation
of the computed PESQ scores as a function of the SNR when the number of
Gaussian components in the obtained gain function is M = 1, 2 and 3, respec-
tively. These results correspond to a batch of experiments carried out by training
the approach using the design speech-in-noise files at SNR = 0 dB, included in
“database 1” (discussed in Section 3.1). The results shown in the three mentioned
figures correspond to the test speech-in-noise files included in “database 1”. The
solid lines in the sequence of figures correspond to the mean value and standard
deviation of the PESQ scores, when the gain matrix (G) is used in the hearing
aid. For comparative purposes, the dashed, monotonously increasing lines in the
mentioned figures correspond to the mean and standard deviation values of the
PESQ scores reached when the gain programmed in the hearing aid is based on a
multiband compression-expansion strategy (labeled “Mult. compressor-expander
HA” in the pictures).

Fig. 2(a), 2(b) and 2(c) provide the following valuable information:

– The computed gain function (G) makes the hearing aid reach better results
in terms of speech quality, regardless of the number of Gaussian components
(M) used to model the gain matrix, than those achieved by using a standard
hearing aid in which the gain function in each frequency band is based on a
multiband compression-expansion strategy.

– Regardless of the SNR level of the speech-in-noise files, the results obtained
with M = 3 Gaussian components are always better than those obtained
with M = 1 or 2 components.

– These figures clearly illustrate to what extent the proposed method enhances
the speech quality, especially in the worst scenario in which the level of noise
equals the level of speech, or in other words, when SNR = 0 dB.
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(a) M = 1 Gaussian component
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(b) M = 2 Gaussian components
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(c) M = 3 Gaussian components

Fig. 2. Mean and standard deviation values of PESQ scores, as a function of the SNR.
It is also illustrated the case in which the hearing-aid user makes use of a standard
hearing aid in which the gain is based on a multiband compressor-expander algorithm.

One important question that could arise is whether improvements in terms of
speech intelligibility are also reported. In order to answer this question, we have
made use of a standardized measure that is the so-called speech intelligibility
index (SII) [14] to predict speech intelligibility. Table 3 lists the mean speech
quality improvement (in terms of PESQ score) and the mean speech intelligibility
improvement (in terms of SII score), when the test speech-in-noise files included
in “database 1” are processed by a hearing aid in which the gain matrix is
based on a GMM, with respect to the situation in which the mentioned files are
processed by a standard hearing aid in which the gain is based on a multiband
compression-expansion algorithm. These results, illustrated as a function of the
number of Gaussian components used (M) in the mixture model, correspond to
the situation in which the approach has been trained with the design speech-in-
noise files included in “database 1” at SNR = 0 dB. It seems clear to note that
speech intelligibility is also increased, especially when M = 3 components are
used in the mixture model.

In order to explore the influence of other SNRs in the training process of
the approach, we have carried out a similar batch of experiments in which the
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Table 3. Mean speech enhancement, in terms of both speech quality and intelligibility,
when the approach has been trained with speech-in-noise files at SNR = 0 dB

Gaussian components Speech quality Speech intelligibility
(M) improvement (%) improvement (%)

1 10.3 5.7
2 11.4 8.9
3 14.5 11.9

approach has been trained by using the design speech-in-noise files included in
“database 1” at SNR = 5 dB. With this in mind, Table 4 depicts the mean
speech quality improvement (in terms of PESQ score) and the mean speech
intelligibility improvement (in terms of SII score), when the test speech-in-noise
files included in “database 1” are processed by a hearing aid in which the gain
matrix is based on a GMM, with respect to the situation in which the files are
processed by a standard hearing aid in which the gain is based on a multiband
compression-expansion algorithm. These results are illustrated as a function of
the number of Gaussian components (M) used to model the gain matrix.

Table 4. Mean speech enhancement, in terms of both speech quality and intelligibility,
when the approach has been trained with speech-in-noise files at SNR = 5 dB

Gaussian components Speech quality Speech intelligibility
(M) improvement (%) improvement (%)

1 11.0 6.8
2 14.7 9.6
3 15.1 12.2

Note that, as in the former batch of experiments, the best result is achieved
when M = 3 Gaussian components are used in the mixture model leading to
achieve 15.1 % and 12.2 % improvement in terms of speech quality and speech
intelligibility, respectively.

Finally, and for comparative purposes in order to evaluate the influence of
the database used in the experiments, we have tested the results obtained with
“database 1”, using now “database 2” and “database 3” (both described in Sec-
tion 3.1). Or in other words, we have tested the gain function obtained with
“database 1”, using now the speech-in-noise files included in “database 2” and
“database 3”. The results below correspond to those obtained when the approach
has been trained with the design speech-in-noise files included in “database 1”
at SNR = 5 dB and by using M = 3 Gaussian components. Fig. 3(a) and 3(b)
represent the mean speech quality improvement, as a function of the SNR, ob-
tained when the speech-in-noise files, included in “database 2” and “database 3”,
respectively, are processed by the study-case hearing aid (labeled “3-GMM HA”
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in the picture). It is also illustrated the case in which the mentioned files are
processed by a standard hearing aid in which the gain is based on a multiband
compressor-expander algorithm. The mean speech quality improvement has been
found to be about 15 % and 8 %, respectively.
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(a) Speech-in-noise files included in
“database 2”
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(b) Speech-in-noise files included in
“database 3”

Fig. 3. Mean values of PESQ score, as a function of the SNR, when the speech-in-noise
files are processed by the study-case hearing aid with M = 3 Gaussian components.
It is also illustrated the case in which the mentioned files are processed by a standard
hearing aid in which the gain is based on a multiband compressor-expander algorithm.

4 Conclusions

This paper focuses on a novel approach aiming at speech enhancement in hearing
aids. It consists in creating -by using a supervised learning process driven by a
GA- a gain function that not only does it enhance speech quality, but also speech
intelligibility in noisy environments in hearing aids.

The experimental work has been carried out by using three different speech-
in-noise databases. The main results can be summarized as follows:

1. The computed gain function makes the hearing aid reach better results in
terms of speech quality, regardless of the number of Gaussian components
used (M) to model the gain function, than those achieved by using a standard
hearing aid in which the gain function in each frequency band is based on a
multiband compression-expansion strategy.

2. Regardless of the SNR level of speech-in-noise files, the results obtained
with M = 3 Gaussian components are always better than those obtained
with M = 1, 2 components.

3. The results clearly show to what extent the proposed algorithm enhances
the speech quality and speech intelligibility, especially in the worst scenario
in which the level of noise equals the level of speech (SNR = 0 dB).

It has been also shown that the total load average required to implement this
approach in the Toccata Plus DSP is about 52 %.
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These results point out to a new field of research in the jointly use of perceptual
and artificial intelligent concepts applied on speech enhancement in hearing aids.
Besides the obvious improvement in the quality of the speech perceived by the
user, the key point consists in its lower computational cost because, once the
gain function is programmed in the DSP, it is no longer necessary to run any
other noise reduction algorithm.
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Abstract. Hidden Markov models are well-known methods for image
processing. They are used in many areas where 1D data are processed. In
the case of 2D data, there appear some problems with application HMM.
There are some solutions, but they convert input observation from 2D to
1D, or create parallel pseudo 2D HMM, which is set of 1D HMMs in fact.
This paper describes authentic 2D HMM with two-dimensional input
data, and its application for pattern recognition in image processing.

Keywords: hidden Markov model, pattern recognition, image
processing.

1 Introduction

Hidden Markov models (HMM) are widely apply in data classification. They are
used in speech recognition, character recognition, biological sequence analysis,
financial data processing, texture analysis, face recognition, etc. [1]This widely
application of HMM is result of its effectiveness. An extension of the HMM to
work on two-dimensional data is 2D HMM. A 2D HMM can be regarded as a
combination of one state matrix and one observation matrix, where transition
between states take place according to a 2D Markovian probability and each
observation is generated independently by the corresponding state at the same
matrix position. It was noted that the complexity of estimating the parameters
of a 2D HMMs or using them to perform maximum a posteriori classification is
exponential in the size of data. Similar to 1D HMM, the most important thing
for 2D HMMs is also to solve the three basic problems, namely, probability
evolution, optimal state matrix and parameters estimation.

When we process one-dimensional data, we have good tools and solution for
this. Unfortunately, this is unpractical in image processing, because the im-
ages are two-dimensional. When you convert an image from 2D to 1D , you
lose some information. So, if we process two-dimensional data, we should ap-
ply two-dimensional HMM, and this 2D HMM should works with 2D data. One
of solutions is pseudo 2D HMM[2],[3],[4]. This model is extension of classic 1D
HMM. There are super-states, which mask one-dimensional hidden Markov mod-
els (Fig. 1). Linear model is the topology of superstates, where only self transition

L. Rutkowski et al. (Eds.): ICAISC 2013, Part I, LNAI 7894, pp. 515–523, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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Fig. 1. Pseudo 2D HMM [1]

and transition to the following superstate are possible. Inside the superstates
there are linear 1D HMM. The state sequences in the rows are independent of
the state sequences of neighboring rows. Additional, input data are divided to
the vector. So, we have 1D model with 1D data in practise.

Other approach to image processing use two-dimensional data present in
works [5] and [6]. The solutions base on Markov Random Fields (MRF) and give
good results for classification and segmentation, but not in pattern recognition.
Interesting results showed in paper [7]. This article presents analytic solution
and proof of correctness two-dimensional HMM. But this 2D HMM is similar to
MRF, works with one-dimensional data and can be apply only for left-right type
of HMM. This article presents real solution for 2D problem in HMM. There is
show true 2D HMM which processes 2D data.

2 Classic 1D HMM

HMM is a double stochastic process with underlying stochastic process that is
not observable (hidden), but can be observed through another set of stochastic
processes that produce a sequence of observation [8]. Let O = {O1, .., OT } be
the sequence of observation of feature vectors, where T is the total number of
feature vectors in the sequence. The statistical parameters of the model may be
defined as follows [9]:

– The number of states of the model, N
– The number of symbols M
– The transition probabilities of the underlying Markov chain, A = {aij}, 1 ≤
i, j ≤ N , where aij is the probability of transition from state i to state j
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Fig. 2. One-dimensional HMM

– The observation probabilities, B = {bjm)} 1 ≤ j ≤ N, 1 ≤ m ≤ M which
represents the probability of gnerate the mth symbol in the jth state.

– The initial probability vector, Π = {πi} 1 ≤ i ≤ N.

Hence, the HMM requires three probability measures to be defined,A,B,Π and
the notation λ = (A,B,Π) is often used to indicate the set of parameters of the
model. In the proposed method, one model is made for each part of the face. The
parameters of the model are generated at random at the beginning. Then they are
estimated with Baum-Welch algorithm, which is based on the forward-backward
algorithm. The forward algorithm calculates the coefficient αt(i) (probability of
observing the partial sequence (o1, , ot) such that state qt is i). The backward
algorithm calculates the coefficient βt(i) (probability of observing the partial
sequence (ot+1, , oT ) such that state qt is i). The Baum-Welch algorithm, which
computes the λ, can be described as follows [9]:

1. Let initial model be λ0
2. Compute new λ based on λ0 and observation O

3. If log(P (O|λ) − log(P (O)|λ0) < DELTA stop

4. Else set λ→ λ0 and go to step 2.

The parameters of new model λ, based on λ0 and observation O, are esti-
mated from equation of Baum-Welch algorithm [8], and then are recorded to
the database.

3 Three Basic Problems

There are three fundamental problems of interest that must be solved for HMM
to be useful in some applications. These problems are the following:

1. Given observation O = (o1, o2, , oT ) and model λ = (A,B,Π), efficiently
compute P (O|λ)

2. Given observation O = (o1, o2, , oT ) and model λ find the optimal state
sequence q = (q1, q2, , qT )

3. Given observationO = (o1, o2, , oT ), estimate model parametersλ = (A,B,Π)
that maximize P (O|λ)
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3.1 Solution to Problem 1

Forward Algorithm [9]

– Define forward variable αt(i) as:

αt(i) = P (o1, o2, , ot, qt = i|λ) (1)

– αt(i) is the probability of observing the partial sequence (o1, o2, , ot) such
that the the state qt is i

– Induction

1. Initialization:

α1(i) = πibi(o1) (2)

2. Induction:

αt+1(i) =

[ N∑
i=1

αt(i)aij

]
bj(ot+1) (3)

3. Termination:

P (O|λ) =
N∑
i=1

αT (i) (4)

Backward Algorithm [9]

– Define backward variable βt(i) as:

βt(i) = P (ot+1, ot+2, , oT , qt = i|λ) (5)

– βt(i) is the probability of observing the partial sequence (o1, o2, , ot) such
that the the state qt is i

– Induction

1. Initialization:

βT (i) = 1 (6)

2. Induction:

βt(i) =

N∑
i=1

aijbj(ot+1βt+1(j), (7)

1 ≤ i ≤ N, t = T − 1, ..., 1

3. Termination:

P (O|λ) =

N∑
i=1

β1(i) (8)
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3.2 Solution to Problem 2

Viterbi Algorithm [10]

– Initialization:
δ1(i) = πibi(o1), 1 ≤ i ≤ N (9)

1 ≤ i ≤ N

ψ1 = 0 (10)

– Recursion:
δt(j) = max

1≤i≤N
[δt−1(i)aij ]bj(ot) (11)

ψt(j) = arg max
1≤i≤N

[δt−1(i)aij ]bj(ot) (12)

1 ≤ j ≤ N, 2 ≤ t ≤ T

– Termination:
P ∗ = max

1≤i≤N
[δt(i)] (13)

q∗t = arg max
1≤i≤N

[δt(i)] (14)

– Backtracking:
q∗t = ψt(q

∗
t+1) (15)

t = T − 1, T − 2, ..., 1

3.3 Solution to Problem 3

Baum-Welch Algorithm [9]:

– Define ξ(i, j) as the probability of being in state i at time t and in state j
at time t+ 1

ξ(i, j) =
αt(i)aijbj(ot+1)βt+1(j)

P (O|λ)
=

αt(i)aijbj(ot+1)βt+1(j)∑N
i=1

∑N
j=1 αt(i)aijbj(ot+1)βt+1(j)

(16)
– Define γ(i) as the probability of being in state i at time t, given observation

sequence.

γt(i) =

N∑
j=1

ξt(i, j) (17)

–
∑T

t=1 γt(i) is the expected number of times state i is visited

–
∑T−1

t=1 ξt(i, j) is the expected number of transition from state i to j

Update rules:

– π̄i = expected frequency in state i at time (t = 1) = γ1(i)
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– āij = (expected number of transition from state i to state j)/(expected
number of transitions from state i:

āij =

∑
t ξt(i, j)∑
t γt(i)

(18)

– b̄j(k) = (expected number of times in state j and oserving symbolk)/(expected
number of times in state j:

b̄j(k) =

∑
t,ot=k γt(j)∑

t γt(j)
(19)

4 2D HMM

In paper [7], Yujian proposed definitions and proofs of 2D HMM. He has pre-
sented several analytic formulae for solving the three basic problems of 2-D
HMM. Solution to Problem 2 is usefull., and Viterbi algorithm can be easily
adopted to image recognition with two dimensional input data. Unfortunetly,
solution to problem 1 and 3 may be use only with one dimensional data -
observation vector. Besides presented solutions are for Markov model type ”left-
right”, and not ergodic. So, I present solution to problems 1 and 3 for two
dimensional data. The statistical parameters of the 2D model (Fig. 3):

– The number of states of the model N2

– The number of data streams k1 x k2 = K
– The number of symbols M
– The transition probabilities of the underlying Markov chain, A = {aijl}, 1 ≤
i, j ≤ N, 1 ≤ l ≤ N2, where aij is the probability of transition from state ij
to state l

– The observation probabilities, B = {bijm)}, 1 ≤ i, j ≤ N, 1 ≤ m ≤M which
represents the probability of gnerate the mth symbol in the ijth state.

– The initial probability, Π = {πijk}, 1 ≤ i, j ≤ N, 1 ≤ k ≤ K.
– Oservation sequance O = {ot}, 1 ≤ t ≤ T, ot is square matrix simply

observation with size k1 x k2 = K

4.1 Solution to 2D Problem 1

Forward Algorithm

– Define forward variable αt(i, j, k) as:

αt(i, j, k) = P (o1, o2, , ot, qt = ij|λ) (20)

– αt(i, j, k) is the probability of observing the partial sequence (o1, o2, , ot) such
that the the state qt is i, j for each kth strem of data

– Induction
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Fig. 3. Two-dimensional ergodic HMM

1. Initialization:
α1(i, j, k) = πijkbij(o1) (21)

2. Induction:

αt+1(i, j, k) =

[ N∑
l=1

αt(i, j, k)aijl

]
bij(ot+1) (22)

3. Termination:

P (O|λ) =

T∑
t=1

K∑
k=1

αT (i, j, k) (23)

4.2 Solution to 2D Problem 3

Parameters reestimation Algorithm:

– Define ξ(i, j, l) as the probability of being in state ij at time t and in state
l at time t+ 1 for each kth strem of data

ξt(i, j, l)=
αt(i, j, k)aijlbij(ot+1)βt+1(i, j, k)

P (O|λ)
=

αt(i, j, k)aijbij(ot+1)βt+1(i, j, k)∑K
k=1

∑N2

l=1 αt(i, j, k)aijlbij(ot+1)βt+1(i, j, k)
(24)
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– Define γ(i, j) as the probability of being in state i, j at time t, given
observation sequence.

γt(i, j) =
N2∑
l=1

ξt(i, j, l) (25)

–
∑T

t=1 γt(i, j) is the expected number of times state ij is visited

–
∑T−1

t=1 ξt(i, j, l) is the expected number of transition from state ij to l

Update rules:

– ¯πijk = expected frequency in state i, j at time (t = 1) = γ1(i, j)
– āij = (expected number of transition from state i, j to state l)/(expected

number of transitions from state i, j:

āijl =

∑
t ξt(i, j, l)∑
t γt(i, j)

(26)

– b̄ij(k) = (expected number of times in state j and oserving symbolk)/(expected
number of times in state j:

b̄ij(k) =

∑
t,ot=k γt(i, j)∑

t γt(i, j)
(27)

5 Experimenting

The image database Amsterdam Library of Object Images was used in experi-
menting. It is a color image collection of one-thousand small objects, recorded
for scientific purposes. In order to capture the sensory variation in object record-
ings, they systematically varied viewing angle, illumination angle, and illumina-
tion color for each object, and additionally captured wide-baseline stereo images.
They recorded over a hundred images of each object, yielding a total of 110,250
images for the collection [11],[12].

In order to verify the method has benn selected fifty objects. Three images for
learning and three for testing has been chosen for each object. The 2D HMM has
been implemented with parameters N = 5, N2 = 25,K = 25,M = 50. Wavelet
transform has been chosen as features extraction technigue. Table 1 presents
The results of experiments.

Table 1. Comparison of recognition rate

Method Recognition rate [%]

Eigenvector 94
1D HMM 84
2D HMM 92
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6 Conclusion

Article presents real solution for 2D problem in HMM. There is show true 2D
HMM which processes 2D data. Hidden Markov models are well-known methods
for image processing, but in most cases they convert input observation from 2D
to 1D, or create parallel pseudo 2D HMM, which is set of 1D HMMs in fact.
This paper describes authentic 2D HMM with two-dimensional input data, and
its application for pattern recognition in image processing. The advantage of
this solution is that it does not lose the information. In addition, it reduces the
complexity of the system because it omitted data conversion step.
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Abstract. This paper describes a concept of algorithm dedicated to
video compression. In our approach we use an algorithm named the
predictive vector quantization (PVQ). Into this scheme of image com-
pression a competitive neural networks quantizer and a neural networks
predictor are incorporated. In our paper, we extend this neural image
compression approach to a new method of video compression. We also
used the image histogram method to detect scene changes, what have to
improve the video compression performance. The experimental results
are presented and discussed.

1 Introduction

Video and image compression is commonly used in todays multimedia data trans-
mission. There are various techniques of coding the data in order to reduce video
data redundancy. Most of the algorithms and codecs combine a spatial compen-
sation of images as well as movement compensation in time. They can be found
in following applications:

1. broadcast, subscription, and pay-per-view services over satellite, cable, and
terrestrial transmission channels (e.g., using H.222.0 / MPEG-2 systems [1]);

2. wire-line and wireless real-time conversational services (e.g., using H.32x [2]
or Session Initiation Protocol (SIP) [3]);

3. Internet or local area network (LAN) video streaming (using Real-Time Pro-
tocol/Internet Protocol (RTP/IP) [4]);

4. storage formats (e.g., digital versatile disk (DVD), digital camcorders, and
personal video recorders) [5].

Currently, there are many compression standards. The most popular are JPEG
and MPEG. They differ in the level of compression as well as application. JPEG
and JPEG2000 standards are used for image compression with an adjustable
compression rate. MPEG standard contains a whole family of international com-
pression standards of audiovisual digital data compression. The best known stan-
dards are MPEG-1, MPEG-2, and MPEG-4. More information on the MPEG
standards can be found in literature [6].

In our work, we used a PVQ (Predictive Vector Quantization) algorithm to
compress a video sequence. It is a combination of a VQ (Vector Quantization)

L. Rutkowski et al. (Eds.): ICAISC 2013, Part I, LNAI 7894, pp. 524–531, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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[7], [8], and DPCM (Differential Pulse Code Modulation). More information on
the techniques can be found in sources [9], [10], [11]. Additionally, we used image
histograms in order to detect a scene change [12], which is necessary to change
parameters of the predictor and the codebook.

2 Video Compression Algorithm

This paper describes a compression algorithm which is designed based on the
existing algorithm described in [9], [10], [11]. It also has been extended to include
a scene change detection algorithm, based on a comparison of histograms of each
frame of a film. Diagram of the proposed algorithm is shown in Fig. 1.

Movie 
frames

Scene
detection

Adjustment of
compression
parameters

Neuronal
frame

compression

Compressed
video

file

compressed
framecompression

parameters

scene
change

detection

frames

frames

Fig. 1. Neronal video compression algorithm

2.1 Neuronal Compression VQDPCM

The architecture of the predictive vector quantization algorithm (PVQ), as de-
picted in fig. 2 [11] is a vector extension of the scalar differential pulse code
modulation scheme [9], [10] combined with Huffman coding.

