
 123

LN
CS

 7
91

2

20th International Conference, IIS 2013
Warsaw, Poland, June 2013
Proceedings

Language Processing
and Intelligent
Information Systems

Mieczysław A. Kłopotek
Jacek Koronacki
Małgorzata Marciniak
Agnieszka Mykowiecka
Sławomir T. Wierzchon (Eds.)

Lecture Notes in Computer Science 7912
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Mieczysław A. Kłopotek
Jacek Koronacki
Małgorzata Marciniak
Agnieszka Mykowiecka
Sławomir T. Wierzchoń (Eds.)

Language Processing
and Intelligent
Information Systems

20th International Conference, IIS 2013
Warsaw, Poland, June 17-18, 2013
Proceedings

13

Volume Editors

Mieczysław A. Kłopotek
Jacek Koronacki
Małgorzata Marciniak
Agnieszka Mykowiecka
Polish Academy of Sciences
Institute of Computer Science
ul. Jana Kazimierza 5, 01-248 Warsaw, Poland
E-mail: {mieczyslaw.klopotek, jacek.koronacki,
malgorzata.marciniak, agnieszka.mykowiecka}@ipipan.waw.pl

Sławomir T. Wierzchoń
Polish Academy of Sciences
Institute of Computer Science
ul. Brzegi 55, 80-045 Gdańsk, Poland
E-mail: slawomir.wierzchon@ipipan.waw.pl

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-38633-6 e-ISBN 978-3-642-38634-3
DOI 10.1007/978-3-642-38634-3
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2013939075

CR Subject Classification (1998): C.2.4, C.2.5, H.2.8, I.2.7-9, K.3.1, K.4.4, I.5

LNCS Sublibrary: SL 3 – Information Systems and Application, incl. Internet/Web
and HCI

© Springer-Verlag Berlin Heidelberg 2013
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

The Conference on Intelligent Information Systems, organized by the Institute
of Computer Science of the Polish Academy of Sciences, has been a prominent
meeting place for scientists from all over the world for nearly 30 years now.
This volume contains the papers presented at the 20th conference of the series
Language Processing and Intelligent Information Systems Conference, which was
held in Warsaw, Poland, June 17–18, 2013. This year, the main goal of the
meeting was to present new ideas and tools for natural language processing
and interplay between the analysis of natural language and traditional machine
learning technologies.
The volume contains 28 papers selected by the Program Committee from 53

submitted papers. Each paper was anonymously reviewed by at least two inde-
pendent reviewers, and the articles presented in this volume were significantly
improved on the basis of the reviewers’ comments. The volume consists of two
types of submissions: 13 long research papers describing original research con-
tributions to the conference topics, and 15 short papers mainly describing tools
and resources. Two demonstration sessions were organized to take place during
the conference. One of these sessions presented the results of the four-year Polish
POIG.01.01.02 project “An adaptive system to support problem-solving on the
basis of document collections on the Internet.” A short description of the tools
and systems to be presented are published on the conference website.
The papers presented in this volume are organized into three thematic groups:

natural language processing, clustering and classification of big collections of
textual documents, and classic data mining problems. The conference was opened
by an invited plenary talk entitled “Syntax and Semantics in the Web-Scale
Extraction of n-ary Relations” by Hans Uszkoreit—Scientific Director at the
German Research Centre for Artificial Intelligence (DFKI) and Head of the DFKI
Language Technology Lab, Saarbrücken, Germany. The second day started with
a talk “Beyond Query Suggestions: Recommending Tasks to SE Users” given
by Fabrizio Silvestri from the Institute of Information Science and Technologies
at Consiglio Nazionale delle Ricerche, Pisa, Italy. In the talk, he discussed the
Task Relation Graph (TRG) as a representation of users’ search behaviors on a
task-by-task perspective.
The problems of natural language processing are discussed in 17 articles.

These papers concern the processing of a set of very diverse languages: Polish,
Croatian, English, German, Dutch, Chinese, and Persian. Both machine learning
and formal approaches are explored and hybrid solutions combining more than
one technique are frequently proposed. A hybrid approach is used for multilingual
toponyms extraction, for example. In the paper by M. Habib and M. van Keulen,
an HMM module serves for the selection of potential candidates for toponyms,
while the disambiguation level is done using CRF.

VI Preface

For many languages, the tools for performing basic syntactic analysis are not
well developed. Relatively free word order and rich inflection render some of the
methods used for defining English or German grammar unsatisfactory in dealing
with these languages. A great number of morphological tags and the relatively
small size of annotated corpora make this task more challenging. Among papers
dealing with this issue is the work of K. Krasnowska, which describes a Polish
LTAG grammar, while two other papers represent a partial parsing approach.
A. Radziszewski and A. Pawlaczek describe recognition of CRF-based chunks,
while A. Radziszewski et al. use C4.5, SVM and a memory-based classifier to
classify predicate-argument relationships. A. Wróblewska and P. Sikora present
an on-line service of the newly established Polish dependency parser.
Papers presenting specific NLP applications concern recognition of fake re-

views (M. Rubikowski and A. Wawer), question answering (P. Przybyła), and
recognition of named entities (A. L.-F. Han et al).
Another group of papers is devoted to resource building, evaluation, and

sharing. These works comprise, among others, the creation of a Croatian deriva-
tional dictionary in a paper by V. Štefanec et al., the annotating of named
entities by E. Hajnicz, and the detection of annotation errors in existing tree-
banks or corpora addressed in two papers: one by Ł. Kobyliński and another
by K. Krasnowska and A. Przepiórkowski. M. Aminian et al. describe a spec-
tral clustering algorithm used for identification of Persian semantic verb classes
based on syntactic information, M. Ogrodniczuk describes a translational–based
co-reference resolution for Polish, while M. Marcińczuk and A. Radziszewski
present a general language for text annotation.
Two papers deal with processing older language variants. X. Zou et al. de-

scribe a method for recognizing changes in usage of a word in time on the basis
of the context of its occurrences, while J. Waszczuk presents an architecture of
a dictionary of old Polish.
The authors of seven articles included in the second part of the volume ex-

tend traditional tasks of machine learning, such as clustering or classification,
to the domain of collections of textual documents G. Stratogiannis et al. inves-
tigate the issue of reliable search for related entities using semantic knowledge
extracted from Wikipedia. With such knowledge a semantic relatedness between
entities is established, and, finally, a semantic clustering is used to answer a given
question. R. Szmit presents an algorithm and technological framework for the
search for similar documents based on locally sensitive hashing. The proposed
distributed algorithm is designed to cope with very large document collections.
M. Dramiński et al. look at the clustering of user activity data from various
topically related sites as a vehicle for obtaining better user profiles. Although
the idea seems to be plausible, the authors demonstrate that we are far from
being able to apply it in practice as the users fluctuate between the clusters.
T. Kuśmierczyk and M. Sydow reiterate the old problem of focused Web crawl-
ing. They demonstrate that the usage of short lists of keywords, shallow search,
and appropriately chosen starting pages may dramatically improve the Harvest
Ratio. M. Łukasik and M. Sydow investigate the properties of a version of the

Preface VII

multi-label classification algorithm based on the k-Nearest Neighbors method.
They show that the modification, concentrating on choosing appropriate thresh-
olding, performs significantly better than the standard form of the algorithm.
T. Giannakopoulos et al. apply a supervised learning technique for classifying
documents in a manner that allows visualization of the contents of a collection of
scientific documents. M.A. Kłopotek et al. turn to the issue of balance between
personalization and the required space for storing data. They propose a method
for combining a personalized PageRank, computed for various categories, to ob-
tain a PageRank for a joint category, so that a considerable number of ranking
vectors need not be stored.
The last group of contributors reports on new results obtained in the domain

of classic data mining. M. Lucińska and S.T. Wierzchoń propose a new spec-
tral clustering algorithm that uses a novel way of identifying the cluster number
solely on the basis of the eigenvector structure. They demonstrate that the ap-
proach yields valid clusters, even in the case of data sets that are not clearly cut.
R. Kłopotek investigates a recently proposed generator of artificial social graphs
with a bipartite structure. He seeks to reconstruct generator parameters from
the generated graphs while posing the question of why such generators are able
to provide artificial graphs that behave similarly to real ones. K. Trojanowski
and M. Janiszewski investigate the issue of the influence of resource constraints
on the outcome of an optimization algorithm. They introduce the concept of
user impatience and demonstrate its impact on the expected value of the re-
sult of optimization. C. Sur et al. propose an algorithm for solving the traveling
salesman problem that exploits new nature-based techniques of local search.

We would like to express our thanks to the invited speakers and the authors
of the papers for their contribution. Likewise we thank the authors of the demon-
strated systems. We extend special thanks to all the members of the Program
Committee and invited reviewers for their excellent job.

March 2013 Mieczysław A. Kłopotek
Jacek Koronacki

Małgorzata Marciniak
Agnieszka Mykowiecka
Sławomir T. Wierzchoń

Conference Organization

Steering Committee

Mieczysław A. Kłopotek Institute of Computer Science PAS, Poland
Jacek Koronacki Institute of Computer Science PAS, Poland
Małgorzata Marciniak Institute of Computer Science PAS, Poland
Agnieszka Mykowiecka Institute of Computer Science PAS, Poland

Polish Japanese Institute of Information
Technology, Poland

Sławomir T. Wierzchoń Institute of Computer Science PAS, Poland

Publication Chair

Leonard Bolc Polish Japanese Institute of Information
Technology, Poland

Program Committee

Steven Abney University of Michigan, USA
Witold Abramowicz Poznań University of Economics, Poland
Stanisław Ambroszkiewicz Institute of Computer Science PAS, Poland
Pascal Bouvry University of Luxembourg
António Horta Branco University of Lisbon, Portugal
Luis Miguel de Campos University of Granada, Spain
Krzysztof Cetnarowicz AGH University of Science and Technology,

Poland
Jan Daciuk Gdańsk University of Technology, Poland
Piotr Dembiński Institute of Computer Science PAS, Poland
Tomaž Erjavec Jožef Stefan Institute, Slovenia
Dafydd Gibbon Universität Bielefeld, Germany
Jerzy W. Grzymała-Busse University of Kansas, USA
Mohand-Said Hacid Université Claude Bernard Lyon 1, France
Erhard Hinrichs University of Tübingen, Germany
Ryszard Janicki McMasters University Ontario, Canada
Krzysztof Jassem Adam Mickiewicz University, Poland
Janusz Kacprzyk Polish Academy of Sciences, Poland
Waldemar W. Koczkodaj Laurentian University, Canada
Józef Korbicz University of Zielona Góra, Poland
Steven Krauwer Utrecht University, The Netherlands
Vladislav Kuboň Charles University, Prague, Czech Republic
Anna Kupść Université Bordeaux 3, France

X Conference Organization

Halina Kwaśnicka Wrocław University of Technology, Poland
Antoni Ligęza AGH University of Science and Technology,

Poland
Ramón López-Cózar
Delgado University of Granada, Spain

Alexander Lyaletski Kyiv National Taras Shevchenko, Ukraine
Suresh Manandhar University of York, UK
Krzysztof Marasek Polish Japanese Institute of Information

Technology, Poland
Stan Matwin University of Ottawa, Canada
Archil Maysuradze Lomonosov Moscow State University, Russia
Marie-Jean Meurs Concordia University, Canada
Maciej Michalewicz IBM Netezza Poland
Karel Pala Masaryk University, Czech Republic
Maciej Piasecki Wrocław University of Technology, Poland
Adam Przepiórkowski Institute of Computer Science PAS, Poland
Zbigniew W. Raś University of North Carolina at Charlotte, USA
Jan Rauch University of Economics, Czech Republic
Henryk Rybiński Warsaw University of Technology, Poland
Khalid Saeed AGH University of Science and Technology,

Poland
Shikhar Kr. Sarma Guahati University, Assam, India
Franciszek Seredyński Institute of Computer Science PAS, Poland
Kiril Simov Bulgarian Academy of Science, Bulgaria
Roman Słowiński Poznań University of Technology, Poland
Jerzy Stefanowski Poznań University of Technology, Poland
Tomek Strzalkowski University at Albany, USA
Marcin Sydow Polish Japanese Institute of Information

Technology, Poland
Stan Szpakowicz University of Ottawa, Canada
Ryszard Tadeusiewicz AGH University of Science and Technology,

Poland
Zygmunt Vetulani Adam Mickiewicz University, Poland
Wolfgang Wahlster DFKI GmbH, Saarbrücken, Germany
Alicja Wakulicz-Deja University of Silesia, Poland
Jan Węglarz Poznań University of Technology, Poland
Peter Wittenburg Max Planck Institute for Psycholinguistics,

The Netherlands
Karsten Wolf University of Rostock, Germany
Bożena Woźna-Szcześniak Jan Długosz University, Poland
Janusz Zalewski Florida Gulf Coast University, USA

Conference Organization XI

Invited Reviewers

Elżbieta Hajnicz, Gregoire Danoy, Bernabe Dorronsoro, Michał Marcińczuk,
Frederic Pinel, Agata Savary, Jakub Waszczuk, Marcin Woliński

Organizing Committee

Piotr Borkowski
Michał Ciesiołka
Marek Miszewski
Maciej Ogrodniczuk

Table of Contents

Natural Language Processing

A Hybrid Approach for Robust Multilingual Toponym Extraction and
Disambiguation . 1
Mena B. Habib and Maurice van Keulen

Towards a Polish LTAG Grammar . 16
Katarzyna Krasnowska

Incorporating Head Recognition into a CRF Chunker 22
Adam Radziszewski and Adam Pawlaczek

Classification of Predicate-Argument Relations in Polish Data 28
Adam Radziszewski, Paweł Orłowicz, and Bartosz Broda

Online Service for Polish Dependency Parsing and Results
Visualisation . 39
Alina Wróblewska and Piotr Sikora

The Scent of Deception: Recognizing Fake Perfume Reviews in Polish . . . 45
Maciej Rubikowski and Aleksander Wawer

Question Classification for Polish Question Answering 50
Piotr Przybyła

Chinese Named Entity Recognition with Conditional Random Fields in
the Light of Chinese Characteristics . 57
Aaron L.-F. Han, Derek F. Wong, and Lidia S. Chao

Detecting Syntactic Errors in Dependency Treebanks for
Morphosyntactically Rich Languages . 69
Katarzyna Krasnowska and Adam Przepiórkowski

A Method for the Computational Representation of Croatian
Morphology . 80
Vanja Štefanec, Matea Srebačić, and Krešimir Šojat

Mapping Named Entities from NKJP Corpus to Składnica Treebank
and Polish Wordnet . 92
Elżbieta Hajnicz

Automatic Detection of Annotation Errors in Polish-Language
Corpora . 106
Łukasz Kobyliński

XIV Table of Contents

Unsupervised Induction of Persian Semantic Verb Classes Based on
Syntactic Information . 112
Maryam Aminian, Mohammad Sadegh Rasooli, and Hossein Sameti

Translation- and Projection-Based Unsupervised Coreference
Resolution for Polish . 125
Maciej Ogrodniczuk

WCCL Match – A Language for Text Annotation . 131
Michał Marcińczuk and Adam Radziszewski

Diachronic Corpus Based Word Semantic Variation and Change
Mining . 145
Xiaojun Zou, Ni Sun, Hua Zhang, and Junfeng Hu

A Representation of an Old Polish Dictionary Designed for Practical
Applications . 151
Jakub Waszczuk

Text and Web Mining

Related Entity Finding Using Semantic Clustering Based on Wikipedia
Categories . 157
Georgios Stratogiannis, Georgios Siolas, and Andreas Stafylopatis

Locality Sensitive Hashing for Similarity Search Using MapReduce on
Large Scale Data . 171
Radosław Szmit

Stabilization of Users Profiling Processed by Metaclustering
of Web Pages . 179
Michał Dramiński, Błażej Owczarczyk, Krzysztof Trojanowski,
Dariusz Czerski, Krzysztof Ciesielski, and Mieczysław A. Kłopotek

Towards a Keyword-Focused Web Crawler . 187
Tomasz Kuśmierczyk and Marcin Sydow

Threshold ML-KNN: Statistical Evaluation on Multiple Benchmarks . . . 198
Michał Łukasik and Marcin Sydow

Supervised Content Visualization of Scientific Publications: A Case
Study on the ArXiv Dataset . 206
Theodoros Giannakopoulos, Harry Dimitropoulos, Omiros Metaxas,
Natalia Manola, and Yannis Ioannidis

A Calculus for Personalized PageRank . 212
Mieczysław A. Kłopotek, Sławomir T. Wierzchoń, Dariusz Czerski,
Krzysztof Ciesielski, and Michał Dramiński

Table of Contents XV

Machine Learning and Search

Finding the Number of Clusters on the Basis of Eigenvectors 220
Małgorzata Lucińska and Sławomir T. Wierzchoń

Study on the Estimation of the Bipartite Graph Generator
Parameters . 234
Robert A. Kłopotek

Expected Value of the Optimization Algorithm Outcome 245
Krzysztof Trojanowski and Marcin Janiszewski

Solving Travelling Salesman Problem Using Egyptian Vulture
Optimization Algorithm – A New Approach . 254
Chiranjib Sur, Sanjeev Sharma, and Anupam Shukla

Author Index . 269

A Hybrid Approach for Robust Multilingual

Toponym Extraction and Disambiguation

Mena B. Habib and Maurice van Keulen

Faculty of EEMCS, University of Twente, Enschede, The Netherlands
{m.b.habib,m.vankeulen}@ewi.utwente.nl

Abstract. Toponym extraction and disambiguation are key topics re-
cently addressed by fields of Information Extraction and Geographical In-
formation Retrieval. Toponym extraction and disambiguation are highly
dependent processes. Not only toponym extraction effectiveness affects
disambiguation, but also disambiguation results may help improving ex-
traction accuracy. In this paper we propose a hybrid toponym extraction
approach based on Hidden Markov Models (HMM) and Support Vec-
tor Machines (SVM). Hidden Markov Model is used for extraction with
high recall and low precision. Then SVM is used to find false positives
based on informativeness features and coherence features derived from
the disambiguation results. Experimental results conducted with a set of
descriptions of holiday homes with the aim to extract and disambiguate
toponyms showed that the proposed approach outperform the state of
the art methods of extraction and also proved to be robust. Robustness
is proved on three aspects: language independence, high and low HMM
threshold settings, and limited training data.

1 Introduction

Toponyms are names used to refer to locations without having to mention the
actual geographic coordinates. The process of toponym extraction (recognition)
is a subset of Named Entity Recognition (NER) that aims to identify location
name boundaries in text. While toponym disambiguation (resolution) is the pro-
cess of mapping between a toponym and an unambiguous spatial coordinates of
the same place.

Toponyms extraction and disambiguation are highly challenging. For example,
according to GeoNames1, the toponym “Paris” refers to more than sixty differ-
ent geographic places around the world besides the capital of France. Around
46% of toponyms in GeoNames have more than one reference. Duplicate geo-
graphic names comes from the fact that emigrant settlers prefer to use their
original land names to denote their new homes, leading to referential ambiguity
of place names [12]. Another source of ambiguity is that some common English
words have references in GeoNames and might be extracted as toponyms under
some conditions. For example, words like {Shop, Park, Villa, Airport} represent
location names in GeoNames.

1 www.geonames.org

M.A. K�lopotek et al. (Eds.): IIS 2013, LNCS 7912, pp. 1–15, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

www.geonames.org

2 M.B. Habib and M. van Keulen

A general principle in this work is our conviction that toponym extraction and
disambiguation are highly dependent [8]. Mena et al. [9] studied not only the pos-
itive and negative effect of the extraction process on the disambiguation process,
but also the potential of using the result of disambiguation to improve extraction.
They called this potential for mutual improvement, the reinforcement effect.

The extraction techniques fall into two categories: machine learning and rule-
based approaches. The advantage of statistical techniques for extraction is that
they provide alternatives for annotations along with confidence probabilities.
Instead of discarding these, as is commonly done by selecting the top-most
likely candidate, we use them to enrich the knowledge for disambiguation. It
was proved that extraction probability can be used to enhance the disambigua-
tion so that the contribution of each extracted item to the disambiguation of
other extracted items is proportional to its extraction probability [9]. We believe
that there is much potential in making the inherent uncertainty in information
extraction explicit in this way. Certainty can also be improved using informative-
ness features and coherence features derived from the disambiguation results.

Most of existing extraction techniques are language-dependent as they need a
POS tagger. And it is known that it takes some effort to tune the thresholds and
that they are typically trained on large corpuses. In practice, one would like to
have more robustness so that accuracy is not easily hampered. In this paper, we
specifically address robustness against threshold settings, situations with other
languages, and situations with limited training data.

In this paper we propose a hybrid extraction approach based on Hidden
MarkovModels (HMM) and Support Vector Machines (SVM). An initial HMM is
trained and used for extraction. We used a low cutting threshold to achieve high
recall resulting in low precision. A clustering based approach for disambigua-
tion is then applied. A set of coherence features are extracted for the extracted
toponyms based on the disambiguation results feedback and also on informa-
tiveness measures (like Inverse Document Frequency and Gain). A SVM is then
trained with the extracted features to classify the HMM extracted toponyms
into true positives and false positives resulting in improving the precision and
hence the F1 measure. Our hybrid approach outperforms the Conditional Ran-
dom Fields (CRF), the state of the art method of extraction and Stanford NER,
the prominent Named Entity Recognition System. Furthermore, our hybrid ap-
proach is shown to be language independent as all the used methods are not
based on language dependent techniques like Part Of Speech (POS) which is
commonly used with the NER systems. Robustness of the proposed approach is
experimentally proved by applying different HMM cutting thresholds, evaluating
it across multiple languages and also with smaller training sets. More aspects of
robustness like evaluating across multiple domains and using different types of
named entities are left for future work.

To examine our hybrid approach, we conducted experiments on a collection
of holiday home descriptions from the EuroCottage2 portal. These descriptions
contain general information about the holiday home including its location and

2 http://www.eurocottage.com

http://www.eurocottage.com

Approach for Multilingual Toponym Extraction and Disambiguation 3

its neighborhood (See figure 2 for an example). As a representative example of
toponym extraction and disambiguation, we focused on the task of extracting
toponyms from the description and using them to infer the country where the
holiday property is located.

Contributions:We can summarize our contributions as follows: (1) We propose
a hybrid toponym extraction approach based on HMM and SVM. (2) The pro-
posed system is proved to be robust against three aspects: different languages,
different cutting thresholds, and limited training data. (3) We introduce some
features (informativeness and coherence-based) that can be used to enhance the
process of toponym extraction.

The rest of the paper is organized as follows. Section 2 presents related work
on toponym extraction and disambiguation. Our proposed approach for toponym
extraction and disambiguation is described in Section 3. In Section 4, we describe
the experimental setup, present its results, and discuss some observations and
their consequences. Finally, conclusions and future work are presented.

2 Related Work

Toponym extraction and disambiguation are special cases of a more general
problem called Named Entity Recognition (NER) and Disambiguation (NED).
In this section, we briefly survey a few major approaches for NER and toponym
disambiguation.

2.1 Named Entity Extraction

NER is a subtask of Information Extraction (IE) that aims to annotate phrases
in text with its entity type such as names (e.g., person, organization or location
name), or numeric expressions (e.g., time, date, money or percentage). The term
‘named entity recognition (extraction)’ was first mentioned in 1996 at the Sixth
Message Understanding Conference (MUC-6) [7], however the field started much
earlier. The vast majority of proposed approaches for NER fall in two categories:
handmade rule-based systems and supervised learning-based systems.

One of the earliest rule-based system is FASTUS [10]. It is a nondeterministic
finite state automaton text understanding system used for IE. The other category
of NER systems is the machine learning based systems. Supervised learning
techniques applied in NEE include Hidden Markov Models (HMM) [26], Decision
Trees [21], Maximum Entropy Models [1], Support Vector Machines [11], and
Conditional Random Fields (CRF) [15][4].

Multilingual NER is discussed by many researchers. Florian et al. [5] used
classifier-combination experimental framework for multilingual NER in which
four diverse classifiers are combined under different conditions. Szarvas et al. [24]
introduced a multilingual NER system by applying AdaBoostM1 and the C4.5
decision tree learning algorithm. Richman and Schone utilized the multilingual
characteristics of Wikipedia to annotate a large corpus of text with NER tags
[20]. Similarly, Nothman et al. [16] automatically created multilingual training

4 M.B. Habib and M. van Keulen

annotations for NER by exploiting the text and structure of parallel Wikipedia
articles in different languages.

Using informativeness features in NER is introduced by Rennie et al. [19].
They conducted a study on identifying restaurant names from posts to a restau-
rant discussion board. They found the informativeness scores to be an effective
restaurant word filter. Furche et al. [6] introduce a system called AMBER for ex-
tracting data from an entire domain. AMBER employs domain specific gazetteers
to discern basic domain attributes on a web page, and leverages repeated occur-
rences of similar attributes to group related attributes into records.

Some researches focused only on toponym extraction. In [13], a method for
toponym recognition is presented that is tuned for streaming news by leverag-
ing a wide variety of recognition components, both rule-based and statistical.
Another interesting toponym extraction work was done by Pouliquen et al. [17].
They present a multilingual method to recognize geographical references in free
text that uses minimum of language-dependent resources, except a gazetteer.
In this system, place names are identified exclusively through gazetteer lookup
procedures and subsequent disambiguation or elimination.

2.2 Toponym Disambiguation

Toponym reference disambiguation or resolution is a form of Word Sense Disam-
biguation (WSD). According to [2], existing methods for toponym disambiguation
can be classified into three categories: (i) map-based: methods that use an explicit
representation of places on a map; (ii) knowledge-based: methods that use exter-
nal knowledge sources such as gazetteers, ontologies, or Wikipedia; and (iii) data-
driven or supervised: methods that are based on machine learning techniques.

An example of a map-based approach is [22], which aggregates all references
for all toponyms in the text onto a grid with weights representing the number of
times they appear. References with a distance more than two times the standard
deviation away from the centroid of the name are discarded.

Knowledge-based approaches are based on the hypothesis that toponyms ap-
pearing together in text are related to each other, and that this relation can be
extracted from gazetteers and knowledge bases like Wikipedia. Following this hy-
pothesis, [18] used a toponym’s local linguistic context to determine the toponym
type (e.g., river, mountain, city) and then filtered out irrelevant references by this
type.

Supervised learning approaches use machine learning techniques for disam-
biguation. [23] trained a naive Bayes classifier on toponyms with disambiguating
clues and tested it on texts without these clues. Similarly, [14] used Support
Vector Machines to rank possible disambiguations.

3 Proposed Hybrid Approach

The hybridness of our proposed approach can be viewed from two points of view.
It can be viewed as a hybrid approach of toponym extraction and disambiguation
processes. Clues derived from the disambiguation results are used to enhance

Approach for Multilingual Toponym Extraction and Disambiguation 5

Fig. 1. Our proposed hybrid toponym extraction and disambiguation approach

extraction. Also our system can be viewed as a hybrid machine learning approach
for extraction where HMM and SVM are combined to achieve better results. An
initial HMM is trained and used for extraction with high recall. A SVM is then
trained to classify the HMM extracted toponyms into true positives and false
positives resulting in improving the precision and hence the F1 measure.

3.1 System Phases

The system illustrated in Figure 1 has the following Phases:
Phase 1: HMM training

1. Training data is prepared by manually annotating all toponyms. Tokens are
tagged, following the CoNLL3 standards, by either a LOCATION or O tag
which represents words that are not part of a location phrase.

2. Training data is used to train a HMM4,5 [3] for toponym extraction. The ad-
vantage of statistical techniques for extraction is that they provide alterna-
tives for annotations accompanied with confidence probabilities. Instead of
discarding these, as is commonly done by selecting the top-most likely candi-
date, we use them to enrich the knowledge for disambiguation. The probabil-
ities proved to be useful in enhancing the disambiguation process [9].

Phase 2: SVM training
1. The trained HMM is then used to extract toponyms from the training set.

A low cutting threshold is used to get high recall. The extracted toponyms
are then matched against GeoNames gazeteer. For each toponym, a list of
candidate references are fed to the disambiguation process.

2. The disambiguation process tries to find only one representative reference
for each extracted toponym based on its coherency with other toponyms

3 http://www.cnts.ua.ac.be/conll2002/ner/
4 http://alias-i.com/lingpipe/
5 We used an HmmCharLmEstimator which employs a maximum a posteriori transi-
tion estimator and a bounded character language model emission estimator.

http://www.cnts.ua.ac.be/conll2002/ner/
http://alias-i.com/lingpipe/

6 M.B. Habib and M. van Keulen

mentioned in the same document. Details of the disambiguation approach
used is described in section 3.2.

3. Two sets of features (informativeness and coherence-based) are computed
for each extracted toponym. Details of the selected features are described in
section 3.3.

4. The extracted set of features are used to train the SVM classifier6,7 to dis-
tinguish between true positives toponyms and false positives ones.

