
Aspect-Oriented
Requirements
Engineering

Ana Moreira · Ruzanna Chitchyan
João Araújo · Awais Rashid Editors

Aspect-Oriented Requirements Engineering

Ana Moreira • Ruzanna Chitchyan • João Araújo
Awais Rashid
Editors

Aspect-Oriented
Requirements Engineering

123

Editors
Ana Moreira
João Araújo
Universidade Nova de Lisboa
Caparica, Portugal

Awais Rashid
University of Lancaster
Lancaster, United Kingdom

Ruzanna Chitchyan
University of Leicester
Leicester, United Kingdom

ISBN 978-3-642-38639-8 ISBN 978-3-642-38640-4 (eBook)
DOI 10.1007/978-3-642-38640-4
Springer Heidelberg New York Dordrecht London

Library of Congress Control Number: 2013952959

ACM Computing Classification (1998): D.2, K.6

© Springer-Verlag Berlin Heidelberg 2013
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered
and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of
this publication or parts thereof is permitted only under the provisions of the Copyright Law of the
Publisher’s location, in its current version, and permission for use must always be obtained from Springer.
Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations
are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

www.springer.com

Preface

Introduction

Aspect-oriented requirements-engineering (AORE) approaches aim to facilitate
identification and analysis of crosscutting concerns (also termed as aspects) during
requirements engineering to understand their potential effects and trade-offs with
respect to other stakeholder requirements.

Often AORE approaches extend existing requirements-engineering techniques
with additional support for identification, modularisation, composition, and
analysis of crosscutting concerns. Such support is missing in most contemporary
requirements-engineering techniques. For instance, in the classical use cases
approach [1], non-functional requirements (NFR) cannot be readily modelled.
Although techniques such as goal-based approaches [2, 3] support modularisation
and analysis of such NFRs, they lack effective composition mechanisms to reflect
and explore the complex dependencies and interactions (between NFRs themselves
as well as NFRs and functional concerns) fully. Thus, AORE focuses on providing
systematic means for modularisation, composition, and analysis of crosscutting
concerns in requirements.

In the recent years significant work has been carried out in aspect-oriented
requirements engineering. The aim of this book is to serve as a consolida-
tion medium. The message given here is that whatever requirements engineering
approach one uses, there will be a problem of treatment of broadly scoped concerns,
which repeatedly appear, often have system-wide effects, and interact (e.g. conflict
or supplement) with other requirements as well as influence the architectural
decisions for the system-to-be. In this book we discuss how such aspects can be
identified, represented, composed, and reasoned about, as well as used in specific
domains and in industry. Thus, the book does not aim to present or promote a
particular aspect-oriented requirements engineering approach but aims to provide
an understanding of the aspect-oriented perspective on requirements engineering:
what challenges does it tackle that supplement the more established requirements

v

vi Preface

engineering work, what tasks and processes does it use, and how does it benefit its
adopting community.

Use of the Crisis Management [4] case study has been advised throughout the
book as the common medium for demonstration of the work presented in each
chapter. This is to shelter the reader from having to understand a potentially large set
of different examples and instead focus on the essence of each presented approach.
However, in some chapters, where the application of AORE to a specific domain
is of significance by itself (e.g. in chapters discussing use of AORE in industrial
setting), the common case study has been omitted.

1 Getting Started: AORE Main Concepts

In AORE a concern is defined as a unit encapsulating (one or more) requirements
related to a certain matter of interest. For instance, a use case or a viewpoint with its
requirements is an example of a concern.

An aspect (or crosscutting concern) is a modularisation unit for those require-
ments that do not align well into the established single-type decomposition mod-
ularisation units. For example, while use case units are ideal for functionality
modularisation, non-functional requirements do not fit into the use case structure,
but normally crosscut several use cases. Therefore, an aspect at the requirements
level is a broadly scoped property (represented by a single requirement or a coherent
set of requirements), which affects multiple other requirements in the system so that
it may constrain the specified behaviour of the affected requirements or influence
the affected requirements to alter their specified behaviour.

As illustrative example, consider a security requirement that constrains a require-
ment providing access to certain types of data in the system so that only a
certified set of users may access that data. Similarly, another security requirement
may influence communication requirements by altering their behaviour to impose
encryption constraints. The requirements affected by a requirements-level aspect
may already have been partitioned using abstractions such as viewpoints, use
cases, and themes. Figure 1 shows a requirements-level aspect affecting multiple
requirements in such a partitioning. Composition specification is used to relate
requirements-level aspects with the non-crosscutting requirements.

Some awareness of the crosscutting concerns existed in the Requirements
Engineering community before AORE, for instance, in works on NFR/softgoals [5]
and viewpoints [6]. However, this was a segmented perspective, with crosscutting
concerns considered as a “special” type of concerns, with “unusual” properties.
AORE, on the other hand, provides a general unified framework explaining the
properties of the crosscutting requirements as the natural result of (the traditional)
modelling of the multi-perspective world with a single type of modularisation unit
(such as use cases and goals). Also, AORE underlines the need for composition of
concerns and aims to provide an extensive support for it. Compositions are used for
understanding and analysis of concern interdependencies—for detection of potential

Preface vii

Fig. 1 Requirements-level aspects constraining and influencing (via a composition specification)
other requirements

conflicts between various concerns/requirements very early on in order to either
take corrective measures or make appropriate decisions for the next development
step. The composed requirements also become valuable sources of validation for
the complete system, as well as potential artefacts for requirement reuse.

Therefore, if requirements aspects are not effectively modularised, it is not
possible to reason about their effect on the system or on each other, and the lack
of modularisation of such properties can result in a large ripple effect on other
requirements or architectural components upon evolution. The provision of effective
means for handling aspects in requirements makes it possible to establish critical
trade-offs early on in the software lifecycle.

Figure 2 depicts a general AORE framework, highlighting in grey the activities
where AORE makes its major contribution.

One other issue noted by the AORE work is the need to trace crosscutting
properties across the lifecycle of a software system. It is not sufficient to identify and
reason about crosscutting concerns during requirements engineering. Once these
concerns and their associated trade-offs have been established, it is essential that
the software engineers can trace them to architecture (illustrated in Fig. 2 by the
concern mapping activity), design, implementation and subsequent maintenance and
evolution. Modularisation of crosscutting properties at the requirements level is the
first step towards establishing such traceability.

As in other AO software lifecycle stages, AORE uses the concepts of joinpoints,
pointcuts, advice, intertype declarations, and composition (or weaving) [7]. These
concepts are normally interpreted somewhat differently for each individual AORE
approach and the full or partial set of these concepts may be utilised by each given

viii Preface

Concern
Identification

Concern
Representation

Concern
Composition

Trade-Off
resolution

Architecture
Design

Concern
Mapping

Elicitation

Validation

Legend:

Activity in the process
Flow of activities

Overlapping of activities

AORE contribution

Fig. 2 AORE in the broader context of Requirements Engineering

work. However, presence of (any of) these notions in an RE approach will generally
indicate presence of an AO perspective in it. These notions are generically defined
below:

• Aspects can only be invoked, or composed with other modules, at some well-
defined and principled points within the software artefacts. These points are
referred to as joinpoints. As stated in [8]: “A joinpoint is a point of interest in
some artifact in the software lifecycle through which two or more concerns may
be composed. A joinpoint model defines the kinds of joinpoints available and how
they are accessed and used”. Examples of such well-defined, principled points in
AORE are, for instance, goal notes, or tasks in goal graphs, or identifiable (e.g.
via ID or name) requirements and concerns encapsulating those requirements,
identifiable (e.g. via their grammatical role or meaning) parts of text, etc.

• Pointcuts specify a set of joinpoints at which a given aspect should interact with
some other modules. Pointcuts can be defined by extension, i.e. by enumerating
each joinpoint relevant for the given aspect application, or by intension, i.e.
via a more abstract selection criteria, such as regular expressions, or semantic-
matching queries. Because aspects normally broadly affect a number of other
concerns, defining their interactions by extension is rather inefficient. Conse-
quently, in AOSD, pointcuts are normally defined by intension [7]. Thus, a
pointcut normally is a predicate that matches joinpoints.

• As noted above, an aspect affects a set of other concerns at the joinpoints. In
AOSD terminology, it is said that aspects advise other concerns. An advice
represents the particular part of aspect that will manifest itself (e.g. by adding or
changing behaviour) at a given joinpoint of the affected concern. Traditionally,
an advice in AOSD implies a behaviour-related interaction between aspectual

Preface ix

and non-aspectual artefacts. Such an interaction is also defined in respect with
some temporal, conditional, or unconditional order.

• Intertype declarations (also called introductions) are an additional mechanism
for directly modifying the structure of the original artefacts. For instance, an
intertype declaration may insert a new requirement into a viewpoint or even
change subtype structure, etc.

• Composition (also called weaving) is the integration of the separated crosscutting
elements back into the modules crosscut by them. However, in AORE, it is
not always necessary to physically integrate the aspectual elements into other
modules [7]. Often a composition specification is sufficient for reasoning about
aspectual and non-aspectual module interactions. Thus, composition here can
often imply projecting the constraints and influences of individual requirements-
level aspects on other system requirements, based on the knowledge inherent in
the composition specification.

The composition specification define which aspectual elements (advice, intertype
declarations, and so forth.) affect which joinpoints (selected by pointcuts) of which
other modules, in what way, and defines what are the temporal, conditional, or
unconditional circumstances of aspect invocation.

In summary, AORE uses the above outlined concepts to provide improved
separation of concerns and composition at the requirements level. The composition
definitions are often used as an analysis tool for conflict-point identification and
interaction understanding, and, in some cases [9], transformational compositions
are also realised.

It is also essential to note that not all aspectual artefacts identified at the
requirements level will subsequently be represented as code-level aspects. On the
contrary, some may well transform into other software artefacts (e.g. architectural
topology) or business-related decisions (e.g. procedures for security policy used by
the business) before an application is implemented. In addition, new aspects, often
related to the selected development technology, will emerge at the other stages of
software development, but these will not be visible in requirements.

2 Structure of the Book

This book is largely alighted with the main AORE-related activities depicted in
Fig. 2: concern identification-related issues are discussed in the similarly titled
Part I; topics on concern representation and composition are discussed in Part II
titled Concern Modelling and Composition; topics of concern mapping (e.g.
architectural implications of requirements level aspects and aspects in particular
domains) are presented in Part III titled Domain-Specific Use of AORE; the issues of
trade-off, conflicts, and validity are discussed in Part IV, under the title of Interaction
Analysis; finally, under the title AORE Evaluation Part V presents two perspectives

x Preface

on how AORE is used in industry and an overview chapter on evaluation work in
AORE so far.

The Concern Identification section discusses crosscutting concern identifica-
tion in textual as well as model-based requirements. The aim of concern identifica-
tion is to, first of all, facilitate building the knowledge on what crosscutting occurs in
requirements and why. Along with such knowledge collection, identification should
be accompanied with modularisation support, which, ideally, can propagate the
modularity to later stages of software development. In this section, Chap. 1 describes
the EA-Miner tool-based approach, which offers automated support for identifying
crosscutting in such requirements artefacts as viewpoints or use cases, which consist
of natural language text. The main characteristic of this approach is the use of natural
language processing (NLP) for concern identification. Chapter 2 presents a goal-
based approach that uses a list of adaptation rules for the requirements aspects to be
managed at runtime. It explains how different concepts in requirements aspects are
formulated and reasoned about. The basic adaptation rules are classified according
to the roles played in the runtime changes.

The Concern Modelling and Composition section, which includes Chaps. 3–7,
is focused on modelling and composition definition in AORE. Since AORE defines
an aspect as a new type of module with its particular rules of interacting with other
modules, it is essential to deliver a good modelling support for representation of
these new modules and their interrelationships with each other as well as non-
aspectual modules. There are the challenges tackled in the present section.

Chapter 3 introduces an aspectual scenario-based approach where sequence
diagram and state machines are modelled using a technique for modelling and
composition of patterns based on graph transformations called MATA (Modelling
Aspects Using a Transformation Approach).

Chapter 4 describes a semantics-based composition approach applied to textual
requirements. Here the composition specifications are based on the semantics
of the natural language. This is achieved by annotating the natural language
requirements with information on their grammatical and semantic properties, and
using these annotations as well as natural language semantics as a joinpoint model
for composition specification.

Chapter 5 presents the composition mechanism for aspect-oriented user require-
ments notations (AoURN). The focus is on interleaving and enhanced matching
based on semantics composition rules. Interleaved composition allows two scenarios
to be combined keeping the overall behaviour of the original scenarios. Semantics-
based matching allows for a class of refactoring operations to be performed on an
AoURN model without breaking the matches of an aspect’s pattern.

Chapter 6 presents AOV-graph, an approach that deals with the crosscutting
problems arising from interactions in goal models. This approach helps in defining a
crosscutting relationship which modularises interactions and provides composition
and visualisation mechanisms to analyse and model the goal-based requirements.

Chapter 7 shows how to identify and model crosscutting concerns in Problem
Frames. This is particularly relevant as in problem frames some requirements
appear in several (sub) problems diagrams, resulting in scattering effect. This work

http://dx.doi.org/10.1007/978-3-642-38640-4_1
http://dx.doi.org/10.1007/978-3-642-38640-4_2
http://dx.doi.org/10.1007/978-3-642-38640-4_3
http://dx.doi.org/10.1007/978-3-642-38640-4_7
http://dx.doi.org/10.1007/978-3-642-38640-4_3
http://dx.doi.org/10.1007/978-3-642-38640-4_4
http://dx.doi.org/10.1007/978-3-642-38640-4_5
http://dx.doi.org/10.1007/978-3-642-38640-4_6
http://dx.doi.org/10.1007/978-3-642-38640-4_7

Preface xi

shows how to compose such concerns with the elements they crosscut via a textual
composition language.

The Domain-specific use of AORE section discusses specific uses of
requirements-level aspects, like architecture derivation from requirements,
modelling security requirements with aspects, and volatile requirements modelling.
This section demonstrates how effectively AORE can be used in more specific
contexts. This part consists of Chaps. 8–10.

Chapter 8 offers a strategy to derive architectural component-based model from
an aspect-oriented requirements specification. It uses model-driven development
where meta-models and transformations are specified and implemented.

Chapter 9 presents an approach for handling changes made to security-critical
programmes. The authors observe that when a change happens (in any part of a
system), the validation procedure for the security requirements may need to be
updated even if the security requirements have not changed.

Chapter 10 demonstrates how can help to deal with volatile (i.e. highly unstable)
requirements. Here it is noted, that although volatile concerns are not always
crosscutting, they have the same issues of independency, modular representation
and composition that are required for aspects. Thus, AO perspective is particularly
fruitful in this context. Moreover, the chapter discusses how evolution, constrained
by volatile requirements, is facilitated via adoption of an aspect-oriented approach.

Aspects bring with themselves a new set of challenges of handling independen-
cies and interactions. These challenges are discussed in the Interaction Analysis
section. Aspects composition may result in undesirable behaviour that violates
the overall systems requirements. These interactions happen due to side effects
introduced by aspect composition, such as interference or negative contributions.
These are discussed in Chaps. 11–14.

Chapter 11 shows an approach and tool called EA-Analyzer that automates
the process of detecting conflicts within textual AO requirements specifications.
The aim is to facilitate the requirements engineers’ work with large natural lan-
guage specifications, which may contain numerous interdependencies. An empirical
evaluation of the tool is also discussed, showing that conflicts within AO textual
requirements specifications can be detected with a good accuracy.

Chapter 12 presents a tool-supported approach for conflict management at the
AORE level. It uses a hybrid multi-criteria analysis technique to perform trade-offs
analysis and obtain a ranking of concerns. This technique can be used to support
architectural choices during the software architecture design and “what-if” scenario
analysis.

Chapter 13 presents a use case-driven approach and tool for analysing consis-
tency at the level of requirements modelling. Activities are used to refine use cases
and are combined with a specification of pre-and post-conditions into an integrated
behaviour model. This is formalised using the graph transformation theory and used
for reason about consistency.

Chapter 14 shows an approach where features are treated as aspects and feature
composition as aspect composition. They use Composition Frames to compose
aspects and resolve aspect interactions at runtime.

http://dx.doi.org/10.1007/978-3-642-38640-4_8
http://dx.doi.org/10.1007/978-3-642-38640-4_10
http://dx.doi.org/10.1007/978-3-642-38640-4_8
http://dx.doi.org/10.1007/978-3-642-38640-4_9
http://dx.doi.org/10.1007/978-3-642-38640-4_10
http://dx.doi.org/10.1007/978-3-642-38640-4_11
http://dx.doi.org/10.1007/978-3-642-38640-4_14
http://dx.doi.org/10.1007/978-3-642-38640-4_11
http://dx.doi.org/10.1007/978-3-642-38640-4_12
http://dx.doi.org/10.1007/978-3-642-38640-4_13
http://dx.doi.org/10.1007/978-3-642-38640-4_14

xii Preface

The AORE evaluation section describes experiences of use of AORE in industry
and presents an overview of AORE evaluation work so far. The first part consists of
Chaps. 15 and 16. Chapter 15 discusses how the technique called Requirements
Composition Table (RCT) is used in two financial applications. The RCT technique
has been implemented for a number of Wall Street applications at various investment
banks. This chapter illustrates how RCT can help perform change impact analysis
for releases and assess test coverage of existing regression test suites.

Chapter 16 discusses the application and evaluation of two AORE approaches
(Theme/Doc and MDSOCRE) in the slot machines domain. This application
involved several large requirement documents that have ambiguity issues and
aspectual interactions.

Finally, Chap. 17, which also concludes the book, draws upon experience from
evaluation performed in other phases of development and also the problems that can
be experienced when evaluating AORE approaches to establish a series of guidelines
to assist software developers.

3 Crisis Management System Case Study

In order to observe how the same problem is addressed by different approaches, we
adopt a common case study to be used throughout the chapters of this book. The case
study domain is crisis management systems, i.e. systems that manage the relevant
parties, activities and information involved in solving a crisis. This case study
was proposed as an exemplar to evaluate aspect-oriented modelling approaches
in 2010 [4] and has since been used by the AOSD community for the evaluation
and comparison of aspect-oriented approaches (e.g. CMA workshop series). The
requirements used to create this exemplar were based on the real requirements
document for crisis management systems created by Optimal Security [10].

The general objectives of a Crisis Management System (CMS) is to assist in the
coordination of a crisis; to guarantee that a catastrophic situation is under control;
to mitigate the crisis effects by allocating and managing the available resources in
an effective manner; to identify, create, and execute missions in order to manage
the crisis; and to recover the crisis information to allow future analysis [4]. A crisis
can range from natural disasters (e.g. earthquakes, fire, floods), terrorist attacks or
sabotage (e.g. explosions, kidnapping), accidents (e.g. car crash plant explosion,
plane crash) and technological disruptions. All these are examples of emergency
situations that are unpredictable and can lead to severe after-effects unless handled
immediately.

A crisis management system facilitates the communication and interoperation
between all stakeholders involved in handling the crisis (e.g. government, police
systems, medical services, military systems). A CMS allocates and manages
resources, and facilitates access to relevant information to authorised users of the
CMS.

http://dx.doi.org/10.1007/978-3-642-38640-4_15
http://dx.doi.org/10.1007/978-3-642-38640-4_16
http://dx.doi.org/10.1007/978-3-642-38640-4_15
http://dx.doi.org/10.1007/978-3-642-38640-4_16
http://dx.doi.org/10.1007/978-3-642-38640-4_17

Preface xiii

Finally, several non-functional properties are related to CMS, e.g. availability,
response time, security, safety, mobility, persistence and multi-access. They are
broadly scope and potentially crosscutting. The full case study documents are
provided in the Appendix A of this book.

4 Intended Audience

This book is intended for software developers, software engineers, industrial
trainees, and undergraduate and postgraduate students.

5 Acknowledgements

We are grateful to many people and several institutions for their contributions on the
development of AORE.

To our co-organisers of Early Aspects workshop series. Sixteen editions have
been organised since 2002. Thank you to Paul Clements, Bedir Tekinerdogan, and
Elisa Baniassad for helping with the steering of the workshop, and to Alberto
Sardinha, Alessandro Garcia, Carla Silva, Christa Schwanninger, Gunter Muss-
bacher, Jan Gerben Wijnstra, Jeff Gray, Jon Whittle, John Grundy, Mónica Pinto,
Nan Niu, Pablo Sanchez, Paulo Merson, Uirá Kulesza, and Vander Alves, for taking
the lead of the organisation in different editions. We are grateful for the interest
demonstrated by all the authors who submitted their work and helped so much in
creating the Early Aspects community, to the Program Committee members for
offering their time to review the papers, to the participants that helped keeping
discussions alive, to everyone that contributed to the increase of the number of
postgraduate students that accomplished their dissertations in the field of Early
Aspects, and to all the reviewers of the chapters included in this book.

A special word of thanks goes to Pete Sawyer for the discussions we had with him
from the time the idea born in our minds. He contributed with the first vision paper
on AORE, and his expertise and extensive experience on Requirements Engineering
helped us finding an integrated view for RE with aspects.

During these 15 years of work, several people contributed to the development
of Early Aspects through several projects funded by European Union, EPSRC,
Fundação para a Ciência e Tecnologia (FCT), Conselho de Reitores das Uni-
versidades Portuguesas (CRUP) (bilateral projects with France and Spain), and
CAPES/GRICES (bilateral projects between Brazil and Portugal). A special thanks
to the European AMPLE and AOSD-Europe projects.

Finally, we thank to CITI research centre at Universidade de Nova Lisboa for
funding several visits of Awais to Lisbon.

xiv Preface

6 Concluding Remarks

Aspect-Oriented Requirement Engineering (AORE) has focused on the problem
of treatment of crosscutting concerns in requirements. AORE includes developing
techniques for modularising such concerns, identifying their influence on other
requirements in the system, establishing critical trade-offs between aspectual
requirements before the architecture is derived, and determining their mapping and
influence on artefacts at later software development stages.

Each section of this book addresses a particular field of interest for AORE.
While Part I is dedicated to the identification and representation of requirements
aspects, Part II discusses concern modelling and the value of composition as a
means to reason about the requirements specifications. Part III covers specific uses
of AORE while offering some support for traceability. Part IV is dedicated to aspect
interactions, including conflict resolution and trade-off analysis techniques. Finally,
Part V discusses the use of AORE in industry.

References

1. I. Jacobson, M. Chirsterson, P. Jonsson, G. Overgaard, Object-Oriented Soft-
ware Engineering: A Use Case Driven Approach (Addison-Wesley Profes-
sional, 1992)

2. A. Dardenne, A. van Lamsweerde, S. Fickas, Goal-directed requirements
acquisition. Sci. Comput. Programm. 20(1–2), 3–50 (1993). doi:10.1016/0167-
6423(93)90021-G. http://dx.doi.org/10.1016/0167-6423(93)90021-G

3. A. van Lamsweerde, Goal-oriented requirements engineering: a guided tour,
in Proceedings of the Fifth IEEE International Symposium on Requirements
Engineering (RE ’01). IEEE Computer Society, Washington, DC, 2001, p. 249

4. J. Kienzle, N. Guelfi, S. Mustafiz, Crisis management systems: a case study
for aspect-oriented modeling, in Transactions on Aspect-Oriented Software
Development 7, ed. by S. Katz, M. Mezini, J. Kienzle. LNCS, vol. 6210 (2010),
pp. 1–22

5. L. Chung, B. Nixon, E. Yu, J. Mylopoulos, Non-functional Requirements in
Software Engineering (Kluwer Academic, 2000)

6. A. Finkelstein, I. Sommerville, The viewpoints FAQ. BCS/IEE Softw. Eng. J.
11(1), (1996)

7. J. Brichau, R. Chitchyan, A. Rashid, T. D’Hondt, Aspect-Oriented Software
Development: An Introduction. Article in “Wiley Encyclopaedia of Computer
Science and Engineering”, ed. by B.W. Wah, vol. 1. ISBN 978-0-471-38393-2
(Wiley, 2008), pp. 188–199

8. K. van de Berg, J.-M. Conejero, R. Chitchyan, AOSD ontology 1.0: public
ontology of aspect orientation, in Report of the EU Network of Excellence on
AOSD, 2005

http://dx.doi.org/10.1016/0167-6423(93)90021-G
http://dx.doi.org/10.1016/0167-6423(93)90021-G

Preface xv

9. R. Chitchyan, M. Pinto, A. Rashid, L. Fuentes, COMPASS: composition-
centric mapping of aspectual requirements to architecture. T. Aspect Oriented
Softw. Dev. 4, 3–53 (2007)

10. Optimal Security: Requirements document: Version 0.8., http://www.cs.
colostate.edu/remodd/v1/sites/default/files/cms case study.pdf. Accessed 15
Jan 2013

Caparica, Portugal Ana Moreira
Leicester, UK Ruzanna Chitchyan
Caparica, Portugal João Araújo
Lancaster, UK Awais Rashid

http://www.cs.colostate.edu/remodd/v1/sites/default/files/cms_case_study.pdf
http://www.cs.colostate.edu/remodd/v1/sites/default/files/cms_case_study.pdf

Contents

Part I Concern Identification in Requirements

1 Aspect Identification in Textual Requirements with EA-Miner 3
Nathan Weston, Ruzanna Chitchyan, Americo Sampaio,
Awais Rashid, and Phil Greenwood

2 Reasoning About Dynamic Aspectual Requirements 23
Yijun Yu, Xin Peng, and Julio Cesar Sampaio do Prado Leite

Part II Concern Modelling and Composition

3 Aspect-Oriented Compositions for Dynamic Behavior Models 45
João Araújo and Jon Whittle

4 Semantics-Based Composition for Textual Requirements 61
Ruzanna Chitchyan

5 Composing Goal and Scenario Models
with the Aspect-Oriented User Requirements
Notation Based on Syntax and Semantics . 77
Gunter Mussbacher, Daniel Amyot, and Jon Whittle

6 Aspect-Oriented Goal Modeling and Composition
with AOV-Graph . 101
Lyrene Fernandes da Silva and
Julio Cesar Sampaio do Prado Leite

7 Aspect Composition in Problem Frames . 121
Maria Lencastre, João Araújo, Ana Moreira,
and Jaelson Castro

xvii

xviii Contents

Part III Domain-Specific Use of AORE

8 Mapping Aspects from Requirements to Architecture 145
Pablo Sánchez, Ana Moreira, João Araújo, and Lidia Fuentes

9 Maintaining Security Requirements of Software Systems
Using Evolving Crosscutting Dependencies . 167
Saad bin Saleem, Lionel Montrieux, Yijun Yu,
Thein Than Tun, and Bashar Nuseibeh

10 Using Aspects to Model Volatile Concerns . 183
Ana Moreira, João Araújo, Jon Whittle, and Miguel Goulão

Part IV Aspect Interactions

11 Conflict Identification with EA-Analyzer . 209
Alberto Sardinha, Ruzanna Chitchyan, João Araújo,
Ana Moreira, and Awais Rashid

12 Handling Conflicts in Aspect-Oriented Requirements
Engineering . 225
Isabel Sofia Brito, Ana Moreira, Rita A. Ribeiro,
and João Araújo

13 Analysis of Aspect-Oriented Models Using Graph
Transformation Systems . 243
Katharina Mehner-Heindl, Mattia Monga, and Gabriele
Taentzer

14 Aspect Interactions: A Requirements Engineering Perspective 271
Thein Than Tun, Yijun Yu, Michael Jackson, Robin Laney,
and Bashar Nuseibeh

Part V AORE in Industry

15 Implementing Aspect-Oriented Requirements Analysis
for Investment Banking Applications . 289
Yuri Chernak

16 Experience Report: AORE in Slot Machines . 317
Arturo Zambrano, Johan Fabry, and Silvia Gordillo

17 Advancing AORE Through Evaluation . 333
Phil Greenwood

Contents xix

A Crisis Management Systems: A Case Study
for Aspect-Oriented Modeling . 351
Jörg Kienzle, Nicolas Guelfi, and Sadaf Mustafiz

About the Editors . 375

Index . 377

Part I
Concern Identification in Requirements

Chapter 1
Aspect Identification in Textual Requirements
with EA-Miner

Nathan Weston, Ruzanna Chitchyan, Americo Sampaio, Awais Rashid,
and Phil Greenwood

Abstract This chapter presents a methodology for identification of crosscutting
concerns in textual requirements along with its supporting tool EA-Miner. This
chapter discusses how EA-Miner uses natural language processing techniques in
aspect identification and structuring using a requirements level feature model as an
example. The process is illustrated using the Car Crash case study.

1.1 Introduction

As most documents used in the Requirements Engineering (RE) are still written
in natural language, it is not surprising that a notable body of work has studied
automation support for RE tasks using [9, 10, 12, 13, 15, 16, 24] natural language
processing (NLP) techniques over requirements-related documents. The aspect
identification approach presented in this chapter also follows a similar line of work.

Nevertheless, since natural language is quite imprecise and full of ambiguities,
use of NLP for aspectual model extraction is not a straightforward activity. However,
since structuring of requirements into crosscutting and non-crosscutting modules
has been shown [2, 20, 21, 27] to provide such benefits as facilitated conflict
detection, simplified analysis of aspect-to-aspect interactions and assisted derivation
of architecture form requirements models, researching into NLP-based automation

N. Weston � A. Rashid � P. Greenwood
Lancaster University, Lancaster, UK
e-mail: westonn@comp.lancs.ac.uk; greenwop@comp.lancs.ac.uk; marash@comp.lancs.ac.uk

R. Chitchyan (�)
University of Leicester, Leicester, UK
e-mail: rc256@le.ac.uk

A. Sampaio
Universidade de Fortaleza, Fortaleza, Brasil
e-mail: americo.sampaio@unifor.br

A. Moreira et al. (eds.), Aspect-Oriented Requirements Engineering,
DOI 10.1007/978-3-642-38640-4 1, © Springer-Verlag Berlin Heidelberg 2013

3

mailto:westonn@comp.lancs.ac.uk
mailto:greenwop@comp.lancs.ac.uk
mailto:marash@comp.lancs.ac.uk
mailto:rc256@le.ac.uk
mailto:americo.sampaio@unifor.br

4 N. Weston et al.

for such aspect identification is a well-worth endeavour. Yet, most of the current
AORE approaches [19–21, 26, 27] (with exception of Theme/Doc [2]) have not
addressed the automation problem.

This is where the EA-Miner tool-based approach comes into play by offering
automation support for identifying the abstractions of different AORE techniques
(e.g. viewpoints [11] based, use-case [14] based) and helping to build the respective
requirements models. The tool facilitate the tasks of:

– Identification of model abstractions: For example, concepts such as use cases,
viewpoints and early aspects that belong to a specific requirements technique
(e.g. Viewpoints-based AORE [20, 21]) can be automatically mined from differ-
ent elicitation documents;

– Structuring abstractions into various models: The tool offers features to edit the
identified abstractions (add, remove, filter) as well as to map them into a chosen
model (e.g. a structured AORE specification based on viewpoints or feature
models).

It should be noted that EA-Miner does not fully replace the work of a require-
ments engineer but only promotes the efficiency of his/her work by pinpointing the
key crosscutting information. The use of EA-Miner in an AORE process is discussed
in Sect. 1.2 below. In Sect. 1.3 we show how EA-Miner uses NLP techniques
to automate the identification of concepts and mapping of models. Section 1.4
demonstrates use of EA-Miner for identification of aspects and variability in a
feature model built from the requirements of the Car Crash Management system.
Section 1.5 presents related work with Sect. 1.6 concluding the chapter.

1.2 EA-Miner and (AO)RE Process

The common goal of all (AO)RE approaches (e.g. [3, 19–21, 26, 27]) is to provide
an appropriate separation of concerns at the requirements level, encapsulating
crosscutting properties in early aspects. With this in mind, the present work offers a
framework (consisting of the EA-Miner tool and guidelines) that can be used with
any text-based (AO)RE approach. This is demonstrated in Fig. 1.1 with a viewpoint-
based RE model as an example.

The top of Fig. 1.1 shows the general activities (1–4) common to most AORE
processes, while the bottom shows an adaptation of activities 2 and 3 based on
viewpoint-based AORE. Depending on the AORE approach used, each activity is
adapted accordingly (e.g. had we considered a feature-based RE approach we would
identify features instead of viewpoints in activity 2.1).

The reason we highlighted activities 2 and 3 is that these are the ones that
represent the core focus of EA-Miner and also where it significantly contributes to
existing (AO)RE approaches by identifying crosscutting concepts from requirement
elicitation documents and mapping into an AORE model. The overview of these two
activities, the artefacts involved and the role of EA-Miner is discussed below.

1 Aspect Identification in Textual Requirements with EA-Miner 5

Fig. 1.1 General AORE process with detailed adaptation for viewpoint-based AORE

Identification of requirements model concepts1: EA-Miner helps in automating
activity 2, using the documents produced in activity 1 (i.e. any requirements
elicitation process) as input, of identifying model concepts (e.g. viewpoints, early
aspects, features and others) and presenting them to the user. Some characteristics
about the identification are:

– Rule based and NLP based: For each AORE model considered, the mining
technique utilised can be different. For example, for the Viewpoint model,
part-of-speech (POS) NLP technique is used to identify nouns as viewpoint
candidates, while for a feature-based approach we can consider action verbs as
candidate features and nouns as candidate entities.

– Every concept identified is a candidate: EA-Miner identifies the model concepts
and considers them to be candidates. The tool offers several features to show
information about the candidates (e.g. their frequency of occurrence in the text,
their meaning) as well as process guidelines to help the requirements engineer
accept or reject that concept.

– Process Guidelines can be used: We underline that EA-Miner does not replace
the work of the requirements engineer and is not aimed at 100 % automation. For
this reason, guidelines documenting previous experience and best practices can

1The details on concept identification are presented in [23].

6 N. Weston et al.

be used to assist the requirements engineer by prescribing some tips on how the
information and features of EA-Miner can be used effectively. Guidelines can be
customised according to AORE model used.

Structuring the Requirements specification: This activity constitutes editing the
initial model produced in the previous activity by discarding irrelevant concepts,
adding new ones and generating a structured model (e.g. a specification document
based on the Viewpoint-based AORE approach). EA-Miner also provides features
such as filtering (e.g. show the ten most relevant viewpoints based on frequency)
and process guidelines as discussed above to help the requirements engineer.

1.3 Use of Natural Language Processing in Identification
of Crosscutting Concerns

1.3.1 Using NLP Techniques for Automation

The cornerstone of EA-Miners model automation are the NLP features provided by
the WMatrix NLP tool suite which have been shown to be effective in early phase
requirements engineering [22, 24]. WMatrix implements NLP techniques such as
frequency analysis, POS (with a precision of 97 %), and semantic tagging (with
a precision of 91 %) that provide relevant information about the properties and
semantics of a text in natural language. Frequency analysis shows statistical data
about frequencies of words that help to find out which words are more significant in
the text. WMatrix takes a corpus-based NLP approach. Corpus Linguistics [18] can
be understood as the study of language based on real-life language use. A corpus
is a collection of texts from different sources (e.g. newspapers, magazines, books,
journals) that can be collected over several years and made available for researchers.
For example, the British National Corpus (BNC) [4], on which WMatrix draws, is a
100 million word reference collection of samples of written and spoken English
from a wide range of sources. POS tagging [22, 24] assigns to each word its
grammatical function (POS) such as singular common noun, comparative adjective,
infinitive verb and other categories such as the ones in Table 1.1. The tagging process
in WMatrix is based on a language model derived from the large reference corpus
and uses surrounding context to decide the most likely tag for each word.

Semantic tagging [22, 24] assigns a word or multiword expression to a specific
class of meaning. The semantic tags are represented in a tagset arranged in 21 top-
level categories (e.g. M and S in Table 1.1) that expand into 232 sub-categories
(e.g. M3 and S7.4) [22]. Each of these categories groups words that are related
via a specific meaning (e.g. M3 contains vehicle, car, bus, truck, automobile). The
taxonomy originates from a corpus-based dictionary and has been comparatively
evaluated against publicly available semantic hierarchies. Moreover, the same word
(e.g. performance) can contain different meanings (e.g. act of a dancer or artist,

1 Aspect Identification in Textual Requirements with EA-Miner 7

Table 1.1 Examples of POS and semantic tags from
[22, 24]

POS tag What it represents
VVI Infinitive (e.g. to give: : : It will work: : :)
NN1 Singular common noun (e.g. book, girl)
SEM tag What it represents
M Movement, location, travel and transport
S Social actions, states and processes
M3 Vehicles and transport on land
S7.4 Permission

processing power of the computer) and thus be present in more than one semantic
category. The semantic tagger deals with this by analysing the context of the phrase
in which the word is used and also by using POS tags for disambiguation in order
to attribute the correct tag. It is important to highlight that both tasks of POS and
semantic tagging are completely handled by WMatrix and do not require any input
from the requirements engineer. The semantic tagger makes its decisions based on
a large coverage dictionary of single words and multiword expressions, currently
containing 73,894 words and multiwords. These resources have been constructed
manually by linguists for other corpus-based projects over a number of years.
EA-Miner utilises WMatrix to pre-process a requirements document provided as
input. WMatrix returns another file which consists of the same content as the
input file but tagged with POS and SEM tags. For instance, WMatrix will take
an input of “road traffic” and returned the tagged output where the word road
has POS tag D NN1 which represents a singular noun and traffic has the SEM
tag D M3 which represents the vehicles and transport on land semantic class.
Another important concept that is utilised in EA-Miner is Stemming [22, 24] which
is the process of reducing similar words to the same canonical form. For example
the words availability and available will be stemmed to avail. This makes it possible
to recognise words that are not exactly equal and treat them as the same concept
(e.g. for a requirements engineer the words driver and drivers are the same).

1.3.2 Aspect Identification

The identification of early aspects in EA-Miner can be broken into two categories:
non-functional and functional. Non-functional requirements (NFR) (e.g. security,
concurrency, persistence, parallelism and so forth) are generally natural candidates
for crosscutting concerns at the RE level since they are broadly scoped properties
that tend to constrain many other requirements [20,21]. One important NLP feature
that EA-Miner uses to identify these early aspects is the SEM tags produced by
WMatrix. For example, the word authorised will have the semantic tag SEM D
S7.4C which means permission that is a natural candidate for a security early aspect
(See Table 1.1: The C sign is just an extra annotation to mean that it is a positive

8 N. Weston et al.

type of permission; unauthorised would be tagged as S7.4-). The identification
of these broadly scoped non-functional early aspects (e.g. security, performance,
concurrency, usability) in a viewpoint-based, feature-based or other models uses the
NLP semantic tagging. These broadly scoped concerns represent restrictions applied
to their requirements and functionalities (the base abstractions such as viewpoints
and features) and therefore are similar in nature and can be identified in a similar
fashion. Once the relevant annotated corpus elements are identified and confirmed
by a requirements engineer as relevant to a particular crosscutting concern (such
as authorised with tam S7.4 to security), EA-Miner supports aggregation of such
entries into concern-related lexicons. Such a lexicon is a vocabulary describing a
particular concern. The more entries are collected in a lexicon, the more detailed
knowledge is built and subsequently utilised in identification of a given concern. The
details on how NFR automation is handled in the context of EA-Miner is presented
in [23].

Regarding the analysis of functional early aspects, an adaptation of the
Fan-in-based aspect mining code analysis technique [17] is be used. Fan-in analysis
considers the fan-in of a node n in a method call graph as the number of incoming
edges (represented by direct callers of n). To clarify, suppose, e.g. that in some
system there is a log method of the Logger class which is called by 5 other methods
in different classes (the fan-in of the log method is 5). Methods with a high fan-in
(such as log) represent behaviour that is likely to be crosscutting (as it is called from
several places) and is a strong candidate for a functional aspect [17].

Having identified the presence of potentially crosscutting concerns, it is then
necessary to verify that these concerns are in fact crosscutting and affects multiple
requirements. EA-Miner achieves this by treating each requirement sentence as a
potential joinpoint and the collection of requirements (both crosscutting and non-
crosscutting) are compared based on a set intersection operation. If the resulting
set is empty, it means that there is no crosscutting relationship between the base
requirements and the potential early aspect. If the resulting set is non-empty, then
there is a crosscutting relationship between the viewpoint and the early aspect and
the overlapping sentence-join-points are the resulting set.

1.3.3 Commonality and Variability Identification
with EA-Miner

It has long been reported that commonality and variability in feature models can
often manifest as a crosscutting concern, as a given element can be repeated as a
child of several independent features.

Where requirements-level feature models are built on basis of textual
input, EA-Miner can also support identification of variability and commonality
elements [25]. This is achieved using the above discussed EA-Miner principle of
lexicon-based concern identification. In this case a lexicon will pinpoint potential
presence of variable elements (e.g. when detecting such words as different, like,

1 Aspect Identification in Textual Requirements with EA-Miner 9

such as) or mandatory ones (e.g. denoted by such words as only, unless, each). This
lexicon again relies on the semantic and part of speech tagging applied by WMatrix
to disambiguate the meaning of certain words in the lexicon. For instance, if in
a given text “like” refers to similarity, it is relevant for variability identification;
on the other hand, if it is used to denote a verb for preference, it is irrelevant and
will not be marked for variability. This characteristic of EA-Miner is demonstrated
in Sect. 1.4.2.

1.4 Using EA-Miner for Feature Model Refinement

Having discussed the main principles on which the EA-Miner tool is built, we now
turn to demonstration of its use. In this study we apply EA-Miner to a feature model
representation of the Car Crash case study, as shown in Fig. 1.2. This model has
been derived2 from the text of the given case study, with each feature containing
text relevant to it. Thus EA-Miner can be applied to this model.

We discuss how the feature model could be complemented with the new concerns
identified via EA-Miner by presenting the potential improvements as well as
potential structure degradation to the given model due to the new concern addition.

1.4.1 Finding Crosscutting Concerns with EA-Miner

When used with the initial feature model (see Fig. 1.2) for potential aspect
identification, EA-Miner was able to identify the following crosscutting concerns:

– Database (Persistence)
– Profiles (Access Control)
– Surveillance (Security)

These concerns represent non-functional properties of the CMS system which
affect several features (i.e. are early aspects that need a better modularisation). For
these concerns to be successfully modelled in a feature diagram, it is necessary to
identify which features they affect. Table 1.2 shows the results of this analysis by
detailing the crosscutting concerns and which features they affect; these concerns
are represented in the refined feature model in Fig. 1.3.

Structure Improvements. Thus, for the given feature model, EA-Miner has
identified three crosscutting concerns: Persistence, Access Control and Security.

2The model is derived using the ArborCraft tool. Any other way of model construction that has text
related to the respective features would be equally suitable. Although the process of this specific
model derivation is irrelevant to the present chapter, the interested reader is referred to [25] for
more detail on ArborCraft and its use.

10 N. Weston et al.

0.
 G

en
er

al
 C

M
S

Fu
nc

tio
na

lit
y

19
. C

ri
si

s
M

an
ag

em
en

t

1.
 C

ar
 C

ra
sh

 D
ef

in
iti

on

25
. C

ar
 C

ra
sh

2.
 C

ar
 C

ra
sh

 S
co

pe

3.
 C

ar
 C

ra
sh

 S
pe

ci
fi

c
Fu

nc
tio

na
lit

y

4.
 L

oc
at

io
n

D
at

a

26
. M

is
si

on
 D

at
a

5.
 E

m
er

ge
nc

y
V

eh
ic

le
s

21
. C

ri
si

s
Sc

en
e

R
es

po
ns

e
6.

 M
ed

ic
al

 H
is

to
ry

22
. M

ed
ic

al
 D

at
a

7.
 I

nj
ur

ie
s

8.
 T

ow
 T

ru
ck

s

9.
 C

ar
 C

ra
sh

 A
ct

or
s

10
. C

oo
rd

in
at

or

29
. H

um
an

 R
es

ou
rc

es
11

. O
bs

er
ve

r

32
. C

ar
 C

ra
sh

 M
an

ag
em

en
t

12
. C

M
S

E
m

pl
oy

ee

18
. F

A
-W

or
ke

r

13
. E

xt
er

na
l W

or
ke

r

14
. S

ys
te

m
 A

dm
in

15
. W

itn
es

s

27
. R

es
po

ns
e

16
. T

el
ec

om

33
. E

xt
er

na
l I

T
 C

om
pa

ny

17
. S

ur
ve

ill
an

ce
 S

ys
te

m

34
. C

M
S

F
ig

.1
.2

In
it

ia
lf

ea
tu

re
m

od
el

fo
r

th
e

C
M

S
st

ud
y

1 Aspect Identification in Textual Requirements with EA-Miner 11

Table 1.2 Non-functional crosscutting concerns and the features they affect

Concern name Requirements Affects
Database

(Persistence)
– (10) facilitating the first-aid missions by provid-

ing relevant medical history of identified victims
to the first-aid workers by querying databases of
local hospitals.

– (18) System Admin is the specialist who main-
tains the system and creates all profiles of work-
ers and resources to feed the crisis management
database.

System admin,
medical history

Profile (Access
control)

– (18) System Admin is the specialist who main-
tains the system and creates all profiles of work-
ers and resources to feed the crisis management
database.

System admin,
human
resource,
database

Surveillance (Type
of NFR:
Security)

– (21) Surveillance System is an external entity
which monitors traffic in highways and cities
with the use of cameras.

Surveillance
system

By identifying these concerns which affect others, the modularity of the feature
model is improved. Interestingly, the persistence (database), surveillance system
(security) and access control (authentication system) concerns are present as fea-
tures in the reference feature model under the IT-Option feature, although they are
not modelled as crosscutting concerns; i.e. the features affected by these concerns
are not explicitly identified. Modelling such crosscutting relationships is just as
critical as early aspect identification, so that feature implementations are treated
accordingly.

Interestingly, EA-Miner identifies Surveillance (Security) as a crosscutting
concern. Typically, this would be a correct assignment of Security. However, in this
instance surveillance refers to a network of cameras and other devices to monitor
traffic conditions. Though this network is in place to monitor and ensure security,
in this case the surveillance system is already well modularised and is not a
crosscutting concern. This issue is to some degree reflected by the fact that the
Security concern identified by EA-Miner only affects one feature in the ArborCraft
model—the actual surveillance sub-system.

Structure Degeneration. Use of EA-Miner for crosscutting concern identification
has not led to any structure degradation in initial feature model. This is mainly due to
the fact that such crosscutting concern identification was absent in the given feature
model (which is a symptomatic characteristic of feature models in general) and,
consequently, it complements the initial model.

One problem associated with using EA-Miner is that a lot of candidate crosscut-
ting concerns can be suggested with many being false-positives. This is particularly
the case when dealing with a large document. On the other hand, EA-Miner provides
tool support to prune the list of suggestions to arrive at a set of good candidates.

12 N. Weston et al.

0.
 G

en
er

al
 C

M
S

Fu
nc

tio
na

lit
y

19
. C

ri
si

s
M

an
ag

em
en

t

1.
 C

ar
 C

ra
sh

 D
ef

in
iti

on

25
. C

ar
 C

ra
sh

2.
 C

ar
 C

ra
sh

 S
co

pe

3.
 C

ar
 C

ra
sh

 S
pe

ci
fi

c
Fu

nc
tio

na
lit

y

4.
 L

oc
at

io
n

D
at

a

26
. M

is
si

on
 D

at
a

5.
 E

m
er

ge
nc

y
V

eh
ic

le
s

21
. C

ri
si

s
Sc

en
e

R
es

po
ns

e
6.

 M
ed

ic
al

 H
is

to
ry

22
. M

ed
ic

al
 D

at
a

7.
 I

nj
ur

ie
s

8.
 T

ow
 T

ru
ck

s

9.
 C

ar
 C

ra
sh

 A
ct

or
s

10
. C

oo
rd

in
at

or

29
. H

um
an

 R
es

ou
rc

es

11
. O

bs
er

ve
r

32
. C

ar
 C

ra
sh

 M
an

ag
em

en
t

12
. C

M
S

E
m

pl
oy

ee

18
. F

A
-W

or
ke

r

13
. E

xt
er

na
l W

or
ke

r

14
. S

ys
te

m
 A

dm
in

15
. W

itn
es

s

27
. R

es
po

ns
e

16
. T

el
ec

om

33
. E

xt
er

na
l I

T
 C

om
pa

ny

17
. S

ur
ve

ill
an

ce
 S

ys
te

m

34
. C

M
S

D
at

ab
as

e
(P

er
si

st
en

ce
)

Pr
of

ile
s

(A
cc

es
s

C
on

tr
ol

)

Su
rv

ei
lla

nc
e

(S
ec

ur
ity

)

F
ig

.1
.3

In
it

ia
lF

ea
tu

re
M

od
el

re
fin

ed
by

E
A

-M
in

er
.C

ro
ss

cu
tt

in
g

co
nc

er
ns

ar
e

sh
ow

n
in

gr
ey

1 Aspect Identification in Textual Requirements with EA-Miner 13

Furthermore, filters can be applied to reduce the list including: thresholds to
get only the N most significant concepts, stemmers to recognise similar words
(e.g. “resources” and “resource”) and synonym lists.

There is also the problem that EA-Miner may miss certain concerns that are in
fact crosscutting. This may occur when a certain crosscutting concern is implied,
but not explicitly mentioned in the text of the features to-be-crosscut by it. If there
is no text referring to such a “silently implied” concern, it cannot be identified by
EA-Miner and will, subsequently, not be modelled in the feature diagram. However,
this limitation cannot be addressed by a tool that works over a given text, as
EA-Miner does. This is one reason why we have underlined that EA-Miner is not a
substitute for the requirements engineer; instead its purpose is to provide a guide to
the engineer, facilitating the development process.

1.4.2 Refining Features with EA-Miner for Variability

As discussed in Sect. 1.3.3, our initial feature model has not taken into consideration
variability and commonality potentially present within individual requirements
(i.e. the intra-requirement3 commonality and variability). This is not unusual in
requirements level feature model construction, when the main features are identified
and modelled, leaving more detailed commonality and variability analysis for later
refinements. Such intra-requirement variability and commonality identification can
be supported by EA-Miner’s dedicated lexicon, a requirement will be a variabil-
ity/commonality candidate if it contains a word that belongs to the “Variability”
(or “Commonality”) semantic tag (determined via the Variability and Commonality
lexicon).

At this stage the identification of commonality and variability relates to finer-
grained—often leaf-level—characteristics of a system, such as listing a set of ways
to carry out a task or detailing specific functions expected of a feature. However,
in some cases, such finer characteristics may indicate variability/commonality that
needs to be modelled at the higher levels of the feature tree.

Figure 1.4 depicts the CMS feature tree refined with intra-requirement variability.
This tree is produced by providing EA-Miner the input of the text structured into
features of the initial feature model (see Fig. 1.2), EA-Miner then treats variability as
a crosscutting concern and attempts to discover this concern and its joinpoints within
the features. The EA-Miner’s lexicon-based variability identification is used to help
analyse the additional variant/commonality features. Each feature is selected in turn
and examined for the presence of the lexicon terms. For instance, in our example
the following terms are detected: or, for example, all, and, include, following.

Having detected the variability/commonality terms, we need to consider each
term and decide if (and then how) it is relevant to the feature refinement.

3This has been referred to as “in-text” variability in [25].

14 N. Weston et al.

F
ig

.1
.4

Fe
at

ur
e

tr
ee

af
te

r
in

it
ia

lr
efi

ne
m

en
t

w
it

h
ex

te
nd

ed
E

A
-M

in
er

1 Aspect Identification in Textual Requirements with EA-Miner 15

For example, both CMS Employee and External Employee can be “in charge of
or operating” resources. Thus, the CMS Employee and External Employee features
are both refined into “In Charge Of Internal/External Resource” and “Operate
Internal/External Resource” sub-features. This refinement is of type “or”, meaning
that at least one of the sub-features is required, but both may be selected at the same
time.

In the case of External Employee, the relevant resources are listed as “for
example, police trucks or fire trucks”, and for CMS Employee they are listed as “for
example, tow trucks or ambulances”. A consequence of this is that In Charge Of
Internal Resource and Operate Internal Resource are further refined into In Charge
of Tow Trucks and In Charge of Ambulances, and Operate Tow Truck and Operate
Ambulances sub-features, respectively. Both subsets are identified from the same
“or” variability term. However, the In Charge of Tow Trucks and In Charge of
Ambulances set is modelled as an OR set in Fig. 1.4, while Operate Tow Truck
and Operate Ambulances is modelled as an alternative set. This is because one can
be in charge of a truck and ambulance at the same time but can only operate one of
them at a time.

All other variability/commonality terms identified by the EA-Miner are pro-
cessed in the similar manner, refining the feature model into a set of OR, Mandatory,
Optional and Alternative subsets. In total, this activity took 16 min, whereby each
of the terms was considered and a feature model was annotated with the appropriate
refinements. The result is presented in Fig. 1.4.

Once the initial refinement of the feature tree is completed, the analyst then needs
to review the tree. The revision is necessary in order to decide to what level of the
feature model the identified refinements should be propagated. In the given model,
initially, all intra-requirement variability/commonality will be identified at the leaf-
level nodes. This is due to the hierarchical nature of this particular feature model
construction process.4 However, it may be necessary to propagate this variability up
(or, in case of other models, also down) the tree. Such an example occurs in the car
crash case study.

Having reviewed the initial refinement of the feature model in Fig. 1.4, we
decided that a set of resources, such as tow trucks, police and fire trucks, and
ambulances together constitute a new high level feature, which we have called Non-
human Resources feature (see Fig. 1.5).

Thus, we have defined the Non-human Resources feature and its two sub-
features—Internal and External Resources, which are in turn refined into Ambu-
lances, Tow trucks, Police trucks and Fire trucks sub-features. The original definition
of these features were removed. All the revision activity took 6 min, whereby the
refined tree was considered for each refinement, and a decision on aggregation and
removal was made with the feature tree annotated accordingly.

4This is a peculiarity of the ArborCraft tool used for the generation of the initial feature model. In
this tool all text of the higher level features is also considered within the lower level ones.

16 N. Weston et al.

F
ig

.1
.5

R
ev

is
ed

fe
at

ur
e

tr
ee

af
te

r
in

it
ia

lr
efi

ne
m

en
t

1 Aspect Identification in Textual Requirements with EA-Miner 17

Structure Improvements. One of the immediate effects which this process has
on the generated feature model is the inclusion of new features. Each of these
new features simply decomposes previous leaf-nodes into new sub-features. For
example, the previous leaf feature System Admin is decomposed further by an
additional two levels. Other features are decomposed in a similar manner such
as Emergency Vehicles, Tow Trucks and Surveillance System. As with the System
Admin feature, the additional decomposition of these features does not cause any
additional effects through the rest of the feature model (i.e. no additional refactoring
needs to occur).

Structure Degeneration. As shown in Fig. 1.4, the modularity of the feature
model after applying the EA-Miner’s variability lexicon is poor. The sub-features
of CMS Employee are repeated across External Employee, with features pertaining
to operating and managing resources present in both. The only differentiating factor
between the two is whether the resources are external or internal. This problem was
rectified by refactoring the feature model (see Fig. 1.5). The refactoring involved
introducing a new high-level feature (Non-Human Resources) that allowed external
and internal resources to be modelled. Notice that this refactoring did not remove
the need to identify the tasks of CMS or External Employees and resources to which
these tasks apply. Instead this reduces the number of leaf-nodes as each explicit
resource type (i.e. tow truck, ambulances, etc.) no longer has to be stated for each
task.

However, this refactoring introduces additional issues with certain other features
being duplicated throughout the feature model. For instance Tow Trucks is repeated
as a sub-feature of both Internal Resources and Vehicles. Thus, a new crosscutting
feature is introduced due to certain commonality elements. Thus, for the Tow Trucks
feature to be fully understood, all instances where this feature appears need to
be analysed. Consequently, from the perspective of Tow Trucks, model has poor
modularity. On the other hand, from the perspective of Non-Human Resources the
modularity is superior as all related features are contained within this single subtree.
Similarly, from the perspective of the Response, all elements related to this feature
are localised. Although having un-contained crosscutting and poor modularity from
any perspective is undesirable, in certain cases it cannot be avoided. In such cases,
it is important that good modularity is achieved for the key perspectives that
developers will use to understand and decompose the system. In the given case,
we consider that the top-down perspective, that achieves good modularity, will be
initially more useful to developers and provide this understanding.

1.5 Related Work

The work related to EA-Miner that addresses crosscutting in requirements can be
represented by Viewpoint-based AORE [20,21], scenario-based AORE [26] as well
as work on goals and aspects [27], Theme/Doc [2] and multidimensional separation

18 N. Weston et al.

of concerns [19]. Among these approaches the only one that supports automation for
identification of requirements concepts is Theme/Doc that provides a tool for semi-
automatic identification of crosscutting behaviors from requirements specification.
In this approach the developer has to read through input documentation and
manually provide a list of action words and their related entities as input to the
Theme/Doc tool.

The advantage of EA-Miner over the above AORE-mentioned approaches is the
use of precise POS and semantic tagging that helps to improve the identification of
concepts at the requirements level. Moreover, EA-Miner offers mining capabilities
for different AORE models as well as handles requirements documents of varied
structure (e.g. user manuals, interviews and others). Therefore, EA-Miner can be
seen as complementary to current AORE approaches offering automation for their
costly activities. For instance, we could implement a plug-in that facilitates mining
for themes which are subsequently modelled and analysed using Theme/Doc.

Regarding code level aspect mining approaches such as [17], what is important
to consider is how some techniques such as Fan-in analysis can be adapted to be
used at the requirements level. Aspect mining at RE level helps to achieve earlier
separation of concerns that can minimise refactorings at later stages such as code.
However, some crosscutting concerns (e.g. the code of a design pattern) can only
be detected at code level since they don’t make sense at the requirements level.
Therefore, requirements and code aspect mining are complementary approaches that
can be applied whenever it suits best the problem at hand.

Moreover, it is also important to mention work related to the issue of cataloguing
and reusing NFR knowledge in case tools as we use this in our lexicon-based
approach for identifying NFRs. Cysneiros et al. [7] proposes ways for structuring
and cataloguing NFR framework [6] knowledge with the intention of reusing and
querying this knowledge. [8] describes in detail an approach for eliciting and
building NFR models as well as integrating the non-functional perspective with
the functional one in scenarios as well as in class diagrams. This approach utilises
a lexicon (language extended lexicon—LEL) that contains information about the
entities of the system as well as the NFR. We believe that our NLP-based approach
could benefit [8] by enabling to automatically identify the entities and NFRs and
suggest a list of candidates that could be added by the user in the LEL lexicon.

Other work that uses NLP techniques in automation of some tasks in RE has
been discussed in [1, 5, 12, 13, 15, 16]. These papers also focus on using NLP at the
requirements level to identify concepts and build models.

The Color-X approach [5] offers NLP to semiautomatically parse the input
(e.g. a document in natural language) into an intermediate formal model based
on the common representation language (CPL) [5]. The transformation is not
a fully automated step and requires manual structuring from the user (some
guidelines are offered) and some words need to be entered in a lexicon. After
the CPL representation is built two models can be generated: One static object
model, called CSOM, similar to a UML class diagram, and an event-based model,
called CEM, similar to a state machine. The Circe [1, 12] environment provides
a tool that processes natural language text as input and generates an intermediate

1 Aspect Identification in Textual Requirements with EA-Miner 19

Table 1.3 Summary of techniques

Technique Effort Benefits Drawbacks
EA-Miner 35 min Crosscutting concern identification No guidance provided
EA-Miner extended 22 min Increased detail Potential duplication

model based on some rules called model, action and substitution rules. After the
intermediate model is created, different analysis models can be generated such as
entity relationship (E-R) models, data flow diagrams (DFDs) or OO models. Similar
to what happens with Color-X, the user has to input some elements in the glossary
along with some tags that refer to the semantics of the rules. This characteristic is a
bit different from our approach since our NLP processor does not require any input
from the user (apart from the natural language documents). Nor does it require that
the user has detailed knowledge on how it works.

The Abstfinder [13] approach offers automation for the identification of abstrac-
tions in requirements documents described in natural language. Abstractions are
considered to be relevant concepts that can be understood without having to know
their details such as booking and flight in a reservation system. The process of
concept identification is based on pattern matching between sentences in the text.
The output of the tool is a list of abstractions and the knowledge on what to do with
this information is left to the requirements engineer.

Thus, the previous work on use of NLP in requirements has shown that NLP
and information retrieval techniques can provide a great deal of contribution on
automating requirements engineering. EA-Miner is one of the first tools that applied
these techniques to the problem of identification and representation of crosscutting
concerns at the requirements level.

1.6 Conclusion

In this chapter we have presented EA-Miner—a tool for aspect identification in
textual requirements. We also used EA-Miner to refine the initial given feature
model for variability. Using the car crash case study, we observed that the structure
of a given requirements-level feature models can be improved by using EA-Miner,
as summarised in Table 1.3 below. We note that in this case study it was possible to
identify potentially crosscutting concerns and their points of interaction with already
present features without degrading the feature model structure.

However, when using EA-Miner to identify intra-requirements variability, we
obtained both a positive and negative influence on the overall structure of the feature
model. Extra details were added which can lead to a better detailing of certain
crosscutting features and understanding of the overall system. However, these extra
details can, in turn, cause duplication and scattering of features which requires extra
refactoring to resolve. Yet, with some extra refactoring, the structure of the model
and the granularity of the features and (in this example at least) can be improved.

20 N. Weston et al.

This, of course, requires the skilled eye of an experienced product line engineer.
But, as we have already mentioned before, EA-Miner is not intended to be fully
automatic, but rather guide and ease the arduous task of producing well-structured
aspect-enriched models from textual requirements documents. In this, we believe,
the tool has succeeded.

References

1. V. Ambriola, V. Gervasi, Processing natural language requirements, in Proceedings of
International Conference on Automated Software Engineering (IEEE Computer Society Press,
Los Alamitos, 1997)

2. E. Baniassad, S. Clarke, Theme: An approach for aspect-oriented analysis and design, in
Proceedings of the ICSE, Edinburgh, Scotland, 2004

3. E. Baniassad, S. Clarke, Theme: An approach for aspect-oriented analysis and design, in
ICSE ’04: Proceedings of the 26th International Conference on Software Engineering (IEEE
Computer Society, Washington, DC, 2004), pp. 158–167

4. BNC (British national corpus), http://www.natcorp.ox.ac.uk/. Accessed 15 Dec 2012
5. F.M. Burg, Linguistic Instruments in Requirements Engineering (IOS, Amsterdam, 1997)
6. L. Chung, B.A. Nixon, E. Yu, J. Mylopoulos, Non-Functional Requirements in Software

Engineering (Kluwer, Boston, 2000)
7. L.M. Cysneiros, E. Yu, J.C.S.P. Leite, Cataloguing non-functional requirements as softgoals

networks, in Workshop on Requirements Engineering for Adaptable Architectures at the
International Requirements Engineering Conference (RE’03) (Monterey Bay, California,
2003), pp. 13–20

8. L.M. Cysneiros, J.C.S.P. Leite, Nonfunctional requirements: From elicitation to conceptual
models. IEEE Trans. Software Eng. 30(5), 328–350 (2004)

9. J.N.O. Dag, B. Regnell, P. Carlshamre, M. Andersson, J. Karlsson, A feasibility study of
automated natural language requirements analysis in market-driven development. Requir. Eng.
7(1), 20–33 (2002)

10. J.N.O. Dag et al., Speeding up requirements management in a product software company:
Linking customerwishes to product requirements through linguistic engineering, in RE ’04:
Proceedings of the Requirements Engineering Conference, 12th IEEE International (RE’04)
(IEEE Computer Society, Washington, DC, 2004), pp. 283–294

11. A. Finkelstein, J. Kramer, B. Nuseibeh, L. Finkelstein, M. Goedicke, Viewpoints: A framework
for integrating multiple perspectives in system development. Int. J. Software Eng. Knowl. Eng.
2(1), 31–57 (1992)

12. V. Gervasi, Environment Support for Requirements Writing and Analysis. PhD thesis,
Universita Degli Studi de Pisa, 1999

13. L. Goldin, D.M. Berry, Abstfinder: A prototype natural language text abstraction finder for use
in requirements elicitation. Automat. Software Eng. 4, 375–412 (1997)

14. I. Jacobson, M. Christerson, P. Jonsson, G. Övergaard, Object-oriented Software Engineering:
A Use Case Driven Approach (Addison-Wesley, Reading, MA, 1992)

15. M. Luisa, F. Mariangela, I. Pierluigi, Market research for requirements analysis using linguistic
tools. Requir. Eng. 9(1), 40–56 (2004)

16. M. Luisa, G. Roberto, Nl-oops: A requirements analysis tool based on natural language
processing, in Proceedings of the 3rd International Conference on Data Mining, Bologna,
2002

17. M. Marin, A. Deursen, L. Moonen, Identifying aspects using fan-in analysis, in WCRE ’04:
Proceedings of the 11th Working Conference on Reverse Engineering (IEEE Computer Society,
Washington, DC, 2004), pp. 132–141

http://www.natcorp.ox.ac.uk/

1 Aspect Identification in Textual Requirements with EA-Miner 21

18. T. McEnery, A. Wilson, Corpus Linguistics (Edinburgh University Press, Edinburgh, 1996)
19. A. Moreira, A. Rashid, J. Araujo, Multi-dimensional separation of concerns in requirements

engineering, in RE ’05: Proceedings of the 13th IEEE International Conference on Require-
ments Engineering (RE’05) (IEEE Computer Society, Washington, DC, 2005), pp. 285–296

20. A. Rashid, A. Moreira, J. Araujo, Modularisation and composition of aspectual requirements,
in Proceedings of the 2nd International Conference on Aspect-Oriented Software Development
(ACM, Boston, MA, 2003), pp. 11–20

21. A. Rashid, P. Sawyer, A. Moreira, J. Arajo, Early aspects: A model for aspect-oriented
requirements engineering, in Proceedings of the International Conference on Aspect-Oriented
Software Engineering (IEEE Computer Society Press, Los Alamitos, 2002), pp. 199–202

22. P. Rayson, Ucrel semantic analysis system (USAS), 2005, http://www.comp.lancs.ac.uk/ucrel/
usas/. Accessed 15 Dec 2012

23. A. Sampaio, A. Rashid, R. Chitchyan, P. Rayson, Ea-miner: Towards automation in aspect-
oriented requirements engineering. Trans. AOSD 4620(3), 4–39 (2007)

24. P. Sawyer et al., Revere: Support for requirements synthesis from documents. Inform. Syst.
Front. 4(3), 343–353 (2002)

25. N. Weston, R. Chitchyan, A. Rashid, A framework for constructing semantically composable
feature models from natural language requirements, in SPLC’09: Proceedings of the 13th
International Software Product Line Conference, San Francisco, 2009, pp. 211–220

26. J. Whittle, J. Araujo, Scenario modeling with aspects. IEE Proc. Software 151(4), 157–172
(2004)

27. Y. Yu, J.C.S.P. Leite, J. Mylopoulos, From goals to aspects: Discovering aspects from
requirements goal models, in Proceedings of the 12th IEEE International Requirements
Engineering, Kyoto, Japan, 2004, pp. 38–47

http://www.comp.lancs.ac.uk/ucrel/usas/
http://www.comp.lancs.ac.uk/ucrel/usas/

Chapter 2
Reasoning About Dynamic Aspectual
Requirements

Yijun Yu, Xin Peng, and Julio Cesar Sampaio do Prado Leite

Abstract Aspect-oriented requirements modelling separates the early crosscutting
concerns as quality requirements such that one can reason about such requirements
without cluttering with another. In this chapter, we propose a step further to reason
about the dynamic goal models while the separated aspectual requirements are also
dynamic. The key to this step is a list of change propagation rules for the goal models
such that it is possible to reuse as much previous reasoning results as possible.
To demonstrate, we use the Crisis Management System case study to indicate the
application of these rules.

2.1 Introduction

Given a highly dynamic environment it is desirable that a software system be
able to manage changes continuously, without suspension of the execution, whilst
maintaining its essential requirements. In order to decide what is needed to change
for satisfying the requirements, however, a system shall be aware of its current
situation and the context in which it is situated. In support of requirements-driven
self-managing systems, requirements reasoning needs to be made as dynamic as
possible to take into account the new knowledge learnt during runtime.

We explore the issues of requirements-driven self-managing systems using
a representation scheme, the goal-oriented non-functional requirements (NFR)
framework [1, 2], that clearly differentiates functional and quality requirements.

Y. Yu (�)
Centre for Research in Computing, The Open University, Buckinghamshire, UK
e-mail: y.yu@open.ac.uk

X. Peng
School of Computer Science, Fudan University, Shanghai, China

J.C.S. do Prado Leite
Departamento de Informática, PUC-Rio, Rio de Janeiro, Brazil

A. Moreira et al. (eds.), Aspect-Oriented Requirements Engineering,
DOI 10.1007/978-3-642-38640-4 2, © Springer-Verlag Berlin Heidelberg 2013

23

mailto:y.yu@open.ac.uk

24 Y. Yu et al.

The NFR framework separates functions, which are modelled as hard goals (i.e. with
crisp/binary satisfaction criteria), from quality requirements, which are modelled as
soft goals (i.e. with non-crisp/non-binary satisfaction criteria, and using the term
satisficed to acknowledge the distinction).

In relation to these classifications, functions of an implementation are composed
by AND–OR rules to satisfy those high-level hard goals; and they are weaved
through MAKE-BREAK-HELP-HURT contribution rules to satisfy those high-level
soft goals. Goals are labelled by both their type (the function or the quality) and their
topics (the domains) to which the type is being applied.

Our earlier work [3] introduced the notion of aspectual requirements to modu-
larise the functions for the operationalisation of quality requirements (i.e. advices
tasks) and to separate them from those functional requirements (i.e. join-points
tasks) crosscut by the subject domains (i.e. point-cuts topics). The weaving algo-
rithms for introducing the advising tasks into the join-points aim to maintain the
equivalence of answers to the same deductive question, with or without the aspects:
“Given a set of subgoals, are the high-level hard goals satisfied and high-level soft
goals satisficed well enough?”

Given a model consisting of static rules and an a priori set of hard/soft goals,
one could perform goal-based reasoning algorithms to get the answer. However, as
we have just motivated earlier, these rules may no longer be static in real situations:
changes to the hard/soft goals and their operationalised tasks, or even the rules,
themselves, may change given that the context of a system is highly changeable,
and the knowledge of the system requirements (awareness) is also allowed to be
changed at runtime.

In this chapter, we aim to provide a theoretical answer to the following research
question: “Is it possible to reason about the equivalence between the crosscutting
requirements problem and the separated aspectual requirements problem while
taking into account the changes to the requirements model as well as to the situations
in the context?” The main contributions of this chapter are as follows:

1. Deal with change in the context of aspect-oriented requirements models, i.e.
aspectual requirements models.

2. Propose a list of fundamental rules that characterises the equivalence of require-
ment aspect weaving in dynamic goal models.

3. Demonstrate the application of these rules in the common case study, the Crisis
Management System [4].

The remainder of the chapter is organised as follows. Section 2.2 gives more
background of goal-based reasoning and goal aspects using an illustrative example.
Section 2.3 presents the list of equivalence rules that guarantees the dynamic
aspectual requirements do not introduce problems to the dynamic goal reasoning.
Section 2.4 presents an example application of the dynamic aspectual requirements.
Section 2.5 summarises the limitations in this work, which points to a few future
research directions. Section 2.6 concludes and points out a few interesting direction
we hope to explore in future.

2 Reasoning About Dynamic Aspectual Requirements 25

Fig. 2.1 The top-level hard and soft goals of an online shop

2.2 Background

In this section, we use the requirements model of an online shop as the running
example to illustrate the problem and the existing solutions.

2.2.1 A Running Example

Figure 2.1 shows a simple goal model with the top-level hard goal “Online
shop” decomposed by function into four sub-goals, “Listing [product]”, “Shopping
[Product, ShoppingCart]”, “Checkout Payment [ShoppingCart, Account, Balance]”
and “Admin [Account, Balance]”. The canonical convention we adopted for these
goals or subgoals is “type [topics]”, named after the type of the primary function
of these hard goals, along with the subject domains listed as the topics enclosed
by square brackets, separated by commas. Meanwhile, they are contributing to
three top-level soft goals indicated by the curly nodes, including “Responsiveness”,
“Usability” and “Security”. As quality requirements, these soft goals do not have an
absolute satisfaction, but they do have criteria to judge whether they are sufficiently
implemented. Specifically, the “Listing” and “Shopping” hard goals must achieve
the “responsiveness” because they are frequent operations; the “Checkout payment”
and “Admin” hard goals must have “Security”, because they both may access the
customers’ accounts and may update their balances; the hard goals “Listing” and
“Shopping” may help “Usability” through memorising the potential customers’
transactions as a shopping cart.

26 Y. Yu et al.

2.2.2 Reasoning with Goals and Contexts

In order to reason about the dynamic goals within changing contexts, we first
transform, using the formulae introduced by Zave et al. [5], the dynamic goals’
problem into the problem of judging whether (2.1) is equivalent to (2.2) in the
following form:

E; S
ˇ
ˇ
ˇ D R (2.1)

E; SF; SQ

ˇ
ˇ
ˇ D RF ^ ˆ

�

RQ
�

R D RF ^ ˆ
�

RQ
�

S D SF; SQ (2.2)

E; SF

ˇ
ˇ
ˇ D RF

Here E stands for the environment, R stands for the requirements and S stands for
the system specifications. Zave et al. [5] define the formula (2.1) as the requirements
problem, whilst a refinement according to [1] can be formulated into (2.2) whereby
S is separated into the functional tasks SF, and the advising tasks SQ, and R consists
of the conjunction of both functional requirements RF and the quality requirements
RQ and the evaluation of its fully/partially satisficed or not by ˚(RQ).1 Note that the
composition of SF and SQ, denoted by the “,” separator, can be achieved by aspect
weaving [7].

With an extension to the temporal dimension t, now we would like to establish
the equivalence of (2.1t) and (2.2t):

E .t/ ; S .t/
ˇ
ˇ
ˇ D R .t/ (2.1t)

E .t/ ; SF .t/ ; SQ .t/
ˇ
ˇ
ˇ D RF .t/ ^ˆ.t/

�

RQ .t/
�

R .t/ D RF .t/ ^ ˆ
�

RQ .t/
�

S .t/ D SF .t/ ; SQ .t/ (2.2t)

E .t/ ; SF .t/
ˇ
ˇ
ˇ D RF .t/

1An extension to Zave et al. has been proposed in Jureta et al. [6] to include the requirements other
than the functional/quality, such as attitude, which are treated as part of the context here.

2 Reasoning About Dynamic Aspectual Requirements 27

In other words, when at any given time t, the basic requirements problem shall
hold. One may interpret the continuous satisfaction of requirements as a desirable
self-management quality requirement at the process (meta-) level. With the help of
satisfying additional monitoring [8], diagnosis [9] and feedback loop control [10]
requirements derived from this process requirement, the systems may guarantee the
satisfaction of the core functional requirements [11].

When the formula is focused on the runtime requirements of the software system
product, the reasoning of the goal model is rather straightforward. Suppose that
the top-level requirements are R D RF

Online shop ˆ FS(RQ
Security) ˆ PS(RQ

Usability) ˆ FS
(RQ

Responsiveness). Here FS and PS stand for “fully satisficed” and “partially satis-
ficed,” respectively, indicating the degree of the perceived quality criteria relating to
the soft goals in parenthesis.

Then it is possible to specify SF D SF
Listing, SF

Shopping, SF
Checkout Payment, SF

Admin

that given the context domains E D EProduct, EShopping Cart, EAccount, EBalance shall
satisfy R D RF

Online Shop ˆ FS(RQ
Responsiveness) ˆ PS(RQ

Usability) ˆ FS(RQ
Security). In other

words, the SQ is required to be specified for each function as SQ
Listing, SQ

Shopping,
SQ

Checkout Payment, SQ
Admin. Here we use “,” to connect these domains, instead of

“ˆ” because the composition of them usually involves structural and behaviour
semantics beyond simple logic conjunction. Nonetheless, the requirements problem
E, Sj D R in (2.1) or E, SF , SQj D RF ˆ ˚(RQ) in (2.2) can thus be refined into
conjunctive sub-problems in the same form, with E, S and R substituted by the
counterparts of the sub-problems. For examples, each sub-goal can be regarded as a
sub-requirement for one of the sub-problems:

EProduct; SListing
ˇ
ˇ
ˇ D RF

Listing ^ FS
�

RQ
Responsiveness

� ^ PS
�

RQ
Usability

�

EProduct; EShoppingCart; SShopping
ˇ
ˇ
ˇDRF

Shopping^ FS
�

RQ
Responsiveness

� ^ PS
�

RQ
Usability

�

EShoppingCart; EAccount; EBalance; SPayment
ˇ
ˇ
ˇ D RF

Payment ^ FS
�

RQ
Security

�

EAccount; EBalance; SAdmin
ˇ
ˇ
ˇ D RF

Admin ^ FS
�

RQ
Security

�

Note that here although the functional RF and quality requirements RQ are
separated, their operationalisations are still to be refined into functional tasks SF and
advice tasks SQ. In the next subsection, we explain how we represent the functional
tasks as functions and advice tasks as aspects.

Now a simple version of the goal reasoning is to establish that RF
Listing

ˆ RF
Shopping ˆ RF

Payment ˆ RF
Admin ˆ FS(RQ

Responsiveness) ˆ PS(RQ
Usability) ˆ FS(RQ

Security) D
R. From the known satisfaction result of the requirements on the left-hand
side (i.e. RF

Listing, RF
Shopping, RF

Payment, RF
Admin, FS(RQ

Responsiveness), PS(RQ
Usability),

FS(RQ
Security)) to the satisfaction of the requirements on the right-hand side (i.e. R),

the reasoning is called bottom-up label propagation [12], whilst the opposite,

28 Y. Yu et al.

reasoning from the known high-level goals in order to find the minimal plan or
conjunction of sub-goals, is called top-down satisfiability (SAT) solution [13]. In
either case, only goals are participating in the computation. Recently, Ali et al. [14]
expand the semantics of goal reasoning to those of the context (set of topics) , such
that it is also possible to reason about the contextual relationships in logic rules. The
formula we presented, although looks simple, reflects more expressive reasoning
rules because both the context and the goals can participate in the computation. By
turning the missing goals or the missing context into wildcards, the same rule can be
used to model all the rules [12–14]. More complete rules for requirements problems
can be found in the canonical form [15] that also includes the justification.

E.t/ ; S.t/
ˇ
ˇ
ˇ D RF .t/ ^ ˆ

�

RQ.t/
�

E.t/; S.t/
ˇ
ˇ
ˇ D R.t/

hhjustificationii (2.3)

However, to reason about the justifications, a high-order logic or reification is
required. For simplicity, in this chapter we only consider reasoning in the first-order
predicate logic where the time t is treated as a special term in the predicates.

2.2.3 Reasoning with Aspectual Requirements

According to the systematic process in Yu et al. [3] using the conceptual construct
of the V-graph model (see Fig. 2.2), the (hard) goals and soft goals are respectively
operationalised into tasks. After the process, the tasks that operationalise the soft
goals are separated from those tasks that operationalise the hard goals, as the advice
tasks for the aspectual requirements. Moreover, the high-level contributions from
the hard goals to the soft goals must be maintained by the low-level tasks when they
are weaved together. Once they are separated, it is possible to specify the functional
tasks SF as functions and the advice tasks SQ as aspects.

For example, the three soft goals are operationalised to three aspectual require-
ments. They weave their advising tasks (operationalisations) as modifications to the
basic functions to guarantee the expected contribution relationship at a higher level.
To illustrate that, we expand the high-level goal model Fig. 2.1 with one more level
as a more concrete goal model in Fig. 2.3.

The “Listing [Product]” goal can be refined by either of the two alter-
natives: “Listing [Product, PersistenceDDatabases]” or “Listing [Product,
PersistenceDLDAP]”, depending on the different mechanisms for persistence.
Specifically, these two tasks can be separated into three tasks: one common func-
tional task which does not specify the exact persistence mechanism “Listing [Prod-
uct, PersistenceD?]” and two alternative advice tasks “Database” and “LDAP”.
According to the documentation of the case study (i.e. http://oscommerce.com),
the designer prefers to implement the product lists using LDAP service because

http://oscommerce.com

2 Reasoning About Dynamic Aspectual Requirements 29

Fig. 2.2 The V-shaped graphs show conceptually how a tasks [1, Fig. 15]

it is more efficient in online shopping scenarios as customers frequently browse
and select the products. Although a database solution is more scalable, it is not as
responsive as the LDAP-based solutions. Therefore if the goal reasoning (top-down)
is applied and FS(RQ

Responsiveness) is required (on the right-hand side), one would
find “SListing [Product, Persistence D LDAP] D SF

Listing[Product, Persistence D ?], SQ
Persistence [LDAP]”

in the plan because the contribution link from “Listing[PersistenceDLDAP]” to
“Responsiveness” is MAKE, whilst the contribution link from
“Listing[PersistenceDDatabase]” to “Responsiveness” is only HELP.

Similarly, the same trade-off needs to be made for the other hard goal
“SF

Shopping [Produce, ShoppingCart, Persistence D ?]”. Although the connections from both the
“Database” and “LDAP” tasks to the parent goals are “OR decomposition”, once
the trade-off decision is made in the reasoning, they can be simplified into “AND
decomposition” because no matter which OR sub-goal of “Listing” or “Shopping”
is chosen, they all need the “LDAP”-based implementations for the full satisficing
of the Responsiveness soft goal.

In addition, “SF
Listing [Product, Persistence D ?]” is refined into a task making use of the

“SF
Listing [Product, Persistence D ?, Display D ?]” and “SQ

Display [StyleBox]”, which presents user
with the consistent look and feel in the whole website. In fact, this Style Box design
should be applied to every page to be displayed, including both the listing and
shopping pages. Therefore it is one of the candidate aspects.

Likewise, for the “Security” soft goal and all the sub-goals that require
to make it satisfied (i.e. “Payment” and “Admin”), a common advice task
“SQ

Autentication [Login, User, Credentials]” is to be composed with the functional
tasks “SF

Checkout Payment [Shopping Cart, Account, Balance, Authentication D ?]” and
“SF

Admin[Account, Balance, Authentication D ?]”. This makes the “Authentication [Login,
User, Credentials]” another requirement aspect.

The third requirement aspect “Display [StyleBox]” has to do with “Usability”.
Although it is required to be partially satisfied by the “Listing” and “Shopping” sub-
goals, having the Style Box is common to both and therefore crosscut every place in
the program wherever the information is to be displayed as a web page.

30 Y. Yu et al.

F
ig

.2
.3

T
he

re
fin

ed
ta

sk
s

of
an

on
li

ne
sh

op
(c

f.
Fi

g.
2.

1)
.C

an
di

da
te

as
pe

ct
ua

l
re

qu
ir

em
en

ts
an

d
th

ei
r

co
nt

ri
bu

ti
on

to
th

e
ha

rd
an

d
so

ft
go

al
s

ar
e

hi
gh

li
gh

te
d

2 Reasoning About Dynamic Aspectual Requirements 31

F
ig

.2
.4

So
m

e
re

as
on

in
g

re
su

lt
s

(c
f.

Fi
g.

2.
3)

.I
n

th
e

N
FR

fr
am

ew
or

k
[2

],
th

e
FS

(s
at

is
fie

d/
fu

ll
y

sa
ti

sfi
ce

d)
,P

S
(p

ar
ti

al
ly

sa
ti

sfi
ce

d)
,C

F(
co

nfl
ic

t)
,P

D
(p

ar
ti

al
ly

de
ni

ed
),

FD
(d

en
ie

d/
fu

ll
y

de
ni

ed
),

an
d

U
N

(u
nk

no
w

n)
la

be
ls

ar
e

co
nv

en
ti

on
al

ly
sh

ow
n

us
in

g
th

e
fo

ll
ow

in
g

ch
ec

k
m

ar
ks

,r
es

pe
ct

iv
el

y:

32 Y. Yu et al.

In Yu et al. [3] there are three other aspectual requirements; however, for the sake
of discussions and illustration, these three aspectual requirements in the chapter are
adequate.

Given the aspectual requirements diagram in Fig. 2.3, how do we perform the
reasoning on then? In fact, it is to be done by encoding the rules (2.1) and (2.2) in the
same way as any existing goal reasoning algorithm. The only difference is that, when
presented to the requirements engineer, much fewer number of contribution links
will be needed [3]. Figure 2.4 shows the results of how the labels are propagated
once the aspectual requirements model is given, either top-down or bottom-up.

2.3 Dynamic Goals Aspects

In this section we define the notion of dynamic aspectual requirements and present
a list of rules that can govern the changes with respect to them. As shown in the
introduction section, our aim is to be able to find crosscutting concerns in dynamic
requirement problems (2.1t) and (2.2t) such that it is still feasible to reason about
the equivalence of (2.1t) and (2.2t). To recall these rules, we copy them here so that
it is possible to revisit them in this section:

E .t/ ; S .t/
ˇ
ˇ
ˇ D R .t/ (2.1t)

E .t/ ; SF .t/ ; SQ .t/
ˇ
ˇ
ˇ D RF .t/ ^ ˆ.t/

�

RQ .t/
�

R .t/ D RF .t/ ^ ˆ.t/
�

RQ .t/
�

S .t/ D SF .t/ ; SQ .t/ (2.2t)

E .t/ ; SF .t/
ˇ
ˇ
ˇ D RF .t/

After the discussion in Sect. 2.2, it should be clear now that the aspectual
requirements indeed contain both SQ and RQ in the representation after the
composition of SF, SQ. However, at runtime t, all of them can be dynamic (i.e.
changeable). Even for the satisficing interpretation ˚ (t) is not always constant,
for example, when the survivability of the system is concerned [16]. To assist the
maintenance of the reasoning relationships between the aspectual requirements, we
need to establish a list of basic rules.

Since the weaving of a requirement aspect can be defined by a tuple <soft
goal ˚ (RQ), advice function SQ, point-cuts SF, join-operation “,” >, the basic
reasoning rules concerning the changes to any one of them are as below:

2 Reasoning About Dynamic Aspectual Requirements 33

• SG1—soft goal change ˚ (t) (RQ (t)): If a quality requirement RQ changes its
expected satisficing level ˚ (t) due to the change of the satisficing criteria, then
there is no need to change the tuple except that one must re-evaluate every rule
involving RQ(t) either bottom-up, by label propagation or top-down, using a SAT
solver reasoning. An example of such changes can be illustrated, for example,
by modifying the “Usability” expectation from PS to FS. In that case, unless
an operationalisation through the MAKE contribution link is found, it is not
possible to satisfy the requirements model. In this case, one needs to consider
the existing advising function inadequate or there could be an obstacle to fulfil
the new soft goal. Introducing new advising function, such as “Common Look
and Feel”, “Multi Touch interface” may solve or at least alleviate this problem.

• SG2—soft goal change SQ(t) ! RQ (t): If the label of a contribution link from SQ

to RQ changes, e.g. from HELP to MAKE or vice versa, then there is no need to
change all tuples except that one must re-evaluate every rule involving SQ ! RQ

(t). For example, if one modifies the label of the “Authentication” ! “Security”
contribution link from MAKE to HELP, to reflect the new situation that Denial
of Service attack may hinder the system to serve all customers at all times. In this
case, additional security measure needs to be introduced to mitigate the risk [17].
To do this at runtime means that the requirement aspect or its implementation
needs to be extensible at runtime.

• AF1 (advice function SQ(t) changes): This type of changes could happen when
E(t), SF(t), SQ(t)j D R(t) no longer holds even when RQ is the same. For example,
whether or not the contribution link between “Authentication” and “Security”
is a MAKE or HELP relation depends on how strong the Login function is
implemented. If it was encrypted using an algorithm that is no longer safe, for
example, then the relationship SQ ! RQ needs to be revisited.

• PC1 (point-cuts SF(t), SQ (t) changes): It is perhaps the most frequent changes
with respect to the aspectual requirements because the interface between SF

and SQ affects the scope of the requirement aspect as well. Just as in AOP
[18] whereby the signature of a method call used in the point-cut expression
is changed would significantly change the scope of the aspect, it is also the case
in the aspectual requirements. According to the definition of the point-cut of
aspectual requirements, any changes to the contribution links between SQ and RQ,
or S and RQ, would lead to redefinition of the point-cuts. For example, modifying
the topics of “Shopping” goal to include “Account” or “Balance”, it would
require the “Authentication” aspect to be weaved because they are sensitive
to the mechanisms of protections. However, if there was no contribution link
between “Shopping” and “Security”, the high-level requirements model will be
inconsistent with the lower one. A resolution is either recommending the removal
of the “Account/Balance” access in the “Shopping” goal, or making it explicit
that the same level of “Security” for “Admin” is required for the “Shopping” as
well.

• JO1 (join-operation “,” semantics change): Although AND decomposition is
often the case for weaving aspectual requirements (as shown in all the three
examples), sometimes other form of operation is allowed too. For example,

34 Y. Yu et al.

especially when even the PS(RQ
usability) is not required, then one could even

remove the application of the “StyleBox” aspect at the runtime. Therefore
it is more appropriate to model the weaving operation as optional or OR
decompositions in such cases. Otherwise, contextual conditions need to be
added to the interface to enrich its semantics, e.g. by insisting on monitoring
the context variable for the need of usability. In certain cases, even existing
AND decomposition weaving operations can be sacrificed to guarantee the
survivability of the system [16]. Therefore it is important to manage the join-
operation dynamically.

2.4 Common Case Study Discussion

A common case study in the crisis management domain [4] is used in the book.
Specifically, we use the car crash crisis management system (CCCMS) in our case
study based on given requirements. In this case study, we show how goal aspects
can be identified and represented and how the rules identified in Sect. 2.3 do apply
for the dynamic goal aspects.

2.4.1 Goal Model

Figure 2.5 shows the top-level goal model of CCCMS. The top-level hard goal
“Resolve Car Crash Crisis” is decomposed by function into four sub-goals, “Capture
Witness Report [Witness, Crisis]”, “Create Mission [Mission]”, “Allocate Resource
[resource]” and “Execute Mission [Mission]”. Besides these functional require-
ments, CCCMS is expected to meet quality requirements like “Facilitate Future
Analysis”, “Security”, “Reliability” and “Mobility”, which are represented by soft
goals. Specifically, all the sub-goals of “Resolve Car Crash Crisis” should help
“Facilitate Future Analysis”, since historical analysis involves records about the
whole crisis resolution process; the “Capture Witness Report”, “Allocate Resource”
and “Execute Mission” must ensure “security”, because they are relevant to interac-
tions with external uses and systems; “Allocate Resource” and “Execute Mission”
must achieve “Reliability” and “Mobility” to ensure reliable communication with
mobile rescue resources (e.g. firemen, doctors, policemen); all the sub-goals of
“Resolve Car Crash Crisis” must ensure “Real Time”.

2.4.2 Goal Aspect Analysis

After goal refinement and operationalisation, we can get the refined goal model
in Fig. 2.6. In the model, soft goals are separately operationalised into tasks,

2 Reasoning About Dynamic Aspectual Requirements 35

Fig. 2.5 The top-level hard and soft goals of CCCMS

which are weaved into relevant hard goals as advices. For example, as the
operationlisations of “Facilitate Future Analysis”, both the “Logging [Text]” and
“Logging [Multimedia]” are weaved into the four sub-goals of the root goal as
alternative implementation. They have different contributions to “Facilitate Future
Analysis” and other soft goals. The “Logging [Multimedia]” means to record the
crisis resolution process by audios and videos; thus it can achieve “Facilitate Future
Analysis” but hurts “Real Time” at the same time.

By contrast, “Logging [Text]” records relevant events in text and thus can help
“Facilitate Future Analysis” and has no obvious influence on “Real Time”.

Based on the refined CCCMS goal model, we can identify candidate goal aspects
as listed in Table 2.1. Besides “Facilitate Future Analysis”, “Security”, “Reliability”
and “Mobility” are also identified as candidate goal aspects. All of them are
operationalised into a set of tasks and linked with relevant hard goals by some point-
cuts. The soft goal “Real Time” is not identified as a goal aspect, and although
it actually constrains the implementation of basic functions, there are no obvious
operationalisations for it at this level of abstraction in our modelling exercise.

2.4.3 Dynamic Goal Aspects

Given the goal aspects, we can determine the satisfaction levels of high-level
goals in a bottom-up way or plan a minimum task set for specific top-level
requirements by goal reasoning. For example, given the top-level requirements
R D RF

Resolve Car Crash Crisis ^ FS
�

RQ
Facilitate Future Analysis

� ^ PS
�

RQ
Real Time

� ^
FS

�

RQ
Reliability

� ^ FS
�

RQ
Security

� ^ FS
�

RQ
Mobility

�

, one would find “Logging
[Multimedia]” in the plan (see Fig. 2.7), since it achieves “Facilitate Future
Analysis” and hurts “Real Time”.

36 Y. Yu et al.

F
ig

.2
.6

R
efi

ne
d

C
C

C
M

S
go

al
m

od
el

w
it

h
ca

nd
id

at
e

go
al

as
pe

ct
s

2 Reasoning About Dynamic Aspectual Requirements 37

Table 2.1 Part of the identified goal aspects from CCCMS

Aspect (RQ) Advice Function (SQ) Point-cuts (SF)
Facilitate Future
Analysis

Logging Capture Witness Report, Create Mission,
Allocate Resource, Execute Mission

Security Authenticate User Capture Witness Report, Allocate Resource,
Execute Mission

Reliability Notify The System Allocate Resource, Dispatch Emergency
Vehicles, Execute Transport Mission

Mobility Report Resource Usage Allocate Resource, Dispatch Emergency
Vehicles, Execute Transport Mission

Considering the changing environment and the runtime adaptation of CCCMS,
the reasoning about goal aspects may change at runtime. Figure 2.7 shows an
example of software goal change in CCCMS (Rule SG1), which involves a dynamic
tradeoff between “Facilitate Future Analysis” and “Real Time” at runtime. In this
scenario, the initial requirements include FS(RQ

Facilitate Future Analysis) ˆ PS(RQ
Real Time).

Corresponding plan for this requirement includes “Logging [Multimedia]” for
recording crisis processing logs. With the rapidly increasing user requests, real-
time processing of requests becomes a more urgent requirement. And due to
the conflict between “Facilitate Future Analysis” and “Real Time”, the expected
requirements change to PS(RQ

Facilitate Future Analysis) ˆ FS(RQ
Real Time). Accordingly,

“Logging [Multimedia]” is replaced by “Logging [Text]” to achieve better
satisfaction for “Real Time” with lowered satisfaction level of “Facilitate Future
Analysis”.

Another example of dynamic goal aspects in CCCMS is shown in Fig. 2.8, which
illustrates the case of point-cuts change (Rule PC1). Initially, the hard goal “Create
Mission” involves local expert in the creation of mission plans. At that time, it is
irrelevant to the goal aspect “Security” and its advising task “Authenticate User”,
since it only involves local interactions within the crisis management centre. In some
cases, remote experts are involved to evaluate the situation and define necessary
missions, for example, when local experts are not available. Thus, “Create Mission”
becomes a basic function that is relevant to security assurance, since it involves
interactions with remote users. As a result, the point-cuts (i.e. the scope) of the goal
aspect “Security” change to include “Create Mission” as shown in Fig. 2.8.

2.5 Limitations and Discussions

The proposed change propagation rules do cover the general types of changes
in our modelling framework; however, there are several limitations known. As
one can see from the CCCMS case study, all the change propagation rules are
applicable. As they stand currently, however, the coverage of all possible changes

38 Y. Yu et al.

a

b

Fig. 2.7 Example of software goal change in CCCMS (Rule SG1) (a) before change (b) after
change

to the crosscutting requirements is not complete. For instance, adding a quality
soft goal would require additional aspectual requirements to be inserted into the
model. However, without explicit analysis of such a new aspectual requirement,
the crosscuts to existing functional requirements are likely missing when the topic
names do not match. Therefore, a similarity-based computation is required to help
requirements analysts to find more recalls.

2 Reasoning About Dynamic Aspectual Requirements 39

a

b

Fig. 2.8 Example of point-cuts change in CCCMS (Rule PC1) (a) before change (b) after change

It is worth to note that, currently, there is no knowledge about how invariant is the
structure of the high-level goal structures. A possibility is that they tend to change
more often for the application software for customer market, such as mobile apps
than for those software systems of a mature domain, such as compilers and relational
database management systems.

As we stated earlier, the continuous satisfaction of the “invariant” core require-
ments can be regarded as a quality requirement for the software evolution process.
Our assumption is that such process-oriented quality requirements are to be

40 Y. Yu et al.

addressed by additional monitoring, diagnosis and feedback requirements. Even so,
the scope of product-oriented requirements invariants may still be rather relative.
If the software developers decided to substantially/radically change the functional
requirements from one domain to a completely different one, one would not be able
to maintain the traceability to these invariant requirements.

In model-driven software development, on the other hand, such invariant trace-
ability between software models and implementation code can be largely maintained
through bidirectional transformations [19]. It is a future direction to consider
whether aspectual requirements, given the sophisticated many-to-many change
propagations, can be maintained through bidirectional transformations.

Another limitation is that our rules are bound by our representation, and as
such they may be incomplete for complex evolution scenarios, for example, when
multiple types of changes happen at the same time. In the worst case, such
incremental adjustment of the reasoning process will have to degenerate into
complete recalculations. Ernst et al. [20] point out that when the logic is as simple
as propositional and the soft goals are excluded in the modelling, there is an efficient
incremental reasoning algorithm to preserve the existing solutions. It remains a
future work to include the soft goals when such automation is needed.

2.6 Conclusion and Future Work

In this chapter, we present a list of adaptation rules for the aspectual requirements
to be managed at the runtime. Using Zave et al.’s formula for basic requirements
problems, we explained how different concepts in aspectual requirements are for-
mulated, and reasoned about. Furthermore, the basic adaptation rules are classified
according to their roles played in the runtime changes. It is our hope that these rules
can be at least useful in dynamic reasoning of the aspectual requirements, even if
they are incomplete for all dynamic requirements.

The formula we presented, although looks simple, reflects more expressive
reasoning rules because both the context and the goals can participate in the
computation. By turning the missing goals or the missing context into wildcards,
the same rule can be used to model all the rules [12–14].

The work has some limitations to be overcome in future. For example, we do not
handle early aspects of other forms, such as natural language documents [21], or
trust assumptions about the threat descriptions [22]. Also it is clear that having some
form of tool support would greatly enhance the applicability of the methodology
to larger and more interesting case studies. Currently we have implemented a
simple form of aspect-monitoring framework based on our existing tool support of
OpenOME [23] and OpenArgue [24]. Although they are able to perform the required
reasoning tasks, it is still worthy to explore how well the work of incremental
reasoning [20, 25] could be incorporated in the near future.

