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Abstract

The growing information infrastructure in a variety of disciplines involves
an increasing requirement for efficient data mining techniques. Fast dimen-
sionality reduction methods are important for understanding and processing
of large data sets of high-dimensional patterns. In this work, unsupervised
nearest neighbors (UNN), an efficient iterative method for dimensionality
reduction, is presented. Starting with an introduction to machine learning
and dimensionality reduction, the framework for unsupervised regression is
introduced, which is the basis of UNN. Algorithmic variants are developed
step by step, reaching from a simple iterative strategy in discrete latent spaces
to stochastic kernel-based submanifolds with independent parameterizations.
Experimental comparisons to related methodologies taking into account real-
world data sets and missing data scenarios show the behavior of UNN in
practical scenarios.



Acknowledgements

First, I like to thank Michael Sonnenschein and Hans-Jürgen Appelrath at
the Department of Computing Science in Oldenburg for their great sup-
port. I like to thank the German Research Foundation (Deutsche Forschungs-
gemeinschaft) and the Präsidium of the Carl von Ossietzky Universität Old-
enburg for the financial support while writing this work. Further, I like to
thank all graduate students, postdocs, professors, and mentors I have been
working with since the beginning of my research activities. I had many inter-
esting discussions and research collaborations with Fabian Gieseke, Sascha
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1

Introduction

1.1 Artificial Intelligence

Artificial intelligence (AI) belongs to the most interesting and dynamic areas
in computer science. With a focus on the imitation and creation of intelligent
behavior by machines and robots, AI is an area with great achievements,
but also disappointments of early expectations. The discipline AI can be
divided into a number of subfields like reasoning, pattern recognition, plan-
ning and learning. Many classic AI algorithms are based on advanced search
techniques, as in many cases planing and reasoning corresponds to searching
in a solution space. Examples reach from simple search strategies in graphs
like breadth-first and depth-first search to advanced reinforcement strategies
for learning of complex behaviors in uncertain environments. Many AI re-
search objectives aim at the solution of special problem classes. Subareas like
speech processing have shown impressive achievements in recent years that
come close to human abilities.

The research on AI is strongly related to philosophical questions. The goal
of weak AI is to program machines that imitate human behavior. The goal
of strong AI is to program machines that do not only imitate humans, but
think like humans. In spite of the progress in neuroscience, in practice, we are
far away from this goal, and the question arises, if it will ever be achieved.
Many AI researchers think that an intelligent machine can be constructed
and human thinking can be achieved, if the processes of neural information
processing are emulated.

The area of computational intelligence (CI) is related to AI and com-
prises nature-inspired algorithms. The motivation for the imitation of meth-
ods from nature is that many interesting problem solving strategies can be
observed in biology like evolution, and natural neural networks. Many com-
plex problems can hardly be treated mathematically. The strict mathemati-
cal modeling of real-world problems often induces very large solution spaces.
Classical mathematical models have problems with noise and uncertainty.
Nature has evolved systems able to cope with these challenges. CI methods

O. Kramer: Dimensionality Reduction with Unsupervised Nearest Neighb., ISRL 51, pp. 1–9.
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are inspired by natural information processing and designed to solve such
problems. The classical fields are evolutionary computing, artificial neural
networks and fuzzy systems. Evolutionary methods are inspired by the nat-
ural process of evolution, i.e., recombination, mutation, and selection. Evo-
lutionary processes can be applied as optimization methods, i.e., to solve
numerical or combinatorial optimization problems. Even the evolvement of
programs called genetic programming is possible. Artificial neural networks
are inspired by information processing of natural neural networks like the
human brain. Biological neurons are modeled as artificial neurons with ex-
citations, firing, and thresholds. Many artificial neural networks are applied
to data mining task. The approach to imitate natural neural networks close
to the biological counterpart is still an ambitious research task. The field
of neural networks is strongly related to data mining and machine learning,
e.g., via the famous support vector machines, whose concept is related to
Rosenblatt’s perceptron. Research in neural networks got stuck due to the
failure of single layer perceptrons in learning the simple XOR-problem. The
third branch of CI is fuzzy logic that offers a formalism for representing real-
world knowledge with uncertainty. It allows to cope with uncertain linguistic
terms and expressions. Fuzzy logic has become popular, because it turned
out to be an easy to apply inference method and powerful controller. Fuzzy
controllers are successful and interpretable methodologies in many engineer-
ing applications. Emerging fields of CI are swarm intelligence inspired by
natural swarms like ant colonies and flocks of birds, and artificial immune
systems.

1.2 Machine Learning

Many disciplines in our modern information society are based on collecting
high-dimensional patterns: from astronomy to psychology, from civil engi-
neering to social web services. Digitizing the world often means that high-
dimensional patterns are generated. The collection and understanding of data
allows us to improve the efficiency of processes in a variety of domains. Al-
gorithms are required that are able to process the data sets efficiently. There
are numerous examples that reflect the importance of the understanding of
large data sets. The sensor quality is steadily improving. This requires the
development of dimensionality reduction methods that allow an efficient data
analysis process.

Astronomy is a good example for the growing demand for efficient dimen-
sionality reduction methods. Observations in astronomy helped to understand
processes in our universe and have been a fruitful source for new theories in
physics. Recent developments affect the improvement of the quality of tele-
scopes. Advanced techniques in imaging and an enormous increase of the
number of telescopes leads to an explosion of available data, both in terms of
dimensionality of patterns and of their number. Modern telescopes produce
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tera-, some even petabyte of data each night. This development increases the
demand for fast and efficient data mining techniques that allow the physicists
to understand and automatically interpret the data.

There are many task that can be accomplished with collected data. Sort-
ing patterns, visualizing, recognizing structures, learning functional models
for prediction of labels for unknown observations – the list of problem classes
and of methods seems to be overwhelming at first. But when having a closer
look, many concepts and methods are similar to each other. For beginners,
it is not easy to get a complete overview, as methodologies and modeling
approaches sometimes come from very different disciplines: analysis, linear
algebra, stochastics, combinatorics, optimization, cognitive science, and arti-
ficial intelligence. For a thorough understanding of data mining processes, a
deeper knowledge of the application domain is required.

1.3 Supervised Learning

The objective of supervised machine learning methods is to learn a functional
model f from observations to derive relationships, e.g., between patterns and
labels. The two most important machine learning problem classes are super-
vised and unsupervised learning. Supervised methods are based on observed
features and corresponding labels. Prediction means that observations of pat-
terns and corresponding labels are used to determine labels of unknown pat-
terns. If the labels are discrete, the learning problem is called classification
problem, because patterns are assigned to classes (a discrete label is called
class label). If labels are continuous, the task is a regression problem. An im-
portant questions in machine learning is how a pattern is defined. Basically,
a pattern consists of features that have been recorded and collected, e.g.,
from sensors, cameras, microphones, but also non-physical data sources like
questionnaires or web surfing behavior. But in applications, it often makes
sense to preprocess the data, e.g., to reduce noise. In Chapter 5, I will employ
techniques that allow learning in the presence of noise.

If patterns xi ∈ R
q with i = 1, . . . , N are observed with labels yi, the set

of pattern-label-pairs (x1, y1), . . . , (xN , yN ) can be used to train a functional
model f . The label can be a discrete class label or a continuous value yi ∈ R.
As the true distribution of patterns and labels is typically not known, the
search for f can be performed by minimizing the empirical risk (cf. Chap-
ter 2) based on the available observations with loss function L(·) measuring
the deviations between predictions f(xi) and labels yi. This problem is also
known as model selection. The optimal result is guaranteed, if the search
takes place in the set of all functions F . In practice, it is not reasonable to
search in the whole set F . Instead, it is reasonable to choose a certain method
corresponding to a function subset F ⊂ F and to optimize its free param-
eters w.r.t. the empirical risk resulting in model f . If the function space F
is large, overfitting may occur, and it is a reasonable approach to restrict it
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by penalizing the complexity of model f with a regularizer, which is often a
functional norm ‖f‖. Then, the objective becomes to minimize the regular-
ized risk balancing between empirical risk minimization and smoothness of
the function.

A comparatively simple classification method is the K-nearest neighbor
(KNN) classifier [28]. For an unknown pattern xj , it assigns the class label
of the K-closest patterns in data space. For this sake, a distance measure
has to be defined in the space of patterns. In R

q, it is reasonable to employ
the Minkowski metric (p-norm). In other solution spaces, adequate distance
functions have to be chosen, e.g., the Hamming distance in B

N . The choice
of K defines how local KNN is. Further prominent classification methods are
decision tress like ID3 [81], backpropagation networks [93, 96], and support
vector machines (SVMs) [98, 101]. Figure 1.1 shows the learning result of
a two-class SVM with radial basis function (RBF) kernel on (a) the OR-
problem and (b) the XOR-problem that is not linearly separable. The XOR-
problem led to a stagnation in neural network research in the nineties, as
the one-layer perceptron fails to learn non-separable data sets. For a detailed
introduction to machine learning, I refer the interested reader to books like
Bishop [12] and Hastie et al. [40].

SVM on OR-Problem

(a)

SVM on XOR-Problem

(b)

Fig. 1.1 An SVM classifier with RBF kernel on (a) the OR and (b) the XOR-
problem, which is not linearly separable

The question arises how to choose the parameters of supervised learn-
ing methods, e.g., kernel parameters of an SVM and neighborhood sizes of
KNN. Various techniques like cross-validation can be used to choose the best
model. Cross-validation divides the set of observed patterns into training and
validation sets and successively computes the error w.r.t. different settings
to avoid overfitting. Outlier or novelty detection is a special variant of su-
pervised learning. The task is to learn an estimator of patterns with given
labels and to let this classifier determine, if novel patterns belong to the same
distribution or if they can be classified as outliers.
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1.4 Unsupervised Learning

In the unsupervised learning scenario, no labels are given. The learning task
is to capture as much information as possible from the intrinsic structure of
the data in the learning result. Clustering is a famous example for learning
without a teacher or label, respectively. Patterns that lie closely together
in data space form groups also known as clusters. The task of clustering
algorithms is to detect these groups autonomously, only based on the intrinsic
structure of the data. A famous and efficient clustering algorithm is K-means.
It is based on distributing codebook vectors in data space such that they lie
in the centers of potential clusters. The algorithm works iteratively in two
steps. First, patterns are assigned to their closest codebook vector. Second,
new codebook vectors become the novel cluster centers.

The intrinsic dimensionality of data is often lower than the actual dimen-
sionality. Substantial information may only be present in a subset of fea-
tures. In this case, the selection and the computation of high-level features
is reasonable. If the importance of particular features is known in advance,
one can significantly reduce the data space size by feature selection. Oth-
erwise, dimensionality reduction methods can be applied. Their task is to
compute low-dimensional features maintaining important properties of their
high-dimensional counterparts. Preservation of topological properties is a
main objective in dimensionality reduction, i.e., to maintain neighborhoods
and distances of data space in the low-dimensional latent space. Chapter 4
will introduce dimensionality reduction in detail. There are many application
domains for dimensionality reduction problems in practice. Two examples will
be presented in the following.

1.5 Monitoring of Wind Time Series

In the following, I give two examples for dimensionality reduction from our
recent projects. Sustainability is an important objective due to increasing
energy demands and limited resources. In the field of power production and
consumption, methods are required that improve energy efficiency. Predic-
tion belongs to the most important task. The better power consumption and
production can be predicted, the more efficient energy systems are. To guar-
antee electricity supply, overcapacities are necessary. But this reserve energy
can be reduced to a minimum, if a precise forecast of demand and production
is available.

The extension of renewable energy resources and the growing information
infrastructure allow monitoring of energy resources with high resolutions. As
wind is a volatile resource, state observation has an important part to play
for grid management, fault analysis and planning strategies of grid opera-
tors. High-dimensional time series are usually difficult to understand and to
visualize. The existing infrastructure of wind turbines can be used to learn
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statistical models and for monitoring of energy production. For visualization
of wind time series, we employed self-organizing maps (SOMs) that will be
introduced in Chapter 4. A SOM-based mapping to symbols allows the appli-
cation of pattern recognition techniques, e.g., dynamic time warping [77, 111]
for the recognition of critical time series and alert states.

To give an example, I visualize high-dimensional wind energy time series
of a wind park in Tehachapi, California, with SOMs of different sizes [68].
I employ a data set from the US National Renewable Energy Laboratory
(NREL) [89] consisting of 20 grid points (a grid point usually comprises
ten wind turbines). These are randomly chosen and are aggregated to 20-
dimensional patterns. For a better readability, I concentrate on the visu-
alization of a period of seven days, corresponding to approximately 1,000
measurements, one every 10 minutes. The two sequences of Figure 1.2 show
the time series visualization of 20-dimensional grid points of Tehachapi. The
following steps have been conducted:

• The time series of 1, 000 measurements of 20 grid points have been allo-
cated to N = 1000 patterns that are 20-dimensional.

• Two SOMs (2 × 2 / 10 × 10) have been trained for 100 / 500 training
cycles.

• In the original order, the 1,000 patterns of a test sequence are presented
to the trained SOM, and the colors of the corresponding winner neurons
are used for sequence visualization along the time axis.

The upper part of Figure 1.2 shows the visualization based on the 2×2-SOM
with 100 learning cycles to the output of a 10 × 10-SOM with 500 learning
cycles. Both SOM-training results lead to structurally similar topological
mappings. The color assignments may vary gradually in different runs, as the
training is a non-deterministic process.

It can be observed that both sequence visualizations share similar color
changes, while the larger SOM allows a finer resolution of time sequence
states. The green Part A left to the middle of both sequences is a period,
when the wind is almost not blowing. The corresponding segments of both
sequences employ similar colors. In contrast, Part B shows a segment with
the same color generated by the 2 × 2 SOM, but varying colors in case of
the 10 × 10-SOM. The latter is able to visualize differences with a higher
resolution in the same period. For interpretation purposes, the SOM allows
a backward mapping by showing the neural weights corresponding to the
multi-dimensional patterns that represent the system states.

1.6 Gesture Recognition

The understanding of human motions is an important research field, e.g., in
healthcare and robotics. A special task is the recognition of manual actions
like hand movements, postures, and gestures. Human motions can be under-
stood as multi-dimensional time series data. I show a problem from gesture
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Tehachapi, 2 x 2 SOM

Tehachapi, 10 x 10 SOM

time (1000 steps)

Western Area, 5 x 5 SOM

A B

Fig. 1.2 Upper two sequences: Visualization of time series of 20 wind spots in the
area of Tehachapi. The sequences are 20-dimensional time series of 1, 000 steps,
starting from January 2006. The results are generated with a 2× 2-SOM with 100
learning cycles and a 10 × 10-SOM with 500 learning cycles. Lower part: Visual-
ization of time series of 20 randomly chosen wind spots in the whole area of the
western wind data set, i.e., Nampa, Salt Lake City, Casper, Fort Collins, Colorado
Springs, Amarillo, Carlsbad in Mexico, Las Vegas, Palm Springs, and Tehachapi
using a 5× 5-SOM.

recognition as second example for dimensionality reduction. Manual intelli-
gence is an important task in human-computer interaction and robotics, see
Ritter et al. [53]. Hands are the most important manipulators in a human’s in-
teraction with the environment. Data can be captured from multiple sources,
e.g., acceleration sensors, cameras, hand gloves or visual marker systems.

In our experiment [77], we were interested in analyzing everyday tasks
like pouring a cup of milk and writing into a book. To record the manual
actions, we employed a Vicon system capturing 3D spatial data. Vicon is a
digital optical motion capture system that allows high-precision 3D object
tracking [1]. Our setup consists of a cage of length 2.1m, width 1.3m, and
height 2.1m that employs 14 MX3+ cameras capturing at 200 frames per
second. Reflective markers were placed near the tips of each finger, on each
knuckle, and on the back of the hand (cf. Figure 1.3). After translation of the
coordinates into time series, reasonable features have been computed. The
question arises, what the best features are to describe manual motions. We
concentrated on features like inclination of the hand, i.e., the angle between
the x-y-plane and the axis going through the index finger knuckle and baby
finger knuckle markers. Other features are magnitudes of velocities, angles
between successive velocity vectors, or the average distance of the five finger
tip markers to the barycenter.

After recording of the features and the feature extraction process, dimen-
sionality reduction methods have been employed that allow to assign the



8 1 Introduction

Fig. 1.3 Example of manual action scenario: a carton of milk is grasped, picked
up, and milk is poured into a cup. The lower figures show the corresponding visu-
alization of the markers in Nexus [1], a software program from Vicon. The high-
dimensional gesture patterns are mapped to symbols via dimensionality reduction,
and gestures are recognized via string matching.

high-dimensional patterns to symbols. A successful approach was the em-
ployment of a SOM, cf. Section 4.4. In a trained SOM, each neuron can be
understood as symbol such that gestures become sequences of symbols. Fur-
ther methods have been integrated into the system for comparison. For the
string matching process, we used dynamic time warping [111], which allows
to cope with insertions and deletions of symbols. In a training phase, a set of
sequences of reference motions have been recorded. In the recognition phase,
movements that are similar to the motions in the training set are performed
consecutively and in arbitrary order. The string matching approach was able
to identify most of the training motions. Unknown movements that have not
been shown in the training phase have successfully been assigned to the most
similar training set motions.

The adaptation of dimensionality reduction algorithms to subsequent pro-
cessing with symbolic algorithms is an important challenge. An interesting
example is the design of cognitive systems that collect high-dimensional sen-
sorimotor data. But the high-dimensional perception has to be translated into
discrete symbols for processing of symbolic algorithms. From this perspec-
tive, the mapping from high-dimensional data to symbols is called symbol
grounding. Symbol grounding is about whether these systems can, based on
this data, construct symbols that serve as a vehicle for higher symbol-oriented
cognitive processes. The challenge is to design dimensionality reduction algo-
rithms that are geared towards grounding symbols in an unsupervised way,
only with a feedback on the level of higher objectives. A step into this direc-
tion is my work [56], where I proposed a target-oriented optimization proce-
dure as solution to the symbol grounding problem. It is demonstrated that
the machine learning perspective is consistent with the philosophical perspec-
tive of constructivism. Dimensionality reduction is the most important part
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in the symbol grounding process. The integration of dimensionality reduction
to cognitive systems will be one of the most exciting directions of our future
work.

1.7 Overview and Preliminary Publications

This book is devoted to a novel approach to dimensionality reduction based
on the famous nearest neighbor method. Parts of this work are based on
preliminary peer-reviewed publications in proceedings of international con-
ferences and in international journals. Nearest neighbors is a simple, yet ef-
ficient method for classification, regression, and time series prediction. The
unsupervised formulation for dimensionality reduction problems will be intro-
duced step by step, presenting numerous variants of the novel technique, from
fast constructive heuristics [55, 58] to stochastic approaches [57, 59, 60, 61].
Unsupervised nearest neighbors (UNN) is based on fitting K-nearest neigh-
bor regression to the unsupervised regression framework for learning of low-
dimensional manifolds. Similar to related approaches that are mostly based on
kernel methods, UNN optimizes latent variables w.r.t. the data space recon-
struction error. The problem of optimizing latent neighborhoods is difficult
to solve, but the UNN formulation allows an efficient strategy of iteratively
embedding latent points into discrete and continuous latent spaces.

The book will give deeper insights into aspects that are relevant from a the-
oretical perspective like runtime and kernelization, but also practical aspects
like loss functions for handling noise and methods to handle incomplete data.
It provides a consistent view on my past research activities and highlights
important aspects of the line of research on unsupervised nearest neighbors.
The remainder of this book will be written in a scientific style with the use
of “we” rather than “I”.



Part I

Foundations



2

K-Nearest Neighbors

2.1 Introduction

This chapter gives an introduction to pattern recognition and machine learn-
ing via K-nearest neighbors. Nearest neighbor methods will have an impor-
tant part to play in this book. The chapter starts with an introduction to
foundations in machine learning and decision theory with a focus on classi-
fication and regression. For the model selection problem, basic methods like
cross-validation are introduced. Nearest neighbor methods are based on the
labels of the K-nearest patterns in data space. As local methods, nearest
neighbor techniques are known to be strong in case of large data sets and
low dimensions. Variants for multi-label classification, regression, and semi-
supervised learning settings allow the application to a broad spectrum of
machine learning problems. Decision theory gives valuable insights into the
characteristics of nearest neighbor learning results.

2.2 Classification

Classification is the problem to predict discrete class labels for unlabeled
patterns based on observations. Let {(x1, y1), . . . , (xN , yN)} be the set of ob-
servations of q-dimensional patterns X = {x}Ni=1 ⊂ R

q and a corresponding
set of labels Y = {yi}Ni=1 ⊂ R

d. The goal in classification is to learn a func-
tional model f that allows a reasonable prediction of class label y′ for an
unknown pattern x′. Patterns without labels should be assigned to labels of
patterns with known assignment that are similar, e.g., that are close to the
target pattern, come from the same distribution, or lie on the same side of
a separating function. But learning from observed patterns can be difficult.
Training sets can be noisy, important features may be unknown, similarities
between patterns may not be easy to define, and observations may not be
sufficiently described by simple distributions. Further, learning simple func-
tional models can be a difficult undertaking, as classes may not be linearly

O. Kramer: Dimensionality Reduction with Unsupervised Nearest Neighb., ISRL 51, pp. 13–23.
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separable and may be difficult to separate with simple rules or mathematical
equations.

Famous classification methods are decision tress, e.g., ID3 and C4.5 [81],
neural networks [93, 96], and SVMs [98, 101]. For an introduction to these
methods, we refer the reader to books like Bishop [12] and Hastie et al.
[40]. SVMs will also briefly be introduced in Chapter 3. In the following, we
concentrate on a simple yet powerful method: the nearest neighbor classifier.

2.2.1 KNN Classifier

Nearest neighbor classification, also known as K-nearest neighbors (KNN), is
based on the idea that the nearest patterns to a target pattern x′, for which
we seek the label, deliver useful label information. KNN assigns the class
label of the majority of the K-nearest patterns in data space. For this sake,
we have to be able to define a similarity measure in data space. In R

q, it is
reasonable to employ the Minkowski metric (p-norm)

‖x′ − xj‖p =

(
q∑

i=1

|(xi)′ − (xi)j |p
)1/p

, (2.1)

which corresponds to the Euclidean distance for p = 2. In other data spaces,
adequate distance functions have to be chosen, e.g., the Hamming distance in
B
q. In the case of binary classification, the label set Y = {1,−1} is employed,

and KNN is defined as

fKNN(x
′) =

{
1 if

∑
i∈NK(x′) yi ≥ 0

−1 if
∑

i∈NK(x′) yi < 0
(2.2)

with neighborhood size K and with the set of indices NK(x′) of the K-nearest
patterns.

The choice of K defines the locality of KNN. For K = 1, little neighbor-
hoods arise in regions, where patterns from different classes are scattered. For
larger neighborhood sizes, e.g. K = 20, patterns with labels in the minor-
ity are ignored. Figure 2.1 illustrates the difference in classification between
KNN with K = 1 and K = 20 on a simple 2-dimensional data set consisting
of two overlapping data clouds of each 50 Gaussian-sampled red and blue
points. The data space locations that would be classified as blue are shown
in bright blue, while areas classified as red are shown in white. For K = 1,
the prediction is local. For example, a blue point that is an outlier from the
blue class is located at the center of the red cloud. For large K, the clas-
sifier generalizes ignoring small agglomerations of patterns. KNN induces a
Voronoi tessellation in data space. In case of large data sets, KNN has to
search for the K-nearest patterns in the whole space, but can already yield a
good approximation based on the K-nearest neighbors in a scanned subset.
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KNN, K = 1

(a)

KNN, K = 20

(b)

Fig. 2.1 A comparison of KNN classification on two Gaussian-based data clouds
for two neighborhood sizes ((a) K = 1 and (b) K = 20). For small neighborhoods,
KNN tends to overfit becoming local, while KNN generalizes for larger K ignoring
small agglomerations of patterns.

The question arises, how to choose K, i.e., which neighborhood size
achieves the best classification result. This problem is also known as model
selection, and various techniques like cross-validation can be employed to
choose the best model and parameters (cf. Section 2.5).

2.2.2 Multi-class K-Nearest Neighbors

KNN can also be applied to multi-class classification problems. For an un-
known pattern x′, KNN for multi-class classification predicts the class label
of the majority of the K-nearest patterns in data space

fKNN(x
′) = argmax

y∈Y

∑
i∈NK(x′)

I(yi = y) (2.3)

with indicator function I(·) that returns one, if its argument is true1 and
zero otherwise. This definition will also be used for the ensemble classifier in
Section 3.4.

2.3 KNN Regression

Closely related to classification is regression. Functional regression models
map patterns to continuous labels, i.e., to a subspace of R

d. Although in
practice, machine accuracy only allows a mapping to a discrete set of num-
bers, the difference becomes obvious: the set of labels is very large in com-
parison to classification problems, where the set of labels is restricted to

1 i.e., label yi of pattern xi is y.
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few elements. The problem in regression is to predict labels y′ ∈ R
d for

new patterns x′ ∈ R
q based on a set of N observations, i.e., labeled pat-

terns {(x1,y1), . . . , (xN ,yN )}. The regression learning problem will be de-
rived from a statistical learning perspective in Section 2.4.

The goal is to learn a function f : Rq → R
d known as regression func-

tion. For an unknown pattern x′, KNN regression computes the mean of the
function values of its K-nearest neighbors

fKNN(x′) =
1

K

∑
i∈NK(x′)

yi (2.4)

with set NK(x′) containing the indices of the K-nearest neighbors of x′. The
idea of averaging in KNN is based on the assumption of locality of functions
in data and label space. In local neighborhoods of xi, patterns x

′ are expected
to have similar continuous labels f(x′) like yi. Hence, for an unknown x′ the
label must be similar to the labels of the closest patterns, which is modeled by
the average of the label of the K-nearest patterns. KNN has been proven well
in various applications, e.g., in the detection of quasars based on spectroscopic
data [33].