Phase 3: Production
1. The trained HMM is applied on the test set. The extracted toponyms are

matched against GeoNames and their candidate references are disambiguated.
Informativeness and coherence features are computed and fed to the trained
SVM to find the final results of toponyms extraction process.

2. Disambiguation process can be repeated using the final set of extracted to-
ponyms to get the improvement reflected on the disambiguation results.

The main intuition behind our approach is to make use of more clues than those
often used by traditional extraction techniques (like POS, word shape, preceding
and succeeding words). We deliberately use set of language-independent features
to ensure robustness across multiple languages. To make use of those features
we start with high recall and then filter the extracted toponyms based on those
features. Even by using a higher cutting threshold, our approach is still able to
enhance the precision at the expense of some recall resulting in enhancement of
the overall F1 measure. Moreover, the features are found to be highly discrimi-
native, so that only few training samples are required to train the SVM classifier
good enough to make correct decisions.

3.2 Toponym Disambiguation Approach

For the toponym disambiguation task, we only select those toponyms annotated
by the extraction models that match a reference in GeoNames.We use the cluster-
ing approach of [9] with the purpose to infer the country of the holiday home from
the description. The clustering approach is an unsupervised disambiguation ap-
proach based on the assumption that toponyms appearing in same document are
likely to refer to locations close to each other distance-wise. For our holiday home
descriptions, it appears quite safe to assume this. For each toponym ti, we have, in
general, multiple entity candidates. Let R(ti) = {rix ∈ GeoNames gazetteer} be
the set of reference candidates for toponym ti. Additionally each reference rix in
GeoNames belongs to a countryCountryj . By taking one entity candidate for each
toponym, we form a cluster. A cluster, hence, is a possible combination of entity
candidates, or in other words, one possible entity candidate of the toponyms in the
text. In this approach, we consider all possible clusters, compute the
average distance between the candidate locations in the cluster, and choose the
cluster Clustermin with the lowest average distance. We choose the most often oc-
curring country Countrywinner in Clustermin for disambiguating the country of

6 http://www.csie.ntu.edu.tw/\simcjlin/libsvm/
7 We used C-support vector classification (C-SVC) type of SVM with RBF kernel.

http://www.csie.ntu.edu.tw/$\sim $cjlin/libsvm/

Approach for Multilingual Toponym Extraction and Disambiguation 7

the document. In effect the above-mentioned assumption states that the entities
that belong to Clustermin are the true representative entities for the correspond-
ing toponyms as they appeared in the text.

3.3 Selected Features

Coherence features derived from disambiguation results along with informative-
ness features are computed for all the extracted toponyms generated by the
HMM. For each extracted toponym the following set of informativeness features
are computed:

1. InverseDocumentFrequency (IDF): IDF is an informativeness score that
embodies the principle that the more frequent a word is, the lower the chance
it is a relevant toponym. The IDF score for an extracted toponym t is:

IDF = −log dt

D
where dt is the document frequency of the toponym t, and D is the total
number of documents.

2. Residual Inverse Document Frequency (RIDF): RIDF is an extension
of IDF that has proven effective for NER [19]. RIDF is calculated as the
difference between the IDF of a toponym and its expected IDF according to
the poisson model. The RIDF score can be calculated by the formula:

expIDF = −log(1− e−ft/D) RIDF = IDF − expIDF
where ft is the frequency of the toponym across all documents D.

3. Gain: Gain is a feature that can be used to identify “important” or infor-
mative terms. For a toponym t, Gain is derived as:

Gain(t) = dt

D (dt

D − 1− log dt

D)
4. Extraction Confidence (EC): Extraction confidence (probability) is the

HMM conditional probability of the annotation given an input word. The
goal of HMM is to find the optimal tag sequence T = t1, t2, ..., tn for a given
word sequence W = w1, w2, ..., wn that maximizes:

P (T | W) = P (T)P (W |T)
P (W)

The prior probability P (ti|ti−2, ti−1) and the likelihood probability P (wi|ti)
can be estimated from training data. The optimal sequence of tags can be
efficiently found using the Viterbi dynamic programming algorithm [25]. The
extraction confidence is the probability of being a part of toponym given a
token P (t|w).

Furthermore, the following set of coherence features are computed based on the
disambiguation results:

1. Distance (D): The distance feature is the kilo-metric distance between the
coordinates of the selected candidate reference rij for toponym ti and the
coordinates of the inferred country Countrywinner.

Distance = Coordinates(rij)− Coordinates(Countrywinner)
2. Standard Score (SS): It is calculated by dividing the distance between

the coordinates of the rix and Countrywinner over the standard deviation of
all selected references distances to Countrywinner .

StandardScore =
Coordinates(rij)−Coordinates(Countrywinner)

σ

8 M.B. Habib and M. van Keulen

1-room apartment 80 m2, on the ground floor, simple furnishings: living/dining room
70 m2 with 4 beds and satellite-TV. Open kitchen (4 hotplates, oven, micro wave)
with dining table. Shower/WC. Floor heating. Facilities: hair dryer. Internet (Dial
up/ISDN). The room is separated by 4 steps in bedroom and lounge. The bedroom
has no direct light.
Oľsova Vrata 5 km from Karlovy Vary: On the edge of the Slavkovsky les nature
reserve. Small holiday hamlet next to the hotel which has been a popular destination
for Karlsbad inhabitants for the past 30 years new, large house with 2 apartments,
2 storeys, built in 2004, surrounded by trees, above Karlovy Vary, in a secluded,
sunny position, 10 m from the woods edge. Private, patio (20 m2), garden furniture.
In the house: table-tennis. Central heating. Breakfast and half-board on request.
Motor access to the house (in winter snow chains necessary). Parking by the house.
Shop 4 km, grocers 1.5 km, restaurant 150 m, bus stop 550 m, swimming pool 6 km,
indoor swimming pool 6 km, thermal baths 6 km, tennis 1 km, golf course 1.5 km,
skisport facilities 25 km. Please note: car essential. Airport 1.5 km (2 planes/day).
On request: Spa treatments, green fee. Ski resort Klinovec, 20 km.

Fig. 2. An example of a EuroCottage holiday home description (toponyms in bold)

3. Number of GeoNames candidate references (#Geo): It is simply the
number of candidate references for the toponym ti.

#GeoNames Refs = |rix|
4. Belongingness to the disambiguated country (Bel): Indicates whether

or not rij belongs to Countrywinner .

Belongingness to Countrywinner =

{
1 if Country(rij) = Countrywinner

0 otherwise

Informativeness features tend to find those false positives that appear multiple
times across the collection. Those highly repeated words are more likely to be
false positives toponyms. On the other hand, some false positives appear only
rarely in the collection. Those toponyms can not be caught by informativeness
features. Here where we make use of coherence-based features. Coherence fea-
tures tend to find those false positives that are not coherent with other toponyms.
The usage of a combination of both sets of features maximizes the extraction
effectiveness (F1 measure).

Unlike traditional features commonly used with NER systems like (POS),
all our selected features are language independent and thus our approach can
be applied to any language as the GeoNames gazetteer has representations for
toponyms in different languages. Furthermore we avoid using word shape fea-
tures as languages like German require the capitalization of all nouns making
capitalization a useless feature to extract NE.

4 Experimental Results

In this section, we present the results of experiments with the proposed approach
applied to a collection of holiday properties descriptions. The goals of the ex-
periments are to compare our approach with the state of the art approaches and
systems and to show its robustness in terms of language independence, high and
low HMM threshold settings, and limited training data.

Approach for Multilingual Toponym Extraction and Disambiguation 9

4.1 Data Set

The data set we use for our experiments is a collection of traveling agent hol-
iday property descriptions from the EuroCottage8 portal. The descriptions not
only contain information about the property itself and its facilities, but also a
description of its location, neighboring cities and opportunities for sightseeing.
Descriptions are also available in German and Dutch. Some of these descriptions
are direct translations and some others have independent descriptions of the
same holiday cottage. The data set includes the country of each property which
we use to validate our results. Figure 2 shows a representative example of a holi-
day property description. The manually annotated toponyms are written in bold.
The data set consists of 1181 property descriptions for which we constructed a
ground truth by manually annotating all toponyms for only the English version.
The German and the Dutch versions of descriptions are annotated automatically
by matching them against all toponyms that appear in the English version or
their translations. For example “Cologne” in the English version is translated
to “Köln” and matched in the German version and translated to “Keulen” and
matched in the Dutch version. Although this method is not 100% reliable due
to slight differences in translated versions, we believe that it is reliable enough
as ground truth for showing the language independency of our approach.

We split the data set into a training set and a validation test set with ratio
2 : 1. We used the training set for training the HMM extraction model and the
SVM classifier, and the test set for evaluating the extraction and disambiguation
effectiveness for “new and unseen” data.

4.2 Experiment 1: Data Set Analysis

The aim of this experiment is to show some statistics about the test set in all ver-
sions through different phases of our system pipeline. Table 1 shows the number
of toponyms per property description [#Top./Doc.], the number of toponyms
per property that have references in GeoNames [#Top./Doc. ∈GeoNames], and
the average degree of ambiguity per toponyms [Degree of ambiguity] (i.e the av-
erage number of references in GeoNames for a given toponym). Ground Truth
represents manual annotations statistics. HMM(0.1) represents statistics of the
extracted toponyms resulting from applying HMM on the test set with cutting
probability threshold 0.1, while HMM(0.1)+SVM represents statistics of the
extracted toponyms resulting from applying SVM after HMM on the test set.

As can be observed from table 1 that HMM extracts many false positives.
Examples of those false positives that have references in GeoNames are shown
in figure 39.

It can also be noticed that the English version contains more toponyms per
property description. Our method of automatically annotating the German and
the Dutch texts misses a few annotations. This doesn’t harm the evaluation pro-
cess of the proposed method as our approach works on improving the precision

8 http://www.eurocottage.com
9 We match the extracted toponyms against names of places, their ascii representation
and their alternative representations in GeoNames gazeteer.

http://www.eurocottage.com

10 M.B. Habib and M. van Keulen

bath[34] shop[1] terrace[11] shower[1] parking[3]
house[5] garden[24] sauna[6] island[16] farm[5]
villa[49] here[7] airport[3] table[9] garage[1]

(a) English

bett[1] bad[15] strand[95] meer[15] foto[11]
bergen[59] garage[1] bar[58] villa[49] wald[51]
billard[3] westen[11] stadt[7] salon[12] keller[27]

(b) German

winkel[58] terras[3] douche[2] woon[1] bergen[59]
kortom[2] verder[1] gas[9] villa[49] garage[1]
tuin[2] hal[20] chalet[8] binnen[3] rond[1]

(c) Dutch

Fig. 3. Examples of false positives (toponyms erroneously extracted by HMM(0.1))
and their number of references in GeoNames

with some loss in recall. Hence, we can claim that precision/recall/F1 measures
of our proposed approach applied on German and Dutch versions shown on the
section 4.4 can be regarded as a lower bound.

Table 1. Test set statistics through different phases of our system pipeline

#Top./Doc. #Top./Doc.
∈GeoNames

Degree of
ambiguity

EN DE NL EN DE NL EN DE NL

Ground Truth 5.04 4.62 3.51 3.47 3.10 2.46 7.24 6.15 6.78

HMM(0.1) 12.0211.3111.386.51 5.72 5.85 8.69 9.27 10.33
HMM(0.1)+SVM 5.24 5.04 3.91 3.59 3.18 2.58 8.43 7.38 7.78

4.3 Experiment 2: SVM Features Analysis

In this experiment we evaluate the selected set of features used for SVM train-
ing on the English collection. We want to show the effect of these features on
the effectivness of the SVM classifier. The aim of the SVM is to find the false
positives toponyms among those extracted by the HMM. Two groups of features
are used. Informativness features and coherence features (features derived from
disambiguation results). Table 2 shows:

– Extraction and disambiguation results using each of the features individually
to train the SVM classifier.

– Information Gain [IG] for each feature. IG measures the amount of infor-
mation in bits about the class prediction (in our case true positive toponym
or false positive).

– The extraction and disambiguation results using each group of features (In-
formativeness (Inf) and coherence (Coh)) and using both combined (All).

– Extraction and disambiguation results for only HMM with threshold 0.1
(prior to the usage of the SVM).

– Disambiguation results using manually annotated toponyms (Ground Truth).

Extraction results are evaluated in terms of precision [Pre.], recall [Rec.] and [F1]
measures, while disambiguation results [Dis.] are evaluated in terms of the per-
centage of holiday home descriptions for which the correct country was inferred.

Approach for Multilingual Toponym Extraction and Disambiguation 11

The coherence features can be only calculated for toponyms that belong to
GeoNames. This implies that its effect only appears on false positives that belong
to GeoNames. To make their effect more clear, we presented two sets of results:
– All extracted toponyms : where all toponyms are used to train HMM and

SVM regardless of whether they exist in GeoNames or not. Evaluation is
done for all extracted toponyms.

– Only toponyms ∈ GeoNames : where only toponyms existing in GeoNames
are used to train and evaluate HMM and SVM.

By looking at [IG] of each feature we can observe that the [Bel], [IDF] and [EC]
are highly discriminative features, while [#Geo] seems to be a bad feature as it
has no effect at all on the SVM output.

Using manually annotated toponyms for disambiguation, the best possible
input one would think, may not produce the best possible disambiguation result.
For example, the disambiguation result of HMM(0.1)+SVM(Gain) is higher than
that of the ground truth. This is because some holiday cottages are located on
the border with other country, so that description mentions cities from other
country rather than the country of the cottage. This does not mean that the
correct representative candidates for toponyms are missed. Moreover, since our
disambiguation result is based on voting, we attribute this effect to chance: the
NER may produce a false positive toponym which happens to sway the vote
to the correct country, in other words, there are cases of correct results for the
wrong reasons.

It can be also observed that low recall leads to poor disambiguation results.
That is because low recall may result in extracting no toponyms from the prop-
erty description and hence the country of that property is misclassified.

Table 2 shows how using the SVM classifier enhances the extraction and the
disambiguation results. The effect of combining both set of features is more
clear in the results of [Only toponyms ∈ GeoNames]. Precision is improved sig-
nificantly, and hence the F1 measure, by using the coherence features beside the
informativeness ones.

Table 3 shows the extracted toponyms for the property shown in figure 2 using
different methods. Informativeness features tend to find those false positives that
appear multiple times across the collection like {In, Shop}. On the other hand,
disambiguation features tend to find those false positives that are not coherent
with other toponyms like {Airport}. The usage of a combination of both sets of
features maximizes the extraction effectiveness (F1 measure).

4.4 Experiment 3: Multilinguality, Different Thresolding
Robustness and Competitors

In this experiment we want to show the multiligualitiy and system robustness
across different languages and against different threshold settings. Multilingual-
ity is guaranteed by our approach as we only use language independent methods
of extraction and filtering. We effectively avoided using Part-Of-Speech (POS)
as feature since it is highly language-dependent and for many languages there
are no good automatic POS-tagger available. Table 4 shows the effectiveness

12 M.B. Habib and M. van Keulen

Table 2. Extraction and disambiguation results using different features for English
version

All extracted toponyms
IG Pre. Rec. F1 Dis.

Ground Truth 1 1 1 79.1349
HMM(0.1) 0.3631 0.8659 0.5116 75.0636

HMM(0.1)+SVM(IDF) 0.1459 0.5514 0.8336 0.6637 80.4071
HMM(0.1)+SVM(RIDF) 0.1426 0.5430 0.8472 0.6618 80.4071
HMM(0.1)+SVM(Gain) 0.1013 0.5449 0.8205 0.6549 80.9160
HMM(0.1)+SVM(EC) 0.2223 0.7341 0.7489 0.7414 78.3715
HMM(0.1)+SVM(D) 0.0706 0.6499 0.5726 0.6088 74.5547
HMM(0.1)+SVM(SS) 0.0828 0.6815 0.5166 0.5877 68.4478
HMM(0.1)+SVM(#Geo) 0.1008 0.4800 0.6099 0.5372 71.7557
HMM(0.1)+SVM(Bel) 0.3049 0.8106 0.4942 0.6140 73.0280

HMM(0.1)+SVM(Inf) 0.7764 0.7756 0.7760 79.8982
HMM(0.1)+SVM(Coh) 0.8106 0.4940 0.6138 73.0280
HMM(0.1)+SVM(All) 0.7726 0.8014 0.7867 79.8982

Only extracted toponyms ∈ GeoNames
IG Pre. Rec. F1 Dis.

Ground Truth 1 1 1 79.1349
HMM(0.1) 0.4874 0.9121 0.6353 75.0636

HMM(0.1)+SVM(IDF) 0.2652 0.7612 0.8983 0.8241 81.1705
HMM(0.1)+SVM(RIDF) 0.2356 0.7536 0.9107 0.8247 80.9160
HMM(0.1)+SVM(Gain) 0.1754 0.6419 0.8656 0.7372 76.3359
HMM(0.1)+SVM(EC) 0.2676 0.8148 0.8243 0.8195 78.3715
HMM(0.1)+SVM(D) 0.1375 0.6563 0.8584 0.7439 77.6081
HMM(0.1)+SVM(SS) 0.1077 0.6802 0.7444 0.7108 68.4478
HMM(0.1)+SVM(#Geo) 0.0791 0.4878 0.9121 0.6356 75.0636
HMM(0.1)+SVM(Bel) 0.3813 0.8106 0.7117 0.7579 73.0280

HMM(0.1)+SVM(Inf) 0.8181 0.8823 0.8490 80.6616
HMM(0.1)+SVM(Coh) 0.8117 0.7451 0.7770 76.3359
HMM(0.1)+SVM(All) 0.8865 0.8453 0.8654 79.8982

Table 3. Extracted toponyms for the property shown in figure 2

HMM(0.1)
HMM(0.1)

+
SVM(Inf)

HMM(0.1)
+

SVM(Dis)

HMM(0.1)
+

SVM(All)

[+]Oľsova Vrata + + + +
[+]Karlovy Vary + + + +
[+]Slavkovsky + + + +
[+]Karlsbad + + + +
[+]Karlovy Vary + + + +
[+]Klinovec + + + +
[-]In + - + -
[-]Shop + - + -
[-]Airport + + - -

of our proposed approach applied on English, German, and Dutch versions in
terms of the F1 and the disambiguation results over the state of the art: the
CRF, and the Stanford NER models10. CRF is considered one of the famous
techniques in NER. We trained a CRF on set of features described in [9]. One

10 http://nlp.stanford.edu/software/CRF-NER.shtml

http://nlp.stanford.edu/software/CRF-NER.shtml

Approach for Multilingual Toponym Extraction and Disambiguation 13

Table 4. Extraction and disambiguation results for all versions

English
Pre. Rec. F1 Dis.

Ground Truth 1 1 1 79.1349
HMM(0.1) 0.3631 0.8659 0.5116 75.0636
HMM(0.1)+SVM(All) 0.7726 0.8014 0.7867 79.8982
HMM(0.9) 0.6638 0.7806 0.7175 78.3715
HMM(0.9)+SVM(All) 0.8275 0.7591 0.7918 79.3893
Stanford NER 0.8375 0.4365 0.5739 58.2697
CRF(0.9) 0.9383 0.6205 0.7470 69.4656

German
Pre. Rec. F1 Dis.

Ground Truth 1 1 1 81.4249
HMM(0.1) 0.3399 0.8306 0.4824 79.3893
HMM(0.1)+SVM(All) 0.6722 0.7321 0.7009 79.6438
HMM(0.9) 0.6169 0.7085 0.6595 77.8626
HMM(0.9)+SVM(All) 0.7414 0.6876 0.7135 77.3537
Stanford NER 0.5351 0.2723 0.3609 40.4580

Dutch
Pre. Rec. F1 Dis.

Ground Truth 1 1 1 73.0280
HMM(0.1) 0.2505 0.8128 0.3830 68.4478
HMM(0.1)+SVM(All) 0.6157 0.6872 0.6495 70.4835
HMM(0.9) 0.4923 0.6713 0.5680 67.1756
HMM(0.9)+SVM(All) 0.6762 0.6197 0.6467 67.6845

(a) F1. (b) Disambiguation

Fig. 4. The required training data required to achieve desired extraction and disam-
biguation results

of the used features is POS which we were only able to extract for the English
version. Stanford is a NER system based on CRF model trained on CoNLL data
collection. It incorporates long-distance information [4]. Stanford provides NER
models for English and German. Unfortunately, we didn’t find a suitable NER
system for Dutch to compare with.

It can be observed that the CRF models achieve better precision at the ex-
pense of recall. Low recall sometimes leads to extracting no toponyms from the
property description and hence the country of that property is misclassified. This
results in a poor disambiguation results.

Table 4 also shows the robustness of our approach against different HMM
thresholding settings. We used two different cutting thresholds (0.1, 0.9) for
HMM. It is clear that our approach improves the precision and F1 measure on
both cases.

4.5 Experiment 4: Low Training Data Robustness

Robustness across different languages and using different cutting probability
threshold is shown in the previous sections. In this section we want to prove the
third aspect of robustness of our system which is its capability to work even with
limited training samples. Figures 4(a) and 4(b) shows the required size of training

14 M.B. Habib and M. van Keulen

data to achieve a desired result for F1 and disambiguation respectively (applied
on the English collection). It can be observed that our approach requires low
number of training data to outperform our competitors the CRF and Stanford
NER. Only 160 annotated documents are required to achieve 0.7 F1 and 75%
correct disambiguation and to outperform the the CRF. Much less documents
are required to outperform the CRF disambiguation results as we mentioned
before that the high precision of CRF systems is accompanied by low recall
leading to poor disambiguation results.

5 Conclusion and Future Work

In this paper we introduced a hybrid approach for toponym extraction and
disambiguation. We used a HMM for extraction and a SVM classifier to classify
the HMM output into false positive and true positive toponyms. Informativeness
features beside coherence features derived from disambiguation results were used
to train the SVM. Experiments were conducted with a set of holiday home
descriptions with the aim to extract and disambiguate toponyms. Our system is
proved to be robust on three aspects: language differences, high and low HMM
threshold settings, and limited training data. It also outperforms the state of the
art methods of NER.

For future research, we plan to apply and enhance our approach for other
types of named entities and other domains. We claim that this approach is
also robust against domain differences and can be adapted to suit any kind of
named entities. To achieve this it is required to develop a mechanism to find false
positives among the extracted named entities. Coherency measures can be used
to find highly ambiguous named entities. We also want to estimate locations of
toponyms not existing in gazetteers using other toponyms found in the textual
context of the unknown toponym.

References

1. Borthwick, A., Sterling, J., Agichtein, E., Grishman, R.: NYU: Description of the
MENE named entity system as used in MUC-7. In: Proc. of MUC-7 (1998)

2. Buscaldi, D., Rosso, P.: A conceptual density-based approach for the disambigua-
tion of toponyms. Journal of Geographical Information Science 22(3), 301–313
(2008)

3. Carpenter, B.: Character language models for chinese word segmentation and named
entity recognition. In:Association for Computational Linguistics, pp. 169–172 (2006)

4. Finkel, J.R., Grenager, T., Manning, C.: Incorporating non-local information into
information extraction systems by gibbs sampling. In: Proc. of the 43rd ACL (2005)

5. Florian, R., Ittycheriah, A., Jing, H., Zhang, T.: Named entity recognition through
classifier combination. In: Daelemans, W., Osborne, M. (eds.) Proc. of CoNLL
2003, Edmonton, Canada, pp. 168–171 (2003)

6. Furche, T., Grasso, G., Orsi, G., Schallhart, C., Wang, C.: Automatically learn-
ing gazetteers from the deep web. In: Proc. of the 21st International Conference
Companion on World Wide Web, pp. 341–344 (2012)

Approach for Multilingual Toponym Extraction and Disambiguation 15

7. Grishman, R., Sundheim, B.: Message understanding conference - 6: A brief history.
In: Proc. of Int’l Conf. on Computational Linguistics, pp. 466–471 (1996)

8. Habib, M.B., van Keulen, M.: Named entity extraction and disambiguation: The
reinforcement effect. In: Proc. of MUD 2011, Seatle, USA, pp. 9–16 (2011)

9. Habib, M.B., van Keulen, M.: Improving toponym disambiguation by iteratively
enhancing certainty of extraction. In: Proc. of KDIR 2012, pp. 399–410 (2012)

10. Hobbs, J., Appelt, D., Bear, J., Israel, D., Kameyama, M., Stickel, M., Tyson,
M.: Fastus: A system for extracting information from text. In: Proc. of Human
Language Technology, pp. 133–137 (1993)

11. Isozaki, H., Kazawa, H.: Efficient support vector classifiers for named entity recog-
nition. In: Proc. of COLING 2002, pp. 1–7 (2002)

12. Leidner, J.L.: Toponym Resolution in Text: Annotation, Evaluation and Applica-
tions of Spatial Grounding of Place Names. Universal Press, Boca Raton (2008)

13. Lieberman, M.D., Samet, H.: Multifaceted toponym recognition for streaming
news. In: Proc. of SIGIR 2011, pp. 843–852 (2011)

14. Martins, B., Anastácio, I., Calado, P.: A machine learning approach for resolving
place references in text. In: Proc. of AGILE 2010 (2010)

15. McCallum, A., Li, W.: Early results for named entity recognition with conditional
random fields, feature induction and web-enhanced lexicons. In: Proc. of CoNLL
2003, pp. 188–191 (2003)

16. Nothman, J., Ringland, N., Radford, W., Murphy, T., Curran, J.R.: Learning mul-
tilingual named entity recognition from wikipedia. Artificial Intelligence (2012),
http://www.sciencedirect.com/science/article/pii/S0004370212000276

17. Pouliquen, B., Kimler, M., Steinberger, R., Ignat, C., Oellinger, T., Fluart, F.,
Zaghouani, W., Widiger, A., Charlotte Forslund, A., Best, C.: Geocoding multilin-
gual texts: Recognition, disambiguation and visualisation. In: Proc. of LREC 2006,
pp. 53–58 (2006)

18. Rauch, E., Bukatin, M., Baker, K.: A confidence-based framework for disambiguat-
ing geographic terms. In: Workshop Proc. of the HLT-NAACL 2003, pp. 50–54
(2003)

19. Rennie, J.D.M.: Using term informativeness for named entity detection. In: Proc.
of the 28th Annual International ACM SIGIR Conference on Research and Devel-
opment in Information Retrieval, pp. 353–360 (2005)

20. Richman, A.E., Schone, P.: Mining wiki resources for multilingual named entity
recognition. In: ACL 2008 (2008)

21. Sekine, S.: NYU: Description of the Japanese NE system used for MET-2. In: Proc.
of MUC-7 (1998)

22. Smith, D., Crane, G.: Disambiguating geographic names in a historical digital
library. In: Constantopoulos, P., Sølvberg, I.T. (eds.) ECDL 2001. LNCS, vol. 2163,
pp. 127–136. Springer, Heidelberg (2001)

23. Smith, D., Mann, G.: Bootstrapping toponym classifiers. In: Workshop Proc. of
HLT-NAACL 2003, pp. 45–49 (2003)

24. Szarvas, G., Farkas, R., Kocsor, A.: A multilingual named entity recognition sys-
tem using boosting and c4.5 decision tree learning algorithms. In: Todorovski, L.,
Lavrač, N., Jantke, K.P. (eds.) DS 2006. LNCS (LNAI), vol. 4265, pp. 267–278.
Springer, Heidelberg (2006)

25. Viterbi, A.: Error bounds for convolutional codes and an asymptotically optimum
decoding algorithm. IEEE Transactions on Information Theory 13(2), 260–269
(1967)

26. Zhou, G., Su, J.: Named entity recognition using an hmm-based chunk tagger. In:
Proc. ACL 2002, pp. 473–480 (2002)

http://www.sciencedirect.com/science/article/pii/S0004370212000276

Towards a Polish LTAG Grammar

Katarzyna Krasnowska

Institute of Computer Science, Polish Academy of Sciences
k.krasnowska@phd.ipipan.waw.pl

Abstract. This paper reports on a Lexicalised Tree Adjoining Gram-
mar for Polish, extracted automatically from the Polish constituency
treebank. The grammar consists of 23 570 elementary trees anchored by
11 515 lexemes. Running the grammar on the sentences from the tree-
bank using a modified version of TuLiPA parser showed that it achieves
a high accordance (almost 99%) with the treebank annotation – in terms
of syntactic categories assigned to phrases – on the trees which were suc-
cessfully parsed. For many trees, however, obtaining a TAG parse was
impossible due to time or memory shortcomings of the used tool.

Keywords: Tree Adjoining Grammar, treebanks, automatic grammar
extraction.