2 Reasoning About Dynamic Aspectual Requirements 41

References

1. L. Chung, J.C.S. do Prado Leite, On non-functional requirements in software engineering, in
Conceptual Modeling: Foundations and Applications, ed. by A.T. Borgida, V.K. Chaudhri,
P. Giorgini, E.S. Yu (Springer, Berlin, 2009), pp. 363–379

2. J. Mylopoulos, L. Chung, B. Nixon, Representing and using nonfunctional requirements: a
process-oriented approach. IEEE Trans. Softw. Eng. 18(6), 483–497 (1992)

3. Y. Yu, J.C.S. do Prado Leite, J. Mylopoulos, From goals to aspects: discovering aspects from
requirements goal models, in Presented at the RE, 2004, pp. 38–47

4. J. Kienzle, N. Guelfi, S. Mustafiz, Crisis management systems: a case study for aspect-
oriented modeling, in Transactions on Aspect-Oriented Software Development, ed. by S. Katz,
M. Mezini (Springer, Berlin, 2010), pp. 1–22

5. P. Zave, M. Jackson, Four dark corners of requirements engineering. ACM Trans. Softw. Eng.
Methodol. 6(1), 1–30 (1997)

6. I.J. Jureta, J. Mylopoulos, S. Faulkner, A core ontology for requirements. Appl. Ontol. 4(3),
169–244 (2009)

7. N. Niu, Y. Yu, B. González-Baixauli, N.A. Ernst, J.C.S. do Prado Leite, J. Mylopoulos, Aspects
across software life cycle: a goal-driven approach. Trans. Aspect Oriented Softw. Dev. 6,
83–110 (2009)

8. M. Salifu, Y. Yu, B. Nuseibeh, Specifying monitoring and switching problems in context, in
15th IEEE International Requirements Engineering Conference, 2007, pp. 211–220

9. Y. Wang, S.A. McIlraith, Y. Yu, J. Mylopoulos, Monitoring and diagnosing software require-
ments. Autom. Softw. Eng. 16(1), 3–35 (2009)

10. X. Peng, B. Chen, Y. Yu, W. Zhao, Self-tuning of software systems through dynamic quality
tradeoff and value-based feedback control loop. J. Syst. Softw. 85(12), 2707–2719 (2012)

11. M. Salifu, Y. Yu, A.K. Bandara, B. Nuseibeh, Analysing monitoring and switching problems
for adaptive systems. J. Syst. Softw. 85(12), 2829–2839 (2012)

12. P. Giorgini, J. Mylopoulos, E. Nicchiarelli, R. Sebastiani, Reasoning with goal models, in
Conceptual Modeling—ER 2002, ed. by S. Spaccapietra, S.T. March, Y. Kambayashi (Springer,
Berlin, 2003), pp. 167–181

13. R. Sebastiani, P. Giorgini, J. Mylopoulos, Simple and minimum-cost satisfiability for goal
models, in Advanced Information Systems Engineering, ed. by A. Persson, J. Stirna (Springer,
Berlin, 2004), pp. 20–35

14. R. Ali, F. Dalpiaz, P. Giorgini, Reasoning with contextual requirements: detecting inconsis-
tency and conflicts. Inf. Softw. Technol. 55(1), 35–57 (2013)

15. X. Peng, Y. Yu, W. Zhao, Analyzing evolution of variability in a software product line: from
contexts and requirements to features. Inf. Softw. Technol. 53(7), 707–721 (2011)

16. B. Chen, X. Peng, Y. Yu, W. Zhao, Are your sites down? Requirements-driven self-tuning for
the survivability of Web systems, in Requirements Engineering Conference (RE), 2011 19th
IEEE International, 2011, pp. 219–228

17. V.N.L. Franqueira, T.T. Tun, Y.Yu, R.Wieringa, B. Nuseibeh, Risk and argument: a risk-based
argumentation method for practical security, in RE, 2011, pp. 239–248

18. G. Kiczales, Aspect-oriented programming. ACM Comput. Surv. 28(4es), 154 (1996)
19. Y. Yu, Y. Lin, Z. Hu, S. Hidaka, H. Kato, L. Montrieux, Maintaining invariant traceability

through bidirectional transformations, in ICSE, 2012, pp. 540–550
20. N.A. Ernst, A. Borgida, I. Jureta, Finding incremental solutions for evolving requirements,

in Proceedings of the 2011 IEEE 19th International Requirements Engineering Conference,
Washington, DC, 2011, pp. 15–24

21. A. Rashid, A. Moreira, J. Araújo, Modularisation and composition of aspectual requirements,
in Proceedings of the 2nd International Conference on Aspect-Oriented Software Development,
New York, NY, 2003, pp. 11–20

42 Y. Yu et al.

22. C.B. Haley, R.C. Laney, B. Nuseibeh, Deriving security requirements from crosscutting threat
descriptions, in Proceedings of the 3rd International Conference on Aspect-Oriented Software
Development, New York, NY, 2004, pp. 112–121

23. J. Horkoff, Y. Yu, E.S.K. Yu, OpenOME: an open-source goal and agent-oriented model
drawing and analysis tool, in Presented at the iStar, 2011, pp. 154–156

24. Y. Yu, T.T. Tun, A. Tedeschi, V.N.L. Franqueira, B. Nuseibeh, OpenArgue: supporting
argumentation to evolve secure software systems, in 19th IEEE International Requirements
Engineering Conference, 2011

25. N.A. Ernst, J. Mylopoulos, Y. Yu, T. Nguyen, Supporting requirements model evolution
throughout the system life-cycle, in 16th IEEE International Requirements Engineering, 2008.
RE ’08, 2008, pp. 321–322

Part II
Concern Modelling and Composition

Chapter 3
Aspect-Oriented Compositions for Dynamic
Behavior Models

João Araújo and Jon Whittle

Abstract The crosscutting problem can be observed at scenario modeling level
where one model may present several tangled concerns, compromising requirements
and system evolution. To avoid this problem, we can deal with aspectual scenarios
by modularizing and thus separating them from other scenarios. Also, it is desirable
to analyze how the crosscutting scenarios interact with other scenarios at early
stages of software development; otherwise these interactions will only become clear
during later stages when problems are much more expensive to solve. But to achieve
that scenario modularization is not enough, we need efficient model composition
mechanisms to allow the system to be analyzed and validated in its entirety.
We introduce the Modeling Aspects Using a Transformation Approach (MATA),
an expressive technique based on graph transformations, where aspectual scenarios,
here represented as sequence diagram and state machines, will be modeled and
composed efficiently. An example, based on a common case study, illustrates the
usage of MATA’s modularization and composition mechanisms.

3.1 Introduction

In general, crosscutting concerns, or aspects, make system evolution and main-
tenance costly because there is no clear separation of software artifacts. In this
chapter, we consider aspects at the requirements analysis level. In particular, we
concentrate on behavior modeling, e.g., scenario-based requirements modeling and
state machine modeling.

J. Araújo (�)
Departamento de Informática, Universidade Nova de Lisboa, Caparica, Portugal
e-mail: joao.araujo@fct.unl.pt

J. Whittle
Computing Department, Lancaster University, Lancashire, UK

A. Moreira et al. (eds.), Aspect-Oriented Requirements Engineering,
DOI 10.1007/978-3-642-38640-4 3, © Springer-Verlag Berlin Heidelberg 2013

45

mailto:joao.araujo@fct.unl.pt

46 J. Araújo and J. Whittle

A scenario is an example trace of desired or existing system behavior. Scenarios
are a natural and intuitive way of specifying system and user interactions and are
frequently used in requirements engineering [1] because they are easily understood
by all stakeholders. A comprehensive set of scenarios can be difficult to specify,
though, as there are several scenarios of different types to consider, such as
exception and failure cases or scenarios that are called by several other ones. Many
of these are aspectual in the sense that they crosscut other scenarios.

A crosscutting scenario is a scenario that crosscuts other scenarios [2], i.e.,
a scenario whose behavior constrains or modifies the behavior of non-aspectual
scenarios it affects. But even they do not crosscut it is important to treat them as
aspects in order to keep them separate for evolution purposes. A large system may be
described by hundreds of scenarios that capture nominal or “happy day” scenarios,
exceptional, alternative scenarios, etc. As with any large software artifact, there are
many natural crosscutting scenarios.

The best way to deal with crosscutting scenarios is to separate them from
other scenarios and model them independently. This modularization avoids tangled
representations in the scenario models and facilitates scenario and consequently
requirements evolution. On the other hand, if we neglect to model and analyze
how the crosscutting scenarios interact with other scenarios earlier, there is a
risk that these interactions will only become clear during later stages of software
development when problems are much more costly to remedy. Thus, it is necessary
at the requirements analysis stage to both model and compose scenarios in a way
that will allow the entire set of scenarios to be validated. Aspects composition with
core scenarios target an overall understanding of the system, offering, at the same
time, the possibility to clearly understand the impact of an aspect scenario on a set
of other base scenarios. Composition is a key technique because it allows the system
to be inspected, analyzed, or tested in its entirety.

In behavior modeling, it is common among use case-based methods to first
develop scenarios, given, for example, as UML sequence diagrams, as a way to
describe use cases, and then later to use these scenarios as a guide in developing
individual object behavioral descriptions, given as UML state machines. Aspects
can be described at either the sequence diagram level or the state machine level.

In our approach, behavior will be modeled using UML diagrams, in particular,
sequence diagrams and state machines. Sequence diagrams are a good way of
modeling early requirements because they show interactions between system
components and are very natural and intuitive to model. Although interactions give
a global view of the requirements, to simulate the requirements, a local view of
each system component is necessary. Therefore, a global scenario-based view can
be converted into a local state machine-based view. This is a step necessary to
move towards implementation. Aspects can also be separately represented at this
stage. State machines can be used to model the local, internal behavior of system
components and can be modeled taking into account the separation of aspectual and
non-aspectual behavior and its composition also for validation purposes.

Since aspects can be identified at any stage of the software life cycle, composition
can also take place at any of those stages. The effort involved in composition,

3 Aspect-Oriented Compositions for Dynamic Behavior Models 47

however, may be different depending on when it takes place. This will be also
discussed in this chapter.

We introduce an approach where aspectual scenarios, both at sequence diagram
and state machine levels, will be modeled using MATA (Modeling Aspects Using
a Transformation Approach) [3], a technique for modeling and composition of
patterns based on graph transformations. In general, aspect orientation is a software
reuse paradigm and perfectly suits the specification of patterns’ models, as it
provides efficient mechanisms to reuse and compose pattern’s models to a specific
application.

This chapter is organized as follows. Section 3.2 presents background on MATA.
Section 3.3 introduces the approach. Section 3.4 discusses and illustrates the
composition at scenario level (sequence diagrams). Section 3.5 does the same at
state machine level. Section 3.6 discusses the trade-offs between the two model
compositions. Section 3.7 compares with other related approaches. Section 3.8
draws some conclusions.

3.2 Background

Modeling Aspects Using a Transformation Approach (MATA) [3] is an aspect-
oriented modeling language and tool that considers aspect composition as a
special case of model transformation. MATA allows modelers to maintain aspect
models separately, detect structural interactions between aspects automatically, and
compose a chosen set of aspects automatically with a set of base models.

MATA provides a unified approach to aspect model composition. Any modeling
language with a well-defined metamodel can be handled in the same way. Currently,
UML class, sequence and state diagrams are supported, but extensions to other mod-
eling languages would be straightforward and would provide the same capabilities
in detecting interactions and automating composition.

In MATA, the joinpoint model is defined by a diagram pattern which allows for
very expressive joinpoints and any base model element (or combination of elements)
can be a pointcut. For example, a joinpoint may define a sequence of messages,
i.e., MATA provides full support for sequence pointcuts at the aspect modeling
level. This is in contrast to most previous approaches to aspect-oriented modeling
that only allow joinpoints to be single model elements, such as a single message.
Also, MATA supports more expressive composition types. For example, an aspect
sequence diagram can be composed with a base sequence diagram, using parallel,
alternative, or loop fragments as part of the composition rule. Most other approaches
have often been limited to the before, after, around advice of AspectJ.

MATA is supported by a tool built on top of IBM’s Rational Software Modeler.
It has been applied in a range of application areas, including security modeling and
software product lines.

48 J. Araújo and J. Whittle

3.2.1 MATA Description

Here we focus on MATA to model aspectual behavior by using and adapting
sequence and state machine diagrams. To specify aspectual behavior, three stereo-
types were created to define composition rules:

• <<create>>, applied to any model element, which states that the element will
be created in the base scenario

• <<delete>>, applied to any model element, which states that the element will
be deleted of the base scenario

• <<context>>, used with container elements that are created; which states that
the element will not be affected by the other two stereotypes, rather it must
exist in base scenario to be combined with it through pattern matching. It avoids
creating an element inside a created element, forcing it to match an element in
the base

The composition mechanism of MATA is based on graph transformations. MATA
represents graph rules in UML’s concrete syntax, with some extensions to allow
more expressive pointcut and variable expressions. A graph transformation is a
graph rule r: L ! R from a left-hand side (LHS) graph L to a right-hand side (RHS)
graph R. In MATA the composition of a base model, Mb, with an aspect model, Ma,
which crosscuts the base, is specified by a graph rule, r: LHS !RHS:

• A pattern is defined on the left-hand side (LHS), capturing the set of points in
Mb where new model elements should be added.

• The right-hand side (RHS) defines those new elements and specifies how they
should be added to Mb.

Figure 3.1 shows two examples of MATA rules defined in the context of sequence
diagrams. R1 specifies that the aspectual behavior consists of an interaction between
two objects that must be instantiated to two objects in the base. The rule says that
the fragment par (that specifies parallelism) and messages r and s in one of the
sections of the fragment are created, i.e., they define the aspectual behavior that must
be inserted in the base. However, since p is defined as <<context >>, it must be
matched against a message with the same name in the base. The resulting composed
model when applying R1 is shown on the top right-hand corner of the figure. Note
that since q and b are not part of the rule they come after the par fragment. Rule R2
is similar; the main difference is the use of the “any” operator. This allows that, in
the example, any sequence of messages between p and b can happen in the base (in
this case, only the q message).

Variables in MATA are prefixed by a vertical bar “j”, meaning that “jX” will
match any model element (e.g., object names, object types, messages) with the same
type of X. After specifying both kinds of scenarios, base and aspectual, a pattern
matching is made between them. This means that the MATA tool tries to establish a
connection between elements of each scenario, always respecting the composition
rules defined in the aspectual scenario. The resulting composed scenario describes

3 Aspect-Oriented Compositions for Dynamic Behavior Models 49

Fig. 3.1 Examples of MATA rules

the behavior of both scenarios, according to the rules defined. MATA allows more
composition combinations than other existing aspect-oriented modeling tools and it
also enables the identification of some aspect interactions.

Users may select a subset of the aspects and the tool generates the composed
model for all of these aspects and the base. The user may also define an ordering of
aspect composition in case one aspect needs to be composed before another. If an
ordering is not specified, the tool selects an order non-deterministically.

Since MATA uses graph transformations as the underlying theory, it relies on an
existing graph rule execution tool to apply graph rules. The graph rule execution
tool used is AGG [4]. MATA converts a UML base model, captured as an instance
of the UML2 metamodel, into an instance of a type graph, where the type graph
represents a simplified form of the UML2 metamodel. MATA composition rules are
converted into AGG graph rules and are executed on the base graph automatically.
The results are converted back into a UML2 compliant model.

Critical pair analysis is always applied before composition and the results are
presented to the user. Critical pair analysis is done by AGG and the results are
converted into the IBM’s Rational Software Modeler (RSM) so that detected
dependencies and conflicts can be understood by the user. Critical pair analysis is
not discussed any further as this not the focus of this chapter.

50 J. Araújo and J. Whittle

Identify and
define

requirements

Identify
scenarios

Specify
aspectual and

scenarios

Identify
aspectual
scenarios

Compose
aspectual and

state
machines

Generate
aspectual and

state
machines

Simulate and
validate
system

requirements

Compose
aspectual and
non-aspectual

non-aspectual non-aspectual

non-aspectual

scenarios

Fig. 3.2 Process model

MATA currently generates AspectWerkz [5] code from UML class diagrams and
UML state diagrams. It takes a base model and a set of aspect models (selected by
the user) and generates Java code for the base model and an AspectWerkz aspect for
each of the aspect models. The details of the code generator are outside the scope of
this chapter.

3.3 Behavioral Modeling with MATA

Here we describe the general process for modeling and composing with MATA,
adapted from our previous works that used only pattern specifications [2,6].
We define a high-level process for developing and composing aspectual and
non-aspectual behavior—see Fig. 3.2. Functional requirements, represented here
as use cases, are refined to a set of scenarios. Aspectual scenarios, i.e., scenarios
that crosscut other scenarios, are represented as aspectual sequence diagrams and
non-aspectual ones as sequence diagrams. Aspectual and non-aspectual scenarios
are composed through MATA graph transformations mechanisms.

Each aspectual or non-aspectual scenario is translated into a set of aspectual or
non-aspectual state machines (one for each entity involved in the interaction). This
can be done using the Whittle and Schumann state machine synthesis algorithm [7].

The result of the synthesis algorithm is a set of state machines—each object will
have an aspectual and a non-aspectual state machine. The next stage of the process

3 Aspect-Oriented Compositions for Dynamic Behavior Models 51

Fig. 3.3 Use case diagram for the Crisis Management System

composes the aspectual and non-aspectual state machine for each object. The result
is an executable set of state machines that completely describe the requirements and
in which aspectual and non-aspectual behavior has been woven. Validation of these
state machines can now take place using a simulation harness. During simulation,
it is likely that new scenarios will be discovered or inconsistencies and ambiguities
will be found in the way that the aspects interact with the non-aspects.

In this chapter, the case study is also based on the Crisis Management System [8].
Here, we will assume that the system will give support to only car crash crisis and
flood crisis.

3.4 Composition at Scenario Modeling Level

3.4.1 Identify Use Cases, Aspectual and Non-aspectual
Scenarios

Figure 3.3 shows the use cases and actors that we will use to illustrate the approach.
Basically, the coordinator is responsible for receiving a witness report of a car or
flood crisis. Then s/he requests the necessary resources (either external or internal)
to allow executing the necessary missions (e.g., rescue, repair, and remove obstacle
missions).

52 J. Araújo and J. Whittle

Table 3.1 Partial set of CMS scenarios

S1 Capture Witness Report, Report is valid
S2 Capture Witness Report, Report is invalid
S3 Request Resource, Resource is available
S4 Request Resource, Resource is not available
S5 Execute Flood Rescue Mission, Set up general rescue procedures
S6 Execute Car Crash Rescue Mission, Set up general rescue procedures
S7 Execute Flood Rescue Mission, Connection failed
S8 Execute Car Crash Rescue Mission, Connection failed
S9 Execute Flood Repair Mission, Set up general repair procedures
S10 Execute Car Crash Repair Mission, Set up general repair procedures
S11 Execute Flood Repair Mission, Connection failed
S12 Execute Car Crash Repair Mission, Connection failed
S13 Execute Remove Obstacle Mission, Report status
S14 Execute Remove Obstacle Mission, Connection failed

Table 3.2 Aspectual Scenarios

A1 Set up general rescue procedures
A2 Set up general repair procedures
A3 Connection Failed

From the use case model we can identify in advance some crosscutting scenarios:
it is the case of a use case being included by several other use cases. For example,
setting up general procedures for a rescuing (or repairing) mission crosscuts specific
rescuing (or repairing) missions scenarios.

More crosscutting scenarios are found after identifying a set of scenarios for
each use case. Table 3.1 shows a non-exhaustive list of scenarios. Note that some
exceptions can be also crosscutting such as “Connection failed.”

This leads to the aspectual scenarios given in Table 3.2. For example, A1 is an
aspectual scenario as it is repeated in the scenarios S5 and S6.

3.4.2 Describe Aspectual and Non-aspectual Scenarios

Figure 3.4 shows the MATA sequence diagram for interaction aspect A1. Firstly
the victim’s data are recorded (if available) and the respective medical records are
requested. Also, depending on the status of the victim some action will be taken, but
that depends on the type of the crisis involved. Finally, after the victim’s status is
updated, ambulance service is requested if needed. Note that the diagram contains
one role name (jGeneralRescueProcedure) that must be instantiated to compose the
aspect with the non-aspectual scenarios.

3 Aspect-Oriented Compositions for Dynamic Behavior Models 53

Fig. 3.4 The aspectual scenario “Set up general rescue procedures”

The non-aspectual (or base) scenario “Execute Car Crash Rescue Mission” is
depicted in Fig. 3.5. Police service is requested at the same as the identification of
the victim is requested. After the status of the victim is informed, if s/he is locked
in the car the fire brigade team is requested.

3.4.3 Compose Aspectual and Non-aspectual Scenarios

The composed scenario is shown in Fig. 3.6. First we instantiate the roles:
jGeneralRescueProcedure to CarCrashRescueProcedure. Then we compose, based
on the graph transformations mechanisms of MATA.

3.5 Composition at State Machine Level

The separation of concerns should be maintained at the state machine level by
deriving separately state machines from the aspectual objects (that shows only
behavior relevant for the aspectual scenario it is involved in), i.e., aspectual state
machines, and non-aspectual state machines from the non-aspectual objects (that
shows the behavior relevant of the base scenario where it participates in).

54 J. Araújo and J. Whittle

Fig. 3.5 Scenario for the Execute car crash rescue mission

In the example, the aspectual state machine for the jGeneralRescueProcedure
object is shown in Fig. 3.7. It starts with the victim’s identification request and, if
available, victim’s record is created. Then his medical record is requested. When
the status of the victim is received, it is checked if s/he needs to go to the hospital.
In this case an ambulance is needed. Note that we have a “Victim identification
request,” “Victim’s status is received,” “and Fire brigade requested” states—they
serve as pointcuts, to allow composition with the base state machine.

In our example the non-aspectual state machine for the CarCrashRescueProce-
dure object is shown in Fig. 3.8. Police request occurs concurrently with victim’s
identification. After victim’s status is received, fire brigade is requested in case s/he
is locked in the car.

The composed scenario is shown in Fig. 3.9. Basically it complements the state
machine in Fig. 3.8 with states and transitions created by the aspectual state machine
in Fig. 3.7.

3.6 Discussion on the Two Composition Types

Developers wish to compose their aspect-oriented models with the core models
in order to gain an overall understanding of the system. However, composition
comes at a price; for budget and time constraint reasons it is not feasible to

3 Aspect-Oriented Compositions for Dynamic Behavior Models 55

Fig. 3.6 Composed scenario

Fig. 3.7 Aspectual state machine for the object jGeneralRescueProcedure

compose at both interaction and state machine levels, even if the compositions
are done automatically: there is also time and resources needed to analyze the
compositions. The following questions naturally arise: what is the best time to
perform composition? Is it more cost-effective to specify the composition as early
as possible or as late as possible?

When developing aspects during analysis and design, there are three possibilities:
compose aspects during scenario development and then convert to state machines;
convert aspectual and non-aspectual scenarios first to aspectual and non-aspectual

56 J. Araújo and J. Whittle

Fig. 3.8 State machine for the object CarCrashRescueProcedure

Fig. 3.9 Composed State machine for the object CarCrashRescueProcedure

state machines followed by composition; and compose scenarios and compose state
machines.

With composition at the scenario level, the state machines need never be
seen by the requirements engineer. Composition is specified purely in terms of
scenario relationships and the executable state machines that are generated can be
hidden. This has advantages for requirements engineers not trained in state-based
techniques.

On the other hand, composition at the scenario level tends to be rather coarse
grained. The user must provide composition operators that describe how to

3 Aspect-Oriented Compositions for Dynamic Behavior Models 57

interleave messages from different scenarios. By composing instead at the state
machine level, there is additional flexibility in describing the nature of the compo-
sition as composition can be defined in terms of states that are not specified in the
scenarios.

At first glance, the effort of analyzing composition of aspectual scenarios
is a function of the number of scenarios because each scenario is potentially
crosscut. At the state machine level, each object has a state machine; therefore, the
composition effort is a function of the number of objects. Typically, there are a large
number of scenarios that could be crosscut by aspect scenarios. In contrast, there
will typically be much fewer state machines because there are fewer participant
objects than there are scenarios. This initial observation is naı̈ve, as this may not be
always the case as you may have a limited number of scenarios but a considerable
number of objects—so it depends on the domain application. As a result, the
preferred composition method depends on the particular application—the number
of compositions might increase more in some cases than others.

There are, of course, other trade-offs between the two approaches. One important
point is that scenario composition can lead to earlier detection of errors/inconsis-
tencies/ambiguities. However, not all errors and conflicts can be identified at one
level of abstraction. While some of them may appear at the scenario level, others
may appear at the state machine level. Therefore, the synergy obtained from both
approaches is higher than if only one is used. Certainly, this depends on budget
constraints, the type of users, time constraints, and, last but not least, the available
tools.

In summary, we observe that both strategies are useful. Some stakeholders
may prefer to work with one diagram type as opposed to another. Composing
at the scenario level, for example, has advantages for requirements engineers
since sequence diagrams are generally easier to understand than state machines.
Conversely, software designers might prefer a state machine-oriented view and
would therefore prefer composition at the state machine level. In many cases,
however, there is a real choice to be made between the approaches. A software
engineer might develop some behavior models and aspectual behavior models and
then ask him/herself whether s/he should compose earlier (i.e., during scenario
modeling) or compose later (i.e., during state machine modeling). Note that we do
not advocate either of these solutions, but expect that each one will be appropriate
in different contexts.

3.7 Related Approaches

Generic aspects can be seen as a kind of design pattern. Hence, work on instantiating
design patterns and applying aspect models is closely related. Indeed, there has been
some work on automatically instantiating generic descriptions of design patterns [9]
and using such techniques in aspect-oriented modeling [6].

58 J. Araújo and J. Whittle

Georg et al. [10] propose an aspect-oriented design approach that defines an
aspect through role models to be woven into UML diagrams. The approach is similar
to ours in that aspects are treated as patterns. In particular, interaction aspects may
be modeled as interaction role models. However, the approach does neither allow
concrete modeling elements in the role models, a flexibility provided by MATA,
nor compose via graph transformations. Also, the approach relies on nonautomatic
instantiations, a limitation subsumed by MATA.

Clarke and Walker [11] use UML templates to define aspects. The approach also
is concerned more with how to specify the aspects rather than weaving aspects into
non-aspectual models. It composes static structural properties of aspects with non-
aspectual class models, but do not compose interaction properties of aspects with
interaction models.

Song et al.’s work [12] also composes aspect sequence diagrams, but it has a very
limited set of composition operators and does not provide tool support. However, it
does address how to verify the result of the composition by annotating models with
OCL expressions which could then be checked against the composed models. The
work appears to be in its early stages, however.

Reddy et al. [13] compose aspect sequence diagrams by using special tags that
allow an aspect to be broken into pieces and then inserted at different points in
the base, e.g., at the beginning, in the middle, or at the end of the base messages.
Nevertheless, the MATA approach is more general and subsumes these operators.
Earlier work by the authors of this chapter also considered composition of sequence
diagrams using a limited set of composition operators [2]. This work has also been
subsumed by MATA.

Klein and Kienzle [14] describe a case study of composing aspect sequence
diagrams. In this approach, one sequence diagram describes the pointcut and
one sequence diagram describes the advice. The paper presents a case study using
the semantic composition of scenarios described in [15]. The latter is important
work that goes beyond syntactic mechanisms for defining pointcuts but instead relies
on the semantics of the modeling language for matching an aspect. This reduces, to
some extent, the fragile pointcut problem for aspect sequence diagrams but does
incur a performance overhead. Such techniques could potentially be incorporated
into MATA.

Katara and Katz [16] provide an approach for aspect-oriented modeling of
sequence and state diagrams based on superimposition. This is quite similar to
MATA in that aspects are defined as increments over other models (either the base
or other aspects). However, the approach does not support a fully fledged pattern
language for defining pointcuts, which limits the quantification possible. Although
Katara and Katz do give consideration to identifying dependencies between aspects,
these dependencies must be found manually and documented on a so-called concern
diagram. MATA can be thought of as providing automated support for developing
and/or validating such a concern diagram.

The WEAVR tool [17] considers actions in state machines as joinpoints and
uses “around” advices to weave in aspect state machines. WEAVR is the first
commercially available aspect modeling tool but focuses only on state machines.

3 Aspect-Oriented Compositions for Dynamic Behavior Models 59

In addition, it is tailored towards SDL state machines and concentrates on executable
modeling so is more suited to detailed design rather than earlier analysis and design
phases.

Related work that is closest to ours is joinpoint designation diagrams
(JPDDs) [18]. JPDDs are similar to defining patterns using graph rules. Something
similar to sequence pointcuts can be defined but the advices are limited to
before/after/around. Furthermore, the advantage of using graph rules is the existence
of formal analysis techniques. In addition, JPDDs focus on defining joinpoints and
are not so much concerned with composition. MATA provides a full composition
tool in which very expressive composition relationships can be specified. This is
not possible with JPDDs.

More generally, model composition has been addressed outside of the AOSD
community. In particular, Nejati et al. [19] investigates how to merge state machines
using composition relationships and category theory. This is in many respects
similar to our work but has a different goal in that it addresses how to reconcile
models produced by different development teams.

3.8 Conclusions

This chapter discussed an approach for modeling and composing aspectual behavior,
first at the scenario level and later at the state machine level using the MATA
notation. MATA addresses aspect composition simply as model transformation.
MATA tends towards the use of a generic model transformation language but tailors
this to ensure familiarity of the language to modelers. In this sense, it is different
than using a completely general transformation language, such as one based on
QVT, but retains the power and flexibility of a generic transformation language.
Dedicated aspect composition languages risk sacrificing expressiveness because a
limited number of composition operators would be provided. MATA brings flexible
composition without requiring any knowledge of programming or the need to
understand the code in an existing composition framework.

The compositions at scenario and state machine levels were compared to evaluate
the effort of aspect composition at different stages of an object-oriented analysis and
design process. At scenario level, composition is specified purely in scenario terms.
Once composition is done, the scenarios are converted to state machines. At design
level, composition is done purely in terms of state machines. There are advantages
and disadvantages to both composition moments. With composition at the scenario
level, the benefits of composition can be seen by requirements engineers not familiar
with state-based notations. On the other hand, composition at the interaction level
tends to be rather coarse grained. The user must provide composition operators that
describe how to interleave messages from different interactions. By composing at
the state machine level, there is additional flexibility in describing the nature of
the composition because composition can be defined in terms of states that are not
specified in the interactions.

60 J. Araújo and J. Whittle

References

1. I. Alexander, N. Maiden (eds.), Scenarios, Stories, Use Cases (Wiley, New York, NY, 2004)
2. J. Whittle, J. Araújo, Scenario modeling with aspects, in IEE Proceedings Software, 2004
3. J. Whittle, P.K. Jayaraman, A.M. Elkhodary, A. Moreira, J. Araújo, MATA: a unified approach

for composing UML aspect models based on graph transformation. Trans. Aspect Oriented
Softw. Dev. VI, 191–237 (2009)

4. G. Taentzer, AGG: a graph transformation environment for modeling and validation of
software, in Conference on Applications of Graph Transformations with Industrial Relevance
(AGTIVE), Charlottesville, VA, 2003, pp. 446–453

5. J. Boner, A. Vasseur, Tutorial on AspectWerkz for Dynamic Aspect-Oriented Programming
(Aspect Oriented Software Development (AOSD), Lancaster, 2004)

6. J. Araújo, J. Whittle, D.-K. Kim, D.-K. Modeling and composing scenario-based requirements
with aspects, in International Conference on Requirements Engineering (RE), Kyoto, Japan,
2004, pp. 58–67

7. J. Whittle, J. Schumann, Generating statechart designs from scenarios, in International
Conference on Software Engineering (ICSE), Limerick, Ireland, 2000, pp. 314–323

8. J. Kienzle, N. Guelfi, S. Mustafiz, Crisis management systems: a case study for aspect-oriented
modeling. Trans. Aspect Oriented Softw. Dev. VII, 1–22 (2010)

9. K. Kim, J. Whittle, Generating UML models from domain patterns, in Software Engineering
Research, Management and Applications, 2005, pp. 166–173

10. G. Georg, I. Ray, R. France, Using aspects to design a secure system, in 8th IEEE International
Conference on Engineering of Complex Computer Systems, Greenbelt, MD, 2002

11. S. Clarke, R.J. Walker, Composition patterns: an approach to designing reusable aspects, in
International Conference on Software Engineering (ICSE), 2001

12. E. Song, R. Reddy, R. France, I. Ray, G. Georg, R. Alexander, Verifiable composition of
access control and application features, in ACM Symposium on Access Control Models and
Technologies (SACMAT), Stockholm, Sweden, 2005, pp. 120–129

13. R. Reddy, A. Solberg, R. France, S. Ghosh, Composing sequence models using tags, in Aspect
Oriented Modeling Workshop at MODELS 2006, 2006

14. J. Klein, J. Kienzle, Reusable aspect models, in Aspect Oriented Modeling Workshop at
MODELS, 2007

15. J. Klein, L. Helouet, J. Jézéquel, Semantic-Based Weaving of Scenarios (Aspect-Oriented
Software Development (AOSD), Vancouver, BC, 2006), pp. 27–38

16. M. Katara, S. Katz, Architectural Views of Aspects (Aspect-Oriented Software Development
(AOSD), Boston, MA, 2003), pp. 1–10

17. T. Cottenier, A. van den Berg, T. Elrad, Motorola WEAVR: Model Weaving in a Large Industrial
Context (Aspect-Oriented Software Development (AOSD), Vancouver, BC, 2007)

18. D. Stein, S. Hanenberg, R. Unland, Expressing Different Conceptual Models of Join Point
Selections in Aspect-Oriented Design (Aspect-Oriented Software Development (AOSD),
Bonn, 2006), pp. 15–26

19. S. Nejati, M. Sabetzadeh, M. Chechik, S. Easterbrook, P. Zave, Matching and merging of
statecharts specifications, in International Conference on Software Engineering (ICSE), 2007,
pp. 54–64

Chapter 4
Semantics-Based Composition for Textual
Requirements*

Ruzanna Chitchyan

This chapter is extensively based on the work initially published in [1].
Abstract Most current aspect composition mechanisms rely on syntactic refer-
ences to the base modules or wildcard mechanisms quantifying over such syntactic
references in pointcut expressions. This leads to the well-known problem of pointcut
fragility. Semantics-based composition mechanisms aim to alleviate such fragility
by focusing on the meaning and intention of the composition, hence avoiding strong
syntactic dependencies to the base modules. In this chapter we present one such
mechanism—requirements description language (RDL)—for textual requirements.
The RDL enriches the natural language textual requirements with semantic infor-
mation. Composition specifications are written based on these semantics rather
than requirements syntax, hence providing improved means for expressing the
intentionality of the composition, in turn facilitating semantics-based reasoning
about aspect influences and trade-offs.

4.1 Introduction

The majority of current aspect-oriented (AO) composition mechanisms rely on
syntactic references to enable the aspectual and base artifacts to be composed
[1]. By syntactic references we mean use of specific naming conventions and
structural references (e.g., to requirements ids, use case step numbers, etc.) or
quantification over such elements using wildcards. When performing refactoring
or maintenance activities this often leads to the well-documented fragile pointcut

*This chapter is extensively based on the work initially published in [1].

R. Chitchyan (�)
Department of Computer Science, University of Leicester, Leicester LE1 7RH, UK
e-mail: rc256@le.ac.uk

A. Moreira et al. (eds.), Aspect-Oriented Requirements Engineering,
DOI 10.1007/978-3-642-38640-4 4, © Springer-Verlag Berlin Heidelberg 2013

61

mailto:rc256@le.ac.uk

62 R. Chitchyan

problem[2, 3], whereby a structural change in the base modules may invalidate
the aspect composition specifications. Further undesirable phenomena, such as
ripple effects [3], can often occur. Additionally, when using syntactic references the
compositions are always constrained by the syntax of the base artifacts [4], leading
to loss in composition expressiveness. Thus:

• The requirements compositions have to be expressed in terms of the struc-
ture of the requirements rather than their semantics. As a result, the require-
ments engineer’s (and stakeholder’s) intentionality is lost in the mapping to a
syntax-governed model. This complicates subsequent requirements analysis, for
instance, by forcing the analyst to conduct trade-off analysis in terms of syntactic
elements.

• The requirements engineer has to know ahead where the compositions will be
applied and has to prepare these points by assigning ids or names to them
or using specific naming conventions (in the rest of this paper such elements
are referred to as scaffolding). If these points are not readily available in
the requirements structure, the existing structure has to be changed before an
unexpected composition can be defined.

Semantics-based composition mechanisms, e.g., [1, 5–7], aim to address these
expressiveness and fragility problems of syntax-based mechanisms, and aim to
support specification of compositions that:

• Require less scaffolding by relying on the meaning of the relationships to be
captured by the composition rather than the structure of the base modules or
specific naming conventions.

• Are more stable in the face of change, i.e., less fragile, and hence unaffected due
to structural or syntactic changes in the base modules.

• Are able to directly capture the composition’s intention, i.e., are more expressive,
hence bridging the gap between the developer’s intentions and the composition
specification mechanism.

This chapter presents one such composition approach based on a Requirements
Description Language (RDL). This work demonstrates how the richness of the
natural language can be used in defining expressive semantics-based pointcuts in
AORE compositions. This work uses the fact that the natural language itself has
a clearly defined set of syntactic rules and semantic elements, precise enough to
support definition of a flexible composition mechanism for requirements analysis.
These compositions are not formalized. Though a more formal semantics would
undoubtedly be more precise, the natural language semantics capture the stakehold-
ers’ needs as expressed in the elicited requirements and hence are more suited to
aspect-oriented requirements analysis.

The following sections present the elements of the RDL (Sect. 4.2), show
examples of its use for a Crisis Management Case study (Sect. 4.3), and briefly
discuss the available results on the evaluation of this work and its automation
support (Sect. 4.4).

4 Semantics-Based Composition for Textual Requirements 63

4.2 Requirements Description Language

This work on RDL delivers a text-based requirements composition specification and
analysis approach. This approach annotates the syntactic elements of the natural
language and exploits the fact that each syntactic element has a designated semantic
role—these semantic roles form the basis of expressive pointcut expressions in the
RDL.

4.2.1 RDL Elements

The elements constituting the RDL are presented in the metamodel in Fig. 4.1.
The RDL is an XML-based language—the XML annotations help automate the

analysis (as discussed in Sect. 4.4). We discuss the various RDL elements and its
composition mechanism next.

The RDL is based on the symmetric view of AOSD [8–11]. It uses the concepts
of concern and requirement.

A Concern represents both crosscutting and non-crosscutting elements. A Con-
cern is a high-level unit for system partitioning, a container for localizing seman-
tically related requirements (e.g., Crisis, Accuracy, etc.). Thus, the Crisis concern
shown in Fig. 4.2 localizes the details related to crisis.

The initial set of concerns for each system can be selected from a concern
repository [9], or identified via mining tools, e.g., [12, 13], domain analysis,
stakeholder interviews, or ethnographic studies.

A concern can be simple (containing only requirements), or composite (contain-
ing other concerns as well as requirements), thus allowing hierarchical structuring
of related requirements. Each concern is identified by its name and encapsulated
within <Concern/> tags.

A Requirement is a description of a service the stakeholders expect of the system,
the system behavior, and constraints and standards that it should meet [14]. One or
more requirement elements are encapsulated within a concern; each requirement
is identified by a unique identifier1 (unique within its defining scope, which is the
concern). Similar to concerns, requirements too can have sub-requirements.

The meaningful concern names and requirement ids are neither necessary nor
utilized in the RDL compositions. They are used for ease of referencing in
discussion and are a part of RE tradition.

Both concern and requirement can be multi-sentence elements. However, the
smallest unit of meaningful interaction conveying a construct is a simple sentence,
and in order to be able to reason about this “smallest meaningful construct” we

1A requirement may contain one or more sentences. We do not need to number each sentence
separately. A sentence may have one or more clauses.

64 R. Chitchyan

Concern

Description
Subject Object

Requirement

Relationship

Degree
Constraint Base Outcome

Composition

Fig. 4.1 RDL metamodel

need to define elements for its description. The main such elements in our RDL are
subject, object, and relationship.

A subject is the entity that undertakes actions described within the sentence
clause2. Subject in the RDL corresponds to the grammatical subject in the clause.
Figure 4.2 demonstrates a subject—system—marked in a requirement or Accuracy
concern (e.g., data is considered synonymous with report).

An object is the entity that is affected by the actions undertaken by the subject of
the sentence, or in respect of which the actions are undertaken. Object in the RDL
corresponds to the grammatical object in the clause. A clause could have several
objects associated with (affected by) a single subject (e.g., Fig. 4.2 both crisis report
and witness are objects.).

Relationship depicts the action performed (state expressed) by the subject on or
with regard to its object(s). Relationships can be expressed by any of the verbs or
verb phrases in natural language [e.g., display in requirement 2 of Fig. 4.2].

In order to support composition specifications involving a subject object or
relationship denoted with different words representing the same semantics, a set
of synonymous definitions must be provided. These synonyms could be provided
either through a readily available standard electronic synonyms dictionary (e.g.,
WordNet [15]) or per project, augmenting a standard dictionary with a project-
specific ontology.

The subject–relationship–object (S–R–O) structure carries the main semantic
load of a sentence. Whereas subjects and objects denote the entities of significance
in it, the relationship (i.e., verb) reflects the interaction between these entities.
In our approach the relationship denotes the most central function, as it defines
the functionality and/or properties that the subjects and objects provide. In order
to be able to reason about the various types of relationships, we have used and
adapted the linguistic studies of Dixon [16], Hale et al. [17], and Levin [18] that
classify the verbs in accordance with their semantics (interested reader is referred to
Chitchyan et al. [19–21] for more details). As a result of this (adapted) classification,
we have a set of verb classes and subclasses (depicted in Fig. 4.3) that cover all
English language verbs.2 Each such class has a set of common semantic roles and

2Though this particular work focuses on English, the principle of verb classification is independent
of language [16]. The same approach may be applied to other languages and a similar (though not
identical) classification will result.

4 Semantics-Based Composition for Textual Requirements 65

<Concern name=“Accuracy”>
<Description”> Ensure accuracy of data. </Description>

…
<Requirement id="2”> The

<Subject>system</Subject>
<Degree type="modal" semantics="obligation" level="high">shall</Degree>
<Relationship type="Move" semantics="Transfer_Posession">provide</Relationship>
up-to-date

<Object>information</Object> to rescue
<Object>resources</Object>

…

</Concern>

<Concern name=”Crisis”>
<Requirement id="1”>A

<Subject>crisis management scenario</Subject> is usually
<Relationship type="General_Action"
semantics="Compare">triggered</Relationship> by a
<Object>crisis report </Object>from a
<Object>witness</Object> at the scene.

</Requirement>
</Concern>

<Composition name="Accuracy Composition">
<Constraint operator="apply">relationship="provide" and
object="information"</Constraint>
<Base operator="before">subject="data" or object="data" or
relationship="report"</Base>

<Outcome operator=”fulfil”>
</Composition>

a

c

b

Project Ontology
Data: weather data, witness data, terrain data, report,
…

Fig. 4.2 Example of RDL elements

depicts their participation in a semantically related activity. For instance, all verbs
of the Affect type involve three basic semantic roles—an Agent which moves or
manipulates something (referred to as Manipulator role or Manip) so that it comes
into contact with something or person that plays the Target role. Either the Manip
or Target (or both) will be physically affected by this activity.

66 R. Chitchyan

Relationship Types

Affect
affect

Touch
apply

Damaging &
Destroying

break

Create &
Transform

enable

Rest
keep

Put
retain

Maintain
satisfy

Hold
include/
exclude

Decide
ensure

Mental Actions
consider

Think
reflect

Solve
conclude See

witness

Discover
observe

Like/Dislike
aggravate

Corporeal
feel

General Actions

Complete
realise

Constrain
enforce

Avoid
hinder

Compare
evaluate

Use
useObey

comply

Move

Transfer
Possession

provide

Commute
deliver

Set in Motion
begin/end

Communicate
correspond

Talk
talk

Discuss
discuss Inform

inform

Order
make

Show
demonstrate

Modify/Change
modify

Group
group

Fig. 4.3 Verb classes and composition operators (shown in italics)

Degree

Exclusivizers/
Paticulizers

Maximizers

Boosters

Compromisers

Approximators Diminishers

Minimizers

Modals

Fig. 4.4 Degree classes

In Fig. 4.3 the text in italics represents the composition operators (discussed in
the next section) derived from these relationship semantics.

When specifying requirements stakeholders often qualify how important or
significant a specific functionality or property is to them. In the RDL such
qualifications are represented by the Degree element. Degree element depicts
the strength of the relationship between the subject and object. An example for
degree annotation is <Degree typeD “Modal” semanticsD “Obligation” levelD
“high”> shall </Degree> for the shall word in “The system shall provide : : :

information : : : ” requirement in Fig. 4.2.
The set of degree categories currently used in the RDL, i.e., the type attribute of

Degree element in the RDL are presented in Fig. 4.4.
Each of these classes reflects a certain level of degree, for instance Maximizers

(such as highly, completely, etc.) amplify some property to the top level, while
Boosters (e.g., amply, considerably) amplify it but not to the maximum.

Of particular interest here is the group of Modals and related verbs: when a modal
degree word (e.g., must, could, wish, etc.) qualifies a relationship, the relevance

4 Semantics-Based Composition for Textual Requirements 67

of that relationship (i.e., functionality or property) to the stakeholder is reflected
(“shall provide”). The Modals have related levels, which can be high, medium, or
low, depending on the semantics of a particular verb.

The RDL elements above are used for requirements description, irrespective of
their modular structuring or contents. Composition is discussed next.

4.2.2 Composition Elements and Their Use

Composition is the assembling of the separately defined requirements modules with
the aim of ensuring their desired interactions and revealing/addressing the undesired
ones. A composition element in the RDL comprises three sub-elements: Constraint,
Base, and Outcome. An example of composition is presented in Fig. 4.2.

A Constraint element specifies what checks and restrictions are to be placed on
a set of requirements (provided by Base element) and what action must be taken
in imposing these constraints. The required actions are specified by the constraint
operators (see elements in italics in Fig. 4.3) which are derived from the relationship
categories. Since each verb group has a dedicated meaning and a set of related roles,
the corresponding operator denotes that these roles are expected to participate in a
specific interaction. Thus, for instance, the apply operator used in Fig. 4.2 is derived
from the Touch subgroup of the Affect group, and so has the semantics of Agent
manipulating something (the Manip role) that comes into contact with a Target role,
without disturbing it. These roles are normally filled in by the elements picked out
by the Constraint and Base queries.

The query specified within the Constraint element is used to select
concerns/requirements that will act as the constraint to be imposed [cf. query
expression enclosed in the <Constraint/> tags in Fig. 4.2]. The query is semantics-
based, i.e., it selects elements by their meaning, rather than structure or id or
name. The benefits of such semantic queries are twofold. Firstly, we avoid
syntactic matching in the composition specifications, thus avoiding unintended
element matching. Instead compositions are specified based on the semantics
of the requirements—for instance, the constraint query in Fig. 4.2 selects “the
requirements in which information is provided” (more details are provided in
Sect. 4.3.1). Secondly, it ensures that requirements compositions are semantically
justified, rather than arbitrarily provided by a requirements analyst.

Base element provides a query for selecting the set of (points in) requirements
that are affected by some constraints (provided by the Constraint element) and the
temporal or conditional dependency between these requirements and the constraints.
The query expression of the Base element, like that of the Constraint, is a semantic
query. For instance, the base query in Fig. 4.2 selects “the requirement where data
reports or is reported upon” (details are provided in Sect. 4.3.1).

The temporal and conditional dependencies are depicted by the base operators,
which are founded on sequencing and conditional semantics in natural language

68 R. Chitchyan

XXX
YYYYY

Requirement Y has commenced before
requirement X; X commences while Y is in
progress; X and Y complete simultaneously (from
perspective of X). This is a sub-type of during.

X finishes
(finished by) Y

XX
YY

There is a temporal interval between requirements
X and Y when X has completed but Y has not
started yet.

X before
(after) Y

XXX
YYYYY

Requirement Y has commenced before
requirement X; X commences while Y is in
process; X completes while Y is in process (from
perspective of X).

X during
(through) Y

XXX
YYY

Requirements X and Y are started and completed
within the exact same temporal interval.X concurrent Y

XXX
YYYYY

Requirement X has commences simultaneously
with requirement Y; X completes while Y is in
process (from perspective of X). This is a sub-type
of during.

X starts
(started by) Y

XXX
YYY

XXYY

Requirement X has commenced before
requirement Y; Y commences while X is in
process; X completes while Y is in process (from
perspective of X).

X overlaps
(overlapped by) Y

There is no temporal interval between requirement
X ending and requirement Y starting (from
perspective of X).

X meets
(met by)Y

Fig. 4.5 Selection of temporal operators for composition (based on Allen [22]). Here X and Y
depict two requirements and their positioning towards each other reflects their temporal order

and reflect the ordering or conditional dependencies of requirements. Expressions
such as “first : : : then,” “once,” “if,” and alike are used to express such semantics.
Our base operators fall into three categories:

• Sequential temporal operators: e.g., before, after, meets
• Concurrent temporal operators: overlap, during, starts, finishes and concurrent
• Conditional operators: if and if not

The temporal operators (Fig. 4.5) fully describe the relative temporal positioning
of one item with respect to another [22], and all, besides concurrency, can be
symmetrically inverted into another operator (e.g. before can be inverted to after,
etc.). Since in the example in Fig. 4.2 we want to specify that the requirements where
“information is provided” should be applied “some time before” the “data reports
or reported upon,” we use the before operator instead of the “meets” operator which
is applicable when a no time lapse should be involved between base and constraint.

The Outcome element defines how imposition of constraints upon the base sets
of requirements should be treated. For instance, the outcome element may specify
a set of requirements that must be satisfied as post-conditions upon application of
the Constraint or merely state that the Constraint has to be fulfilled [as is the case in
Fig. 4.2].

We next discuss how the RDL facilitates expressive, semantics-based pointcut
specifications.

4 Semantics-Based Composition for Textual Requirements 69

4.3 Examples of Semantics-Based Compositions

Unlike other AORE approaches [23, 24] in which the smallest unit of reference for
composition is normally a requirement, in RDL we use the elements that build the
meaning of a requirement. Thus, we are able to select requirements by referencing
their semantics without having to rely on any syntactic id.

Below we present some uses of the RDL.

4.3.1 Information Accuracy Composition

The composition for the Information Accuracy is shown in Fig. 4.2 with the con-
cerns for Accuracy and Crisis shown in parts (a) and (b) of the figure. The Constraint
query of this composition states that those concern(s) should be selected that contain
one or more requirements that involve providing (relationship) information (object).
This query will match the Accuracy concern in Fig. 4.2, as the relationship and
objects of its requirements with id 2 correspond to the Constraint query criteria.
Thus, the requirement 2 of the Accuracy concern will be selected without any
reference to its name or to any of the ids of its requirements. If a synonym of the
provide verb were used in the query instead, the respective requirements would still
be matched. (If we wished to select the whole concern, we could have used concern
[] notation around the query, thus selecting the whole of the Accuracy concern.)

The Base query of this composition refers to requirements that involve reporting
(relationship) or data (object or subject), which matches the requirement with idD1
in Fig. 4.2. Again, the point of interest for composition is defined without any
syntactic reference. The Base operator is before, meaning that the constraint should
be imposed immediately before the base.

Thus, the composition in Fig. 4.2 states that immediately before each requirement
where the data is used in any way or something is reported is the requirement that
“provides information” must be enabled. This intention of the composition is clear
from the composition specification itself, without the need to look up anything from
the participant concerns, thus providing a single point of reference for compositional
reasoning.

This composition specification is also robust, unlike those in the syntactic
counterparts. As long as provision of information is needed, the constraint of the
composition will not change. Similarly, as long as the data is used in any way or
anything is reported, the base also will be unaffected. This is true irrespective of
any number of new requirements and concerns being added or removed from the
specification.

The semantic queries used in the above example demonstrate that we can use
the subject–relationship–object structure to find both the larger-grain entities, such
as concerns, or requirements within which the given structure occurs, as well as
a particular point, i.e., part of the sentence which contains this structure. In our

70 R. Chitchyan

automation of the RDL, if no “concern []” expression is used, we refer to the
S–R–O encapsulating requirement, though more fine-grained interpretations are
also possible.

4.3.2 Assignment Operators in Composition

It should be noted that the semantic match for the queries defined by the S–R–O
structure can be realized either per word lemma only, or per word synonyms.

A lemma is a reduction of the surface forms of the given word to its correspond-
ing dictionary headword. For instance, systems will be reduced to system; triggered
to trigger, etc. When matching “triggered” per lemma other surface forms of it (e.g.,
trigger) will also be matched, but no other synonym will.

On the other hand, when matching by synonym, both lemmas and synonyms of
the given word are matched, so for instance, in case of “triggered,” not only trigger,
but also initiate, activate, cause, prompt, etc. will be matched.

Both of these matching techniques are significantly more expressive than the per
string syntactic matching.

Normally the synonym-based matching is used in the RDL when the “D”
operator is used. However, if required, a per lemma matching is also available via
use of “D D” operator. This allows to define more narrow queries when needed, as
well as to avoid confusion when a word is used in a specific sense but no project-
specific lexicon is provided. For instance, with a standard synonym dictionary, if
used with synonym assignment, data will match such words as information, records,
statistics, etc. However, if we want only to match the word data itself, and if we have
no project specific synonym dictionary or ontology of terms, the narrow per lemma
assignment can be used.

4.3.3 Verb Classes in Composition

In addition to using the semantics of the S–R–O structure, other semantics of the
RDL elements can also be used for querying. For instance, the semantics of the verb
classes and subclasses (shown in Fig. 4.3) can be used to select requirements related
to broad types of activities. One such example is shown in Fig. 4.6.

In this composition the constraint query is same as that in Fig. 4.2, but the report
relationship in Base is described in terms of its semantic category: “Talk” (semantics
attribute of the Relationship element in RDL used to capture the subclass of a
generic verb class to which a given verb belongs (Fig. 4.3) [21]3), thus the constraint
will select the concern that contains requirements where the data is “talked” about

3The full schema for the RDL and meaning of each attribute is available from [21].

4 Semantics-Based Composition for Textual Requirements 71

<Composition name=“Communication Accuracy”>
<Constraint operator="apply">relationship="provide"
and object="information"</Constraint>
<Base operator= "before"> relationship.semantics = “ Talk”and

object =“data” </Base>
</Composition>

Fig. 4.6 Example of
composition with verb class
semantics

<Composition name=“CompositionFirstRelease”>
<Constraint operator=“include”> “Include requirements into
1st release” </Constraint>
<Base operator=“if”> degree.semantics=“Modal” and
degree.level=“high”</Base>

</Concern>

Fig. 4.7 Example of degree
element in composition

(e.g., report, discuss, argue, bicker, etc.). While some of these verbs are unlikely
to be used with the given object, the others will depict a certain type of interaction
reflected by the Talk subclass: i.e., the Speaker role (e.g., witness) talks about the
optional Message role (e.g., data) with the Addressee role (e.g., police).

Such broader view queries are particularly useful when a requirements analyst
wishes to establish an understanding of a particular interaction. Realistically it is
not possible to write such queries for a syntax-based approach, as all individual
verb statements in all concerns and requirements will have to be checked for the
specific verbs and their corresponding extension points created/syntactic ids found
and then listed in a pointcut/composition expression.

4.3.4 Degree Element in Composition

The Degree element and its attributes can also be used in queries. A query by
relationship-related degree is shown in Fig. 4.7. In this example the constraint query
does not select the constraint from the requirements, but provides it within the query
statement.

The Base query selects requirements where the degree element of Modal type is
used, as shown by the degree.semanticsD “Modal” part of the query. The Modal
type, due to the nature of the items included in this group, will always qualify
verb phrases, i.e., relationships. This type of degree elements shows the level of
the pertinence of the action/property defined by the verb phrase. The part of query
stating degree.levelD “high” uses the level attribute of the degree element which
can be given high, medium, or low levels [21]. Thus, the base query will select
the requirements where the relationship has a high level of pertinence, which may
include requirements like “The credit card must be validated for payment,” etc.

In addition, other types of the degree element (Fig. 4.4) indicate how the quality
to which the degree relates should be treated. For instance, degree.semanticsD
“Maximizer” will select the set of requirements where a certain property must be

72 R. Chitchyan

maximized up to some given top level, while in case of use of Diminisher type the
given level should be reduced, if possible.

4.4 Discussion

In this section we discuss two issues that are vital for the utility of the RDL
approach: (1) Can it be automated? And (2) How does it compare to the
syntax-based approaches?

The first issue is particularly relevant as the RDL utility will be void if it were to
require a manual preprocessing of texts for tagset introduction and query processing.

Similarly, if the RDL were not to show any specific advantages over the existing
syntax-based approaches, there would be no need for its use, even if the general
idea for semantics-based composition was promising. Each of these issues is briefly
discussed below.

4.4.1 Automation Support for RDL

Automation of RDL use is supported via two tools: the RDL annotations are
automated through an extension of an existing natural language processing tool
suite Wmatrix [25] while the composition definitions (based on the RDL tags)
and visualization of the resulting interactions are supported by the MRAT Eclipse
plug-in [26]. Both of these tools are briefly discussed below.

In order to support text annotation for the RDL described in this chapter, we have
extended the functionality of Wmatrix tool in three areas by:

• Marking major grammatical constituents of sentences such as subject, verb, and
object. This is achieved by building a set of patterns on top of the tags already
assigned by the Wmatrix part of speech (POS) tagger. For example, a simple
rule to link a verb to its object is as follows: N*o[.] (RR*/RG*/XXn3) VVN*v[.]
This matches the sequence “Noun” (N*), followed by between 0 and 3 possibly
negated “adverbs” (RR*/RG*/XX), followed by a past participle “verb” (VVN).
In the case of a match, the noun is marked as the object of the verb.

• Explicit output of lemmatization, i.e., reducing similar words such as systems and
system to the same base word (dictionary headword).

• Classification of verbs used in RDL is based on the work by Dixon [16]. In order
to support this classification in Wmatrix we have defined a new tagset for
verbs based on the RDL classification and have established a mapping from the
Wmatrix verb categories onto this new tagset.

MRAT is implemented as an Eclipse plug-in and consists of an editor for
revising RDL documents, and views for navigating and understanding requirement
influences.

4 Semantics-Based Composition for Textual Requirements 73

The editor is intended for revising RDL specification on the basis of inconsis-
tencies, conflicts, and elaborations. MRAT offers automatic incremental building
in terms of composition, outline-view integration, and editor features, such as
syntax highlighting. Several views assist the editor by presenting RDL and synonym
information, supporting development of pointcut expressions and navigating the
composed document.

In addition to the editor and associated views, the tool has two more views for
understanding composition information and influences: the Composition Definition
View (CDV) and the Composition Time Flow View (CTFV).

The CDV provides composition-centric temporal visualizations. By explicitly
showing the interactions of requirements in a multidimensional context, it is
possible for the requirements engineer to identify and revise influences between
requirements, as originally found by the discovery tool.

The CTFV supports conflict resolution and understanding by presenting require-
ments in a temporal visualization and providing contextual link derivation back
to the composition source. This is the primary view for understanding how
requirements are related as a result of mutual influence and for determining the
source of a conflict. Conflicts and redefinitions (i.e., the case where the tool updates
compositions to resolve some cases of temporal conflicts) are highlighted and the
potential cause of the problem is displayed to the user.

4.4.2 Evaluation of RDL Compositions

The RDL composition mechanism has been compared [27] to a purely syntax-based
composition approach [24] as well as a mixed one [28] which uses some elements
of semantics and some syntax ones. For this evaluation, a case study was specified
using the three approaches under evaluation, after which a set of change scenarios
were applied to the initial requirements. The effect of the changes to composi-
tions and modularity for all three approaches was quantified. While space limitations
prevent us from going into detail of this comparative evaluation, the main results of
it are summarized here:

• The RDL demonstrated the lowest number of concerns, compositions, and
requirements affected when realizing all change scenarios. This is due to the fact
that the RDL composition mechanism is fully decoupled from the structure of
the requirements document: since this structure is not relied upon, any changes
made to it do not propagate to the compositions.

• On average, the RDL used the smallest number of elements per composition
to express the composition’s intent; it also has the lowest standard deviation in
the number of elements used per composition. The purely syntactic approach
used both the highest average number of elements per composition, and had
the highest standard deviation. This fact was explained by the higher level of
abstraction of elements used in RDL compositions: no id or named requirement
references were used. The syntax-based approach, on the other hand, needed

74 R. Chitchyan

to either enumerate each element used in a composition via its “concern name-
id” pair, or use wildcard-based quantification. The wildcard-based quantification,
however, is often too broad, as well as fragile under change influence.

• RDL demonstrated a higher average reachability than those of the syntax-based
alternatives, although RDL also demonstrated a higher standard deviation. This is
explained by the scoping and lexicon definition characteristics of the composition
reference mechanism. If a lexicon entry for an element is narrowly defined,
the element will have relatively narrow reachability, bordering, in the worst
case, with the named requirement like referencing mechanism of syntax based
approaches, where only the joinpoints that exactly match the string of the given
word are selected. However, such a narrow entry definition is rather unlikely.
Normally a lexicon entry will be defined more broadly, and the broader its
definition the wider the set of intended joinpoint that will be reached.

In summary, the initial evaluation of RDL demonstrates that this is a poten-
tially promising approach for expressing interdependencies between concerns and
requirements in a stable and intention preserving way.

4.5 Conclusion

In this chapter we have presented the RDL composition mechanism that abstracts
away from the syntactic details in the AORE artifacts, hence helping the require-
ments engineer to focus on the meaning of the requirements-level compositions and
interactions. The semantics exposed by the RDL and the semantics-based queries
used in the composition specification facilitate reasoning about the stakeholders’
intentions embedded within the natural language descriptions of requirements.
Thus, the RDL and its supporting tools are a stepping stone towards more expressive
pointcuts and intentional reasoning about concern dependencies and interactions at
the requirements level.

References

1. R. Chitchyan, A. Rashid, P. Rayson, R. Waters. Semantics-based composition for aspect-
oriented requirements engineering. in AOSD ’07 (ACM, New York, NY, 2007), pp. 36–48

2. A. Kellens, K. Mens, J. Brichau, K. Gybels, Managing the evolution of aspect-oriented soft-
ware with model-based pointcuts, in European Conference on Object-Oriented Programming
(ECOOP). LNCS, vol. 4067 (Springer, 2006), pp. 501–525

3. P. Greenwood, T.T. Bartolomei, E. Figueiredo, M. Dósea, A.F. Garcia, N. Cacho, C. Sant’Anna,
S. Soares, P. Borba, U. Kulesza, A. Rashid, On the impact of aspectual decompositions on
design stability: an empirical study, in ECOOP, 2007, pp. 176–200

4. D. Stein, S. Hanenberg, R. Unland, Expressing different conceptual models of join point
selections in aspect-oriented design, in AOSD ’06 (ACM, New York, NY), 2006, pp. 15–26

5. R. Knöll, M. Mezini, Pegasus: first steps toward a naturalistic programming language, in
OOPSLA, Onward Track (ACM, 2006)

4 Semantics-Based Composition for Textual Requirements 75

6. C.V. Lopes, P. Dourish, D.H. Lorenz, K.J. Lieberherr, Beyond AOP: towards naturalistic
programming, in International Conference on Object-Oriented Programming, Systems, Lan-
guages, and Applications (OOPSLA) (ACM, 2003), pp. 198–207

7. K. Ostermann, M. Mezini, C. Bockisch, Expressive pointcuts for increased modularity,
in European Conference on Object-Oriented Programming (ECOOP). LNCS, vol. 3586
(Springer, 2005), pp. 214–240

8. A. Moreira, J. Araujo, A. Rashid, A concern-oriented requirements engineering model, in
Proceedings of the International Conference on Advanced Information Systems Engineering
(CAiSE). LNCS, vol. 3520 (2005), pp 293–308

9. A. Moreira, J. Araujo, A. Rashid, Multi-dimensional separation of concerns in requirements
engineering, in International Conference on Requirements Engineering (RE) (IEEE CS, 2005),
pp. 285–296

10. S. Sutton, I. Rouvellou, Modeling of software concerns in Cosmos, in International Conference
on Aspect-Oriented Software Development (AOSD), 2002, pp. 127–133

11. P.L. Tarr, H. Ossher, W.H. Harrison, S.M. Sutton, N degrees of separation: multi-dimensional
separation of concerns, in ICSE (ACM, 1999), pp. 107–119

12. E. Baniassad, S. Clarke, Theme: an approach for aspect-oriented analysis and design, in
International Conference on Software Engineering (ICSE), 2004, pp. 158–167

13. A. Sampaio, R. Chitchyan, A. Rashid, P. Rayson, EA-Miner: a tool for automating aspect-
oriented requirements identification, in International Conference on Automated Software
Engineering (ASE), 2005, pp. 352–355

14. I. Sommerville, Software Engineering, 7th edn. (Addison-Wesley, Reading, MA, 2004)
15. WordNet (2006), http://wordnet.princeton.edu/
16. R.M.W. Dixon, A Semantic Approach to English Grammar, 2nd edn. (Oxford University Press,

Oxford, 2005)
17. K.L. Hale, S.J. Keyser, A View from the Middle (MIT, Center for Cognitive Science,

Cambridge, MA, 1987)
18. B. Levin, English Verb Classes and Alternations: A Preliminary Investigation (University of

Chicago Press, Chicago, IL, 1993)
19. R. Chitchyan, S.S. Khan, A. Rashid, Modelling and tracing composition semantics in

requirements, in Early Aspects 2006: Traceability of Aspects in the Early Life Cycle Workshop
(Held at AOSD’06), Bonn, Germany, 2006

20. R. Chitchyan, A. Rashid, Tracing requirements interdependency semantics, in Early Aspects
2006: Traceability of Aspects in the Early Life Cycle Workshop Early Aspects WS (Held at
AOSD’06), Bonn, Germany, 2006

21. R. Chitchyan, A. Sampaio, A. Rashid, P. Sawyer, S.S. Khan, Initial version of aspect-oriented
requirements engineering model, in Lancaster AOSD-Europe report (D36): AOSD-Europe-
ULANC-17, 2006

22. J.F. Allen, Maintaining knowledge about temporal intervals. Commun. ACM 26(11), 832–843
(1983)

23. I. Jacobson, P.-W. Ng, Aspect-Oriented Software Development with Use Cases (Addison-
Wesley, Reading, MA, 2005)

24. A. Rashid, A. Moreira, J. Araujo, Modularisation and composition of aspectual requirements,
in AOSD (ACM, 2003), pp. 11–20

25. P. Rayson, Wmatrix (2006), http://www.comp.lancs.ac.uk/ucrel/wmatrix/
26. R.W. Waters, MRAT: a multidimensional requirements analysis tool, MSc. Dissertation,

Lancaster University, Lancashire, 2006
27. R. Chitchyan, P. Greenwood, A. Sampaio, A. Rashid, A. Garcia, L. Fernandes da Silva.

Semantic vs. syntactic compositions in aspect-oriented requirements engineering: an empirical
study, in Proceedings of the 8th International Conference on Aspect-Oriented Software
Development (AOSD 2009) (ACM, Charlottesville, VA), 2–6 Mar 2009, pp. 149–160

28. L. Silva, A guided strategy the modeling aspect-oriented requirements (in Portuguese), PhD,
Rio de Janeiro, Catholic University of Rio de Janeiro (PUC-Rio), Brazil, 2006

http://wordnet.princeton.edu/
http://www.comp.lancs.ac.uk/ucrel/wmatrix/

Chapter 5
Composing Goal and Scenario Models
with the Aspect-Oriented User Requirements
Notation Based on Syntax and Semantics

Gunter Mussbacher, Daniel Amyot, and Jon Whittle

Abstract The Aspect-oriented User Requirements Notation (AoURN) combines
goal-oriented, scenario-based, and aspect-oriented concepts into a framework for
requirements engineering activities. AoURN’s approach to composition takes the
structure of AoURN’s goal and scenario notations into account. Composition
is hence tailored to these two notations to balance reusability of the aspect
specification and the amount of duplication it requires. Furthermore, the compo-
sition mechanism of AoURN supports advanced interleaved composition rules in
addition to the traditional before, after, and around composition rules. Interleaved
composition allows two scenarios to be combined without losing sight of the
overall behavior of each individual scenario. Finally, AoURN employs an enhanced
composition mechanism based on semantic equivalences in each of its two sub-
notations. The enhanced composition mechanism ensures that a certain class of
refactoring operations may be performed on an AoURN model without interfering
with the desired aspect composition. An example based on a common case study
illustrates the usage of interleaved and semantics-based composition for AoURN’s
scenario model.

G. Mussbacher (�)
Department of Electrical and Computer Engineering (ECE), McGill University, 3480 University
Street, Montreal, QC, H3A 0E9, Canada
e-mail: gunter.mussbacher@mcgill.ca

D. Amyot
EECS, University of Ottawa, 800 King Edward, Ottawa, ON, Canada K1N 6N5
e-mail: damyot@eecs.uottawa.ca

J. Whittle
Department of Computing, InfoLab21, Lancaster University, Bailrigg, Lancaster LA1 4YW, UK
e-mail: whittle@comp.lancs.ac.uk

A. Moreira et al. (eds.), Aspect-Oriented Requirements Engineering,
DOI 10.1007/978-3-642-38640-4 5, © Springer-Verlag Berlin Heidelberg 2013

77

mailto:gunter.mussbacher@mcgill.ca
mailto:damyot@eecs.uottawa.ca
mailto:whittle@comp.lancs.ac.uk

78 G. Mussbacher et al.

5.1 Introduction

The Aspect-oriented User Requirements Notation (AoURN) [1] extends the User
Requirements Notation (URN) [2], standardized by the International Telecommuni-
cation Union, into a goal-oriented, scenario-based, and aspect-oriented framework.
URN contains two sublanguages—the Goal-oriented Requirement Language (GRL)
for goal modeling and Use Case Maps (UCM) for scenario modeling—to which
AoURN adds aspect-oriented concepts, resulting in AoGRL and AoUCM.

URN is a requirements engineering language that supports the elicitation,
analysis, specification, and validation of requirements. In addition, AoURN enables
the specification of and reasoning about crosscutting concerns from the early
requirements phase on. AoURN is a somewhat unusual modeling environment for
aspect-oriented requirements engineering, because it combines two different nota-
tions. AoURN is hence most effectively applied in those requirements engineering
activities for which goal or scenario models are deemed useful—ideally, AoURN is
used to describe the high-level workflow of a concern and its impact on the overall
system and stakeholder goals. The AoURN and URN notations are introduced as
needed for the chapter in Sects. 5.2 and 5.3.

AoURN supports all basic composition rules found in many other scenario-
based notations such as before, after, around, etc. AoURN also supports all basic
composition rules found in many goal-oriented notations such as contributions,
correlations, decomposition, and dependencies. This chapter hence does not focus
on basic composition rules but explores the following three points in more detail:
the implications of having two different notations in the AoURN framework,
AoURN’s support for interleaved composition, and AoURN’s support for an
enhanced composition mechanism based on language semantics.

1. Since AoURN consists of two rather different notations, it serves as an excellent
example highlighting the need for tailored composition approaches that take the
peculiarities of a notation into account (to be covered in Sect. 5.3) to reduce
unnecessary modeling effort and improve the reusability of an aspect.

2. While basic composition rules (briefly overviewed for AoURN in Sect. 5.4) allow
for the specification of a large class of aspects, more advanced composition
rules may help by providing a clearer picture of the individual behavior of an
aspect as well as the composed behavior. Interleaved composition is one such
advanced composition rule. Interleaved composition avoids fragmentation of an
aspect model and hence makes it easier to understand the aspect model, as will
be discussed in Sect. 5.5 with the help of an example from a common case study,
i.e., a crisis management system.

3. A well-known problem in the aspect-oriented community is the fragile pointcut
problem [3–5] of syntax-based composition. Rather small changes in a model
may have a significant impact on the specification of an aspect. AoURN hence
employs an enhanced composition mechanism based on semantic equivalences
[6] in each of its two sub-notations to ensure worry-free application of a certain

5 Composing Goal and Scenario Models with the Aspect-Oriented User . . . 79

class of refactoring operations on the system model as will be discussed and
illustrated again in Sect. 5.5.

Following the above-mentioned sections, this chapter then explains in more
detail in Sect. 5.6 how composition is actually achieved in AoURN for basic and
interleaved composition rules as well as for the results of semantics-based matching.
The chapter closes with an overview of related work in Sect. 5.7 and a conclusion
and an agenda for future work in Sect. 5.8.

5.2 Overview of the User Requirements Notation

This section gives a brief overview of the User Requirements Notation (URN). URN
is a general purpose modeling language for the communication of and reasoning
about requirements. URN supports the elicitation and specification of requirements
for a proposed or an evolving system as well as the analysis and validation of
requirements. URN consists of two sub-notations: the Goal-oriented Requirement
Language (GRL) for goal modeling and Use Case Maps (UCM) for scenario
modeling. GRL is a visual modeling notation for business goals and non-functional
requirements of many stakeholders, for alternatives that have to be considered, for
decisions that were made, and for rationales that helped make these decisions. UCM
is a visual scenario notation that focuses on the causal flow of behavior optionally
superimposed on a structure of components. UCM models often describe in more
detail the alternatives considered in GRL models.

A GRL actor (, see Fig. 5.1a for a summary of GRL model elements)
represents a stakeholder of a system. A goal model shows the high-level business
goals of interest to a stakeholder and the alternatives considered for achieving these
high-level elements. Softgoals () differentiate themselves from goals () in
that there is no clear, objective measure of satisfaction for a softgoal whereas a
goal is quantifiable. Tasks () represent solutions to goals or softgoals that are
considered for a system. Various kinds of links connect the elements in a goal graph.
AND, XOR, and IOR decomposition links allow an element to be decomposed into
sub-elements (). Contribution links indicate desired impacts of one element on
another element (!), either expressed qualitatively (C or –) or quantitatively as an
integer value between �100 and 100. Correlation links () are like contribution
links but rather indicate side effects than desired impacts. Finally, dependency links
model relationships between actors, i.e., one actor depending on another actor for
something ().

A UCM map contains any number of paths and components (see Fig. 5.1b for
a summary of UCM model elements). Paths express causal sequences and may
contain several types of path nodes. Paths start at start points () and end at end
points (). Responsibilities (�) describe required actions or steps to fulfill a scenario.
OR-forks () (possibly including guarding conditions) and OR-joins () are used
to show alternatives, while AND-forks () and AND-joins () depict concurrency.

80 G. Mussbacher et al.

Goal Softgoal

Task

Actor

GRL Model Elements

Contribution Dependency

Decomposition

UCM Model Elements

UCM Path Responsibility

Or-Fork Or-Join

And-Fork And-Join
Timer

Static Stub Dynamic Stub
Component Actor

Waiting Place

Correlation

a b

Fig. 5.1 Overview of URN notation

Loops can be modeled implicitly with OR-joins and OR-forks. Note that the UCM
notation does not impose any nesting constraints. Waiting places () and timers ()
denote locations on the path where the scenario stops until a condition is satisfied or
another scenario arrives. A timer may also have a timeout path which is indicated
by a zigzag line. Stubs (e.g., or) allow hierarchical structuring of maps with
various constraints imposed on the sub-maps depending on the stub type. Finally,
components are used to specify the structural aspects of a system (e.g., for system
component and for actor).

AoURN builds on URN by allowing patterns and composition rules to be
specified for a crosscutting concern in addition to the aspectual properties of the
crosscutting concern. This is explained in the following section.

5.3 Specification of Patterns and Composition Rules
in AoURN

AoURN applies different composition approaches to its two sublanguages.
Figure 5.2 gives an overview of the specification of aspects in AoURN. On the
top left side, the specification of a logging aspect is shown for AoUCM and AoGRL
(Fig. 5.2a, b, d). On the top right side, the impact of the logging aspect on an
AoURN model is depicted (Fig. 5.2c, e). At the bottom, an alternative specification
for the logging aspect is illustrated (Fig. 5.2f, g, h).

For AoUCM, the pattern (Fig. 5.2b) is clearly separated from the description of
aspectual properties and the composition rule (Fig. 5.2a). Each is specified on its
own map and the relationship between these two maps is formalized by bindings
(illustrated in Fig. 5.2 by dashed arrows), which specify how the in-/out-paths of

5 Composing Goal and Scenario Models with the Aspect-Oriented User . . . 81

f

Logger

log loggedlog

PatternPattern

Online Video Store

*

a

b
Online Video Store

*

Logger

log loggedlog
P

RequireLogging

Composition RuleComposition Rule Aspectual PropertiesAspectual Properties

PatternPattern

Customer

selectMovie

Online Video Store

processOrder

bought

sendMovie

L1

L2

buy

c

L3
creditNewPoints

[!redemption]

[else]

PayOrRedeem

d

+ +

Improve
shopping

experience

Online
Video
Store Improve

advertising
strategy

P

P

P

+

+

Composition Composition
RuleRule

L

Better
understand

user behavior

Better
streamline store

operations

Aspect MarkersAspect Markers

Aspectual PropertiesAspectual Properties

PatternPattern

Logging

Order Movie

Increase
sales

+

Browse
Movie

Online
Video
Store

+

+

+

Improve
advertising

strategy

L4

e

Improve
shopping

experience
L4

Improve
shopping

experience

Online
Video
Store

Improve
advertising

strategy

P

P

P

+
+

+
+

L

Better
understand

user behavior

Better
streamline store

operations

Logging

P
RequireLogging

g h

Fig. 5.2 Specification of patterns and composition rules in AoURN

a stub on a parent map are connected to the start points ()/end points () of a
plug-in map, respectively. In Fig. 5.2, the pattern states that all responsibilities (�,
e.g., processOrder) in the component Online Video Store () are to be
matched. The composition rule is defined by the causal relationship between the
pointcut stub (P , e.g., RequireLogging) and the aspectual properties. In this
case, the log responsibility of the Logger component is shown after the pointcut
stub, hence describing an “after” composition rule.

For AoGRL, the pattern, aspectual properties, and the composition rule are all
shown on the same goal graph (Fig. 5.2d). The goal model elements that belong to
the pattern are identified by a tag, i.e., the pointcut marker (P). The composition

82 G. Mussbacher et al.

rule is hence specified by any links between tagged elements and those that are not.
In this case, the composition rule consists of two contribution links (!).

When an aspect is composed with the AoURN model, the result of the com-
position is shown with the help of aspect markers (, e.g., L1 and L4) as seen in
Fig. 5.2c, e. An aspect marker links to the aspectual properties that are to be inserted
at the location of the aspect marker. Bindings again formalize these links (to be
discussed in more detail in Sect. 5.6). For example in AoUCM, the aspect marker L1
in Fig. 5.2c links to the aspectual behavior of the Log aspect, i.e., the path segment
starting at the pointcut stub RequireLogging, containing the log responsibility,
and ending at the logged end point. In AoGRL, the aspect marker L4 in Fig. 5.2e
indicates that the Improve shopping experience goal model element is
matching a pattern in an aspect, i.e., the goal model element with the pointcut marker
in Fig. 5.2d. Hence, all GRL links of the element in the pattern also apply to the
matched element tagged with the aspect marker.

Figure 5.2f illustrates what an AoUCM aspect would look like if the all-in-one-
diagram style for AoGRL were to be applied to AoUCM. Figure 5.2g, h, on the
other hand, shows what an AoGRL aspect would look like if the AoUCM style with
a pointcut stub and a separated pattern specification were to be applied to AoGRL.
The reason why one style is chosen for AoUCM and another for AoGRL lies in the
need to balance three factors.

First, the AoUCM style in Fig. 5.2a, b is more generic because the domain-
specific pattern is clearly separated from aspectual properties and composition rules.
Therefore, the aspectual properties and the composition rule as well as the pattern
may be reused separately. Applying the aspect to another domain simply requires the
pattern to be changed. In the AoGRL style in Fig. 5.2d the domain-specific pattern
is very much intertwined with the aspectual properties, making it harder to apply
the aspect to a new domain. Generally, a more generic style is more desirable due to
increased reusability. Why then does AoGRL not use the AoUCM style?

The reason for this lies in the second factor to be considered. Experience with
GRL has shown that goal models contain a vast number of links and it is hence not
uncommon that an element has many in-coming and out-going links. In scenario
models, on the other hand, model elements are connected more sparingly. The same
applies to the composition rules in goal models. Typically, a large number of links
would have to be created going into or coming out of the GRL pointcut stub in
Fig. 5.2h. For each such link, a binding needs to be specified essentially doubling
the modeling effort compared to the all-in-one-diagram style. For AoUCM, this
additional effort is negligible, because there are usually very few bindings that need
to be specified. Finally and third, the concept of a stub already exists in UCM but
not in GRL, making it more natural to use a pointcut stub in AoUCM compared to
AoGRL. Therefore, AoGRL uses a different style than AoUCM.

The next section discusses the basic composition rules that may be speci-
fied for crosscutting concerns in AoUCM and AoGRL models and summarizes
syntax-based matching.

5 Composing Goal and Scenario Models with the Aspect-Oriented User . . . 83

a

Pointcut
start

P
end

Behavior.loop
Pointcut

Pstart end

Behavior.concurrent

start end

Behavior.
replacement

Pointcut

P

Pointcut
start

P
end

Behavior.conditional

[else]

[condition]

Pointcut
start

P
end

Behavior.before Behavior.after

b

decomposition

dependencycontribution /
correlation

P

Target or source of link
tagged with

Fig. 5.3 Basic composition rules for AoUCM and AoGRL

5.4 Overview of Basic Composition Rules and Syntax-Based
Matching in AoURN

Basic Composition Rules. AoURN’s composition mechanism is exhaustive in that
it makes use of the AoURN notation itself to describe composition rules instead of
being constrained by a different composition notation. Figure 5.3a gives an overview
of the more basic composition rules supported by AoUCM, but any combination of
these composition rules and anything else that can be described with AoUCM may
also be a composition rule. The same applies to AoGRL and its basic composition
rules are shown in Fig. 5.3b.

Syntax-Based Matching. The pattern specified by an AoURN aspect is matched
against the AoURN model. A successful match establishes a one-to-one mapping of
each model element in the pattern with a model element in the AoURN model.
This is generally a syntax-based approach that takes into account the following
criteria. The type of the element in the pattern must match the type of the matched
element. The elements’ names must match. The elements’ conditions must match.
The causal relationship or type of GRL link of any two adjacent elements in the
pattern must be the same as the one of the corresponding matched elements. The
elements’ UCM component or GRL actor must match. For AoUCM, the elements’
location in their components must match (either first, last, or any location in the
component). Finally, the metadata of the element in the pattern must be a subset
of the metadata of the matched element. For a more detailed description of basic
syntax-based matching, the reader is referred to [1].

The next section discusses more advanced matching and composition techniques
of AoURN.

5.5 Interleaved Composition and Enhanced Matching Based
on Semantics in AoURN

Two advanced composition mechanism supported by AoURN are interleaved
composition and the ability to match a pattern against an AoURN model based
on semantics and not just syntax. This section uses an example from the Crisis

84 G. Mussbacher et al.

Management System (CMS) [7] case study to illustrate these two mechanisms. The
chosen example pertains to the communication over the course of a crisis situation
between the System and a Vehicle sent to a crisis location, as defined by the
Communicate with Vehicle scenario in Fig. 5.4.

The scenario starts with the system establishing communication with the vehicle
(� establishVehicleCommunication in Fig. 5.4a) and is followed by
the vehicle either accepting or denying the proposed route (Accept Route)
and finally the monitoring of the vehicle until the objective of the vehicle has
been completed (Monitor Vehicle). The static stubs (Accept Route
and Monitor Vehicle) in Fig. 5.4a are containers for plug-in maps shown in
Fig. 5.4b, c. The continuation from an in-path of a stub to a start point on the
plug-in map and from an end point on a plug-in map to an out-path of a stub is
formally defined by a plug-in binding (illustrated with short, red, dashed arrows).
The plug-in map of Accept Route states that the system keeps proposing a route
to the vehicle until the vehicle accepts that route or the system runs out of possible
routes. The plug-in map of Monitor Vehicle describes the various stages
of the vehicle from being dispatched (� vehicleDispatched in Fig. 5.4c)
to having arrived (� vehicleArrived) and having its objective completed
(� vehicleCompletedObjective). After the vehicle has been dispatched,
a timer (ETAtimer) is set which guards against not receiving a location update
from the vehicle by the estimated time of arrival (ETA). When a location update
is received or the timer expires, the system assesses the situation and reacts to a
vehicle breakdown by dispatching a new vehicle or to a route problem by updating
the ETA. Once the vehicle has arrived, the scenario remains at a waiting place ()
until receiving confirmation from the vehicle that its objective has been completed.

The Communication Failure aspect is described in Fig. 5.5. In Fig. 5.5a,
the aspect defines a failure start point (CommunicationNotAvailable)
triggered when a communication failure occurs in the target, i.e., on the
Communicate with Vehicle map or any of its sub-maps. If such a failure
occurs, the system continues in manual mode and in parallel (modeled with an AND-
fork) waits for the communication to be available again. When that happens, the
manual process is stopped, the vehicle status for each vehicle is established, and the
scenario continues at the appropriate step in the scenario for each vehicle. Note that
the replication factor for the Establish Vehicle Status dynamic stub ()
ensures that as many instances of its plug-in map are executed as there are vehicles.
Furthermore note that the appropriate step in the scenario is defined by connecting
an out-path of the dynamic stub with an in-path of the pointcut stub. On the plug-in
map of the dynamic stub, the system figures out what the vehicle status is and then
exits the stub along one of its five out-paths, i.e., each out-path represents a vehicle
status. Each in-path of the pointcut stub then connects to one stage in the scenario as
described by the note in Fig. 5.5 (and formally defined again by plug-in bindings).

For example, if the system determines that the vehicle has been dispatched but
has not yet reached its destination, then the communication failure scenario exits the
dynamic stub along the third out-path and enters the pointcut stub along the third

5 Composing Goal and Scenario Models with the Aspect-Oriented User . . . 85

a
b

c

to
: p

ro
po

se
fr

om
:

no
tA

cc
ep

te
d

fr
om

: a
cc

ep
te

d

to
: m

on
ito

r
fr

om
:

m
on

ito
re

d

F
ig

.5
.4

A
oU

R
N

sc
en

ar
io

m
od

el
:c

om
m

un
ic

at
e

w
it

h
ve

hi
cl

e

86 G. Mussbacher et al.

a b

fr
om

: 1
st

 in
-p

at
h

fr
om

: 2
nd

 in
-p

at
h

fr
om

: 3
rd

 in
-p

at
h

fr
om

: 4
th

 in
-p

at
h

fr
om

: 5
th

 in
-p

at
h

F
ig

.5
.5

A
oU

R
N

sc
en

ar
io

m
od

el
:c

om
m

un
ic

at
io

n
fa

il
ur

e
as

pe
ct

5 Composing Goal and Scenario Models with the Aspect-Oriented User . . . 87

in-path which is connected to the start point after vehicleDispatched in the
pattern (Fig. 5.5b). This has the effect that, when the Communication Failure
aspect is composed with the scenario in Fig. 5.4, the communication failure scenario
continues with the base scenario just after vehicleDispatched (Fig. 5.4c).

The pattern described in Fig. 5.5b is a series of responsibilities
(from establishVehicleCommunication to vehicleCompleted
Objective), which is reflected in the name of the pointcut stub Stages of
Vehicle Deployment.

The anything pointcut elements (: : :) ensure that any number of model elements
may occur between the responsibilities in Fig. 5.5b. The gray pairs of connected
end points and start points are not taken into account by the matching mechanism
but exist to enable interleaved composition. Depending on the bindings between
the pointcut stub and the map with the pattern, aspectual behavior is added either
before the whole pattern (an in-path of the pointcut stub is connected to the first
start point), after the whole pattern (an out-path of the pointcut stub is connected
to the last start/end point), or somewhere in between in an interleaved fashion (an
in/out-path is connected to one of the three start/end points in the middle). Hence,
an end point–start point pair provides a hook to interleave aspectual behavior with
the matched scenario.

The example in Fig. 5.5 makes also use of a matching mechanism that takes
semantics into account. A syntax-only approach yields no matches for the example,
because such an approach cannot match against more than one map at a time. This
is because a syntax-only approach does not understand that two responsibilities in
a row are equivalent to one responsibility followed by a stub with a plug-in map
with the second responsibility. An enhanced matching approach based on semantics,
however, defines such a situation as a semantic equivalence and hence matches the
same pattern to both models.

Without interleaved and semantics-based composition, the Communication
Failure aspect would have to be split up into five individual aspects, each
handling one of the five situations covered by the aspect in Fig. 5.5, i.e., each in-path
of the pointcut stub has to be dealt with individually. This leads to a fragmentation
of the overall behavior of the aspect as well as duplication, since the waiting place
and the status check needs to be repeated in all five aspects.

Figure 5.6 shows various types of semantic equivalences that exist in AoURN
models. The first and most straightforward equivalence type relates to whitespace
(Fig. 5.6a) in the model such as direction arrows (>), empty points (), connected
end and start points (), but also OR-joins (). These elements are simply ignored
by the enhanced matching algorithm.

The second type of equivalence involves hierarchical structuring with a static
stub, a dynamic stub, a synchronizing stub, an aspect marker but also GRL
decomposition chains (Fig. 5.6b). Flattened models that are equivalent to all three
types of stubs are defined in the URN standard [2] and are repeated in Fig. 5.6b.
In contrast to a dynamic stub, a synchronizing stub requires all of its plug-in maps
to finish before traversal may continue past the stub. The synchronizing stub is not

88 G. Mussbacher et al.

Map P2 [C2]

i1

i2

Map P3 [C3]
i2

i1

i2

o1

R2

Map A

R3

Map P1 [C1]i1

R1

o1 o1

o1

[C2]

[C1]

[C3]
[C3]

i2

i1

R2

R3

R1
o1

s1

R1

e1

R2 R3 R4

s1

R1

e1

R2 R3 R4

Type I: Whitespace

Type II: Hierarchical Structuring

Type III: Loop Unrolling

i1

i2

Map Pi1

i2

o1
Map A

R3 o1

R1

R2

R4
R1

R2

R4

R3

R2

R1 R3

[<3rd time]

[3rd time]

s1

R1

e1

R2 R2 R3

s1 e1

R1

R2

R3

R1 R3

R2 R3

R1 R2Aspect 1, Aspect2 R1 R2

Protected Component
Aspect 1

Aspect 2

AA B CC

a

b

c

Fig. 5.6 Types of semantic equivalences

shown as it is the same as a dynamic stub, except that the OR-join o1 is an AND-join
() instead. An aspect marker usually has the same structure as a static stub and
is hence treated as such by the matching algorithm. An aspect marker may be a
dynamic stub and contain more than one aspect map, if two aspects are applied to
the same location in the AoUCM model and no ordering has been defined for these

5 Composing Goal and Scenario Models with the Aspect-Oriented User . . . 89

two aspects. In this case, it is undetermined which one of the two aspects executes
first but they may not execute at the same time. This semantic constraint is expressed
by the parallel branches inside a protected component in Fig. 5.6b.

The AoGRL example in Fig. 5.6b shows a chain of decompositions. It should be
possible to match a longer chain (the one on the left) in the AoGRL model against a
shorter chain (the one on the right) in the pattern. While an AoGRL decomposition
chain is neither a true equivalence nor a true refactoring operation, because a shorter
chain in the base model must not be matched against a longer chain in the pattern,
it is nevertheless discussed here as it relates to hierarchical structuring. Matching of
decomposition chains implicitly allows a series of decompositions and intentional
elements in the AoGRL model to be matched against a single decomposition in the
pattern.

Figure 5.6c covers loop unrolling, the third and last type of semantic equivalences
in AoUCM models. Loop unrolling has been discussed in detail in [8]. While the
findings of [8] could be incorporated into the AoUCM matching and composition
approach, we focus on hierarchical structuring because (1) to the best of our
knowledge this has not yet been addressed in literature, (2) it introduces additional
challenges, particularly regarding how to layout the composed model, and (3) it is a
much more common refactoring operation in AoUCM models than loop unrolling,
based on our decade of experience in creating and maintaining UCM and AoUCM
models.

In summary, the CMS example shows that interleaved composition and
semantics-based matching nicely complement each other, making it possible to
describe advanced composition rules very concisely. Furthermore, interleaved
composition allows for a single pattern to be specified in a way that may span
a large part of a system, thus avoiding fragmentation and duplication of the aspect
specification. Finally, the Communicate with Vehicle scenario may be
reorganized hierarchically by introducing new or removing existing stubs and plug-
in maps without having to change the pattern of the Communication Failure
aspect, thus ensuring that the aspect is still applied as desired. The following
refactoring operations may be performed on AoURN models without interfering
with an aspect specification:

1. Extracting a plug-in map and inlining a plug-in map (the reverse of the former).
2. Inserting/removing of a decomposition level in AoGRL models.
3. Adding/deleting of a direction arrow, an empty point, a pair of connected end and

start points, and an OR-join.

These types of operations are applicable to most modeling notations as (1) most
notations provide some form of hierarchical structuring that can benefit from
extracting/inlining as well as many notations have (2) transitive modeling operations
or (3) purely syntactical elements that do not change the meaning of the model but
are visual aids for the modeler.

With a semantics-based matching mechanism in place that takes flattened
AoUCM models into account, a first intuition is to use only the flattened model
as the basis for the semantics-based matching algorithm, thereby reducing each

90 G. Mussbacher et al.

R1-ST1-R4-E1

OF-ST2-R3-R4
OF-R2-R3-R4;

ST2-R3-R4-OJ

S1-R1-ST1-R4
S1-R1-R2-R3;

R1-R2-R3-R4;

R2-R3-R4-E1

AoUCM Model (Bi, Bii)

R2 R3

S1
R1

ST1

R4
E1

S2 E2

Pattern (Pa, Pb, Pc , Pd)

R2

S1
R3R1

ST2

R4
E1

S2 E2

OF OJ

* *

Pa

Pa

*
ST*

Pb

Pb

*
ST*

Pc

Pc/

Bii

Bi

No match

Matches for AoUCM model

Non-flattened vs. flattened AoUCM model
- matches for Pa / Pd use the flattened AoUCM model
- matches for Pb and Pc use the non-flattened AoUCM model

*

Pd

Pd

*

Bii

Bi

Fig. 5.7 Semantics-based matching of stubs

AoUCM model to its normalized form. Since the normalized form does not contain
any stubs, a pattern with a stub cannot be matched. However, there is no good
reason to exclude stubs from patterns, because a requirements engineer may want to
match stubs explicitly. Therefore, the semantics-based matching algorithm expects
a stub in the AoURN model, if a stub without a plug-in map is specified in the
pattern. If a stub is not specified or the stub in the pattern contains a plug-in map,
then the flattened model is used for the match. Therefore, a pattern that includes a
stub with a plug-in map is flattened before matching it against the AoUCM model.
Figure 5.7 gives examples of pattern matches against non-flattened and flattened
AoUCM models.

Given the above definition, the patterns Pa and Pd are matched against the
flattened AoUCM models, while Pb and Pc are matched against the non-flattened
AoUCM. For example, the flattened model of Bi is a single map consisting of a start
point S1, the four responsibilities R1, R2, R3, and R4 in a row, and an end point E1.
This model is hence matched three times by Pa and Pd (S1–R1–R2–R3; R1–R2–
R3–R4; R2–R3–R4–E1). Pc, on the other hand, matches against the non-flattened
model Bii, resulting in one match (OF-ST2-R3-R4). Note that the first and last
mappings of each match are with the gray start and end points of the pattern.

The next section covers further details of the AoURN composition mechanism.

5 Composing Goal and Scenario Models with the Aspect-Oriented User . . . 91

5.6 Composition in AoURN

Composition of aspects with an AoURN model involves the insertion of aspect
markers into the AoURN model. While this is the case for AoGRL and AoUCM
models, the mechanisms employed to achieve the insertion are quite different. The
mechanisms, however, are in line with the way aspects are specified in the two
sub-notations. In AoGRL, aspects are specified by adding tags to the model—in
AoURN terminology these are called metadata. Hence, composition for AoGRL
is also based on inserting metadata in the model. AoUCM, on the other hand,
makes use of the stub concept and views aspect markers as types of stubs. Note
that AoURN allows the composition of aspects to be ordered to resolve aspect
interactions with the help of the concern interaction graph [1], but this is outside
the scope of this chapter.

The remainder of this section first explains composition for basic AoGRL and
AoUCM composition rules in Sect. 5.6.1. This is followed by more advanced
composition rules involving interleaving in Sect. 5.6.2 and composition of the
results of enhanced matching based on semantics in Sect. 5.6.3.

5.6.1 Basic Composition

For AoUCM, aspect markers, i.e., stubs, are added to the locations in the AoUCM
model where an aspect needs to insert behavior. Plug-in bindings between the
aspect marker and the aspectual properties specify clearly what behavior needs
to be inserted. For example in Fig. 5.8a, the in-path of the aspect marker L2 is
connected to the out-path of the pointcut stub RequireLogging and the end
point logged is connected to the out-path of L2. For AoGRL, on the other hand,
metadata specifies (1) that an aspect marker has been added to an intentional element
and (2) the connection between the AoGRL model element and the pattern. For
example in Fig. 5.8b, Improve shopping experience has two metadata
items attached to it after composition. The first (aspect marker L4) identifies
that an aspect marker needs to be visualized for the element, while the second
specifies the corresponding element in the pattern, i.e., the element with ID 78
(to ref 78 match #1). Since one element may be affected by many aspects,
a unique identification number of the match is also captured in the second metadata
item.

Aspect markers in AoUCM act like traditional UCM stubs except for one
difference. In UCM, a scenario may return from a plug-in map only to the same
stub from which it arrived at the plug-in map in the first place. This is not necessarily
the case for aspect markers. Hence, aspect markers are grouped and a scenario may
continue from a plug-in map to any aspect marker in the aspect marker group. An
example for the need of aspect marker groups is the loop composition in Fig. 5.9.
The scenario may enter the plug-in map through the second aspect marker L1

92 G. Mussbacher et al.

a

Logger

log loggedlog
P

RequireLogging

Customer

selectMovie

Online Video Store

processOrder

bought

sendMovie

L1

L2

buy

L3
creditNewPoints

[!redemption]

[else]

PayOrRedeem

b

+ +

Improve
shopping

experience

Online
Video
Store Improve

advertising
strategy

P

P

P

+

+

L

Better
understand

user behavior

Better
streamline store

operations

Logging

Order Movie

Increase
sales

+

Browse
Movie

Online
Video
Store

+

+

+

Improve
advertising

strategy

L4Improve
shopping

experience
L4

Note: For illustration purposes, IDs for
references (ref) in the pattern are shown.

Improve shopping experience:
aspect marker L4
to ref 78 match #1

Improve advertising strategy:
aspect marker L4
to ref 35 match #1

Metadata
ref: 78

ref: 35

Fig. 5.8 Basic composition

a

loop A3 looped

P

R

A1

A2 R L1
b

L1

L1 metadata: map ID 15 group #1

loop A3 looped

P
A1

A2

map ID: 15

Fig. 5.9 Aspect marker groups

5 Composing Goal and Scenario Models with the Aspect-Oriented User . . . 93

and exit the plug-in map through the first aspect marker L1, if the branch with
responsibility A2 is taken. The metadata defining the aspect marker group for
the two aspect markers is map ID 15 group #1, assuming that the ID of the
plug-in map is 15. A unique identification number of the match is again captured in
the metadata item.

5.6.2 Advanced Composition: Interleaving

As an example for advanced composition, the results of applying the
Communication Failure aspect in the CMS example from Sect. 5.5 are
shown in Fig. 5.10. The composition mechanism adds five tunnel exit aspect
markers (in Fig. 5.10a, b) to the locations in the AoURN model identified
by the pattern, i.e., one for each in-path of the pointcut stub (Fig. 5.10c).

AoURN provides visual clues for aspect markers that do not have two plug-in
bindings—one from the aspect marker to the map of the aspect and another one
back. Tunnel exit aspect markers only have a plug-in binding from the map of the
aspect. Tunnel entrance aspect markers () also exist and only have a plug-in
binding to the map of the aspect. In the case of the CMS example, tunnel exit aspect
markers are sufficient because the Communication Failure scenario unfolds
as follows in the composed system. When a communication failure occurs, the
Communication Failure aspect starts at its failure start point. The system switches
to manual operation until communication is available again. When that happens, the
system determines the status of each vehicle which leads the scenario to the pointcut
stub along one of its in-paths. Each in-path is now connected to one of the tunnel
exit aspect markers (Fig. 5.10c), because the composition mechanism inserted the
aspect markers into the model and established their plug-in bindings. Depending
on the status of the vehicle, the scenario takes one of the five plug-in bindings and
continues by exiting one of the five aspect markers (Ca to Ce).

Interleaved composition also allows for more than one pointcut stub to be used
in the specification of an aspect. Consider the example in Fig. 5.11. The Pay
Informant aspect defines that before a meeting is scheduled a price needs to
be negotiated, after the meeting is scheduled an initial sum is paid, and finally after
the meeting the rest is paid.

