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K-Nearest Neighbors

2.1 Introduction

This chapter gives an introduction to pattern recognition and machine learn-
ing via K-nearest neighbors. Nearest neighbor methods will have an impor-
tant part to play in this book. The chapter starts with an introduction to
foundations in machine learning and decision theory with a focus on classi-
fication and regression. For the model selection problem, basic methods like
cross-validation are introduced. Nearest neighbor methods are based on the
labels of the K-nearest patterns in data space. As local methods, nearest
neighbor techniques are known to be strong in case of large data sets and
low dimensions. Variants for multi-label classification, regression, and semi-
supervised learning settings allow the application to a broad spectrum of
machine learning problems. Decision theory gives valuable insights into the
characteristics of nearest neighbor learning results.

2.2 Classification

Classification is the problem to predict discrete class labels for unlabeled
patterns based on observations. Let {(x1, y1), . . . , (xN , yN)} be the set of ob-
servations of q-dimensional patterns X = {x}Ni=1 ⊂ R

q and a corresponding
set of labels Y = {yi}Ni=1 ⊂ R

d. The goal in classification is to learn a func-
tional model f that allows a reasonable prediction of class label y′ for an
unknown pattern x′. Patterns without labels should be assigned to labels of
patterns with known assignment that are similar, e.g., that are close to the
target pattern, come from the same distribution, or lie on the same side of
a separating function. But learning from observed patterns can be difficult.
Training sets can be noisy, important features may be unknown, similarities
between patterns may not be easy to define, and observations may not be
sufficiently described by simple distributions. Further, learning simple func-
tional models can be a difficult undertaking, as classes may not be linearly
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separable and may be difficult to separate with simple rules or mathematical
equations.

Famous classification methods are decision tress, e.g., ID3 and C4.5 [81],
neural networks [93, 96], and SVMs [98, 101]. For an introduction to these
methods, we refer the reader to books like Bishop [12] and Hastie et al.
[40]. SVMs will also briefly be introduced in Chapter 3. In the following, we
concentrate on a simple yet powerful method: the nearest neighbor classifier.

2.2.1 KNN Classifier

Nearest neighbor classification, also known as K-nearest neighbors (KNN), is
based on the idea that the nearest patterns to a target pattern x′, for which
we seek the label, deliver useful label information. KNN assigns the class
label of the majority of the K-nearest patterns in data space. For this sake,
we have to be able to define a similarity measure in data space. In R

q, it is
reasonable to employ the Minkowski metric (p-norm)

‖x′ − xj‖p =

(
q∑

i=1

|(xi)′ − (xi)j |p
)1/p

, (2.1)

which corresponds to the Euclidean distance for p = 2. In other data spaces,
adequate distance functions have to be chosen, e.g., the Hamming distance in
B
q. In the case of binary classification, the label set Y = {1,−1} is employed,

and KNN is defined as

fKNN(x
′) =

{
1 if

∑
i∈NK(x′) yi ≥ 0

−1 if
∑

i∈NK(x′) yi < 0
(2.2)

with neighborhood size K and with the set of indices NK(x′) of the K-nearest
patterns.

The choice of K defines the locality of KNN. For K = 1, little neighbor-
hoods arise in regions, where patterns from different classes are scattered. For
larger neighborhood sizes, e.g. K = 20, patterns with labels in the minor-
ity are ignored. Figure 2.1 illustrates the difference in classification between
KNN with K = 1 and K = 20 on a simple 2-dimensional data set consisting
of two overlapping data clouds of each 50 Gaussian-sampled red and blue
points. The data space locations that would be classified as blue are shown
in bright blue, while areas classified as red are shown in white. For K = 1,
the prediction is local. For example, a blue point that is an outlier from the
blue class is located at the center of the red cloud. For large K, the clas-
sifier generalizes ignoring small agglomerations of patterns. KNN induces a
Voronoi tessellation in data space. In case of large data sets, KNN has to
search for the K-nearest patterns in the whole space, but can already yield a
good approximation based on the K-nearest neighbors in a scanned subset.
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Fig. 2.1 A comparison of KNN classification on two Gaussian-based data clouds
for two neighborhood sizes ((a) K = 1 and (b) K = 20). For small neighborhoods,
KNN tends to overfit becoming local, while KNN generalizes for larger K ignoring
small agglomerations of patterns.