The following elements form the block diagram of the PVQ algorithm: en-
coder and decoder, each containing an identical neural-predictor, codebook and
neural vector quantizer (other approaches are possible too, for example us-
ing neuro-fuzzy systems, see e.g. [13]-[19]), and Huffman coder. The succes-
sive input vectors V (t) are introduced to the encoder. The difference E (t) =

[e1 (t) , e2 (t) , ..., eq (t)]T given by the equation

E (t) = V (t)−V (t) (1)
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Fig. 2. PVQ+Huffman compression algorithm

is formed, where: V (t) = [v1 (t) , v2 (t) , ..., vq (t)]
T

is the predictor of V (t). Sta-
tistically, the difference E (t) requires fewer quantization bits than the origi-
nal subimage V (t). The next step is vector quantization of E (t) using the
set of reproduction vectors G = [g0,g1, ...,gJ ] (codebook), where gj = [g1j ,
g2j , ..., gqj ]

T (codewords). For every q-dimensional difference vector E (t), the
distortion (usually the mean square error) between E (t) and every codeword
gj , j = 0, 1, ..., J − 1 is computed. The codeword gj0 (t) is selected as the
representation vector for E (t) if

dj0 = min
0≤j≤J

dj , (2)

a measure d in expression (2) we can take e.g. the Euclidean distance. Observe
that by adding the prediction vector V (t) to the quantized difference vector

gj0 (t) we get the reconstructed approximation Ṽ (t) of the original input vector
V (t), i.e.

Ṽ (t) = V (t) + gj0 (t) . (3)

The prediction vector V (t) of the input vector V (t) is made from past ob-

servation of reconstructed vector Ṽ (t− 1). In our approach, the predictor is a
nonlinear neural network specifically designed for this purpose. Finally, the set of
the j0 (t) is coded by the Huffman coder. The codebook of the Huffman coder is
designed using a set of counters fj which count how frequently given label j0 (t)
araises after presentation of all vectors V (t). The appropriate codewords h0 (t)
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from the Huffman codebook are broadcasted via the transmission channel to the
decoder. In the decoder, first the codewords h0 (t) transmitted by the channel are
decoded using the Huffman codebook and then inverse vector-quantized. Next,
the reconstructed vector Ṽ (t) is formed in the same manner as in the encoder
(see formula (3)).

2.2 Scene Detection

Let us assume that the function d(ji, fj) is calculated by comparison of his-
tograms of each color space of two frames (fi, fj) [20], [21], and it is defined by
equation

d (fi, fj) = (|Hir(k) −Hjr(k)|+ |Hig(k)−Hjg(k)|+ |Hib(k)−Hjb(k)|) (4)

where Hir(k), Hig(k), Hib(k) describe value of color k in the histogram for in-
dividual color space (r,g,b) of frame fi [12]. Using weight of brightness for each
color space from (4), equation can be defined as

d (fi, fj) = (|Hir(k) − Hjr(k)| ∗ α + |Hig(k) − Hjg(k)| ∗ β + |Hib(k) − Hjb(k)| ∗ γ) (5)

where α, β, γ describe constant value of brightness level for digital image and have
a value of α = 0.3, β = 0.59, γ = 0.11. Using statistical analysis to emphasize the
differences in two frames, comparison test X2(dx2(fi, fj)) is an effective method
for scene change detection by comparison of image histograms. Equation can be
defined as

dx2 (fi, fj) =

{∑ (Hi(k)−Hj(k))
2

MAX(Hi(k),Hj(k))
, ifHi, Hj �= 0

0 , otherwise
. (6)

Methods based on image histograms may have a problem to detect differences in
the two images with similar color distribution, because histograms do not store
information about the space. The solution to this problem could be a comparison
of the distributions of the histogram in the local area of the frame. The value of
differences of the frame by comparing the color histograms for each block and
its accumulation is determined as follows

d(fi, fj) =

m∑
bl=1

DP (fi, fj , bl), (7)

where

DP (fi, fj , bl) =
N∑

k=1

|Hi(k, bl)−Hj(k, bl)| (8)

Hi(k, bl) describes the color value k in the histogram in the block bl in frame(fi),
and m is the total number of blocks. Divided into local distribution histogram
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has a lot of the previously mentioned advantages. In addition, equation (5) can
apply a weighting for each color space. Equation (6) allows to use statistical
methods, and the equation (7) split the image into blocks. Combining all these
methods we obtain the equation to determine the difference in the compared
frames and define it as follows

d(fi, fj , bl) =

m∑
bl=1

Dx2(fi, fj , bl) (9)

where

Dx2(fi, fj , bl) =

N∑
k=1

[
(Hir(k)−Hjr(k))2

MAX(Hir(k), Hjr(k))
∗ α
]

+ (10)[
(Hig(k)−Hjg(k))2

MAX(Hig(k), Hjg(k))
∗ β
]

+

[
(Hib(k)−Hjb(k))2

MAX(Hib(k), Hjb(k))
∗ γ
]

In the equation above, Hir(k), Hig(k), Hib(k) describe the color value k in the
histogram for each of the color space (r, g, b), N denotes the maximum value
of the color in the image, and m is a total number of blocks in the image. The
difference value computed from eq. (10) was divided by the number of pixels
within an image block, and the sum of the differences in eq. (9) was divided by
the number of blocks m of the image division. The obtained results were then
normalized to values between 0 and 1. The diagram of the algorithm is presented
in Fig. 3.

Movie 
frames

Division into 
blocks and get 

histograms

Take the 
difference betwen 

frames i and j 
d(fi,fj)

if 
d(fi,fj) >= 
treshold

Scene
change

detection

Fig. 3. Scene change detection algorithm

3 Experimental Result

In the presented solution, we used frames extracted directly from a video file
which had a resolution of 576x416 and 256 levels of grey. Next, we performed four
tests of the efficiency of the algorithm. In the first and second case, the frames
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were compressed within single scene. In the first experiment we compressed
frames creating a separate codebook and a predictor for each of them (Fig.4b).
In the second approach we applied a single codebook and a predictor to all
frames (Fig.4c).

a)

b)

c)

Fig. 4. a)original sequence b)compressed sequence test 1 c)compressed sequence test 2

In the third and fourth tests the compressed frames were in a transit between
scenes. The third experiment assumed the use of the same codebook and a
predictor when the scenes changed (Fig.5b). The results show that this approach
is insufficient in case of a major change of the scene. In the last case, when a
scene change was detected a new codebook and a predictor were created (Fig.5c).

a)

b)

c)

Fig. 5. a)original sequence b)compressed sequence test 3 c)compressed sequence test 4
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4 Conclusions

The simulations have shown the usefulness of scene change detection algorithm
for the presented compression algorithm. Our experiments show that without
scene detection an image compressed by our algorithm would be saddled with a
big mistake. On the other hand, the image file would contain too much informa-
tion about the compression parameters for each frame, in the case of appending
that information to the output file.
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Abstract. This paper proposes a design of a system for creating image
similarity datasets which are necessary for testing the quality of super-
vised ranking algorithms. In particular, the main goal is to facilitate the
creation of similar images rankings for given a imaginary dataset. The
system was designed in a manner that involves user feedback in the pro-
cess of creating the rankings. In each iteration of ranking construction,
the query image and twelve candidates are presented to the user, who is
intended to select the most similar one. Moreover, in order to accelerate
the method convergence the approach based on simulated annealing is
adapted. It initially chooses the images randomly from a dataset and in
the later stages the images with rank rate above zero are chosen with
certain probability.

Keywords: System Design, CBIR, Simulated Annealing.

1 Introduction

The dynamic development of artificial intelligence methods and particularly
learning from data techniques causes continuous increase in the volume of learn-
ing datasets. Such datasets contain elements each composed of particular ob-
jects with a specified decision. Learning algorithms, based on the data from the
dataset, form the decision model. With the use of the decision model, for any new
object the correct decision is taken with high probability. Among the supervised
learning techniques, there can be distinguished:

– classification, where the training set contains the objects assigned to the one
of the predefined classes,

– multi-label classification, where the object is identified by a number of classes,
– regressions, where the object contains the real-value label,
– ranking, where the feedback is designated as the order of the relevant

collection of objects.

The creation of an adequate training dataset is a challenging and time consum-
ing task. Firstly, it is necessary to collect a sufficiently large number of data
samples which carry out full latent information about the considered domain.

L. Rutkowski et al. (Eds.): ICAISC 2013, Part I, LNAI 7894, pp. 532–539, 2013.
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Collecting the required number of data in many cases becomes difficult, as in the
medical field where frequently we only have a few positive instances (patients
with a particularly rare disease). On the other hand, we can be flooded with
noisy data obtained from sensors. Another important issue during the dataset
creation is tagging all objects in an appropriate manner. The problems at this
stage may be: the lack of the necessary expertise knowledge to carry out ob-
ject evaluation or assessment by a too narrow group of users resulting in biased
labeling.

To overcome the above-mentioned problems, systems supporting the process
of creating training dataset were developed, where the power of crowd is ex-
ploited. Humans are treated as computational units for solving hard AI prob-
lems. The crowdsourcing idea involves encouraging people from all over the world
via the web system to tag data, create or collect new instances. This approach
is beginning to be used by research centers or large corporations, for instance,
the platform prepared by Amazon - Mechanical Turk [12], [13] allows to dele-
gate many tasks in the field of artificial intelligence to Internet community, such
as identifying objects in a photo or video, performing data de-duplication and
transcribing audio recordings. These kinds of systems were also widely used in
the field of bioinformatics, where data is large and have many spatial relations.
For example, the Foldit system [2], [9] is directed to protein structure predic-
tion, EteRNA - was design to find and create RNA knots, polyhedra, and other
shapes never before seen, while PHYLO [8] helps to create better algorithms for
multiple sequence alignments.

This paper describes the PicRank system, which supports the process of cre-
ating rankings for visually similar images. The system uses human recognition
capabilities for assessing image similarity and applies AI techniques to obtain
image ordering. The creation of a full ranking for the group of N images involves
determining for each query image the order of the remaining images in terms of
their visual similarity. The most commonly used methods are based on similarity
relations. The system presents the query image and certain number of randomly
selected elements to the user and the user’s task is to select the most similar
picture. Combining feedback from all users, the partial order relation on the set
of objects is received, on the basis which the final images ranking is formed.
Such a procedure for a single query requires the display of O(N2) examples, and
in order to obtain unbiased results, many users should be involved in ranking
creation.

To accelerate convergence of the ranking creation process in PicRank the se-
lective procedure of images choice was implemented, which was inspired by Sim-
ulated Annealing. It enables increasing the accuracy of the ranking established
while keeping the ability to explore whole image dataset.

The paper is organized as follows. Next section presents different approaches
to ranking creation. In section 3 a detailed description of the proposed method
is presented. Section 4 shows PicRank system architecture and explains design
concepts. Conclusions and future directions are pointed out in Section 5.
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2 Ranking Algorithms

The ranking creation could be considered in two aspects. The first one connected
with scoring and ordering query results in information retrieval systems and the
second one for player evaluation in games or tournaments. Both have to compute
the score for each object. These computations however take into account different
components.

Search rankings are mainly based on the object’s features and its connections
to other documents [11]. Most algorithms use different similarity measures to
determine how close each relevant instance is to the query specified by the user.
Having previously recoded ranking data collected from a narrow group of users,
the common practice is to apply machine learning techniques[7,16,10] to re-rank
documents and predict ordering for future, unseen data [14,1,5]. Considering this
aspect of ranking creation, our paper tries to deal with the problem of gathering
ordered data relying on user feedback. Having ordered data, the ranked image
dataset essential for the evaluation of new ranking algorithms is built.

The second group of methods is related to ranking players for different kinds
of games. In this group, the score is computed on the basis of the player’s and
its opponents’ game statistics, such as number of wins, losses, draws and current
ranking position. These methods have been used for chess player rankings for
a long time and presently, they have attracted a lot of attention due to their
suitability for player or team matching in online multi-player games [6]. Good
scoring system provides useful information about players skills and thus, team
matching algorithm could create balanced games. The well known chess ranking
system ELO [3] is based on statistical foundations, where the model tries to asses
which of the two players is likely to win. The correct ranking should be a good
estimator of the game expected value. When the game is finished, the ranking
is updated and the different amount of points can be granted depending on the
opponent’s ranking. In particular, a win against a high rated player results in
a greater number of points than winning against a low rated competitor. When
considering a defeat, analogous rules are applied. The TrueSkill ranking system
[6] follows a different approach, where rather than assuming a single fixed score
for the player, the system estimates its belief using a Gaussian distribution and
associates its mean μ ranking position and standard deviation σ with the user.
With the increase of the number of games played, the estimation of μ and σ is
closer to true values and thus the belief of user rank is stronger.

This paper adopts game rankings in creating datasets, as it turned out to
be a useful technique for improving and accelerating the process of creating the
datasets where all the information about objects similarity comes from user feed-
back. Each user session could be treated as a game, where the game participants
are images. The winning image, pointed out by the user, is the most similar to
the query image. When all wins, losses and draws in all games associated with
query image are counted, we are able to assign the score to each image and assess
the visual similarity (aggregated from many users feedback).
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3 Process of Ranking Creation

In order to obtain a complete ranking for the particular dataset, it is necessary
to find partial order for each query image ’≺q’ where q ∈ 1 . . .N and N is the
size of the dataset. The vast majority of methods try to make approximation
by pairwise comparison. For example, query image (picq) and two other random
pictures (pici, picj) from the dataset are shown to the user and his task is to
choose the most similar one to picq. This gives information about order between
pici, picj, if pici is more similar than picj than pici ≺q picj. This approach

scales poorly for big sets: firstly, for one ranking we have to asses (N∗(N−1)
2 )

image pairs and secondly, we have to obtain N such rankings and finally in order
to get unbiased results this procedure should be repeated for many users. To
sum up, we found that procedure for creating complete ranking has O(M ∗N3)
complexity, where N - dataset size, M - number of involved users.

The above-mentioned difficulties could be overcome by making some approx-
imations. In particular, during ranking creation procedure, only first k ranked
elements are taken into account, which significantly reduces creation time. This
observation leads to the method which firstly finds coarse ordering and in the
latter stages focuses only on improving ranking of first k positions. We found
that this approach is analogous to Simulated Annealing, where at the beginning
of the algorithm we are likely to accept bad candidates and in the later stages
we focus only on better solutions. Acceptance of bad solutions is associated
with specified probability distribution and parameter T (temperature), where
the parameter T decreases during algorithm execution. It results in a constantly
decreasing probability of bad solutions acceptance.

In the context of ranking creation, the initial stages should ensure a relevant
set of candidates in terms of similarity to the query image, and not necessarily
well-ordered. Then, further phases should focus on intra-ranking ordering. For
this reason our approach oscillates between showing the user random images
and the images coming from the partial ranking created before. Inspired by
Simulated Annealing the probability associated with choosing random pictures
decreases with the particular cooling scheme. Each picture set presented to the
user contains 12 examples and forms a game for the particular query image. The
game winner (the image most similar to the query) is specified by the user and
the rest of examples are marked as losers. Rankings are created on the basis of
the number of game wins and losses associated with the particular query image.
The summary of presented procedure in this section is shown in Algorithm 1.

4 System Architecture and Design

In order to enable multiple users to participate in the creation of datasets the
system is available via Internet http://picrank.eastgroup.pl and for the pur-
pose of assessing the similarity the user is not forced to log in. No necessity of
logging into the system was intended to attract users to take part in generat-
ing collections of rankings. The system was built according to the Model View

http://picrank.eastgroup.pl
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Algorithm 1. Ranking creation procedure
Require: T− initial temperature parameter

Require: DataSet− imaginary dataset

Require: CoolingScheme− chosen temperature decreasing schedule

Require: RankingMethod− chosen ranking score algorithm

1: repeat

2: queryImage = RandomImage(DataSet)

3: rankingGame = CreateRankingGame(queryImage)

4: if Paccept rand(iter, T ) > random() then

5: gameParticipants = AddGameParticipiants(rankingGame, DataSet, 12)

6: else

7: partialRankingSet = GetRanking(queryImage)

8: gameParticipants = AddGameParticipiants(rankingGame, partialRankingSet, 12)

9: end if

10: GenerateGameV iew(rankingGame)

11: mostSimilarImg = WatiForUserFeedback()

12: MarkAsGameWinner(rankingGame, queryImage,mostSimilarImg)

13: MarkAsGameLoser((rankingGame, queryImage,mostSimilarImg)

14: iter = iter + 1

15: T = CalculateTemperature(CoolingScheme, iter, T )

16: until Ranking created

17: for all queryImage in DataSet do

18: for all image in DataSet do

19: score = ComputeRankingScore(image, queryImage, RankingMethod)

20: end for

21: end for

Controller (MVC) standard with the use of ASP. Net MVC 3.0 framework. The
entire infrastructure is based on Windows Server 2008, IIS 7.0 web server and
database management server MS SQL Server 2008.

The system was divided into independent modules in a flexible mode, which
would make it possible to easily modify, replace, expand and add any modules
or algorithms. A crucial role in the system is played by the candidates selection
mechanisms for a particular game and the method in which the ranking is cre-
ated, since they significantly affect the relevance of the considered dataset. In
case of the system described in this paper, the mechanism of candidates selection
is based on the Simulated Annealing method (as described in section 3), while
the position in the ranking is determined by sorting the ratios of the games won
to the sum of all games played in relation to the considered query image. It is
worth a notice that each of the images is on the ranking lists of all the other
images from the dataset.

In the PicRank system there are two types of actors: the first, the standard
user, who is intended to rank similarity of images and the administrator, who
in addition to participating in ranking creation, should manage datasets and
generate the current ranking based on the votes of all users. In order to create
a new dataset, the administrator has to load a compressed folder with images
to the server. At the time of loading the dataset to the server all the basic
information about the dataset in question are added to the table DataSets (see
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database diagram on Figure 1), while the image data go to the table Pictures.
It should be noted, that each image has a reference to the dataset it belongs.
Among the available collections on the server, the administrator selects all the
datasets for which the evaluation may be conducted.

Fig. 1. Part of database diagram connected with ranking procedure

At the time when the user enters the page, a randomly selected query im-
age and twelve candidates from one of the available datasets are displayed to
him and a game associated with the query image is created. This is illustrated
in Games table by adding appropriate entries of the game, while in the table
GameParticipants the selected candidates are added. One of the candidates des-
ignated by the user as the most similar to the query image, is regarded as the
game winner and IsWinner field is set to true for him and for the rest of images
IsWinner field is set to false. On the basis of the games played, the number of
wins, losses and draws the Score field from the table Ranking (from 0 to 1) is
calculated. The value of the Score field indicates the position in the ranking for
the query image (BasePicId), where a higher value means a better place in the
ranking.

The created system was used to produce a set of rankings in a far shorter
time when comparing to the time needed for creating a ranking in a standard
manner by a single user. In addition, due to the feedback from many different
users, the global user preference and final results are unbiased. An example of
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a ranking dataset was created for different types of shoes. Dataset contains 200
images in 4 shoe categories. A sample ranking for particular sneakers is shown
on Figure 2, which can be obtained through the administration panel.

Fig. 2. Example of a generated sneaker ranking with scores

5 Conclusion and Future Work

This paper presents the PicRank [15] system for creating ranked image datasets
based on user feedback. The crowdsourcing idea improved the ranking quality
and accelerated the whole process. Our approach is inspired by the Simulated
Annealing algorithm where in order to speed up the convergence to the final
ranking, decreasing probability was used in a similar manner. During ranking
creation the system shows the images for which the user has to assess similarity
from a random collection or from a partial ranking created before.

Further research will focus on implementation of new ranking scores such as
Elo chess ranking [3] and methods of choosing game participants. It is important
to test and evaluate different cooling schedules like: logarithmic [4] or geometric.
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Abstract. Finding key points based on SURF and SIFT and size of their
vector reduction is a classical approach for object recognition systems.
In this paper we present a new framework for object recognition based
on generating simple fuzzy classifiers using key points and boosting meta
learning to distinguish between one known class and other classes. We
tested proposed approach on a known image dataset.

1 Introduction

The problem of image recognition on the basis of its content is a one of the
most important computer science challenges [12][13][14]. Finding keypoints based
on SURF [2] and SIFT [9] and keypoint vectors dimensionality reduction is
the classical approach for object recognition systems. The main contribution of
this paper is to find the set of fuzzy rules which are representative for some
class of objects. Fuzzy systems are very efficient method for describing partial
membership to a set [3][4][5][11][16]. This approach could be very useful for the
search based on the image content in a set of complex graphical objects in a
database. In addition, creating an optimal set of indexes could accelerate this
process. The general scheme of our approach is as follows:

– Determining key points for a set of images, the content of which belong
to the same class (e.g. airplanes) using SURF or SIFT algorithms (positive
examples),

– Determining key points for different classes using SURF or SIFT algorithms
(negative examples),

– Dimensionality reduction using principal component analysis (PCA) algo-
rithm by using both the positive and negative samples (vector size of 128
numbers is reduced to 36),

– Design of a fuzzy classifier based on the AdaBoost algorithm and assigning
weights to each of its rules.

The main idea of this paper is suggested in papers [17] and [20] where the
authors changed slightly the basis of Adaboost algorithm. They use the whole set
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of training examples to build many classifiers, then they choose the best model
according to the error value. We are going back to the original AdaBoost. In each
step we randomly choose one positive example according to their weights. This
example is a base to build final classifiers. We also introduced other changes to
the original concept where the authors searched for the most important samples.
We are going to find the most important classes of descriptors representing
objects of certain type. In our case, all classifiers are neuro-fuzzy models.

The paper is organized as follows. In the first section we present basis of
algorithms which are used to build the proposed solution. It consists of algo-
rithms to generate keypoints (SURF, SIFT etc.), algorithms for size of keypoints
reduction (PCA), algorithms for modular systems building (AdaBoost) and
fuzzy logic. Next section describes the proposed method and Section 3 provides
simulation results.