1 Introduction: LTAG Grammars

This paper describes a Lexicalised Tree Adjoining Grammar for Polish, obtained
automatically from the Polish constituency treebank Sk�ladnica [4]. Tree Adjoin-
ing Grammars (TAGs, see [2]) are a kind of tree rewriting formalism. A TAG
grammar is formally defined as a quintuple: 〈Σ,NT, I, A, S〉, where Σ is a finite
set of terminals, NT is a finite set of nonterminals (Σ ∩NT = ∅), S is an initial
symbol (S ∈ NT), I and A are finite sets of finite trees (initial and auxiliary
trees). Initial and auxiliary trees have their internal nodes labelled with non-
terminal symbols and leaves labelled with either terminals or nonterminals. A
nonterminal leaf is a substitution site (usually marked “↓”). Auxiliary trees have
one special nonterminal leaf called foot node (marked “∗” and labelled identi-
cally as the auxiliary tree’s root). A Tree Adjoining Grammar is called lexicalised
(LTAG) if each elementary tree has at least one terminal leaf. Such a leaf is by
convention marked “	” and called an anchor.

The trees are combined using two rewriting operations: substitution and ad-
junction (see Fig. 1). Derivation in a TAG grammar is a sequence of those oper-
ations, starting with an initial tree whose root is labelled with the initial symbol
S. Tree substitution is fulfilled by attaching an initial tree to a nonterminal leaf.
Substitution can be performed if the substitution node and the substituted tree’s
root have identical labels. Adjunction allows for insertion of auxiliary trees into
the structure derived so far. For an adjunction to be possible, there must be
an internal node (adjunction site) with a label identical as the adjoined tree’s

M.A. K�lopotek et al. (Eds.): IIS 2013, LNCS 7912, pp. 16–21, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Towards a Polish LTAG Grammar 17

(1)

α
S

A↓
β

A

γ S

A

(2)

α′ S

B
β′B

B∗

γ′ S

B

B

Fig. 1. Tree rewriting operations: (1) substitution of the initial tree β into α’s substi-
tution node A↓, yielding γ; (2) adjunction of the auxiliary tree β′ into α′’s internal
node B, yielding γ′

root (and, as follows from the definition of an auxiliary tree, its foot node). The
adjunction site can then be replaced with the auxiliary tree.

2 Extraction Procedure

The LTAG grammar extraction procedure is based on a technique proposed in
[1], where such a grammar is obtained from the Penn Treebank. The extraction
algorithm takes as its input a constituency tree and produces a set of elementary
trees. It is a recursive procedure, starting in the root of the constituency tree.
Extraction of an initial TAG tree α when the currently processed constituency
tree node is η is performed as follows:1

– make η′ — a copy of η — α’s root;
– for each non-head child of η, decide whether it is a complement or an adjunct;
– for each child of η, if it is:

• a non-terminal head child, run the procedure recursively on it and attach
its result as η′’s child;

• a terminal head child, attach its copy as η′’s child and make it α’s lexical
anchor;

• a complement, attach its copy as η′’s child and run the procedure recur-
sively on it, producing a new initial tree;

• an adjunct (to the node or its head child), run the procedure recursively
on it and transform its result into an auxiliary tree as shown in Fig. 2;

The decision whether a child is a complement or an adjunct was taken according
to rules such as the following:

1 The described extraction procedure requires knowing which of the current node’s
children is a head child. [1] used a head percolation table to retrieve this information
from Penn Treebank trees. In the case of Sk�ladnica it was not necessary since its
trees have head children marked by design.

18 K. Krasnowska

(1)

B

A

A∗ B

(2)

B

A

A∗B

Fig. 2. Transformation of a tree extracted from A’s adjunct B into an auxiliary tree
(1) if B is a left adjunct (2) if B is a right adjunct

– a node marked as mandatory phrase is a complement;
– a node marked as a loose phrase is an adjunct;
– a node bearing a category label different from its parent’s is a complement;
– other nodes are adjuncts.2

Marking of phrases as mandatory (fw, argument, according to valence dictio-
nary) and loose (fl, modifier) is a feature of Sk�ladnica which is very useful for
differentiating between complement and adjunct nodes. This marking appears,
however, only at the level of the ff (main finite phrase) node’s siblings (see an
example Sk�ladnica tree in Fig. 3), therefore the other rules are also necessary.

Sk�ladnica is different from Penn Treebank in that its nodes contain not only
a label representing the phrase’s category, but also a set of morphosyntactic fea-
tures.3 This reflects the fact that Polish is a highly inflectional language. Some
of the features appearing in Sk�ladnica were incorporated into the extracted el-
ementary trees. Once an elementary tree was produced, its feature values were
replaced with variables. The node features which should be in agreement (e.g.
the gender features of a fwe – VP – node and its subject fno – NP – are assigned
the same variable. Features which are required to have a specific value (e.g. the
accusative case of an fno node representing an object) have this value explicitly
specified in the tree. There were also some cases where Sk�ladnica’s way of han-
dling morphosyntactic features had to be slighlty modified for the TAG grammar
to work. For verbs which can appear in analytical form, but are only present in
Sk�ladnica in non-analytical form (and vice versa), appropriate elementary trees
were added. An example of TAG tree extracted from a constituency tree with
feature values taken from the Sk�ladnica tree and after replacing those values
with variables is shown in Fig. 3.

3 Parsing with TuLiPA

For the purpose of testing the grammar, the TuLiPA (The Tübingen Linguistic
Parsing Architecture, see [3] and https://sourcesup.cru.fr/tulipa/) parser
was chosen. TuLiPA allows for including features in elementary tree nodes and
assigning variables to them in order to specify which features in the resulting
tree should be equal. TuLiPA uses a 3-layer architecture with the lexicon divided
into 3 files:
2 To the head child if they are closer to it than any node’s argument, to the node
otherwise.

3 Features included in the TAG grammar are number, case, gender, person and tense.

https://sourcesup.cru.fr/tulipa/

Towards a Polish LTAG Grammar 19

(1)

(2) (3)

zdanie
number sg
gender m3
person 3
tense past

fno ↓
number sg
case nom
gender m3
person 3

ff
number sg
gender m3
person 3
tense past

fno ↓
number sg
case gen
gender m1
person 3

fwe
number sg
gender m3
person 3
tense past

qub ↓ formaczas
number sg
gender m3
person 3
tense past

obudzić �
number sg
gender m3
person 3
tense past

zdanie
number x1
gender x2
person x3
tense x4

fno ↓
number x1
case nom
gender x2
person x3

ff
number x1
gender x2
person x3
tense x4

fno ↓
number x5
case gen
gender x6
person x7

fwe
number x1
gender x2
person x3
tense x4

qub ↓ formaczas
number x1
gender x2
person x3
tense x4

obudzić �
number x1
gender x2
person x3
tense x4

Fig. 3. (1) An example Sk�ladnica tree for the sentence The deafening rattle of the train
did not wake the soundly sleeping man up. (node features hidden, highlighted branches
lead to head children) and one of the TAG trees extracted from it: (2) with feature
values from Sk�ladnica; (3) after replacing them with variables (its wypowiedzenie and
znakkonca↓ nodes are not shown). This is an initial tree for the verb obudzić (to wake)
in negated form, taking as its arguments a nominative subject and a genitive object.

– grammar containing tree families (elementary trees with “empty” anchors,
i.e. no lexical elements specified);

– lexicon, a list of lexemes and corresponding tree family identifiers (each
〈lexeme, tree family〉 pair specified in this file defines a lexically anchored
elementary tree);

– morphology, containing all possible morphological forms for each lexeme.

20 K. Krasnowska

In the case of Polish TAG grammar, only the first two layers (grammar and
lexicon) were produced. This was motivated by the fact that the lexicon con-
tains all lexemes appearing in Sk�ladnica, and given the complexity of Polish
inflection the morphology file would either be incomplete (if only the forms
occurring in the treebank were included) or grow unreasonably large. Instead,
TuLiPA was modified to use Morfeusz, a morphological analyser for Polish (see
http://sgjp.pl/morfeusz). This modified version of the parser was called
TuLiPA-pl. When given a sentence to parse, TuLiPA-pl produces a morphol-
ogy file for it on the fly, comprising all morphological interpretations of the
sentence’s tokens given by Morfeusz. It is also possible to run TuLiPA-pl with
a morphology file provided by the user, as in original TuLiPA.

4 Evaluation

The method described in Section 2 was applied to 7 229 sentences from Sk�ladnica.4

The extracted grammar contains 2 802 elementary tree families (1 825 initial and
977 auxiliary). The lexicon contains 11 515 lexemes, anchoring a total of 23 570
elementary trees (one lexeme can serve as a lexical anchor to more than one tree,
e.g. in case of verbs with more than one possible valence frame). The average
number of trees anchored by a lexeme is 2.05; 7 953 lexemes (69%) anchor only
one tree.

Preliminary tests with parsing using the produced Polish TAG grammar and
TuLiPA-pl showed serious efficiency problems: even relatively simple sentences
either took a very long time to be processed or caused to parser to run out of
memory. To speed up TuLiPA-pl’s performance for the purpose of grammar eval-
uation, morphology files (one per sentence, containing morphological interpreta-
tions of token chosen in the particular tree) were extracted from the treebank.
In this way, the parser did not have to deal with ambiguous word forms.

The extracted grammar was used to run TuLiPA-pl on the same sentences
from Sk�ladnica that were used for extraction. Even with unambiguous morphol-
ogy files, parsing of many sentences was unsuccessful due to time or memory
shortcomings. Out of 7 229 sentences, TuLiPA-pl managed to produce a parse
forest for 2 806. Table 1 summarises the outcomes of those TuLiPA-pl runs.

Table 1. Outcomes of TuLiPA runs. Time limit was 5 minutes per sentence

outcome parse no parse TuLiPA error out of memory timed out

sentences 2678 128 640 3697 44
percentage 37% 2% 9% 51% 1%

For the sentences for which TuLiPA terminated its run (with or without a
parse, a total of 2806 sentences), the trees produced by the TAG grammar were

4 998 trees were excluded due to technical problems they posed (mainly errors in head
child marking).

http://sgjp.pl/morfeusz

Towards a Polish LTAG Grammar 21

compared to the original Sk�ladnica trees. For each Sk�ladnica tree and for each
parse in the corresponding parse forest (empty in the cases when there was
no parse) generated by TuLiPA-pl, the number of phrases assigned the same
category (dominating node’s label) was calculated. Then, the best-matching tree
(i.e. the one with the most matching phrase categories) was chosen from the
forest. The percentage of all phrases from Sk�ladnica which were assigned the
same category in the best-matching TAG parse was 92%. With sentences limited
to the ones with a non-empty parse forest, this score was 98.8%.

5 Conclusions

A Tree Adjoining Grammar was extracted automatically from the Polish con-
stituency treebank. Although the grammar perform quite well on the sentences
it manages to parse, achieving an almost 99% phrase category assignment match
with the treebank, there are performance issues which make the grammar (at
least when TuLiPA parser is used) inefficient for parsing large amounts of text.
Moreover, the TAG formalism does not seem very well suited for languages with
loose word order such as Polish since it requires that the elementary trees have
a fixed structure. It is nevertheless worthwhile to report on this experiment
since it is, as far as we know, the first attempt at creating a wide-coverage TAG
grammar for Polish.

Acknowledgements. The work described in this paper is partially supported
by the DG INFSO of the European Commission through the ICT Policy Support
Programme, Grant agreement no.: 271022, as well as by the POIG.01.01.02-14-
013/09 project co-financed by the European Union under the European Regional
Development Fund.

References

1. Chen, J., Vijay-Shanker, K.: Automated extraction of Tags from the Penn Treebank.
In: Proceedings of IWPT 2000 (2000)

2. Joshi, A., Schabes, Y.: Tree-adjoining grammars. In: Handbook of Formal
Lanaguages and Automata. Springer, Berlin (1997)

3. Kallmeyer, L., Lichte, T., Maier, W., Parmentier, Y., Dellert, J., Evang, K.: TuLiPA:
Towards a multi-formalism parsing environment for grammar engineering. In: Coling
2008: Proceedings of the Workshop on Grammar Engineering Across Frameworks,
pp. 1–8. Coling 2008 Organizing Committee, Manchester (2008)

4. Woliński, M., G�lowińska, K., Świdziński, M.: A preliminary version of Sk�ladnica
– a treebank of Polish. In: Vetulani, Z. (ed.) Proceedings of the 5th Language &
Technology Conference, Poznań, pp. 299–303 (2011)

Incorporating Head Recognition
into a CRF Chunker�

Adam Radziszewski and Adam Pawlaczek

Institute of Informatics,
Wrocław University of Technology,

Wybrzeże Wyspiańskiego 27,
Wrocław, Poland

Abstract. While rule-based shallow parsers usually recognise phrases’
syntactic heads, the same does not hold for statistical syntactic chunkers.
The task of finding heads within already recognised chunks is not trivial
for freer word order languages like German or Polish, while this inform-
ation may be very useful.

We propose a simple solution that allows to incorporate head recog-
nition into existing chunkers by extending the standard IOB2 repres-
entation with information on head location. To evaluate this approach
we introduced the new representation into a CRF chunker for Polish.
Although this idea is very simple, the results are surprisingly good.

1 Introduction

Syntactic chunking is a form of shallow parsing where the recognised structure
is limited to phrase boundaries. Such task formulation has been proposed as
a means towards full syntactic analysis [1], although chunks found other uses,
e.g. in Information Extraction [3]. Later stages of processing may enrich this
structure with two types of information:

1. inter-chunk syntactic dependencies,
2. intra-chunk syntactic structure, including location of chunks’ syntactic heads.

In this paper we focus on the latter, namely automatic recognition of chunks’
syntactic heads. In case of English the problem is next to trivial, since it is
usually assumed that the syntactic head of each chunk is its last token [10, 12].

In case of other languages the situation is different. For instance, the chunk
definitions proposed for German assume that post-modifiers are also allowed in
NP chunks, thus syntactic heads are not necessarily chunk-final tokens [4]. Sim-
ilar situation happens for Slavic languages, cf. definitions proposed for Bulgarian
[6], Croatian [13, p. 124] or Polish [8]. Below we quote a sentence annotated with
NP and VP chunks taken from a Polish corpus [2]:

� This work was financed by the National Centre for Research and Development
(NCBiR) project SP/I/1/77065/10 (“SyNaT”).

M.A. Kłopotek et al. (Eds.): IIS 2013, LNCS 7912, pp. 22–27, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Incorporating Head Recognition into a CRF Chunker 23

(1) [NP Specyficzną odmianą iskry] [VP jest] [NP piorun].
‘A specific kind of (electric) spark is a thunder ’

Most work related to chunking languages other than English is based on manu-
ally written grammars. Conceiving a rule that captures a syntactic phrase natur-
ally involves considering the location of its syntactic head, hence many chunkers
that rely on shallow grammars in fact annotate heads. The alternative approach
to chunking assumes usage of Machine Learning (ML) algorithms. The stand-
ard practice is to cast the task as a sequence labelling problem by encoding
chunks with so-called IOB2 tags. In this paper we propose a very simple and
natural extension to this representation that allows to perform chunking and
head recognition in one run. Our solution is practical, since it allows to obtain
chunking and head annotation without making any changes to the underlying
ML algorithms. To the best of our knowledge, no similar approach has been
considered and evaluated so far. We demonstrate advantages of this simple idea
by incorporating head recognition into a CRF chunker developed for Polish.

2 Encoding Chunks and Heads

The standard practice to encode text annotated with chunks of one type is to
use three-tag IOB2 representation [11]:

B first token of a chunk
I non-initial token belonging to a chunk
O token outside of any chunk

When more than one chunk type is annotated in the same corpus, this IOB2
representation is naturally generalised [12]:

B-X first token of a chunk of type X
I-X non-initial token belonging to a chunk of type X

O token outside of any chunk
Our proposal is to add information on placement of syntactic heads into the
IOB2 representation in the following manner:

B-X first token of a chunk of type X (non-head)
B-X-H first token of a chunk of type X (head)

I-X non-initial token belonging to a chunk of type X (non-head)
I-X-H non-initial token belonging to a chunk of type X (head)

O token outside of any chunk
We will call this representation IOB2-H from now on. Below is an example:

Specyficzną B-NP
odmianą I-NP-H
iskry I-NP
jest B-VP-H
piorun B-NP-H
. O

For n chunk types, the IOB2-H representation defines 4n + 1 tags.

24 A. Radziszewski and A. Pawlaczek

3 Dataset

We performed evaluation of the above idea against Polish data. Slavic languages
are characterised with relatively free word order and rich inflection (therefore,
large tagsets), which make them challenging for chunking and head recognition.

We use the Polish Corpus of Wrocław University of Technology1 (KPWr) [2].
Its syntactic annotation includes the following chunk types [8]:

1. Noun phrases and prepositional phrases labelled collectively as NP chunks.
The employed definition refers to syntactic requirements of clauses: the NP
chunks closely correspond to verb arguments (sometimes also adjuncts). This
assumption results in quite long chunks. Most notably, the definition requires
inclusion of subordinate prepositional phrases into NP chunks (NP chunking
involves PP attachment). NP heads are most often nouns, but may also be
gerunds, personal pronouns, cardinal numerals, in rare cases adjectives used
nominally. Prepositions are never chosen as heads for practical reasons.

2. Adjective phrases are annotated only when not part of larger NP chunks,
hence they are not frequent. AdjP chunks are defined similarly to NPs, but
centred around adjectival heads (adjectives or adjectival participles).

3. Verb phrase (VP) chunks are annotated around verbal predicates playing
the role of their heads. The chunk definition allows for inclusion of adverbial
elements that clearly modify the VPs. Verb arguments are excluded.

4. A separate ‘layer’ of annotation, consisting of simpler chunks defined on
the grounds of morphological agreement — AgP chunks. They are noun or
adjectival chunks that are limited to the extent of morphological agreement
on number, gender and case. Again, chunk-initial prepositions are included.
The definition includes indeclinable elements (mostly adverbs) that modify
other chunk elements. AgP chunks are ‘building blocks’ for NPs and AdjPs.
Their heads are either those typical for NPs or AdjPs. The inclusion of both
AgP and NP chunks makes up an interesting comparison of head recognition
performance across different task formulations.

KPWr annotation guidelines require that all heads must be one-token.
Recognition of such chunks is not an easy task. A chunker utilising Memory-

Based Learning was tested against a subset of KPWr and the following F-
measure values were obtained: 63% for NP, 75% for AgP, 82% for VP [5].

4 CRF Chunker for Polish

In our previous work [9] we showed that a chunker based on Conditional Random
Fields (CRF) significantly outperforms three other approaches, including a hand-
written grammar and Memory-Based Learning. The chunker (named IOBBER)
is equipped with a set of features tailored for Polish, including the following
items:
1 The corpus is publicly available under a Creative Commons licence. We used version

1.1 downloaded from http://www.nlp.pwr.wroc.pl/kpwr

http://www.nlp.pwr.wroc.pl/kpwr

Incorporating Head Recognition into a CRF Chunker 25

– the wordforms of tokens occupying a local window (−2, . . . , +2),
– grammatical class of tokens in the window,
– values for the following grammatical categories: number, gender and case in

the window,
– a couple of tests for morphosyntactic agreement on the values of number,

gender and case,
– two tests for orthographic form: if it starts with an upper-case letter, if it

starts with a lower-case letter.

Those experiements were carried out against the data extracted from the Na-
tional Corpus of Polish [7]. In this work we took the same chunker and made
two modifications to its algorithm:

1. during training, chunks’ syntactic heads are also read and the underlying
CRF training module is fed with the IOB2-H representation (instead of
standard IOB2),

2. during performance the trained CRF model is used to predict IOB2-H tags,
which are decoded into chunks with heads highlighted.

In other words, we made minimal changes to the original chunker to support
head recognition using the IOB2-H representation.

5 Rule-Based Alternative

We compare the results of simultaneous chunking and head recognition with
performance of a simple rule set. The rules were written as a practical solution
to enhance output of the chunker with chunks’ syntactic heads before the work
described here was started. They consist of a separate decision list for each chunk
type. Each decision list consists of several rules, fired sequentially. A rule iterates
over a chunk left-to-right and examines each token’s grammatical class. If the
class belongs to a pre-defined set, the whole search is terminated and the current
token is marked as the head. For instance, the left-most noun is taken directly
as NP head. If no rule fires, there is fallback rule to choose chunk-initial token.

6 Results

First, we present evaluation of the CRF chunker itself against our data set and
the impact of switching from the standard CRF IOB2 representation to IOB2-H.
Table 1 presents precision, recall and F-measure values2 related to chunk bound-
ary detection. The CRF chunker outperforms significantly the MBL chunker
presented in [5]. But what we wanted to stress here is that using the new rep-
resentation does not damage the quality of chunking (actually, the opposite may
be observed: the figures related to IOB2-H are slightly higher).
2 All the experiments described here have been carried out using the standard ten-fold

cross-validation scheme. The figures reported are values averaged over ten folds.

26 A. Radziszewski and A. Pawlaczek

Table 1. Impact of IOB2-H representation on chunk boundary detection

CRF IOB2-H CRF IOB2
P R F P R F

NP 74.49 74.29 74.38 74.00 73.68 73.83
AdjP 45.53 42.67 43.91 46.90 39.47 42.73
VP 76.72 82.61 79.55 75.94 82.47 79.06
AgP 83.71 86.11 84.89 83.65 85.71 84.66

Table 2 presents the assessment of head recognition capabilities. The CRF
chunker operating on the IOB2-H representation is compared to the hand-written
rules (fired against output of the original CRF chunker). For each chunk type
we measured the accuracy of head recognition alone (marked ‘Head’), as well as
the accuracy of chunk boundary detection and head recognition (that is, both
chunk boundaries and heads had to be recognised correctly to count — ‘C+H’).
The immediate conslusion is that CRF chunker substantially outperforms the
rules. What is more, the accuracy of head recognition alone seems impressively
high: the figures related to simultaneous head recognition and chunking (C+H)
are only slightly lower than chunk boundary detection alone.

Table 2. Performance of CRF chunker and hand-written rules wrt. head recognition

CRF IOB2-H Rules
P R F P R F

NP Head 83.89 83.66 83.77 55.69 55.53 55.61
NP C+H 70.82 70.64 70.73 46.87 46.74 46.80
AdjP Head 72.42 68.02 69.94 58.04 54.53 56.06
AdjP C+H 45.11 42.25 43.49 34.63 32.60 33.48
VP Head 90.45 97.43 93.80 90.60 97.59 93.96
VP C+H 76.55 82.43 79.38 76.53 82.40 79.35
AgP Head 92.76 95.42 94.07 90.51 93.12 91.79
AgP C+H 83.05 85.43 84.22 81.05 83.38 82.20

7 Conclusion and Further Work

We proposed a solution allowing to incorporate head recognition into existing
chunkers. Its practical value is confirmed by good results of head recognition
against Polish data. The resulting chunker is available3 under GNU LGPL 3.0,
but also, will be used in our projects related to Question Answering and shallow
semantic parsing.

It will be interesting to evaluate the presented approach against the data from
the National Corpus of Polish, but also from other languages.

3 http://nlp.pwr.wroc.pl/redmine/projects/iobber/wiki

http://nlp.pwr.wroc.pl/redmine/projects/iobber/wiki

Incorporating Head Recognition into a CRF Chunker 27

References

[1] Abney, S.: Parsing by chunks. In: Principle-Based Parsing. pp. 257–278. Kluwer
Academic Publishers (1991)

[2] Broda, B., Marcińczuk, M., Maziarz, M., Radziszewski, A., Wardyński, A.: KPWr:
Towards a free corpus of Polish. In: Calzolari, N., Choukri, K., Declerck, T., Doǧan,
M.U., Maegaard, B., Mariani, J., Odijk, J., Piperidis, S. (eds.) Proceedings of
LREC 2012. ELRA, Istanbul (2012)

[3] Hobbs, J.R., Riloff, E.: Information extraction. In: Indurkhya, N., Damerau, F.J.
(eds.) Handbook of Natural Language Processing, 2nd edn. Chapman & Hall/CRC
Press, Taylor & Francis Group (2010)

[4] Kermes, H., Evert, S.: YAC — a recursive chunker for unrestricted German text.
In: Rodriguez, M.G., Araujo, C.P. (eds.) Proceedings of the Third International
Conference on , vol. V, pp. 1805–1812 (2002)Language Resources and Evaluation

[5] Maziarz, M., Radziszewski, A., Wieczorek, J.: Chunking of Polish: guidelines,
discussion and experiments with Machine Learning. In: Proceedings of the 5th
Language & Technology Conference, LTC 2011, Poznań, Poland (2011)

[6] Osenova, P.: Bulgarian nominal chunks and mapping strategies for deeper syn-
tactic analyses. In: Proceedings of the Workshop on Treebanks and Linguistic
Theories (TLT 2002), Sozopol, Bulgaria, September 20-21 (2002)

[7] Przepiórkowski, A., Bańko, M., Górski, R.L., Lewandowska-Tomaszczyk, B. (eds.):
Narodowy Korpus Języka Polskiego. Wydawnictwo Naukowe PWN, Warsaw
(2012)

[8] Radziszewski, A., Maziarz, M., Wieczorek, J.: Shallow syntactic annotation in the
Corpus of Wrocław University of Technology. Cognitive Studies 12 (2012)

[9] Radziszewski, A., Pawlaczek, A.: Large-scale experiments with NP chunking
of polish. In: Sojka, P., Horák, A., Kopeček, I., Pala, K. (eds.) TSD 2012. LNCS,
vol. 7499, pp. 143–149. Springer, Heidelberg (2012)

[10] Ramshaw, L.A., Marcus, M.P.: Text chunking using transformation-based learn-
ing. In: Proceedings of the Third ACL Workshop on Very Large Corpora,
Cambridge, MA, USA, pp. 82–94 (1995)

[11] Sang, E.F.T.K., Veenstra, J.: Representing text chunks. In: Proceedings of the
Ninth Conference on European Chapter of the Association for Computational
Linguistics, pp. 173–179. Association for Computational Linguistics, Morristown
(1999)

[12] Tjong Kim Sang, E.F., Buchholz, S.: Introduction to the CoNLL-2000 shared task:
Chunking. In: Proceedings of CoNLL-2000 and LLL-2000, Lisbon, Portugal pp.
127–132 (2000)

[13] Vučković, K.: Model parsera za hrvatski jezik. Ph.D. thesis, Department of Inform-
ation Sciences, Faculty of Humanities and Social Sciences, University of Zagreb,
Croatia (2009)

Classification of Predicate-Argument Relations
in Polish Data�

Adam Radziszewski, Paweł Orłowicz, and Bartosz Broda

Institute of Informatics, Wrocław University of Technology

Abstract. This paper discusses the problem of syntactic relation recog-
nition in Polish data. We consider subject, object and copula relations
between VP and NP or AdjP chunks. The problem has been studied for
English, while it has received very little attention in the context of Slavic
languages. Slavic languages, including Polish, are characterised with re-
latively free word order, which makes the task more challenging than in
the case of English.

The task may be formulated as a classification problem and dealt with
using supervised learning techniques. We propose a feature set tailored
to the characteristics of Polish language and perform experiments with
a number of classifiers.

1 Introduction

We present an approach to shallow parsing of Polish where the problem is de-
composed into two stages: constituent chunking and recognition of selected inter-
chunk relations corresponding to partial predicate-argument structure. Both
stages may be expressed in terms of classification problems, which in turn al-
lows for usage of well-known Machine Learning algorithms. This approach to
shallow parsing follows the scheme proposed in [9]. Our contribution is two-fold:
we adapt the feature set to the characteristics of Slavic languages and we per-
form experiments with recognition of syntactic relations in Polish data testing
a few classifiers (the experiments presented in [9] are limited to Memory-Based
Learning).

The scope of this paper is mostly limited to the second stage, that is inter-
chunk relation recognition. This is because it is still an understudied problem
for Slavic languages — we are aware of only one work that touches upon this
issue [1] — while chunking of Slavic languages received much more attention,
e.g. [11, 13, 14, 15, 18, 19, 21].

2 Syntactic Chunks and Inter-chunk Relations

Our work is based on the Polish Corpus of Wrocław University of Technology1,
abbreviated KPWr [5]. The corpus is annotated with shallow syntactic structure
� This work was financed by the National Centre for Research and Development

(NCBiR) project SP/I/1/77065/10 (“SyNaT”).
1 Available at http://nlp.pwr.wroc.pl/kpwr

M.A. Kłopotek et al. (Eds.): IIS 2013, LNCS 7912, pp. 28–38, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://nlp.pwr.wroc.pl/kpwr

Classification of Predicate-Argument Relations in Polish Data 29

that follows the two-stage approach. The annotation guidelines of KPWr define
the following chunk types [17]:

1. Noun phrases (NP) — possibly complex noun or prepositional2 phrases that
may fill the role of arguments. The assumption that NP chunks should corres-
pond closely to arguments entails that some NP chunks include PP modifiers.
The NP chunks are limited to clause boundaries. The other situation where
noun phrases are split into several chunks is coordination: if the coordination
happens at the superordinate level, that is the whole NP would have several
syntactic heads, the phrase is split on coordinating conjuncts. Coordinations
are allowed if the whole phrase may still be assigned one noun head.

2. Adjective phrases (AdjP) are annotated only where they do not belong to
any NP chunks.

3. Verb phrases (VP) — understood as verbs (simple or analytical forms) ex-
cluding arguments. VPs should also include adverbial modifiers if they clearly
modify other parts of the phrase.