The question arises, how to choose K, i.e., which neighborhood size
achieves the best classification result. This problem is also known as model
selection, and various techniques like cross-validation can be employed to
choose the best model and parameters (cf. Section 2.5).

2.2.2 Multi-class K-Nearest Neighbors

KNN can also be applied to multi-class classification problems. For an un-
known pattern x′, KNN for multi-class classification predicts the class label
of the majority of the K-nearest patterns in data space

fKNN(x
′) = argmax

y∈Y

∑
i∈NK(x′)

I(yi = y) (2.3)

with indicator function I(·) that returns one, if its argument is true1 and
zero otherwise. This definition will also be used for the ensemble classifier in
Section 3.4.

2.3 KNN Regression

Closely related to classification is regression. Functional regression models
map patterns to continuous labels, i.e., to a subspace of R

d. Although in
practice, machine accuracy only allows a mapping to a discrete set of num-
bers, the difference becomes obvious: the set of labels is very large in com-
parison to classification problems, where the set of labels is restricted to

1 i.e., label yi of pattern xi is y.
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few elements. The problem in regression is to predict labels y′ ∈ R
d for

new patterns x′ ∈ R
q based on a set of N observations, i.e., labeled pat-

terns {(x1,y1), . . . , (xN ,yN )}. The regression learning problem will be de-
rived from a statistical learning perspective in Section 2.4.

The goal is to learn a function f : Rq → R
d known as regression func-

tion. For an unknown pattern x′, KNN regression computes the mean of the
function values of its K-nearest neighbors

fKNN(x′) =
1

K

∑
i∈NK(x′)

yi (2.4)

with set NK(x′) containing the indices of the K-nearest neighbors of x′. The
idea of averaging in KNN is based on the assumption of locality of functions
in data and label space. In local neighborhoods of xi, patterns x

′ are expected
to have similar continuous labels f(x′) like yi. Hence, for an unknown x′ the
label must be similar to the labels of the closest patterns, which is modeled by
the average of the label of the K-nearest patterns. KNN has been proven well
in various applications, e.g., in the detection of quasars based on spectroscopic
data [33].

Also in regression, the neighborhood size K of KNN is an important pa-
rameter. For K = 1, KNN regression overfits to the label of the nearest
neighbor of x′, for K = N it averages over all patterns Figure 2.2 shows
a comparison between KNN regression with the two neighborhood sizes (a)
K = 2 and (b) K = 5. Weighted KNN regression induces plateaus.

K = 2, uniform

KNN
patterns
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K = 5, uniform
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0.0
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(b)

Fig. 2.2 Illustration of uniform KNN regression for (a) K = 2 and (b) K = 5

2.4 Statistical Learning Theory

From statistical learning theory, we can get insights into the quality a func-
tional model should have. We assume that observed patterns and labels can be
modeled with random variables. This allows to model noise and fluctuations.
In the following, we consider the univariate case. We assume two continuous
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random variables: X for patterns and Y for labels, which can be described
by probability distribution functions, i.e,. p(X = x) and p(Y = y), as well
as the joint distribution p(X = x, Y = y). The task in supervised learning is
to learn a functional model f , which predicts the correct label y for a given
pattern x. A loss function L(y, f(x)) allows to measure the error, which is
the deviation of the correct label and the prediction of the functional model.
The task is to learn a model with minimal error. Often, the square loss is
employed

L(y, f(x)) = (y − f(x))2. (2.5)

The probability distribution functions allow the evaluations of the quality of
the functional model f with the expected prediction error

Eexp(f) = 〈L(Y, f(X))〉 =
∫ ∫

L(y, f(x))p(x, y)dxdy, (2.6)

while 〈·〉 is defined as expected value of a random variable. Now, we can
replace the joint probability density function by the Bayes expression

p(x, y) = p(y|x)p(x) = p(Y = y|X = x)p(X = x), (2.7)

becoming

Eexp(f) =

∫ (∫
(y − f(x))2p(y|x)dy

)
p(x)dx (2.8)

with the square loss. We seek for the best functional model f∗ that minimizes
the empirical risk Eexp(f). Minimization of Eexp can be accomplished by
point-wise minimization of the inner integral for each x yielding the regression
function

f̂∗(x) =

∫
yp(y|x)dy =

∫
y
p(x, y)

p(x)
dy = 〈y|x〉. (2.9)