2 Methods Used in Proposed Approach

2.1 Boosting

This section describes the AdaBoost algorithm which is the most popular boost-
ing method [15]. The algorithm described here is designed for binary classifica-
tion. Let us denote the l-th learning vector by zl = [xl1, ..., x

l
n, y

l] , l = 1...m
is the number of a vector in the learning sequence, n is the dimension of input
vector xl, and yl is the learning class label. Weights Dl assigned to learning
vectors, have to fulfill the following conditions

(i) 0 < Dl < 1 ,

(ii)
m∑
l=1

Dl = 1 .
(1)

The weight Dl is the information how well classifiers were learned in consecutive
steps of an algorithm for a given input vector xl. Vector D for all input vectors
is initialized according to the following equation

Dl
t =

1

m
, for t = 0, ..., T , (2)

where t is the number of a boosting iteration (and a number of a classifier in
the ensemble). Let {ht(x) : t = 1, ..., T } denotes a set of hypotheses obtained in
consecutive steps t of the algorithm being described. For simplicity we limit our
problem to a binary classification (dichotomy) i.e. y ∈ {−1, 1} or ht(x) = ±1 .
Similarly to learning vectors weights, we assign a weight ct for every hypothesis,
such that

(i)
T∑

t=1

ct = 1 ,

(ii) ct > 0 .
(3)

Now in the AdaBoost algorithm we repeat steps 1-4 for t = 1, . . . , T :



542 M. Gabryel et al.

1. Create hypothesis ht and train it with a data set with respect to a distribution
dt for input vectors.
2. Compute the classification error εt of a trained classifier ht according to the
formula

εt =

m∑
l=1

Dl
t(z

l)I(ht(x
l) �= yl) , (4)

where I is the indicator function

I(a �= b) =

{
1 if a �= b
0 if a = b

. (5)

If εt = 0 or εt ≥ 0.5, stop the algorithm.
3. Compute the value

αt = 0.5 ln
1− εt
εt

. (6)

4. Modify weights for learning vectors according to the formula

Dt+1(zl) =
Dt(z

l) exp{−αtI(ht(xl) = yl)}
Nt

, (7)

where Nt is a constant such that
m∑
l=1

Dt+1(zl) = 1 . To compute the overall

output of the ensemble of classifiers trained by AdaBoost algorithm, the following
formula is used

f(x) =

T∑
t=1

ctht(x) , (8)

where

ct =
αt∑T
t=1 αt

(9)

is classifier importance for a given training set, ht(x) is the response of the
hypothesis t on the basis of feature vector x = [x1, ..., xn]. The coefficient ct
value is computed on the basis of the classifier error and can be interpreted
as the measure of classification accuracy of the given classifier. Moreover, the
assumption (1) should be met. As we see, the AdaBoost algorithm is a meta-
learning algorithm and does not determine the way of learning for classifiers in
the ensemble.

2.2 Image Descriptors for Interest Regions

Local image descriptors for interest regions are utilized in applications such
as image matching, image or texture recognition. There are many local descriptors
developed to date [18]. The most common are SIFT (Scale Invariant Feature Trans-
formation) [8] and SURF (Speeded Up Robust Features) [2]. Generally, SURF is
faster than SIFT thanks to lower dimensionality (64 vs. 128 dimensions. SIFT
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[9], consists of four major stages: (1) scale-space peak selection; (2) keypoint lo-
calization; (3) orientation assignment; (4) keypoint descriptor. A SIFT descriptor
is constituted of a 128-dimensional vector (8 orientation bins for each 4x4 loca-
tion bins). This representation allows significant levels of local distortions and
changes in illumination. Vector of 128 key points is reduced in our approach to
a 36-dimensional feature vector [6].

3 Proposed Approach

The main idea of this paper is suggested in [17], however we introduced many
changes to the original concept. The authors of [17] used boosting algorithm
to find a set of representative keypoints for selected class of images. They also
changed the basis of the Adaboost algorithm: in each step of their modified algo-
rithm they use the whole set of training examples to build many classifiers, then
they choose the best model according to error value. We revert to the original
AdaBoost. In each step we randomly choose one positive example according to
their weight. Such an example c = [c1, . . . , cn] = [x, . . . , xn] is a base to build the
final classifier. This classifier is a very simple nonstandard neuro-fuzzy model,
because it consists of one fuzzy rule. Thus we construct for every element of a
vector c a Gaussian function Gi(ci, δi). Each Gaussian function has the center
in the value of xi, i = 1, .., n. Then we train our classifier in the following way:

1. We calculate the distance from the point designated by the selected vector
c to each of the remaining positive examples x.

2. During this process we have to check whether this distance is less than the
threshold chosen by user (in our simulations we chose 0.5).

3. In this case (distance is less then threshold) we record for each of coordinates
of vector c how far a coordinate is distant from it to the right or left, that
is we calculate
If (LeftMargini > ci) then LeftMargini = ci
If (RightMargini < ci) then RightMargini = ci
And at the start of the algorithm RightMargini = LeftMargini = ci

4. After training process, we modify parameters of each of the Gaussian func-
tions which constitute the classifier in this step. The new centers are des-
ignated using formula ci = |RightMargini − LeftMargini|/2. The second
parameter of the Gaussian functions is their width. Due to the fact that our
Gaussian functions are equated with membership functions of fuzzy sets we
assume that throughout the interval |LeftMargin,RightMargin| it must
take values greater than 0.5; classifier assigned samples from this area to the
class of positive samples. Hence, we set the width of the Gaussian functions
by

δi =
|RightMargini − LeftMargini|√

− ln 0.5
(10)

5. After determining the parameters of the new Gaussian functions we also
obtain a set of fuzzy rules antecedents. For the entire set of samples (positive



544 M. Gabryel et al.

and negative ones) we test the performance of the classifier by treating it as a
single neuro-fuzzy rule. The aggregation of rules antecedents is made with the
minimum operator according to ε =

∑
j wj |r (xj)− yj | which corresponds to

(4) and r is the output of a given classifier (rule). In this step, we determine
also the importance of the rule, according to the formula (6). Now we modify
weights of all samples depending on the classification quality

wt+1,j = wt,jβ
1−ej
t (11)

which corresponds to the formula 7 and ej = 0 when the sample is classified
correctly and ej = 1 otherwise and βt = ln 1−εt

εt
where t is a boosting step.

In [17] the membership to the a given classifier h is determined by computing
distance d and then checking if d is smaller than threshold θ:

h (f, θ) =

{
1, d < θ
0, d ≥ θ , (12)

where h (f, θ) is the response of a classifier, f – vector of features, which is
identified with a classifier. The operation of this classifier can be presented in
two-dimensional feature space as a circle with a radius of θ within which all
samples are similar (in the sense of close proximity) to the feature vector f (Fig.
1c). In the figure a circle and a cross denote the position of the feature vectors
of the two classes of objects in two-dimensional space. Despite its simplicity, the
classifier has a major disadvantage, as it requires the selection of an appropriate
threshold value θ. In the case of high-value threshold θ, the classifier can be
extended to reach samples from a different class (Fig. 1d). On the other hand,
lower threshold θ may not include all of the samples.

Our approach, consisting in the formation of the Gaussian functions, is more
immune to the relative position of the samples in the feature space. Each Gaus-
sian function is determined during learning, constantly changing its width as
learning new samples. Since every dimension of the feature vector is represented
by one Gaussian function, the space is divided into rectangles of varying width,
the shape of which is better suited to the distribution of samples in space. Fig-
ure 1 a and b show how the shape of the Gaussian functions fits to the next
sample during the learning process, not including samples from other classes in
its range.

4 Results

Two hundred images was scaled to the size of 120x80. The files were taken from
the Corel Database [19]. Images are divided into two classes – the first class con-
sists of the pictures of dinosaurs. The second class consists of randomly selected
images from the other ones. Figure 2 shows nine examples of positive samples
used for learning. After training process described in Section 3 we obtained a set
of ten classifiers. The examples of Gaussian functions for one feature after prun-
ing process is shown in Figure 3. All positive images were classified correctly.
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Fig. 1. Effect of change of the way of key point comparison, a) based on the distance
b) using fuzzy logic

Fig. 2. Example of positive samples used for learning

Fig. 3. Example of Gaussian functions of one feature for three simple classifiers after
pruning process
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5 Conclusions

The presented method is a starting point for further work on the fuzzy represen-
tation of similar feature vectors (key points). Gaussian functions acquired during
learning can be reduced by finding similar ones and their merging. It will allow
to reduce the number of parameters describing all the key points of the class.
These functions are assigned with labels describing images that contain specific
data points. This in turn will allow easier storage in the database and index gen-
eration for faster search for similar images. Similar sets of key points described
by sets of Gaussian functions allow to perform some fuzzy logic operations and
will also allow for the calculation of the degree of similarity between images. The
system presented in this paper can only distinguish one class of objects from the
other ones. If we build several such classifier systems, we can combine them with
appropriate assumptions about fuzzy rules normalization [10].
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Abstract. A grip of the road finding seems to be very solid problem
in case of self-driven cars. It can be done by recognition of surface the
car is moving on. The photos of the road taken while driving a vehicle
can be the solid data source for the detection process. It is rather diffi-
cult to extract information from pictures that provide data necessary for
classifier to distinguish patterns. Apparently simple preprocessing is not
enough since a neural network was not able to learn anything. To resolve
the problem of the road recognition entirely new picture preprocessing
type has been developed. It fits circles of uniformly brightness areas then
counts them and measures their sizes. The learning of the multilayer per-
ceptron realised by such data gives very good results. The new way of
extracting data from pictures is a promising solution and was named as
”Growing Bubbles Algorithm”. The algorithm was implemented as part
of a real system to support the on-line driver decision. The system was
tested in the real car in real traffic with very promising results.

1 Introduction

It is very likely that in the soon future there will be no need to drive a car
as it will drive itself. There are already sophisticated far-reaching experiments
with vehicles like this [10]. Now Google is promoting their Driverless Car and
strongly lobbying in Nevada for creating a law to use the self driven cars on a
public roads [7]. The next step of this technology is to know - in the automatic
way - what kind of surface the car is driven on. Such info seems to be cru-
cial to predict the maximum safety-speed of the car. Systems like Auto Brake,
City Safety or Collision Warning also would need data about grip of the road
[3] [6] [9].

The paper describes a part of a system which is realised and tested at real
traffic. The system is predicting distance needed to stop a car based on the
actual speed and the grip of a tires. Of course the grip depends on type of the
road surface. The surface is distinguished as asphalt, sett, wet asphalt, snow,
etc. While getting information about speed is relatively easy because it can be
just read from car sensor finding the grip is a topic of the paper.

L. Rutkowski et al. (Eds.): ICAISC 2013, Part I, LNAI 7894, pp. 548–558, 2013.
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2 System Description

A specialised hardware and the unique software is necessary to implement the
problem described above. The working system has been build up from several
components: a speed sensor, a brake pedal position sensor, a microcontroller
(MCU), a camera and a PC computer. The MCU constantly reads signals and
stores them for later sending. The computer requests data from microcontroller
device every 20 milliseconds. Also a special application running on PC is con-
trolling a camera and takes a photo every second. Information about the speed
and about the surface type is enough to predict stopping distance.

The data describing the speed are ready to use just after the end of the reading
procedure. The surface recognition is more time consuming process and needs
next ”solid steps” for implementation. Firstly already taken photo is normalized
then preprocessed and a neural network is used as classifier of the presented
surface [1] [5]. Lastly - based on obtained data and knowledge acquired from
learning data - the stopping distance is computed.

Although the system is designed to work properly in any situation it has one
solid hardware limitation. The surfaces are recognized based on static photos and
the camera is not always able to take a photo in dark scene. The high quality
camera can improve the situation and solve the problem. Therefore photos of
various roads were collected for test of the system.

3 Learning Data

We can point two special areas for collected data. The stopping distance predic-
tion is the main goal of the system the data about retardation on each surface
was needful. Using this information a square function was discovered for each
surface that system is recognising. The functions describe the relation between
the speed and the stoping distance.

The main topic is to learn the neural network to recognize a road surfaces
based on the photos of the road. So the pictures for each type of the road
surface for different types of weather conditions have been collected. As a result
the data describing: asphalt, sett, snow, and off-road in 22 different variations
like: day, night wet, dry, good quality, bad quality. The road surface is recognised
not based on the entire view but using only the piece of the photo, patterns are
populated by copying the different areas of the same picture. The neural network
is trained using around 150 patterns for the each type of the road [1] [9].

4 Image Recognition

The surface recognition is only a part of a bigger project - so the actual func-
tionality of this part is limited. In the current state the system can recognize
three types of surfaces: a snow, an asphalt and a sett. On the other hand we
can prove that the surface can be recognised precisely. Moreover the discovered
preprocessing approach can be easily extended for more types of the road.
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The process runs as follow. The camera takes the photos of the road. The
photos are processed to detect the surface type. Firstly the square is cut out
from the photo in a place where the right car wheel is going to contact the
road surface. It cannot be taken from the area between wheels as there could be
different type of the surface. For example in winter time we can find a snow is
in a middle of a road but the car wheels go on the clean asphalt surface.

Before the image cropping the thresholds for image normalization are calcu-
lated. After the cropping the small square is normalized using previously found
thresholds. Next the histogram equalisation is used. This way the picture seems
to be more clear and unequivocal [5]. At the end the prepared square is ready
for subsequent processing.

4.1 Snow Recognition

The snow recognition seems to be the easiest task. The average colour of the
picture square creates the basis of the solution. It is little bit surprising that
a snow surface is not always the brightest surface. Sometimes the sett can be
brighter and it depends only on auto exposition of a camera. Therefore lightens
is not something that the algorithm can rely on. The key observation is that
snow has one dominating colour component. This is usual situation, many times
something what we recognize as white it is a bit blue e.g. white paper for printer
is also blue [5]. Lastly as a result of dominating component also saturation of
the colour is noticeable.

Putting all of the mentioned steps together we create the snow recognition
algorithm. The average colour in picture square is calculated for all R, G and
B channels separately. For the RGB colour the HSL representation is also com-
puted. If the B (blue) is dominating component and H (hue) is greater than 6%
the picture is recognized as a snow.

4.2 Asphalt and Set Recognition

The snow recognition is very accurate and do not require a lot of computation.
This is the reason why it can be used as the initial process of the road surface
detection. If the picture is not pointed as snow the next step is made and the
neural network gives and answer if the presented photo includes the sett or the
asphalt probe.

Apparently the distinguish between the asphalt and the sett is unexpectedly
difficult. It seems that pattern of relatively smooth and uniform asphalt differs
from the sett significantly and therefore it is trivial to make the classifier for
it. However simple preprocessing gives no valuable results. The neural network
is trained with the following types of images: grayscale, B&W, B&W using the
median algorithm to remove the ragged edges. We tried to build the input based
on the already detected corners or based on the B&W image with detected
corners. The approaches are the completely blind ways - the neural network is
not able to learn. It is clear that the completely new way of data extracting is
necessary.
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5 Growing Bubbles Algorithm

The ”Growing Bubbles Algorithm” is developed especially to find an answer: is
presented image the probe of the asphalt or the probe of the sett. Apparently
differences between patterns for the same type of the road are so significant that
the neural networks are not able to recognize it properly [1].

The following observation can be converted to a solution. The proportion of
black and white areas analysis and the frequency of appearance can potentially
point to correct answers. In this case place and rotation of pattern are ignored
and it is the issue with the previous preprocessing types. As a consequence, a
unique algorithm is developed.

Fig. 1. Example of Black and White crops of a surface (asphalt - top, sett - bottom)

The photos of a sett contains quite significant white areas divided by the dark
lines. In general it is difficult to find these lines as a result of bad image quality.
For the asphalt probe the only common pattern are the little black spots (Fig. 1).
The mentioned observations create a base of the ”Growing Bubbles Algorithm”.

Therefore a task for the algorithm is to extract only the information about the
sizes and the frequency of the appearance for solid colour areas. The idea is to
fill the white and black areas, to count them and to measure its sizes. It could be
the key information for detecting the sett. However usually the stones presented
in the photos stick together in such a way that there is no gap between them
and simple filling will fail in a such situation. We have to limit an expansion of
the filling areas and this is exactly what bubbles do. The areas are filled by the
bubbles instead of the simple colour. The bubbles cannot grow bigger than the
sett stones and consequently are able to preserve its sizes. The bubbles size for
black and white areas analysis can be the device to distinguish between the sett
probe and the asphalt probe [4].
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Fig. 2. Comparison of simple B&W with median algorithm to bubbles preprocess-
ing. Counting from left: 1 - B&W with median sett, 2 - B&W with median asphalt,
3 - bubbles sett, 4 - bubbles asphalt

(Fig. 2) shows the example for the sett and the asphalt probe preprocessing.
It can be easily noticed that sizes of bubbles are more systematic for the sett
pattern than for the asphalt pattern. The information about bubbles sizes and
numbers allows to remove the noise recorded in the plane images: the angle of
sett, the shape of sett, etc.

5.1 Implementation

The algorithm goes true all pixels in the image. If the white pixels area of radius
equal to four is available it draws circle there. Next it tries to enlarge and move
the circle around the white area to possibly best fit in the solid colour space.
It stops enlarging when the circle is going to overlay the black zone or the
already drown circle. The process is repeated until all white regions are touched.
Meanwhile in analogical way the black areas are processed where the second set
of bubbles is created (Fig. 3).

In fact the process of enlarging is not stopped immediately if the circle overlaps
the single pixel. A little bit of overlapping is allowed and thanks to that the
circles can fit better ragged edges. As the consequence - the circles are filled
with colour. Later when new circle is looking for a place it calculates how many
pixels overlaps already.

Fig. 3. Growing bubble is moving to fit the space and filled with a gry scale at the end
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1. Set R to 4.
2. Iterate through all of the pixels.
3. If actual pixel is white then take red (lighter) colour, If it is black then take

the blue (darker) colour, otherwise go to Point 2.
4. Set error variable to zero.
5. In place pointed by the actual pixel draw the circle of radius R pixels with

a chosen colour.
6. For each pixel out of the picture or overlapping different colour increment

error variable and save average error place.
7. If error variable not larger then increment R and go back to Point 4.
8. If error is to big then move circle in an opposite side to the average error

place and draw again.
9. If error variable is less than before then increment R and go to Point 4.

10. If error variable is bigger than draw the previous circle and fill it with chosen
colour.

11. If it was not the last pixel in the picture go to Point 2.
12. Calculate pattern - count bubbles grouped by sizes and colours.

5.2 Retrieving Pattern

When all bubbles are drawn it is a time for the actual data retrieving. All circles
are grouped by intervals of sizes and colours. The members of each group are
counted and the cardinalities of groups are the classifier input.

There is one more factor to extract from the picture. The photos of the asphalt
probe can provide the direction of a light as one corner is usually lighter than
the other. This effect is as strong as strong the light is and is not noticeable in
cloudy weather. In a process of thresholding almost all information in the light
zone is removed as a result of low dynamic range. It is because the asphalt is
the kind of dark texture that is close to solid colour. At the same time dynamic
range for the sett probe is high as stone is light and gaps are usually dark.
The thresholding do not lose any important information in consequence of scene
lightening.

In order to preserve information about the asphalt light direction the picture
is splitted by four squares [4]. The counting bubbles algorithm is done for each
of the square separately (Fig. 4).

In (Fig. 5) there is print out for the obtained data calculated by the bubbles
preprocessing. It is found for top left square and white areas: 37 circles of size
4-5, 31 circles of size 6-7 ... 5 circles of size greater than 26.

6 Results

6.1 Snow Recognition

The snow recognition algorithm works with very promising accuracy of 100%
correctly recognized patterns of the collected data. There is only one condition
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Fig. 4. Splitting picture in order to preserve data about the lightens direction

Fig. 5. Example of classifier data input

for the proper recognition of the snow. The white balance ought to be correct.
The cameras set it in automatic way but it gives appropriate results rarely. The
way to solve it is to put some neutral colour object in a view of a camera. It
would be possible then to correct the white balance based on registered colour
of the neutral object.
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Fig. 6. B&W + median algorithm - looking for the proper number of hidden neurons,
1600 pixel picture as input

Fig. 7. B&W + median algorithm - looking for the proper number of hidden neurons,
400 pixel picture as input
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Fig. 8. Training for Growing Bubbles Algorithm
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Fig. 9. The best learning results for different numbers of hidden neurons. The chart
describes the percentage of the correct recognized patterns from the validation set. The
Dash and the dot lines shows best results for the standard - simple preprocessing types.
The dot line was for 400 input pixels (line closest to 50%) and the dash line for 1600
input pixels. The solid line - over 90% - shows learning process for ”Growing Bubbles
Algorithm”

6.2 Asphalt and Set Recognition

The recognition of the sett and the asphalt is quite difficult. The patterns for
the asphalt and the sett differ significantly although the neural network training
based on the traditional preprocessing methods gives no sensible results. The
three-layer MLP is used as a device for recognition process. The output layer
includes two neurons, the number of neurons in the input layer is fixed to the
actual size of the input signal. The number of neurons in the hidden layer is
tuned by the experimental way. The backpropagation algorithm with momentum
parameter is used for the training procedure. The momentum parameter and the
speed of the training is fixed by the set of experiments: momentum equals to
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0.8, step - 0.001. The results are grouped in the tables. The following names are
in use for the columns description: input - number of input neurons, hidden -
number of hidden neurons, step - speed of the space exploring the of solutions,
mom - momentum parameter, epochs - number of training iterations, train -
training set accuracy, gener. - generalization set accuracy, valid. - validation set
accuracy.

Figure 6 shows the training results for input signal as 1600 pixels pictures
for different sizes of the hidden layer. Figure 7 illustrates the same experiment
but for 400 pixels pictures. In the Figure 8 we can see the table of results for
”Growing Bubbles Algorithm” used for input signal preprocessing.

Figure 9 compares simple preprocessing with discovered ”bubbles” solution. It
can be easily noticed that in most cases of traditional preprocessing the accuracy
is more guess then actual recognition. ”Growing Bubbles Algorithm” with best
result of 96,15% of recognized photos has clear advantage over other solutions
in recognition between the asphalt and the sett.

7 Conclusion

Although a bit more types of the road surfaces could be recognized it is possible
to make surface recognition with good results based on the photo taken ”on-line”
during the car movement. The recognition between the good quality asphalt and
the bad quality asphalt could be also done with use of bubbles algorithm. When
thinking about a final product ready for customers, there will be need for a way
of calibrating the system. While the road recognition will be the same for each
vehicle and speed reading can be customized for different cars, the retardation
quadratic functions will have to be discovered automatically by each user. There
are too many variables to customize this product for each car, tires and brakes [2].
It will be enough when the user brakes on each road and the system collects the
data by removing the skidding effect and discovering the functions. Probably, by
calibrating system on asphalt, it will be possible to estimate functions for other
surfaces. However, to perform that, the speed will have to be read from all ABS
sensors as it will be easy to remove errors caused by sliding [3].

The system of braking distance prediction is satisfactory and could be de-
veloped up to customer ready product. However the most interesting part of it
is the ”Growing Bubbles Algorithm”. It is suitable for surface recognition and
potentially for many other areas [8]. The algorithm was implemented as part of
a real system to support the on-line driver decision. The system was tested in
the real car in real traffic with very promising results.
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Abstract. A prototype landmine detecting vehicle is presented. The
vehicle is equipped with a Ground Penetrating Radar working in the fre-
quency domain. The device collects 3D images defined over coordinates
system: along track × across track × time, where the time (which can be
associated with the depth) is obtained from frequency measurements via
FFT. Learning of the detector is carried out by a boosting algorithm and
is based on our proposition of 3D Haar-like features. Algorithmic details
and experimental results are described, in particular: obtained accuracy,
sensitivity, false-alarms rate and ROC curve.