Also in regression, the neighborhood size K of KNN is an important pa-
rameter. For K = 1, KNN regression overfits to the label of the nearest
neighbor of x′, for K = N it averages over all patterns Figure 2.2 shows
a comparison between KNN regression with the two neighborhood sizes (a)
K = 2 and (b) K = 5. Weighted KNN regression induces plateaus.

K = 2, uniform

KNN
patterns

1.0

0.5

0.0

0 1 2 3 4 5

(a)

K = 5, uniform

KNN
patterns1.0

0.5

0.0

0 1 2 3 4 5

(b)

Fig. 2.2 Illustration of uniform KNN regression for (a) K = 2 and (b) K = 5

2.4 Statistical Learning Theory

From statistical learning theory, we can get insights into the quality a func-
tional model should have. We assume that observed patterns and labels can be
modeled with random variables. This allows to model noise and fluctuations.
In the following, we consider the univariate case. We assume two continuous
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random variables: X for patterns and Y for labels, which can be described
by probability distribution functions, i.e,. p(X = x) and p(Y = y), as well
as the joint distribution p(X = x, Y = y). The task in supervised learning is
to learn a functional model f , which predicts the correct label y for a given
pattern x. A loss function L(y, f(x)) allows to measure the error, which is
the deviation of the correct label and the prediction of the functional model.
The task is to learn a model with minimal error. Often, the square loss is
employed

L(y, f(x)) = (y − f(x))2. (2.5)

The probability distribution functions allow the evaluations of the quality of
the functional model f with the expected prediction error

Eexp(f) = 〈L(Y, f(X))〉 =
∫ ∫

L(y, f(x))p(x, y)dxdy, (2.6)

while 〈·〉 is defined as expected value of a random variable. Now, we can
replace the joint probability density function by the Bayes expression

p(x, y) = p(y|x)p(x) = p(Y = y|X = x)p(X = x), (2.7)

becoming

Eexp(f) =

∫ (∫
(y − f(x))2p(y|x)dy

)
p(x)dx (2.8)

with the square loss. We seek for the best functional model f∗ that minimizes
the empirical risk Eexp(f). Minimization of Eexp can be accomplished by
point-wise minimization of the inner integral for each x yielding the regression
function

f̂∗(x) =

∫
yp(y|x)dy =

∫
y
p(x, y)

p(x)
dy = 〈y|x〉. (2.9)

The consistency criterium postulates that the empirical risk converges to zero
in the limit of an infinite number of training examples. The problem to find
the best functional model is also known as model selection problem. The
optimal functional model f∗ could easily be found, if we knew P (x, y), and
if we searched in the set of all functions F . But as we have to restrict to
minimizing Equation 2.8, it is not reasonable to search in F . Instead, we
choose a parameterized model (e.g. KNN) that represents a smaller function
space F ⊂ F and to minimize the empirical risk w.r.t. this model

f∗ = argmin
f∈F

Eemp(f). (2.10)

It is not very probable that the true optimal model f∗ lies in F . On the
one hand, it is reasonable to increase the function space. On the other hand,
we have to avoid functions that only reconstruct the observations, e.g., that
return f(xi) = yi for i = 1, . . . , N and yield false values, e.g., the opposite
class label in binary classification for all patterns we have not observed yet.
Such an effect is known as overfitting.
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The increase of function space F , from which f is chosen, may be rea-
sonable to get closer to the true functional model. This is also known as
increasing the capacity of the model. But to avoid overfitting, it is often suf-
ficient to penalize the complexity of model f with a regularizer, which can
be a functional norm ‖f‖. Then, the regularized risk

Ereg(f, λ) = Eemp(f) + λ‖f‖ (2.11)

is minimized, where λ ∈ R
+ is known as regularization parameter balancing

between empirical risk minimization and smoothness of the function. From
the perspective of KNN, we get a direct solution of this formulation. The
expectation is approximated by averaging over training patterns. For large
training set sizes N , conditioning of f is better than for small N , as points
are likely to be close to x. As Bishop [12] states, for N, k → ∞, i.e., k/N →
0 we get fKNN(x) → E(Y |X = x). But the curse of dimensionality (cf.
Section 2.6) weakens this argument. KNN is an excellent model for (1) low-
dimensions and (2) large training set sizes. But in case of high-dimensional
data spaces or few patterns, extensions of KNN are necessary [12, 40].

2.5 Cross-Validation

The problem in supervised learning is to find an adequate model f and its
parameterizations. To avoid overfitting, an often employed model selection
strategy is cross-validation. The idea of cross-validation is to split up the N
observations {(xi,yi)}Ni=1 into training, validation, and test set. The training
set is used as basis for the learning algorithm given a potential parameter
set. The validation set is used to evaluate the model given the parameter set.
The optimized model f̂∗ based on a training process with cross-validation is
finally evaluated on an independent test set.

Minimization of the empirical risk on the validation set is basis of the
training phase. For optimization, weak strategies like grid search are often
sufficient. Finally, the approach is evaluated on the test set that has not been
used for training model f . An advanced strategy to avoid overfitting is k-
fold cross-validation that repeats the learning process k times with different
training and validation sets. For this sake, the data set is slit up into k disjoint
sets. In each step, model f employs k − 1 sets for training and is evaluated
on the remaining validation set. The error is aggregated to select the best
parameters of model f on all k validation sets and is called cross-validation
score. Advantage of this procedure is that all observations have been used for
training the model and not only a subset of a small data set.

In case of tiny data sets, the number of patterns might be too small to
prevent that model f is not biased towards the training and validation set.
In this case, the k-fold cross-validation variant k = N called leave-one-out
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cross-validation (LOO-CV) is a recommendable strategy. In LOO-CV, one
pattern is left out for prediction based on the remaining N − 1 training
patterns. The whole procedure is repeated N times.

2.6 Curse of Dimensionality

Many machine learning methods have problems in high-dimensional data
spaces. The reason is an effect also know as curse of dimensionality or Hughes
effect. In high-dimensional data spaces, many patterns are required to cover
the whole data space, and our intuition often breaks down. Hastie et al. [40]
gives interesting arguments for this effect that we review in the following.

Let us assume we sample points uniformly in the unit hypercube. The
volume of the q-dimensional unit hypercube is 1q. Let r be the hypercube
edge length of a smaller hypercube corresponding to the volume of the unit
hypercube we want to capture. Then, rq is its volume and at the same time
the volume fraction v of the unit hypercube v = rq. Hence, r = v1/q, which for
example means that in q = 10 dimensions we have to cover r = 0.11/10 ≈ 0.8
of each variable to cover 10% of the volume of the unit hypercube with labeled
patterns. In other words, covering 0.8 of each dimension with points means
that still 90% of the 10-dimensional hypercube is empty.

2.7 Nearest Neighbor Queries

The search for nearest neighbors is a frequent problem in machine learning.
If we have a nearest neighbor query for a pattern x′, a simple, brute-force ap-
proach is to test the distance to each other pattern ‖x′−xi‖2 for i = 1, . . .N ,
with x′ �= xi in O(N) time. But there are various possibilities to accelerate
the nearest neighbor queries. If more than logN queries are necessary, sort-
ing all pattern w.r.t. their distance may be reasonable, e.g., if K > logN
for KNN. Sorting can be accomplished in the average case in O(N logN),
e.g., with Quicksort, but in O(N2) in worst case. Another option might be
appropriate for high-dimensional patterns. Computing the distances usually
means to sum up distance values per dimension. The computation of a nearest
neighbor request can be stopped, if the maximum distance to the previously
computed K-nearest patterns is exceeded.

The employment of efficient data structures like k-d trees [9] and balltrees
that partition the data space can result in O(logN) neighborhood requests
for certain data distributions and lower dimensions. Figure 2.3 illustrates
binary space partitioning trees. Every non-leaf node of a k-d tree induces a
hyperplane that splits the data space into two parts. Each subtree represents
the corresponding subspace. A k-d tree is constructed by first sorting the
patterns w.r.t. the first dimension. The median of the sorting result is taken
as pivot element and represents a node. Elements left of the node belong to
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the left subtree, elements right of the node to the right subtree. Then, the
two groups are sorted w.r.t. the second dimension. The process is recursively
repeated until the corresponding sets consist of one element. If the data is
smoothly (e.g. uniformly) distributed, half of the patterns can be excluded
for each node resulting in a neighbor query lying in O(logN). Building a k-d
tree takes O(N logN) time in average. Adding and removing of elements also
take O(logN) time.

Experiments have shown that balltrees show better results than k-d trees,
when the data is clustered, sparse, or has extra structure [84]. In this case,
k-d trees may fall back to O(N) runtime for one neighbor query. A ball in
Euclidean space is the region bound by a hypersphere. It can be represented
by center coordinates and radius. A balltree is a binary tree, whose nodes
correspond to the smallest balls that contain all balls that belong to nodes
of its subtrees. The balls of a balltree may intersect and do not need to
cover the entire data space, which makes them applicable to sparse and non-
smooth data. For a discussion on balltree construction algorithms, we refer
to Omohundro [84] and Hastie et al. [40].
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Fig. 2.3 Illustration of binary space partitioning trees: (a) If the binary tree is a k-d
tree, (b) its nodes induce linear borders and divide the data space into half-spaces,
while (c) a balltree defines a hierarchy of balls

2.8 Nearest Neighbor Variants

KNN is a technique with a long tradition. It has first been mentioned by Fix
and Hodges [28] in the fifties in an unpublished US Air Force School of Avi-
ation Medicine report as non-parametric classification technique. Cover and
Hart [21] investigated the approach experimentally in the sixties. Interesting
properties have been found, e.g., that for K = 1 and N → ∞, KNN is bound
by twice the Bayes error rate. Many variants of KNN have been presented in
the past. Two variants are presented in the following, and a semi-supervised
KNN modification is presented.
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2.8.1 Model-Based KNN

The idea of model-based KNN is to replace the training set by a set of refer-
ence points (or codebook vectors) that achieve the same prediction results.
This concept is related to the landmark variant of unsupervised kernel regres-
sion, which will be introduced in Section 4.9.5. The collection of landmark
points is called model. The selection of a set of landmarks is treated as opti-
mization problem, i.e., we have to search for the optimal subset of landmark
vectors that achieve the same nearest neighbor result as KNN on the com-
plete set of patterns. First, a similarity matrix from the data set is computed.
All labels of yi are set to ungrouped. Then, we seek the neighborhood that
covers the largest number of neighbors with the same label. Their label is
set to grouped. The last steps are repeated until all labels are set to grouped.
The resulting model contains a selection for landmark vectors that can be
employed as surrogate for the original KNN model.

2.8.2 Distance-Weighted KNN

KNN induces locally constant outputs. From the optimization perspective,
this means we get an output space with plateaus: for neighborhood size K
and N patterns in KNN regression,

(
N
K

)
different output values are possible.

Plateaus can hinder optimization methods from a fast approximation of the
optimal solution, as not much information about promising search directions
can be gained during optimization. Bailey and Jain [5] introduced distance-
weighted KNN rules in the late seventies to smooth the prediction function
weighting the prediction with the similarity Δ(x′,xi) of the nearest patterns
xi with i ∈ NK(x′) to the target x′

fwKNN(x′) =
∑

i∈NK(x′)

Δ(x′,xi)∑
j∈NK(x′)Δ(x′,xj)

yi. (2.12)

Patterns close to the target should contribute more to the prediction than
patterns that are further away. Similarity can be defined with the distance
between patterns, e.g. by

Δ(x′,xi) = 1/‖x′ − xi‖2. (2.13)

Model fwKNN introduces a continuous output. Figure 2.4 shows the KNN
prediction based on KNN regression in the weighted variant on the trigono-
metric function. Weighted KNN regression interpolates between the points
in contrast to the uniform variant (cf. Figure 2.2).

Also weighted KNN maps to a discrete number of solutions. Machine ac-
curacy may restrict the output space to, e.g., 264 in case of 64 bits used.
Uniform KNN restricts the number of possible output values to

(
N
K

)
. As a

final remark, we state that for K = N we take every pattern into account
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Fig. 2.4 Illustration of weighted KNN regression for (a) K = 2 and (b) K = 5

fwKNNK=N (x
′) =

N∑
i=1

‖x′ − xi‖2∑N
j=1 ‖x′ − xj‖2

yi. (2.14)

resulting in a simplification that does not afford the computation of the near-
est neighbors.

2.8.3 Propagating 1-Nearest Neighbor

Propagating 1-nearest neighbor is an approach for semi-supervised learn-
ing [116]. In semi-supervised learning, we have given a set of labeled patterns
L = {(x1, y1), . . . , (xl, yl)} and a set of unlabeled patterns U = {x̃1, . . . , x̃u}.
The idea of semi-supervised learning is that the unlabeled data enriches the
learning process by yielding implicit information about the underlying data
distributions. Propagating 1-nearest neighbor works as follows. In each step,
the unlabeled pattern closest to any of the (already) labeled patterns is se-
lected

x̃∗ = min
x̃∈U

min
x∈L

‖x̃− x‖2. (2.15)

Its label y is determined by the label of the nearest neighbor x in the set of
labeled patterns L. Pattern (x̃∗, y) is added to L and removed from U . The
algorithm terminates, when U is empty.

2.9 Conclusions

In this chapter, we gave an introduction to basic principles in machine learn-
ing, concentrating on supervised learning and nearest neighbor methods.
Classification is the prediction of discrete class labels based on observed
pattern-label pairs. Regression is the prediction of continuous values based
on pattern-label observations. Nearest neighbor approaches for classification
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and regression rely on the label of the K-nearest patterns in data space. In
supervised learning, overfitting may occur. It can be prevented by regular-
ization and cross-validation. Regularization is a method to avoid that func-
tional models become too complex, while cross-validation avoids overfitting
to small data sets. LOO-CV is a variant with k = N . Classification becomes
difficult in high-dimensional data spaces, known as curse of dimensionality
or Hughes effect. In case of nearest neighbor methods, the training set size
has to be increased to improve the learning result. KNN variants have been
introduced: from distance-weighted KNN to propagating 1-nearest neighbor
for semi-supervised learning scenarios.
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Ensemble Learning

3.1 Introduction

The hybridization of classifiers can lead to significant improvements of learn-
ing results. In this chapter, we introduce an ensemble of K-nearest neighbor
and SVM classifiers and analyze its performance in a real-world applica-
tion [69]. The ensembles are hybrids of local nearest neighbors classifiers that
are based on averaging labels in the neighborhood of unknown patterns and
the global SVMs that use separating hyperplanes.

3.2 Ensembles

To overcome algorithmic shortcomings and to achieve synergetic effects, hy-
bridization of different methods can be an effective strategy. In recent years,
a lot of research contributions devoted to hybrid solution strategies have been
presented. The no-free-lunch theorem by Wolpert and Macready [113] states
that there exists no optimal algorithm for every problem, but algorithms are
tailored to special problem instances. From the perspective of hybridization,
it can be an effective strategy to exploit the abilities of two or more of spe-
cialized algorithms instead of relying on a single result. The combination of
predictions in classification and the exchange of successful candidate solu-
tions in optimization improve both classifiers and optimization techniques.
Two main strategies can be distinguished w.r.t. how ensembles are trained:

• Bagging ensembles consist of components that are trained independently.
No algorithm uses knowledge about the performance of the other compo-
nents and of the whole ensemble [14].

• Boosting ensembles try to compensate the weakness of the ensemble by
concentrating on the training of its components w.r.t. the overall perfor-
mance or the performance of single classifiers [29].

Bagging ensembles work as follows. From a data set consisting of N pat-
terns, T randomly chosen subsets S1, . . . , ST are selected. The classifiers

O. Kramer: Dimensionality Reduction with Unsupervised Nearest Neighb., ISRL 51, pp. 25–32.
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f1, . . . , fT are trained, each with the corresponding training subset. At the
end, the decisions of the set of classifiers are aggregated. In case of discrete
classes, the majority vote of all classifiers can be chosen as decision fBAG(x

′)
of the ensemble given the unknown pattern x′. In case of numerical labels,
the bagging ensemble averages the predictions of the T classifiers

fBAG(x
′) =

1

T

T∑
i=1

fi(x
′). (3.1)

Many practical applications have shown that the best bagging ensembles
combine weak and unstable classifiers, while bagging stable classifiers does
often not lead to improvements.

3.3 Support Vector Machines

The ensemble classifier we use in this chapter hybridizes multi-class SVMs
and multi-class KNN for appliance recognition. SVMs are based on optimizing
a decision boundary in data space, while KNN is based on aggregating labels
of the closest patterns. In the following, we introduce SVMs for classification.
The simplest form of prediction is binary classification with label set {1,−1}.
For the introduction of SVMs, we start with a linear classifier. Let x ∈ R

q

be a pattern in data space. The linear discriminant function

f(x) = 〈w,x〉 + b, (3.2)

with weight w ∈ R
q, bias b ∈ R, and scalar product (also known as inner

product)

〈w,x〉 =
q∑

j=1

wjxj (3.3)

defines a decision hyperplane. Function f(x) divides the data space into two
half spaces depending on its sign. The SVM’s learning task is to find optimal
parameter settings for w and b that separate both classes and allow the
correct classification of pattern x′

fLIN(x
′) =

{
+1, if f(x′) ≥ 0
−1, if f(x′) < 0

(3.4)

and is also known as linear classifier. The optimal linear decision hyperplane
has a large distance to its closest patterns. This distance, which can be written
as 1/‖w‖2, is called margin. The hard margin SVM defines a linear decision
hyperplane that correctly classifies all patterns. The optimization problem is
defined as

minimizew,b
1
2‖w‖2

subject to : yi(〈w,xi〉+ b) ≥ 1
for i = 1, . . . , N.

(3.5)
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In order to increase the ability to generalize, the distance between patterns
and the separating hyperplane f(x) has to be maximized, subject to a cor-
rect classification of all training patterns. As patterns are often not linearly
separable, the condition of separability has to be relaxed. For this sake, slack
variables ξ are introduced that measure the deviation of patterns from the
corresponding hyperplane. The optimization problem is enhanced with a sum-
mand for the slack variables C ·

∑N
i=1 ξi with C ∈ R. Further, for high-

dimensional and non-linear data, SVMs use kernel functions that project
the data into a feature space of higher dimensions. In this transformed fea-
ture space, the patterns become linearly separable, and the decision hyper-
plane can be computed. We will employ kernel functions in Chapter 7 for
dimensionality reduction tasks.

3.4 KNN-SVM-Ensemble

SVMs are advantageous in global scenarios, i.e., high dimensions and sparse
data [40], while KNN is a local method, appropriate for low-dimensional data
spaces and a large number of training patterns. Hence, the hybridization of
both classifiers is a reasonable undertaking in practical applications, where
training set sizes and numbers of features may vary. Algorithm 1 shows the
pseudocode of the ensemble classifier template that is the basis of our ensem-
ble classification process. The ensemble classifier gets the training set T as
input. For a pattern x′ to be classified, each classifier fi ∈ f of the ensemble
is trained and returns a prediction. In our ensemble, all classification results
are equally weighted and aggregated to one label. The decision is defined by

Algorithm 1. Ensemble Classifier

Require: Training set T , pattern x′, classifiers f
1: for fi ∈ f do
2: compute fi(x

′)
3: end for
4: return fENS(x

′) = argmaxy∈Y
∑

fi∈f I(fi(x
′) = y)

fENS(x
′) = argmax

y∈Y

∑
fi∈f

I(fi(x′) = y). (3.6)

Like the multi-class KNN classifier (cf. Section 2.2.2), fENS(·) employs an
indicator function I(·) to count the number of classifiers that vote for each
label and chooses the decision the majority of classifiers vote for. The idea
of a majority vote is that the majority corrects potentially false decisions
of the minority. If there is no reason to believe that one of the classifiers
achieves a better accuracy than the others, a majority vote probably obtains
the best predictive performance. This principle is employed in Algorithm 1.
We combine the classifiers to the following ensembles:
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• ENS-SVM is an SVM-ensemble classifier, which combines the SVM with
linear kernel, and the SVM with RBF-kernel.

• ENS-KNN combines three KNN classifiers with different neighborhood
sizes, i.e., K = 1, 5 and 7.

• ENS* combines all five classifiers (SVMs with both kernels and KNN with
three neighborhood sizes).

In the following, we test the introduced ensembles on a real-world data set.

3.5 Recognition of Appliances

Nonintrusive appliance load monitoring (NIALM) is the problem to recognize
appliances via changes in voltage and current. It can be used in households
for recognition of appliances and for energy consumption analysis [39].

3.5.1 Nonintrusive Appliance Load Monitoring

In a smart grid, NIALM can be used for a variety of problem classes,
e.g.: (1) In energy management and consulting, the improvement of energy-
efficiency for everyday processes is an important task. But it affords the
recognition of usage habits of appliances, e.g., to answers questions like which
appliance is used when and how often. (2) For assistance systems and health-
care scenarios, monitoring of everyday activities of old needy or disabled
humans via the usage of appliances allows the recognition of alert states and
emergency situations. (3) Load forecasting of appliances allows to balance
energy systems. Balancing authorities have to consider produced and con-
sumed energy, in particular in distributed smart grid scenarios with volatile
renewable energy resources. Appliance recognition is the first step of many
load forecasting systems.

Nonintrusive load monitoring of appliances has a long tradition since the
mid-nineties, see Hart [39], who introduced an approach able to recognize
appliances considering a continuous signal with 1 Hz sample rate. Patel et
al. [87] employed SVMs for the recognition of 19 appliances and achieved
an accuracy rate of 85 − 90%. Lin and Tsai [74] presented a nonintrusive
load monitoring system based on hierarchical SVMs decomposing the multi-
class problem into a series of binary classification problems. The approach is
based on transient features from electricity waveforms. Further classification
methods have been employed in the past, e.g., by Chang et al. [17], who apply
backpropagation and learning vector quantization to load monitoring. The
selection of appropriate features has an important part to play for successful
recognition processes. Evolutionary approaches have been applied for feature
selection [7] in load monitoring.
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3.5.2 Feature Computation

For the experimental part of this chapter, we employ a data set that contains
measurements of everyday appliances that are turned on and off. We use
two data sets (cf. Appendix A): (1) The install data set consists of 120
patterns that have manually been recorded and labeled at the beginning of
the field study, when the system was installed. This data set serves as minimal
training set and is consequently very important for practical scenarios, e.g.,
for calibration of a novel system. It is balanced, i.e., the number of patterns
for each class is approximately equal. (2) The data of the field study consists
of patterns that have been recorded in a household test environment for a
timespan of approximately one month. We used motion sensors in every room
of the test environment for manual labeling of the data.

Based on the measurement of electrical parameters voltage Ueff(t), am-
perage Ieff(t), phase angle ϕ(t), and power P (t) by a current sensor with a
sample rate of 5 Hz that was centrally installed, the active resistance R(t) is
computed

R(t) =
Ueff(t)

Ieff(t) · cosϕ(t)
=
U2
eff(t)

P (t)
. (3.7)

This parameter is usually specific for the same appliance in different environ-
ments and different numbers of concurrently running appliances at a circuit.
Based on the resistance from the turn on event of an appliance, the following
features are extracted. The mean x1, the corresponding standard deviation
x2 of the set of resistance values {R(1), . . . , R(n)}1 and the maximum phase
of the discrete Fourier transform x3 are computed. From the turn off event,
the median resistance x4 is computed. The data has not been normalized, as
normalization did not have a significant influence on the experimental results.
For the experimental part, we employ measurements of 15 appliances that
can be turned on and off, resulting in N = 2, 620 four-dimensional patterns
and 30 different classes.

3.6 Experimental Analysis of SVM-KNN-Ensemble

In the following, we experimentally analyze multi-class SVMs, KNN, and the
ensemble classifiers for appliance recognition, first for the install data set,
then for the whole field study data set.

1 The first two values R(1) and R(2) turned out to vary too much for the same
appliance and are therefore left out.
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3.6.1 Installation Data

In the first experimental setup, we employ the small data set install as train-
ing and validation set2, see first row of Table 3.1. The complete field study
data set is employed as test set. The SVM with linear kernel, KNN with
K = 1 and two of the ensemble methods achieve a low error rate. An ap-
pliance recognition rate of over 92% is achieved, which may be sufficient for
most practical scenarios. While the SVM with linear kernel is the best classi-
fier in this scenario, the SVM with RBF-kernel fails. We expect the strength
of KNN on small training sets. The data set install is obviously too small for
the KNN classifiers. For K = 5 and K = 7, error rates larger than 25% have
been achieved. The KNN-ensemble also achieves high error rates due to the
results of both weak KNN variants. The other ensembles take advantage of
the strengths of the SVM with linear kernel or KNN with K = 1.