The consistency criterium postulates that the empirical risk converges to zero
in the limit of an infinite number of training examples. The problem to find
the best functional model is also known as model selection problem. The
optimal functional model f∗ could easily be found, if we knew P (x, y), and
if we searched in the set of all functions F . But as we have to restrict to
minimizing Equation 2.8, it is not reasonable to search in F . Instead, we
choose a parameterized model (e.g. KNN) that represents a smaller function
space F ⊂ F and to minimize the empirical risk w.r.t. this model

f∗ = argmin
f∈F

Eemp(f). (2.10)

It is not very probable that the true optimal model f∗ lies in F . On the
one hand, it is reasonable to increase the function space. On the other hand,
we have to avoid functions that only reconstruct the observations, e.g., that
return f(xi) = yi for i = 1, . . . , N and yield false values, e.g., the opposite
class label in binary classification for all patterns we have not observed yet.
Such an effect is known as overfitting.
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The increase of function space F , from which f is chosen, may be rea-
sonable to get closer to the true functional model. This is also known as
increasing the capacity of the model. But to avoid overfitting, it is often suf-
ficient to penalize the complexity of model f with a regularizer, which can
be a functional norm ‖f‖. Then, the regularized risk

Ereg(f, λ) = Eemp(f) + λ‖f‖ (2.11)

is minimized, where λ ∈ R
+ is known as regularization parameter balancing

between empirical risk minimization and smoothness of the function. From
the perspective of KNN, we get a direct solution of this formulation. The
expectation is approximated by averaging over training patterns. For large
training set sizes N , conditioning of f is better than for small N , as points
are likely to be close to x. As Bishop [12] states, for N, k → ∞, i.e., k/N →
0 we get fKNN(x) → E(Y |X = x). But the curse of dimensionality (cf.
Section 2.6) weakens this argument. KNN is an excellent model for (1) low-
dimensions and (2) large training set sizes. But in case of high-dimensional
data spaces or few patterns, extensions of KNN are necessary [12, 40].

2.5 Cross-Validation

The problem in supervised learning is to find an adequate model f and its
parameterizations. To avoid overfitting, an often employed model selection
strategy is cross-validation. The idea of cross-validation is to split up the N
observations {(xi,yi)}Ni=1 into training, validation, and test set. The training
set is used as basis for the learning algorithm given a potential parameter
set. The validation set is used to evaluate the model given the parameter set.
The optimized model f̂∗ based on a training process with cross-validation is
finally evaluated on an independent test set.

Minimization of the empirical risk on the validation set is basis of the
training phase. For optimization, weak strategies like grid search are often
sufficient. Finally, the approach is evaluated on the test set that has not been
used for training model f . An advanced strategy to avoid overfitting is k-
fold cross-validation that repeats the learning process k times with different
training and validation sets. For this sake, the data set is slit up into k disjoint
sets. In each step, model f employs k − 1 sets for training and is evaluated
on the remaining validation set. The error is aggregated to select the best
parameters of model f on all k validation sets and is called cross-validation
score. Advantage of this procedure is that all observations have been used for
training the model and not only a subset of a small data set.

In case of tiny data sets, the number of patterns might be too small to
prevent that model f is not biased towards the training and validation set.
In this case, the k-fold cross-validation variant k = N called leave-one-out
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cross-validation (LOO-CV) is a recommendable strategy. In LOO-CV, one
pattern is left out for prediction based on the remaining N − 1 training
patterns. The whole procedure is repeated N times.

2.6 Curse of Dimensionality

Many machine learning methods have problems in high-dimensional data
spaces. The reason is an effect also know as curse of dimensionality or Hughes
effect. In high-dimensional data spaces, many patterns are required to cover
the whole data space, and our intuition often breaks down. Hastie et al. [40]
gives interesting arguments for this effect that we review in the following.