1 Introduction

In the recent decade the Ground Penetrating Radar and its applications seem
to be a popular research subject. Some of application areas are: groundwater
contamination, sedimentology, archeology, military technology [7]. As regards
the landmine detection problem, Yarovoy [13] reports that at least 67 countries
are contaminated by landmines with estimates of the number of mines laid from
50 to 150 million1. The electromagnetic induction (EMI) metal detector, one
of the most common demining tools, suffers from problems such as insufficient
detection depth and a high false-alarm rate (FAR) due to subsurface roots, rocks,
and water pockets for antipersonnel (AP) mines with low metal content2.

� Agreement no. 0091/R/TOO/2010/12 for R&D project no. 0 R00 0091 12, dated
on 30.11.2010, signed with the Ministry of Science and Higher Education in
Poland (consortium of Military Institute or Armament Technology in Zielonka and
Autocomp Management Sp. z o.o.).

1 According to Ottawa Treaty (http://www.un.org/Depts/mine/UNDocs/ban trty.
htm), which entered into force in 1999, all stockpiles of mines should be destroyed
within 4 years and all minefields lifted in 10 years; which did not happen [13].

2 Example of metal-detector performance in Cambodia between 1992 and 1998: only
0.3% of the 200 million items excavated by deminers were AP mines or UXO [6].
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As regards GPR applications for landmine detection, most studies are focused
on different GPR imaging techniques and feature extraction techniques. Some
of them work directly on obtained radar images — radagrams, where (in time
domains) the target pattern to detect is a hyperbola shape, see the Fig. 2. Ob-
viously, any object non-transparent to GPR produces a hyperbola shape in the
image. Therefore, the goal is to distinguish hyperbolas characteristic for mines
from other hyperbolas. Some of feature extraction techniques try to recover phys-
ical quantities related to mines from images, e.g.: depth of burial, size, radius or
height (as the distance between mine top and bottom estimated from two hyper-
bolas). Other approaches transform the images using e.g. Hyperbola Flattening
Transform [5] or try to derive some graphically-oriented features as descriptors.
To enumerate some examples the following names can be given: blob3 detection
[5], seeded growing segmentation [1], hyperbola detection via Hough Transform
[10]4, searching for maxima along hyperbolas and polynomial curve-fitting [14],
estimation of diagonal and antidiagonal edges strengths [14].

2 Motivation

In many published research results, a common observation to be made is that
although three-dimensional GPR images are at disposal e.g. in a form i(x, y, t)
being the image intensity over a point (x, y) for the time moment t, such an
information is not used directly. Instead, different simplifications are made in
order to use only two-dimensional information. For example, only few slices
(B scans) are picked from the 3D image with the highest mean intensity, or
hyperbola curve-fitting is carried out separately in (x, t) and (y, t) projections
[5,14,4].
The most likely reason behind such simplifications is to reduce the computa-

tional cost. Think of a scanning procedure which traverses a 3D image (e.g. of
resolution 100 × 100 × 512 over each 1m2) with a certain 3D subwindow, and
for each its position the features extraction and the detection must be done.
Note that analogical procedures in computer vision problems (e.g. face/human
detection), where a 2D image is analyzed and 2D features are extracted, are
cheaper roughly speaking by a factor related to the resolution along additional
time axis.
Our motivation is to make a direct use of three-dimensional information, not

to simplify the analysis to a two-dimensional, and simultaneously to maintain
a fast performance. The main idea behind the paper was to propose 3D Haar-
like features, as an extension of known 2D ones, and to check their applicability
to landmine detection problem. We remind that fast performance of Haar-like
features is owed to their coupling with a trick called the integral image, due to
Viola and Jones [11,12] for face detection applications, which allows to calculate
each feature in O(1) time (constant) regardless of its scale.

3 Binary Large Objects — object in the image with highest size × intensity product.
4 Application of GPR to underground pipes and cables detection.
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(a) (b)

Fig. 1. (a) Remotely controlled vehicle with the GPR. (b) Examples of scanned scenes.

1

129

257

385

1
26

51
76

1

31

61

91

376
387

398
409

420

1

25

49

73

1

25

49

73

scanning window at (x, y, t) = (1, 1, 376)

inside scanning window

t

t

x

x

y

y

tt

x

x

yy

Fig. 2. Exemplary detection of a mine. First row shows: a scanning 3D window zoomed
out and in; second row shows: slices through the middle of the scanning window.
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Wemust clearly remark that at the present initial stage of our research project,
the GPR measurements were taken in indoor conditions and objects under
recognition were not buried but exposed in the air. In experiments we used two
anti-tank mine models (plastic and metal) and various negative objects: metal
boxes, plates, rods, wheels, see the Fig. 1b. Therefore, the purpose of this paper is
mainly to present themethodology/approachwe propose and to report experimen-
tal results for the simplified experimental setting. Our plan for future research is to
build a container filled with the ground, in which objects would be buried, and over
which the vehicle would travel. Obviously, we are aware that ‘air conditions’ can
be significantly easier for the detection than subsurface conditions due to ground
permittivity, clutter, air-ground interface, etc.

3 Hardware Set-Up

In the Fig. 1a presented is a photo of the remotely controlled vehicle dedicated
to scan subsurface of the ground (in the future), being used as the prototype
platform in this project. The big black case contains all electronics and control
for communication and motion. All drives (wheels and antenna slide) are based
on stepping motors, heavy, but easy to control without encoders. At this stage
of the project there is also a VNA inside (Agilent E5071C-4K5). All movements
can be controlled via Wi-Fi LAN, but the VNA requires cabling for powering
at present state. Stepped frequency continuous wave (SFCW) modulation has
been implemented, giving a high dynamic range and working in the ultra-wide
frequency range (up to 18GHz) to obtain high resolution. Flexibility of this kind
of modulation allows to compromise the penetration depth with possible image
resolution, suitably to the specific task. For the results presented in this paper,
steps in the resolution (of 3D images) were as follows: for depth — 10mm (scan
A), for scans B and C (along, across track) — 5mm. Two Vivaldi type antennas
create a bi-static configuration of the radar.

4 3D Haar-Like Features

We propose 17 templates of three-dimensional Haar-like features, depicted in the
Fig. 3. They are generated as simple extensions of their 5 two-dimensional coun-
terparts (most common ones). By ‘simple extensions’ we mean literal extensions
of two dimensional patterns along the new third dimension, with few exceptions
of templates: 7 and 14, 15, 16, 17 where extensions have a slightly different sense.
We remind that the value of a Haar-like feature is the difference between the

mean intensity of pixels inside the black rectangles (cubes) and the mean in-
tensity of pixels inside the white rectangles (cubes). Let ii denote the integral
image defined as: ii(x, y, t) =

∑
1�j�x

∑
1�k�y

∑
1�l�t i(j, k, l). Then, for a cube

spanned from (x1, y1, t1) to (x2, y2, t2), the sum of intensities in the cube can
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Fig. 3. Illustration of 3D Haar-like template features. The top row shows 5 common
2D patterns, further rows show groups of proposed 3D extensions.

be calculated using only 8 key points of the integral image (regardless of cube’s
size), for example in the following manner:

∑

x1�j�x2

∑

y1�k�y2

∑

t1�l�t2

i(j, k, l) =

ii(x2, y2, t2)− ii(x1 − 1, y2, t2)− ii(x2, y1 − 1, t2) + ii(x1 − 1, y1 − 1, t2)
−
(
ii(x2, y2, t1−1)−ii(x1−1, y2, t1−1)−ii(x2, y1−1, t1−1)+ii(x1−1, y1−1, t1−1)

)
.

3D Integral Image. A 3D integral image can be effectively calculated by the
following algorithm (induction):

1. Create arrays: iinx×ny×nt , jjny×nt , kknt .
2. For x = 1, . . . , nx
2.1. For y = 1, . . . , ny
2.1.1. For t = 1, . . . , nt
2.1.1.1. if t > 1 s := kk(t− 1) + i(x, y, t), otherwise s := i(x, y, t).
2.1.1.2. kk(t) := s.
2.1.1.3. if y > 1 s := s+ jj(y − 1, t).
2.1.1.4. jj(y, t) := s.
2.1.1.5. if x > 1 ii(x, y, t) := ii(x− 1, y, t) + s, otherwise ii(x, y, t) := s.

3. Return ii.

Number of Features (Parametrization). As regards the total number
of features we used in experiments, it was implied by two parameters: the
number of scale levels s = 1, 2, . . ., and the number of position levels p = 1, 2, . . ..
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Each template’s size can be scaled along each of three dimensions, thus we
have s3 possible scalings of a template. In experiments we used the scal-
ing factor 3

√
1/2 separately for each dimension, thus features sizes were cal-

culated in a triple loop as: ( 3
√
1/2)j · wx, ( 3

√
1/2)k · wy, ( 3

√
1/2)l · wt, where

(j, k, l) ∈ {(1, 1, 1), . . . , (s, s, s)} and w· denote initial template widths along
particular dimensions. For features positioning we used a regular centered grid.
In general, for given p the abscissa for each dimension were: {−(p − 1),−(p −
2) . . . ,−1, 0, 1, . . . , p−2, p−1} × a shift. The shift (for each dimension indepen-
dently) was implied by the free margin remaining between the window width and
template’s width after scaling. Thus, the total number of positions was (2p−1)3.
Hence finally, the total number of our 3D Haar-like features was:

17 · s3 · (2p− 1)3. E.g. s = 2 and p = 2 (our final settings) give 3 672 features.

5 Learning Algorithm

After experimenting with three boosting algorithms: AdaBoost [2,11], RealBoost
[9,3] and Response Binning Boost [8], we finally decided for the last one yielding
the best results. Firstly, theResponse Binning Boost algorithm approximates
postive/negative class distributions by piece-wise constant functions instead of
normals (as it is the case in former two algorithms), which is more adequate for
multimodal distributions. Secondly, it does not look for a single threshold value
to separate classes (as AdaBoost does) but applies the maximum a posteriori
rule (similarly to RealBoost). The response of each weak classifier for an input
vector x is real (not binary): h(x) = 1/2 log (P (+|x)/P (−|x)) 5.
Notation. Let {(xi, yi)}, i = 1, . . . ,m, denote the set of training examples, with
input feature vectors xi = (xi1, . . . , xin) and class labels yi ∈ {−1, 1}. Let wi
denote the weight of i-th example at current step of the boosting procedure. Let
B denote the number of bins. For simplification we use bins of equal widths.
Given an interval [a1, a2] and a number x, the bin index β(x) ∈ {1, . . . , B} that
x belongs to is: β(x) = �B(x − a1)/(a2 − a1)� for a1 < x � a2; with border
cases: β(x) = 1 for x � a1 and β(x) = B for a2 < x. When pixel intensities are
normalized to [0, 1] then Haar-like features are bounded to [−1, 1]. The interval
[−1, 1] can serve as [a1, a2]. However, in our GPR data, most features were rarely
distributed outside the [−0.25, 0.25] interval, and it was the one finally chosen.
Let P̂ (+, j in b) =

∑
{i : yi=+1,β(xij)=b} wi denote the estimated probability

(using current weights) that an example is positive and its j-th feature belongs
to bin b; analogically for P̂ (−, j in b). For the input vector xi the result of a
weak classifier using the j-th feature is [3,8]:

h(xi; j) = 1/2 log
(
P̂ (+, j in β(xij))

/
P̂ (−, j in β(xij))

)
. (1)

5 This way also, the weighting of weak classifiers is internally incorporated into this for-
mula. Note that for AdaBoost h(x) = ±1 and the ensemble-classifier is∑

k
αkhk(x),

where αk = 1/2 log(1− εk)/(εk) with εk being the training error of k-th classifier.
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Boosting Procedure

1. Start with uniform weights distribution for data examples

wi := 1/m, i = 1, . . . ,m.

2. For k = 1, . . . ,K repeat:
2.1. Select the best feature jk (and thus the best weak classifier hk) which
minimizes

Zk :=
m∑

i=1

wi exp (−yihk(xi; jk)) .

2.2. Update weights distribution

wi := wi exp (−yihk(xi; jk)) /Zk.
3. The final classifier is

H(x) = sgn

(
K∑

k=1

hk(x; jk)

)

.

6 Experiments and Results

For data acquisition, learning and detection experiments, we have developed a
combined software environment in C# and Wolfram Mathematica 7.0. As pos-
itive objects (to be detected) we used two anti-tank mine models: a metal one
and a plastic one. As negative objects we used various objects non-transparent
to GPR: metal boxes, plates, rods, wheels. We set up scenes with different con-
figurations of these objects, see the Fig. 1b, and took GPR measurements from
them at resolution 240× 200× 512.
After scanning GPR 3D images with a sliding window6, we obtained a data set

consisting in total of: 234 positive window examples and 17 583 negative window
examples. It is worth to remark that while scanning we memorized all positive
windows, but not all negative windows, because many of them were repeating
‘air examples’. Thus, not all such examples are necessary for the classifier to learn
from7. For every window 3 672 Haar-like features were calculated. The data was
split into training and testing subsets approximately in a proportion 34 :

1
4 .

After being trained via boosting (we imposed at max. 100 weak classifiers,
and the number of bins B = 16), our prototype mine detector (for indoor ‘air’
conditions) was tested on the hold-out data set (39 postives, 4 357 negatives).
The final results were as follows — accuracy: 99.91%, sensitivity: 97.43%,
FAR: 0.06885%. This means that only 1 positive window out of all 39, and 3
negative windows out of all 4357 were misclassified.
6 The window size was experimentally set to 45×45×95 in order to fit mine hyperbolas.
7 Precisely: if the mean intensity in a negative window was above the typical mean
intensity for air (indicating something interesting in it) we kept the window with
probability 10%; otherwise, we kept it with probability 1%.
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Fig. 4. (a) Sensitivity as the number of weak classifiers grows. (b) Final ROC curve.

In the Fig. 4a we illustrate the influence of the number of weak classifiers on
obtained sensitivity measure. The Fig. 4b shows the ROC curve obtained for the
ensemble classifier. The curve indicates that the sensitivity can be lifted up to
100% at the cost of FAR increased to 0.17081%.

7 Conclusions and Future Work

Experiments carried out on the prototype detector demonstrate that the
proposed approach based on 3D Haar-like features is a promising one. The ac-
curacy level was satisfactorily high, and simultaneously the main motivation —
fast performance — has been achieved. Execution times of the overall procedure
(for 240× 200× 512 images) consisting of: integral image calculation, scanning
with a subwindow, multiple extractions of features and detections were of order
800ms ÷ 1200ms (C#, Intel i7 1.6 GHz CPU, 8 GB RAM). Thus, the mean
analysis time per each subwindow was 0.11ms÷0.17ms. Obviously, the learning
procedure must be done offline and in our case was taking ≈ 0.5 h.
The major future research direction for us is the transition to realistic sub-

surface conditions. Clearly, all types of inhomogeneities and clutter that can be
met underground may cause relevant problems. As additional future work we
plan certain construction improvements on the vehicle. Finally, definitely more
numeric experiments have to be conducted, involving e.g.: more measurements
on various objects ‘pretending’ to be landmines, tests on greater number of
Haar-like features and different learning settings.
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Abstract. Blind Source Separation (BSS) techniques aim at recovering
unobserved source signals from observed mixtures (typically, the outputs
of an array of sensors). Practically all classical BSS techniques do not
work properly under reverberant conditions and therefore, it still remains
an open problem. In this sense, we propose in this document the use of
synchronization of speech mixtures in order to improve the results of clas-
sical BSS techniques. Specifically, we have applied the synchronization
of mixtures combined with one of the most well-known and robust BSS
algorithms that works under non-reverberant conditions, the Degenerate
Unmixing Estimation Technique (DUET). In the aim of synchronizing
speech mixtures prior to the speech source separation, the suitability of
working with seven Time Delay Estimation (TDE) techniques has been
analyzed. Results show the feasibility of using synchronization since the
results of DUET are improved and additionally, it has been observed
what is the most useful TDE algorithm in this framework.

Keywords: Speech Source Separation, Time-Delay Estimation,
Convolutive Mixing Model, Reverberant Conditions.

1 Introduction

Blind Source Separation (BSS) [1], which was firstly proposed in [2], consists
in recovering unobserved source signals from observed mixtures received at a
set of sensors. This problem is named as “blind” since: 1) the mixing process
is unknown and, 2) there is not much information about the characteristics of
the source signals. In order to compensate this lack of information, different
techniques and assumptions about the nature of the sources are made. There
is a powerful technique underlying BSS algorithms, which is based on spatial
diversity. Put it very simple, spatial diversity is a property of sensor arrays that
relies on the fact of having more than one sensor and has been exploited in many
applications such as, wireless communications [3]. With respect to the different
assumptions, the mutual statistical independence of the source signals is broadly
supposed [4]; the Independent Component Analysis (ICA) method [5] being a

L. Rutkowski et al. (Eds.): ICAISC 2013, Part I, LNAI 7894, pp. 568–579, 2013.
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good example of a BSS algorithm working under this assumption. Apart from
this realistic hypothesis, sparsity, which is another property of source signals, is
commonly used. Sparsity has different definitions [6] and it is commonly assumed
that a signal is sparse when all its energy is concentrated in just one coefficient
and all others are zero (or almost zero). In the particular case at hand, since the
signals correspond to speech sources1, an appropriate transformation must be
carried out aiming at achieving an adequate sparse representation of them. In this
regard, it is well-known that a speech signal represented in the Time-Frequency
(T-F) domain can be considered as sparse, since the energy due to speech is
contained in a reduced number of time-frequency points and, in general, these
points do not overlap with points due to other sources. With this in mind, the
Short-Time-Fourier-Transform (STFT) may be applied to the speech sources.

In this sense, the popular Degenerate Unmixing Estimation Technique
(DUET) [7] is a good example of a BSS algorithm that makes use of the STFT
and aims at assigning each T-F point to one source. In the effort of associating
each T-F point with one source or another, it calculates a binary mask that
helps the algorithm decide whether a point belongs to a source or the other.
These masks are obtained by means of two different ratios computed from the
STFT. Being more explicit, these measures include the Inter-sensor Level Differ-
ence (ILD) and Inter-sensor Time Difference (ITD). From a mathematical point
of view, let us suppose two mixtures (x1 and x2) and their STFTs (X1(ω, k)
and X2(ω, k)), the mentioned ratios are calculated as shown in Equations (1)
and (2)

ILD = a21 =
|X2(ω, k)|
|X1(ω, k)| (1)

ITD = δ21 = − 1

ω
arg

(
X2(ω, k)

X1(ω, k)

)
(2)

where ω is the index over the frequency bins and k labels the one over the time
frames. In this point, it is highlight to mention a certain problem arising in this
context when the mixtures are delayed more than the length of a time frame,
what basically involves the T-F points do not coincide and then, the information
extracted from the abovementioned ratios is wrong. Aiming at overcoming this
problem, we propose in this paper, prior to the speech source separation prob-
lem carried out by means of DUET algorithm, to firstly synchronize the speech
mixtures captured at the set of sensors (microphones in this case). In this sense,
in [8], it is studied how clock synchronization affects the performance of sound
source separation with a distributed microphone array.

The first step to synchronize the mixtures is to identify the delays. In the
particular case at hand, speech mixtures can experiment two different delays.
The first one is the propagation delay which involves the time required for the
signal to propagate from the source to the microphones and, the second one
is due to the synchronization of the microphones since, in a real study-case, it

1 The task of recovering speech sources from audio mixtures is the so-called Blind
Audio Source Separation (BASS) in the literature.
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seems clear to note that the microphones involved in a set of sensors will not start
the recording of the signal at the same time. Note that this latter delay should
not exceed the length of a time frame. An example of a scheme to overcome the
synchronization problem of distributed audio capture devices is shown in [9].

In this regard, the synchronization of single speech signals by means of Time
Delay Estimation (TDE) algorithms has been widely studied in the literature
[10,11]. Put it very simple, TDE is the process of determining the relative time
shift between a reference signal and a delayed signal and lies at the core of
many modern signal-processing algorithms. Different TDE algorithms have been
proposed in both time and frequency domain. In this paper, we will focus on a
set of very well-known TDE algorithms proposed for time domain.

Within these algorithms, the cross-correlation-based TDE algorithms are the
most popular ones. In this kind of algorithms, the goal is to search the maxi-
mum value of the cross-correlation, since that value indicates when a signal and
the shifted version of another signal have the maximum similarity. Aiming at en-
hancing the performance of these methods, a large number of improvements have
been proposed [12] and they basically consist in introducing a filter or weighting
function in the expression of the cross-correlation. These algorithms are known
as Generalized Cross-Correlation (GCC) methods [13]. The objective of these
algorithms is to make easier the search of the aforementioned maximum value.
Examples of GCC methods include the Phase Transform Algorithm (PHAT) or
the Roth Processor (ROTH), which both have been studied in this paper. Apart
from these two methods, it has been also explored here the use of other algo-
rithms such as, for instance, the Average Square Difference Function (ASDF)
method or an adaptive algorithm like the Maximum Likelihood (ML) method.

In the speech signals framework, it is important to point out that the vast
majority of the aforementioned TDE algorithms aim at estimating the delay
under the assumption of single source signals, or in other words, only one speech
source is contained in the signal or, at most, the speech signal with a signal due to
noise. In the problem at hand, multiple signals are presented in the mixtures, and
consequently, speech mixtures are more complex. Note that TDE algorithms for
speech mixtures has seen little treatment in the literature so far. For illustrative
purposes, in [14] can be found a TDE algorithm working with speech mixtures.
It must also be mentioned a interesting work [15], where a very efficient scheme
of synchronization combined with a BSS [16] method is proposed.

To sum up, we propose in this paper the synchronization of speech mixtures
aiming at improving the results obtained with DUET algorithm in scenarios of
convolutive mixtures, paying special attention to situations under reverberant
effects. To be more precise, the speech mixtures are firstly synchronized by means
of TDE algorithms and after that, the DUET algorithm is carried out. In order
to evaluate the feasibility of using the study-case TDE algorithms, we have made
use of the so-called signal-to-noise-ratio (SNR) between source signals and the
estimated ones as will be shown in the numerical results.

The remainder of this paper is organized as follows. In Section 2, the speech
separation problem is described. Section 3 contains the description of the TDE
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methods that have been implemented in this paper. In Section 4, the experimen-
tal setup and the database used for the experiments are explained, along with
the results obtained. Finally, Section 5 summarizes the conclusions of this work.