4. Agreement phrases (AgP) — alternative level of annotation, comprised of
simple noun or adjective phrases. They are not linked to predicate-argument
structure, hence we do not use this level.

The KPWr guidelines [17] define the following inter-chunk relations:

1. Subject (SUBJ) — a relation between VP and NP chunks. The definition is
limited to include subjects that are manifested as NP chunks with nomin-
ative head. This leaves out null subjects, as well as some other less frequent
constructs. Sometimes one VP may be attached more than one subject. This
happens in the case of coordinated NPs that are split into several NP chunks
— each of them is attached with a separate SUBJ link.

2. Object (OBJ) — a relation between VP and NP, sometimes also between
VP and AdjP. The definition includes direct and indirect objects, as well as
those adjuncts that are manifested as NP or AdjP chunks. The cases of AdjP
objects are relatively infrequent, e.g. jury uznało go [za najbardziej znaczący]
‘the jury recognised it [as most significant]’.

3. Copula (COP) — a relation between VP and AdjP or VP and NP, annotated
in the case of Polish predicative constructs. The relation links the copula
(być, ‘to be’, stać się, zostać ‘to become’) and an AdjP or NP. For example,
jestem głodny ‘I’m hungry’ or został dobrym policjantem ‘he became a good
policeman’.

The statistics of this corpus are presented in Tab. 1.

3 Related Works

There have been a few attempts at recognising inter-chunk syntactic relations,
most of them performed on the data from the Penn Treebank [3].
2 Prepositional phrases and actual noun phrases are labelled collectively as NP chunks.

[17] motivate this in terms of simplicity of annotation scheme as well as possibility
of automatic classification with trivial rules, if needed.

30 A. Radziszewski, P. Orłowicz, and B. Broda

Table 1. Statistics for the syntactically annotated part of KPWr

Element Number of instances
Sentence 2004
Token 32296
VP chunk 2376
ARG chunk 6453

NP 6069
AdjP 384

SUBJ relation 1372
OBJ relation 2496
COP relation 476

In [2], the problem of verb–object and verb–subject relation recognition was
cast as bracketing tasks by treating the whole stretches of text including the
verb and its object as OV chunks, and similarly with verb–subject relations.
This approach seems to be a bit over-simplified, since it forces to assign at most
one object per verb. The work also presents a learning algorithm called Memory-
Based Sequence Learning, which is based on memorising sequences of POS tags.

In [9], a shallow parser is presented. It consists of two memory-based mod-
ules: a chunker, recognising NP and VP chunks, and a module for recognition
of verb–object and verb–subject relation instances. Both modules assume the
respective problems are cast as sequence of classification tasks. In the case of
relation recognition, both relations may hold between a VP chunk and any other
word or chunk. The starting point was to generate for each sentence all possible
VP–other word/chunk pairs. As this would result in a very high number of can-
didate instances for classification, a heuristic rule was introduced to reject all
the pairs with more than one intervening VP chunk between both items. The
authors make some interesting observations on the crucial role of chunking of the
local context for the method to work properly. This is reflected in the proposed
feature set for the relation classification tasks. The features include informa-
tion concerning both items (chunks or words to be linked with a relation), the
in-between material, but also some chunks outside the range, neighbouring the
items in question. We will turn back to this feature set in Sec. 4.3 as a starting
point for our experiments. The system achieves 84.7% precision and 81.6% re-
call (F = 83.1%) for subject detection, while 87.3% precision and 85.8% recall
(F = 86.5%) for object detection. Note that those figures were obtained when in-
cluding chunking errors. The observed F-measure values are higher when testing
on manually annotated chunks (89.0% for subjects, 91.6% for objects).

A similar approach is presented in [7]. The chunking stage is extended to five
chunk types: NP, VP, AdjP, AdvP and PP (containing only prepositions, later
combined with NPs to form so-called PNP chunks). The relation recognition stage
was formulated as classification of all VP–other chunk pairs. The feature set was
very similar to that of [9]. The addition included a feature that obtained prepos-
itions from PNP chunks, and some information about certain chunks occupying
the in-between range. The highest reported value of F-measure was 83.1%.

Classification of Predicate-Argument Relations in Polish Data 31

An approach to classification of inter-chunk syntactic relations for Polish data
is presented in [1]. This work differs from the ones previously mentioned in that
the task is defined as discovering the complete dependency graph between chunks
found in the sentence, not limiting the attention to subject/object relations. What
is more, the set of considered chunk types include both syntactic objects corres-
ponding to syntactic phrases, but also ‘syntactic words’, which are most often
single tokens [12]. These two assumptions shift the task definition heavily towards
full dependency parsing, hence the results obtained cannot be directly compared
to ours. The proposed feature set is impressively large, including estimated col-
location strength between chunks’ semantic heads, but also, some items tailored
for Slavic languages: grammatical case, gender and number, and also, agreement
on number, gender and case (tests for agreement are useful since the task defini-
tion involves discovering dependency links between arbitrary chunks, not just sub-
ject/object). Also, some semantic information derived from a wordnet is used. The
reported results are achieved using Balanced Random Forest classifier: 89% pre-
cision and 66% recall (76% F-measure). These figures include chunking (and tag-
ging) errors only partially, for instance reference manual annotation was used to
gather statistics on collocation strength between chunks’ heads.

4 Proposed Solution

4.1 General Setting

To apply our shallow parsing scheme to user-provided text, the following pro-
cessing stages are required:

1. morphosyntactic tagging,
2. chunking,
3. recognition of chunks’ syntactic heads (the heads are used by our features),
4. the proper inter-chunk relation recognition module (next section).

4.2 Relation Recognition Algorithm

All of the syntactic relations defined in the KPWr corpus hold between either
VP and NP chunks or VP and AdjP chunks. This allows for a convenient sim-
plification: we examine all such pairs present in a sentence and classify each for
one of the relations from the following set: SUBJ, OBJ, COP, None. We decided
against filtering the pairs with respect to distance between chunks. Our motiv-
ation was that of simplicity, while as the candidate pairs in our case are limited
to VP–NP/AdjP schema, the number of candidates should already be limited to
reasonable ranges. The distance is embodied in two features that may be used
by the classifier to exclude long-distance dependencies as unlikely.

The training procedure is simple: all the possible VP–NP and VP–AdjP pairs
are generated from each sentence. For each pair a feature vector is generated.
The vector is assigned a correct class label (relation name or None). The set of
representations gathered this way is used to train a single classifier.

32 A. Radziszewski, P. Orłowicz, and B. Broda

Performance phase, that is recognition of relation instances with a trained
classifier, follows the same scheme. All the possible pairs are used for feature
generation. Each feature vector is classified with relation name label (or None).
Note that this way we do not assert some syntactic constraints that are invariant
in the annotation principles. That is, our algorithm may link two different VPs
with the same object, which is not permitted in KPWr. Obviously, such errors
will be penalised during evaluation.

4.3 Features

Polish is a relatively free word order language and grammatical case is used to ex-
pressing syntactic roles of arguments. Nevertheless, an SVO (subject–verb–object
ordering) preference is clearly visible. We tried to account for these properties:

1. we tested the original features proposed in [9] (D),
2. but also our adaptation for Polish (D+).

Both feature sets are defined in Tab. 2.
An example of manually annotated sentence is presented in Fig. 1. A couple

of training instances generated from this sentence using some of the features
described above are presented in Table 3. As those instances were obtained using
automatic features extraction, one can see that there are errors introduced by
chunker e.g. wrong head recognition of chunk VP: [może pomieścić].

Obiekt został otwarty do użytku w 2003 i może pomieścić 8000 widzów .
NP VP AdjP VP NP

facility became open for use in 2003 and may hold 8000 spectators

SUBJ COP OBJ

Fig. 1. An example annotated sentence taken from KPWr (‘The facility was opened
for public use in 2003 and it may hold 8000 spectators’)

4.4 Classifiers

For the purpose of classification we used a few diverse classifiers:

1. Popular C4.5 decision tree induction algorithm [16] (standard Weka J48
implementation, with default parameters).

2. Support Vector Machines (SVM), using the implementation from LIBSVM
package with radial basis function as a kernel [8].

3. Memory-based classifier from TiMBL package [10].

We employed standard grid search for optimisation of LIBSVM parameters.
For the experiments with memory-based learning we tested several values of k
(number of neighbours) and two metrics: weighted overlap as well as Modified
Value Difference with inverse-linear neighbour–distance weighting scheme (the
latter setting was also used for chunking of Polish; cf. [13]).

Classification of Predicate-Argument Relations in Polish Data 33

Table 2. Feature sets considered for the task. The features referring to the VP chunk
are suffixed with VP, those referring to NP/AdjP — with ARG. Additional suffix des-
ignates a chunk (of any type) from local neighbourhood of the VP or ARG, e.g.,
base_hd_ARG-2 retrieves the head lemma of the second chunk to the left (-2) from the
ARG chunk.

D D+
distance • • signed number of tokens between examined chunks (pos-

itive: ARG chunk is on the left of VP chunk, negative:
ARG chunk is on the right)

vp_between • • unsigned number of VP chunk occurrences between ex-
amined chunks

commas • • number of commas between examined chunks
base_hd_VP • • }base form of a chunk head

concerns VP or ARG chunks, as well as their neighbours
— n chunks left/right the VP or ARG chunk

base_hd_ARG-2 • •
base_hd_ARG-1 • •
base_hd_ARG • •
base_hd_ARG+1 • •
class_hd_ARG • • }grammatical class of a chunk head

concerns VP or ARG chunks, as well as their neighbours
— n chunks left/right the VP or ARG chunk

class_hd_ARG-2 • •
class_hd_ARG-1 • •
class_hd_ARG • •
class_hd_ARG+1 • •
class_chunk_ARG • gram. classes of all words in ARG chunk (set)
case_chunk_ARG • case values of all words in ARG chunk (set)
case_hd_ARG • case of the head in ARG chunk

5 Evaluation
The proposed method of relation recognition has been implemented as two Py-
thon scripts: trainer and annotator. All the described features were implemented
using Fextor, a feature extraction toolkit [4]. All the classifiers were accessed us-
ing the common classification API offered by the LexCSD package [6].

To evaluate the method in a setting close to real-life applications, we account
for errors made at all the stages of processing:
1. Tagging error is already included as the KPWr was tagged using the WMBT

tagger [20]. The impact of tagging error on chunking accuracy is substantial:
the F-measure of a CRF chunker for Polish was 80% higher when evaluated
against manually tagged data than when using the same corpus re-tagged
with WMBT [18].

2. To account for chunking error, we incorporated chunker training into the
cross-validation set-up: each training part is used to train the chunker and
our relation recognition module. Each test part is processed with the trained
chunker and then trained relation recogniser. The experiments use IOB-
BER3, a CRF chunker for Polish [18].

3 We use version 1.0 from http://nlp.pwr.wroc.pl/redmine/projects/iobber/wiki

http://nlp.pwr.wroc.pl/redmine/projects/iobber/wiki

34 A. Radziszewski, P. Orłowicz, and B. Broda

Table 3. Example training instances generated by Fextor

Inst1 Inst2 Inst3 Inst4 ...
Head VP został może został został
Head ARG Obiekt 8000 otwarty 8000
distance 1 -1 -1 -9
vp_between 0 0 0 1
commas 0 0 0 0
base_hd_VP zostać móc zostać zostać
class_hd_VP praet fin praet praet
base_hd_ARG-2 ø ø obiekt ø
class_hd_ARG-2 ø ign subst ign
base_hd_ARG-1 ø móc zostać móc
class_hd_ARG-1 ø fin praet fin
base_hd_ARG obiekt ø ø ø
class_hd_ARG subst ign adj ign
base_hd_ARG+1 zostać ø ø ø
class_hd_ARG+1 praet subst subst subst
class_chunk_ARG subst ign,subst adj,ign,prep,subst ign,subst
case_chunk_ARG nom gen nom,gen,loc gen
case_hd_ARG nom ø nom ø
relation SUBJ OBJ COP None

3. Relation recognition also requires information about the location of chunks’
syntactic heads. IOBBER is also able to annotate chunks’ syntactic heads
and we exploit this capability here (the underlying CRF model recognises
both chunk boundaries and heads in one run). The impact of misplaced
chunk heads is also included in the overall figures.

Note that all the required information (except manual morphosyntactic tagging)
is available in KPWr: chunks, chunk heads and inter-chunk relations have been
manually annotated and may be used as training and testing material. To meas-
ure the impact of chunking and head recognition error on the overall relation
recognition, we will also report precision and recall values for a setting where
both chunking and head annotation is taken directly from the reference corpus
(i.e. chunking and head annotation error is neglected).

We compare the approach based on classification with a rich baseline, namely
a simple rule-based system. The rules work on the (false) assumption that every
Polish sentence follows the SVO pattern:

1. If the number of VP and NP chunks (together) that appear between ARG
and VP is larger than 1, classify the instance as None.

2. If the argument comes before the VP:
– SUBJ if ARG head is in nominative case,
– None otherwise.

3. If the argument comes after the VP:
– COP if VP head lemma is być, zostać or stać and ARG is the first chunk

after VP,

Classification of Predicate-Argument Relations in Polish Data 35

– None if VP head lemma is być, zostać or stać and ARG is not the first
chunk after VP,

– OBJ otherwise.

The results for subject, object and copula recognition are presented in tables 4
and 5. The figures reported are obtained via standard ten-fold cross-validation
scheme. For LIBSVM we performed additional parameter optimisation. The op-
timisation was carried out on a subset of the whole corpus, hence the results
achieved by those classifiers might be overfit to some degree. While this should
in principle be avoided, the performance of those classifiers is anyway lower than
the highest achieved (TiMBL).

Although the figures presented in Table 4 seem disappointingly low, most
classifiers managed to beat the baseline. Where F-measure value was significantly
higher than baseline level, we marked the figure with an asterisk (paired t-test
with 95% confidence). The comparison between two feature sets clearly shows
the importance of features tailored for Polish language — in case of all three
relations the best results were obtained by the proposed D+ feature set.

The other conclusion is the excellence of the memory-based classifier, TiMBL.
TiMBL outperformed the other classifiers consistently in case of all the three
relations, which suggests that it has been a good decision to employ it in the
original study made for English [9].

Note that we count a relation instance as correct when all the following items
are properly recognised: syntactic heads of both chunks (VP and ARG) as well

Table 4. Performance of relation recogniser as a function of underlying classifier and
employed feature set. Chunking errors included.

Features D Features D+
P R F P R F

SUBJ TiMBL mM.k20.dIL 33.6 37.2 35.2 49.6 43.6 46.2∗

TiMBL mM.k5.dIL 29.5 31.4 30.3 45.9 42.2 43.7∗

J48 31.2 31.3 31.2 48.7 38.1 42.2∗

LibSVM 25.9 19.3 22.0 44.1 36.7 39.6
Baseline 38.4 34.9 36.5 38.4 34.9 36.5

OBJ TiMBL mM.k20.dIL 38.9 37.2 37.9∗ 40.3 44.9 42.4∗

TiMBL mM.k5.dIL 37.6 36.9 37.1∗ 38.9 43.9 41.2∗

J48 37.3 36.1 36.6∗ 38.4 44.0 41.0∗

LibSVM 30.5 39.3 34.2∗ 35.9 43.0 39.1∗

Baseline 28.0 31.6 29.6 28.0 31.6 29.6
COP TiMBL mM.k20.dIL 45.3 35.5 39.6 60.5 39.8 47.5∗

TiMBL mM.k5.dIL 38.3 40.6 38.9 53.9 39.5 45.1∗

J48 34.4 33.1 33.5 45.5 35.3 39.2
Baseline 33.9 36.8 35.2 33.9 36.8 35.2
LibSVM 25.4 14.2 17.9 39.1 31.0 34.1

36 A. Radziszewski, P. Orłowicz, and B. Broda

as the name of the relation that holds between them. If the chunker mispre-
dicts location of a chunk’s syntactic head, the whole relation instance is deemed
incorrect.

The performance of the sole relation recogniser is presented in Table 5. The
columns captioned Reference report performance values where both chunking
and head recognition errors were neglected. The impact of those errors turned out
to be quite substantial. To gain more insight, we also evaluated the performance
of IOBBER against the very same data set (and the same division into ten folds).
Table 6 reports figures for chunking (row labelled Chunks), recognition of heads
only (Heads) and recognition of both (both chunk boundaries and head location
must be correct to count, Both). Indeed, the error rates are quite substantial,
which is a likely explanation for the gap between results obtained with the help
of IOBBER and reference chunking.

Table 5. Impact of chunking errors on the observed performance of relation recogniser.
Assuming D+ feature set.

CRF chunker Reference
P R F P R F

SUBJ TiMBL mM.k20.dIL 49.6 43.6 46.2 77.1 68.0 72.1
TiMBL mM.k5.dIL 45.9 42.2 43.7 71.9 65.5 68.1
J48 48.7 38.1 42.2 71.8 58.2 63.8
LibSVM 44.1 36.7 39.6 63.4 50.6 55.8
Baseline 38.4 34.9 36.5 58.5 52.6 55.3

OBJ TiMBL mM.k20.dIL 40.3 44.9 42.4 78.9 85.8 82.1
TiMBL mM.k5.dIL 38.9 43.9 41.2 76.0 83.3 79.4
J48 38.4 44.0 41.0 75.1 83.3 78.9
LibSVM 35.9 43.0 39.1 66.2 81.1 72.7
Baseline 28.0 31.6 29.6 56.5 63.5 59.7

COP TiMBL mM.k20.dIL 60.5 39.8 47.5 84.1 65.1 72.9
TiMBL mM.k5.dIL 53.9 39.5 45.1 77.3 64.9 70.0
J48 45.5 35.3 39.2 68.3 57.9 62.0
Baseline 33.9 36.8 35.2 57.1 62.9 59.7
LibSVM 39.1 31.0 34.1 55.9 49.5 52.0

Table 6. Performance of IOBBER: chunking and head recognition

NP chunks VP chunks AdjP chunks
P R F P R F P R F

Chunks 72.4 70.6 71.5 81.2 84.9 83.0 40.2 40.0 40.0
Heads 82.9 80.9 81.9 92.7 97.0 94.7 69.3 69.2 69.1
Both 68.1 66.5 67.3 80.8 84.5 82.6 38.8 38.7 38.7

Classification of Predicate-Argument Relations in Polish Data 37

6 Conclusion and Further Work

We presented experiments in recognition of inter-chunk syntactic relations in
Polish data. This task may be practically useful to extend the level of syntactic
analysis from chunks to partial predicate-argument structure.

We should emphasize that our best results (46% F-measure for subject, 42%
for object and 47% for copula) are somewhat disappointing and substantially
lower than those achieved for a similarly defined task for English (83% for subject
and 87% for object), [9]. This discrepancy may be attributed to the relatively free
word order of Polish, but also, complex chunk definitions in KPWr corpus. The
latter is confirmed by the relatively high chunking error. This leads to a conclu-
sion that further works should focus on the improvement of chunking algorithms
before any significant progress in the recognition of inter-chunk relations may be
made. Nevertheless, the presented approach allowed to obtain results that are
significantly better than a rich rule-based baseline, which is already of practical
value.

We limited our feature set to morphosyntactic properties of chunks and their
local neighbourhood. It may also be a good idea to go beyond this level, starting
with re-using some of the features proposed in [1], e.g. estimated collocation
strength and wordnet-induced features.

References

[1] Acedański, S., Slaski, A., Przepiórkowski, A.: Machine learning of syntactic attach-
ment from morphosyntactic and semantic co-occurrence statistics. In: Proceedings
of the ACL 2012 Joint Workshop on Statistical Parsing and Semantic Processing
of Morphologically Rich Languages, pp. 42–47. Association for Computational
Linguistics, Jeju (2012)

[2] Argamon, S., Dagan, I., Krymolowski, Y.: A memory-based approach to learning
shallow natural language patterns. In: COLING-ACL, pp. 67–73 (1998)

[3] Bies, A., Ferguson, M., Katz, K., MacIntyre, R., Tredinnick, V., Kim, G.,
Marcinkiewicz, M.A., Schasberger, B.: Bracketing guidelines for treebank II style
Penn Treebank project. Tech. rep., University of Pennsylvania (1995),
http://nlp.korea.ac.kr/~hjchung/sprg/paper/treebank1.pdf

[4] Broda, B., Kędzia, P., Marcińczuk, M., Radziszewski, A., Ramocki, R., Wardyński,
A.: Fextor: A feature extraction framework for natural language processing: A case
study in word sense disambiguation, relation recognition and anaphora resolution.
In: Przepiórkowski, A., Piasecki, M., Jassem, K., Fuglewicz, P. (eds.) Computa-
tional Linguistics. SCI, vol. 458, pp. 41–62. Springer, Heidelberg (2013)

[5] Broda, B., Marcińczuk, M., Maziarz, M., Radziszewski, A., Wardyński, A.: KPWr:
Towards a free corpus of Polish. In: Calzolari, N., Choukri, K., Declerck, T., Doğan,
M.U., Maegaard, B., Mariani, J., Odijk, J., Piperidis, S. (eds.) Proceedings of
LREC 2012. ELRA, Istanbul (2012)

[6] Broda, B., Piasecki, M.: Evaluating LexCSD in a large scale experiment. Control
and Cybernetics 40(2) (2011)

[7] Buchholz, S.: Memory-Based Grammatical Relation Finding. Ph.D. thesis, Tilburg
University (2002)

http://nlp.korea.ac.kr/~hjchung/sprg/paper/treebank1.pdf

38 A. Radziszewski, P. Orłowicz, and B. Broda

[8] Chang, C.C., Lin, C.J.: LIBSVM: A library for support vector machines. ACM
Transactions on Intelligent Systems and Technology 2, 27:1–27:27 (2011),
http://www.csie.ntu.edu.tw/~cjlin/libsvm

[9] Daelemans, W., Buchholz, S., Veenstra, J.: Memory-based shallow parsing. In:
Proceedings of the CoNLL 1999. Association for Computational Linguistics (1999)

[10] Daelemans, W., Zavrel, J., Ko van der Sloot, A.V.D.B.: TiMBL: Tilburg Memory
Based Learner, version 6.3, reference guide. Tech. Rep. 10-01, ILK (2010)

[11] Grác, M., Jakubíček, M., Kovář, V.: Through low-cost annotation to reliable pars-
ing evaluation. In: Proceedings of the 24th Pacific Asia Conference on Language,
Information and Computation, pp. 555–562. Waseda University, Tokio (2010)

[12] Głowińska, K.: Anotacja składniowa. In: Przepiórkowski, A., Bańko, M., Grski,
R.L., Lewandowska-Tomaszczyk, B. (eds.) Narodowy Korpus Języka Polskiego.
Wydawnictwo Naukowe PWN, Warsaw (2012)

[13] Maziarz, M., Radziszewski, A., Wieczorek, J.: Chunking of Polish: guidelines,
discussion and experiments with Machine Learning. In: Proceedings of the 5th
Language & Technology Conference, LTC 2011, Poznań, Poland (2011)

[14] Osenova, P.: Bulgarian nominal chunks and mapping strategies for deeper syn-
tactic analyses. In: Proceedings of the Workshop on Treebanks and Linguistic
Theories (TLT 2002), Sozopol, Bulgaria, September 20-21 (2002)

[15] Przepiórkowski, A.: Powierzchniowe przetwarzanie języka polskiego. Akademicka
Oficyna Wydawnicza EXIT, Warsaw (2008)

[16] Quinlan, J.R.: C4. 5: programs for machine learning. Morgan Kaufmann (1993)
[17] Radziszewski, A., Maziarz, M., Wieczorek, J.: Shallow syntactic annotation in the

Corpus of Wrocław University of Technology. Cognitive Studies 12 (2012)
[18] Radziszewski, A., Pawlaczek, A.: Large-scale experiments with NP chunking

of polish. In: Sojka, P., Horák, A., Kopeček, I., Pala, K. (eds.) TSD 2012. LNCS,
vol. 7499, pp. 143–149. Springer, Heidelberg (2012)

[19] Radziszewski, A., Piasecki, M.: A preliminary noun phrase chunker for Polish. In:
Proceedings of the Intelligent Information Systems (2010)

[20] Radziszewski, A., Śniatowski, T.: A memory-based tagger for Polish. In: Proceed-
ings of the 5th Language & Technology Conference, Poznań (2011)

[21] Vučković, K.: Model parsera za hrvatski jezik. Ph.D. thesis, Department of Inform-
ation Sciences, Faculty of Humanities and Social Sciences, University of Zagreb,
Croatia (2009)

http://www.csie.ntu.edu.tw/~cjlin/libsvm

Online Service for Polish Dependency
Parsing and Results Visualisation

Alina Wróblewska and Piotr Sikora

Institute of Computer Science, Polish Academy of Sciences, Warsaw, Poland
alina@ipipan.waw.pl, piotr.sikora@student.uw.edu.pl

Abstract. The paper presents a new online service for the dependency
parsing of Polish. Given raw text as input, the service processes it and
visualises output dependency trees. The service applies the parsing sys-
tem – MaltParser – with a parsing model for Polish trained on the Polish
Dependency Bank, and some additional publicly available tools.

Keywords: dependency parsing, Polish Dependency Bank, visualisa-
tion, brat, dependency parsing service.

1 Introduction

Several language processing tasks, such as machine translation, question
answering or information extraction, may be successfully supported by depen-
dency parsing. A dependency-based syntactic representation transparently en-
codes the predicate-argument structure of a sentence, which seems to be essential
to generate a new sentence or extract relevant information. That is why depen-
dency parsing has become increasingly important in recent years (e.g., CoNLL
2006 [2] and CoNLL 2007 [10]).
Except for grammar-based dependency parsers, the manual creation of which

is very time-consuming and expensive, different data-driven approaches for de-
pendency parsing have been proposed. The best parsing results are achieved with
supervised techniques so far. Supervised dependency parsers trained on correctly
annotated data may achieve high parsing performance, even for languages with
relatively free word order, such as Czech [10], Russian [9] or Bulgarian [10].
This paper deals with the dependency parsing of Polish, which is another

language with free word order and rich morphology. We present a new online
service that processes raw text, annotates its sentences with dependency trees
and visualises results. The service applies the parsing system – MaltParser [11]–
with a parsing model for Polish trained on the Polish Dependency Bank [18],
and some additional publicly available tools.
The paper is structured as follows. Section 2 introduces publicly available

achievements in the Polish dependency parsing. Section 3 describes the depen-
dency parsing module and the visualisation application. Section 4 concludes with
some ideas for future research.

M.A. Kłopotek et al. (Eds.): IIS 2013, LNCS 7912, pp. 39–44, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

40 A. Wróblewska and P. Sikora

2 Dependency Parsing of Polish

The first Polish dependency parser was developed by Obrębski [12].1 This is
a rule-based parser that was tested against a small artificial test set and no wide-
coverage grammar seems to accompany the work. Regarding the idea of training
data-driven dependency parsers for Polish, some preliminary experiments are
presented in [19]. Results of these experiments show that it is possible to train
dependency parsing models for Polish with publicly available parser-generation
systems:MaltParser [11] andMSTParser [6]. The presented dependency parsing
models have been trained on dependency trees from the Polish Dependency Bank
(Pol. Składnica Zależnościowa [18]).
The Polish Dependency Bank consists of 8227 syntactically annotated sen-

tences,2 which have been semi-automatically derived from trees available in
the Polish constituency treebank (Pol. Składnica Frazowa [17]). Dependency
structures meet properties of valid dependency trees [5] and are labelled with
grammatical functions defined for Polish.3 Any dependency structure is anno-
tated as a tree with nodes corresponding to tokens in a sentence and arcs rep-
resenting dependency relations between two tokens. One of the related tokens
is the governor of a dependency relation, while the other one is its dependent.
An example of a Polish dependency tree is given in Figure 1.

root Teoretycznie George powinien więc być spokojny .
theoretically George should.3.sg.pres therefore be calm.sg.nom .

adjunct

subj

pred

adjunct

comp inf

pd

punct

Fig. 1. Dependency tree of the Polish sentence Teoretycznie George powinine więc być
spokojny. (Eng. ‘So theoretically, George should not worry.’)

A part of automatically converted dependency trees have been manually cor-
rected by a linguist experienced in the Polish syntax. The first 1,000 trees were
thoroughly checked for errors, and other trees were skimmed through focusing
on potentially reoccurring errors.4

1 This dependency parser seems to be not publicly available.
2 In comparison to dependency treebanks for other languages, e.g., for Czech PDT
[4], used to train dependency parsers, the size of the Polish treebank seems to be
relatively small and probably not sufficient to train high-coverage parsing models.
Despite this, since we do not have any larger set of training data yet, we will use
the Polish Dependency Bank for the purposes of the current work.