Table 3.1 Experimental results of the SVM, KNN, and ensemble classifiers on the
install and the field study data set with varying training set sizes α (proportion of
training patterns and the data set size). The lowest error rates are shown in bold
and the second best in italic numbers. The best classifier in each experiment gets
two points, the second best one point for the score.

training SVM SVM KNN KNN KNN ENS ENS ENS
set linear RBF K = 1 K = 5 K = 7 SVM KNN *

install 0.0787 0.4767 0.0883 0.2977 0.2927 0.0837 0.2739 0.0802

10−1 0.0526 0.0915 0.0652 0.0560 0.1430 0.0594 0.0560 0.0514
9−1 0.0480 0.0858 0.0606 0.0537 0.0697 0.0549 0.0526 0.0491
8−1 0.0480 0.0823 0.0629 0.0549 0.0663 0.0560 0.0514 0.0491
7−1 0.0480 0.0800 0.0617 0.0549 0.0617 0.0549 0.0480 0.0480
6−1 0.0491 0.0789 0.0629 0.0537 0.0629 0.0549 0.0469 0.0480
5−1 0.0480 0.0778 0.0606 0.0446 0.0491 0.0537 0.0469 0.0469
4−1 0.0491 0.0709 0.0594 0.0446 0.0480 0.0549 0.0469 0.0469
3−1 0.0514 0.0663 0.0606 0.0434 0.0480 0.0549 0.0503 0.0491
2−1 0.0457 0.0617 0.0617 0.0491 0.0434 0.0526 0.0457 0.0446
2 · 3−1 0.0453 0.0572 0.0617 0.0400 0.0389 0.0572 0.0434 0.0446
∑

score 9 0 0 7 5 0 6 11

3.6.2 Field Study Data

In the second experimental setup, we analyze the classification error rate

w.r.t. the rate α = |T |
N of the training set size |T | and the number of all

patterns N . The error rate is computed on a test set of size 1/3 · |T |. It can
2 For the SVM, we employ cross-validation and grid search in the ranges C =
10−20, . . . , 1020 and for the RBF-kernel γ = 10−20, . . . , 1020.
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be observed that the smallest rate α = 10−1, corresponding to a training
set size of N = 262 patterns, can achieve an accuracy of up to ≈ 95% for
the SVM-KNN-ensemble ENS* and also for the SVM with linear kernel. The
best recognition rate (error 3.89%) is achieved with KNN and K = 7. For the
SVM approach, we can observe that a linear kernel achieves better results
than an RBF-kernel and better results than KNN with K = 5 and K = 7
for training sets smaller and equal to 6−1. While the SVM with linear kernel
takes significantly longer for training with training set sizes larger than 5−1, it
is a good recommendation for small training set sizes. With the four high-level
features and large training set sizes, KNN achieves low error rates.

Concerning the ensemble classifiers, we can observe low error rates in most
of the experiments. The ensemble classifier ENS* that employs all five classi-
fiers turns out to be the most robust algorithm with low errors for all settings.
It is the best or second best classifier in nine of eleven cases, which is also
reflected by the highest sum of scores. Also the KNN-ensemble classifier ENS-
KNN achieves good results on the field study data. The results are similar
to KNN with K = 5, 7 (also the failure in case of the install data set, which
cannot be compensated by KNN with K = 1). The constantly good results
of ENS* in comparison to most other classifiers motivate the employment of
the SVM-KNN-ensemble in practical scenarios.
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Fig. 3.1 Study of neighborhood size K w.r.t. training set size 5−1, 3−1, and 2−1

for (a) KNN and (b) ENS*. The neighborhood size has a significant influence on
the classification error in case of the KNN classifiers, but the effect is compensated
in the ensemble.

3.6.3 Neighborhood Sizes of KNN

In the following, we analyze the influence of neighborhood size K of the KNN
classifiers and of ensemble ENS* on the recognition rate. Figure 3.1 shows the
influence of K on the error rate for the KNN classifier w.r.t. different training
set sizes. For KNN, see Figure 3.1(a), we can observe that neighborhood sizes
aroundK = 4 to K = 6 are optimal for small training sets. On larger training
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sets (2−1), the influence of the neighborhood size is less significant. If many
patterns are available, KNN can average over more training patterns without
a deterioration of the classification error. In case of the ensemble ENS*, the
neighborhood size of KNN is less important for both larger training sets 3−1

and 2−1. The SVM classifiers compensate the negative effect of too large
neighborhoods, which is a good motivation for the employment of ensembles.

3.7 Conclusions

We have shown that KNN and KNN-ensembles can serve as efficient and ro-
bust recognition techniques in the practical application of load monitoring.
The experimental results confirmed the expectations that SVMs are a good
choice in case of small training sets, while KNN shows its strengths on large
training sets. We recommend to combine both worlds, i.e., KNN that can
adapt to any situation without assumptions on the data distribution, but
turns out to be unstable in many situations (high variance and low bias) and
SVMs that are based on the assumption of linearity of the data, which is soft-
ened by kernel functions and slack variables (low variance and high bias) [40].
The ensemble classifiers are well appropriate to solve the recognition task, as
practical NIALM data sets are often unbalanced, vary in training set sizes
and in the number of training patterns. In particular, ENS* that employs
all five classifiers with a bagging majority vote achieves the best and second
best recognition rates in most experiments. The observed robustness and high
recognition rates are important steps towards an efficient integrated approach
of label retrieval and appliance recognition.
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Dimensionality Reduction

4.1 Introduction

Dimensionality reduction is the task to reduce the dimensionality of
patterns, while preserving important information. Many dimensionality re-
duction methods focus on finding low-dimensional representations of high-
dimensional patterns called latent variables, latent representations, or latent
embeddings. Dimensionality reduction can be employed for various tasks,
e.g., visualization, preprocessing for pattern recognition methods, or for
symbolic algorithms. To allow human understanding and interpretation of
high-dimensional data, the reduction to 2- and 3-dimensional spaces is an
important task.

Most methods compute a point-wise mapping F : Rd → R
q from a high-

dimensional data space R
d to a latent space of lower dimensionality R

q with
q < d. For each high-dimensional pattern yi ∈ R

d with i = 1, . . . , N from a
set of patterns that can be written as matrix Y = [yi]

N
i=1 ∈ R

d×N , a low-
dimensional embedding xi ∈ R

q is computed. The set of low-dimensional
representations, also organized as matrix X = [xi]

N
i=1 ∈ R

q×N , is called a
manifold M. The tasks is to find a manifold, which looses as little topological
information as possible and thus, to identify the low-dimensional intrinsic
structure of the high-dimensional patterns. Intrinsic structure can be defined
in various kinds of ways, e.g., geometrically and semantically. We focus on
methods that maintain neighborhoods and preserve topological information,
in particular:

• Neighborhoods: neighbored patterns in data space should have neighbored
representations in latent space.

• Distances: close patterns in data space should have latent embeddings
close to each other, while distant patterns should be comparatively far
away from each other in latent space.

Many dimensionality reduction methods use an implicit definition of the op-
timization problem they solve. The problem to learn a functional dimen-
sionality reduction model F can be a hard optimization problem, because

O. Kramer: Dimensionality Reduction with Unsupervised Nearest Neighb., ISRL 51, pp. 33–52.
DOI: 10.1007/978-3-642-38652-7_4 c© Springer-Verlag Berlin Heidelberg 2013
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the optimal latent points are unknown. The reconstruction mapping back
can also be desirable f : Rq → R

d. Some methods learn the mapping back
implicitly.

In this chapter, we present well known dimensionality reduction methods
and discuss measures for the quality of manifolds. We put an emphasis on
unsupervised regression, which is the basis of unsupervised nearest neighbors.
It is a framework that allows to employ regression methods for dimensional-
ity reduction. The concept of unsupervised regression is to map from latent
space into the high-dimensional data space employing a regression model.
The learning task is to compute a set of latent points that reconstructs the
high-dimensional patterns.

4.2 Feature Selection and Extraction

The simplest form of dimensionality reduction is feature selection. In many
cases, only a subset of features might be relevant to solve a machine learning
task, while other features are irrelevant. For example, it might be sufficient
to choose only few dimensions to get an impression of the data distribution
of patterns. For visualization, it might be sufficient to plot two of the N
dimensions. A scatter plot presents

(
N
2

)
combinations of two dimensions and

often allows to get a first impression of the data space structure. A survey of
feature selection methods has been introduced by Guyon [36].

Feature extraction is a further famous kind of way to reduce the dimen-
sionality of patterns. This category comprises some of the methods presented
in the remainder of this chapter, e.g. PCA. Specialized feature extraction
methods are tailored to the problem domain. For auditory data, meaningful
features can be generated from the high-dimensional raw features, e.g., the
mel frequency cepstral coefficient (MFCC) features for speech recognition.
From the high-dimensional patterns, meaningful new low-dimensional rep-
resentations are generated that capture importance aspects to accomplish a
certain task.

4.3 Clustering with K-Means

Clustering is a prominent example for unsupervised learning. The clustering
task is to find groups of patterns depending on their intrinsic structure. The
question is how similar patterns are to each other, and if they belong to the
same group called cluster. In this learning scenario, no further information is
given that helps the algorithm to group the patterns into clusters, but only
their own ability to identify similarities among the patterns in the data set.
We can characterize an optimal cluster assignment as follows:

• homogeneity among patterns in the same cluster and
• heterogeneity of patterns in different clusters.
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Figure 4.1 shows three groups of patterns that form typical clusters. In most
cases, clustering is applied to numerical patterns employing the Euclidean
distance. Various evaluation criteria for clustering have been presented in the
past, e.g., the Dunn index [25]. Some techniques require the specification of
the number of clusters at the beginning, e.g., K-means, which is a prominent
clustering method. K-means will be described in the following.

cluster A

cluster B

cluster C

Fig. 4.1 Three agglomerations of points that form typical clusters

We define cj as the barycenter of cluster j with 1 ≤ j ≤ K

cj =

∑N
i=1 I(yi, cj) · yi∑N

i=1 I(yi, cj)
. (4.1)

We use indicator variables I(yi, cj). If pattern yi is assigned to cluster j,
we set I(yi, cj) = 1, elsewise we set I(yi, cj) = 0. The idea of K-means is
to minimize the sum of all distances between cluster centers c1, . . . , cK and
patterns y1, . . . ,yN , which is

E =

N∑
i=1

K∑
j=1

I(yi, cj) ‖yi − cj‖2 . (4.2)

The underlying assumption of this minimization problem is that the cluster
centers best represent the clusters, if the distances between the patterns in
data space and the cluster centers are minimal. At the beginning, K-means
randomly generates K initial cluster centers c1, . . . , cK . In order to minimize
the sum of distances E, K-means works iteratively in two steps. In the first
step, each pattern yi is assigned to the cluster j∗ with minimal distance

j∗ = arg min
j=1,...,K

‖yi − cj‖2 . (4.3)
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Equation 4.3 minimizes E keeping the cluster centers cj fixed. In the next
step, K-means computes the new cluster centers cj , while not changing the
cluster assignment, see Equation 4.1. K-means repeats both steps until a
termination condition is fulfilled. A frequent termination condition is that
the cluster assignment does not change, or that the change of cluster centers
falls below a threshold value ψ > 0. The process converges, but may get stuck
in local optima.

4.4 Self-organizing Maps

Self-organizing maps are biologically inspired neural models. SOMs are sim-
ilar to vector quantization, where patterns are iteratively presented to a set
of codebook vectors w1, . . . ,wK . The closest codebook vector w∗ is moved
into the direction of the pattern yi w.r.t. a learning rate η ∈ (0, 1) with

w∗′ = w∗ + η(yi −w∗). (4.4)

The SOM by Teuvo Kohonen [54] employs a similar concept. A SOM con-
sists of a map of neurons n1, . . . , nK , each equipped with a weight vec-
tor w1, . . . ,wK and a position p1, . . . , pK ∈ R

q on a q-dimensional map.
Usually, the map is 2-dimensional, and the neurons are arranged on a grid.
The Euclidean or the Manhattan distance can be used as distance measure
on the map.

Algorithm 2 shows the pseudocode of the SOM learning algorithm. At the
beginning, the neural weights are initialized with random values. During the
training phase, the high-dimensional patterns yi are presented to the map in

w1 w2 w3 w4

n*

y y y y
1 2 3 4

Fig. 4.2 Illustration of a 2-dimensional SOM in a 4-dimensional data space [54].
Each neuron employs a weight vector. The winner neuron n∗ is shown in red. Its
weights and the weights of its neighbors are moved into the direction of the input
pattern.
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random order. For each pattern yi, the SOM compares the distance to the
weights of each neuron nj of the map defined in the space of neural positions.
The neuron n∗ with the lowest distance δ∗ to its weight vector is the winner
neuron w∗ with distance

δ∗ = min
1≤j≤K

‖yi −wj‖2, (4.5)

see Figure 4.2. The weights of the winner neuron n∗ and its neighbors are
pulled into the direction of the pattern yi depending on the learning rate
η ∈ (0, 1) and the neighborhood function h defined on the map, i.e., in the
space of neural positions. The neighborhood function h(n∗, nj , r) must have
the following characteristics:

• h maps into the interval [0, 1],
• h is maximal at the center of winner neuron n∗,
• outside the range of r, i.e., for ‖p∗ − pj‖2 > r, it yields values close to

zero.

Parameter r ∈ R is called neighborhood radius. A typical neighborhood func-
tion that fulfills these requirements is the Gaussian function.

Algorithm 2. SOM

Require: Y = [yi]
N
i=1, δ, h, r

1: initialize weight vectors wi of each neuron ni

2: repeat
3: randomly select a pattern yi

4: compare yi to each weight vector wj of the SOM
5: winner neuron n∗ has minimal distance δ∗ = min1≤j≤K ‖yi −wj‖2
6: update of weight vectors w′

j = wj + η · h(n∗, nj , r) · (yi −wj)
7: decrease learning rate η and neighborhood radius r
8: until termination condition

In each generation, the SOM updates the weights of the winner and its
neighborhood with the help of η und h, so that they are pulled into the
direction of pattern yi with

w′
j = wj + η · h(n∗, nj , r) · (yi −wj). (4.6)

The algorithm leads to a mapping from data space R
d to the map. The

mapping maintains the topology of the neighborhood. Close patterns in
data space lie closely together on the map. Usually, the radius r and the
learning rate η are decreased in the course of the algorithm to ensure con-
vergence. Ritter [92] motivates the SOM from the point of view of computa-
tional neuroscience. The working principle is a result of local excitation and
lateral inhibition. Within the neural layers the fields of perception receive the
sensorial information.
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The result of a trained 5× 5-SOM employing images of galaxies from the
EFIGI data set [6] (cf. Appendix A) is shown in Figure 4.3. After training, the
closest image is assigned to each neuron. The SOM has obviously distributed
its weights in the whole space of images considering the topological proper-
ties of distance and neighborhood preservation. Similar types of galaxies are
neighbored on the map.

Fig. 4.3 Trained 5× 5-SOM on photos of galaxies form the EFIGI data set

Sometimes, the neural weights are ill-conditioned and the network of
weights is twisted around one vector [93]. To avoid such topological errors,
a SOM-variant called neural gas has been introduced by Martinez [78]. The
neural gas adapts the weights according to distance relations in data space.
In contrast to the SOM, the neural gas does not have a predefined topological
structure. Neighborhood relations are defined by the locations and topologi-
cal properties in data space. Like a SOM, the neural gas employs K neurons
with weight vectors wj . During training, for each neuron nl the number gj
of neurons is computed that have a distance lower than the neuron itself to
a pattern yi with

gj =
∣∣∣{nl | l ∈ 1, . . . ,K with ‖yi −wl‖2 < ‖yi −wj‖2}

∣∣∣ . (4.7)

Now, gj is the basis for the weight adaptation. Like the SOM learning rule,
the weight update

w′
j = wj + η · h(gj, r) · (yi −wj), (4.8)

with learning rate η ∈ R
+ depends on a neighborhood function with similar

properties. It must be maximal for the winner neuron. Neighborhood function

h(gj, r) = exp
(gj
r

)
(4.9)

is a frequent choice for the neural gas.
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4.5 Principal Component Analysis

A very famous dimensionality reduction method is principal component anal-
ysis (PCA). It is designed for linear data sets. An early variant has been
introduced by Pearson [88], who fitted lines and planes to a given set of
points. The standard PCA, as it is most frequently known today, works as
follows [47]. Given a set of d-dimensional patterns yi ∈ R

d with i = 1, . . . , N ,
the goal of PCA is to find a linear manifold of a lower dimension q < d that
captures the most variance of the patterns. PCA computes the covariance
matrix of the patterns

C =
1

N − 1

N∑
i=1

(ȳ − y)(ȳ − y)T (4.10)

with mean

ȳ =
1

N

N∑
i=1

yi. (4.11)

If λ1 ≥ . . . ≥ λq are the eigenvalues of the covariance matrix C, and if
ê1, . . . , êd are the corresponding eigenvectors, we can define a d× q-matrix

Vq = [ê1, . . . , êq], (4.12)

and an affine mapping F(yi) : R
d → R

q defined as

F(yi) = VT
q (yi − ȳ) (4.13)

from the data space to the q-dimensional space of the principal components
xi = F(yi). The inverse mapping

Fig. 4.4 PCA on 2-dimensional Gaussian distributed patterns and a visualization
of the eigenvectors
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ỹi = f(xi) = Vqxi + ȳ (4.14)

back to the d-dimensional data space with ỹi is the projection of the pattern
yi onto the linear manifold. The principal components xi have zero mean
and are uncorrelated, i.e., it holds

∑N
i=1 xjxk = 0 ∀ j �= k.

4.6 Isometric Mapping

Isometric mapping (ISOMAP) belongs to the earliest methods for embed-
ding non-linear data. It is based on three basic steps: First, it generates a
neighborhood graph with neighborhood size K. This can be achieved using
balltrees (cf. Section 2.7). Second, an N × N matrix D of distances is com-
puted, setting each entry Dij to the length of the shortest path between
the corresponding patterns yi and yj . The shortest-paths problem in graphs
has been solved by Dijkstra [23] efficiently in O(N2(K + log(N))). Matrix
D contains geodesic, also called curvilinear distances, which allow to handle
non-linear and intertwined data, see Figure 4.5. For a non-connected graph,
e.g., in case of a too small choice of neighborhood size K, ISOMAP is not
able to embed all patterns and a larger K has to be chosen. The idea of
the last step of ISOMAP is to perform multi-dimensional scaling [70], i.e., to
compute a low-dimensional matrix of points X = [xi]

N
i=1 with distances that

are consistent with the high-dimensional data space. This can be formulated
as optimization problem

min
X

‖xi − xj‖2 ≈ ‖yi − yj‖2 (4.15)

with i < j. This step is computed with a partial eigenvalue decomposition
with an approximate cost of O(dN2). Depending on the number of patterns
the overall complexity of ISOMAP is in O(N2 logN).

geodesic distance

Euclidean distance

Fig. 4.5 Geodesic distances in comparison to Euclidean distance for a 2-dimensional
curve
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4.7 Locally Linear Embedding

For non-linear manifolds, locally linear embedding (LLE) by Roweis and
Saul [94] is often employed. LLE assumes locally linearity of manifolds and
computes point-wise embeddings. First, LLE computes weights that allow a
linear reconstruction of point yi from its K-nearest neighbors minimizing the
cost function

E(w) =

N∑
i=1

‖yi −
K∑
j=1

wijyj‖2. (4.16)

The search for parameters wij can be obtained as follows. First, create a
matrix D consisting of all neighbors of yi, subtract yi from every column of
D. Then, compute the local covariance C = D′C and solve the linear system
Cw = 1 for w. Set wij , if j is not a neighbor of i. Last, set the remaining
elements in the i-th row of w equal to w

∑
iwi. The computation requires

the solution of a K × K linear equation for each of the N neighborhoods,
resulting in a complexity of O(dNK3). The resulting weights capture the
geometric structure of the data, as they are invariant under rotation, scaling,
and translation. Then, LLE computes the vector x best reconstructed by the
weights of the previous step minimizing

E(x) =

N∑
i=1

‖xi −
K∑
j=1

wijxj‖2, (4.17)

which can again be computed with a partial eigenvalue decomposition. The
overall complexity of LLE w.r.t. the number of patterns is O(N logN +N +
N2) ∈ O(N2). For a detailed introduction to LLE, we refer to [94] and
Chang and Yeung [16] for a variant robust against outliers. In matrix form,
one can take advantage of sparse matrix shortcuts, as most involved matrices
have at most K non-zero entries from the neighborhood relation. LLE is
employed as initialization routine for many unsupervised regression methods,
cf. Section 4.9.4

A lot of further dimensionality reduction methods have been introduced
that are related to each other. Independent component analysis (ICA) [19] is
a popular method that assumes mutual statistical independence of the non-
Gaussian source signals. Projection pursuit [30, 45] incorporates higher than
second-order information and is thus able to capture non-Gaussian distribu-
tions. For an overview of methods and a further introduction to dimension-
ality reduction, we recommend textbooks like Hastie et al. [40], Bishop [12],
and Lee and Verleysen [72].

4.8 Unsupervised Regression

Let Y = {y1, . . . ,yN} ⊂ R
d be the set of high-dimensional patterns with cor-

responding pattern matrix Y = [yi]
N
i=1 ∈ R

d×N . Let X = {x1, . . . ,xN} ⊂ R
q
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be an arbitrary set of low-dimensional representations/latent points that de-
fine a manifold with q < d. Matrix X = [xi]

N
i=1 ∈ R

q×N is the corresponding
latent representation. The pairs (xi,yi) with 1 ≤ i ≤ N are the patterns with
their latent points (positions in latent space). The low-dimensional represen-
tation should represent typical characteristics of the high-dimensional data,
and should loose as less information as possible, e.g., data space neighbor-
hood relations and distances. The problem is a hard optimization problem,
since the latent variables X are unknown.

We define the mapping f : Rq×N → R
d×N from latent space R

q to data
space R

d for matrices as follows

fX(X) = [fX(xj)]
N
j=1. (4.18)

Figure 4.6 illustrates the mapping from latent space to data space. For the
optimal manifold X∗, the data space reconstruction error (DSRE)

E(X) = ‖fX(X) −Y‖2F (4.19)

with Frobenius norm ‖ · ‖2F is minimal, i.e., it holds

X∗ = arg min
X∈Rq×N

E(X). (4.20)

For many regression methods, the optimal solution X∗ is not unique ac-
cording to the above definition, as scaling would allow an infinite number of

latent space data space

observed patterns y
mappings f(x ) from class red

mappings f(x ) from class blue

latent points x  for class red

latent points x for class blue

f(x)

i

i

i

i

i

Fig. 4.6 Illustration of mapping from latent space to data space. The observed
green patterns yi should optimally be reconstructed by the mapping from latent
variables xi (red and blue) to data space f(xi) = yi (also red and blue).
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optimal solutions. To avoid this, a regularization term λ‖X‖2F is added, and
the optimization problem becomes

X∗ = arg min
X∈Rq×N

E(X) + λ‖X‖2F (4.21)

with penalty weight λ ∈ R
+ that restricts latent space extension.

Most unsupervised regression approaches are based on initialization of the
latent variables X = [xi]

N
i=1 with LLE. Then, the DSRE E(X) is minimized

employing an optimization scheme, e.g., based on gradient descent [53]. UNN
constructs a solution w.r.t. to the DSRE for an iteratively growing solution.

4.9 Unsupervised Kernel Regression

In this section, unsupervised kernel regression (UKR), one of the most promi-
nent variants of unsupervised regression, is introduced. UKR employs the
Nadaraya-Watson estimator for regression. An example for the application
of UKR is the learning of low-dimensional manual actions [100]. The task
is part of human-robot communication. Manual actions have been recorded
with a dataglove, e.g., the movement to open a bottle. The task is to imitate
the movement with a robot hand. For this sake, a low-dimensional action
manifold is learned from the high-dimensional trajectory data. The objective
of the approach is to represent sequences of hand postures that correspond
to movement cycles. UKR was extended in such a way that time and move-
ment representation occurred explicitly as represented latent dimensions. The
structured manifolds allow to navigate the space of movements with specific
characterizations like the radius of the bottle that is important in manual
actions.

4.9.1 Unsupervised Regression with
Nadaraya-Watson

Kernel regression weights the labels yi ∈ R
d of patterns xi ∈ R

q for
i = 1, . . . , N with relative kernel densities in data space. The idea has been
introduced by Nadaraya and Watson [82, 110] and is known as Nadaraya-
Watson estimator. The UKR regression function maps from latent space to
data space and is defined as follows

fX(x) =

N∑
i=1

K(x− xi)∑N
j=1K(x− xj)

yi, (4.22)

for a given latent matrix X that define a candidate manifold, i.e., the
low-dimensional representation of the high-dimensional pattern matrix Y.
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For convenience, Klanke and Ritter et al. [53] introduced a vector b(x) =
[bi(x)]

N
i=1 ∈ R

N of basis functions that define the ratios of the density kernels
with

bi(x) =
K(x− xi)∑N
j=1K(x− xj)

. (4.23)

Each component i of the vector b(x) contains the relative kernel density of
pattern x w.r.t. pattern xi, which is the i-th column vector of matrix X.
Equation 4.22 can also be written in terms of these basis functions

fX(x) =
N∑
i=1

yibi(x) = Yb(x). (4.24)

The matrix Y of high-dimensional patterns is fixed, while the basis functions
bi(x) are tuned during the learning process. They sum up to one as they are
normalized by the denominator. The optimization problem can conveniently
be formulated introducing a matrix B(X) ∈ R

N×N , whose columns consist
of the vectors of basis functions

B(X) = [b(xj)]
N
j=1. (4.25)

The product of Y ∈ R
d×N and B ∈ R

N×N results in a d×N -matrix, which
is the Nadaraya-Watson estimate for the whole pattern set. The quality of
the manifold is evaluated with the DSRE that can now conveniently be for-
mulated as

E(X) =
1

N
‖Y −YB(X)‖2F . (4.26)

Restriction of the solution space is necessary to avoid overfitting, cf. Sec-
tion 4.9.4.

4.9.2 Kernel Density Functions

Kernel regression and UKR are based on a density estimate of patterns with
a kernel density function K : Rq → R. A typical kernel density function is
the multivariate Gaussian kernel

KG(z) =
1

(2π)q/2det(H)
exp

(
−1

2

∣∣H−1z
∣∣2) , (4.27)

with bandwidth matrix H = diag(h1, h2, . . . , hq). Another frequent choice is
the Epanechnikov kernel

KE(z) = DE

(
|z|
h

)
, (4.28)

with

DE(t) =
3

4
[1− t2]+ =

{
3
4 · (1 − t2) |t| < 1
0 |t| ≥ 1

. (4.29)
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The bandwidth h defines the radius of the supported region, similar to the
standard deviation of the Gaussian function. Both kernel functions have use-
ful asymptotic characteristics. For h → 0, both kernel functions reconstruct
the patterns, for h→ ∞ they average over all N patterns [37].