2 Speech Separation Problem

2.1 The Mixing Model

Fig. 1 illustrates the particular speech separation problem explored in this paper.
As shown, N = 2 speech sources and M = 2 microphones are presented, what
involves an even-determined case. Although it will be better understood later
on, we can say in advance that this figure depicts the typical scenario in which
two people are speaking in a room.

Central processor

Synchronization

 

X1

X2

BSS

S1

Sensor 1

Sensor 2

S2

Signal 
Processing

Signal 
Processing

Fig. 1. An illustrative representation of the particular speech separation problem ex-
plored in this paper, that is, convolutive mixing model with noise and reverberation
effects. Note that prior to the speech separation, mixtures are synchronized in a central
processor by means of TDE methods.

In order to carry out the speech source separation, it is necessary to previously
understand the way the mixing process happens. In our particular study-case,
we suppose a convolutive mixing model in a noisy and reverberant environment.
Convolutive mixing process refers here to the fact that the differences of delays
that a speech source suffers among the different microphones are taken into ac-
count. Regarding the noise, it has been assumed an additive Gaussian noise with
mean equals to zero and variance equals to σ2. In addition, echoes of the target’s
reflected waves also have been considered due to the reverberant conditions.

Put it in a more mathematical way, it is assumed that at the discrete-time
t, a set of N sources signals, that is, s(t) = [s1(t), . . . , sN(t)] is received at M
sensors that are part of an array sensor, x(t) = [x1(t), . . . , xM (t)] being thus the
received mixtures at the time t. This can be clearly observed in Equation (3)
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xm(t) =

N∑
n=1

amn(t) ∗ sn(t), ∀ m = 1, . . . ,M, (3)

where any mixed signal is a linear mixture of filtered versions of each source
signal and amn(t) label the mixing filter coefficients which basically depend on
the position of sources and microphones. And since noise and reverberation
effects are considered, Equation (3) can be rewritten as shown in Equation (4)

xm(t) =

N∑
n=1

amn(t) ∗ sn(t) + im(t), ∀ m = 1, . . . ,M. (4)

im(t) being the sum of interfering signals at the discrete time t and at the mi-
crophone m. These interference signals may occur because of 1) the background
noise and/or 2) echoes of the sources due to reverberation phenomena, which
result in attenuated and delayed copies of the sources sn(t), ∀ n = 1, . . . , N .

As stated in the Introduction, the studied BSS algorithms work in the T-
F domain in order to obtain a sparse representation of the source signals and
Equation (4) is thus re-written as depicted in Equation (5)

Xm(ω, k) =

N∑
n=1

Amn(ω) · Sn(ω, k) + Im(ω, k), (5)

where Xm(ω, k) and Sn(ω, k) represent the STFT for the ω-th frequency bin and
m-th time frame of xm(t) and sn(t), respectively.

2.2 Source Demixing

As succinctly mentioned in the Introduction, DUET makes use of a time-
frequency mask (Mωk) to separate speech sources in the T-F domain and this
mask is calculated from Inter-sensor Level Differences and Inter-sensor Time
Differences as explained in [7]. From a mathematical point of view, this mask is
used as follows:

Ŝn(ω, k) = Mωk ·Xm(ω, k), (6)

where Ŝn(ω, k) is the estimation of the n-th source and Xm(ω, k) labels the
mixture at ω-th frequency bin and k-th frame for the m-th microphone.

Regrettably, in the case of speech mixtures, this mask may not work properly
since the sparse property is not always correct because of the fact that there are
contributions of different sources, echoes of these sources and so on.

3 Time Delay Estimation

The study-case TDE algorithms are explained in a detailed way in the para-
graphs that follow. As previously mentioned, they have been chosen because
they are well-known and robust methods for estimating delays between different
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kinds of signals. In Section 4, we will explore how well these algorithms work
in estimating delays for the case of speech mixtures. In order to explain the
methods, it is worth mentioning that we denote the two speech mixtures of our
study-case by (x1 and x2) and the delay between them by D12.

3.1 Cross-Correlation (CC) Method

The cross-correlation between speech mixtures is calculated. If the length of the
mixtures is T , the expression of the cross-correlation is shown in Equation (7)

Rx1x2(τ) = E [x1(t)x2(t− τ)] , ∀ 1 ≤ t ≤ T. (7)

It is well-known that the delay between both mixtures can be obtained from the
position of the maximum peak of the cross-correlation [12].

3.2 Phase Transform (PHAT) Method

This algorithm has been chosen since it has been widely used for estimating
delays between acoustic signals arriving at spatially distributed microphones.
PHAT method can be classified into the group of Generalized Cross-Correlation
(GCC) methods, or in other words, a weighting function (ψp) is introduced in
the expression of the cross-correlation, as it can be observed in Equation (8)

Rx1x2(τ) =

∫ ∞

−∞
ψp(f)Gx1x2(f)ej2πfτdf (8)

where Gx1x2(f) labels the cross-spectrum of the received signals and the weight-
ing function responds to Expression (9)

ψp(f) =
1

|Gx1x2(f)| . (9)

This new weighting function can be very useful since it aims to sharpen the
peaks of the cross-correlation by means of whitening the input mixtures, making
easier to find the location of the maximum peak. Having a look at Expression
(9), it seems clear to note that the information related to phase is preserved.

3.3 Modified Phase Transform (PHAT-β) Method

This modified version [17] of PHAT algorithm has been also studied. It has
been shown that it provides very good results in estimating delays when signals
are corrupted by both independent noise and reverberation effects. Within this
algorithm, the weighting function is very similar to that of PHAT algorithm but
in this case, a new parameter (β) is taken into account. The expression of this
new weighting function can be observed in Equation (10)

ψpβ(f) =
1∣∣∣Gβ

x1x2(f)
∣∣∣ . (10)
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This parameter allows us to control the degree of whitening and limit the
amount of degradation from the independent noise. Please note that β is a real
number ranging from 0 to 1. If β is equal to 0, the algorithm is equivalent to CC
method and if β is set to be 1, the algorithm is equivalent to PHAT method. In
the case of intermediate values, a process of partial whitening occurs.

3.4 Maximum Likelihood (ML) Method

ML method [18] is also included in GCC methods and it has been selected
since it works in systems where multipath effects are considered. It tends to
obtain maximum likelihood solutions for TDE problems. Within this method,
the weighting function responds to the expression shown in Equation (11)

ψML(f) =
1

|Gx1x2(f)|
|γx1x2(f)|2

1− |γx1x2(f)|2
(11)

where |γx1x2(f)|2 is the magnitude squared coherency and it responds to Equa-
tion (12)

|γx1x2(f)|2 =
|Gx1x2(f)|2

Gx1x1(f) ·Gx2x2(f)
. (12)

The ML function aims at increasing the accuracy of the calculation of the delay.
It can be observed that the greater weight is assigned to frequency bands that
give near-unity coherence. In the same line of reasoning as that in the previous
methods, the maximum of the cross-correlation must be computed.

3.5 Roth Processor (ROTH)

ROTH processor [19] has been chosen since it has been proven to be very efficient
in scenarios where additive noise is presented [13], by means of suppressing the
frequency regions where noise is clearly presented. Within this algorithm, the
weighting function has been found to be as follows:

ψroth(f) =
1

Gx1x1(f)
. (13)

3.6 Smoothed Coherence Transform (SCOT)

SCOT method [20] has been used in many TDE applications where the presence
of noise is important. In this case, the expression of the weighting function is as
indicated in Equation (14)

ψscoth(f) =
1√

Gx1x1(f) ·Gx2x2(f)
. (14)

It can be considered as a pre-whitening filter followed by a process of cross-
correlation. Having a look at Equation (13), it seems clear to note that if
Gx1x1(f) = Gx2x2(f), SCOT method is equivalent to ROTH algorithm.
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3.7 Average Square Difference Function (ASDF) Method

ASDF [21] method does not belong to GCC methods, since instead of using
the cross-correlation function, it uses a difference function what involves lower
usage of computational load, since multiplications are not needed. This difference
function is the square error between the signals as shown in Equation (15)

RASDF (τ) =
1

T

T−1∑
t=0

|x1(t)− x2(t− τ)|2 . (15)

By searching the minimum of the previous function, the delay between the signals
is determined from its corresponding τ .

To sum up, it can be mentioned that these classical TDE algorithms have been
chosen because they have demonstrated to have several advantages in classical
TDE problems, not only in terms of computational cost, but also in robustness
against the presence of noise, reverberations or multipath effects, etc. Then, we
are interested in exploring their performances in our BSS problem.

4 Results

4.1 Experimental Setup

The sound database has been created from TIMIT database [22]. TIMIT
database includes a total of 630 speakers (70 % male and 30 % female) of Ameri-
can English. The signals are 16-bit with a sampling frequency of 16000 Hz. From
these speech signals, signals of different lengths have been obtained (0.25, 0.5,
1, 2, 4, 8 and 16 seconds). Frame size of the STFT (Lf ) has also been set to
different values (128, 256, 512, 1024 and 2048 samples), aiming at exploring the
performance of DUET using the study-case TDE algorithms.

To carry out the experiments, we have set up a simple scenario that simulates
the situation of two people talking simultaneously in a room of dimensions 6×6×
3 m. A 2-microphone array has been used and in order to simulate its response,
the model that we use is the so-called Mirror Image model [23], which performs
the microphone impulse response including room impulse response calculation.
It considers both directivity pattern of the microphone and attenuation due to
distance. For a number of N sources, the mentioned model considers that there
are (2·N+1)3 virtual sources to simulate the echoes of the speech sources. In this
model, we have modified the reflection coefficient (Cr), from 0 (non-reverberant
environment) to 0.2 in steps of 0.1 (reverberant environments).

To evaluate the performance of BSS algorithms, we have chosen a metric
that considers the quality of the separated signals, to be more precise, the SNR
between original and separated sources.

4.2 Numerical Results

In the aim of demonstrating the advantages of synchronizing the input speech
mixtures in DUET algorithm, different experiments are carried out considering a
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large number of parameter combinations (length of mixtures, STFT frame size,
reflection coefficient, . . . ). Due to the large number of parameter combinations,
all the results cannot be shown, nevertheless, the most important ones are pre-
sented. For example, it has been observed that the longer the length signal is,
the better the results obtained are and this is the reason why the results for
signals of 16 seconds length are shown in Table 1 and Table 2. Specifically, these
tables show the mean SNR of 60 experiments between the separated and original
sources in a non-reverberant and in a reverberant environment, respectively.

Deepening a little more in the results depicted in Table 1, the first row shows
the values obtained by using DUET algorithm without synchronizing the speech
mixtures, in the scenario proposed in Section 4.1. As illustrated, these values
basically range from 3.26 to 3.54 dB, which are low in terms of speech quality
and motivate us to explore the performance of synchronizing the speech mixtures.
In the rest of rows in Table 1, the outcomes achieved thanks to the combination
of the synchronization of the speech mixtures and DUET algorithm are shown,
for different STFT frame sizes (Lf). Note that the TDE algorithms used in the
synchronization process are explained in Section 3. It is also worth mentioning
that for PATH-β algorithm, β is varied from 0.1 to 0.9 in steps of 0.1, although
Table 1 only shows the cases in which the highest SNR is obtained, that is, for
β = 0.1, 0.2, 0.3, 0.4 and 0.9. Looking at the SNRs obtained, it seems clear to
note that an important increase of the SNR has been obtained when compared to
those values obtained without synchronization, leading to reach values of SNR
higher than 7 dB, what represents significant improvements. For the cases of
shorter STFT frame sizes, especially for Lf = 128 and 256, an improvement of
more than 70 % is obtained, reaching more than 100 % of improvement when
longer STFT frame sizes are used, like, for example, for Lf = 1024 and 2048.
Then, it is clear to note that the longer the STFT frame size is, the better the
SNR obtained is and roughly speaking, this increase of SNR for longer frame
sizes occurs with all the study-case TDE methods. For illustrative purposes,
PATH-0.2 obtains a SNR equals to 5.80 dB for Lf = 128, whereas it reaches
a SNR equals to 7.39 dB for Lf = 2048. It is interesting to note that PATH-β
obtains in general very good results for all the frame sizes for low values of β
(from 0.1 to 0.4), what it makes sense since PATH-β is especially designed for
cases in which reverberation effects and noise are presented. Note that ASDF
method decreases drastically its performance as the STFT frame size increases.

Table 2 illustrates very interesting information since a speech separation prob-
lem in a room under reverberation effects (Cr = 0.2, a typical reflection coeffi-
cient) is considered. Speech separation in reverberant conditions still remains an
open problem since, due to its complexity, the vast majority of BSS algorithms
do not achieve good results. Table 2 represents the same information as Table 1
but for a reverberant case. Looking at the first row of Table 2, DUET algorithm
without synchronizing speech mixtures obtains lower SNRs than for the same
situation without reverberation, these values ranging from 2.17 to 2.67 dB. It
is important to note that, despite reverberation effects, an improvement close
to 65 % has been obtained for the shorter STFT frame sizes and reaching an
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Table 1. Mean SNR obtained by DUET without (first row) and using (the rest of rows)
the different TDE algorithms, for the even-determined convolutive case of two mixtures
and two sources, with noise and without reverberation effects (Cr = 0). 60 speech
separation experiments have been carried out per each combination of parameters.

TDE Lf=128 Lf=256 Lf=512 Lf=1024 Lf=2048

- 3.31 3.33 3.26 3.30 3.54
CC 5.79 5.82 6.11 6.84 7.37

PHAT 5.61 5.73 5.88 6.47 6.93
PHAT-0.1 5.79 5.82 6.11 6.84 7.35
PHAT-0.2 5.80 5.78 6.02 6.97 7.39
PHAT-0.3 5.85 5.78 6.03 6.84 7.24
PHAT-0.4 5.80 5.76 6.01 6.80 7.18
PHAT-0.9 5.56 5.54 5.85 6.58 6.92

ML 5.47 5.69 5.75 6.47 6.93
ASDF 5.79 5.82 6.29 5.32 4.39
ROTH 5.44 5.52 5.62 6.23 6.69
SCOT 5.72 5.66 6.00 6.50 7.01

Table 2. Mean SNR obtained by DUET without (first row) and using (the rest of
rows) the different TDE algorithms, for the even-determined convolutive case of two
mixtures and two sources, with noise and reverberation effects (Cr = 0.2). 60 speech
separation experiments have been carried out per each combination of parameters.

TDE Lf=128 Lf=256 Lf=512 Lf=1024 Lf=2048

- 2.39 2.17 2.41 2.67 2.56
CC 3.81 3.85 3.90 3.96 4.66

PHAT 3.84 3.89 3.92 3.99 4.47
PHAT-0.1 3.81 3.83 3.86 3.94 4.68
PHAT-0.2 3.84 3.83 4.03 3.97 4.65
PHAT-0.3 3.84 3.83 4.03 3.97 4.65
PHAT-0.4 3.81 3.81 3.96 4.04 4.64
PHAT-0.9 3.84 3.89 3.92 3.99 4.47

ML 3.83 3.88 3.89 4.01 4.46
ASDF 3.81 3.85 4.09 3.55 3.43
ROTH 3.73 3.68 3.81 3.83 4.52
SCOT 3.87 3.87 3.74 3.99 4.42

improvement of approximately 80 % for STFT frames of Lf = 2048. Unexpect-
edly, for the particular case of Lf = 1024, the improvement is lower, being about
50 %. Note that when Cr = 0.2, there is not a most appropriate TDE algorithm,
since the results depend on the STFT frame size. As the reader can note, despite
that DUET algorithm does not work properly for reverberant problems as the
one proposed here, its results have been significantly increased (reaching more
than 4.5 dB for the best cases), what leads to think about the idea of applying
synchronization of speech mixtures with other BSS algorithms.
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5 Conclusions

This paper focuses on applying synchronization of speech mixtures prior to the
speech separation problem for BSS algorithms that use ILDs and ITDs, DUET
being a very representative example. We have studied a convolutive mixing case
with additive Gaussian noise and with or without reverberation effects, specifi-
cally, we have implemented a problem in a room using the Mirror Image Model
to simulate the reverberation and multipath effects. We pay special attention to
speech separation problems under reverberation effects due to its difficulty.

We have tested seven TDE methods in order to synchronize speech mixtures
and different results have been obtained depending on some parameters as the
reflection coefficient, STFT frame size, etc. Both in the non-reverberant case as
in the reverberant one, an important improvement of the SNR has been obtained.

In the case without reverberation, a considerable increase of the SNR has
been achieved, in some cases, doubling the value of SNR. According the STFT
frame size increases, the SNR increases, for example, the 7.39 dB obtained by
PATH-0.2 for a STFT frame size of 2048. We also realize that broadly, PATH-β
method for values of β equal to 0.1, 0.2 and 0.3, achieves the better results, while
ASDF method performs worse results with longer STFT frame sizes. The rest
of TDE methods work achieving similar results. With reverberation effects, we
have also improved the outcomes of the DUET algorithm, increasing the SNR
close to 70% when longer STFT frame sizes. Unlike the non-reverberant case,
all the algorithms achieve very similar results except ASDF method.

Therefore delays such as, the propagation delay of the sources or the delay
due to synchronization of the microphones, do not affect the results of our BSS
algorithm. To sum up, these results point out to a new filed of research in the
jointly use of TDE and better adapted BSS algorithms to reverberant cases.

Acknowledgments. This work has been funded by the Spanish Ministry of
Science (project TEC2012-38142-C04-02) and the Spanish Ministry of Defence
(DEFENSA2011-10032110035).
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Abstract. The presented paper describes a model-based approach to the image
reconstruction from projections problem, which takes into consideration the sta-
tistical properties of the measurements in tomographic system with parallel x-ray
beams. The reconstruction problem is formulated as an optimization problem.
Different forms of objectives of this optimization are tested. The optimization
process is carried out using a recurrent neural network. Experimental results show
that the exactly statistically tailored objective yields the best results, and appropri-
ately designed neural network is able to reconstruct an image with better quality
than a conventional algorithm with convolution and back-projection.

1 Introduction

The image reconstruction problem is a popular research topic in various fields. It is
especially relevant to medicine, in particular to the medical imaging techniques, e.g.
computed tomography (CT) (see e.g. [1]). The images obtained with this technique
are often blurred because the real measurements of X-ray intensity, which are used to
perform the reconstruction, are distorted by physical noise. The quality of the recon-
structed image in the presence of noise can be measured using the low-level resolution
parameter evaluated using a physical phantom. One of the possible solutions to over-
come the problem mentioned above is to increase the intensity of X-rays emitted by an
X-ray tube. Unfortunately, this approach undoubtedly has negative effects on the health
of the patient and conflicts with the current safety requirements for radiation protec-
tion. Therefore, this situation presents a challenge for the scientists concerned with the
image reconstruction problem. The main goal of these efforts is to formulate recon-
struction algorithms in which the statistical nature of the measured signals is taken into
consideration. It is likely to result in a significant improvement of the reconstructed
images or in a decrease of intensity of the X-ray radiation used.

Analytical reconstruction methods, e.g. filtered back-projection method (FBP), and
algebraic reconstruction techniques (ART) [2] are the most popular reconstruction
methods in computed tomography. Statistical reconstruction methods are being cur-
rently developed, because they are adapted to the specific statistics of a given technique
so they can yield a reduction in radiation dose during an examination. The most interest-
ing statistical algorithms are based on the statistical model of a given medical imaging
system, e.g. the maximum a posteriori probability (MAP) approach (see [3]) which is
a development of the maximum likelihood (ML) concept. This model is included in

L. Rutkowski et al. (Eds.): ICAISC 2013, Part I, LNAI 7894, pp. 580–587, 2013.
© Springer-Verlag Berlin Heidelberg 2013
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the design of the iterative coordinate descent (ICD) reconstruction method. Other ap-
proaches are also based on this methodology, such as conjugate gradient (CG) approach
[4] [5] and ordered-subsets (OS) algorithms [6] [7]. Contrary to IDC, in CG and OS all
the pixels are updated in parallel, but these methods need considerably more iterations
to achieve a solution. It worth noting that in all these algorithms the optimization pro-
cedures are performed, where the primary term of the cost function is formulated in
the algebraic way. An analytical approach (see e.g. [8], [9], [10], [11]) would eliminate
most of the problems related to the algebraic background of those algorithms, first of
all, the computational complexity of the method.

In this paper we present the use of an analytical model-based iterative reconstruction
method, which takes a few thousand steps to converge and improves image quality.

2 Neural Network Statistical Image Reconstruction Algorithm

The analytical statistical reconstruction algorithm was previously described in [12]. In
the paper presented here, we develop this idea, taking into consideration the time of
reconstruction process and the calculation complexity of the algorithm. The proposed
reconstruction method using the recurrent neural network is shown in Fig.1, where the
parallel-beam geometry of collected projections is used.

Fig. 1. An image reconstruction algorithm with parallel-beam geometry of the scanner
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2.1 The Back-Projection Operation

The first step of the considered reconstruction algorithm is a back-projection operation.
Let us define the function μ(x,y) which describes a distribution of the attenuation coef-
ficient of X-rays in an investigated cross-section of the human body. This operation is
carried out according to the following relation:

μ̃ (x,y) =

π∫
0

ṗ(s,α)dα. (1)

During this operation we use the measurements p(s,α) obtained in a physical way
by the scanner. It is highly possible that for a given projection no ray passes through
a certain point (x,y) of the reconstructed image. To evaluate a projection value for a
virtual ray passing through this point we can apply interpolation, as follows:

ṗ(ṡ,α) =

+∞∫
−∞

p(s,α) · int (ṡ− s)ds, (2)

where int (Δs) is an interpolation function, and s = xcosα + ysinα . After the back-
projection operation we obtain a strongly blurred image μ̃ (x,y).

It is shown in the literature (see e.g. [11]) that this image μ̃ (x,y) can be expressed
by the following relation:

ˆ̃μ (i, j) �∑
k
∑

l

μ̂ (l,k) ·h(i− k, j− l) , (3)

where

h(Δ i,Δ j) = Δα (Δs)
2 ·
Ψ−1

∑
ψ=0

int (iΔs cosψΔα + jΔs sinψΔα) , (4)

and i,k = 0,1, . . . , I; j, l = 0,1, . . . ,J, where I and J are numbers of pixels in horizontal
and vertical directions.

One can see from equation (3), that the image obtained after back-projection opera-
tion is a convolution of the original image and the geometrical distortion element given
by (4). The coefficients h(Δ i,Δ j) can be precalculated in a numerical way, before the
reconstruction procedure is started.