3 Description of Polish dependency relation types:
zil.ipipan.waw.pl/FunkcjeZaleznosciowe

4 The partially corrected Polish Dependency Bank in CoNLL format (Składnica-
zależnościowa-0.5.conll.gz) is available on http://zil.ipipan.waw.pl/Składnica

zil.ipipan.waw.pl/FunkcjeZaleznosciowe

Online Service for Polish Dependency Parsing and Results Visualisation 41

Drawing on findings in training dependency parsing models presented in [19],
we repeat one of the described experiments. A Polish dependency parser is
trained on the entire partially corrected Polish Dependency Bank using Malt-
Parser parsing system [11]. The transition-based dependency parser uses a de-
terministic parsing algorithm5 that builds a dependency structure of an input
sentence based on transitions (shift-reduce actions) predicted by a classifier.
The classifier trained with the LIBLINEAR library [3] learns to predict the next
transition given training data and the parse history. The feature model is defined
in terms of token attributes, i.e., word form (form), part-of-speech tag (pos),
morphological features (feats), and lemma (lemma) available in input data, or
dependency types (deprel) extracted from partially built dependency graphs
and updated during parsing.
PolishMaltParser trained on the entire Polish Dependency Bank is evaluated

against a set of 50 manually annotated sentences (17.8 tokens/sentence) taken
from Polish magazines. The performance of the Polish MaltParser is evaluated
with two standard metrics: labelled attachment score (LAS)6 and unlabelled at-
tachment score (UAS).7 PolishMaltParser tested against the set of 50 manually
annotated sentences achieves 64.8% LAS/71.3% UAS.8

3 Parsing and Visualisation

Driven by the idea of making results of Polish MaltParser publicly available, we
have prepared an online platform that allows any Internet user to input raw text
that will be tagged, dependency parsed and displayed in a way convenient for
perception and evaluation. To that end, a number of tools has been employed:

– Multiservice [13] [14],9 a Web Service integration platform for Polish linguis-
tic resources,
– Pantera [1], a morpho-syntactic rule-based Brill tagger of Polish,
– brat rapid annotation tool [16], an online environment for collaborative text
annotation.

From the technical point of view, the dependency service is implemented as
a component of Multiservice system, which provides a framework for different

5 Since Polish dependency trees may be non-projective, the built-in stackeager pars-
ing algorithm [8] is used in the experiment.

6 Labelled attachment score (LAS) – the percentage of tokens that are assigned a cor-
rect head and a correct dependency type.

7 Unlabelled attachment score (UAS) – the percentage of tokens that are assigned
a correct head.

8 The test sentences are much longer and more complex than sentences in the Polish
Dependency Bank. [19] report that the Polish MaltParser results are significantly
better – 84.7% LAS and 90.5% UAS, if the parser is evaluated against unseen sen-
tences from the Polish Dependency Bank, which seem to be much simpler.

9 Multiservice with an integrated dependency parsing module is publicly available on
glass.ipipan.waw.pl/multiservice

glass.ipipan.waw.pl/multiservice

42 A. Wróblewska and P. Sikora

Fig. 2. Screenshot of the visualisation of the dependency tree previously presented in
Figure 1

NLP-tools to work together. Multiservice uses Apache Thrift [15] as a basis to
setup communication between various daemons10 wrapping previously offline
resources in a flexible chain of linguistic tools. As a result, the application can
automatically go through all the steps from raw text to a desired output (e.g.,
dependency trees). Apart from providing access to linguistic resources via net-
work, daemons have to translate the incoming Thrift data into an input format
required by the wrapped tool and then do the opposite conversion for output. In
order to connect dependency parsing to the Multiservice platform, Dependency-
ParserService has been created. This service uses the MaltParser system with
a pre-trained model to parse input sentences. Moreover, DependencyParserSer-
vice reformats incoming and outgoing data between Thrift objects and CoNLL
format [2]. The structure of Thrift object had also been modified to make it
capable of containing dependency relations.
Since MaltParser requires sentences to be morpho-syntactically tagged before

parsing, Pantera tagger integrated into the Multiservice platform fulfils this
requirement. Since Multiservice is designed to use one communication protocol
for all services, dependency parsing relies on this specific tagger only insofar as it
is the only one tagger already integrated intoMultiservice. Should another tagger
become available, it can replace the current one or the user may be allowed to
freely choose the source from which DependencyParserService would commence.
Finally, once a network based solution for the dependency parsing of Polish

was ready, the only remaining task was to visualise dependency trees. At the

10 Daemons are computer programs running as background processes, e.g., on a server.

Online Service for Polish Dependency Parsing and Results Visualisation 43

beginning we intended to use MaltEval11 [7] to visualise dependency trees. How-
ever, bringing the Java-based software to web environment wasn’t straightfor-
ward, so we did not integrate it into the service. Meanwhile, we became aware of
the recursively acronymised brat [16], which among other things has been used
to visualise CoNLL-X Multilingual Dependency Parsing task data [2]. The brat
tool seems to be flexible enough to be seamlessly embedded into the Multiser-
vice’s Django-based web-page server. The final result is a simple web-service
bringing visualised results of the dependency parsing of Polish in the form of
user-friendly readable trees (see example in Figure 2).

4 Conclusions and Future Work

We have presented the online Polish dependency parsing service. The service
processes raw input text, annotates sentences with dependency trees, and then
visualises results. Integration of different NLP-components and the visualisation
application was not a trivial task, but made it possible to present the function-
ality of the Polish dependency parsing to a wider audience. The dependency
parsing service is freely available for research and educational purposes.
So far the online platform only enables dependency parsing of Polish sentences

usingMaltParser with one preloaded parsing model. We suppose it could be use-
ful to be able to compare trees produced by different dependency parsing models
or even different parsers. This requires expanding capabilities of the dependency
parser service to allow simultaneous processing of a sentence by multiple depen-
dency parsers. Furthermore, in order to let users see differences between multiple
dependency trees at a glance, custom modificantions to brat visualisations need
to be provided. Hence, we also plan to train Polish parsing models that will cover
more linguistic facts than the current model.
Another possible path to explore is to tap brat’s annotation capabilities and

allow users to send feedback on generated results, which would lessen the work-
load required to train better models of Polish dependency parsing thanks to
the online platform’s ease of use.

Acknowledgements. This research is supported by the POIG.01.01.02-14-
013/09 project which is co-financed by the European Union under the European
Regional Development Fund.

References

1. Acedański, S.: A Morphosyntactic Brill Tagger for Inflectional Languages. In:
Loftsson, H., Rögnvaldsson, E., Helgadóttir, S. (eds.) IceTAL 2010. LNCS,
vol. 6233, pp. 3–14. Springer, Heidelberg (2010)

2. Buchholz, S., Marsi, E.: CoNLL-X shared task on Multilingual Dependency Pars-
ing. In: Proceedings of the 10th Conference on Computational Natural Language
Learning (CoNLL-X 2006), pp. 149–164 (2006)

11 An evaluation tool for dependency parsers developed by the authors of MaltParser.

44 A. Wróblewska and P. Sikora

3. Fan, R.E., Chang, K.W., Hsieh, C.J., Wang, X.R., Lin, C.J.: LIBLINEAR: A Li-
brary for Large Linear Classification. Journal of Machine Learning Research 9,
1871–1874 (2008)

4. Hajič, J., Vidová-Hladká, B., Pajas, P.: The Prague Dependency Treebank: Anno-
tation Structure and Support. In: Proceedings of the IRCS Workshop on Linguistic
Databases, pp. 105–114 (2001)

5. Kübler, S., McDonald, R.T., Nivre, J.: Dependency Parsing. Synthesis Lectures on
Human Language Technologies. Morgan & Claypool Publishers (2009)

6. McDonald, R., Pereira, F., Ribarov, K., Hajič, J.: Non-projective Dependency Pars-
ing using Spanning Tree Algorithms. In: Proceedings of Human Language Tech-
nology Conferences and Conference on Empirical Methods in Natural Language
Processing (HLT/EMNLP), pp. 523–530 (2005)

7. Nilsson, J., Nivre, J.: MaltEval: An Evaluation and Visualization Tool for Depen-
dency Parsing. In: Proceedings of the 6th International Language Resources and
Evaluation (LREC 2008), pp. 161–166 (2008)

8. Nivre, J.: Non-projective Dependency Parsing in Expected Linear Time. In: Pro-
ceedings of the 47th Annual Meeting of the ACL and the 4th International Joint
Conference on Natural Language Processing of the AFNLP, pp. 351–359 (2009)

9. Nivre, J., Boguslavsky, I.M., Iomdin, L.L.: Parsing the SynTagRus treebank of
Russian. In: Proceedings of the 22nd International Conference on Computational
Linguistics (COLING 2008), vol. 1, pp. 641–648 (2008)

10. Nivre, J., Hall, J., Kübler, S., McDonald, R., Nilsson, J., Riedel, S., Yuret, D.: The
CoNLL 2007 Shared Task on Dependency Parsing. In: Proceedings of the CoNLL
Shared Task Session of EMNLP-CoNLL 2007, pp. 915–932 (2007)

11. Nivre, J., Hall, J., Nilsson, J., Chanev, A., Eryigit, G., Kübler, S., Marinov, S.,
Marsi, E.: MaltParser: A language-independent system for data-driven dependency
parsing. Natural Language Engineering 13(2), 95–135 (2007)

12. Obrębski, T.: MTT-compatible computationally effective surface-syntactic parser.
In: Proceedings of the 1st International Conference on Meaning-Text Theory,
pp. 259–268 (2003)

13. Ogrodniczuk, M., Lenart, M.: Multipurpose Linguistic Web Service for Polish.
In: Proceedings of the Language Technology for a Multilingual Europe Workshop
at the German Society for Computational Linguistics and Language Technology
Conference (GSCL 2011), Hamburg, Germany (2011)

14. Ogrodniczuk, M., Lenart, M.: Web Service integration platform for Polish linguistic
resources. In: Proceedings of the Eighth International Conference on Language
Resources and Evaluation (LREC 2012), pp. 1164–1168 (2012)

15. Slee, M., Agarwal, A., Kwiatkowski, M.: Thrift: Scalable Cross-Language Services
Implementation. Tech. rep., Facebook, 156 University Ave, Palo Alto, USA (2007)

16. Stenetorp, P., Pyysalo, S., Topić, G., Ohta, T., Ananiadou, S., Tsujii, J.:brat: a
Web-based Tool for NLP-Assisted Text Annotation. In: Proceedings of the 13th
Conference of the European Chapter of the Association for Computational Lin-
guistics, pp. 102–107 (2012)

17. Świdziński, M., Woliński, M.: Towards a Bank of Constituent Parse Trees for Polish.
In: Sojka, P., Horák, A., Kopeček, I., Pala, K. (eds.) TSD 2010. LNCS (LNAI),
vol. 6231, pp. 197–204. Springer, Heidelberg (2010)

18. Wróblewska, A.: Polish Dependency Bank. Linguistic Issues in Language Technol-
ogy 7(1) (2012)

19. Wróblewska, A.,Woliński, M.: Preliminary Experiments in Polish DependencyPars-
ing. In: Bouvry, P., Kłopotek, M.A., Leprévost, F., Marciniak, M., Mykowiecka, A.,
Rybiński, H. (eds.) SIIS 2011. LNCS, vol. 7053, pp. 279–292. Springer, Heidelberg
(2012)

The Scent of Deception: Recognizing Fake
Perfume Reviews in Polish

Maciej Rubikowski1 and Aleksander Wawer2

1 Institute of Computer Science
Warsaw University of Technology

ul. Nowowiejska 15/19, 00-665 Warszawa
M.Rubikowski@stud.elka.pw.edu.pl

2 Institute of Computer Science
Polish Academy of Sciences

ul. Jana Kazimierza 5, 01-248 Warszawa
axw@ipipan.waw.pl

Abstract. Many opinion aggregation websites are injected by well-
formed, fake reviews. Previous work showed that such spam is very hard
to identify by a non-expert human reader and therefore, automated meth-
ods are needed to identify deceptive content. To this day, there has been
no study for the Polish language and our main goal is to fill that gap. We
present a corpus of fake and true reviews in Polish and describe experi-
ments on automated opinion spam detection. Our approach turns out to
be highly successful, but future systematic studies are needed to confirm
the nature of our findings.

Keywords: Natural language processing, sentiment analysis, opinion
spam detection.

1 Existing Work

The body of literature on automated deception detection and recognizing opin-
ion spam is far too large to disclose here. Therefore, we only discuss two most
relevant papers. [2] analyze five corpora of true and false statements (eg. views on
abortion) using 72 linguistic dimensions from LIWC [4]. The method correctly
classified liars and truth-tellers at a rate of 67% when the topic was constant
and a rate of 61% overall. Compared to truth-tellers, liars showed lower cogni-
tive complexity, used fewer self-references and other-references, and used more
negative emotion words. In a more recent study, [3] use a corpus obtained from
Amazon’s Mechanical Turk and report average precision of 0.898 using an SVM
classifier on LIWC categories and bigrams. The highest performing classifier
significantly outperforms human judges.

2 Corpus Construction

The problem of finding a decent corpus for opinion spam detection is inevitable,
especially when a research is to be conducted on a material written in a language

M.A. Kłopotek et al. (Eds.): IIS 2013, LNCS 7912, pp. 45–49, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

46 M. Rubikowski and A. Wawer

that was not previously analyzed. This was exactly our case; lack of existing data
to work on led us to the point where we were forced to define several rules that
such corpus must adhere to create it accordingly.

2.1 Basic Creation Principles

We perceive the review spam detection as a two-label classification problem.
Thus, we needed two disjunctive opinion sets: first one with 100%-sure authentic
reviews (created by real buyers) and the second one with 100%-sure fake reviews
(created by whoever). After performing such division, we decided that we should
use the fake reviews written exclusively by professional opinion writers. In doing
so, we would perfectly imitate real-life conditions of deceit.

The real (or, in other words, authentic) review set was much harder to obtain.
As was already mentioned, it is an extraordinary hard task for a human reader
to distinguish between real and fake opinions. In order to achieve this task, we
developed a few binary rules which every would-be-real review has to satisfy.
But before we go into details we’ve got to introduce the data source first.

2.2 Finding Authentic Reviews (labeled T)

The domain of our choice: women’s perfumes. The decision was largely inspired
by previous work on sentiment analysis, plus we’ve managed to find an extremely
abundant Polish-language data source: a review site devoted solely to cosmetics
(and perfumes in particular). Although this particular site has no consumer val-
idation (i.e. there’s no explicit connection between the act of buying the product
and writing the review) it is possible to display users’ profiles. Every account
used in process of reviewing products is in fact a message board account as well,
so we were able to determine users’ activity.

From a wide variety of perfumes we’ve chosen two most popular ones:

– Calvin Klein Euphoria
– Dolce & Gabbana Light Blue

These were the most reviewed perfumes at the moment. Opinions varied, but
both products were generally praised, scoring four and three-and-a-half on a five
point scale.

When it came to selecting reviews, we generally adopted the following condi-
tions:

– The author of a review had to be an active member. We chose only the reviews
written by people who wrote at least 1 message on the message board as well.
If he/she had written less than 10 such messages, we carefully analyzed all of
them, searching for the link spam. This way we tried to minimize possibility
of choosing messages posted from accounts created exclusively for the sake
of writing opinion spam.

– Minimum length of the review: 50 characters.
– Maximum length of the review: 1100 characters.

The Scent of Deception: Recognizing Fake Perfume Reviews in Polish 47

– Reviews written in all-capitals were discarded.
– No preprocessing was performed on the data.

Apart from constraints described above, the corpus has following characteristics:

– Exactly 200 reviews were chosen, 100 for each of the two products.
– We tried to maintain normal distribution of character count across the whole

set. Both longer and shorter reviews were considered, with an average text
length of around 500 characters.

– No explicit constraint was put on the scores reviewers gave, but there are
approximately as many positive reviews in our corpus as negative ones. This
way we avoid sticking to just one language (be it praising or lessening).

2.3 Buying Fake Reviews (labeled F)

Obtaining fake reviews was much easier task. We simply chose to hire two free-
lancers (male and female) with experience in the field and asked them to write
100 reviews each: writer A was to prepare 100 positive on Light Blue and 100
negative on Euphoria, while writer B, conversely, 50 positive opinions on Eupho-
ria and 50 negative on Light Blue. This way we obtained the widest style range
available. Other characteristics of the fake part of the corpus include:

– Writer A – normal distribution of text length, with minimum of around 100
characters, maximum of less than 900 characters and mean slightly higher
than 500 characters.

– Writer B – even length distribution, with minimum of 226 characters, max-
imum of 298 and average of around 258 characters.

– Writer A – richer vocabulary, longer sentences; writer B – less eloquent,
shorter, simpler sentences.

3 Automated Recognition of Deceptive Reviews

3.1 Features

This section describes features used in the experiment on automated recognition
of deceptive reviews. The features were generated for each review as frequency
vectors, reflecting following properties:

– tags, POS. In Polish, word forms are identified by morphosyntactic proper-
ties, described (in the course of text processing) by tags. Each morphosyn-
tactic tag is a sequence of colon-separated values, e.g.: subst:sg:nom:m1 for
the segment chłopiec (boy). The first value, e.g., subst, determines the gram-
matical class, while the values that follow it, e.g., sg, nom and m1, are the
values of grammatical categories appropriate for that grammatical class. A
description of the used categories and associated tags be found in [5]. In our
experiment, tags refer to 46 features obtained from morphosyntactic tags
and POS (from part-of-speech) to 32 features from grammatical classes. All
the text processing involved morphosyntactic disambiguation.

48 M. Rubikowski and A. Wawer

– LCM. This feature set refers to frequencies of three verb categories in the
Linguistic Category Model (LCM) by [6]. The categories are as follows: De-
scriptive Action Verbs (IAV), Interpretative Action Verbs (IAV), State Verbs
(SV). The goal of the LCM framework is to measure language abstraction
and the presented verb categorization reflects verbs according to their in-
creasing level of abstraction. Our hypothesis is that deceptive reviews may
be more abstract because they are not based on experiences with reviewed
products. The list of 1100 verbs used in this experiment was generated by
automatically translating appropriate entries in the General Inquirer [7] into
Polish and manually correcting their Polish translations and LCM category
memberships.

– sentiment. This feature sets consists of the numbers of positive and negative
words in each review. The list of such words was generated as described
in [9,8] and their sentiment (as used in our experiment) computed using
supervised classifiers and 3-classes (positive, neutral, negative) as in [10].

– length. The final feature set consists of average sentence lengths and numbers
of sentences, as found in each review.

3.2 Results

Table 1 contains average precision of recognizing deceptive and real reviews as
computed in 5-fold cross-validation (CV). The classification was performed using
the well-known Support Vector Classification (SVC) [1]. The values presented are
the highest average CV scores obtained by iterating over a range of C parameter
values (from 0.0001 to 10). The experiments involved feature selection using
recursive feature elimination (RFE) method resulting in the identification of 25
relevant features.

Table 1. Average precision in 5-fold cross-validation using an SVC classifier

Features Nr Selection C Precision
tags, POS, sentiment, LCM, length 82 RFE->25 1.0 0.835
tags, POS 78 - 0.01 0.809
sentiment, LCM, length 8 - 0.01 0.711
adjectives, LCM 4 - 1.0 0.639

4 Conclusions

Overall, the results are surprisingly good. Although the presented results are
preliminary and should be interpreted with caution, it seems possible to au-
tomatically distinguish true and false reviews with high precision. Notably, the
problem can be nearly solved using non-lexical, very likely less domain dependent
than lexical features consisting of unigrams or n-grams.

The Scent of Deception: Recognizing Fake Perfume Reviews in Polish 49

The LCM feature set combined with adjective frequency corresponds to the
measure of language abstraction [6]. The results are initially promising, but per-
haps could be improved when applied to other types of products than perfumes
(a very special product described using poetic language, full of highly abstract
descriptions and figurative expressions).

Our findings generally confirm the results reported by [2] and [3], discussed in
Section 1. One especially interesting finding is the difference in the performance of
part-of-speech features. [3] report that this type of features, using an SVM classi-
fier, reaches the average accuracy of 0.73. The likely explanation of this difference
is the fact that rich morphology of the Polish language carries more information
relevant to distinguishing true and false reviews than part-of-speech in English.
However, the difference could be also caused by different corpus structures. Here,
the most desirable extension of our work would be to enlarge the dataset with texts
written by many more fake reviewers. Unfortunately, this does not seem realistic
and one can not directly replicate the corpus such as [3] in Polish, because there
are not enough Polish native speakers on the Mechanical Turk.

References

1. Fan, R.E., Chang, K.W., Hsieh, C.J., Wang, X.R., Lin, C.J.: LIBLINEAR: A
library for large linear classification. Journal of Machine Learning Research 9,
1871–1874 (2008)

2. Newman, M.L., Pennebaker, J.W., Berry, D.S., Richards, J.M.: Lying words: Pre-
dicting deception from linguistic styles. Personality and Social Psychology Bul-
letin 29(5), 665–675 (2003)

3. Ott, M., Choi, Y., Cardie, C., Hancock, J.: Finding deceptive opinion spam by
any stretch of the imagination. In: Proceedings of the 49th Annual Meeting of the
Association for Computational Linguistics: Human Language Technologies, ACL
HLT (2011)

4. Pennebaker, J.W., Francis, M.E., Booth, R.J.: Linguistic Inquiry and Word Count:
LIWC 2001. Erlbaum Publishers (2001)

5. Przepiórkowski, A.: A comparison of two morphosyntactic tagsets of Polish,
pp. 138–144 (2009)

6. Semin, G.R., Fiedler, K.: The cognitive functions of linguistic categories in de-
scribing persons: Social cognition and language. Journal of Personality and Social
Psychology 54, 558–568 (1988)

7. Stone, P.J., Dunphy, D.C., Ogilvie, D.M., Smith, M.S.: The General Inquirer: A
Computer Approach to Content Analysis. MIT Press (1966)

8. Wawer, A.: Extracting Emotive Patterns for Languages with Rich Morphology. In-
ternational Journal of Computational Linguistics and Applications 3(1) (January-
June 2012)

9. Wawer, A.: Mining Co-Occurrence Matrices for SO-PMI Paradigm Word Candi-
dates. In: Proceedings of the Student Research Workshop at the 13th Conference
of the European Chapter of the Association for Computational Linguistics, EACL
2012 SRW, pp. 74–80. Association for Computational Linguistics, Avignon (2012)

10. Wawer, A., Rogozińska, D.: How Much Supervision? Corpus-based Lexeme Sen-
timent Estimation. In: 2012 IEEE 12th International Conference on Data Mining
Workshops, ICDMW, SENTIRE 2012, pp. 724–730. IEEE Computer Society, Los
Alamitos (2012)

Question Classification
for Polish Question Answering

Piotr Przybyła

Institute of Computer Science, Polish Academy of Sciences,
ul. Jana Kazimierza 5, 01-248 Warszawa, Poland

P.Przybyla@phd.ipipan.waw.pl

Abstract. This paper deals with a problem of question type classifi-
cation for Polish Question Answering (QA). The goal of this task is to
determine both a general type and a class of an entity which is expected
as an answer. Three types of approaches: pattern matching, WordNet-
aided focus analysis and machine learning are presented and evaluated
using a test set of 1137 manually classified questions from a Polish quiz
TV show. Quantitative results supported with an analysis of error sources
help to find possible improvements.

1 Introduction

Question Answering (QA) is an area of Natural Language Processing (NLP) fo-
cused on answering questions asked by a user in his natural language. This term
refers to a huge variety of systems; for example they could be divided by a type
of knowledge base (database or text corpus) or broadness of domain (closed-
or open-domain systems). Although different, they usually base on similar ar-
chitectural schemes, of which a question type determination is an indispensable
part. The goal of this module is to analyse a question and determine its type,
necessary for finding an answer.
In this paper results of applying several approaches to the case of Polish

questions are reported. Polish belongs to Slavonic languages, whose structure
differs substantially from that of English, for which a majority of QA-related
studies were done. Therefore, their performance needs to be carefully evaluated
before implementing analogous solutions in a Polish QA system. For reader’s
convenience most of examples were put in English.
In fact, the term ”question type” refers to two types of categorial information.

First, henceforth called general question type, describes its general structure.
In this paper, the following general types are distinguished:

– Verification questions (herein abbreviated as TRUEORFALSE), containing
a hypothesis, which is to be verified by an answerer, e.g. Did Lee Oswald kill
John F. Kennedy?,
– Option questions (abbreviation: WHICH), containing a number of options,
from which the answerer chooses one, e.g.Which one killed John F. Kennedy:
Lance Oswald or Lee Oswald?,

M.A. Kłopotek et al. (Eds.): IIS 2013, LNCS 7912, pp. 50–56, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Question Classification for Polish Question Answering 51

– Named entity questions (abbreviation: NAMED ENTITY), which could
be answered by providing a single named entity,
– Unnamed entity questions (abbreviation: UNNAMED ENTITY), similar
to above - answer is still a single entity, but not necessarily a named one
(from categories like: professions, sciences, species, things, body parts, . . .),
e.g. What did Lee Oswald use to kill John F. Kennedy?,
– Other name questions (abbreviation: OTHER NAME), which seeks for
another, non-standard, name for an entity mentioned in the question, e.g.
What nickname did John F. Kennedy use during his military service?,
– Multiple named entities questions (abbreviation: MULTIPLE), which
could be answered by providing a set of named entities, satisfying conditions
imposed by the question, e.g. Which U.S. presidents were assassinated in
office?.

Above list does not exhaust the variety of possible question constructions, leaving
cases like What is the global warming?, Why did the World War II begin? or
What is the product of 6 and 32? out. Those types of questions, demanding
elaborate answers or complex reasoning, require different techniques for answer
formulation, which puts them out of the scope of this work.
The second question type, henceforth referred to as named entity type,

describes the subtype of NAMED ENTITY general question type. The list of
possible labels is shown in Table 2. The list was manually created in order to
cover the most frequent types of questions from general knowledge and could
easily be expanded to suit any specific domain. One could notice that these cat-
egories are not independent, some are more general than others (e.g. continents,
islands and countries are places), some include others (e.g. date notation includes
year). We aim to be as specific as possible, i.e. select place only if it does not
belong to any narrower category, e.g. in case of a city district.

2 Related Work

Although question classification plays a vital role in QA systems, it has not
grabbed a lot of attention so far. In the most popular QA task at Text REtrieval
Conference (TREC) [2], a general question type was given: FACTOID (refer-
ring to both named and unnamed entities), LIST (corresponding to MULTIPLE
above) or OTHER (interesting information about a subject not mentioned so
far). At the NTCIR-6 Cross-Lingual Question Answering Task [12] all questions
were to be answered by named entities.
However, a named entity type is usually not given, so a correct decision at

this level gets crucial for finding a correct answer. Some interrogative pronouns
uniquely define an answer type (e.g. When), which can be easily employed by a
set of hand-written pattern; in [7] it is the only tool for question classification,
but as much as 1273 rules are necessary.
In case of ambiguous questions, beginning with what or which (e.g. Which

famous Dutch painter lost his ear?, in Polish Który sławny holenderski malarz
stracił ucho?), a more sophisticated approach becomes necessary. Namely, a

52 P. Przybyła

question focus, following those interrogative pronouns (in this case famous Dutch
painter), needs to be analysed, as its type corresponds to a type of an expected
answer (here: a person). For that purpose, ontological resources, such as word
classes [13], WordNet [3] or other [4], are used.
Finally, a machine learning (ML) approach is possible, in which we extract a

set of features from question formulation (even 200,000 for each, see [8]) and use
a classifier to learn types from a training set.
Each of these solutions has been designed for English, so applying them to Pol-

ish QA requires special attention and taking into account its features, mainly rich
nominal inflection [10]. In case of pattern matching a number of necessary rules is
much bigger, for example one English patternWhose . . . ? corresponds to 11 Pol-
ish (Czyj . . . ?, Czyjego . . . ?, Czyjemu . . . ?, Czyim . . . ?, Czyja . . . ?,Czyjej . . . ?,
Czyją . . . ?, Czyje . . . ?, Czyi . . . ?, Czyich . . . ?, Czyimi . . . ?). To use the ontolog-
ical resources in the disambiguation process we also need to take it into account;
in the questionWhich American cyclist was disqualified for life in 2012? the fo-
cus is cyclist, which exists in the WordNet. However, in Polish equivalent Którego
amerykańskiego kolarza zdyskwalifikowano dożywotnio w 2012 roku?, the focus
kolarza appears in genitive and needs morphological analysis before becoming
a WordNet search query. Such analysis also needs to precede the ML approach.
For example let us consider the features corresponding to the existence of a
specified word in two formulations of the same problem: active Which com-
poser created the Jupiter Symphony? and passive By which composer was the
Jupiter Symphony created?. They have 6 common words and 2 differences (by
and was in passive). Their Polish equivalents Który kompozytor stworzył Sym-
fonię ”Jowiszową”? and Przez którego kompozytora została stworzona symfonia
”Jowiszowa”? have no common features unless preceded by the morphological
analysis.

3 Question Classifiers

In this study all three approaches are compared in case of classification of Polish
questions. An input of a classifier is a question string; it responds with a set of
the types described previously: general question type or named entity type if
named entity question is recognized or no answer if it fails to find one. A set
may be returned because of a possible ambiguity in question (e.g. Who started
World War II? could be answered by PERSON, COUNTRY, NATIONALITY
or ORGANISATION).