The intention of interleaved composition is to combine two scenarios while
maintaining the partial ordering of each scenario. This is the case in Fig. 5.11.
However, the aspect could easily be specified such that the first pointcut stub
links to meet informantwhile the second one links to schedule meeting,
thus swapping the original partial ordering. In other words, the ordering of the
pointcut stubs does not reflect the ordering of the corresponding path segments in
the pattern. In the example in Fig. 5.11, this is not desirable, because it does not
make sense to pay the rest before paying an initial sum. In general, the AoUCM
composition mechanism for interleaving delivers desired results when the partial
ordering of both scenarios is respected. The AoUCM specification style for aspects,

94 G. Mussbacher et al.

c

b

to
 C

a to
 C

b
to

 C
c

to
 C

d
to

 C
e

a

F
ig

.5
.1

0
C

om
po

si
ti

on
of

co
m

m
un

ic
at

io
n

fa
il

ur
e

as
pe

ct

5 Composing Goal and Scenario Models with the Aspect-Oriented User . . . 95

Meet Informant Map

Pay Informant Map

pay

Reporter

pay initial sumnegotiate price

Schedule Meeting

P
pay rest

Meet Informant

P
paid

meet met
schedule meeting

Reporter

meet informant

P PP P

P metadata: map ID 89 group #14

schedule meeting meet informant

Fig. 5.11 Multiple pointcut
stubs in interleaved
composition

however, does not prevent the modeler from specifying aspects that violate this
constraint, but comes with a disclaimer that the composition of such aspects needs
to be thoroughly checked. The CMS example from Sect. 5.5 actually violates the
constraint. The ordering of the pattern is quite clearly not reflected in the ordering
of the pointcut stubs, since one pointcut stub links to all four path segments in the
pattern. Nevertheless, the resulting composition is as desired due to the specific
behavior of the aspect. In summary, while the AoURN approach to interleaved
composition guarantees proper interleaving of two scenarios when adhering to the
aforementioned constraint, the AoURN specification style also gives power to the
requirements engineer to go beyond the intention of interleaved composition and
allow even more advanced composition rules to be defined.

5.6.3 Advanced Composition: Semantics-Based Matching

Composition of models that use the enhanced matching mechanism based on
semantics also has to consider special cases as shown in Fig. 5.12. The root problem
with semantics-based matching is that a pattern may now be matched against
a portion of the model that spans several maps, i.e., several hierarchical levels.
The first special case involves shared plug-in maps while the second involves lost
hierarchies.

In Fig. 5.12a, the pattern is matched by the hierarchy of maps that includes
responsibility R1 but not by the hierarchy of maps that includes responsibility XYZ.
What happens when a scenario coming from the map with XYZ arrives at aspect
marker 1b? Should the scenario continue with the aspectual behavior (A2) or should
this behavior be skipped? Furthermore, consider the situation where another aspect
removes the aspect marker 1a altogether. Should the aspect marker 1b still be
available? AoURN stipulates a pragmatic solution that is consistent with regular

96 G. Mussbacher et al.

Model

R1 R2 R3

Aspect

Pattern

A2

eAsA
P

A1

R2 R4s2 e2

R3s3 e3

XYZ R5s1 e1 R1 R5s1 e1
1a

1b

1a metadata: provides group #23
1b metadata: requires group #23

Model Aspect

A2

eAsA

A1

R2 R4s2 e2

R3s3 e3

R1 R5s1 e1XYZ R5s1 e1

P

1b

1a

R1 R2 R3

Pattern

1b metadata: context 56 47

Note: For illustration purposes, IDs for definitions (def) are shown next to stubs.

def: 32

def: 47

def: 56

a

b

Fig. 5.12 Composition with shared plug-in maps and lost hierarchies

matches that do not span multiple maps. Thus, the aspect marker 1b should be
available only if the scenario arrives from the map with aspect marker 1a.

To achieve this, metadata is added to the aspect markers. All aspect markers
connected to a start point of the aspect (e.g., 1a) are tagged with the metadata
provides group N, with N being a unique number for this group of aspect markers.
All remaining aspect markers for the aspect (e.g., 1b) are tagged with the metadata
requires group N. An aspect marker with the “requires” tag is only considered
if an aspect marker with the “provides” tag was visited earlier in the scenario.
Note that the special case of shared plug-in maps also applies to patterns whose
match includes an OR-join that is not explicitly matched.

The second problematic case occurs when a replacement pointcut stub (P) is used
instead of a regular pointcut stub (Fig. 5.12b). A replacement pointcut stub indicates
that the matched model elements are to be removed from the composed model. For
example in Fig. 5.12b, when the aspect marker 1a is reached, the scenario continues
with A1 and A2 in the aspect, skipping over R1, R2, and R3 (hence, removing them
from the composed model), and then continues at aspect marker 1b, because the
end point eA is connected to the aspect marker 1b and the aspect markers 1a
and 1b belong to the same aspect marker group. Now, the problem is that the
scenario continues with the bottom-level map but important contextual information
has been lost. When the end point e3 is reached, the scenario should continue with
the mid-level map because R4 used to be after R3 in the original model. Yet, the

5 Composing Goal and Scenario Models with the Aspect-Oriented User . . . 97

scenario is not aware of the mid-level map at this point, because it never reached
the stub after R1. Therefore, the matching algorithm collects information about lost
hierarchies and attaches that information to the aspect marker 1b. For example, the
metadata context 56 47 contains the list of IDs of the stubs that defines the lost
hierarchy. With this context information, the scenario can adjust the stack of visited
maps—adding the second-level map to it—and the scenario can continue with R4
as required.

For more details on the composition algorithms, the reader is referred to [1] and
a proof-of-concept implementation in the jUCMNav tool [9].

5.7 Related Work

While many aspect-oriented modeling (AOM) techniques exist for requirements
engineering such as use cases [10, 11], viewpoints [12], problem frames [13],
and UML models [14, 15], none to the best of our knowledge addresses semantic
equivalences in their matching and composition mechanisms with the exception of
the following work in semantic-based aspect weaving. Chitchyan et al. [16] use
natural language processing to take into account English semantics when composing
textual requirements documents. A natural language-based approach could be
combined with AoURN’s matching approach as names of model elements must
be matched. For aspect-oriented modeling, Klein et al. [8] weave UML sequence
diagrams by matching semantically equivalent but syntactically different sequences.
Klein et al. give a thorough explanation on how to deal with loops but do not
address the problems related to hierarchical structuring and replacements discussed
in Sect. 5.6.3. Furthermore, this work does not address complex layout issues that
may have to be resolved when the woven end result is presented to the modeler.

Cottenier et al. [17, 18] match state machines at different levels of abstraction
by performing a static control flow analysis to find matching patterns. Patterns
are expressed with state machines at the behavioral specification level and then
matched against more complex implementation state machines while taking the
semantics of the behavioral specification into account. This orthogonal control
flow-based approach could also be combined with AoURN’s matching algorithm
for the matching of UCM models. In the context of aspect-oriented programming,
Bergmans [19] discusses the use of semantic annotations for composition filters. In
the context of aspect interactions, Mussbacher et al. [20] use goal graphs to model
and detect semantic-based interactions in aspect-oriented scenarios.

A recent taxonomy of syntactic and semantic matching mechanisms for AOM
notations [21] identifies various pattern matching techniques in the AOM context
and highlights the potential influence of approximation-based techniques from the
database research community on more sophisticated matching mechanisms.

Interleaved composition is supported by graph transformation-based approaches
such as MATA [15]. However, interleaving is restricted to one hierarchical level.
AoURN, on the other hand, allows interleaved composition to be specified across
the whole model.

98 G. Mussbacher et al.

5.8 Conclusion and Future Work

This chapter presents an overview of AoURN’s composition mechanism. AoURN
is an aspect-oriented requirements engineering language based on goal and sce-
nario modeling that extends the international standard URN. The focus of the
chapter is not the basic composition mechanism and syntax-based matching of
AoURN, but rather two advanced composition rules that deal with interleaving and
enhanced matching based on semantics. With AoURN’s interleaved composition,
two scenarios can be combined without losing sight of the overall behavior of the
original scenarios. Moreover, interleaved composition helps reduce fragmentation
and duplication in AoURN aspect specifications. Semantics-based matching, on
the other hand, allows for a class of refactoring operations to be performed on
an AoURN model without a risk of breaking the matches of an aspect’s pattern.
Interleaved composition and semantics-based matching empower the requirements
engineer to specify advanced composition rules that span the whole AoURN model
across several hierarchical levels.

The two sub-notations of AoURN also provide an opportunity to discuss and
motivate the need for tailored composition mechanisms that take a notation’s
peculiarities into account to reduce unnecessary modeling effort and improve the
reusability of an aspect.

AoURN has been applied to several case studies [1], most notably to the
Crisis Management System (CMS) community challenge problem [22, 23]. AoURN
covers sufficiently concerns at the requirements phase regardless of whether they are
crosscutting or not as long as they can be described with goals and scenarios, but
does not handle other forms of requirements such as constraints and data structures
well. A combined application of AoURN, OCL, and domain concept modeling
could improve the matching and composition capabilities of AoURN.

For future work, AoURN’s composition mechanism could be improved by taking
natural language semantics into account when matching an aspect’s pattern against
the model. Also, approximation-based techniques [21] could be employed to further
improve the performance of AoURN’s composition mechanism.

References

1. G. Mussbacher, Aspect-oriented user requirements notation, Ph.D. thesis, School of Informa-
tion Technology and Engineering, University of Ottawa, Canada, 2010

2. ITU-T (2012). User Requirements Notation (URN) – Language definition, ITU-T Recommen-
dation Z.151 (10/12), Geneva, Switzerland. http://www.itu.int/rec/T-REC-Z.151/en. Accessed
22 Oct 2012

3. M. Braem, K. Gybels, A. Kellens, W. Vanderperren, Inducing evolution-robust pointcuts, in
Second International ERCIM Workshop on Software Evolution (EVOL 2006), Lille, France,
2006

http://www.itu.int/rec/T-REC-Z.151/en

5 Composing Goal and Scenario Models with the Aspect-Oriented User . . . 99

4. A. Kellens, K. Gybels, J. Brichau, K. Mens, A model-driven pointcut language for more
robust pointcuts, in Workshop on Software Engineering Properties of Languages for Aspect
Technology (SPLAT! 2006), Bonn, Germany, 2006

5. C. Koppen, M. Stoerzer, Pcdiff: attacking the fragile pointcut problem, in First European
Interactive Workshop on Aspects in Software (EIWAS’04), Berlin, Germany, 2004

6. G. Mussbacher, D. Amyot, J. Whittle, Refactoring-safe modeling of aspect-oriented scenarios,
in Model Driven Engineering Languages and Systems, ed. by A. Schürr, B. Selic. LNCS, vol.
5795 (Springer, 2009), pp. 286–300. doi:10.1007/978-3-642-04425-0 21

7. J. Kienzle, N. Guelfi, S. Mustafiz, Crisis management systems: a case study for aspect-
oriented modeling, in Transactions on Aspect-Oriented Software Development VII (Springer,
Berlin/Heidelberg, 2010), pp. 1–22. doi:10.1007/978-3-642-16086-8 1

8. J. Klein, L. Hélouët, J.M. Jézéquel, Semantic-based weaving of scenarios, in Conference
on Aspect-Oriented Software Development (AOSD’06), Bonn, Germany, 2006, pp. 27–38.
doi:10.1145/1119655.1119662

9. jUCMNav website (2012), http://jucmnav.softwareengineering.ca/jucmnav. Accessed 22 Oct
2012

10. J. Araújo, A. Moreira, An aspectual use case driven approach, in VIII Jornadas de Ingenierı́a
de Software y Bases de Datos (JISBD 2003), Alicante, Spain, 2003, pp. 463–468

11. I. Jacobson, P.-W. Ng, Aspect-Oriented Software Development with Use Cases (Addison-
Wesley, New York, NY, 2005)

12. A. Rashid, A. Moreira, J. Araújo, Modularisation and composition of aspectual requirements,
in 2nd International Conference on Aspect Oriented Software Development (AOSD), Boston,
MA, 2003, pp. 11–20. doi:10.1145/643603.643605

13. M. Lencastre, J. Araújo, A. Moreira, J. Castro, Towards aspectual problem frames: an example.
Expert Syst. J. 25(1), 74–86 (2008). doi:10.1111/j.1468-0394.2008.00453.x

14. S. Clarke, E. Baniassad, Aspect-Oriented Analysis and Design: The Theme Approach (Addison
Wesley, New York, NY, 2005)

15. J. Whittle, P. Jayaraman, A. Elkhodary, A. Moreira, J. Araújo, MATA: a unified approach
for composing UML aspect models based on graph transformation, in Transactions on
Aspect-Oriented Software Development VI (Springer, Berlin/Heidelberg, 2009), pp. 191–237.
doi:10.1007/978-3-642-03764-1 6

16. R. Chitchyan, A. Rashid, P. Rayson, R. Waters, Semantics-based composition for aspect-
oriented requirements engineering, in Aspect-Oriented Software Development (AOSD’07),
Vancouver, BC, 2007, pp. 36–48. doi:10.1145/1218563.1218569

17. T. Cottenier, A. van den Berg, T. Elrad, Joinpoint inference from behavioral specification
to implementation, in ECOOP 2007, ed. by E. Ernst. LNCS, vol. 4609 (Springer, 2007),
pp. 476–500. doi:10.1007/978-3-540-73589-2 23

18. J. Zhang, T. Cottenier, A. van den Berg, J. Gray, Aspect composition in the Motorola aspect-
oriented modeling weaver. J. Object Technol. 6(7), 89–108 (2007). doi:10.5381/jot.2007.6.7.a4

19. L.M.J. Bergmans, Towards detection of semantic conflicts between crosscutting concerns,
in Workshop on Analysis of Aspect-Oriented Software(AAOS) at ECOOP 2003, Darmstadt,
Germany, 2003

20. G. Mussbacher, J. Whittle, D. Amyot, Modeling and detecting semantic-based interactions in
aspect-oriented scenarios. Requirements Eng. J. 15(2), 197–214 (2010). doi:10.1007/s00766-
010-0098-4

21. G. Mussbacher, D. Barone, D. Amyot, Towards a taxonomy of syntactic and semantic matching
mechanisms for aspect-oriented modeling, in 6th Workshop on System Analysis and Modelling
(SAM 2010), Oslo, Norway, 2010, pp. 241–256. doi:10.1007/978-3-642-21652-7 15

22. G. Mussbacher, D. Amyot, J. Araújo, A. Moreira, Requirements modeling with the
aspect-oriented user requirements notation (AoURN): a case study, in Transactions on
Aspect-Oriented Software Development VII (Springer, Berlin/Heidelberg, 2010), pp. 23–68.
doi:10.1007/978-3-642-16086-8 2

23. G. Mussbacher, bCMS case study: AoURN, in ReMoDD, 2011, http://www.cs.colostate.edu/
remodd/v1/content/bcms-case-study-aourn. Accessed 22 Oct 2012

http://dx.doi.org/10.1007/978-3-642-04425-0_21
http://dx.doi.org/10.1007/978-3-642-16086-8_1
http://dx.doi.org/10.1145/1119655.1119662
http://jucmnav.softwareengineering.ca/jucmnav
http://dx.doi.org/10.1145/643603.643605
http://dx.doi.org/10.1111/j.1468-0394.2008.00453.x
http://dx.doi.org/10.1007/978-3-642-03764-1_6
http://dx.doi.org/10.1145/1218563.1218569
http://dx.doi.org/10.1007/978-3-540-73589-2_23
http://dx.doi.org/10.5381/jot.2007.6.7.a4
http://dx.doi.org/10.1007/s00766-010-0098-4
http://dx.doi.org/10.1007/978-3-642-21652-7_15
http://www.cs.colostate.edu/remodd/v1/content/bcms-case-study-aourn
http://www.cs.colostate.edu/remodd/v1/content/bcms-case-study-aourn

Chapter 6
Aspect-Oriented Goal Modeling
and Composition with AOV-Graph

Lyrene Fernandes da Silva and Julio Cesar Sampaio do Prado Leite

Abstract As software complexity increases, so does the difficulty of manipulating
its models. More complex models make it more difficult to define the impact of
changes, to modify the models, or to reuse model parts in other projects. Part of the
problem is that concerns are strongly interconnected. Traditional modularization
minimizes this coupling. However, mostly, it considers only one dimension in
software artifacts (for instance classes or functions). Therefore, the concerns in other
dimensions are scattered and tangled, i.e., crosscutting. This chapter reports on the
application of goals and aspect-oriented concepts in requirements modeling. Firstly,
AOV-graph and its mechanisms to separation, composition, and visualization of
crosscutting concerns are presented and after that, we discuss AOV-graph in the
context of the Crisis Management case study.

6.1 Introduction

Requirements management is a challenge: requirements are the anchor for software
construction, requirements evolve, and are intertwined [1]. The challenge is even
greater if we consider the crosscutting nature of requirements whereby they
influence or constrain each other [2]. An instance of the crosscutting nature of
requirements is the feature interaction problem in telecommunications systems [3].

This chapter presents an approach for modeling requirements using concepts
based on goal-oriented requirements engineering [4] where the relationships among
requirements are explicitly modeled and analyzed in order to bring out their

L.F. da Silva (�)
Universidade Federal do Rio Grande do Norte, Natal, Brazil
e-mail: lyrene@dimap.ufrn.br

J.C.S. do Prado Leite
Pontifı́cia Universidade Católica do Rio de Janeiro, Rio de Janeiro, Brazil
e-mail: julio@inf.puc-rio.br

A. Moreira et al. (eds.), Aspect-Oriented Requirements Engineering,
DOI 10.1007/978-3-642-38640-4 6, © Springer-Verlag Berlin Heidelberg 2013

101

mailto:lyrene@dimap.ufrn.br
mailto:julio@inf.puc-rio.br

102 L.F. da Silva and J.C.S. do Prado Leite

crosscutting nature. To handle this crosscutting nature and overcome the complexity
arising due to explicit representation of interactions, we present a language (called
AOV-graph) and a process consisting of three activities: separation, composition,
and visualization.

The particular strength of this approach is the usage of intentional modeling,
that is, a modeling language that allows for the representation of goals, a higher
abstraction than the usual function/task one. AOV-graph represents functional and
nonfunctional requirements, exposes the interactions among requirements, and
offers a new type of relationship to modularize these interactions. Its mechanism
of composition is based on a semi-semantic strategy and it makes possible to select
many joinpoints by using regular expressions, while its visualization mechanism
can generate different and useful views for analyses of a model.

In order to make the context of crosscutting requirements more explicit, Sect. 6.2,
exemplifies the web of relations when requirements are seen through the lens
of crosscutting relationships. Section 6.3 presents AOV-graph: an aspect- and
goal-oriented requirements language, its origin, grammar, and mechanisms for
composition and visualization. Section 6.4 illustrates AOV-graph with the Crisis
Management case study. Finally, in Sect. 6.5 we discuss the limitations of the current
work and issues that we believe should be further investigated.

6.2 Motivation for AOV-Graph

Using a part of the Crisis Management System [5], we exemplify, with three
different notations, the tangled and scattered nature of the crosscutting concerns.
The notations used are (1) a use case, (2) a list of nonfunctional requirements, and
(3) a goal model.

Figure 6.1 portrays the example, with these three notations, where we can
observe some scattered and tangled functions and constraints, for instance:

1. In the use-case Capture Witness Report (Fig. 6.1a), the success scenario is
tangled with availability, persistence, real-time, multiaccess, and adaptability
nonfunctional requirements

2. The nonfunctional requirements (NFR) in the NFR list (Fig. 6.1b), are scattered
in many use cases of the CRM, for instance, Authenticate user, Assign internal
resource, Request external resource, Execute super observer mission, and others

However, these interactions (annotated in Fig. 6.1a, b) are not explicitly repre-
sented in the original CMS specification [5].

On the other hand, Fig. 6.1c presents a goal model (V-Graph) representing some
requirements and relationships between concerns of CMS, which focus on the same
requirements of Fig. 6.1a, b. In this model, gray tasks highlight Capture Witness
Report requirements and their interaction with other concerns. This type of model
makes the interactions between concerns more explicit compared to the previous
models. However, as the number of interactions increases, although this model

6 Aspect-Oriented Goal Modeling and Composition with AOV-Graph 103

REQUEST EXTERNAL
RESOURCE

Adaptability

Real time

Use Case 2: Capture Witness Report
Scope: Car Crash Crisis Management System
Primary Actor: Coordinator
Secondary Actor: PhoneCompany, SurveillanceSystem
Intention: The Coordinator intends to create a crisis record based on the information
obtained from witness.
Main Success Scenario:
Coordinator requests Witness to provide his identi cation.
1. Coordinator provides witness information1 to System as reported by the witness.
2. Coordinator informs System of location and type of crisis as reported by the witness.
In parallel to steps 2-4:

2a.1 System contacts PhoneCompany to verify witness information.
2a.2 PhoneCompany sends address/phone information to System.
2a.3 System validates information received from the PhoneCompany.

3. System provides Coordinator with a crisis-focused checklist.
4. Coordinator provides crisis information to System as reported by the witness.
5. System assigns an initial emergency level to the crisis and sets the crisis status to active.
Use case ends in success.
Extensions: ...

AVAILABILITY

PERSISTENCE

MULTI
ACCESS

ADAPTABILITY

REAL TIME

Non-functional requirements
Availability: The system shall be in operation 24 hours a day, everyday, without break,
throughout the year except for a maximum downtime of 2 hours every 30 days for
maintenance.
Adaptability: The system shall recommend alternate strategies for dealing with a crisis as
the crisis conditions change; The system shall be able to use alternate communication
channels in case of unavailability or shortage of existing channels.
Persistence: The system shall provide support for storing, updating and accessing the
information on both resolved and on-going crises.
Real time: The control centre shall receive and update the information on an on-going
crisis at intervals not exceeding 30 seconds.
Multi access: The system shall support at least 1000 witnesses calling in at a time; The
system shall support management of at least 200 missions per crisis at a time.

AUTHENTICATE
USER

ASSIGN INTERNAL
RESOURCE

EXECUTE SUPER
OBSERVER

MISSION

a

b

Crisis be
resolved

Communication
be orchestrated

Crisis information be
archived to allow
future analysis

Abnormal and
catastrofic situation

be prevented

Safety of rescue
personnel be

provided

c

Capture
[witness
report]

Security

Availability

Multiaccess

Record
[witness

info]

Validate
[witness

info]

Record
[location and
type of crisis]

Provide
[crisis focus

checklist]

Display
[video]

Request
video from
Sruveillance
system

Manage
[crisis]

Manage
[communi

cation]

Identify
[crisis]

Decide if assign
emergency level

to crisis

Decide if set the
crisis status to

active

Recommend
alternative
missions

Monitor
changes

Authenticate
[user]

Use [alternate
communication

chanels]

Availability
7x7

Persistence
[DB]Include

[data]
Exclude
[data]

Update
[data]

Select
[data]

Legend
Softgoal

Goal

Task

Contribution
Correlation

and and
and

and

and
and

and

and

and

and

and

and
and

and

+

+

+

+

+

or

+

+

+

+-

Time to
receive

info<=30s

Witness
calling=1000

Resouces be
allocated in an

effective manner

Fig. 6.1 Examples of crosscutting concerns into (a) a use case; (b) a nonfunctional requirements
list; and (c) V-graph model

simply explicitly depicts the normally hidden interactions, this type of model may
seem to be very complex.

We define a concern as any property or attribute that qualifies a system
component. These components can be data, constraints, or functions. We define

104 L.F. da Silva and J.C.S. do Prado Leite

crosscutting concerns as any concern that qualifies more than one component.
For example, security is a concern and it can be crosscutting if there is more than
one part of the system affected by this concern. Thereby, in addition to identifying
requirements, it is important to identify the interactions between them, because it
is the interactions and dependencies with other requirements that determine if a
requirement is or is not a crosscutting concern.

Below we present AOV-graph, an extension of the V-graph modeling approach
[6] and a supporting process with three activities of concern separation, composi-
tion, and visualization that help to combat the complexity of explicit representation
of crosscutting relations between concerns, while supporting separation and com-
position of crosscutting requirements.

6.3 AOV-Graph: An Aspect-Oriented Requirements
Modeling Approach

AOV-graph was defined as an instance of a strategy for crosscutting concern inte-
gration [7]. This strategy consists of a process for modularization of requirements
and a set of mechanisms for handling interactions.

6.3.1 Meta-Model to Crosscutting Concerns Integration

In this work, the process meta-model for crosscutting concerns integration consists
of three activities, called Separation, Composition and Visualization (in light gray in
Fig. 6.2). These activities are essential because they allow, respectively, separation
and modularization of the system, composition of modules to build the system, and
visualization of parts of the model and of the entire model.

Modularization is performed by an explicit description of how concerns are
related each other. This description uses concepts inherited from aspect-oriented
frameworks.

For Separation, AOV-graph and guidelines are provided in order to model
requirements considering their crosscutting nature, i.e., to make explicit which
requirements are scattered and how are they tangled. This information is recorded
using a new notation for the crosscutting relationship type. By modeling the
crosscutting concerns explicitly, we are able to observe them, and therefore, to
analyze how the requirements interact.

Composition is an automatic process that combines the requirements modeled
separately. This combination is made by interpreting crosscutting relationships
and applying composition rules. Composition rules define how the information in
crosscutting relationships is to be transformed, i.e., it indicates their semantics,

6 Aspect-Oriented Goal Modeling and Composition with AOV-Graph 105

V-graph

AOV-graph

Joinpoint
model Core model

AO Strategy for
modeling

requirementsComposition
Mechanism

Composition
Rules

Visualization
Mechanism

Transformatio
n rules

Guidelines for
using AOV-

graph depend of

depend of depend of

useuse

define

define

define

define

Separation

VisualizationComposition

Fig. 6.2 Components used on integration of crosscutting concerns from [8, 9]

making their propagation possible. This process is similar to the “Weaver” of
aspect-oriented programming languages [10], whose objective is to mix components
and aspects.

Composition generates an integrated model. This model and the information
about which views can be extracted from it are the inputs for the visualization
activity. The visualization activity provides partial and complete views on the
integrated model, making it possible to understand the system concerns individually
or in conjunction.

In summary, this strategy provides a new way of thinking about, modeling
and visualizing requirements. For this purpose, see Fig. 6.2, the composition
and visualization mechanisms use composition and transformation rules, and they
depend on the constructs of AOV-graph. Thereby, the separation, composition,
and visualization are centered in AOV-graph, which consists of a Requirement
Language, V-graph; a Core Model that represents crosscutting relationships; and
a Joinpoint Model that defines how V-graph and the Core Model are related.

6.3.2 Separation of Crosscutting Concerns

As we discussed above, separation of crosscutting concerns is centered in the AOV-
graph language. AOV-graph is an extension of V-graph, as it adds a crosscutting
relationship to the notion of V-graph. The AOV-graph grammar and some guidelines
for modeling are presented below.

106 L.F. da Silva and J.C.S. do Prado Leite

Goal

Task

Softgoalcorrelation

contributioncontribution

Contributions and correlations
Link and or xor make help unknow hurt break
Contribution Y Y Y Y Y Y Y Y
Correlation N N N Y Y Y Y Y

Fig. 6.3 V-graph [6]

6.3.2.1 AOV-Graph Language

The V-graph [6] is a type of goal model that represents functional and nonfunctional
requirements through decomposition trees [11], see Fig. 6.3. It is defined by goals,
softgoals, tasks, and the following decomposition relationships—contribution links
(and, or, make, help, unknown, hurt, break) and correlation links (make, help,
unknown, hurt, break). Each element has a type and topics. The type defines
a generic functional or nonfunctional requirement, for example, Security and
Management. The topic defines the context of that element, for example, user and
communication.

Softgoals, goals, and tasks represent requirements on three abstraction levels.
This is important because in the same model we can represent reasons and opera-
tions, the context and how each element contributes to achieve the system goals.
Furthermore, there are useful results in goal modeling, as one can immediately
use previous work on: how to analyze obstacles to the satisfaction of a goal [12];
how to qualitatively analyze the relationships in goal models [4]; how to analyze
variability [13]; how to analyze conflicts among goals through a propagation
mechanism of labels [14]; how to identify aspects in goal models [6]; and how to
provide goal reuse [15].

AOV-graph grammar and its joinpont and core models are explained as follows.
Figure 6.4 shows the AOV-graph grammar in BNF notation.

Goal model: Each goal model consists of name, identifier, and a set of components
and relationships (line 2 in Fig. 6.4). The components can be softgoals,
goals, and tasks and each one of them consists of name, type, topic,
decomposition label, and a set of components and relationships (lines 4–6 in
Fig. 6.4). This decomposition label represents contribution relationships between
the contributing component and its parent, and can assume labels and, or, make,
help, unknown, hurt, and break (line 12 in Fig. 6.4). Relationships are defined
by correlationRel, representing correlation relationships and crosscuttingRel,
representing crosscutting relationships (lines 10 and 17 in Fig. 6.4). Each
correlationRel is defined by a correlation label, source, and target. Contributions
and correlations are one-to-one relationships.

Joinpoint: In AOV-graph, joinpoints are elements of types softgoal, goal, and task
(line 16 in Fig. 6.4). Instances of these types can be referred as pointcuts and
they can be identified by composition mechanism: directly by their names or
identifiers; or indirectly by regular expressions defining name, type, or topic.

6 Aspect-Oriented Goal Modeling and Composition with AOV-Graph 107

1 <aspect_oriented_model> := <goal_model>
2 <goal_model> := goal_model (<name>; <id>){<component> <relationship>} | <goal_model>
<goal_model>
3 <component> := <softgoal> | <goal> | <task> | <softgoal_ref> | <goal_ref> | <task_ref> |
<new_element_type> | < component > < component >
4 <softgoal>:=softgoal(<name>;<softgoal_id>;<decomposition_label>;(<type>); (<top-ic>))
{<component><relationship>}
5 <goal> := goal (<name>; <goal_id>; <decomposition_label> ; (<type>) ; (<topic>))
{<component><relationship>}
6 <task> := task (<name>; <task_id>; <decomposition_label> ; (<type>) (<topic>))
{<component><relationship>}
7 <topic> := <name> | <topic>; <topic>
8 <type> := <name> | <type>; <type>
9 <relationship> := <correlationRel> | <crosscuttingRel> | <relationship> <relation-ship>
10 <correlationRel> := correlation <correlation_label> {source=<component>
target=<component >}
11 <correlation_label> := break | hurt | unknown | help | make
12 <decomposition_label>:=and | or | xor | break | hurt | unknown | help | make
13 <goal_ref> := goal_ref = <goal_id> <decomposition_label>
14 <softgoal_ref> := softgoal_ref = <softgoal_id> <decomposition_label>
15 <task_ref> := task_ref = <task_id> <decomposition_label>
16 <joinpoint> := <softgoal_ref> | <goal_ref> | <task_ref>
17 <crosscuttingRel> := crosscutting {source=<joinpoint>
<pointcut><advice><intertype_declaration>}
18 <pointcut> := pointcut (<name>; <pointcut_id>) : <pointcut_expression> | <pointcut> <pointcut>
19 <pointcut_expression> := <operand> | not <operand> | <pointcut_expression> and
<pointcut_expression> | <pointcut_expression> or <pointcut_expression>
20 <operand> := <primitive> (<joinpoint>) | <primitive> (<regular_expression>)
21 <primitive> := include | substitute
22 <regular_expression> := <value>; "<joinpoint>"; <atribute_type>; <path>
23 <atribute_type> := id | name | type | topic
24 <advice> := advice <advice_type>: <a_it_expression> {<advice_body>} | <advice> <advice>
25 <advice_type> := after | before | around
26 <a_it_expression> := <pointcut_id> | not <pointcut_id> | <a_it_expression> and <a_it_expression> |
<a_it_expression> or <a_it_expression>
27 <intertype_declaration> := intertype <intertype_type>: <a_it_expression>
{<intertype_declaration_body>} | <intertype_declaration> <intertype_declaration>
28 <intertype_type> := attribute | element
29 <advice_body> := <joinpoint> | <advice_body>; <advice_body>
30 <intertype_declaration_body> := new_element_type {<new_element_type>} |
<joinpoint> | <intertype_declaration_body> ; <intertype_declaration_body>
31 <new_element_type> := <name>=<value> | <new_element_type>; <new_element_type>
32 <text> := <letter> | <digit>
33 <name> := <text>
34 <value>:=<text>
35 <path> :=<text>
36 <task_id> := <text>
37 <softgoal_id> := <text>
38 <goal_id> := <text>
39 <pointcut_id> := <text>

Fig. 6.4 AOV-graph Grammar

Instances of goal, softgoal, and task are also used in the description of advice
and intertype declarations bodies. Furthermore, since these types have a
decomposition label attribute (lines 13–15 in Fig. 6.4), it is possible to define
in advice and in intertype declarations which will be the labels of the new
relationships created by the composition mechanism.

CrosscuttingRel: Although the concept of a crosscutting relationship is based
on aspects of AspectJ [16], aspects are first-order components to represent

108 L.F. da Silva and J.C.S. do Prado Leite

crosscutting concerns while crosscutting relationships (crosscuttingRel) are not
first-order elements and only represent how crosscutting concerns are related.
We choose to define a type of relationship in opposition to a first-order
abstraction because:

• Crosscutting relationships are less intrusive than aspects because they are
not another abstraction to model requirements; therefore, the techniques and
guidelines used by V-graph can remain unchanged.

• With crosscutting relationships, the identification and description of informa-
tion about how a concern is crosscutting can be postponed until interactions
between requirements are known and then they can be substituted by a cross-
cutting relationship, without having to change the structure and organization
of requirements. This characterizes a late binding approach, as opposed to an
early binding approach.

• Since each concern is represented in the same way (by first-order elements
of AOV-graph), it is easier to reuse concerns that in some projects are
crosscutting, whereas in others they are not. We consider that one concern
can be crosscutting or not, depending on its context and kind of modeling
language.

• With crosscutting relationships, information about “what” is crosscutting,
represented by elements of AOV-graph, is separated from information about
“how” it is crosscutting, represented by crosscutting relationship.

Each crosscuttingRel is described by pointcuts, advice, and intertype declara-
tions (line 17 in Fig. 6.4). These elements are associated to the types defined in the
joinpoints. Next, we describe the semantics of these elements in AOV-graph.

• Pointcuts—Pointcuts can refer to any element whose types are defined in the
joinpoint model (i.e., softgoal, goal, and task). In pointcuts, operator OR states
that if the operands refer to the children of the same parent then only one operand
will be changed, while operator AND states that every operand will be equally
affected, and operator NOT excludes operands reported in the pointcut.

• Advice—Advice defines which elements of the source model are scattered and
tangled at the pointcuts. This information is used by the composition mechanism
in order to include or exclude relationships in an AOV-graph model. In the
AOV-graph, advice can be one of the three types: before, after, or around.
Since V-graph models do not model sequence of actions, but rather follow a
top-down or left-right order, we use these types of advice to define (1) before—
elements are inserted before pointcuts as a decomposition of their parent; (2)
around—elements are inserted as a decomposition of the affected pointcuts; and
(3) after—elements are inserted after pointcuts as a decomposition of its parent.
Although the before and after types generate elements in the same point in the
tree structure, they can be used to analyze how the requirements are coupled.

• Intertype declarations—Intertype declarations are used in order to change the
structure of elements in the goal model, i.e., new goals, softgoals, tasks, and
attributes can be created and scattered for many jointpoints in accordance with

6 Aspect-Oriented Goal Modeling and Composition with AOV-Graph 109

crosscutting (source = Persistence){
pointcut (p1): include (Record.*)
advice (around): p1 {task_ref=(Include [data]; and;T3.1;)}
intertype declaration (element): p1 { task = (Verify if [data] exists already; T3.5; and) }}

Fig. 6.5 Example of crosscutting relationship

some criteria. For example, it would be possible to create an attribute actor to
indicate which stakeholders are interested in which requirements.

Figure 6.5 illustrates an example of crosscutting relationship, which defines
one pointcut using regular expression (line 2), one around advice (line 3), and
one intertype declaration element (line 4). The pointcut refers to every (denoted
by *) goal, softgoal, and task starting with “Record” string, and in each one of
these elements two tasks will be added: Include [data] and Verify if [data] exists
already. These two tasks are operationalizations of Persistence (defined in first line
of Fig. 6.5); they have a generic context (specified by the word in brackets) in order
to be applied to any type of data (data).

6.3.2.2 Guidelines for Concerns Modularization

With AOV-graph, concerns are modeled as a graph of goals, softgoals and tasks.
As a result of interactions among these concerns, the engineer can decide to create
crosscutting relationships. Although each graph or sub graph can be considered as
a concern, it is recommended that the separation should be done by modeling each
concern as a distinct goal model rather than by a sub-tree, mainly when a concern
presents:

1. High complexity—it involves many variables and it is difficult to analyze all its
parts at the same time; or

2. It can potentially be used (reused) in other domains; or
3. It is apparently independent of the others—it should have high cohesion and low

coupling1

Likewise, in AOV-graph, it is recommended to use crosscutting relationships
when a concern:

1. Is repeated many times in the model, or it contributes to satisfaction of many
other concerns, representing the scattering problem; or

2. Contributes for satisfaction of concerns in distinct tree (separated goal models),
representing the tangling problem.

1The usual heuristics of software design can be applied in this context: we observe if the concept
has wholeness, that is, its contents are enough to explain it and nothing more, thus it is cohesive;
and we also observe that information exchanged with other entities (integration) is performed
without exposing the concept itself, so that interfaces to other entities are not intrusive to the
concept.

110 L.F. da Silva and J.C.S. do Prado Leite

Advice and intertype declaration group tasks, goals, and softgoals that affect
one or several pointcuts. Therefore, the more elements are grouped in an advice
or intertype declaration, the better it is to use crosscutting relationships. That is,
when crosscutting relationships are used, the quantity of relationships that has to
be individually defined decreases. Consequently, the visual representations of the
model are better than it would be without crosscutting relationships, and it is also
easier to manipulate such models.

6.3.3 Composition of Crosscutting Concerns

By using crosscutting relationships, we decrease the number of individually defined
relationships (contributions) between goals, softgoals, and tasks because each
crosscutting relationship “modularizes” several interactions which otherwise will be
repeated in order to associate the same concern (source) to many elements (target).
Therefore, pointcuts group points that are affected in the same way, while advice
and intertype declarations group behaviors or structures that are repeated in several
points. For instance, Fig. 6.5 presents a crosscutting relationship, in which the
source is Persistence and the target are all tasks starting with “Record” string, which
may be represented by a one-to-many relationship before composition. However,
this relationship defines, by using pointcuts, advice, and intertype declarations, a
many-to-many relation, since, for example, there is a contribution between each one
of tasks in advice and each pointcut.

Composition rules determine how the composition mechanism transforms an
input model into an integrated model; they take into account the semantics of the
constructs of crosscutting relationships and the syntax of the AOV-graph.

Table 6.1 presents the composition rules created for AOV-graph. There are
two actions specified in crosscutting relationships by the primitives include and
substitute. The combination of operators, primitives, advice types, and intertype
declaration types determines which transformations are to be made at each pointcut.

Figure 6.6 presents a composition example (a) describes an input goal model,
(b) defines a crosscutting relationship, and (c) describes the result of the composition
process. In Fig. 6.6c, task-refs in bold are the elements added by composition and
described by advice and intertype declarations in Fig. 6.6b.

6.3.4 Visualization of Crosscutting Concerns

During the requirements definition, as well as the design process, i.e., during the
elaboration of solutions, the developer needs to be able to obtain different views on
the base model in order to analyze the solutions created from different viewpoints
and perspectives.

Therefore, a visualization mechanism is fundamental in facilitating requirements
modeling. An automatic mechanism for generation of views can accelerate the

6 Aspect-Oriented Goal Modeling and Composition with AOV-Graph 111

Table 6.1 Composition rules

Operator Semantic
AND Affect all operands
OR Affect only one of operands if it has the same parent
NOT Exclude an operand of set of points to be affected

Primitive Type of Intertype
declarations or advice Semantic

Include

Advice before Include the elements defined in the advice body BEFORE
the pointcut as children of its parent element

Advice after Include the elements defined in the advice body AFTER the
pointcut, as children of its parent element

Advice around Include the elements defined in advice body as children of
the pointcut

Intertype declaration
element/attribute

Include the elements defined in intertype body into the
source element and into the pointcut

Substitute

Advice
Before/around/after

Substitute the pointcut for elements defined in advice body

Intertype declaration
element/attribute

Include the elements defined in intertype body into the
source element and into the pointcut

crosscutting (source=Mobility){
poitcut (p2): include (Determinate safe operating distances

and perimeter) and include (Monitor [weather]) and
include(Monitor [criminal activity]) and include (Monitor
[terrain conditions])

advice (around): p2 {
task_ref = (Provide [location sensitive info];and;T4.2;)
task_ref=(Access [maps, terrain and weather conditions

and routes];and;T4.4;)
}}

goal_model (Safety; GM5) {
sofgoal Safety (and; S5;) {

task Monitor [emissions of crisis] (and; T5.1;) {
task_ref = (Provide [location sensitive info];and;T4.2;)
task_ref=(Access [maps, terrain and weather conditions and routes];and;T4.4;)}

task Determinate [safe operating distances and perimeter (and; T5.2;){
task_ref = (Provide [location sensitive info];and;T4.2;)
task_ref=(Access [maps, terrain and weather conditions and routes];and;T4.4;)}

task Monitor [weather] (and; T5.3){
task_ref = (Provide [location sensitive info];and;T4.2;)
task_ref=(Access [maps, terrain and weather conditions and routes];and;T4.4;)}

task Monitor [criminal activity] (and; T5.4;){
task_ref = (Provide [location sensitive info];and;T4.2;)
task_ref=(Access [maps, terrain and weather conditions and routes];and;T4.4;)}

task Monitor [terrain conditions] (and; T5.5;){
task_ref = (Provide [location sensitive info];and;T4.2;)
task_ref=(Access [maps, terrain and weather conditions and routes];and;T4.4;)}

}}...

goal_model (Safety; GM5) {
sofgoal Safety (and; S5;) {

task Monitor [emissions of crisis] (and; T5.1;) {}
task Determinate [safe operating distances and perimeter

(and; T5.2;){}
task Monitor [weather] (and; T5.3){}
task Monitor [criminal activity] (and; T5.4;){}
task Monitor [terrain conditions] (and; T5.5;){}

}}...

a b

c

Fig. 6.6 Example of composition

modeling process. Since views deal with scoping, they are instrumental in dealing
with complex models. Therefore, the developer can analyze the correctness and
completeness of one concern or a set of concerns at a time.

112 L.F. da Silva and J.C.S. do Prado Leite

We have defined a set of views for the AOV-graph. Such views are classified as
(1) service and (2) model views.

Service views represent parts of the system that complement each other, for
instance, security view, functional requirements view, persistence view, and so on.
They are partial views, focusing on one or a subset of concerns at a time.

Model view is a representation where we can explicitly model functional and
nonfunctional requirements using softgoals, goals, and tasks. This is its dominant
decomposition manner, an intention-oriented decomposition. Moreover, hierarchy
and topics of the AOV-graph provide new perspectives of the system, based on, for
example, situations and data. Furthermore, relationships between goals, softgoals,
and tasks provide a perspective of interaction or traceability and so on. Using this
implicit knowledge, rules to transform the information from an AOV-graph into dif-
ferent models have been defined, such as architectural specifications [17], scenarios,
features models [18], class diagrams, and entity-relationship models [8, 9].

View as services or as models are not disjointed categories, i.e., we also can
generate views as models for one limited set of services.

6.4 AOV-Graph in Action

Here, we illustrate AOV-graph2 by using Crisis Management case study [5].
Although CMS document defines artifacts as, requirements, features models, and
architecture, we use only requirements and use cases to create an AOV-graph
model of CMS. These sections define 6 functional requirements, 11 nonfunctional
requirements, and 10 use cases. Interpreting and modeling the CMS requirements
as a goal-oriented model resulted in a graph whose complexity is a direct result of
modeling the requirements interaction in an explicit way, you can see the complete
graph in [21], and Fig. 6.9 in Appendix gives a general idea of how complex these
interactions can become. Next, some views of this graph are discussed.

6.4.1 Crisis Management System AOV-Graph

We applied the heuristics defined in Sect. 6.3.2.2 to the given information sources
(functional requirements, nonfunctional requirements, and use cases). The full
model (attached in Appendix) is centered on the goal of “Crisis be resolved.”
We used the available CMS materials to modularize related goals and softgoal and
used the task concept to provide the fine detail. However, the point that this exercise
aims to stress is the fact that we have explicitly mapped the relationships among
requirements, that is, their interaction.

2AOV-graph has been also applied to other case studies [18–20].

6 Aspect-Oriented Goal Modeling and Composition with AOV-Graph 113

Figure 6.7a shows a high-level abstraction view of the correlation between CMS
goals (such as Crisis be resolved, Communication be orchestrated, Safety of rescue
personnel be provided, Crisis information be archived to allow future analysis)
and some of its nonfunctional requirements (Reliability, Safety, Security, Mobility,
Multi access, Availability, Adaptability, Accuracy, Real time, Persistence, Logging).
By definition, each correlation indicates that there is some task contributing to both,
the correlated goal and softgoal.

CMS functional requirements and each nonfunctional requirement were modeled
as separated goal models, for instance, in Fig. 6.6a, is presented the goal model
about Safety; the graphical representation of this goal model can be seen in Fig. 6.9
in Appendix, where each cluster (represented by rectangle) portrays a distinct
model. We then modeled their interactions, using contributions, correlations, and
crosscutting relationships. Crosscutting relationships were defined when goals,
softgoals, and tasks affected different points in the same model or in distinct models,
indicating scattered and tangled information (for instance in Fig. 6.7d the task
Receive [final mission report] contributes to Execute [rescue mission] and three
other tasks, indicating that it is scattered).

Figure 6.7b presents a small example of CMS tasks, which involves manage crisis
and missions. A description of a crosscutting relationship from Fig. 6.7b is shown
in Fig. 6.7c stating that in order to execute any type of mission, it is necessary
to perform some tasks of monitoring. The composed AOV-graph model for this
relationship is showed in Fig. 6.7d, providing contributions from each subtask of
Monitor (mission) to all kind of missions to be executed.

This case study contains five other crosscutting relationships: from Mobility to
Safety, from Logging to Monitor (crisis), from Safety to Monitor (crisis), from
Manage (crisis) to some softgoals, and from Adaptability to Manage (crisis),
presented in Fig. 6.8. These crosscutting relationships are not explained here for
space reasons.

6.4.2 Observations from the Crisis Management Case Study

Crisis Management AOV-graph model is comprised of 27 softgoals, 6 goals, and 79
tasks, see Table 6.2. These elements were modularized in 12 goal models, which
refer to Crisis Management, Reliability, Safety, Security, Mobility, Multiaccess,
Availability, Adaptability, Accuracy, Real time, Persistence, and Logging.

After composition, 48 contributions were generated; this represents an increase
of 44.44 % on the total of contributions. The reasons for that are believed to be:

1. Scattering of some elements, since they are operationalizations of other elements.
For instance, in order to execute any type of mission, tasks associated with the
beginning and the end of mission are necessary.

2. Tangling of some concerns, since in order to attain one of them other concerns
are involved. For instance, in order to Monitor [mission], the tasks named
Monitor [weather], Monitor [terrain], and Monitor [criminal activity] need to
be achieved.

114 L.F. da Silva and J.C.S. do Prado Leite

Manage
[mission]

Execute
[mission]

Execute [helicopter transportation mission]
Manage
[crisis]

Manage
[access]

Manage
[communic

ation]

Manage
[resource]

Execute [rescue mission]

Execute [Super Observer mission]

Execute [remove obstacle mission]

Monitor
[mission]

Create
[mission]Identify

[crisis]

Receive [notification of arrival at mission site]

Receive [notification of departure at mission
site]

Receive [updating on the mission status]

Receive [final mission report]

Inform of [relevant changes to mission]

or

and
or

or

and
and
and

and
and

and

and

and

and
and

and

and
and

cross

b

a

...

...

c crosscutting (source = Monitor [mission] (T3)){
pointcut (P1): include(Execute.*) and not include(Execute [mission])
advice (around): P1{
task_ref = (Receive [notification of arrival at mission site]);
task_ref = (Receive [notification of departure at mission site]);
task_ref = (Receive [updating on the mission status]);
task_ref = (Receive [final mission report]);
task_ref = (Inform [relevant changes to mission]);

}}

d

Manage
[mission]

Execute
[mission]

Execute [helicopter
transportation mission]

Manage
[crisis]

Manage
[access]

Manage
[communic

ation]

Manage
[resource]

Execute [rescue
mission]

Execute [Super
Observer mission]

Execute [remove obstacle
mission]

Monitor
[mission]

Create
[mission]Identify

[crisis]

Receive [notification of
arrival at mission site]

Receive [notification of
departure at mission site]

Receive [updating on
the mission status]

Receive [final
mission report]

Inform of [relevant
changes to mission]

or

and
or

or

and

andand

and
and

and

and

and

and
and

and

and
and

cross

...

...

Security

Availability

Real time

Persistence

Adaptability

Risk of
explosion

Mobility

Accuracy

Multi
access

Reliability

Safety

Criminal
case

Strike

VIP victms

Severe weather
conditions

+

+

+

+

+
+

+

- -

-
-

-

and

Crisis be
resolved

Manage
[crisis]

Communication
be orchestrated

Resouces be
allocated in an

effective manner
Crisis information be

archived to allow
future analysisAbnormal and

catastrofic situation
be preventedSafety of rescue

personnel be
provided+

+
+

+
+ +

+

+

+
+

+

+

Legend
Softgoal

Goal

Task

Contribution
Correlation
Crosscutting

Statistic
logging

and

Fig. 6.7 CMS views: (a) correlations between CMS goals and softgoals; (b) some of CMS tasks
and a crosscutting relationship; (c) description of the crosscutting relationship showed in (b); and
(d) AOV-graph of (b) after composition

6 Aspect-Oriented Goal Modeling and Composition with AOV-Graph 115

crosscutting (source=Mobility){
pointcut (p2): include (Determinate safe operating distances and perimeter) and

include (Monitor [weather]) and include(Monitor [criminal activity]) and include (Monitor
[terrain conditions])
advice (around): p2 {

task_ref = Provide [location sensitive info];
task_ref=Access [maps, terrain and weather conditions and routes];}}

crosscutting (source=Logging){
pointcut (p3): include (Receive [notification.*) and include(Receive [final mission report])

advice (around): p3 { task_ref = Record info for logging; }}

crosscutting (source=Safety){
pointcut (p4): include (Monitor [mission])
advice (around): p4 {

task_ref = Monitor [weather];
task_ref = Monitor [criminal activity];
task_ref = Monitor [terrain conditions];
task_ref = Determinate safe operating distances and perimeter;}}

crosscutting (source=Manage [crisis]){
pointcut (p5): include (Reliability [communication]) and include (Real time) and

include (Multi access) and include (Accuracy) an include (Use [alternate communication
channels])
advice (around): p5 {

task_ref = Manage [communication];}}

crosscutting (source=Adaptability){
pointcut (p6): include (Inform of [relevant changes to mission])
pointcut (p7): include(Provide [crisis focus checklist])
advice (around): p6 and p7{

task_ref = Manage [changes];
task_ref = Recommend [alternate missions];}

advice (around): p6 { task_ref = Recommend [alternate resources];}}

Fig. 6.8 CMS’ crosscutting relationships

Table 6.2 Statistics about crisis management case study

Elements Quantity before composition Quantity after composition

Goals 6 6
Sofgoals 27 27
Tasks 79 79
Crosscutting relationships 6 6
Correlations 20 20
Contributions 108 156

If we consider only one view with the twelve 12 models together (showed in
Fig. 6.10 in Appendix), this tangling and scattering makes it difficult to visualize,
model, and analyze them. Furthermore, if no automatic visualization mechanism is
used, the work for writing and maintaining these models is enormous.

116 L.F. da Silva and J.C.S. do Prado Leite

This case study helps to illustrate how we use AOV-graph to separate, compound,
and visualize concerns, helping us to analyze the system requirements. However,
due to the nature of this case study, some features of AOV-graph have not been
explored. These are negative contributions and correlations, primitive substitute,
before and after advice types, and attribute intertype declaration.

6.5 Final Remarks

This chapter presented AOV-graph, a strategy to deal with the scattering and
tangling problems in goal models. This strategy is based on the idea that the
crosscutting nature of concerns comes from interaction between them. A given
concern can be crosscutting in some context and non-crosscutting in other contexts.
Therefore, this strategy contributes to requirements engineering by:

1. Defining a crosscutting relationship which modularizes interactions, helping to
deal with system complexity

2. Providing composition and visualization mechanisms, which help to analyze and
model the requirements

Although this approach helps to address the modularization of concerns there are
some limitations and challenges:

1. Sophisticated tools are necessary to provide separation, composition, and
visualization. Reqsys [18] is a tool to analyze if an AOV-graph specification is
syntactically correct, however, it does not include graphical edition of AOV-graph
models, interaction with the generated views, neither are all of the parameters of
composition defined.

2. AOV-graph only provides partial semantic composition. As showed by related
research [22], semantic composition provides a better modularization than
syntactic composition. Furthermore, we believe that other composition operators
should be investigated, for instance, mechanisms to describe the sequence of
compositions and primitives such as “merge” and “overlap.”

3. There is a need to trace crosscutting concerns in requirements from and to other
activities of development process.

4. Also experimentation using AOV-graph and traditional approaches, in parallel,
with well-defined metrics is important to better evaluate this and other
approaches. Some initiatives in this context have been conducted [19, 22] but
each approach is yet only used by its authors.

A.1 Appendix

6 Aspect-Oriented Goal Modeling and Composition with AOV-Graph 117

F
ig

.6
.9

A
O

V
-g

ra
ph

be
fo

re
co

m
po

si
ti

on
[2

1]

118 L.F. da Silva and J.C.S. do Prado Leite

F
ig

.6
.1

0
A

O
V

-g
ra

ph
af

te
r

co
m

po
si

ti
on

[2
1]

6 Aspect-Oriented Goal Modeling and Composition with AOV-Graph 119

References

1. W.N. Robinson, S.D. Pawlowski, V. Volkov, Requirements interaction management. ACM
Comput. Surv. 35(2), 132–190 (2003)

2. B. Tekinerdoğan, A. Moreira, J. Araújo, P. Clements, Early aspects: aspect-oriented require-
ments engineering and architecture design, in Proceedings of the Early Aspects Workshop at
AOSD, ed. by B. Tekinerdoğan, A. Moreira, J. Araújo, P. Clements, 2004, pp. 3–14

3. M. Jackson, P. Zave, Distributed feature composition: a virtual architecture fortelecommunica-
tions services. IEEE Trans. Softw. Eng. 24(10), 831–847 (1998)

4. L. Chung et al., Non-functional Requirements in Software Engineering (Kluwer Academic,
Boston, MA, 2000)

5. J. Kienzle, N. Guelfi, S. Mustafiz, Crisis management systems a case study for aspect-oriented
modeling. Resource document. TAOSD Special Issue (2009), http://www.cs.mcgill.ca/�joerg/
taosd/TAOSD/TAOSD files/AOM Case Study.pdf. Accessed 26 Aug 2011

6. Y. Yu, J. Leite, J. Mylopoulos, From goals to aspects: discovering aspects from requirements
goal models, in Proceedings of the 12th IEEE International Symposium on Requirements
Engineering, ed. by N. Maiden, 2004, pp. 38–47

7. L.F. Silva, J.C.S.P. Leite, An aspect-oriented approach to model requirements, in Proceedings
of the Requirements Engineering Doctoral Consortium, 13th IEEE International Requirements
Engineering Conference, ed. by N. Day, Paris, France, 2005

8. L.F. Silva, An aspect-oriented strategy for requirements modeling (in Portuguese), Theses,
Pontificia Universidade Católica do Rio de Janeiro, 2006, http://www.2.dbd.puc-rio.
br/pergamum/biblioteca/php/mostrateses.php?open=1&arqtese=0210666 06 Indice.html.
Accessed 26 Aug 2011

9. L.F. Silva, J.C.S.P. Leite, Generating requirements views: a transformation-driven approach,
in Electronic Communications of the East: 3rd Workshop on Software Evolution Through
Transformations, ed. by R. Heckel, J. Favre, T. Mens. ISSN 1863–212, vol. 3, 1–14, 2006,
http://www.journal.ub.tu-berlin.de/eceasst/issue/view/3. Accessed 26 Aug 2011

10. G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, W. Griswold, An overview of
Aspectj, in Proceedings of the European Conference On Object-Oriented Programming, ed.
by J.L. Knudsen, 2001, pp. 327–254

11. J. Mylopoulos, L. Chung, B. Nixon, Representing and using nonfunctional requirements:
a process-oriented approach. IEEE Trans. Softw. Eng. 18(6), 483–497 (1992)

12. A. Lamsweerde, E. Letier, Handling obstacles in goal-oriented requirements engineering. IEEE
Trans. Softw. Eng. 26(10), 978–1005 (2000)

13. B. Gonzalez, M. Laguna, J.C.S.P. Leite, J. Mylopoulos, Visual variability analysis with
goal models, in Proceedings of the 12th IEEE International Symposium on Requirements
Engineering, ed. by N. Maiden, 2004, pp. 198–207

14. P. Giorgini et al., Reasoning with goal models, in Proceedings of the 21st International
Conference on Conceptual Modelling, ed. by S. Spaccapietra, S.T. March, Y. Kambayashi,
2002, pp. 167–181

15. J.C.S.P. Leite, Y. Yu, L. Liu, E.S.K. Yu, J. Mylopoulos, Quality-based software reuse,
in Proceedings of the Conference on Advanced Information Systems Engineering, ed. by
O. Pastor, J. Falcão e Cunha. LNCS, vol. 3520 (Springer, 2005), pp. 535–550

16. Aspectj (2011), Aspectj Project, http://www.eclipse.org/aspectj/. Accessed 26 Aug 2011
17. L.F. Silva, T.V. Batista, A. Garcia, A.L. Medeiros, L. Minora, On the symbiosis of aspect-

oriented requirements and architectural descriptions, in Proceedings of the 10th International
Conference on Early Aspects: Current Challenges and Future Directions, ed. by EDITORES,
2007, pp. 75–93

18. L. Santos, L.F. Silva, T. Batista, On the integration of the feature model and Pl-Aovgraph,
in Proceedings of the 2011 International Workshop on Early Aspects, ed. by EDITORES, 2011,
pp. 31–36

http://www.cs.mcgill.ca/~joerg/taosd/TAOSD/TAOSD_files/AOM_Case_Study.pdf
http://www.cs.mcgill.ca/~joerg/taosd/TAOSD/TAOSD_files/AOM_Case_Study.pdf
http://www.2.dbd.puc-rio.br/pergamum/biblioteca/php/mostrateses.php?open=1&arqtese=0210666_06_Indice.html
http://www.2.dbd.puc-rio.br/pergamum/biblioteca/php/mostrateses.php?open=1&arqtese=0210666_06_Indice.html
http://www.journal.ub.tu-berlin.de/eceasst/issue/view/3
http://www.eclipse.org/aspectj/

120 L.F. da Silva and J.C.S. do Prado Leite

19. P. Greenwood et al., On the contributions of an end-to-end AOSD Testbed, in Proceedings of
the Workshop in Aspect-Oriented Requirements Engineering and Architecture Design at ICSE,
ed. by EDITORES, 2007, p. 8

20. E. Figueiredo et al., Detecting architecture instabilities with concern traces: an exploratory
study, in Proceedings of the WICSA/ECSA, ed. by EDITORES, 2009, pp. 261–264

21. L.F. Silva, CMS AOVgraph, http://https://sites.google.com/site/lyrene/. Accessed 24 Apr 2013
22. R. Chitchyan, P. Greenwood, A. Sampaio, A. Rashid, A. Garcia, L. Silva, Semantic vs.

syntactic compositions in aspect-oriented requirements engineering: an empirical study, in Pro-
ceedings of the 8th ACM International Conference on Aspect-Oriented Software Development,
ed. by A. Garcia, N. Niu, A. Moreira, J. Araujo, 2009, pp. 149–160

http://https://sites.google.com/site/lyrene/

Chapter 7
Aspect Composition in Problem Frames

Maria Lencastre, João Araújo, Ana Moreira, and Jaelson Castro

Abstract Problem frames (PFs) is a problem domain-oriented approach, focusing
on understanding the problem, instead of its design solutions. PFs support the identi-
fication of problem domains, provide mechanisms to analyse and structure problems
and promote reusability by dealing with different types of known problems. The
motivation for this work is the early evidence that Jackson’s problem frames
include many scattered and tangled model elements that correspond to crosscut-
ting requirements. This chapter offers specific guidelines to define and compose
crosscutting concerns in PFs. The proposed approach uses a specification template
for aspectual requirements and abstract problem diagrams. The advantage lays on
providing support for modularization of requirements and domain knowledge.

7.1 Introduction

Problem frames (PFs) is a problem domain-oriented approach, aiming at focusing
users’ attention on the problem at hand instead of premature design solutions. PFs
provide a way to analyse and structure problems, rather than modelling requirements
by using more subjective concepts, such as goals and dependencies [1]. They
support the identification of problem domains and their types, supplying rational
principles for problem analysis. Indeed, PFs provide specific guidance on how to
deal with different types of known problems, therefore promoting reusability [1].

M. Lencastre (�)
Escola Politécnica de Pernambuco, Universidade Estadual de Pernambuco, Recife, Brazil
e-mail: maria@dsc.upe.br

J. Araújo • A. Moreira
Departamento de Informática, Universidade Nova de Lisboa, Caparica, Portugal
e-mail: joao.araujo@fct.unl.pt; amm@fct.unl.pt

J. Castro
Centro de Informática, Universidade Federal de Pernambuco, Recife, Brazil

A. Moreira et al. (eds.), Aspect-Oriented Requirements Engineering,
DOI 10.1007/978-3-642-38640-4 7, © Springer-Verlag Berlin Heidelberg 2013

121

mailto: maria@dsc.upe.br
mailto:joao.araujo@fct.unl.pt
mailto:amm@fct.unl.pt

122 M. Lencastre et al.

PFs emphasize that the best way to solve a complex problem is to decompose
it—not only does a good decomposition help to solve a problem but also to under-
stand it better. Each decomposed subproblem has its own concern and projections
of the world and of the system, taken from the original problem. Subproblems can
include parallel structures and also be composite problem frames; two or more
subproblems can be concurrent, and this can be considered a composition concern.

Despite considering modularity, the Problem Frames approach does not include
a specific way to deal with scattered problems, as Aspect-Oriented Requirements
Engineering (AORE) does. The concept of an aspect as “a concern that cuts across
the base modules derived from the dominant separation of concerns criterion, plus
automated support to weave the separately described aspects back into the base
modules” [2] is not present in PFs. PFs simply propose their definition as problem
diagrams.

Crosscutting concerns usually affect large portions of requirements models,
compromising their modularity and consequently their evolution. Models built using
PFs approach are no exception. There are requirements that appear in many (sub)
problems diagrams, so they are scattered among several diagrams. Some of them
match well-known problems and, in this case, the correlation of these requirements
to the appropriate existing, and known, problem frame is a natural consequence of
Jackson’s proposal.

In this chapter we show how to deal with PF’s corresponding problems’ informa-
tion in the aspect-oriented context and how to compose the aspects with the model
elements they crosscut in order to allow their future recomposition. We illustrate the
approach using a subset of the Crisis Management System (CMS) [3], the Car Crash
Crisis Management System (CCMS).

The remainder of this chapter is organized as follows. Section 7.2 presents an
overview of PFs. Section 7.3 introduces an aspect-oriented approach for PFs and
Sect. 7.4 applies that approach to the CCMS, showing a proof-of-concept example.
Section 7.5 presents some related work and Sect. 7.6 draws some conclusions.

7.2 Problem Frames Overview

Problem Frames are a software engineering approach appropriate for describ-
ing problem domains, defining requirements and decomposing a problem into
subproblems [1]. Problem frames clearly separate the description of the problem
from its solution. Both problem and solution descriptions are based on domains,
which are composed of phenomena, and their interactions. A domain can be
thought of as a collection of related phenomena (such as entities, events and states),
which represent part of a physical domain in the world where the effects, that
is the phenomena, are observable. A machine domain is a domain that must be
designed and built, in the form of software, to solve a problem. Problem frames
are problem patterns that aim at facilitating problem identification and solution
(each problem pattern presents the associated frame, characteristics, difficulties

7 Aspect Composition in Problem Frames 123

and solution methods). The steps for building a PFs specification are (1) draw the
problem’s context diagram; (2) describe problems and subproblems diagrams and
(3) decompose subproblems until each subproblem is simple enough to be seen as
an instance of a recognized problem frame.

Next we will illustrate all the three PFs’ diagrams, using the CCMS, which
handles car crash management. Afterwards we discuss the approach and present
some extensions (related to problem composition).

7.2.1 Problem Frames Diagrams

The PFs approach includes three main diagrams for requirements elicitation and
for denoting the intermediate results in requirements specification development:
the Context diagram structures and delimits the problem; the Problem diagram
defines the requirements that need to be satisfied for the problem at hand; the
Frame diagram (also called Problem frame diagram) describes familiar subproblem
classes, previously documented in PFs notation, that an application to be developed
could rely on.

7.2.1.1 Context Diagram

The aim of the context diagram is to structure and delimit the problem as separated
domains, together with the machine to be built—the system—denoted by a rectangle
with a double vertical line. This diagram also shows how these domains interact with
one another through the interface of shared phenomena.

Figure 7.1 illustrates an example for the CCMS, where the main domain
representing the system is the CarCrash domain and the other ones are Witness,
Coordinator, SuperObserver, SurveillanceSystem, PhoneCompany, ExternalRe-
sourceSystem, Worker (e.g. paramedics, police), Victim, and the CrisisScenario. The
interactions between these domains are represented by the text between brackets
linking the domains, i.e., the respective phenomena. The interactions are built
based on the descriptions adapted from the original requirements document [3].
An example of an interaction is discussed next.

“A crisis occurs, representing a real scenario; a Witness contacts the Coordinator,
which captures his/hers report, and confirms through the system (CCMS) the Wit-
ness’ given data, a service supplied by the PhoneCompany services. If necessary, the
Coordinator asks the CCMS a video about the local of the crisis, available through
a request to the SurveillanceSystem”. The interface phenomena are ScenarioInfo,
WitnessReport, WitnessInfo, Address, Phone, RequestVideo and Video.

124 M. Lencastre et al.

{ScenarioInfo}

{WitnessInfo ,
Address/Phone}

{ProposedMissions ,
DefinedIMissions} {StartCrisesManagement,

AssignResources,
CrisisConclusion }

{MissionInfo,
MissionAcceptance , VictHist,
RequestResourceAllocation,
ExecutedMissionReport}

{WitnessReport}

{RequestVideo, Video}

{RequestExternalResources}

{VictimInfoandStatus }
HospitalResource (HRS)

Witness (W)

Coordinator (C)

ExternalResourceSystem (ERS)

Worker (W)

SuperObserver (SO)

Victim (V)

Surveillance System (SS)

PhoneCompany (PC)

CrisisScenario (CS)

CarCrash
(CCMS)

{Victim’s
medical
history}

Machine Domain Phenomenon

Fig. 7.1 Context diagram for car crash management system

u

w
x

Witness (W)

e

c

a

z

b v

SurveillanceSystem (SS)

Phone Company (PC)

Coordinator (C)

Capture and re-
gister Crises Info

CrisisInfo (CI)

y

GetWitness Report
(GWR)

d

f
UserLoginInfo (UI)

z

yx z RequirementObserved
ReqPhenomenon

Specifica�on
Phenomenon

Constrained
ReqPhenomenon

Fig. 7.2 Problem diagram for GetWitnessReport

7.2.1.2 Problem Diagram

Problem requirements provide a starting point for the problem analysis; they
represent the machine, the requirements to be achieved and the interaction between
the involved domains that are part of the problem on focus. Problem diagrams are
developed for all the functionalities offered by CCMS. An example of a problem
diagram is shown in Fig. 7.2, for the GetWitnessReport problem.

The GetWitnessReport problem can be detailed as: “a subsystem is needed to
help the Coordinator to create a crisis record based on the information obtained

7 Aspect Composition in Problem Frames 125

Table 7.1 Interaction phenomena for the problem GetWitnessReport

a W! {WitnessInfo, CrisisInfo}
b GWR!{CrisisCheckList}

C! {GiveCrisisInfo (CrisisDetails, WitnessedTime), WitnessInfo (fname, lname,
phone, address)}
C! {AssignInitialEmergencyLevel, ActivateCrisisSatus}

c GWR!{CheckWitnessInfo}
PC!{WitnessInfoResult (phone,address)}

d GWR! {RequestVideo (local, time)}, SS!{SendVideo}
e GWR! StoreCrisisInfo
U {Crisis witness report and info}
V {Crisis activation, Witness info validated}
w {SuppliesWitnessInfo}
X {SuppliesCrisisVideo}
Y {CrisisInfo stored}
z {InformationChecked}

from a Witness”. The dotted ellipse in the problem diagram of Fig. 7.2 represents the
problem’s requirement that defines what must be supported by the machine; the rect-
angles are the problem domains that interact with the machine GetWitnessReport.
The interface phenomena, on the left-hand side, are expressed at the specification
level (those with letters from “a” to “f”), and on the right hand side at requirements
level (from “u” to “z”). Table 7.1 presents the corresponding interface phenomena
also called shared phenomena, which represent the interaction between the involved
domains, identifying the domain that makes the control.

The interface phenomena GWR! fCrisisCheckListg, detailed in letter “b”, means
that the subsystem GWR is controlling the CrisisCheckList and sending it to the
Coordinator. Observe that the interface phenomena on the right-hand side are at the
requirements level; if the requirements constrain a domain, a dotted line with an
arrow is used; otherwise it is only a reference. Note, for example, that the constraint
in CrisisInfo has only the stored information about confirmed crisis.

The Problem Diagram has a main concern, which is to get the witness report
(capture and register info). However, a problem diagram also contemplates the idea
of particular concerns, that is, concerns that are common to some or to almost
all problems; but, these are secondary, not the main concerns of those problems.
Such concerns arise from the nature of particular requirements or interfaces or
problem domains. An example of a particular concern is the AuthenticateUser
problem, which is common to several problems. Particular concerns are represented
in specific problem diagrams, and the common domain represents the way both
problems interact. This interaction among subproblems results in the composition
of concerns that can be represented by a specific problem diagram addressing
composition concerns.

The AuthenticateUser (AU) problem is presented in Fig. 7.3 and Table 7.2. The
intention is to authenticate the CMSEmployee to allow its access to the system. The
AU subsystem first requests CMSE for a login id and password. The CMSE enters
his login id and password and the AU subsystem validates the login information

126 M. Lencastre et al.

y

Authenticate
User (AU)

a x

UserLogin Info
(UI)

CMS Employee
(CMSE) Authenticate the

CMSEmployee to
allow access to the

system
b

Fig. 7.3 AuthenticateUser problem diagram

Table 7.2 Interface phenomena of AuthenticateUser problem diagram

x: {RequestAccess, CancelAccess}
{GetAccesstoSystem , notGetAccesstoSystem}

a: {AU!PromptsforLogin, CMSE!EntersLoginandPssw}
{AU!Allowsaccess, notAllowaccess}
{CMS!CancelAuthenticationProcess}

b: {AU!ValidateInfo}
y: {InformationChecked}

with the UserLoginInfo previous registered. Observe that the CMSE can cancel the
authenticate process access if s/he so wishes.

7.2.1.3 Problem Frame Diagram

The Problem Frame diagram represents a well-known, recurrent class of application
problems. In our example, we introduce the Request Management problemframe,
a class of problems where “a person requests the system, that is the machine, a
service that is provided by an outside system (e.g. a public system), to which the
main system is connected; the results are returned as resources”. Figure 7.4 details
this problem frame. The diagram includes types of domains and phenomena. For
example the B, in the Person box, states that the domain is Biddable (meaning that
it has unpredictable behaviour), the C in ServiceProvider states that this domain is
Causal (meaning that its properties can be formally described and are expected to
hold) and the X in Resource informs that the domain is lexical (i.e. symbolic). The
shared phenomena are also presented in an abstract form.

Table 7.3 presents the corresponding interface phenomena. While “x” represents
phenomena at requirements level, defining that a person requests a service and
that specific information (the “requiredInformation”) will be needed, “a” represents
a phenomenon at the specification level, explicitly defining which domain is
responsible by the interaction and what is the object of the interaction. For example,
in the case of P! fRequestServiceg we can observe that it is followed by “[causal]”
which indicates that it is a command that is sent by the Person, but P!fRequestInfo
[symbolic]g shows that an information is being sent by the person, as “[symbolic]”

7 Aspect Composition in Problem Frames 127

y
Request

Management (RM)
c z

a x

Resource (R)

ServiceProvider
(SP)

Person (P)

Control
Services

Solicitations

b

B

X

C

XB C LexicalBidabbleKinds of domains: Causal

Fig. 7.4 Request management problem frame

Table 7.3 Interaction phenomena for the RequestManagement problem frame

x {RequestsService, requiredInformation}
a P!{RequestService [causal]}

RM!{RequestSpecificInfo [causal]}
P!{RequiredInfo [simbolyc]}

y {Requested for Service and Services Provider}
b RM!{RequestService [causal]}

SP!{ConfirmService [symbol], ResourceInfo [symbol]}
z {RegisteredResourceInfo [symbol]}
c RM! {DatastoredforResource }

Obs: marks for kinds of phenomena: [symbol] for data and [causal] for commands

represents phenomenon that is a representation of physical data. The logic for the
appropriate sequence of the phenomena interaction will only be present in the
argumentation of the main frame concern.

An example of a problem in CCMS that matches this problem frame is: when
the Coordinator requests a video to the CCMS related to what occurs at the location
of the crisis, at the respective time, this service is only available through a specific
request to the Surveillance System—an outside system.

In the PFs approach, concerns are also “aspects of a problem demanding the
developer’s attention” [1]. In the next subsection we will make some considerations
about PFs, considering also the motivation and concepts from Aspect-Oriented
Requirement Engineering (AORE).

7.2.2 Analysing How the PFs Approach Addresses
Crosscutting Concerns and Composition

In [4] the author says that aspect technology may offer some utility in understanding
and implementing problem composition and specification; in turn, the goals of
aspect technology can be clarified through the analysis of how problems may

128 M. Lencastre et al.

be understood from a perspective based on PFs. Since any realistic system will
be too large and complex to be handled as a whole, developers need structuring
mechanisms to master the systems’ size and complexity. Next we will address two
questions:

1. Does the PFs approach include any way for modularising crosscutting concerns?
In PFs, the separation of concerns is considered as a way of supporting

the management of problems complexity, thus enhancing understandability
throughout the development process. The approach emphasizes that each defined
problem focus on a main concern, called frame concern, and that there are some
other secondary concerns (also part of the problem), which are generally present
in several other problems—what Jackson calls particular concerns. This attempt
of removing the scattering parts of the problems to specific problem diagram
could result in the same problem analysed in [2], caused by the introduction of
implicit tangling between the newly separated problem diagrams (concerns) and
the other concerns (the main problem diagram).

Conclusion: Jackson’s proposal could also be problematic: the analyst cannot
tell, without an exhaustive search, which problems the scattered properties
(problems) affect. In the CCMS example, the AuthenticateUser problem can be
seen as the one which has scattered properties in the system. As pointed out
in [2], the aspect-oriented solution makes the impact explicit by modularizing
aspects into two parts: one that describes the requirements of the aspect concern
itself and another that describes the breadth of its impact.

2. Is the PFs’ composition enough to represent composition rules?
The original PFs approach [1] does not propose explicit ways to compose

problems. It mentions only that the composition could be made through the
interaction of different problems through common domains, and interaction
among subproblems gives rise to composition concerns, such as precedence and
parallelism. Other works on PFs address the question of how to combine the
solutions structures of the simple subproblems to obtain a solution structure
for a complex problem. In [5] the idea of an architectural frame, called an
AFrame (a combination of known architectural styles, such as pipe-lines, with
problem frames), is introduced as an elaboration of the problem frame diagram
to accommodate an early architectural decision. So, the decomposition is guided
by the chosen architecture and many composition requirements become trivial.
In [6] the task of composing conflicting requirements is addressed using the
Composition Frame, which includes the specification of a composition controller
(like an architectural connector) to solve requirement which are in conflict.
In [7] the authors present a pattern-based software development process using
problem frames and corresponding architectural patterns. In [8], the authors
present a lightweight approach to dealing with behavioural inconsistencies at
run-time. Requirement Composition operators are introduced that specify a run-
time prioritization to be used on occurrence of a feature interaction.

Conclusion: PFs composition alternatives help composition process, however
there is no way of defining a specific point—an aspect—for gathering what is

7 Aspect Composition in Problem Frames 129

scattered. Consequently, there is no way of representing composition rules for
the logic that is gathered in an aspect.

We will show that PFs can be improved by the aspect-oriented concepts
to encapsulate scattered data (domains, phenomena and requirements) hence
achieving better modularisation. Next subsection builds on this by extending PFs
to specify aspects. Due to the difficulty of managing PFs diagrams (the involved
syntax and semantic) and aiming at a future automation, a BNF [9] specification
is proposed for the PFs diagrams and extensions for aspects incorporation.

7.3 Modelling and Composing PF Using Aspects

This section starts by discussing two crosscutting concepts in the problem frames
approach, i.e. aspectual requirements and aspectual problem frames.

Aspectual requirements are proposed to encapsulate in a single form the scat-
tered requirements that appear in many (sub)problems’ diagrams; this therefore
represents an extension of PFs approach. An example of an aspectual requirement
is the AuthenticateUser problem, which is scattered in several problems, such as
GetWitnessReport and AssingInternalResources.

Aspectual problem frames correspond to the matching of a known problem
frame by more than one problem. What is innovative is that this allows addressing
the aspectual requirements in a standardized way, through the problem frame. An
example of this is the RequestManagement problem frame, which is used in several
parts of our example, as in WitnessInformationValidation, VideoRequest and Victim-
InfoRequest. This occurs because all these examples match the RequestManagement
problem frame, so we can use the pattern proposed by RequestManagement for all
of them, instead of defining a specific aspectual requirement for each one.

This section also explores how to represent and compose aspects in PFs using
aspect composition rules. Although different works on PFs focus on how to combine
the solution structures of simple subproblems to obtain a solution structure for a
more complex problem, once again they do not deal with crosscutting concerns.
Next we will detail the whole proposed process.

7.3.1 Process for Modelling and Composing Aspects

Figure 7.5 depicts an approach for modelling and composing problem frames using
aspects. This approach is based on our previous work [10] and consists of three
major steps: build the problem frames specification, identify aspectual elements,
modularise and specify aspects. Each one of these steps is explained next.

1. Build the problem frames specification. This activity includes the following
three steps: drawing the context diagram to determine where the problem is

130 M. Lencastre et al.

2. Identify aspectual
elements

3. Modularize and specify aspects

Define Aspectual
Requirements

Extract aspectual
elements

Kind of aspectual
elements

Define Aspectual
PFs and Bindings

Extract aspectual
elements

1. Build PFs
specification

Aspectual
requirements

Aspectual
PFs

Define
Composition rules

Define Bindings

Fig. 7.5 Process for modelling and composing problem frames using aspects

Create aspectReq
<aspectual requirement name> for
<crossproblem name> which appears in
<problem name>, <problem name>, {<problem name>};

Fig. 7.6 Specification of an aspectual requirement

located, as well as the parts of the world it considers; defining the problem
requirements, providing a starting point for the problem analysis; representing
each requirement using a problem diagram. Observe that each problem must
be decomposed into simpler and smaller (sub)problems, and problem analysis
continues until each problem is simple enough to be seen as an instance of a
recognized class of problems, that is, a problem frame.

2. Identify aspectual elements. Aspectual elements may be aspectual requirements
or aspectual problem frames. Here the match between problems and a problem
frames must be listed.

3. Modularise and specify aspects. Each aspectual element, identified in step 2, is
specified, and composition rules are defined for it.

Thus, for each identified aspectual requirement:

• Modularise and specify it using the specification template presented in
Fig. 7.6. To achieve this, create a new name for this specification (of an
aspectual requirement), defines the name of the crossproblem (i.e. scattered
problem) and enumerate the names of the base problems crosscut by this
crossproblem.

• Define composition rules to capture how the crosscut problems are recom-
posed (aspect weaving), to represent again the original problems. Figure 7.7
illustrates this definition.

7 Aspect Composition in Problem Frames 131

Compose problem <problem name> with <aspectual requirement name>
Add domain <domain name>
Connect <domain name> to machine <machine domain>
Add specPhen <phenomenon name> between
machine and domain <domain name>, {, <phenomenon name> between
machine and <domain name>}

Add reqPhenObserved <phenomenon name> domain <domain name>, {,
<phenomenon name> between requirement and domain <domain name>};

Add reqPhenConstrained <phenomenon name> domain <domain name>,
{, <phenomenon name> domain <domain name>};

Fig. 7.7 Specification of composition rules for an aspectual requirement

Create aspectualProblemFrame <aspectual Problem Frame name>
related to <problemFrame name>
which appears in problems <problem name>, <problem name>
{,<problem name>};

Fig. 7.8 Specification of an aspectual problem frame

Bind machine <problem frame machine name> to <problem machine name>
Bind domain <problem frame domain name> to <problem domain name>
{, domain <problem frame domain name> to <problem domain name>}

Bind requirement <problem frame requirement name> <problem re
quirement name>

Bind specPhen <problem frame phenomenon name> to

to

<problem phenomenon
name> between machine and <domain name>
{,<problem frame phenomenon name> to <problem phenomenon name>
between machine and domain <domain name>}

Bind reqPhenObserved <problem frame phenomenon name> to <problem
phenomenon name> domain <domain name> {,<problem frame phenomenon
name> to <phenomenon name> domain <domain name>}

Bind reqPhenConstrained <problem frame phenomenon name> to <problem
phenomenon name> domain <domain name>{,<problem frame phenomenon
name> to <problem phenomenon name> domain <domain name>}

Fig. 7.9 Specification of composition for aspectual problem frame

• Extract the corresponding aspectual elements from subproblems, where the
aspectual requirements are found, since they will be represented through the
composition rules associated with this aspectual requirement.

Similarly, for each identified aspectual problem frame:

• Define it giving the list of problems that this specific problem frame crosscuts
(use the specifications template presented in Fig. 7.8).

• Define the composition rule, by instantiating it to each concrete solution (use
the specification template presented in Fig. 7.9).

• Extract the corresponding aspectual elements from subproblems, where the
aspectual problem frame was found.

132 M. Lencastre et al.

Next we will concentrate on the third step of the process, which modularises and
specifies aspects.

7.3.2 Aspectual Requirements Specification

The specification of an aspectual requirement is shown in the template presented in
Fig. 7.6. The specification includes the definition of:

• The aspectual requirement name, which must be unique, and represents the
aspect that is being defined.

• The crossproblem name, that is, the one which appears scattered along several
other problems; the name of the problem where the cross problem appears. Note
that there must be at least two problems crosscut by the cross problem.

In order to complete the process of the aspectual requirements definition,
composition rules are specified to register how to re-establish connections between
domains and phenomena which will be removed from the original problems
(crosscut by an aspectual requirement). The composition rule specification template
is presented in Fig. 7.7. Three operators are available: compose, connect and add.
The compose operator is used to re-establish the link between an existing problem
and an aspectual requirement which crosscuts it. The rule includes the addition of
involved domains, present in the aspectual requirement; the connect operator to
define the link between the existing machine that attends the requirement which
is been analysed and the add operator for the addition of phenomena at both
requirement and specification levels.

7.3.3 Aspectual Problem Frames Specification

For the representation of an aspectual PF we rely on the specification template
illustrated in Fig. 7.8. It includes arguments such as the name given for the
aspectualProblemFrame name, the problemFrame name which appears in several
other problems and the names of problems where the PF appears.

The definition of composition rules, for the aspectual problem frame, is also
needed. As shown in Fig. 7.9, this composition consists of a set of instantiation
steps, where abstract elements are replaced with concrete elements through the Bind
command (that simply makes the correlation of problem frame elements and the
matched problems).

7 Aspect Composition in Problem Frames 133

7.4 Proof-of-Concept Example

We now illustrate the process depicted in Fig. 7.5, detailing each step building for a
proof-of-concept using the CCMS.

7.4.1 Build Problem Frames Specification

This step consists of four other substeps: draw the context diagram (Sect. 7.2.1.1);
define requirements; describe problems and subproblems, representing each require-
ment using a problem diagram; and identify matching subproblems and problem
frames. The context diagram was presented in Fig. 7.1. The remaining substeps are
discussed next.

7.4.1.1 Define Requirements

Requirements will be the starting point for the problem analysis; they will define
subproblems that must be solved through the construction of a subsystem. The
main concerns of the CCMS application represent the key requirements: get witness
report; start a crisis management; define missions adequate to solve a crisis; request
services; assign resources (internal and external); execute missions; conclude a
crisis management; user authentication; etc.

7.4.1.2 Describe Problem and Subproblems

In order to illustrate this step we will focus on the GetWitnessReport problem,
presented in Sect. 7.2.1.2. Recall that the purpose is to build a system that helps
the Coordinator creating a crisis record based on the information obtained from
a witness. The GetWitnessReport problem can be defined using the specification in
Fig. 7.10, which requires information from the respective problem diagram (Fig. 7.2
and Table 7.1). This specification format helps us maintaining a specification pattern
similar to the aspects specification, which will be presented next. Afterwards,
information that can be represented as an aspect will be removed from this
specification (see Fig. 7.11).

GetWitnessReport can be further decomposed into the following subproblems:

1. WitnessInformationValidation: Coordinator inserts witness information in the
System (location and type of crisis and witness information) and this checks the
validation of the witness information.

2. Video Request: if the crisis location is covered by camera surveillance, a video is
requested to the Surveillance System. Then the coordinator confirms, or not, the
situation that the witness describes.

134 M. Lencastre et al.

Create Problem with
Machine GetWitnessReport GWR
Requirement {Capture and Register Crises Info}
Add domain {Witness W, Coordinator C, PhoneCompany P, Surveillance
System SS, CrisisInfo CI, UserLoginInfo UI}
Add specPhen {WitnessInfo, CrisisInfo}between domain W and domain C,
{CrisisCheckList} between domain GWR and domain C
{RequestAccess, CancelAccess, GiveCrisisInfo (CrisisDetails, Witnes
sedTime), WitnessInfo (fname, lname, phone, address)} between
domain C and domain GWR,
{AssignInitialEmergencyLevel, ActivateCrisisSatus} between domain C
and domain GWR,
{CheckWitnessInfo} between domain GWR and domain PC,
{WitnessInfoResult (phone,address)} between domain PC and
domain PC,
{RequestVideo(local,time)} between domain GWR and domain SS,
{SendVideo} between domain SS and domain CWR,
{StoreCrisisInfo} between domain GWR and domain CI,
Add reqPhenObserved {Crisis witness report and info} domain W,
{Crisis activation, Witness info validated, GetAcesstoSystem, not
GetAccesstoSystem} domain C
SuppliesWitnessInfo domain PC, SuppliesCrisisVideo} domain SS
{Information Validated} domain AU
Add reqPhenConstrained {CrisisInfo stored} domain CI;

Fig. 7.10 Specification for GetWitnessReport problem

Create aspectreq AuthUser_aspect for AuthenticateUser
which appears in {GetWitnessReport,AssignInternalResource};

Fig. 7.11 Specification of AuthUser aspectual requirement

3. GetCrisesInformation: system provides crisis-focused checklists (type of crisis,
local) and the Coordinator provides crisis information.

4. Crisis Activation: the system assigns an initial emergency level to the crisis and
sets the crisis status to active.

5. AuthenticateUser: the system shall authenticate users on the basis of the access
policies when they first access any components or information (this functionality
was not present in the original example; we included it here to help illustrating
the process).

7.4.1.3 Identify Matching Problem Frames

The problem frames that match the existing subproblems are defined in Table 7.4.
The RequestManagement problem frame (from Fig. 7.3 and Table 7.2) can be
used to request a video from Surveillance System (an external system)—Video

7 Aspect Composition in Problem Frames 135

Table 7.4 Subproblems and problem frames that match them

Subproblem Problem Frames
WitnessInformationValidation RequestManagement
VideoRequest RequestManagement
GetCrisesInformation SimpleWorkpieces
CrisisActivation SimpleWorkpieces

Table 7.5 Aspectual requirements and aspectual problem frames

Aspectual element Subproblem Kind of aspect
RequestManagement WitnessInformationValidation

VideoRequest, CarCrashRescue,
RequestVictimInfotoHospital,
PhoneRequestManagementSystem

Aspectual PF

SimpleWorkpiece GetCrisis Info Aspectual PF
AuthenticateUser GetWitnessReport

AssingInternalResources
Aspectual Requirement

Request subproblem; and the same occurs with WitnessInformationValidation the
subproblem, which requests witness data from the Phone Company. On the other
hand, GetCrisisInformation and Crisis Activation can be represented as a Simple
Workpieces problem frame presented in [1], where system’s users send commands
to an edition tool, which in turn updates or queries a specific stored data.

7.4.2 Identify Aspectual Elements

Table 7.5 classifies different sub(problems), considering if they are aspectual
requirements or aspectual problem frames. Several (sub)problems were analysed
from the whole CCMS, and three aspectual elements were selected to help to illus-
trate the process: RequestManagement, SimpleWorkpiece and AuthenticateUser.

7.4.2.1 Modularise and Specify Aspects

In PFs, the identification of crosscutting aspectual requirements can be done through
the observation of the associations between the subproblems’ concerns that crosscut
each other. The aspects specification can be defined using the specification language
proposed in [10]. This step is divided into two other steps, one for aspectual
requirements and another for aspectual problem frames. Both cases are detailed
next.

136 M. Lencastre et al.

Table 7.6 Aspectual requirements elements

Subproblem Aspectual requirement
GetWitnessReport AuthenticateUser
AssignInternalResources AuthenticateUser

Compose problem GetWitnessReport with AuthUser_aspect
Add domain UserLoginInfo UI
Connect UI to machine GetWitnessReport GWR
Add specPhen {PromptsforLogin, GetAccesstoSystem (result}
between domain GWR and domain CMSEmployee,
{EntersLoginandPssw, CancelAuthenticationProcess} between
domain CMSEmployee and domain GWR,
{ValidateInfo} between domain GWR and domain UI
Add reqPhenObserved {GetAccesstoSystem, notGetAccesstoSystem}
domain CMSEmployee
Add reqPhenConstrained InformationChecked domain UI};

Fig. 7.12 Specification of composition rules for aspectual requirement

Remove domain {UserLoginInfo (UI)}from problem GetWitnessReport
Remove specPhen
{RequestAccess, CancelAcces} between domain C and domain GWR,
Remove reqPhenObserved
{Information Validated} domain UI

Fig. 7.13 Elements extraction from GetWitnessReport using AutheUser aspect

7.4.2.2 Aspectual Requirements

In our example we specify the aspectual requirement AuthenticateUser which is
present in GetWitnessReport and Assign Internal Resources (see Table 7.6).

The AuthenticateUser problem is represented in Fig. 7.3 and Table 7.2. Then,
we can modularise and specify the aspectual requirement using the proposed
specification template (presented in Fig. 7.11).

After, we can define composition rules to capture how an aspect affects the
model elements it crosscuts, using the specification template presented in Fig. 7.12.
The goal is to show how to recompose the AuthenticateUser with GetWitnessReport
problem.

Moreover, we can extract the corresponding aspectual elements from subprob-
lems where they were found. This corresponds to checking for related model
elements, that is, the domains and phenomena that are part of it (see Fig. 7.13).
In our example we use the GetWitnessReport and extract elements related to
AuthenticateUser problem (from Fig. 7.3).

Figure 7.14 presents the GetWitnessReport diagram after removing the elements
identified in Fig. 7.13, which are related to AuthenticateUser.

7 Aspect Composition in Problem Frames 137

u

w
x

Witness (W)

e

c

a
b v

SurveillanceSystem (SS)

Phone Company (PC)

Coordinator (C)

Capture and re-
gister Crises Info

CrisisInfo (CI)

y

GetWitness Report
(GWR)

Fig. 7.14 GetWitnessReport after Elements extraction from AuthenticateUser

Table 7.7 Aspectual problem frames (the match of subproblems and problem frames)

Subproblem Aspectual problem frames
WitnessInformation Validation RequestManagement
VideoRequest RequestManagement
CarCrashRescue RequestManagement
Request VictimInfotoHospital RequestManagement
PhoneRequestManagementSystem RequestManagement

Create aspectualProblemFrame RequestManagement_aspProblFrame
related to RequestManagement
which appears in problems

{ValidateWitnessInformation, RequestVideo, CarCrashRescue,
Request VictimInfotoHospital, PhoneRequestManagementSystem};

Fig. 7.15 Specification of an aspectual problem frame

7.4.2.3 Aspectual Problem Frames

We illustrate this step using RequestManagement aspectual problem frame, previous
classified in Table 7.6. It corresponds to the problem frame presented in Fig. 7.3 and
Table 7.2. It is described as “a worker (coordinator, or any worker) requests services
through the system to a Service Provider, generally some specific information is
required and must be supplied by the worker. At the end the service is provided,
and the associated information is stored in the system database”. Observe that
RequestManagement problem frame matches several problems in CCMS (see
Table 7.7), so it is considered an aspectual problem frame, specified in Fig. 7.15,
considering the specification detailed in Fig. 7.8.

Figure 7.16 presents the binding of PhoneRequestManagementSystem to
RequestManagement problem frame, whose specification was first detailed in
Fig. 7.9. The result can be seen in Fig. 7.17 and Table 7.8, which presents the
resulting problem diagram.

138 M. Lencastre et al.

Bind machine RequestManagement to PhoneRequestManagement PRM
Bind domain Person to domain Coordinator C, ServiceProvider to
domain PhoneCompany PC, Resource to domain WitnessInfo WI
Bind requirement ControlServiceRequest to VerifyWitnessInfo
Bind specPhen RequestService to RequestWitnessInfo between
domains PRM and C, Request_Specific_Info to RequestWitnessInfo,
RequiredInformation to {WitnessName,WitnessPhone} between C and
domain PRM, RequestService to RetriveWitnessInfo between PRM
and domain PC
Bind reqPhenConstrained DataStoredforResource to WitnessInfo-
Stored domain WI, RegisterResourceInfo domain WI
Bind reqPhenObserved {Requests Service, required information} to
{Requested for Service, PersonInformsatPhoneCompany}

Fig. 7.16 Specification of composition for aspectual problem frame

PhoneCompany (PC)
z

y
PhoneRequest

Management (PRM) c

a x

CrisisInfo (CI)

Coordinator (C)
Verify

Witness Infob

Fig. 7.17 Problem diagram PhoneRequestManagement based on RequestManagement aspec-
tual PF

Table 7.8 Interaction phenomena for PhoneRequestManagement

A PRM! {RequestWitnessInfo}
C!{WitnessName, WitnessPhone}

B PRP! {RetriveWitnessInfo}
PC!{PhoneAdreess Record}

C PRM!{StoreCirisisInfo}
X Informs witness information
Y PersonInfoatPhoneCompany
Z WitnessInfoStored at the Crisis Management Database

After the composition was specified, the aspectual elements can be extracted
from the original problems where they were found. We can observe that the elements
could also be extracted from Fig. 7.10, where the GetWitnessReport was specified
together with PhoneRequestManagement. This is done in a similar way as it was
done in Fig. 7.13 Specification of Elements extraction from GetWitnessReport
problem using AuthUser aspect.

7.5 Related Work

In [11] it is described how to derive security requirements from crosscutting threat
descriptions using the PFs approach. A threat description is a descriptive phrase
of the form “performing action X on asset Y could cause harm Z”; the purpose is

7 Aspect Composition in Problem Frames 139

specific, it aims at illustrating how representing threats as crosscutting concerns aids
in determining the effect of security requirements on the functional requirements.

Despite of existing efforts to facilitate the problem decomposition task and the
combination of basic problem frame, there is in fact low knowledge and consensus
about how effectively the PFs approach must analyse software complex problems
and how to explore the decomposition in an aspectual sense. Our work contributes
to narrow the gap between the concepts proposed for aspects [2].

Another form of composition was proposed in [12] where problem frames
are composed together with MATA [13] sequence diagrams, to represent the
composition scenarios for the PFs aspectual scenarios. The integration of MATA
concepts with PF makes it possible to achieve a higher level of sophistication, giving
support to more expressiveness in terms of aspects description, composition, and
involved domains.

Regarding other AORE techniques, described in this book, we can make some
comparison with the proposed approach.

The Requirements Description Language (RDL) uses textual specifications
written in natural language for expressing the dependencies and interactions
between requirements groups (e.g., use cases). RDL uses annotations, where these
annotations are added to the syntactic elements of the natural language. They
take advantage of the fact that each syntactic element has a selected semantic
role. Our approach could be integrated with this approach where the requirements
specifications in RDL would guide the construction of problem diagrams.

MATA is an expressive aspect modelling approach which represents aspects
through patterns; it is also a composition language for structural and behavioural
models. MATA supports a richer set of model composition operators in comparison
with previous approaches to aspect-oriented modelling. Our work on PFs could
benefit from the integration with MATA as presented in [12], by refining problem
diagrams into scenarios, where the behaviour associated with an aspectual problem
diagram could be specified using an aspectual scenario.

7.6 Conclusions

A central advantage of PFs is that problems can be broken into subproblems until
a known problem class, previously documented and characterized by a problem
frame, is identified. As proposed by Jackson [1], each problem frame is of a
familiar and documented class, the concerns it raises can become, over time,
fully documented and well known to the competent developers. These concerns
may be associated with particular types of problem domain, of requirement or of
relationship between the machine and the problem domains.

Considering the early evidence that Jackson’s problem frames include many
model elements that can be seen as aspects, this chapter outlines some specific
guidelines to define and compose crosscutting concerns in PFs based on [10].
The proposed approach uses a specification template for aspectual requirements

140 M. Lencastre et al.

and abstract problem diagrams. The advantage lays on providing support for
modularisation of requirements and domain knowledge. This approach [12] and the
one proposed discussed here are complementary and their use can be chosen by the
analyst, if s/he founds that it is possible and appropriate to define the elements that
are crosscut by an aspect through a behaviour pattern or if it is better to enumerate
the specific joinpoints.

The advantage of [12] approach lays on the fact that the integration of the
MATA concepts with PFs gives support to more elegant and modularised way
of representation and reuse. Also it makes possible to achieve a higher level of
sophistication, allowing representing aspect concepts as patterns and achieving
composition by combining those patterns using a set of operators. It gives support
to more expressiveness in terms of aspects description, composition and involved
domains, as it details structural and behavioural scenarios.

It is important to analyse what has been improved in relation to the original PFs
approach. Some points that we can evaluate are based on the following questions:

• Could we distinguish how further the original PFs approach was far from the
aspect approach? Many considerations were done about existing structures; and
it was considered that PFs approach does not represent the full concept of aspects
that helps improving modularity.

• Do we include concepts that could encapsulate crosscutting concerns in a single
module? Yes, this was the proposed extension, the aspects were defined and the
elements were removed from the places where they were scattered—including
not only requirements (such as the example of Authenticate User) but also the
involved domains and phenomena.

Some other questions arise but remain still unanswered after this study:

• Does the proposed extension introduce more simple diagrams for building or to
interpret? Probably not, as other concepts were included.

• Has the number of diagrams increased or the complexity of diagrams reduced?
Probably yes for both, but we need to apply metrics to evaluate those issues.

• Are the composition rules better than the other PFs composition existing
alternatives? We need to carry on an empirical study to compare the alternatives.