To increase the flexibility, parameterized kernel density functions can be
employed that allow a greater flexibility to adapt to local data space char-
acteristics. Bishop [12] states valid combinations of kernel functions, e.g., a
weighted sum of the Gaussian and the Epanechnikov kernel

KH(z) = αKG(z) + (1− α)KE(z), (4.30)

with α ∈ [0, 1]. Such a hybrid kernel function can morph between both ker-
nel density functions. The parameter can be adjusted during training of the
functional model.

4.9.3 Kernel Bandwidths

The results of kernel density estimators significantly depend on the choice
of proper kernel parameters, e.g., kernel bandwidths. Figure 4.7 shows the
influence of bandwidth parameter h on the Parzen-estimate of a sample data
set with the Epanechnikov kernel. The sample data set consists of twenty 2-
dimensional random vectors drawn from the Gaussian distribution with mean
μ = (0.0, 0.0)T and σ = (1.0, 1.0)T . The figures show that the bandwidth
parameter has a significant influence on the density function. For the small
value h = 0.1, the estimate generates small bumps at the locations of the
patterns. For the larger bandwidth h = 2.0, the Gaussian distribution can
be recognized. Too large bandwidths lead to oversmoothing, i.e., averaging of
the data sampled without reflecting any structure in the data.
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Fig. 4.7 Comparison of Epanechnikov kernel with two different bandwidth settings:
(a) h = 0.1 and (b) h = 2.0 [66]
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Figure 4.8 shows the influence of h on learning a noisy trigonometric func-
tion. Small values lead to an overfitted prediction function, while high val-
ues result in an overgeneralization. LOO-CV is a technique to regularize
the model. Various bandwidth selection methods are known in literature. A
simple and good working choice is the Silverman’s rule of thumb that recom-
mends to set the bandwidth to

σ = σ̂cμ−1/5 (4.31)

with μ solutions, the sample standard deviation σ̂ and c = 1.06 for a Gaussian
distribution.

x

y

h = 0.01

(a)

x

y

h = 2.0

(b)

x

y

h = 0.3

(c)

Fig. 4.8 Influence of bandwidth h on the smoothness of the regression model on a
noisy trigonometric function: (a) low values (h = 0.01) lead to an overfitted model,
while (b) high values (h = 2.0) overgeneralize. A smooth regression function can
be achieved with (c) the choice of h = 0.3.

4.9.4 UKR Optimization

To avoid overfitting in UKR, penalty of extension in latent space (cf. Equa-
tion 4.21) is employed. An alternative is restriction of latent space to [0, 1]q.
Otherwise, optimization would move the latent points infinitely apart from
each other, which only results in an overfitted reconstruction [53]. As minimiz-
ing of Equation 4.21 is a hard optimization problem, Klanke and Ritter [53]
have introduced an optimization scheme consisting of half a dozen advanced
steps. The scheme employs PCA and multiple LLE solutions for initialization.
In short, the following optimization scheme is applied:

1. Initialization of m + 1 candidate solutions: m solutions from LLE, one
solution from PCA,

2. selection of the best initial solution w.r.t. cross-validation error, or
3. search for optimal scale factors that scale the best LLE solution to an

UKR solution w.r.t. cross-validation error,
4. selection of the most promising solution w.r.t. cross-validation error,
5. cross-validation error minimization:
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• if the best solution has been generated by PCA: search for optimal
regularization parameters η (with the homotopy method, cf. [53]),

• if the best solution stems from LLE: cross-validation error minimiza-
tion with the homotopy method / resilient backpropagation (RPROP)
by Riedmiller and Brown [91],

6. final density threshold selection.

The spectral initialization with LLE is an often employed procedure to gen-
erate satisfying initial UKR models. The UKR-based optimization process
plays the role of post-optimization of LLE solutions.

4.9.5 Algorithmic Variants

In the following, we give a short overview of UKR variants. A landmark
variant by Klanke [52] is based on the idea of finding representative codebook
vectors instead of employing the complete set of patterns, which can make
the kernel density computations slow in case of large data sets. The landmark
variant can reduce the computational effort during training of the model, for
sampling from the manifold, and for projecting new data. A set of landmark
points Ŷ = {ŷ1, . . . , ŷN̂} with N̂ < N is selected from y1, . . . ,yN . Then, Y is

reconstructed from a UKR model utilizing only Ŷ in the regression function

fX̂(x) = Ŷb(x̂). (4.32)

Landmark variants are an effective way to reduce the computational complex-
ity of machine learning methods by concentrating on a subset of patterns.

A feature space variant of UKR introduced by Klanke [52] extends UKR
by a kernel for computation of the DSRE in a feature space. In experiments,
the approach turned out to achieve lower errors than the native approach.
Kernels for feature space map the patterns from data space to a space of
higher dimensionality. In this space, non-linearities are softened. We introduce
such a kernel approach for UNN in Chapter 7.

LOO-CV is an extreme variant of cross-validation and well appropriate
for small data sets, cf. Section 2.5. LOO-CV is based on leaving out each
pattern as validation set, i.e. setting n = N . It is known to yield an unbiased
estimate of the prediction error. Often, the drawback of LOO-CV is that it can
be computationally inefficient. But for UKR, LOO-CV can be implemented
very efficiently by setting the diagonal entries of X to zero and normalizing
the columns before applying Equation 4.26. Leave-c-out cross-validation with
c = 3 and c = 5 have been observed to produce lower variances, but may
overestimate [52].

In [62, 63] we present an evolutionary UKR variant and employ the co-
variance matrix adaptation evolution strategy (CMA-ES) (cf. Chapter 6) to
solve two steps of the UKR optimization framework with the objective to
replace the complicated optimization scheme by the shorter framework:
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Fig. 4.9 Evolutionary UKR on 2-dimensional noisy S data set. The figures show the
results of evolutionary optimization runs with three different ratios of optimization
steps spent on scaling and final cross-validation error minimization, i.e., 0/4, 2/2,
3/1 [66]. The model on the right is slightly overfitted.

1. Initialization of m candidate LLE solutions,
2. selection of the best initial solution w.r.t. cross-validation error,
3. search for optimal scale factors with the CMA-ES and
4. cross-validation error minimization with the CMA-ES.

A positive effect of the employment of an evolutionary scheme is that arbi-
trary, also non-differentiable kernel functions can be used, as the derivatives
do not have to be computed using blackbox optimization. Figure 4.9 shows the
evolved UKR manifold of a 2-dimensional S-structure consisting of N = 100
patterns with noise for three different ratios of optimization steps of scaling
factors and cross-validation error minimization [62]. We employed Huber’s
loss function [44] for training the evolutionary UKR model.

4.9.6 Further Regression Methods

Carreira-Perpiñán and Lu [15] argue that training parametric methods can
accelerate learning, e.g., unsupervised regression based on radial basis func-
tion networks (RBFs) [99], Gaussian processes [71], and neural networks [102].
They usually do not require to take into account all N patterns in each learn-
ing or prediction step. An unsupervised regression approach employing neural
networks has been introduced by Tan and Mavrovouniotis [102]. It is based
on a three-layer auto-associative network, which is trained with gradient
descent on the latent variables and neural weights. A further variant is un-
supervised local polynomial regression (ULPR) that employs polynomial re-
gression, which is very related to kernel regression, in the UR framework [52].
Local polynomial regression fits multiple simple functions f1(·), . . . , fN (·) to
each pattern that are weighted with kernel density function K(·):

E(X, f1, . . . , fN ) =
N∑
i=1

K(x− xi)‖yi − fi(xi)‖2 (4.33)
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Polynomials are more flexible than the kernel density weight of unsupervised
kernel regression, and ULPR leads to better embeddings. But fitting a poly-
nomial at each point is computationally very expensive.

Carreira-Perpiñán and Lu [15] extend the unsupervised regression opti-
mization problem to a more general formulation, which takes into account
the mapping backwards from latent space to data space. The unsupervised
regression problem is formulated as minimization problem in the following
form

min
X,fX,FY

E(X, fX,FY) = E(X, fX) + E(X,FY) (4.34)

with
E(X, fX) = ‖Y − fX(X)‖2F + λf‖fX‖, (4.35)

and
E(X,FY) = ‖X− FY(Y)‖2F + λF‖FY‖. (4.36)

with parameters λf , λF ∈ R. Further, X ∈ R
d×N is finite-dimensional, while

fX and FY belong to appropriate infinite-dimensional function spaces. Here,
‖·‖ is also used as functional norm for f and F, while E(X, fX) and E(X,FY)
are formulated as regularized least-squares regression problem. E(X, fX) and
E(X,FY) are competing terms of separating and clustering X. E(X, fX) sep-
arates points in X from each other so that fX can more easily interpolate and
reduce the error ‖Y − fX(X)‖2F . Along the way, E(X,FY) drives the latent
points from X to 0 so that F can smoothly interpolate (X,Y) by FY = 0.
Optimization of both objectives often results in good mappings, while the
concentration on one of the two terms turns out to be disadvantageous in ex-
perimental studies. Carreira-Perpiñán and Lu proposed an alternating scheme
of adaptation and projection. In the adaptation step, X is kept constant and
a solution for Equation 4.34 is computed. This is performed with radial basis
function expansions at each of the patterns and a translation of the optimiza-
tion problem to a system of linear equations. In the projection step, fX and
FY are fixed, while Equations 4.35 and 4.36 are minimized. This requires the
solution of a non-convex optimization problem, which can be quite difficult
to optimize.

4.10 Quality Measures for Latent Embeddings

The idea of dimensionality reduction is to compute a low-dimensional repre-
sentation of the high-dimensional patterns that preserve most of the informa-
tion. To evaluate dimensionality reduction results, various quality measures
have been introduced. In the following, we present and discuss three quality
criteria. The co-ranking matrix measure will guide as evaluation criterion in
the experimental parts of this work.
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4.10.1 Quantization Error

The quantization error is a simple quality measure for vector quantization and
related methods [8], e.g. SOMs and the neural gas. It measures the average
distance between each pattern yi ∈ R

d with i = 1, . . . , N and its closest
codebook vector ci∗ , which is known as best matching unit

EQ =
1

N

N∑
i=1

‖yi − ci∗‖2. (4.37)

The quantization error is only an applicable quality measure for approaches
that employ codebook vectors. The measure is neglecting that codebook vec-
tors might lie at locations, where not patterns are located. In this case, only
few codebook vectors might be distributed in data space leading to a com-
paratively low error, while others are far away from the main clusters of
patterns.

4.10.2 Topographic Error

The topographic error by Kiviluoto [51] is also designed for methods that
employ codebook vectors. It determines the best ci∗1 and the second best
ci∗2 matching units for each pattern yi and counts every case, in which both
are not neighbored on the topographic map

ET =
1

N

N∑
i=1

I(ci∗1 , ci∗2) (4.38)

with I(ci∗1 , ci∗2) = 1, if ci∗1 and ci∗2 are not neighbored. This measure takes
into account that neighbored positions in latent space should correspond to
neighbored positions in data space. The concept is already quite close to the
concept of the co-ranking matrix that will be introduced in the next section.
Similar to the quantization error, problems may occur, if codebook vectors
are not well distributed in data space. For example, an extreme case is that
for most patterns only two best matching units are neighbored, while all other
best matching units are far away. This bad embedding would result in a low
error.

4.10.3 Co-ranking Matrix

Lee and Verleysen [73] introduced a measure for the evaluation of latent
embeddings called co-ranking matrix. It is based on the comparison of ranks
w.r.t. distance-based sorting of patterns in data space and in latent space. Let
yi and yj be two patterns in data space with corresponding latent positions
xi and xj in latent space. The rank ρij of yj with respect to yi in data space
is defined by
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ρij = |{k | ‖yi − yk‖2 ≤ ‖yi − yj‖2 and 1 ≤ k < j ≤ N}|. (4.39)

With the help of parameter k, the set of indices of patterns is counted with
a smaller distance to yi than yj . An equivalent definition specifies the ranks
in latent space that we denote as rij . Now, we can define a co-ranking matrix
Q that explicitly states the deviations of ranks in data and latent space

qkl = |{(i, j) | ρij = k and rij = l}|. (4.40)

In this matrix, rank errors correspond to off-diagonal entries. A point yj with
lower rank w.r.t. a point yi in latent space, i.e., ρij > rij , is called intrusion.
In the case ρij < rij , it is called extrusion, see Figure 4.10.

K1
1

K

N - 1

N - 1

mild
extrusion

mild
intrusion

hard
extrusion

hard
intrusion

Fig. 4.10 Illustration of co-ranking concept oriented to the work of Lee and Ver-
leysen [73]. Points yj with lower rank w.r.t. a point yi in latent space (ρij > rij)
are called intrusions. In turn, points with ρij < rij are called extrusions.

From the co-ranking matrix, the following quality measure can be derived
that counts the number of proper ranks within a neighborhood of size K

ENX(K) =
1

KN

K∑
k=1

K∑
l=1

qkl (4.41)

This term restricts the measure to neighborhoods of size K. High values for
ENX show that the high-dimensional neighborhood relations are preserved in
latent space. A perfect embedding achieves a value of one, i.e., all K-nearest
neighbors of N patterns in data space have their latent representations in
the set of K-nearest neighbors in latent space. Extensions of the measure
have been presented, e.g., weighting the rank errors and defining a tolerance
level. A discussion can be found by Lueks et al. [75].
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4.11 Conclusions

Dimensionality reduction is the task of learning a mapping from high-dimen-
sional data space to a latent space with lower dimensions, while preserv-
ing topological information. A broad range of problems can be solved with
dimensionality reduction methods, e.g., feature preprocessing, fault detec-
tion, monitoring, and visualization. We have shortly revisited prominent ap-
proaches, from clustering with K-means and vector quantization with SOMs
to linear dimensionality reduction with PCA and non-linear embeddings with
ISOMAP and LLE. Further, evaluation criteria for embeddings have been
presented. The quantization error and the topographic error have been in-
troduced for methods employing codebook vectors. The co-ranking matrix
measure is appropriate for algorithms that compute point-wise embeddings.

The unsupervised counterparts of regression methods are powerful mani-
fold learning techniques. They are based on optimizing latent variables w.r.t.
the regression based reconstruction of high-dimensional patterns. This objec-
tive guides the optimization process and will also be the basis of the unsu-
pervised nearest neighbors optimization process that will be introduced in
the following chapter. UKR is a famous representative of this class of meth-
ods. UKR solutions are usually initialized with PCA or LLE solutions and
post-processed with gradient descent in latent space w.r.t. unsupervised re-
gression. We have shown how evolutionary methods can be used to optimize
UKR manifolds employing LOO-CV and robust loss functions on a simple
test data set. Although many interesting UKR variants have been presented
in the past, unsupervised regression has not become as popular as similar
methods, e.g., PCA, LLE, or ISOMAP. Only few applications based on un-
supervised regression and UKR have been introduced in the last years, e.g.,
learning of intrinsic structures of robot arm motions [100]. Besides kernel re-
gression, other methods have been employed in the unsupervised regression
framework, from local polynomial regression to feedforward networks.
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Latent Sorting

5.1 Introduction

In this chapter, we introduce the first variant of unsupervised nearest neigh-
bors for embedding patterns in discrete latent topologies. For this sake, we
first introduce the basic principle of fitting nearest neighbor regression to the
unsupervised regression framework of the last chapter. The nearest neigh-
bor principle is a simple and efficient approach. With UNN, we present an
iterative method for the construction of low-dimensional embeddings, which
allows to cope with large data sets. To accelerate the method, a greedy vari-
ant restricts the search process to the latent neighborhoods of the closest
embedded patterns. All presented methods will be analyzed experimentally.
In the remainder of this book, various optimization strategies for UNN will
be introduced, and the approach will be extended step by step.

In practical scenarios, data sets are noisy and entries are missing. Besides
modeling of the data mining process, selection of relevant features, and tasks
like normalization, the practitioner often has to preprocess the data. Failures
and environmental conditions can lead to noise and missing entries. We in-
troduce and analyze methods to cope with noisy and missing data for UNN.
To cope with noise, we employ the ε-insensitive loss. Parameter ε allows to
adapt the level of noise to ignore. Experiments will show that the search
for proper parameters can improve the UNN learning results. To cope with
missing data, we introduce two approaches:

• Repair-and-embed first repairs incomplete patterns iteratively with KNN
regression and then embeds the repaired patterns employing UNN. For
the imputation process, the completed patterns are used to predict the
missing values iteratively.

• Embed-and-repair first embeds incomplete patterns ignoring the features
with missing data. After embedding, the gaps are filled so that the em-
bedded patterns optimally fit into the latent positions minimizing the
DSRE.

O. Kramer: Dimensionality Reduction with Unsupervised Nearest Neighb., ISRL 51, pp. 55–73.
DOI: 10.1007/978-3-642-38652-7_5 c© Springer-Verlag Berlin Heidelberg 2013
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With the help of experiments, we will carefully analyze the missing data
strategies w.r.t. an increasing rate of missing values considering the imputa-
tion performance and a comparison of the DSRE with complete data.

5.2 Unsupervised Nearest Neighbors

First, we introduce the iterative UNN optimization framework presenting the
notation for iteratively growing latent and pattern matrices.

5.2.1 Iterative Unsupervised Regression

We seek for a manifold that minimizes Equation 4.20. Unsupervised nearest
neighbors is an approach that constructs the manifold by iteratively adding
locally optimal latent points w.r.t. a growing pattern set. For the iterative
procedure, we define a notation for growing latent matrices X ∈ R

q×n, and
pattern matrices Y ∈ R

d×n for number 1 ≤ n ≤ N of currently embedded
patterns.

Let Y be the complete pattern matrix with an arbitrary order of patterns
that can randomly be changed at initialization. At the beginning, for the first
pattern y1, an arbitrary grid position is chosen, e.g., x1 = [0]. The latent
matrix becomes X = [x1], and the corresponding pattern matrix becomes
Y = [y1].

Let y1, . . . ,yn be the sequence of already considered patterns with asso-
ciated embeddings x1, . . . ,xn. For the next pattern yi with i = n + 1 ≤ N ,
UNN generates a set of κ latent position candidates x∗

1, . . . ,x
∗
κ, e.g., by testing

nodes on a q-dimensional lattice structure or by generating randomly sampled
points. The candidate latent point is chosen that minimizes the contribution
to the DSRE

xi = arg min
x=x∗

1,...,x
∗
κ

eX(x), (5.1)

which is defined as
eX(x) = ‖fX(x)− yi‖2. (5.2)

We can also choose the latent position that minimizes the DSRE of the
complete manifold

xi = arg min
x=x∗

1,...,x
∗
κ

E(X) + λ‖X‖2F (5.3)

with
E(X) = ‖fX(X)−Y‖2F , (5.4)

and parameter λ ∈ R
+. Here, fX(·) : Rq → R

d is the K-nearest neighbor
(KNN) regression model defined as

fX(x) =
1

K

∑
j∈NK(x,X)

yj (5.5)
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with the set of indices NK(x,X) of the K-nearest latent points to latent
position x given a pattern matrix X = [xj ]

n
j=1. In the end, we seek for an

optimal complete latent matrix X∗ = X
∗
with n = N .

For KNN, neighborhoods are invariant w.r.t. scaling of latent vectors.
Hence, the optimal solution is not unique. For practical purposes, e.g., due
to the limitation of the size of numbers on machines, it might be reasonable
to restrict continuous KNN latent spaces, e.g., to xi ∈ [0, 1]q. The proposed
strategies for generation of latent points automatically restrict extension in
latent space. In the following section, discrete latent space topologies are used
that do not require further regularization.

Optimal latent points X∗ and patterns Y yield mappings in both direc-
tions, i.e., from latent space to data space fX∗(·) and from data space to
latent space

FX∗(y) =
1

K

∑
j∈NK(y,Y)

x∗
j . (5.6)

For KNN, not the absolute latent positions are relevant, but the relative
positions that define the neighborhood relations. This perspective reduces the
problem to a combinatorial search in the space of neighborhoods NK(xi,X)
with i = 1, . . . , N that can be solved by testing all combinations ofK-element
subsets of N elements, i.e., all

(
N
K

)
combinations. The problem is still difficult

to solve, in particular for large numbers of patterns.

5.2.2 Latent Sorting

For generation of latent positions we assume that latent points lie on a lattice
structure in the following. For q = 1, finding appropriate latent positions on
a line is similar to finding the best sorting of patterns. Latent sorting works
as follows. For the first pattern y1, an arbitrary grid position can be chosen,
e.g., x1 = [1]. The latent matrix is X = [x1], and the corresponding pattern
matrix is Y = [y1].

Let y1, . . . ,yn be the sequence of already considered patterns with asso-
ciated embeddings x1, . . . ,xn. For the next pattern yi with i = n + 1 ≤ N ,
UNN generates n + 1 candidate latent positions 0.5, 1.5, . . . , n + 0.5. The
optimal latent position x∗ = i∗ is chosen that minimizes Equation 5.2, or
Equation 5.4 respectively. Algorithm 3 shows the algorithm in pseudocode.
After choosing the optimal latent position i∗, all latent points get the latent
position that corresponds to their rank in an increasing order 1, . . . , n+1. Fi-
nally, the latent matrix is extended1 by the novel latent position X = [X, i∗],
the pattern yi is added to the pattern matrix Y = [Y,yi].

Figure 5.1 illustrates the n + 1 possible embeddings of a pattern into an
existing order of points in latent space (yellow circles) forK = 2. The position

1 The elements (vectors and matrices) within the parentheses [·] are concatenated
to a matrix.
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Algorithm 3. Latent Sorting

Require: Y, K
1: X = [x1], Y = [y1]
2: for i = 2 to N do
3: choose yi

4: for i = 0.5 to n+ 0.5 do
5: test intermediate position i for xi in latent space
6: end for
7: choose position x∗ = i∗ that minimizes eX(x) or E(X)
8: regularize grid
9: X = [X,x∗], Y = [Y,yi]
10: end for

x

y

y

1

2

latent space

data space

x x x = x x x1 2 3 4 5 6

f(x )3

f(x )5y i

*

Fig. 5.1 Illustration of UNN latent sorting when embedding a pattern yi in a
discrete latent space topology w.r.t. the DSRE testing n+ 1 positions

of element x3 results in a lower DSRE than the position of x5, as the mean
of the patterns of the two nearest neighbors of x3 is closer to yi than the
mean of the patterns of the two nearest neighbors of x5.

The embedding ofN patterns takes (N+1)·(N+2)/2 DSRE computations,
i.e., UNN takes O(N2) time. In 1-dimensional latent space, it is easily possible
to save the K-nearest neighbors in latent space in a list, so that the search
for indices can be accelerated.

A greedy variant UNNg [55] only tests the neighbored positions in latent
space of the nearest embedded point of pattern yi



5.3 Experimental Analysis of UNN 59

y∗ = arg min
y=y1,...,yn

‖yi − y‖2 (5.7)

in data space with corresponding latent position x∗. Only the neighbored la-
tent positions of x∗, i.e., x∗− 0.5 and x∗+0.5 are tested. The latent position
i∗ is chosen that minimizes E(X). All other steps are the same as in the stan-
dard UNN variant. Figure 5.2 illustrates the embedding of a 2-dimensional
pattern yi (yellow) left or right of the nearest pattern y∗ in data space. The
position with the lowest DSRE is chosen.

y

y

1

2

latent space

data space

x4

f(x )3

f(x )4

y

y*

x*x = x3
*

i

Fig. 5.2 UNNg is testing the neighbored positions of the nearest pattern y∗ in
data space

UNNg computes the nearest embedded point y∗ in O(N) for each pattern.
Further, for each pattern, two DSRE computations are necessary. Hence,
also UNNg takes O(N2) time for the complete embedding. But if DSRE
computations take significantly longer than nearest neighbor searches in data
space, UNNg is a recommendable variant.

5.3 Experimental Analysis of UNN

In the following, we present an experimental evaluation of UNN regression
on the test data sets S, USPS Digits [46], and the EFIGI data set of galaxy
images (cf. Appendix A).
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5.3.1 S and USPS

The 3D-S variant without a hole (3D-S) consists of N = 500 patterns. Fig-
ure 5.3(a) shows the order of elements of the 3D-S data set at the beginning:
all latent embeddings are unsorted. The other parts of Figure 5.3 show em-
beddings of UNN with different neighborhood sizes, i.e., K = 2, 10, 200. In
case of too large neighborhood settings, UNN cannot distinguish between pat-
terns neighbored on the surface of the S-manifold and patterns being closer
in data space.

(a) (b)

(c) (d)

(e)

Fig. 5.3 UNN Embeddings: (a) 3D-S data set at the beginning and learning results
with various neighborhood sizes, i.e., (b) K = 2, (c) K = 10, and (d) K = 200.
Figure (e) shows the corresponding latent space consisting of N = 500 latent points.
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Fig. 5.4 Latent sorting of 100 digits (’2’s) from the Digits data set with UNNg.
Images assigned to every 14th embedded latent point are shown. Similar digits are
neighbored in latent space.

Figure 5.4 shows the embedding of 100 patterns of 256-dimensional (16
x 16 pixels) images of handwritten digits (2’s). We embed a 1-dimensional
manifold and show the images that are assigned to every 14th latent point.
We can observe that neighbored digits are similar to each other, while digits
that are dissimilar are further away from each other in latent space.

Figure 5.5 shows intermediate solutions of the optimization process of
UNNg regression on 3D-S with N = 600. It shows intermediate solutions
every 100 iterations, starting from (a) 100 embedded patterns to (f) the full
embedding. The figures show that the assignment to different colors at dif-
ferent locations takes place from the very beginning. This process continues
iteratively until all points are embedded. The complete embedding looks sim-
ilar to the solution presented in Figure 5.3(b).