3.1 Pattern Classifier

The simplest approach bases on a list of 104 regular expressions and sets of
question types associated with them. The classifier scans the list and if any of
the expressions matches, returns a corresponding type set. If it reaches the end
of the table, no answer is returned. Such a large number of rules is necessary
because of the properties of Slavonic languages: rich nominal inflection and free
word order. A few examples are shown in Table 1.

Question Classification for Polish Question Answering 53

Table 1. Exemplary rules of the pattern classifier: regular expressions and their cor-
responding results. English constructions close in meaning are also shown.

Regular expression Set of types English construction

^Czy[,](.*)\?$ TRUEORFALSE Did . . . ? or other
^(.*[,])?[Ii]le[,](.*)\?$ COUNT,PERIOD, How many . . . ?

QUANTITY
^(.*[,])?[Kk]omu[,](.*)\?$ PERSON,COUNTRY, To whom . . . ?

COMPANY,BAND,. . .
^W którym wieku[,](.*)\?$ CENTURY In which century . . . ?

The patterns were created manually using general linguistic knowledge about
the interrogative pronouns available in Polish and their meanings. Because of the
properties of Polish, i.e. rich nominal inflection and relatively free word order,
numerous regular expressions are necessary.

3.2 WordNet-Aided Classifier

This classifier uses the pattern classifier as a preliminary step, but its pattern
list is expanded by the ambiguous question structures (e.g. What . . . ?). If a
question matches any of the unambiguous expressions, the corresponding type
set is returned as previously, but for the ambiguous patterns a focus analysis
becomes necessary. Morphological analyser Morfeusz [14], tagger PANTERA [1]
and shallow parser Spejd [11] annotate the sentence. A nominal group directly
following (or including) the interrogative pronoun is assumed to be a question
focus. For example, in Który sławny holenderski malarz stracił ucho?, the nom-
inal group sławny holenderski malarz plays a role of a focus. It is then used to
find a lexem in Polish WordNet [9]. As long as no lexem corresponds to the focus
string, the focus group is replaced by its semantic head (e.g. sławny holenderski
malarz by holenderski malarz and then malarz). The we look for a path lead-
ing from it, by hypernymy relations, to any of specified synsets, corresponding
to named entity types (in this case malarz belongs to subtypes of synset con-
nected with PERSON). The classifier returns corresponding type if successful,
UNNAMED ENTITY otherwise.

3.3 Machine Learning Classifiers

The last approach employs general-purpose classifiers to questions. First, each
question is annotated by the same tools and converted into a list of root forms
appearing in it. Feature set is very simple compared to [8] - it consists of boolean
values, indicating existence of a particular root form in the question and morpho-
logical interpretations of the first five segments. Two classifiers, implemented in
R statistical environment, were chosen for the task: decision trees with pruning
(for human-readable results) and random forests (for high performance).

54 P. Przybyła

4 Evaluation

To evaluate question classifiers, a set of 1137 questions from Polish quiz TV show
”Jeden z dziesięciu”, published in [5], was manually reviewed and classified to
one of the types. Distribution of question types is shown in Table 2. One may
easily notice the unevenness of the distribution; rare classes will most likely cause
troubles for machine learning classifiers. To estimate precision of ML classifiers,
100-fold cross-validation1 was used.

Table 2. The 6 general question types and the 31 named entity types and numbers of
their occurrences in test set

Question type N. o. Question type N. o. Question type N. o.

NAMED ENTITY 657 ISLAND 5 DYNASTY 6
WHICH 28 ARCHIPELAGO 2 ORGANISATION 20
TRUEORFALSE 25 SEA 2 COMPANY 2
MULTIPLE 28 CELESTIAL BODY 8 EVENT 7
UNNAMED ENTITY 377 COUNTRY 52 TIME 2
OTHER NAME 22 STATE 7 CENTURY 9
PLACE 33 CITY 52 YEAR 34
CONTINENT 4 NATIONALITY 12 PERIOD 1
RIVER 11 PERSON 260 COUNT 31
LAKE 9 NAME 11 QUANTITY 6
MOUNTAIN 4 SURNAME 10 VEHICLE 10
RANGE 2 BAND 6
TITLE 38 ANIMAL 1

For each of the classifiers three measures have been calculated: percentage of
classified cases, precision of classification and the product of these two fractions,
corresponding to the number of the questions from the whole test set, classified
correctly.

5 Results

Results of the evaluation are shown in Table 3. Only a small part of questions
turned out to be simple enough to match prepared patterns. On the other hand,
the precision of that stage seems satisfactory. WordNet-aided classifier handles
almost all cases, but its precision still leaves room for improvement. Unfortu-
nately, the ML classifiers yielded worse results. The structure of decision tree was
examined - its leaves correspond either to unambiguous interrogative pronouns
or question foci. Unfortunately, they cover only a few most popular types, which
clearly suggests that it would benefit from a larger training set.
For better understanding of difficulties, all wrong answers of WordNet-aided

classifier and its justifications were carefully analysed. Table 4 enumerates the

Question Classification for Polish Question Answering 55

Table 3. Results of evaluation of the four question type classifiers: percentages of ques-
tions classified, precisions of results and products of these two fractions, corresponding
to the number of questions from the whole test set classified correctly

Classifier Classified Precision Overall

pattern matching 32.54% 95.14% 30.96%
WordNet-aided 98.32% 79.61% 78.27%
decision tree 100% 67.02% 67.02%
random forest 100% 72.91% 72.91%

Table 4. Results of an analysis of error causes for the WordNet-aided classifier, ordered
by a number of failures of the classification caused by each of them

Error cause Number of errors

Ambiguous question focus, wrong meaning chosen 99
Particular named entity instead of a general class 55
No rules for OTHER NAME 14
Poor multiple entities detection 12
Too complex question syntax 12
Insufficient pattern matching 11
Not enough WordNet parents specified 10
Semantic relations not present in WordNet 8
Tagging error 6
Shallow parsing error 1

error causes. The two most important weaknesses of this approach are ambiguous
question foci (the lexem is connected to several synsets in WordNet with different
hypernyms), reported also in [6], and difficulties in deciding whether a goal of
the question is a particular named entity or a general class (e.g. considerWhich
dog has the strongest bite? and Which dog was the first to travel to space?).

6 Conclusion

In this paper, the three different approaches to question type determination were
reported and evaluated basing on the set of Polish questions. Pattern matching
for easy questions and WordNet matching for questions with ambiguous interrog-
ative pronouns turned out to be the most promising methods. There still remains
a couple of possible improvements, but the methods designed for English proved
to work also in the Polish question classification. This study is part of an effort of
building an open-domain text-based question answering system for Polish, which
was supported by research fellowship within ”Information technologies: research
and their interdisciplinary applications” agreement number POKL.04.01.01-00-
051/10-00.

1 The test set was divided into 100 subsets and each of them was classified using a
classifier trained on the remaining 99 subsets.

56 P. Przybyła

References

1. Acedański, S.: A morphosyntactic Brill Tagger for inflectional languages. In: Pro-
ceedings of the 7th International Conference on Advances in Natural Language
Processing (IceTAL 2010), pp. 3–14 (August 2010),
http://dl.acm.org/citation.cfm?id=1884371.1884376

2. Dang,H.T., Kelly,D., Lin, J.: Overviewof theTREC2007QuestionAnswering track.
In: Proceedings of The Sixteenth Text REtrieval Conference, TREC 2007 (2007),
http://trec.nist.gov/pubs/trec16/papers/QA.OVERVIEW16.pdf

3. Harabagiu, S., Moldovan, D., Pasca, M., Mihalcea, R., Surdeanu, M., Bunescu, R.,
Ĝırju, R., Rus, V., Morarescu, P.: The role of lexico-semantic feedback in open-
domain textual question-answering. In: Proceedings of the 39th Annual Meeting
on Association for Computational Linguistics, ACL 2001, pp. 282–289 (July 2001),
http://dl.acm.org/citation.cfm?id=1073012.1073049

4. Hermjakob, U.: Parsing and question classification for question answering. In: Pro-
ceedings of the Workshop on Open-domain Question Answering (ODQA 2001),
vol. 12 (July 2001), http://dl.acm.org/citation.cfm?id=1117856.1117859

5. Karzewski, M.: Jeden z dziesięciu - pytania i odpowiedzi. Muza SA (1997)
6. Katz, B., Lin, J., Loreto, D., Hildebrandt, W., Bilotti, M., Felshin, S., Fernandes,
A., Marton, G., Mora, F.: Integrating Web-based and corpus-based techniques for
question answering. In: Proceedings of the Twelfth Text REtrieval Conference,
TREC 2003 (2003),
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.111.4868

7. Lee, C., Wang, J.H., Kim, H.J., Jang, M.G.: Extracting Template for Knowledge-
based Question-Answering Using Conditional RandomFields. In: Proceedings of the
28th Annual International ACM SIGIR Workshop on MFIR, pp. 428–434 (2005),
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.112.7960

8. Li, X., Roth, D.: Learning Question Classifiers. In: Proceedings of the 19th Inter-
national Conference on Computational Linguistics, COLING 2002, vol. 1 (2002),
http://portal.acm.org/citation.cfm?id=1072228.1072378

9. Maziarz, M., Piasecki, M., Szpakowicz, S.: Approaching plWordNet 2.0. In: Pro-
ceedings of the 6th Global Wordnet Conference (2012)

10. Przepiórkowski, A.: Slavonic information extraction and partial parsing. In: Pro-
ceedings of the Workshop on Balto-Slavonic Natural Language Processing Infor-
mation Extraction and Enabling Technologies, ACL 2007 (2007),
http://portal.acm.org/citation.cfm?doid=1567545.1567547

11. Przepiórkowski, A.: Powierzchniowe przetwarzanie języka polskiego. Akademicka
Oficyna Wydawnicza EXIT, Warszawa (2008)

12. Sasaki, Y., Lin, C.J., Chen, K.H., Chen, H.H.: Overview of the NTCIR-6 Cross-
Lingual Question Answering (CLQA) Task. In: Proceedings of NTCIR-6 Workshop
Meeting (2007)

13. Srihari, R., Li, W.: Information Extraction Supported Question Answering. In:
Proceedings of The Eighth Text REtrieval Conference (TREC-8), pp. 185–196
(1999), http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.29.5096

14. Woliński, M.: Morfeusz—a Practical Tool for the Morphological Analysis of Polish.
In: Kłopotek, M., Wierzchoń, S., Trojanowski, K. (eds.) Intelligent Information
Processing and Web Mining, pp. 511–520 (2006)

http://dl.acm.org/citation.cfm?id=1884371.1884376
http://trec.nist.gov/pubs/trec16/papers/QA.OVERVIEW16.pdf
http://dl.acm.org/citation.cfm?id=1073012.1073049
http://dl.acm.org/citation.cfm?id=1117856.1117859
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.111.4868
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.112.7960
http://portal.acm.org/citation.cfm?id=1072228.1072378
http://portal.acm.org/citation.cfm?doid=1567545.1567547
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.29.5096

Chinese Named Entity Recognition

with Conditional Random Fields
in the Light of Chinese Characteristics

Aaron L.-F. Han, Derek F. Wong, and Lidia S. Chao

University of Macau, Department of Computer and Information Science
Av. Padre Toms Pereira Taipa, Macau, China

hanlifengaaron@gmail.com, {derekfw,lidiasc}@umac.mo

Abstract. This paper introduces the research works of Chinese named
entity recognition (CNER) including person name, organization name
and location name. To differ from the conventional approaches that usu-
ally introduce more about the used algorithms with less discussion about
the CNER problem itself, this paper firstly conducts a study of the Chi-
nese characteristics and makes a discussion of the different feature sets;
then a promising comparison result is shown with the optimized features
and concise model. Furthermore, different performances are analyzed of
various features and algorithms employed by other researchers. To facil-
itate the further researches, this paper provides some formal definitions
about the issues in the CNER with potential solutions. Following the
SIGHAN bakeoffs, the experiments are performed in the closed track
but the problems of the open track tasks are also discussed.

Keywords: Natural language processing, Chinese named entity recog-
nition, Chinese characteristics, Features, Conditional random fields.

1 Introduction

With the rapid development of information extraction, text mining, machine
translation and natural language processing (NLP), named entity recognition
(NER) and detection become more and more important for its critical influence
on the information and knowledge management. Lev and Dan [1] talk about the
difficulties in the English NER task testing on three data sets with the use of
some external knowledge including Unlabeled Text and Wikipedia gazetteers.
Sang and Meulder [2] conduct the NER research on German language. Fur-
thermore, many people have applied NER in special areas, e.g. geological text
processing [3] and biomedical named entity detection [4]. On the other hand,
Chinese named entity recognition (CNER) are more difficult due to the lack of
word boundary and the complex characteristics of Chinese.

There were several CNER shared tasks under the Chinese language process-
ing (CLP) conference supported by SIGHAN (a special interest group for Chi-
nese in ACL) [5] [6] before 2008. However, CNER task was latterly replaced
by Chinese personal name disambiguation [7] and Chinese word sense induction

M.A. K�lopotek et al. (Eds.): IIS 2013, LNCS 7912, pp. 57–68, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

58 A.L.-F. Han, D.F. Wong, and L.S. Chao

[8]. The applied methods on CNER include Maximum Entropy (ME) [9] [10],
Hidden Markov Model (HMM) [11], Support Vector Machine (SVM) [12] and
Conditional Random Field (CRF) algorithms (e.g. [13], extraction for product
attribute). Some people combine the CNER with word segmentation, sentence
chunking, and word detection [14] while others deal with the CNER alone [15]
[16]. All of the employed methods have both advantages and weaknesses. Markov
Model assumes a strong independence assumption between text putting an ob-
stacle to consider the context information, and Maximum Entropy employs a
locally optimal solution which leads to label bias problems. CRF has overcome
these two kinds of disadvantages using global optimal solution; however, it also
brings new challenges e.g. the selection of best features etc.

The conventional research papers about CNER tend to speak more about the
applied methods or algorithms while the analysis of CNER issues is usually less
mentioned [17] [18]. In this paper we pay attention to this point. In addition,
we analyze the characteristics of Chinese with three kinds of named entities
including the different attributes of prefix, suffix and the number of combined
characters in n-gram factor. Then we discuss the effects of different feature sets
employed by other researchers and propose optimized features with promising
performances. In the discussion section, to facilitate the further researches, we
provide the formal definitions of the problems that underlie the CNER frame-
work.

2 Chinese Characteristics

Three kinds of Chinese named entities are introduced in this section including
personal name (PER), location name (LOC) and organization name (ORG).
First, most Chinese personal names have clear format using a family name in
front of the given name. In this paper, we use “Surname Given-name” as Chi-
nese name expression and “x + y” as the corresponding character number of
surname x and given-name y. According to the survey and statistical results of
Chinese academy of science [19] [20], there have been developed to 11,939 Chi-
nese surnames, 5313 of which consist of one character, 4311 of two characters,
1615 of three characters and 571 of four characters, etc. On the other hand, the
Chinese given name usually contains one or two characters as shown in Table 1.

Secondly, for the Chinese location names, there are some commonly used
suffixes including “路” (road), “區” (district), “縣” (county), “市” (city), “省”
(province), “洲” (continent), etc. In their generation, most of them also have sev-
eral standard formats, for instance, using the building name as representation
(e.g. “故宮博物館” (the Imperial Palace Museum), “天安門” (T ianAnMen),
etc.), which is also shown in Table 1 (“Pl.”, “Org”, “Bud.”, “Suf.” and “Abbr.”
mean characterized by Place, organization, building, suffix and abbreviation re-
spectively).

Lastly, some of the organization names also possess suffixes, but the organiza-
tion suffixes have various expressions and a much larger amount than the one of
locations. What is more, many of the organization names do not have apparent

Chinese Named Entity Recognition with CRFs 59

suffixes and contain various characters due to the fact that they are sometimes
generated by only one or several persons i.e. the owner of the organization, e.g.
“笑開花” (XiaoKaiHua, a small art association). In Table 2, we list some kinds of
organizations and the corresponding examples with the areas of administrative
unit, company, arts, public service, association, education and cultural. Even in
the same class, the organization names have abundant expressions of suffixes.
This phenomenon is potentially implying that the organization name may be
the most difficult category to recognize among the three kinds of named entities.

Table 1. The PER and LOC categories with examples

PER LOC

Class Samples Class Samples

1+1 王明 (Wang Ming) Bud. 天安門 (TianAnMen)

1+2 李自成 (Li ZiCheng) Pl.Bud. 北京圖書館 (BeiJing Library)

2+2
歐陽蘭蘭
(OuYang LanLan)

Pl.Org
北京市公安局
(BeiJing Police Station)

4+2
愛新覺羅恒山
(AiXinJueLuo HengShan)

Mix.Suf
南沙群島
(NanSha Islands)

4+4
愛新覺羅努爾哈赤
(AiXinJueLuo NuErHaChi)

Abbr.
港 (Hong Kong),
澳 (Macau)

Table 2. The ORG categories with examples

ORG

Class Samples

Administrative 香港社會福利署 (The Hong Kong Social Welfare Department)

Company 獨山子化石總廠 (DuShanZi Fossil Main Workshop)

Arts 越秀藝苑 (YueXiu Art)

Public service 中國青少年科技俱樂部 (Science and Technology Club of Chinese
Youth)

Association 天津市婦女聯合會 (TianJin Women’s Federation)

Education 香港教育學院 (The Hong Kong Institute of Education)

Cultural 中國國家文物局 (China’s State Bureau of Cultural Relics)

3 Optimized Features

In the NER task of English text, employing a regularized averaged perceptron
algorithm, Ratinov and Roth [1] use the tokens in the window of size two around
each token instance as features and get the highest test score 0.8653 on CoNLL03
and lowest score 0.7121 on the Web pages data in the closed task. On the other
hand, in the CLP and CNER literature, when dealing with the strings, there
have been various window sizes of features employed by researchers, some of
which are less than two surrounding characters and others may consider more
than five as surrounding radius.

60 A.L.-F. Han, D.F. Wong, and L.S. Chao

With the features of two surrounding characters, Huang et al. [21] utilize
the SVM and ME model to deal with the boundaries of organization names
and use CRF method for the personal and location names. The test F-score on
MSRA (Microsoft Research of Asia) corpus is 0.855 for closed test and 0.8619
in open test with the external lexicon and name list. Feng et al. [18] propose
a CNER system NER@ISCAS under the CRF framework with the use of an
external part-of-speech (POS) tagging tool and some collected character lists
as open knowledge. The main features include text feature (two window sizes),
POS (four window size), derived vocabulary lists (even considering the 7th fol-
lowing token), word boundary (four window size) etc. with some heuristic post
process steps applied to complement the limitations of local features. Sun et al.
[22] utilize Maximum entropy model (ME) for open track NER task, with the
external knowledge including Chinese name dictionary, foreign name dictionary,
Chinese place dictionary and organization dictionary. The applied features are
both unigram and bigram for word tokens, named entity (NE) tags, POS tags
etc. Other related works include [17] and [23] etc.

Table 3. Designed feature sets

Features Meaning

Un, n ∈ (−4, 2) Unigram, from previous 4th to following 2nd character

Bn,n+1, n ∈ (−2, 1) Bigram, four pairs of characters from the previous 2th to the
following 2th

According to the analysis about the characteristics of Chinese named enti-
ties in previous sections, we held some different opinions. To begin with, the
surrounding two characters of window size are not enough for CNER. There
are several reasons: 1). The longest chunk it considered is five characters for
the surrounding two characters of window size. 2). Many Chinese named enti-
ties have long spans, especially the location name (e.g. “那然色布斯臺音布拉
格” Na Ran Se Bu Si Tai Yin Bu La Ge, a border port containing ten charac-
ters) and organization names (e.g. “香港特別行政區民政總署” The Hong Kong
Special Administrative Region Civil Affairs Administration, eleven characters).
Secondly, we think that the previous characters of the cased token play more
important roles. Most location names and organization names have commonly
used suffixes and the lengths of the suffixes have few number of characters. Last,
the window size for the following characters should be smaller than the previ-
ous characters and it will generate noises if the considered length is longer than
reasonable. According to the analysis above, the optimized feature set for Chi-
nese NER is listed in Table 3 (for each token case, we consider the information
from the previous fourth to following second in unigram, and surrounding two
characters for bigram window size).

4 CRF Model

The CRFs are first introduced by Lafferty et al. [24] in the NLPP literature
to conduct the segmenting and labeling of sequence data. After that, many

Chinese Named Entity Recognition with CRFs 61

researchers have tried to employ CRFs in their own areas. To define CRFs,
assume X is the variable representing sequence we want to label, and Y is
the corresponding label sequence to be attached to X, the conditional model in
mathematics is P (Y |X) . Then the definition of CRFs: assume a graph G =
(V,E) comprising a set V of vertices or nodes together with a set E of edges
or lines and Y = {Yv|v ∈ V } so Y is indexed by the vertices of G; thus (X, Y)
is a Conditional Random Field model [24]. The distribution over X and Y is
presented as:

Pθ(y|x) ∝ exp

⎛
⎝ ∑

e∈E,k

λkfk(e, y|e, x) +
∑

v∈V,k

μkgk(v, y|v, x)
⎞
⎠ (1)

The variable y and x are described as above Y and X respectively, fk and gk are
the feature functions, and λk and μk are the parameters that are trained from
the specific dataset. The bar “|” is the mathematical symbol to express that
the right part is the precondition of the left. The training methods which can be
used for the CRFs include Iterative Scaling Algorithms [24], Non-Preconditioned
Conjugate-gradient [25], Voted Perceptron Training [26], etc. and we use a quasi-
newton algorithm in the experiments [27] and some implementation tools1.

5 Experiments

5.1 Data

There were some SIGHAN bakeoffs about CLP including CNER task before
2008 [6], and latterly the tasks of Chinese word segmentation [28] and Chinese
parsing [29] remained while the CNER was replaced by Chinese personal name
disambiguation [7], which focused on a single category of named entity. To deal
with a extensive kinds of named entities, we select the Bakeoff-4 corpus in our
experiments. There are seven corpora in total offered in the Bakeoff-4, however
only two of them were applied in the CNER task including CityU (Traditional
character corpora) and MSRA (Simplified character). Traditionally, there are
two kinds of tracks including open track (without the limit of using external
knowledge) and closed track (where the use of external data sets is not allowed
including vocabulary, corpus etc.). In this paper, we undertake the closed track
to perform our experiments. The detailed information about the volume of the
data is shown in Table 4 and Table 5. NE means the total of three kinds of
named entities, OOV means the entities of the test data that do not exist in the
training data, and Roov means the OOV rate. The samples of training corpus
are shown as Table 6. In the test data, there is only one column of Chinese
characters.

1 http://crfpp.googlecode.com/svn/trunk/doc/index.html

http://crfpp.googlecode.com/svn/trunk/doc/index.html

62 A.L.-F. Han, D.F. Wong, and L.S. Chao

Table 4. Statistics of used CNER data

Source Training Truth

Character NE PER LOC ORG Character NE PER LOC ORG

CityU 1772202 66255 16552 36213 13490 382448 13014 4940 4847 3227

MSRA 1089050 37811 9028 18522 10261 219197 7707 1864 3658 2185

Table 5. OOV statistics of CNER truth data

Source NE PER LOC ORG

OOV Roov OOV Roov OOV Roov OOV Roov

CityU 6354 0.4882 3878 0.7850 900 0.1857 1576 0.4884

MSRA 1651 0.2142 564 0.3026 315 0.0861 772 0.3533

Table 6. Samples of training data

Character List Label

本 (Local) N

港 (Hong Kong) B-LOC

梅 (Mei) B-PER

豔 (Yan) I-PER

芳 (Fang) I-PER

5.2 Results

The experiment results of entity recognition for PER, LOC and ORG respec-
tively are shown in Table 7, which are evaluated in Table 8. The evaluation is
performed on NE level (not token-per-token). For example, if a token is supposed
to be B-LOC but it is labeled I-LOC instead, then this will not be considered
as a correct labeling. In Table 8, there are three criteria commonly used in the
literature of natural language processing for the evaluation (precision, recall and
F-score). The performances of precision scores are especially inspiring (around
90% of the accuracy) for all the three kinds of named entities.

There are several main conclusions derived from the experiment results. First,
the Roov rate (in Table 5) of LOC is the lowest (0.1857 and 0.0861 respectively
for CityU and MSRA) and the recognition of LOC also performed very well
(0.8599 and 0.8988 respectively in F-score). Second, in the MSRA corpus, the
Roov of ORG (0.3533) is larger than PER (0.3026) and the F-scores of ORG
also are lower; however, in CityU corpus, the Roov of ORG (0.4884) is much
lower than PER (0.7850) while the recognition result of ORG also perform worse
(0.6646 and 0.8036 respectively of F-scores for them). These experiments results
corroborate our analysis of the Chinese characteristics in different named en-
tities in previous sections (most of the PER and LOC have simpler structures
and expressions that make the recognition easier than the ORG). Last, the to-
tal OOV entity number in CityU (0.4882) is larger than MSRA (0.2142), and the

Chinese Named Entity Recognition with CRFs 63

Table 7. Summary of test results

Type CityU MSRA

Truth Output Correct Truth Output Correct

PER 4940 3716 3478 1864 1666 1599

LOC 4847 4580 4053 3658 3418 3180

ORG 3227 1937 1716 2185 1954 1733

Table 8. Evaluation scores

Type CityU MSRA

PER LOC ORG ALL PER LOC ORG ALL

Recall 0.7040 0.8362 0.5318 0.7105 0.8578 0.8693 0.7931 0.8449

Precision 0.9360 0.8849 0.8859 0.9036 0.9598 0.9304 0.8869 0.9253

F-score 0.8036 0.8599 0.6646 0.7955 0.9059 0.8988 0.8374 0.8833

corresponding final F-score of CityU (0.7955) is also lower than MSRA (0.8833),
which shows that the recognition of the OOV entities is the principal challenge
for the automatic systems.

Table 9. Comparisons of test scores with baselines

Type F-score

CityU MSRA

PER LOC ORG ALL PER LOC ORG ALL

Ours 0.8036 0.8599 0.6646 0.7955 0.9059 0.8988 0.8374 0.8833

Baseline 0.3272 0.8042 0.5598 0.5955 0.7591 0.5731 0.5575 0.6105

5.3 Comparisons with Related Works

The experiments have yielded much higher F-scores than the baselines in SIGHAN
Bakeoff-4 [6] as compared in Table 9 (we list the F-scores on PER, LOC, ORG
and total named entities). The baselines are produced by a left-to-right maxi-
mum match algorithm applied on the testing data with the named entity lists
generated from the training data. The baseline scores are unstable on different
entities resulting synthetically in the total F-scores of 0.5955 and 0.6105 respec-
tively for CityU and MSRA corpus. On the other hand, our results show that
the three kinds of entity recognitions get high scores generally without big twists
and turns. This proves that the approaches employed in this research are rea-
sonable and augmented. The improvements on ORG and PER are especially
larger on both two corpora, leading to the total increases of F-scores 33.6% and
44.7% respectively. To compare with other related works that use different fea-
tures (various window sizes), algorithms (CRF, ME, SVM, etc.) and external
resources (external vocabularies, POS tools, name lists, etc.), we list some works
briefly in Table 10. Furthermore, to show the performances of different sub fea-
tures in our experiments, we also list the corresponding results respectively in

64 A.L.-F. Han, D.F. Wong, and L.S. Chao

Table 11. In Table 10, we use number n to represent the previous nth character
when n is less than zero, the following nth character when n is larger than zero,
and the current token case when n equal to zero. For instance, B(-10,01,12)
means the three bigram features (former one and current, current and next one,
next two characters). Due to the fact that most researchers undertake the test
only on MSRA corpus, we list the comparison test on MSRA.

Table 10. Comparisons with related works

Features and methods Results(F-score)

[30]

Features: Surname{0}, personal name {T(012),B(01)}, per-
son title {B(-2-1)}, location name {B(01),T(012),F(0123)},
location suffix{0} and organization suffix {0}
External: No
Algorithm: CRF and Maximum Probability

Closed:85.26%

[18]

Features: Character text {U(-2,...,2), B(-10,01,12)},
POS{U(-4,...,4)}, Vocabulary-list {U(-2,...,7), B(01,12)},
word-boundary {U(-1,0,1)}, named-entity {U(-4,...,4),
B(-2-1,...,12)}
External: POS tagging and collected character-lists
Algorithm: CRF

Open:88.36%

[17]
Features: {Unigram(-2,...,2)}
External: entity dictionary, a few linguistic rules
Algorithm: ME, CRF

Open:
Sys 1:85.84%
Open:
Sys 2:89.12%

Ours
Features: {Unigram(-4,...,2), B(-2-1,...,12)}
External: No
Algorithm: CRF

Closed: 88.33%

From Table 10, we first see that when the window size of the features is smaller,
the performance shows worse. Second, too large window size cannot ensure good
results while it will bring in noises and cost more running time simultaneously.
Third, the combination of segmentation and POS will offer more information
about the test set; however, these external materials do not necessarily ensure
better performances, which may be due to the fact that the segmentation and
POS accuracy also influence the system quality. Finally, the experiment of this
paper has yielded promising results by employing optimized feature set and a
concise model. Table 11 shows that, generally speaking, more features lead to
more training time, and when the feature set is small this conclusion also fit
the case of iteration number; however, this conclusion does not stand when the
feature set gets larger e.g. testing on the MSRA corpus, the feature set (FS) FS4
needs 314 iteration number which is less than 318 by FS2 although the former
feature set is larger. This may be due to the fact that the feature set FS2 needs
more iterations to converge to a fixed point. Employing the CRF algorithm, the
optimized feature set is chosen as FS4, and if we continue to expand the features
the recognition accuracy will decrease as in Table 11.