2.2 Statistical Considerations

Currently, the most important challenge in the field of computed tomography is
concerned with the statistical considerations of the signals in reconstruction algorithms
(see e.g. [3]). Our statistical iterative reconstruction algorithm is based on the proba-
bilistic model of the physical phenomena present in the x-ray measurement system. The
detailed considerations regarding an analysis of this problem lead to the conclusion that
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it is justified to use an appropriate form of the error measure during reconstruction
process. The following model-based loss function for the reconstruction algorithm has
been proposed in [12]:

L1 =−1
2

I

∑
i=1

J

∑
j=1

1

σ2
Σ (i, j)

· f

(
∑̄

i
∑̄

j

μ̂∗ (ī, j̄) ·h(Δ i,Δ j)− ˆ̃μ (i, j)

)
, (5)

The equation involves the term σ2
Σ (i, j) related to the values of variations of signals

measured by the X-ray detectors. The values of this term need to be computed and
stored in the memory for all pixels of the image being reconstructed. The use of the
value σ2

Σ (i, j) in such a form contributes to the increase of the computational cost of the
algorithm as a large number of multiplications for this term is needed in each iteration,
i.e. equal to the number of pixels in the image. Our goal in this paper is to examine the
influence of the constant for all pixels value of this coefficient on the performance of
the algorithm. We will consider a modified loss function in the following form:

L2 =−1
2

I

∑
i=1

J

∑
j=1

1
σ̄2 · f

(
∑̄

i
∑̄

j

μ̂∗ (ī, j̄) ·h(Δ i,Δ j)− ˆ̃μ (i, j)

)
, (6)

where σ2
Σ (i, j) from equation (5) is replaced with a value averaged for all pixels:

σ̄2 =
1

I · J
I

∑
i=1

J

∑
j=1

σ2
Σ (i, j) (7)

This will enable us to move the coefficient σ̄2 outside the sum in the equation (6), which
will significantly reduce the number of multiplications performed during each iteration
of the algorithm.

It is worth noting that the form of the function f (•) we use is as follows:

f (e(i, j)) = cλ · lncosh

(
e(i, j)
λ

)
. (8)

where: c and λ are constant coefficients.

2.3 Reconstruction Process Using Recurrent Neural Network

The recurrent neural network used for realizing the reconstruction process performs
the image reconstruction from projection in 2D by optimization of the objective deter-
mined by relation (5) or (6) (other approaches are possible too, for example using neuro-
fuzzy systems, see e.g. [13], [14]). This can be formulated as the following optimization
problem:

min
M

(
w ·

I

∑̄
i=1

J

∑̄
j=1

1

σ2
Σ (i, j)

· f (e(i, j) (M))

)
, (9)
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or

min
M

(
w ·

I

∑̄
i=1

J

∑̄
j=1

1
σ̄2 · f (e(i, j) (M))

)
, (10)

where: M = [μ̂(i, j)] is a matrix of pixels from the original image; w is a suitable large

positive coefficient; f (•) is the penalty function
Having above described the methodology of the approach to the optimization

problem we can assume the form of distance e(i, j), as follows

e(i, j) = ∑̄
i
∑̄

j

μ̂∗ (ī, j̄) ·h(Δ i,Δ j)− ˆ̃μ (i, j) . (11)

Hence, we can determine the following relation:

dμ̂ t (i, j)
dt

=−w
I

∑̄
i=1

J

∑̄
j=1

1

σ2
Σ (i, j)

· f ′ (e(i, j))h(Δ i,Δ j) , (12)

or

dμ̂ t (i, j)
dt

=−w
I

∑̄
i=1

J

∑̄
j=1

1
σ̄2 (i, j)

· f ′ (e(i, j))h(Δ i,Δ j) , (13)

Taking into consideration the origin of the distance e(i, j) we can expect good re-
sults of image reconstruction using described algorithm measure of projections in
x-ray computed tomography. The pair of equations (11) and (12)/(13) is a starting
point to construct recurrent neural network structure (see e.g. [15]) realising the image
reconstruction process depicted in Fig. 1.

3 Experimental Results

Computer simulations were carried out to analyse the effects of using the constant value
of coefficient σ̄2 on the running time of the algorithm and the quality of the recon-
structed image. For the purposes of testing the approach proposed here, we have used
a mathematical model of the human head, the well-known FORBILD phantom, which
can be seen in its original form in Table 1c. In our experiments the image size was 1024
×1024 pixels. The quality of the reconstruction has been evaluated by computing the
MSE error measure between the original and the reconstructed images.

The simulations were implemented for GPUs with the NVIDIA CUDA framework
and executed on the GeForce GTX 680 graphics card. The results obtained for 3000
iterations of the algorithm are presented in Table 1.
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Table 1. View of the images: a) original image; b) image reconstructed using the original loss
function (5); c) image reconstructed using the loss function with constant σ̄2 (6); d) reconstructed
image using the standard FBP with Shepp-Logan kernel

Image MSE Time

a) — —

b) 3.48 ·10−9 54.8 s

c) 3.49 ·10−9 53.8 s

d) 3.96 ·10−9 —
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Fig. 2. The value of the MSE plotted as a function of the number of iterations

4 Conclusions

As can be seen in Table 1, there exits a trade-off between the running time of the al-
gorithm and the value of the MSE error measure obtained for the reconstructed image.
Replacing σ2

Σ (i, j) with a constant coefficient σ̄2 decreases both the run-time of the
algorithm and the quality of the reconstructed image.

However, it should be noted that the gain in the running time for 3000 iterations,
taking approximately 50 seconds to finish, is equal to about one second. If such a
difference is not considered a satisfactory gain for specific purposes, it is justified to
use statistically well-founded coefficient σ2

Σ (i, j) computed for each pixel of the image
separately.
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Abstract. This paper describes a concept of image retrieval method
based on graph theory, used to speed up the process of edge detection
and to represent results in more efficient way. We assume that result rep-
resentation of edge detection based on graph theory is more efficient than
standard map-based representation. Advantages of graph-based repre-
sentation are direct access to edge nodes of the shape without search and
segmentation of edges points as is the case with map-based representa-
tions. Another advance is less data consumption, only data for nodes
and their connections are needed, what is important in large database
applications for good scalability.

In the described approach we reduce the amount of necessary image
data to examine by modifying some standard edge detection method. To
obtain that, we use an auxiliary grid to detect points of edge intersec-
tions with grid lines. Each intersection point becomes a node of graph
that is a base element of the graph-based representation. Finally, our
method based on edge segmentation creates connections between graph
nodes determined in the previous steps of the algorithm. The method
analyzes an image independently in squares determined by an auxiliary
grid, which can be fork and parallel processed. We motivate the idea
of our work that it will be used to develop a method for image feature
extraction in CBIR for database applications.

Keywords: edge detection, edge representation, graph theory, image
processing.

1 Introduction

A family of edge detection methods is one of the first developed and most com-
monly used in content based image processing. The main goal of edge detection
is to detect locations of rapid changes in image brightness. These changes are
typical for edges that make boundaries between different regions of images. In
most cases, boundaries between regions are created between overlapping objects,
objects and background or content over objects. The edge detection process mas-
sively reduce the amount of data to be analyzed as usually only significant shape
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elements of the image remain. Edge detection is the first step in many computer
vision algorithms such as shape recognition, object detection, feature extraction,
face recognition, image compression etc. [4][5][11][12][14][15][7][6][8].

Edge detection is a low level operation on image pixels and in most cases uses
some operators. The operators in many variants are used to identify horizontal,
vertical or diagonal edges and also to identify corner of edges. Operators are
matrixes of coefficient values that are used to analyze neighbor pixels values.
Frequently, the operator matrix size is of 3x3 pixels. The resulting value of the
operator is the sum of multiplications between pixels value and operator coeffi-
cient values. Edge detection operators are classified into two general categories:
first-order derivative and second-order derivative.

Operators of first-order derivative generate image gradient value thus they are
also called gradient operators. Formula (1) shows value determination method of
first-order derivatives of image. Gx is a horizontal component of local derivative
and the Gy is vertical component of local derivative. Gx and Gy values are
determined by the mask of operator.

G = Gx + Gy =
δI

δx
+
δI

δy
(1)

In this group we have most of classic operators such as Prewitt (Fig. 1a), Sobel
(Fig. 1b), and Robert Cross (Fig. 1c) [9]. To compute the gradient two operators
in opposite orientation are used, usually horizontal and vertical. Edges points
are determined by thresholding and localization of local extrema values in a set
of operator results.

Operators of second-order derivative are based on detecting points of zero-
crossing values. These points indicate local extreme pixels values of image. For-
mula (2) shows value determination method of second-order derivatives of the
image, where L is determined by a single mask of the operator.

L =
δ2I

δx2
+
δ2I

δy2
(2)

Results of edge detection with use of this operator are relatively similar to op-
erators of first-order derivative. In contrast to the first order, we use only one
operator but in this case we lose information about orientation of the edge and
also this type of operators are more sensitive to sharp noise. The most popular is
the Laplasian of a Gaussian (LoG) (Fig. 1d) filter that assumes use of Gaussian
operator for smoothing and Laplacian second-order operator [10]. This operators
also are used to blob detection and to designate key points of image in many
image comparing algorithms. The described operators are presented in Fig. 1.
Results of edge detection process is a map with identical size as input image
with marked points of detected edges. Usually maps are presented as images,
what is easily readable for human.

Most of the standard edge detection methods are vulnerable to blur noise.
It is caused by the size of operator matrix that analyze only small area of the
image. This problem can be eliminated by using operators with larger matrix,
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Fig. 1. Typical edge detection operators (a - Prewitt, b - Sobel, c - Roberts Cross, d -
Laplacian)

but it increases inaccuracy of detected edges and increase the number of pixel
that must be analyzed by the operator in one step. Sharp noise also creates
distortion in detected edges but that can be easily eliminated by Gaussian or
median image pre-filtering [1]. Edges can also be detected after the process of
image segmentation. In this way, edges points are designed by selecting the shape
of image segments.

Graphs are structures (3) consisting of a non-empty set of vertices V called
nodes and a set of edges E defining connections between nodes.

G = (V,E) (3)

Using graphs we can map data structures in a natural way and create links be-
tween them to eventually perform actions on them. By graphs we can represent
and form many difficult dependencies that exist in real life. Graphs are used
in many areas of computer science such as databases, text processing, deter-
mination of optimal path or tasks optimization. The structure of the graph is
also very legible and intuitive for humans, so it is also used in representing data
dependencies in graphical interfaces.

In our solution, graphs were used for two purposes: as data organization in
detected edges description as well as the graphical representation of the edges
by displaying the graph structure.

2 Problem Description

As mentioned earlier, results of standard edge detection process is represented
by a map of edges points. Map-based representation gives precise position of
edges points and their nearest content. This type of representation allows for
efficient access to points values by their position. This approach is well legible
for human mind, but in computer image processing that approach creates some
difficulties in subsequent operations.
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Fig. 2. Example of map based edge representation. Left input image. Right result of
edge detection method.

Map representation method causes that we have a large amount of data to
examine. In most cases only small part of resulting map is marked as edges
points. For example, for the image of the size 200x200 pixels presented in (Fig. 2),
edge detection process produce 40,000 result values as two-dimensional map of
size 200x200 points. Detected edge consists of only 200 points, other map space
are unused. As we can see only 0.5% of result map is marked as detected edges
points. This is not optimal solution to store results of edge detection especially
in case of database applications.

Another problem is that in most solutions edge tracking is performed after
edge detection. Edge tracking most often is made by segmentation of detected
edges. In the first step, fragments of edges must be localized in the resultant map.
After that, in each step of segmentation, edge pixels are grouped by comparing
with other neighboring pixels. This approach slows the algorithm and addition-
ally there is a problem on the edge forks. Many of contacting or intersecting
edges share the same segments which makes it difficult to further semantically
evaluate segmentation results.

As we can see, most of algorithms might be more efficient after elimination
or reducing process of edge segmentation. Our approach assumes replacement
of the map representation by a graph. Graph representation dramatically re-
duce the amount of data required for edges representation. All required data is
used to represent only the significant edges by nodes. There is also potential for
compression by setting maximal distance between nodes. For example, a graph
created from an image (Fig. 2) with preselected 10 pixel maximal distance be-
tween nodes, contains only 20 nodes connected with 19 edges links. Each node
required only position value.

Second advantage of graph representation is immediate access to edge shape
by nodes. Using graph representation we do not need to localize edges in edge
preprocessing step. That accelerate and reduce memory requirements of the
method.
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The proposed graph creation method optimizes edge detection process by use
of auxiliary grid. In the process of edge detection most of space between grid
lines is omitted because our method searches edges intersections with grid lines.
After edge localization, the method proceeds with edge segmentation between
detected intersections, so only space over edges and grid lines is analyzed.

3 Existing Solutions

Most of methods that use graph theory is focused on image segmentation [3] [13].
This method also leads to edge detection by determining segment borders. This
approach is based on image conversion to a graph. Pixels of image are represented
by graph nodes and connected with neighboring pixels via graphs links. For each
link, magnitude value is calculated by operators similar to gradients operators.
Segments are determined by link removing that corresponds to minimum cut
with the smallest cut value among all minimum cuts between every pair of
vertices.

In the case of this approach, all pixels of the image are examined. Not only
all of them are examined, but they are examined multiple times, depending on
the size of the mask currently used. Generated graph is large and consists of
thick and vast grid of nodes. Each pixel is mapped by one node and connected
with several neighbor pixel nodes. The methods are focused on precise image
segmentation. Their results graph representation contains more elements than
the input image.

None of the previous work was dedicated to use graph theory in purpose for
edge representation. Our approach unlike the existing works is focused to speed
up the edge detection and to reduce amount of data needed for storing the results.
The presented method assumes significant edges extraction and representation
with minimal accuracy decrease of the mapped edges.

4 Proposed Method

Presented method assumes a different way of edge detection and data represen-
tation. Graph representation of detected edges will accelerate the search process,
storage and operations on the set of edges.

The main assumption of the presented approach is edge detection followed
by graph generation on the basis of the detected edges. The method searches
for edges and determines nodes points with the use of an auxiliary grid. Use of
the auxiliary grid is an important part of the proposed solution. Image analysis
is performed over the line of the auxiliary grid to detect the collision points of
objects edges with grid lines. For each detected collision point algorithm assigns
graph node that represent point of the detected edge, as demonstrated in the
Fig. 3a. The use of the auxiliary grid allows for regular graph nodes distribution
depending on the used density of the grid. The generated graphs are rare graphs
that mean they usually have only two connections to neighboring nodes located
on the edge line as shown in the image (Fig. 3c). The only exception to this rule
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Fig. 3. Graph preparing schema. a) - graph nodes determination, b) - edges segmen-
tation between nodes, c) - node path.

are the points of edges intersections or forks where more nodes is connected.
This feature simplifies further analysis process of generated graphs and their
store process, because most of the nodes can be represented in similar form to
the two-way list that groups nodee in the edge path.

Application of the auxiliary grid and the graph based representation makes
operations independent between nodes, thus it allows to generate the graph by
parallel programming between image segments defined by the auxiliary grid lines.

4.1 Edge Node Detection

Determination of graph nodes takes place over the lines of the auxiliary grid.
For each point of the image under the auxiliary grid lines, gradient vector −→g
is designated by formula (4), where Gx and Gy are the values calculated by
Prewitt gradient operator.

−→g = [Gx,Gy] (4)

The length of gradient vector −→g determines the strength of the edge at a given
point, and the same vector also indicates the direction of the edge. In practice,
the vector indicates the direction where the pixels of the image are brighter.

The presented method uses operators of 5x5 pixels kernel size. This improves
the coverage of the image between the auxiliary grid lines. This is important in
cases where the auxiliary grid line passes through the point where the edge of
the image is weakened or even broken.

Gradient vector −→g value of each point is compared with the other vectors of
the adjacent points, located on the auxiliary grid line. Point of the largest vector
value becomes a node if the vector orientation is not too close to the orientation
of the auxiliary grid line. It prevents the problem of creating multiple nodes at
the edge that is tangent to the auxiliary grid line.

4.2 Edge Nodes Combining

The next step is to connect the resulting edges nodes. Our approach uses edge
segmentation method for this purpose. Another possibility is to connect nodes
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Fig. 4. Graph making result. a) input image, b) edge map-based representation, c)
graph-based representation.

basing on searching the nearest neighboring nodes by examining the correlations
between their positions and orientation determined by the gradient vectors. This
approach is faster but unfortunately some problems occur, especially in the case
of lines that run parallel and close together, they may be combined into one.
Another problematic case are lines that will be connected when, in fact, they
are two different edges of which ends are located between grid lines. Presented
segmentation provides high accuracy identical to conventional edge detection
methods.

Segmentation proceeds in two opposite directions from the starting point
(Fig. 3b) designated by the node position. Segmentation in two directions de-
termines only the strongest connections with other nodes. During segmentation
branched edges are ignored but, if they are significantly important than they
will be connected from other node. This causes the omission of many fragments
of an insignificant edge that can make the graph less readable for human. This
action can also be considered to the operations forming the salient edges [2] that
assumes reduction of edges points that are not local extremes. In contrast to
the standard salient edges method we do not process existing maps of detected
edges points, because in the proposed method salient edges are a side effect of
the edge representation by a graph.

After determining the opposite points the edge segmentation process begins
that aims to set new segmentation points up to cross the line of the auxiliary
grid. In each step for each of the two points of segmentation three neighboring
edges points are tested which values are calculated on-demand by using gradi-
ent operators that designating the orientation vector. The point of the highest
gradient vector length is a new point of segmentation.

Gradient vector of the edge orientation is also used to properly select positions
of three neighboring pixels that are compared in the second step. All combina-
tions create 8 variants of 3x3 kernels. Mask represents neighboring pixels group
in vertical, horizontal and diagonal edge segmentation directions.

If the current segmentation point is localized at the grid line, continuation of
segmentation is interrupted. Then the algorithm searches for the most closely
located node of the graph, but is restricted to the distance of 3 units. This value
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of the maximal distance results from the fact that the segmentation is conducted
between the grid lines. After this segmentation process, resulting position on the
grid line can be slightly different from the position of earlier determined nodes
of neighbors grid lines. If at the segmentation point there not exists any node of
graph then a new one is created at this point. After that, a new connection is
created between start and the newly determined node of segmentation.

New connected nodes are assigned to the appropriate paths. Paths in our so-
lution are a very important part because their form is ideally suited to represent
the image edges. Paths and edges are objects that consist of the following nodes,
which are connected one by one without branching. For this reason, all of free
nodes are assigned to suitable permanent path. With this approach we also get
a set of predefined paths representing each independent image edges.

4.3 Post-processing

The final step is post-processing designed to eliminate unnecessary insignificant
nodes of the resulting graph. This process removes isolated nodes and nodes
that are part of the one-element paths. Single nodes in most cases are elements
of textures, stains, or noise, that have been cut by the single grid line, and
do not make connections between other nodes located on the neighboring grid
lines. Image of the final result is shown in Fig. 4c and to compare both methods,
Fig. 4b shows results of the standard map-based edge detection.

5 Experiments

In order to present the characteristics and capabilities of our method, we per-
formed two types of experiments: the first comparing our solution with the so-
lution of the traditional map-based representation of the edge, and a second one
showing the dependence between created graph in response to change of density
value of the auxiliary grid. All photos are resized to 400x400 pixels size only to
improve readability.

5.1 Comparison of Map-Based and Graph-Based Representation

To present a comparison of two methods of edges representation we decided to
conduct comparative tests between the methods. For the purpose of the test, we
used five randomly selected images from the Internet. In both cases, Prewitt op-
erator with 5x5 pixels kernel size is used to perform edge detection. The drawing
(Fig. 5) presents visual effect of the two methods of edge representation. The first
column represents the input images, the next edge detected map-based repre-
sentation, and the last shows resulting image of the graphs-based representation
method. On images of graph-based representation, the nodes are represented by
white pixels. Graph connection between nodes are represents by grey lines. Reg-
ular horizontal and vertical dark-grey lines represent lines of auxiliary grid used
to edge detection and node determination. For all images we preset 10 pixels
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Fig. 5. Experimental results for edge detection on 5 real images. First column, original
images; second column, map representation; third column, graph representation.
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Table 1. Summary of map-based representation

Image No. of No. of Edge / map
number. map points. edge points. points ratio.

Fig. 4a 160000 24843 15,53%
Fig. 4b 160000 24069 15,04%
Fig. 4c 160000 27592 17,25%
Fig. 4d 160000 28515 17,82%
Fig. 4e 160000 33946 21,22%

Table 2. Summary of graph-based representation compared with map-based
representation

Image No. of No. of Nodes / map Nodes / edge
number. graph nodes graph links points ratio points ratio

Fig. 4a 989 797 0,62% 3,98%
Fig. 4b 1166 1010 0,73% 4,84%
Fig. 4c 1239 1001 0,77% 4,49%
Fig. 4d 1307 1030 0,82% 4,58%
Fig. 4e 1865 1427 1,17% 5,49%

density value of auxiliary grid and 0.05 value of edge threshold. At first sight
both of representation methods are very similar. Table 1 and Table 2 present
a comparison of two methods. All images have been scaled to a resolution of
400x400 pixels, so map-based representation consists of 160 thousand points.

Conventional map-based algorithm after image processing with using Prewitt
operator classified on average about 28 thousand points as points of edges. Points
classification were made by thresholding with a threshold value of 0.05 that is
the same as we used in the graph-based method. Map of points that represents
the edges is the same size as the image. Map is composed of 160 thousand points
from which only about 28 thousand is marked as true edge points. Number of
edge points is only about 17% of the map, the other pixels are not used.

The graph-based method allows to represent all of significant image edges
with use about 1.3 thousand nodes and 1 thousand of node connections. Average
number of used nodes is only about 0.8% of the amount of image pixels. This
is enormous difference, especially that in the case of the graph-based method,
unlike to map-based one, there is no need to use large map of edge points. As
far as result storage is concerned, the graph-based method need only about 0.8%
amount of data that the map-based method required.

Finally, we can also compare the value of the average number of graph nodes
to the average number of map points marked as edges. In this case the number
of graph nodes is only 4.5% of the number of points marked as edges. This
comparison shows great capabilities offered by the graph-based representation.
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5.2 The Relationship between Density of the Auxiliary Grid and
the Number of Graph Nodes

To introduce another property of the proposed method which is the ability to
compress, or reduce the number of points, we perform an experiment on the
photo by a gradually reducing the density of the auxiliary grid and observing
the size of result graph and changes in readability of generated graph on the
basis of their original images. We decided to use six different density of auxiliary
grid starting from the highest 5, 10, 15, 20, 25 and 30 pixels space between grid
lines. Images (Fig. 6) and (Fig. 5c) represent graphic results of the graph-based
method in this experiment. Table 3 presents the values describing the number of
the graph nodes and their connections depending on the density of the auxiliary
grid. As we can see in the resulting images, the most optimal image results are
obtained for the density value of the auxiliary grid between 10 and 15 pixels. We
can see on them a slight lack of detail, and also a large decrease in the size of
the generated graph. Below this density value we can observe total loss of small
image details. Only the most distinct edges of largest objects remain. A less
dense auxiliary grid can be used in the processing or pyramidal image analysis
or analyze images of larger sizes.