• Is it simple to use the proposed approach without an appropriate tool? No, the
proposed approach is not simple to be specified and managed if there is no
available tool due to the involved details and complexity. The problem increases
with the problems scalability.

All these questions must be evaluated in future work. Here we present only a first
step.

7 Aspect Composition in Problem Frames 141

References

1. M. Jackson, Problem Frames: Analysing and Structuring Software Development Problem
(Addison-Wesley, New York, NY, 2001)

2. E. Baniassad, P. Clements, J. Araújo, A. Moreira, A. Rashid, B. Tekinerdogan, Discovering
early aspects. IEEE Softw. 23, 61–70 (2006)

3. J. Kienzle, N. Guelfi, S. Mustafiz, Crisis management systems: a case study for aspect-oriented
modeling, in Transactions on Aspect-Oriented Software Development VII, ed. by S. Katz,
M. Mezini (Springer, Berlin Heidelberg, 2010), pp. 1–22

4. M. Jackson, Problems, subproblems and concerns, Position Paper, in Early Aspects Workshop
at AOSD, 2004

5. L. Rapanotti, J. Hall, M. Jackson, B. Nuseibeh, Architecture-driven problem decomposition,
in Proceedings of the 12th IEEE International RE’04, Kyoto, 2004

6. R. Laney, L. Barroca, M. Jackson, B. Nuseibeh, Composing requirements using problem
frames, in Proceedings of the RE’04, 2004, pp. 122–131

7. C. Choppy, D. Hatebur, M. Heisel, Component composition through architectural patterns for
problem frames, in XIII Asia Pacific Software Engineering Conference, 2006

8. R. Laney, T. Thein, M. Jackson, B. Nuseibeh, Composing features by managing inconsistent
requirements, in Ninth International Conference on Feature Interactions in Software and
Communication Systems ICFI’07, 2007, pp. 141–156

9. BNF (2007), http://www.cui.unige.ch/db-research/Enseignement/analyseinfo/AboutBNF.
html. Accessed 25 Aug 2007

10. M. Lencastre, J. Araújo, A. Moreira, J. Castro, Towards aspectual problem frames: an exam-
ple. Expert Syst. J. 25(1), 74–86 (2008). doi:10.1111/j.1468-0394.2008.00453.x (Blackwell
Publishing Ltd. Expert Systems)

11. C. Haley, R. Laney, B. Nuseibeh, Deriving security requirements from crosscutting threat
descriptions, in Third International Conference on AOSD’04 (ACM Press, Lancaster, 2004)

12. M. Lencastre, A. Moreira, J. Araújo, J. Castro, Aspects composition in problem frames, in 16th
IEEE International Requirements Engineering Conference, Barcelona, 2008. IEEE CS Press
Conference Proceedings, available at IEEE CS Digital Library, 2008

13. J. Whittle, P. Jayaraman, MATA: a tool for aspect-oriented modeling based on graph transfor-
mation, in Workshop on Aspect Oriented Modeling at MODELS’07, 2007

http://www.cui.unige.ch/db-research/Enseignement/analyseinfo/AboutBNF.html
http://www.cui.unige.ch/db-research/Enseignement/analyseinfo/AboutBNF.html

Part III
Domain-Specific Use of AORE

Chapter 8
Mapping Aspects from Requirements
to Architecture

Pablo Sánchez, Ana Moreira, João Araújo, and Lidia Fuentes

Abstract Different approaches provide support for aspect-oriented requirements
engineering and for architectural design. Thanks to the first, requirements can be
elicited, analysed, and specified in an aspect-oriented fashion. Similarly, software
architecture can be designed taking into account the aspectual nature of certain
concerns, improving component modularisation and, therefore, component reusabil-
ity and architecture evolution and adaptability. Nevertheless, these two kinds of
approaches emerged in isolation. As a consequence, it is yet not clear how to derive
an aspect-oriented architecture from an aspect-oriented requirements specification.
This chapter describes Model-Driven Development for Early Aspects (MDD4EA),
an approach that aims at automating this process by using model transformations.
The whole process is illustrated with a subset of the Car Crisis Management System
case study.

P. Sánchez (�)
Dpto. Matemáticas, Estadı́stica y Computación, Facultad de Ciencias, Universidad de Cantabria,
Santander, Cantabria, Spain
e-mail: p.sanchez@unican.es

A. Moreira • J. Araújo
Departamento de Informática, Universidade Nova de Lisboa, Caparica, Portugal
e-mail: amm@di.fct.unl.pt; joao.araujo@fct.unl.pt

L. Fuentes
Dpto. Lenguajes y Ciencias de la Computación, ETSI Informática, Universidad de Málaga,
Málaga, Spain
e-mail: lff@lcc.uma.es

A. Moreira et al. (eds.), Aspect-Oriented Requirements Engineering,
DOI 10.1007/978-3-642-38640-4 8, © Springer-Verlag Berlin Heidelberg 2013

145

mailto:p.sanchez@unican.es
mailto:amm@di.fct.unl.pt
mailto:joao.araujo@fct.unl.pt
mailto:lff@lcc.uma.es

146 P. Sánchez et al.

8.1 Introduction

In the last decade, several approaches have appeared for handling crosscutting
concerns at the requirements [3, 7, 8, 24, 33] and architectural design levels
[4, 6, 29–31]. While aspect-oriented requirements approaches offer support to elicit,
analyse, and model requirements taking into account their crosscutting nature early
in the software development life cycle, aspect-oriented architectural languages help
to improve the modularisation of software architectures, encapsulating crosscutting
concerns, such as Authentication or Integrity, in particular kinds of components,
which communicate with the other components by means of special composition
mechanisms.

Although all this work has contributed to the support for aspect orientation
throughout the software development process, little attention has been paid on
how to construct an aspect-oriented software architecture from an aspect-oriented
requirements specification. That is, there is a need to understand how to link these
approaches together.

This chapter contributes to fill this gap by providing a process to automatically
derive aspect-oriented software architectures from aspect-oriented requirements
models by means of model transformations. The method proposed, Model-Driven
Development for Early Aspects, uses AORA [9], an aspect-oriented requirements
engineering approach and CAM [30], and an aspect-oriented architectural compo-
nent model, although its underlying ideas can be used with different approaches.

The hypothesis for our work is as follows: most crosscutting concerns, such as
Integrity or Authenticity, are recurrent across many different systems. In most cases,
a solution that satisfies these crosscutting concerns can be described in a generic
form, independently from the system where they are demanded. For instance, we can
describe how to check Integrity of a message by simply assuming that there are
generic messages that might be corrupted and therefore something needs to be done
to ensure Integrity. Thus, what we need to do to satisfy a crosscutting concern is to
analyse the predefined solutions that are currently available, select the one that best
fits the system needs, and then instantiate such a solution. This instantiation process
often only requires the application of a set of well-defined steps. This process can
be precisely specified by means of a model transformation that is executed by a
computer.

The main benefit of using model transformations is to avoid repetitive, laborious,
and error-prone manual tasks, hence reducing the development effort. Consequently,
the quality of the end product increases due to the elimination of errors introduced
by a manual instantiation of a pattern solution. We will illustrate how our MDD4EA
works using a subset of the Car Crisis Management case study [20, 21].

Following this introduction, this chapter is structured as follows: Sect. 8.2 offers a
brief background on AORA and CAM, the two specific aspect-oriented approaches
used by MDD4EA, which is discussed in Sect. 8.3. Section 8.4 illustrates our
approach with the CCMS case study. Section 8.5 comments on related work and
Sect. 8.6 summarises the chapter and outlines future work.

8 Mapping Aspects from Requirements to Architecture 147

8.2 Background

8.2.1 AORA

The Aspect-Oriented Requirements Analysis (AORA) approach defines three pri-
mary tasks: identify concerns, specify concerns, and compose concerns [9]. In
AORA, a concern is a matter of interest to one or more stakeholders and which
localises one or more related requirements.

The identification of concerns can be accomplished by using traditional require-
ments elicitation techniques, such as ethnographic studies, analysis of the initial
requirements, transcripts of stakeholders’ interviews, etc. Other good sources for
concern identification are existing catalogues, such as the non-functional require-
ments catalogue offered by Chung [11].

The specification of concerns is achieved through the systematic description of
a set of properties that characterise each concern. These properties are collected
in a pattern-like template and form the basis for several types of analysis possible,
including the identification of conflicts between aspectual requirements. These prop-
erties are name, description, associated stakeholders, classification (functional or
non-functional), type (derived attribute which classifies the concern as crosscutting
or non-crosscutting), list of responsibilities, list of stakeholders’ importance, list
of contributions (positive or negative) between this concern and the others in the
system, and list of concerns required to help supporting the responsibilities listed.
The required concerns element acts as a dependency reference to other concerns
in the system and is used to identify crosscutting concerns (i.e. concerns that are
required by more than one other concern). The stakeholders’ importance property
assigns priorities to concerns from the stakeholders’ perspective, in a first attempt
to help in the conflict resolution process.

The composition of concerns allows an incremental analysis of impact of
possible concern configurations. Each composition specification is analysed by
taking into account the required concerns in the concern template. A composition
rule shows how a set of concerns can be composed together using predefined
operators. At this stage, conflicting situations may be detected when concerns
contributing negatively to each other and having the same importance need to be
composed together in the same joinpoint (or match point in AORA’s terminology).
If conflicts are identified, AORA offers multi-criteria decision techniques to handle
them (this is discussed in Chap. 13).

8.2.2 CAM

This section provides some background of the UML 2.0 Profile for CAM
[30], the aspect-oriented architectural notation we have selected to model our
architectural design. We have opted for this notation, instead of other options

http://dx.doi.org/10.1007/978-3-642-38640-4_13

148 P. Sánchez et al.

(e.g. AspectualACME [17], Fractal [28], or PRISMA [27]) because (1) it is a
UML 2.0 Profile, so the models that conform to it can be used as inputs for model
transformations, (2) mature tool support can be easily obtained with little effort, and
(3) we have considerable previous experience in using it.

UML 2.0 Profile for CAM organises a software architectural model in two main
views:

1. A structural view, which specifies its constituent components and interfaces, and
how these components and interfaces are interconnected. This structural view is
modelled using UML 2.0 component diagrams.

2. A behavioural view, which models the interactions between these components.
This behavioural view is modelled using UML 2.0 sequence diagrams.

In the UML 2.0 Profile for CAM, components are represented as common UML
2.0 components. Provided and required interfaces are represented in the usual UML
2.0 notation. CAM components never interchange messages directly. Instead, they
communicate through their ports. Messages sent to a port from outside a component
are forwarded to the component internals, while messages sent to the port from the
inside are forwarded to the connected external components. This approach enables
the sender to declare required interfaces and to send messages to its own ports when
communicating with the environment, rather than identifying an external target
component directly. Components defined in this way are assembled by wiring them
together by means of provided and required interfaces.

Aspects are considered a special kind of component in CAM. These special
aspect components are composed with the other components differently from
traditional components. In addition to traditional component composition, which
is based on connecting required with provided interfaces, operations of aspect
components can be spontaneously invoked as a consequence of the occurrence of
a certain event in a running system. Aspects are depicted as UML 2.0 components
stereotyped as «aspect». As usual components, they can provide and require
interfaces and they must communicate through ports.

How aspect components are spontaneously invoked when a certain event occurs
in the system is specified in the behavioural view of the software architecture. In the
behavioural view, a component operation, an advice in AspectJ terminology [19],
must be implicitly invoked. This is indicated by stereotyping the messages with
«aspectual» in a sequence diagram, from a component port to the aspect. This does
not mean there is an explicit call from the component to the aspect, or that com-
ponent is explicitly connected to the component. Rather, this means that between
the time when a port receives a message and the message is dispatched inside or
outside, a piece of crosscutting behaviour is executed without the knowledge of the
affected component. The call to the crosscutting behaviour is performed implicitly
by the aspect-oriented weaver as a result of the weaving process, i.e. the component
is oblivious of this call. We would also like to point out that common components
are not explicitly connected to aspectual components.

Figure 8.1 shows how and when aspects can be executed on a sending/receiving
message between components according to the CAM Profile, and how an aspect

8 Mapping Aspects from Requirements to Architecture 149

ClientPort ServerPort

log(“connect”)

Client

connect()

LoggingAspect Server

sd CAM Model

<<aspectual>>

connect()

connect()

1

log(“connect”)
<<aspectual>>

2

log(“connect”)
<<aspectual>>

3

log(“connect”)
<<aspectual>>

4

Fig. 8.1 Aspect execution in the CAM Profile

execution must be specified concerning the exact point of a sending/receiving
message that it crosscuts. We have selected a simple example where a client
connects to a server through an invocation to a connect method. In order to keep
track of connections, a logging aspect is used. So, for instance, if we want to specify
the log advice must be triggered after the Server receives the method call but before
it executes it, we would place a call stereotyped «aspectual» between the point in
which ServerPort receives the call from outside and the point in which ServerPort
dispatches this call to the Server component internals (Fig. 8.1, label 2). Other
interception points, like BEFORE SEND, AFTER RECEIVE, or AFTER SEND,
are indicated in Fig. 8.1 (labels 1, 3, and 4, respectively).

8.3 Model-Driven Development for Early Aspects

This section provides a general overview of MDD4EA (Model-Driven Development
for Early Aspects). Our aim is to derive an aspect-oriented architecture from
an aspect-oriented requirements specification, preserving, whenever possible, the
information contained in the requirements specification.

Mapping requirements associated with functional concerns is not difficult. We
need to identify the components that will carry out the computations and assign

150 P. Sánchez et al.

Stakeholders AO Requirements
Specification

Requirements
Identification

AO
Requirements

Modelling

AO Requirements
Scenario Model

AO Architectural
Model

Selection of
transformations

patterns

Model
Transformations

Transformation
execution

Fig. 8.2 Overview of the process

responsibilities, i.e. identify what operations each component must implement.
These functional requirements are usually domain or application specific. For
instance, in the case of the Crisis Management System, functional requirements
such as Capture Witness Report or Translate Victim To Hospital are application-
specific and they will rarely be reused by other systems, especially outside the Crisis
Management domain.

On the other hand, the mapping of requirements associated with non-functional
crosscutting concerns is often based on the systematic application of predefined
solutions that are often reused across different applications and domains. For
example, to map a concern such as MessageIntegrity to a part of an architectural
model, there are well-identified solutions in the literature, such as adding checksums
or other kind of redundant codes to messages to ensure integrity [18, 39]. Thus,
we would need to introduce some logic to check checksums and ask for message
resending when a message is identified as corrupted.

These kinds of solutions are often composed of a set of well-identified elements
that need to be systematically incorporated into an architectural model to ensure
Message Integrity. The instantiation of these solutions requires few or no creativity,
as these solutions are often based on the systematic application of a set of steps
and operations, which can, in most cases, be described algorithmically. So, this
instantiation process can be encapsulated in a set of model transformations that are
automatically executed by a computer.

In summary, the hypothesis for our approach is that the architectural demon-
stration of crosscutting concerns can be encapsulated in model transformations that
accept, as input, requirements models and automatically generate an architectural
design model. Nevertheless, some guidance might be required from the software
architect during this process, as it is discussed later. MDD4EA general process is
depicted in Fig. 8.2.

8 Mapping Aspects from Requirements to Architecture 151

8.3.1 Step 1: Requirements Identification

The goal of the Requirements Identification step (Fig. 8.2) is to generate an
aspect-oriented requirements specification using any of the existing aspect-oriented
requirements engineering approaches (such as the ones shown in Chaps. 2, 3,
or 14. As we mentioned before, MDD4EA is independent of the aspect-oriented
requirements engineering approach selected.

In general, requirements can be described with different granularities. In this
work, we use the classification proposed by Cockburn [14]. Following this classifi-
cation, requirements can be described at different levels of granularity: sky (broad
system goals), kite (more detailed goals containing several subgoals), sea (a single
system interaction), or mud (low-level and highly detailed requirements).

The output of this step is a requirements specification describing in detail the
system concerns, be them functional, such as Capture Witness Report, or non-
functional, such as Integrity. Only one constraint is imposed on the output of the
process: the system must be decomposed into a set of scenarios, each one containing
only one non-crosscutting sea-level functional concern (a single interaction with
the system) and any number of aspectual requirements that have an impact on the
functional concern. The reason for this restriction is that these fine-grained scenarios
are affected by fewer aspectual requirements, since they contain fewer elements
than coarse-grained (kite or sky-level) ones. This means that the development of
automatic model transformations and the trade-off analysis at the requirements and
architecture levels will be easier.

More complex scenarios can be obtained through consecutive composition of
fine-grained ones. For instance, sky and kite-level scenarios might be obtained by
composing sea-level ones. This will be shown later with the help of the CCMS case
study.

8.3.2 Step 2: Aspect-Oriented Requirements Modelling

To execute a model transformation we need to provide a model as input so that it can
carry out the appropriate computations to produce the output model. So, the second
step of our approach is to elaborate a requirements model using the requirements
identified in the previous step.

We have opted for building UML models, due to the wide range of mature tools
currently available in the market. If we were to develop our own requirements
modelling notation, we would need to develop our own tool support, which would
have been more costly, time-consuming, and error-prone. In addition, development
teams are not tied to a specific tool developed by us, but thanks to the use of UML,
they can use their favourite UML editors.

To model aspect-oriented requirements in UML, we have developed a UML
Profile that permits expressing a requirements specification (the output of the

http://dx.doi.org/10.1007/978-3-642-38640-4_2
http://dx.doi.org/10.1007/978-3-642-38640-4_3
http://dx.doi.org/10.1007/978-3-642-38640-4_14

152 P. Sánchez et al.

previous step) as a UML 2.0 model. Using this Profile, aspect-oriented requirements
are modelled as a set of scenarios, each one containing one non-crosscutting
functional concern that may be affected by several aspectual concerns. So, the output
of this second step is an aspect-oriented requirements scenario model in UML.

8.3.3 Step 3: Selection of Transformation Patterns

When mapping a certain concern, specially crosscutting concerns, several solutions
may be initially available. For instance, when mapping Response Time to an
architectural design, the following three alternatives might be potential solutions:
(1) do nothing if there are enough hardware capabilities to ensure a good response
time, (2) add a cache to the system, and (3) do a combination of the previous two
strategies.

It is the responsibility of the software architect to analyse the different available
alternatives and select the most appropriate one according to the system qualities
required and the user needs. Each of these solutions has associated a certain pattern
whose instantiation can be encapsulated into an executable model transformation.
This means that the software architect must only configure the transformation
process to select the model transformations that correspond to the patterns he wants
to instantiate. Hence, the output of this step is a set of model transformations ready
to be executed.

8.3.4 Step 4: Transformation Execution

The model transformations selected in the previous step are automatically executed,
generating as output an aspect-oriented architectural model. This model is generated
incrementally by automatically transforming each individual scenario created in
Step 2.

To transform each scenario, each non-aspectual functional requirement is pro-
cessed first, and then, an architectural solution that satisfies the aspectual require-
ment is injected into the generated architecture to ensure that all the information
contained in the requirements model issued at the architectural level. The architec-
tural model is expressed using the UML 2.0 Profile developed for CAM [30].

We would like to point out that aspectual requirements are not always trans-
formed into an architectural artefact. According to [33, 35], aspectual requirements
may be mapped to architectural decisions or architectural constraints that might
not be possible to express in UML. Or else, an aspectual requirement may simply
be postponed and not addressed at the architectural level. To properly handle this
issue, an auxiliary traceability repository would help to record (a) the reason behind

8 Mapping Aspects from Requirements to Architecture 153

a specific architectural decision, (b) the architectural constraint and the elements
it affects, and (c) the reason why a concern cannot be addressed immediately and,
instead, is deferred to be handled later. Traceability is, however, beyond the scope
of this chapter. The interested reader can refer to [2, 10, 35].

The goal of this work is to generate an aspect-oriented software architecture,
which is expressed in the UML 2.0 Profile for CAM. However, a development
process continues beyond the architectural design, although the following stages
in the development process are not addressed in this book. Nevertheless, there are
several paths that can be followed after generating this aspect-oriented software
architecture. It is up to each development team to decide which path should be
followed. We enumerate several of these options below:

1. The CAM aspect-oriented software architecture can serve as a basis for a manual
detailed design or implementation of the software system. This detailed design
or implementation can be done either using an aspect-oriented language or a
non-aspect-oriented one. In the former case, aspects and pointcuts identified at
the architectural level help to write pointcuts and aspects in our aspect-oriented
language. In the latter case, the designer or developer would need to manually
weave the aspectual components with the components they crosscut and the
benefits achieved by the aspect-oriented decomposition will be lost. So this
option is not recommended unless it is strictly required.

2. The CAM aspect-oriented architecture can be used to automatically generate (see
[15]) a DAOP-ADL description, which is used to run an application on the DAOP
platform [29, 30]. The DAOP platform is a distributed component and aspect-
based platform, where aspects and components are dynamically composed at
runtime using the information provided by the DAOP-ADL aspect-oriented
architectural description language [30].

3. The CAM aspect-oriented architecture can be used to automatically generate, by
means of model transformations, a UML design model for the application [32].
In this case, the model transformation is on charge of weaving the aspects with
the components these aspects crosscut, producing a non-aspect-oriented UML
model as output.

4. An aspect-oriented detailed design model can be automatically derived from the
CAM aspect-oriented architectural model by means of model transformations
[32]. In this case, the separation of concerns achieved at the architectural level is
preserved at design time.

5. The CAM aspect-oriented architecture can also be used to automatically generate
code for different languages [16], both aspect-oriented (AspectJ and JBoss AOP)
and non-aspect-oriented ones (Java).

Next section illustrates the different steps in our approach by applying it to the
CCMS case study.

154 P. Sánchez et al.

8.4 From Aspectual Requirements to Architecture: The Case
for CCMS

This section illustrates our approach, depicted in Fig. 8.3, by using the CCMS.

8.4.1 Requirements Identification

The first step of our approach identifies the requirements the system under develop-
ment must fulfil. Any of the AORE techniques currently available can be used for
this purpose. For this chapter, we have chosen the Aspect-Oriented Requirements
Analysis (AORA) [8, 9] approach, since we have previous experience in handling
it. AORA, like most of the AORE approaches, starts by identifying concerns, then
specifies them, and later composes them to reason about aspect interactions and
conflicts. This approach starts by identifying the kite-level concerns. Examples of
these kite-level concerns are the following:

• Capture Witness Report: A car crash is reported by a witness. The witness can
be involved in the car crash. A crisis employee, who plays the role of crisis
coordinator, must gather information about the incident (such as location and
victims’ state) as reported by the witness.

• Confirm Crisis Scenario: When an employee of the crisis management agency
arrives to the location of the car crash, the crisis scenario is confirmed. New
elements, such as damages to the road infrastructure, might be added. Similarly,
elements can be modified or removed from the crisis scenario, according to the
employee criteria. The employee might, for instance, add photos of the car crash
to allow insurance companies to determine responsibilities later.

• Identify Victim: One of the tasks of the crisis management employee is to identify
the victims. This is key to locate his or her medical history, as needed, as well as
to notify relatives as soon as possible.

• Message Integrity: Messages might be corrupted when transmitted. So, message
integrity should be ensured.

• Message Authenticity: The system needs to communicate with several public
services, such as firemen, ambulances, and hospital. Nevertheless, the sender of
these messages should be authenticated to avoid anonymous malicious users that
can send erroneous messages to the services. This would avoid, for instance, a
terrorist organisation deviate ambulances to a distant place from the one where
the attack is planned.

• Privacy: Due to legal issues and personal data protection, identity of the victims
involved in the car crisis should be encrypted to preserve personal data privacy.

• Response Time: Certain communications have associated a maximum response
time, in order to ensure the crisis is attended in an adequate and reasonable time
frame.

8 Mapping Aspects from Requirements to Architecture 155

<< scenario >>
IdentifyByPassport

<<functional >>
sd IdentifyByPassport << bind >>

[identifyVictimByPassport]

identifyVictimByPassport(missionId,plateNumber)

CMS_Employee CMS

identifyVictimByPassport_ack

<< aspect >>
sd ResponseTime

A B

messageA

messageB
< t ms

messageA,
messageB, t

<< aspect >>
sd Privacy

messageA

<< aspect >>
sd Authenticity

messageA

<< bind >>
[identifyVictimByPassport]

<< bind >>
[identifyVictimByPassport,

identifyVictimByPassport_ack]

Fig. 8.3 IdentifybyPassport sea-level scenario

So, the next step is to refine these concerns to sea-level granularity. Kite-level
scenarios would be refined to more fine-grained ones. For instance, the Confirm
Crisis concern might be refined into the AddCrisisElement, ModifyCrisisElement,
RemoveCrisisElement, or AddPhoto concerns. Similarly, the Move to Hospital con-
cern is decomposed into Find Hospital, Report Movement Init, and Confirm Victim
Arriva lconcerns. The Identify Victim concern is refined into the IdentifyByCarPlate,
IdentifyByIdCard, IdentifyByPassport, and IdentifybyCreditCard.

These sea-level concerns are affected by several crosscutting concerns. All sea-
level scenarios are affected by the Message Integrity, Message Authenticity, and
Response Time crosscutting concerns. Moreover, the identification scenarios, e.g.
IdentifyByCarPlate and the AddPhoto, are affected by the Privacy crosscutting
concern.

So, once we have identified the concerns the system under development must
address, the next step is to create a requirements model that can be used as input to
the model transformations. This is explained next.

8.4.2 Aspect-Oriented Requirements Modelling

Each sea-level scenario is modelled in UML 2.0 using the Aspectual Scenario
Modelling (ASM) UML Profile we developed for this purpose. The ASM Profile
allows the construction of requirements models based on scenarios.

Each sky-, kite-, and sea-level scenario is modelled as a package. For the case
of sea-level scenarios, each package contains a single non-crosscutting functional
concern that describes a single interaction with the system by means of a sequence
diagram.

156 P. Sánchez et al.

For instance, Fig. 8.2 shows the description of the IdentifyByPassport
scenario. The scenario as a whole is modelled as a UML package stereotyped as
<<scenario>>. The non-crosscutting functional concern that defines the scenario
is modelled as a common sequence diagram stereotyped as <<functional>>.
Here, we model that a message identifyVictimByPassport is sent from the Employee
Application to the Crisis Management System to identify the victim. The system
must acknowledge the reception of such a message.

Aspectual requirements are modelled as template classifiers, following an
approach similar to Theme/UML [12, 13]. These classifiers can contain sequence
diagrams or textual descriptions that detail the aspectual requirements. How
aspectual requirements are modelled does not affect their transformations. Only
the name of the aspectual requirement and its parameters are required for the model
transformations, as we will explain in the next section.

These classifiers describe the aspectual requirements in a general and abstract
way, referring only to template parameters instead of concrete elements coming
from the functional concern it affects. For instance, in Fig. 8.2, ResponseTime is
modelled as a sequence diagram using generic messages messageA and messageB.
This allows this aspectual requirement to be reused in other scenarios. On the other
hand, Privacy and Authenticity are described by means of textual descriptions.

Aspectual requirements are composed with non-crosscutting functional
requirements by means of <<bind>>relationships, also inspired by Theme/UML
[12, 13]. These relationships instantiate the aspectual requirements for particular
non-crosscutting functional concerns, specifying how and where the aspectual
requirements must crosscut the functional requirement as indicated by the actual
parameters.

8.4.3 Selection of Model Transformations

Next we select the set of model transformation patterns that will be used to transform
the requirements model created in the previous step into an architectural model. To
clarify why we need to select between different alternatives, we will describe how
the model transformation process works, i.e. what rules drive this transformation
process.

8.4.3.1 Model Transformation Rules

This subsection explains how model transformations have been designed to auto-
matically generate an aspect-oriented architectural model from an aspectual require-
ments model. The transformation process follows a bottom-up style, that is, from
sea-level to kite-level scenarios. The transformation of the sea-level scenarios is
defined through the rules described next.

8 Mapping Aspects from Requirements to Architecture 157

1. Functional concerns (described by means of sequence diagrams) are transformed
into architectural artefacts, according to the following steps:

a. For each lifeline representing a different domain object in the sequence
diagram, a component with a port is added to the architecture model. The
name of the component is the name of the type of the lifeline.

b. If a lifeline A receives a message in the requirements model, an interface IA is
incorporated into the architectural model. In addition, a provided relationship
is established between the component A (resulting from transforming the
lifeline A following the rule 1.a) and the newly created interface IA. The
operation invoked by the message is added to the interface IA, with their
corresponding parameters.

c. For each lifeline B that sends a message to a lifeline A, a required relationship
from the corresponding component B (created previously by transformation
of lifeline B fulfilling rule 1.a) and the newly created interface IA is added to
the architectural model (according to rule 1.b).

These steps create the structural view of the architectural model, describing
the components that comprise the architecture and their connections.

2. Each interaction (i.e. the sequence diagram) describing a functional concern is
transformed into an interaction in the architectural model (i.e. an architectural
sequence diagram). This interaction contains the transformation of all the
messages that do not appear as parameters in any of the bind relationships, i.e.
that are not affected by any aspect. So, the sequence diagram generated will
be incomplete until the non-functional crosscutting concerns are transformed.
Messages affected by aspects are not included as they might be intercepted,
reified, or modified by the aspects.

3. Aspectual requirements and the messages affected by them are transformed into
architectural artefacts using pattern-based transformations, where a certain pat-
tern encapsulates the design of a suitable solution for the aspectual requirement.
This pattern is instantiated using the parameters of the bind relationship that
composes the aspectual requirement with the functional requirement. Each pat-
tern has its own model transformation. So, before executing this transformation
process, we must select which one we want to instantiate. This transformation
step only requires the name of the aspectual requirement, which determines
the pattern to be injected and the actual values of the bind relationship, which
provides the values for instantiating the pattern.

Note that as mentioned in the previous section, the way in which an aspectual
requirement is modelled does not affect the transformation process. Thus, the
description of an aspectual requirement serves for documentation only. This last
step completes the behavioural view created in the second step.

The transformation of kite-level scenarios does not require any special effort,
as their structure is simply copied into the architectural model. Constraints
attached to kite-level scenarios about the composition of smaller scenarios are
also copied as composite scenarios into the architectural model. Thus, as the
composite scenarios are simply copied, they will be correct if the result of

158 P. Sánchez et al.

the transformation of their constituent parts is correct, that is, if the result
of transforming the sea-level scenarios that constitutes the kite- and sky-level
scenarios is correct.

The reader interested in the details of how these model transformations were
specified using the QVT (Query, View, Transformations) language can refer
to [36].

We will illustrate this process with an example from the case study in the
remaining in this section.

8.4.3.2 Selection of a Pattern for Each Aspectual Requirement

As mentioned before, several patterns that satisfy a given aspectual requirement
might exist. For example, in the case of MessageIntegrity, it can be supported by
techniques such as Checksum (CRC), one-way hash algorithm (MD5, SHA1) and
a digital signature [18, 39]. It is the software architect’s responsibility to select the
appropriate transformations or solutions that best satisfy the aspectual requirements,
taking into consideration trade-offs between these requirements and stakeholders
needs.

To specify which specific pattern will be used, each stereotype «aspect» of
the ASM Profile has a tagged value called architecturalSolution. Once the software
architect selects a specific solution for an aspectual requirement, s/he sets the
name of this tagged value to the name of the selected model transformation. This
ensures that when generating the software architecture, only the transformation
corresponding to the pattern of the selected solution is instantiated.

Message Privacy

Privacy requires some kind of encryption. Multiple encryption algorithms have been
created. Modern algorithms are based on ciphering messages using asymmetric
key cryptosystems. In these systems, senders cipher messages using a public key,
known by everybody. Once the message has been encrypted, it can be decrypted
only using the corresponding private key, which is only known by the receiver.
As mentioned previously, we are looking for a fast algorithm with an adequate
security, low network overhead, and resource consumption. In this case, a simple
RSA algorithm is enough to satisfy our goals.

Message Authenticity

Authenticity requires the verification of the identity of entities involved in a com-
munication. There are several algorithms to achieve authenticity [18, 39]. All these
algorithms are based on adding some code, called MAC (Message Authentication
Code), to the message being sent so that the receiver can verify the authenticity

8 Mapping Aspects from Requirements to Architecture 159

of the sender by carrying out some calculus with such a code as an input. Each
algorithm provides different levels of reliability, performance, network overhead,
and resource consumption. In our cases we need a fast algorithm—in a crisis,
carrying out the right actions in time with a minimum network overhead is key.
Due to the latency of the wireless networks we need to communicate with the crisis
scenario and use low resource consumption, as the crisis employee at the crisis
scenario will use a mobile device with limited hardware resources. In the light
of these requirements, the RSA algorithm, the one used for encryption, seems a
suitable choice.

Message Integrity

Integrity requires mechanisms to ensure that the message is not corrupted between
the moment it leaves the sender and the moment it reaches the receiver. Traditional
algorithms [18, 39], such as MD5, RSA, hash functions, and CRC, add extra data to
the message before sending it. Then, they use mathematical mechanisms to allow the
receiver to check if the message was corrupted. If corruption is detected, the sender
is notified and the message is resent. As before, we are looking for a fast algorithm
with an adequate reliability, low network overhead, and resource consumption. In
this case, MD5 seems a suitable choice.

Response Time

There are several good solutions available to handle ResponseTime. For example,
we could use a specialised data centre with replicated servers that ensure a
bounded workload and therefore a bounded response time. This is not, however,
an architectural decision and should, therefore, be postponed. Moreover, we might
need to create a specific implementation, in a concrete software platform and with
a concrete hardware support before analysing how much time each request needs to
be processed. Using these data, we might simulate different workloads and calculate
the response time for each request in different crisis scenarios, with a different
number of users communicating with the system. In the light of these data, we might
conclude that our system satisfies this requirement, or we might need to do further
work. Nevertheless, few can be done at the architectural level. What we can do at
the architectural level is described as follows. Each request needs to be processed
within a certain period of time. We can attach time constraints to the architectural
specification to guarantee that the component is implemented in such a way that the
constraint will be taken into consideration. We select this solution, which is already
encapsulated in a reusable model transformation.

It should be noted that the order in which aspects are applied to a requirement
might be relevant. For this reason, a tagged value executionOrder is added to the
stereotype «aspect» of the ASM Profile. This tagged value is an integer, whose value
must be between �1 and the number of aspects involved in a scenario, minus 1.

160 P. Sánchez et al.

<<component>>

CMS_Employee

<<component>>

CMS

ICMS

<<aspect>>

Authen�citySender

<<aspect>>

Authen�cityReceiver

IAuthen�city

<<aspect>>

IntegritySender

<<aspect>>

IntegrityReceiver

IIntegrity

IIntegrityNo�fy

<<aspect>>

Cypher

<<aspect>>

Decypher
IEncryp�on

ICMS_Employee

class StructuralView

Fig. 8.4 Architectural model generated—structural view

A �1 value specifies the order is not relevant. A positive number indicates the
place in the execution order for this aspect. An OCL constraint checks if two
aspects in same scenario do not have the same value for executionOrder. In our
case, Integrity must be the last aspect executed. The reason is that as Privacy and
Authentication will change the contents of the message, the MD5 redundant code
must be calculated for the final message that will be sent to the network. In the case
of Privacy and Authenticity, the execution order seems initially not relevant. So,
we assign maximum priority (0) to Privacy and execute Authenticity in second place.

The following section shows the results of executing the selected model transfor-
mations to the requirements models shown in Sect. 8.4.2.

8.4.4 Execution of the Model Transformation

This section shows and describes the architectural model obtained as a result of
executing the model transformations selected in Sect. 8.4.3 using the scenario of
Fig. 8.3 as an input.

The architectural model is expressed in the UML 2.0 Profile for CAM [30].
Figure 8.4 depicts the structural view of the generated architecture in terms of
components, ports, and interfaces, which are connected to ports using provided and

8 Mapping Aspects from Requirements to Architecture 161

(part I)

(part II)

CMS_Employee CMS_EmployeePort Authen�citySenderCipher IntegritySender
iden�fyVic�mBy Passport(m,vId)

cipher(ivP,m,id)
<<aspectual>>

auten�cate(args)
<<aspectual>>

process(mess,md5)
<<aspectual>>

decipher(args)

CipherPort Authen�citySenderPort

signedMess(args)
addMD5(args)

IntegritySenderPort

process(mess,md5)

IntegrityReceiverPort

sd Iden�fyByPassport

DecipherIntegrityReceiver Authen�cityReceiver CMSPort CMS

signedMess(mess,mac)

IntegrityReceiverPort

process(mess,md5)

Authen�cityReceiverPort

signedMess(mess,mac)

DecipherPort

decipher(args) decipher(args) iden�fyVic�mBy Passport(m,vId)

iden�fyVic�mBy Passport(m,vId)

sd Iden�fyByPassport

Fig. 8.5 Behavioural view for the IdentifyByPassport success scenario

required relationships. Figure 8.5 shows the behavioural view corresponding to the
transformation of the IdentifybyPassport scenario.

As a result of processing the lifelines of the functional concern in Fig. 8.3, the
CMS Employee and the CMS components are created. As the CMS Employee sends
messages to the CMS, an interface ICMS is created by the model transformations.
This interface is provided by the CMS and required by the CMS Employee. The
same reasons drive the creation and connection of the ICMS Employee interface
and all the remaining others.

As a consequence of transforming the aspectual requirements, components for
ensuring Authenticity, Integrity and Privacy are added. These components are
created by the pattern-based transformations that provide the selected solutions for
these aspectual requirements.

How these components work together is illustrated in the behavioural view
of Fig. 8.5 (parts I and II). This scenario has been shortened and split into two
separate diagrams for convenience. It represents the success scenario—as integrity
and authentication checks produce positive results. Firstly, the CMS Employee com-
ponent sends a message through its port to identify a victim by his or her passport
number. This message is intercepted by a Cipher aspectual component, which must
cipher the arguments of this message. After ciphering the message arguments,
the Cipher message will send a decipher request to the Decipher component in
the receiver side. This message is intercepted by the AuthenticitySender aspect,
which signs the message and sends it to the AuthenticitySender component, also
in the receiver side. This signed message is intercepted again by the IntegritySender
aspect, which adds a MD5 code to this message. No additional aspect is executed,

162 P. Sánchez et al.

so the message with the MD5 code is sent over the network and it is received by the
IntegrityReceiver aspect.

The IntegrityReceiver checks, using the redundant code received, whether the
message has suffered corruption while communicating over the network. If so, the
IntegrityReceiver would request to the IntegritySender the resending of the message.
If corruption is not detected, the original message is reconstructed and sent to its
original target. In our case, it was a signedMess for the AuthenticityReceiver aspect.
This aspect checks whether the sender is a valid and authenticated sender. If it is
not, an exception is raised. If it is, the message reception is approved, and the
original message reconstructed and sent to the target. In our case, the target is
the Decipher aspect, which uses its private key to decipher the message. Once it
has been deciphered, it is delivered to the appropriate target, in our case, the CMS
component.

8.5 Related Work

To the best of our knowledge this is one of the first approaches that address the
problem of deriving aspect-oriented software architectures from aspect-oriented
requirements model using model transformations. MDD4EA, our approach, was
firstly presented in Sánchez et al. [34, 36]. This chapter has reviewed this work and
it has illustrated the method with a new case study. Moreover, support for dealing
with the problem of aspect precedence has been added. In this section, we comment
on related work.

There are several works combining AOSD and MDD at different development
phases [1, 5, 22, 37, 38]. However, the focus of all these works is not on
automatically deriving aspect-oriented architecture designs from aspect-oriented
requirements specifications.

Silaghi and Strohmeier [37] propose an approach that integrates component-
based software engineering, model-driven development, and aspect-oriented pro-
gramming. All these technologies are put together in a software development
method for enterprise, middleware-mediated applications. This work focuses on
architecture specification, detailed design models, and implementation, but not on
how to go from requirements models to architecture models.

The proposal presented by Barbosa et al. [5] models PIM and PSM levels
using Subject-Oriented Design and Composition Patterns in UML. The idea is
to reduce scattering and tangling in class and interaction diagrams when they
realise CIM use cases. The approach models each MDA level with a set of
models (ViewCIM, ViewPIM, and ViewPSM) representing different aspects and
viewpoints that stakeholders perceive of the software system. Therefore, the work
supports the specification, modelling, and transformation of large complex systems
from multiple views (CIM, PIM, and PSM views), but, once again, automatic
transformations of requirements models to architecture models are not addressed.

8 Mapping Aspects from Requirements to Architecture 163

Another approach, closer to ours, is the AOMDF (Aspect-Oriented Model-
Driven Framework) proposal (Simmonds et al. [38]), which proposes an
MDD/MDA generation process to transform aspect-oriented models in different
phases of the software life cycle. AOMDF focuses on the detailed design
development phase, not addressing requirements analysis models.

Deriving aspect-oriented architectural models from an aspect-oriented require-
ments specification has been addressed in [10, 35]. This work offers some guidelines
and heuristics to support the required mappings. However, these mapping processes
are manual, since they do not cope with new MDD techniques.

ATRIUM (Architecture Traces from RequIrements applying a Unified Method-
ology) [23] is a methodology for developing interactive systems, where functional
and non-functional requirements are equally managed. It also introduces a process
for the semi-automatic generation of software architectures. ATRIUM starts with
the construction of a goal model, which considers functional and non-functional
requirements. Operationalisations for these goals are created. An operationalisation
provides a design decision and a design rationale, which contributes to traceability
between requirements and design decisions. Next, one or more architectural styles
are selected, and by using them, a scenario model is constructed. Finally, this
scenario model is used to automatically generate a proto-architecture. Model
transformation between scenario models and architectural models is implemented
in QVT. The process is supported by a tool called MORPHEUS. This approach is
very similar to ours. Indeed, the ATRIUM authors were highly inspired on our work.
The only differences are (1) they rely on their own metamodel for requirements
engineering, instead of a UML Profile as we do; (2) their tool support is oriented to
the .NET platform.

Mussbacher et al. [26] presented a set of model transformation rules for
mappings aspect-oriented requirements models to aspect-oriented design models.
The requirements models are expressed using aspect-oriented use case maps, in the
AoURN notation [25]) whereas the design models use RAM [21]. Although this
approach focuses on automating the transformation process, they do not address the
derivation of the architecture.

8.6 Conclusions

This chapter presented a (semi) automatic approach to generate aspect-oriented
architectural designs from aspect-oriented requirements models. While the archi-
tectural models are expressed in the UML 2.0 Profile for CAM, the requirements
models are expressed in the ASM UML 2.0 Profile. The transformation process
ensures that the information contained in the requirements models is preserved
at the architectural level. This helps to bridge the gap between aspect-oriented
requirements and aspect-oriented architectures. This gap is even more noticeable
in aspect orientation than in traditional development techniques since, in addition
to the classical misalignment between requirements specification and architecture

164 P. Sánchez et al.

design, aspect-oriented requirements engineering and aspect-oriented architecture
design approaches have emerged in isolation from each other. Therefore, an
automatic process to map requirements-level aspects into architectural-level aspects
has not existed for years. This mapping is the major contribution of this chapter.

The approach has been applied to several case studies in addition to the one
discussed in this chapter. We refer the interested reader to Sánchez et al. [36]. As
a result, pattern solutions for eight crosscutting concerns have been created and are
available to be reused across different projects.

The only shortcoming we have found in our approach is related to the transforma-
tion of the functional concerns. In some cases, automatically generated architectures
need to be slightly refactored to incorporate some creative solutions. This would
be the case if we wanted to have several distributed Crisis Management sites that
uses information from a central database. In this case, we would need a component
for managing the connections between the Crisis Management sites and the central
database. This component will not appear in the requirements models, so it would
not be generated at the architecture level. The main issue here is that the discovery of
this emerging component relies on a certain expertise and creativity of the software
architect that was not captured by the automatic model transformation. In addition,
with the current transformations, it is not possible to define several provided or
required interfaces for a component.

Therefore, as future work, we will investigate further how to transform functional
concerns into architectural models. Moreover, we will investigate the conflicts,
dependencies, and interactions between scenarios, how to deal with requirements
information which cannot be naturally mapped into an architecture and more
powerful techniques for trade-off analysis.

Acknowledgements We thank Daniel Sardonil for his value technical pieces of advices about
encryption, authenticity, and data integrity. This work has been partially supported by the projects
TIN2008-01942 funded by Spanish Ministry of Science and Innovation and P09-TIC-05231
(FamiWare) funded by Andalusian Government and the EC STREP Project AMPLE IST-033710.

References

1. P. Amaya, C. Gonzalez, J. Murillo, Towards a subject-oriented model-driven framework, in
Proceedings of the 1st International Workshop on Aspect-Based and Model-Based Separation
of Concerns in Software Systems, AB-MBSoC, 1st European Conference on MDA-Foundations
and Applications, (ECMDA-FA). Electronic Notes on Theoretical Computer Science, vol.
163(1) (Nuremberg, Germany, 2005), pp. 31–44

2. N. Anquetil, U. Kulesza, R. Mitschke, A. Moreira, J.-C. Royer, A. Rummler, A. Sousa,
A model-driven traceability framework for software product lines. Softw. Syst. Model. 9(4),
427–451 (2010)

3. E. Baniassad, S. Clarke, Theme: an approach for aspect-oriented analysis and design, in
Proceedings of the 26th International Conference on Software Engineering (ICSE), Edinburgh,
Scotland, UK, 2004, pp. 158–167

8 Mapping Aspects from Requirements to Architecture 165

4. O. Barais, E. Cariou, L. Duchien, N. Pessemier, L. Seinturier, TranSAT: a framework for
the specification of software architecture evolution, in Proceedings of the 1st International
Workshop on Coordination and Adaptation Techniques (WCAT), 18th European Conference
on Object-Oriented Programming (ECOOP), Oslo, Norway, 2004

5. P. Barbosa, C. González, J. Murillo, MDA and separation of aspects: an approach based on
multiple views and subject oriented design, in Proceedings of the 6th International Workshop
on Aspect-Oriented Modelling (AOM), 4th International Conference on Aspect-Oriented
Software Development (AOSD), Chicago, IL, 2005

6. T. Batista, C. Chavez, A. Garcia, U. Kulesza, C. Sant’Anna, C. Lucena, Aspectual connectors:
supporting the seamless integration of aspects and ADLs, in Proceedings of the 20th Brazilian
Symposium on Software Engineering (SBES), Florianopolis, Brazil, 2006

7. I. Brito, A. Moreira, Integrating the NFR framework in a RE model, in Proceedings of the
3rd International Workshop on Early-Aspects (EA), 3rd International Conference on Aspect-
Oriented Software Development (AOSD), Lancaster, England, 2004

8. I. Brito, F. Vieira, A. Moreira, R. ribeiro, Handling conflicts in aspectual requirements
compositions, in Journal of Transactions on AOSD, ed. by A. Rashid, M. Aksit. LNCS, vol.
4620 (2007) (Special issue on Early Aspects), pp. 144–166

9. I. Brito, Aspect-oriented requirements analysis, Ph.D. thesis, Departamento de Informática,
Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2008

10. R. Chitchyan, M. Pinto, A. Rashid, L. Fuentes, COMPASS: composition-centric mapping
of aspectual requirements to architecture, in Transactions on Aspect-Oriented Software
Development IV, ed. by A. Rashid, M. Aksit. LNCS, vol. 4640 (2007), pp. 3–53

11. L. Chung, B.A. Nixon, E. Yu, J. Mylipoulos, Non-Functional Requirements in Software
Engineering (Springer, Berlin, 1999)

12. S. Clarke, Extending standard UML with model composition semantics. Sci. Comput.
Program. 44(1), 71–100 (2002)

13. S. Clarke, E. Baniassad, Aspect-Oriented Analysis and Design: The Theme Approach
(Addison-Wesley, New York, NY, 2005)

14. A. Cockburn, Writing Effective Use Cases (Addison-Wesley, New York, NY, 2000)
15. L. Fuentes, M. Pinto, P. Sánchez, Generating CAM aspect-oriented architectures using model-

driven development. Inf. Softw. Technol. 50(12), 1248–1265 (2008)
16. N. Gámez, Code generation from architectural descriptions based on xADL extensions, Master

Thesis, Dpto. Lenguajes y Ciencias de la Computación, Universidad de Málaga, Julio, 2007
17. A. Garcia, C. Chavez, T. Batista, C. Sant’Anna, U. Kulesza, A., Rashid, C.J. Pereira de Lucena,

On the modular representation of architectural aspects, in Proceedings of the 3rd European
Workshop on Software Architecture (EWSA), ed. by V. Gruhn, F. Oquendo. LNCS, vol. 4344
(Nantes, France, 2006), pp. 82–97

18. J. Katz, Y. Lindell, Introduction to Modern Cryptography: Principles and Protocols (Chapman
and Hall/CRC, Boca Raton, FL, 2007)

19. G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, W.G. Griswold, An overview of
AspectJ, in Proceedings of the 15th European Conference on Object-Oriented Programming
(ECOOP), ed. by Jørgen Lindskov Knudsen. LNCS, vol. 2072 (Budapest, Hungary, 2001),
pp. 327–355

20. J. Kienzle, N. Guelfi, S. Mustafiz, Crisis management systems: a case study for aspect-oriented
modeling. Trans. Aspect Oriented Softw. Dev. 7, 1–22 (2010)

21. J. Kienzle, W. Al Abed, F. Fleurey, J.M. Jézéquel, J. Klein, Aspect-oriented design with
reusable aspect models. Trans. Aspect Oriented Softw. Dev. 7, 272–320 (2010)

22. V. Kulkarni, S. Reddy, Separation of concerns in model-driven development. IEEE Softw.
20(5), 64–69 (2003)

23. F. Montero, E. Navarro, ATRIUM: software architecture driven by requirements, in Proceed-
ings of the 14th International Conference on Engineering of Complex Computer Systems,
Postdam, Germany, 2009, pp. 230–240

24. A. Moreira, A. Rashid, J. Araújo, Multi-dimensional separation of concerns in requirements
engineering, in Proceedings of the 13th International Conference on Requirements Engineer-
ing (RE), Paris, France, 2005, pp. 285–296

166 P. Sánchez et al.

25. G. Mussbacher, D. Amyot, J. Araújo, A. Moreira, Requirements modeling with the aspect-
oriented user requirements notation (AoURN): a case study. Trans. Aspect Oriented Softw.
Dev. 7, 23–68 (2010)

26. G. Mussbacher, J. Kienzle, D. Amyot, Transformation of aspect-oriented requirements speci-
fications for reactive systems into aspect-oriented design specifications. MoDRE 2011, 39–47
(2011)

27. J. Pérez, I. Ramos, J. Jaén, P. Letelier, E. Navarro, PRISMA: towards quality, aspect-oriented
and dynamic software architectures, in Proceedings of the 3rd International Conference on
Quality Software (QSIC), Dallas, TX, 2003, pp. 59–66

28. N. Pessemier, L. Seinturier, T. Coupaye, L. Duchien, A model for developing component-based
and aspect-oriented systems, in Proceedings of the 5th International Symposium on Software
Composition (SC), ed. by W. Löwe, M. Süholt. LNCS, vol. 4089 (Vienna, Austria, 2006),
pp. 259–274

29. M. Pinto, L. Fuentes, J.M. Troya, DAOP-ADL: an architecture description language for
dynamic component and aspect-based development, in Proceedings of the 2nd International
Conference on Generative Programming and Component Engineering (GPCE, 2003), ed. by
F. Pfenning, Y. Smaragdakis. LNCS, vol. 2830 (2003), pp. 118–137

30. M. Pinto, L. Fuentes, J.M. Troya, A dynamic component and aspect-oriented platform.
Comput. J. 48(4), 401–420 (2005)

31. M. Pinto, L. Fuentes, J.M. Troya, Specifying aspect-oriented architectures in AO-ADL. Inf.
Softw. Technol. 53(11), 1165–1182 (2011)

32. M. Pinto, L. Fuentes, L. Fernández, Deriving detailed design models from an aspect-oriented
ADL using MDD. J. Syst. Softw. 85(3), 525–545 (2012)

33. A. Rashid, A. Moreira, J. Araújo, Modularisation and composition of aspectual requirements,
in Proceedings of the 2nd International Conference on Aspect-Oriented Software Development
(AOSD), Boston, MA, 2003, pp. 11–20

34. P. Sánchez, J. Magno, L. Fuentes, A. Moreira, J. Araújo, Towards MDD transformations from
AO requirements into AO architecture, in EWSA 2006, pp. 159–174

35. P. Sánchez, L. Fuentes, A. Jackson, S. Clarke, Aspects at the right time, in Transactions on
Aspect-Oriented Software Development (TAOSD) IV, ed. by A. Rashid, M. Aksit. LNCS, vol.
4640 (2007), pp. 54–113

36. P. Sánchez, A. Moreira, L. Fuentes, J. Araújo, J. Magno, Model-driven development for early
aspects. Inf. Softw. Technol. 52(3), 249–273 (2010)

37. R. Silaghi, A. Strohmeier, Integrating CBSE, SoC, MDA, and AOP in a software development
method, in Proceedings of the 7th Enterprise Distributed Object Computing Conference
(EDOC), Brisbane, Australia, 2003, pp. 136–146

38. D. Simmonds, A. Solberg, R. Reddy, R. France, S. Ghosh, An aspect oriented model driven
framework, in Proceedings of the 9th Enterprise Distributed Object Computing Conference
(EDOC), Enschede, The Netherlands, 2005, pp. 119–130

39. S. Vanstone, P. van Oorschot, A. Menezes, Handbook of Applied Cryptography (CRC, Boca
Raton, FL, 1996)

Chapter 9
Maintaining Security Requirements of Software
Systems Using Evolving Crosscutting
Dependencies

Saad bin Saleem, Lionel Montrieux, Yijun Yu, Thein Than Tun,
and Bashar Nuseibeh

Abstract Security requirements are concerned with protecting assets of a system
from harm. Implemented as code aspects to weave protection mechanisms into the
system, security requirements need to be validated when changes are made to the
programs during system evolution. However, it was not clear for developers whether
existing validation procedures such as test cases are sufficient for security and when
the implemented aspects need to adapt. In this chapter, we propose an approach
for detecting any change to the satisfaction of security requirements in three steps:
(1) identify the asset variables in the systems that are only accessed by a join-point
method, (2) trace these asset variables to identify both control and data dependencies
between the non-aspect and aspect functions and (3) update the test cases according
to implementation of these dependencies to strengthen the protection when a change
happens. These steps are illustrated by a case study of a meeting scheduling system
where security is a critical concern.

9.1 Introduction

Security requirements are about protecting assets of a system from the harms caused
by malicious attackers [1]. As one of well-known crosscutting concerns, changes
to security implementation can often lead to failures to satisfy other requirements
in the system. Implementing security requirements as security aspects could help
modularise the protection mechanisms that would otherwise clutter the non-security

S. bin Saleem (�) • L. Montrieux • Y. Yu • T.T. Tun
Centre for Research in Computing, The Open University, Buckinghamshire, UK
e-mail: s.b.saleem@open.ac.uk

B. Nuseibeh
Centre for Research in Computing, The Open University, Buckinghamshire, UK

Lero – The Irish Software Engineering Research Centre, Limerick, Ireland

A. Moreira et al. (eds.), Aspect-Oriented Requirements Engineering,
DOI 10.1007/978-3-642-38640-4 9, © Springer-Verlag Berlin Heidelberg 2013

167

mailto: s.b.saleem@open.ac.uk

168 S. bin Saleem et al.

Fig. 9.1 The class model of a secure meeting scheduler system

functions of the system [1]. However, any part of the system including both
aspect and non-aspect functions can change, making it difficult to maintain the
satisfaction of security requirements. Here we use aspect functions to refer the
advising functions inside the aspect and we use the join-point methods to refer to
where the aspect is weaved.

An example is shown in Fig. 9.1: the class diagram of a secure meeting
scheduler system. In this system, the Permissions aspect implements a security
requirement. The purpose of this security requirement is to ensure that only
the authorised users could be allowed to view/edit relevant information about the
meeting rooms. The aspect crosscuts the join-point methods bookMeeting in the
Meeting class and showAvailableRoom in the Room class. Through a test

9 Maintaining Security Requirements of Software Systems Using Evolving . . . 169

case, the satisfaction of this security requirement is checked that only an authorised
user can book a meeting or list available room(s), and an unauthorised user cannot
do so. When change happened to any function, usually one has to update the test case
in order to check the satisfaction of the same security requirement. The difficulty
here is that such an update could be ad hoc because most of the time the security
requirements are stated at a higher level of abstraction and are tested implicitly by
the test cases.

In this chapter, we propose an approach for detecting any change to the
satisfaction of security requirements in three steps: (1) identify the asset vari-
ables in the systems that are only accessed by a join-point method; (2) trace
these asset variables to identify both control and data dependencies between the
non-aspect and the aspect functions; (3) update the test cases according to these
dependencies to strengthen the protection when a change happens. An asset variable
refers to a variable in the code that is being protected by the security aspect.
For example, Equipment.name and Room.name are asset variables in the
meeting scheduler system. The main contributions of this work are twofold:

1. We explicitly represent the security requirement as assets’ protections in concrete
test obligations or test cases.

2. We update such test obligations by making use of the change impact analysis on
the assets variables and protection conditions.

The proposed steps will be illustrated by a small case study of a meeting
scheduling system where security is an important concern. The remainder of the
chapter is organised as follows. Section 9.2 discusses related work and background
before explaining our approach in detail. Section 9.3 presents our dependency
analysis framework that focuses on the satisfaction of security requirements before
and after the code has changed. Section 9.4 details the application of this framework
to a case study that exposes interesting research challenges. Finally, we conclude in
Sect. 9.5 with an outlook for the future research directions.

9.2 Background

Before explaining our framework, we first discuss some related work in the area
of aspect-oriented requirements (early aspects), evolving security requirements and
dependency analysis.

9.2.1 Aspect-Oriented and Evolving Security Requirements

Rashid et al. [2] proposed the concept of “early aspects” as a form of crosscutting
concerns in requirements. The notion of eliciting or identifying early aspectual
requirements seeks to prevent the introduction of crosscutting concerns at a later

170 S. bin Saleem et al.

design and implementation stage. There are many possible definitions of security
requirements as discussed by Mellado et al. [3]. However, in this work we adopt
the same definition of security aspects as in [1], where it is defined as the way to
protect the assets of the system because of cross cutting relationship between the
threat descriptions and functional requirements. Here threat descriptions are the set
of concerns to define relationship between the threats and system objects. Similarly,
we adopted the definition of security requirements as in [4], which is defined as the
way to protect important assets of the system from the harm caused by the malicious
attacker. As we consider the requirements and aspects in the problem world rather
than in the solution world, therefore we adopted the Haley’s definitions. However in
this work our focus is on the change impact analysis with respect to implementation
of the security aspects.

Security-related code tends to be scattered throughout many classes, and struc-
turally separating security concerns, e.g. access control, was a challenge until
the proposal of Aspect-Oriented Programing (AOP) paradigm. There are many
approaches proposed to solve the problem of separating security concerns using
Object-Oriented Programming (OOP) paradigm that includes modularising differ-
ent concerns. However, the problem of when and where to call a security mechanism
was not satisfactorily solved using the OOP paradigm. A security implementation
often calls other modules inside the system. The internal encryption mechanism is
an example of such a system, where key selection depends on the communication
channel. Therefore, it is hard to update all the system calls in response of change
requests when lines of code are in the thousands. The AOP is a solution to this
problem that not only specifies the behaviour of a specific concern but also binds
the relevant applications. Win et al. [5] conducted case studies on a Personal
Information Management System (PIM) and FTP server to implement security
requirements using aspect technology. They have confirmed that implementing
security using AOP is useful to explicitly separate the security logic from the
application logic. In this way, it is much easier for developer to take care of the
applications part and security experts to check that whether a security policy is
correctly implemented. Second, separating module (aspect) and binding (point-cut)
help to cope with unanticipated changes. The aspect and point-cut are concepts
used in the AspectJ, which is a Java extension of the AOP. A similar study has
been conducted by the Viega et al. [6] to check the benefits of writing secure code
using AOP extension of the C programming. They also reported that using AOP is
very useful to design security into the application without mixing the security and
application logic. Hence, the existing literature supports aspectual implementation
of security is better than the non-aspectual implementation. Therefore, based on this
fact we are using aspectual implementation of security in our study.

Haley et al. described functional requirements and threat descriptions as two
types of concerns to derive security requirements using aspect-oriented tech-
niques [1]. The functional requirements are set of concerns that help in understand-
ing the different objects in the system to perform an operation. On the other hand,
threat descriptions describe relationships between threats and objects. In case of
the security requirement, the objects are assets that need to be protected. In this

9 Maintaining Security Requirements of Software Systems Using Evolving . . . 171

study, we are using the term asset variable to refer asset objects because assets are
implemented as variables in the system code. Second, in this study we are doing
change impact analysis at the code level rather than at the design level. Therefore, it
makes more sense to call these asset implementations as asset variables. We named
the locations of system where an object (asset) is implemented and a security
mechanism is called to protect this asset as join-point functions. Similarly, we
name the functions where assets and security mechanisms are not called as
non-join-points. This convention of name is in line with the Haley’s definition that
join-points are locations where objects are shared among functional requirements
and threat descriptions.

Many forms of early aspects models have been proposed, including goals [10]
and problem frames [1], the targeted requirements are goal- or problem-oriented
models. Yu et al. [7] identify aspectual requirements from soft goals; on the other
hand Haley et al. [1] identify them using problem frames. It is worth noting
that most early aspects frameworks treat security requirements as one of the
non-functional requirements. However, Haley et al. [1] define the point-cuts of
security aspects specifically based on the definition of security requirements [4],
i.e. protecting assets from harms of malicious attacks. They also suggested that
security requirements can be expressed as trust assumption made by the domain
expert about security of the system. Recently, Franqueira et al. [8] have extended
the security requirements argumentation process of Haley et al. [4] to strengthen the
trust assumptions by conducting risks assessment.

The idea of tracing and validating security aspects using requirements-driven
approach is not new by itself, as Niu et al. [9] have demonstrated the feasibility to
support the whole aspect development life cycle using the goal-oriented approach.
However, our work reported here is different in that we focus on change impact
analysis of security aspects. Unlike the runtime-monitoring framework proposed
by Salifu et al. [10], in this work we concentrate on the analysis at the development
time. Nhlabatsi et al. [11] survey the literature on security requirements and software
evolution, where the management of evolving security requirements is identified as
an outstanding research issue.

9.2.2 Existing Security Dependency Analysis Frameworks

The term dependency refers to a relationship among different elements of a program
or between two different programs relying on each other to perform a particular task.
Such dependencies play an important role in program execution and are classified
into data and control dependencies [12]. A data dependency exists when the output
of a program becomes the input for another program. On the other hand, a control
dependency is related to the ordering and conditions of the execution of the program.
Ferrante et al. have introduced the Program Dependency Graph (PDG) to represent
the relationship between different programs based on the data data and control
dependencies [13]. Similarly, Pugh have proposed an approach to remove false

172 S. bin Saleem et al.

data dependencies to prevent program transformation [14] and later improved the
approach by using integer programming [15]. Both of the proposed approaches aim
to improve the program understanding, for instance, when analysing changes to the
programs. A security requirement dependency is defined as a relationship between
the aspect and non-aspect functions to protect an asset variable of a program.

In the field of network security, Yau and Zhang [16] refer network security
dependency as a relationship between two nodes in the network when a program or
service intruded by an attacker in one node helps to attack the other node. Therefore,
they consider that it is important to identify such security dependency relationships
among all the nodes. Johansson [17] have introduced that security dependency exists
between two nodes of a network when they depend each other for their security.
He categorises them into acceptable and unacceptable dependencies: an acceptable
dependency means that a less sensitive system of a network depends on the more
sensitive system for its security and an unacceptable dependency is referred as a
relationship when the more sensitive system depends on the less sensitive system
for its security. For example, it is acceptable, if a workstation depends on a domain
controller for its security. A domain controller depending on a workstation for
its security is unacceptable. However, these works are not at the program level;
therefore they are not directly applicable to the scope of security program aspects.
However, all these works stressed the need to manage program dependencies, which
is also true for security implementation to avoid the risk of attack on the entire
system in case of attack on one vulnerable module. Therefore managing security
dependencies at the program level is equally important to minimise the risk of
system wide attacks.

To the best of our knowledge, there is still a need to perform dependency analysis
of evolving security requirements that are implemented using security aspects.

9.3 A Dependency Analysis Framework for Security Aspects

An overview of our proposed framework is presented in Fig. 9.2, showing inputs,
outputs and the three steps.

The inputs to the SDF include (1) a system that already has the security
requirements implemented as a list of security aspects, (2) a set of test cases that
check the satisfaction of security requirements and (3) a set of changes to the
implementation of the system. The outputs from the SDF include both (1) a set
of updated test cases and (2) a list of updated security aspects that may enhance the
protections.

Specifically, the framework can be seen as three consecutive steps:
initially (1) the concrete assets to be protected are identified from the differences
between join-point and non-join-point functions. Without weaving the protection
into the join-points, one may assume that certain assets are unprotected. Therefore
their identification can be helped by existing join-point control flows; (2) from
these identified asset variables, program slicing [18] can be performed to obtain

9 Maintaining Security Requirements of Software Systems Using Evolving . . . 173

Fig. 9.2 An overview of our SD framework in three steps

the control and data dependencies that may leads to the unwanted exposure of
these asset variables due to the changes to the functions; and finally (3) from these
analysed dependencies, the test cases and security aspects are inspected to check
whether the exposed asset values are covered by the new test obligations or by
extending the scope of protection through an updated point-cut.

The detail of each step is demonstrated through a running example con-
sisting of three classes (i.e. Employee, User and Role), one aspect (i.e.
CheckPermission) and one test case (i.e. SRTestCase).

The implementation of all these classes is shown in Fig. 9.3. The class
Employee has instance variablesage and salary and a method getSalary()
to get the value of the salary according to person’s age. Similarly, the class User
has two variables userName and authorized and two methods access ()
and hasPermissions (). The aspect CheckPermission is implemented

174 S. bin Saleem et al.

public class Employee {
public String person;
public int age;
public int salary;
public Employee(String person) {

this.person= person;
this.age = 0;
this.salary =0;

}

public int getSalary() {
if(age<60){

salary=100000 + 5000 * (age - 60);
} else if(age>=60){

salary=100000;
}
return salary;

}
}
public class User {

public String userName;
public boolean authorized;

public User(String userName, boolean authorized) {
this.userName = userName;
this.authorized = authorized;

}

public int obtainSalary(Employee person) {
return person.getSalary();

}

boolean hasPermissions() {
return authorized;

}
}
public aspect CheckPermission {

pointcut p(): (call(public int Employee.getSalary())
&&args());

int around(): p() {
if (((User)thisJoinPoint.getThis()).hasPermissions())

{
return proceed();
} else {
return -1;
}

}

}

Fig. 9.3 Listings of the running example: the Employee and User classes and the
CheckPermission aspect

to run whenever a getSalary() function is called; the advice part of the aspect
runs around the getSalary() function call and returns the control to calling
methods when the user has the right permissions as indicated by the truth value

9 Maintaining Security Requirements of Software Systems Using Evolving . . . 175

import static org.junit.Assert.*;
import org.junit.Test;
public class SRTestCase {

@Test
public void testSecurity() {

User user = new User("Saad", false);
assertEquals(-1, user.obtainSalary(new Em-

new Em-

ployee("Lionel")));

ployee("Lionel")));

user.authorized = true;
assertTrue(-1 != user.obtainSalary(

}

}

Fig. 9.4 The security implementation validated as a unit test

returned from the implemented hasPermissions() function. Otherwise, the
advice code aborts the further execution of the program.

In this running example, the security requirement to be maintained is “to protect
the salary from the unauthorised users to view or to change”. The test case in
Fig. 9.4 checks whether the security requirement is correctly implemented.

The first type of change considered here is (C1) which is due to introduction
of a new requirement in the program. For example the system context is changed
and now salary is calculated based on the new retirement age “65”. This change
should be reflected in the program by modifying age constant variable from “60”
to “65”. The second type of change (C2) is about updating existing implementation
of the system. For example, the setAge()method in Employee class needs to
be updated to reflect salary calculation according to the new age. The third type
of change (C3) is about a scenario when a new security mechanism is introduced
in the system. For example now the system security is checked using the direct
access control (by user permission) to the indirect role-based access control (by
user-role-permission). Given these inputs, one can analyse whether these changes
could lead to the security requirement not being satisfied anymore.

The first step of our proposed approach is applied as follows. The
join-point being protected by the advice in the CheckPermission aspect is
Employee.getSalary()whereby salary is identified as an asset variable to
be protected from viewing or changing by unauthorised users, e.g. when it is called
by the obtainSalary() method.

After identifying the asset variable, in the second step we analyse both the data
and control dependencies: Employee.age and User.authorized are found
between the aspect (User.obtainSalary,CheckPermisson.around) and
non-aspect functions (Employee.getSalary, User.hasPermissions),
respectively. The guard condition for the getSalary() computes
User.authorized, i.e. a control dependency; the computation of salary
itself makes use of the variable Employee.age, thus a data dependency.

In the third step, we need to combine the program dependencies with the
following proposed changes to tell whether there is a need to update the security
aspect.

176 S. bin Saleem et al.

public class Employee {

public int getSalary() {
if(age<65){
salary=100000 + 5000 * (age - 65);
} else if(age>=65){
salary=100000;
}
return salary;

}

}

Fig. 9.5 C1: Change to the
Employee class

9.3.1 Change Due to a New System Requirement (C1)

For the change of the retirement age (see the underlined parts in Fig. 9.5), a change
to the computation of the asset Employee.getSalary() is detected because of
the data dependencies. Although it has to do with integrity, however, this change
will not be detected as a threat to the asset for malicious access (authorisation).
Therefore there is no need to update the CheckPermission aspect or the
corresponding SRTestCase test case.

9.3.2 Change Due to an Update of Existing Implementation
(C2)

On the other hand, if a user has the permission to modify the Employee.age,
as suggested by adding a method to update Employee.age, e.g. by using the
setAge() method in Fig. 9.6.

In this case, although the Employee class is not changed, it is mandatory to pro-
tect the Employee.age by the same level of permissions. Therefore it is required
to update the point-cut expression in the CheckPermission aspect as follows:
pointcut p():(call(public * Employee.getSalary() jj public *
Employee.setAge())&& args());

9.3.3 Change Due to a New Security Mechanism (C3)

The third example change introduces role-based access control into the system by
modifying the User.hasPermission()method, as shown in Fig. 9.7.

Here, the control dependency to hasPermissions() has changed because
the system is now giving access based on the user’s role. Although this change
does not influence the interface between the CheckPermission aspect and

9 Maintaining Security Requirements of Software Systems Using Evolving . . . 177

/* New function setAge is added to the Employee class*/
public class Employee {

public void setAge(int ageArg){
this.age=ageArg;

}

}

public class User {
public String userName;
public boolean authorized;
Role userrole;

public User(String userName, Role userRole) {
this.userName = userName;
this.userrole=userRole;

}

public int obtainSalary(Employee person) {
person.setAge(40);
return person.getSalary();

}

}

Fig. 9.6 C2: Change to the User class

public class Role {

public String role;
public boolean authorized;

public Role(String role, boolean authorized) {
this.role=role;
this.authorized=authorized;

}
boolean hasPermissions(){

return this.authorized;
}

}

public class User {
boolean hasPermissions() {

return userrole.hasPermissions();
}

}

Fig. 9.7 C3: Change according to role-based access control mechanism

the join-points, it requires the test case SRTestCase to check the satisfaction of
security requirement differently, as shown in Fig. 9.8.

In summary, we have shown that analysis of the data dependencies on the asset
variables and the control dependencies on the protection condition results in the

178 S. bin Saleem et al.

public class SRTestCase {

@Test
public void testSecurity() {

Role student = new Role("Student", false);
User userRightRole = new User("Saad",student);
assertEquals(-1, userRightRole.obtainSalary(new Em-
ployee("Lionel")));
Role professor = new Role("Professor", true);
User userWrongRole = new User("Saad",professor);
assertTrue(-1 != userWrongRole.obtainSalary(new Em-
ployee("Lionel")));

}

}

Fig. 9.8 C3: change to the test case is required

identification of changes in the security aspects or the security test cases. In the
following section, we show an application of the methodology to a case study in
order to discuss some general issues.

9.4 Application to the Meeting Scheduler System

Since the common case study does not provide source code, we could not use it
for our proposed approach. To illustrate our approach, we have used the Meeting
Scheduler system exemplar case study, extended with the security requirements.
This case study is selected because of simplicity and sufficiency to represent the
problem [19]. We handle the Meeting Scheduling problem for the members of the
Computing department of the Open University based in the Jennie Lee Building
(JLB). It involves the physical and social contexts of the members of the department.
The roles of the people include faculty members, full-time PhD students, secretaries,
course team members, tutors and research fellows, etc. For simplicity, in this study
only these regular roles of stakeholders are considered to interact with the system;
other roles such as visitors are not considered. Since laptops and USB keys are assets
in the meeting rooms of the building, security measures have been taken to protect
the open-plan areas and the meeting rooms. Great care has been taken to ensure that
the measures do not hinder people performing their jobs. By looking at the meeting
scheduler problem in JLB and interviewing the stakeholders inside the building, one
can construct a secure meeting scheduling system.

Figure 9.1 shows a simplified class diagram of the secure Meeting Scheduler
system design. The Protection class is part of the Permissions aspect in the
design, which crosscuts the showAvailableRoom and createRoom join-point
functions. Both functions share a common asset variable: the information of
available meeting rooms inside the building (Room.roomList). In this example,

9 Maintaining Security Requirements of Software Systems Using Evolving . . . 179

the Permissions aspect verifies that the users have the right permissions before
they access any information relevant to the meeting rooms. Any change to the
advising function checkValidPermisions or to the join-points functions must
be inspected against the implementation of the security requirement. The security
requirement is to protect the information of available rooms from the access of
unauthorised potentially malicious attackers. Otherwise, either the system would
not function anymore or all the users would have permissions to access relevant
information about meetings rooms.

Suppose the Permissions aspect is originally implemented by check-
ing the username and password against a predefined list of access control
(User.userList). A change (C”1) has happened such that not only the
available meeting room but also valuable equipment such as projectors are
considered as the assets (Equipment.equipmentList).

Another change (C”2) is to do with introducing Role-Based Access Con-
trol (RBAC) (User.roleList) to the users. To analyse whether the current
implementation can still satisfy the security requirement or not, we applied the
dependency analysis methodology as follows.

First we identified the asset variables Room.roomList and
Equipment.equipmentList from the join-point functions
showAvailableRoom, createRoom and createEquipment. In the
second step, we identified data dependencies reading room information between
Room.readRoom and Equipment.readEquipment. In this case, the
equipment is inside a room; therefore we always need to read the room
information to know the whereabouts of the equipment. Similarly, we identified the
control dependency between User.userList and User.roleList because
assignment of a role to a user depends on the condition that the user must be
valid. In this way, system always checks the validity of the user before checking
his/her role. These dependencies could be exploited by malicious attackers when
change happened to the asset variables. In this case study, the Equipment.name,
Room.name and Meeting.name are classified as asset variables.

After the proposed change C”1, createEquipment was added into the
system, making it necessary to include it into the scope of protection as well.
The original implementation of the Permissions aspect worked perfectly for
both createEquipment and createRoom functions. However, when C”2 hap-
pened, it was found that the security requirement for the showAvailableRoom
function was not fulfilled. The reason is that different users now have different
roles and the Permissions aspect did not consider the roles of users while
giving access to the system. It means the Permissions aspect still relies on the
control dependency User.userList instead of User.roleList in case of
change from access list to RBAC protection mechanism. This change to the protec-
tion mechanism is not reflected in the system; therefore the control dependency
User.userList leads to the exposure of asset variables Room.roomList
and Equipment.equipmentList. In an initial attempt, function call to check
the roles of user was made inside the showAvailableRoom join-point func-
tion. However, the change was not effective because createEquipment and
createRoom are not directly involved with RBAC.

180 S. bin Saleem et al.

After this change, however, the system did not show available rooms and still
the system security requirement is not satisfied according to security requirement
test case. Actually, still the change was made to only the join-point function
showAvailableRoom. To respond to the change for satisfying the security
requirement, the advising function of the Permissions aspect and the other join-
points should be changed as well. Not only the join-point and advising function
but also this change in security requirement should be tested by a new unit test
case. Later to reflect the change, we removed the RBAC check from inside the
showAvailableRoom function and updated the Permissions aspect with
the RBAC check instead. In this way, the new check in permission aspect depends
on the User.roleList variable instead of depending on User.userList.
Similarly, the security requirement’s test case is also updated by checking the
permissions based on the role rather than based on the users.

9.5 Conclusion

In this chapter, we have illustrated the need for a systematic approach to handle
changes made to security-critical programs, using a running example and our
meeting scheduler case study. There are two main observations: (1) Change can
happen to any part of the system, including both the aspect and non-aspect part of the
implementation. When a change happens, the validation procedure (test cases) for
the security requirements may need to be updated even if the security requirements
have not changed; (2) both control and data dependencies can have impact on the
validation of security requirements. Therefore, it is important to check whether the
implementation of security aspects can catch the problematic changes, for instance,
the point-cut expressions that need to be updated in order to include more changing
functions into the scope.

In future, we aim to automate some part of the analysis so that it is possible
to reduce the workload for the developers when the system is changed frequently.
Also we aim to apply the framework to a substantially larger case study in the public
domain so that our findings can be generalised and shown to be useful for security
practitioners.

References

1. C.B. Haley, R.C. Laney, B. Nuseibeh, Deriving security requirements from crosscutting threat
descriptions, in Proceedings of the 3rd International Conference on Aspect-Oriented Software
Development (ACM, New York, NY, 2004), pp. 112–121

2. A. Rashid, P. Sawyer, A. Moreira, J. Araujo, Early aspects: a model for aspect-oriented
requirements engineering, in Proceedings of the IEEE Joint International Conference on
Requirements Engineering, 2002, 2002, pp. 199–202

9 Maintaining Security Requirements of Software Systems Using Evolving . . . 181

3. D. Mellado, C. Blanco, L.E. Sánchez, E. Fernández-Medina, A systematic review of security
requirements engineering. Comput. Stand. Interface 32, 153–165 (2010)

4. C.B. Haley, R. Laney, J.D. Moffett, B. Nuseibeh, Security requirements engineering: a
framework for representation and analysis, in IEEE Transactions on Software Engineering,
vol. 34, 2008, pp. 133–153

5. B.D. Win, W. Joosen, F. Piessens, Developing Secure Applications through Aspect-Oriented
Programming. Aspect-Oriented Software Development (Addison-Wesley, New York, NY,
2002), pp. 633–650

6. J. Viega, J.T. Bloch, P. Ch, Applying aspect-oriented programming to security. Cutter IT J. 14,
31–39 (2001)

7. Y. Yu, J.C.S. do Prado Leite, J. Mylopoulos, From goals to aspects: discovering aspects from
requirements goal models, in Proceedings of the Requirements Engineering Conference, 12th
IEEE International (IEEE Computer Society, Washington, DC, 2004), pp. 38–47

8. V.N.L. Franqueira, T.T. Tun, Y. Yu, R. Wieringa, B. Nuseibeh, Risk and argument: a risk-based
argumentation method for practical security, http://re11.fbk.eu/accepted

9. N. Niu, Y. Yu, B. González-Baixauli, N. Ernst, J.C.S. do Prado Leite, J. Mylopoulos,
Aspects across software life cycle: a goal-driven approach, in Transactions on Aspect-Oriented
Software Development, ed. by S. Katz, H. Ossher, R. France, J.-M. Jézéquel, vol. VI (Springer,
Berlin, 2009), pp. 83–110

10. M. Salifu, Y. Yu, B. Nuseibeh, Specifying monitoring and switching problems in context,
in Requirements Engineering Conference, 2007. RE ’07. 15th IEEE International, 2007,
pp. 211–220

11. A. Nhlabatsi, B. Nuseibeh, Y. Yu, Security requirements engineering for evolving software
systems. Int. J. Secure Softw. Eng. 1, 54–73 (2010)

12. N. Wilde, Understanding program dependencies, Carnegie Mellon University, Software Engi-
neering Institute SEI-CM-26, 1990 (26 pages) (University of West Florida)

13. J. Ferrante, K.J. Ottenstein, J.D. Warren, The program dependence graph and its use in
optimization. ACM Trans. Prog. Lang. Syst. 9, 319–349 (1987)

14. W. Pugh, D. Wonnacott, Eliminating false data dependences using the Omega test. SIGPLAN
Not. 27, 140–151 (1992)

15. W. Pugh, D. Wonnacott, Going beyond integer programming with the Omega test to eliminate
false data dependences. IEEE Trans. Parallel Distribut. Syst. 6, 204–211 (1995)

16. S.S. Yau, X. Zhang, Computer network intrusion detection, assessment and prevention based
on security dependency relation, in 23rd International Computer Software and Applications
Conference (IEEE Computer Society, Washington, DC, 1999), p. 86

17. Island Hopping: Mitigating Undesirable Dependencies – TechNet Magazine Blog –
Site Home – TechNet Blogs, http://blogs.technet.com/b/tnmag/archive/2008/02/27/island-
hopping-mitigating-undesirable-dependencies.aspx

18. M. Weiser, Program slicing, in IEEE Transactions on Software Engineering. SE-10, 1984,
pp. 352–357

19. A. Van Lamsweerde, R. Darimont, P. Massonet, Goal-directed elaboration of requirements
for a meeting scheduler: problems and lessons learnt, in Proceedings of the Second IEEE
International Symposium on Requirements Engineering (IEEE Computer Society, Washington,
DC, 1995), p. 194

http://re11.fbk.eu/accepted
http://blogs.technet.com/b/tnmag/archive/2008/02/27/island-hopping-mitigating-undesirable-dependencies.aspx
http://blogs.technet.com/b/tnmag/archive/2008/02/27/island-hopping-mitigating-undesirable-dependencies.aspx

Chapter 10
Using Aspects to Model Volatile Concerns

Ana Moreira, João Araújo, Jon Whittle, and Miguel Goulão

Abstract A rapidly changing market leads to software systems with highly volatile
requirements. In many cases, new demands in software can often be met by
extending the functionality of systems already in operation. By modularizing
volatile requirements that can be altered at the client’s initiative or according to
market demands, we can build a stepping-stone for management of requirements
change. The volatility must be managed in a way that reduces the time and costs
associated with updating a system to meet the new requirements. In this chapter,
we present an approach for handling volatile concerns during early life cycle
software modeling. The key insight is that techniques for aspect-oriented software
development can be applied to modularize volatility and to weave volatile concerns
into the base software artifacts.

10.1 Introduction

A key barrier to the success of modern systems is the time required to deal with
volatile requirements. As Firesmith [9] says: “The more volatile the requirements,
the more important it becomes for the requirements process to support the quick and
easy modification and addition of requirements.” This chapter discusses a modeling
method that copes with requirements change by explicitly externalizing volatile
concerns and treating them as candidate aspects. In general, volatile concerns may or
may not be crosscutting, but techniques for modeling aspects may be reused because
both aspects and volatile concerns share the same basic needs—independency,

A. Moreira (�) • J. Araújo • M. Goulão
Departamento de Informática, Universidade Nova de Lisboa, Caparica, Portugal
e-mail: amm@fct.unl.pt; joao.araujo@fct.unl.pt; mgoul@fct.unl.pt

J. Whittle
Computing Science Department, University of Lancaster, Lancashire, UK
e-mail: whittle@comp.lancs.ac.uk

A. Moreira et al. (eds.), Aspect-Oriented Requirements Engineering,
DOI 10.1007/978-3-642-38640-4 10, © Springer-Verlag Berlin Heidelberg 2013

183

mailto:amm@fct.unl.pt
mailto:joao.araujo@fct.unl.pt
mailto:mgoul@fct.unl.pt
mailto:whittle@comp.lancs.ac.uk

184 A. Moreira et al.

modular representation, and composition with a base description. By representing
volatile concerns using aspect-oriented techniques, volatility is modularized and
requirements modifications can be rapidly composed into an existing system,
leading to efficiency gains in handling requirements creep.

In our approach, both volatile and crosscutting concerns are modeled as aspects
by using extended pattern specifications and are composed using specialized
techniques for pattern specification composition. Pattern specifications (PSs) were
proposed in [10] as a way of formalizing the reuse of models. The notation for
pattern specifications is based on the Unified Modeling Language (UML). A pattern
specification describes a pattern of structure or behavior defined over the roles
which participants of the pattern play. It can be instantiated by assigning modeling
elements to play these roles. Pattern specifications are a practical and flexible way
to handle aspects at the modeling level. By identifying volatile concerns, they can
be modeled as pattern specifications and then instantiated and composed with a base
system in a number of different ways. Requirements change amounts to replacing a
pattern specification and reapplying the composition strategy.

This chapter aims at demonstrating the value of early externalization of volatile
business rules and constraints to support concern change using aspects. This is
achieved by proposing an evolutionary model that includes the concepts of aspect
orientation and its advantages [12].

Modeling volatile concerns as candidate aspects, independently of those con-
cerns being crosscutting or not, is a way to support change, since volatile concerns
may become crosscutting in the future. Also, since it improves modularization
and consequently a better separation of concerns, it facilitates the introduction and
removal of business rules because it is easier to add a new aspect to a running system
than to add a new set of classes or methods.

The remainder of this chapter is structured as follows. Section 10.2 introduces
some background work. Section 10.3 gives an overview of our method for modeling
volatile concerns. Section 10.4 applies the method to a case study. Section 10.5 eval-
uates the presented method according to general and specific criteria. Section 10.6
discusses related work and Sect. 10.7 concludes the work and suggests directions
for further research.

10.2 Background

Pattern Specifications (PSs) PSs [10] are a way of formalizing the reuse of
models. The notation for PSs is based on the Unified Modeling Language (UML)
[17, 18]. A pattern specification describes a pattern of structure or behavior defined
over the roles which participants of the pattern play. Role names are preceded by a
vertical bar (“j”). A PS can be instantiated by assigning concrete modeling elements
to play these roles. A role is a specialization of a UML metaclass restricted by
additional properties that any element fulfilling the role must possess. Hence, a role
specifies a subset of the instances of the UML metaclass. A model conforms to a

10 Using Aspects to Model Volatile Concerns 185

loop <i=1..NumOfObserver>

s:Kiln

sd

t[i]:TempObs

NotifyObs

UpdateTemp(s)

st:=GetKiln()

KilnInteraction

m:Monitor

LogUpdateRecd(s)

|s:|Subject

|NotifyInteraction 1..*

|o[i]:|Observer

|Notify

|Update(|s)

|st=|GetState()

loop <i=1..NumOfObserver>

a b

Fig. 10.1 An IPS (a) and a conforming sequence diagram (b)

PS if its model elements that play the roles of the PS satisfy the properties defined
by the roles. Thus, a conforming diagram must instantiate each of the roles with
UML model elements, multiplicity, and other constraints. Note that any number of
additional model elements may be present in a conforming diagram as long as the
role constraints are maintained.

PSs can be defined to show static structure or dynamic behavior. We will focus on
dynamic behavior, applying use case pattern specifications (UCPS), activity pattern
specifications (APS), and interaction pattern specifications (IPS). For example, an
IPS defines a pattern of interactions between its participants, consisting of a number
of lifeline roles and message roles which are specializations of the UML metaclasses
Lifeline and Message, respectively. Each lifeline role is associated with a classifier
role, a specialization of a UML classifier. (A similar reasoning applies to UCPS and
APS.)

Figure 10.1 shows an example of an IPS (taken from [10]), where Fig. 10.1a
formalizes the Observer pattern. A conforming sequence diagram is shown in
Fig. 10.1b. Note that the partial ordering on the message roles must be satisfied.
An instantiation rule can take the form: Replace jSubject with Kiln. Figure 10.1b
conforms to 1a because the roles in 1a can be instantiated as follows:

jNotifyInteraction -> KilnInteraction; js -> s; jSubject
-> Kiln; jNotify -> NotifyObs; jo -> t; jObserver ->

TempObs; jUpdate -> UpdateTemp; jst -> st; jGetState ->

GetKiln.

Note that PSs offer more than mere parameterization (for parameterization UML
templates could be used instead). PSs consist of roles, which can be instantiated to
zero, one, or any number of model elements, roles may have attached constraints
and any model element playing the role must fulfill those constraints, and PSs have
a well-defined notion of conformance which makes them suitable for composition.
This composition is valid if and only if the result of the composition conforms to

186 A. Moreira et al.

the pattern specification. Many examples of composition will be given later in the
chapter.

We extend the notion of PS by allowing both role elements and concrete
modeling elements in a PS. This provides greater flexibility in reuse as often one
may wish to reuse a partially instantiated model rather than a model only containing
role elements.

The Role of Roles Our approach uses roles to typify concerns in terms of their
volatility, genericity, and aspectuality. Volatile concerns represent business rules that
the stakeholders would like to be able to change quickly, at any time, depending
on the market demands. Examples of such volatile business rules are “Customers
whose transactions amount to at least five million euros annually are awarded
a position on the company executive board” or “Off-peak customers get a 5 %
discount”. In traditional software development approaches, the specification, and
consequent implementation, of these volatile requirements is hardwired to core
modules that cannot be changed without having to recompile the application. By
externalizing these volatile concerns and specifying them as role elements (or, more
generally, role models) we are offering a mechanism to instantiate each business
rule differently whenever needed (genericity). For example, a volatile concern can
be given as a use case role and later be instantiated to a concrete use case.

Roles are also used to represent crosscutting concerns. The advantage is that
the resulting role model can be instantiated and composed differently depending on
which model it crosscuts. In general, both volatile and crosscutting concerns can
be modeled as a PS, and this can be done at multiple levels of abstraction—e.g., a
crosscutting use case can be refined into an APS.

Crosscutting Models We define an aspect-oriented model to be a model that
crosscuts other models at the same level of abstraction. This means, for example,
that a requirements model is an aspect if it crosscuts other requirements models; a
design model is an aspect if it crosscuts other design models. In particular, a use
case is not necessarily an aspect. Although a use case always cuts across multiple
implementation modules, it is only an aspect if it cuts across other use cases.

In this chapter, we restrict the definition of an aspect-oriented model further and
say that a model is an aspect only if it crosscuts other models written from the same
perspective. For example, a model showing global component interactions does not,
according to our definition, crosscut a model showing internal component behavior.
Although the models are defined at the same level of abstraction, they are written
from different perspectives—a global and a local perspective. In terms of UML, this
means that we are only interested in crosscuts defined over diagrams of the same
type. We therefore do not consider, for example, sequence diagrams that crosscut
state machines or use cases that crosscut class diagrams.

Composition Models Keeping separate the definition of the rules that indicate
how base and aspect models are weaved together is as important as representing
crosscutting models in a modular fashion. Separating aspects is good for improved
modularization and evolution, and composition is necessary to facilitate reuse of

10 Using Aspects to Model Volatile Concerns 187

both base and aspectual models, to understand the overall picture, and to reason
about the necessary trade-offs between conflicting properties.

Composition is achieved through composition rules. These rules weave together
compatible models by means of specific operators. Compatible models are those
at the same level of abstraction and that were built from the same perspective.
Composition operators function as the glue that keeps together aspectual and base
models. They are similar to advices (before, after, and around) in AspectJ [12]
except that here operators are specific to UML diagrams.

10.3 Modeling Volatility

One of the prime objectives of our approach is to develop a means to handle
requirements that have a high probability of changing during their life cycle. These
volatile requirements may be business rules that the stakeholders would like to be
able to change quickly, at any time. Some of these volatile requirements may be
part of coarse-grained concerns and therefore be difficult to identify during the early
stages of the software development. Our goal is to modularize volatile requirements,
handling them as first class entities. This facilitates requirements change, promoting
software system evolution. In traditional software development approaches the
specification, and consequent implementation, of these volatile requirements is
hardwired to core modules that cannot be changed without having to recompile the
application (or at least a part of it).

The key insight is that volatility can be handled in the same way as aspects, since
both concepts share the same basic needs—independency, modular representation,
and composition with a base description. By representing volatile requirements
using aspect-oriented techniques, volatility is modularized and requirements modifi-
cations can be rapidly instantiated and composed into an existing system. Therefore,
the process we propose focuses on requirements evolution, where classification,
composition, and instantiation form the most important tasks to achieve the adequate
flexibility needed for evolvable systems (see Fig. 10.2).

The process starts with the identification of the main problem domain concerns
(step 1). Each concern is then classified (step 2) enduring or volatile and is described
in terms of its main elements in a template as shown in Tables 10.1 and 10.2.
Classification and description of concerns may lead to their refactoring (step 3).
Concerns may be iteratively identified, classified, described, and refactored.

Concerns are represented (step 4) using UML diagrams or pattern specifica-
tions. Enduring concerns are modeled using UML diagrams. Volatile concerns,
crosscutting concerns, and constraints are modeled as pattern specifications. The
representation of these concerns as roles requires that the original concern definition
is modified to become nonspecific, thus allowing several concrete instantiations
(step 5).

Concern evolution (step 7) allows new concerns to be identified, classified,
refactored, and represented, iteratively. At this stage, the outcome of the process is a

188 A. Moreira et al.

Concern
Identification (1)

Concern Classification
& Description (2)

Concern
Representation (4)

Concern
Evolution (7)

Concern
Refactoring(3)

Model
Instantiation (5)

Model
Composition (6)

Fig. 10.2 Aspect-oriented evolutionary model for volatile concerns

Table 10.1 Order Handling
description

Concern # C1a
Name Order Handling
Classification Enduring
Stakeholders Shuttle, Passenger
Interrelationships C1b, C2

List of pre-conditions
(1) There is a new order

List of responsibilities
(1) Broadcast order
(2) Receive bids
(3) Store bids

Table 10.2 Choose Bid
description

Concern # C1b
Name Choose Bid
Classification Volatile
Stakeholders Shuttle
Interrelationships C1a

List of pre-conditions
(1) There should be at least one order

List of responsibilities
(1) Get offers
(2) Select winning bid
(3) Store Choice
(4) Make decision known

specification where core concerns and concern roles are kept separate. Instantiation
and/or composition (steps 5 and 6) can take place at the level of granularity of
elementary concerns or models. While instantiation offers the opportunity to make
concrete decisions regarding volatile concerns, which have been marked as role
elements, composition serves to weave the instantiated concerns into a base model

10 Using Aspects to Model Volatile Concerns 189

consisting of enduring services. During composition conflicts may be identified and
solved by means of trade-off analysis, similarly to what is discussed in Chap. 14.
Here we will ignore conflict analysis and focus on composition using a set of generic
directives and a technique similar to the one in [10].

We now illustrate the process outlined in Fig. 10.2 using an automated transport
system1 in which transport contractors bid to fulfill passenger transport orders.

10.3.1 Concern Identification

The identification of concerns starts with the identification of the stakeholders and
follows by inspecting existing documents that describe the problem, existing cata-
logues [4], models from previous business modeling [22], stakeholders’ interviews
transcripts, and results from searching techniques [20].

For example, in the automated transport system, passenger orders can be bid on
by all transport contractors and the lowest bid wins. In the event of two lowest bids,
the first arriving bid wins. Successful completion of an order results in a monetary
reward for the shuttle involved. In case an order has not been completed in a given
amount of time, a penalty is incurred. The following two concerns can be identified
from this example: (C1) Passenger orders can be bid for by all transport contractors
and the lowest bid wins. In the event of two lowest bids, the first arriving bid wins.
(C2) Successful completion of an order results in a monetary reward for the shuttle
involved. In case an order has not been completed in a given amount of time, a
penalty is incurred.

10.3.2 Concern Classification and Description

Concerns are classified according to longevity, which can be enduring or volatile.
Enduring concerns are “relatively stable requirements which derive from the core
activity of the organization and which relate directly to the domain of the system”
[21]. Volatile concerns “are likely to change during the system development or after
the system has been put into operation” [21].

For example, concern C1 above might be classified as both enduring and volatile.
While the first sentence refers to something stable as it is likely that shuttles will
always have to bid for business in this system, the second implies a choice process
which is likely to change depending on organization policies. This leads to a natural
refactoring of this concern into two separate concerns—one to capture the enduring
part and one to capture the volatile part (cf. Sect. 10.3.3 below).

1Shuttle system description found at http://scesm04.upb.de/case-study-1/ShuttleSystem-
CaseStudy-V1.0.pdf.

http://dx.doi.org/10.1007/978-3-642-38640-4_14
http://scesm04.upb.de/case-study-1/ShuttleSystem-CaseStudy-V1.0.pdf
http://scesm04.upb.de/case-study-1/ShuttleSystem-CaseStudy-V1.0.pdf

190 A. Moreira et al.

Each concern is described in more detail using a template that collects its
contextual and internal information. Tables 10.1 and 10.2 illustrate the templates
for concern C1 (refactored into C1a and C1b). The row “Interrelationships” lists the
concerns that a given concern relates to. (The reader can consult [4, 8] on several
kinds of relationships.) A responsibility is an obligation to perform a task, or know
certain information.

10.3.3 Concern Refactoring

Attempts to assign the enduring/volatility categorization lead to a refactoring of
the requirements, thus increasing the granularity. For example, in the automated
transport system example, the concern “(C1) Passenger orders can be bid for by all
transport contractors and the lowest bid wins. In the event of two lowest bids, the
first arriving bid wins.” could instead be represented as two separate concerns—one
for the bidding (C1a) and one for the decision on who wins in the event of two equal
lowest bids (C1b). Identified volatile concerns may be redefined to represent a more
generic concern. For example, C1b, if originally defined as Choosing From Equal
Bids, can be generalized to Choose Bid. Such a generalization promotes evolution
since you may want to change the bidding policies in the future.

The classification process helps to refactor the list of concerns into a list with
consistent granularity level. This is because increased granularity is often needed
to be able to specify the fact that part of a concern is enduring or volatile. As an
example, for concern (C1) above, one would like to say that the first part of the
concern (the bidding process) is enduring whereas the second part (dealing with
two lowest bids) is volatile—one might, for example, later wish to use a different
selection strategy in which bidders with strong performance histories win equal
bids. Such a classification would lead naturally to splitting concern (C1) into two
concerns (C1a) and (C1b). Applying a classification strategy consistently across a
set of concerns leads to a consistent level of granularity in concern representation.

10.3.4 Concern Representation

Our approach represents concerns using UML use case and activity models.
Elements in a model representing crosscutting or volatile concerns are marked as
roles and the model becomes a pattern specification model. Thus, we may use Use
Case Pattern Specification (UCPS) and Activity Pattern Specifications (APSs).

Build Use Case Models A UCPS is a modified use case model with use case
roles, each one representing volatile constraints and services. It incorporates use
case roles, where concerns are mapped into use cases, volatile constraints and
services are mapped into use case roles, stakeholders are mapped into actors, and

10 Using Aspects to Model Volatile Concerns 191

Input: a list of stakeholders and classified concerns
Output: a UCPS
For each concern C:

Create a new use case or use case role corresponding to C
If C is enduring, describe C as a concrete use case
If C is volatile, describe C as a use case role
If C is crosscutting, describe C as a use case role

If C has a relationship, R, to concern C’ in its template description,
create a relationship between the use cases or use case roles corre-
sponding to C and C’

If C is a constraint, attach the <<constrain>> stereotype to
this relationship

Map Stakeholders that interact with the new use cases into actors

Fig. 10.3 Guidelines to map concerns to a UCPS

Fig. 10.4 Transport UCPS

interrelationships help in identifying relationships between use cases. Figure 10.3
summarizes the process of building a UCPS.

Most use case relationships are given in the usual manner (with <<include>>

and <<extend>>). Those that are derived from constraints will, however, be
related with other use cases by using the new relationship <<constrain>>,
meaning that the origin use case restricts the behavior of the destination use case.
(Origin and destination are indicated by the direction of the arrow representing the
relationship.) Some of the use cases derived from constraint concerns are typically
global properties, such as nonfunctional requirements. Figure 10.4 illustrates an
example of a UCPS for the transport system, where C1a and C1b are represented by
use cases. Note how C1b is given as a role use case, pointing out the clear distinction
between enduring and volatile concerns—a reader of the model can immediately
see where the volatility lies.