5.3.2 DSRE Comparison

In the following, we compare the DSRE achieved by both strategies with the
initial DSRE and the DSRE achieved by LLE on all test problems. For the
USPS Digits data set, we choose number ’7’. Table 5.1 shows the experimen-
tal results of three settings for the neighborhood size K. The lowest DSRE
on each problem is highlighted with bold figures. After application of the
iterative strategies, the DSRE is significantly lower than initially. Increasing
K results in higher DSRE. With exception of LLE with K = 10 on the 2D-S
data set, the UNN strategy always achieves the best results. UNN achieves
lower DSRE than UNNg with exception of 2D-S and K = 10. The win in
accuracy of UNN over UNNg has to be paid with a constant runtime factor
that plays an important role in case of large sets of high-dimensional data.
UNNg and LLE perform similarly, i.e., UNNg is better than LLE in five cases,
while LLE shows superior results in seven cases.

5.3.3 Sorting of Galaxies

In the following, we test the UNN variants on real-world data from astronomy,
i.e., images of galaxies. Galaxies are massive, gravitationally bound systems
of stars, gas and dust. Their numbers of stars typically varies in the range of
107 to 1014. Edwin Hubble introduced a morphological classification scheme,
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(a) (b)

(c) (d)

(e) (f)

Fig. 5.5 Construction of 3D-S solution with UNNg after (a) 100, (b) 200, (c) 300,
(d) 400, (e) 500, and (f) 600 iterations

which became famous as Hubble sequence [43]. Neighbored classes in this
diagram represent galaxies with similar shape and is thus similar to a topo-
graphic map. Hubble’s classification scheme differentiates between three main
classes: (1) elliptical galaxies, (2) spiral galaxies, and (3) lenticular galaxies,
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Table 5.1 Comparison of DSRE for initial data set and after embedding with
strategy UNN and UNNg

2D-S 3D-S

K 2 5 10 2 5 10

init 201.6 290.0 309.2 691.3 904.5 945.80
UNN 19.6 27.1 66.3 101.9 126.7 263.39
UNNg 29.2 70.1 64.7 140.4 244.4 296.5
LLE 25.5 37.7 40.6 135.0 514.3 583.6

3D-Sh Digits (7)

K 2 5 10 2 5 10

init 577.0 727.6 810.7 196.6 248.2 265.2
UNN 80.7 108.1 216.4 139.0 179.3 216.6
UNNg 101.8 204.4 346.8 145.3 195.4 222.1
LLE 94.9 198.9 387.4 147.8 198.1 217.8

Fig. 5.6 Latent sorting of galaxies with UNNg: galaxies of similar classes from the
Hubble sequence are neighbored in latent space

see [50]. In our experiment, we employ images of galaxies from the Sloan Dig-
ital Sky Survey (SDSS), a collection of millions of astronomical objects [2].
Figure 5.6 shows the UNNg embedding of 100 images of galaxies from the
SDSS database. Each image is a vector of 40× 40 RGB values, i.e., the data
space dimensionality is d = 4, 800. The figure shows every 12th galaxy. We
can observe that galaxies, which belong to one class according to Hubble’s
classification scheme, are neighbored on the low-dimensional manifold. Ellip-
tical galaxies start from the left, while lenticular shapes are placed on the
right hand side, a sorting that is similar to the Hubble taxonomy.

5.4 Robust ε-Insensitive Loss

Loss functions have an important part to play in machine learning, as they
define the error and thus the design objective. In case of noisy data sets,
overfitting effects may occur. It may be difficult to decide, if the curvature of
the data manifold is substantial or noise. With the design of a loss function,
the emphasis of outliers can be controlled. First, the residuals are computed.
In case of unsupervised regression, the error is computed in two steps:
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1. The distance function δ : Rd × R
d → R maps the difference between the

prediction f(x) and the desired output value y to a value according to
the distance w.r.t. a certain measure δ (e.g. the Minkowski metric).

2. The loss function L : R → R maps the residuals to the learning error.
With the design of the loss function, the influence of residuals can be
controlled.

The loss function should be chosen according to the requirements of the data
mining model. Often, high residuals are penalized more than low residuals
(e.g., with a quadratic loss function). We will concentrate on the ε-insensitive
loss in the following. Let r be the residual. The L1 loss is defined as L1(r) =∑N

i=1 |r|, while the L2 loss quadratically penalizes with L2(r) =
∑N

i=1 r
2.

We will use the L2 loss for the final DSRE study, but concentrate on the
ε-insensitive loss Lε during training of the UNN model. Loss Lε is defined as

Lε(r) =

{
0 if |r| < ε
|r| − ε if |r| ≥ ε,

(5.8)

and allows to ignore errors beyond a level of ε. Thus, Lε avoids to overfit to
curvatures of the data that may only be caused by noise effects.

5.5 Experimental Analysis of Robust Loss Functions

In the following, we experimentally analyze the influence of loss functions on
the UNN embedding result. We evaluate the final embedding by (1) measur-
ing the final L2-based DSRE, (2) by visualizing the embedding with colored
points, and (3) by showing the latent order of the high-dimensional patterns.
We concentrate on two data sets, i.e., a 3D-S data set with noise and the
Digits data set [46].

5.5.1 3D-S

In the first experiment, we analyze the behavior on the 3D-S data set. Noise
is modeled by multiplication of each pattern of the 3D-S with a random value
drawn from the Gaussian distribution2:

y′ ∼ N (1, σ) · y. (5.9)

Table 5.2 shows the experimental results of UNN and UNNg concentrating on
the ε-insensitive loss for K = 5 and Euclidean distance. The two left columns
show the results on the data set without noise, i.e. σ = 0.0, the two right
columns show the results for a noise magnitude of σ = 5.0.

2 N (m,σ2) represents a Gaussian distributed number with mean m and standard
deviation σ.
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Table 5.2 Influence of ε-insensitive loss on final DSRE of UNN on the 3D-S data
set with and without noise

σ = 0.0 σ = 5.0
ε UNN UNNg UNN UNNg

0.2 47.4 77.4 79.1 85.6
0.4 48.1 77.4 79.3 85.6
0.6 51.8 76.3 78.7 85.6
0.8 50.9 76.3 77.2 84.4
1.0 64.0 76.4 79.4 84.2
2.0 96.0 68.3 119.6 82.0
3.0 138.4 50.6 163.7 80.5
4.0 139.1 50.6 168.8 82.1
5.0 139.1 50.6 169.0 83.2

At first, we concentrate on the experiments without noise. We can observe
that the DSRE achieved by UNN is minimal for the lowest ε. Without noise
for UNN ignoring residuals is disadvantageous: all intermediate positions are
tested and a good local optimum can be reached. Further, for UNNg lower
DSRE values are achieved with increasing ε, to a limit of ε = 3.0. We can con-
clude that local optima of UNNg can be avoided by ignoring small residuals.
The best DSRE of UNNg is worse than the best of UNN.

For the experiments with noise of magnitude σ = 5.0, we can observe local
DSRE minima: for ε = 0.8 in case of UNN and ε = 3.0 in case of UNNg .
For UNN, local optima caused by noise can be avoided by ignoring residuals.
Furthermore, for UNNg we observe the optimum at the same level of ε.

Figures 5.7(a) and 5.7(b) show a visualization of the embeddings of UNN
and UNNg without noise and the settings ε = 0.2 and ε = 3.0 corresponding
to the settings of Table 5.2 shown in bold. Similar colors correspond to neigh-
bored embeddings in latent space. The visualization shows that in both cases
neighbored points in data space have similar colors, i.e., correspond to neigh-
bored latent points. UNN achieves a lower DSRE than UNNg. This is difficult
to recognize in the visualization. Only some blue points in the embedding of
UNNg seem to be distributed in the upper and lower part of the S-structure,
which may represent a local optimum. Figures 5.7(c) and 5.7(d) show the vi-
sualization of the UNN embeddings on the noisy 3D-S. The structure of the
3-dimensional S is obviously disturbed. However, neighbored parts in data
space are assigned to similar colors. Again, the UNN embedding seems to be
slightly better than the UNNg embedding. Blue points can again be observed
at different parts of the structure representing local optima.



66 5 Latent Sorting

(a) (b)

(c) (d)

Fig. 5.7 Visualization of the best embeddings (lowest DSRE, bold values in Ta-
ble 5.2) on the 3D-S data set of (a) UNN without noise, (b) UNNg without noise,
(c) UNN with noise of magnitude σ = 5.0, and (d) UNNg with the same noise level

5.5.2 Handwritten Digits

To demonstrate the effect of the ε-insensitive loss for data spaces with higher
dimensions, we employ the USPS handwritten Digits data set with d = 256.
Table 5.3 shows the final DSRE w.r.t. the L2-loss after training with the
ε-insensitive loss with various parameterizations for ε. We used the setting
K = 10 and p = 10.0 for the Minkowski metric. The results for Digit ’5’
show that a minimal DSRE has been achieved for ε = 3.0 in case of UNN
and ε = 5.0 for UNNg with a minimum of R = 429.75561 was found for
ε = 4.7. Obviously, both methods can profit from the use of the ε-insensitive
loss. For Digit ’7’ and UNN, ignoring small residuals does not improve the
learning results, while UNNg with ε = 4.0 achieves the best embedding.
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Table 5.3 Influence of ε-insensitive loss on the final DSRE of UNN employing the
Digits data set

Digits (5) Digits (7)
ε UNN UNNg UNN UNNg

0.0 423.8 440.2 225.4 222.8
0.5 423.8 440.2 225.4 222.8
1.0 423.8 440.2 225.4 222.8
2.0 423.8 440.2 225.6 222.8
3.0 423.5 440.2 238.1 221.0
4.0 441.3 440.2 262.1 218.2
5.0 488.7 432.3 264.8 221.4
6.0 496.9 434.2 265.6 220.8

Figure 5.8 shows two UNNg embeddings of the handwritten Digits data
set, i.e., for ε = 2.0 and for ε = 20.0. For both settings, similar digits are
neighbored in latent space. But we can observe that for ε = 20.0, a larger
variety of ’5’s in the data set is covered.

(a)

(b)

Fig. 5.8 Comparison of UNNg embedding of ’5’s from the handwritten Digits data
set. The figures show every 14th pattern of the latent sorting of 100 digits for (a)
ε = 2.0 and (b) ε = 20.0.

5.6 Missing Data

In practical applications, data sets are often incomplete. Failures of sensors,
matching of databases with disjunct feature sets or conditions, where data
can get lost (e.g., in outer space due to X-ray) are typical examples for prac-
tical scenarios with incomplete patterns. However, it might be desirable to
compute a latent embedding of incomplete high-dimensional data. Objective
of this section is to introduce strategies that allow UNN to cope with miss-
ing data. The question arises, if the embedding approach can exploit useful
structural information to reconstruct the missing entries.
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The problem of missing data in feature vectors can be treated in various
kinds of ways. Two strategies are usually employed to handle incomplete data
sets:

• elimination of patterns with missing values and
• imputation methods that fill the gaps.

A simple method is to eliminate all patterns with missing entries. But this
may introduce a bias, as the fact that features are missing can be caused
by systematic errors. Further, the elimination of patterns from small data
sets deteriorates the chance to learn good models. A class of methods to
handle incomplete data are imputation methods, i.e., filling the gaps based
on learning from complete patterns. Incomplete data can be filled based on
simple statistical parameters like the median and the mean of the available
entries. Unfortunately, this method may also introduce a bias. Other impu-
tation methods are based on regression approaches, similar to the repair step
we apply in this chapter. For this sake, a training set consisting of the com-
plete patterns is used, missing entries are the missing labels that have to be
predicted, while the entries of the complete patterns of the corresponding
dimensions are employed as labels.

In case the distribution of missingness is conditionally independent of the
missing values given the observed data, the data is called missing at random,
i.e., entries are missing randomly with uniform distribution, in contrast to
missing not at random, where dependencies exist. Schafer and Graham [97]
have reviewed methods to handle them. In case of sparse data sets, joint
densities can be computed in a probabilistic framework [32].

If possible, the method can directly deal with missing data. Our embed-
and-repair method that will be introduced in Section 5.8 belongs to this class.
For SVM classification, such an approach has been introduced by Chechik
et al. [18]. It alters the SVM margin interpretation to directly deal with in-
complete patterns. But the method is best suited for features that are absent
than those that are not missing at random. An extension has been introduced
by Dick et al. [22]. The approach by Williams et al. [112] employs logistic
regression for classification of incomplete data and performs an analytic inte-
gration with an estimated conditional density function instead of imputation.
The approach does not only take into account the complete patterns, but also
the incomplete patterns in a semi-supervised kind of way.

5.7 Repair-and-Embed

Let Y be the matrix of high-dimensional patterns. In the missing data sce-
nario, we assume that some patterns in Y are incomplete, i.e., it holds ∃y′ij
with y′ij = n.a.. Let Ỹ be the matrix of complete patterns, i.e., it holds
�yij with yij = n.a.. In the following, we illustrate the imputation for one
missing entry, but the approach can easily be extended to the multiple case.
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To complete y′ij , repair-and-embed trains a regression model f̃ based on Ỹ
and first fills the missing entries of patterns [Y]j with a minimal number
of missing entries. Let yij be the entry to complete. We can employ matrix

ỸT
−i as training pattern matrix3, while ỹi = yi1, . . . , yiÑ comprises the corre-

sponding labels. Entry y′ij is estimated with f̃ leading to the complete vector
[Y]j = ỹj that can be embedded as usual with UNN. Algorithm 4 shows
the pseudocode of repair-and-embed. As KNN regression is a non-parametric
method, no training is necessary, only K has to be chosen carefully. After
the pattern has been completed, the next pattern with minimal number of
missing entries is chosen, and the process is repeated until all patterns are
complete. Then, data set Ỹ can be embedded as usual with UNN.

Algorithm 4. Repair-and-Embed

Require: Y, K
1: repeat
2: choose [Y]j with minimal number of missing entries
3: ỸT

−i is training pattern matrix
4: predict yij with KNN regression model f̃
5: add yij to Y, and set Ỹ = [Ỹ,yj ]
6: until Ỹ is complete
7: embed Ỹ with UNN

5.8 Embed-and-Repair

The second variant for embedding incomplete data is based on embedding a
vector yj with a missing entry yij at dimension i ignoring the i-th component
during the computation of the DSRE, i.e., minimizing

E−i(X) =
1

N
‖fX(X)−i −Y−i‖2F . (5.10)

Algorithm 5 shows the pseudocode of the embed-and-repair approach. The
algorithm starts iteratively with the vector yj = [Y]j with increasing num-
ber of missing values. Starting the dimensionality reduction with complete
patterns is reasonable to get as close as possible to the structure of the com-
plete embedding. Embed-and-repair is a greedy approach that only considers
the locally best embedding w.r.t. the available information. Embedded pat-
terns can be completed to take part in the remaining embedding process.
The gaps are closed with entries that ensure that the embedding is minimal
w.r.t. eX(x). This is the average of the K-nearest points for dimension i, i.e.,
the nearest neighbors estimation yij = fX(xj)i, see Equation 2.4.

3 Ỹ−i = [(yj)−i]
Ñ
j=1 with (yj)−i = (y)j and j = 1, . . . , d, j �= i. Ñ is the number

of complete patterns.
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Algorithm 5. Embed-and-Repair

Require: Y, K
1: repeat
2: choose yj = [Y]j with minimal number of missing entries, yij is missing
3: embed yj with UNN minimizing E−i(X) → xj

4: complete yj with KNN based on X → yj

5: add xj to X̃ with UNN
6: X = [X,xj ], Y = [Y,yj ]
7: until all patterns embedded

y

y

1

2
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data space
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(y , 0.5( y’ + y’’ ))1

y’

y’’

x’ x’’x

Fig. 5.9 Embed-and-repair. The incomplete pattern y = (y1, ·) is embedded at
position x leading to the lowest DSRE w.r.t. the first dimension, i.e., between x′

and x′′. Then, gap y2 is filled with KNN and K = 2.

Figure 5.9 illustrates the embed-and-repair strategy for neighborhood size
K = 2. Pattern y = (y1, ·) is incomplete. It is embedded at the position,
where it leads to the lowest DSRE w.r.t. the first dimension: between x′ and
x′′. Then, the gap is filled with the mean of the second dimension of y′ and
y′′ yielding y = (y1, 0.5 · (y′ + y′′)). The difference between KNN imputation
and embed-and-repair imputation is that the embed-and-repair KNN predic-
tion is based on neighborhoods in latent space. Hence, it is a dimensionality
reduction-oriented imputation method based on characteristics introduced by
UNN regression.
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5.9 Experimental Analysis of Missing Data Methods

In the following, we describe the experimental setup for the comparison be-
tween both approaches. We generate a missing data matrix Y by removing
entries yij from a complete data matrix Y+ = [y+

j ]
N
j=1 ∈ R

d×N at random
with uniform probability p, i.e., each entry yij is set to n.a. with proba-
bility p. We experimentally compare the DSRE for embedding Y+ and Y.
Further, we analyze the imputation error Eimp =

∑N
j=1 ‖y

+
j − ỹj‖2, which

is the deviation from the original complete patterns y+
j and the repaired

counterparts ỹj .
Table 5.4 shows the experimental results for increasing data missing rates

p on the data set 3D-S. The experimental results show that UNN with repair-
and-embed achieves the lowest DSRE on both data sets. The results are very
close to the DSRE achieved on the data set without missing values (complete).
UNN with embed-and-repair achieves the lowest imputation error Eimp in
seven of the eight cases, but much worse results for the DSRE. While the
DSRE results are still satisfactory with 1% of incomplete data, the approach
fails for higher missing rates. Obviously, it is difficult to first determine the
manifold structure from data sets with a high rate of missing values.

Figure 5.10 shows the embeddings of UNN on the 3D-S data set for increas-
ing missing rates p. The left plots show the embeddings of repair-and-embed,
the right plots the corresponding embeddings of embed-and-repair. The pat-
terns are colorized w.r.t. their latent colors, i.e., patterns with similar colors
are neighbored in latent space showing that the embedding has been success-
ful. Figure 5.10(a) shows the embedding with a low missing rate of p = 0.1.
The 3D-S is almost completely reconstructed, while the colors of the embed-
ding show that a reasonable learning process took place. The higher the rate
of incomplete data (cf. Figures (c) and (e)) the worse are the embeddings, i.e.,
different colors are neighbored. Higher missing rates can also be recognized
by deviations from the S-structure.

Table 5.4 Comparison of imputation error Eimp and DSRE between UNN with
repair-and-embed (R-a-E) and UNN with embed-and-repair (E-a-R) on 3D-S and
3D-Sh w.r.t. increasing data missing rate p

R-a-E E-a-R complete
data p Eimp DSRE Eimp DSRE UNN

3D-S 0.01 0.0507 147.2 0.0269 165.39 142.8
0.1 0.3129 143.8 0.2884 265.2 142.8
0.2 0.6454 149.0 0.6146 369.2 142.8
0.3 0.9557 152.7 0.9265 452.3 142.8

3D-Sh 0.01 0.0235 104.2 0.0309 119.7 105.5
0.1 0.2671 101.9 0.2595 217.6 105.5
0.2 0.5509 122.2 0.5007 296.8 105.5
0.3 0.8226 129.5 0.5285 301.8 105.5
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(a) R-a-E, p = 0.1 (b) E-a-R, p = 0.1

(c) R-a-E, p = 0.2 (d) E-a-R, p = 0.2

(e) R-a-E, p = 0.4 (f) E-a-R, p = 0.4

Fig. 5.10 UNN embeddings of 3D-S with missing data for missing rates p = 0.1, 0.2,
and p = 0.4 for repair-and-embed (left column) and for embed-and-repair (right
column)

UNN with embed-and-repair shows a comparatively good embedding for
the low missing rate of p = 0.1. But the colors show that the embeddings
are worse for higher missing rates. For example, Figure 5.10(f) shows that
the embedding of UNN with repair-and-embed and data missing rate p =
0.4 leads to comparably bad results, which is consistent with the results of
Table 5.4.
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5.10 Conclusions

With UNN regression, we have fitted a simple and fast regression technique
into the unsupervised setting for dimensionality reduction. The two itera-
tive UNN strategies are efficient methods to embed high-dimensional data
into discrete 1-dimensional latent spaces taking O(N2) time. The speedup is
achieved by restricting the number of possible solutions employing discrete
latent positions and applying a fast iterative solution construction scheme.
Both methods turned out to be efficient on artificial test problems in the
experimental part. UNN achieves lower DSRE values than UNNg . However,
UNNg is faster because of the multiplicative constants of UNN. In practical
scenarios, data sets often suffer from noise and missing entries. We have intro-
duced strategies to make UNN more robust. The ε-insensitive loss has been
employed for noisy patterns and has experimentally shown to yield better
embeddings for properly chosen values of ε. Besides the presence of noise, in-
complete data is a frequent problem. We introduced an iterative variant that
takes into account the predicted values for completion of entries of patterns
with an increasing data missing rate. First embedding patterns at locations
with the lowest DSRE and then repairing the entries employing the neighbors
in latent space is an approach that makes use of the intrinsic structure UNN
regression assumes for imputation. This leads to comparatively good pattern
reconstructions, but worse embeddings than UNN with repair-and-embed.
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6.1 Introduction

The UNN optimization problem is particularly difficult to solve due to local
optima. The two iterative strategies UNN and UNNg of the last chapters
allow the fast construction of a solution. In this chapter, we want to an-
swer the question, if exhaustive evolutionary search allows to come closer to
the optimal embedding. We compare a discrete evolutionary approach based
on stochastic swaps to a continuous evolutionary variant that is based on
evolution strategies, i.e., the covariance matrix adaptation variant CMA-ES.
The continuous variant is the first step to embeddings into continuous latent
spaces. The evolutionary optimization process requires to model a candidate
solution, which is a matrix of latent vectors X = [xi]

N
i=1 ∈ R

q×N . For one
fitness evaluation f(x), the DSRE of the complete embedding is computed
(cf. Equation 5.4). For the continuous variant, two kinds of regularization ap-
proaches will be compared: restriction of latent space to a hypercube [0, 1]q

and penalizing extension with a regularization term λ‖X‖2F .
In many applications, it might be desirable to embed high-dimensional pat-

terns into free continuous latent spaces. The CMA-ES approach is the first
step into this direction. We address the problem of an increasing solution
space sizes, when increasing the number of patterns with an iterative swarm-
inspired approach [59]. Swarm intelligence describes self-organizing processes
of groups of individuals in nature and in artificial systems. Particle swarm op-
timization (PSO) and ant colony optimization are the two most famous and
successful algorithms in this research field. A swarm approach for unsuper-
vised nearest neighbors is presented that allows free embeddings of patterns
in latent spaces of arbitrary dimensionality, i.e., 1 ≤ q < d. The approach
combines the iterative construction of solutions, similar to the previously in-
troduced UNN algorithms, with PSO-like search steps. In the experimental
part, we show that the swarm approach is an effective embedding strategy.

O. Kramer: Dimensionality Reduction with Unsupervised Nearest Neighb., ISRL 51, pp. 75–91.
DOI: 10.1007/978-3-642-38652-7_6 c© Springer-Verlag Berlin Heidelberg 2013
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6.2 Evolutionary Algorithms

Evolutionary search is based on a population P = {x1, . . . ,xλ} of λ candi-
date solutions called individuals that are approximations of a problem solu-
tion [64]. In continuous solution spaces, the individuals are often real-valued
vectors x ∈ R

q. The population is iteratively subject to random changes with
recombination, mutation, and selection of the best candidate solutions. Al-
gorithm 6 shows the pseudocode of a general evolutionary algorithm. After
initialization and fitness evaluation of the first population P , the optimization
process repeats three steps: (1) the recombination operator selects ρ parents
and combines their parts to λ new solutions, (2) the mutation operator adds
random noise to the λ preliminary candidate solutions. Their quality is called
fitness f(x). The fitness of new offspring solutions is evaluated. All individu-
als of a generation are put into population P ′. In Step (3), μ individuals are
selected from P ′ and form the new parental population P of the following
generation. The process is repeated until a termination condition is fulfilled.
Typical termination conditions are that a certain solution quality or an upper
bound on the number of generations is reached.

Algorithm 6. Evolutionary Algorithm

Require: f , μ, λ, ρ
1: initialize solutions xi of population P
2: evaluate fitness f(xi) of solutions in P
3: repeat
4: for i = 1 to λ do
5: select ρ parents from P
6: create xi by recombination
7: mutate xi

8: evaluate f(xi)
9: add xi to P ′

10: end for
11: select μ parents from P ′ → P
12: until termination condition

In the following, we will give a short introduction to evolutionary opti-
mization methods and go deeper into evolution strategies that have proven
well in practical optimization scenarios. The genetic operators intermediate
and dominant recombination as well as Gaussian mutation are introduced.

6.2.1 Recombination

In biological systems, recombination (also known as crossover) mixes the
genetic material of two parents. Most evolutionary algorithms use a recom-
bination operator and combine the information of two or more individuals
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x1, . . . ,xρ to a new offspring solution. Hence, the offspring carries parts of
the genetic material of its parents. Many recombination operators are re-
stricted to two parents, but multi-parent recombination variants have been
presented in the past that combine information of ρ parents. The use of re-
combination is discussed controversially within the building block hypothesis
by Goldberg [35, 42] and the genetic repair effect by Beyer [10].