Chinese Named Entity Recognition with CRFs 65

Table 11. Performances of sub features in experiments

NO. Sub features Training info(MSRA,CityU) Result(F-score)

FS1 {U(-2,...,2)} Iterations=(77,82)
Time=(145.66s,248.70s)

MSRA:0.5553
CityU:0.5392

FS2 {U(-2,...,2),B(-10),(01)} Iterations=(318,290)
Time=(746.25s,1071.2s)

MSRA:0.8721
CityU:0.7851

FS4 {U(-4,...,2),B(-2-1),...,(12)} Iterations=(314,261)
Time=(862.71s,1084.01s)

MSRA:0.8833
CityU:0.7955

FS5 {U(-4,...,3),B(-2-1),...,(12)} Iterations=(278,NA)
Time=(760.93s,NA)

MSRA:0.8803
CityU:NA

6 Discussion

Due to the changeful and complicated characteristics of Chinese, there are some
special combinations of characters, and sometimes we can label them with dif-
ferent performances with all results reasonable in practice. These make some
confusion for the researchers. So how do we deal with these problems?

First, we define the Function-overload (also called as metonymy in some place)
problem: one word bears two or more meanings in the same text. For instance,
the word “大山” (DaShan) means an organization name in the chunk “大山國
際銀行” (DaShan International Bank) and the whole chunk means a company,
while “ 大山” (DaShan) also represents a person name in the sequence “大山
悄悄地走了” (DaShan quietly went away) with the whole sequence meaning
a person’s action. So it is difficult for the computer to differ their meaning
and assign corresponding different labels (ORG or PER), and they must be
recognized through the analysis of context and semantics.

Furthermore, we define the Multi-segmentation problem in CNER: one se-
quence can be segmented into a whole or more fragments according to different
meanings, and the labeling will correspondingly end in different results. For ex-
ample, the sequence “中興實業” (ZhongXing Corporation) can be labeled as a
whole chunk as ”B-ORG I-ORG I-ORG I-ORG” which means it is an organi-
zation name, however, it also can be divided as “中興 / 實業” (ZhongXing /
Corporation) and labeled as ”B-ORG I-ORG / N N” meaning that the word
“中興” (ZhongXing) can represent the organization entity and “實業” (Corpo-
ration) specifies common Chinese word whose usage is widespread in Chinese
documents. For another example of this kind of problem, the sequence “杭州西
湖” (Hang Zhou Xi Hu) can be labeled as ”B-LOC I-LOC I-LOC I-LOC” as a
place name, but it can also be labeled as ”B-LOC I-LOC B-LOC I-LOC” due
to the fact that “西湖” (XiHu) is indeed a place that belongs to the city “杭州”
(HangZhou). Which label sequences shall we select for them? Both of them are
reasonable. This is a difficult problem for manual work, let alone for computer.
Above discussed problems are only some of the existing ones in CNER. If we
can deal with them well, the performances will be better in the future.

66 A.L.-F. Han, D.F. Wong, and L.S. Chao

7 Conclusion and Future Works

This paper undertakes the researches of CNER which is a difficult issue in NLP
literature. The characteristics of Chinese named entities are introduced respec-
tively on personal names, location names and organization names. Employing
the CRF algorithm, optimized features have shown promising performances com-
pared with related works that use different feature sets and algorithms. Further-
more, to facilitate further researches, this paper discusses the problems existing
in the CNER and puts forward some formal definitions combined with instruc-
tive solutions. The performance results can be further improved in the open
test through employing other resources and tools such as Part-of-speech infor-
mation, externally generated word-frequency counts, common Chinese surnames
and internet dictionaries.

Acknowledgments. This work is partially supported by the Research Commit-
tee of University of Macau, and Science and Technology Development Fund of
Macau under the grants UL019B/09-Y3/EEE/LYP01/FST, and 057/2009/A2.

References

1. Ratinov, L., Roth, D.: Design Challenges and Misconceptions in Named Entity
Recognition. In: Proceedings of the Thirteenth Conference on Computational Nat-
ural Language Learning (CoNLL 2009), pp. 147–155. Association for Computa-
tional Linguistics Press, Stroudsburg (2009)

2. Sang, E.F.T.K., Meulder, F.D.: Introduciton to the CoNLL-2003 Shared Task:
Language-Independent Named Entity Recognition. In: HLT-NAACL, pp. 142–147.
ACL Press, USA (2003)

3. Sobhana, N., Mitra, P., Ghosh, S.: Conditional Random Field Based Named Entity
Recognition in Geological text. J. IJCA 1(3), 143–147 (2010)

4. Settles, B.: Biomedical named entity recognition using conditional random fields
and rich feature sets. In: Collier, N., Ruch, P., Nazarenko, A. (eds.) International
Joint Workshop on Natural Language Processing in Biomedicine and its Applica-
tions, pp. 104–107. ACL Press, Stroudsburg (2004)

5. Levow, G.A.: The third international CLP bakeoff: Word segmentation and named
entity recognition. In: Proceedings of the Fifth SIGHAN Workshop on CLP,
pp. 122–131. ACL Press, Sydney (2006)

6. Jin, G., Chen, X.: The fourth international CLP bakeoff: Chinese word segmenta-
tion, named entity recognition and Chinese pos tagging. In: Sixth SIGHAN Work-
shop on CLP, pp. 83–95. ACL Press, Hyderabad (2008)

7. Chen, Y., Jin, P., Li, W., Huang, C.-R.: The Chinese Persons Name Disambiguation
Evaluation: Exploration of Personal Name Disambiguation in Chinese News. In:
CIPS-SIGHAN Joint Conference on Chinese Language Processing, pp. 346–352.
ACL Press, BeiJing (2010)

8. Sun, L., Zhang, Z., Dong, Q.: Overview of the Chinese Word Sense Induction Task
at CLP2010. In: CIPS-SIGHAN Joint Conference on CLP (CLP2010), pp. 403–409.
ACL Press, BeiJing (2010)

9. Jaynes, E.: The relation of Bayesian and maximum entropy methods. J. Maximum-
entropy and Bayesian Methods in Science and Engineering 1, 25–29 (1988)

Chinese Named Entity Recognition with CRFs 67

10. Wong, F., Chao, S., Hao, C.C., Leong, K.S.: A Maximum Entropy (ME) Based
Translation Model for Chinese Characters Conversion. J. Advances in Computa-
tional Linguistics, Research in Computer Science. 41, 267–276 (2009)

11. Ekbal, A., Bandyopadhyay, S.: A hidden Markov model based named entity recog-
nition system: Bengali and Hindi as case studies. In: Ghosh, A., De, R.K., Pal, S.K.
(eds.) PReMI 2007. LNCS, vol. 4815, pp. 545–552. Springer, Heidelberg (2007)

12. Mansouri, A., Affendey, L., Mamat, A.: Named entity recognition using a new
fuzzy support vector machine. J. IJCSNS 8(2), 320 (2008)

13. Putthividhya, D.P., Hu, J.: Bootstrapped named entity recognition for product
attribute extraction. In: EMNLP 2011, pp. 1557–1567. ACL Press, Stroudsburg
(2011)

14. Peng, F., Feng, F., McCallum, A.: Chinese segmentation and new word detection
using conditional random fields. In: Proceedings of the 20th international confer-
ence on Computational Linguistics (COLING 2004), Article 562. Computational
Linguistics Press, Stroudsburg (2004)

15. Chen, W., Zhang, Y., Isahara, H.: Chinese named entity recognition with condi-
tional random fields. In: Fifth SIGHAN Workshop on Chinese Language Process-
ing, pp. 118–121. ACL Press, Sydney (2006)

16. Zhu, F., Liu, Z., Yang, J., Zhu, P.: Chinese event place phrase recognition of emer-
gency event using Maximum Entropy. In: Cloud Computing and Intelligence Sys-
tems (CCIS), pp. 614–618. IEEE, ShangHai (2011)

17. Qin, Y., Yuan, C., Sun, J., Wang, X.: BUPT Systems in the SIGHAN Bakeoff 2007.
In: Sixth SIGHAN Workshop on CLP, pp. 94–97. ACL Press, Hyderabad (2008)

18. Feng, Y., Huang, R., Sun, L.: Two Step Chinese Named Entity Recognition Based
on Conditional Random Fields Models. In: Sixth SIGHAN Workshop on CLP,
pp. 120–123. ACL Press, Hyderabad (2008)

19. Yuan, Y., Zhong, W.: Contemporary Surnames. Jiangxi people’s publishing house,
China (2006)

20. Yuan, Y., Qiu, J., Zhang, R.: 300 most common surname in Chinese surnames-
population genetic and population distribution. East China Normal University
Publishing House, China (2007)

21. Huang, D., Sun, X., Jiao, S., Li, L., Ding, Z., Wan, R.: HMM and CRF based
hybrid model for chinese lexical analysis. In: Sixth SIGHAN Workshop on CLP,
pp. 133–137. ACL Press, Hyderabad (2008)

22. Sun, G.-L., Sun, C.-J., Sun, K., Wang, X.-L.: A Study of Chinese Lexical Analysis
Based on DiscriminativeModels. In: Sixth SIGHANWorkshop on CLP, pp. 147–150.
ACL Press, Hyderabad (2008)

23. Yang, F., Zhao, J., Zou, B.: CRFs-Based Named Entity Recognition Incorpo-
rated with Heuristic Entity List Searching. In: Sixth SIGHAN Workshop on CLP,
pp. 171–174. ACL Press, Hyderabad (2008)

24. Lafferty, J., McCallum, A., Pereira, F.C.N.: Conditional random fields: Proba-
bilistic models for segmenting and labeling sequence data. In: Proceeding of 18th
International Conference on Machine Learning, pp. 282–289. DBLP, Massachusetts
(2001)

25. Shewchuk, J.R.: An introduction to the conjugate gradient method without the
agonizing pain. Technical Report CMUCS-TR-94-125, Carnegie Mellon University
(1994)

26. Collins, M., Duffy, N.: New ranking algorithms for parsing and tagging: kernels over
discrete structures, and the voted perceptron. In: Proceedings of the 40th Annual
Meeting on Association for Computational Linguistics (ACL 2002), pp. 263–270.
Association for Computational Linguistics Press, Stroudsburg (2002)

68 A.L.-F. Han, D.F. Wong, and L.S. Chao

27. The Numerical Algorithms Group. E04 - Minimizing or Maximizing a Function,
NAG Library Manual, Mark 23 (retrieved 2012)

28. Zhao, H., Liu, Q.: The CIPS-SIGHANCLP2010 Chinese Word Segmentation Back-
off. In: CIPS-SIGHAN Joint Conference on CLP, pp. 199–209. ACL Press, BeiJing
(2010)

29. Zhou, Q., Zhu, J.: Chinese Syntactic Parsing Evaluation. In: CIPS-SIGHAN Joint
Conference on CLP (CLP 2010), pp. 286–295. ACL Press, BeiJing (2010)

30. Xu, Z., Qian, X., Zhang, Y., Zhou, Y.: CRF-based Hybrid Model for Word Seg-
mentation, NER and even POS Tagging. In: Sixth SIGHAN Workshop on CLP,
pp. 167–170. ACL Press, India (2008)

Detecting Syntactic Errors
in Dependency Treebanks

for Morphosyntactically Rich Languages

Katarzyna Krasnowska and Adam Przepiórkowski

Institute of Computer Science, Polish Academy of Sciences
k.krasnowska@phd.ipipan.waw.pl, adamp@ipipan.waw.pl

Abstract. The paper introduces a new method for detecting and cor-
recting errors in large dependency treebanks with rich morphosyntactic
annotation. The technique uses error correction rules automatically ex-
tracted from the treebank. The procedure of rule extraction is based on
a comparison of similar – but not identical – subgraphs of dependency
structures. The outcome of applying the method to a 3-million-sentence
dependency treebank of Polish is presented and evaluated. The method
achieves satisfactory precision in the task of automatic error correction
and relatively high precision in the task of error detection.

Keywords: dependency treebank, error mining, automatic error detec-
tion, automatic error correction.

1 Introduction

Treebanks are an important type of linguistic resource and are currently main-
tained or developed for numerous languages. They play a crucial role in the task
of training probabilistic parsers and, hence, in many natural language processing
applications. This is why it is necessary to ensure their high quality. One of the
ways of eradicating erroneous structures in a treebank is to develop a method
of automated detection of wrongly annotated structures once the resource is
created.
The aim of this paper is to present one such method for detecting errors

in a dependency treebank. There were previous reports on application of some
methods for pointing out wrongly annotated structures in this type of resource
[2,3]. This paper presents an alternative method, inspired by a technique de-
signed for finding errors in constituency treebanks [5] which was successfully
adapted for use with the Polish constituency treebank [6].
The treebank used for the evaluation of the proposed method is an auto-

matically created corpus comprising of a little more than 3 million trees.1 The
method used for creating the treebank (described in detail in [10]) involved the
use of a large English-Polish word-aligned parallel corpus. The English part of

1 The exact number is 3 162 800.

M.A. Kłopotek et al. (Eds.): IIS 2013, LNCS 7912, pp. 69–79, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

70 K. Krasnowska and A. Przepiórkowski

the corpus was parsed automatically using a comprehensive LFG parser for En-
glish.2 Dependency structures for the Polish part were then induced on the basis
of the English parse and the word alignment between parallel sentences.
The paper is organised as follows. Section 2 introduces the proposed method of

error detection, section 3 describes relevant experiments, and section 4 contains
evaluation of the obtained results.

2 Method

The proposed method relies on the assumption that constructions which appear
in the treebank relatively rarely are likely to be erroneous. Moreover, similar
constructions encountered more frequently can be expected to be correct coun-
terparts of the erroneous constructions (the notion of similarity will be explained
later on). Although this may not hold in all cases, we are hoping to be able to de-
tect dependency annotation errors with sufficient precision. The idea behind the
technique proposed in this paper is thus to define sub-structures of dependency
trees that the method will compare, as well as what it means for them to be
similar. After extracting relevant structures from the treebank and determining
their frequencies, pairings of similar structures are found, possibly representing
erroneous constructions and their correct counterparts.
The method is based on connected subgraphs of the dependency trees. As

a first step, all such subgraphs of a given size3 are extracted from each tree.
For convenience, we assume that the dependency relations are marked in the
child node, not attached to the edge between parent and child, and that the
(artificial) root note of the tree is not taken into account for the purpose of sub-
graph extraction. The subgraphs retain information about parent-child relations
and are in fact themselves dependency trees, it is therefore relevant to refer to
a subgraph’s root.
Our approach differs from the one proposed by Kato and Matsubara [5], who

extracted subtrees from constituency structures and then truncated them by
cutting off all children of specific nodes. In other words, each node in the tree
substructures they considered had either all its original children removed, or all
its original children retained. In the method proposed here, it is possible for
a subgraph’s node to retain only a subset of its children from the original depen-
dency tree. In this way the technique presented here achieves greater flexibility,
especially given the fact that arguments of verbs can be (and frequently are)
omitted or freely ordered in Polish.
Experiments on error detection in small, syntactically annotated corpora of

highly inflectional languages, reported in [6], suggest that abstraction from ex-
act word forms (i.e., taking into consideration only their part of speech and

2 See [1] and http://www2.parc.com/isl/groups/nltt/xle/doc/xle_toc.html
3 In this work, we only considered subgraphs of sizes 4 and 5 (i.e., based on 4 or 5
words). Smaller subtrees seemed to carry too little information to prove substantially
useful. What is more, allowing more possible subtree sizes would increase the already
long – because of the treebank’s size – time required to run the procedure.

http://www2.parc.com/isl/groups/nltt/xle/doc/xle_toc.html

Detecting Syntactic Errors in Dependency Treebanks 71

morphological tags) can help in obtaining sufficient amount of data for drawing
statistical generalisations. In the case of the study described in this paper, this
coarse granularity of information does not seem essential, given the very high
number of sentences in the treebank. Moreover, some preliminary experiments
conducted with a small (about 8000 trees) dependency treebank described in
[9] showed that ignoring word forms may lead to unacceptable loss of lexical
information.
For instance, when it abstracted away from lexical information, the method

failed in case of sentences containing the common verb mieć (to have), which
has an accusative nominal argument that is not passivisable and is therefore
labelled as a complement (comp), not an object (obj), in the dependency schema
adopted here. On the other hand, for the vast majority of Polish verbs, the
accusative argument is actually a passivisable object. As a result, subgraphs
with an obj dependency relation between a verb and a noun in accusative case
were much more frequent in the treebank than similar subgraphs with a comp
relation, and the method wrongly reported many trees with the verb mieć and
its accusative complement as errors.
To strike a reasonable balance between the need for generalisation and the

necessity to retain some lexical information, graph nodes are represented by
base forms of words, together with their CPOS tags4 and morphological case.
This way, the current method is capable of drawing a parallel between, e.g., two
sentences containg the same verb with the same arguments, but differing in the
verb’s person and gender.
To illustrate the above considerations, Figure 1 shows an example dependency

tree and all its connected subgraphs of size 4. CPOS tags combined with mor-
phological cases will be referred to as CPOS-case tags. For instance, a noun in
dative will be assigned the noun-DAT CPOS-case tag.
Once the subgraphs are extracted, all subgraph pairs are found such that:

– their roots are identical in terms of dependency relation, word base form and
CPOS-case tag;

– the sequences base forms and CPOS-case tags of all nodes (ordered the same
way as corresponding words in the sentence) are identical;

– their internal structures (i.e., subgraph shapes and/or dependency relations)
diverge.

An example of a rule extracted in this way from the treebank is presented in
Figure 2.
For each rule, all trees containing the source of the rule (the first substructure)

are marked as possibly incorrect. Trees created by transforming the subgraph
matching the source into one matching the target are suggested as correct.

4 CPOS tags are coarse-grained POS tags, where fine-grained grammatical classes
(e.g., various types of adjectives) are grouped into more traditional parts of speech.

72 K. Krasnowska and A. Przepiórkowski

ROOT Marynarz poklepał go po ramieniu .
subst verb subst prep subst interp
Sailor patted him on shoulder

pred

subj obj

comp

punct

comp

marynarz poklepać on po
subst:NOM verb subst:ACC prep:LOC
subj pred obj comp

marynarz poklepać on .
subst:NOM verb subst:ACC interp
subj pred obj punct

marynarz poklepać po .
subst:NOM verb prep:LOC interp
subj pred comp punct

poklepać on po .
verb subst:ACC prep:LOC interp
subj pred comp punct

marynarz poklepać po ramię
subst:NOM verb prep:LOC subst:LOC
subj pred comp comp

poklepać on po ramię
verb subst:DAT prep:LOC subst:LOC
pred obj comp comp

poklepać po ramię .
verb prep:LOC subst:LOC interp
pred comp comp punct

Fig. 1. An example dependency tree for the sentenceMarynarz poklepał go po ramieniu.
‘The sailor patted him on the shoulder.’ (taken from the 3-million-sentence dependency
treebank) with all its subgraphs of size 4. Orthographic word forms have been replaced
in the subgraphs by base forms combined with CPOS-case tags.

Detecting Syntactic Errors in Dependency Treebanks 73

(1)

przyczynić się do .
verb qub prep:GEN punct
pred refl adjunct punct

(2)

przyczynić się do .
verb qub prep:GEN punct
pred refl comp punct

Fig. 2. An example rule: (1) is the source of the rule, (2) is the target. The rule
changes the dependency relation between the (inherently reflexive) verb przyczynić się
‘to contribute’ and a preposisional phrase headed by the preposition do ‘to’ from the
incorrect adjunct to the correct comp.

3 Experiments

2 variants of the method described above were run on the 3-million-sentence
dependency treebank:

variant I: exactly as presented in the previous section;
variant II: for some parts of speech, their base forms were ignored, i.e., only
CPOS-case tags were taken into account; additionally the dependency rela-
tions in the subtrees’ roots were ignored.

The modifications to the method were introduced in variant II so as to increase
the generality of extracted rules and, as a result, be able to identify more trees
as possibly erroneous (see Section 4).
The first modification is motivated by the intuition that for some parts of

speech the base form is less important from the point of view of the method.
For instance, it is relevant to make a distintion between different verbs because
of their different argument structure. On the other hand, it seems that as far as
nouns, pronouns, adjectives, numerals and adverbs are concerned, their base form
can be omitted without much loss of information, especially, as they typically
do not have idiosyncratic combinatorial (or argument structure) properties.
The second introduced modification consists in ignoring dependency relations

in the roots of subtrees. Those dependency relations tie the subgraph’s root node
to its parent from the complete dependency tree. As this parent is not present
in the subgraph, this particular dependency relation is much less relevant than
the “internal” ones (i.e., those between the subgraph’s nodes). What is more,
abstracting from the root’s dependency relations enables rule extraction in the
case where, for example, two similar noun phrases appear as the subject of
a sentence and a conjunct in a coordinated structure, respectively.

74 K. Krasnowska and A. Przepiórkowski

Table 1 gives the numbers of trees pointed out as wrongly annotated by each
variant.

Table 1. The number of trees reported as erroneous by the two methods (some trees
were reported more than once)

method variant I II

number of error reports 18 885 852 323

number of distinct trees 10 237 265 460

distinct trees percentage 54.2% 31.1%

4 Evaluation

It is difficult to estimate the recall of the implemented method, as the number
of erroneous parses in the treebank is not known. It is probably for this reason
that some works on error detection do not report recall at all (e.g., [4], [5]). Nev-
ertheless, it is perhaps worthwile to mention two issues concerning recall of error
detection. Previous experiments with automatic error detection in a Polish con-
stituency treebank reported in [6] suggest that high recall might be more difficult
to achieve than high precision. What is more, the procedure of obtaining the 3-
million-sentence dependency treebank used in the experiments involves several
steps (sentence alignment, dependency parsing of English sentences, tree projec-
tion), all of which are likely to contribute for errors. It is therefore unrealistic
to assume that only a small fraction of dependency structures are wrongly an-
notated (for instance, the percentage of erroneous trees in a Polish constituency
treebank, annotated semi-automatically, is estimated to be around 18%, see [8]).
What can be directly estimated is the precision of the method. After applying

the method to the treebank, we carefully examined two samples of 100 error re-
ports for each method variant (i.e., four samples were taken into account). Not
all error reports could have been included in the samples since preliminary at-
tempts at examining them using theMaltEval tool for visualisation5 showed that
some of the structures in the treebank were discontinuous. Since MaltEval does
not handle discontinuous trees, they were excluded from further examination.
The error reports to include in the samples were chosen as follows. First, an

ordered list of rules was created (the orderings were different for each sample
type, as explained further on). Second, for each rule, the first tree it indicated
as wrong was taken to form a list consisting of one error report per rule. The
samples were formed by truncating (i.e., taking only its n first elements for
some n) the lists so that they contained 100 distinct trees. Table 2 gives the size
of sample for each method (sample sizes are greater than 100 since some trees
appeared more than once on the list).

5 With the trees after rule application as gold standard, see [7] and
http://w3.msi.vxu.se/~nivre/research/MaltEval.html

http://w3.msi.vxu.se/~nivre/research/MaltEval.html

Detecting Syntactic Errors in Dependency Treebanks 75

Table 2. Sample sizes for both variants of the method and both rule ordering strategies.
For each sample, the number of trees appearing more than once is also given.

sample sample size trees reported more than once

IO 107 7

IR 103 2

IIO 118 14

IIR 101 1

Two types of sample were created, depending on the rule ordering strategy,
as mentioned before. The following ordering strategies were applied:

O — the rules were sorted in the decreasing order of the sum of occurrences of
their source and target in the treebank.

R — the rules were sorted randomly.

The first ordering, O, is a heuristic for promoting rules which were expected to
be more efficient: if there is more material in the treebank to serve as “evidence”
for the rule, it might be that not only the rule is more probable to be sound, but
also that it detects a common error. The second ordering is expected to allow for
better approximation of the method’s overall precision. One can think of more
possible orderings, e.g., the proportion of rule’s source and target occurrences in
the treebank (similarly to the approach adopted in [5]).
As a result, four samples were created. The samples will be referred to as IO

(i.e., method variant I, rule ordering O), IR, IIO, IIR
Each error report from a sample was examined and assigned one of the fol-

lowing categories:

correct for genuine errors with an appropriate correction suggestion,
partial for genuine errors with a wrong correction suggestion,
wrong for correct structures pointed out as erroneous.

In the case of trees which were included in the sample more than once, only one
error report, assigned the best category,6 was taken into account. This is because
for each tree, we are interested in whether the method succeeded in detecting an
annotation error. In Table 3, the numbers of error reports assigned each category
are given.
The precision of each method variant was estimated as the number of reports

which pointed out genuine errors divided by the total number of reports con-
sidered, i.e., 100. Two measures of precision were used. The first one, P0, is the
number of reports classified as correct divided by 100. The second one, P1, was
less strict in that it also admitted partial error reports. In other words, P0 is the
fraction of correctly identified errors with a good correction suggestion, while P1

6 In the sense that correct is better than partial, and partial is better than wrong.

76 K. Krasnowska and A. Przepiórkowski

Table 3. The number of trees for which the error report was assigned each category,
given for each evaluated sample

sample correct partial wrong

IO 53 30 17

IR 42 30 28

IIO 57 19 24

IIR 52 21 27

Table 4. Precision estimates for each sample

sample P0 P1

IO 53% 83%

IR 42% 72%

IIO 57% 76%

IIR 52% 73%

is the fraction of correctly identified errors regardless of whether their correction
suggestion was appropriate. Estimations for P0 and for P1, depending on method
variant and rule sorting strategy, are given in Table 4.
It is clear that the method is much more efficient when it comes to the simple

detection of errors, but the precision of error correction is also satisfactory. This
makes the proposed method a good candidate for use in semi-automatic error
correction, where the correction suggestions are presented to a human annotator
who can accept, modify or reject the correction suggested by the system. Variant
II of the method outperforms variant I in terms of P0. As far as P1 is concerned,
variant II also achieved higher results with exception of the case whereO strategy
was adopted. Higher precision estimates obtained using the O rule ordering than
when the R ordering was applied show that it can be worthwile to somehow
arrange the error reports (perhaps using a more sophisticated strategy) in the
case where for some reason not all of them can be examined (e.g., due to the
large treebank size).
Given the estimation for precision, it is possible to calculate the estimated

number of annotation errors that the method managed to find – it can be ap-
proximated by the estimated precision multiplied by the total number of distinct
trees pointed out as possibly erroneous. As in the case of precision, two estima-
tions can be given depending on whether P0 or P1 is taken into account. As
stated before, we are not able to compare them to the actual number of er-
roneous structures in the treebank, but suspect that many errors are still left
undetected given the estimates ranging from 2.1% to 6.4%. Table 5 presents the
estimated numbers of correctly identified errors for both method variants.

Detecting Syntactic Errors in Dependency Treebanks 77

Table 5. The approximate number of all errors found by the method based on precision
estimations P0 and P1. The percentages below numbers are the proportions of the
approximate number of found errors to the whole treebank size.

sample
approx. number of errors

using P0 using P1

IO
82975 129943

2.6% 4.1%

IR
65754 112721

2.1% 3.6%

IIO
151312 201749

4.8% 6.4%

IIR
138039 193785

4.4% 6.1%

(1)
powiadamiają Komisję o tym zamiarze
inform Commission about this intention

adjunct

adjunct comp

adjunct

(2) powiadamiają Komisję o tym zamiarze

obj

comp comp

adjunct

Fig. 3. An example of error detected by the method: (1) wrong dependency structure
from the treebank (2) proposed correction

Figures 3 and 4 present two examples of detected errors together with the
correct version of the tree suggested by the method as a replacement. For clar-
ity, only the fragment of the tree affected by the rule is shown. In the case of
the sentence in Figure 3, the phrases Commission and about this intention were
wrongly annotated as two adjuncts, whereas the correct dependency relations
between them and their head inform are obj (object) and comp (complement),
respectively, as in the structure proposed by the method. In the second case,
presented in Figure 4, the phrase applying sanctions was assigned a wrong de-
pendency relation and the phrase from institutions had a wrong head (applying
instead of request) and a wrong dependency relation. Both errors are corrected
in the alternative structure proposed by the method.