Identify Crosscutting Concerns Crosscutting concerns are those that are required
by several other concerns. This information can be found in the concerns’ templates,
or by analyzing the relationships between use cases in the UCPS. For example, one
use case that is included by several other use cases is crosscutting.

192 A. Moreira et al.

Input: a UCPS and the list of concern templates
Output: an APS for each use case role or crosscutting use case;

an activity diagram for each use case
For each use case U corresponding to a concern C:

If U is a use case, create a new activity diagram:
U’s activity diagram is a set of activities, one for each
responsibility in C, connected by appropriate transi-
tions

If U is a use case role or crosscutting use case, create an
APS:

U’s APS is a set of activities and activity roles that rep-
resent responsibilities in C, connected by appropriate
role transitions

Fig. 10.5 Guidelines to map
UCPS to activity diagrams or
APSs

Fig. 10.6 Order Handling
(a) and Choose Bid APS (b)

Build Activity Models Activities describe use cases and activity roles describe
use case roles or crosscutting use cases. Figure 10.5 gives the process for creating
an activity pattern specification from the UCPS. Each responsibility listed in the
concern’s template corresponds to an activity in an activity diagram or an activity
role in an APS. The nature of the concern (crosscutting, enduring, or volatile)
decides whether activities or activity roles are used. For example, C1b is volatile;
therefore, one or more of its responsibilities will correspond to activity roles in the
activity diagram. Activity roles are those that correspond to the responsibilities that
are primarily responsible for making the concern volatile. In this case, responsibility
2 of C1b will correspond to a role activity (Fig. 10.6).

10.3.5 Model Instantiation

Model elements can be instantiated by a rule of the form:

<step #.> Replace j<modelElement A>

with <modelElement B>

10 Using Aspects to Model Volatile Concerns 193

This means that modelElement A is eliminated and substituted by modelEle-
mentB, including its context. Instantiation is done for each particular configuration
of the system. For example, consider our concern (C1b), represented in the UCPS
as jChoose Bid. The instantiation rule is as follows:

1. Replace jChoose Bid
with Choose From Bids (Equal Bids Choice Based On
Arrival Time)

An instantiation for APS in Fig. 10.6 is as follows:

2. Replace jSelect Winning Bid
with Select Lowest Bid (Equal Bids Choice Based On
Arrival Time)

Note that only volatile concern roles will need instantiation. The remaining roles
elements might be used as “join points” for composition (Sect. 10.3.6).

10.3.6 Model Composition

For the purpose of this chapter we define two basic composition operators: Insert
and Replace. The Insert operator can be used together with the two clauses after
and before, meaning that a particular model element can be inserted after or before
a certain point in the base model, respectively. The Replace operator, on the other
hand, can be used together with the simple with clause, meaning that a model
element replaces another (similar to an instantiation), together with a choice ([])
clause, meaning that more than one alternative is possible, together with a par (jj)
clause, meaning parallelism, etc. The clause Compose encapsulates a composition
rule (c.f. Sect. 10.4.3 for concrete examples).

Composition and instantiation can be applied independently from each other in
an incremental fashion, leading to consecutive refinements of abstract requirements
models into more concrete analysis models, supported by a set of guidelines and
heuristics. Composition is achieved by defining composition rules that explicitly
specify how two or more models of the same type (e.g., activity diagrams and APSs)
are weaved together. In a more traditional aspect-oriented view, only crosscutting
concerns would be composed with base modules. Here, we use composition to
weave aspectual or volatile models to base models. A composition rule consists of
a set of instantiation steps, where PS elements are replaced with concrete elements
or other PS elements:

Compose <PS A> with <PS B>

<step #.> Replace j<A> with

<step #.> Insert <A> fafter, beforeg

<step #.> Insert <A> fafter, beforeg

where <statement>

<step #.> Delete <A>

194 A. Moreira et al.

Compose OrderHandling with ChooseBid
1. Insert GetOffers after StoreBids
2. Insert MakeDecisionKnown

before OrderHandling. Final State
3. Delete ChooseBid.InitialState
4. Delete ChooseBid.FinalState

Fig. 10.7 Composition rule (left); OrderHandling & ChooseBid composed (right)

<step #.> Delete

where “A” and “B” may be model elements (or models in the case of the Insert
operator). A composition rule can, of course, be more complex than this, involving,
for example, decision and parallel operators. The full description of a composition
language is beyond the scope of this chapter, and we leave it for future work.

For our example, an obvious composition rule is to put together the activity
diagram OrderHandling and the APS ChooseBid (Fig. 10.7 (left)). The resulting
model is illustrated in Fig. 10.7 (right) where transitions (1) and (2) represent the
effect of the two Insert operators. In this particular case, the choice of a particular
method for choosing the winning bid would be performed after this composition.
When the requirements change (i.e., volatile concerns change), composition can be
used to update the model in an efficient and modular way.

By inserting GetOffers after StoreBids (1), we are actually replacing
the flow that existed between StoreBids and the FinalState node
of OrderHandling, thus leaving it dangling. The InitialState of
ChooseBid also loses its flow to GetOffers. The flow from MakeDecision
Known to ChooseBid’s FinalState is replaced in (2), so that Make
DecisionKnown now flows to OrderHandling’s FinalState (which
ceases to be dangling). (3) and (4) delete the InitialState and FinalState
of ChooseBid, which became dangling, so they are automatically removed from
the composed model.

10.3.7 Concern Evolution

Evolution should cope with changes in concerns that are already part of the system
and with new functionalities or constraints not yet part of the existing system. In
the former, the system is prepared to handle the change, by either defining a new
instantiation rule, or else by changing one or more composition rules. For example,

10 Using Aspects to Model Volatile Concerns 195

a change in the process used to select the winning bid (C1b) is easily handled at all
levels by choosing different rules (i.e., UCP and APS):

1. Replace jChoose Bid
with Choose From Bids (Equal Bids Choice Based On
History)

2. Replace jSelect Winning Bid
with Select Lowest Bid (Equal Bids Choice Based
On History)

3. Replace jselect Winning Bid
with select Lowest Bid (Equal Bids Choice Based
History)

In cases where we have to remove a concern, we need to remove all dependencies
on this concern from all the composition rules. Coping with new requirements or
constraints requires the reapplication of the method to identify the corresponding
new concerns. These are integrated with the existing system by adding or changing
existing composition rules.

10.4 Case Study

This section validates the approach described in the previous section by means of
an example of the crisis management system, applied to car crashes: rescuing the
victims of a car accident.

When a car crash is reported and confirmed, handling it typically involves two
sorts of missions: a rescue mission, so that the people involved in the accident can
receive appropriate medical care, and a repair mission, so that the accident location
is cleared of any debris and traffic can flow through it normally again. The rescue
mission typically involves a first aid professional transmitting injury information to
an hospital, identifying the car crash victims, removing them from the crashed cars,
administering first aid, and, if necessary, taking the accident victims to the hospital.

10.4.1 Concerns Identification

The crisis coordinator and the crisis management system employee are the most
direct users of a crisis management system. There are other important stakeholders
that also provide key information to the system, such as crisis victims, witnesses,
and other stakeholders who help conducting some of the system’s missions, such
as first aid workers and professionals in charge of reinstating a normal situation by
repairing properties damaged during the crisis. Other important stakeholders include
the owners of the crisis management system, and civil protection organizations.
In this chapter, we identify a non-exhaustive list of concerns for these systems—a

196 A. Moreira et al.

Table 10.3 List of concerns for the crisis management system

Concern # Concern name Concern description
F1 Witness report Receive a crisis report from a witness
F2 Entity resource request Request resources to handle crisis
F3 Authentication The system must authenticate its users.
F4 Internal resources assignment The system must support a sensible resources assignment.
F5 Mission execution The system must support mission execution
NF1 Response time The system must react in time in order to handle crisis

situations fast enough so that victims can be rescued with
efficiency and effectiveness.

NF2 Availability The system must be available in order to be used
NF3 Legal issues Legal issues might be raised to handle responsibilities in

mission execution.

Table 10.4 Concerns
classification

Enduring Volatile
Concerns F1, F2, NF2 F3, F4, F5, NF1, NF3

more detailed analysis of such systems can be found in [13]. Some of the identified
concerns reflect functional requirements, namely F1, F2, F3, F4, and F5, in
Table 10.3. Others, namely, NF1, NF2, and NF3, reflect nonfunctional requirements
that are typical of these systems. Table 10.3 presents a short description of each of
these concerns.

10.4.2 From Classification to Refactoring

Concerns can be classified enduring or volatile. Table 10.4 identifies which concerns
are considered as enduring and which are regarded as volatile.

The enduring concerns are those we expect to be stable in the future. A crisis
management system is expected to handle crisis reports from victims (F1), as
well as to supporting the request of external resources (F2) in a stable manner.
The nonfunctional requirement Availability (NF2) is also considered enduring, as
this sort of systems is expected to be virtually always available. Other concerns
are more volatile. For instance, we need an authentication feature in the system
(F3), but the exact way system user authentication is performed may evolve, over
time. The same applies to internal resources assignment, which are constrained by
factors external to this system, such as legal constraints, budget restrictions, or
crisis management policy changes, among others. With respect to missions, this
is a too generic concern, which we refactor into two more specialized concerns:
rescue missions (F5a) and repair missions (F5b). The exact way rescue and repair
missions are conducted is also bound to evolve, with the occurrence of new kinds of
crises, the change in available means to deal with them, and so on. In this chapter,
we consider two kinds of crises, car crashes and floods, each leading to different

10 Using Aspects to Model Volatile Concerns 197

Table 10.5 Refactored list of concerns

Concern # Concern name Description Classification
F1 Witness report Receive a crisis report from a witness Enduring
F2 Entity resource request Request resources to handle crisis Enduring
F3 Authentication The system must authenticate its users. Volatile
F4 Internal resources

assignment
The system must support a sensible resources
assignment.

Volatile

F5a Rescue victim Victims may need to be rescued, receive special
help and first aid and, if necessary, to be sent to
the hospital for further treatment.

Volatile

F5a1 Rescue victim from
car

A car crash rescue may involve removing the
victim from the car and provide the victim with
first aid.

Enduring

F5a2 Rescue victim from
flood

A flood rescue involves providing the victim
with first aid and, if necessary, transporting the
victim to the hospital, or that is not necessary,
transport the victim to a safe location.

Enduring

F5b Repair public or
private properties

Crisis may destroy public or private properties
which need to be repaired. The system should
support the coordination of those repair actions.

Volatile

F5c Take to hospital Take victim to nearest hospital, if necessary. Volatile
F5d Move to safe place Take victim to safe location, if necessary. Volatile
NF1 Response time The system must react in time in order to handle

crisis situations fast enough so that victims can
be rescued with efficiency and effectiveness.

Volatile

NF2 Availability The system must be available in order to be used Enduring
NF3 Legal issues Legal issues might be raised to handle responsi-

bilities in mission execution.
Volatile

variations of how rescue missions should be conducted. These variations impose a
refactoring operation of the rescue mission concern (F5a1 for car crashes, and F5a2
for floods). We also refactor the repair concern (F5b), so that we can support several
different sorts of repair operations, each with their own specialized actors (F5b1
through F5b4). The exact way of transporting victims to the hospital (F5c) or a safe
place (F5d) is also bound to change over time (e.g., through the acquisition of new
equipments by the rescue teams), so we consider these as volatile concerns.

The response time constraints (NF1) and legal issues (NF3) are two examples of
nonfunctional concerns that are typically not controlled by system developers, but
have to be dealt with and supported, anyway, so we also consider them as volatile.
Table 10.5 presents a summarized overview of the refactored list of concerns.

For the sake of space, we will only present in detail three of the concerns in our
model, using the templates discussed in Sect. 10.3.3: Rescue victim, Rescue Victim
from car, and Take to hospital.

198 A. Moreira et al.

Fig. 10.8 UCPS for the crisis management system (overview)

Fig. 10.9 UCPS for Rescue victim from car

10.4.3 Concern Representation

Build the Use Case Models A UCPS is obtained by applying the guidelines
offered in Fig. 10.2. The UCPS in Fig. 10.8 illustrates a fragment of the resulting
model, including all the concerns expressed in Table 10.5. Response Time, Availabil-
ity, and Legal Issues are crosscutting concerns that constrain several other use cases,
and are therefore represented in gray. The <<constrain>> relationships are not
represented in the diagram, as it would clutter it. For example, legal issues impose
restrictions on how missions should be executed (e.g., which resources should be
assigned to a particular mission, or which is the allowable response time for a
given crisis—the latter is an example of how a constraint may also constrain other
constraints).

In this chapter, we will focus on jRescueVictim from a car crash. The
fragment of the UCPS for this particular concern is presented in Fig. 10.9.

Build Activity Models Following the rules given in Fig. 10.5, activity diagrams
and APSs can be derived from use cases and use case roles. Figure 10.10
includes APSs diagrams for (a) RescueVictim, (b) RemoveFromCar, and

10 Using Aspects to Model Volatile Concerns 199

Rescue victim Remove from car Take to Hospital

a b c

d

Composed car crash rescue

Fig. 10.10 Rescue victim activity diagram and APSs. (a) Rescue victim, (b) Remove from car,
(c) Take to Hospital, and (d) Composed car crash rescue

(c) TakeToHospital. Figure 10.10a–c correspond to the templates defined in
Tables 10.6, 10.7, and 10.8, respectively. All the responsibilities listed therein can
be directly mapped to activities in these diagrams, with the exception of Victim
Identification. This activity is broken down into several more fine-grained
activities, to support the two alternatives of victim identification: either the victim
is able to provide his own identification, or the first aid rescuer can look for the
victim’s id in the victim’s objects.

10.4.4 Instantiation and Composition

At the activity level, composition can be accomplished using the Replace, Insert,
and Move operators to bring together APSs and/or activity diagrams. An example

200 A. Moreira et al.

Table 10.6 Template for
“Rescue Victim”

Concern # F5a
Name Rescue victim
Classification Volatile service
Stakeholders First aid professional,

Hospital Resource
system, Victim

Interrelationships F2, F4, F5, F5a1,
F5a2, F5c, NF1,
NF2; NF3

List of pre-conditions
(1) External resources granted
(2) Internal resources granted
List of responsibilities
(1) Injury information
(2) Victim identification
(3) Medical record retrieval
(4) Victim status check
(5) Administer first aid

Table 10.7 Template for
“Rescue victim from car”

Concern # F5a1
Name Rescue

victim from
car

Classification Enduring
service

Stakeholder First aid
professional,
victim

Interrelationships F5A, NF1,
NF2, NF3

List of pre-conditions
(1) Car Crash
List of responsibilities
(1) Remove victim from

car

of a composition rule joining RescueVictim with RemoveVictimFromCar
is the following:

Compose jRescueVictim with RemoveVictimFromCar
1. Replace jx with CheckStatusOfVictim
2. Replace jy with AdministerFirstAid

A second rule can then be defined to compose jTakeToHospital with the
result of the previous composition

Compose jRescueVictimFromCar with jTakeToHospital
1. Insert CheckIfHospitalIsNeeded after

AdministerFirstAid.

10 Using Aspects to Model Volatile Concerns 201

Table 10.8 Template for
“Take to hospital”

Concern # F5c
Concern
name

Take to hospital

Classification Volatile
Service

Stakeholder First aid worker,
victim

Interrelationships
F5, NF1, NF2,
NF3

List of pre-conditions
(1) Rescue
List of responsibilities
(1) Check if hospital needed
(2) Take to hospital

Figure 10.10d presents the resulting composed model, which can be automat-
ically generated. If needed, the composition process can be applied again to join
more models to this resulting model until all models are joined to form a unique
model of the full system.

This model can be instantiated in different ways. In particular, the jTakeVictim
ToHospital activity is volatile and can be instantiated so that the victim is
transported with an ambulance, using a rule of the type:

ReplacejTakeVictimToHospital
with TakeWithAmbulance

jTakeVictimToHospital could also be instantiated so that victims are carried
to the hospital by a helicopter.

ReplacejTakeVictimToHospital
with TakeWithAmbulance

Summarizing:

– With externalization, the effort involved in making a change is to identify the
volatile concern, to model the concern separately, and to specify the instantiation
and composition rules.

– Without externalization, the effort involved is to look at the existing model and
decide (perhaps based on existing requirements traceability information) which
parts of the model must be changed; then to change those parts and validate the
new model.

A key advantage of the externalization approach seems to be that the new model
does not need to undergo such extensive validation—of course, one has to be sure
that the composition rules are correct and applied correctly, but there is less danger
of missing a model element that needs to be changed—because the elements that
need to be changed have already been externalized.

202 A. Moreira et al.

The trade-offs seem to be very similar to the trade-offs involved in product
line development. Product line development advocates feature modeling whereby
commonalities and variations among a family of systems are explicitly modeled.
This requires a greater degree of up-front modeling effort, but the payback is in that
new members of the product family require less effort to develop. The case is similar
for externalizing volatile requirements.

10.5 Method Evaluation

The evaluation criteria used here were proposed in [3]. There four general compar-
ison criteria are defined (evolvability, composability, traceability, and scalability)
as well as five other specific criteria (homogeneity concern treatment, trade-
off analysis, verification and validation, handling functional and nonfunctional
crosscutting requirements, mapping requirements to later stages) for assessing
requirements engineering approaches.

General Criteria The main drive to define our method was to offer improved
support for evolution. Volatile concerns cannot be disregarded as time to market is
a major concern of leading companies when developing their systems. Our instanti-
ations and compositions facilitate rapid changes in requirements (see Sect. 10.3.7).
By using aspect-oriented concepts combined with role-based models, composability
is assured at several different levels of abstraction (concern, use case, and activity
levels) through the definition of simple composition rules. Traceability is supported
by concern templates and model derivation guidelines. Finally, the modeler has to
specify the instantiations and compositions and these will be, in the worse case,
different for each base model crosscut by the aspect. We are now studying how
to overcome this scalability problem by, for example, reusing instantiations and
compositions.

Specific Criteria Core, volatile, or aspectual concerns are all treated homo-
geneously by using the same set of techniques. While identifying, describing,
and classifying concerns, we do not distinguish between functional requirements,
nonfunctional requirements, and crosscutting requirements. The method provides
several guidelines that support mappings across several models. As we follow a
UML-based approach, most of the resulting artifacts have a direct map to the
analysis phase. However, we need to invest more on this, maybe basing our research
on MDD. Trade-off analysis has been addressed in our previous work [19], but not
here. Verification and validation techniques are not handled in this chapter.

10 Using Aspects to Model Volatile Concerns 203

10.6 Related Work

Our pattern specifications are based on [10], where an aspect is defined through role
models to be composed into UML diagrams. However, the approach does not allow
concrete modeling elements in role models. Interaction pattern specifications with
concrete modeling elements and related composition rules were first discussed in
[1]. These ideas helped to define UCPS and APS described in [15]. In this paper, we
define a model that integrates UCPSs, APSs, and IPSs in a systematic way. We also
define similar composition rules with concrete and role elements.

Jacobson agrees that use case extensions are a way to handle aspects during
requirements [11]. However, his work does not include broadly scoped properties
nor does he handle evolution through volatile concerns.

Theme [2] supports the requirements analysis activity by providing an approach
to identify base and crosscutting behaviors from a set of actions. It defines actions as
sensible verbs for the domain. An action is a potential theme, which is a collection
of structures and behaviors that represent one feature. The results of analysis are
mapped to UML models. Compared to our work the definition of themes to express
requirements is more structured than our concern definition, but our composition
rules using patterns specifications provide more flexibility.

Clarke and Walker [5] describe composition patterns to deal with crosscutting
concerns as patterns at the design level. Pattern binding is used, and sequence and
class diagrams illustrate compositions. The compositions, however, are rigid as they
concentrate on pattern instantiations.

Moreira et al. [16] propose an extension of use case modeling to handle evolution
through coordination contracts. The work we present here differs not only on the
level of abstraction and the use of aspects, but also the focus on concerns and
composition rules. Requirements volatility has also been addressed in the context
of coding and testing [14]). The focus is on measuring the impact of requirements
changes on defect density which is a measure of software quality used as acceptance
criteria for a piece of software. We believe that the early identification, separation,
and modularization of volatile requirements, well before the implementation takes
place, would reduce the effort to cope with requirements change during coding,
where the impact of the change can be easily localized and its side effects better
controlled.

The idea to externalize volatile concerns is in some respects similar to the
notions of product line architectures [6] and generative programming [7]. They
model a family of related applications and then configure particular instances. Our
work is similar but focuses on volatility. Although our work is less general, it
does not require the huge investment associated with modeling a related family of
application.

204 A. Moreira et al.

10.7 Conclusions

In the introduction we stated that volatile concerns and aspects share the need for
independency, modular representation, and composition. Throughout the chapter
we discussed why those three characteristics were important to support evolution,
which is constrained by volatile requirements, and how aspect orientation and
pattern specifications can help in handling it. To address this we proposed the
externalization and consequent modularization of constraints and volatile services
to cope with change on requirements. This is supported by an evolutionary method,
where concern classification, requirements refactoring, model instantiation, and
model composition play a major role. Composition and instantiation can be applied
independently from each other in an incremental manner, where guidelines drive
subsequent refinements of abstract requirements models into more concrete analysis
models.

For future work we will investigate (1) how graph transformations can be used to
offer a more powerful means for composition; (2) how this approach can be adapted
in the context of product lines; (3) how to handle possible conflicts resulting from
composing pattern specifications; (4) how to address conflicting emergent behavior
that may appear when two or more candidate aspects are allowed to coexist, by
adapting the approach the authors developed in [19]; (5) how to extend these ideas
to the detailed design activity; and (6) develop a tool that supports the identification
of concerns, their specification and composition.

References

1. J Araújo, J. Whittle, D.-K. Kim, Modeling and composing scenario-based requirements
with aspects, in Paper presented at the 12th IEEE International Requirements Engineering
Conference, 2004 (RE 2004), Kyoto, Japan, 2004, pp. 58–67

2. E. Baniassad, S. Clarke, Theme: an approach for aspect-oriented analysis and design, in
Paper presented at the 26th International Conference on Software Engineering (ICSE’04),
Edinburgh, Scotland, 2004, pp. 158–167

3. R. Chitchyan, A. Rashid, P. Sawyer, A. Garcia, M.P. Alarcon, J. Bakker, B. Tekinerdogan,
S. Clarke, A. Jackson, Survey of Analysis and Design Approaches, AOSD-Europe, 2005, p. 259

4. L. Chung, B.A. Nixon, E. Yu, Non-functional Requirements in Software Engineering, vol. 5
(Kluwer Academic, Boston, MA, 2000)

5. S. Clarke, R.J. Walker, Composition patterns: an approach to designing reusable aspects, in
Paper presented at the 23rd International Conference on Software Engineering (ICSE’2001),
Toronto, ON, 2001, pp. 5–14

6. P. Clements, L. Northrop, Software Product Lines: Practices and Patterns, 3rd edn. (Addison
Wesley Professional, New York, NY, 2001)

7. K. Czarnecki, U.W. Eisenecker, Generative Programming: Methods, Tools and Applications,
1st edn. (Addison-Wesley, New York, NY, 2000)

8. Å.G. Dahlstedt, A. Persson, Requirements interdependencies – moulding the State of Research
into a Research Agenda, in Paper presented at the 9th International Workshop on Requirements
Engineering – Foundation for Software Quality (REFSQ’03), Klagenfurt/Velden, Austria,
2003, pp. 55–64

10 Using Aspects to Model Volatile Concerns 205

9. D.G. Firesmith, Creating a project-specific requirements engineering process. J. Object
Technol. 3(5), 31–44 (2004)

10. R. France, D.-K. Kim, S. Ghosh, E. Song, A UML-based pattern specification technique. IEEE
Trans. Softw. Eng. 30(3), 193–206 (2004)

11. I. Jacobson, P.-W. Ng, Aspect-Oriented Software Development with Use Cases (Addison-
Wesley Professional, New York, NY, 2005)

12. G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, W.G. Griswold, An overview of
AspectJ, in Paper presented at the 15th European Conference on Object-Oriented Program-
ming (ECOOP 2001), Budapest, Hungary, 2001, pp. 327–354

13. J. Kienzle, N. Guelfi, S. Mustafiz, Crisis management systems: a case study for aspect-oriented
modeling. Trans. Aspect Oriented Softw. Dev. 6210(2010), 1–22 (2010)

14. Y.K. Malaiya, J. Denton, Requirements volatility and defect density, in Paper presented at the
10th International Symposium on Software Reliability Engineering (ISSRE), Boca Raton, FL,
1999, pp. 285–294

15. A. Moreira, J. Araújo, Handling unanticipated requirements change with aspects, in Paper
presented at the Software Engineering and Knowledge Engineering Conference (SEKE 2004),
2004, pp. 411–415

16. A. Moreira, J.L. Fiadeiro, L. Andrade, Requirements through coordination contracts, in Paper
presented at the Advanced Information Systems Engineering, 2003, pp. 633–646

17. OMG, OMG Unified Modeling Language (OMG UML), Infrastructure, version 2.3,
formal/2010-05-03 (Object Management Group Inc., 2010a), p. 226

18. OMG, OMG Unified Modeling Language (OMG UML), Superstructure, formal/2010-05-05
(Object Management Group Inc., 2010b), p. 758

19. A. Rashid, A. Moreira, J. Araújo, Modularisation and composition of aspectual requirements,
in Paper presented at the 2nd International Conference on Aspect-Oriented Software Develop-
ment (AOSD 2003), Boston, MA, 2003, pp. 11–20

20. A. Sampaio, R. Chitchyan, A, Rashid, P. Rayson, EA-Miner: a tool for automating aspect-
oriented requirements identification, in Paper presented at the 20th IEEE/ACM International
Conference on Automated Software Engineering (ASE 2005), Long Beach, CA, 2005, pp. 352–
355

21. I. Sommerville, Software Engineering, 8th edn. (Addison-Wesley, New York, NY, 2006)
22. E. Yu, Modelling strategic relationships for process reengineering, PhD Thesis, University of

Toronto, 1995

Part IV
Aspect Interactions

Chapter 11
Conflict Identification with EA-Analyzer

Alberto Sardinha, Ruzanna Chitchyan, João Araújo, Ana Moreira,
and Awais Rashid

Abstract Conflict identification in Aspect-Oriented Requirements Engineering
(AORE) is an integral step toward resolving conflicting dependencies between
requirements at an early stage of the software development. However, to date
there has been no work supporting detection of conflicts in a large set of textual
requirements without converting texts into an alternative representation (such as
models or formal specification) or direct stakeholder involvement. Here, we present
EA-Analyzer, an automated tool for identifying conflicts directly in aspect-oriented
requirements specified in natural language text. This chapter is centered on a case
study-based discussion of the accuracy of the tool. EA-Analyzer is applied to the
Crisis Management System, a case study used as an established benchmark in
several areas of aspect-oriented research.

A. Sardinha (�)
INESC-ID and Instituto Superior Técnico, UTL, Lisbon, Portugal
e-mail: jose.alberto.sardinha@ist.utl.pt

R. Chitchyan
Department of Computer Science, University of Leicester, Leicester, UK
e-mail: rc256@leicester.ac.uk

J. Araújo • A. Moreira
Departamento de Informática, Universidade Nova de Lisboa, Caparica, Portugal
e-mail: joao.araujo@fct.unl.pt; amm@fct.unl.pt

A. Rashid
Computing Department, Lancaster University, Lancaster, UK
e-mail: marash@comp.lancs.ac.uk

A. Moreira et al. (eds.), Aspect-Oriented Requirements Engineering,
DOI 10.1007/978-3-642-38640-4 11, © Springer-Verlag Berlin Heidelberg 2013

209

mailto:jose.alberto.sardinha@ist.utl.pt
mailto:rc256@leicester.ac.uk
mailto:joao.araujo@fct.unl.pt
mailto:amm@fct.unl.pt
mailto:marash@comp.lancs.ac.uk

210 A. Sardinha et al.

11.1 Introduction to Conflict Identification
in Aspect-Oriented Requirements

Aspect-Oriented Requirements Engineering (AORE) [1] aims at addressing the
identification, representation, modularization, composition, and subsequent analysis
of crosscutting requirements. Identification and resolution of conflicts between con-
cerns is often an essential part of the analysis activity. Since in AORE most concern
inter-relationships can be defined via compositions, composition specifications are
also a natural focus for conflict identification work. Thus, it is not surprising that
a number of studies have been focusing on conflict detection and resolution via
composition definitions [2–4].

As discussed in previous chapters, although most requirements documents tend
to be written in natural language, research on conflict detection in aspect-oriented
(AO) textual requirements tends to reformat the textual artifacts before starting the
conflict identification process. For instance, some researchers tackle the conflict
identification by first carrying out formalization of requirements and compositions
[4–6]; others represent requirements and compositions via models, then undertake
model-based analysis [7, 8]; and, finally, others involve stakeholders to help in
conflict identification and resolution based on the priorities explicitly expressed by
the stakeholders [2]. Prior to our work discussed below, there has been no research
on text-only-based conflict identification in AORE.

This chapter presents EA-Analyzer, a tool for identifying conflicts in textual
AO requirements, without needing to convert the textual artifacts into an alter-
native format, or engaging stakeholders directly. The tool operates on annotated
natural language text and compositions defined using the RDL annotations [9].
The annotations do not alter or reduce the textual requirements, but only deco-
rate text with syntactic and semantic linguistics tags [10]. A Bayesian learning
method, called Naive Bayes [11], is utilized by EA-Analyzer to learn the nature
of the composed concerns and to detect conflicts within the textual specifica-
tions.

This chapter is centered on a case study-based discussion of the accuracy of the
tool, where EA-Analyzer is applied to the Crisis Management System, a case study
used as an established benchmark in several areas of aspect-oriented research. The
initial evaluation of the tool suggests that this is a promising direction for text-based
conflict identification.

The rest of this chapter is organized as follows. Section 11.2 presents the related
work and discusses the advantages and disadvantages of aspect-oriented approaches
when compared to EA-Analyzer. Section 11.3 details the approach and the EA-
Analyzer tool developed to address the problems discussed in the previous section.
Section 11.4 presents the case study demonstrating the evaluation of the tool.
Section 11.5 concludes the chapter.

11 Conflict Identification with EA-Analyzer 211

11.2 Related Work

The most popular approaches that deal with conflicts in requirements are the goal-
oriented and aspect-oriented ones; hence, Sect. 11.2.1 presents some related work
on goal-oriented approaches and Sect. 11.2.2 discusses the related approaches of
aspect-oriented requirements engineering, where EA-Analyzer is a novel approach
within this research area.

11.2.1 Goal-Oriented Approaches

In the NFR framework [12], the focus is on the identification of conflicts of non-
functional requirements—it does not explicitly deal with functional concerns, but
establishes a link to them. The analysis starts with softgoals, i.e., quality attributes
of a system. The system’s softgoals may be security, usability, performance, and
availability. In the NFR framework, softgoals are normally decomposed and refined
into more solution space model elements, captured by a softgoal graph structure. By
analyzing the graph, interfering softgoals can be found, e.g., security goals interfere
with usability in general. Resolution of such conflicts is achieved by selecting the
most appropriate softgoals after some trade-off analysis.

i* [13] was developed for modeling and reasoning about organizational envi-
ronments and their information systems. It focuses on the concept of intentional
actor. i* has two main modeling components: the Strategic Dependency (SD)
model and the Strategic Rationale (SR) model. The SD model describes the
dependency relationships among the actors in an organizational context. The SR
model provides a more detailed level of modeling than the SD model, since
it focuses on the modeling of intentional elements (goals, softgoals, tasks, and
resources) and relationships internal to actors. Intentional elements are related by
means-end or decomposition links. Means-end links are used to specify alternative
ways to achieve goals. Decomposition links are used to decompose tasks. Apart
from these two links, there are the contribution links, which can be positive or
negative. These are the basis for the conflict identification, which is specified in
a similar way to the NFR framework. In both approaches, the conflict degree is
specified and alternatives are used to solve conflicts.

KAOS [14] is a systematic approach for discovering and structuring system-level
requirements. In KAOS, goals can be divided into requirements (a type of goal to
be achieved by a software agent), expectations (a type of goal to be achieved by an
environment agent) and softgoals (e.g., quality attributes). In KAOS, goals can be
refined into subgoals through and/or decompositions. There is also the possibility
of identifying conflicts between nonfunctional goals and represent it in the goal
models.

212 A. Sardinha et al.

11.2.2 Aspect-Oriented Requirements Engineering Approaches

Aspect-Oriented Requirement Engineering (AORE) approaches have enabled the
early identification of candidate crosscutting concerns within problem domains.
Such strategies enable requirements engineers to specify how requirements compose
with one another to explicitly externalize their interdependencies.

This has significant advantages for reasoning about requirements, as their mutual
influences and tradeoffs can be identified before architecture is derived. As well as
this, the transition to an aspect-oriented architecture can be eased by the explicit
recognition of early aspects within the domain.

However, this benefit also brings with it a significant challenge—namely, the
accurate detection of conflicts between requirements. The increased modularity and
advanced composition mechanisms which AORE approaches tend to employ can
complicate the task of discerning where requirements interact with one another and
whether a given interaction constitutes a potential conflict. This issue has received
a great deal of research attention within the AO community when the conflict is
expressed at the code level; but research at the requirements level is much less
mature. In this section we discuss the existing AORE approaches that support
conflict detection and highlight the open issues in this area. We group the available
AORE approaches on basis of their overall conflict identification strategy into the
following three groups:

11.2.2.1 Formalization-Based Approaches

Within the AO conflict detection research area, many current approaches require
some formal specification of requirements in order to detect conflicts among
requirements. In other words, these approaches require precise expression of the
properties of requirements and decide whether the compositions specified over these
requirements invalidate these properties.

Examples of this strand of work are the AO Composition Frames [5]; Composi-
tion Frames model the semantics of requirements (in the form of Problem Frames)
being composed with one another. The requirements of this composition—that is,
the formal properties of its satisfaction—can be validated against the state machine
expressed in the Composition Frame and thus conflicts detected. Here the validity
of the conflict detection depends on the sound construction of the Problem Frames
and their compositions.

In [6], AO models are specified in Aspect-UML, which includes formal anno-
tations of aspects and joinpoints. These Aspect-UML models are transformed into
Alloy, a structural modeling language based on first-order logic. Alloy includes an
analyzer that can check the validity of assertions over a model, and so the Aspect-
UML model of an AO system can be checked for aspects introducing properties to
the system that render other aspect assumptions invalid and thus determine conflicts.

11 Conflict Identification with EA-Analyzer 213

Similarly, the work in [4] presents a conflict detection technique based on
transformation of textual compositions into temporal logic formulae based on a
catalogue of formalizations of natural language operators. The semantics of the
compositions can thus be compared with one another for temporal overlap and
violation of system properties, which implies a conflict between requirements.

The major disadvantage of these approaches is that the transformation of require-
ments into specific formal representations will require substantial time and effort,
which may outweigh the advantages of precisely detecting conflicts. Moreover,
the formalized representations become less accessible to broader audiences. For
instance, in order to understand implications of the Alloy analyzer results, the
analyst has to be familiar with the formalization framework. Moreover, if there are
any errors introduced in the formalization process, the detected conflicts may not be
truly representative of those present in the requirements themselves.

11.2.2.2 Model-Based Approaches

A number of AORE approaches take a (design-level) model-based view on conflict
detection; that is, they expect the requirements to be (at least initially) structured
into specific models before conflicts can be detected.

For instance, the work in [7] models requirements as use cases in UML notation,
and the crosscutting concerns are activities which refine the use cases. The approach
then translates these UML diagrams into type graphs, with activities being modeled
as graph transformations. Applying these graph transformations sequentially can
thus reveal conflicts between requirements. A similar technique based on statechart
weaving on UML models was proposed in [15].

Similarly, the work in [8] adapts the Theme/UML [16] approach to formally
model compositions between base and aspect concerns. Certain forms of conflict
based on global properties, such as visibility and kind, can then be discerned and
automatically resolved. Another similar technique for class diagrams is presented in
[17].

The disadvantages of the model-based approaches are twofold. Firstly, the
necessity of modeling adds an extra step to the conflict detection process, which
may require additional time and effort. Secondly, the structuring of requirements
into models may lose information, which means that information encoded in
the requirements, including potential conflicts, may be omitted/lost before the
interaction analysis commences. Also, similar to formalization-based approaches,
a modeling error may invalidate the results of the analysis.

11.2.2.3 Stakeholder Priority-Based Approaches

Finally, the stakeholder priority-based work [1, 18–20] handles conflicts via stake-
holder involvement. If interactions can be identified using a technique such as
ARCADE [1], the stakeholders can then determine whether such compositions are

214 A. Sardinha et al.

positive, negative or neutral from their point of view, and refine the requirements
accordingly [1]. Alternatively, stakeholders state their preferred nonfunctional
requirements up-front, and mathematical reasoning techniques (i.e., a multicriteria
decision making method called Analytical Hierarchy Process [21, 22]) are then
applied to help conflict resolution [2].

More recently, in the AMPLE project [23], a novel hybrid assessment method,
HAM, was proposed and a software tool was developed. HAM combines the best
properties of two well known multicriteria decision making methods, the Analytical
Hierarchy Process and the Weighted Average [24]; this combination helped to avoid
some problematic features of those methods [25].

The main limitations of these approaches are that (1) each concern must be
allocated a specific priority; (2) conflict handling is often based on one criterion, the
priority (except for [2], where multicriteria analysis is supported); (3) the conflict
identification and resolution requires direct involvement of the stakeholders.

In summary, although the above discussed AORE approaches can help in conflict
identification for AORE, what is missing from the current state of the art is a
tool-supported informal approach which is able to determine potential interactions
based on compositions of the requirements themselves, without having to resort to
the formalization/modeling or the subjective (and frequently arbitrary) opinions of
stakeholders. Such a tool would enable conflicts to be detected quickly from textual
specifications themselves and thus provide a cost-effective solution to developers.

11.3 Detecting Conflicts in an Aspect-Oriented Specification

This section presents the EA-Analyzer tool and the process utilized to identify
conflicts between requirements in the Crisis Management System. We will start
presenting the annotation process of the Crisis Management specification with the
Requirements Description Language (RDL). The following sections describe the
inner workings of the tool on the annotated specification and an empirical evaluation
of the tool.

11.3.1 Annotating Textual Requirements with RDL

The Requirements Description Language (RDL) [10] utilizes XML tags to annotate
a natural language specification, in order to express dependencies and interactions
between various groups of requirements (such as viewpoints and use cases). A
previous chapter of this book presents a detailed description of the RDL and
discusses the usability of the approach; hence, we refer the reader to this chapter
for a detailed discussion regarding the RDL.

Figures 11.1 and 11.2 show an example of a Nonfunctional Requirement (NFR)
in the Crisis Management System that has been annotated with the RDL tags. The

11 Conflict Identification with EA-Analyzer 215

<Concern name="Real-time">
…
<Requirement id="3">

The <Subject>system</Subject>
<Degree type="modal" semantics="obligation" level="high">shall</Degree>
be able to
<Relationship type="Move" semantics="Transfer_Posession"> retrieve</Relationship>
any stored
<Object>information</Object>
with a maximum
<Object>delay</Object> of 500 milliseconds.

</Requirement>
</Concern>

Fig. 11.1 Example of a NFR requirement in the crisis management system

Fig. 11.2 Visualizing the NFR requirement in EA-Analyzer

annotated RDL text is generated with the semiautomated EA-Miner [26] tool, which
is based on a general purpose NLP tool, Wmatrix [27].

In addition, the RDL tags also express dependencies and interactions between
requirements. Hence, an analyst can define domain relationships (via RDL com-
positions) using only the natural language text. For instance, RDL compositions
can mandate that a requirement must precede another one, such as the real-
time requirement in Fig. 11.1 (“The system shall be able to retrieve any stored
information with a maximum delay of 500 ms”), which should be satisfied before
any other requirement that retrieves information.

An RDL composition consists of three parts, namely Constraint, Base, and
Outcome. Each part has a semantic query that selects requirements from the
specification with the aim of ensuring a desired interaction. For instance, Fig. 11.3
presents a composition that must ensure that the requirements selected by the Base
query (e.g., “The system shall have access to detailed maps, terrain data and weather
conditions : : : ” in Fig. 11.4) are constrained by the requirements selected by the

216 A. Sardinha et al.

<Composition name="Performance (Real-time)">
<Constraint operator="apply">(subject="system" and relationship="retrieve" and
object="information" and object="delay")</Constraint>
<Base operator="before">relationship="handling" or relationship="processing" or
relationship="request" and relationship="access"</Base>
<Outcome operator="ensure"/>

</Composition>

Fig. 11.3 Example of a composition in the crisis management system

Fig. 11.4 Visualizing the composition in EA-Analyzer

Constraint query (i.e., “The system shall be able to retrieve any stored information
with a maximum delay of 500 ms”).

11.3.2 Detecting Conflicts in the Crisis
Management Specification

The main goal of EA-Analyzer is to detect conflicts within a textual specification
that has been previously annotated with RDL tags; recall that RDL tags are
added with the help of the EA-Miner tool. In addition, the tool has a Graphical
User Interface (GUI) that helps to visualize the annotated specification and the
composition, such as the examples in Figs. 11.2 and 11.4.

In EA-Analyzer, the problem of detecting conflicts is formulated as a classifica-
tion problem, which is a well-studied problem in machine learning [11]. The tool
operates on RDL by using its compositions and annotated requirements and utilizes
composed requirements to decide whether they have a conflicting dependency.

EA-Analyzer has to go through a learning process before the tool can be
utilized for detecting conflicts. The learning process consists of the following steps
(1) identifying all the sets of requirements that crosscut one or more base concerns,

11 Conflict Identification with EA-Analyzer 217

Fig. 11.5 Visualizing the compositional intersections in EA-Analyzer

also known as Compositional Intersections (Sect. 11.3.2.1); (2) generating training
examples for the learning method by labeling the Compositional Intersections
(Sect. 11.3.2.2); and (3) training the classifier based on the examples generated in
step (2) (Sect. 11.3.2.3).

11.3.2.1 Identifying Compositional Intersections

The first step in the learning process is concerned with the identification of the
compositional intersections; compositional intersections are used as a basis to
detect conflicts among composed concerns, because they explicitly represent the
interactions of a requirement with other requirements with reference to a base
requirement.

A compositional intersection is the union of all the constraint requirements (i.e.,
requirements that have been selected by the constraint queries) that crosscut the
same base requirement. For instance, the Crisis Management specification has a
composition that selects the constraint requirement R3 of the Real-time concern
(i.e., “The system shall be able to retrieve any stored information with a maximum
delay of 500 ms”) and the base requirement R1 of the Persistence concern (i.e.,
“The system shall provide support for storing, updating and accessing the following
information : : : ”). In addition, the specification has another composition that selects
the constraint requirement R5 of the Security concern (i.e., “All communications in
the system shall use secure channels compliant with AES-128 standard encryption”)
and the aforementioned base requirement (i.e., R1 of the Persistence concern).
Hence, R3 of the Real-time concern and R5 of the Security concern are part of the
compositional intersection of R1 of the Persistence concern as shown in Fig. 11.5.

11.3.2.2 Generating Training Examples

The machine learning technique utilized by EA-Analyzer requires a set of labeled
examples to train the tool. This step enables the tool to be trained on a per-
organization basis, so that each organization can have their EA-Analyzer tool
tailored for detecting conflicts in their requirements documents.

Labeled examples are time consuming to obtain since they normally require
a human annotator to examine and label each training example. In order to
reduce this burden, we have implemented a module in EA-Analyzer that partially

218 A. Sardinha et al.

Fig. 11.6 Generating training examples with EA-Analyzer

automates this step. Figure 11.6 presents the user interface (UI) that helps the human
annotator label the composition intersection that has been previously identified
(Sect. 11.3.2.1). In the UI, the human annotator is only required to select the
conflicting requirements from the top list and the tool automatically performs a
brute force procedure that labels each occurrence of the conflicting dependency
in the set of examples (i.e., the compositional intersection that have been selected
to train the tool). Figure 11.6 shows also that the tool requires not only training
examples of conflicting dependencies within a compositional intersection but also
examples of requirements within a compositional intersection that are interacting
harmoniously.

Figure 11.6 presents a well-known example of a potential conflict between an
Encryption requirement and a Performance requirement [28], since introducing
encryption into a system reduces its responsiveness. The Encryption requirement is
R5 of the Security concern (i.e., “All communications in the system shall use secure
channels compliant with AES-128 standard encryption”) and the Performance
requirement is R3 of the Real-time concern (i.e., “The system shall be able to retrieve
any stored information with a maximum delay of 500 ms”). In this example, the
human annotator has to select these two conflicting requirements from the top list
and the tool automatically labels each occurrence of the conflicting dependency in
the compositional intersections below. The labeled examples are then saved to a file
so that the tool can train the machine learning technique.

11 Conflict Identification with EA-Analyzer 219

11.3.2.3 Training EA-Analyzer to Identify Conflicts

EA-Analyzer utilizes the Naı̈ve Bayes learning method to train the tool based on
the training examples provided in the previous step (Sect. 11.3.2.2). The learning
method leads to a bag of words model (BoW); the BoW is a method in Natural
Language Processing that models text as an ordered collection of independent words
represented in a term-frequency vector, disregarding grammar1 and even word order.

For instance, one can imagine the BoW of EA-Analyzer with two bags full of
words. The first bag is filled with words found in compositional intersections that
have a potential conflict, such as the potential conflict presented in Sect. 11.3.2.2
(i.e., the well-known example of a potential conflict between an Encryption
requirement and a Performance requirement). The second bag is filled with words
found in compositions that do not have a potential conflict. While some words
can appear in both bags, the first bag will contain conflict-related words such as
“encryption” and “retrieve” much more frequently. On the other hand, the second
bag will contain more words related to the other requirements. Hence, a new
compositional intersection that has more words that come from the first bag than
the second bag will be classified as a conflict.

11.3.2.4 Advantages and Disadvantages of the Learning Method
of EA-Analyzer

This learning method in EA-Analyzer presents two advantages. First, the learning
method only requires a small amount of data to train the Naive Bayes classifier [11].
Second, the learning method can be easily trained on a per-organization basis, so that
each organization can have their EA-Analyzer tool tailored for detecting conflicts
in their requirements documents. Moreover, it has been proven to be very powerful
(and with outstanding performance) in NLP problems such as text classification and
topic modeling. However, the main disadvantage of this learning method is that it
only considers the distribution of the words and loses the relationships between
them. To overcome this problem, search engines commonly use vocabularies
consisting of combinations of words or expressions, and the same technique is used
in EA-Analyzer.

In EA-Analyzer, the binary classification of a compositional intersection as either
harmony or conflict could be perceived as an oversimplification of requirements’
relationships. The relationship of two quality requirements could be considered
conflicting in one system and tolerable in another by a human analyst. However, EA-
Analyzer will always pinpoint the potential presence of such conflicts. It is then up to

1Please note that grammar and semantics are used in RDL composition definitions, as discussed
previously. Thus, they are indispensable in the task of collecting the required bags or words. Once
such words are collected, in the EA-Analyzer learning phase, the grammar and semantics are not
used any further.

220 A. Sardinha et al.

the requirements analyst to consider if a given potential conflict can be tolerable in a
given context, and so disregard it from the set of real conflicts for that system. Such
classifications are not directly supported by the conflict identification support of EA-
Analyzer; we consider these to constitute the follow-up step of conflict resolution.

11.4 Empirical Evaluation

This section presents an empirical evaluation of the tool, where the main goal
was to assess the ability of EA-Analyzer to detect conflicts using training data
gathered from four different documents, each representing a different domain. The
documents were selected based on their suitability for this evaluation, with selection
criteria including: domain, requirement type, complexity and use in previous
studies. In addition, three documents originate from industrial organizations and
the fourth document is a case study extensively used in academia to evaluate AO
modeling techniques. Furthermore, each of these documents was created prior to
the conception of this study by external personnel. The four documents selected
were:

• Health Watcher (HW) [29] is a web-based health support system which the public
can use to register health-related complaints and query disease and symptom
information.

• Smart Home (SH) [30] is an embedded system which provides functionality
to control various sensors and actuators around the home (i.e., lights, blinds,
heating, etc.).

• CAS [31] is a customer relationship management application (CRM) which
utilizes service mash-ups and mobility support in a hosted software-as-a-service
environment.

• Crisis Management System (CM) [32] is a crisis management system for
emergency situations (e.g., natural disasters, accidents, terrorist attacks).

The evaluation consists of four experiments, in which we utilized each require-
ments document (HW, SH, CAS, and CM) in turn as the training set and evaluated
the classification accuracy of the tool with the other three documents. Table 11.1
shows some characteristics of the four documents selected for this study, and the
characteristics present two different dimensions of the requirements specifications
(1) the size of the documents, by showing the number of words, compositions,
and compositional intersections (CI) and (2) the number of compositional inter-
sections that have the Encryption—Performance conflict. Each experiment used the
Encryption—Performance conflict to evaluate the classification accuracy of the tool,
because it is the only NFR conflict type that occurs in all four documents.

Table 11.2 presents the classification accuracy of the tool with the four different
training sets. The classification accuracy of the HW and CM documents is 93.90 %,
while the experiment with SH document achieved 92.05 % and the CAS experiment
yielded a classification accuracy of 48.51 %. All the results are compared to

11 Conflict Identification with EA-Analyzer 221

Table 11.1 Characteristics of documents used in experiment

HW SH CAS CM

Words in RDL 1764 4699 1053 5961

Num. of Compositions 17 9 5 8

Num. of CI 89 71 16 43

Num. of CI with Encryption

Performance conflict

23 5 3 16

Table 11.2 Results of the classification accuracy in each experiment

Training Sets
Validation Data HW SH CAS CM

HW 88.64% 34.09% 100.00%
SH 94.20% 100.00% 94.20%
CAS 87.50% 87.50% 87.50%
CM 100.00% 100.00% 11.43%
Weighted Average 93.90% 92.05% 48.51% 93.90%

a baseline accuracy of 50 %, as randomly assigned classes should yield an
approximate 50 % accuracy. The results that use HW, SH, and CM as training sets
yield classifications results above the baseline accuracy; however, the experiment
with the CAS document yields a classification result below the baseline accuracy.
This may suggest that the size of the training set (the CAS document has only
16 compositional intersections—see Table 11.1) can significantly influence the
classification accuracy of the tool. Despite the poor result with the CAS document,
the results with the other three document, when a larger number of examples are
utilized to train the tool, present very high classification results. This suggests that
the machine learning technique in EA-Analyzer is capable of detecting conflicts in
aspect-oriented specifications. A more extensive and detailed evaluation of the tool
can be found in [3].

11.5 Conclusions

The AO approach is an effective way to modularize and compose concerns in
requirements specifications. In addition, AORE methods help to externalize inter-
actions and interdependencies between concerns by utilizing explicitly dedicated
composition specifications. These composed concerns are an excellent starting point
for detecting conflicts within the requirements specification. However, detecting
conflicts in large natural language specifications can be a burden for requirements

222 A. Sardinha et al.

engineers, due to the large number and complexity of the interdependencies to be
considered. As discussed earlier, the approaches based on formal specifications,
models and stakeholder priorities, developed to date in the AORE community, are
unable to provide low effort and high precision techniques for conflict identification
in large AO specifications.

This chapter presents the EA-Analyzer tool, in which we demonstrate that it is
indeed possible to automate the process of detecting conflicts within textual AO
requirements specifications. In addition, we present an empirical evaluation of the
tool with three industrial-strength requirements documents and a well established
academic case study used in the AO research community. The results show that
conflicts within requirements specifications can be detected with a high accuracy, as
longs as a sufficient number of examples is utilized in the training set.

As future work, we will focus efforts on the empirical evaluation of the tool with
other requirements documents from different domains to validate the generalization
power of the learning method in EA-Analyzer. In addition, we will also test a
number of other classifiers in the tool, such as SVM [33] and nearest neighbor
methods [33]. The utilization of different machine learning classifiers may helps
us identify the best machine learning approach for detecting conflicts.

EA-Analyzer is the first tool for automated conflict identification in textual AO
requirements and compositions, and this work demonstrates that the power of AORE
to represent concern interrelationships knowledge can be effectively harvested for
conflict detection within natural language specifications. Hence, we see this work
as the stepping stone towards effort reduction in AORE conflict identification, and
supporting application of advanced modularity and analysis in textual requirements.

References

1. A. Rashid, A. Moreira, J. Araújo, Modularisation and composition of aspectual requirements,
in AOSD’03: Proceedings of the 2nd International Conference on Aspect-Oriented Software
Development (ACM, New York, NY, 2003)

2. I.S. Brito, F. Vieira, A. Moreira, R. Ribeiro, Handling conflicts in aspectual requirements
compositions, in Transactions on Aspect Oriented Software Development (TAOSD), 2007

3. A. Sardinha, R. Chitchyan, N. Weston, P. Greenwood, A. Rashid, EA-Analyzer: automating
conflict detection in a large set of textual aspect-oriented requirements. Autom. Softw. Eng.
20(1), 111–135 (2013)

4. N. Weston, R. Chitchyan, A. Rashid, A formal approach to semantic composition of
aspect-oriented requirements, in RE’08: Proceedings of the 16th International Requirements
Engineering Conference, 2008

5. R. Laney, L. Barroca, M. Jackson, B. Nuseibeh, Composing requirements using problem
frames, in RE’04: Proceedings of the Requirements Engineering Conference, 12th IEEE
International (IEEE Computer Society, Washington, DC, 2004)

6. F. Mostefaoui, J. Vachon, Design-level detection of interactions in aspect-UML models using
alloy. J. Object Technol. 6(7), 137–165 (2007)

7. K. Mehner, M. Monga, G. Taentzer, Interaction analysis in aspect-oriented models, in RE’06:
Proceedings of the 14th IEEE International Requirements Engineering Conference (IEEE
Computer Society, Washington, DC, 2006)

11 Conflict Identification with EA-Analyzer 223

8. O. Barais, J. Klein, B. Baudry, A. Jackson, S. Clarke, Composing multi-view aspect models,
in ICCBSS’08: Proceedings of the Seventh International Conference on Composition-Based
Software Systems (ICCBSS 2008) (IEEE Computer Society, Washington, DC, 2008)

9. R. Chitchyan, A. Rashid, P. Rayson, R. Waters, Semantics-based composition for aspect-
oriented requirements engineering, in AOSD’07: Proceedings of the 6th International Con-
ference on Aspect-Oriented Software Development (ACM, New York, NY, 2007)

10. R. Chitchyan, Semantics-based composition for aspect-oriented requirements engineering,
Ph.D. thesis, Computing Department, Lancaster University, 2007

11. T. Mitchell, Machine Learning (McGraw-Hill, New York, NY, 1997)
12. L. Chung, B.A. Nixon, E. Yu, J. Mylopoulos, Non-functional Requirements in Software

Engineering (Kluwer Academic, Dordrecht, 1999)
13. E. Yu, Modelling strategic relationships for process reengineering, Ph.D. Thesis, Department

of Computer Science, University of Toronto, 1995
14. A. van Lamsweerde, A. Dardenne, B. Delcourt, F. Dubisy, The KAOS project: knowledge

acquisition in automated specification of software, in Proceedings AAAI Spring Symposium
Series, Stanford University (American Association for Artificial Intelligence, Washington, DC,
1991)

15. P. Shaker, D.K. Peters, Design-level detection of interactions in aspect-oriented systems, in
Proceedings of the Aspects, Dependencies, and Interactions Workshop at ECOOP 2006, 2006

16. E. Baniassad, S. Clarke, Theme: an approach for aspect-oriented analysis and design, in
ICSE’04: Proceedings of the 26th International Conference on Software Engineering (IEEE
Computer Society, Washington, DC, 2004)

17. Y.R. Reddy, S. Ghosh, R.B. France, G. Straw, J.M. Bieman, N. McEachen, E. Song, G. Georg,
Directives for composing aspect-oriented design class models, in Transactions on Aspect
Oriented Software Development I, ed. by A. Rashid, M. Aksit (Springer, Berlin Heidelberg,
2006), pp. 75–105

18. A. Moreira, J. Araújo, A. Rashid, Multi-dimensional separation of concerns in requirements
engineering, in International Conference on Requirements Engineering (RE), Paris, France,
2005

19. I. Brito, A. Moreira, Towards a composition process for aspect-oriented requirements, in
Presented at Early Aspects Workshop at AOSD’03, Boston, MA, 2003

20. I. Brito, A. Moreira, Integrating the NFR approach in a RE model, in Presented at Early
Aspects Workshop at AOSD’04, Lancaster, UK, 2004

21. T. Saaty, The Analytic Hierarchy Process (McGraw-Hill, New York, NY, 1980)
22. T. Saaty, Decision making with the analytic hierarchy process. Int. J. Serv. Sci. 1, 83–98 (2008)
23. AMPLE project (2011), http://www.ample-project.net
24. E. Triantaphyllou, Multi-Criteria Decision Making Methods: A Comparative Study (Kluwer

Academic, Dordrecht, 2000)
25. R. Ribeiro, A. Moreira, P. Broek, A. Pimentel, Hybrid assessment method for software

engineering decisions. Decis. Support. Syst. 51(1), 208–219 (2011)
26. A. Sampaio, R. Chitchyan, A. Rashid, P. Rayson, EA-Miner: a tool for automating aspect-

oriented requirements identification, in ASE’05: Proceedings of the 20th IEEE/ACM Interna-
tional Conference on Automated Software Engineering (ACM, New York, NY, 2005)

27. P. Rayson, Wmatrix (2010), http://www.comp.lancs.ac.uk/ucrel/wmatrix/
28. A. Sampaio, P. Greenwood, A.F. Garcia, A. Rashid, A comparative study of aspect-oriented

requirements engineering approaches, in ESEM’07: Proceedings of the First International
Symposium on Empirical Software Engineering and Measurement (IEEE Computer Society,
Washington, DC, 2007)

29. S. Soares, P. Borba, E. Laureano, Distribution and persistence as aspects. Softw. Pract. Exp.
36(7), 711–759 (2006)

30. K. Pohl, G. Bockle, F. van der Linden, Software Product Line Engineering: Foundations,
Principles, and Techniques (Springer, New York, NY, 2005)

31. D. Ayed, T. Genssler, Dynamic variability in complex, adaptive systems. Deliverable D6.1 of
DiVA EC project (2009)

http://www.ample-project.net
http://www.comp.lancs.ac.uk/ucrel/wmatrix/

224 A. Sardinha et al.

32. J. Kienzle, N. Guelfi, S. Mustafiz, Crisis management systems: a case study for aspect-oriented
modeling, in Transactions on Aspect-Oriented Software Development VII. Lecture Notes in
Computer Science, ed. by S. Katz, M. Mezini, J. Kienzle, vol. 6210 (Springer, Berlin, 2010),
pp. 1–22

33. C.M. Bishop, Pattern Recognition and Machine Learning (Springer, Berlin, 2006)

Chapter 12
Handling Conflicts in Aspect-Oriented
Requirements Engineering

Isabel Sofia Brito, Ana Moreira, Rita A. Ribeiro, and João Araújo

Abstract Identification and resolution of aspectual conflicts should be handled
at the requirements level, before major design decisions are made. Treating
conflicting situations this early facilitates negotiation among stakeholders. The
Aspect-Oriented Requirements Analysis (AORA) approach offers HAM (Hybrid
Assessment Method), a technique for the resolution of conflicts between concerns
that contribute negatively to each other and have the same importance. HAM uses
a multi-criteria decision method to support the resolution of these conflicts and
extends this treatment to conflicts between concerns triggered by stakeholders with
contradictory interests on a set of concerns. An example taken from the Crisis
Management System case study is used to illustrate HAM’s potential support for
treating concerns during composition.

12.1 Introduction

This chapter discusses HAM, a technique for requirements conflict resolution.
This technique has been developed in the context of AORA (Aspect-Oriented
Requirements Analysis approach), although it can be used in the general context
of AORE.

I.S. Brito (�)
Escola Superior de Tecnologia e Gestão, Instituto Politécnico de Beja, Beja, Portugal
e-mail: isabel.sofia@ipbeja.pt

A. Moreira • J. Araújo
Departamento de Informática, Universidade Nova de Lisboa, Caparica, Portugal
e-mail: amm@fct.unl.pt; joao.araujo@fct.unl.pt

R.A. Ribeiro
UNINOVA, Caparica, Portugal
e-mail: rar@uninova.pt

A. Moreira et al. (eds.), Aspect-Oriented Requirements Engineering,
DOI 10.1007/978-3-642-38640-4 12, © Springer-Verlag Berlin Heidelberg 2013

225

mailto:isabel.sofia@ipbeja.pt
mailto:amm@fct.unl.pt
mailto:joao.araujo@fct.unl.pt
mailto:rar@uninova.pt

226 I.S. Brito et al.

In AORA, conflict management is handled during the composition activity, where
conflicts may emerge at given match point [1]. A match point identifies specific loca-
tions in base concerns at which other concerns’ (crosscutting or non-crosscutting)
should be composed or satisfied. A concern refers to a matter of interest that
addresses a certain problem that is important to one or more stakeholders. AORA
indicates a conflict any time two or more concerns that contribute negatively to each
other, and have the same priority,1 need to be composed at the same match point.
The identification of such a conflict might lead to a revision of the aspectual and
non-aspectual specifications, as well as of the composition specifications. In the
context of this work, we generalize the AORA’s definition of conflict to include
situations where stakeholders have different interests with respect to the same set
of concerns, independently from the concerns’ contributions.2 The advantage of
treating both types of conflicting situations during requirements analysis is to
facilitate negotiation and decision-making among stakeholders.

In previous works, AORA used Analytic Hierarchy Process (AHP) [2], a multi-
criteria decision method (MCDM) to obtain the raking of a set of concerns. MCDMs
help choosing the best choice from a set of alternatives, given a set of decision
criteria. Despite the well-known advantages of AHP, such as helping guaranteeing
the logical consistency of many human-based judgments, as well as synthesizing a
wide range of data in a single solution, the inconsistencies introduced by the scale,
associated with the large number of pairwise comparisons, result in low efficiency
and cumbersome usability. For these reasons, in this chapter AORA substitutes
AHP for HAM, a hybrid MCDM method [3–5] and discusses its suitability and
versatility as a decision support tool for handling the two types of aspectual conflicts
mentioned above.

HAM’s process is simpler than AHP’s and its integration in AORA is straight-
forward. HAM uses a simple two-phase process, which combines one pairwise
comparison decision matrix and one classical weighted decision matrix, and then
prioritizes alternatives using a weighted average method. These changes, required
to handle the new type of conflict, introduce no added complexity to the process
(as discussed in Sect. 12.4).

This chapter is organized as follows: Sect. 12.2 gives a general outline of the
AORA approach, giving context to HAM. Section 12.3 offers a broad overview on
multi-criteria decision methods and finishes by summarizing HAM. Section 12.4
focuses on the composition part of AORA, uses an example from the case study
to illustrate the conflict management activity and discusses the obtained results.
Section 12.5 presents the related work and Sect. 12.6 concludes pointing directions
for future work.

1If the priority allocated to each concern is different, the problem is not too difficult to solve.
2Concern’s contributions represent how this concern affects others concerns. This contribution can
be positive(C) or negative (�).

12 Handling Conflicts in Aspect-Oriented Requirements Engineering 227

12.2 Aspect-Oriented Requirements Analysis

The AORA (Aspect-Oriented Requirements Analysis) approach collects all the
required requirements for composition, allowing the application of MCDM tech-
niques for conflict resolution. AORA defines three primary tasks: identify concerns,
specify concerns and compose concerns.

The task “identify concerns” can be accomplished by using traditional require-
ments elicitation techniques, such as ethnographic studies, analysis of the initial
requirements, transcripts of stakeholders’ interviews, etc. Other good sources for
concern identification are existing catalogues, such as the non-functional require-
ments catalogue offered by Chung et al. [6].

The task “specify concerns” aims at describing each concern while collecting
and storing in a template various types of data about the concern [1]. An example
template is shown in Table 12.2. For example, the contributions element of the tem-
plate, which offers a list of positive and negative contributions among concerns, is a
basic piece of information to detect a conflict (denoted via negative contributions).
While stakeholders’ importance element assigns priorities to concerns from the
stakeholders’ perspective, in an attempt to help in the conflict resolution process,
the required concerns element acts as a dependency reference to other concerns
in the system and is used to identify crosscutting concerns (i.e., concerns that are
required by more than one other concern).

The task “compose concerns” allows an incremental analysis of impact of possi-
ble concern configurations. A composition is configured according to a composition
specification. Each composition specification is analysed for each match point, by
taking into account the information in Required Concerns element in the match
point concern template [1]. A composition rule shows how a set of concerns can be
composed together using pre-defined operators. At this stage, conflicting situations
may be detected when concerns contributing negatively to each other (contribution
element in template [1]) have the same importance (row stakeholders’ importance)
and need to be composed in the same match point. Having identified a conflict, the
HAM technique is used to rank the concerns under analysis and, where needed,
conduct negotiations among stakeholders. HAM, as we said before, guarantees the
logical consistency of many human-based judgments, as well as synthesizing a
wide range of data in a single solution. The end result is a list of concerns ranked
according to a set of criteria. This list of ranked concerns will lead the choice of the
system’s architecture design.

228 I.S. Brito et al.

12.3 Supporting Conflict Resolution with Multi-criteria
Decision Methods

12.3.1 Multi-criteria Decision Methods

Multiple Criteria Decision Making (MCDM) methods support decision makers
resolving conflicting situations [7–9]. MCDM methods use mathematical tech-
niques to help decision makers to choose among a discrete set of alternative
decisions. These methods do not try to compute an optimal solution, but to
determine, via rating and ranking procedures, either a ranking of the “the best
options” with respect to several criteria, or the “best” actions amongst the existing
solutions [7].

Two phases are usually needed to rank the alternatives or to select the most
desirable one (1) the aggregation of the degree of satisfaction for all criteria, per
decision alternative (rating) and (2) the ranking of the alternatives with respect to
the global aggregated degree of satisfaction.

Triantaphyllou [7] warns that there may never be a single MCDM method that
guarantees that a derived ranking of alternatives is the correct one because of the
subjective assignment of alternative classifications and weights for criteria. Even
within the fuzzy MCDM domain [10] this type of problem remains ill-defined.
Therefore, MCDM methods can only guarantee the “best possible” solution and
not “the optimal” one. Nonetheless, in our view MCDM methods are helpful at
negotiating a solution for conflicting concerns because they allow trade-offs and
reaching a consensus from different stakeholders.

There are many MCDM methods proposed in the literature [7, 8, 10]: direct
scoring and outranking methods, trade-off schemes, distance-based methods, value
and utility functions, and interactive methods. Direct scoring techniques are widely
used, particularly the weighted average method (WA) [11]. WA calculates the
final score of alternatives with the weighted sum of each criteria value. WA is
popular due to its simplicity, its compensatory trade-offs among criteria with their
weights, and because any spreadsheet can act as tool support as it only requires
one decision matrix. However, it does not offer pairwise comparisons or logical
consistency measures (hence no dependencies/relationships between criteria can be
expressed), which are useful to perform the trade-offs between alternatives, or, in our
case, conflicting aspectual requirements. The Analytical Hierarchy Process (AHP)
method [2, 7] is a pairwise comparison method that relies on expert judgments to
derive priority scales (ranking of alternatives). The comparisons are made using a
scale of judgments that represent how much more, one element is important than
another with respect to a given criteria. AHP also provides a measure for detecting
logical inconsistencies for these judgments.

Comparative studies for such methods [3] concluded that the best option is to
combine the pairwise judgment of AHP with the decision matrix simplicity of WA.
The combination of both methods and the usage of a geometric scale (Table 12.1

12 Handling Conflicts in Aspect-Oriented Requirements Engineering 229

Table 12.1 Scale summary

Index Interpretation Scale Comparative
AHP scale

8 Extremely High importance 9 9

6 Very High importance 9/3 7

4 High importance 9/5 5

2 Medium High importance 9/7 3

0 Equal importance 1 1

-2 Medium Low importance 7/9 1/3

-4 Low importance 5/9 1/5

-6 Very Low importance 3/9 1/7

-8 Extremely Low importance 1/9 1/9

Other Intermediate values

shows the scale and its semantic interpretation) and aggregation process resulted
in the Hybrid Assessment Method (HAM) [4, 5]. From AHP, HAM uses just one
pairwise comparison matrix to perform the trade-off analysis between criteria and
obtain their weights, while ensuring logical consistency for the trade-off. From WA,
HAM uses the decision matrix logic with weights obtained from the AHP pairwise
comparisons to determine the final ratings and ranking for the alternatives.

12.3.2 The Hybrid Assessment Method

HAM includes two main tasks, one to determine the importance (weights) of criteria
and another one to obtain the prioritization of alternatives [3–5]. As mentioned
before, HAM also avoids the two main AHP problems: its computational ineffi-
ciency and understandability for large problems and its problematic linear scale
and prioritization calculation process [5]. Steps 1–3 below constitute the first task,
while steps 4 and 5 form the second task. Each step, and the associated calculations,
is explained in detail in [5].

Step 1: Identify the set of stakeholders and concerns. Here the concerns
correspond to alternatives in the MCDM methods and criteria are the stakeholder’s
preferences. Figure 12.1c displays an example.

Step 2: Elicit trade-offs among stakeholders using pairwise comparisons. We use
a geometric scale (see in Table 12.1 the scale and its semantic interpretation) to
rate the relative importance/preference of one stakeholder over another and then
construct a matrix of the pairwise comparison ratings. This scale was used because,
according to [7] and [12], it is the most appropriate for MCDM. Figure 12.1a shows
an example.

230 I.S. Brito et al.

(c) (d)

(a) (b)

Fig. 12.1 (a) Pairwise comparison matrix for stakeholder’s criterion and (b) respective priority
vector (calculated). (c) WA matrix for required concerns and (d) respective ratings

Step 3: Calculate the stakeholder’s priority vector, normalize the respective
weights and calculate the consistency ratio. To calculate the priority vector for
criteria (stakeholders), which will represent the weights for the second task of HAM,
we normalize the pairwise comparison matrix by dividing each column cell by the
sum of that column. Then, the weights/importance criteria are calculated by using
the geometric mean of the normalized pairwise comparison matrix, for all criteria.
Next we calculate the consistency of the pairwise matrix to reduce any logical error
that might have been introduced during the judgement process. If the consistency
ratio is under 10 %, logical consistency is guaranteed. However, if there is any
logical inconsistency the trade-off values in the pairwise matrix are re-checked
and a new iteration is performed until consistency is low. Figure 12.1b displays
the resulting value for the example.

These 3 steps result in a vector with the importance (weights) for criteria (in our
case the stakeholders). The next task (steps 4 and 5) deals with the prioritization of
the alternative concerns.

12 Handling Conflicts in Aspect-Oriented Requirements Engineering 231

Step 4: Identify contributions of each concern, by eliciting the contributions
of each alternative (concern) with respect to each criterion (stakeholders), using
a decision matrix. Figure 12.1c shows an example.

Step 5: Calculate the concerns’ ratings, includes the aggregation of the criteria
values, with the geometric average, per alternative, using as weights the values
obtained in step 3. This final step concludes our process by providing the priori-
tizations for each concern Fig. 12.1d displays the final result of using HAM tool.

To improve the tool usability (see Fig. 12.1), we also introduced an index system
to facilitate the interaction among the decision makers involved in the conflict
resolution (see Fig. 12.1 bottom-left box). Table 12.1 summarizes the scale, its
semantic interpretation and respective index. Moreover, Table 12.1 also depicts the
AHP scale for comparative purposes (see Sect. 12.4.4). Details about the advantages
of using the HAM scale are discussed in [5].

12.4 A Step Forward in Aspectual Conflict Management

As mentioned previously, a conflict occurs when two or more concerns contributing
negatively to each other and having the same priority need to be composed together.
For example, consider the case where a module conceived to model or implement
a given functionality of the system needs to be secure and to react in a very short
period of time. It is well known that security and response time contribute negatively
to each other, that is, the more secure we want our module to be, the slower it
will become, and vice versa. This means that the system may not be able to satisfy
both quality requirements with the same degree of importance. Therefore, this also
means that different combinations of each of these concerns may lead to a number
of architecture choices that will serve the stakeholder needs with varying levels of
satisfaction.

In this chapter, we will use the information collected by AORA and the flexibility
of the multi-criteria concepts and techniques and also consider conflicts triggered by
contradictory priorities different stakeholders may declare on one or more concerns.
This means that even concerns that contribute positively to each other may be
involved in a conflict if they need to compete for their satisfaction, for instance,
due to scarce resources or where stakeholders’ priorities on concerns vary.

Considering that MCDM techniques offer the possibility to find, given a set of
alternatives and a set of decision criteria, the best alternative, AORA used AHP
method to support conflict management resolution [1, 13]. This list of ranked
concerns should drive the choice of the system’s architecture design, as mentioned
above.

Although being one of the most used methods, AHP has some liabilities that
drove us looking for a different solution. In particular, AHP scale introduces
inconsistencies, the number of pairwise comparisons can become too large, and it is
difficult to analyse results for each single matrix. Therefore, in addition to its scale
inconsistency problems, AHP is low in efficiency and in usability [5, 7, 12].

232 I.S. Brito et al.

To overcome these liabilities, this chapter changes the AORA conflict
management process by using HAM in the following two usage cases (1) to
rank required concerns in a match point according to the Stakeholders’ opinion,
where the one with the highest value is the most important one; (2) to perform
“what-if” analysis, achieving system behaviour analysis by simulating changes to
it (e.g., “what happens if a new Stakeholder is added to the system?” or “what
happens if the weight of a criteria changes?”).

12.4.1 Identification and Description of Concerns

Here we will demonstrate the usage of HAM for concerns conflict management.
The concerns are the use cases, identified in Sect. 4.1 of the crisis management

stem case study document [14], and the NFRs listed in Sect. 2.3 of the same
document. The composition specifications are defined for the various identified
match points, and several crosscutting concerns are indicated, some are non-
functional (e.g. availability, security and mobility) and others are functional (such
as user authentication).

For this section we have chosen the example from the crisis management
system pertaining the execution of the mission observed by the SuperObserver
actor. The corresponding AORA template is summarized in Table 12.2, where the
“responsibilities” entry details its functionality.

The composition specification for the SuperObserver Mission match point would
require the construction of an equivalent template for each of the required concerns,
but for our goal, it is enough to build the contribution matrix among these required
concerns. Based on the developers’ expertise and some existing work (e.g. [6]
and [15]), the positive and negative contributions between concerns are listed in
Table 12.3.3

The contribution matrix helps identifying some potential problems. For example,
accuracy contributes negatively to real time (the system shall provide up-to-date
information to rescue resources quickly), while real time contributes positively
to availability (the faster the system is, the longer it is free to handle more
SuperObserver).

If we were to consider only conflicts triggered by concerns contributing neg-
atively to each other, we could remove from our subsequent analysis “mobility”
and “adaptability”. However, given that we also want to consider situations where
different stakeholders may have contradictory interests in those concerns, i.e. those
concerns have different stakeholders’ priorities, the conflict analysis will consider
all the required concerns and will take into consideration the stakeholder priorities
allocated to each concern.

3Note that the contributions specified here are asymmetric.

12 Handling Conflicts in Aspect-Oriented Requirements Engineering 233

Table 12.2 Execute SuperObserver mission template

Concern Elements Definition

Name Execute SuperObserver Mission.
Stakeholders Coordinator, SuperObserver and AdministratorSystem; NationalCrisisCenter

(needed when the mission cannot be created and replacement missions are possible).
Description Its aim is to support the SuperObserver to order appropriate missions.
Classification Functional

Type Non-Crosscutting

Responsibilities 1. System sends a crisis-specific checklist to SuperObserver.
2. System suggests crisis-specific missions to SuperObserver.
3. System sends a mission-specific information request to SuperObserver.
4. System acknowledges the mission creation to SuperObserver.
5. System informs SuperObserver that mission was completed successfully.
Extensions:
1. Mission cannot be created and replacement missions are possible.
1a.1 System suggests replacement missions to SuperObserver.
1b. Mission cannot be created and no replacement missions are possible.
1b.1 System suggests notifying the NationalCrisisCenter.
2a. Mission failed.
2a.1 System informs SuperObserver and Coordinator about mission failure.

Stakeholder
Importance

SuperObserver: Very Important
Coordinator Very Important
AdministratorSystem: Very Important

NationalCrisisCenter Very Important

Required
Concerns

Real-time, Accuracy, Persistence, Availability, Adaptability, Safety, Reliability
Security, Mobility

Table 12.3 Contributions between the concerns required by Execute SuperObserver Mission

Availability Reliability Persistence
Real-
time Security Mobility Adaptability Accuracy

Availability +

Reliability + -

Persistence

Real-time + - - -

Security + -

Mobility +

Adaptability +

Accuracy - + -

234 I.S. Brito et al.

12.4.2 Composition and Conflict Management

In the AORA context, HAM is going to be used for two cases:

– Case 1: “Prioritize Required Concerns” is used to rank Required Concerns in a
match point according to the opinion of Stakeholders’. The result is a ranking of
Required Concerns where the one with the highest value is the most important.

– Case 2: “What-if analysis” to perform system behaviour analysis by simulating
changes to it. For example, does the Required Concerns ranking change if a new
stakeholder, or a new concern, is added to the system?

Case 1: Prioritize Required Concerns
Step 1: Identify criteria and alternatives. The goal is the identification of a finite

set of criteria and alternatives to rank the concerns required in a given match point.
For our “Execute SuperObserver Mission” example, the alternatives are the required
concerns identified in the template. The criteria also referred to as decision criteria,
represent the different dimensions from which the alternatives can be analysed,
which, in our example, are the identified stakeholders (SuperObserver, Coordinator
and AdministratorSystem).

Step 2: Elicit trade-offs among criteria. As mentioned, HAM uses a pairwise
comparison matrix to determine the ratings for the stakeholders. In our example, the
pairwise matrix is shown in Fig. 12.1a.

Step 3: Calculate the criteria priority vector, normalize the respective weights
and calculate the consistency ratio. HAM calculates the normalized priority vector
(or stakeholders weights). In our example, the pairwise matrix is shown in Fig. 12.1a
and the normalized priority vector in Fig. 12.1b. Notice that pairwise matrix uses
illustrative judgements, because the case study’s documentation does not have
this information. The stakeholder Coordinator is the most important stakeholder
according to the values in priority vector (0.412029).

The next step is to calculate the value of the logical consistency ratio to ensure
the analyst consistently elicited the stakeholders’ priorities. In this case the ratio is
3.93 %. Since this value is under 10 %, the logical consistency is guaranteed.

Step 4: Identify contributions of each alternative. We elicit the contributions of
each required concern with respect to each stakeholder, using a regular decision
matrix (see Fig. 12.1c). The contributions are illustrative values because the case
study’s documentation does not have this information.

Step 5: Calculate the alternatives ratings. Figure 12.1 shows the results obtained
using the HAM Tool. Figure 12.1d shows the rating of each required concern, using
a geometric average as described in HAM model [5].

Based on required concerns rating obtained using HAM Tool, Table 12.4 shows
the required concerns final ranking.

Let us now discuss the final ranking in Table 12.4. Because the control centre
receives and updates the location of SuperObserver information on an on-going
crisis at intervals not exceeding 30 s, it is not surprising that the real-time concern
appears ranked first. Availability comes next in the ranking because the system shall
be in operation 24 h a day, every day, without break, throughout the year except

12 Handling Conflicts in Aspect-Oriented Requirements Engineering 235

Table 12.4 Required
concerns ranking Required Concerns Rating % Ranking

Real-time 30,63 1
Availability 21,11 2
Mobility 16,38 3
Accuracy 8,40 4
Persistence 6,95 5
Reliability 4,96 6
Security 4,16 7
Adaptability 4,15 8
Safety 3,25 9

for a maximum downtime of 2 h every 30 days, for maintenance. Furthermore,
availability needs to be accomplished before accuracy and persistence to guarantee
that the system is accessible for the passengers.

Mobility is ranked third because it is important to guarantee the access to detailed
maps, terrain data and weather conditions for the crisis location and the routes
leading to it. Also, mobility helps availability, as its contribution is positive.

Accuracy appears in fourth place. Given that it contributes negatively to real
time and availability, which have higher preferences for the stakeholders, its ranking
makes sense, as its priority needs to be lower in order to help guaranteeing the
stakeholders preferences.

A similar intuitive reasoning can be done for the concerns ranked in the last
positions. But in general, we can say that despite their importance in the system,
accuracy, persistence and security have lower priorities because these concerns
contribute negatively to real time and availability, which have higher preferences
for the stakeholders.

Case 2: Perform “what-if” analysis “What-if” analysis may be useful to study
the impact of adding new concerns and stakeholders, removing them or review the
weights allocated to different criteria. Let us consider the simple situation mentioned
in the case study, where the new stakeholder NationalCrisisCenter comes into
play when a Mission cannot be created and no replacement missions are possible.
(We expect that this actor would appear when the crisis is so serious that requires
the orchestration of several national services.) We simply add this new stakeholder
and perform the five steps of HAM, which the HAM tool will execute in a blink-of-
an-eye.

Step 1: Identify criteria and alternatives. The criteria include now also the new
stakeholder NationalCrisisCenter.

Step 2: Elicit trade-offs among criteria. Based on the previous step, National-
CrisisCenterstakeholder was added to the matrix (originally depicted in Fig. 12.1)
with very low importance when compared with Coordinator, SuperObserver and
AdministratorSystem because NationalCrisisCenter stakeholder substitutes the sys-
tem under study and does not use the system, unlike the others stakeholders.

236 I.S. Brito et al.

Table 12.5 Required concerns ranking for case 1 and 2

Required Concerns Rating % Case 2 Ranking Case 2 Ranking Case 1

Real-time 29,07 1 1

Availability 20,34 2 2

Mobility 15,18 3 3

Accuracy 8,45 4 4

Persistence 6,52 6 5

Reliability 5,20 7 6

Security 4,31 8 7

Adaptability 3,93 9 8

Safety 7,01 5 9

Step 3: Calculate the criteria priority vector, normalize the respective weights
and calculate the consistency ratio. We start by calculating the priority vector,
or stakeholders weights, and normalize them. SuperObserver is the most important
stakeholder and NationalCrisisCenter is the less important stakeholder according to
the values in the priority vector. Since the consistency ratio value is 3.79 % (lower
than 10 %), the logical consistency is guaranteed.

Step 4: Identify contributions of each alternative. We elicit the contributions
of each required concern with respect to each stakeholder, using a WA’s decision
matrix. In this case, we elicit the contributions of each required concern with respect
to NationalCrisisCenter, which were: availability: 4; reliability: 2; persistence: �8;
real time: 4; security: 0; adaptability: �8; accuracy: 2; mobility: �8; safety: 8.

Step 5: Calculate the alternatives ratings. Table 12.5 represents the rating of each
required concern, using the WA formula for both cases.

Real time, availability, mobility and accuracy have the same ranking in the
two cases. Safety “jumps” from ninth place to fifth place. This intuitively makes
some sense, because despite NationalCrisisCenter having the lowest weight in the
system (when it enters in action, it basically substitutes the system under study),
safety concern has “Extremely High importance”. Consequently, the other concerns
decrease one place in the ranking of case 2.

If, in a different case, we were simply to change the importance allocated to
NationalCrisisCenter to high, the resulting ranking would be the same for real time
(first) and adaptability (ninth). The other concerns decrease and increase by one
place. Safety, on the other hand, “jumps” from fifth to second. This makes sense
as NationalCrisisCenter, being highly important in the system, has allocated safety
a high degree of importance. On the other hand, real time is still in the first place
as NationalCrisisCenter’s weight is not enough to override the other stakeholders’
wishes.

12 Handling Conflicts in Aspect-Oriented Requirements Engineering 237

12.4.3 Discussion of Results

Having the concerns ranked by order of importance allows one to select the
architectural design that will optimize the attainment of various objectives by their
order of importance. Based on the obtained rankings, decisions can be taken to
handle unresolved conflicts. Notice that, a crosscutting concern can have different
importance in different match points. This information is also supporting useful in
supporting architectural design decisions.

To ensure that the method is applied correctly we must guarantee that the
questions below are answered during the initial activities of the AORA approach:
have all the concerns been identified? Were all the stakeholders considered? How
correct is the stakeholder knowledge about the problem? In what concerns of the
HAM method we should remember that human judgements are not error free, even if
the consistency level is below 10 %, judgements are always subjective. Consistency
only tells that the judgements are valid from a logical perspective. However, the
reasoning used to achieve those values is subjective and may not reflect the best
alternatives.

Another useful result was the what-if analysis. The inclusion of a new stake-
holder, even when he is allocated with the lowest importance, can impact the final
ranking.

Analysing the results of the application of HAM, the advantages are:

1. It is a robust and flexible method.
2. It allows resolution of trade-offs between concerns.
3. It provides prioritization of criteria (stakeholders) to be used as weights in the

ranking process.
4. Provides ranking of alternatives (required concerns).
5. It enables the addition of new criteria and/or alternatives at anytime, obviously at

the expense of having to perform new calculations.
6. It allows a what-if analysis, i.e. what happens if we add a new requirement to the

system? Will it change the architectural decisions?

Nevertheless, HAM is not a perfect method and its disadvantages are:

1. As all other scoring MCDM methods, judgments made by experts (values
assigned) always include opinions (subjective) and HAM can only ensure logical
consistency for the judgments.

2. As all other MCDM methods it is a decision support model and not a decision
making model (i.e., it does not substitute decision makers, it just supports them
in making informed decisions).

3. It does not support group decision making.
4. It requires some technical knowledge from the stakeholders, such as which

criteria to use which contributions alternatives make towards the criteria.

Thus, in summary, HAM is a simple, versatile method that seems well suited to
helping in analysing potential conflicts in the AOSD context.

238 I.S. Brito et al.

Table 12.6 Stakeholders pairwise matrix

Stakeholder Coordinator SuperObserver Administrator

Coordinator Equal importance Medium low importance Very high importance

SuperObserver
Medium high
importance Equal importance High importance

Administrator Very low importance Low importance Equal importance

Table 12.7 Stakeholders ratings

Stakeholder
AHP HAM

(Figure 1 (b)

Coordinator 0.446 0.412
SuperObserver 0.482 0.410
Administrator 0.072 0.177

12.4.4 HAM Versus AHP

Let us now compare HAM with AHP, for the same illustrative example. Here
we only compare the results for phase 1 (determination of stakeholders relative
importance) because it is the phase that uses pairwise matrices. As mentioned
before, the scales of HAM versus AHP and respective semantic interpretation are
shown in Table 12.1.

Table 12.6 shows stakeholders pairwise matrix with the semantic evaluations
(Table 12.1). Note that the semantic evaluation is identical for HAM and AHP.

Table 12.7 includes the resulting rating for stakeholders using HAM (Fig. 12.1b)
and AHP with arithmetic aggregation.

Even with this small comparison it is obvious that the rankings are different in
both methods. For HAM the most important stakeholder is the Coordinator, while
with AHP it is the SuperObserver. Now let us observe the semantic evaluations to
understand the results. Note that the “equal importance” is not taken in consideration
because it is a pairwise matrix. From Table 12.6, the corresponding semantic Coor-
dinator evaluations were: (SuperObserver: medium low importance, Administrator:
very high importance) and SuperObserver evaluations were (Coordinator: medium
high importance, Administrator: high importance). Clearly from these semantic
evaluations we can observe that AHP takes a more “averaging” perspective and
benefits (selects) the candidate with both “average” classifications, while with HAM
the candidate that stands out (Coordinator) is selected because he has a “very
high” grade and only a “medium low” one. These small comparison shows that
HAM distinguishes more outstanding alternatives while AHP always takes a classic
average perspective, which can lead to select “mediocre” solutions.

More details about comparison of HAM with other methods can be seen in [5].

12 Handling Conflicts in Aspect-Oriented Requirements Engineering 239

12.5 Related Work

Several AORE approaches [16–19] handle conflicts mostly based on intuitive and
very simple reasoning methods that are error prone and do not allow a rigorous
engineering approach to the problem. For example, while Brito et al. [16] propose
allocating different priorities to conflicting concerns, in [17] conflict solving is
based on the principle of iteratively identifying the dominant candidate aspect,
or crosscutting concern, with respect to a set of stakeholders’ requirements. This
requires extensive negation between stakeholders.

Moreira et al. [18] and Rashid et al. [19] use a similar idea, by assigning weights
to those aspects that contribute negatively to each other. Weighting allows them to
describe the extent to which an aspect may constrain a base module. The scales used
are based on ideas from fuzzy logic. Again, concerns contributing negatively to each
other and with the same weight with respect to a given base module require explicit,
but informal, negotiations with the stakeholders.

The main limitations of these approaches are:

1. Each concern must be allocated one single different importance using intuition.
2. Conflict handling is based on one criterion, the importance, not considering other

parameters that may have an impact on the decision.
3. Different stakeholders may have different interests on the same concern, and

the relative importance/power of each one might be different (so their relative
position might have to be taken into account).

4. Trade-offs must be negotiated informally with the stakeholders without any
rigorous and systematic analysis technique or tool.

It was with these limitations in mind that we started exploring rigorous alterna-
tives take used effectively without having to rely so strongly on a single criterion
(importance), taking into consideration other possible useful information collected
during the application of the methods.

Multi-Criteria Decision Making (MCDM) methods have been used to solve
different types of problems, in particular to identify and prioritize conflicting Non-
Functional Requirements (NFRs) [16, 19, 20]. Until recently, efforts have been
focused on solving conflicts between aspects for stakeholders, using more formal
ways to deal with the issues at hand, and incipient usage of MCDM methods
was also proposed to create rankings of concerns, be they aspectual or non-
aspectual [13]. The focus was on identifying conflicts between two or more concerns
that contribute negatively to each other but have to be included in the same system.
This meant that it is not possible to equally satisfy both conflicting concerns.
This situation forces a trade-off analysis to establish importance, or priorities, for
concerns. According to what is shown in [18], these decisions have a significant
influence on the choice of system’s architecture, as well as the future stages of
the development life cycle. For the latter work, the MCDM method chosen was
Analytical Hierarchy Process (AHP) [2, 7, 21].

240 I.S. Brito et al.

More recently, in the AMPLE project [22], a novel hybrid assessment method,
HAM, was proposed and a software tool was developed. HAM combines the best
properties of two well-known MCDM scoring methods, the Analytical Hierarchy
Process [2, 21] and the Weighted Average [7, 8], while avoiding some problematic
features of those methods [5]. HAM suitability for handling concerns is based on
four main points (1) handle conflicting situations between stakeholders objectives
(many of these correspond to qualities the system should provide); (2) study which
features are affected by those qualities; (3) use these qualities to support architects
in their job; (4) use adequate qualities (usually different from those handled until
now), to decide which product of the Software Product Lines should be developed
first. In this chapter, HAM is applied to AORE instead features or SPL.

12.6 Conclusions

In this chapter an approach that helps to support conflict management at the AORE
level has been presented. This approach (HAM) uses AORA to collect the necessary
information and to identify potential conflicting situations, and uses a hybrid multi-
criteria analysis technique to perform trade-offs and obtain a ranking of concerns.
The technique used looks very promising as a tool to support architectural choices
during the software architecture design.

We showed that HAM is a versatile technique to help analysing different
situations one may wish to explore before design or architectural decisions are made.
HAM provides, in a timely and user-friendly way, more robust and logical results,
while avoiding scale and prioritization problems faced by other MCDM methods
such as AHP.

References

1. I. Brito, Aspect-oriented requirements analysis, PhD Thesis, Universidade Nova de Lisboa,
Portugal, 2008

2. T.L. Saaty, The Analytic Hierarchy Process (McGraw-Hill, New York, NY, 1980)
3. A. Pimentel, Multi-criteria analysis for architectural choices in software product lines, Master

Thesis, Universidade Nova de Lisboa, Portugal, 2009
4. A. Pimentel, R. Ribeiro, A. Moreira, J. Araújo, J. Santos, A. Costa, M. Alférez, U. Kulesza,

Hybrid assessment method for SPL aspect-oriented, in Model-Driven Software Product Lines:
The AMPLE Way, ed. by A. Rashid, J.-C. Royer, A. Rummler (Cambridge University Press,
Cambridge, 2011), pp. 125–158

5. R. Ribeiro, A. Moreira, P. Broek, A. Pimentel, Hybrid assessment method for software
engineering decisions. Decis. Support Syst. 51(1), 208–219 (2011)

6. L. Chung, B. Nixon, E. Yu, J. Mylopoulos, Non-Functional Requirements in Software
Engineering (Kluwer Academic, Dordrecht, 2000)

7. E. Triantaphyllou, Multi-Criteria Decision Making Methods: A Comparative Study (Kluwer
Academic, Dordrecht, 2000)

12 Handling Conflicts in Aspect-Oriented Requirements Engineering 241

8. K.P. Yoon, C.-L. Hwang, Multiple attribute decision making, in Quantitative Applications in
the Social Sciences, ed. by M.S. Lewis-Beck, vol. 07-104 (Sage, London, 1995)

9. H.J. Zimmerman, L. Gutsche, Multi-Criteria Analysis (Springer, Berlin, 1991)
10. S. Chen, C. Hwang, Fuzzy Multiple Attribute Decision Making: Methods and Application.

LNEMS, vol. 375 (Springer, Heidelberg, 1993)
11. W. Dong, F. Wong, Fuzzy weighted averages and implementation of the extension principle.

Fuzzy Sets Syst. 21(2), 183–199 (1987)
12. Y. Dong, Y. Xu, M. Dai, H. Li, A comparative study of the numerical scales and the

prioritization methods in AHP. Eur. J. Oper. Res. 186, 229–242 (2008)
13. I. Brito, F. Vieira, A. Moreira, R. Ribeiro, Handling conflicts in aspectual requirements

compositions in Lecture Notes in Computer Science (LNCS), in Transactions on Aspect-
Oriented Software Development, ed. by J. Araujo, E. Baniassad. Special issue on “Early
Aspects”, 2007

14. CMS – Crisis Management Systems, A case study for aspect-oriented modeling (2011),
http://www.cs.mcgill.ca/�joerg/taosd/TAOSD/TAOSD files/AOM Case Study.pdf. Accessed
July 2011

15. K.E. Wiegers, Software Requirements, 2nd edn. (Microsoft Press, Redmond, WA, 2003)
16. I. Brito, A. Moreira, Towards a composition process for aspect-oriented requirements, in Early

Aspects Workshop at AOSD Conference, Boston, MA, 2003
17. I. Brito, A. Moreira, Integrating the NFR approach in a RE model, in Early Aspects Workshop

at AOSD Conference, Lancaster, UK, 2004
18. A. Moreira, A. Rashid, J. Araújo, Multi-dimensional separation of concerns in requirements

engineering, in 13th IEEE International Conference on RE, France, 2005
19. A. Rashid, A. Moreira, J. Araújo, Modularization and composition of aspectual requirements,

in International Conference on AOSD, USA (ACM Press, 2003)
20. R. Wieringa, N. Maiden, N. Mead et al., Requirements engineering paper classification and

evaluation criteria: a proposal and a discussion. Require. Eng. 11, 102–107 (2005)
21. T.L. Saaty, Decision making with the analytic hierarchy process. Int. J. Serv. Sci. 1, 83–98

(2008)
22. AMPLE project (2011), http://www.ample-project.net/. Accessed July 2011

http://www.cs.mcgill.ca/~joerg/taosd/TAOSD/TAOSD_files/AOM_Case_Study.pdf
http://www.ample-project.net/

Chapter 13
Analysis of Aspect-Oriented Models
Using Graph Transformation Systems

Katharina Mehner-Heindl, Mattia Monga, and Gabriele Taentzer

Abstract Aspect-oriented concepts are currently exploited to model systems from
the beginning of their development. Aspects capture potentially cross-cutting con-
cerns and make it easier to formulate desirable properties and to understand analysis
results than in a tangled system. However, the complexity of interactions among
different aspectualized entities may reduce the benefit of aspect-oriented separation
of cross-cutting concerns. It is therefore desirable to detect inconsistencies as early
as possible.

We propose an approach for analyzing consistency at the level of requirements
modeling. We use a variant of UML to model requirements in a use-case driven
approach. Activities that are used to refine use cases are the joinpoints to compose
cross-cutting concerns. Activities are combined with a specification of pre- and post-
conditions into an integrated behavior model. This model is formalized using the
theory of graph transformation systems to effectively reason about its consistency.
The analysis of an integrated behavior model is performed with the tool ACTIGRA.

K. Mehner-Heindl (�)
Department of Media and Information Engineering, University of Applied Sciences Offenburg,
Offenburg, Germany
e-mail: katharina.mehner@gmail.com

M. Monga
Department of Computer Science, Università degli Studi di Milano, Milan, Italy
e-mail: mattia.monga@unimi.it

G. Taentzer
Department of Computer Science and Mathematics, Philipps-Universität Marburg,
Marburg, Germany
e-mail: taentzer@mathematik.uni-marburg.de

A. Moreira et al. (eds.), Aspect-Oriented Requirements Engineering,
DOI 10.1007/978-3-642-38640-4 13, © Springer-Verlag Berlin Heidelberg 2013

243

mailto:katharina.mehner@gmail.com
mailto:mattia.monga@unimi.it
mailto:taentzer@mathematik.uni-marburg.de

244 K. Mehner-Heindl et al.

13.1 Introduction

Aspect-oriented programming promises to provide better separation and integration
of cross-cutting concerns than plain object-oriented programming. Aspect-oriented
concepts have been introduced in all phases of the software development life cycle
with the aim of reducing complexity and enhancing maintainability already early on.

On the requirements level, cross-cutting concerns, i.e., concerns that affect
many other requirements, cannot be cleanly modularized using object-oriented and
viewpoint-based techniques. Several approaches have been proposed to identify
cross-cutting concerns already at the requirements level and to provide means to
modularize, represent, and compose them using aspect-oriented techniques, e.g.,
for use-case-driven modeling in [2, 8, 19, 20]. A key challenge is to analyze the
interaction and consistency of cross-cutting concerns with each other and with
affected requirements. It is in particular the quantifying nature [6] of aspect-oriented
composition that makes the detection of interactions and inconsistencies difficult.

Until now, approaches to analyzing the aspectual composition of requirements
have been informal [19, 20, 23]. Formal approaches for detecting inconsistencies
have been proposed only for the level of aspect-oriented programming, e.g., model
checking [10], static analysis [21], and slicing [3, 28]. At the programming level,
however, the meta-model considered is pretty different and it takes into account
many low-level details. Requirements abstract from these implementation-related
details, and weaving occurs among the high-level activities which describe the
intended behavior of the system.

A commonly used but often informal technique on the requirements level is to
describe behavior with pre- and postconditions, e.g., using intentionally defined
states or attributes of a domain entity model. This technique is, for example, used
for defining UML [18] use cases, activities, and methods. In order to allow a more
rigorous analysis of behavior, this approach has to be formalized and also extended
to aspect-oriented units of behavior.

We propose a use-case-driven approach with a domain class model. Activity
models are used to refine use cases. Object models are used for describing pre- and
postconditions of activities. This integration between structural and functional view
is called an integrated behavior model. Furthermore, we propose an aspect-oriented
extension. We model the so-called base with use cases and an integrated behavior
model. We model aspects as use cases and refine them with an integrated behavior
model. During the aspect-oriented composition, we use activities as joinpoints
and follow the composition operations suggested by AspectJ [12, 25] and similar
languages. An integrated behavior model can be formalized using the theory of
graph transformations: Graph transformation rules are used to formalize pre- and
postconditions of activities. Graph transformation sequences are used to capture the
semantics of the activity models. A formal analysis can be carried out on integrated
behavior models computing favorable and critical signs concerning causalities and
conflicts between activities. This analysis can be carried out before and after the
aspect-oriented composition in order to understand the behavior of use cases and of

13 Analysis of Aspect-Oriented Models Using Graph Transformation Systems 245

aspectual use cases separately and in order to understand the effects of aspects. The
new tool ACTIGRA [5,26] which itself is based on the well-known AGG engine for
graph transformations [4, 27], provides this kind of modeling and analysis support.
Throughout the chapter we use a UML variant that is directly supported by this tool.