Let us assume we sample points uniformly in the unit hypercube. The
volume of the q-dimensional unit hypercube is 1q. Let r be the hypercube
edge length of a smaller hypercube corresponding to the volume of the unit
hypercube we want to capture. Then, rq is its volume and at the same time
the volume fraction v of the unit hypercube v = rq. Hence, r = v1/q, which for
example means that in q = 10 dimensions we have to cover r = 0.11/10 ≈ 0.8
of each variable to cover 10% of the volume of the unit hypercube with labeled
patterns. In other words, covering 0.8 of each dimension with points means
that still 90% of the 10-dimensional hypercube is empty.

2.7 Nearest Neighbor Queries

The search for nearest neighbors is a frequent problem in machine learning.
If we have a nearest neighbor query for a pattern x′, a simple, brute-force ap-
proach is to test the distance to each other pattern ‖x′−xi‖2 for i = 1, . . .N ,
with x′ �= xi in O(N) time. But there are various possibilities to accelerate
the nearest neighbor queries. If more than logN queries are necessary, sort-
ing all pattern w.r.t. their distance may be reasonable, e.g., if K > logN
for KNN. Sorting can be accomplished in the average case in O(N logN),
e.g., with Quicksort, but in O(N2) in worst case. Another option might be
appropriate for high-dimensional patterns. Computing the distances usually
means to sum up distance values per dimension. The computation of a nearest
neighbor request can be stopped, if the maximum distance to the previously
computed K-nearest patterns is exceeded.

The employment of efficient data structures like k-d trees [9] and balltrees
that partition the data space can result in O(logN) neighborhood requests
for certain data distributions and lower dimensions. Figure 2.3 illustrates
binary space partitioning trees. Every non-leaf node of a k-d tree induces a
hyperplane that splits the data space into two parts. Each subtree represents
the corresponding subspace. A k-d tree is constructed by first sorting the
patterns w.r.t. the first dimension. The median of the sorting result is taken
as pivot element and represents a node. Elements left of the node belong to
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the left subtree, elements right of the node to the right subtree. Then, the
two groups are sorted w.r.t. the second dimension. The process is recursively
repeated until the corresponding sets consist of one element. If the data is
smoothly (e.g. uniformly) distributed, half of the patterns can be excluded
for each node resulting in a neighbor query lying in O(logN). Building a k-d
tree takes O(N logN) time in average. Adding and removing of elements also
take O(logN) time.

Experiments have shown that balltrees show better results than k-d trees,
when the data is clustered, sparse, or has extra structure [84]. In this case,
k-d trees may fall back to O(N) runtime for one neighbor query. A ball in
Euclidean space is the region bound by a hypersphere. It can be represented
by center coordinates and radius. A balltree is a binary tree, whose nodes
correspond to the smallest balls that contain all balls that belong to nodes
of its subtrees. The balls of a balltree may intersect and do not need to
cover the entire data space, which makes them applicable to sparse and non-
smooth data. For a discussion on balltree construction algorithms, we refer
to Omohundro [84] and Hastie et al. [40].
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Fig. 2.3 Illustration of binary space partitioning trees: (a) If the binary tree is a k-d
tree, (b) its nodes induce linear borders and divide the data space into half-spaces,
while (c) a balltree defines a hierarchy of balls

2.8 Nearest Neighbor Variants

KNN is a technique with a long tradition. It has first been mentioned by Fix
and Hodges [28] in the fifties in an unpublished US Air Force School of Avi-
ation Medicine report as non-parametric classification technique. Cover and
Hart [21] investigated the approach experimentally in the sixties. Interesting
properties have been found, e.g., that for K = 1 and N → ∞, KNN is bound
by twice the Bayes error rate. Many variants of KNN have been presented in
the past. Two variants are presented in the following, and a semi-supervised
KNN modification is presented.
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2.8.1 Model-Based KNN

The idea of model-based KNN is to replace the training set by a set of refer-
ence points (or codebook vectors) that achieve the same prediction results.
This concept is related to the landmark variant of unsupervised kernel regres-
sion, which will be introduced in Section 4.9.5. The collection of landmark
points is called model. The selection of a set of landmarks is treated as opti-
mization problem, i.e., we have to search for the optimal subset of landmark
vectors that achieve the same nearest neighbor result as KNN on the com-
plete set of patterns. First, a similarity matrix from the data set is computed.
All labels of yi are set to ungrouped. Then, we seek the neighborhood that
covers the largest number of neighbors with the same label. Their label is
set to grouped. The last steps are repeated until all labels are set to grouped.
The resulting model contains a selection for landmark vectors that can be
employed as surrogate for the original KNN model.