Typical recombination operators in evolution strategies are dominant and
intermediate recombination. Dominant recombination randomly combines
the genes of all parents and is applicable to continuous and discrete rep-
resentations. If we consider parents of the form xk = ((x1)k, . . . , (xq)k)

T

with 1 ≤ k ≤ ρ, dominant recombination creates the offspring vector
x′ = (x′1, . . . , x

′
q)

T by choosing the i-th component x′i at random

x′i = (xi)k, k ∈ random {1, . . . , ρ}. (6.1)

Intermediate recombination is appropriate for integer and real-valued solution
spaces. Given ρ parents x1, . . . ,xρ each component of the offspring vector x′

is the arithmetic mean of the components of all ρ parents. Thus, an offspring
solution carries the characteristics of its parents

x′i =
1

ρ

ρ∑
k=1

(xi)k. (6.2)

Integer representations may require rounding procedures for valid solutions.

6.2.2 Mutation

Mutation is the main source of evolutionary changes. According to Beyer and
Schwefel [11], a mutation operator is supposed to fulfill three conditions. First,
from each point in the solution space each other point must be reachable.
Second, in unconstrained solution spaces a bias is disadvantageous, because
the direction to the optimum is unknown, and third, the mutation strength
should be adjustable, in order to adapt exploration and exploitation to local
solution space conditions.

In the following, we concentrate on the famous Gaussian mutation op-
erator for optimization in R

N . Solutions are vectors of real values x =
(x1, . . . , xN )T ∈ R

N . Random numbers based on the Gaussian distribu-
tion N (0, 1) fulfill these conditions in continuous domains1. With the Gaus-
sian distribution, many natural and artificial processes can be described. The
idea is to mutate each individual applying the mutation operator

x′ = x+ z, (6.3)

1 N (m,σ2) represents a randomly drawn Gaussian distributed number with ex-
pectation value m and standard deviation σ.
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with a mutation vector z ∈ R
N based on sampling from the Gaussian distri-

bution

z ∼ N (0, σ2I) = (N (0, σ2), . . . ,N (0, σ2))T ∼ σN (0, I) (6.4)

with identity matrix I. The standard deviation σ plays the role of the muta-
tion strength and is also known as step size. The isotropic Gaussian mutation
with only one step size uses the same standard deviation for each compo-
nent xi. Of course, the step size σ can be kept constant, but the convergence
to the optimum can be improved by adapting σ according to local solution
space characteristics. In case of high success rates, i.e., a high number of
offspring solutions being better than their parents, big step sizes are advan-
tageous, in order to explore the solution space as fast as possible. This is
often reasonable at the beginning of the search. In case of low success rates,
smaller step sizes are appropriate. This is often adequate in later phases of
the search during convergence to the optimum, i.e., when approximating so-
lutions should not be destroyed. An example for an adaptive control of step
sizes is the 1/5-th success rule by Rechenberg [90] that increases the step
sizes, if the success rate is over 1/5-th, and decreases it, if the success rate is
lower.

6.2.3 Selection

The counterpart of the variation operators mutation and recombination is
selection. Selection gives the evolutionary search a direction. Based on their
fitness, a subset of the population is selected, while the rest is rejected. The
elitist selection strategies comma and plus selection choose the μ best solu-
tions and are usually applied for survivor selection. Both operators can easily
be implemented by sorting the population with respect to the individuals’ fit-
ness. Plus selection (written as (μ+λ)-EA) selects the μ best solutions from
the union P ∪ P ′ of the last parental population P and the current offspring
population P ′. In contrast, comma selection (written as (μ, λ)-EA) selects
exclusively from the offspring population neglecting the parental population,
even if individuals have a superior fitness. Forgetting superior solutions may
seem to be disadvantageous. But good solutions may be only local optima
within a certain vicinity, and the evolutionary process may fail to leave them
without the ability to forget.

6.2.4 CMA-ES

As optimization approach, we employ the CMA-ES by Hansen and Oster-
meier [86]. The CMA-ES belongs to the class of evolution strategies [11]. In
each generation, a population of λ points xi, i = 1, . . . , λ is produced with
the multivariate normal distribution
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xi = m + z (6.5)

for i = 1, . . . , λ with m defining the mean of the Gaussian distribution gen-
erated by the CMA-ES and mutation

z ∼ σ · Ni(0,C) (6.6)

with σ defining the step sizes and with covariance matrix C. Individuals are
ranked according to their fitness f

f(x1:λ) ≤ . . . ≤ f(xμ:λ) ≤ . . . ≤ f(xλ:λ), (6.7)

following the notation that xi:λ is the i-th best of λ individuals. The mean
m is updated with the μ best solutions in each generation

m =

μ∑
i=1

ωixi:λ (6.8)

with positive and normalized weights ωi. Core of the CMA-ES is the update of
covariance matrix C, which is adapted to local fitness conditions. The update
rules for C, m, and σ can be found in Hansen et al. [86]. The population sizes
are chosen as λ = 4N and μ = λ/2.

6.3 Combinatorial Perspective

First, we analyze the combinatorial problem formulation based on embed-
dings on a lattice structure. The number of possible K-nearest neighborhoods
and consequently of different fitness values is

(
N
K

)
. For large N , this is still an

intractable number of solutions and makes it impractical to test all possible
latent variable neighborhoods. In the following, we present an evolutionary
discrete search strategy that randomly selects two points on a latent grid and
swaps their positions, see Algorithm 7 for the corresponding pseudocode. The
candidate solution is an assignment of patterns to latent positions on a latent
lattice.

Algorithm 7. (1 + 1)-EA for UNN

Require: Y
1: initialization X = [xi = i]Ni=1

2: repeat
3: choose latent points xi,xj with i, j ∈ {1, . . . , N} with i �= j
4: change X to X′ by swapping xi and xj

5: replace X by X′ if E(X′) ≤ E(X)
6: until termination condition
7: return embedding X
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x

latent space before swap

x1 2

(a)

x

latent space after swap

x1 2

(b)

Fig. 6.1 Grid in latent space with q = 1 (a) before and (b) after a swap that leads
to a lower DSRE with K = 2. Similar colors correspond to low distances in data
space.

Let X = [xi = i]Ni=1 be an initial solution, i.e., an initial assignment of the
high-dimensional patterns yi to positions xi, i = 1, . . . , N in latent space. The
(1 + 1)-EA randomly selects two positions xi,xj , with i, j ∈ {1, . . . , N} with
i �= j and swaps them, iff the DSRE is decreased (see Line 5). Otherwise, the
swap is rejected, and the latent points are reset to their original positions. The
search terminates, if the DSRE does not change for κ iterations. Figure 6.1
shows a 1-dimensional example grid. Assume the left blue latent point x1 and
the right yellow latent point x2 have randomly been selected to swap their
positions. The DSRE is computed for the old and the novel neighborhood.
The swap is accepted, as similar patterns in data space, illustrated by the
same colors, are neighbored in latent space.

If we define the swap process as mutation operator SWP(x), we can state
a weak convergence result for a slightly modified (1 + 1)∗-EA that selects
the worse solution with a positive probability. The proof based on Rudolph’s
Markov chain results for evolutionary algorithms [95] is sketched in the follow-
ing. The (1+ 1)∗-EA with swap mutation (SWP) converges with probability
1 to the global optimum after a finite number of iterations. To show this, we
have to ensure that assumptions (A1) to (A3) of Theorem 5.4 are valid [95].
The recombination condition (A1) must guarantee that there is a positive
probability to take a solution xt into the offspring population with the re-
combination operator. As the (1 + 1)∗-EA does not use recombination, the
solution xt is used for mutation in iteration t with probability 1. Assump-
tion (A2) must guarantee that for every pair (x, x̃t) of candidates in solution
space, there exists a finite path x = x1,x2, . . . , x̃t = xl of pairwise distinct
solutions the evolutionary process can mutate to with a positive probability.
The probability to choose indices i, j is lower bounded by 1/N2. Hence, the
probability to mutate from x1 to xl is lower bounded by 1/N2(l−1) ≥ 0. Last,
for all candidate solutions xt, there is a positive probability of being selected
into the following generation.
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6.4 Continuous Perspective

The continuous perspective allows an infinite number of possible latent posi-
tions, which are only restricted by the regularization mechanism. A candidate
solution is represented as matrix X = [xi]

N
i=1 ∈ R

q×N of latent positions. It
is a vector of scalars for q = 1. For one fitness evaluation f(x), the DSRE of
the complete embedding (cf. Equation 5.4) is computed. Similar to UKR, we
regularize the continuous UNN model to avoid complex models and overfit-
ting. An unconstrained UNN regression formulation would allow the latent
points to move infinitely apart from each other, although only a restricted
number of neighborhoods is possible. From a practical optimization perspec-
tive, a restriction of the search space is recommendable to avoid an infinite
number of redundant solutions. Two kinds of regularization approaches will
be compared: restriction of latent space to a hypercube [0, 1]q and penalizing
extension with a summand λ‖X‖2F .

6.4.1 Restriction of Latent Space

First, we restrict the latent space to the unit hypercube x ∈ [0, 1]q, and the
optimization problem becomes

min f(X) = E(X) subject to xij ∈ [0, 1]. (6.9)

The constraint forces the latent points to stay in the unit hypercube in latent
space. To handle the interval constraint, we penalize deviations from the
interval employing a quadratic penalty

p(X) =
∑
i,j

εij with ε =

⎧⎨
⎩

(xij − 1)2 if xij > 1
x2ij if xij < 0
0 else

. (6.10)

In Section 6.5, the latent space restriction approach will be compared to the
penalty approach experimentally.

6.4.2 Penalizing Extension

The second and very related variant for regularization of UNN we employ is
penalizing extension in latent space. The optimization problem becomes

min f(X) = E(X) + λ‖X‖2F . (6.11)

The penalty limits the sum of lengths of all latent variables. This
technique has already been introduced for regularization of UKR models
(cf. Section 4.21).

To understand the influence of parameter λ, we test various settings for
regularization parameter λ and two neighborhood sizes K on the 3D-S data
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Table 6.1 Analysis of regularization parameter λ for two neighborhood sizes K = 2
and K = 10 on the 3D-S data set with two data set sizes N = 30 and 50

N K init 10−2 10−1 1.0 101 102

30 2 34.82 18.64 21.76 32.06 36.23 36.25
30 10 51.39 36.99 38.95 51.33 51.14 50.33

50 2 60.50 39.51 52.01 56.01 63.63 58.08
50 10 86.17 67.44 75.14 81.19 84.91 82.10

set. We repeat each experiment 25 times. Table 6.1 shows the median DSRE
of the experiments. The CMA-ES terminates after 1, 000 generations. It can
be observed that the DSRE can be reduced significantly in comparison to
the initial state for small settings of λ. For large settings, the optimization
process first primarily concentrates on reduction of extension and neglects
optimization of the DSRE in the 1, 000 generations the CMA-ES employs.
Hence, we set λ = 10−2 in the following experimental analyses.

6.5 Experimental Analysis of Evolutionary Variants

In the following, we analyze the evolutionary variants experimentally concen-
trating on a comparison between the introduced variants and an analysis of
the problem dimensionality.

6.5.1 Comparison

Table 6.2 shows the experimental results of 25 CMA-ES runs on the data
sets 3D-S and 3D-Sh with N = 30 patterns. The figures show the result-
ing DSRE at the beginning (init), in comparison to UNNg, the CMA-ES
with both regularization strategies and the (1 + 1)-EA that works on lat-
tice representations. For comparison to one of the state-of-the-art methods
in dimensionality reduction, we employ LLE [94].

The experimental results show that UNNg achieves a lower DSRE than
LLE for K ≥ 5. This result shows the strength of the iterative heuristic.
Concerning the evolutionary optimization approaches, we can observe that
the (1+1)-EA achieves a lower DSRE than UNNg . The continuous approaches
and UNNg achieve similar results: On 3D-S withK = 2, the penalized variant,
for K = 5 the constrained variant and for K = 10 both variants achieve a
lower DSRE than UNNg. On 3D-Sh, UNNg, and the continuous variants
achieve similar results. The evolutionary variants have a budget of 1, 000
fitness evaluations, i.e., 1, 000N complete DSRE evaluations (30, 000 for N =
30), while UNNg solves the problem with a budget of 0.5N · (N + 1) DSRE
computations (465 for N = 30). At the same time, the (1 + 1)-EA shows
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Table 6.2 Comparison between UNNg, the evolutionary approaches, and LLE for
q = 1 w.r.t. DSRE

3D-S 3D-Sh

K 2 5 10 2 5 10

init 34.8 ±0.0 46.8 ±0.0 51.3 ±0.0 28.3 ±0.0 40.5 ±0.0 41.2 ±0.0
UNNg 23.4 ±0.0 31.3 ±0.0 43.3 ±0.0 15.6 ±0.0 20.8 ±0.0 28.3 ±0.0
CMA, [0, 1]q 24.5 ±11.6 27.6 ±8.4 36.3 ±15.0 24.0 ±11.7 20.4 ±20.4 29.1 ±15.4
CMA, λ‖X‖2F 22.2± 6.1 31.6± 10.8 41.4 ± 8.3 14.7± 10.9 24.5 ± 11.8 33.8 ± 21.3
(1 + 1)-EA 13.3± 1.3 24.4± 2.5 31.1± 1.7 10.8± 0.4 17.6± 1.4 24.7± 0.4
LLE 13.7 ±0.0 34.1 ±0.0 49.6 ±0.0 10.4 ±0.0 23.6 ±0.0 31.2 ±0.0

better results than the CMA-ES. On both data sets, the restricted CMA-ES
shows better results than the penalized CMA-ES in two of the three cases.
But due to the high standard deviations, a statistical significance cannot be
reported. In contrast, the (1 + 1)-EA is quite robust with small standard
deviations.

6.5.2 Curse of Dimensionality

The number of patterns defines the dimensionality of the UNN optimization
problem. The question arises, how the dimensionality influences the success of
the evolutionary optimizers. We try to answer this question in the following
by showing the fitness development depending on the number of patterns.
Figure 6.2(a) shows the DSRE for UNN, UNNg, both CMA variants, and the
(1 + 1)-EA on the 3D-S data set (without hole). We can observe that the
stochastic variants are slightly better at the beginning of the optimization
process, but fail for higher dimensions. The continuous variants do not scale
well, while the (1 + 1)-EA is still able to approximate the optimum. But the
heuristics UNN and UNNg scale much better, in particular UNN turns out
to be the best optimizer for larger problem sizes. Figure 6.2(b) shows the
corresponding outcome of the experiments for the 3D-Sh data set with hole,
where similar observations can be made. Here, it is interesting that the two
continuous variants show a very similar behavior.

For these two cases, we show the relative fitness improvement with vari-
ances in Figure 6.3. For the 3D-Sh data set with hole, the mean relative DSRE
improvement Es/Ee is shown, with Es being the DSRE at the start (initial-
ization) and the DSRE Ee in the end (after termination). The relative error
is plotted with variance for the constrained (left) and the penalized (right)
CMA-ES-based optimization. The relative improvement gets worse with in-
creasing problem size. We can observe that the worst runs on larger problem
sizes (as of N = 50) show very bad results, with almost no improvement. The
constrained variant shows higher variances for small data sets.
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Fig. 6.2 Curse of dimensionality for evolutionary UNN variants on (a) 3D-S and
(b) 3D-Sh
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Fig. 6.3 Relative error Es/Ee depending on the number of patterns for the con-
strained CMA-ES ([0, 1]q , left) and the regularized (λ‖X‖2F , right) on the 3D-Sh

data set

6.6 Swarm Intelligence

In nature, systems can be observed, in which large numbers of comparatively
simple units organize in groups. This form of collective organization is known
as swarm intelligence. The disadvantage of simple behaviors is compensated
by the large number of acting units and their massive parallelism. Swarms
consist of a large number of simple entities that cooperate to act goal-oriented.
Besides the effect of masses, two basic principles are the driving forces of the
problem solving capabilities of swarms:

• Emergence: Goal-directed behavior is achieved in an emergent kind of
way. The group of individuals allows the swarm to show behaviors that
are more sophisticated than the abilities of a single individual. Learning
of collaboration and the division of tasks into subtasks belong to the most
important principles of swarm intelligence.

• Stigmergy: The environment is used as memory and as means of com-
munication between individuals of the swarm. The individuals, also
called particles, usually have a very restricted memory. The information
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exchange is based on elements in the environment, e.g., on pheromones in
the case of ants. Pheromones allow to encode location- and time-relevant
information using surfaces to store their traces.

With these two principles, swarms are able to solve comparatively complex
tasks. Ant colony optimization algorithms [24] belong to the most prominent
variants of swarm algorithms, mostly for solving combinatorial optimization
tasks. For the dimensionality reduction method, we use an approach based
on PSO mechanisms.

6.6.1 Particle Swarm Optimization

Similar to evolutionary algorithms, PSO is a population approach with
stochastic components. Introduced by Kennedy and Eberhart [49], it is in-
spired by the movement of natural swarms and flocks. The algorithm utilizes
μ particles with a position x that corresponds to the objective variables and
a velocity v, which is similar to the mutation strengths in evolutionary com-
putation. The principle of PSO is based on the idea that the particles move in
solution space, influencing each other with stochastic changes, while previous
successful solutions act as attractors.

Algorithm 8. Particle Swarm Optimization

Require: κ
1: initialize particles x1, . . . ,xμ

2: repeat
3: for i = 1 to μ do
4: compute x̃ and x∗

5: update velocity v̂
6: update position x̂
7: compute fitness f(x̂)
8: end for
9: until termination condition

In each iteration, the position of particle x is updated by adding a
velocity v̂

x̂ = x+ v̂, (6.12)

which is updated as follows

v̂ = v + c1r1(x̃ − x) + c2r2(x
∗ − x), (6.13)

where x̃ is the best previous position of the particle and x∗ is the best position
of the swarm. The weights c1, c2 ∈ [0, 1] are acceleration coefficients that
determine the bias of the particle towards its own and the swarm history and
can be used to control exploitation and exploration of the search space. The
recommendation given by Kennedy and Eberhart is to set both parameters
to 0.5 [49]. The stochastic components r1 and r2 are uniformly drawn at
random from the interval [0, 1].
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6.6.2 Swarm-Based Dimensionality Reduction

Various methods for PSO- and ant colony optimization-based clustering have
been presented. A survey can be found in the book by Abraham et al. [3].
Kao and Cheng [48] have introduced an ant colony optimization algorithm
for clustering that employs pheromones and distances between elements as
heuristic clustering information. The combination of population-based search
and stochastic elements allows to overcome local optima and find optimal
clustering results. Further methods for swarm-based clustering can be found
in the book by Abraham et al. [3]. O’Neill and Brabazon [85] have introduced
a hybrid approach of PSO and SOMs by Kohonen [54] that control the weights
of the map employing a PSO-similar update rule. Also ant colony optimiza-
tion has been employed to improve the topographic SOM mapping [41].

6.7 Iterative Particle Swarm Embeddings

There are two reasons to employ a metaheuristic search method to solve
the UNN optimization problem. First, the optimization problem is highly
multimodal (cf. Chapter 7), second, E(X) is not differentiable due to the
employment of KNN.

6.7.1 PSEA Approach

As a consequence of the difficult optimization problem, the PSO metaheuris-
tic is employed. The particle swarm embedding algorithm (PSEA) is based
on the following two ideas:

1. Iteratively construct an embedding X to cope with the large number of
free parameters, and

2. perform PSO-like blackbox search steps in each iteration to place each
latent point at an optimal position.

The iterative procedure turned out to be a fruitful part of the discrete la-
tent approaches of UNN in the previous chapters. From this perspective,
the combination with a continuous heuristic operator seems to be a natural
enhancement. The approach is described in the following, see Algorithm 9.

The first pattern y1 is embedded at an arbitrary initial position, e.g.,
X = [0], and the iterative pattern matrix is Y = [y1]. Let y1, . . . ,yn

be the sequence of already considered patterns with associated embeddings
x1, . . . ,xn. For the next pattern yi with i = n + 1 ≤ N , the PSEA seeks
the optimal position x to embed the particle. A loop of PSO-like steps is
repeated for κ iterations

x̂ = x+ v̂ (6.14)

with velocity
v̂ = v + c1r1(x̃ − x) + c2r2(x

∗ − x). (6.15)
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Algorithm 9. Particle Swarm Embedding Algorithm

Require: Y, K, κ
1: X = [0], Y = [y1]
2: for i = 2 to N do
3: choose yi

4: look for closest pattern y∗ with latent position x∗

5: for j = 1 to κ do
6: update velocity (cf. Equation 6.15)
7: update latent position (cf. Equation 6.14)
8: evaluate eX(x̂)
9: update best position x̃
10: end for
11: X = [X, x̃], Y = [Y,yi]
12: end for

Here, x̃ is the best latent position

x̃ = argmin
x
eX(x) (6.16)

the corresponding particle has found in the past optimization steps, and
latent position x∗ belongs to the closest embedded pattern

y∗ = arg min
y=y1,...,yn

‖yi − y‖2. (6.17)

The parameters c1, c2 ∈ [0, 1] are constants that define the orientation to the
best latent particle and the closest already embedded one. Variables r1, r2 ∈
[0, 1] are uniform random values. Figure 6.4 illustrates the particle swarm
embedding step. The new candidate latent point x̂ is generated with velocity
v̂ and the two scaled vectors.

The approach does not evolve all latent positions at once. As the prob-
lem to minimize E(X) scales linearly with the number of patterns N , which
might be a very large number in practical applications, the iterative solution
construction is the key concept for efficiently learning the manifold. A slower
PSEA variant employs the overall DSRE (cf. Equation 5.4) for each latent
position.

6.7.2 Runtime

The embedding has a runtime complexity of O(N2), but can be accelerated
with k-d trees [9] and balltrees in data and latent space, (cf. Section 2.7). Em-
ploying space partitioning data structures in data and latent space allows
the PSEA to construct a solution in O(N logN) time, if we assume that the
PSO-based search in each step takes constant time. The search for the clos-
est pattern y∗ to yi takes O(logN) employing a k-d tree/balltree in data
space. This runtime can often not be achieved in high-dimensional spaces.



88 6 Metaheuristics

x

x

1

2
latent space

x

x*

x~ x

x-x~

x  -x

closest 
embedded point

best past
point new candidate

old
candidate

v

ˆ

*

Fig. 6.4 Illustration of particle swarm embeddings: The new candidate latent point
x̂ is generated with velocity v̂ and the two scaled vectors x̃− x and x∗ − x

The search for the optimal embedding takes κ · K-neighborhood computa-
tions in latent space, i.e. O(κ ·K · logN) ∈ O(logN). Insertion of x̃ to the
latent space k-d tree/balltree and yi to the data space k-d tree/balltree each
take O(logN). Hence, the overall runtime of the approach can be accelerated
to O(N logN).

6.8 Experimental Analysis of PSEA

In the following, we analyze the results of the novel PSEA experimentally. To
evaluate the quality of the embeddings, we employ the normalized DSRE2

and the co-ranking matrix measure (cf. Section 4.10.3).

6.8.1 Neighborhood Sizes

First, we analyze the influence of neighborhood size K on the results of
PSEA, LLE, and ISOMAP on two test data sets, i.e., Digits and Boston.
For PSEA, we choose the following settings. The particle swarm embedding
process runs κ = 50 iterations. The initial velocity is randomly generated
with a Gaussian distribution v0 ∼ N (0, 1), the initial position starts from
the latent position of the closest embedded point x0 = x∗. The constants are
both set to c1 = c2 = 0.5.

2 The normalized DSRE is EN (X) = 1
N
E(X).
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Table 6.3 Comparison of DSRE and ENX with PSEA (mean values of 25 runs
with standard deviation), LLE, and ISOMAP on the two test data sets Digits and
Boston with N = 300 and κ = 50

Digits PSEA ISOMAP LLE

K DSRE ENX DSRE ENX DSRE ENX

5 0.94± 0.01 0.49± 0.01 1 .00 0 .45 1.23 0.30
10 1.20± 0.02 0.42 ± 0.01 1.03 0.54 1 .08 0 .50
15 1.32± 0.05 0.42 ± 0.03 1.13 0.57 1 .16 0 .52
30 1.50± 0.04 0.42 ± 0.03 1.28 0.64 1 .42 0 .51

Boston PSEA ISOMAP LLE

K DSRE ENX DSRE ENX DSRE ENX

5 1 .44 ± 0 .19 0 .53 ± 0 .02 1.05 0.67 2.56 0.35
10 2 .21 ± 0 .18 0 .43 ± 0 .01 1.38 0.65 2.21 0.42
15 2.69± 0.19 0.39 ±0.03 1.50 0.70 2 .28 0 .54
30 3.44± 0.15 0.34 ±0.01 2.05 0.74 2 .33 0 .72

Table 6.3 shows the experimental results w.r.t. the DSRE and ENX for
the settings K = 5, 10, 15 and 30. Each PSEA experiment has been repeated
25 times. The best results, i.e., the smallest DSRE and largest ENX values
are shown in bold, the second best are shown in italic numbers. The results
illustrate that a small DSRE correlates with a large ENX . The DSRE is
increasing with the neighborhood size. PSEA achieves the best results of
all methods in case of small neighborhood sizes K = 5 and K = 10 on both
data sets. In case of larger neighborhoods, ISOMAP shows better results, but
PSEA still computes competitive embeddings and achieves the second best
results in half of the cases. LLE and ISOMAP win in performance for larger
neighborhoods. The results of LLE are worse than the results of PSEA in
three of the four cases, in particular ENX tends to be much worse. Surprising
is the bad result of ISOMAP on the Boston data set for K = 10.

Our experiments with varying data set sizes have shown that ISOMAP
and LLE do not scale well in terms of runtime with an increasing number of
patterns. The runtime of the PSEA scales slower with the number of patterns.
This can be a major advantage of PSEA in comparison to the other methods
in large-scale data mining scenarios.