The idea of formalizing pre- and postconditions by graph transformation was
presented in [7] first and extended to aspect-oriented models in [15]. The aspect-
oriented composition itself was formalized by meta-level graph transformations
in [16]. Since then, the theory and the tools for integrated behavior models have been
advanced and improved. We demonstrate how they can be used in aspect-oriented
modeling.

This chapter is organized as follows. In Sect. 13.2 we present our aspect-oriented
modeling approach and sketch the weaving process. Section 13.3 presents the
theory of algebraic graph transformations first, including conflict and causality
analysis between transformations. Secondly, we give the formal semantics of
activity diagrams augmented by graph transformation rules by means of sequences
of graph transformations. Section 13.4 presents the plausibility checks based on the
formal semantics. These analysis facilities are applied to our example in Sect. 13.5.
In Sect. 13.6 we discuss related work. In Sect. 13.7 we conclude and give an outlook.

13.2 Aspect-Oriented Modeling with Integrated
Behavior Models

Our approach uses integrated behavior models and extends them by aspect-oriented
features. An integrated behavior model consists of a domain model and a set of
activity models. The domain model provides the types of the domain objects. Each
activity is refined by pre- and postconditions describing the effect of the activity in
terms of domain objects. Typically, an initial configuration of the system is provided
in terms of domain objects and their relations.

The benefit of an integrated behavior model is an early and better integration
of the structural domain model with the functional activity model. Pre- and
postconditions are formalized by the theory of graph transformation systems. This
formalization can then be used for a rigorous analysis of integrated behavior models.

In addition to the integrated behavior model, a use-case diagram provides a
system overview. Each use case is at least specified by a trigger, its actors, pre- and
postconditions and its key scenarios. Scenarios are specified using activity diagrams
and use cases are the starting point for the aspect-oriented modeling. We model the
so-called base of the system with use cases and an integrated behavior model. An
aspect is modeled as a use case. The joinpoint for an aspect is an activity of the base.
The pointcut of an aspect is specified in terms of the activities of the base. During
the aspect-oriented composition process, also called weaving, aspect activities are
inserted into the base according to a composition specification, resulting again in an
integrated behavior model.

246 K. Mehner-Heindl et al.

While up to now proposed for modeling techniques like UML, an integrated
behavior model is also suitable and beneficial for aspect-oriented modeling:

– It is well suited for modeling the base of a system at an early stage.
– It can naturally capture the functional and structural description of each aspect.

An aspect may share the base domain model or add its own concepts.

Using the formal analysis of integrated behavior models for aspect-oriented
modeling is beneficial as well. Each aspect can be analyzed for consistency, and the
consistency of the entire system consisting of the base and aspects can be analyzed
as well. Analysis is even more crucial for aspect-oriented models:

– Firstly, because of the separated specification of functionality in base and aspects.
(Note that separate specification of functionality also exists in complex modular
systems.)

– Furthermore, an aspect is specified once but can be used in many different places
of the system. (Note that this also bears similarity with modular systems, where
a module can be explicitly used by many other modules.)

– Lastly, an aspect is specified on top of and added to modules later on, with
modules not necessarily being aware of the aspect. (Note that this is not the
case in object orientation, but is unique to aspect-oriented techniques and similar
techniques.)

Because of these three properties, it is difficult to understand and manually
analyze functional and data dependencies between base and aspects and also
between aspects. On the other hand, there are well-known benefits of this kind of
separation of concern, namely for maintenance, reuse, organization of work, etc.

We use ACTIGRA to model the running example before and after the composi-
tion, which is carried out manually following the formalization described in [16].
Apart from the use-case diagram, all figures have been generated with ACTIGRA.

13.2.1 The Crisis Management System Example

We present our modeling approach using an example from the Crisis Management
Systems (CMS) Case Study [13]. A crisis management system helps in identifying,
assessing, and handling a crisis such as a fire, a flood, or an accident. It orches-
trates the communication among all parties, thus handling the crisis by managing
resources and access to data. Besides informal requirements, the case study contains
a wide range of models related to software development. We have adapted a coherent
subset of use cases, classes, and activities for the sake of the case study to illustrate
our approach. Figure 13.1 gives an overview of the chosen use cases. We are using
an � aspect � stereotype for an aspect use case and a � crosscuts � stereotype
for the relation of an aspect to the base. Analogous stereotypes have been proposed
in [24]. The � crosscuts � relation means that the behavior of the aspect is
added to a base without referring to the aspect in the base explicitly. It is called

13 Analysis of Aspect-Oriented Models Using Graph Transformation Systems 247

Fig. 13.1 Crisis management use cases

� crosscuts � because often aspects capture concerns that are broadly scattered.
However, it can also be used for adding any other concern without changing the
base.

Use-Case ResolveCrisis. The intention of this use case is to resolve a crisis by
requesting employees and external resources to execute appropriate missions. An
available employee is chosen as the coordinator who has to capture the witness’
report. With the help of the system, he or she creates the corresponding mission(s).
Next, the coordinator assigns missions to resources and controls their completion.

This use case includes the use-case AssignInternalResource, as indicated by the
� includes � relationship. Thus, when the use-case ResolveCrisis is refined by an
activity diagram it will contain a so-called complex activity named AssignInternal-
Resource.

Use-Case AssignInternalResource. The intention of this use case is to find,
contact, and assign a mission to the most appropriate available employee. Here,
appropriateness simply means availability. An available employee is chosen. The
employee receives the mission information which has to be accepted to be assigned
to the mission.

When this use case is refined, the refining activity diagram serves as the
refinement of the corresponding complex activity AssignInternalResource.

Use-Case Authenticate. The actor involved is either a coordinator or an employee.
The intention of this use case is to authenticate the actor to the system since
authentication is required to use the functions of the system. If the actor is not yet
logged on, login id and password are prompted, entered, and validated.

This use case is designed into the system upfront as an � aspect �. It
� crosscuts � ResolveCrisis, where the coordinating employee has to log on, and
AssignInternalResource, where all chosen employees have to log on, both, before
further activities take place. In a real system, this use case would affect a lot of
further use cases. Since the pointcut of this aspect is specified in terms of activities,
the complete specification of the composition is given later.

Use-Case RequestExternalResource. The intention of this use case is to request
help for a mission from an external resource such as an ambulance service. A request
is sent to an external resource. The request is either served or denied.

248 K. Mehner-Heindl et al.

This use case is added as an � aspect � during maintenance because the base
system is conceived for one institution and the next version shall allow interaction
with other institutions in a distributed system. Using an aspect can evolve the system
without changing the base. We are using the same stereotype � crosscuts �
because technically there is no difference whether an aspect is used once or several
times. The aspect shall conditionally replace the use-case AssignInternalResource
if the coordinator wishes to request external resources. The complete specification
of the aspectual composition is given later.

13.2.2 Integrated Behavior Models for the Base

A subset of the domain model of the crisis management system is given in Fig. 13.2
using the type graph of ACTIGRA. A “Crisis” “requires” the fulfillment of some
“Missions”. A “CMSEmployee” “coordinates” a crisis or is “chosen” or “informed”
or “assigned” to a mission. The “status” attribute of the employee is either set to
“logged on” or “logged off.” For a mission that cannot be assigned to an employee,
a “Request” “needs” to be generated. Its “status” is either “sent” or “served.”

For the subsequent analysis we need an initial configuration of our system
(cf. Fig. 13.2, middle). It contains the object instances of the classes defined in the
type graph. A valid initial configuration is always needed. If the system contains
graph transformation rules that create the corresponding objects, then the initial
configuration can be the empty one.

Our well-formed activity models (cf. Sect. 13.3) consist of simple and complex
activities, start and end nodes, decisions followed by a merge (a decision is depicted
as a D in a diamond node, a merge as an M in a diamond node), and loop nodes
(a loop is depicted as an L in a diamond node). Directed arcs can be labeled
by structural constraints ([: : :]) or interactively evaluated user constraints (¡: : :¿)
(compare Fig. 13.3).

The use-case ResolveCrisis is refined by the topmost activity diagram in
Fig. 13.3. Firstly, the coordinating employee is determined who has to capture the
witness report then. The first loop generates the required missions. The next loop
assigns an employee to each mission using the complex activity AssignInternal-
Resource. The last loop controls the success of the missions. We have omitted
constraints on the loops, since this use case is not presented in more detail. It is
used only to illustrate the composition of several aspects.

The use-case AssignInternalResource is refined by the activity diagram in the
middle of Fig. 13.3. The first decision node checks whether the innermost activity
DetermineMostAppropriateEmployee is applicable. The constraint [AvailableEm-
ployeeExists](cf. Fig. 13.4) checks whether an employee has not yet been chosen
for any mission. The positive pattern “existence of employee” describes parts of a
graph that have to exist. The “not chosen” negative application condition (NAC)
states that the constraint does not allow this pattern. A constraint can have zero
or any number of NACs. This constraint also has NACs “not informed” and “not

13 Analysis of Aspect-Oriented Models Using Graph Transformation Systems 249

Fig. 13.2 Type graph (top), initial configuration (middle), simulation result (bottom)

assigned” not being depicted. They express that an employee must not be involved
in a mission anyhow. Only if the constraint is satisfied, the arc labeled with it can be
executed. Each of the following loops are applied until a constraint is satisfied. The
innermost loop chooses an employee. Only if the employee is logged on, captured
by [ChosenEmployeeLoggedIn](cf. Fig. 13.4), the enclosing loop is executed which
sends mission details to the employee. Only if that is successful, captured by
[Stopped](cf. Fig. 13.4), the system waits for acceptance, in which case, captured
by [MissionAccept](cf. Fig. 13.4), the use case terminates successfully.

250 K. Mehner-Heindl et al.

Fig. 13.3 Crisis management activity diagrams

In an integrated behavioral model, each activity is refined by a pre- and a
postcondition, describing the situation in which the activity can be applied, and
the effect. The precondition consists of a positive pattern for a graph that has to
exist, optionally equipped with NACs capturing negative patterns preventing the
application. Conditions are presented for the activity model of use-case AssignIn-
ternalResource in Fig. 13.5. For each activity, the left column presents a NAC, the
middle column the positive precondition, and the right column presents the effect of
each activity, i.e., the postcondition. The identity of a node is preserved throughout
the three columns by assigning the same instance number to it. The first row states
that an employee can be assigned once to an open mission. The second row states
that a chosen employee who is logged on can be informed about the mission once.
The last row states that an informed employee can be assigned to a mission.

13 Analysis of Aspect-Oriented Models Using Graph Transformation Systems 251

Fig. 13.4 Structural constraints for activity model AssignInternalResource

Fig. 13.5 Pre- and postconditions of activities of use-case AssignInternalResource

13.2.3 Aspect Modeling

An aspect is identified on the use-case level and subsequently refined with an activity
diagram. The use-case Authenticate is refined by the corresponding activity diagram
in Fig. 13.3 (bottom left). If an employee is not yet logged in, the execution of
RequestLogin changes the status of the employee from “logged off” to “logged on”,
(cf. also Fig. 13.6, top).

The use-case RequestExternalResource is refined by the corresponding activity
diagram in Fig. 13.3 (bottom right). A request is sent to an external resource
(cf. Fig. 13.6, second row). Either the request is accepted (cf. Fig. 13.6, third row) or

252 K. Mehner-Heindl et al.

Fig. 13.6 Pre- and postconditions of activities of aspects

denied (cf. Fig. 13.6, last row). In our example, the decision is not specified further
since it comes from an external system. During simulation, an arbitrary arc is chosen
and during analysis, both arcs are analyzed.

Based on the activity models, the aspectual composition can be specified using
the following elements:

– The name of the aspectual use case is given.
– One of the modifiers is given, which describes, how the aspectual use case is

composed. Here, we use the modifiers before, after, and replace of aspectual
programming languages like AspectJ [25], albeit more complex modifications
are conceivable, especially during modeling.

– The pointcut specifies, where the aspectual use case is composed, i.e., which
joinpoint activities are selected by the pointcut. We assume unique names
for activities. Pointcuts can be specified using rather sophisticated intensional
languages or by mere enumeration of activities. Here we adopt the latter
approach.

– A condition specifies under which circumstances the aspect becomes effective.
This allows for a flexible composition with the base. If the condition is fulfilled,
the aspect is executing. If no condition is given, the aspect will always execute.
As conditions we use structural constraints or interactively evaluated conditions.

An aspect is woven in each single joinpoint which matches the pointcut
definition. Here, an aspect has only one pointcut, but more complex weaving
technologies exist. Regarding the order of composition, we simply follow the order
of specifications. After a replace composition without a condition, further aspects
might not be applicable. Furthermore, we do not consider aspects of aspects in our
model. Note that aspects without conditions can simulate aspects with conditions by
integrating the condition into the normal control flow of the aspect at the beginning
of the aspect.

13 Analysis of Aspect-Oriented Models Using Graph Transformation Systems 253

Table 13.1 Aspect-oriented composition

The composition specification for each � crosscuts � relationship is given in
Table 13.1. The Authenticate aspect is composed once after the activity FindCoordi-
nator (of the use case ResolveCrisis) and once after the activity DetermineMostAp-
propriateEmployee (of the use-case AssignInternalResource). The Authenticate
aspect has no condition since it shall always be carried out. In addition, this aspect
checks by itself whether an employee is already logged on. Aspect RequestExter-
nalResource conditionally replaces the activity AssignInternalResource (of the use
case ResolveCrisis) if the coordinator decides to do so.

Finally, ACTIGRA can be used to execute an activity diagram with its pre- and
postconditions. When applying use-case AssignInternalResource to the initial Con-
figuration 1 (Fig. 13.2, middle), the simulation is animated on the activity diagram.
The execution starts with the innermost loop and executes DetermineMostAppro-
priateEmployee as often as possible but it cannot proceed because the condition
[ChosenEmplLoggedIn] is never fulfilled. This is due to the absence of an aspect
which will be analyzed in more depth later.

13.2.4 Aspect Weaving

Since its coining, the term aspect-oriented programming has always been a synonym
for implementing aspects using weaving, i.e., for a transformation of the source code
which inserts the aspect code in all places specified by a pointcut. We apply the
same concept to the activity model of the aspect-oriented use case, i.e., we weave
the aspect activity model into activity models of the base. Weaving is controlled
by the composition specifications illustrated in the previous section. The modeling
of pre- and postconditions does not play a specific role during weaving which is
also feasible without, albeit for the subsequent analysis they are mandatory. In [16],
we proposed and formalized the model weaving within our approach. Here, we
present it informally only and demonstrate the result for the example. The weaving
process is as follows. Firstly, the joinpoints have to be determined using the pointcut
specifications, i.e., all places where weaving has to take place. The two cases,
weaving with conditions and without conditions, have to be combined with the
modifiers before, after, and replace.

254 K. Mehner-Heindl et al.

Weaving without conditions:

– before: The aspect activity diagram replaces all incoming arcs to the joinpoint
activity specified in the pointcut.

– after: The aspect activity diagram replaces the outgoing arcs from the joinpoint
activity specified in the pointcut.

– replace: The aspect activity diagram replaces the activity. The incoming and
outgoing arcs are glued to the first rsp. last activities of the aspect activity.

Weaving with conditions:

– before: The condition is inserted as a decision node into the aspect diagram, after
the start node with the positive arc linked to the first activity and with the negative
arc linked to the end node. A merge node is inserted before the end node and all
the incoming arcs become incoming arcs of the merge node. The augmented
aspect activity diagram replaces all the incoming arcs to the joinpoint activity
specified in the pointcut.

– after: The condition is inserted as a decision node into the aspect diagram after
the start node with the positive arc linked to the first activity and with the negative
arc linked to the end node. A merge node is inserted before the end node and
all incoming arcs become incoming arcs of the merge node. The augmented
aspect activity diagram replaces all the outgoing arcs from the joinpoint activity
specified in the pointcut.

– replace: The condition is inserted as a decision node before (see before above)
the joinpoint activity specified in the pointcut. The positive arc of the branch is
linked to the first activity of the aspect. The negative arc is linked to the joinpoint
activity. A merge node is inserted after (see after above) the joinpoint activity.
All incoming arcs of the end node of the aspect become incoming arcs of the
merge node.

In all cases, the start and end nodes of the aspect activity diagram are removed
and the dangling arcs are glued correspondingly. The weaving results of the example
are depicted in Fig. 13.7. Following the order of specification, firstly the aspect
Authenticate is woven into the use-case ResolveCrisis after the joinpoint activity
FindCoordinator. It is also woven into the use-case AssignInternalResource after
the joinpoint activity DetermineMostAppropriateEmployee. Secondly, the aspect
RequestExternalResource is woven into the use-case ResolveCrisis. It is linked via a
new decision node to the joinpoint activity AssignInternalResource. Note that after
weaving, the complex activity AssignInternalResource is changed but this is not
visualized in the activity model ResolveCrisis woven for use-case ResolveCrisis.

Again, ACTIGRA can be used to execute an activity diagram with its pre-
and postconditions. When applying AssignInternalResource woven to the initial
configuration in the middle of Fig. 13.2, the simulation is animated on the activity
diagram. It starts with the innermost loop and executes each loop and activity once,
terminating successfully and resulting in Configuration 2 of Fig. 13.2 (bottom).

13 Analysis of Aspect-Oriented Models Using Graph Transformation Systems 255

Fig. 13.7 Use cases with aspects woven

13.3 Formalization of Integrated Behavior Models

Integrated behavior models can be formalized by graph transformation systems.
Domain models are formalized by type graphs, while configurations are specified
by their instance graphs. Pre- and postconditions of activities as well as constraints
are expressed by graph transformation rules. The control flow of activity models is
defined by graph transformation sequences.

256 K. Mehner-Heindl et al.

Firstly, we present the underlying theory of graph transformation systems,
consisting of graphs, transformations, and graph transformation sequences. These
systems can be analyzed for conflicts and causalities between transformations.
Secondly, we present the semantics of integrated behavior models, which is rooted
in graph transformation sequences that are used to simulate the execution of activity
models.

13.3.1 Graph Transformation Systems

Graphs are often used as abstract representation of diagrams. When formalizing
object-oriented modeling, graphs occur at two levels: the type level (defined based
on class models) and the instance level (given by all valid object models). This idea
is described by the concept of typed graphs, where a fixed type graph TG serves as
an abstract representation of the class model. As in object-oriented modeling, types
can be structured by a generalization relation. Multiplicities and other annotations
are not formalized by type graphs, but have to be expressed by additional graph
constraints. Instance graphs of a type graph have a structure-preserving mapping to
the type graph.

Graph transformation is the rule-based modification of graphs. Rules are
expressed by two graphs .L; R/, where L is the left-hand side of the rule and R

is the right-hand side, usually overlapping in graph parts. Rule graphs may contain
variables for attributes. The left-hand side L represents the preconditions of the
rule, while the right-hand side R describes the postconditions. L \ R (the graph
part that is not changed) and the union L [R should form a graph again, i.e., they
must be compatible with source, target, and type settings, in order to apply the rule.
Graph L n .L \ R/ defines the part that is to be deleted, and graph R n .L \ R/

defines the part to be created. Furthermore, the application of a graph rule may be
restricted by so-called NACs which prohibit the existence of certain graph patterns
in the current instance graph. Note that we indicate graph elements common to L

and R or common to L and a NAC by equal numbers.

A direct graph transformation G
r;mH) H between two instance graphs G and

H is defined by first finding a match m of the left-hand side L of rule r in the
current instance graph G such that m is structure-preserving and type-compatible
and satisfies the NACs (i.e., the forbidden graph patterns are not found in G). We
use injective matches only. Attribute variables used in graph object o 2 L are bound
to concrete attribute values of graph object m.o/ in G. The resulting graph H is
constructed by (1) deleting all graph items from G that are in L but not also in R;
(2) adding all those new graph items that are in R but not also in L; and (3) setting
attribute values of preserved and created elements.

A graph transformation (sequence) consists of zero or more direct graph
transformations. A set of graph rules, together with a type graph, is called a graph
transformation system (GTS). A GTS may show two kinds of non-determinism:

13 Analysis of Aspect-Oriented Models Using Graph Transformation Systems 257

(1) For each rule several matches may exist. (2) Several rules might be applicable to
the same instance graph. There are techniques to restrict both kinds of choices. The
choice of matches can be restricted by object flow, while the choice of rules can be
explicitly defined by control flow on activities.

13.3.2 Conflicts and Causalities Between Transformation
Rules

If two rules are applicable to the same instance graph, they might be applicable
in any order with the same result. In this case the rule applications are said to be
parallel independent otherwise they are in conflict.

Conflict Types. One rule application may disable the second rule application. In
this case, the application of rule r1 is also said to be causing a conflict with the
application of rule r2. The following types of conflicts can occur:

delete/use: Applying r1 deletes an element used by the application of r2.
produce/forbid: Applying r1 produces an element that a NAC of r2 forbids.
change/use: Applying r1 changes an attribute value used by the application of r2.

Causality Types. Conversely, one rule application may trigger the application of
another rule. In this case, this sequence of two rule applications is said to be causally
dependent. The following types of causalities can occur where the application of rule
r1 triggers the application of r2:

produce/use: Applying r1 produces an element needed by the application of r2.
delete/forbid: Applying r1 deletes an element that a NAC of r2 forbids.
change/use: Applying r1 changes an attribute value used by the application of r2.

Example 1. Figure 13.8 shows an example of a produce–use dependency occurring
when first rule DetermineMostAppropriateEmployee and then rule SendMissionIn-
formation are applied. While the first rule creates a new relation of type “chosen”
between a “CMSEmployee” and a mission, the second rule uses this relation and
deletes it.

13.3.3 Semantics of Integrated Behavior Models

As in [9], we define integrated behavior models by well-structured activity models
consisting of a start activity s, an activity block B , and an end activity e such
that there is a transition between s and B and another one between B and e. An
activity block can be a simple activity, a sequence of blocks, a fork-join structure,
decision-merge structure, or loop. In addition, we allow complex activities which
stand for nested well-structured activity models. In this hierarchy, we forbid nesting

258 K. Mehner-Heindl et al.

Fig. 13.8 Produce–use causality example between two transformation rules

cycles. Activity blocks are connected by transitions (directed arcs). Decisions have
an explicit if -guard and an implicit else-guard which equals the negated if -guard.
Loops have a loop-guard with corresponding implicit else-guard. Guards can be user
defined, i.e., independent of system configurations, or graph constraints checking
certain conditions on system configurations.

The semantics of an integrated behavior model is defined by a set of graph
transformation rules sequences. Considering the formalization of activities with
pre- and postconditions by graph transformation rules, the sequences represent
all possible control flow paths defined by well-structured activity models. In this
context, each graph constraint is translated to a rule containing the constraint as
left-hand side and an identical right-hand side. The semantics of a simple activity
Sem.A/ is a set consisting of one sequence with only one rule. The semantics of
two subsequent activity blocks A and B contains all sequences beginning with a
sequence of Sem.A/ and ending with a sequence of Sem.B/. For decision blocks,
we construct the union of sequences of both branches (preceded by the guard rule
or its negation, respectively). For loop blocks, we construct sequences containing
the body of the loop 0 � i � n times (where each body sequence is preceded by
the loop guard rule in case that the loop guard is not user defined). The semantics
of a complex activity is the semantics of the largest block of its contained integrated
behavior model.

Example 2. Considering the integrated behavior model of use-case AssignInter-
nalResource (without aspects, cf. Fig. 13.3), its semantics contains the sequence
AvailableEmployeeExists, NotMissionAccepted, NotStopped, NotChosenEmpl-
LoggedIn, DetermineMostAppropriateEmployee, NotChosenEmplLoggedIn,
DetermineMostAppropriateEmployee, ChosenEmpLoggedIn, SendMission
Information, Stopped, AwaitingMissionAcceptance, MissionAccepted.

13 Analysis of Aspect-Oriented Models Using Graph Transformation Systems 259

13.4 Using Plausibility Checks for Integrated Behavior
Models with Aspects

Given the formal semantics of integrated behavioral models as simulation runs,
these sequences can be formally analyzed for favorable and critical causalities and
conflicts between the rules in those sequences. The results are captured in different
sets of relations.

After introducing the checks from [5], we discuss how they can be used
specifically in aspect-oriented modeling. The checks are supported by ACTIGRA.

13.4.1 Plausibility Checks for Integrated Behavior Models

Integrated behavior models combine control flow models with functional behavior
specifications. Since two kinds of models are used for this purpose, static analysis of
integrated behavior models helps to argue about their consistency. In [5], a variety
of so-called plausibility checks are presented that can be used for argumentation.
For each check, favorable and critical signs can be determined that support or are
opposed to behavior consistency.

1. Initialization: The applicability of the first rule in the specified control flow to
the initial configuration forms a favorable sign.

2. Trigger causality along control flow: This plausibility check computes for each
rule in a given control flow which of its predecessor rules may trigger this rule.
It is favorable that at least one predecessor exists for each rule.

3. Conflicts along control flow: This plausibility check computes for each rule in a
given control flow which of its successor rules may be disabled by this rule. It is
favorable that there do not exist such successors for any rule.

4. Trigger causality against control flow: This plausibility check computes for each
rule in a given control flow which of its successor rules may trigger this rule. It
is favorable that there do not exist such successors for any rule. In case that such
a successor exists, the modeler should inspect if it should be shifted before the
rule it triggers.

Note that guards are reformulated as nonchanging rules and integrated into the
plausibility check then.

13.4.2 Analysis of Aspects with Plausibility Checks

In our modeling approach, plausibility checks are computed for base and aspect
separately and for the entire woven model. The analysis is therefore applied
incrementally in two stages:

260 K. Mehner-Heindl et al.

1. The consistency of the base and the aspects is checked separately. It is desirable
that consistency is achieved separately where feasible.

2. The consistency of the composition of aspects and the base is checked. It suffices
to analyze the control flow that contains the woven aspect activities. This can be
deduced from the pointcut specification (but this inference is not yet implemented
in ACTIGRA, and the resulting weaving has to be computed by hand). The
problems revealed are directly related to this composition if consistency was
achieved beforehand. This stage includes checking the consistency between
aspects, since their effects on each other cannot be generally checked on the
stage before. Instead, their specific effect on each other when composed with a
base system is considered.

In woven control flows in stage 2, triggers and conflicts between activities of the
base may change compared to stage 1 if use cases are replaced during the weaving.
Conflicts between base activities (including conflicts of an activity with itself) may
disappear because an aspect added to a control flow changes the sequence such that
a conflict is no longer effective. Newly arising triggers and conflicts at stage 2 have
different sources. They may occur between base and aspect or between different
aspects. They may also occur between activities of one aspect due to the following
reason. After weaving, an aspect becomes part of new control flows. These control
flows can have the effect that an aspect is potentially executed several times in a
loop. Then its activities are potentially in conflict with themselves and also with
each other. If the activities were not part of such loops before weaving, there are
new conflicts and triggers after the weaving.

Conflicts and causalities may occur between individual activities rsp. corre-
sponding transformation rules. In general, a potential conflict need not lead to a
concrete conflict; this is especially true in the case of change/use conflicts which
often indicate that activities use attributes changed by other activities.

– Conflict between base and aspect: If a conflict exists between a base activity
rsp. its rule r1 and an aspect activity rsp. its rule r2, the aspect is disabled by
the basis, and vice versa. This is not desirable for before- and after-aspects. For
replace aspects it is no problem if the rule r1 of the basis is completely replaced
by the aspect.

– Conflicts between aspects: A conflict can exist between two activities rsp. rules
stemming from two different aspects. If one aspect disables another aspect and
is woven into an activity diagram in the control flow before the other aspect, the
conflict is not desirable and has to be examined further.

– Trigger causality between base and aspect: If a trigger from base to aspect exists,
this is not a problem. If no trigger exists this is also not a problem but then it
should be ensured that the aspect still can work.

– Trigger causality between aspects: If causalities exist they should be along the
control flow of the entire system including aspects. If no trigger causalities
between aspects exist, it should be ensured that each aspect can work.

13 Analysis of Aspect-Oriented Models Using Graph Transformation Systems 261

The plausibility checks can be used at stage 1 as follows:

– Initialization is checked for base and aspects separately. At least one base activity
model should be applicable to the initial configuration. If an aspect is applicable
to the initial configuration this means that it is orthogonal to the base or perhaps
conflicting with the base. It is not required that an aspect is applicable to the
initial configuration.

– Triggers along control flow inside an activity model are beneficial. Absence has
to be checked for consistency.

– Triggers against control flow have to be checked for consistency.
– Conflicts inside an activity model have to be checked for consistency.

At stage 2, plausibility checks can be used as follows:

– An aspect must be applicable to the initial state or needs trigger causalities.
– Trigger causalities along the control flow may stem from the base or from other

aspects.
– The check for triggers against control flow can be used to identify problematic

cases. It may be the case that a joinpoint is not well chosen, i.e., too late or too
early in a given use case or even in the wrong use case.

– There must not be conflicts newly introduced, i.e., of aspect activities with the
(remaining) base or with each other.

– If the base was not consistent without aspect(s), one should check if the entire
system becomes consistent after aspect composition.

13.5 Analysis of the Example

Here we present the plausibility analysis of the use-case AssignInternalResource,
the aspect use cases Authenticate and RequestExternalResource, and the woven use
cases AssignInternalResource and ResolveCrisis using ACTIGRA.

Analyzing the use-case AssignInternalResource. ACTIGRA visualizes the results
of each plausibility check separately in the activity model. For reasons of space, we
can not include the figures for all checks.

1. Initialization(not depicted): The first reachable activity DetermineMostAppropri-
ateEmployee is applicable to the initial Configuration 1.

2. Triggers along control flow (cf. Fig. 13.9, top): All activities and conditions have
triggers. Because of the loops, these triggers are along the control flow.

SendMissionInformation triggers DetermineMostAppropriateEmployee. Here
the first activity deletes the “chosen” arc which is forbidden by the second
activity. The condition [Stopped], however, avoids this path. Since there is no
other trigger for DetermineMostAppropriateEmployee and since it is applicable
to the initial configuration, there is no problem.

262 K. Mehner-Heindl et al.

Fig. 13.9 Trigger and conflict checks for AssignInternalResource

DetermineMostAppropriateEmployee triggers SendMissionInformation by
producing a “chosen” arc which is used by SendMissionInformation. However,
Fig. 13.8 reveals that SendMissionInformation is not fully enabled by this trigger,
since the employee status is not changed. Moreover, there is no other trigger that
would change the status. As the employee status in Configuration 1 (cf. Fig. 13.2)
is “logged off,” the activity model is not executable on this configuration.
SendMissionInformation triggers AwaitingMissionAcceptance by producing the
“informed” arc used. More triggers are not needed.

The three triggers for the conditions are producing something used by the
conditions and are therefore plausible.

3. Triggers against control flow(not depicted): The triggers are the same as above,
only now they are categorized differently. The triggering of conditions is still
along the control flow. The mutual triggers between DetermineMostAppropria-
teEmployee and SendMissionInformation and the trigger from SendMissionIn-
formation to AwaitingMissionAcceptance are now considered against the control
flow. However, their effects on the entire diagram as discussed above remain the
same.

13 Analysis of Aspect-Oriented Models Using Graph Transformation Systems 263

Fig. 13.10 Triggers along the control flow for aspect RequestExternalResource

4. Conflicts along control flow (cf. Fig. 13.9, bottom): There are conflicts of each
activity with itself. That means that if an activity can occur in the control flow
after itself it cannot be applied a second time because it deletes something that is
needed or it produces something that is forbidden. This is no problem here.

Also there is a conflict between SendMissionInformation and the condition
[ChosenEmplLoggedIn] which means that the loop will not be executed a second
time which is desirable. The same holds for [AwaitingMissionAcceptance] and
[Stopped].

Analyzing the aspect Authenticate. Since this aspect contains only one activity
and only a condition that checks the applicability of this activity, only two checks
are interesting. We explain them shortly without another figure. Please compare
Fig. 13.3. The checks for conflicts and triggers against control flow do not make
sense in absence of further activities.

1. Initialization (not depicted): Activity RequestLogin is applicable to the initial
configuration.

2. Triggers along control flow (not depicted): Obviously the activity RequestLogin
has no trigger but can be applied to the initial configuration.

Analysing the aspect RequestExternalResource. In Fig. 13.10, we visualize the
analysis results of the check for triggers. The complete results are as follows:

1. Initialization (not depicted): Activity SendRequest is applicable to the initial
configuration.

2. Triggers along control flow (cf. Fig. 13.10): The activity SendRequest is never
triggered but applicable to the initial configuration. This activity triggers the
activity AcceptRequest and DenyRequest which is consistent.

3. Triggers against control flow (not depicted): There are no triggers against the
control flow.

4. Conflicts along control flow (not depicted): There are no conflicts.

Analyzing the woven use-case AssignInternalResource. For the use-case Assign-
InternalResource woven, the results are as follows (cf. Fig. 13.11.)

264 K. Mehner-Heindl et al.

Fig. 13.11 Trigger and conflict checks for AssignInternalResource woven

1. Initialization (not depicted): DetermineMostAppropriateEmployee is still appli-
cable.

2. Triggers along control flow (cf. Fig. 13.11, top): Firstly, there are the same
triggers as in the unwoven use-case AssignInternalResource. Secondly, Request-
Login triggers the conditions [ChosenEmplLoggedIn] and [Stopped] and the
two activities SendMissionInformation and AwaitingMissionAcceptance. This is
because RequestLogin changes the status to “logged on” which is needed by all
of the aforementioned elements.

3. Triggers against control flow (not depicted): Firstly, there are the same triggers
as before. Secondly, RequestLogin triggers the two activities SendMissionInfor-
mation and AwaitingMissionAcceptance. This is because RequestLogin changes
the status to “logged on” which is needed by all of the aforementioned elements.
Again, because of the loops there are the same triggers along the control flow as
against the control flow.

13 Analysis of Aspect-Oriented Models Using Graph Transformation Systems 265

4. Conflicts along control flow (cf. Fig. 13.11, bottom): Now there is one less
conflict than in the unwoven use case. The conflict of activity DetermineMostAp-
propriateEmployee with itself does not exist any longer because the overall
control flow changed.

The insertion of the aspect into the base makes the woven activity model exe-
cutable for the given Configuration 1. The reason is that the activity RequestLogin
of the aspect provides the missing trigger for the activity SendMissionInformation
of the base. Executing AssignInternalResource woven on Configuration 1 with
ACTIGRA also terminated.

Analyzing the woven use-case ResolveCrisis. We cannot present the complete
analysis of ResolveCrisis woven for reasons of space since this would also require
to illustrate all pre- and postconditions of the involved activities. The interesting
question from the aspect-oriented modeling point of view is the analysis of the
conflicts and causalities between the aspects involved. This use case has two
aspects woven at the top level and one nested aspect woven into its complex
activity AssignInternalResource. We have to take into account the complete control
flow including also all activities of the woven complex activity. There are some
noteworthy analysis results (cf. Fig. 13.12):

– Between the two top level aspects Authenticate and RequestExternalResource
there are no conflicts and causalities. This means that the two aspects are
independent of each other. This is desirable, especially since the execution of
RequestExternalResource is conditional.

– The aspect Authenticate is also woven into the complex activity AssignInternal-
Resource. Here again, Authenticate does not create conflicts and causalities with
the top level aspect RequestExternalResource.

– The top level Authenticate aspect is the first in the control flow, the nested
Authenticate aspect is the second in the control flow. The analysis reveals a
conflict between the two, since the first occurrence of the activity RequestLogin
changes an attribute used by the second occurrence. This is, however, only a
potential conflict, since the first RequestLogin takes place for the coordinator and
the second takes place for an employee.

– The activities of aspect RequestExternalResource are each in conflict with
itself, because the aspect is now contained in a loop. Also, DenyRequest and
AcceptRequest are in mutual conflicts since they are now contained in a loop.
The same happens with the activity RequestLogin nested in the complex activity
AssignInternalResource after the weaving. It is now in conflict with itself due to
the outermost loop in which it is now contained.

– In the analysis of AssignInternalResource we identified triggers from Request-
Login to other elements. The first occurrence of RequestLogin triggers now the
same activities that are already triggered by the second occurrence in the nested
aspect. However, these are potential triggers, since the first RequestLogin takes
place for the coordinator and the second takes place for an employee.

266 K. Mehner-Heindl et al.

Fig. 13.12 Conflict checks for ResolveCrisis woven

13.6 Related Work

The CMS case study was proposed in [13] as a benchmark example for comparing
aspect-oriented modeling approaches. The chapter presents the requirements for a
generic CMS informally and details the use cases for a “Car Crash CMS,” a system
for dealing with car accidents. A non-functional requirement of “Security” states
that the CMS shall define access policies for various classes of users. Our analysis
introduces an integrated behavior model of the generic CMS and it formalizes the
aspects of authentication (a part of the Security requirement that can be described
functionally) and the request of external resources (a functionality which crosscuts
several parts of the system in our modeling). Our approach is functional in its nature

13 Analysis of Aspect-Oriented Models Using Graph Transformation Systems 267

since it requires that everything relevant in the system is modeled as model elements
being created and removed by activities.

In our previous work [16] we have used the same conflict and causality (formerly
called dependency) definition as here. However, the control flow as given by the
activity models was not taken into account, since at that time we could only use AGG
[27] to perform the analysis. AGG computes a conflict and dependency matrix and
for each two rules all potential conflicts and dependencies. Each conflict is given
by graph and two rules applied to it, while each dependency is given by a rule
application sequence of length 2 with its intermediate graph. Given a control flow,
the relevant conflicts and dependencies have to be manually determined in AGG.
With ACTIGRA [5], this step is automatized by integrating activity models.

As recalled in the introduction, several researchers have studied the problem of
interference among aspects at the coding level. Sihman and Katz [22] classifies
interactions of aspects with a base: an aspect can be considered spectative,
regulative, or invasive with respect to the system to which is applied; in [11] the
categories are formally described by temporal logic predicates on program states.
This classification is useful also at the modeling level we adopted: a spectative
aspect only gathers information about the system to which it is woven but does
not influence the computations of the base otherwise; a regulative aspect changes
the activation of activities under certain conditions but does not change the base
computation further; an invasive aspect does change the base system arbitrarily.
However, we focus on potential conflicts (and triggers) that may arise when given
control flows are woven together.

Other tools for graph transformation systems also allow for their specification
and controlled simulation according to given activity flows: see for example
Fujaba [17], VMTS [14], and GReAT [1]. These tools, however, do not provide
support for analyzing conflicts and causalities: ACTIGRA [5] leverages the critical
pair analysis implemented by AGG [27] to detect possibly unwanted interactions.
This kind of static analysis is only available in the theory underlying AGG and
ACTIGRA, since these tools are based on the algebraic graph transformation
approach that uses a specific notion called double-pushout to specify the effect of a
graph transformation rule. All graph transformation rules with or without NACs can
be analyzed. The graphs may be attributed and typed with node type inheritance.

In [2], Araujo et al. describe nonaspectual requirements as sequence diagrams
and aspectual requirements with interaction pattern specifications, which are both
woven together in state machines that can be simulated; no support for static conflict
detection is provided.

13.7 Conclusion and Outlook

Activity diagrams are a widely used modeling language for describing the functional
behavior of a system at different level of abstractions, ranging from requirements
models and work flow descriptions to more coding-oriented specifications like

268 K. Mehner-Heindl et al.

flowcharts. Their semantics, however, are often described in a semiformal way and
vary a lot. Integrated behavior models are one way to give formal semantics to
activity models. Integrated with a domain model, moreover, the formal semantics
can be given in a broader context by a refined specification of each activity in
terms of the domain model. Such a semantics becomes even more useful when
supported by a tool. Integrated behavior models are particularly apt for specifying
requirements in a use-case-driven approach using UML.

We use integrated behavior models which are supported by the ACTIGRA

tool. We model aspect-oriented separation of concern at the use-case level. Since
aspects typically also bear functional behavior, they are straightforward to model
as graph transformation rules together with weaving among activities diagrams.
Activity diagrams play a key role in the analysis, similar to that of data in dynamic
program analysis: in a static program analysis one considers all the possible paths of
execution (in fact also several unfeasible ones), while in dynamic analyses the input
data is used to narrow the search space. Similarly, activities are used to drive the
analysis to a concrete set of interactions, instead of considering all the conceivable
ones for a given a set of aspects and a base. At the programming level, this reduction
is mostly provided by the base which gives the control flow in which aspects are
intertwined. In our models, aspects and base are described as transformation rules
on the domain model, thus the activity is the key to reduce the indeterminacy of
all the possible weaving actions. By integrating the critical pair analysis (being a
“static” analysis) performed by AGG, with the ACTIGRA support for control flow
analysis, one has the possibility to see how dependencies might cause problems in
the activities of a complex system.

It is an advantage that the analysis is not different across the different modeling
concerns, i.e, the base, the aspects, and also the woven system. In the small example
presented, we can reveal simple dependencies between base and aspects by using
the analysis. The tool also helps in making the example sound and complete by
analyzing the base and the aspects separately for flaws. This is an often made
observation that models become more sound as soon as a tool for executing or
analyzing them is deployed, which is one reason for using tools.

Until now, there is no tool that supports the transformation of integrated behavior
models on a meta level which could be used, e.g., for specifying aspect weaving.
Using such a tool would even allow to go beyond a set of predefined weaving
operations since new activities could be added and tested by the experienced user.
Moreover, no dedicated tools for aspect-oriented modeling on top of integrated
behavior models exist either, allowing stereotypes and weaving as just mentioned.

In the example, it can be studied how causalities and conflicts established during
the separate analysis for base and aspect change after aspect weaving has been
carried out. It is up to future work to generalize and formally show such effects.

The example is too small to reveal benefits of the modeling approach and its
tooling such as discovering major modeling mistakes like overlapping or missing
domain concepts or functionalities. Here, a more comprehensive case study would
be useful. It also remains to implement the example in order to study whether the
identified aspects persist in the code at all and whether the analysis has a positive

13 Analysis of Aspect-Oriented Models Using Graph Transformation Systems 269

effect on the quality of the code. To this end, empirical studies have to be carried
out comparing implementation with and without this particular modeling approach
as well as with and without the tooling support.

References

1. A. Agrawal, Graph rewriting and transformation (GReAT): A solution for the model integrated
computing (MIC) bottleneck, in Proceedings of the 18th IEEE International Conference on
Automated Software Engineering (2003), pp. 364–368. doi:10.1109/ASE.2003.1240339

2. J. Araújo, J. Whittle, D.-K. Kim, Modeling and composing scenario-based requirements
with aspects, in Proceedings of the Requirements Engineering Conference, 12th IEEE
International (RE ’04) (2004), IEEE Computer Society, Washington, DC, pp. 58–67.
doi:10.1109/RE.2004.32. http://dx.doi.org/10.1109/RE.2004.32

3. D. Balzarotti, A. Castaldo D’Ursi, L. Cavallaro, M. Monga, Slicing AspectJ woven code,
in Proceedings of the Foundations of Aspect-Oriented Languages Workshop (FOAL2005),
Chicago, 2005

4. H. Ehrig, K. Ehrig, U. Prange, G. Taentzer, Fundamentals of Algebraic Graph Transformation
(Monographs in Theoretical Computer Science: an EATCS Series) (Springer, New York, Inc.,
Secaucus, 2006)

5. C. Ermel, J. Gall, L. Lambers, G. Taentzer, Modeling with plausibility checking: Inspecting
favorable and critical signs for consistency between control flow and functional behavior, in
Proceedings of the Fundamental Aspects of Software Engineering (FASE’11). Lecture Notes in
Computer Science, vol. 6603 (Springer, Berlin, 2011), pp. 156–170. Long version as technical
report 2011/2, TU Berlin

6. R.E. Filman, D.P. Friedman, Aspect-oriented programming is quantification and obliviousness,
in Workshop on Advanced Separation of Concerns, OOPSLA 2000 (October 2000), Minneapo-
lis. http://ic-www.arc.nasa.gov/ic/darwin/oif/leo/filman/text/oif/aop-is.pdf

7. J. Hausmann, R. Heckel, G. Taentzer, Detection of conflicting functional requirements in a use
case-driven approach, in Proceedings of International Conference on Software Engineering
2002, Orlando, 2002

8. I. Jacobson, P.W. Ng, Aspect-Oriented Software Development with Use Cases (Addison
Wesley, Reading, 2005)

9. S. Jurack, L. Lambers, K. Mehner, G. Taentzer, G. Wierse, Object flow definition for refined
activity diagrams, in Proceedings of the Fundamental Approaches to Software Engineering
(FASE’09), ed. by M. Chechik, M. Wirsing. Lecture Notes in Computer Science, vol. 5503
(Springer, Berlin, 2009), pp. 49–63

10. S. Katz, Aspect categories and classes of temporal properties, in Transactions on Aspect-
Oriented Software Development I, ed. by, A. Rashid, M. Aksit (Springer, Berlin Heidelberg,
2006), pp. 106–134

11. S. Katz, Aspect categories and classes of temporal properties, in Transactions on Aspect-
Oriented Software Development I, ed. by A. Rashid, M. Aksit. Lecture Notes in Computer
Science, vol. 3880 (Springer, Berlin, 2006), pp. 106–134

12. G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, W. Griswold, An overview of
AspectJ, in ECOOP 2001—Object-Oriented Programming, ed. by J. Knudsen. Lecture Notes
in Computer Science, vol. 2072 (Springer, Berlin, 2001), pp. 327–354

13. J. Kienzle, N. Guelfi, S. Mustafiz, Crisis management systems—A case study for aspect-
oriented Modeling. Technical Report SOCS-TR-2009.3, McGill University (2009). Version
1.0.1

14. T. Levendovszky, L. Lengyel, G. Mezei, H. Charaf, A Systematic Approach to Metamodeling
Environments and Model Transformation Systems in VMTS. Electron. Notes Theor. Comput.

http://dx.doi.org/10.1109/RE.2004.32
http://ic-www.arc.nasa.gov/ic/darwin/oif/leo/filman/text/oif/aop-is.pdf

270 K. Mehner-Heindl et al.

Sci. 127(1), 65–75 (2005). Proceedings of the International Workshop on Graph-Based Tools
(GraBaTs 2004)

15. K. Mehner, M. Monga, G. Taentzer, Interaction analysis in aspect-oriented models, in 14th
IEEE International Conference on Requirements Engineering RE 06 (2006), pp. 69–78.
doi:10.1109/RE.2006.35

16. K. Mehner, M. Monga, G. Taentzer, Analysis of aspect-oriented model weaving, in Transac-
tions on Aspect-Oriented Software Development V. Lecture Notes in Computer Science, vol.
5490 (Springer, Berlin, 2009), pp. 235–263

17. U.A. Nickel, J. Niere, J.P. Wadsack, A. Zündorf, Roundtrip engineering with FUJABA, in
Proceedings of 2nd Workshop on Software-Reengineering (WSR), Bad Honnef, 2000

18. Object Management Group, UML Specification Version 2.0 (2005), Object Management
Group, http://www.omg.org

19. A. Rashid, P. Sawyer, A. Moreira, J. Araújo, Early aspects: A model for aspect-oriented
requirements engineering, in Proceedings of the IEEE Joint International Conference on
Requirements Engineering (IEEE Computer Society Press, Silver Spring, 2002), pp. 199–202

20. A. Rashid, A. Moreira, J. Araújo, Modularisation and composition of aspectual requirements.
in Proceedings of the 2nd International Conference on Aspect-Oriented Software Development
(AOSD ’03) (2003), ACM, New York, NY, pp. 11–20. doi:10.1145/643603.643605

21. M. Rinard, A. Sǎlcianu, S. Bugrara, A classification system and analysis for aspect-
oriented programs, in Proceedings of the 2nd International Conference on Aspect-
Oriented Software Development (AOSD ’03) (2003), ACM, New York, NY, pp. 11–20.
doi:10.1145/643603.643605

22. M. Sihman, S. Katz, Superimpositions and aspect-oriented programming. Comput. J. 46(5),
529–541 (2003)

23. J. Sillito, C. Dutchyn, A. Eisenberg, K. DeVolder, Use case level pointcuts, in Proceedings of
the ECOOP 2004, Oslo, 2004

24. D. Stein, S. Hanenberg, R. Unland, A UML-based aspect-oriented design notation for AspectJ,
in Proceedings of the 1st International Conference on Aspect-Oriented Software Development
(2002), ACM, New York, NY, pp. 106–112. doi:10.1145/508386.508399

25. The Eclipse Foundation (2011), AspectJ Homepage, http://www.eclipse.org/aspectj/
26. Technische Universität Berlin (2013), ActiGra Homepage, http://www.tfs.tu-berlin.de/actigra
27. Technische Universität Berlin (2013), AGG Homepage, http://www.tfs.tu-berlin.de/agg
28. J. Zhao, Slicing aspect-oriented software, in Proceedings of the 10th International Workshop

on Program Comprehension (IWPC ’02) (2002), IEEE Computer Society, Washington, DC,
p. 251

http://www.omg.org
http://www.eclipse.org/aspectj/
http://www.tfs.tu-berlin.de/actigra
http://www.tfs.tu-berlin.de/agg

Chapter 14
Aspect Interactions: A Requirements
Engineering Perspective

Thein Than Tun, Yijun Yu, Michael Jackson, Robin Laney,
and Bashar Nuseibeh

Abstract The principle of Separation of Concerns encourages developers to divide
complex problems into simpler ones and solve them individually. Aspect-Oriented
Programming (AOP) languages provide mechanisms to modularise concerns that
affect several software components, by means of joinpoints, advice and aspect
weaving. In a software system with multiple aspects, a joinpoint can often be
matched with advice from several aspects, thus giving rise to emergent behaviours
that may be unwanted. This issue is often known as the aspect interaction problem.
AOP languages provide various composition operators: the precedence operator
of AspectJ, for instance, instructs the aspect weaver about the ordering of aspects
when advice from several of them match one joinpoint. This ordering of conflicting
aspects is usually done at compile-time. This chapter discusses a type of problem
where conflicting aspects need to be ordered according to runtime conditions.
Extending previous work on Composition Frames, this chapter illustrates an AOP
technique to compose aspects in a non-intrusive way so that precedence can be
decided at runtime.

14.1 Introduction

Software systems are typically required to satisfy multiple concerns of several
stakeholders. Users may want a software system to be responsive and the computer
interface to be intuitive. Sponsors of the software system may want the information

T.T. Tun (�) � Y. Yu � M. Jackson � R. Laney
Department of Computing, The Open University, UK
e-mail: t.t.tun@open.ac.uk; y.yu@open.ac.uk; m.jackson@open.ac.uk; r.c.laney@open.ac.uk

B. Nuseibeh
Department of Computing, The Open University, UK
e-mail: b.nuseibeh@open.ac.uk

Lero, Irish Software Engineering Research Centre, Limerick, Ireland

A. Moreira et al. (eds.), Aspect-Oriented Requirements Engineering,
DOI 10.1007/978-3-642-38640-4 14, © Springer-Verlag Berlin Heidelberg 2013

271

mailto:t.t.tun@open.ac.uk
mailto:y.yu@open.ac.uk
mailto:m.jackson@open.ac.uk
mailto:r.c.laney@open.ac.uk
mailto:b.nuseibeh@open.ac.uk

272 T.T. Tun et al.

to be handled securely. Programmers who maintain the software system may want
to work with a program design that is easy to modify. The principle of Separation of
Concerns encourages developers to address these concerns of performance, usabil-
ity, security and maintainability individually. Yet, when composed together, these
concerns make different and often conflicting demands on the system architecture,
the program design, and other software artefacts. Aspect-Oriented Programming
(AOP) languages provide mechanisms for implementing, in a modular fashion,
concerns that cut across several components. Towards this end, AOP languages
provide mechanisms for joinpoints, advice and aspect weaving, which have been
explained and illustrated in [13].

The issue of feature interaction is well known in telecommunication and other
software systems [1, 4, 7]. Generally, software features are thought to interact when
features that individually satisfy the user requirements, when composed together,
produce unwanted behaviour. The interactions are often due to conditions such
as non-determinism, divergence and interference. When resolving such feature
interactions, compile-time mechanisms are often over-restrictive in the sense that
the composition has to be decided at compile-time and it cannot respond to runtime
conditions.

For instance, in a smart home application [7], the security and climate control
features may interact when the security feature shuts the window because the home
owners are away but the climate control feature opens the window to allow fresh air
in. This condition is known as divergence.

A similar issue can be observed in aspect composition. A program that has to
satisfy multiple concerns may have a joinpoint that could be matched with advice
from several aspects, corresponding with the concerns the component has to satisfy.
When these aspects are composed, the weaver is free to choose the ordering of the
aspects if the developer does not specify the desired ordering. Divergence here can
be illustrated by the following main program and the two aspects in the syntax of
AspectJ 6 (simply AspectJ henceforth).

/ / The main program Window . j a v a
publ i c c l a s s Window f

publ i c s t a t i c void main (S t r i n g [] a r g s) f
System . ou t . p r i n t l n (”Window has now s t a r t e d . ”) ;

g
g

/ / S e c u r i t y F e a t u r e . a j
publ i c aspec t S e c u r i t y F e a t u r e f

a f t e r () re turn i ng : execut i on (* main (. .)) f
System . ou t . p r i n t l n (” S e c u r i t y F e a t u r e : Window i s now

s h u t because i t i s n i g h t now . ”) ;
g

g

/ / C l i m a t e F e a t u r e . a j
publ i c aspec t C l i m a t e F e a t u r e f

a f t e r () re turn i ng : execut i on (* main (. .)) f

14 Aspect Interactions: A Requirements Engineering Perspective 273

System . ou t . p r i n t l n (” C l i m a t e F e a t u r e : Window i s now
opened because i t i s ho t i n d o o r s . ”) ;

g
g

Running the program could produce a seemingly random ordering of the two
aspects. In one run of the program, the following output is produced, although
another valid ordering of aspects is also possible. Such uncontrolled behaviour may
be unwanted and therefore can be seen as a form of aspect interaction.

Window has now started.
SecurityFeature: Window is now shut because it is night now.
ClimateFeature: Window is now opened because it is hot indoors.

If a particular ordering of these aspects is desired, for instance, if the climate
feature is always more important than the security feature, then the precedence of
these aspects has to be declared. Since the advice of these aspects are applied after
the execution of the main method, the so-called after advice, they need to be listed
in ascending order of priority.

/ / ComposeAspects . a j
publ i c aspec t ComposeAspects f

d e c l a r e precedence : S e c u r i t y F e a t u r e , C l i m a t e F e a t u r e ;
g

The program now resolves the aspect interaction and always produce the desired
ordering of the aspects, namely that the climate control aspect is always executed
before the security aspect:

Window has now started.
ClimateFeature: Window is now opened because it is hot indoors.
SecurityFeature: Window is now shut because it is night now.

This style of resolving aspect interactions is over-restrictive because once the
precedence is defined at compile-time, it cannot be changed easily in order to
respond to runtime conditions. The ordering of the security and climate control
features in the example above cannot be changed at runtime, for instance.

In our previous work on feature composition, we have formalised the notion of
Composition Frames which monitor the features being composed, and depending
on the requirements and runtime conditions, determine the ordering of features [9].
This style of composition is more flexible and can be extended to aspect
composition.

In this chapter, we show that features can be treated as aspects and feature
composition as aspect composition. We then discuss how Composition Frames can
be used to compose aspects and resolve aspect interactions at runtime. We present a
way to implement the aspect composition as a distinct crosscutting concern that can
be treated as a separate aspect. We show that this approach to composing aspects at
runtime is generic and non-intrusive.

274 T.T. Tun et al.

a:TiP! {NightStarts, NightEnds}
b:SF! {tiltIn, tiltOut}
c:W! {WindowOpen}

d:TiP! {CurrentTime}

Fig. 14.1 Problem diagram for the security feature

14.2 Preliminaries

This section illustrates the notion of feature interaction using a simple problem from
a smart home application [7] before discussing how Composition Frames can be
used to resolve the feature interaction problem.

14.2.1 Feature Interaction: An Example

Let us consider again a simple smart home application with two features, both
of which control a motorised window that can be opened and shut. The security
feature has a requirement for keeping the window shut at night. The requirement
for the temperature feature is to keep the window opened when it is hot, meaning
when the indoor temperature is higher than the required temperature and at the same
time, the outdoor temperature is lower than the indoor temperature. An important
characteristic of smart home applications is that their features may be developed
independently by manufacturers. Therefore, conflicts between features may have to
be detected and resolved at runtime.

When analysing the requirements for these two features, we use problem dia-
grams [5] to show the relationship between three descriptions: (a) user requirements,
(b) problem world domains which make up the context of the software and
(c) specifications of the behaviour of the running software. The relationship between
these descriptions is intended to indicate that the specifications, in the described
context, will satisfy the requirements.

Figure 14.1 shows the problem diagram for the security feature, where the
requirement is denoted by a dotted oval, problem world domains are denoted by
plain rectangles and the specification is denoted by a rectangle with two vertical
stripes. The requirement SR says that the window should be kept shut at night.

The problem world domains are entities in the world that the program must inter-
act with, such as Time Panel and Window, in satisfying the requirement SR. The
solid lines (a and b) are domain interfaces representing shared variables and events
between the domains and the machine involved. At the interface a, the variables
NightStarts and NightEnds are controlled by Time Panel (as denoted by TiP!),

14 Aspect Interactions: A Requirements Engineering Perspective 275

f:TeP! {NiceTemp, OutTemp,
InTemp}

b:CCF!{tiltIn, tiltOut}
c:W! {WindowOpen}

e:TeP! {TooHot}

Fig. 14.2 Problem diagram for the temperature feature

and can be observed by the security feature. Descriptions of other interface labels
can be read in the same way.

Assuming that NightStarts and NightEnds are variables for non-negative
integers between 0 and 2400, when NightStarts < CurrentTime and CurrentTime <

NightEnds, it is night; otherwise, it is day. At the interface b, the security feature can
fire two events tiltIn and tiltOut, and these events can be observed by the window.
The property of Window is such that when tiltOut is observed, the window is
open, meaning that WindowOpen is true. Likewise, when tiltIn is observed, the
window is shut (WindowOpen is false). Dotted lines (c and d) denote requirement
phenomena. The requirement is a desired relationship between the current time and
the state variable of the window, namely that when NightStarts < CurrentTime and
CurrentTime < NightEnds is true, WindowOpen should be false.

One description of the specification Security Feature is to fire the event tiltIn
whenever it is night and to ensure that tiltOut is not fired until the night ends.
The relationship between the three descriptions is as follows: If the behaviour of
the window and the time panel is as stated, the specification Security Feature
satisfies the requirement SR. This simple specification, of course, ignores a number
of issues: for instance, it does not check whether the window is already shut when
night starts or how long it takes for the window to fully open. Let us ignore such
issues in our discussion.

The problem diagram for the temperature feature, shown in Fig. 14.2 is similar
to the diagram in Fig. 14.1. The requirement here is that if it is too hot indoors,
meaning that the desired temperature (NiceTemp) and the indoors and outdoors
temperatures (OutTemp and InTemp) are in a certain relationship, the window
should be kept open. The temperature readings are controlled by the temperature
panel, and the temperature feature can observe them. One description of the speci-
fication Temperature Feature is to fire the tileOut event whenever the conditions
NiceTemp < InTemp and OutTemp < InTemp hold and to ensure that the tiltIn is not
fired as long as that relation remains true.

Notice that the two requirements above do not say anything about what to
do during the daytime, and when it is not hot indoors. However, if the inside
temperature is higher than the desired temperature, and the outside temperature is
lower than the inside temperature, the window should be opened even if the outside
temperature is higher than the desire temperature (thus not possible to achieve the
required temperature just by opening the window).

276 T.T. Tun et al.

d:TiP! {CurrentTime}
a:TiP! {NightStarts, NightEnds}
e:TeP! {TooHot}
f:TeP! {NiceTemp, OutTemp, InTemp}
a’:SC! {NightStarts, NightEnds}
b’:SF! {tiltIn, tiltOut, ShutUntil}
f’:SC! {NiceTemp, OutTemp, InTemp}
b”:TF! {tiltIn, tiltOut, OpenUntil}
b:SC! {tiltIn, tiltOut}
c:W! {WindowOpen}

Fig. 14.3 Composition of the security and temperature features

Composing these two features can lead to a divergent behaviour under certain
conditions. During a hot night, according to the temperature feature, the window
should be open, but according to the security feature, the window should be shut. It
is important to note that although the temperature feature will not close the window
by firing the tiltIn event, it cannot stop the security feature from firing the same
event during the hot night. Likewise, although the security feature will not open the
window by firing the tiltOut event, it cannot stop the temperature feature from firing
the same event during the hot night. In other words, an individual feature cannot
have an exclusive control of the window over a length of time.

Furthermore, if a precedence operator is applied in the composition of these two
features, one of the two features will always have priority over the other. This
might be over-restrictive. It is sometimes desirable for the system to allow the
user to indicate at runtime how the features should be ordered. Finally, in order
to separate the concerns of individual features from the concern of composition,
the two specifications should not be modified in order that they find out what the
other feature is doing before carrying out their own actions. Our previous work
on feature interaction shows that Composition Frames are suitable for such feature
composition.

14.2.2 Resolving Feature Interaction Using Composition
Frames

As shown in Fig. 14.3, the two features can be composed by introducing the new
software component SmartHome Controller, which is obtained by merging two

14 Aspect Interactions: A Requirements Engineering Perspective 277

wrappers that sit at the interfaces a and b of the security feature in Fig. 14.1 and
the interfaces d and b of the temperature feature in Fig. 14.2 (see [15] for wrapper
transformation rules). In effect, SmartHome Controller intercepts the information
and events going in and coming out of the two features.

The variable ShutUntil is used by the security feature to indicate the time point
until which it does not want other features to open the window. In principle, the value
of ShutUntil is be determined by the value of NightEnds. The variable OpenUntil
is used by the temperature feature to indicate the time point until which it does not
want other features to shut the window. In principle, this is the first time point when
InTemp is equal to NiceTemp. However, the temperature feature cannot know in
advance how long the room will remain too hot. Therefore, it may have to set this
time on a periodic basis.

Again, notice that each of the features does not prevent another feature from
opening or shutting the window. Each feature only declares what it wants other
features not to do within a certain duration. ShutUntil and OpenUntil will then
be used by the SmartHome Controller to mediate when conflicts arise. Broadly
speaking, a conflict occurs when two features attempt to maintain two contradictory
properties. As discussed in [9], the values of ShutUntil and OpenUntil can be
derived as part of the specification of the two features by means of the Prohibit
predicate.

Runtime Precedence defines several ways in which conflicts can be resolved:
we will call them the semantics of the composition operator. Although they
can be defined more generally and precisely [9], we will focus on the specific
example here.

• No Control: In this composition, the requirements for the security and tempera-
ture features should each be met at times when they are not in conflict; but when
conflicts occur, any emergent behaviour is acceptable. It allows, for example, the
window to oscillate in a partly open position. None of the requirements of the
two features may be satisfied.

• Exclusion: In this composition, the requirements for the security and temperature
features should each be met at times when they are not in conflict; but when
conflicts occur, the requirement of the feature that started first should have
priority. For example, if the security feature shuts the window before the
temperature feature needs to open it, the temperature feature will not be able to
shut the window until the security requirement has been satisfied. This exclusion
is symmetrical.

• Exclusion with Priority. In this composition, the exclusion is asymmetrical, for
instance, in favour of the security requirement. It means that the security feature
can shut the window during the time in which the temperature feature wants
the window open. The temperature feature, however, cannot open the window if
the security feature wants it shut.

Other possible semantics include exclusion with event-level priority [9]. The
requirement RC in Fig. 14.3 says that the window should be opened and shut

278 T.T. Tun et al.

according to the Runtime Precedence option the user of the smart home
application has selected.

If the security and the temperature features are implemented as aspects, and if
there is no definition of the ordering of these aspects using the precedence operator,
the weaver will produce the “no control” behaviour defined above. The precedence
operator of AspectJ can produce the composition similar to the behaviour defined
by the “exclusion with priority” option. We now show how the “exclusion” option
can be implemented using the aspect-oriented technique.

14.3 The Proposed Approach: Runtime Composition
of Aspects

In this proposed approach, the problem world domains are implemented first as Java
components, forming the base system. Features are then implemented as aspects
which weave into the base system of the problem world domains. This separation
of aspects from the base system fits well with the separation of specifications from
the problem world domains because like aspects, specifications can interface with
multiple components, as highlighted in Fig. 14.3. Composition of the features is
regarded as a separate concern that is implemented as an aspect in its own right.

14.3.1 Implementing the Problem World Domains

The problem world domains such as Window can be implemented in a straightfor-
ward way. We can simply define a singleton class for each of the domains and their
variables as class variables and events as methods. (Full listings of all programs in
this section are provided in [14].)

c l a s s Window f
s t a t i c boolean WindowOpen ;
Window () f

/ / code f o r i n i t i a l i z i n g t h e window
WindowOpen = f a l s e ;

g
publ i c void t i l t O u t () f

/ / code f o r open i ng t h e window
WindowOpen = t rue ;

g
publ i c void t i l t I n () f

/ / code f o r s h u t t i n g t h e window
WindowOpen = f a l s e ;

g
g

14 Aspect Interactions: A Requirements Engineering Perspective 279

Other problem world domains are implemented in a similar fashion, but they are
omitted here for space reasons. In the main method of the ProblemWorldDomains
class, classes for window, time panel, temperature panel and runtime precedence are
instantiated and initialised, as shown below.

publ i c c l a s s ProblemWorldDomains f
s t a t i c Window win = new Window () ;
s t a t i c T em pera t u r e Pa n e l TeP = new Tem pera t u r e P an e l () ;
s t a t i c TimePanel TiP = new TimePanel () ;
s t a t i c Runt i m ePrecedence rp = new Run t i m ePrecedence () ;

publ i c s t a t i c void main (S t r i n g a r g s []) f
win . showSt a t u s () ;
TiP . N i g h t S t a r t s =2000;
TiP . NightEnds =600;
TeP . NiceTemp = 15 ;
rp . O p t i ons = 1 ;

g
g

14.3.2 Implementing the Features

At runtime, features such as the security and temperature features will be long-
running and concurrent processes. Therefore, these features are implemented as
threads. In principle, some features could be implemented without using aspects.
However, to illustrate the problem of aspect interaction, both features for example
are implemented using aspects.

publ i c aspec t S e c u r i t y F e a t u r e f
s t a t i c long s h u t U n t i l ;
c l a s s Spec implements Runnable f

Thread r u n n e r ;
Window win ;
TimePanel t i P a n e l ;

publ i c Spec (S t r i n g threadName , Window w1 , TimePanel t p1) f
r u n n e r = new Thread (t h i s , threadName) ;
win = w1 ;
t i P a n e l = t p1 ;
/ / �1 i n d i c a t e s t h a t no need t o keep t h e window s h u t
s h u t U n t i l =�1;
r u n n e r . s t a r t () ;

g
publ i c void run () f

whi le (t rue) f
i f (c u r r e n t T i m e > t i P a n e l . N i g h t S t a r t s &&

c u r r e n t T i m e < t i P a n e l . NightEnds) f
/ / I t i s n i g h t now , so t h e window shou l d be s h u t

280 T.T. Tun et al.

/ / and shou l d no t be opened u n t i l t i P a n e l . NightEnds
win . t i l t I n () ;
s h u t U n t i l = t i P a n e l . NightEnds ;
/ / do n o t h i n g u n t i l t i P a n e l . NightEnds

g
s h u t U n t i l =�1;

g
g

g
p o i n t c u t getWinRefs () : execut i on (* main (. .)) ;
a f t e r () : ge tWinRefs () f

Spec SF =new Spec (” S e c u r i t y F e a t u r e ” ,
ProblemWorldDomains . win ,
ProblemWorldDomains . TiP) ;

g
g

The aspect above implements the security feature by instantiating a new thread as
soon as the main method has been executed. The program then gets hold of
the references to the window object win and the time panel object TiP from the
main method. The aspect also declares the variable shutUntil to indicate
the time point until which the program wants the window to be shut. When
the thread starts running, it continuously checks whether the current time is between
NightStarts and NightEnds. Notice that the variable currentTime has
to be declared and assigned appropriate values in a format compatible with
NightStarts and NightEnds. If the current time is within the range, then the
tiltIn method is called and the value of shutUntil is set to NightEnds.

It is worth emphasising that the security feature does not stop the temperature
feature calling the tiltOut method during the night. The temperature feature is imple-
mented likewise: it opens the window when it is too hot and indicates the length of
time it wishes to keep the window open by setting the value of openUntil. Since
the two features are largely independent, they do not communicate with each other
about what they do not want the other feature to do. This is in line with the principle
of separation of concerns: individual features are not concerned with how they will
be composed together.

Notice if the security and temperatures are implemented as singleton classes, then
the variables shutUntil and openUntil are to be treated as class variables.

This completes the implementation of the temperature and security features. If
these programs are run, the ordering of the two features is entirely random and will
satisfy the “no control” option discussed above.

14.3.3 Implementing Composition Frames

The composition controller SmartHomeController is implemented by a separate
aspect. This new aspect monitors the method calls made by the security and

14 Aspect Interactions: A Requirements Engineering Perspective 281

temperature features and examines the openUntil and shutUntil to see
whether calls to the tiltOut and tiltIn methods should proceed. As indicated
in Fig. 14.3, the controller will rely on the runtime precedence option selected by the
user. If the user wants the “exclusion” option, for instance, the tiltOut method
call will be delayed until the time point shutUntil has passed, and the tiltIn
method call will be delayed until the time point openUntil has passed. These
delays could be achieved by putting the threads to sleep. implementation of the
mutual exclusion option.

publ i c aspec t Sm ar t H om eCon t ro l l e r f
p o i n t c u t d e l a y T i l t I n () : c a l l (void t i l t I n (. .)) ;
before () : d e l a y T i l t I n () f

/ / t h e window i s abou t t o t i l t I n
i f (T e m p e r a t u r e F e a t u r e . o p e n U n t i l > 0) f

/ / bu t t h e window shou l d remain open
i f (ProblemWorldDomains . rp . O p t i ons == 1) f

/ / t h e u s e r has s e l e c t e d t h e e x c l u s i o n o p t i o n
/ / w a i t u n t i l T e m p e r a t u r e F e a t u r e . o p e n U n t i l has passed

g
g

g
p o i n t c u t d e l a y T i l t O u t () : c a l l (void t i l t O u t (. .)) ;
before () : d e l a y T i l t O u t () f

/ / t h e window i s abou t t o t i l t O u t
i f (S e c u r i t y F e a t u r e . s h u t U n t i l > 0) f

/ / bu t t h e window shou l d remain s h u t
i f (ProblemWorldDomains . rp . O p t i ons == 1) f

/ / t h e u s e r has s e l e c t e d t h e e x c l u s i o n o p t i o n
/ / w a i t u n t i l S e c u r i t y F e a t u r e . s h u t U n t i l has passed

g
g

g
g

The above program also provides a template for the implementation of the
exclusion with priority option. For instance, if we want to give priority to the
security feature over the temperature feature, there is no need to delay calls to tiltIn,
and only calls to tiltOut should be examined for a possible delay.

14.3.4 Comparing Precedence Operator
with Composition Frames

The precedence operator of AspectJ is, in a sense, similar to Composition Frames,
in particular to the exclusion with priority option. The similarity lies in the fact that
they both provide mechanisms for ordering aspects. There are, however, notable
differences.

282 T.T. Tun et al.

First, the precedence operator has only one semantic, and the operator is applied
at compile-time. Composition Frames provide a multitude of possible semantics, of
which we have discussed three in this chapter but there are more [9]. Operators of
Composition Frames are applied mostly at runtime, although they can also achieve
the effect of compile-time composition. In this sense, Composition Frames can be
seen as an extension of the precedence operator.

Second, the precedence operator is applicable only when there is a joinpoint
matching with advice from multiple aspects. The pointcuts in our composition
operator can be defined on multiple joinpoints. In the smart home example, pointcuts
are defined on tiltOut and tiltIn, and they are matched with different aspects for
delaying the events involved. In order for the precedence operator to work in the
smart home example, tiltOut and tiltIn have to be covered by a single pointcut
definition, while providing two aspects for dealing with different events. Such a
design is feasible but introduces unnecessary complications. When used judiciously,
the precedence operator works well as a simple compile-time operator, whilst
Composition Frames provide a richer set of runtime composition operators.

14.3.5 Fairness in Exclusion

In our implementation of the temperature and security specifications, we have
used the Java thread mechanism to design them as long-running and concurrent
processes. The thread mechanism offers an added advantage when delaying method
calls: the thread can simply be put to sleep for a certain duration. For example, the
temperature thread wanting to open the window can be put to sleep until the night
ends. However, the sleep mechanism of Java cannot guarantee that once the night
finishes, the temperature feature will definitely open the window: in fact, it is quite
possible that the security feature requests to keep the window shut again before
the temperature feature closes it and that the request is successful, thus effectively
blocking the temperature feature. If fairness of access is important in the application,
then the thread synchronisation facility of Java may have to be used.

14.4 Common Case Study: Discussion

Our approach is applicable when there are interacting aspects and features and the
software system needs to resolve them at runtime in order to continue to satisfy
the requirements as far as possible. In the Crisis Management System (CMS) [6],
there are several requirements, which under certain runtime conditions will make
conflicting demands on the system.

For instance, although it may be possible to satisfy the statistic logging require-
ment and the real-time requirement individually and their composition most of the
time, there may be runtime conditions when it is not possible to log all data access

14 Aspect Interactions: A Requirements Engineering Perspective 283

and provide information about an on-going crisis at intervals not exceeding 30 s. In
such cases, the users may want to give priority to one requirement over another in
order to maintain a satisfactory level of requirement satisfaction.

Likewise, one requirement for multi-access in CMS states that the system should
support management of at least 100 crises at a time. Perhaps not all crises are equally
important at all times: some could be more important than others in terms of the level
of security they require. Again, in such cases, requirements for certain crises may
have higher priority over others.

Our approach for resolving interactions between aspects at runtime could be
helpful in such cases.

14.5 Related Work

The ideas presented in this chapter are related to several strands of research work.
However, giving a systematic review of all related work is beyond the scope of the
chapter. Instead, the following discussions provide a brief overview of some of the
work.

Composition Frames: Jackson [5] introduces the conceptual framework of
Problem Frames. Laney et al. [8] first use Composition Frames to compose
requirements and resolve conflicts before formalising the composition in [9].
We deploy Composition Frames as a kind of architectural wrapper in order to evolve
a feature-rich software system [15]. This chapter discusses the synergy between
Composition Frames and aspect-oriented programming with respect to managing
feature interaction and managing aspect interaction. Both approaches are based
on the principle of separation of concerns, but offer different ways of composing
features and aspects.

Feature Interaction: The problem of feature interactions is a long-standing
problem in software engineering. Although they were first observed in telecom-
munication software systems [2], they are now considered to be a more general
problem affecting many modern software systems [1,4,7]. Sanen et al. [12] highlight
the issue of aspect interaction and contribute a scheme to classify and record
aspect interactions. This chapter provides a general mechanism to resolve aspect
interactions at runtime.

Aspect Interaction: Mussbacher et al. [10] propose an approach for detecting
aspect interactions, in which aspects are first annotated with domain-specific
markers. These markers are then mapped to a goal model showing how markers
influence each other before conflicting markers and their associated aspects
are detected. Other approaches to detecting feature interactions, as well as the
difficulties faced by these approaches, are discussed by Velthuijsen [16]. The
approach presented in this chapter focuses on resolving, rather than detecting,
aspect interactions.

Requirement Interaction: Similar to our approach, Chitchyan et al. [3] consider
the problems with using syntactic operators when composing requirements written

284 T.T. Tun et al.

in a natural language. They propose a new language for documenting textual
requirements and their composition. Various formulations of the temporal composi-
tion operators in their work are similar to the three semantics of the composition
operator given in this chapter. Weston et al. [17] present a formalisation of a
similar semantics-based approach to resolving requirements conflicts. However, our
approach is aimed at resolving conflicting aspects at runtime, rather than resolving
conflicting requirements at design time.

Dynamic Aspect Weaving: There are a number of approaches to weaving aspects
at runtime. Popovici et al. [11] suggest that they can be divided into compile-
time, load time and runtime approaches, and provide a framework for runtime
aspect weaving. Although the problems addressed by their approach and ours are
similar, their work requires modification of the Java Virtual Machine in order to
load and unload aspects at runtime, and there is a performance penalty every time an
aspect is weaved or unweaved. Our implementation uses only the standard AspectJ
constructs. While their approach offers a way to resolve aspect interactions by
weaving and unweaving aspects at runtime, the variety of composition semantics
in our approach is more flexible. For instance, exclusion can be achieved without
unweaving and weaving aspects at runtime. However in our approach, aspects have
to be known at compile time: their approach does not have this limitation.

Locking Access to Shared Variable: There is a long history of research on
controlling access to shared variables by concurrent programs. Hoare-style monitors
are a case in point. Typically in such cases, a lock has to be introduced in order
to indicate when a given program can or cannot access the shared variable. The
variables openUntil and shutUntil in our example are similar to locks, but
these locks cannot be observed, let alone be enforced, by the window. Composition
Frames make use of these locks, together with runtime conditions and user
preference to resolve the conflicts. This mechanism provides a neat way to separate
concerns of the individual aspects from the concern of their composition.

14.6 Conclusion

In this chapter, we have described that aspect-oriented software systems that are
designed to satisfy multiple requirements may have joinpoints, each of which can
be matched with advice from several aspects. In such cases, aspect weavers, such as
the one in AspectJ, are free to choose the ordering of aspects. If a particular ordering
of aspects is needed, the developer can specify the ordering using the precedence
operator, which is used by the weaver to determine the ordering at compile-time.
Since the ordering specified by the precedence operator cannot be changed at
runtime, the composition of aspects can be over-restrictive and unresponsive to
runtime conditions.

In previous work on detection and resolution of feature interactions, Composition
Frames have been proposed and formalised as a way to compose features and
resolve feature interactions at runtime. Extending the work, we have now proposed

14 Aspect Interactions: A Requirements Engineering Perspective 285

that Composition Frames can be used to compose aspects and resolve aspect
interactions at runtime. The proposed approach has been illustrated with an aspect-
oriented implementation of a simple example from the smart home application.

In our implementation, the problem world domains are first implemented
as classes in the base system. Features are implemented as aspects that access
class variables and call methods of classes. When aspects access shared variables,
perhaps implicitly through method calls, they indicate the length of time for which
they want exclusive access to the shared variables. The length of time can often be
derived as part of the feature specifications. Respecting the principle of separation
of concerns, aspects do not communicate with each other about their intention
for exclusive access. Composition Frames are implemented as distinct aspects that
monitor method calls by other aspects and when an interaction is detected, attempt
to resolve the interaction. Composition Frames provide a number of semantics by
which the aspects can be composed at runtime and in a way responsive to runtime
conditions. This gives developers additional mechanisms for composing aspects.

Acknowledgements Feedback from the anonymous review process has helped improve this
chapter. This work is partially funded by a Microsoft Software Engineering Innovation Foundation
(SEIF) Award, by Science Foundation Ireland grant 10/CE/I1855 and by the European Research
Council.

References

1. M. Calder, M. Kolberg, E.H. Magill, S. Reiff-Marganiec, Feature interaction: A critical review
and considered forecast. Comput. Network. 41, 115–141 (2003). doi: 10.1016/S1389-
1286(02)00352-3

2. E. Cameron, N. Griffeth, Y.J. Lin, M. Nilson, W. Schnure, H. Velthuijsen, A feature-interaction
benchmark for in and beyond. IEEE Comm. Mag. 31(3), 64–69 (1993). doi 10.1109/35.199613

3. R. Chitchyan, A. Rashid, P. Rayson, R. Waters, Semantics-based composition for aspect-
oriented requirements engineering, in Proceedings of the 6th International Conference on
Aspect-Oriented Software Development (ACM, NY, 2007), pp. 36–48

4. R.J. Hall, Fundamental nonmodularity in electronic mail. Automat. Software Eng. 12(1),
41–79 (2005)

5. M. Jackson, Problem Frames: Analyzing and Structuring Software Development Problems.
(ACM Press & Addison Wesley, New York, 2001)

6. J. Kienzle, N. Guelfi, S. Mustafiz, Crisis management systems: a case study for aspect-oriented
modeling. Trans. Aspect-oriented Software Develop. 7, 1–22 (2010)

7. M. Kolberg, E.H. Magill, M. Wilson, Compatibility issues between services supporting
networked appliances. IEEE Comm. Mag. 41(11), 136–147 (2003)

8. R. Laney, L. Barroca, M. Jackson, B. Nuseibeh, Composing requirements using problem
frames, in Proceedings of 12th IEEE International Conference Requirements Engineering
(RE’04) (IEEE Computer Society, Silver Spring, MD, 2004), pp. 122–131

9. R.C. Laney, T.T. Tun, M. Jackson, B. Nuseibeh, in Composing Features by Managing
Inconsistent Requirements, ed. by L. du Bousquet, J.L. Richier. ICFI (IOS Press, Amsterdam,
2007), pp. 129–144

10. G. Mussbacher, J. Whittle, D. Amyot, Semantic-based interaction detection in aspect-oriented
scenarios, in RE (IEEE Computer Society, Silver Spring, MD, 2009), pp. 203–212

286 T.T. Tun et al.

11. A. Popovici, T. Gross, G. Alonso, Dynamic weaving for aspect-oriented programming, in
Proceedings of the 1st International Conference on Aspect-Oriented Software Development,
AOSD ’02 (ACM, New York, 2002), pp. 141–147

12. F. Sanen, E. Truyen, W. Joosen, A. Jackson, A. Nedos, S. Clarke, N. Loughran, A. Rashid,
Classifying and documenting aspect interactions, in Proceedings of the Fifth AOSD Work-
shop on Aspect, Components, and Patterns for Infrastructure Software, ed. by Y. Coady,
D.H. Lorenz, O. Spinczyk, E. Wohlstadter (Technical Report No. 33. Hasso-Plattner-Instituts
für Softwaresystemtechnik an der Universität Potsdam, 2006), pp. 23–26

13. The AspectJ Team: The AspectJ Programming Guide. Xerox Corporation (2001) URL http://
www.eclipse.org/aspectj/doc/next/progguide/index.html. Accessed 15 Dec 2012

14. T.T. Tun, Aspect compoistion using composition frames: Java program listings. Tech. Rep.
TR2012/09, The Open University (2012)

15. T.T. Tun, T. Trew, M. Jackson, R.C. Laney, B. Nuseibeh, Specifying features of an evolving
software system. Software Pract. Ex. 39(11), 973–1002 (2009)

16. H. Velthuijsen, Issues of non-monotonicity in feature-interaction detection, in FIW, ed. by
K.E. Cheng, T. Ohta (IOS Press, 1995), pp. 31–42

17. N. Weston, R. Chitchyan, A. Rashid, A formal approach to semantic composition of aspect-
oriented requirements, in Proceedings of the 2008 16th IEEE International Requirements
Engineering Conference (IEEE Computer Society, Washington, DC, 2008), pp. 173–182

http://www.eclipse.org/aspectj/doc/next/progguide/index.html
http://www.eclipse.org/aspectj/doc/next/progguide/index.html

Part V
AORE in Industry

Chapter 15
Implementing Aspect-Oriented Requirements
Analysis for Investment Banking Applications

Yuri Chernak

Abstract Aspect-oriented requirements engineering (AORE) introduced an artifact
called Requirements Composition Table (RCT). RCT presents a holistic view of an
application’s functionality structured by core features and crosscutting concerns. As
AORE remains little known to most practitioners in the software development field,
the purpose of this chapter is to explain the RCT concept to practitioners and discuss
its benefits.

The RCT technique has been implemented for a number of Wall Street applica-
tions at various investment banks. RCT can serve as a common frame of reference
for all parties on a project team and it has proven to be one of the most valuable
artifacts of a software project. This chapter discusses the steps to develop an RCT
and provides RCT examples of two financial applications.

RCT can effectively support various project tasks. This chapter illustrates how
RCT can help us (a) perform change impact analysis for releases and (b) assess test
coverage of existing regression test suites. The chapter concludes with describing
experiences using RCTs in practice and discussing lessons learned on projects
implementing the RCT technique.

15.1 Introduction

A number of software project tasks require a holistic and structured view of an
application’s functionality, for example, performing change impact analysis for new
releases as discussed in this chapter. Aspect-Oriented Requirements Engineering is
focused on improving requirements modularization and structure, and it introduces a
requirements analysis artifact called Requirements Composition Table (RCT) [1–4].
An RCT captures a complete inventory of an application’s features, structured by

Y. Chernak (�)
Valley Forge Consulting, Inc., Berwyn, USA
e-mail: ychernak@yahoo.com

A. Moreira et al. (eds.), Aspect-Oriented Requirements Engineering,
DOI 10.1007/978-3-642-38640-4 15, © Springer-Verlag Berlin Heidelberg 2013

289

mailto:ychernak@yahoo.com

290 Y. Chernak

core functionality and crosscutting concerns. In addition to the inventory of features,
an RCT captures the impact of crosscutting concerns on core features and presents
their composition as a binary decision, thereby providing a complete and structured
view of an application’s functionality. This RCT concept and the steps to produce
an RCT are discussed in detail in this chapter.

The RCT technique has been implemented for a number of applications on Wall
Street and has proven to be an effective solution to various practical problems. The
main purpose of this chapter is to explain to practitioners the RCT concept, as well
as its benefits provided to all project parties—the product owner, the developers,
and the testers. We illustrate the RCT benefits by discussing two important tasks:

(a) Performing change impact analysis for releases
(b) Assessing coverage and identifying gaps in existing regression test suites

15.2 Requirements Composition Table Explained

15.2.1 The Concept and Benefits of RCT

The functionality of any business application can be logically decomposed into
two categories of software requirements—core features and supplementary features.
Core features capture basic application functionality and, when executed, produce
a tangible and distinct business result. For example, use cases can be classified as
core features. In contrast, supplementary features do not produce business results
by themselves, but rather complement core features and add necessary details
to a core feature context. For example, if we book a hotel room or rental car
online, performing such a booking can be qualified as a core feature of an online
reservation system. However, to complete the booking, the system will invoke
various supplementary features such as data entry validation, calculations of the
sales tax and reservation cost, interfacing with a credit card vendor for payment
processing, etc. Such supplementary features can be invoked in the context of
various core features of a given application and impact their behavior.

To improve requirements analysis, modularization, and structure, AORE meth-
ods specifically address the fact that supplementary features can be scattered across
the application and can impact core features. In AORE, such supplementary features
are called crosscutting concerns [1, 5, 6]. Characteristics of crosscutting concerns
are discussed in the next section. Analyzing the impact of crosscutting concerns on
core features is an important requirements analysis task in AORE, where the results
of this task are captured in the form of an RCT [1–4]. The steps to produce an RCT
are discussed later in this chapter.

Thus, an RCT presents a holistic and structured view of the application func-
tionality that becomes a common frame of reference providing a common language
for all parties on a software project—the product owner, the developers, and the
testers. The RCT includes an inventory of all application features structured by two

15 Implementing Aspect-Oriented Requirements Analysis for Investment . . . 291

Core Features

Crosscutting Concerns
(Supplementary Features)

AORE studies two categories of requirements:

Core features capture basic application functionality
and, when executed, produce a tangible and distinct
business result.

Supplementary features do not produce
business results by themselves, but rather
complement core features.

A
pp

lic
at

io
n

fu
nc

tio
na

lit
y

Holistic application
view in the form

of a table

Table Columns

Table
Rows

Fig. 15.1 Two dimensions of an RCT

categories, i.e., core features captured in table columns and crosscutting concerns
captured in table rows (see Fig. 15.1). At the intersection of each core feature and
crosscutting concern, the RCT captures the impact of crosscutting concerns on core
functionality as a binary decision, in which 0 means “no impact” and 1 means “the
context of the core feature is impacted by the crosscutting concern”.

To illustrate the RCT concept, this section provides two RCT examples devel-
oped for investment banking applications. Both project teams needed to improve
effectiveness of change impact analysis and considered the RCT technique as a
solution to the issue. The first example shown in Fig. 15.2 is a partial RCT developed
for a prime brokerage application. In this example, we see two of ten modules
of which this application functionality was comprised. Figure 15.3 shows another
example of an RCT developed for an FX trading application. In this RCT example,
we also see two of six application modules. In these tables, columns represent core
features grouped by application modules. The table rows, except for the first and
second items in the list of concerns, represent crosscutting concerns. The central part
of each table captures the composition of concerns as a binary decision represented
as 0 or 1.

The first two items in the list of concerns are not crosscutting concerns and
require explanation. In an RCT each table column represents a core feature context
that includes not only crosscutting concerns but also core functionality as well. In
addition, a core feature context can include GUI features. Hence, these two items are
standard additions to any RCT and we can see them included in each RCT example
in Figs. 15.2 and 15.3. Section 15.2.3 discusses in detail the steps to develop a
complete RCT.

Finally, the RCT technique can complement and benefit any existing require-
ments methodology, and it can be easily adopted on projects that follow, for
example, the traditional, use-case-driven, or agile approaches.

292 Y. Chernak

01.01 New Instruction

01.02 Trade Correction

01.03 Repo Close

01.04 Trade Cancellation

01.05 Correction Filtering

01.06 Correction Allocation - External

01.07 Correction Allocation - Flip Action

01.08 In-flight Trade Processing

01.09 Manual Price Input

01.10 Finalize Pricing

01.11 Repo Offleg Publishing

01.12 Hide Errors

01.13 Missing Products Repair

01.14 Accrued Interest Batch

01.15 Override Errors

01.16 Account Resolution

01.17 Summarize Trade Counts

01.18 Missing Accrued Interest Repair

01.19 Rebalance Trade File

02.01 Account Mapping, Non-repo

02.02 Account Mapping, Repo

02.03 Account Type Mapping

02.04 Action Mapping

02.05 Buy, Sell Nature Mapping

02.06 Product Type Mapping

02.07 Broker Mapping

02.08 Reporting Only

02.09 Street-side Publishing

02.10 Client-side Publishing

02.11 Swift Account Flag Overrides

02.12 Treasury Breakdown

02.13 Asset Transfer

02.14 Prime Custody

02.15 Bulk Across Client Reference Number

02.16 Bulk Across Price

02.17 Blocking, Merging

02.18 Done-with Broker Processing

02.19 Done-with Broker Trade Filtering

02.20 Repo Trade Figuration

C
or

e
Fu

nc
tio

na
lit

y
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

G
U

I F
ea

tu
re

s
1

1
1

1
0

1
1

0
1

1
0

1
0

0
1

0
1

1
0

1
1

1
1

1
1

1
1

1
1

0
1

1
1

0
0

1
1

1
1

C
ro

ss
cu

tti
ng

 C
on

ce
rn

s
E

T-
In

 -
In

te
rn

al
 E

nt
itl

em
en

ts
1

1
1

1
0

1
1

0
1

1
0

1
0

0
1

0
0

1
0

1
1

1
1

1
1

1
1

1
1

0
1

1
1

0
0

1
1

1
1

E
T-

E
x

- E
xt

er
na

l E
nt

itl
em

en
ts

1
1

1
1

0
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
S

TY
 -

S
ec

ur
ity

1
1

1
1

0
1

0
0

1
1

0
0

0
0

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
C

S
 -

C
lie

nt
 S

et
up

1
1

1
1

1
1

1
1

0
0

0
0

0
0

0
1

0
0

1
1

1
1

1
1

1
1

1
0

0
1

0
1

0
1

1
1

1
1

1
P

T
- P

ro
du

ct
 T

yp
e

1
1

1
1

1
1

1
1

0
0

1
0

0
0

0
0

0
1

1
0

0
0

0
0

1
0

0
1

1
0

1
1

1
0

0
1

1
0

1
C

S
T

- C
as

h
S

ta
tu

s
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

TS
T

- T
ra

de
 S

ta
tu

s
1

1
1

1
1

1
1

1
0

0
1

1
0

0
0

0
0

0
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

FX
S

T
- F

X
 S

ta
tu

s
1

1
1

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

TP
S

T
- T

em
pl

at
e

S
ta

tu
s

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
FS

 -
Fi

le
 S

ta
tu

s
1

1
1

1
1

1
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

FV
 -

Fi
el

d
V

al
id

at
io

n
1

1
1

1
1

1
1

1
0

0
0

1
1

0
1

0
0

1
0

0
0

0
0

1
1

1
0

0
0

1
0

1
1

0
0

0
0

0
1

D
D

V
 -

D
at

a-
D

ep
en

de
nc

y
V

al
id

at
io

n
1

1
1

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

D
D

D
 -

D
at

a-
D

riv
en

 D
ef

au
lts

1
1

1
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
C

L
- C

al
cu

la
tio

ns
1

1
1

1
1

1
1

1
0

0
0

1
1

0
1

0
0

1
1

0
0

0
0

1
1

1
0

0
0

1
0

1
1

0
0

0
0

0
1

E
R

 -
E

nr
ic

hm
en

t
1

1
1

1
1

1
1

1
0

0
0

1
1

0
1

0
0

1
1

0
0

0
0

1
1

1
0

0
0

1
0

1
1

0
0

0
0

0
1

M
P

 -
M

ap
pi

ng
1

1
1

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
1

1
1

1
1

1
0

0
0

0
0

0
0

0
0

0
0

0
0

C
C

 -
C

on
cu

rr
en

cy
1

1
1

1
1

1
1

1
0

0
0

1
0

0
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

C
N

 -
C

on
ne

ct
iv

ity
1

1
1

1
0

1
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

R
G

 -
R

eg
io

n
1

1
1

1
1

1
1

0
0

0
1

0
0

0
0

0
0

0
1

0
0

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

D
F-

In
 -

D
at

a
Fl

ow
 In

1
1

1
1

1
1

1
1

0
1

1
1

1
0

1
1

1
1

0
1

1
1

1
1

1
1

1
1

1
1

1
0

0
1

1
1

1
1

1
D

F-
O

ut
 -

D
at

a
Fl

ow
 O

ut
1

1
1

1
1

1
1

1
1

0
1

1
1

1
1

1
0

1
0

1
1

1
1

1
1

1
1

0
0

1
1

1
1

1
1

1
1

1
1

S
I-I

n
- S

ys
te

m
 In

te
rfa

ce
 In

1
1

1
1

0
0

1
0

0
0

0
0

0
1

0
0

0
1

0
0

0
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
S

I-O
ut

 -
S

ys
te

m
 In

te
rfa

ce
 O

ut
1

1
1

1
0

0
0

0
0

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
1

0
0

0
0

0
0

0
0

0
0

E
M

L-
In

 -
E

m
ai

l I
n

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
E

M
L-

O
ut

 -
E

m
ai

l O
ut

1
1

1
1

1
0

0
0

0
0

0
0

0
0

0
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
A

D
T-

In
 -

In
te

rn
al

 U
se

r A
ud

it
1

1
1

1
0

1
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

A
D

T-
E

x
- E

xt
er

na
l U

se
r A

ud
it

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
C

A
 -

C
ac

he
1

1
1

1
1

1
1

1
0

0
0

0
0

0
0

0
0

0
0

1
1

1
1

1
1

0
0

0
0

0
0

0
0

0
0

0
1

1
0

E
xH

 -
E

xc
ep

tio
n

H
an

dl
in

g
1

1
1

1
1

1
1

1
0

0
0

0
0

0
0

0
0

0
1

0
0

0
0

0
0

1
0

0
0

0
0

0
0

0
0

0
0

0
0

P
F

- P
er

fo
rm

an
ce

1
1

1
1

1
1

1
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

R
C

T
Ex

am
pl

e:
 P

rim
e

B
ro

ke
ra

ge
 A

pp
lic

at
io

n

Li
st

 o
f

C
on

ce
rn

s

01
. T

ra
de

 P
ro

ce
ss

in
g

02
. T

ra
de

 F
lo

w

F
ig

.1
5.

2
R

C
T

ex
am

pl
e—

pr
im

e
br

ok
er

ag
e

ap
pl

ic
at

io
n

15 Implementing Aspect-Oriented Requirements Analysis for Investment . . . 293

01.01 New Trade

01.02 Modify Trade

01.03 Cancel Trade

01.04 New Order

01.05 Modify Order

01.06 Accept Order

01.07 Cancel Order

01.08 Execute Order

01.09 Book Order

01.10 Complete Order

01.11 Book Sales Credit

01.12 Modify Sales Credit

01.13 Update FX Rates

01.14 Update Interest Rates

02.01 View Trade Blotter

02.02 View Trade Inquiry Request

02.03 View Order Blotter

02.04 View Order Inquiry

02.05 View Mark-To-Market Blotter

02.06 View Sales Blotter

02.07 View Sales Sign Off Blotter

02.08 View Wash Trades

02.09 View Currency Summary

02.10 View Real Time Summary

02.11 View Customer Inquiry

02.12 View Credit Exposure Inquiry

02.13 View Currency Prices

02.14 View Interest Rates

02.15 View Linked Trades

02.16 View FX Reports

C
or

e
Fu

nc
tio

na
lit

y
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
G

U
I F

ea
tu

re
s

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

C
ro

ss
cu

tin
g

C
on

ce
rn

s
E

T
- E

nt
itl

em
en

ts
1

1
1

1
1

1
1

1
1

1
1

1
0

0
1

1
1

1
1

1
1

1
1

1
0

0
0

0
1

1
P

T
- P

ro
du

ct
 T

yp
e

1
1

1
0

0
0

0
0

0
0

0
0

0
0

1
1

0
0

1
1

1
1

0
0

0
0

0
0

1
1

S
T-

O
 -

O
rd

er
 S

ta
tu

s
0

0
0

0
1

1
1

1
1

1
0

0
0

0
0

0
1

1
0

0
0

0
0

0
0

0
0

0
0

0
S

T-
T

- T
ra

de
 S

ta
tu

s
0

1
1

1
0

0
0

0
0

0
1

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
FV

 -
Fi

el
d

V
al

id
at

io
n

1
1

0
1

1
0

0
0

0
0

1
1

1
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

D
D

V
 -

D
at

a-
D

ep
en

de
nc

y
V

al
id

at
io

n
1

1
0

1
1

0
0

0
0

0
1

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
D

D
D

 -
D

at
a-

D
riv

en
 D

ef
au

lts
1

1
0

0
0

0
0

0
0

0
1

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
C

C
 -

C
on

cu
rr

en
cy

0
1

1
0

1
1

1
1

1
1

0
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

C
N

 -
C

on
ne

ct
iv

ity
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
C

A
 -

C
ac

he
1

1
0

1
1

0
0

0
0

0
1

1
1

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
D

F-
In

 -
D

at
a

Fl
ow

 In
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
D

F-
O

ut
 -

D
at

a
Fl

ow
 O

ut
1

1
1

1
1

1
1

1
1

1
1

1
1

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
S

I-I
n

- S
ys

te
m

 In
te

rfa
ce

 In
1

1
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
S

I-O
ut

 -
S

ys
te

m
 In

te
rfa

ce
 O

ut
0

0
0

0
0

0
0

0
0

0
1

1
1

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
P

F
- P

er
fo

rm
an

ce
1

1
1

1
1

1
1

1
1

1
0

0
0

0
1

1
1

1
1

0
0

0
0

1
1

0
1

0
0

0

R
C

T
Ex

am
pl

e:
 F

X
Tr

ad
in

g
Ap

pl
ic

at
io

n

Li
st

 o
f

C
on

ce
rn

s

02
. D

at
a

Vi
ew

01
. T

ra
de

 C
ap

tu
re

F
ig

.1
5.

3
R

C
T

ex
am

pl
e—

fr
on

t-
of

fic
e

FX
tr

ad
in

g
ap

pl
ic

at
io

n

294 Y. Chernak

An RCT has been implemented for many software development projects in the
investment banking sector and has proven to be one of the most important project
artifacts. It can help solve common practical issues and effectively support various
tasks:

• Performing software change impact analysis for new releases
• Assessing test coverage and identifying gaps in existing regression test suites
• Planning functional and regression testing
• Supporting renovation projects to replace legacy applications
• Planning iterative and incremental development
• Planning sprints on Agile projects
• Performing effective exploratory testing
• Supporting knowledge transfer

The first and the second tasks in the above list are discussed in this chapter.