Fig. 6. Results of the graph-based representation of different density of auxiliary grid.
a) input image, b) 5px grid density, c) 15px grid density, d) 20px grid density, e) 25px
grid density, d) 30px grid density.
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Table 3. Representation of the difference in the size of the graph, depending on the
density of the auxiliary grid

Image Density of No. of No. of
number. auxiliary grid. nodes. nodes links.

Fig. 5a 5 2074 1791
Fig. 4c2 10 1239 1001
Fig. 5c 15 723 571
Fig. 5d 20 580 444
Fig. 5e 25 436 332
Fig. 5f 30 338 297

6 Conclusions

From the experiments and results of the comparison between the map-based
representation and the graph-based method we can see quite significant difference
between the methods. The map-based method is characterized by the following
features:

1. Highly detailed. By analyzing the edges we can read their precise shape and
texture. This is especially important if searched or analyzed objects have a
large amount of small details. It is also possible to read strength and direction
of the gradient vector so it allow to create detailed image local descriptors
typical used to search for the same image structures.

2. The method also represents areas that not classified as edges points. This
property allows to determine the width or blur of detected edge that is effect
of local gradient rising. It also allows to analyze object convexity.

3. Direct access to the values of the gradient by reference to the position. It is
instant access, the same as two dimensional array access.

4. No relationship between the points. Map is a set of points defining the value
of the local gradient. There is no information about the exact location of the
edge. To determine the shape of the edge, at first it must be located at least
one point of edge and then must be performed edge segmentation.

5. Many no-edges points. Map-based representation contains many points
which are not edges of objects such as fragments of textures, smudges, spots.
It makes difficult to properly localize and segment edges.

6. Large memory requirements. The amount of necessary memory depends only
on the size of the photo, not on the amount of edge points. High ratio of
amount of map points to the number of edge points.

The graph-based method is characterized by the following features:

1. Direct access to the node of the edge with the relation between the other
nodes. There is no need to search for edge points. Determination of the edges
shape is sufficient to examine relationship between the nodes of the graph.
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2. Small insignificant details are omitted that, in most cases, are no object
edge elements. This feature depends on the size of elements and density of
the auxiliary grid. This allows for simultaneous image denoising from other
non-essential elements.

3. The amount of data required to represent the significant image edges is
rapidly reduced. Taking into account the conclusions from Table 1 and
Table 2, we can conclude that the method of graph-based representation
is more efficient then the map-based method. It requires average about only
5% of the number of nodes that are needed by the traditional methods. Links
between the nodes are not taken into consideration because map-based rep-
resentation does not contain relations between points.

4. The ability to compress the image edge representation by reducing density
of the auxiliary grid. Resulting graph contains less number of nodes what is
presented in Table 3 and larger distances between nodes. As we can see in
Figure 6, even low-density grids allow to create readable graphs that contain
most characteristic edges of the image.

5. Reduced shape detail of edge, depending on the density of the auxiliary grid.
It is not possible to read the exact shape of the edge between the nodes. It
is also not possible to read the information about nearby gradient of edge.

6. No direct access to the edge node by reference to the position. We need to
perform a graph iteration to find the closest node to the position. Optionally
the graph can be mapped into an array to speed up the search process.

As we can see, both methods are different from each other. Graph-based methods
of edge representation can certainly be applied in areas where approximated
description of the detected edges of image, small amount of required data, and
where there is no need to focus on the details of the image.
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{tomasz.nowak,patryk.najgebauer,janusz.rygal,

rafal.scherer}@iisi.pcz.pl
http://iisi.pcz.pl

Abstract. Representing images by their interesting points has become
recently one of the most effective methods of comparing images. One of
the main challenges in image processing is to create a universal descrip-
tor that will be invariant to changes in scale, rotation and illumination.
One of the most popular and the most effective algorithm, which gen-
erates the key points is currently SURF. The problem discussed in this
work concerns the comparison of objects belonging to the same category,
but different from each other e.g. two different cars. We propose a new
descriptor designed for objects in the image to compare similar objects.
It is based on a graph, which was built on the basis of the key points
that were generated using SURF algorithm. We present results of exper-
iments which have been conducted for various objects and descriptors
generated using the proposed method.

Keywords: object matching, graph-based descriptor, shape
representation.

1 Introduction

One of the tasks of image processing is comparison of various images, based on
their features such as shapes, colors, keypoints or dependencies between objects
[11][13][12][10]. Very crucial issue here is a selection of appropriate feature sets
and methods of storing them in databases. Selected features of the image should
be invariant to noise, easy to store and process, but also unique. The choice
of appropriate features of objects contained within the image contributes to
reduction of redundant data, which must be processed during image matching
stage. There are many different types of descriptors which allow to describe
images in many different ways and comparing with other images located in a
database. Content-based image retrieval algorithms usually work in a similar
manner: application reads the image, locate and segment objects and processes
them. The result is a descriptor, which should include all necessary information
about the content of the image.
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Currently, there are many different methods based on invariant features which
allow comparing pairs of images: objects located on the reference image are com-
pared with other images. Usually the objects are the same. Probably the most
efficient algorithm for extracting image features is SIFT [1]. This algorithm uses
a scale for keypoint detection - space from a pyramid of difference of Gaussian
images. Descriptors, to a certain extent, are resistant to changes in scale, rota-
tion and illumination. Another very popular method of creating descriptors is
Harris Corner Detector [2], but this method is not scale invariant. Both of these
methods do not work in the case when we search for similar images, containing
objects from the same group, but not exactly the same objects. These methods
work very well in case of tracking objects (e.g. in the movie), or search for exactly
the same object in another picture.

There exists many methods for keypoints detection, e.g. maximally stable ex-
tremal regions (MSERs) [3], and Harris-Affine and Hessian-Affine corners [4] or
difference-of-Gaussian [1]. Recently image hashing techniques gained popular-
ity for dimensionality reduction. Among them we can highlight the two most
popular: SVD [5] and NMF [6], which are robust to blurring, minor noise, and
compression, but suffer from brightness changes and large geometric transforms.

Currently, the most frequently descriptors are created using SIFT. An alter-
native for SIFT algorithm is SURF, which was published by the Bay in 2006[7].
Just like SIFT, SURF creates the keypoints and descriptors of these points. The
advantage of the SURF on the SIFT is to significantly reduce the amount of
calculation, what is an important factor in more demanding applications. Key-
points are found by using a so called Fast-Hessian Detector that bases on a
determinant of the Hessian matrix for a given image point. The responses to
Haar wavelets are used for orientation assignment, then keypoint descriptors are
formed from the wavelet responses in a certain surrounding of the keypoint.

In this work, a novel region descriptor is proposed for objects contained in the
image. The proposed type of descriptors will be used to search for objects be-
longing to the same class of objects. The descriptor is based on key points which
are generated for the image using the SURF algorithm. The graph stretched on
key points of an object is a good starting point for a quick comparison of the
objects in the image, and allows searching for objects with similar structure, not
just limited to identical objects.

The rest of the paper is organized as follows. In Section II we introduce some
preliminary concepts, while section III outlines the region descriptor algorithm.
Section IV describes experiments and discussion of the proposed descriptor. Sec-
tion V provides the final conclusions.

2 Existing Methods

SURF (Speeded Up Robust Features) is an algorithm which searches for features
resistant to changes in scale, rotation and illumination, and was presented in 2006
by H. Bay. SURF was developed on the basis of the SIFT algorithm, requires
much less resources during the operation, and the method of operation is faster
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Fig. 1. Thanks to integral images concept, it takes only three additions and four mem-
ory accesses to calculate the sum of intensities inside a rectangular region of any size

than SIFT. The main element of the algorithm is the structure named Images,
what allows to significantly reduce the number of operations. The next structure
is an integral image, which represents the sum of pixels in any rectangular area
of the input image I.

I∑(x, y) =

i≤x∑
i=0

j≤y∑
j=0

I(x, y) (1)

where I - processed image, I∑(x, y) - the sum of all pixels in the image. Calcu-
lation of the sum of the pixels in the selected area of the image (Integral Image)
is presented in Fig. 1, and is described by (2).∑

= A−B − C +D (2)

whereA, B, C,D values are the sum of pixels in the selected point. Using Integral
Images, it takes only three additions and four memory accesses to calculate the
sum of intensities inside a rectangular region of any size. Calculation time is
independent of its size, which translates to the performance of the algorithm.
Searching for local extremes is based on determinant of Hessian matrix. Given
a point x = (x, y) in an image I, the Hessian matrix H(x, σ) in x at scale σ is
defined as follows

H(x, σ) =

[
Lxx(x, σ) Lxy(x, σ)
Lxy(x, σ) Lyy(x, σ)

]
(3)

where Lxx(x, σ) is the convolution of the Gaussian second order derivative

δ2

δx2 g(σ) with the image I in point x, and similarly for Lxy(x, σ) and Lyy(x, σ).
Gaussians are optimal for scale-space analysis. SURF uses other filters (simpler
ones) than SIFT. SURF is faster and also somewhat less accurate (Fig. 2) thanks
to using less complex filters. However, in many applications high accuracy is not
needed, while the execution speed of the algorithm is always important. SURF
searches interesting points at different scales. In the SIFT scale-spaces are cre-
ated of the pyramids consisting from images - the whole picture is resized, which
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Fig. 2. The filters used in the SIFT (first row) and simplified filters used in the SURF
(second row)

Fig. 3. Iterative reduction in the size of the image (left), the use of integral images
allows to scale the filter, what reduces the amount of calculation (right)[7]

requires the use of multiple resources, in SURF only filters are scaled while
the image remains unchanged. This approach allowed to substantially speed up
calculations (Fig. 3).

In order to precisely locate interest points in the image, values of the determi-
nant are compared with the neighbors, Haar wavelets in conjunction with integral
images are used to describe gradients around key points and the
direction of the descriptor is determined based on the sum of these wavelets.

SURF is usually applied to search for exactly the same object in another
picture, e.g. while tracking an object on a video sequence. The algorithm allows
to find the searched object in another image even if it is rotated or partially
hidden. Its descriptors are also resistant to some extent to change the lighting
and the scale (Fig. 4). Graphs are universal structures, which can represent
selected features using vertices, and edges, and can reflects relationships between
them. The edge may have a weight, which can specify for example the distance
between the vertices.
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Fig. 4. Example of SURF algorithm: searching the same object in another image

A graph G is represented as G = (V,E) and consists of a finite and non-empty
set of vertices V = v1, ..., vn, where n is a number of vertexes, collection of edges
E ⊆ V ×V , where e ∈ E,e = (vi, vj) is the connecting edge of vertices vi, vj ∈ V .

Methods of connecting key points using graphs has become very popular
recently, and is an excellent base for creating descriptors for objects contained
in the image. Descriptors formed on the basis of graphs may also be resistant
to all sorts of interference, for example, have been used successfully in face
recognition [8].

Graphs can be easily represented using a neighborhood matrix or a list of
neighborhoods. The proposed solution uses array representation of the neigh-
borhood list because it gives a significant memory savings in relation to the
neighborhood matrix. To create a list of neighborhood we create an array equal
to size of number of vertices containing indicators on the (initially empty) list
- the subsequent list items mean the next neighbors of the vertex to which the
list is allocated.

Let an array is called LS. For each edge (vi, vj), to the list pointed to by LS[i]
is added vertex index vj . LS[i] indicates now to a list of containing indexes of
all neighbors of the apex vi. To delete an edge (vi, vj) we just remove index vj
from the list LS[i], and index vi from LS[j].

The array representation of the neighborhood list was presented in Fig. 5.

Fig. 5. An example of a graph, and the corresponding neighborhood list
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3 Proposed Method

Most of the existing methods for comparing images process the whole picture,
but in many cases, a lot of data in the photo is not relevant. The primary ele-
ments that characterize the photo are the main objects (e.g., car, animal, man),
or relationships of these objects. The proposed solution processes only the ob-
jects that are located in the image, without background elements. Objects are
cut from the image using the method presented in [9](Fig. 6). In the proposed
method we create a descriptor of the area with the object in the image. It is
created on the basis of the key points that were generated with the help of the
SURF algorithm. This descriptor is resistant to deformation and all sorts of
changes to objects. The descriptor is based on the graph which gives the ability
to search for similar objects, belonging to the same category e.g. dogs, cars, men.
Fig. 7 shows a general block diagram of the proposed method. In order to reduce
the amount of data needed to generate the graph, we reduce the amount of key
points by removing the points which have the lowest importance. The next step
in this solution is to add the point that will determine the center of the object
relative to the key points. This is designed to prevent the generation of the graph

Fig. 6. The left side shows the input image, on the right we can see the effects of the
algorithm presented in [9]

Fig. 7. General flowchart of the proposed method
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with randomly selected points, as was done in the some methods presented in
the literature. Position of the new point for the object is determined by the
following expression:

x̄ =

∑n
i=1 wixi∑n
i=1 wi

, ȳ =

∑n
i=1 wiyi∑n
i=1 wi

(4)

where [x1, x2, ..., xn], [y1, y2, ..., yn] are coordinates of the points and
[w1, w2, ..., wn] are weights of the points.If we have the center point and other
keypoints of the object, we can proceed to create a graph on them. When the
graph is created, we used Dijkstra’s algorithm, through which all vertices (points)
will be connected by the shortest possible route. The algorithm combines points
by choosing the path with the smallest weights (weights cannot be negative). In
our solution, the edge weight value is the Euclidean distance between key points.
In Dijkstra algorithm, a collection of vertices Q is stored, for which the shortest
paths, and vector D[i] distance from vertex S to I are continuously calculated.
Initially, the set Q contains all vertices, and vector D is the first row of the
matrix edge of weights A.

1. While the collection Q is not empty execute:
2. Take from a collection ofQ, vertex v with the smallest valueD[v] and remove

it from the collection.
3. For every consequent i vertex v perform path relaxation, i.e. check if D[i] >
D[v] + A[v, i], i.e. if the current estimation of the distance from the vertex
i is greater than the estimation of the distance from the vertex (envy) plus
edge (v, i) weight.
If so, update estimation D[i] by assigning the right side of the inequality
(that is the lower value). If so, update the estimate of D[i] by assigning it
the right side of the inequality (i.e. lower value).

Dijkstra algorithm pseudocode is as follows:

Dijkstra(G,w,s):

for each vertex v in V [G], do

d[v] := Infinity

predecessor [v] := undefined

d[s] := 0

Q := V

While Q non-empty do

u := Take_Off_Min(Q)

for each vertex v = a neighbor u do

if d[v] > d[u] + w(u, v) then

d[v] := d[u] + w(u, v)

predecessor [v] := u

Add(Q, v)

cout <<"The road is: "<<d[v];

Graphs created as a result of the algorithm are relatively easy to store in
relational databases.
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4 Experimental Results

The proposed descriptor has been tested on the data in the form of images
with different objects belonging to different categories (men, cars, dogs, birds,
etc.). For each of the classes there were generated at least dozens of descriptors.
Objects were extracted from photos using Saliency Detection algorithm [9], as
background is redundant data and is not needed in the process of identifying
objects. Having only objects, we search them for interesting points using SURF
algorithm. In order to reduce the amount of key points we removed those with
the smallest weights. Points have been classified on the basis of the average of
all weights of points found in the object. All points whose weights were less than
the average weight of all the points, were passed over during the experiment.
Then we generated a new point, which was the beginning of graph. Such action
was intended to avoid a situation in which the graph would be generated from
random points. In a situation when graph can start from any point, it can be
always different, even for the same set of key points. In the next step we generated
graphs according to the algorithm presented in section 3.

In the example below we can see the action of SURF algorithm in order
to compare the objects belonging to the same category. In the first case, the
objects are identical, they had been compared with each other correctly. In the
second and third case, we can see two similar objects that belong to the same
class (Fig. 8). As we can see, the objects were not classified correctly (Fig. 9).
Next, we present the objects and generated for these descriptors. As we can see,

Fig. 8. Example of objects belonging to the same class. The objects are very similar
but not identical.
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Fig. 9. The effect of the SURF algorithm: first case shows considered objects in another
picture (the same object); the second and third case show searching for similar objects
in images

examining only the descriptors, we are able to divide them into certain groups,
which really constitute different classes of objects (Fig. 10). The objects that
belong to the same group do not have to be identical, to be classified in similar
categories, what gives the option to search through collections of objects in order
to find a similar but not identical things.
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Fig. 10. The result of the algorithm is graph, in which vertices represent key points;
edges are the distance between them. As we can notice, the graphs are similar for
objects belonging to the same category.

5 Conclusions and Future Work

In this paper we proposed a descriptor based on graphs. The model of graph
was created on the basis of the key points which were generated using SURF
algorithm. Graphs were generated basing on Dijkstra’s algorithm, which creates
the shortest possible path between the starting point and the other points. The
results of experiments showed that, on the basis of the generated descriptors,
we are able to divide objects to different classes. In the future we would like to
improve the selection of key points, e.g. we can combine them in groups (clusters)
and on the basis of these groups generate the graph.

Acknowledgments. The work presented in this paper was supported by a
grant from Switzerland through the Swiss Contribution to the enlarged European
Union.
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Abstract. When we think about images, we usually think about that what we
can detect by our eyes. It is easy for us, because all of the hard work is already
done by our own brain. Human brain extracts from images all information which
is currently important. It is not possible to mirror the whole natural process, be-
cause now we do not posses enough knowledge about our brain. Nevertheless,
a lot of research is devoted to achieve even part of the targets. This is a small
steps strategy, so we are not able to do all at once, but we try to test different
approaches, combine and develop new digital images processing algorithms. In
this paper we present a DOE (Density of Edges) algorithm and its application
as a basis for the GrubCut algorithm. We also present the whole preprocessing
approach and which algorithms were used. Results of that work will be used and
integrated in SIA Semantic Image Analysis project developed by authors.

Keywords: Object extraction, Density of edges, Semantic image analysis, CBIR.

1 Introduction

There are many methods of processing and retrieving images on the basis of their con-
tent [15] [16] [12] [13]. The aim of our work was to create a preprocessing mechanism,
which will be able to fetch the most important information from an image and to fil-
ter out unimportant one. The whole process is composed of a sequence of algorithms,
which are integrated into a single preprocessing approach. As a result, we expect to
obtain selected parts of the image, which will be a basis for further computing. Figure
1 shows a simplified design of our preprocessing mechanism. The whole structure can
be expressed as the following list:

1. Conversion an image into grayscale,
2. Median filtration,
3. Edge detection,
4. DOE (Density Of Edges),
5. GrabCut.

Our preprocessing mechanism is composed of several algorithms. One of them is our
new approach, calculating density of edges (DoE) and use of the results to restrict the
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Fig. 1. Structure of our approach in context of preprocessing

range of interest. Almost each part depends on values of parameters; results of using
different values of them will be presented in the description of tests. We are going to
describe each part of our process, but the main focus is to present the DoE algorithm.
There are many of publications about using GrabCut algorithm, but it is very often
connected with interaction with human [1] [2] [3]. Interaction with human and manual
preprocessing is a popular approach by using iterated graph cuts. Interaction with the
user is acceptable in graphics software, this can be also very useful not only in cases,
when automatic process failed, but also when we want to influence the program, not
always in an obvious, standard way. There are a lot of tools, which support manual way
of an extraction of objects, for example ”Magic Wand”, ”Bayes Matte” or ”Intelligent
Scissors” [5]. In our approach we aim to automate the whole process. We do not need
specific, not standard behavior from an algorithm. What we need is to force a process
to produce the best results as possible. Of course, the precision is very important, but
not at the same level as in the case of work with graphics software. The whole process
has to be fully automated.

The paper is organized as follows. Section 2 is a description of the whole preprocess-
ing approach, which was designed as a part of the SIA (Semantic Image Analysis) ap-
proach. Section 3 presents in details the DoE (Density of Edges) algorithm. The fourth
section was dedicated to a description of our test application. Section 5 contains infor-
mation about test strategy, results of those tests are presented in the section 6 and finally
in the section 7 we have recapitulated an approach presented in this paper, according to
further development of the SIA [14].
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2 Stages of Preprocessing Approach

Our preprocessing mechanism is composed of several algorithms. One of them is our
new approach, i.e. calculating density of edges (DoE) and use results of that computa-
tion to restrict the range of interest. Almost each part depends on values of parameters;
results of using different values of them will be presented in the description of tests. We
are going to describe each part of our process, but the main focus is to present the DoE
algorithm.

2.1 Conversion of RGB Image to Grayscale

In digital imaging we use very often a grayscale image. It is caused by the fact that
for many of algorithms the information about the intensity is a sufficient value. It is
also easier to analyze single channel data. One of the ways to convert an image into
grayscale was presented in equation (1) [10] [11].

Y = 0.2126R+ 0.7152G+ 0.0722B (1)

where Y is luminance value and R, G and B are values of respectively red, green and
blue component.

2.2 Median Filtration

There are several methods of filtration; we have decided to use a median filtration. The
main target is to reduce a noise, which is noticeable on almost every image. Median
filter gets all pixels in the matrix in a given size, calculates the median value of them
and sets all pixels in the matrix with the median value. The most important thing is
to establish the proper size of matrix, which will be big enough to remove noise from
image and small enough not to remove significant information [10] [11].

y [m,n] = median {x [i, j] , (i, j) ∈ w} (2)

Where w represents a neighborhood centered around location (m,n) in the image

2.3 Edge Detection

In our approach we have used the Canny edge algorithm invented by John F. Canny in
[1986] [7] [8]. This is a more sophisticated way to detect edges than for example, the
Sobel operator [6] [4]. But of course this operator is used in the Canny edge algorithm.
The kernel of that mechanism uses a multi-stage algorithm. The Canny edge algorithm
is often described by three statements: good detection, good localization and minimal
number of false alarms [9].

To use Canny edge algorithm we have to approximate gradients, in that operation we
use kernels, which are presented in (3) and (4).

KGX =

⎡⎣−1 0 1
2 0 2
−1 0 1

⎤⎦ (3)
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KGY =

⎡⎣ 1 2 1
0 0 0
−1 −2 −1

⎤⎦ (4)

In the next step we have to compute strength of edge, this can be simply achieved by
using the law of Pythagoras (5)

|G| =
√
G2

x +G2
y (5)

Where the Gx is the gradient in x direction and Gy is the gradient in y direction. The
density of edges can be computed using equation (6).