2.8.2 Distance-Weighted KNN

KNN induces locally constant outputs. From the optimization perspective,
this means we get an output space with plateaus: for neighborhood size K
and N patterns in KNN regression,

(
N
K

)
different output values are possible.

Plateaus can hinder optimization methods from a fast approximation of the
optimal solution, as not much information about promising search directions
can be gained during optimization. Bailey and Jain [5] introduced distance-
weighted KNN rules in the late seventies to smooth the prediction function
weighting the prediction with the similarity Δ(x′,xi) of the nearest patterns
xi with i ∈ NK(x′) to the target x′

fwKNN(x′) =
∑

i∈NK(x′)

Δ(x′,xi)∑
j∈NK(x′)Δ(x′,xj)

yi. (2.12)

Patterns close to the target should contribute more to the prediction than
patterns that are further away. Similarity can be defined with the distance
between patterns, e.g. by

Δ(x′,xi) = 1/‖x′ − xi‖2. (2.13)

Model fwKNN introduces a continuous output. Figure 2.4 shows the KNN
prediction based on KNN regression in the weighted variant on the trigono-
metric function. Weighted KNN regression interpolates between the points
in contrast to the uniform variant (cf. Figure 2.2).

Also weighted KNN maps to a discrete number of solutions. Machine ac-
curacy may restrict the output space to, e.g., 264 in case of 64 bits used.
Uniform KNN restricts the number of possible output values to

(
N
K

)
. As a

final remark, we state that for K = N we take every pattern into account
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Fig. 2.4 Illustration of weighted KNN regression for (a) K = 2 and (b) K = 5

fwKNNK=N (x
′) =

N∑
i=1

‖x′ − xi‖2∑N
j=1 ‖x′ − xj‖2

yi. (2.14)

resulting in a simplification that does not afford the computation of the near-
est neighbors.

2.8.3 Propagating 1-Nearest Neighbor

Propagating 1-nearest neighbor is an approach for semi-supervised learn-
ing [116]. In semi-supervised learning, we have given a set of labeled patterns
L = {(x1, y1), . . . , (xl, yl)} and a set of unlabeled patterns U = {x̃1, . . . , x̃u}.
The idea of semi-supervised learning is that the unlabeled data enriches the
learning process by yielding implicit information about the underlying data
distributions. Propagating 1-nearest neighbor works as follows. In each step,
the unlabeled pattern closest to any of the (already) labeled patterns is se-
lected

x̃∗ = min
x̃∈U

min
x∈L

‖x̃− x‖2. (2.15)

Its label y is determined by the label of the nearest neighbor x in the set of
labeled patterns L. Pattern (x̃∗, y) is added to L and removed from U . The
algorithm terminates, when U is empty.

2.9 Conclusions

In this chapter, we gave an introduction to basic principles in machine learn-
ing, concentrating on supervised learning and nearest neighbor methods.
Classification is the prediction of discrete class labels based on observed
pattern-label pairs. Regression is the prediction of continuous values based
on pattern-label observations. Nearest neighbor approaches for classification
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and regression rely on the label of the K-nearest patterns in data space. In
supervised learning, overfitting may occur. It can be prevented by regular-
ization and cross-validation. Regularization is a method to avoid that func-
tional models become too complex, while cross-validation avoids overfitting
to small data sets. LOO-CV is a variant with k = N . Classification becomes
difficult in high-dimensional data spaces, known as curse of dimensionality
or Hughes effect. In case of nearest neighbor methods, the training set size
has to be increased to improve the learning result. KNN variants have been
introduced: from distance-weighted KNN to propagating 1-nearest neighbor
for semi-supervised learning scenarios.
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