15.2.2 Characteristics and Examples of Crosscutting Concerns

In practice, in any business application we can find features that comply with two
characteristics—they are (a) scattered, i.e., are invoked across an application at
different functional areas and (b) tangled with other features thereby impacting their
context. The extent to which some features can be scattered and tangled with other
features can be illustrated by the numbers from the prime brokerage application for
which we provided the RCT example (Fig. 15.2) in the previous section. In this
application, each of the core features is impacted, on average, by ten crosscutting
concerns. On the other hand, most of the application’s crosscutting concerns impact
at least 20 % of core features, whereas some of them impact from 60 % to 80 % of
core features.

Thus, supplementary features that can be analyzed and modeled as crosscutting
concerns are those that [2, 3]:

• Cannot be invoked directly by end-users, i.e., to be executed, a crosscutting
concern needs a context of core features

• When invoked, a crosscutting concern impacts a core feature’s behavior in one
of the following ways:

– It constrains a core feature execution (example: user entitlements)
– It interrupts a core feature flow (examples: field validation, concurrency)
– It adds detail to a core feature (example: calculations)

• Are sufficiently scattered, i.e., each crosscutting concern impacts at least three to
four core features

Table 15.1 shows examples of crosscutting concerns common to investment
banking applications and grouped by seven categories. The Appendix section
includes Table A.1 that shows descriptions of these crosscutting concerns. Typically,

15 Implementing Aspect-Oriented Requirements Analysis for Investment . . . 295

Table 15.1 Crosscutting concerns common to investment banking applications

a list of crosscutting concerns for a given application can include from 20 to
40 items; however, this number depends primarily on the application complexity
and level of abstraction to identify crosscutting concerns. For example, some
project teams defined Entitlements as a single category of concern, whereas other
teams needed more visibility and defined this concern as two subcategories—
Internal Entitlements (for internal users) and External Entitlements (for external
users). Another example can be the System Interface (SI) concern. Many financial
applications exchange transactions with upstream and downstream applications. To
differentiate between the inbound and outbound transactions and their impact on
core features, we can represent the system interface concern as two subcategories—
SI-In (Inbound) and SI-Out (Outbound), respectively.

Another point about crosscutting concerns is that they can be associated with
both functional and non-functional requirements [1, 6]. In Table 15.1, we see
most of the crosscutting concerns representing a functional category; however, two
concerns, Cache (i.e. memory cache) and Performance, represent a non-functional
category.

Finally, we frequently find that many items in the list of crosscutting concerns are
generic and repeat across many other applications in the same business domain, e.g.,
financial applications. This can be explained by the fact that supplementary require-
ments are often not application-domain-specific, but rather reflect some common
software engineering principles that we use to design business applications.

15.2.3 Steps to Produce an RCT

Developing an RCT is a relatively small effort. Based on the author’s experience,
it takes about 10–12 h for medium-to-large size applications (include 100–200 core
features). This procedure can be conducted as a series of 1 h working sessions with

296 Y. Chernak

Fig. 15.4 Steps to produce an RCT

application subject matter experts (SME) and it includes the following six steps also
illustrated in Fig. 15.4:

Step 1: Identify SMEs. Conduct a kickoff meeting with the engagement’s key
stakeholders; discuss and agree on the engagement mission, i.e., what issue
we are trying to solve with RCT, how the RCT will be used by the team, etc.
Developing an RCT is the process of extracting knowledge about the application
functionality from available sources and presenting it in a specific structured
view. So, at the kickoff meeting, we need to identify SMEs who will be the
source of knowledge and establish their commitments.

Step 2: Identify Application Modules. Conduct a working session with SMEs to
analyze the application functionality at a high level and break it into modules,
a.k.a. functional areas. Assign one or more SMEs to each module and schedule
additional working sessions that will focus on one module at a time.

Step 3: Identify Crosscutting Concerns. Identify crosscutting concerns, agree on
each, and capture their meaning. Guidelines to identify crosscutting concerns
can be found in published sources, for example [2, 3, 8]. As most categories
of crosscutting concerns are reusable, a good starting point would be to review
the list from a previous engagement and see which crosscut categories from the
existing list can be applied to a given application. Further, if the project has
specifications of existing product requirements, they can be analyzed to identify
crosscutting concerns as well [6].

Step 4: Identify Core Features. Conduct the working sessions with the assigned
SMEs, as scheduled in Step 2, to identify the inventory of core features for each
application module. Be mindful about the level of abstraction at which you want

15 Implementing Aspect-Oriented Requirements Analysis for Investment . . . 297

Architect Carpenter

Electrician Plumber
All parties on a construction team need the same frame of
reference, i.e., a Floor Plan.
Similarly, all parties on an application team need the same
frame of reference, which can be a Requirements
Composition Table.

Fig. 15.5 RCT as an “application’s floor plan”

to identify core features. Each core feature should be identified as producing
some tangible and distinct end-result that the user can achieve by executing this
feature.

Step 5: Compose Concerns. Compose core features with crosscutting concerns. To
do that, select each core feature in turn, one at a time, and go down the list of
crosscutting concerns to decide which of them will or will not be applicable to
its context. Capture results in the RCT as a binary decision (0 D No, 1 D Yes).

Step 6: Validate RCT. When all core features are composed with related crosscut-
ting concerns, perform some basic RCT validation. First, determine the degree
of scattering of crosscutting concerns by building a distribution of occurrences
in the table. A crosscutting concern is considered to be sufficiently scattered if it
is used (occurs) in the table at least three to four times. Eliminate categories of
crosscuts that you did not use in the table (no occurrences). Identify any concerns
that have fewer than three occurrences and discuss whether you want to keep
them on the list. Second, review and validate a draft RCT with the product owner
and testers, solicit their feedback, and ensure that they understand the RCT and
feel comfortable to use it going forward. Doing this ensures that the RCT can
effectively serve as a common language for all parties on the project team.
As a result of these steps, we capture a complete and structured view of an
application’s functionality in the form of an RCT that can serve as a common
frame of reference for all members of a project team. In this regard, RCT can
be compared to a floor plan used by all members of a construction team (see
Fig. 15.5), e.g., an architect, a plumber, an electrician, etc. Because of this
similarity, project teams frequently refer to an RCT as an “application’s floor
plan.”

298 Y. Chernak

15.2.4 RCT’s Frequently Asked Questions

For the last 6 years the RCT technique has been implemented on a number
of projects on Wall Street where the author of this chapter conducted many
presentations and classes explaining this technique. Each of these sessions included
a discussion of questions from the audience. The questions that frequently repeated
from session to session are discussed below.

1. Is the RCT technique intended to be used for existing production systems or
new application development?

We use an RCT to capture an existing application’s functionality; hence, the
RCT technique is primarily intended for production systems. However, when
a new development application has already developed some meaningful func-
tionality, a team can also start using and benefiting from the RCT technique. For
example, a development manager can use an RCT for planning future iterations,
business analysts can use an RCT for structuring and developing functional
requirements, and testers can use an RCT for structuring their test repository
and developing tests, etc.

2. Creating an RCT is conceptually the same as performing functionality
reverse-engineering, which is typically a time-consuming task for any busi-
ness application. What is different about the RCT technique that allows it to
perform the same task with a relatively small effort?

This is a very common question. Yes, to develop an RCT, we essentially
perform functionality reverse-engineering. However, the main difference with
the conventional reverse-engineering is that the RCT captures just the inventory
of functional features and presents it in a specific structured view. This requires
much less effort and time as compared to rewriting functional specifications,
which is what people commonly think of functionality reverse-engineering.

3. Who are the more common SMEs involved in the development of an RCT,
e.g., end-users, business analysts, developers, or testers?

In general, any project team member who has good knowledge of the
application functionality can effectively contribute to the development of
RCT. From the author’s experience, most commonly such SMEs were lead
developers and business analysts. One benefit of engaging developers is that
they can check the source code, for example, when we are not sure about
the impact of some crosscuts on core features. However, when a draft RCT
is produced, it needs to be reviewed by all parties on the project team to ensure
that they all have agreed to this artifact and it can serve as a common language
and can be used as a common frame of reference by the entire project team.

4. How do you know whether a newly developed RCT is complete?
This is a valid and important question. A draft RCT should be reviewed,

validated, and agreed to by all project parties before we start using it. A
consensus among the parties is a good sign that the RCT is fairly complete
and ready to be used. However, it is expected that during the first few releases,
when we will be using an RCT, some discrepancies with the actual application

15 Implementing Aspect-Oriented Requirements Analysis for Investment . . . 299

functionality will be noticed. When this happens, the RCT should be updated
and a new version approved and baselined.

5. Can we automate the RCT development?
This is a very frequent question. Unfortunately, the short answer is NO. Most

commonly, the sources of application functionality are application SMEs, and
the process of developing an RCT is based on the interviews of these SMEs,
which cannot be automated. Second, the method of structuring the application
by modules and then breaking it down by core features is subjective, and the
RCT is frequently adjusted and revised as we proceed with its development. The
list of crosscutting concerns and the level of their abstraction are also subjective.
These factors make it difficult to automate the RCT development. However, the
good news is that the “manual” effort to develop an RCT is relatively small and
provides flexibility to tailor the level of the RCT abstraction during the working
sessions to make it more meaningful to the team members who will be using
the RCT.

6. Is the composition of concerns always “black & white” (i.e., 0 or 1)?
Yes, the concept of RCT requires that the impact of crosscuts is captured

as a binary decision. This is consistent with the implementation of crosscuts in
the application’s source code, where the code related to a given crosscutting
concern either exists or does not exist in the context of a core feature.

7. What can you do if you are not sure whether a crosscutting concern impacts
a particular core feature or not?

The answer to this question was briefly discussed above. The best way to
resolve the uncertainty is to ask a developer to review the source code related
to the feature in question. Seeing how the actual functionality is implemented
will be the most accurate reference. Consulting other application SMEs can be
another useful resource.

8. What if a given crosscutting concern does not impact any core features?
By definition, a crosscutting concern is a supplementary feature that impacts

multiple other features. However, when we develop a new RCT, it is not
uncommon that we see some crosscuts not mapped yet to any of the core
features. Such candidate crosscuts should be investigated as part of the draft
RCT validation. First, we need to confirm whether a candidate crosscut is really
needed and can fully comply with the characteristics of crosscutting concerns.
Then we should review the inventory of core features, where we will most
likely find some features to which the crosscut in question can be mapped. If
these steps do not produce a result, then such a crosscutting concern should be
removed from the list of crosscuts and possibly reclassified as a core feature in
an RCT.

9. If two crosscutting concerns have the same composition pattern (0/1), i.e.,
they impact the same core features in the same way, can we merge them?

Not necessarily. Two crosscutting concerns can have the same composition
pattern but completely different meanings. Thus, we should keep them as two
separate items in the RCT.

300 Y. Chernak

10. What is a practical number of crosscutting concerns for a business applica-
tion? What if the list of crosscuts grows too long?

The longer the list of crosscuts, the larger the RCT becomes, which makes
it more difficult to develop, use, and maintain. Based on experience, a practical
maximum number of crosscuts in the RCT is about 30 or 40 items. If the list
grows much longer, we should look for possibilities to reduce it by collapsing
some of the crosscuts with similar purposes and replacing them with a single
and more general crosscut category.

11. Can crosscutting concerns impact each other? If so, how can we reflect it in
the RCT?

In general, crosscutting concerns can impact not only core features but also
each other as well. However, for the purposes of RCT, where we analyze and
capture the impact of crosscuts on core features, we disregard their possible
mutual impact.

12. Can a core feature be tangled with other core features? If so, how can we
reflect it in the RCT?

Yes, core features can impact each other in the way that one core feature
can be a part of others. This fact was recognized long ago and addressed by the
use-case modeling. In particular, UML defines include and extend relationships
among use cases (i.e., core features from the RCT perspective) that we can
use to model their mutual impact. However, the RCT is intended for analyzing
how crosscuts impact core features, which is a different view from the use-case
modeling. Hence, the RCT disregards the mutual impact of core features and
captures each core feature context independently from other core features.

13. What is the difference between a Requirements Composition Table (RCT) and
a Requirements Traceability Matrix (RTM)?

The short answer is that RCT and RTM are two completely different
artifacts. What sometimes confuses people who ask this question is the fact
that both artifacts capture relationships among requirements. However, the type
of relationship is different in each case. The RCT captures the relationship
between related features where a given crosscutting concern is a part of other
requirements, i.e., core features. In contrast, an RTM captures links between
pairs of related project artifacts produced at different phases of a project. For
example, we can capture in the RTM links between user requirements and
related functional requirements and also links between functional requirements
and related tests. These links provide the ability to follow the life of a
requirement in both forward and backward directions to support development
tasks [7].

15 Implementing Aspect-Oriented Requirements Analysis for Investment . . . 301

15.3 RCTs for Performing Change Impact Analysis

15.3.1 Capturing CIA Results in an RCT

Most business applications in a typical IT department are existing production
systems that go through regular cycles of production releases. The scope of a
new release is usually defined by reviewing a backlog of user (a.k.a. business or
stakeholder) requirements and requests to fix bugs, then selecting higher priority
items to be implemented in the next release.

User requirements are usually captured as short descriptions of stakeholder
needs. Although these descriptions may not be sufficient to describe how the
requested changes impact the application’s existing functionality, it is not uncom-
mon that a team would not produce any more detailed product (a.k.a. functional)
requirements. This creates challenges for (a) developers to accurately estimate the
release effort and (b) testers to understand and define the scope of functional testing
based on only the high-level user requirements. Performing change impact analysis
can be a solution to this issue. This task is a part of the general requirements
engineering discipline [9]; guidelines to perform it can be found, for example,
in [10–12].

However, performing change impact analysis based on an RCT can provide more
granular and complete results. Commonly for production systems, most new user
requirements typically overlap with the application’s existing functionality. Hence,
to better understand their impact, we can use an RCT as a frame of reference. The
RCT presents a holistic and structured view of the application’s functionality and
has proven to be effective to perform change impact analysis.

Using the RCT, we can analyze user requests one at a time, and decide whether
each request overlaps with some of the existing application features or if it requires
adding a new feature. The detailed workflow of this activity is shown in Fig. 15.6.
Once we have identified impacted features in the RCT, we enter the related user
request ID in the respective RCT cells (see Fig. 15.7) to establish traceability [7]
between a given user request and related product requirements. Commonly, a given
user request can impact multiple product features, and a given product feature in an
RCT can be impacted by multiple user requests.

When performing change impact analysis, it is important to differentiate between
two types of impact—direct (a.k.a. primary) and indirect (a.k.a. secondary) [11].
Direct impact means that we need to change the source code of some features or
add new features, and they will require functional testing. Indirect impact means
that we do not change code, but because of side or ripple effects of directly impacted
features, we still have some quality concerns about other features that would require
regression testing [13]. To differentiate between the two types of impact in an RCT,
we use the impact type indicators (D) or (I), where (D) means “direct impact” and
(I) means “indirect impact” of a given user requirement. We place these indicators
after each user requirement ID, e.g. 31896 (D) (see Fig. 15.7), in the RCT cells that

302 Y. Chernak

Change Impact Analysis Workflow

Process Start

Analyze User Request

Related to
core feature?

Determine Impacted
Module

New core
feature?

Iden�fy Impacted
Core Feature ContextAdd Core Feature

Compose New
Feature with

Crosscuts

Iden�fy Impacted
or New Concerns

Does impacted
core feature include

DF-Out concern?

Iden�fy Other Impacted
Core Features for

Regression Tes�ng

Process End

Determine Crosscut
Category

Determine Impacted
Module

Exis�ng crosscu�ng
concern?

Add Crosscu�ng
Concern to the List

Iden�fy Impacted Core
Features

Yes No

Yes No

Yes No

Yes

No

Core Feature Workflow Crosscut Workflow

More Impacted
modules?

Yes

No

Determine Type of Impact
(direct vs. indirect)

Determine Type of Impact
(direct vs. indirect)

Fig. 15.6 Change impact analysis workflow

represent impacted concerns. The highlighted RCT columns show the entire context
of impacted core features.

Now, we will illustrate in more detail the change impact analysis procedure and
discuss two examples of user requirements that were implemented in a release of
the prime brokerage application. The first user requirement 31896 stated “The user
should be able to rebalance a trade file on demand”. After reviewing the existing
features, the team realized that this capability did not exist in the application and

15 Implementing Aspect-Oriented Requirements Analysis for Investment . . . 303

01
.0

1
N

ew
 In

st
ru

c�
on

01
.0

2
Tr

ad
e

Co
rr

ec
�o

n

01
.0

3
Re

po
 C

lo
se

01
.0

4
Tr

ad
e

C
an

ce
lla

tio
n

01
.0

5
C

or
re

ct
io

n
Fi

lte
rin

g

01
.0

6
C

or
re

ct
io

n
A

llo
ca

tio
n

- E
xt

er
na

l

01
.0

7
C

or
re

ct
io

n
A

llo
ca

tio
n

- F
lip

 A
ct

io
n

01
.0

8
In

-fl
ig

ht
 T

ra
de

 P
ro

ce
ss

in
g

01
.0

9
M

an
ua

l P
ric

e
In

pu
t

01
.1

0
Fi

na
liz

e
P

ric
in

g

01
.1

1
R

ep
o

O
ffl

eg
 P

ub
lis

hi
ng

01
.1

2
H

id
e

E
rr

or
s

01
.1

3
M

is
si

ng
 P

ro
du

ct
s

R
ep

ai
r

01
.1

4
A

cc
ru

ed
 In

te
re

st
 B

at
ch

01
.1

5
O

ve
rr

id
e

E
rr

or
s

01
.1

6
A

cc
ou

nt
 R

es
ol

ut
io

n

01
.1

7
S

um
m

ar
iz

e
Tr

ad
e

C
ou

nt
s

01
.1

8
M

is
si

ng
 A

cc
ru

ed
 In

te
re

st
 R

ep
ai

r

01
.1

9
R

eb
al

an
ce

 T
ra

de
 F

ile

Core Func�onality 1 1 1 31897 (I) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 31896 (D)
GUI Features 1 1 1 31897 (D) 0 1 1 0 1 1 0 1 0 0 1 0 0 1 0
Crosscuting Concerns
ET-In - Internal En�tlements 1 1 1 31897 (I) 0 1 1 0 1 1 0 1 0 0 1 0 0 1 0
ET-Ex - External En�tlements 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
STY - Security 1 1 1 1 0 1 0 0 1 1 0 0 0 0 1 0 0 0 0
CS - Client Setup 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 1 0 0 31896 (D)
PT - Product Type 1 1 1 31897(I) 1 1 1 1 0 0 1 0 0 0 0 0 0 1 31896 (D)
CST - Cash Status 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
TST - Trade Status 1 1 1 31897 (D) 1 1 1 1 0 0 1 1 0 0 0 0 0 0 31896 (D)
FXST - FX Status 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
TPST - Template Status 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
FS - File Status 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
FV - Field Valida�on 1 1 1 31897 (D) 1 1 1 1 0 0 0 1 1 0 1 0 0 1 0
DDV - Data-Dependency Valida�on 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
DDD - Data-Driven Defaults 1 1 1 31897 (D) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
CL - Calcula�ons 1 1 1 1 1 1 1 1 0 0 0 1 1 0 1 0 0 1 31896 (D)
ER - Enrichment 1 1 1 1 1 1 1 1 0 0 0 1 1 0 1 0 0 1 31896 (D)
MP - Mapping 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
CC - Concurrency 1 1 1 31897 (D) 1 1 1 1 0 0 0 1 0 0 1 0 0 0 0
CN - Connec�vity 1 1 1 31897 (D) 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0
RG - Region 1 1 1 31897 (I) 1 1 1 0 0 0 1 0 0 0 0 0 0 0 31896 (D)
DF-In - Data Flow In 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0
DF-Out - Data Flow Out 1 1 1 31897 (D) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0
SI-In - System Interface In 1 1 1 1 1 1 1 0 0 0 1 0 0 1 0 0 0 0 0
SI-Out - System Interface Out 1 1 1 31897 (I) 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0
EML-In - Email In 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
EML-Out - Email Out 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0
ADT-In - Internal User Audit 1 1 1 31897 (I) 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0
ADT-Ex - External User Audit 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
CA - Cache 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0
ExH - Excep�on Handling 1 1 1 31897 (I) 1 1 1 1 0 0 0 0 0 0 0 0 0 0 31896 (D)
PF - Performance 1 1 1 31897 (I) 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0

List of Concerns

01. Trade Processing

Requirements Composition Table

Fig. 15.7 Change impact analysis results captured in an RCT

they needed to add a new core feature. They also agreed that the new feature should
be added to the module “01. Trade Processing.” After they added a new column
“01.19 Rebalance Trade File” to the RCT (see Fig. 15.7) they then went down the
list of crosscutting concerns and identified other supplementary features that should
also be part of the newly added core feature. To mark the impacted features, they
entered the user requirement ID in the related RCT cells. As a result, not only did
the team agree on a new core feature to be added, but they also agreed on additional
concerns to be implemented and tested in the context of the new core feature.

The second user requirement 31897 stated “The system should allow the user
cancellation of multiple trades.” The application already had a core feature “01.04
Trade Cancellation,” although it allowed only a single trade cancellation. The team
decided that modification of the existing core feature 01.04 would be sufficient to
implement this user requirement. They then reviewed the list of the crosscutting
concerns applicable to this core feature context to decide which of them were
impacted by the requested change 31897 and whether the impact was direct or
indirect.

As we can see in Fig. 15.7, the context of the core feature 01.04 included various
crosscuts directly and indirectly impacted by the change. As crosscutting concerns

304 Y. Chernak

Release
Planning

CIA
Preparation CIA Meeting

Product
Owner

Team Lead

CIA
Coordinator

Developer/BA

RCT Owner

All Parties

CIA
Coordinator

Release
Closure

CIA
Coordinator

Team Lead Team Lead

CIA Result
Approval

1

1

3

2 4

5 6

6

7

8 10

9

Fig. 15.8 Change impact analysis (CIA) process—roles and responsibilities

are scattered across other core features, investigation of their ripple effects was
required. We analyzed ripple effects for each impacted crosscutting concern one
at a time and following the steps defined in the crosscut branch of the CIA workflow
shown in Fig. 15.6. For example, one of the directly impacted crosscutting concerns
was DF-Out—Data Flow Out (see Fig. 15.7), which means that the output of this
feature 01.04, i.e., cancelled trades, will be inputs to and used by other core features.
As a result of the DF-Out ripple effect investigation, the team identified additional
core features in two other modules, where all of them were qualified as indirectly
impacted. Finally, the directly impacted features were then included in the scope of
functional testing, and the indirectly impacted features were included in the scope
of regression testing.

15.3.2 Change Impact Analysis Procedure: Roles
and Responsibilities

Change impact analysis can be more effective when it is defined and performed as
a formal procedure with all parties participating—the product owner, who decides
on and approves the release scope, the developers, who are assigned to implement
changes, and the testers, who will test the release. In this procedure the CIA process
can be defined as five phases (see Fig. 15.8):

• Release Planning
• CIA Preparation
• CIA Meeting

15 Implementing Aspect-Oriented Requirements Analysis for Investment . . . 305

• CIA Result Approval
• Release Closure

The formal CIA meeting is the central activity in this process. As a result of
the formal session, all parties can reach a consensus on the feature-level scope of
release implementation, as well the scope of functional and regression testing as it is
defined and captured in the RCT. A complete step-by-step CIA procedure is shown
in Fig. 15.8, and the responsibilities of various parties are defined below:

1. Product Owner and Team Lead: Finalize the release scope, i.e., a list of user
requests (a.k.a. business or user requirements) to be implemented in the release.

2. Team Lead: Assigns user requests to developers to analyze and implement.
3. CIA Coordinator: Schedules a CIA meeting.
4. Assigned Developers/BA: Prepare a CIA case for each user request.
5. CIA Coordinator: Reconciles inputs from Developers/BA, prepares the meet-

ing materials.
6. CIA Coordinator: Conducts a CIA meeting (Business Owner, Developers, QA

parties are invited):

(a) Developers/BA: Present a CIA case for each user request.
(b) All Parties: Examine and validate the presented results.
(c) CIA Coordinator: Facilitates a discussion, takes notes.

7. CIA Coordinator: Publishes the final CIA results after the meetings.
8. Team Lead: Approves the CIA results for the release.
9. RCT Owner: At the end of a release, updates the RCT and produces a new

version to be approved and baselined.
10. Team Lead: Approves the latest RCT version.

This procedure has proven to be effective on the author’s projects and can be
recommended to other project teams who look to improve effectiveness of their
change impact analysis for releases. Finally, it is worth noting that different roles
discussed above can be assigned to the same person to make the procedure more
practical. For example, the CIA Coordinator and RCT Owner can be the same
project team member.

15.4 RCTs for Assessing Coverage and Identifying Gaps
in a Regression Test Suite

15.4.1 Steps to Perform an Assessment

For critical applications, a QA team commonly develops a sizable suite of regression
tests over time and uses it for testing new releases. However, the project team
frequently does not have an adequate view into the test coverage provided by the

306 Y. Chernak

regression suite and, specifically, cannot identify where the coverage gaps are. This
issue stems from the common fact that a project team does not develop and maintain
a complete set of product requirements, which is necessary to assess and measure
regression suite coverage.

An RCT presents a complete inventory of functional features and can be used as
a point of reference to assess coverage gaps. In fact, the RCT technique has proven
to be quite effective in solving this issue on the author’s projects [4]. The RCT-based
assessment can be performed as the following ten steps:

1. Produce a requirements composition table.
2. Review and refine the inventory of regression tests (each test should have a

defined objective).
3. Populate the RCT features in a test management tool (e.g., HP Quality Center).
4. Create a new test repository structure consistent with the structure of require-

ments (breakdown by modules, core features).
5. Populate existing tests in the new repository.
6. Establish traceability between requirements and tests.
7. Identify gaps and measure test coverage.
8. Review and validate the assessment results with the QA team.
9. Refine the assessment results based on the review feedback.

10. Produce and present the assessment report to the stakeholders.

To better manage regression tests, a common practice is to store them in a
commercial test management tool, for example, HP Quality Center (HP QC). This
tool also includes a Requirements module that is intended to be a repository of
features that can be traced to tests and will allow us to measure test coverage. Hence,
assuming that we already have regression tests in HP QC and have developed an
RCT (Step 1), we follow other steps to assess coverage and identify gaps.

In Step 2 we review and analyze the descriptions of regression tests, in particular,
we need to make sure that the test objective is clearly stated for each test, so we could
better decide to which core feature and its applicable crosscutting concerns this test
should be mapped.

In Step 3 we need to populate the inventory of RCT features in HP QC’s
Requirements module. We create a folder structure reflecting the application’s
breakdown by modules (defined in an RCT). Then in each module’s folder,
we create a list of requirements, both core features and crosscutting concerns,
comprising that application module.

To better establish traceability between requirements and tests and better main-
tain the regression suite going forward, its structure in the test management tool
should be exactly the same as the structure of requirements. Hence, before we start
mapping tests to requirements, we perform refactoring of the existing regression
suite structure as two steps. In Step 4 we create a new test repository structure in
the Test Plan module of HP QC to be consistent with the structure of requirements.
Then in Step 5 we populate it with the existing tests.

In Step 6 we establish traceability between tests and the features that they
designed to validate. Most commercial test management tools provide this

15 Implementing Aspect-Oriented Requirements Analysis for Investment . . . 307

Fig. 15.9 Test coverage gaps shown in HP QC

capability. Note that a given test could be traced to several requirements (RCT
features), and any RCT feature could be traced to more than one test. Because the
accuracy of the traceability is critical to determining the assessment results, we
need to engage the QA team members at the end of this step to carefully review the
mapping.

When all tests are traced to their related requirements in HP QC, we can clearly
see coverage gaps. As illustrated in Fig. 15.9, requirements that do not have any
representation in the regression suite are listed as “Not Covered” and represent
coverage gaps. Once we have identified gaps, we can perform Step 7 to measure test
coverage. We begin this step by marking with a different color those RCT cells (see
Fig. 15.10) that represent the gaps identified in HP QC and then calculate coverage
measurements, first, for each core feature context (an RCT column) and, second, the
average coverage for each module.

308 Y. Chernak

Fig. 15.10 Presenting coverage gaps in an RCT

The benefit of capturing coverage results in an Excel document is that it allows
us to easily calculate coverage as a ratio between the covered concerns and the
total number of concerns in the context of a given core feature. After we calculate
coverage for all core features, we can derive the average number for the entire
module as illustrated in Fig. 15.10. Hence, to measure test coverage, we follow
four steps:

(a) Calculate the sum of all applicable concerns for a given use case context. This
number represents 100 % of concerns to be covered by tests.

(b) Subtract from the sum the number of colored cells—i.e., concerns not covered
by tests. This will give us the number of covered concerns in each core feature
context.

(c) Calculate for each core feature the ratio of covered concerns to the total number
of concerns and present it as a core feature coverage percentage.

15 Implementing Aspect-Oriented Requirements Analysis for Investment . . . 309

(d) Once test coverage is calculated for all core features in a given module, we can
derive the average number for the entire model.

In Steps 8 and 9 the first assessment results should be reviewed, refined, and
agreed with the QA team before we produce a final assessment report in Step 10.
This step is discussed in detail in the next section.

Performing coverage assessment of existing regression tests can be a time-
consuming task, where the effort is proportional to the size of the regression suite.
An important factor is the clarity of the test specifications. Sometimes it is not
immediately clear which feature a tester intended to validate when he/she designed
a given test. Mapping such a test to its related features will require more time and
effort. However, once all tests are analyzed and traced, the end-result will pay off—
the team will have excellent visibility into the coverage gaps and can better decide
on the strategy to close the gaps and evolve their regression suite further.

Finally, it is important to clarify that assessment of test coverage is not the same
as evaluation of test-design completeness for individual requirements. For example,
100 % test coverage can be achieved by designing at least one test case for each of
an application’s features, yet most of the individual requirements, to be sufficiently
validated, could still require additional test cases. Hence, this RCT technique is
primarily intended to support our analysis from three perspectives:

1. Identifying test coverage gaps.
2. Providing testers with visibility into which requirements have more and which

ones have less test coverage.
3. Helping testers understand which types of concerns they commonly miss in test

designs.

Based on the results of this analysis, testers can make better decisions about how
to evolve their regression suite further.

15.4.2 Presenting Assessment Results

The assessment results should be captured in an assessment report, which is an
important deliverable of the RCT-based assessment and should be presented to the
engagement stakeholders. The assessment report should include:

• Executive summary providing the engagement sponsors, objectives, and summa-
rizing the assessment findings.

• Identified coverage gaps highlighted in the RCT cells (see Fig. 15.10).
• Charts representing the assessment results from different perspectives. Some

examples are discussed in this section.
• Recommendations for a strategy to close the coverage gaps and the steps to

implement it.

310 Y. Chernak

1.0%

1.3%

5.3%

9.2%

9.7%

19.4%

20.3%

23.4%

29.1%

29.2%

8.3%

5.6%

18.2%

15.4%

47.8%

69.2%

57.9%

66.7%

71.4%

88.6%

0% 20% 40% 60% 80% 100%

10. Reference Data Configura�on

09. Template Processing

04. Trade Monitoring

07. File Management

06. Client Configura�on

05. Excep�on Resolu�on

01. Trade Processing

08. Cash Processing

02. Trade Flow

03. Trade Calcula�ons

% Core Coverage

% Total Coverage

Fig. 15.11 Distribution of test coverage results by application modules

The charts representing the coverage measurements can be presented at two
levels of detail—(a) at a module level for the entire application (Fig. 15.11) and
(b) at a core feature level for individual modules (Fig. 15.12). In addition, a
chart showing the coverage distribution by crosscuts (Fig. 15.13) can be produced
as well. This chart can help testers understand which categories of crosscutting
concerns they covered more and which ones they commonly overlook in testing.
The charts we discuss below illustrate the assessment results for one of our example
applications—the prime brokerage application.

As Fig. 15.11 shows, the results for each module are presented as a range
between the core functionality coverage and the total coverage, i.e., the coverage
provided for the entire set of requirements that includes both core functionality
and crosscutting concerns. For example, the test coverage results for the module
“01. Trade Processing” are shown as a range between 19.8 % representing the
result for all concerns in the context of core features and 57.9 % representing the
result for core functionality only, where both numbers are derived from the RCT
as shown in Fig. 15.10. This is useful for the following reason. When we execute
regression testing we always have limited time. This means that a project team
should decide which of the software requirements are most important to validate;
such a decision will determine the regression test scope. Commonly, validating core
functionality is a minimal requirement for regression test coverage. In addition, the
team might decide that some of the identified crosscutting concerns should also
be included in the regression test scope. Thus, when assessing test coverage, we
can present the results as a range between covering only the core functionality and
covering a complete inventory of requirements, including all crosscutting concerns

15 Implementing Aspect-Oriented Requirements Analysis for Investment . . . 311

0%

0%

0%

0%

0%

0%

0%

0%

10%

19%

20%

24%

25%

33%

36%

48%

50%

54%

67%

0% 20% 40% 60% 80% 100%

01.08 In-flight Trade Processing

01.10 Finalize Pricing

01.12 Hide Errors

01.14 Accrued Interest Batch

01.15 Override Errors

01.16 Account Resolu�on

01.18 Missing Accrued Interest Repair

01.19 Rebalance Trade File

01.07 Correc�on Alloca�on - Flip Ac�on

01.05 Correc�on Filtering

01.09 Manual Price Input

01.06 Correc�on Alloca�on - External

01.03 Repo Close

01.13 Missing Products Repair

01.04 Trade Cancella�on

01.01 New Instruc�on

01.11 Repo Offleg Publishing

01.02 Trade Correc�on

01.17 Summarize Trade Counts

% Core Feature Coverage

Coverage Gaps

Applica�on features that do not
have representa�on in the
regression suite indicate

coverage gaps.

Fig. 15.12 Module “01. Trade Processing”: distribution of coverage results by core features

(see Fig. 15.11). Then it will be up to the project team to decide how much
regression test coverage is really necessary for their application.

Next, we present assessment results for individual application modules, which
is a lower level of detail compared with the previous chart. It can provide better
visibility and the project team can clearly see which core features are covered more
and which ones represent coverage gaps in individual modules. Figure 15.12 shows
such an example for the module “01. Trade Processing” of the prime brokerage
application.

Finally, we can present the assessment results for the entire application from
the crosscut perspective. This view can provide visibility into which categories of
crosscuts are covered more and which ones represent coverage gaps as shown in
Fig. 15.13. This finding can be especially interesting for testers, and it can help
them understand what they commonly miss in testing when they do not use a list of
crosscuts as a reference for designing tests and achieving better test coverage.

15.5 Lessons Learned

For the last 6 years the RCT technique has been implemented for over a dozen Wall
Street projects at three global investment banks. These projects included equity,
fixed income, and prime brokerage trading applications. There were three categories
of sponsors of these engagements:

312 Y. Chernak

0%

0%

0%

0%

0%

0%

2%

3%

4%

6%

6%

7%

9%

9%

10%

10%

11%

12%

14%

15%

18%

19%

19%

20%

21%

22%

30%

37%

37%

57%

0% 20% 40% 60% 80%

CC - Concurrency

CN - Connec�vity

EML-In - Email In

FXST - FX Status

PF - Performance

STY - Security

EML-Out - Email Out

ER - Enrichment

MP - Mapping

CA - Cache

SI-In - System Interface In

FS - File Status

FV - Field Valida�on

ET-In - Internal En�tlements

ADT-In - Internal User Audit

RG - Region

CS - Client Setup

DDV - Data-Dependency Valida�on

ExH - Excep�on Handling

DDD - Data-Driven Defaults

ET-Ex - External En�tlements

SI-Out - System Interface Out

DF-Out - Data Flow Out

ADT-Ex - External User Audit

PT - Product Type

TPST - Template Status

TST - Trade Status

DF-In - Data Flow In

CST - Cash Status

CL - Calcula�ons

Coverage Gaps

Fig. 15.13 Distribution of test coverage results by crosscutting concerns

1. Developers who needed to improve change impact analysis and better plan new
releases

2. Testers who needed to assess coverage and identify gaps in their existing
regression suites

3. Business analysts, hired for renovation projects, who needed a holistic view of
the legacy system to be replaced with the new application

15 Implementing Aspect-Oriented Requirements Analysis for Investment . . . 313

Although these engagements had different objectives, each needed a holistic view
of an application’s functionality and building an RCT proved to be an effective
solution as indicated by testimonials from the team members who used the RCT
technique:

• Scott, business product owner: “An RCT allows all project parties, from require-
ments analysis to delivery, to speak the same language.”

• Chris, lead developer: “An RCT allows us to more comprehensively analyze
the impact of system changes to improve our development estimates and test
coverage.”

• Mihir, QA lead: “An RCT provides a much more complete and structured view
of the application functionality. It is very effective to analyze gaps in the existing
regression suite and helps both developers and testers agree on and prioritize the
scope of testing for new releases.”

When an RCT is developed for a given application and first introduced to the
entire project team, it usually presents some surprises; a few most common are the
following:

Knowledge gaps. Commonly for complex applications, any particular team
member may not have a complete knowledge and holistic view of the application
functionality. Once an RCT has been developed, each developer or tester can clearly
see the gaps in his or her knowledge of the application functionality. The discovery
of these gaps sometimes comes as a big surprise.

Regression suite gaps. For critical applications, a QA team commonly develops
over time a sizable suite of regression tests and uses it for testing new releases.
However, the project team frequently does not have a complete understanding of the
test coverage provided by the regression suite and, specifically, where the coverage
gaps are. This is another issue of the knowledge gaps discussed above. Using an
RCT to assess coverage and identify gaps in existing regression suites proved to be
an effective solution [4]. In the projects observed by this author, the actual coverage
was in the range from 20 % to 30 %, which was surprising to the teams and much
below their prior estimates of the regression suite coverage.

Understanding the impact of changes. Commonly, prior to using an RCT to
perform change impact analysis the first time, the author asks developers and testers
to perform this task the way that they have always done it and compile a list of
impacted application features. The team then conducts a formal change impact
analysis session using the RCT. The team compares the result of the formal RCT-
driven analysis with the initial list of impacted features. The RCT-driven analysis
frequently shows a much more complete (up to 50 %) picture of the impact than does
the initial list. Commonly, the initial list includes only core features and overlooks
crosscutting concerns impacted by changes. Such a comparison is a good illustration
of the RCT technique’s effectiveness and can help the team to see its benefits.

However, the RCT benefits do not come for free. Even though developing an
RCT is a relatively small effort, it still requires obtaining commitments from and
the involvement of application SMEs, which can be challenging when, for example,
a project is under delivery time pressure or SMEs do not believe in RCT benefits.

314 Y. Chernak

Second, once an RCT has been developed, it must be kept consistent with the
application functionality and be maintained through releases. This presents a small
but necessary overhead for a project team. To better maintain an RCT, this task
should be discussed and agreed to at an engagement kick off meeting where a future
RCT owner should also be assigned. In the author’s projects, this role was usually
given either to a lead business analyst or, in the absence of such a party within the
project team, to a lead QA analyst.

15.6 Conclusion and Future Work

Despite the fact that AORE methods have been around for at least a decade, they
remain little known to most practitioners in the software industry. This chapter
describes an analysis artifact introduced in AORE called the Requirements Com-
position Table. An RCT captures a holistic and structured view of an application’s
functionality which provides an effective common frame of reference for all project
team parties—the product owner, the developers, and the testers. This chapter
explained the RCT concept and discussed the steps to produce an RCT.

RCT can support a number of project tasks and can help us resolve some
important practical issues. Two of them, very common to software projects, were
discussed in this chapter. We showed how to use RCT to perform change impact
analysis for new releases and how it can help us assess test coverage and identify
gaps in existing regression test suites.

The future work will focus on developing an RCT at multiple levels of detail. The
RCT view described in this chapter can be qualified as the main floor plan. In this
view, crosscutting concerns represent generic categories, for example, Product Type,
Transaction Data Flow, System Interface, etc. To support more detailed analysis,
such categories of concerns can be elaborated and lower level views, I call them
“second floor plans”, can be produced separately for each generic crosscutting
concern to complement the main view.

For example, we can elaborate the System Interfaces concern in RCT’s second
floor plan and replace it with a list of the actual external systems. Then each interface
to external systems can be analyzed as a crosscutting concern and its impact on core
features of a given application can be captured in the second floor plan. Such a
second floor plan can benefit, in particular, testers when they need to plan end-to-
end testing for a release. Once we performed change impact analysis and captured
results in both levels of the RCT, the main floor plan will show us the scope of
functional testing of a given application, and the second floor plan will show us the
scope of end-to-end testing from the perspective of external applications.

15 Implementing Aspect-Oriented Requirements Analysis for Investment . . . 315

A.1 Descriptions of Common Crosscutting Concerns
(Table A.1)

Table A.1 Descriptions of crosscutting concerns

316 Y. Chernak

References

1. A. Rashid, A. Moreira, J. Araújo, Modularization and composition of aspectual requirements,
in Proceedings of 2nd International Conference on Aspect-Oriented Software Development
(AOSD) (ACM, 2003), pp. 11–20

2. Y. Chernak, Requirements composition table explained, in Proceedings of the 20thIEEE
International Requirements Engineering Conference (IEEE Computer Society, 2012),
pp. 273–278

3. Y. Chernak, Building a foundation for structured requirements. Part 1, in Better Software, Jan
2009, pp. 90–96

4. Y. Chernak, Mind the gap: using a requirements composition table to assess test coverage, in
Better Software, Mar 2008, pp. 38–44

5. A. Rashid, P. Sawyer, A. Moreira, J. Araújo, Early aspects: a model for aspect-oriented require-
ments engineering, in Proceedings of IEEE Joint International Conference on Requirements
Engineering (RE) (IEEE Computer Society, 2002), pp. 199–202

6. L. Rosenhainer, Identifying crosscutting concerns in requirements specifications, in Proceed-
ings of the Aspect-Oriented Requirements Engineering and Architecture Design Workshop,
Vancouver, Canada, 24–28 Oct 2004

7. O. Gotel, A. Finkelstein, An analysis of the requirements traceability problem, in Proceedings
of the First International Conference on Requirements Engineering, 1994, pp. 94–101

8. E. Baniassad, P. Clements, J. Araújo et al., Discovering early aspects. IEEE Softw. 23(1),
61–69 (2006)

9. G. Kotonya, I. Sommerville, Requirements Engineering (Wiley, New York, NY, 2003)
10. K. Wiegers, Software Requirements (Microsoft Press, Redmond, WA, 2003)
11. A. Aurum, C. Wohlin, Engineering and Managing Software Requirements (Springer,

Heidelberg, 2005)
12. B. Berenbach, D. Paulish, J. Kazmeier, A. Rudorfer, Software & Systems Requirements

Engineering: In Practice (McGraw Hill, New York, NY, 2009)
13. H. Kabaili, R.K. Keller, R.A. Lustman, Change impact model encompassing ripple effect

and regression testing, in Proceedings of the Fifth International Workshop on Quantitative
Approaches in Object-Oriented Software Engineering, Budapest, Hungary, 2001, pp. 25–33

Chapter 16
Experience Report: AORE in Slot Machines

Arturo Zambrano, Johan Fabry, and Silvia Gordillo

Abstract In the context of an industrial project in the domain of slot machines,
we needed to perform Aspect-Oriented Requirements Engineering, with a special
emphasis on dependencies and interactions among concerns. The critical importance
of interactions in this domain demanded explicit and detailed documentation of all
interactions. We evaluated two AORE approaches: Theme/Doc and MDSOCRE,
to establish their applicability in our setting. In this work we report on our
experience, showing successful uses of both approaches and also where they fall
short. To address these limitations, we have proposed some enhancements for both
approaches and we present them here as well.

16.1 Introduction

To have Aspect-Oriented Requirements Engineering (AORE) gain the acceptance
of the software development industry and become a mainstream practice for
requirement engineering, it is necessary to demonstrate its power against industrial
problems. This work is intended to be a contribution in that direction.

In the context of an industrial project we are re-implementing the software that
runs on the casino gambling device best known as a slot machine (SM). Due to
previous experience with this software, we know that there are an important amount
of crosscutting concerns in slot machine applications. Moreover, many of these

A. Zambrano (�) � S. Gordillo
LIFIA, Facultad de Informática, Universidad Nacional de Plata, 50 y 115 La Plata, Argentina
e-mail: arturo@lifia.info.unlp.edu.ar; gordillo@lifia.info.unlp.edu.ar

J. Fabry
Pleiad Lab, DCC, Universidad de Chile, Blanco Encalada 2120, Santiago,
Chile. Partially funded by FONDECYT project 1090083
e-mail: jfabry@dcc.uchile.cl

A. Moreira et al. (eds.), Aspect-Oriented Requirements Engineering,
DOI 10.1007/978-3-642-38640-4 16, © Springer-Verlag Berlin Heidelberg 2013

317

mailto:arturo@lifia.info.unlp.edu.ar
mailto:gordillo@lifia.info.unlp.edu.ar
mailto:jfabry@dcc.uchile.cl

318 A. Zambrano et al.

concerns interact with each other. We therefore have opted to use Aspect-Oriented
Software Development in our new implementation.

Being aware of the critical importance of interactions in this domain, we have
focused early in the development cycle, i.e., in the AORE phase, on interaction mod-
eling. Our specific objective for this step is to document all interactions explicitly.
This information would then be used later in the design and implementation phases.
We therefore require the result of the modeling process to be a consistent model of
the requirements, containing detailed and explicit interactions. To accomplish this,
we needed to be able to rely on expressive mechanisms in the selected modeling
techniques for this phase. To establish their suitability to our needs, we therefore
performed an evaluation of two existing AORE approaches.

We elected to evaluate performing requirements engineering using both the
Theme/Doc approach [2] and Multidimensional Separation of Concerns for
Requirements Engineering (MDSOCRE) [7], focusing on how these allow us to
express and document aspectual dependencies and interactions. The choice of these
two approaches was mainly based on our perception of their maturity and of their
acceptance in the AORE community, the latter as reflected by their publication
record.

In this text we report on our experiences evaluating the above two approaches,
and include proposals for extending them where they fall short. Our evaluation
has been reported in more detail in [13]. In this chapter, we focus on the more
salient points of the evaluation and add our proposals for extension. Briefly put,
our evaluation has shown that both of the approaches we evaluated enable us to
express the requirements, but neither of them satisfies our needs with regard to the
specifications of interactions. We were however able to extend both approaches such
that these limitations were overcome.

This chapter is organized as follows: Sect. 16.2 characterizes the slot machine
domain, its concerns, and requirements. In Sect. 16.3 we present the results of
applying the two AORE approaches to the SM domain, including report of their
shortcomings and proposals for extensions. Section 16.4 presents the conclusions
for our work.

16.2 Requirements for Slots Machines

A slot machine (SM) is a gambling device. It has five reels that spin when a play
button is pressed. A SM includes some means for entering money, which is mapped
to credits. The player bets an amount of credits on each play, the SM randomly
selects the displayed symbol for each reel, and pays the corresponding prize, if any.
Credits can be extracted (called a cashout) as coins, tickets, or electronic transfers.

Requirements for the SM domain are defined in different documents: Regulations
(for each jurisdiction), standards (documents released by certification laboratories)
and protocol specifications (technical documents for interoperability). These are
written by different stakeholders, with diverse interests and backgrounds. This

16 Experience Report: AORE in Slot Machines 319

results in a large set of documents using multiple terms for describing the same
object, action, or event. Furthermore, in some cases it is necessary to complement
and normalize different sources referring to the same topic. For instance, consider
the case of Error Conditions, which are treated by both the Nevada regulations [8]
and the GLI standard [6]; some of the conditions are specified by the regulations
match, but others are defined by just one of them.

A notable characteristic of communication protocol requirements, which has an
impact on requirements modeling, is that they are divided in topics and that part
of the communication functionality is optional. As we will see later, these optional
requirements are the source of one of the aspectual interactions we need to deal with.

16.2.1 Crosscutting Concerns in the Slot Machine Domain

Based on our experience in the domain, we organized the requirements as follows,
where Game is a base concern and the rest are crosscutting concerns.1 As the domain
is complex, there may be other possible concern decompositions. We choose this
one because, according to our experience and observations, it properly modularizes
the different required features of slot machines and shows the interactions that are
at the core of this evaluation.

Game: This is the basic logic of a gambling device at a casino. The user can enter
credits into the machine and then play. The output is determined randomly and when
the player wins, he is awarded an amount of credits.

Metering: This refers to a set of (hundreds of) counters that are used to audit the
activity of the game. For instance, there are meters that count the number of plays,
the total amount bet, total won, error condition occurrences, etc.

Program Resumption: Requirements in this concern determine how the machine
should behave after a power outage, specifying which data and state need to be
recovered.

Game Recall: This refers to the information that must be available about the
current and previous plays, in order to solve any dispute with players.

Error Conditions Under certain circumstances, the game should detect error
conditions and behave accordingly. This concern defines what are considered error
conditions and how the game must react to them.

Communications The SM is connected to a reporting system (RS). This concern
defines the kinds of data, the format, and when data must be exchanged between the
SM and RS. Several communication protocols with similar functionality exist. In
this work we will refer to the most widely used protocols in the SM industry: Game
to Server protocol (G2S) and Proprietary Communication Protocol (PCP2).

1We use the terms Base and crosscutting concerns as usual in the AOSD community.
2Licensing issues prevent us to use the real protocol name and disclosing implementation details.

320 A. Zambrano et al.

Demo The demo concern contains the requirements specifying how the
game behaves in this mode. Playing the game in demo allows testing hardware
and software works, simulating events such as entering money or winning a
prize.

16.2.2 Interactions in the Slot Machine Domain

We based our investigation, and therefore this discussion, on the AOSD-Europe
technical report that gives an overview on aspect interactions [11]. In this report,
the authors classify aspect interactions into dependency, conflict, mutex (mutual
exclusion), and reinforcement. Dependency is the case where one aspect explicitly
needs another to work correctly. A conflict between two aspects happens when
they work correctly in isolation, but the presence of both at the same time
negatively influences the behavior of the system. A mutual exclusion (mutex for
short) occurs when two aspects implement the same functionality, but only one
of them can be used at a time. Reinforcement is a positive interaction where an
aspect influences the correct working of another, allowing it to provide extended
functionality. Note that, even though the consequence of mutex and conflict are the
same (just one of the conflicting aspects can be active at a time), there is a semantic
difference: mutex applies to aspects that implement similar behavior, while conflict
is more general and applies to any kind of incompatibility between aspects. We
found this classification to match the kinds of interactions we observed in the SM
domain.

For example, in the SM domain, there is a conflict between the Demo and Meters
concerns, since Meters works correctly without Demo, but if Demo mode is active,
activity in the machine must not be counted by Meters. An example of mutex is
in the communication protocols: it is forbidden to have two protocols providing
the same functionality at the same time. A dependency example is the relationship
between Communications and Meters; the protocol needs to communicate the status
of the SM, which is in part represented by the meters. Finally, a reinforcement is a
positive interaction, for instance between Error Conditions and Communications
concerns (Proprietary Protocol and G2S Protocol). The existence of error condition
detection enables communication protocols to provide “extra” functionality, in this
case real time error condition reporting.

Understanding how concerns interact with each other is key information that
needs to be passed to designers and programmers. For example, in the case of
a dependency the dependent concern will be affected by design decisions on the
other concern. On the other hand, if there is a mutex relationship, architectural
mechanisms should be provided to ensure that both aspects will not be active at
the same time.

Considering the concern division and the associated requirements, we
have deduced the relationships between different concerns and identified their

16 Experience Report: AORE in Slot Machines 321

Demo

Game

Game

MetersRecall

Prog. Resumption

Communications
G2S

Communications
PCP

Error Conditions

<<conflict>>

<<conflict>>

<<conflict>>

<<dependency>>

<<mute>>

<<reinforcement>>

<<reinforcement>>

1

13

8
9

4

2
4

4

4

10

10

12

7

14

11

6

5

3

Fig. 16.1 Concern interactions. Regular arrows indicate crosscutting; dashed arrows indicate
interactions between concerns, tagged with UML-like stereotypes

interactions, as shown in Fig. 16.1. The notation in this figure is an ad hoc
mechanism to analyze the relationships between concerns that we will try to model
in the following sections using well-known AORE approaches. The base concern
(Game) is depicted by a box and crosscutting concerns by ovals. Relationships
1–7 are crosscutting (solid arrows). For each, there is a crosscutting concern where
one or more requirements cut across several requirements on the base requirement
(where the arrow ends). For example, consider the relationship between Error
Conditions and Game, where the behavior associated with error conditions needs to
be woven into the game behavior. Requirements in Game that could raise an error
condition vary: a bill inserted, the printer is out of paper, tilt, a door opened, etc.

In Fig. 16.1, relationships 8–14 are interactions, which are depicted by dotted
lines. Dependency and reinforcement are asymmetric, so the arrowhead indicates
the direction of the relationship, while mutex and conflict are symmetric, so no
arrowhead is used. Table 16.1 describes them and presents potential consequences
of not considering interactions during the design/implementation phases. We use
an informal notation here and will later evaluate how different AORE approaches
perform while trying to model such information more formally.

16.2.3 Selected Requirements

In this text, due to space limitations, we only use three concerns to illustrate our
work. We focus on the crosscutting relationship between Meters and Game, and the
dependency of G2S on Meters. Table 16.2 presents an extract of the requirements
for these concerns. We refer to [13] for a more complete treatment.

322 A. Zambrano et al.

Table 16.1 Interaction consequences

Interaction Description Consequence if not considered

8. Conflict between
Demo and Program
Resumption

The demo mode fires fake
events that must not be counted
nor restored after program
interruption.

Wrong data is loaded after
a reboot while in Demo,
accounting mismatches,
auditing errors.

9. Conflict between
Demo and G2S

Both concerns cannot be
active, because demo fires
fake events that must not be
reported.

Inconsistent accounting reports
including fake data.

10. Dependency of G2S
and Prop. Protocol on
Meters

Data reported to the RS is
stored or can be derived from
meters. Communication proto-
cols need the meters to be up to
date in order to accomplish its
purpose.

Communication protocols
could report old data if meters
are not working.

11. Reinforcement
of G2S with Error
Conditions

Parts of the G2S protocol
are not mandatory for specific
instances. When error condi-
tions are tracked in the game,
additional behavior is made
available in G2S, such as real
time event reporting.

Real time events are not
reported when available.
Casino operator cannot
efficiently react to situations
such as coin-tilt, hand-pay, and
stacker full.

12. Mutex between G2S
and Proprietary Protocol

There is overlapping
functionality defined in
the requirements of both
protocols. Therefore, they
cannot be active at the same
time.

Overlapping features of both
can interfere. For example,
using both to keep the time in
sync between the SM and the
RS may render the time of the
SM inconsistent.

13. Conflict between
Demo and Meters

Data generated during demo
mode must not affect meter
values.

Demo plays may result in
inconsistent accounting infor-
mation if they are counted by
the meters.

14. Reinforcement of
Prop. Protocol with
Error Conditions

Similar to 11. Similar to 11.

16.3 Application of AORE

In order to deal with requirements and concerns in the SM domain, we applied two
well-known AORE approaches: Theme/Doc and MDSOCRE. This resulted in the
identification of some limitations and proposed extensions. We discuss this here,
first focusing on Theme/Doc and then on MDSOCRE.

16 Experience Report: AORE in Slot Machines 323

Table 16.2 Requirements for Game, Meters, and G2S concerns

Game

GM-1 Slot machines have 5 reels. GM-4 A slot machine has one or more
devices for entering money.

GM-2 Reels spin when play button is
pressed.

GM-5 As money is inserted credits are
“assigned” to the player.

GM-3 Prizes are awarded according to a
pay table.

GM-6 A slot machine must provide some
means for cashing the credits out.
It could be a ticket printer or a coin
hopper.

Meters

M-1 Credit meter: shall at all times indi-
cate all credits or cash available for
the player to wager or cashout.

M-3 Accounting Meters: Coin In: [. . .]
a meter that accumulates the total
value of all wagers [. . .]. Games-
played: accumulates the number of
games played; since power reset,
since door close and since game
initialization.

M-2 Credit Meter Incrementing: The
value of every prize (at the end of a
game) shall be added to the player’s
credit meter [. . . .]. The credit meter
shall also increment with the value
of all valid coins, tokens [..].

M-4 Meters should be updated upon
occurrence of any event that
must be counted, including: play,
cashout, bill in, coin in.

M-5 G2S meters are: gamesSinceInitCn Number of games since initialization. WonCnt:
Number of primary games won by the player. LostCnt: Number of primary games
lost by the player.

Communication: G2S

G2S-1 The G2S protocol is designed to
communicate information between
an SM and one or more host sys-
tems.

G2S-4 The device can generate an event in
a unsolicited manner or in response
to a host command

G2S-2 Meter information can be queried
by a host in real time, or a host may
set a periodic subscription to cause
the SM to send selected meters[..]

G2S-5 Current time stamp can be set by
the host.

G2S-3 Information provided by the SM is
used for audit purposes.

G2S-6 Command GetGameRecallLog is
used by a host to request the con-
tents of a transaction log of last
plays from a SM.

16.3.1 Application of Theme/Doc

Theme/Doc [1] is the requirement analysis part of the Theme approach [2, 5]. In
Theme/Doc, requirements are organized into concerns called themes. Themes can
be defined through an initial set of domain-specific actions or concepts, others may
be recurring typical concerns: persistence, logging, etc.

324 A. Zambrano et al.

Fig. 16.2 Game, Meters, and G2S concerns expressed using the Theme/Doc notation

In Theme/Doc a requirement is attached to a theme if the name of the theme
appears in the requirement. In other words, Theme/Doc relies on the name-based
analysis of actions in requirements to relate them to themes. In our study we did
not strictly follow this rule, as in our setting it is error prone due to ambiguities
(see Sect. 16.3.1.2). Instead, we use the concerns we identified in Sect. 16.2.1 as
themes.

Ideally, each requirement should belong to one theme, but chances are that
some of them are shared among themes, i.e., crosscutting. In Theme/Doc, a shared
requirement is considered crosscutting if: (1) the requirement cannot be split in
order to avoid tangling, (2) one of the themes dominates the requirement, (3) the
dominant theme is triggered by events in the base theme, and (4) the triggered
theme is externally fired in multiple situations [5]. Note that for Theme/Doc, the
term dominant refers to the potentially crosscutting concern, i.e., which contains the
requirement that cuts across other requirements.

An important feature of Theme/Doc is its visual support through diagrams. In
Theme/Doc views, requirements are represented by rounded boxes, and they are
organized around themes, which are depicted by diamonds. When a crosscutting
theme exists, a gray arrow is drawn from the theme that crosscuts (i.e., the aspect)
to the theme that is being cut across (i.e., the base). Consider, for example,
Fig. 16.2, where Game, Meters, and G2S concerns are represented along with their
requirements and crosscutting relationships.

16.3.1.1 Successful Uses of Theme/Doc

As shown in Fig. 16.2, the graphical approach of Theme/Doc makes it easy to
read the relationships between requirements and themes. Each theme can be
easily identified along with its associated requirements. The four steps to check
for crosscutting helped us to confirm which are the crosscutting concerns. In
the resulting diagrams, the crosscutting relationships are reasonably documented,
enabling us to easily identify which concern is playing the base and/or the aspectual
role. Furthermore, it is possible to express all the crosscutting relationships shown
in Fig. 16.1, although we cannot include them here due to space limitations.

16 Experience Report: AORE in Slot Machines 325

16.3.1.2 Limitations of Theme/Doc

In our evaluation, we encountered the following limitations of Theme/Doc.
Granularity: As explained before, gray arrows denote crosscutting. As each

concern potentially contains many requirements, it is difficult to discern which
specific requirement of the crosscutting theme affects which requirements on the
base theme. Consider, for example, Fig. 16.2 and the crosscutting relationship
between Meters and Game; here, it is not possible to know which requirement
in Meters is crosscutting. Furthermore, it is not possible to know which specific
requirements in Game are affected as the result of the crosscutting. Where possible,
it is desirable to pass that information to the design phase, so that base and aspectual
components can be properly designed. In fact, this information is available during
the analysis phase—identification of crosscutting themes—of Theme/Doc, but it is
not made explicit.

Expressing Interactions: In Fig. 16.1 we show different examples of interactions
between aspectual concerns for requirements. If we consider Fig. 16.2 we can
however see that the interactions explained in Sect. 16.2.2 are missing. This is
because Theme/Doc lacks support for expressing interactions. For instance, missing
in Fig. 16.2 is a dependency of G2S on Meters. This information is however crucial:
Multiple perspectives of a system (themes in this case) need to be combined to
form a system [12]. We require the dependency information to select a sound set of
themes for a system. For example, it is not possible to build an SM with G2S support
but lacking Meters. This is because G2S requires the existence of Meters to provide
its own functionality. The same happens with conflicts, for instance, between Demo
and Meters. It is critical to know that architectural or design mechanisms need
to be included to avoid the activation of both concerns at the same time. The
reinforcement from Error Conditions to G2S is also missing. Documenting it signals
that an optional part of G2S is active when Error Conditions are available.

Adaptability to our case study requirements: In our case study there is no single
requirements specification unifying all the sources, and we are faced with significant
ambiguity. This is in contrast to an ideal requirements specification that is complete,
unambiguous, verifiable, consistent, modifiable, and traceable [10]. This variety of
sources results not only in synonyms being used in different documents, but also in
equivalent ideas—full sentences—explained in different ways. There are complete
key ideas, concepts, or interactions that are expressed using different vocabulary
and style. Although we might consider our case as being exceptional, it is based on
requirements from a real-world problem and it is worthwhile to examine the impact
of this.

The ambiguity we face affects the mechanism proposed in Theme/Doc to assign
requirements to themes, and to identify potential crosscutting themes. In the most
ambiguous case, the requirement and the theme could be related by implied actions:
actions that are activated as a consequence of other actions [4]. Unfortunately, the
ambiguities we found cannot be solved by using a synonym dictionary as proposed
in [2].

326 A. Zambrano et al.

Fig. 16.3 Quantification labels applied to the crosscutting relationship between Meters and Game
concerns

We consider two options to resolve ambiguities. The first one is to rewrite all the
requirements, normalizing them to use the same vocabulary; the second one is to use
domain knowledge to associate requirements to the corresponding themes. Due to
the large number of requirements and presence of multiple sources, only the second
option is feasible, and moreover is a well-known practice [3, 7].

As a consequence of doing a domain knowledge-based analysis of our require-
ments, new requirements that are more suitable for understanding concern relation-
ships, may appear. This is similar to the approach proposed by Bar-On et al. [4],
where implied actions are used to generate new derived requirements.

16.3.1.3 Extensions to Theme/Doc

Quantification Labels for Granularity. In order to tackle the granularity problem, we
introduce the concept of quantification labels, which are tags that allow us to clearly
specify which requirements participate in a crosscutting relationship (and are also
permitted in the interaction relationships we introduce below). A quantification label
is an expression referring to a base concern and a crosscutting concern. Figure 16.3
shows an example where the Meters concern crosscuts the Game concern; we can
see here that requirement M-4 crosscuts requirements GM-2 to GM-6.

Quantification labels allow us to specify which requirements are involved in a
given crosscutting (and interaction) relationship, from both sides: the crosscutting
concern and the base concern. It has two parts separated by a colon:

Crosscutting requirements IDs: This is a list, a range, or the keyword all that
indicates which requirements are crosscutting in the concern where the arrow
has its origin.

Base concern requirements IDs: This is a list, a range, or the keyword all that
indicates which requirements are the requirements affected by the crosscut
concern (the destination of the arrow).

Interaction Relationships. In order to properly express the interactions between
concerns, we added a new kind of relationship to Theme/Doc. The new interaction
relationship is denoted using a dashed arrow. The arrow also has a label indicating

16 Experience Report: AORE in Slot Machines 327

Fig. 16.4 Dependency of G2S concern on Meters concern

the kind of interaction. Quantification labels can be used along with interaction
relationships; this allows to clearly state the requirements interacting for each
concern. The interaction relationship can be symmetrical (mutex or conflict) or
directional (dependency and reinforcement).

Figure 16.4 shows a dependency between the G2S concern, which needs the
information stored by the Meters concern. The dotted line indicates the interaction,
which in this case is directional. Quantification labels are also included to indicate
the requirements participating in the interaction. The “In Balance Meters” label is a
derived requirement, which we explain below.

Ambiguity of Requirements. In our setting, requirements disambiguation needs to
be performed by domain experts. The Theme/Doc methodology establishes specific
steps for requirements processing (e.g., split, add, and remove) [2]. We propose to
add a dedicated step that performs disambiguation before performing the existing
processing steps. As a result, during this step new (derived) requirements may arise
as shown in Fig. 16.4. In this case the derived requirement states that meters need to
be updated in consistent sets, so that they are reported to the accounting reporting
system when they are in balance. This derived requirement is represented by the In
Balance Meters label in Fig. 16.4.

16.3.2 Application of MDSOCRE

MDSOCRE (Multidimensional Separation of Concerns in Requirements Engi-
neering) is the evolution of a line of AORE approaches such as PreView and
ARCaDe [9]. MDSOCRE treats the concerns in a uniform fashion, regardless of the
nature of the requirement (functional or nonfunctional). It makes it possible for the
requirement engineer to choose a subset of requirements to observe the influences
on each other and to analyze crosscutting behavior.

In contrast to Theme, MDSOCRE does not provide visualization facilities.
Conflicts referring to contradictory concerns are detected and handled using
contribution matrices. Conflicts in MDSOCRE differ slightly from our definition in
Sect. 16.2.2 (taken from [11]). In our case, concerns are not a subject of negotiation,
as all are required by some standard or regulation. We must however check that at
runtime, conflicting concerns are not simultaneously active.

328 A. Zambrano et al.

MDSOCRE uses XML to express requirements and composition rules. For
example, listing 16.1 shows how the Game and Meters concerns are expressed in this
approach. The Concern tag is composed of several requirements that are indicated
by the Requirement tag. A requirement can be referenced by its identifier (id)
and can contain nested sub-requirements. Furthermore, concerns and requirements
can be related through composition rules, using the Composition element, which
we will explain in the following section.

Listing 16.1: Concerns written using MDSOCRE

1 <Concern name="Game">
2 <Requirement id="1"> A slot machines has 5 reels. </Requirement>
3 <Requirement id="2"> Reels spin when the play button is pressed.</

Requirement>
4 <Requirement id="3"> Prizes are awarded according to a pay table.
5 </Requirement>
6 <Requirement id="4"> A slot machine has one or more devices for entering

money. </Requirement>
7 <Requirement id="5"> As money is inserted credits are "assigned" to the

player. </Requirement>
8 <Requirement id="6"> A slot machine must provide means for cashing the

credits out.</Requirement>
9 </Concern>

10 <Concern name="Meters">
11 <Requirement id="1"> Credit meter: shall at all times indicate all credits
12 or cash available for the player to wager or cashout
13 </Requirement>
14 <Requirement id="2"> Credit Meter Incrementing: The value of every
15 prize [...futher details omitted ...]
16 </Requirement>
17 <Requirement id="3"> Accounting Meters: Coin In: a meter that
18 accumulates the total value of all wagers [... omitted ...]. </Requirement>
19 <Requirement id="4"> Meters should be updated upon occurrence of any event

that must be counted, including: play, cashout, bill in, coin in.
20 </Requirement>
21 </Concern>

16.3.2.1 Successful Uses of MDSOCRE

Listing 16.2: Compositions written using MDSOCRE

1 <Composition>
2 <Requirement concern="Meters" id="4">
3 <Constraint action="enforce" operator="on">
4 <Requirement concern="Game" id="3,4,5,6" />
5 </Constraint>
6 <Outcome action="fulfilled"/>
7 </Requirement>
8 </Composition>

Composition rules are used to express crosscutting relationships. Listing 16.2
shows a composition rule, consisting of a Constraint tag that defines how the
base requirements are constrained by aspectual requirements. The Constraint
tag has actions, operators, and outcome elements used to express in detail how the
base is affected. The action and operator tags informally describe how the base

16 Experience Report: AORE in Slot Machines 329

concern is constrained, imposing conditions in the composition. We shall use these
in Sects. 16.3.2.2 and 16.3.2.3, for more detailed information about them we refer
to [7].

The composition rule in Listing. 16.2 shows how the Meters concern crosscuts
the Game concern. In this example we have used the outcome action “fulfilled,”
because there is no other set of requirements to be satisfied.

The granularity of the approach is adequate for our case study, since it is possible
to clearly state which requirements are affected. The flexibility provided by the
parametrized Constraint tag helps to express different variants of crosscutting
relationships. For example, we combine actions and operators to document the inter-
actions. We use the action ensure and the operator with to represent a Dependency
interaction. This follows the informal definition by Moreira et al. [7] that says that a
certain condition for a requirement that is needed actually exists. We use the action
provide and the operator for for Reinforcement, as it specifies additional features to
a set of concern requirements.

16.3.2.2 Limitations of MDSOCRE

No Support for Interactions. The actions and operators included in the composition
rules only describe relationships between the crosscutting concern and the selected
base concern. As we explained in Sect. 16.2.2, interactions occur even between
concerns without a crosscutting relationship. In our case we need to express
somehow that G2S depends on the existence of Meters to report this information
and also that having Error Conditions could reinforce the functionality of G2S
enabling it to report a new set of events (errors). These interactions as well as mutex
(see Sect. 16.2.2) are not explicitly supported by this approach. Note that conflict is
not supported in anyway, as they are supposed to be removed through negotiation.
As a workaround we have combined pairs of actions and operators, for example: the
action ensure and the operator with to represent a Dependency in the case of Meters
and G2S, and the action provide with the operator for to represent reinforcement of
Error Conditions and G2S.

This solution however has two downsides:

1. It forces the use of composition rules even when no crosscutting is present, which
seems contradictory with the original purpose of composition rules expressed by
the authors: “they describe how a concern cuts across other concerns. . . ” [7]

2. The expressiveness of our combinations is not optimal, as it is not easy to
map the different interaction types with pairs of actions and operator. Consider
for instance provide for compared to the word “reinforce.” Reinforce makes it
explicit that the interact on is a positive influence to the other aspect, but we have
to use provide for to represent this idea.

No Support for Unification As mentioned before in Sect. 16.3.1.2, in our setting
there are multiple and ambiguous requirement documents and, as in Theme/Doc,
this raises unification issues. Some concerns, such as Meters, are defined in many

330 A. Zambrano et al.

requirements in several of these documents. This makes it difficult to trace the
complete definition of meters (which is necessary for the design and implemen-
tation). Rewriting all the requirements referring to meters, to condense them into
one piece of requirements is not feasible due to the large number of requirements.
Besides this, it is difficult to maintain the merged version of the requirements once
one of the sources evolves. We conclude that for MDSOCRE we need a way of
keeping related requirements linked without coupling them, so that they can evolve
at their own pace.

16.3.2.3 Extensions of MDSOCRE

Explicit Interaction Compositions In order to provide explicit support for
interactions, we extended MDSOCRE. After evaluating several possible extensions
that are not included here due to space limitations, we decided to extend
the Composition element with a new Interaction element. It can be
parametrized with the specific interaction type. The Interaction element
is contained in a Requirement element, and itself includes at least another
Requirement element, as can be seen in Listing 16.3. The interaction direction
goes from the outer element to the inner one. For example, Listing 16.3 is read as
follows: requirements 1 and 2 from the G2S communication protocol depend on
requirement 3 from the Meters concern. Note that this order only applies to the
directional interactions dependency and reinforcement.

Listing 16.3: Explicit interaction support for MDSOCRE

1 <Composition>
2 <Requirement concern="G2S" id="1,2">
3 <Interaction type="dependency">
4 <Requirement concern="Meters" id="3"/>
5 </Interaction>
6 </Requirement>
7 </Composition>

Cross-references for Linked Requirements The different requirement sources
complement each other. Hence, there is no unique and complete piece of text that
allows us to produce a full design for certain requirements. Therefore, to enable an
unabridged description of these requirements, we extended MSDOCRE with cross-
references. We added a new attribute, called seeAlso, to the Requirement
element. The value associated with this attribute is a list of requirements IDs
where additional information is present. The seeAlso allows to relate all the
requirements defining one concept (see Listing 16.4). These references are intended
to be used in a single concern. As we mentioned before, this issue also manifests
itself in Theme, but have not been able to solve it without overly cluttering the
diagrams.

16 Experience Report: AORE in Slot Machines 331

Listing 16.4: Cross references extension

1 <Concern name="Meters">
2 <Requirement id="1" seeAlso="3,4,5"> Credit meter: shall at all times

indicate all credits or cash available for the player to wager or
cashout. </Requirement>

3 <Requirement id="2"> Credit Meter Incrementing: The value of every prize
[...] </Requirement>

4 <Requirement id="3" seeAlso="1,4,5"> Accounting Meters: Coin In: a meter that
accumulates the total value of all wagers . Games-played: [...]

5 </Requirement>
6 <Requirement id="4" seeAlso="1,3,5"> Meters should be updated upon occurrence

of any event that must be counted, including: play, [...].
7 </Requirement>
8 <!-- From G2S Docs-->
9 <Requirement id="5" seeAlso="1,3,4"> Some G2S meters are: gamesSinceInitCn

Number of games since initialisation. [...]
10 </Requirement>
11 </Concern>

16.4 Conclusions

In our work, we evaluated two well-known AORE approaches in an industrial
setting—the slot machines (SM) domain—where many functional crosscutting
concerns are present. This domain is furthermore characterized by aspectual
interactions, and the legal applicability of several large requirement documents that
have ambiguity issues. In our previous experience, developing this software and not
considering aspectual interactions led to costly bugs in production.

When re-implementing the SM software we therefore decided for an AOSD
approach and evaluated two AORE approaches for the first phase of the development
cycle. We found that both of these approaches: Theme/Doc and MDSOCRE
however fall short. Theme/Doc showed problems with requirements granularity
and lack of aspectual interaction support. MDSOCRE presented a appropriate
granularity, but however lacks an explicit way to express interactions.

To address these shortcomings, we developed extensions to both approaches that
make Theme/Doc and MDSOCRE more suitable for the industrial problem at hand.
The extensions made to Theme/Doc allow us to explicitly document the interaction
between concerns as well as the requirements participating in the crosscutting and
interaction relationships. The extensions made to MDSOCRE allow us to relate
different requirements and explicitly support concern interactions.

It is our opinion that applying existing AORE approaches to industrial software
is an important effort, as it may reveal shortcomings in these approaches, which is
what we have shown here. Using these approaches in different settings will show
avenues for improvement and extension of their applicability.

332 A. Zambrano et al.

References

1. E. Baniassad, S. Clarke, Finding aspects in requirements with theme/doc, in Early Aspects
Workshop at AOSD, Lancaster, March 2004

2. E. Baniassad, S. Clarke, Theme: An approach for aspect-oriented analysis and design, in
ICSE ’04: Proceedings of the 26th International Conference on Software Engineering (IEEE
Computer Society, Washington, DC, 2004), pp. 158–167

3. E. Baniassad, P.C. Clements, J. Araujo, A. Moreira, A. Rashid, B. Tekinerdogan, Discovering
early aspects. IEEE Software 23(1), 61–70 (2006)

4. D. Bar-On, S. Tyszberowicz, Derived requirements generation: The DRAS methodology, in
IEEE International Conference on Software Science, Technology and Engineering, Herzlia,
Israel, 30–31 October 2007, pp. 116–126

5. S. Clarke, E. Baniassad, in Aspect-Oriented Analysis and Design. The Theme Approach. Object
Technology Series (Addison-Wesley, Boston, USA, 2005)

6. Gaming Laboratories International. Gaming Devices in Casinos, 2007, http://www.
gaminglabs.com/. Accessed June 2011

7. A. Moreira, A. Rashid, J. Araujo, Multi-dimensional separation of concerns in requirements
engineering, in Proceedings of 13th IEEE International Conference on Requirements
Engineering, Paris, 29 August–2 September 2005, pp. 285–296

8. Nevada Gaming Commission. Technical StandardsForGamingDevices And On-Line Slot
Systems, 2008. http://gaming.nv.gov/stats regs.htm. Accessed June 2011

9. A. Rashid, A. Moreira, J. Araújo, Modularisation and composition of aspectual requirements,
in AOSD ’03: Proceedings of the 2nd International Conference on Aspect-Oriented Software
Development (ACM, New York, 2003), pp. 11–20

10. Recommended practice for software requirements specifications. IEEE Std 830–1998, 1998
11. F. Sanen, E. Truyen, B.D. Win, W. Joosen, N. Loughran, G. Coulson, A. Rashid, A. Nedos,

A. Jackson, S. Clarke, Study on interaction issues. Technical Report AOSD-Europe
Deliverable D44, AOSD-Europe-KUL-7, Katholieke Universiteit Leuven, 28 February 2006

12. P. Tarr, H. Ossher, W. Harrison, S.M. Sutton Jr., N degrees of separation: multi-dimensional
separation of concerns, in ICSE ’99: Proceedings of the 21st International Conference on
Software Engineering (IEEE Computer Society, Los Alamitos, CA, 1999), pp. 107–119

13. A. Zambrano, J. Fabry, G. Jacobson, S. Gordillo, Expressing aspectual interactions in
requirements engineering: Experiences in the slot machine domain, in Proceedings of the
2010 ACM Symposium on Applied Computing (SAC 2010) (ACM, Sierre, Switzerland, 2010),
pp. 2161–2168

http://www.gaminglabs.com/
http://www.gaminglabs.com/
http://gaming.nv.gov/stats_regs.htm

Chapter 17
Advancing AORE Through Evaluation

Phil Greenwood

Abstract One of the fundamental ways that progress is made in any field is
through evaluation and reflection on the observations made. This is no different for
Aspect-Oriented Requirements Engineering and the techniques developed to assist
this area. However, for effective evaluation to be performed “best-practices” and
guidelines need to be established for the observations made to be acceptable by the
wider community. There has been little work to consolidate the variety of practices
and problems experienced when conducting AORE-based evaluation studies. This
chapter draws upon experience from evaluation performed in other phases of
development and also the problems that can be experienced when evaluating AORE
approaches to establish a series of guidelines to assist AORE practitioners.

17.1 Introduction

Evaluation is one of the most important stages of any research or development
task. It not only highlights both the benefits and drawbacks of techniques but
also illuminates potential new research or development paths that can be followed.
Individually, practitioners recognise the importance of evaluation to their work and
expend great amounts of time and effort ensuring their evaluation is rigorous and
thorough. However, these evaluation activities are often performed in isolation.
A primary reason for this is that practitioners often have very focused goals in mind
that require very specific evaluation methods. Although this satisfies the researcher’s
needs, it does result in only small incremental advancements in very specific areas
of research.

In niche domains, such as Aspect-Oriented Requirements Engineering (AORE),
this isolation and fragmentation of evaluation activities can be particularly limiting.

P. Greenwood (�)
Phil Greenwood, School of Computing and Communications, Lancaster University, UK
e-mail: greenwop@comp.lancs.ac.uk

A. Moreira et al. (eds.), Aspect-Oriented Requirements Engineering,
DOI 10.1007/978-3-642-38640-4 17, © Springer-Verlag Berlin Heidelberg 2013

333

mailto:greenwop@comp.lancs.ac.uk

334 P. Greenwood

Furthermore, evaluation of Requirements Engineering (RE) approaches in general
and, more specifically AORE approaches, are particularly critical due to their
influence on subsequent phases of development [2]. This is due to the key design
decisions that can be made during these early phases of development and the
significant effect they can have on the final implementation of a system. Therefore,
evaluation of these artefacts and activities are critical in order to understand the
relationship between phases and allow more informed decisions regarding design
choices to be made.

For effective evaluation, and to advance the area through evaluation, certain
criteria need to be met, including:

• Common links need to be established between evaluation results to be able to
identify causes and effects of different approaches/techniques;

• Accurate and consistent comparisons between approaches need to be made to
ensure the accuracy of any conclusions drawn;

• Evaluation results need to be reusable to avoid repetition and duplication; this
also enables third-parties to validate and build-upon previous results;

• Benchmarks need to be identified to evaluate approaches against; this will allow
third-parties to compare their evaluation results with previous sets;

• Common ways of measuring the properties of the approaches found to allow
comparisons of approaches that address the same issues to be made.

These steps allow systematic comparisons and evaluation to be performed across
the advancements made within a community. By applying a systematic approach,
broader evaluation results can be obtained, highlighting to the entire community the
areas of research that require the most attention [3].

For this to be achieved, each community has to establish its own set of “best-
practices” and guidelines for evaluation. These can then be followed to ensure that
certain standards and criteria are met that will allow other community members
to utilise and build upon the results collected. These guidelines should not be
in anyway restrictive but instead be applicable to a wide variety of approaches
emerging from the community. Of course, new approaches will emerge that do not
fit with the current guidelines, so it should be expected that the guidelines evolve as
the community evolves.

The AORE community is no different and needs to establish its own set of
guidelines to support the evaluation of both established and emerging approaches.
The AORE community also has the added problem of aligning itself with the wider
RE community to enable comparisons to be performed between AO and non-AO RE
approaches. However, the AORE community has the advantage of being a relatively
young and emerging community allowing future research to be shaped and driven by
“best-practice”. However, the use of AO techniques at other phases of development
have achieved relatively higher levels of maturity, experiences from these phases
can be drawn upon to derive “best-practices” for AORE evaluation.

The purpose of this chapter is to begin the process of establishing a set of best-
practices and guidelines for evaluating AORE approaches. This chapter will discuss
some of the techniques used to evaluate approaches at other development phases

17 Advancing AORE Through Evaluation 335

and outline some of the specific problems encountered when evaluating AORE
approaches. From this, we will attempt to extract common practices and guidelines.

The rest of the chapter covers the following topics. Section 17.2 discusses the
styles of evaluation performed in other stages of evaluation and draws inspiration
from them. The difficulties of evaluating requirements engineering approaches
and AORE approaches specifically are described in Sect. 17.3. General guidelines
extracted from methods described in the previous chapters are detailed in Sect. 17.4.
Section 17.5 looks forward to some of the difficulties the AORE community has to
face in the future.

17.2 Evaluation in Other Software Engineering Phases

This section discusses evaluation approaches that have been used in other Software
Engineering development phases, with a particular focus on AO-based approaches.
The purpose of this is to draw inspiration from these other phases that can be applied
to AORE evaluation.

Aspect-oriented approaches have been the subject to a large amount of scrutiny
from the Software Engineering community. In particular, AO implementation
approaches such as AspectJ [15], JBoss AOP [11], and CaesarJ [1] have been
the focus of several studies due to their perceived high levels of maturity. Their
proponents have undertaken a number of studies [5, 6, 8, 10, 12, 17] in order to
demonstrate their benefits to increase uptake and adoption, particularly in industrial
development environments. These studies have attempted to assess a variety of
attributes associated with software development including: maintainability, compre-
hensibilty, reusability, stability, and complexity. These quality attributes are relevant
to all development phases, including requirements engineering, and so can be taken
as a starting point for our discussion.

In terms of implementation level evaluation, a large body of work exists in terms
of software metrics to assess the quality attributes mentioned above. The generic
definition of some of these metrics allow them to be applied to a wide variety of
implementation approaches without requiring any alteration. This is a key factor in
the success of any metric as it allows them to be easily reused and measured values
can be directly compared to evaluate a number of approaches against each other. Of
course, some techniques do require specific metrics to be developed (as discussed
further below).

Some metrics are defined for a particular paradigm, for example, Coupling
Between Objects (CBC) and Lack of Cohesion of Methods (LCOM) [3] metrics
were defined to assess Object-Oriented designs. However, the definition of these
measures allows them to be applied to other paradigms, such as AO designs, very
easily. This enables AO and non-AO implementations to be compared side-by-side,
highlighting both the benefits, draw back and differences between AO and non-AO
approaches.

Although a range of pre-existing metrics exist for assessing implementation level
artefacts, the AO community soon realised that these alone were insufficient to

336 P. Greenwood

evaluate all characteristics of AO approaches and so defined additional measures.
One of the most notable introductions were metrics that measured Separation of
Concerns (SoC) attributes [19]. These metrics are able to measure the degree to
which a particular concern is scattered or tangled across the system. Although these
metrics were introduced with the specific aim of evaluating AO implementations,
these metrics were defined to be paradigm agnostic. This allows the metrics to be
applied to a variety of implementation techniques (e.g., OO, procedural, functional,
etc.) making it possible to directly compare alternative designs. It is important that
any new metrics introduced to specifically assess AORE attributes possess these
properties as well.

Other metrics were introduced with an even more generic definition to allow
them to be applied across phases of development [7]. This is extremely useful
as it enables links between development phases to be established and allows the
effects of one phase on others to be determined. These properties can be particularly
useful for requirement engineering approaches, and more specifically AORE,
where it is often reported that the early design decisions made as a consequence
of requirement engineering approaches have a significant effect on subsequent
development phases. Having metrics that can be applied across phases will enable
these effects to be observed. It is important to keep in mind that metrics alone are
insufficient to determine the quality attributes mentioned above (maintainability,
comprehensibilty, reusability, etc.). Metric values are only ever indicators that
certain phenomenon is occurring, further analysis of underlying artefacts is needed
to accurately assess the desired quality attributes.

In order to increase the confidence of quality attributes observed it is often nec-
essary to employ industrial examples. This also helps demonstrate the applicability
of the approach undergoing evaluation to real-world scenarios. However, locating
an appropriate industrial case study can be problematic due to the reluctance of
organisations to share their artefacts (this problem is discussed further in Sect. 17.3).

Instead, a solution frequently employed is to employ academic applications as
case studies. These are applications that emerge from a project or other research-led
activity. The benefits of these types of applications is that their creators are normally
quite willing to provide these applications to other researchers in the community
who are conducting further evaluation studies. This begins to establish a common
reference point, albeit in an ad hoc manner, that allows results to be directly
compared with each other when approaches are evaluated against this reference
point. These direct comparisons can be made without the underlying case study
obscuring or artificially highlighting any differences between the approaches being
evaluated. One of the difficulties when selecting an appropriate common case study
is choosing one that is suitable for a wide range of approaches that may emerge
from the community. This could involve not only considerations that go beyond
the case study’s application domain but also other factors such as the artefacts that
are available for the case study or, particularly for AO related approaches, the range
of concerns present. It may be the case that a single case study is insufficient and a
number of case studies are needed to provide adequate coverage.

17 Advancing AORE Through Evaluation 337

For AO-related approaches, a number of case studies have begun to emerge
to establish themselves as common case studies. HealthWatcher [20] has been
used a number of times to compare a variety of attributes of AO and non-AO
designs such as design stability, architectural compositions and exception handling.
HealthWatcher suffers from certain limitations, most notably that it is not a software
product line. As a consequence of this, MobileMedia [9] is now widely used
alongside HealthWatcher to assess properties relating to software product lines.
Similarly, JHotDraw [16] is frequently used to assess aspect mining techniques as
it is well designed but suffers from clear problems due to cross-cutting concerns.
The acceptance of these case studies to the AO community has enabled much more
effective evaluations to be performed as results obtained can be compared directly
against each other. However, niche areas will continue to select a case study that is
suited to their needs.

Even with a common case study defined further activities may be required to
ensure it possesses the appropriate characteristics to evaluate the desired character-
istics. One task that is often required is identifying and applying treatments to the
case study to cause certain behaviour to be exhibited and observable. For example,
studies that investigate design stability require design changes to be applied to the
case study to observe the impact of the change and cause design stability issues to
emerge. Designing these treatments can be time consuming and difficulty to ensure
that they are unbiased and realistic. Often, experts are recruited to design these
treatments to ensure they meet the required standards for the evaluation. If possible,
existing treatments should be reused across studies, however, the nature of these
treatments means that often they are very specific to a particular study making reuse
difficult. However, they can be used as inspiration to derive relevant treatments.
For example, a study [4] evaluating the fragility of AORE composition techniques
required a series of treatments to exercise the fragility properties. Treatments from
a comparable implementation-level study [12] were used as inspiration to define the
requirement level treatments.

This section has discussed some of the techniques that have been considered and
addressed within other development phases when performing evaluation activities.
Although this is not an exhaustive set of factors that need to be considered, they
are common and general factors that do affect a variety of studies performed. Fur-
thermore, they are applicable to other development phases, including requirements
engineering. Therefore, these techniques applied can be used as inspiration when
addressing specific difficulties in AORE evaluation activities.

17.3 Difficulties in Evaluating AORE

The previous section (Sect. 17.2) discussed some of the strategies that have been
used in other stages of development for performing effective evaluation. This section
discusses some of the difficulties that arise when applying these and other strategies
to AORE approaches.

338 P. Greenwood

As discussed in the previous section, it is desirable to establish a set of common
case studies for which a whole variety of studies can be performed to evaluate a
range of approaches. Establishing what these common case studies should be for
RE approaches, and AORE approaches more specifically, is particularly difficult.
This is mainly due to the lack of suitable examples. For other development phases,
open-source or academic projects can contain useful artefacts for studies. However,
projects from these sources frequently do not have any associated requirements
documents. This is because these projects usually emerge in an ad hoc manner
and so have no formal requirements elicitation process. For example, open-source
projects can emerge from a communities motivation to create a solution that
addresses their own needs and so typically no formal requirements process is
applied. Similarly, in academic settings either artefacts emerge from the needs of
a specific research project or researcher so, again, no formal elicitation process is
performed. This is not to say that no elicitation process is ever performed or that
requirements documents never exist, but extensive requirement documentation is
less likely to exist for such projects.

As discussed in Sect. 17.2, often researchers turn to industrial partners for their
case studies as such case studies offer extra credibility to any evaluation due to
their real-world settings. However, finding an industrial partner who is willing to
provide the necessary artefacts is extremely challenging. Accessing requirement-
related artefacts from industrial partners is particularly difficult due to their sensitive
nature. The requirements documents may contain specific customer needs which
may be critical for the company to maintain their competitive edge. Furthermore,
the requirement artefacts may contain features that have not yet been released yet
or features that are part of their long-term plans. Providing such artefacts could
jeopardise a company’s long-term plans.

These difficulties are further compounded by the lack of AORE techniques used
in industry, lowering the number of available AORE-related artefacts. Even AO
implementation techniques, which are now relatively mature, are not extensively
used. Therefore, finding an organisation or product that used AORE techniques and
subsequently finding AORE artefacts that will be the focus of an evaluation study
can be a massive challenge.

One way to avoid these problems is for study executors to reverse-engineer
the artefacts that are available to them to create the required artefacts. This has
frequently be done in other phases of development, for example, generating archi-
tecture artefacts or other design artefacts from source code. However, recreating
requirements documents is particularly difficult for two main reasons: (1) the
different levels of abstraction and (2) the potential for incomplete specifications.

Generating certain artefacts, such as architecture or design diagrams from source
code, is relatively straightforward due to the comparable levels of abstraction.
Furthermore, tool support is often available to generate certain artefacts source
code, such as class diagrams from Java code, and the overall architectural structure
can also be derived. Some requirement level artefacts can also be extracted, e.g.,
sequence diagrams and use cases can be generated from analysing the behaviour
specified in code. However, the difference in levels of abstraction for some artefacts

17 Advancing AORE Through Evaluation 339

can be difficult to overcome. For instance, certain AORE tools require a textual
description of system features for them to be successfully evaluated. Recreating
such a description from source code or other design artefacts alone can be difficult.
The original intentions of the developers and needs of the stakeholders can only be
speculated making errors and inaccuracies very likely.

What also needs to be kept in mind when generating requirement documentation
in this way is that the artefacts from later developer phases will only contain those
features/concerns that were deemed to be implementable at that time. Concerns
may have been omitted due to resource or time constraints; relying solely on these
later development artefacts will likely result in an incomplete specification. Other
concerns may have been omitted due to incompatibilities. This type of information
can be critical to certain AORE approaches, particularly those whose purpose is to
identify conflicting concerns/requirements. Accurately recreating this information
will be virtually impossible as these conflicts will already have been resolved during
the natural development process. Furthermore, certain non-functional requirements
may not be explicitly observable within later artefacts. For example, requirements
relating to response time will be achieved through the use of efficient algorithms and
the overall design of the system. Generally, requirement artefacts generated in this
way will only be an alternative view of artefacts from later phases of development.
In reality, this is not the case due to concerns emerging and disappearing through
the development process.

Typically when performing evaluation activities, it is desirable for unambiguous
results to be observed. When assessing requirements engineering-related
approaches this can be more difficult to achieve due to the subjective and creative
nature of the activities. For example when creating feature diagrams, a system
can be represented in multiple different ways with each being considered equally
valid. Although similar arguments can be made for other phases of development,
the number of potential alternatives is much less restrictive at the requirements
phase as fewer design decisions will have been made. The potential for equally
valid alternatives makes finding a consensus of the best possible design difficult,
making evaluation awkward. For example, approaches which automate conflict
identification, the evaluation could involve comparing the conflicts identified by the
tool with a set of conflicts identified by experts. The experts may not necessarily
agree on the complete set of conflicts making it difficult to accurately evaluate
the tool. Should the complete set of conflicts be considered or should just the
overlapping conflicts where all experts agree be considered?

Further ambiguity can be introduced due to the very nature of the artefacts
being examined. Requirements engineering often require processing and analysing
artefacts that contains natural language text. These types of artefacts can be
inherently ambiguous or vague and open to interpretation that can affect evaluation
tasks. For example, a requirements specification could state “The client must receive
updates every 500 ms”. This requirement is both vague and ambiguous. Does the
requirement mean that updates must be received on average every 500 ms and some
updates being received later is acceptable? Or, must all updates be received within
500 ms of each other? In some cases, ambiguity is desirable as the approach may

340 P. Greenwood

assist in the identification or modelling of ambiguous requirement. Whereas in other
cases, such ambiguity is unhelpful for evaluation activities.

A further compounding factor to these ambiguity issues is the differing levels
of granularity that are present in requirement level artefacts. For example, use-case
descriptions can be fairly detailed in terms of the concerns that they are describing.
In contrast, activity diagrams may be less detailed by providing a more high level
overview. This differing level of granularity can cause the emergence (or not) of
cross-cutting concerns. For example, approaches that specify requirements to a
finer level of granularity may promote Crosscutting Concerns (CCCs) to emerge.
Whereas more coarse-grained approaches may cause CCCs to be subsumed by other
concerns. For comparable evaluations to be performed across different approaches,
the levels of granularity need to be equivalent. This requires alignment of artefact
that can be problematic as it requires a single person to possess expertise in a range
of approaches.

Other alignment issues can also arise due to the heterogenous nature of AORE
approaches and concepts. A variety of approaches may use similar concepts and
define comparable process activities, but these relationships may not be immediately
apparent due to the different terms used. In order for comparisons to be drawn,
these differences need to be overcome and equivalent artefacts/activities need to be
identified. Sampaio et al. [18] have defined a common naming scheme to overcome
these alignment issues. This common naming scheme can be applied to a variety of
approaches to identify equivalent artefacts and activities, allowing comparisons to
be drawn.

A lack of dedicated RE metrics also increases the difficulty of performing
effective evaluation at this stage. As mentioned in the previous section (Sect. 17.2),
a wide range of metrics have been defined for other development phases. One of the
most frequently used metrics to assess and compare AORE approaches is time. The
assumption is that the approach which allows a certain activity to be performed
the quickest is superior as it is the most efficient. However, this has frequently
been found to be an unreliable measure [14] and offers only a simplistic view
of the activities being performed. Frequently, time is used with other measures
to offer a more complete view but the danger is that other measures are more
difficult to comprehend and so the measures of time become the predominant factor.
Generic metrics have been defined [7] that measure attributes relating to scattering,
tangling and crosscutting. The generic definition of these metrics allow them to be
applied to any development stage, including AORE. Such measures are useful for
evaluating other quality factors, in this case modularity. The added advantage of
using metrics that have a generic definition is that they can be easily applied to
other phases, allowing correlations to be drawn between the effects of development
phases. However, the generic definition of such metrics means that it is difficult to
provide tool support for them. Instead this requires certain aspects of the measures
to be collected manually. For example, typical scattering/tangling measures requires
the manual assignment of each artefact or sub-element to a particular concern for the
metrics to be calculated. This causes significant difficulties and can be a source of
errors. More well-defined measures, such as those related to coupling and cohesion

17 Advancing AORE Through Evaluation 341

for source code, can be collected in an automatic manner using tools. This reduces
the possibility of errors and also allows studies to be easily and quickly replicated
and verified by other members of the community.

This section has discussed a variety of the problems associated with evaluating
AORE approaches. Table 17.1 summarises the issues discussed. These problems can
cause difficulties when performing evaluation activities and need to be overcome for
a successful outcome to be achieved.

17.4 General Guidelines

The previous sections have highlighted some of the problems that can arise when
performing evaluation activities and also some the specific problems that can arise
when performing AORE evaluation. Also, some of the common techniques that
are used in other phases of development to conduct effective evaluation have been
discussed. The purpose of this section is to bring these discussion areas together and
extract a series of guidelines that can be applied within the AORE domain.

17.4.1 Applications

Our first guideline involves the selection of the application that should be used as the
basis of the evaluation activities. Often the exact domain which the application rep-
resents is not entirely critical. Instead, and in particular for AO-related evaluations,
it is the type, number and variety of concerns that are present which is the critical
factor. It is important that the concerns present have differing scopes, whereby some
are widely scoped concerns (i.e. affect a wide variety of system behaviour such as
security or distribution) and some are narrowly scoped concerns (i.e. some isolated
behaviour). This range is necessary regardless of the approach being evaluated to
determine how well it can cope with different types of concerns that may cause
different types of interactions. In certain cases, the presence of specific concerns,
such as exception handling or security may be needed due to the specialised nature
of some approaches. The application should be selected with this specifically in
mind.

Subsequently, it is important that a number of applications are accessible to
the community to ensure that different combinations of concerns are available for
evaluation. Furthermore, this range should also require different development styles
be applied for development, for example, single system vs. software product lines.
Again, having this range will allow the approaches being evaluated to be tested in a
variety of ways.

342 P. Greenwood

Table 17.1 Summary of the problems encountered when conducting AORE-related evaluation

Problem description Difficulty caused

Case studies

Academic vs.
Industrial
applications

Academic applications may not provide the
necessary rigour for evaluation but equally
finding industrial partners willing to
participate may be difficult.

Lack of
requirements

Applications from certain domains may not
have accompanying requirements
documentation, reducing their suitability.

Artefacts

Suitable artefacts If the necessary artefacts are not present, they
may have to be generated that can result in
errors.

Incompleteness When using generated artefacts, incomplete
specifications may occur due to relying on
implementation-based artefacts.

Ambiguity in
models

AORE approaches that involve creating
models may introduce ambiguity and may
allow for multiple equally “correct” solutions.

Ambiguity in
specifications

Equally, the nature of some requirement
artefacts (e.g., natural language) causes
ambiguity to naturally occur. In such cases,
evaluation can become difficult

Approaches

Granularity
mismatch

Different approaches may have different
levels of granularity in terms of the artefacts
they use to specify or model concepts. This
may cause difficulties when directly
comparing approaches.

Misalignment in
definitions

When comparing a number of approaches,
artefacts for each approach needs to be
created. Ensuring these artefacts are
consistent in terms of what they specify needs
to be guaranteed.

Metrics

Lack of metrics The number of dedicated AORE metrics is
low, meaning that unreliable measures are
often applied.

Lack of tool support For the metrics that do exist, this is distinct
lack of tool support which makes it difficult
to accurately collect metrics.