6.8.2 Visual Comparison of Embeddings

In Figure 6.5, we compare PSEA variants with varying neighborhood sizes for
N = 750 patterns. The figures show that reasonable embeddings have been
computed for all neighborhood sizes. The plots show the latent positions of
embedded digits in a 2-dimensional latent space. Known labels, which are not
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PSEA, K = 5
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PSEA, K = 10
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PSEA, K = 15
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PSEA, K = 30
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Fig. 6.5 Comparison of embeddings of 750 patterns and six classes of the Digits
data set. PSEA results for (a) K = 5, (b) K = 10, (c) K = 15, and (d) K = 30.

used for the dimensionality reduction process, are used to visualize the learn-
ing results plotting the corresponding colored digits. Further, some latent
positions are highlighted with small windows to illustrate how neighbored
patterns look like. The learning results show that similar digits are mapped
to neighbored latent areas. Digits belonging to the same class have the same
color and lie closely together. For K = 15, two outliers let the rest of the
manifold be plotted closely together.

Figure 6.6 shows the embeddings of ISOMAP and LLE on the same data
set. Both embeddings also separate the classes and fulfill topological require-
ments like neighborhood preservation. ISOMAP distributes the latent points
circularly in latent space, which leads to better shapes than LLE. The plots
show that the PSEA results share characteristics with the ISOMAP result.
It even distributes the latent points better than LLE.
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ISOMAP

(a)

LLE

(b)

Fig. 6.6 Comparison of embeddings of 750 patterns and 6 classes of the Digits
data set for (a) ISOMAP embeddings and (b) LLE embeddings with K = 30

6.9 Conclusions

In this chapter, we have introduced metaheuristics to compute UNN embed-
dings. Evolutionary algorithms are strong blackbox optimization methods,
but often restricted in the problem dimensionality they are able to handle.
The analysis confirms that the evolutionary variants achieve higher accura-
cies than their heuristic counterparts on small data sets and consequently
low problem dimensions. The high accuracy has to be paid with a slow ap-
proximation speed. But for data sets larger than N = 50, the optimization
problem becomes difficult to solve, in particular for the continuous variants.
The (1+1)-EA scales slightly better w.r.t. the data set sizes, as the restriction
to a latent lattice structure decreases the solution space size. In comparison,
the presented UNN heuristics UNN and UNNg for discrete latent topologies
are much faster, in particular for high dimensions. As a conclusion, we can
recommend the evolutionary approaches for small data sets, but the iterative
heuristics for larger numbers of patterns.

The CMA-ES variants are the first approaches not based on discrete latent
grids. Embeddings in continuous latent spaces without a lattice structure of-
fer a greater flexibility for reflecting the structure of high-dimensional data.
But the optimization problem is highly multimodal. Further, the optimiza-
tion problem of placing all latent variables at once scales with the number
of patterns and becomes impractical for large data sets. We have introduced
an optimization approach that is based on the hybridization of iteratively
constructing a solution and PSO-like optimization in each iteration. The ap-
proach belongs to the first particle swarm-based dimensionality reduction
algorithms. The experimental results turned out to be competitive to embed-
dings of established methods like ISOMAP and LLE. The experiments have
shown that the PSEA embeddings fulfill conditions like neighborhood and
distance preservation. PSEA turns out to be a fast and robust algorithm for
the embedding of high-dimensional patterns into continuous latent spaces.
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Kernel and Submanifold Learning

In this chapter, we introduce an extension of UNN for point-wise embeddings
into continuous latent spaces of arbitrary dimensionality with stochastic sam-
pling. Distances in data space are employed as variances for Gaussian sam-
pling in latent space. Neighborhoods are preserved with the nearest neighbors
data space reconstruction error. Similar to the previous UNN methods, also
this approach is an iterative method that constructs an embedding by select-
ing the latent position with the lowest error. Further, we introduce kernel
functions for computing the DSRE in a feature space that allows to better
handle non-linearities and high-dimensional data spaces. Experimental stud-
ies show that kernel unsupervised nearest neighbors (KUNN) is an efficient
method for embedding high-dimensional patterns.

Further, a variant of kernel UNN for continuous latent spaces is introduced
that allows to embed patterns in different manifolds with independent param-
eterizations called submanifolds. The problem to simultaneously assign pat-
terns to models and learn the embeddings is known as submanifold learning
or manifold clustering. The problem can be very challenging, as the manifolds
may lie closely to each other and can have different dimensions and arbitrary
curvature. The UNN-based submanifold learning approach (SL-UNN) that
is introduced in this chapter combines a fast constructive K-means variant
with UNN. The resulting speedy approach depends on only few parameters,
i.e., a distance threshold to allow the definition of new submanifolds and the
usual UNN parameters. Extensions of SL-UNN automatically determine the
latent dimensions of each submanifold based on the DSRE.

7.1 Gaussian Embeddings

The idea of UNN with stochastic embeddings is to randomly generate points
near the closest embedded points in latent space and choose the position
that achieves the lowest DSRE. Algorithm 10 shows the pseudocode of UNN

O. Kramer: Dimensionality Reduction with Unsupervised Nearest Neighb., ISRL 51, pp. 93–111.
DOI: 10.1007/978-3-642-38652-7_7 c© Springer-Verlag Berlin Heidelberg 2013



94 7 Kernel and Submanifold Learning

Algorithm 10. Stochastic Embeddings

Require: Y, K, κ
1: X = [0], Y = [y1]
2: for i = 2 to N do
3: choose yi

4: look for closest pattern y∗ with latent position x∗

5: for l = 1 to κ do
6: x∗

l ∼ σ · N (x∗, 1) with σ = ‖yi − y∗‖2
7: end for
8: choose xi = argminx=x∗

1 ,...,x
∗
κ
eX(x)

9: X = [X,xi], Y = [Y,yi]
10: end for

with stochastic embeddings. Later, we extend the concept of neighborhood
relations in data space to neighborhoods in kernel-induced feature spaces.

The idea of Gaussian sampling in latent space works as follows. For the
first pattern y1, the latent position can arbitrarily be chosen, e.g., as vector
of zeros x1 = 0. Latent matrix is X = [x1], and the corresponding pattern
matrix is Y = [y1].

Let y1, . . . ,yn be the sequence of already considered patterns with asso-
ciated embeddings x1, . . . ,xn. For the next pattern yi with i = n + 1 ≤ N ,
UNN searches for the closest already embedded pattern

y∗ = arg min
y=y1,...,yn

‖yi − y‖2 (7.1)

of pattern matrix Y = [yj ]
n
j=1 ∈ R

d×N . Based on the latent position x∗

belonging to pattern y∗, κ candidate latent positions x∗
1, . . . ,x

∗
κ are generated

with the Gaussian distribution

x∗
l = x∗ + zl (7.2)

for l = 1, . . . , κ with
zl ∼ σN (0, 1), (7.3)

and σ = ‖yi − y∗‖2. The distance σ between pattern yi that has to be em-
bedded, and the closest embedded pattern y∗ is employed as scaling factor
of the Gaussian-based latent point sampling representing distance preserva-
tion of data space in latent space. The candidate latent point is chosen that
minimizes the DSRE

xi = arg min
x=x∗

1,...,x
∗
κ

eX(x), (7.4)

see Equation 5.2 for the definition of eX(x). The embedding process has a
runtime complexity of O(N2). If space partitioning data structures like k-d-
trees allow the acceleration of neighborhood requests to O(logN), UNN can
be accelerated to O(N logN).
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DSRE space, K = 5

(a)

DSRE space, K = 30

(b)

DSRE space, K = 5

(c)

DSRE space, K = 30

(d)

Fig. 7.1 Visualization of DSRE space eX(·) w.r.t. the first embedded pattern y1 in
the center of the plot for two runs (upper row and lower row) of UNN with N = 300
and neighborhood sizes K = 5 (left) and K = 30 (right)

To illustrate the search for optimal latent positions, we visualize the DSRE
space in Figure 7.1. The plots show the DSRE w.r.t. the first pattern y1 after
embedding of N = 300 patterns with two seeds for generation of random
numbers employing UNN with Gaussian embeddings. Figure 7.1(a) shows a
run with the first seed, employing neighborhood size K = 5, Figure 7.1(b)
shows the same situation with neighborhoods size K = 30. Figures 7.1(c)
and 7.1(d) show the corresponding results for the second run. Bright areas
represent parts of latent space with low errors, while dark colors represent
a large DSRE. The figures show that the DSRE space for embedding one
pattern is multimodal, in particular for smallK. For increasing neighborhood
sizes, the DSRE space becomes less multimodal, as the number of different
K-neighborhoods decreases, and there are larger areas with similar fitness,
i.e., plateaus. Such search spaces overlap in case of many patterns leading to
a highly multimodal situation that is hard to optimize.
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7.2 Kernel UNN

Kernel functions have become very popular in the last decade and are impor-
tant ingredients of many state-of-the-art methods in machine learning. The
motivation for kernel functions is to cope with non-linearities in data space.
We extend the stochastic iterative embedding algorithm to the kernel variant
KUNN.

7.2.1 Kernel Functions

Kernel methods take advantage of an interesting property of a reproducing
kernel Hilbert space [4]. A kernel is a real-valued function of two input space
elements that corresponds to a scalar product of its arguments mapped to
some metric feature space. The kernel trick is the effect that all operations in
a feature space of higher dimensions can be expressed by scalar products that
can efficiently be computed. A kernel function k : Rd × R

d → R induces a
feature mapping φ : Rd → H into some potentially high-dimensional feature
space H such that

k(y,y′) = 〈φ(y), φ(y′)〉. (7.5)

Often employed kernel functions are linear, polynomial, and Gaussian ker-
nels. The linear kernel is based on the inner product

k(y,y′) = 〈y,y′〉, (7.6)

which is one in case of identity of both vectors and zero in case they are
orthogonal. The polynomial kernel

k(y,y′) = 〈y,y′〉p (7.7)

employs a polynomial function with p ∈ N. For example, for p = 2 and d = 2,
the mapping φ : R

2 → H = R
3 into higher dimensions can explicitly be

demonstrated

k(y,y′) = 〈y,y′〉2 = (y1y
′
1 + y2y

′
2)

2 (7.8)

= y21y
′2
1 + y22y

′2
2 + 2y1y

′
1y2y

′
2 (7.9)

= 〈(y21 , y22 ,
√
2y1y2), (y

′2
1 , y

′2
2 ,

√
2y′1y

′
2)〉 (7.10)

= 〈φ(y), φ(y′)〉. (7.11)

(7.12)

An often employed kernel function, in particular for support vector classifica-
tion and regression [98, 101], is the radial basis function kernel (RBF-kernel)

k(y,y′) = exp
(
−γ‖y− y′‖2

)
(7.13)

with γ > 0. The parameter is often chosen as γ = 1/σ2 with bandwidth σ.
The hyperbolic tangent is another kernel function, which is used less often.
It is defined as
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k(y,y′) = tanh(α · 〈y,y′〉+ β) (7.14)

with α, β ∈ R, α > 0 and β < 0. In the following, we employ kernel functions
for the DSRE computation of UNN. The kernel functions will be experimen-
tally analyzed in Section 7.3.

7.2.2 Kernelization of DSRE

In UNN, the employment of kernel functions for computation of the DSRE
allows to capture non-linear structures in data space corresponding to non-
linear Voronoi boundaries. For each pattern yi with i = 2, . . .N that has
to be embedded, and its mapping φ(yi) into feature space, we look for the
closest embedded pattern φ(y∗) in feature space. Similarity can directly be
expressed with kernel function k(·, ·) : Rd × R

d → H

y∗ = arg max
y=y1,...,yn

k(yi,y). (7.15)

With a kernel, the DSRE eX(x) is computed in feature space as follows:

eX(x) = ‖φ(fX(x)) − φ(y)‖2 (7.16)

= 〈φ(fX(x)), φ(fX(x))〉 − 2〈φ(fX(x)), φ(y)〉 + 〈φ(y), φ(y)〉 (7.17)

= k(fX(x), fX(x)) − 2k(fX(x),y) + k(y,y) (7.18)

The kernel DSRE is the basis of the embeddings of the experimental part.

7.3 Experimental Analysis of KUNN

In the following experimental study, we compare the behavior of the intro-
duced methods on selected artificial data sets. Besides visualization, we com-
pare the experimental results w.r.t. the DSRE and the co-ranking matrix
measure ENX by Lee and Verleysen [73], cf. Section 4.10.3.

7.3.1 RBF-Kernel

One of the most frequently employed kernel function is the RBF-kernel. We
explore the influence of kernel bandwidth γ of the RBF-kernel in the following
experimental analysis. Table 7.1 shows the normalized DSRE1 and ENX of
KUNN with RBF-kernel for three settings of γ, i.e., γ = 1.0, 10−4, and 10−8.
The figures show the mean DSRE and the corresponding standard deviation
of 25 runs. The choice of γ has a significant influence on the learning result.
The best embeddings w.r.t. the DSRE have been achieved for γ = 10−8 in case
of data set Digits and also in case of Boston. As of γ = 10−9, the achieved

1 Similar to Chapter 6, the normalized ’kernel-free’ DSRE is EN(X) = 1
N
E(X).
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Table 7.1 Analysis of kernel bandwidth γ of KUNN with RBF-kernel on the Digits
data set with N = 300 patterns and settings K = 10, κ = 30. The best results are
shown in bold, the second best in italic figures.

data Digits Boston

γ DSRE ENX DSRE ENX

1.0 1.30 ± 0.01 0.30± 0.01 2.43 ± 0.10 0.29 ± 0.01
10−4 1 .11 ± 0 .02 0 .45 ± 0 .01 2 .15 ± 0 .12 0 .42 ± 0 .01
10−8 0.91± 0.01 0.50± 0.01 1.14± 0.15 0.62± 0.04

KUNN, RBF, γ = 1.0

(a)

KUNN, RBF, γ = 10-6

(b)

KUNN, polynomial

(c)

KUNN, hyperbolic tangent

(d)

Fig. 7.2 Comparison between embeddings of KUNN with RBF-kernel and parame-
ter settings (a) γ = 1.0, (b) γ = 10−6, (c) a polynomial (p=4), and (d) a hyperbolic
tangent kernel (α = 10−6 and β = −10−2) on the Digits data set with K = 10,
κ = 30, and N = 1, 000

DSRE varies only after the tenth decimal place. Figures 7.2(a) and 7.2(b)
show exemplary embeddings for the bandwidth settings γ = 1.0 and γ = 10−6

on the Digits data set. The distribution of the majority of latent points is
comparatively narrow for γ = 1.0 due to outliers, while for γ = 10−6 the
manifold becomes broader and well distributed. The plots confirm the choice
for γ determined in Table 7.1, i.e., the tendency towards smaller settings.
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7.3.2 Kernel Function Comparison

The influence of the kernel function type on the embedding result is analyzed
in the following. The comparison includes the linear kernel, the polynomial
kernel, and the hyperbolic tangent kernel. Table 7.2 shows an experimental
comparison of the three kernel functions on Digits and Boston w.r.t. DSRE
and ENX . The linear kernel is parameter-free. For the polynomial kernel,
we choose p = 2 and for the hyperbolic tangent kernel we choose the set-
tings α = 10−6 and β = −10−2. We can observe that the polynomial kernel
achieves better results than the linear kernel in minimizing the DSRE and
maximizing the co-ranking matrix measure ENX on the Digits data set and
vice versa on the Boston data set. But the co-ranking matrix value is com-
paratively bad. Only the fraction of about 0.3 of the data space neighborhood
is maintained in latent space. On the contrary, the hyperbolic tangent ker-
nel shows surprisingly good results that outperform the RBF-kernel on both
data sets. Figures 7.2(c) and 7.2(d) show a visualization of exemplary em-
beddings of the polynomial kernel (p = 4) and the tangent kernel (α = 10−6

and β = −10−2). In particular, the hyperbolic tangent is able to separate the
different classes. The groups of latent points with same colors that are well
separated from each other demonstrate the quality the learning result.

Table 7.2 Comparison between linear, polynomial, and hyperbolic tangent kernels
on the Digits and the Boston data set with N = 300, K = 5, and κ = 30

kernel linear polynomial tangent

data DSRE ENX DSRE ENX DSRE ENX

Digits 1.14± 0.03 0.31 ± 0.01 1 .12 ± 0 .01 0 .32 ± 0 .01 0.85± 0.02 0.56± 0.01
Boston 1 .87 ± 0 .04 0 .31 ± 0 .01 1.90 ± 0.08 0.31± 0.01 1.00± 0.07 0.68± 0.01

7.3.3 Analysis of Latent Space Dimensionality

An interesting question is the influence of latent space dimensions on the
DSRE. A hypothesis is that neighborhood relations can better be reflected
with larger latent dimensionality q. However, a larger q requires a larger κ
to sample in all directions and to allow testing a sufficient number of latent
space positions. Figure 7.3 shows the DSRE with different latent dimensions q
depending on the number κ of latent space samples (a) on the Digits data
set and (b) on the Faces data set. The curves show the mean DSRE of 25
runs.

The plots show that the DSRE is decreasing with increasing dimensionality
q and confirm the hypotheses. A significant decrease of DSRE can be observed
from q = 2 to q = 5, which can be explained with the higher flexibility to place
latent points in higher dimensions. There are more possibilities to place latent
points forming the same neighborhoods. But to exploit the larger degree
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Fig. 7.3 Analysis of DSRE depending on latent space dimensionality q and number
κ of samples tested in each iteration on (a) the Digits and (b) the Faces data set

of freedom, it is necessary to invest more search, and the DSRE is further
decreasing with the number κ of samples keeping q constant. The error can be
decreased significantly less from q = 5 to q = 10. Obviously, five dimensions
offer a sufficient degree of freedom for flexible embeddings. Further, a larger
number of sampled latent positions is necessary to decrease the error, an
effect caused by the curse of dimensionality effect (cf. Section 2.6).

7.3.4 Comparison between KUNN, LLE
and ISOMAP

Last, we compare UNN with stochastic embeddings and KUNN with kernel
functions to ISOMAP and LLE w.r.t. neighborhood size K. The embeddings
of the Digits data set of UNN without kernels and KUNN are shown in
Figures 7.4 (a) and (b). Different classes are separated, and similar digits
are neighbored. KUNN achieves a better separation of different classes than
UNN without kernels. In comparison to the LLE result, the embeddings are
smoother and better distributed. Also ISOMAP computes a smooth embed-
ding with similar patterns lying close to each other in latent space.

To evaluate the embeddings quantitatively, we again employ the DSRE
and ENX . The experimental results can be found in Table 7.3. From the
analysis of different kernels in Section 7.3.2, we choose the hyperbolic tangent
kernel with parameters α = 10−6 and β = −10−2. Again, UNN and KUNN
have been run 25 times, and the corresponding mean values and standard
deviations are shown. Comparing UNN to KUNN, we can observe that the
employment of a kernel function significantly improves the embedding results.
KUNN achieves better DSRE results and neighborhood preserving values for
measure ENX . In general, a small DSRE is strongly correlated to a large
ENX result. When we compare the UNN variants to ISOMAP and LLE,
we can observe that KUNN is competitive on the Digits data set for small
neighborhood sizes, i.e., K = 5, 10, while ISOMAP is superior in two cases
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UNN, no kernel

(a)

KUNN, RBF, γ = 10-2

(b)

LLE

(c)

ISOMAP

(d)

Fig. 7.4 Embeddings of (a) UNN, (b) KUNN employing an RBF-kernel with γ =
10−2, (c) LLE, and (d) ISOMAP on the Digits data set (K = 10, κ = 30, N =
1, 000)

on Boston. With one exception (Boston and K = 30), KUNN is superior to
LLE w.r.t. both measures.

In a last experiment, we compare ISOMAP to KUNN with RBF-kernel
on the ISOMAP-Faces data set that is employed in the original ISOMAP
article [103]. This data set contains images of a statue with different poses
and lights. Figure 7.5 shows the results of (a) ISOMAP with K = 50 and (b)
KUNN using the RBF-kernel with setting γ = 10−4 and neighborhood size
K = 5. Both approaches compute topology preserving embeddings: similar
poses and lights of the statue are neighbored in latent space. The embedding
is competitive to the learning result of ISOMAP.
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Table 7.3 Comparison of DSRE and ENX between UNN, KUNN, LLE, and
ISOMAP on the two test data sets Digits and Boston, each with N = 300 pat-
terns. ISOMAP and KUNN achieve the lowest DSRE and show the best ability
to preserve neighborhoods in latent space (κ = 30, 25 repetitions for UNN and
KUNN)

Digits UNN KUNN ISOMAP LLE

K DSRE ENX DSRE ENX DSRE ENX DSRE ENX

5 1.14± 0.02 0.31 ± 0.01 0.86± 0.01 0.55± 0.01 1 .00 0 .45 1.23 0.30
10 1.27± 0.03 0.31 ± 0.01 1.03± 0.01 0 .53 ± 0 .01 1.03 0.54 1.08 0.50
30 1.52± 0.01 0.40 ± 0.01 1 .33 ± 0 .02 0 .57 ± 0 .01 1.28 0.64 1.42 0.51

Bost. UNN KUNN ISOMAP LLE

K DSRE ENX DSRE ENX DSRE ENX DSRE ENX

5 1.94± 0.11 0.31 ± 0.01 1.00± 0.07 0.68± 0.01 1 .05 0 .67 2.56 0.35
10 2.32± 0.03 0.30 ± 0.02 1 .57 ± 0 .08 0 .62 ± 0 .01 1.38 0.65 2.21 0.42
30 3.30± 0.04 0.37 ± 0.01 2.85± 0.18 0.56 ± 0.02 2.05 0.74 2 .33 0 .72

ISOMAP

(a)

KUNN

(b)

Fig. 7.5 Comparison between embeddings of the ISOMAP-Faces data set of (a)
ISOMAP with K = 50 and (b) KUNN with K = 5 and RBF-kernel with γ = 10−4

7.4 Manifold Clustering

To allow the simultaneous assignment to clusters and learning of submani-
folds, we introduce a submanifold variant of UNN in the following. First, we
characterize the manifold clustering problem and present related work.

7.4.1 Problem Definition

Given a matrix of N patterns Y = [yi]
N
i=1 ∈ R

d×N lying in τ different man-
ifolds {Mj}τj=1 with intrinsic dimensions {dj}τj=1, the submanifold learning
problem is to simultaneously assign the patterns to clusters and solve the
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manifold learning problem independently within each cluster. The problem
is difficult, as first clusters have to be identified, second low-dimensional rep-
resentations of the patterns have to be learned, and third in each cluster possi-
bly varying parameters have to be chosen. Vidal [107] summarizes challenges
of submanifold learning. The coupling between segmentation of patterns and
model estimation is the most difficult challenge. A known segmentation would
simplify the model estimation process, as it would be clear, which patterns
belong to which manifold. In turn, a known distribution would simplify the
segmentation process, as the distributions define the manifolds.

In general, the distribution within the clusters is unknown. Closeness and
intersections between submanifolds extremely complicate the segmentation
and the model estimation process. The perspective of the data space as col-
lection of submanifolds with varying characteristics is similar to the concept
of local models that allow separate parameterizations. In [67], we presented a
kernel regression approach with multiple local models and independent kernel
parameters.

If it is possible to sufficiently separate manifolds with clustering techniques,
dimensionality reduction methods like ISOMAP and LLE with appropriately
chosen neighborhood sizes are a possible way to solve submanifold learn-
ing tasks. Our approach is based on a similar idea, i.e., combining iterative
clustering with the UNN strategy. After the presentation of related work,
we introduce an iterative K-means variant that is the basis of the iterative
submanifold learning method.

7.4.2 Manifold Clustering Approaches

Numerous submanifold learning algorithms have been presented in the past.
Algebraic methods are based on matrix factorization [20, 31] and polyno-
mial algebra, e.g., fitting polynomials to the submanifolds [108]. Iterative
methods are often extensions of K-means, alternately fitting PCA-models
to each submanifold and then assigning each pattern to its closest sub-
manifold. K-planes [13] and K-subspaces [105] are instances of these algo-
rithms. To handle noise, statistical models like mixtures of probabilistic PCA
[104] assume that data within submanifolds are generated with independent
Gaussian distributions employing the maximum likelihood principle. The as-
sumption of Gaussian mixtures is the basis of the agglomerative lossy com-
pression approach [76], which minimizes coding length required for fitting the
Gaussians.

Many approaches are based on spectral clustering computing an affinity
matrix with entries that measure the similarity between patterns. The defini-
tion of the affinity matrix is the key problem in applying spectral clustering
to the submanifold learning problem. Local subspace affinity [114], spectral
local best-fit flats [115], and locally manifold clustering [34] are based on
choosing a pattern and its q-nearest neighbors. An affine subspace is fitted
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to each group, and a pairwise affinity is computed by comparing the sub-
spaces. Sparse subspace clustering [26] is a variant that restricts the choice
to q sparse neighbors. A further method is sparse manifold clustering and
embedding [27] that searches for neighborhood weights solving a sparse op-
timization problem. The technique is based on selecting close patterns lying
in the same manifold.

Further, evolutionary approaches have been introduced for submanifold
learning that concentrate on the evolutionary blackbox choice of attributes
[83, 106]. The approach by Vahdat et al. [106] employs multi-objective search
to identify a set of candidate clusters balancing intra-cluster distance and
connectedness of clusters. For a deeper introduction to submanifold learning
approaches, we refer to Vidal [107] and Luxburg [109].

7.5 Constructive K-Means

A fast variant of K-means is an iterative algorithm that does not require the
initial specification of the number of clusters. To determine if new patterns
belong to a novel cluster, a distance threshold ζ ∈ R

+ must be defined.

Algorithm 11. Constructive K-Means

Require: Y, ζ
1: K = 1
2: c1 = y1, I(y1, c1) = 1
3: for i = 2 to N do
4: choose yi

5: look for closest codebook vector c∗

6: if ‖yi − c∗‖2 > ζ then
7: K = K + 1
8: cK = yi

9: I(yi, cK) = 1
10: else
11: I(yi, c

∗) = 1
12: update c∗

13: end if
14: end for

K-means successively repeats the two steps of (1) assigning each pattern to
its closest codebook vector representing a cluster center and (2) recomputing
the codebook vectors of all patterns assigned to the corresponding cluster.