θ = arctan

(
|Gy|
|Gx|

)
(6)

The Canny edges algorithm is known to be very flexible, it could be applied to detect
various types of edges by changing parameters of the algorithm. This type of edge de-
tection is also enough robust. The Canny edges algorithm works with two Tresholdolds
for detecting weak and strong edges. What is important, a weak edge is only taken into
further consideration, when it is connected with a strong edge.

2.4 DOE (Density Of Edges)

This part of the whole process is responsible for restriction of area which will be passed
as input to the GrubCut algorithm. Details of DOE algorithm are described in Section 3.
In a nutshell, the DOE algorithm analyzes the given image after filtration with detected
edges and then divides an image into matrixes with edge pixels. List of matrixes is
analyzed and at the output of DOE algorithm we obtain a restricted area, which should
contain the most important information about the image and will be the most proper
input information for GrubCut algorithm.

2.5 GrabCut Algorithm

The GrabCut algorithm was designed for detection and extraction objects from images.
There are many implementations and versions of this algorithm, but the main idea re-
lies on iterative process of classifying pixels as foreground pixels or background pixels
[1] [2] [3]. In this paper we will not explain the details of the GrabCut algorithm. It is
important that in our process there is no need for human interaction thanks to DOE algo-
rithm. As the input, the GrabCut algorithm expects restricted area of the image, which
should be boundary of area with objects. As aforementioned, our approach assumes that
this area is determined by DOE algorithm.

3 Design of DOE Algorithm

As already mentioned, the DOE algorithm has to analyze an image in order to establish
a subarea of the image, which contains most important information. That area is also
known as ROI (Range of Interest). As the input, DOE algorithm required an image
with detected and marked edges. The DOE algorithm can be presented as an ordered
sequence of activities:
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Fig. 2. Position of DOE algorithm in the whole process

1. Dividing a whole image into subareas
2. Computing a density of edges for each subarea, basing on pixels included into each

of subarea.
3. Extracting areas, which have the biggest value of density of edges.
4. Fetching the most interesting area of an image. This will be used as ROI for Grab-

Cut algorithm.

The best way to show how this process can be realized is to present an excerpt from the
computer program. At the beginning, we need to explain some variables, which are the
part of the input of the algorithm. One of the most important input values is the size of
the singular matrix of density. Number of rows and columns in the matrix of density are
expressed as percentage value of width and height of the input image.

Another input value is the level of acceptance, which implicates the filtering step of
the algorithm. Only those matrixes of density will be accepted and taken into approx-
imation of the ROI for GrabCut algorithm, which are above level of acceptance in the
collection of all significant density matrixes. For example when the level of the accep-
tance is equal 3, then the sorted collection of matrixes will be divided into three parts;
the last most significant two parts will be accepted. The meaning of the level of ac-
ceptance is very important, when it is low, then many matrixes will be accepted, which
implicates that some of noise will influence computation. On the other hand, when the
level is to high, we can lose some of important information.

//Height of subarea
int rowInterval = Convert.ToInt32(image.Height *
getDensityMatrixSize());
//Width of subarea
int colInterval = Convert.ToInt32(image.Width *
getDensityMatrixSize());
//Iterating over rows
for (int row = 0; row < (image.Height - rowInterval);
row += rowInterval)
{
//Iterating over columns
for (int column = 0; column < (image.Width -

colInterval); column += colInterval)
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{
//Creating an object representing rectangle
Rectangle simpleRec = new Rectangle(column, row,

colInterval, rowInterval);
//Creating an object representing subarea of an image
DensityRectangle rec = new DensityRectangle(image,

//If any edge was found in this subarea
if (rec.getSumValue() > 0)
{
//Adding to the collection
densityRecs.Add(rec);

}
}

}
//When number of significant subareas greater then
//DIVISION_FACTOR default 3
if (densityRecs.Count >= DIVISION_FACTOR)
{
//Sorting elements ascending
densityRecs.Sort();
//Index from them significant subareas
//will be selected
int index = Convert.ToInt32(densityRecs.Count /

DIVISION_FACTOR);
//Number of subareas, which will be selected
int count = densityRecs.Count - index;
//Selection fo significant subareas
selectedRecs = densityRecs.GetRange(index, count);

}

4 Design of the Test Application

For tests of the DOE algorithm, we have developed an application, which allows easily
observing the results of each step of the process. In this process, we have to use several
algorithms to achieve expected results. So the ability of observing the results of each
of them was one of the main basic use-cases for this program. Another use-case is
the possibility of changing input parameters. The next requirement was the possibility
of fast developing a new algorithm and getting them easily work consistently in one
framework. The diagram in Figure 3 shows the structure of classes, which allows easily
adding and implementing new algorithms, which will be automatically included in the
framework and provided with standard functionality. The application is written in C#
.NET 4.0.30319 with Emgu.CV-2.3.0. The program was tested on the Windows 7.
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Fig. 3. Class diagram of CBIR 2.0 application

5 Test Strategy

In our tests we have tested several combinations of the input parameters. As already
mentioned, our process contains three basic subprocessing algorithms, which require
proper input values. In the following list we have presented those parts with values of
input parameters, which were tested.
Median filtration:

– Size of the filter {3,5} [pixels]

Canny Edges:

– Tresholdold {100, 120} [intensity]
– Tresholdold Linking {100, 120} [intensity]

DOE:

– Size of the DOE matrix {0.02, 0.05} [percentage so 2% and 5%]

GrabCut:

– Number of iteration {10,15} [unit]

Test combinations:

1. Size of the filter: 3
Tresholdold: 100
Tresholdold Linking: 100
DOE Size: 0.02
Number of iterations: 10
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2. Size of the filter: 5
Treshold: 120
Treshold Linking: 120
DOE Size: 0.05
Number of iterations: 15

3. Size of the filter: 3
Treshold: 120
Treshold Linking: 120
DOE Size: 0.02
Number of iterations: 10

4. Size of the filter: no filtration
Treshold: 120
Treshold Linking: 120
DOE Size: 0.05
Number of iterations: 15

The same image of size [500,333] presented in Figure 4 will be tested in all above four
combinations.

Fig. 4. Original test image

6 Experimental Results

Images in Figure 5 are results of our tests, which were conducted in accordance with
Section 5. Results are grouped in rows, one row for each combination of parameters.
First image in each row presents results after combined process of median filtration,
edge detection and DOE algorithm. The second image represents the result of the Grub-
Cut algorithm, working on data, which had been prepared by DOE algorithm using
different combination of parameters.
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(a) Option (a) DoE (b) Option (a) GrabCut

(c) Option (b) DoE (d) Option (b) DoE

(e) Option (c) DoE (f) Option (c) GrabCut

(g) Option (d) DoE (h) Option (d) GrabCut

Fig. 5. Images with results of tests, using various combinations of input parameters
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7 Conclusions

In our tests we wanted to check how robust is the proposed complex approach and also
the DOE algorithm itself. The most significant dependency between input parameters
and results is of course filtration. That dependency can be noticed in differences be-
tween test b) and test d) in Figure 5. Obviously this behavior strongly depends on the
structure of an image, but in our case, it is better to extract more information than less.
Even when extracted information will contain some noise.

As we can notice, differences between tests in size of the ROI are not significant,
only test b) (Fig. 5) seems to be an exception. It is because of high level of filtration,
which flattens every 25 pixels into one value, which is the median value of them.

Smaller size of the DOE matrix influences the results in that way, that additionally
those parts of the picture will be analyzed, which contain some small but significant
objects or parts of them.

As already mentioned, DOE algorithm was developed to be used in the process of
semantic image analysis. In the process of analyzing images and searching for simi-
larities between them, loss of the significant information is more damaging as passing
through some unimportant information.

Work presented in the paper proved that our approach of using a DOE algorithm as
basis for GrabCut algorithm can be used as automatic alternative with satisfying results.
This conclusion is the milestone and foundation for developing and improving our ap-
proach to analysis of digital images in semantic approach. Thus the DOE algorithm will
be used as one the most important computing parts of SIA (Semantic Image Analysis)
framework [14].
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Abstract. This paper presents the design and implementation of a
novel method for real time material and structure parameters estimation.
Digital image correlation (DIC) and particle filtering (PF) are used for
obtaining the full-field deformations of a structure or model. In order to
take into account all advantages of both methods, new marker design
is proposed. Particle filtering method is also used in combination with
finite element method (FEM) for estimating material and structure pa-
rameters, such as Young’s modulus, by solving inverse problems. Main
algorithm and all of the above methods are implemented in C++. Exper-
iments are carried out on the model of an aluminum frame, using high
resolution industrial camera.

Keywords: computer vision, digital image correlation, finite element
method, particle filtering, sequential Monte Carlo method.

1 Introduction and Motivation

The problem of structural material and structure elements identification is an
important and difficult class of inverse problems in structural mechanics. Iden-
tification is based on a set of measurements on static and dynamic structural
responses. Data can be collected by conventional sensors - strain gauges or ac-
celerometers but it requires extensive knowledge of how these sensors work and
how they should be mounted on the structure. Connection between each sensor
and the data acquisition unit is also required. In this case, data are collected
using computer vision methods with high resolution industrial camera, thus the
organization of the test stand is much simpler and faster. Optical techniques
offer the potential to acquire structure performance data without the need for
installation of conventional sensors, lasers or other devices.

The essence of the research is to combine three powerful computational meth-
ods - digital image correlation (DIC) for full-field displacement measurements
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with high accuracy, finite element method (FEM) for structural analysis
and particle filtering (PF) for dynamic state estimation and digital image
processing.

Digital image correlation is an optical method that is widely used in many
areas of science and civil engineering to measure deformation on an object surface
[1] and it is relatively easy to use in micro scale for mechanical testing of materials
such as steel [2], concrete [3], biomaterials [4] or even paper foils [5].

DIC usage for the displacement measurements in the whole structure or a
complex model is rather rare and usually this method is implemented as part
of the system for Structural Health Monitoring (SHM) [6]. This is due to diffi-
culties in specifying areas of the specimens because each video frame contains
mostly background instead of construction elements. What is more, to ensure
the high level effectiveness of this method, the samples would have to have the
right texture, which is problematic for some materials used in construction. The
proposed method solves this problem by using special markers, very easy to pre-
pare, cheap to manufacture and precede the DIC phase with another step using
particle filters to locate markers and use areas that are applicable for monitoring
displacement with DIC.

A particle filter, also known as a sequential Monte Carlo method (SMC), is a
sophisticated model estimation technique based on simulation. In this method,
each distribution is expressed by many of its realizations, and the trajectory of
each particle in successive prediction stages is simulated by using the assumed
model. At the filtering stage, the resampling with a weight proportional to the
likelihood is performed to get a set of particles that represents the filter dis-
tribution [7,8]. In this paper, the same particle filtering is used twice but with
different types of particles.

Another method used in this research is finite element method (FEM) - a
numerical method for solving differential or integral equations. In this method a
model or a structure is divided into an equivalent system of many smaller units
(finite elements) interconnected to other elements at points called nodes [9]. FEM
can be also successful combined with SMC on field of dynamic state estimation,
to tackle the problem of structural system parameter identification based on a
set of noisy measurements on static or dynamic structural responses. [10]

2 System Design

The central element of the system is the algorithm responsible for displace-
ment measurements and material or structure parameters estimation. Each video
frame taken from camera using uEye Software Development Kit [11] is converted
to IplImage format from OpenCV Library [12], which was tested during the im-
plementation of the previous project of the computer vision based system for
real time traffic sign detection and recognition [13]. Video frames are subjected
to preliminary processing in order to prepare it for the next steps of the main
algorithm. The application was developed in order to allow its use for different
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Fig. 1. Test stand with frame model, uEye camera and strain gauge

structures (frames, trusses and beams) with any number of measuring points
represented by designed markers. Application is fully object-oriented and it was
developed in Microsoft Visual Studio 2010 environment. By introducing a num-
ber of improvements in the algorithm, it is also optimized to operate in real-time.

Video frames are collected by industrial high-resolution USB camera uEye
UI-1495LE-C-HQ equipped with Theia SL183M Ultra Wide Lens. Due to the
limitations of the USB interface and very high resolution of each image (3840
x 2748px), the number of frames processed per second is limited to three. Cal-
culations are performed on a computer with mobile Intel i7 1.86GHz processor
and 4GB of RAM.

2.1 Novel Marker Project

Simultaneous use of two different methods - PF and DIC for detection and
tracking markers, led to the development of a new marker design, which fully
utilizes the advantages of both methods. The marker consists of two elements
- single colored frame which allows for rapid searching for a marker using PF
and narrows the region of interest only to the area of the marker. Interior of
the marker is composed of two kinds of pixels - whites and in the color of the
frame. They are set randomly and allow subsequent use of DIC to track the
location of the marker and determine its movements. The use of PF allows very
fast marker finding, but the tracking of the marker with this method would
have relatively small accuracy. The interior of the marker allows to use digital
image correlation method, which accuracy is much better. Generation of the
described markers is very easy and fast. We can modify the color, size of the
markers and change width of the frame. Markers can be adapted to the specific
case - the size of the structure and the distance of the object from the camera.
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Fig. 2. Different types of proposed marker model

The color of the marker may define its features - whether it is a marker in the
node of the structure, or a marker placed inside the element. Tests were carried
out with markers of size from 10x10mm to 50x50mm and the frame width from
3 to 10mm. Several patterns of the markers are shown in Figure 2.

2.2 Full-Field Displacement Measurement

The first phase of the algorithm is the detection of the markers. Thanks to
the preparation of an application in a fully object-oriented way, work with a
different number of markers is comfortable, and each marker is a separate object,
which has assigned a set of particles, the position of the marker, the maximum
value of the correlation during the displacements measurement and other useful
parameters.

Detection of markers is based on a particle filter with particles which are
represented by pixels with three main components - the intensity of each color
of RGB color space. Reference particle is the pixel with a color similar to the color
of the marker e.g. for red markers reference particle can be p = RGB(255, 0, 0).

For each marker a collection of particles covering the entire image is generated
with a uniform distribution. To avoid repeated recognition of the same marker,
no marker detection is carried out in parallelly, and the occurrance area of next
marker’s particles is disjointed from the whole area containing marker’s particles
previously detected. The process of finding the next marker can start only after
finding all previous ones.

For image resolution 3840x2748px satisfactory results are obtained already
for a population containing only 3000 particles. Searching for markers is a single
process and it does not need to be repeated during the algorithm execution. At
the test stage, the population of particles for each marker was established at
5000, to ensure the correct detection of each marker.

To calculate the weight of particles, parameters of pixel are used, which are
the colors of the three components of the RGB color space. Weight of the particle
is higher, if the color of a pixel represented by this particle is more similar to the
color of the reference particle. At this stage, the density function for a Gaussian
distribution is used, given by following formula:

φμ,σ(x) =
1

σ
√

2π
e(−

(x−μ)2

2σ2 ) (1)
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where the parameter σ is the standard deviation of the distribution and the
parameter μ is the mean of the distribution (also called expected value). Particles
resampling was based on a modified method of the roulette wheel. Weight of each
particle is calculated at this stage and then all particle weights are normalized
to the [0.0; 1.0] interval. After the weights normalization a new population of
particles is created. The value wt is drawn from the [0.0; 1.0] interval using
uniform distribution. From a set of particles, also with uniform distribution, one
particle is drawn. The weight of a drawn particle is compared with wt value
and if the weight of the particle is larger, particle is moved to a new population
of particles. Otherwise, another particle is drawn and compared with wt. The
process takes as long as the new population of particles is just as large as the
population of particles subjected to resampling phase.

In addition, to increase the efficiency of the algorithm, and to avoid conver-
gence to a local minimum, the coordinates of particles are slightly modified with
the integer value of the interval [0.0; resRange]. The above steps are iterated
until all particles assigned to the marker will be moved in the area of selected
dimensions (condition of the population concentration).

After the detection phase, measurement of displacements for each of the found
markers takes place. At this stage, the image correlation method is used. After
the detection phase, each marker is represented by the area containing particles
assigned to the marker. Marker’s area is narrowed to its interior containing two-
color pattern in the middle part of the marker which is suitable for digital image
correlation method. Narrowed area is now a reference image, which displacements
are monitored. To calculate the correlation coefficient between the model f and a
sample g of sizes MxN , the method of Zero Mean Normalized Cross Correlation
is used. It is given by the following formula:

CCZMN =

M∑
i=1

N∑
j=1

((f(i, j)− μf )× (g(i, j)− μg))√√√√ M∑
i=1

N∑
j=1

(f(i, j)− μf )2 ×

√√√√ M∑
i=1

N∑
j=1

(g(i, j)− μg)2

(2)

where μf and μg denote the average luminance of the pattern and the sam-

ple. Calculation of average luminance for the pattern and the sample improves
the results when measurements are made in variable lighting conditions. Best
match sample is determined by the maximum value of the correlation coefficient
(CCZMN ).

To optimize the algorithm performance, modifications of standard method of
correlation are introduced. Search area is not constant and it moves along with
the marker. Thanks to that, it is possible to significantly narrow down the search
area width and height. It drastically reduces the number of iterations performed
during each searching step. Without the introduction of this modification, the
value of parameter searchRange, which defines the size of search area, had to be
established at 30px. In case of using marker tracking, the value may be reduced
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up to 5px. In tests the values of 10px and 15px were assumed. The value of this
parameter is dependent on the dynamics of changes in the structure and should
be inversely proportional to the number of frames processed per second.

2.3 Parameters Estimation

In the second stage, finite element method and particle filtering are used simul-
taneously to determine structure parameters - in this case Young’s modulus of
used material. Single particle is represented by finite element method model with
particular Young’s modulus of the material being used.

Particle filter applied at this stage of the algorithm is very similar to the
particle filter used in the markers search phase. The properties of a single particle
are represented by a single parameter - Young’s modulus, in contrast to a particle
represented by the pixel where three values - the intensity of each color of RGB
color space, are assigned to a single particle.

Fig. 3. Frame finite element model

Each particle is a separate structural model, which is solved by the finite

element method using frame elements. Schematic model of this type of element

is shown in Figure 3.
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Stiffness matrix K of this element is given by formula (3), where L is length
of the element, E is Young’s modulus, A is cross-section area and I is element
cross section property. FEM algorithm was programmed using Armadillo C++
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linear algebra library [14]. Determination of displacement in the structure via
FEM boils down to calculating the nodal displacement vector Q from the giving
equation:

KgQ = R → Q = K−1
g R (4)

where Kg is the assembled stiffness matrix of all elements in global coordinate
system, and R is a defined force vector.

Because the expected value (correct value of Young’s modulus) is unknown,
the filter operating time (the number of generations of a set of particles) is de-
pendent on a modified version of the mean square error. Iterations are performed
until all values assigned to the N particles (pval) are not in range based on mean
value Mval and convergence factor Cval:

[Mval − Cval,Mval + Cval], Mval =
1

N

N∑
i=1

pval (5)

After reaching established convergence, the return value of Young’s modulus is
calculated as the average value for all particles. In order to confirm the cor-
rectness of the results, the tested model of frame was also implemented in the
environment for FEM calculations - Abaqus CAE 6.12 [15].

The tests performed with models containing different number of finite ele-
ments have shown that in the case of loading the frame model with the con-
centrated force applied in the middle of the bolt, it is enough to discretize the
bolt with only two finite elements (the same discretization can be applied for
frame pillars). The number of elements should be increased in the case where
the applied force is located at a different point. This is because the point of force
application in FEM must be located on the boundary of finite elements.

3 Experimental Results

Preliminary tests are performed on the model of the aluminum frame with mark-
ers placed in characteristic points of the structure. Frame model is stressed with
a known load at known position, what causes displacements at each node and
inside the structure elements.Strength value was determined using digital force
gauge Lutron FG-5000A which measures tension and compression in 0.05oz or
1g resolution with 0.2% accuracy.

The first set of tests consisted of measuring the displacement at the point
where force of the known values was applied. Force value varied from 1 to 10N .
The results were compared with results obtained from computer simulation of
the frame model in Abaqus CAE environment. Resolution of the performed
measurements f was set to 0.25mm. It was determined by measuring the width
of the marker on the single video frame. Figure 5 shows obtained results.
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Fig. 4. Application interface

Fig. 5. Vertical displacement in the middle of the frame bolt

The second set of tests was carried out to estimate the value of Young’s
modulus of the used material during the structure loading in different points
with known concentrated force values. Young’s modulus for aluminum is Ealum =
69000N/mm2. Parameter estimation was tested in [0, 300000] range with no a
priori knowledge. The obtained results are presented in Figure 6.

Fig. 6. Young’s modulus estimation

For small values of concentrated force (less than 2N) mean error value is
about 6%. With the increasing value of applied force mean error amounts to 3%.
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4 Conclusion and Future Work

The results clearly confirm the effectiveness of the developed algorithm combin-
ing two methods that require completely different parameters of marker placed
on the structure. We managed to design markers that can be used in case of
simultaneous use of both methods and allow us to take measurements at the
maximum possible accuracy for used camera.

Currently, work and tests have already been underway to increase the number
of parameters estimated at the same time - one of them will be the Poisson
ratio. Moreover, the possibilities of location detection of the applied force and
the effectiveness of the system with measurement noise added are tested.

Work is also underway on communication module implementation in the RS-
232 standard to link our application with the usage of digital gauge meter. This
will allow for the estimation of parameters for each video frame, without entering
the value of the force manually.

Further testing will be conducted on the actual structure of the bridge over
the suburb railway line in Cracow.
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condition monitoring based on optical measurements. Key Engineering Materi-
als 518, 338–349 (2012)

7. Gordon, N., Salmond, D., Smith, A.: Novel approach to nonlinear/non-Gaussian
Bayesian state estimation. In: IEE Proceedings F Radar and Signal Processing,
vol. 140, pp. 107–113. IET (1993)

8. Kitagawa, G.: Monte Carlo filter and smoother for non-Gaussian nonlinear state
space models. Journal of Computational and Graphical Statistics 5(1), 1–25 (1996)

9. Zienkiewicz, O., Taylor, R., Zhu, J.: The Finite Element Method: Its Basis and
Fundamentals, vol. 1. Butterworth-Heinemann (2005)

10. Nasrellah, H., Manohar, C.: Finite element method based Monte Carlo filters for
structural system identification. Probabilistic Engineering Mechanics 26(2), 294–
307 (2011)



Structure Parameters Estimation Using Computer Vision 633

11. IDS-Imaging: uEye Camera Manual (2012), http://www.ueyesetup.com
12. WillowGarage: The OpenCV Library (2012), http://opencv.willowgarage.com
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