17.4.2 Available Artefacts

As mentioned in the previous section, it is critical that the application has the
necessary artefacts, or they can be easily generated for evaluation. Ensuring this

17 Advancing AORE Through Evaluation 343

is not easy and in some circumstances it may not be possible to avoid having
to generate the artefacts manually requiring significant effort. In such cases, it
is desirable to collaborate with other members of the community. This maybe
industrial practitioners who may be able to provide case study artefacts directly
or academic practitioners who may be specialists in relevant techniques. If such
collaborations can forged then the likely quality of the evaluation will improve.
Another consideration that should be made is the publication of these artefacts
after the evaluation activities. Good practice dictates that these artefacts should be
publicly available to provide transparency and peer review of the study performed.
This also has the added benefit of allowing these artefacts to be used in any
subsequent studies, which can only help improve their quality and also assist the
area advance.

17.4.3 Participants

As stated above in Sect. 17.4.2, it is desirable to collaborate with other members
of community and call upon their expertise to, e.g., recreate missing artefacts.
Furthermore, these experts can also play a critical role to overcome other problems
that may be experienced when conducting evaluation activities. As discussed
in Sect. 17.3, a specific difficulty experienced when performing AORE-related
evaluations is the ambiguity that may occur in both the models produced from
applying approaches and within the actual requirements specification. Recruiting
experts from the community can help clarify these ambiguities and also other
evaluation activities.

However, it is critical that these experts are carefully chosen to prevent the
study being invalidated. Firstly, experts need to be chosen who have the necessary
levels of expertise for the task in hand; this is particularly important if having
to include students in the evaluation. If it is necessary to recreate some artefacts,
then it is natural to recruit the inventors of the relevant approach or someone who
has significant experience using the approach. Second, the experts chosen should
not introduce an inherent bias; this is particularly significant when attempting to
overcome any type of ambiguity. Finally, external collaborators can play a crucial
role when having to align artefacts across a number of approaches being evaluated,
however, finding a single person who has the necessary skills can be difficult.

17.4.4 Treatments Applied

Similarly, the treatments that need to be applied to the application, such as mainte-
nance changes should also be generated in a similar way. The original developers
should be consulted to ensure the treatments being applied are realistic and fit the
original development intentions. If they are no longer available or unwillingly to

344 P. Greenwood

co-operate then, again, collaborations should be forged within the community to
recruit experts with the necessary skills to identify relevant treatments and apply
them to a high standard. The same publication guidelines should be applied to the
availability of the different versions of the artefacts generated from applying the
treatments.

17.4.5 Metric Suites

As discussed throughout this chapter, a variety of metric suites are available for
different phases of development and the RE phase is no different. As has been
highlighted in the previous section (Sect. 17.3), there is a distinct lack of metric
suites that are specifically suited for AORE. Some have been defined with a generic
definition [7] that allows them to be applied to a variety of development phases,
including AORE. Other measures have begun to emerge such as mobility indices
and reachability [4] that relate to AORE development practices. This chapter has
also highlighted some generic measures, such as time and precision and recall, that
are frequently used in AORE evaluations.

The most important consideration when selecting a metric suite is that it is a
suitable measure for the attributes of interest. For example, the AORE measures
mentioned above have been used to measure attributes relating to modularity,
expressiveness, effort, and information retrieval. These attributes cover a broad
range of properties that are relevant to AORE approaches and can be applied to
assess a variety of their characteristics. But they are unlikely to be sufficient for all
current and future AORE approaches. For example, there are no specific metrics
that are able to measure the stability of AORE approaches. The variance observed
in the currently defined set of metrics could be one indicator of (in)stability, but is
this sufficient?

As discussed in the previous section, openness is one potential key to success.
Making the definition of metric suites publicly available will allow the community
to determine under what circumstances a set of measures are suitable to be applied
and what circumstances they are not. This will allow deficiencies in current metrics
to be more quickly identified and so speed up the development of new metrics to fill
this void. It should be expected that new metrics emerge over time as knowledge of
the domain improves.

17.4.6 Clearly Defined Evaluation Goals

One of the most important underpinning aspects of each of the items discussed
above is the necessity to have clearly defined evaluation goals. This requires
identifying the evaluation questions that need to be answered and then subsequently
defining appropriate hypotheses to test. Only with these defined can the evaluation

17 Advancing AORE Through Evaluation 345

study be appropriately configured and executed. An appropriate application should
be selected that will ensure the validity of the evaluation performed (e.g., is an
industrial application needed or is an academic application sufficient). Relevant
artefacts need to be available (or generated) to allow the treatments necessary to
be applied. The metric suites to be applied need to be carefully chosen so that they
answer the defined evaluation questions and hypotheses. Finally, the appropriate
participants should be selected based on the activities to be performed. The Goal-
Question-Metric (GQM) method [21] is one approach that can be applied to assist
this process.

An important point to keep in mind when collecting and analysing results from
metric suites is that they are not always direct evidence of a certain characteristic
existing and alone do not answer evaluation goals. Instead, they should be consid-
ered an indicator to a particular problem, and the artefacts undergoing evaluation
need to be thoroughly analysed further to determine if a problem or characteristic
does actually exist. For example, size is frequently misused as a measure of
productivity; however, this does not take into account the complexity of the problem
being solved and can therefore be a misleading measure. Further examination of the
artefacts is necessary to determine the causes and solutions to the problems that have
been identified by metrics. The metric results do not show these by themselves.

17.4.7 Towards an AORE Test-Bed

A potential solution to ease some of the issues described above is the introduction
of an AORE test-bed. The presence of a dedicated AORE test-bed will allow
proponents of AO and non-AO-based techniques to compare their approaches in
a consistent manner. A proposed design of such a test-bed is shown in Fig. 17.1.

As can be seen in Fig. 17.1, the design consists of a number of common attributes
that are used during the course of an evaluation and highlights the relationship
between them. The test-bed would provide the AORE community with a set of
resources that they can use to conduct a variety of different studies. The idea that
the number of resources would grow over time as more studies were conducted and
members of the AORE community would donate the resources that were generated
as a result of the studies they perform. The boxes highlighted in yellow indicate one
possible study configuration from the test-bed resources to compare the modularity
and expressiveness of a use case with a RDL-based approach.

Currently, a single AORE test-bed does not exist. However, islands of studies
centred on particular applications have begun emerging. For example, a number of
AORE specific studies have been conducted that involve the Crisis Management
system (as used throughout this book). Other applications, such as HealthWatcher
and MobileMedia, have been used in studies for other phases of development, as
well as RE. However, there is yet to be any initiatives in the AORE community to
bridge these islands of activity to form a consolidated and definitive AORE test-
bed. Such a resource would prove to be of great value to the AORE community and
potentially allow greater strides to be made in the area.

346 P. Greenwood

Fig. 17.1 Proposed AORE test-bed design

17.5 Looking Forward

The previous section discussed one possible future development for AORE-based
evaluations and advancing the area through the development of an AORE-specific
test-bed. This section will examine other emerging AORE techniques and how they
may affect future evaluation practices.

17.5.1 Requirements at Run-Time

Requirements at run-time is a radical change to the traditional view of requirements
models as static, slowly evolving, and purely design-time entities. Requirements
at run-time explores the potential of run-time abstractions to model volatile or
poorly understood requirements. This may involve requirements that are subject to
dramatic and unforeseen economic conditions or environments that are particularly
hostile. Under such conditions it is difficult to establish a set of stable requirements;
instead, the requirements will have to be revisited and revised a number of times
that would be untenable using current methods. Requirements at run-time seek to
avoid this by maintain requirements models that are dynamic run-time entities that
support reasoning.

17 Advancing AORE Through Evaluation 347

Such a change to the perception of requirements increases the links between
the requirements engineering phase and other phases of development. The earlier
sections of this chapter have discussed some of the techniques used in other
phases of developments and how they can help influence and guide the evaluation
techniques applied to RE approaches. With requirements at run-time becoming a
significant research area, these links between the requirements phases and, in par-
ticular, the implementation phases will become ever stronger. This has a particularly
significant impact on evaluation activities and imposes strong constraints on the
study’s configuration. For example, for requirements at run-time approaches will not
only need requirement-related artefacts but also implementation-based artefacts as
well. Furthermore, the influences between the phases need to be carefully examined
to determine the causes and consequences of any phenomenon observed.

17.5.2 New Requirement Sources

Traditionally, requirements are elicited from a customer or potential user of a sys-
tem, however, in recent times, the notion of a stakeholder has become increasingly
more diverse and broadly scoped due to social action initiatives led by different
groups, e.g., government or crowd-sourcing. In these cases the stakeholders of
the system become the entire community. Although this can have an effect on
requirement approaches due to the increase in scale and the synthesis that is required
(new techniques may emerge to accommodate these), the effects on evaluation can
also be significant.

Typically, when performing evaluation at any stage of development, and in
particularly during requirements evaluation, consultations with stakeholders may
have to be performed to check certain information or to clarify some details.
With a traditional set of stakeholders this is difficult, as they may move on to
different organisations or forget relevant details. However, with community-based
stakeholders this becomes even more difficult as being able to trace the same set of
stakeholders to perform the necessary consultations maybe impossible. Therefore,
evaluation that involves such types of stakeholders may not be as effective. Equally,
however, the potential number of people reachable by these social action initiatives
is huge, meaning that new participants can be found easily so simplifying additional
consultations. The study goals need to be carefully considered to determine if this
is a viable option. Social networks could become a prime mechanism for engaging
with large numbers of stakeholders in a scaleable way to perform these types of
mass-consultations. Early work [13] has begun exploring the role social networks
have to play during requirements elicitation and consultation.

17.5.3 Tool Support

One of the most crucial properties of any evaluation is that it is repeatable and
can be verified independently. A problem of some of the evaluation approaches,

348 P. Greenwood

in particular the definition of some AORE specific metrics, is that they are open
to interpretation. Furthermore, these types of metrics typically require some form
of manual data collection in order for them to be calculated. Both of these factors
reduce the potential for a study to be repeatable due to the chances of both the errors
being introduced and different interpretations of the measures causing different
results to be observed.

One way the repeatability of a study to be increased is through the introduction of
a test-bed, as discussed earlier. This will make both the artefacts being evaluated and
the metric results that have been collected to be publicly available allowing them to
be reused in future evaluation studies. However, this repeatability can be improved
further through the introduction of increased tool support to assist the collect of the
metrics. This will improve metric collection in two ways: (1) ensures a consistent
definition of the metric is applied and (2) removes the need for manual collection
and so reduces the chances for error. Currently, the amount of tool support for
AORE-related evaluation support is fairly limited. Improvements in this direction
would significantly improve the quality of AORE-based studies.

17.5.4 Beyond an AORE Test-Bed

Section 17.4 highlighted the need and benefits that could be obtained through
the development of an AORE test-bed. Although this would be significant step
to improve AORE-based evaluations, in the future it would be more desirable
to develop a test-bed that integrated all stages of development. As we discussed
earlier in this section, techniques such as requirements at run-time highlight the
need to incorporate other phases of development into the evaluation activities.
Furthermore, this integration will form an end-to-end AO-based test-bed that would
allow the effects of previous and subsequent development phases to be established.
Identifying these effects can play a significant role in the evaluation of approaches
as they can potentially highlight problems that may not be immediately observable
but instead manifest themselves in other phases of development.

References

1. I. Aracic, V. Gasiunas, M. Mezini, K. Ostermann, An overview of caesarj, in Transactions
on Aspect-Oriented Software Development I. Lecture Notes in Computer Science, vol. 3880
(Springer, Heidelberg , 2006), pp. 135–173

2. J.C. Chen, S.J. Huang, An empirical analysis of the impact of software development problem
factors on software maintainability. J. Syst. Software 82, 981–992 (2009)

3. S.R. Chidamber, C.F. Kemerer, Towards a metrics suite for object-oriented design, in
Proceedings of OOPSLA’91 (ACM, New York, 1991), pp. 197–211

4. R. Chitchyan, P. Greenwood, A. Sampaio, A. Rashid, A.F. Garcia, L. Fernandes da Silva,
Semantic vs. syntactic compositions in aspect-oriented requirements engineering: An empirical

17 Advancing AORE Through Evaluation 349

study, in Proceedings of the 8th International Conference on Aspect-Oriented Software
Development (ACM, New York, 2009), pp. 149–160

5. R. Coelho, A. Rashid, A. Garcia, F. Ferrari, N. Cacho, U. Kulesza, A.V. Staa, C. Lucena,
Assessing the impact of aspects on exception flows: An exploratory study, in ECOOP 2008
Object-Oriented Programming, ed. by J. Vitek. Lecture Notes in Computer Science, vol. 5142
(Springer, Berlin/Heidelberg, 2008), pp. 207–234

6. J.M. Conejero, E. Figueiredo, A. Garcia, J. Hernendez, E. Jurado, Early crosscutting metrics
as predictors of software instability, in Objects, Components, Models and Patterns, ed.
by M. Oriol, B. Meyer, W. Aalst, J. Mylopoulos, M. Rosemann, M.J. Shaw, C. Szyperski.
Lecture Notes in Business Information Processing, vol. 33 (Springer, Berlin/Heidelberg, 2009),
pp. 136–156

7. J.M. Conejero, J. Hernández, E. Jurado, K. van den Berg, Analysis of modularity by an aspect-
oriented measurement process, in JISBD (Gijn, Spain, 2008), pp. 3–14

8. M. Eaddy, T. Zimmermann, K.D. Sherwood, V. Garg, G.C. Murphy, N. Nagappan, A.V. Aho,
Do crosscutting concerns cause defects? IEEE Tran. Software Eng. 34(4), 497–515 (2008)

9. E. Figueiredo, N. Cacho, C. Sant’Anna, M. Monteiro, U. Kulesza, A. Garcia, S. Soares,
F. Ferrari, S. Khan, F.C. Filho, F. Dantas, Evolving software product lines with aspects, in
ACM/IEEE 30th International Conference on Software Engineering, 2008. ICSE ’08, ACM,
New York, NY, 2008, pp. 261–270

10. E. Figueiredo, I. Galvao, S.S. Khan, A. Garcia, C. Sant’Anna, A. Pimentel, A.L. Medeiros,
L. Fernandes, T. Batista, R. Ribeiro, P. van den Broek, M. Aksit, S. Zschaler, A. Moreira,
Detecting architecture instabilities with concern traces: An exploratory study, in WICSA/ECSA
2009. Joint Working IEEE/IFIP Conference on Software Architecture, 2009 European Confer-
ence on Software Architecture, IEEE, Cambridge, 2009, pp. 261–264

11. M. Fleury, F. Reverbel, The JBoss extensible server, in Proceedings of the ACM/IFIP/USENIX
2003 International Conference on Middleware, Middleware ’03 (Springer, New York, 2003),
pp. 344–373

12. P. Greenwood, T.T. Bartolomei, E. Figueiredo, M. Dósea, A.F. Garcia, N. Cacho, C. Sant’Anna,
S. Soares, P. Borba, U. Kulesza, A. Rashid, On the impact of aspectual decompositions on
design stability: An empirical study, in ECOOP, Springer, Berlin, Germany, 2007, pp. 176–
200

13. P. Greenwood, A. Rashid, J. Walkerdine, UDesignIt: Towards social media for community-
driven design, in ICSE, IEEE, Zurich, Switzerland, 2012, pp. 1321–1324

14. C. Jones, Software metrics: Good, bad and missing. Computer 27(9), 98–100 (1994)
15. G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, W. Griswold, Getting started with

aspectJ. Comm. ACM 44, 59–65 (2001)
16. M. Marin, L. Moonen, A. van Deursen. An integrated crosscutting concern migration

strategy and its application to jhotdraw, in SCAM 2007. Seventh IEEE International Working
Conference on Source Code Analysis and Manipulation, 2007, IEEE, Paris, France, September
30–October 1 2007, pp. 101–110

17. A. Molesini, A. Garcia, C.F.G. von Chavez, T. Batista, On the quantitative analysis of
architecture stability in aspectual decompositions, in Seventh Working IEEE/IFIP Conference
on Software Architecture, 2008. WICSA 2008 (Vancouver, BC, Canada, 2008), pp. 29–38

18. A. Sampaio, P. Greenwood, A.F. Garcia, A. Rashid, A comparative study of aspect-oriented
requirements engineering approaches, in ESEM 2007 (Madrid, Spain, 2007), pp. 166–175

19. C. Sant’Anna, E. Figueiredo, A.F. Garcia, C. José Pereira de Lucena, On the modularity of
software architectures: A concern-driven measurement framework, in ECSA (Aranjuez, Spain,
2007), pp. 207–224

20. S. Soares, E. Laureano, P. Borba, Implementing distribution and persistence aspects with
aspectJ, in Proceedings of the 17th ACM SIGPLAN Conference on Object-oriented Pro-
gramming, Systems, Languages, and Applications, OOPSLA ’02 (ACM, New York, 2002),
pp. 174–190

21. R. Van Solingen, E. Berghout, The Goal/Question/Metric Method: A Practical Guide for
Quality Improvement of Software Development (McGraw-Hill, London, 1999)

Appendix
Crisis Management Systems: A Case Study
for Aspect-Oriented Modeling

Jörg Kienzle, Nicolas Guelfi, and Sadaf Mustafiz

Abstract The intent of this document is to define a common case study for the
aspect-oriented modeling research community. The domain of the case study is
crisis management systems (CMSs), i.e., systems that help in identifying, assessing,
and handling a crisis situation by orchestrating the communication between all
parties involved in handling the crisis, by allocating and managing resources, and
by providing access to relevant crisis-related information to authorized users. This
document contains informal requirements of CMSs in general, a feature model for a
CMS product line, use case models for a car crash CMS (CCCMS), a domain model
for the CCCMS, an informal physical architecture description of the CCCMS, as
well as some design models of a possible object-oriented implementation of parts of
the CCCMS backend. AOM researchers who want to demonstrate the power of their
AOM approach or technique can hence apply the approach at the most appropriate
level of abstraction.

A.1 Introduction

The need for crisis management systems (CMSs) has grown significantly over time.
A crisis can range from major to catastrophic affecting many segments of society.
Natural disasters (e.g., earthquakes, tsunamis, twisters, fire, and floods), terrorist
attacks or sabotage (explosions, kidnapping, etc.), accidents (plant explosion, pol-
lution emergency, a car crash, etc.), and technological disruptions are all examples
of emergency situations that are unpredictable and can lead to severe after-effects

J. Kienzle (�) � S. Mustafiz
School of Computer Science, McGill University, Montreal, QC, Canada H3A 0G4
e-mail: Joerg.Kienzle@mcgill.ca; sadaf@cs.mcgill.ca

N. Guelfi
University of Luxembourg, Luxembourg City, Luxembourg
e-mail: Nicolas.Guelfi@uni.lu

A. Moreira et al. (eds.), Aspect-Oriented Requirements Engineering,
DOI 10.1007/978-3-642-38640-4, © Springer-Verlag Berlin Heidelberg 2013

351

mailto:Joerg.Kienzle@mcgill.ca
mailto:sadaf@cs.mcgill.ca
mailto:Nicolas.Guelfi@uni.lu

352 J. Kienzle et al.

unless handled immediately. Crisis management involves identifying, assessing,
and handling the crisis situation. A CMS facilitates this process by orchestrating
the communication between all parties involved in handling the crisis. The CMS
allocates and manages resources, and provides access to relevant crisis-related
information to authorized users of the CMS.

Different existing AOM approaches and techniques are meant to be used during
different phases of software development. As a result, different AOM approaches
work with different kinds of models and modeling notations. In order to make
sure that all AOM approaches and techniques are somehow applicable to this case
study, we present a collection of models that describe the CMS at different levels of
abstraction:

1. Short, informal requirements text describing the domain of CMSs in more detail.
It also mentions some nonfunctional requirements of a CMS, e.g., security and
dependability. This text, presented in Sect. A.2 on page 352, probably contains
information that is important to everyone who wants to work on this case
study.

2. Feature diagrams highlighting the software product line aspect of CMSs. CMSs
can be used to handle many types of crises (e.g., natural disasters, epidemics,
accidents, and attacks) and may have to interface and interoperate with different
types of external services (e.g., military systems, police systems, government,
and medical services). The feature diagram models are presented in Sect. A.3 on
page 357.

3. Use cases describing a particular CMS suitable for dealing with car crash crises.
The Car Crash CMS (CCCMS) use case model description can be found in
Sect. A.4 on page 361.

4. A domain model documenting the key concepts and the domain-vocabulary of
the CCCMS is presented in Sect. A.5 on page 368.

5. An informal description of a possible physical architecture for the CCCMS is
presented in Sect. A.6 on page 368.

6. Some detailed design models for the CCCMS backend are given in Sect. A.7 on
page 370.

A.2 CMS: Requirements

The user requirements outlined in this section are based on a draft of a real
requirements document for CMSs created by the company Optimal Security [1].
The general objectives of a CMS include the following:

– To help in the coordination and handling of a crisis;
– To ensure that an abnormal or catastrophic situation does not get out of hand;
– To minimize the crisis by handling the situation using limited resources;
– To allocate and manage resources in an effective manner;

A Crisis Management Systems: A Case Study for Aspect-Oriented Modeling 353

– To identify, create, and execute missions in order to manage the crisis;
– To archive the crisis information to allow future analysis.

A.2.1 Crisis Scenario of a CCCMS

A crisis management scenario is usually triggered by a crisis report from a witness
at the scene. A coordinator, who is in charge of organizing all required resources
and tasks, initiates the crisis management process. The coordinator has access to the
camera surveillance system. The surveillance system is an external system used to
monitor traffic on highways or other busy routes. The cameras are installed only in
specific locations. If a crisis occurs in locations under surveillance, the CMS can
request video feed that allows the coordinator to verify the witness information.

A super observer, an expert in the field (depending on the kind of crisis), is
assigned to the scene to observe the emergency situation and identify the tasks
necessary to cope with the situation. The tasks are crisis missions defined by the
observer. The coordinator is then required to process the missions by allocating
suitable resources to each task.

Depending on the type of crisis, human resources could include firemen,
doctors, nurses, policemen, and technicians, and hardware resources could include
transportation systems, computing resources, communication means (such as PDAs
or mobile phones), or other necessities like food or clothes. Animals, for instance
police dogs, are also used as resources in some situations. The human and animal
resources act as first-aid workers. Each first-aid worker is assigned a specific task
which needs to be executed to recover from the abnormal situation. The workers
are expected to report on the success or failure in carrying out the missions. The
completion of all missions would allow the crisis to be concluded.

A.2.2 Scope of the CMS

A CMS should include the following functionalities:

– Initiating a crisis based on an external input from a witness,
– Processing a crisis by executing the missions defined by a super observer and

then assigning internal and/or external resources,
– Wrapping-up and archiving crisis,
– Authenticating users,
– Handling communication between coordinator/system and resources.

A CMS replaces existing CMSs that (a) still manually keep track of important
crisis-related information and (b) operate largely without automated support for
crisis resolution strategies in order to respond to a crisis.

354 J. Kienzle et al.

A.2.3 Nonfunctional Requirements of the CMS

The CMS shall exhibit the following nonfunctional properties:

– Availability

� The system shall be in operation 24 h a day, everyday, without break,
throughout the year except for a maximum downtime of 2 h every 30 days
for maintenance.

� The system shall recover in a maximum of 30 s upon failure.
� Maintenance shall be postponed or interrupted if a crisis is imminent without

affecting the systems capabilities.

– Reliability

� The system shall not exceed a maximum failure rate of 0.001 %.
� The mobile units shall be able to communicate with other units on the

crisis site and the control center regardless of location, terrain, and weather
conditions.

– Persistence

� The system shall provide support for storing, updating, and accessing the
following information on both resolved and ongoing crises: type of crisis;
location of crisis; witness report; witness location; witness data; time reported;
duration of resolution; resources deployed; civilian casualties; crisis manage-
ment personnel casualties; strategies used; missions used; location of super
observer; crisis perimeter; location of rescue teams on crisis site; level of
emissions from crisis site; log of communications; log of decisions; log of
problems encountered.

� The system shall provide support for storing, updating, and accessing the
following information on available and deployed resources (both internal and
external): type of resource (human or equipment); capability; rescue team;
location; estimated time of arrival (ETA) on crisis site.

� The system shall provide support for storing, updating, and accessing the
following information on crisis resolution strategies: type of crisis; step-
by-step guide to resolve crisis; configuration of missions required; links to
alternate strategies; applications to previous crises; success rate.

– Real-time

� The control center shall receive and update the following information on an
ongoing crisis at intervals not exceeding 30 s: resources deployed; civilian
casualties; crisis management personnel casualties; location of super observer;
crisis perimeter; location of rescue teams on crisis site; level of emissions from
crisis site; ETA of rescue teams on crisis site.

A Crisis Management Systems: A Case Study for Aspect-Oriented Modeling 355

� The delay in communication of information between control center and rescue
personnel as well as amongst rescue personnel shall not exceed 500 ms.

� The system shall be able to retrieve any stored information with a maximum
delay of 500 ms.

– Security

� The system shall define access policies for various classes of users. The access
policy shall describe the components and information each class may add,
access, and update.

� The system shall authenticate users on the basis of the access policies when
they first access any components or information. If a user remains idle for
30 min or longer, the system shall require them to reauthenticate.

� All communications in the system shall use secure channels compliant with
AES-128 standard encryption.

– Mobility

� Rescue resources shall be able to access information on the move.
� The system shall provide location-sensitive information to rescue resources.
� Rescue resources shall communicate their location to the control center.
� The system shall have access to detailed maps, terrain data, and weather

conditions for the crisis location and the routes leading to it.

– Statistic Logging

� The system shall record the following statistical information on both ongoing
and resolved crises: rate of progression; average response time of rescue
teams; individual response time of each rescue team; success rate of each
rescue team; rate of casualties; success rate of missions.

� The system shall provide statistical analysis tools to analyze individual crisis
data and data on multiple crises.

– Multi-Access

� The system shall support at least 1,000 witnesses calling in at a time.
� The system shall support communication, coordination, and information

access for at least 20,000 rescue resources in deployment at a time.
� The system shall support management of at least 100 crises at a time.
� The system shall support management of at least 200 missions per crisis at a

time.

– Safety

� The system shall monitor emissions from the crisis site to determine safe
operating distances for rescue resources.

� The system shall monitor weather and terrain conditions at crisis site to ensure
safe operation and withdrawal of rescue resources, and removal of civilians
and casualties.

356 J. Kienzle et al.

� The system shall determine a perimeter for the crisis site to ensure safety of
civilians and removal of casualties to a safe distance.

� The system shall monitor criminal activity to ensure safety of rescue
resources, civilians, and casualties.

� The safety of rescue personnel shall take top priority for the system.

– Adaptability

� The system shall recommend alternate strategies for dealing with a crisis as
the crisis conditions (e.g., weather conditions, terrain conditions, civilian or
criminal activity) change.

� The system shall recommend or enlist alternate resources in case of unavail-
ability or shortage of suitable resources.

� The system shall be able to use alternate communication channels in case of
unavailability or shortage of existing channels.

� The system shall be able to maintain effective communication in areas of high
disruption or noise at the crisis site.

– Accuracy

� The system shall have access to map, terrain, and weather data with a 99 %
accuracy.

� The system shall provide up-to-date information to rescue resources.
� The system shall record data upon receipt without modifications.
� The communication between the system and rescue resources shall have a

maximum deterioration factor of 0.0001 per 1,000 km.

A.2.4 Car Crash CMS

Some of the models presented in this paper focus on one particular CMS: the
CCCMS. The CCCMS includes all the functionalities of general CMSs, and some
additional features specific to car crashes such as facilitating the rescuing of victims
at the crisis scene and the use of tow trucks to remove damaged vehicles.

Scope of the CCCMS A car accident or car crash is an incident in which an
automobile collides with anything that causes damage to the automobile, including
other automobiles, telephone poles, buildings or trees, or in which the driver loses
control of the vehicle and damages it in some other way, such as driving into a
ditch or rolling over [2]. Sometimes a car accident may also refer to an automobile
striking a human or animal.

Our CCCMS addresses car crashes involving single or multiple vehicles,
humans, or other objects. This case study is however limited to management of
human victims only and does not provide rescue missions specifically for animals.
First-aid animal workers are not included in the scope of this case study either.

A Crisis Management Systems: A Case Study for Aspect-Oriented Modeling 357

Car crash-specific functionalities include the following:

– Facilitating the rescue mission carried out by the police by providing them with
detailed information on the location of the crash;

– Managing the dispatch of ambulances or other alternate emergency vehicles to
transport victims from the crisis scene to hospitals;

– Facilitating the first-aid missions by providing relevant medical history of iden-
tified victims to the first-aid workers by querying databases of local hospitals;

– Facilitating the medical treatment process of victims by providing important
information about the crash to the concerned workers, i.e., paramedics, doctors,
upon arrival at the hospital;

– Managing the use of tow trucks to remove obstacles and damaged vehicles from
the crisis scene.

CCCMS Actors The actors involved in the CCCMS are defined in this section.

– Coordinator oversees management of the crisis by coordinating the resources
and communicating with all the CMS employees and external workers.

– Super Observer is dispatched to the crisis scene to evaluate the situation and
define the necessary missions to cope with the crisis.

– CMS Employee is an internal human resource who is qualified and capable
of performing missions related to his field of expertise. The worker acts as a
facilitator actor when he is in charge of or operating local resources (e.g., tow
trucks or ambulances).

– External Worker is an external resource who is specialized and capable of
performing missions related to his field of expertise. The worker acts as a
facilitator actor when he is in charge of or operating external resources (e.g.,
police trucks or fire trucks).

– System Admin is the specialist who maintains the system and creates all profiles
of workers and resources to feed the crisis management database.

– Witness is the person who reports the crisis by calling the crisis management
center.

– Phone Company is an external entity contacted for verification of witness
purposes.

– Surveillance System is an external entity which monitors traffic in highways and
cities with the use of cameras.

A.3 CMS: Feature Models

Since there are so many different kinds of crises, the domain of CMSs is very
broad. However, any CMS has a common set of responsibilities and functionalities.
It is therefore natural to build a framework or product line of CMSs, which can be
specialized to create CMSs for a particular kind of crisis and a particular context.
A feature diagram listing many possible features of a CMS is given in Figs. A.1–
A.3. It has been taken from [3].

358 J. Kienzle et al.

Fig. A.1 CMSs feature diagram—Part 1

A Crisis Management Systems: A Case Study for Aspect-Oriented Modeling 359

Fig. A.2 CMSs feature diagram—Part 2

Selection of some features requires the selection of other features. Examples of
such dependencies are:

– Natural Disasters requires Fire Department and External Company
– Terrorist Attack requires Army Special Unit and Police and Police Special Unit

and Public Hospital
– Major Accident requires Police and Fire Department and Public Hospital and

Private Hospital and Independent First-Aid Doctor and Private Ambulance
Company

360 J. Kienzle et al.

Crisis Management System: Car Crash Case Study

<<include>>

<<include>>

<<include>>

<<
in

cl
ud

e>
>

Resolve Crisis

Capture
Witness Report

Assign
IntResource

Request
ExtResource

Execute
Mission

Execute Helicopter
Transport Mission

Execute
Rescue Mission

Execute
SuperObserver

Mission

1

Coordinator

1

Super
Observer

*

CMS
Employee

Authenticate
User

Execute
Remove Obstacle

Mission

External
Resource
System

*

1

Phone
Company

*

Surveillance
System

<<inclu
de>>

<<include>>

1..*

Witness

*

FirstAid
Worker

1

Pilot

*

Hospital
ResourceSystem

*

Resource

Fig. A.3 CMSs feature diagram—Part 3

observedBy
1..*

10..*

witnessCL
1

missionCL 1

CheckListCrisisType

CarCrash

0..*

1

Worker
emergencyLevel
location
startTime
endTime
status
detailedInfo

Mission involvedW
0..*

ExternalWorkerCMSEmployee

External
ResourceSystem

1 employer
0..*

MobileEmployee0..*0..1
transportedBy

Vehicle

missionLeader 1

0..* crashedVehicle

Victim involvedVictim
0..*

0..1
wasIn

Medium gatheredMedium
0..* emergencyLevel

affectedArea
startTime
endTime
status
detailedInfo

Crisis

assignedTo
1Coordinator

Witness

Fig. A.4 CCCMSs feature diagram

– Plant Explosion requires Police and Fire Department and Public Hospital
– Nuclear Plant Explosion requires The Army and Army Special Unit

Figure A.4 presents a possible set of features selected for the CCCMS.

A Crisis Management Systems: A Case Study for Aspect-Oriented Modeling 361

name
address
identification
phone
dateOfBirth

Person

Witness
gsm
expertise

Worker

loginId
password
accessRights
status

CMSEmployee
id
currentLocation

ExternalWorker

Coordinator

SuperObserver Pilot

deceased
concious
mobile
injury

Victim

SysAdmin
currentLocation
pdaNumber

MobileEmployee

Logistician FirstAidWorker

name
address
phone

External
ResourceSystem

MedicalRS GovernmentRS LogisticRS

HospitalRS Private
AmbulanceRS

PoliceRS Fire
DepartmentRS

MechanicRS

TowingRS

CleaningRS

Road
RepairRS

license
serialNumber
color

Vehicle

Car Truck Bike Train Helicopter

Ambulance

Medium

Photo Movie Sound

SurveillanceRS

Fig. A.5 CCCMS: standard use case diagram

A.4 CCCMS: Use Cases

Use cases [4, 5] are a widely used formalism for discovering and recording
behavioral requirements of software systems, since they can be effectively used as
a communication means between technical and nontechnical stakeholders of the
software under development. In short, use cases are stories of using a system to
meet goals. They are in general text-based, but their strength is that they both scale
up or scale down in terms of sophistication and formality, depending on the need
and context.

Figure A.5 shows the use cases related to the summary-level goal Resolve Crisis
in the CCCMS by means of a use case diagram.

Details of all the use cases that directly relate to the summary level use case
Resolve Crisis are given in Sect. A.4.1. The listed use cases are: Resolve Crisis,

362 J. Kienzle et al.

Capture Witness Report, Assign Internal Resource, Assign External Resource,
Execute Mission, Execute SuperObserver Mission, Execute Rescue Mission, and
Authenticate User.

Use cases describing other missions, such as the Execute Helicopter Transport
Mission, or Execute Remove Obstacle Mission are not shown for space rea-
sons. Likewise, details of use cases related to the management of the resource
database are not included for space reasons. Such use cases would, for instance,
include:

– Creating records for CMSEmployees
– Managing access rights of CMSEmployees
– Updating the availability of CMSEmployees due to sickness or vacation
– Dealing with problems of the CMS-controlled vehicles that are not related to a

crisis

Finally, following a dependability-oriented requirements engineering process
such as DREP [6], exceptional situations that a CMS might be exposed to
should also be considered. For this case study, several exceptional situations were
discovered that affect the context in which the system operates, and that require the
system to react in a certain way to continue to provide reliable and safe service. The
situations are:

– Severe Weather Conditions: Bad weather makes helicopter transportation impos-
sible.

– Strike: A strike affects the availability of CMS employees and external workers.
– Risk of Explosion: Leaking gas and open fire threatens the safety of workers.
– VIP Victim: One of the crash victims is a VIP (such as for instance, the presi-

dent). Handling of the crisis should therefore be coordinated by the appropriate
office.

– Criminal Case: The reason for the crash is of criminal nature, and therefore the
rescue missions have to be carried out accordingly.

To detect and to handle the above situations, we added the following exceptional
actors: WeatherInformationSystem, NationalCrisisCenter [7]. The detailed handler
use cases that describe the functionality that such a reliable CCCMS is to provide
are not described in this document for space reasons.

A.4.1 Textual Use Cases

The use cases presented here follow a textual template. The main success scenario
is a numbered list of lines of text (subsequently named steps) that describes the
possible interactions between the primary actor, potential secondary actors, and
the CCCMS (subsequently named System) that occur to reach a particular goal.
Alternate ways of achieving a goal, or situations in which the goal cannot be
reached, are described in the extension part of the template.

A Crisis Management Systems: A Case Study for Aspect-Oriented Modeling 363

Resolve Crisis

Use Case 1: Resolve Crisis
Scope: Car Crash Crisis Management System
Primary Actor: Coordinator
Secondary Actor: Resource
Intention: The intention of the Coordinator is to resolve a car crash crisis by asking employees

and external workers to execute appropriate missions.
Main Success Scenario:

Witness places a call to the crisis centre, where it is answered by a Coordinator.
1. Coordinator captures witness report (UC 2).
2. System recommends to Coordinator the missions that are to be executed based on the current
information about the crisis and resources.
3. Coordinator selects one or more missions recommended by the system.
For each mission in parallel:

4. For each internal resource required by a selected mission,
System assigns an internal resource (UC 3).

5. For each external resource required by a selected mission,
System requests an external resource (UC 4).

6. Resource notifies System of arrival at mission location.
7. Resource executes the mission (UC 5).
8. Resource notifies System of departure from mission location.
9. In parallel to steps 6–8, Coordinator receives mission status updates from System.
10. In parallel to steps 6–8, System informs Resource of relevant changes to mission

or crisis information.
11. Resource submits the final mission report to System.

12. In parallel to steps 4–8, Coordinator receives new crisis-related information from System.
13. Coordinator closes the file for the crisis resolution.
Use case ends in success.

Extensions:
1a. Coordinator is not logged in.

1a.1 Coordinator authenticates with System (UC 10).
1a.2 Use case continues with step 1.

4a. Internal resource is not available after step 4.
4a.1 System requests an external resource instead (i.e., use case continues

in parallel with step 5).

5a. External resource is not available after step 5.
5a.1 Use case continues in parallel with step 2.

6a. System determines that the crisis location is unreachable by standard transportation means,
but reachable by helicopter.

6a.1 System informs the Coordinator about the problem.
6a.2 Coordinator instructs System to execute a helicopter transport mission (UC 09).
6a.3 Use case continues with step 6.

6b. Resource is unable to contact System.
6b.1 SuperObserver notifies System that resource arrived at the mission location.

6c. Although Resource should be at mission location by now, Resource has not yet notified
System.

6c.1 System requests Resource to provide an update of its location.
6c.2 Use case continues at step 6.

7a. One or more further missions are required in step 6.
7a.1 Use case continues in parallel with step 2.

364 J. Kienzle et al.

7b. The mission failed.
7b.1 Use case continues with step 2.

8a. Resource is unable to contact System.
8a.1 SuperObserver notifies System that resource is leaving the mission location.

8b. Although mission should be completed by now, Resource has not left mission location.
8b.1 System requests Resource to provide the reason for the delay.
8b.2 Use case continues at step 7.

9a. Changes to mission are required.
9a.1 Use case continues in parallel with step 2.

11a. Resource never files a mission report.
11a.1 Mission use case ends without mission report.

12a. Changes to mission are required.
12a.1 Use case continues in parallel with step 2.

Capture Witness Report

Use Case 2: Capture Witness Report
Scope: Car Crash Crisis Management System
Primary Actor: Coordinator
Secondary Actor: PhoneCompany, SurveillanceSystem
Intention: The Coordinator intends to create a crisis record based on the information obtained

from witness.
Main Success Scenario:

Coordinator requests Witness to provide his identification.
1. Coordinator provides witness information1 to System as reported by the witness.
2. Coordinator informs System of location and type of crisis as reported by the witness.
In parallel to steps 2–4:

2a.1 System contacts PhoneCompany to verify witness information.
2a.2 PhoneCompany sends address/phone information to System.
2a.3 System validates information received from the PhoneCompany.

3. System provides Coordinator with a crisis-focused checklist.
4. Coordinator provides crisis information2 to System as reported by the witness.
5. System assigns an initial emergency level to the crisis and sets the crisis status to active.
Use case ends in success.

Extensions:
1a,2a. The call is disconnected. The base use case terminates.
In parallel to steps 3–4, if the crisis location is covered by camera surveillance:

3a.1 System requests video feed from SurveillanceSystem.
3a.2 SurveillanceSystem starts sending video feed to System.
3a.3 System starts displaying video feed for Coordinator.

4a. The call is disconnected.
4a.1 Use case continues at step 5 without crisis information.

5a. PhoneCompany information does not match information received from Witness.
5a.1 The base use case is terminated.

5b. Camera vision of the location is perfect, but Coordinator cannot confirm the situation that
the witness describes or the Coordinator determines that the witness is calling in a fake crisis.

5b.1 The base use case is terminated.

1Witness information includes the first name, last name, phone number, and address.
2Crisis information includes the details about the crisis, the time witnessed, etc.

A Crisis Management Systems: A Case Study for Aspect-Oriented Modeling 365

Assign Internal Resource

Use Case 3: Assign Internal Resource
Scope: Car Crash Crisis Management System
Primary Actor: None
Secondary Actor: CMSEmployee
Intention: The intention of System is to find, contact, and assign a mission to the most appropriate

available CMSEmployee.
Main Success Scenario:

System selects an appropriate CMSEmployee based on the mission type, the emergency level,
location and requested expertise. In very urgent cases, steps 1 and 2 can be performed
for several CMSEmployees concurrently, until one of the contacted employees accepts the
mission.
1. System sends CMSEmployee mission information.
2. CMSEmployee informs System that he accepts the mission.
Use case ends in success.

Extensions:
1a. CMSEmployee is not logged in.

1a.1 System requests the CMSEmployee to login.
1a.2 CMSEmployee authenticates with System (UC 10).
1a.3 Use case continues at step 1.

1b. CMSEmployee is unavailable or unresponsive.
1b.1 System selects the next appropriate CMSEmployee.
1b.2 Use case continues at step 1.

1b.1a No other CMSEmployee is available. Use case ends in failure.
2a. CMSEmployee informs System that he cannot accept the mission.

2a.1 System selects the next appropriate CMSEmployee.
2a.2 Use case continues at step 1.

2a.2a No other CMSEmployee is available. Use case ends in failure.

Request External Resource

Use Case 4: Request External Resource
Scope: Car Crash Crisis Management System
Primary Actor: Coordinator
Secondary Actor: ExternalResourceSystem (ERS)
Intention: The System requests a mission from an external resource, such as a fire station, police

station or external ambulance service.
Main Success Scenario:

1. System sends mission request to ERS, along with mission-specific information1.
2. ERS informs System that request can be processed.
Use case ends in success.

Extensions:
2a. ERS notifies System that it partially approves request for resources. Use case ends in
degraded success.
2b. ERS notifies System that it can not service the request. Use case ends in failure.

1Mission-specific information includes things such as the location and emergency level of the
mission, the quantity of vehicles requested, special characteristics of the aid worker or vehicle,
etc. . .

366 J. Kienzle et al.

Execute Mission

Use Case 5: Execute Mission
Intention: The Resource executes a mission in order to help resolve a crisis. ExecuteMission is

an abstract use case. The details of the interaction for specific missions are presented in child
use cases such as ExecuteSuperObserverMission (UC 6), or ExecuteRescueMission (UC 7).

Execute SuperObserver Mission

Use Case 6: Execute SuperObserver Mission
Scope: Car Crash Crisis Management System
Primary Actor: SuperObserver
Secondary Actor: None
Intention: The intention of the SuperObserver is to observe the situation at the crisis site to be

able to order appropriate missions.
Main Success Scenario:

SuperObserver is at the crisis location.
1. System sends a crisis-specific checklist to SuperObserver.
2. SuperObserver feeds System with crisis information.
3. System suggests crisis-specific missions to SuperObserver.
Steps 4–8 is repeated as many times as needed.
4. SuperObserver notifies System of the type of mission he wants to create.
5. System sends a mission-specific information request to SuperObserver.
6. SuperObserver sends mission-specific information1 to System.
7. System acknowledges the mission creation to SuperObserver.
8. System informs SuperObserver that mission was completed successfully.
9. SuperObserver judges that his presence is no longer needed at the crisis location.
Use case ends in success.

Extensions:
7a. Mission cannot be created and replacement missions are possible.

7a.1 System suggests replacement missions to SuperObserver.
7a.2 Use case continues with step 4.

7b. Mission cannot be created and no replacement missions are possible.
7b.1 System suggests notifying the NationalCrisisCenter.
7b.2 Use case continues with step 4.

8a. Mission failed.
8a.1 System informs SuperObserver and Coordinator about mission failure.
8a.2 Use case continues with step 4.

1Mission-specific information includes things such as the quantity of vehicles requested,
special characteristics of the aid worker or vehicle, etc. . .

Execute Rescue Mission

Use Case 7: Execute Rescue Mission
Scope: Car Crash Crisis Management System
Primary Actor: FirstAidWorker
Secondary Actor: HospitalRS

A Crisis Management Systems: A Case Study for Aspect-Oriented Modeling 367

Intention: The intention of the FirstAidWorker is to accept and then execute a rescue mission that
involves transporting a victim to the most appropriate hospital.

Main Success Scenario:
FirstAidWorker is at the crisis location.
1. FirstAidWorker transmits injury information of victim to System.
Steps 2 and 3 are optional.
2. FirstAidWorker determines victim’s identity and communicates it to System.
3. System requests victim’s medical history information from all connected HospitalRe-
sourceSystems.
FirstAidWorker administers first aid procedures to victim.
4. System instructs FirstAidWorker to bring the victim to the most appropriate hospital.
5. FirstAidWorker notifies System that he is leaving the crisis site.
6. FirstAidWorker notifies System that he has dropped off the victim at the hospital.
7. FirstAidWorker informs System that he has completed his mission.
Use case ends in success.

Extensions:
4a. HospitalResourceSystem transmits victim’s medical history information to System.

4a.1 System notifies FirstAidWorker of medical history of the victim relevant to his injury.
4a.2 Use case continues at step 4.

Execute Helicopter Transport Mission

Use Case 8: Execute Helicopter Transport Mission
Scope: Car Crash Crisis Management System
Primary Actor: Pilot
Secondary Actor: None
Intention: The intention of the Pilot is to accept and then execute a transport mission that involves

transporting a CMSEmployee to and from a mission location.
Main Success Scenario: To be defined.

Execute Remove Obstacle Mission

Use Case 9: Execute Remove Obstacle Mission
Scope: Car Crash Crisis Management System
Primary Actor: TowTruckDriver
Secondary Actor: None
Intention: The intention of the TowTruckDriver is to accept and then execute a remove obstacle

mission that involves removing a crashed car from a mission location.
Main Success Scenario: To be defined.

AuthenticateUser

Use Case 10: AuthenticateUser
Scope: Car Crash Crisis Management System
Primary Actor: None
Secondary Actor: CMSEmployee
Intention: The intention of the System is to authenticate the CMSEmployee to allow access.

368 J. Kienzle et al.

Main Success Scenario:
1. System prompts CMSEmployee for login id and password.
2. CMSEmployee enters login id and password into System.
3. System validates the login information.
Use case ends in success.

Extensions:
2a. CMSEmployee cancels the authentication process. Use case ends in failure.
3a. System fails to authenticate the CMSEmployee.

3a.1 Use case continues at step 1.
3a.1a CMSEmployee performed three consecutive failed attempts.

3a.1a.1 Use case ends in failure.

A.5 CCCMS: Domain Model

The domain model offers insight into the problem domain, in our case the CCCMS.
Taking the form of a UML class diagram, it provides a description of the concepts
of the problem domain relevant to the CCCMS, by representing the concepts as
classes, attributes, and associations between classes. Although any domain concept
could be added to the domain model, we decided to include here only concepts
that must define information that must be recorded for the purpose of fulfilling the
system’s responsibilities over time. In other words, the domain model presented here
only contains concepts that are used to describe the necessary information to fulfill
system goals.

Because of size constraints, the domain model is split into two parts. The top
part of Fig. A.6 depicts the Crisis and Mission concepts and how they relate to
the other concepts, whereas the bottom part shows the generalization/specialization
hierarchies inherent in the domain of the CCCMS.

A.6 CCCMS: Informal Physical Architecture Description

A typical architecture for a CMS contains many machines that are connected with
different types of networks. Figure A.7 gives an overview of the kinds of machines
and communication networks that could be used in an instance of the CCCMS.

The backend of the system is composed of a server or a server cluster that
implements most of the business functionality. Local CMS employees, such as the
coordinators and the system administrators, use terminals or desktop machines to
access the backend through a private network. External services and mobile CMS
employees with laptops are connected to the backend by means of virtual private
networks on top of public networks. Cell phones, GPS (Global Positioning System)
devices, and PDAs (Personal Desktop Assistants) are reached using a GSM (Global
System for Mobile Communications) antenna.

A Crisis Management Systems: A Case Study for Aspect-Oriented Modeling 369

AssignInternalResource

<<failure>>
EmplNotLoggedIn

LoginRequestNotSent

DetermineMost
AppropriateEmpl

missionDetails:
MissionDescription

Request
Login

chosenEmpl:
CMSEmployee

chosenEmpl:
CMSEmployee

<<failure>>
SendFailure

SendMission
Information

loggedEmpl:
CMSEmployee

loggedEmpl:
CMSEmployee

<<failure>>
MissionRefused
ResponseFailureAwaitingMission

Acceptance

informedEmpl:
CMSEmployee

informedEmpl:
CMSEmployee

assignedEmpl:
CMSEmployee

missionDetails: MissionDescription

<<success>>
MissionAssigned

<<failure>>
EmplUnavailable

<<success>>

<<success>>
EmplLoggedIn

<<success>>
Stopped

<<success>>
MissionAccepted

assignedEmpl:
 CMSEmployee

[chosenEmpl.loggedIn]
[else]

Fig. A.6 CCCMS domain model

370 J. Kienzle et al.

Terminal

Workstation

Government
System

Desktop PC

Macintosh

Laptop

Police
System

VPN Gateway
File Server

Relational Database
Single Server

or Server Cluster

Long-term StorageLogging Host

Phone

Cellular
Phone

Authentication
Server

GSM Antenna

PDA
GPS

Hospital
System

Fire Department
System

Surveillance
System

Fig. A.7 CCCMS: physical architecture

In the network layer, several protocols can be used to transport the communi-
cations: GSM for voice, GSM for SMS (Short Message Service), UDP/TCP/IP for
voice, and TCP/IP for data exchange. In the application layer, several protocols
can be used to transport the communications: proprietary protocols or standardized
protocols (HTTP, SMTP, POP3, IMAP, XMPP, etc.).

A.7 CCCMS: Selected Design Models

During design, a blue print of a solution that satisfies the requirements defined by
the analysis models is devised. In object-oriented design, the conceptual state has to
be mapped to objects, and then the developer has to decide how the conceptual state
changes specified in every system operation are to be implemented by interacting
objects at run-time.

A Crisis Management Systems: A Case Study for Aspect-Oriented Modeling 371

The concepts identified during analysis, in our case, e.g., Crisis, Mission, and
CMSEmployee, are initial candidates for becoming design objects that hold the
application state. However, some concepts may be implemented using several
objects, or, alternatively, some concepts may be implemented as attributes. The
granularity of objects affects several aspects of the system under development.
Too fine-grained decomposition leads to systems with thousands of objects. Such
systems might be hard to understand and maintain due to their high coupling and
generate huge communication overhead. On the other hand, a coarse decomposition
leads to bulky architectures and objects with unclear responsibilities, which can
also be hard to understand and maintain. Good designers try to maximize object
coherence while minimizing object coupling.

The idea of this section is to present some design models of a possible object-
oriented design of the CCCMS backend. Currently, the only functionality that is
designed is the CreateMission functionality that is triggered by the SuperObserver
when ordering missions to deal with the crash.

A.7.1 Creating Missions

Summary of Functionality The CreateMission functionality allows the Super-
Observer to inform the CCCMS about a mission that needs to be accomplished
in order to deal with the crash. The system has to store the relevant mission
information, determine the candidate CMSEmployees that could accomplish the
mission, establish contact with at least one of them, and propose the mission to
him. The design of CreateMission also implements some secondary functionality.
For instance, it takes care of gathering statistics on how many potential candidate
employees the system was able to choose from when assigning the mission. Also,
it makes sure that employees have properly logged into the system (and hence
authenticated) before sending them mission-related information.

Interaction Design It is assumed that somehow the user interface on the PDA
allows the SuperObserver to select the appropriate mission kind, select the emer-
gency level of the mission, and enter detailed mission information before sending
the request to the CCCMS backend. The sequencing of message exchanges between
objects that are triggered by this request is shown in a sequence diagram in Fig. A.8.

The initial request is directed to the CrisisManager. After instantiating a new
mission object and linking it to the crisis, the crisis manager hands the responsibility
of assigning the mission to a CMSEmployee to the ResourceManager. The resource
manager has access to a hash table of employees indexed by expertise, and hence
is able to obtain a collection of employees that are qualified to execute the mission.
The resource manager then proceeds by looping though this list, and inserting any
available employee (i.e., an employee that currently is not affected to other missions
or otherwise unavailable) that is close enough to the mission location (i.e., can get
to the mission location in a reasonable amount of time) into a priority queue. In the

372 J. Kienzle et al.

currentEmpl := next()

emplLocation := getLocation()

: Map

size := getSize()

foundEmployees := clone()

available := isAvailable()

missionLocation := getLocation()

exp := getRequiredExpertise()

foundEmployees := find(exp)
foundColl := get(exp)

: Resource
Manager

m: Mission

myEmployees:
EmplHashTable

foundEmployees:
EmplColl

initiateAssignment(m)

foundColl:
EmplColl

loop [currentEmpl within foundEmployees]

currentEmpl:
CMSEmployee

opt [available]

time := travelTime(emplLocation, missionLocation)

opt [time < maxStartDelay]

maxStartDelay := getMaxStartDelay()

create()

candidates:
EmplPriorityList

create()

insert(currentEmpl, score)

score := adequacyScore(currentEmpl, time)

: Statistics
numberOfCandidates(size)

empl := removeFirst()

empl: CMSEmployee
contactAbout(m)

alt [not loggedIn]

req: Login
RequestSMS

create(emplSMSNumber)

: SMSSender
send(req)

[else] : PDASender
sendMissionProposal(myPDAConnection, m)

setStatus(contacting, m)

setStatus(proposing, m)

setCandidates(candidates)

: Crisis
Manager

createMission
 (su: SuperObserver,

kind: MissionKind,
level: EmergencyLevel,
details: MissionDetails)

create(currentCrisis,
level, details)

currentCrisis:
Crisis

addMission(m)

su: Super
Observer

currentCrisis := getCrisis()

Fig. A.8 CCCMS: CreateMission design sequence diagram

queue, the employees are sorted with respect to their “adequacy” for performing the
mission. Once this list is established, the size of the list is remembered for statistical
purpose. Finally, the resource manager proceeds by contacting the first employee on
the list. If that employee is not currently logged in, then he is requested to do so by
sending him an SMS.

A Crisis Management Systems: A Case Study for Aspect-Oriented Modeling 373

numberOfCandidates(int)

<<system-wide>>

Statistics
1

employees
1

Request
LoginSMS

destNumber
SMS

boolean isAvailable()
Location getLocation()
setStatus(EmplStatus,Mission)
contactAbout(Mission)

available: boolean
loc: Location
status: EmplStatus

CMSEmployee

create(Crisis,EmergencyLevel,MissionDetails)
Location getLocation()
float adequacyScore(CMSEmployee,Time)
Time getMaxStartDelay()
Expertise getRequiredExpertise()

level: EmergencyLevel
details: MissionDetails
loc: Location

Mission

relatedMission
0..1

createMission(SuperObserver, MissionKind,
EmergencyLevel,MissionDetails)

<<system-wide>>

CrisisManager
1

EmplColl find(Expertise)
EmplColl get(Expertise)

EmplHashTable

Expertise
EmplColl clone()
CMSEmployee next()

EmplColl

0.
.*insert(CMSEmployee, float)

int getSize()
CMSEmployee removeFirst()

EmplPriorityList

0.
.*

<<instantiate>>

candidates
0..1

initiateAssignment(Mission)

<<system-wide>>

ResourceManager
1

Time travelTime
(Location, Location)

<<system-wide>>

Map

addMission(Mission)

Crisis

0.
.*

1

SuperObserverobservedCrisis
0..1 0..*

send(SMS)

SMSSender 1

sendMissionProposal
(PDA,Mission)

PDASender 1

Fig. A.9 CCCMS: partial design class diagram based on CreateMission design

The interaction design ends here, because the system now has to wait for an
answer from the employee (which can either be a login request, or a mission
acceptance notification).

Structural Design The chosen design solution presented in the sequence diagram
has many implications on the design. It assumes, for instance, the existence of
many classes with particular fields and method definitions. Also, some permanent
associations are assumed to exist. For example, a super observer must be associated
with a crisis. This is obvious from the first message in the sequence diagram in
Fig. A.8. Another example is the employee hash table that can find employees
based on a particular expertise. The CreateMission design assumes that this hash
table already exists. This means that the functionality that deals with the creation of
employees must also take care of building this hash table, establishing permanent
references between expertise and groups of employees.

The classes, attributes and methods, and the dependencies and associations
between classes created, used and assumed by the CreateMission design are shown
in Fig. A.9.

Acknowledgments The authors would like to thank Christian Fischer, Damien Garot, Laurent
Vuillermoz, Jacques Klein, and Alfredo Capozucca for sharing requirements documents and
models of CMSs with us. Their contributions led to the creation of the first draft of this document.
Our thanks also extend to Mehmet Aksit, Wisam Al Abed, João Araújo, Florencia Balbastro,
Franck Fleurey, Jean-Marc Jézéquel, Gunter Mussbacher, Awais Rachid, Pablo Sánchez, and
Jon Whittle, the participants of the first 1-week aspect-oriented modeling workshop held at

374 J. Kienzle et al.

the Bellairs Research Institute of McGill University from April 5th to April 12th 2009. Their
valuable input and suggestions significantly enhanced the quality of the requirements and use cases
descriptions.

References

1. Optimal Security: Requirements document: Version 0.8. (2009)
2. Wikicars.org: http://wikicars.org/en/Car accidents
3. Optimal Security: Product line document: Version 0.7. (2009)
4. I. Jacobson, M. Christerson, P. Jonsson, G. Overgaard, Object-Oriented Software Engineering:

A Use Case Driven Approach (Addison-Wesley Professional, 1992)
5. A. Cockburn, Writing Effective Use Cases (Addison-Wesley, Reading, 2000)
6. S. Mustafiz, J. Kienzle, DREP: A requirements engineering process for dependable reactive

systems, in Methods, Models and Tools for Fault Tolerance, ed. by A. Romanovsky, C. Jones,
J.L. Knudsen, A. Tripathi. Lecture Notes in Computer Science, vol. 5454 (Springer, Berlin,
2009), pp. 220–250

7. J. Kienzle, N. Guelfi, S. Mustafiz, Crisis management systems: a case study for aspect-oriented
modeling, in Transactions on Aspect-Oriented Software Development 7, ed. by S. Katz, M.
Mezini, J. Kienzle. LNCS, vol. 6210 (2010), pp. 1–22

http://wikicars.org/en/Car_accidents

About the Editors

Ana Moreira is an Associate Professor at Universidade Nova de Lisboa where
she leads the Software Engineering group. Currently, her main research topics
are aspect-oriented requirements engineering and architecture design, model-driven
development, variability and trade-off analysis. She is a member of the editorial
board of the journals “Transactions on AOSD” and “Software and Systems Model-
ing”. She is, or has been, a member of the Steering Committee for the international
conferences MODELS and AOSD. She has been a regular member of the program
or organizing committees of several international conferences, including AOSD,
ICSE, MODELS, ECOOP, RE, CAiSE and SPLC. She has co-organized over
50 international workshops, including the Early Aspects workshop series, and
conferences and published over 100 peer-reviewed journal and conference research
papers. She is co-founder or the international movements Early Aspects and precise
UML Group. She has been Program Committee Chair of several international
conferences, such as AOSD 2009 and MODELS 2013.

Ruzanna Chitchyan is a lecturer in Software Engineering the Department of
Computer Science, University of Leicester. Her current research interests are in
requirements modelling and analysis in general and aspect-oriented requirements
engineering and architecture design in particular. She has worked on several major
EC projects on this topic (e.g. AOSD-Europe, AMPLE, and DiVA), and, throughout
the years, has actively participated in the Early Aspects workshops.

João Araújo is an Assistant Professor of the Department of Informatics at the
Universidade Nova de Lisboa, Portugal. He holds a PhD in Computer Science
from Lancaster University, UK, in the area of Requirements Engineering. His
principal research interests are in Requirements Engineering in general and Early
Aspects in particular, where he has published several papers on this topic in
international conferences and workshops. He has been a co-founder of the Early
Aspects workshop at AOSD, OOPSLA, SPLC and ICSE conferences since 2002.
Additionally, he served on the organization or program committees of MODELS,
RE, ECOOP, AOSD, CAiSE and ICSE in the past few years. He served as a guest

A. Moreira et al. (eds.), Aspect-Oriented Requirements Engineering,
DOI 10.1007/978-3-642-38640-4, © Springer-Verlag Berlin Heidelberg 2013

375

376 Abouth the Editors

editor of the Special issue on Early Aspects at Transactions on AOSD journal in
2007. He has taught several tutorials on Early Aspects.

Awais Rashid is a Professor of Software Engineering at Lancaster University where
he leads research on advanced software modularity and composition mechanisms
as well as their implications for secure systems in the modern digital world. His
relevant research interests are in aspect-oriented software development (AOSD),
model-driven engineering and their applications for managing software variability
and product lines. He has led a number of European Commission projects on these
topics totalling over 10M AC in funding. He is the founding co-editor-in-chief of
the journal Transactions on AOSD. He was a member of the steering committee
of the international conference on aspect-oriented software development (AOSD)
from 2006 to 2012 and its executive committee from 2007 to 2012. He has been
a regular member of its program and organising committees since its inception in
2002 (including roles as organising chair in 2004 and program co-chair in 2006). He
has also severed on the program committee of the European Conference on Object-
Oriented Programming (ECOOP) and is currently a member of AITO. He also held
a visiting professor position as the Pays de la Loire Chair Regionale at the Ecole des
Mines de Nantes, France (2008–2011). He has authored over 100 scholarly articles
in software engineering, software modularity and security.

Index

A
Actions, 5, 7, 18, 19, 52, 58, 64, 65, 67, 79,

108, 112, 138, 159, 197, 203, 228,
236, 268, 276, 319, 323–326, 328,
329, 347

Activity, 3–6, 15, 65, 105, 111, 113, 115, 129,
185, 189, 190, 192, 193, 198–199,
201, 202, 204, 210, 226, 244, 245,
247, 248, 250–257, 260–263, 265,
267, 268, 301, 305, 319, 320, 336,
340, 345, 356

models, 190, 192, 198–199, 244, 245, 248,
250–255, 257, 258, 261, 262, 265,
267, 268

pattern specifications, 190, 192
Adaptability, 102, 103, 113, 115, 232, 233,

235, 236, 325, 356
Advice(s)

tasks, 24, 27–29
types, 107, 110, 116

After, 47, 68, 108, 111, 187, 193, 194, 200,
252, 254

Analytic hierarchy process (AHP), 226, 228,
229, 231, 238–240

Annotated corpus, 8
Annotated specification, 214, 216
AORA. See Aspect-oriented requirements

analysis (AORA)
AORE. See Aspect-oriented requirements

engineering (AORE)
AO-related evaluations, 341
AoURN. See Aspect-oriented user

requirements notation (AoURN)
AOV-graph, 101–118
Application module, 291, 296, 306,

310, 311
Application SMEs, 299, 313

Architectural artefact, 152, 157
Architectural languages, 146
Around, 47, 108, 111, 187, 252, 254
Aspect

composition, 47, 49, 59, 121–140, 261,
272, 273

identification, 3–20
interaction, 3, 49, 97, 154,

271–285, 320
mining, 8, 18, 337

AspectJ terminology, 148
Aspect-oriented architecture, 149, 153,

162–164, 212
Aspect-oriented models, 47, 49, 54, 57,

58, 97, 139, 163, 186, 243–269,
351–374

Aspect-oriented requirements, 24, 104–112,
145–164, 169, 210

Aspect-oriented requirements analysis
(AORA), 62, 146, 147, 154,
225–227, 231, 234, 237, 240,
289–329

Aspect-oriented requirements engineering
(AORE), 4–6, 17, 18, 62, 69, 74,
78, 98, 122, 127, 139, 154, 164,
210–214, 221, 222, 225–240, 289,
290, 314, 317–331, 333–348

AORE evaluation, 334, 335, 337, 341, 344
Aspect-oriented user requirements notation

(AoURN), 78–98
Aspect-oriented weaver, 148
Aspect scenario, 46, 57
Aspects composition, 46
Aspectual behavior, 46, 48, 50, 51, 57, 59, 82,

87, 95
Aspectual components, 148, 153, 161
Aspectual objects, 53

A. Moreira et al. (eds.), Aspect-Oriented Requirements Engineering,
DOI 10.1007/978-3-642-38640-4, © Springer-Verlag Berlin Heidelberg 2013

377

378 Index

Aspectual problem frames, 129–132, 135,
137–138

Aspectual requirements, 23–40, 129–132, 134,
135, 139, 147, 151, 152, 154–162,
171, 228, 267, 328

Aspectual scenarios, 47, 48, 50, 52–53, 55, 57,
139, 155

Aspectual specification, 132
Aspectual state machines, 54, 55
Assessment

report, 306, 309
results, 306, 307, 309–311

Assets of a system, 167
Asset variable, 169, 171–173, 175, 178, 179
Authentication, 11, 29, 33, 126, 133, 136, 146,

158, 160, 161, 196, 197, 232, 247,
266, 368

Authenticity, 146, 154–156, 158–162, 164

B
Base

element, 67
model, 47–50, 89, 110, 188, 193, 202
scenarios, 46, 48, 53, 87

Baseline accuracy, 221
Basic requirements problem, 27
Bayesian learning method, 210
Before, 47, 68, 108, 111, 187, 193, 194, 252,

254, 281
Behaviour(al)

model(ing), 45–59, 244–259, 266, 268
running software, 274
view, 148, 157, 161

Behaviour-related interaction, 274, 276–278
Benchmarks, 210, 266, 334
Binary decision, 290, 291, 297, 299
Broadly scoped property, 7, 8, 203, 347
Business analysts, 298, 312, 314
Business rules, 184, 186, 187

C
CAM, 146–149, 152, 153, 163
CAM profile, 148, 149
Case studies, 40, 98, 112, 164, 170, 336–338,

342
Catalogues, 147, 189, 227
Causality, 245, 257–260, 267
Change impact analysis, 169–171, 289–291,

294, 301–305, 312–314
Change scenarios, 73
CIA

coordinator, 305
meeting, 304, 305

process, 304
Classification accuracy, 220, 231
Classifier, 156, 185, 217, 219, 222
CMS. See Crisis management system (CMS)
Commonality, 8–9, 13, 15, 17
Common case studies, 336–338
Comparison decision matrix, 226
Components, 46, 79–81, 83, 88, 89, 103–107,

134, 146, 148–150, 153, 157,
160–162, 164, 186, 272, 276, 278,
325, 355

Compose concerns, 123, 129, 147, 297
Composed scenarios, 46, 48, 53–56
Composed State machine, 56
Composition(al)/weaving

concerns, 122, 125, 128, 147, 291, 299
frame, 59, 128, 212, 271, 273, 274, 276,

280–283, 285
intent, 62, 73
intersections, 217–221
mechanisms, 45, 52, 61–63, 73, 74, 77, 78,

83, 90, 93, 97, 98, 106–108, 110,
212

models, 186–187
operators, 56, 58, 59, 66, 116, 128, 139,

187, 193, 271, 277, 282
rule, 47–49, 77–83, 89, 91, 95, 98, 104,

110, 111, 128–132, 136, 140, 187,
193, 194, 195, 201–203, 227, 328,
329

scenario level, 56
specification, 62–64, 67, 69, 74, 147, 210,

221, 226, 227, 232, 245, 253
strategy, 184

Concern(s)
evolution, 187, 194–195
identification, 8, 11, 19, 147, 188, 189, 227
mapping, 146, 147, 149–157, 161, 164
modelling, 129, 139, 152, 156, 164
modelling and composition, 101–118
refactoring, 190

Condition, 80, 175, 177, 179, 248, 252–254,
261, 263, 272, 319–321, 329

Conflicts
detection, 210, 212, 213, 222
identification, 209–222
resolution, 73, 147, 214, 220, 225, 227–231

at runtime, 274, 284, 285
Conflicting requirements, 128, 218, 284
Conflicting situations, 147, 226–228, 240
Connect method, 149
Consistency

analysis, 244, 246, 259–261
ratio, 230, 234, 236

Index 379

Constraint
element, 67
operators, 65, 67

Context diagram, 123–124, 129, 133
Contribution matrix, 232
Contributions, 19, 24, 28–30, 32, 33, 35, 78,

82, 106, 110, 113, 115, 116, 147,
164, 169, 211, 226, 227, 231–237,
317, 327, 373

Control and data dependencies, 169, 173, 180
Control flow, 97, 172, 252, 255, 257–265, 267,

268
Core feature context, 290, 291, 300, 302, 303,

307
Core features, 290, 291, 294–300, 302–304,

306–311, 313
Core functionality, 290, 291, 310
Corpus linguistics, 6
Coupling between objects (CBC), 335
Coverage gaps, 306–309, 311
Crisis management system (CMS), 9, 13, 15,

17, 34, 51, 52, 78, 84, 89, 93, 95, 98,
102, 112–115, 122, 126, 150, 155,
156, 160–162, 195, 196, 198, 210,
214–216, 220, 246–248, 266, 282,
283, 351–374

Criteria, 24, 25, 27, 33, 69, 83, 109, 147,
154, 184, 202, 203, 220, 226–232,
234–237, 239, 240, 334

Critical pair analysis, 49, 268
Crosscutting

analysis of, 127–129
behaviour, 148
concerns, 6–13, 18, 19, 32, 45, 78, 80, 82,

102–112, 116, 122, 127–129, 139,
140, 146, 147, 150, 152, 155, 157,
164, 167, 169, 184, 186, 187, 191,
198, 212, 223, 227, 232, 237, 239,
273, 290, 291, 294–297, 299, 300,
303, 304, 306, 310, 312–315, 317,
319–321, 324, 326, 329, 331

models, 186
relationships, 8, 11, 102, 104–110,

113–116, 321, 324–326, 328, 329
requirements, 38, 102, 104, 202, 209, 326
scenarios, 46, 52

D
Decomposition, 17, 29, 33, 34, 78, 79, 83, 87,

89, 105, 106, 108, 112, 122, 128,
139, 153, 211, 319, 371

Degree element, 66, 71–72
Dependencies, 49, 58, 67, 68, 74, 78, 79, 104,

121, 139, 147, 164, 167–180, 204,

211, 214, 216–218, 221, 227, 228,
246, 257, 267, 268, 318, 320–322,
325, 327, 329, 330, 359, 373

Dependencies and interactions, 74, 139, 164,
214, 318

Derived requirements, 326, 327
Direct graph transformation, 256
Divergence, 272
Divergent behaviour, 276
Domain class model activity models, 244
Domain model, 245, 246, 248, 255, 268, 352,

368, 369
Domain-specific use of AORE, 82, 283, 295,

323
Dynamic goals, 24, 26, 32–37

aspects, 32–34
models, 24
reasoning, 24

E
EA-Miner, 3–20, 215, 216
Early aspects, 4, 7–9, 11, 40, 146, 149–153,

169, 171, 212, 395, 396
Empirical evaluation, 214, 220–222
Enduring/volatile, 187, 189–192, 196, 197, 200
Evaluation, 26, 62, 73–74, 202, 210, 214,

220–222, 238, 309, 318, 319, 325,
333–348

Evolutionary model, 184, 188
Exclusion, 277, 278, 281, 282, 284, 320
Exclusion with priority, 277, 278, 281
Execution of the model transformation,

160–162
Expressive pointcut, 48, 63

F
Fairness, 282
Fan-in, 8, 18
Feature

composition, 273
interaction, 101, 128, 272, 274–278, 283,

284
model, 4, 8–17, 19, 202, 357–361

Fragile pointcut, 58, 61, 78
Functional

areas, 294, 296
concern, 149, 151, 152, 156, 157, 161, 164,

197, 211
features, 298, 306
requirements, 24, 26, 27, 38, 50, 112, 113,

139, 150, 152, 156, 157, 170, 171,
196, 202, 211, 239, 266, 300

testing, 301, 304, 314

380 Index

Functionality, 64, 66, 67, 72, 134, 220, 231,
232, 246, 266, 289–291, 296–299,
301, 310, 313, 314, 319, 320, 322,
325, 329, 362, 368, 371, 373

G
Geometric scale, 228, 229
Global scenario-based view, 46
Goal model(ing), 24, 25, 27, 28, 34–36, 78, 79,

81, 82, 101–118, 163, 283
Goal-oriented, 23, 78, 79, 101, 102, 112, 171,

211
Goal-oriented requirement language (GRL),

79, 80, 82, 83, 87, 102
Goal-oriented requirements engineering, 101
Goal reasoning algorithm, 32
Graph

rule, 48, 49, 59, 256
Graph transformations, 47–50, 53, 58, 97,

204, 213, 243–269
rules, 244, 245, 248, 255, 258, 267, 268
sequences, 244, 255–257

GRL. See Goal-oriented requirement language
(GRL)

Guidelines for evaluation, 334
Gunter, 77–98

H
HAM. See Hybrid assessment method (HAM)
Holistic view, 312, 313
Hybrid assessment method (HAM), 214,

225–227, 229–232, 234, 235, 237,
238, 240

scale, 231
tool, 231, 234, 235

I
Identify concerns, 147, 227
Impact

analysis, 169–171, 289–291, 294, 301–305,
312–314

analysis procedure, 302, 304–305
indirect, 301
type indicators, 301

Importance (weights), 229, 230
Initial configuration, 245, 248, 249, 259, 261,

263
Initialization, 259, 261, 263, 264, 323
Instance graphs, 255–257
Instantiate, 48, 52, 53, 146, 152, 156–158,

184–188, 192, 201, 279

Integrated behavior model, 244–246, 248–251,
255–259, 266, 268

Integrated model, 105, 110
Integrity, 146, 150, 151, 154, 155, 158–162,

164, 176
Intentionality, 62
Interactions

analysis, 213
pattern specifications, 185, 203, 267
relationships, 326, 327, 331

Interception points, 149
Interface phenomena, 123, 125, 126
Interfaces, 33, 34, 109, 123, 125, 126, 148,

157, 160, 161, 164, 176, 216, 218,
271, 274, 275, 277, 278, 295, 314,
352, 371

Interference, 267, 272
Interleaved composition, 78, 79, 83–90, 93, 95,

97, 98
Intersection operation, 8
Intertype declarations (introductions), ix,

107–111, 116
Intra-requirement variability, 13, 15

J
Join-point(s), 8, 13, 24, 47, 58, 59, 74, 102,

106–108, 140, 147, 168, 169, 171,
172, 175, 177–180, 193, 212, 244,
245, 252–254, 261, 272, 282, 284

model, 47, 105, 108
and non-join-point functions, 172
tasks, 24

L
Label propagation, 27, 33
Lack of Cohesion of Methods (LCOM), 335
Lemma, 70
Lexicons, 8, 9, 13, 17, 18, 70, 74
Life cycle, 46, 146, 163, 171, 187, 239, 244
Local state machine-based view, 46
Logical consistency, 226–230, 234, 236, 237

M
Machine learning, 216–218, 221, 222
Machine learning technique, 217, 218, 221
MATA. See Modeling Aspects Using a

Transformation Approach (MATA)
Match point, 147, 226, 227, 232, 234, 237
MCDM. See Multi-criteria decision method

(MCDM)
MDD4EA. See Model-Driven Development

for Early Aspects (MDD4EA)

Index 381

MDSOCRE. See Multidimensional Separation
of Concerns for Requirements
Engineering (MDSOCRE)

Metrics, 116, 140, 335, 336, 340, 342, 344,
345, 348

Metric suites, 344, 345
Model-Driven Development for Early

Aspects (MDD4EA), 146, 149–153,
162

Modeling Aspects Using a Transformation
Approach (MATA), 47–53, 58, 59,
97, 139, 140

Models
instantiation, 192–193, 204
transformations, 47, 59, 146, 150–153,

155–164
language, 59
rules, 156–158, 163

Modifiers, 252, 253
Modularisation, 9, 129, 140, 146
Modularity, 11, 17, 73, 122, 140, 212, 222,

340, 344, 345, 396
Multi-criteria decision method (MCDM),

226–231, 237, 239, 240
Multi-criteria decision techniques, 147
Multidimensional separation of concerns, 17,

318, 327
Multidimensional Separation of Concerns

for Requirements Engineering
(MDSOCRE), 318, 322, 327–331

Multiword expressions, 6, 7
Mutual exclusion, 281, 320

N
Naive Bayes, 210, 219
Natural language processing (NLP), 3–9, 18,

19, 72, 97, 215, 219
NFRs. See Non-functional requirements

(NFRs)
NLP. See Natural language processing (NLP)
Non-aspectual behavior, 46, 50, 51
Non-aspectual objects, 51, 53
Non-aspectual scenarios, 46, 50–53, 55
Non-aspectual state machines, 50, 51, 53, 54
Non-determinism, 256, 272
Non-functional crosscutting concerns, 11, 150,

157, 202
Non-functional requirements (NFRs), 7, 8, 11,

18, 23, 24, 31, 79, 102, 103, 147,
163, 171, 211, 214, 215, 220, 227,
232, 239, 266, 339

Non-functional requirements catalogue, 147,
227

O
Operationalisation, 24, 27, 28, 33–35, 163
Operators, 48, 56, 58, 59, 65–71, 108, 110,

111, 116, 128, 132, 139, 140,
147, 187, 193, 194, 199, 213, 227,
276–278, 281–284, 322, 328, 329

Optimal solution, 228
Ordering of, 49, 93, 95, 272, 273, 278, 280,

284

P
Pairwise comparisons, 226, 228–231, 234
Pairwise matrix, 230, 234, 238
Particular concerns, 8, 125, 128, 198, 336, 340
Pattern, 18, 19, 47, 48, 50, 57–59, 72, 80–83,

87, 89–93, 95–98, 122, 128, 129,
133, 139, 140, 146, 152, 156–160,
162, 164, 184–187, 190, 203, 248,
250, 256, 299

Pattern-based transformations, 157, 161
Pattern specifications (PSs), 50, 82, 184, 186,

187, 190, 192, 203, 204, 267
Phenomena, 62, 122, 123, 125–127, 129, 132,

136, 138, 140, 275
Plausibility checks, 245, 259–261
Pointcut fragility/fragile problem, 58, 61, 78
Pointcuts, 47, 48, 54, 58, 59, 62, 63, 68, 71, 73,

74, 78, 81, 82, 84, 87, 91, 93, 95, 96,
106–111, 114, 115, 153, 176, 245,
247, 252–254, 260, 280–282

Ports, 148, 157, 160, 161
Positive and negative contributions, 227, 232
Pre-and post-conditions, 244, 245, 250–253,

255, 258, 265
Precedence operator, 276, 278, 281–282, 284
Primitives, 110, 111, 116
Priorities, 147, 210, 222, 227, 231, 232, 234,

235, 239
Prioritization, 128, 229, 230, 237, 240
Privacy, 154–156, 158, 160, 161
Problem

diagrams, 123–126, 128, 130, 133,
137–140, 274, 275

domains, 121, 122, 125, 139, 187, 212, 368
frames, 97, 121–140, 171, 212, 283

composition, 128, 140
patterns, 122
requirements, 124

Problem world domains, 274, 278–279, 285
Process guidelines, 5–6
Product

owner, 290, 297, 304, 305, 313, 314
requirements, 296, 301, 306

382 Index

Project team, 291, 295, 297, 298, 305, 306,
310, 311, 313, 314

Protection mechanisms, 167, 179
PSs. See Pattern specifications (PSs)

Q
Quality attributes, 211, 335, 336
Quantification, 58, 61, 74, 326, 327
Query View Transformation (QVT), 59, 158,

163

R
Ranking, 228, 229, 234–240
Ranking procedures, 228, 237
Rating, 228, 234–236, 238
RCT. See Requirements Composition Table

(RCT)
RDL. See Requirements Description Language

(RDL)
Reachability, 74, 344
Reasoning, 23–40, 69, 74, 78, 79, 185, 212,

214, 235, 237, 239, 346
Refactoring operations, 79, 89, 98, 197
Regression

suite, 306, 307, 309, 312, 313
coverage, 306, 313
structure, 306

testing, 294, 301, 304, 305, 310
tests, 306, 309–311, 313
test suites, 290, 294, 305–311, 314

Reinforcement, 320–322, 325, 327, 329, 330
Replace, 193, 195, 199, 200, 252, 254
Required concerns, 147, 227, 230, 232–237

prioritize required concerns, 234–235
Requirement Composition operators, 128
Requirement Language, 105
Requirements

analysis level, 45
change, 37, 183, 184, 187, 194, 203
evolution, 46, 187
identification, 151, 154–155
problem, 24, 27, 28

Requirements Composition Table (RCT),
289–311, 313, 314

owner, 305, 314
technique, 290, 291, 298, 306, 309, 311,

313
validation, 297, 299

Requirements Description Language (RDL),
63–70, 72–74, 139, 210, 214–216,
219, 220, 345

compositions, 63, 73–74, 215, 219

tags, 72, 215, 216
Requirements Traceability Matrix (RTM), 300
Reusability, 78, 82, 98, 121, 335, 336
Reverse-engineering, 298
Ripple effects, 62, 301, 304
Roles, 184
RTM. See Requirements Traceability Matrix

(RTM)
Runtime precedence, 277–279, 281

S
Scattered requirements, 290
Scenario-based requirements modeling, 45
Scenario modeling, 51–53, 78
Scenario modularization, 46
Scenarios, 18, 29, 40, 46–53, 55–59, 73, 93,

95, 97, 98, 112, 139, 140, 151, 152,
155–159, 164, 245, 336

Security aspects, 167, 169–178, 180, 273
Security dependency analysis, 171–172
Security requirement dependency, 169, 172
Security requirements, 138, 139, 167–180,

266, 277
Semantic equivalences, 78, 87–89
Semantics-based composition, 61–74, 87
Semantics-based matching, 79, 89, 90, 95–98
Semantics-based pointcuts, 62, 68
Semantic tag, 6–8, 13, 18
Sentence-join-points, 8
Separation of Concerns (SoC), 4, 18, 53, 122,

128, 153, 184, 246, 268, 272, 280,
283, 318, 327, 336

Sequence diagrams, 46, 47, 50, 52, 57, 58, 139,
148, 156, 157, 185, 186, 267, 338,
371–373

Sequence of messages, 47, 48
Shared phenomena, 123, 125, 126
Slot machine, 317–331
SoC. See Separation of Concerns (SoC)
Soft goal, 24, 25, 27–30, 33–35, 38, 40, 171
Software architect, 152, 158
Source code, 178, 253, 298, 299, 301, 338–340
Specification of the aspectual composition, 248
Specify concerns, 147, 227
Stakeholders, 46, 57, 62, 63, 66, 67, 74, 78, 79,

109, 147, 158, 162, 178, 186–190,
195, 200, 201, 210, 213–214, 222,
226–240, 296, 301, 306, 309, 318,
339, 347, 361

importance, 147, 227, 233
priority vector, 230

Standard deviation (highest), 73
State machine modeling, 45, 57

Index 383

State machines, 18, 46–48, 50, 51, 53–59, 97,
186, 212, 267

Stereo-types, 48, 158, 159, 246, 248, 268, 321
Structural view, 148, 157, 160
Structure degeneration, 11–13, 17
Structure improvements, 9–13, 17
Structuring abstractions into, 4
Subject matter experts (SME), 296
Subproblem, 122, 123, 125, 128, 129, 131,

133–137, 139
Supplementary features, 290, 294, 299, 303
Supplementary requirements, 295
Syntactic references, 61, 62, 69
Synthesis algorithm, 50
Systematic comparisons, 334
System behavior, 46, 63

T
Tangled concerns, 294, 336
Temporal logic predicates, 267
Test

coverage, 294, 305–314
designs, 309
obligations, 169, 173
scope, 310

Testers, 290, 297, 298, 301, 304, 309–314
Textual requirements, 3–20, 61–74, 97, 210,

214–216, 222
Theme/Doc, 4, 17, 18, 318, 322–327, 329, 331
Themes, 323
Theme/UML, 156, 213
Threat descriptions, 40, 138, 170, 171
Traceability, 40, 112, 152, 153, 163, 201, 202,

301, 306, 307
Trade-offs, 29, 47, 57, 62, 151, 158, 164, 187,

189, 202, 211, 228–230, 234, 235,
237, 239, 240

Trade-off values, 230
Training examples, 217–218
Transformation

patterns, 152, 156
process, 156, 157, 163
rules, 105, 156–158, 163, 244, 245, 248,

255, 258, 260, 267, 268, 277
Type graphs, 49, 213, 248, 249, 255, 256

U
UCM. See Use case maps (UCM)
UCPS. See Use Case Pattern Specification

(UCPS)
UML Profile, 155, 163

UML 2.0 Profile for CAM, 147, 148, 152, 153,
155, 160, 163

UML 2.0 sequence diagrams, 148
Unambiguous results, 339
Unified Modeling Language (UML), 22,

45–48, 56, 91, 151–153, 155, 156,
184–187, 190, 203, 213, 243–246,
268, 300, 321, 368, 395

URN. See User requirements notation (URN)
Use-case driven approach, 243, 244, 268,

291
Use case maps (UCM), 78–80, 82, 83, 89, 91,

97, 163
Use-case modeling, 52, 190–191, 198, 203,

300, 352
Use case pattern specification (UCPS),

185–193, 198, 203
Use cases, 4, 46, 50–52, 61, 78, 79, 97, 102,

103, 112, 139, 162, 163, 185, 186,
190–192, 198, 202, 203, 213, 214,
232, 244–255, 258, 260, 261, 265,
266, 268, 290, 300, 308, 338, 340,
345, 352, 361–368

User constraints, 248
User requests, 37, 301, 302, 305
User requirements, 77–98, 272, 274, 300–303,

305, 352
User requirements notation (URN), 78–80, 87,

98

V
Variability, 4, 8–9, 13–17, 19, 106
Verb classes, 64, 66, 70–71
V-graph, 28, 102–106, 108
Viewpoint, 4–6, 8, 17, 97, 110, 162, 214, 244
Visualization mechanisms, 102, 105, 110, 115,

116
Vocabularies, 8, 219, 325, 326, 352
Volatile, 184, 187–192, 196, 197, 201, 202,

346
concerns, 183–204
requirements, 183, 186, 187, 202–204

W
Weaving, 24, 26, 32–34, 58, 97, 130, 148, 153,

172, 213, 244, 245, 252–255, 260,
265, 268, 272, 284

Weighted average method, 221, 226, 228
Weighted decision matrix, 226
Weights, 228–232, 234–237, 239
Wmatrix, 6, 7, 9, 72, 215

	Preface
	Introduction
	1 Getting Started: AORE Main Concepts
	2 Structure of the Book
	3 Crisis Management System Case Study
	4 Intended Audience
	5 Acknowledgements
	6 Concluding Remarks
	References

	Contents
	Part I Concern Identification in Requirements
	Chapter1 Aspect Identification in Textual Requirements with EA-Miner
	1.1 Introduction
	1.2 EA-Miner and (AO)RE Process
	1.3 Use of Natural Language Processing in Identification of Crosscutting Concerns
	1.3.1 Using NLP Techniques for Automation
	1.3.2 Aspect Identification
	1.3.3 Commonality and Variability Identification with EA-Miner

	1.4 Using EA-Miner for Feature Model Refinement
	1.4.1 Finding Crosscutting Concerns with EA-Miner
	1.4.2 Refining Features with EA-Miner for Variability

	1.5 Related Work
	1.6 Conclusion
	References

	Chapter2 Reasoning About Dynamic Aspectual Requirements
	2.1 Introduction
	2.2 Background
	2.2.1 A Running Example
	2.2.2 Reasoning with Goals and Contexts
	2.2.3 Reasoning with Aspectual Requirements

	2.3 Dynamic Goals Aspects
	2.4 Common Case Study Discussion
	2.4.1 Goal Model
	2.4.2 Goal Aspect Analysis
	2.4.3 Dynamic Goal Aspects

	2.5 Limitations and Discussions
	2.6 Conclusion and Future Work
	References

	Part II Concern Modelling and Composition
	Chapter3 Aspect-Oriented Compositions for Dynamic Behavior Models
	3.1 Introduction
	3.2 Background
	3.2.1 MATA Description

	3.3 Behavioral Modeling with MATA
	3.4 Composition at Scenario Modeling Level
	3.4.1 Identify Use Cases, Aspectual and Non-aspectual Scenarios
	3.4.2 Describe Aspectual and Non-aspectual Scenarios
	3.4.3 Compose Aspectual and Non-aspectual Scenarios

	3.5 Composition at State Machine Level
	3.6 Discussion on the Two Composition Types
	3.7 Related Approaches
	3.8 Conclusions
	References

	Chapter4 Semantics-Based Composition for Textual Requirements
	4.1 Introduction
	4.2 Requirements Description Language
	4.2.1 RDL Elements
	4.2.2 Composition Elements and Their Use

	4.3 Examples of Semantics-Based Compositions
	4.3.1 Information Accuracy Composition
	4.3.2 Assignment Operators in Composition
	4.3.3 Verb Classes in Composition
	4.3.4 Degree Element in Composition

	4.4 Discussion
	4.4.1 Automation Support for RDL
	4.4.2 Evaluation of RDL Compositions

	4.5 Conclusion
	References

	Chapter5 Composing Goal and Scenario Models with the Aspect-Oriented User Requirements Notation Based on Syntax and Semantics
	5.1 Introduction
	5.2 Overview of the User Requirements Notation
	5.3 Specification of Patterns and Composition Rules in AoURN
	5.4 Overview of Basic Composition Rules and Syntax-Based Matching in AoURN
	5.5 Interleaved Composition and Enhanced Matching Based on Semantics in AoURN
	5.6 Composition in AoURN
	5.6.1 Basic Composition
	5.6.2 Advanced Composition: Interleaving
	5.6.3 Advanced Composition: Semantics-Based Matching

	5.7 Related Work
	5.8 Conclusion and Future Work
	References

	Chapter6 Aspect-Oriented Goal Modeling and Composition with AOV-Graph
	6.1 Introduction
	6.2 Motivation for AOV-Graph
	6.3 AOV-Graph: An Aspect-Oriented Requirements Modeling Approach
	6.3.1 Meta-Model to Crosscutting Concerns Integration
	6.3.2 Separation of Crosscutting Concerns
	6.3.2.1 AOV-Graph Language
	6.3.2.2 Guidelines for Concerns Modularization

	6.3.3 Composition of Crosscutting Concerns
	6.3.4 Visualization of Crosscutting Concerns

	6.4 AOV-Graph in Action
	6.4.1 Crisis Management System AOV-Graph
	6.4.2 Observations from the Crisis Management Case Study

	6.5 Final Remarks
	A.1 Appendix
	References

	Chapter7 Aspect Composition in Problem Frames
	7.1 Introduction
	7.2 Problem Frames Overview
	7.2.1 Problem Frames Diagrams
	7.2.1.1 Context Diagram
	7.2.1.2 Problem Diagram
	7.2.1.3 Problem Frame Diagram

	7.2.2 Analysing How the PFs Approach Addresses Crosscutting Concerns and Composition

	7.3 Modelling and Composing PF Using Aspects
	7.3.1 Process for Modelling and Composing Aspects
	7.3.2 Aspectual Requirements Specification
	7.3.3 Aspectual Problem Frames Specification

	7.4 Proof-of-Concept Example
	7.4.1 Build Problem Frames Specification
	7.4.1.1 Define Requirements
	7.4.1.2 Describe Problem and Subproblems
	7.4.1.3 Identify Matching Problem Frames

	7.4.2 Identify Aspectual Elements
	7.4.2.1 Modularise and Specify Aspects
	7.4.2.2 Aspectual Requirements
	7.4.2.3 Aspectual Problem Frames

	7.5 Related Work
	7.6 Conclusions
	References

	Part III Domain-Specific Use of AORE
	Chapter8 Mapping Aspects from Requirements to Architecture
	8.1 Introduction
	8.2 Background
	8.2.1 AORA
	8.2.2 CAM

	8.3 Model-Driven Development for Early Aspects
	8.3.1 Step 1: Requirements Identification
	8.3.2 Step 2: Aspect-Oriented Requirements Modelling
	8.3.3 Step 3: Selection of Transformation Patterns
	8.3.4 Step 4: Transformation Execution

	8.4 From Aspectual Requirements to Architecture: The Case for CCMS
	8.4.1 Requirements Identification
	8.4.2 Aspect-Oriented Requirements Modelling
	8.4.3 Selection of Model Transformations
	8.4.3.1 Model Transformation Rules
	8.4.3.2 Selection of a Pattern for Each Aspectual Requirement

	8.4.4 Execution of the Model Transformation

	8.5 Related Work
	8.6 Conclusions
	References

	Chapter9 Maintaining Security Requirements of Software Systems Using Evolving Crosscutting Dependencies
	9.1 Introduction
	9.2 Background
	9.2.1 Aspect-Oriented and Evolving Security Requirements
	9.2.2 Existing Security Dependency Analysis Frameworks

	9.3 A Dependency Analysis Framework for Security Aspects
	9.3.1 Change Due to a New System Requirement (C1)
	9.3.2 Change Due to an Update of Existing Implementation (C2)
	9.3.3 Change Due to a New Security Mechanism (C3)

	9.4 Application to the Meeting Scheduler System
	9.5 Conclusion
	References

	Chapter10 Using Aspects to Model Volatile Concerns
	10.1 Introduction
	10.2 Background
	10.3 Modeling Volatility
	10.3.1 Concern Identification
	10.3.2 Concern Classification and Description
	10.3.3 Concern Refactoring
	10.3.4 Concern Representation
	10.3.5 Model Instantiation
	10.3.6 Model Composition
	10.3.7 Concern Evolution

	10.4 Case Study
	10.4.1 Concerns Identification
	10.4.2 From Classification to Refactoring
	10.4.3 Concern Representation
	10.4.4 Instantiation and Composition

	10.5 Method Evaluation
	10.6 Related Work
	10.7 Conclusions
	References

	Part IV Aspect Interactions
	Chapter11 Conflict Identification with EA-Analyzer
	11.1 Introduction to Conflict Identification in Aspect-Oriented Requirements
	11.2 Related Work
	11.2.1 Goal-Oriented Approaches
	11.2.2 Aspect-Oriented Requirements Engineering Approaches
	11.2.2.1 Formalization-Based Approaches
	11.2.2.2 Model-Based Approaches
	11.2.2.3 Stakeholder Priority-Based Approaches

	11.3 Detecting Conflicts in an Aspect-Oriented Specification
	11.3.1 Annotating Textual Requirements with RDL
	11.3.2 Detecting Conflicts in the Crisis Management Specification
	11.3.2.1 Identifying Compositional Intersections
	11.3.2.2 Generating Training Examples
	11.3.2.3 Training EA-Analyzer to Identify Conflicts
	11.3.2.4 Advantages and Disadvantages of the Learning Method of EA-Analyzer

	11.4 Empirical Evaluation
	11.5 Conclusions
	References

	Chapter12 Handling Conflicts in Aspect-Oriented Requirements Engineering
	12.1 Introduction
	12.2 Aspect-Oriented Requirements Analysis
	12.3 Supporting Conflict Resolution with Multi-criteria Decision Methods
	12.3.1 Multi-criteria Decision Methods
	12.3.2 The Hybrid Assessment Method

	12.4 A Step Forward in Aspectual Conflict Management
	12.4.1 Identification and Description of Concerns
	12.4.2 Composition and Conflict Management
	12.4.3 Discussion of Results
	12.4.4 HAM Versus AHP

	12.5 Related Work
	12.6 Conclusions
	References

	Chapter13 Analysis of Aspect-Oriented Models Using Graph Transformation Systems
	13.1 Introduction
	13.2 Aspect-Oriented Modeling with Integrated Behavior Models
	13.2.1 The Crisis Management System Example
	13.2.2 Integrated Behavior Models for the Base
	13.2.3 Aspect Modeling
	13.2.4 Aspect Weaving

	13.3 Formalization of Integrated Behavior Models
	13.3.1 Graph Transformation Systems
	13.3.2 Conflicts and Causalities Between Transformation Rules
	13.3.3 Semantics of Integrated Behavior Models

	13.4 Using Plausibility Checks for Integrated Behavior Models with Aspects
	13.4.1 Plausibility Checks for Integrated Behavior Models
	13.4.2 Analysis of Aspects with Plausibility Checks

	13.5 Analysis of the Example
	13.6 Related Work
	13.7 Conclusion and Outlook
	References

	Chapter14 Aspect Interactions: A Requirements Engineering Perspective
	14.1 Introduction
	14.2 Preliminaries
	14.2.1 Feature Interaction: An Example
	14.2.2 Resolving Feature Interaction Using Composition Frames

	14.3 The Proposed Approach: Runtime Composition of Aspects
	14.3.1 Implementing the Problem World Domains
	14.3.2 Implementing the Features
	14.3.3 Implementing Composition Frames
	14.3.4 Comparing Precedence Operator with Composition Frames
	14.3.5 Fairness in Exclusion

	14.4 Common Case Study: Discussion
	14.5 Related Work
	14.6 Conclusion
	References

	Part V AORE in Industry
	Chapter15 Implementing Aspect-Oriented Requirements Analysis for Investment Banking Applications
	15.1 Introduction
	15.2 Requirements Composition Table Explained
	15.2.1 The Concept and Benefits of RCT
	15.2.2 Characteristics and Examples of Crosscutting Concerns
	15.2.3 Steps to Produce an RCT
	15.2.4 RCT's Frequently Asked Questions

	15.3 RCTs for Performing Change Impact Analysis
	15.3.1 Capturing CIA Results in an RCT
	15.3.2 Change Impact Analysis Procedure: Roles and Responsibilities

	15.4 RCTs for Assessing Coverage and Identifying Gaps in a Regression Test Suite
	15.4.1 Steps to Perform an Assessment
	15.4.2 Presenting Assessment Results

	15.5 Lessons Learned
	15.6 Conclusion and Future Work
	A.1 Descriptions of Common Crosscutting Concerns (Table A.1)
	References

	Chapter16 Experience Report: AORE in Slot Machines
	16.1 Introduction
	16.2 Requirements for Slots Machines
	16.2.1 Crosscutting Concerns in the Slot Machine Domain
	16.2.2 Interactions in the Slot Machine Domain
	16.2.3 Selected Requirements

	16.3 Application of AORE
	16.3.1 Application of Theme/Doc
	16.3.1.1 Successful Uses of Theme/Doc
	16.3.1.2 Limitations of Theme/Doc
	16.3.1.3 Extensions to Theme/Doc

	16.3.2 Application of MDSOCRE
	16.3.2.1 Successful Uses of MDSOCRE
	16.3.2.2 Limitations of MDSOCRE
	16.3.2.3 Extensions of MDSOCRE

	16.4 Conclusions
	References

	Chapter17 Advancing AORE Through Evaluation
	17.1 Introduction
	17.2 Evaluation in Other Software Engineering Phases
	17.3 Difficulties in Evaluating AORE
	17.4 General Guidelines
	17.4.1 Applications
	17.4.2 Available Artefacts
	17.4.3 Participants
	17.4.4 Treatments Applied
	17.4.5 Metric Suites
	17.4.6 Clearly Defined Evaluation Goals
	17.4.7 Towards an AORE Test-Bed

	17.5 Looking Forward
	17.5.1 Requirements at Run-Time
	17.5.2 New Requirement Sources
	17.5.3 Tool Support
	17.5.4 Beyond an AORE Test-Bed

	References

	AppendixCrisis Management Systems: A Case Study for Aspect-Oriented Modeling
	A.1 Introduction
	A.2 CMS: Requirements
	A.2.1 Crisis Scenario of a CCCMS
	A.2.2 Scope of the CMS
	A.2.3 Nonfunctional Requirements of the CMS
	A.2.4 Car Crash CMS

	A.3 CMS: Feature Models
	A.4 CCCMS: Use Cases
	A.4.1 Textual Use Cases

	A.5 CCCMS: Domain Model
	A.6 CCCMS: Informal Physical Architecture Description
	A.7 CCCMS: Selected Design Models
	A.7.1 Creating Missions

	References

	About the Editors
	Index