The idea of the fast constructive K-means variant is to iteratively assign
each pattern to the cluster of the closest codebook vector and then to update
the center, see Algorithm 11. The first pattern y1 is the first cluster center
c1 = y1, and we set I(y1, c1) = 1.
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Let n be the number of patterns that have been assigned to clusters. For all
remaining patterns yi with i = n+1 ≤ N , the algorithm looks for the closest
codebook vector c∗. If the distance to pattern yi exceeds a threshold ‖yi −
c∗‖2 > ζ, it becomes a new cluster center. We increase the number of clusters
K = K + 1 and set cK = yi, as well as I(yi, cK) = 1. Otherwise, pattern
yi is assigned to the cluster of codebook vector c∗, i.e., we set I(yi, c

∗) = 1.
Further, the cluster has to be updated (compare to Equation 4.1)

c∗ =

∑n+1
i=1 I(yi, c

∗) · yi∑n+1
i=1 I(yi, c∗)

. (7.19)

This process is repeated until all patterns are assigned to clusters. Figure 7.6
illustrates constructive K-means. Patterns with the same color belong to the
same cluster, white patterns are not assigned yet. Unassigned patterns are
iteratively assigned to the closest codebook vector. Figure 7.6(a) shows the
assignment of a pattern yi that lies outside the ζ-ball of the two cluster cen-
ters c1 and c2. A novel cluster is started with center c3 = yi. Figure 7.6(b)
shows the situation that pattern yi lies within an ζ-ball around c1 and is
consequently assigned to cluster A. Constructive K-means computes the clus-
tering in O(τ · N), if τ is the number of submanifolds. The result of this
iterative method depends on the order of elements. The algorithm requires
the specification of threshold ζ to determine, if it is reasonable to start a
new cluster. The clustering result is very sensitive to this parameter. The
experimental analysis in Section 7.7 will show that too large values result in
too few clusters, while too small values generate too many small clusters. For
ζ ≤ min ‖yi − yj‖2 with i, j = 1, . . . , N and i �= j, constructive K-means
returns N submanifolds.

cluster  1

cluster 2

cluster 3

c1

c2

ζ

y
ζ i

(a)

cluster  1

cluster 2

cluster 3

c1

c2

c3

yi

ζ

(b)

Fig. 7.6 In constructive K-means, two cases can occur when embedding pattern
yi: (a) A novel cluster is started, if pattern yi is further away than ζ from any
cluster center or (b) pattern yi is assigned to the cluster with the closest center
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7.6 Submanifold Learning UNN

The submanifold learning approach SL-UNN is based on the idea to com-
bine constructive K-means with UNN. The iterative construction scheme of
K-means can easily be combined with the iterative UNN scheme. A pattern
is assigned to a submanifold Mj and immediately embedded in Mj . Algo-
rithm 12 shows the pseudocode of SL-UNN.

The first pattern y1 is assigned to the first manifold and embedded at an
initial latent position, i.e., M1 = {(0,y1)}. Let n be the number of patterns
that have been assigned to submanifolds. For all remaining patterns yi with
i = n + 1 ≤ N , constructive K-means assigns yi to a manifold Mj , where
the pattern is embedded with UNN. An arbitrary latent position xi can be
chosen, when a new manifold is started. In the experimental part, we will
place the latent submanifold centers on a lattice with distances between the
grid points that allow to distinguish between different manifolds.

The embedding is only based on the patterns that are assigned to Mj ,
i.e., only the patterns of Mj are used for the neighborhood search and the
DSRE computation, while patterns that are not part of the submanifold are
neglected. For each manifold, separate parameterizations allow to improve the
model estimations. In the experimental part, we will allow to use different
kernel functions with separate parameters.

Algorithm 12. Submanifold Learning

Require: Y, ζ
1: K = 1
2: c1 = y1

3: M1 = {(0,y1)}
4: for i = 2 to N do
5: constructive K-means Steps 4 – 12 (j is index of last cluster)
6: embed yi in Mj with UNN and κ, σ∗

j → xi

7: Mj = Mj

⋃
{(xi,yi)}

8: if |Mj | = ϑ then
9: choose parameters σ∗

j for manifold Mj

10: end if
11: end for

The runtime complexity of the approach lies in the same class as UNN.
SL-UNN iteratively assigns a pattern to the closest codebook vector, whose
number is upper bounded by τ , in O(τ) ∈ O(1) steps and embeds a pattern
in the assigned manifold Mj in O(logN) resulting in an overall runtime of
O(N · τ +N logN) ∈ O(N logN).

The parameters in each manifold can be adapted to allow better manifold
learning results. For this purpose, we introduce the following approach. When
ϑ patterns have been embedded in submanifold Mj with j = 1, . . . , τ , the
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algorithm optimizes the corresponding settings, which can be dimensionalities
{dj}τj=1, kernel functions {k}τj=1, and corresponding kernel parameters. The
two most important variants for the parameter adaptation process are: (1)
grid search, the definition of parameter sets {σ}gf=1 that are successively
tested and (2) optimization of parameters within defined bounds. We will
employ the first variant in the following experimental analysis. The latter is
recommendable for parameter sets that are too large to enumerate completely.

7.7 Experimental Analysis of SL-UNN

In this section, we analyze SL-UNN experimentally on the typical data sets
of the previous experiments and compare it to KUNN without manifold clus-
tering.

7.7.1 Digits

The first experimental part focuses on the visualization of the submanifold
learning results on the Digits data set. We expect that SL-UNN identifies
different clusters corresponding to the different classes of Digits, and embeds
the patterns within each cluster. As first data set, we consider an example
consisting of three classes. Figure 7.7 shows the results of SL-UNN with
various settings for ζ on the Digits data set with N = 539 patterns and digits
’0’, ’3’, and ’7’. We choose κ = 20 and neighborhood size K = 10. For a too
large threshold ζ = 60.0, only one manifold has been found. Hence, the result
corresponds to standard UNN without clustering. For ζ = 50.0, two manifolds
have been identified. In particular, the ’0’s are separated from the rest of the
patterns with exception of few outliers. For ζ = 47.0, the number of manifolds
is identical with the number of classes, i.e., τ = 3. This is the optimal setting,
which reflects the different classes and corresponding reasonable embeddings.
However, we can observe false patterns in some manifolds. This is caused
by errors of the constructive K-means clustering procedure. For too small
threshold values, too many manifolds are found, e.g., τ = 14 manifolds in
case of ζ = 35.0.

For a further data set composed of the Digits data set with six classes
(digits from ’0’ to ’5’), we can observe similar results, see Figure 7.8. For too
large distance thresholds like ζ = 47.0, only two clusters were found, while
for ζ = 45.0 already four clusters have been detected and even τ = 25 in case
of ζ = 35.0. But with the setting ζ = 43.0, SL-UNN identifies a number of
manifolds that corresponds to the number of classes.
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SL-UNN, ζ = 60

(a)

SL-UNN, ζ = 50

(b)

SL-UNN, ζ = 47

(c)

SL-UNN, ζ = 35

(d)

Fig. 7.7 Comparison of SL-UNN embeddings of the Digits data set (‘0’, ‘3’, and
‘7’) in 2-dimensional manifolds with varying ζ

7.7.2 DSRE in Submanifolds

In the following, we analyze the DSRE within the submanifolds. The param-
eters for the model of each manifold are adapted according to the following
scheme after ϑ patterns have been assigned to manifold Mj :

1. linear kernel,
2. polynomial kernel with p = 2,
3. RBF-kernel with parameters γ = 10l, 0 ≤ l ≤ 8,
4. hyperbolic tangent kernel with a = 10−l, 1 ≤ l ≤ 6, and b = −10−2.

For each manifold {Mj}τj=1, the setting {σ∗
j }τj=1 that achieves a minimal

DSRE with ϑ = 50 patterns is chosen.
Table 7.4 shows the experimental comparison between SL-UNN with

ζ = 43.0 and KUNN without manifold clustering in 25 runs.2 The results

2 The figures show the average pattern-wise DSRE∗ E(X) =
1
N

∑N
i=1

√
‖f(xi)− yi‖2. This measure is reasonable as the submanifolds

contain less patterns than the overall manifold.
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SL-UNN, ζ = 47

(a)

SL-UNN, ζ = 45

(b)

SL-UNN, ζ = 43

(c)

SL-UNN, ζ = 35

(d)

Fig. 7.8 Comparison of SL-UNN embeddings of the Digits data set with six classes
(‘0’ to ‘5’) in 2-dimensional manifolds with varying ζ

are compared to the DSRE of the submanifolds {Mj}τj=1. In Table 7.4,
the average DSRE∗ in each manifold is presented, as well as the DSRE∗

of the whole embedding. We compare SL-UNN with ζ = 43.0 and κ = 30
on N = 1, 083 patterns to KUNN on N = 180 patterns with one manifold
(τ = 1) corresponding to the average number of patterns in one manifold
(N = 180 ≈ 1080/6). Further, we compare to KUNN (1,083) with τ = 1
employing all N = 1, 083 patterns.

The results show that SL-UNN assigns the patterns to six submanifolds.
In four of the six submanifolds, significantly lower errors are achieved than
(1) the average DSRE∗ of the whole embedding and than (2) KUNN with
N = 180 patterns (which corresponds to the average number of patterns
in each submanifold). The overall DSRE∗ is slightly higher than the overall
DSRE∗ of KUNN on the whole data set. The reason is that the submanifolds
are placed on discrete grid positions not taking into account a sorting w.r.t.
the DSRE. Hence, the neighborhood preservation for patterns in different
submanifolds can be violated. A modification of SL-UNN could be to sort
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Table 7.4 Analysis of overall DSRE∗ and submanifold DSRE∗ within {Mj}τj=1

for the Digits data set with neighborhood sizes K = 5, 10, 30, κ = 30, and ζ = 43.0

Digits M1 M2 M3 M4 M5 M6 SL-UNN (1,083) KUNN (180) KUNN (1,083)

K DSRE∗ DSRE∗ DSRE∗ DSRE∗

5 2.53 8.12 22.39 6.22 11.86 17.64 14.49 ± 0.12 16.16 ± 0.25 13.83 ± 0.11

10 3.06 9.96 27.41 7.43 13.97 20.46 17.51 ± 0.30 20.94 ± 0.50 16.48 ± 0.065

30 3.63 10.94 35.86 9.33 17.74 23.52 22.44 ± 0.34 28.76 ± 1.28 22.71 ± 1.39

the clusters w.r.t. the DSRE when a new cluster is started. SL-UNN chose
the hyperbolic tangent kernel in four of the submanifolds, while the kernel
function choice for the other two manifolds varied from RBF-kernel with
different settings to the polynomial kernel. The KUNN variants chose the
hyperbolic tangent kernel in each experiment.

7.7.3 ISOMAP-Faces

The embedding results of SL-UNN on the ISOMAP-Faces data set are shown
in Figure 7.9. The figures show the embeddings of SL-UNN with two param-
eter settings, i.e., ζ = 20.0 and ζ = 17.0. In both experiments, the settings
κ = 20 and neighborhood size K = 5 have been chosen. In contrast to the
Digits data set, no labels are known in advance, and it is difficult to draw
conclusions about the correct number of submanifolds. But we can observe
that patterns embedded in each manifold have similar characteristics, i.e.,
similar poses and similar lights. Further, within the manifolds neighbored
patterns are neighbored in latent space.

SL-UNN, ζ = 20

(a)

SL-UNN, ζ = 17

(b)

Fig. 7.9 SL-UNN embeddings of the ISOMAP-Faces data set with the two param-
eters ζ = 20.0 and ζ = 17.0
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7.8 Conclusions

In this chapter, we introduced an effective approach for embedding patterns
to latent spaces of arbitrary dimensionality with an iterative KNN-based
strategy. Neighborhoods are preserved employing the KNN-based DSRE,
while distances are preserved by Gaussian sampling in latent space with vari-
ances proportional to distances in data space. The approach is extended by
the concept of kernel-induced feature spaces to handle non-linearities. Vari-
ous kernel functions are employed, from linear to hyperbolic tangent kernels.
The latter achieved surprisingly low DSRE and high co-ranking matrix val-
ues. The experiments have shown that KUNN is competitive with famous
methods like ISOMAP and LLE. The DSRE decreases with increasing di-
mensionality of latent space and the number κ of search steps invested in
each iteration. Employing various kernel functions for the DSRE turns out
to improve the dimensionality reduction result significantly. While the run-
time complexity of ISOMAP is O(N2 logN) and LLE takes O(N2), KUNN
is computing a manifold in O(N2) and can be accelerated to O(N logN)
employing space partitioning data structures for the neighborhood queries in
data and in latent space, e.g., k-d trees [9] and balltrees [84].

Patterns may lie in different submanifolds with varying characteristics. To
allow the assignment of patterns to submanifolds, we have extended UNN by a
constructive clustering approach. The novel algorithm called SL-UNN assigns
patterns to submanifolds based on a simple yet efficient K-means variant and
simultaneously embeds them with UNN. Submanifolds allow the management
of separate parameterizations, e.g., kernel functions and kernel parameters in
case of KUNN. The overall runtime complexity is still O(N logN), if space
partitioning data structures offer neighborhood requests in O(logN). The
experimental results have shown that SL-UNN achieves low learning errors
in the majority of the submanifolds, as each local model can employ sepa-
rate parameters. Further, a speedup can be observed, as the submanifolds
have less patterns than the whole data set. If low errors are required in local
neighborhoods, the employment of SL-UNN can be recommended. However,
the overall DSRE could not be decreased. The clustering mechanism can be
extended by further clustering and manifold criteria like density-based mea-
sures. The prize of higher clustering accuracies and possibly lower embedding
errors might be paid with worse runtimes.
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Summary and Outlook

8.1 Summary

Dimensionality reduction has an important part to play in a world with
a steadily growing information infrastructure. Many dimensionality reduc-
tion methods have been introduced in the past. For large data sets, efficient
methods are required. With UNN and its variants, we have introduced a
fast and efficient dimensionality reduction method. All UNN variants com-
pute an embedding in O(N2) and can be accelerated to O(N logN), when
space partitioning data structures like k-d-trees and balltrees allow efficient
neighborhood queries. UNN concentrates on maintaining neighborhoods and
distances from the high-dimensional data space in latent space. The variants
reach from sorting approaches in 1-dimensional latent spaces to submanifold
learning in continuous latent spaces with separate parameterizations for each
model. In the following, we summarize the most important results of this
work.

8.1.1 From Nearest Neighbors to Dimensionality
Reduction

In the first part of this book, we introduced foundations of machine learn-
ing and nearest neighbor methods. The choice of neighborhood sizes has an
impact on the locality of KNN. Nearest neighbor methods are powerful re-
gression approaches. Besides the introduction of machine learning concepts,
a real-world application from the energy domain was introduced. An ensem-
ble of KNN and SVMs has proven to be a strong classifier for nonintrusive
appliance load monitoring. We gave an introduction to dimensionality reduc-
tion and a short overview of famous methods like SOMs, PCA, ISOMAP,
and LLE. The last two methods are also non-linear dimensionality reduc-
tion algorithms and have been used as benchmark algorithms in the exper-
imental comparisons. Finally, the framework of unsupervised regression was

O. Kramer:Dimensionality Reductionwith Unsupervised Nearest Neighb., ISRL 51, pp. 115–118.
DOI: 10.1007/978-3-642-38652-7_8 c© Springer-Verlag Berlin Heidelberg 2013
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introduced, which is one basis of UNN. Important dimensionality reduction
quality measures have been reviewed.

8.1.2 From Latent Sorting to Continuous Latent
Spaces

UNN is efficiently sorting high-dimensional patterns w.r.t. topological char-
acteristics like distance and neighborhood preservation. The iterative proce-
dures allow the computation of robust unsupervised regression embeddings
without initialization with other methods like PCA or LLE in the optimiza-
tion scheme. The ε-insensitive loss allows to learn manifolds in noisy data
sets. Missing entries can be completed with KNN preprocessing, or they can
first be embedded incompletely and be repaired afterwards. We also analyzed
evolutionary variants that achieve a lower learning error, but scale worse with
the data set sizes than the iterative variants. For this sake, we compared a
simple (1+1)-EA optimization scheme embedding on a lattice structure to
an approach based on evolutionary strategies for continuous embeddings, i.e.
the CMA-ES. As the continuous approach that optimizes all latent variables
at once lacks from the curse of dimensionality, we introduced an iterative
learning approach that combines a particle swarm-based method with itera-
tive solution construction. The PSEA turned out to be a successful stochastic
variant that allows geometrically free embeddings in arbitrary latent spaces.

8.1.3 Kernel and Submanifold Learning

Last, the particle swarm step of the PSEA is replaced by a Gaussian sampling
procedure. Neighborhood preservation is enforced by the DSRE, while dis-
tance preservation is achieved by Gaussian sampling employing data space
distances as variance. Kernel functions allow better embedding results for
non-linear data sets. In particular, the hyperbolic tangent kernel turned out
to improve KUNN significantly. A fast way for simultaneous clustering and
submanifold learning is the combination of the constructive K-means vari-
ant with UNN. The clustering approach is sensitive to a distance threshold
that has to be adapted to each data set. The learning results have shown the
strengths of assigning patterns to separate manifolds. Various measures, from
visualization to co-ranking matrix measures on typical machine learning data
sets have been employed in the course of this work.

8.2 Outlook

The development of efficient dimensionality reduction methods will also play
an important role in the future and will consequently be a fruitful research
field in the next years. Due to the no free lunch theorem, the UNN variants
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and their parameterizations may not be optimal for every data set. Specific
data sets may afford the adaptation of parameters and possibly also of algo-
rithmic mechanisms. For UNN, interesting research directions could be the
employment of geodesic distances in data space, which are employed in LLE
and ISOMAP. Geodesic distances allow to handle curvatures that follow non-
linear structures (cf. Section 4.6). For this sake, a neighborhood graph has to
be computed.

The ensemble principle can also be employed to the iterative manifold con-
struction scheme. The hybridization of multiple criteria of different regression
methods allows to increase the flexibility of the embeddings. In discrete latent
spaces, it is possible to use a majority vote. In case of free latent embeddings,
the mean of the best positions can be used.

The iterative optimization scheme is the key for the success of UNN. But
in case of differentiable error functions, further optimization approaches can
be applied. A combination of iteratively constructing a solution and gradient
descent in each step can be a fruitful direction. For certain problems, it may
be reasonable to adapt kernel parameters of KUNN. Evolutionary algorithms
can be successful kernel learning algorithms that are often faster than simple
grid search.

In Chapter 4, we introduced related methods for unsupervised regression.
In particular, UKR is a well analyzed and understood technique. But also
UKR suffers from the curse of dimensionality problem and employs LLE and
PCA for generating initial embeddings. UNN is can alternative initialization
routine for UKR.

A lot of interesting application areas for UNN will be found in the fu-
ture. An example shows Chapter 1, where we used SOMs for monitoring
high-dimensional wind energy time series. Figure 8.1 shows the embeddings
of 1,500 high-dimensional wind time series patterns to 2-dimensional latent

(a) (b)

Fig. 8.1 Comparison between (a) UNN and (b) ISOMAP embeddings of high-
dimensional wind time series
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spaces with UNN and ISOMAP. Each latent point corresponds to a 50-
dimensional pattern, i.e., the wind energy produced by 50 wind turbines
of a wind park near Tehachapi. The colors are chosen w.r.t. the average wind
speed at each step. The plots show that changing wind situations can be
recognized as low-dimensional structures in latent space. In particular, the
situations with weak (blue) and strong (red) wind correspond to suspicious
low-dimensional latent structures.

8.3 Challenges in Dimensionality Reduction

Large non-sparse, but structural data sets are difficult challenges in dimen-
sionality reduction. How can algorithms find structures in data sets with
high-dimensional non-sparse data, which may lie in many submanifolds with
different distributions and parameterizations. In such a situation, the deci-
sion, which information can be neglected, is a difficult task. Efficient pro-
cessing of large data sets belongs to the most important challenges. To cope
with a huge amount of patterns, the development of parallel dimensionality
reduction algorithms is an interesting challenge. The distribution of machine
learning algorithms to many processors is an appealing approach, as often
scaling w.r.t. the number of patterns means to repeat the same steps. These
mechanism are embarrassingly parallelizable. When an algorithm can divide
tasks into subtasks, taking advantage of multi-core machines is a reasonable
undertaking, e.g., by computing subtasks on different processors and com-
bining smaller solution parts to the final solution. The search for codebook
vectors and neighborhood queries can be parallelized.

A further interesting challenge is time series prediction, which becomes
more and more important in practical applications, e.g., in energy systems.
For the integration of renewable energy sources, a precise forecast is a difficult
task. The volatileness of wind and solar energy renders the precise forecast
difficult. In [65], we have introduced a model that formulates time series pre-
diction as regression problem. The approach is a spatio-temporal time series
formulation based on SVR and employs data from the US National Renew-
able Energy Laboratory [89]. When many wind turbines and parks take part
in the prediction process, time series analysis becomes a high-dimensional
data mining problem. The question arises, how to reduce the dimensionality
of time series data, but at the same time maintain the important intrinsic
structure for precise predictions.
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Test Problems

In this work, we evaluate and compare the proposed methods on benchmark
test problems. The data sets are summarized in the following.

A.1 Astronomy

Our experimental study is based on data from the Sloan Digital Sky Survey
(SDSS) [2]. In [6], the EFIGI catalog of 4,458 nearby galaxies is presented.
We concentrate on a subset of 100 galaxies of types -6 to -4 and 7 to 11. The
images are 40× 40 RGB images. The data has been preprocessed: all entries
below a threshold ψ = 0.1 have been set to 0. Figure A.1 shows a selection
of eight galaxies from the EFIGI data set. The galaxy data set is employed
in the experimental analysis of Chapter 5.

Fig. A.1 Visualization of eight sample galaxies from the EFIGI data set

A.2 Boston

The Boston housing data set stems from 506 census tracts of Boston in 1970.
It consists of N = 506 patterns with d = 13 features (positive real values),
e.g., proportion of owner-occupied units built prior to 1940 and weighted dis-
tances to five Boston employment centers. The original data has been pub-
lished by Harrison and Rubinfeld [38]. The data set was taken from the
StatLib library, which is maintained at Carnegie Mellon University.
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A.3 Digits

The Digits data set [46] comprises handwritten digits and is often employed
as reference problem related to the recognition of handwritten characters and
digits. Figure A.2 shows a collection of images from the Digits data set. The
collection shows all ten digits, while most experimental analyses concentrate
on a label subset.

Fig. A.2 Visualization of a collection of images from the Digits data set

A.4 NIALM Data

The NIALM data sets have been recorded in collaboration with the OFFIS1,
Oldenburg. The install data set consists of 120 patterns that have manually
been recorded and labeled. The field study data set consists of patterns that
have been recorded in a household test environment. Table A.1 shows the
appliances that are part of the test data sets install and of the field study.

Table A.1 List of 15 appliances of the install and the field study data set

# appliances # appliances # appliances

1 shelf light 6 table light, bedroom 11 ceiling lamp, bathroom
2 fridge 7 table light, TV 12 ceiling lamp, living room
3 bedside lamp 8 table light, door 13 ceiling lamp, corridor
4 desk lamp 9 kettle 14 ceiling lamp, bedroom
5 TV 10 mirror lamps 15 air conditioning

A.5 ISOMAP-Faces

The ISOMAP-Faces data set has been used in the experimental study of the
original ISOMAP article [103]. It consists of N = 698 images of faces of a
statue with varying poses and lights. The data set can be downloaded from
http://isomap.stanford.edu/. Figure A.3 shows the first 45 images of the
data set.

1 Oldenburger Forschungs- und Entwicklungsinstitut für Informatik.

http://isomap.stanford.edu/
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Fig. A.3 Visualization of a collection of images from the Faces data set

A.6 S-Structure

The 3-dimensional S data set consists of 500 points in the version 3D-S
without hole, see Part (a) of Figure A.4. The counterpart 3D-Sh with hole
consists of approximately 350 points.

(a) (b)

Fig. A.4 3-dimensional S: (a) the 3D-S data set and (b) the 3D-Sh data set with
hole
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Y., Pelló, R., Leborgne, J.-F., Prugniel, P., Markarov, D., Makarova, L., Mc-
Cracken, H.J., Bijaoui, A., Tasca, L.: The EFIGI catalogue of 4458 nearby
galaxies with detailed morphology 532, A74 1103.5734 (2011)

7. Baranski, M., Voss, J.: Genetic algorithm for pattern detection in NIALM
systems. IEEE Transaction on Systems, Man and Cybernetics 4, 3462–3468
(2004)

8. Baruque, B., Corchado, E.: Fusion Methods for Unsupervised Learning En-
sembles. SCI, vol. 322. Springer, Heidelberg (2011)

9. Bentley, J.L.: Multidimensional binary search trees used for associative search-
ing. Communications of the ACM 18(9), 509–517 (1975)

10. Beyer, H.-G.: An alternative explanation for the manner in which genetic
algorithms operate. BioSystems 41, 1–15 (1997)

11. Beyer, H.-G., Schwefel, H.-P.: Evolution strategies - A comprehensive intro-
duction. Natural Computing 1, 3–52 (2002)

12. Bishop, C.M.: Pattern Recognition and Machine Learning (Information Sci-
ence and Statistics). Springer (2007)

13. Bradley, P.S., Mangasarian, O.L.: k-plane clustering. Journal of Global Opti-
mization 16, 23–32 (2000)

14. Breiman, L.: Bagging predictors. Machine Learning 24(2), 123–140 (1996)
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