78 K. Krasnowska and A. Przepiórkowski

(1)
zażądać od organów nałożenia sankcji
request from institutions applying sanctions

adjunct

comp

adjunct

obj

(2) zażądać od organów nałożenia sankcji

comp

compcomp obj

Fig. 4. Another example of error detected by the method: (1) wrong dependency struc-
ture from the treebank (2) proposed correction

5 Conclusions

A method for detecting and correcting annotation errors in a dependency tree-
bank for a highly inflectional language was proposed, implemented and eval-
uated. The evaluation showed that the method achieves reasonable estimated
precision for error correction (52%) and good estimated precision when the task
is limited to error detection (73%).

Acknowledgements. The work described in this paper is partially supported
by the DG INFSO of the European Commission through the ICT Policy Support
Programme, Grant agreement no.: 271022, as well as by the POIG.01.01.02-14-
013/09 project co-financed by the European Union under the European Regional
Development Fund.

References

1. Butt, M., Dyvik, H., King, T.H., Masuichi, H., Rohrer, C.: The parallel grammar
project. In: Proceedings of the COLING 2002 Workshop on Grammar Engineering
and Evaluation, Taipei, pp. 1–7 (2002)

2. Dickinson, M.: Correcting dependency annotation errors. In: Proceedings of the
12th Conference of the European Chapter of the Association for Computational
Linguistics (EACL 2009), Athens, Greece (2009)

3. Dickinson, M.: Detecting errors in automatically-parsed dependency relations.
In: The 48th Annual Meeting of the Association for Computational Linguistics
(ACL 2010), Uppsala, Sweden (2010)

4. Dickinson, M., Meurers, D.W.: Detecting inconsistencies in treebanks. In: Nivre,
J., Hinrichs, E. (eds.) Proceedings of the Second Workshop on Treebanks and
Linguistic Theories (TLT 2003), Växjö, Sweden, pp. 45–56 (2003)

Detecting Syntactic Errors in Dependency Treebanks 79

5. Kato, Y., Matsubara, S.: Correcting errors in a treebank based on synchronous
tree substitution grammar. In: Proceedings of the ACL 2010 Conference Short
Papers, ACLShort 2010, pp. 74–79. Association for Computational Linguistics,
Stroudsburg (2010)

6. Krasnowska, K., Kieraś, W., Woliński, M., Przepiórkowski, A.: Using tree transduc-
ers for detecting errors in a treebank of Polish. In: Sojka, P., Horák, A., Kopeček, I.,
Pala, K. (eds.) TSD 2012. LNCS, vol. 7499, pp. 119–126. Springer, Heidelberg
(2012)

7. Nilsson, J., Nivre, J.: MaltEval: An evaluation and visualization tool for depen-
dency parsing. In: Proceedings of the Sixth International Language Resources and
Evaluation, LREC (2008)

8. Woliński, M., Głowińska, K., Šwidziński, M.: A preliminary version of Składnica
– a treebank of Polish. In: Vetulani, Z. (ed.) Proceedings of the 5th Language &
Technology Conference, Poznań, pp. 299–303 (2011)

9. Wróblewska, A.: Polish dependency bank. Linguistic Issues in Language Technol-
ogy 7(1) (2012)

10. Wróblewska, A., Przepiórkowski, A.: Induction of dependency structures based
on weighted projection. In: Nguyen, N.-T., Hoang, K., Jȩdrzejowicz, P. (eds.)
ICCCI 2012, Part I. LNCS, vol. 7653, pp. 364–374. Springer, Heidelberg (2012)

A Method for the Computational

Representation of Croatian Morphology

Vanja Štefanec1, Matea Srebačić1, and Krešimir Šojat2

1 University of Zagreb
2 Faculty of Humanities and Social Sciences, University of Zagreb

Abstract. In this paper we present the development of the Croatian
Derivational Database (CroDeriV), a unique language resource for the
Croatian language. We describe the initial stage of its development as
well as its redesign according to insight gained from data analyzed thus
far. We believe that the data model we have presented will enable us to
encode all derivational processes in Croatian. We also believe that our
model is sufficiently flexible and abstract that it could be used for other
morphologically “rich” languages.

Keywords: CroDeriV, morphological resources, derivation, Croatian.

1 Introduction

In this paper we present the development of the Croatian Derivational Database
(CroDeriV). The computational processing of Croatian morphology so far has
focused primarily on inflectional phenomena ([10]; [12]; [3]) and the enlargement
procedures of the Croatian Morphological Lexicon ([11]). During the process
of building Croatian Wordnet ([6]), especially when dealing with derivationally
connected members of different synsets ([9]), it became obvious that large-scale
data indicating which affixes are used or can be used with particular lexical
morphemes do not exist for Croatian. In other words, the data about the deriva-
tional spans of particular lexical morphemes have not yet been systematically
and extensively presented in the Croatian morphological literature.

A derivational span refers to all attested combinations of derivational af-
fixes and one or more lexical morpheme. Large-scale data on such combinations
are necessary not only for the further development of Croatian WordNet, but
also for the development of various NLP tools for Croatian, such as stemmers,
lemmatizers, Q&A systems, etc.

The CroDeriV database is designed to comprise four major POS, i.e. nouns,
verbs, adjectives, and adverbs, and to represent their morphological structure
in terms of roots (lexical morphemes) and derivational affixes attached to the
roots. The aim of the database is to serve as the basis for future research on
Croatian derivational morphology by enabling the recognition of words with the
same root of the same or a different POS as well as word-formation processes
between words sharing the same root.

M.A. K�lopotek et al. (Eds.): IIS 2013, LNCS 7912, pp. 80–91, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

A Method for the Computational Representation of Croatian Morphology 81

Lexical entries in CroDeriV contain lemmas analyzed for lexical and deriva-
tional morphemes, i.e. each lemma is divided into one or more roots and deriva-
tional affixes attached to those roots. In the first phase of the database
development, 14,000 verbal lemmas, i.e. verbs in infinitive form, were collected
from freely available digital dictionaries of Croatian and semi-automatically an-
alyzed for morphemes.1 So far, no language resource containing morphologically
analyzed lemmas has been developed for Croatian.

In Sects. 2 and 3 we shall briefly discuss related work and word-formation
processes in Croatian. In Section 4 we present the present shape of CroDeriV,
and in Section 5 we present the reasons for our complete redesign of CroDeriV,
as well as the new data model on which it is based. Section 6 comprises future
work and conclusions.

2 Related Work

As mentioned, the computational processing of Croatian has been primarily fo-
cused on inflection. The Croatian Morphological Lexicon [10] comprises 120,000
lemmas and their inflectional forms. Ćavar et al. [3];[2] describe the develop-
ment of CroMo, a finite state lexical transducer used for morphological analysis
and lemmatization. The transducer is based on a database of ca. 250,000 lexi-
cal, derivational, and inflectional morphemes. This database is unfortunately not
publicly available. Šnajder [8] deals with the procedures of automatic processing
and the acquisition of inflectional lexicon for Croatian. Derivational processing
is limited to nouns, verbs and adjectives formed by suffixation. The data ob-
tained through lemmatization and stemming are used for further information
extraction from raw corpora. Stemmers for Croatian presented in [4] and [5] are
developed for the recognition of derivational suffixes and inflectional endings. Al-
though all stemmers are based on linguistic rules, none of them recognizes base
forms and derivatives obtained through prefixation. Morphological analyzers for
other Slavic languages, e.g. ajka for Czech [7] or Morfeusz for Polish [13] are
also restricted to inflection.

3 Word-Formation Processes in Croatian

As in other Slavic languages, word-formation processes in Croatian comprise
derivation and compounding. Derivation is a significantly more productive pro-
cess than compounding, which does not play an important role in Croatian mor-
phology if compared with languages such as German. In some cases it is hard
to draw a sharp line between derivation and inflection in Croatian, since, for
instance, the formation of gerunds, participles, and comparatives/superlatives
are considered to be inflectional processes, whereas the formation of verbal
aspectual pairs is treated as derivation.

1 A similar resource exists for Russian (http://courses.washington.edu/unimorph/).

http://courses.washington.edu/unimorph/

82 V. Štefanec, M. Srebačić, and K. Šojat

Derivation in Croatian is basically affixation. Affixation can comprise pre-
fixation (pisati - popisati, ispisati, napisati, prepisati), suffixation (popisati -
popisivati, pisati - pisač, pisar) and simultaneous prefixation and suffixation
(pisati - spisatelj).

Compounding is the word-formation process of putting two lexical mor-
phemes together. In Croatian there are three kinds of compounding: bare
compounding (stem1 + (interfix) + stem2; stem2 can stand as a separate lex-
eme; kuć-e-pazitelj ‘housekeeper’), simultaneous compounding and suffixation
(stem1 + interfix + stem2 + suffix, where stems cannot stand as separate lex-
emes; e.g. rukopis ‘manuscript’ = ruk -o-pis-Ø), and finally semi-compounding
(two lexemes preserve their meaning, marked with a hyphen between them,
e.g. knjǐzevno-povijesni ‘litero-historical’).

The recognition and description of complex word-formation processes in Croa-
tian is a non-trivial task due to their non-predictability and numerous phono-
logical changes at morpheme boundaries. We tend to overcome these obstacles
by recognizing all allomorphs2 of the same morpheme and linking them to it.
Moreover, we do not only want to recognize the specific word-formation rule
in question, but also the complete morphological structure of each lemma in
CroDeriV. In other words, we want to be able to recognize its root in order to
gain insight into complete derivational spans, as has been already pointed out
in the preceding sections.

Word-formation processes in Croatian are very similar to word-formation pro-
cesses in other Slavic languages, particularly to South Slavic languages as e.g.
Slovene or Serbian. Therefore, a resource built along the principles as described
here could be useful for the development of NLP tools for these languages, as well.

4 The Initial Stage of CroDeriV Development

The main impulse for the building of CroDeriV was the incorporation of deriva-
tionally related verbs into Croatian WordNet. This is the reason we decided to
start from the verbal part of the lexicon. We have collected approximately 14,000
verbal lemmas (verbs in the infinitive form).

For the purpose of speeding up the morphological analysis, we devised a simple
näıve brute-force algorithm based on a small set of linguistic rules. In the first
step, we removed 19 productive prefixes. Since prefixation is a recursive process
in Croatian (one base can have from zero to four prefixes), this enabled the recog-
nition of the attested prefixal combinations used in verb formation. In the second
step, the rules for the removal of suffixes were applied. All Croatian verbs have
at least two suffixes denoting aspect and conjugational class before the infinitive
ending -ti or -ći. Optionally, verbs can have another derivational suffix, attached
to the root and bearing specific, diminutive or pejorative meanings. Finally, a
manual check of the automatic analysis was performed due to the phonologi-
cal overlapping of affixes and roots,which often resulted in incorrect segmentation.

2 An allomorph is a variant form of a morpheme.

A Method for the Computational Representation of Croatian Morphology 83

In this step we also connected all allomorphs to one mutual morph in the un-
derlying representation and added some additional linguistic information about
verbal aspect and reflexivity. Moreover, the stems were attached to the roots
they are related to. Stems can be either productive (i.e. used in the derivation
of at least two verbs) or unproductive (used in a single verb formation).

Therefore, the next step was to devise a data model which would enable us to
store this data in a structured way and thus facilitate various types of research.
Since the verbal morphological structure is rather rigid, the generalization of
this structure for all verbs seemed the most logical. Our decision was to present
every lemma as a series of slots which can be either filled or empty. These slots
were arranged as follows (P = prefix, St = stem, I = interfix, Su = suffix, E =
inflectional ending; square brackets = slot can be empty): [P4] + [P3] + [P2]
+ [P1] + [St2] + [I] + St1 + [Su3] + Su2 + Su1 + E. In this model, every
slot is assigned its own semantics. For instance, Su1 will always contain suffixes
which define the verb’s inflectional class. However, when we started to explore
the possibility of expansion of CroDeriV to the nominal part of the lexicon, a
rigid structure with a predefined number and order of slots turned out to be in-
appropriate. When it comes to nouns, the meanings of either prefixes or suffixes
in a particular “slot” are not predetermined (e.g. šal -ic-|a ‘a cup’ vs. šal -ic-|a
‘a little joke’, where šal- in the first word is not the same root as šal- in the
second word, and the suffix -ic- in the first one has the meaning of a container,
whereas in the second one it has a diminutive meaning), and suffixes of the
same form with some shared meaning components can come in different relative
distances from the root (prija-telj -ic-|a ‘a female friend’ vs. lav -ic-|a ‘a female
lion’). Since the morphological structure of nouns differs significantly from the
morphological structure of verbs, we decided to introduce a completely different
data-model which would be able to comprise lemmas of different POS.

5 Redesigning CroDeriV

In the inital phase of CroDeriV development, the morphological structure of
the entries was predefined, the derivation was described in the form of a final
state, and a derivational process could be computed as a change between two
states. In the redesigned database, derivation is represented as a sequence of
derivational steps (or phases) which consist of simply adding one combining
element (a morpheme or a derivative) to some previous phase. The process
starts with a single morpheme, which gets combined (prepended or appended)
by only one combining element in each step.

The product of each step is one type of derivative, which inherits the morpho-
logical structure from its predecessor and is built upon it. For example, the noun
učiteljica ‘female teacher’ is derived form uč-i-telj- (uč-i-telj-|Ø ‘male teacher’)
by adding the suffix -ic- and the inflectional ending -a. However, it inherits
the complete morphological structure of uč-i-telj-, and its underlying represen-
tation is uč-i-telj -ic-|a. With this design, we automatically solved the problem of

84 V. Štefanec, M. Srebačić, and K. Šojat

alloting a definite number of slots for morphemes and determining their order
(see the prijateljica - lavica example). The semantics of a morpheme is not de-
fined by its slot in the morphological structure, but is rather provided by a set
of assigned features, which will be further explained later.

It is important to stress that we did not change the way we understand deriva-
tion; we simply chose a more flexible model of description. Derivation is compre-
hended as a sequential process, but in the previous design, it was implicitly coded
as the difference between two states. In the redesigned database, the products
of each step in the derivational process are stored regardless of whether they:

a) can form words by adding inflectional endings (these will be referred to as
full derivatives, e.g. pis-ač- → pis-ač-|Ø ‘printer’),

b) can productively form other derivatives serving as stems, (e.g., pis-Ø -iva-
(*pis-Ø -iva-|ti) will serve as a stem for na-pis-Ø -iva-|ti, ras-pis-Ø -iva-|ti,
etc.),

c) can simply be an intermediate phase in becoming one or the other.

The types of derivatives are described in more detail in the following section.
Since the new model of the database is not based upon a predefined mor-

phological structure, the exact order of the derivational processes had to be
established. By establishing the exact order of derivational processes we ensured
that sequential building of the morphological structure will always branch in
a predictable way and that there will be no derivational phases stored in the
database that cannot be considered plausible nor can be defended by any formal
morphological theory (e.g. *do-

√
pis-Ø - in na-do-

√
pis-Ø -a-|ti). In our model

we chose the following order: 1) suffixation, 2) prefixation, and 3) compound-
ing. Complex derivational processes described in Croatian grammars, such as
prefixal-suffixal derivation, are decomposed into simple phases and executed in
the default order.

This will minimize the number of derivational phases necessary for the mor-
phological description of all words in the database. Also, the phases stored in
the database do not always reflect the actual derivational stages words undergo.
For example, uč-i-telj -|Ø ‘teacher’ is derived from uč-Ø -i-|ti ‘to teach’, but
in this model we cannot produce uč-i-telj - from uč-Ø -i- since the elision of
one suffix, which is not supported as an operation, would be required. So, in
the database uč-i-telj - will be represented as being derived from uč-. There-
fore, the derivational phases are simply an economical way of storing morpho-
logical data. Although in our derivational model učitelj is not represented as
directly derived from učiti, the direct derivational relation between them is estab-
lished separately. These “real” derivational relations are established only between
lemmata, i.e. full-fledged words.

Besides the process-like description of derivation, the other significant differ-
ence between the previous and the present model is that we separated deriva-
tion from inflection. These two morphological processes are described in separate
tables in the database. The database comprises four main tables:

A Method for the Computational Representation of Croatian Morphology 85

1. a derivational table,

2. an inflectional table,

3. a morpheme table (including all morphemes, lexical and grammatical),

4. a relations table (modeling the relations between lemmata).

5.1 Derivation

Each entry in a derivational table represents one step in a derivational process
in which only one combining element is added. Each entry consists of:

1. a derivative text - the surface form of an entry;

2. a starting derivative - the derivative from which the formation of the
present phase starts. When this field is empty, derivation starts from
this point;

3. a combining element - a derivational morpheme or morpheme cluster
which takes part in a derivational step. This element is appended or
prepended to a starting derivative with respect to the derivation type, e.g.
the starting derivative uč-i-telj - (uč-i-telj -|Ø ‘teacher’) and the combining
element ic- form the full derivative uč-i-telj -ic- (uč-i-telj -ic-|a ‘a female
teacher’) via suffixation;

4. a derivative type – thus produced derivatives can be classified as follows3:
(a) Full derivatives can produce words by adding inflectional endings but

also can continue their derivational process serving as a stem. For exam-
ple, uč-i-telj - can undergo inflection and become uč-i-telj -|Ø ‘teacher’,
but also can derive uč-i-telj -ic- (uč-i-telj -ic-|a ‘female teacher’). Only
derivatives classified as full derivatives will serve as inflectional stems
and therefore are referenced in the inflectional table. If they participate
in further derivational processes, they serve as derivational stems
(here the word stem is used in its strict sense as a linguistic term). In
other words, they can serve at the same time as an inflectional and
derivational base.

(b) Intermediate derivatives are those that have not finished some non-
optional process. They can not form words, nor can they serve as a
combining element for derivation - they must continue their derivational
process and the choice of combining elements which can be combined
with them is very limited. For example, the derivative -Ø-, consisted

3 The purpose of these categories is merely for filtering and they have no deeper
linguistic meaning.

86 V. Štefanec, M. Srebačić, and K. Šojat

only of the verbal aspectual suffix, will be referred to as intermediate,
because it has to be first appended by the verbal class suffix to
participate in any other derivational process;

(c) Stems cannot form words but are productive and serve as the basis for
further derivation (e.g., uč-Ø -ava- → na-uč-Ø -ava-|ti, pod -uč-Ø -ava-
|ti, etc.). Stems normally serve as derivational stems and continue the
derivation process which can branch in more than one direction;

(d) Prefix clusters and suffix clusters are derivatives composed of one or
more affixes of the same type. In the process of affixation (prefixation
or suffixation) these derivatives will function as a combining element.

5. a derivational type - there are seven derivational types recognized in
CroDeriV:

(a) cloning (in which a morpheme starts the derivation process),

(b) suffixation (in which a derivative is appended by a suffix cluster),

(c) prefixation (in which a derivative is prepended by a prefix cluster),

(d) suffix composition (in which a suffixal derivative is appended by another
suffix),

(e) prefix composition (in which a prefixal derivative is prepended by
another prefix),

(f) compounding interfix (in which a derivative is prepended by an interfix),

(g) compounding (in which a derivative gets prepended by a derivative);

6. a derivative slug – a textual representation of the morphological analysis
of the derivative’s surface form in which morphemes are segmented with
hyphens. The purpose of this field is twofold: first is to present the mor-
phological analysis in a human-readable manner, and second is to facilitate
faster and more efficient search of database entries according to morphemes
they consist of.4

7. the corresponding underlying representation is a complex structure to
which a derivative is linked. It consists of all the morphemes contained within
it with their respective order in the structure.

4 This type of “slug” field will be also used in a table in which underlying repre-
sentations of the entries are stored (see 7.), with a difference that it will contain
underlying, instead of a surface form segmented with hyphens. Every “slug” field in
the database will be indexed and easily searchable using regular expressions.

A Method for the Computational Representation of Croatian Morphology 87

A partial representation of the derivational processes including the root pis- in
a derivational table is shown in Figure 1.

5.2 Inflection

The derivational table represented above is connected to the inflectional
table. When a full derivative from the derivational table receives its in-
flectional ending, the actual word is formed. For example, the full deriva-
tive uč-i-telj - becomes a masculine noun in the nominative singular only
by acquiring the nominative ending -Ø. Every entry from this table is a
lemma tagged with the following attributes: surface form, reference to the
corresponding full derivative in the derivation table, inflectional ending, un-
derlying representation and grammatical categories (POS and MSD). The fi-
nal set of features or feature values is assigned to a word by particular
morphemes.

Feature values are listed in a separate table which is referenced both in the
morpheme table and inflectional table. Values are grouped by feature types (mor-
phological, syntactic, semantic, morphosemantic, etc...) and feature names. Val-
ues pertaining to the same name are logically mutually exclusive. For example,
one of the morphological features is the aspect, which can be perfective, imper-
fective, or biaspectual. Aspect is encoded by the particular verbal suffix, and
the same verb cannot be at the same time perfective and imperfective. This
constraint is ignored when features are attached to single morphemes and not to
words, because a single morpheme often carries mutually incompatible or exclu-
sive features (e.g., the morpheme -Ø- can have either imperfective or perfective
meaning, but in a particular word, only one of them is realized). The set of fea-
tures attached to an inflected form is usually a subset of the union of features
attached to the morphemes from which a particular full derivative is com-
bined. Not all of these features are already included in CroDeriV, but they
can easily be incorporated at later stages of development, due to its flexible
design.

The lemmas, or the entries in the inflectional table, are connected by a set
of relations. The new model supports various, but always symmetrical relations.
One of the most important relations in the database is, of course, the rela-
tion derives↔is derived from. As we said earlier, the direct derivational rela-
tion between two lemmas in some cases cannot be straightforwardly established.
In other words, the direct derivational relations have to be explicitly estab-
lished. By connecting words using derivational relations, we are actually build-
ing a network-like structure which illustrates the complete derivational span of a
particular lexical morpheme across different POS.

The other types of relations have yet to be included in the CroDeriV.
A graphical representation of the CroDeriV structure is shown in Figure 2.

88 V. Štefanec, M. Srebačić, and K. Šojat

CLONING
PREFIX COMPOSITION

CLONING

CLONING PREFIX COMPOSITION

CLONING

CLONING

SUFFIX COMPOSITION

CLONING SUFFIX COMPOSITION

CLONING

CLONING

CLONING SUFFIX COMPOSITION

CLONING SUFFIXATION

SUFFIXATION

SUFFIXATION

PREFIXATION

PREFIXATION

PREFIXATION

PREFIXATION

PREFIXATIONPREFIXATION

PREFIXATION

PREFIXATION

INFLECTION

PREFIXATION INFLECTION

INFLECTION

INFLECTION

INFLECTION

INFLECTION

INFLECTION

INFLECTION

INFLECTION

INFLECTION

INFLECTION

CLONING

COMPOUNDING_INTERFIX

COMPOUNDING INFLECTION

SUFFIXATION

SUFFIXATION

INFLECTION

INFLECTION

Fig. 1. Schematic representation of the database entries and their mutual relations

A Method for the Computational Representation of Croatian Morphology 89

F
ig
.
2
.
C
ro
D
er
iV

D
a
ta

M
o
d
el

90 V. Štefanec, M. Srebačić, and K. Šojat

6 Future Work and Conclusion

As we have already stated, CroDeriV is a unique language resource for the Croa-
tian language. Even in the earliest stage of its development, it has been shown to
be an extremely valuable source of data for different kinds of linguistic research.
For now, we have carried out only a preliminary analysis on the frequency of par-
ticular derivational affixes and their attested combinations. These results have
already provided new insight into derivational processes in Croatian, since this
kind of information cannot be found in Croatian grammars, nor have studies
of this type, to the best of our knowledge, ever been done on a representative
language data sample. Our plan is to go further: we would like to explore how
certain affixes (or their combinations) are good predictors of grammatical (mor-
phological, syntactic, semantic, etc...) features and how they are correlated. One
of the features that especially interests us is the alteration of verbal aspect which
can occur under different derivational processes. Another interest of ours is to see
how syntactic features, such as verbal syntactic frames, are influenced by prefix-
ation. Furthermore, we would like to explore the possibilities of (semi-)automatic
expansion of Croatian WordNet by making use of morphosemantic features of
derivational affixes. Also, our plans go towards building language tools on the
basis of this data, such as a morphological analyzer which would be able to
perform both deep and shallow analysis. A good morphological (derivational)
analyzer would be useful not only as a part of other language tools, but also for
the further expansion of the database.

In this paper we have presented the redesign of CroDeriV, the Croatian
Derivational Database. Despite the fact that it is merely a technical solution, we
tried to build it in accordance with morphological theories. We believe that the
data model we have presented will enable us to encode all derivational processes
in the Croatian language. We also believe that our model is flexible and abstract
enough to be used for other morphologically “rich” languages.

Derivational morphology is an important part of lexicalization processes in
Slavic languages. In predominantly analitical languages, as e.g. English, deriva-
tional morphology does not have such a prominent role when compared to Slavic.
We believe that derivational databases as the one described in this paper could
facilitate the development of NLP tools for Slavic languages or improve the qual-
ity of existing ones. We are convinced that the theoretical model that CroDeriV
is based upon can be applied to other Slavic languages with only minor modi-
fications. This especially pertains to South Slavic languages as e.g. Slovene and
Serbian. 5

Acknowledgments. This work has been supported by XLike (Cross-lingual
Knowledge Extraction), a project in the area of Language Technologies (ICT-
2011.4.2) funded by the European Community’s Seventh Framework Programme
FP7/2007-2013.

5 This resource will be freely available as soon as possible, probably under CC BY-
NC-SA 3.0 licence.

A Method for the Computational Representation of Croatian Morphology 91

References

1. Bernhard, D., Cartoni, B., Tribout, D.: Evaluating Morphological Resources: a
Task-Based Study for French Question Answering. In: Proceedings of the Interna-
tional Workshop on Lexical Resources at ESSLII, Slovenia (2011)

2. Ćavar, D., Jazbec, I., Runjaić, S.: Interoperability and Rapid Bootstrapping of
Morphological Parsing and Annotation Automata. In: Erjavec, T., Žganec, G.,
Jerneja (eds.) Proceedings of the Sixth Language Technologies Conference, Pro-
ceedings of the 11th International Multiconference Information Society, IS 2008,
October 16-17, vol. C, pp. 80–85 (2008)

3. Ćavar, D., Jazbec, I., Stojanov, T.: CroMo Morphological Analysis for Standard
Croatian and its Synchronic and Diachronic Dialects and Variants. In: Finite-State
Methods and Natural Language Processing - Post-proceedings of the 7th Interna-
tional Workshop FSMNLP, pp. 183–190. IOS Press, Italy (2009)

4. Ljubešić, N., Boras, D., Kubelka, O.: Retrieving information in Croatian: Build-
ing a simple and efficient rule-based stemmer. In: Seljan, S., Stančić, H. (eds.)
INFuture2007: Digital Information and Heritage, pp. 313–320. Odsjek za informa-
cijske znanosti Filozofskoga fakulteta, Zagreb (2007)

5. Pandžić, I.: Oblikovanje korjenovatelja za hrvatski jezik u svrhu pretrazivanja infor-
macija. MA thesis. University of Zagreb, Faculty of Humanities and Social Sciences,
Department of Linguistics

6. Raffaelli, I., Tadić, M., Bekavac, B., Agić, Z.: Building Croatian WordNet. In:
Proceedings of the 4th Global WordNet Conference, pp. 349–359. Global WordNet
Association, Szeged (2008)

7. Sedláček, R., Smrž, P.: Automatic Processing of Czech Inflectional and Derivative
Morphology. In: FI MU Report Series. Masaryk Univesity: Faculty of Informatics
(2001)

8. Šnajder, J.: Morfološka normalizacija tekstova na hrvatskome jeziku za dubinsku
analizu i pretraživanje informacija. PhD thesis. University of Zagreb, Faculty of
Electrical Engineering and Computing (2008)

9. Šojat, K., Srebačić, M., Tadić, M.: Derivational and Semantic Relations of Croatian
Verbs. Journal of Language Modelling. O.1, 111–142 (2012)

10. Tadić, M., Fulgosi, S.: Building the Croatian Morphology Lexicon. In: Proceedings
of the EACL 2003 Workshop on Morphological Processing of Slavic Languages,
pp. 41–46. ACL, Budapest (2003)

11. Tadić, M., Oliver, A.: Enlarging the Croatian Morphological Lexicon by Automatic
Lexical Acquisition from Raw Corpora. In: LREC 2004 Proceedings, pp. 1259–1262.
ELRA, Paris-Lisabon (2004)

12. Tadić, M., Bekavac, B.: Inflectionally Sensitive Web Search in Croatian using Croa-
tian Lemmatization Server. In: Proceedings of ITI 2006 Conference, SRCE, Zagreb
(2004)

13. Woliński, M.: Morfeusz a practical tool for the morphological analysis of Polish.
In: K�lopotek, M.A., Wierzchoń, S.T., Trojanowski, K. (eds.) Proceedings of the
International Intelligent Information Systems: Intelligent Information Processing
and Web Mining 2006 Conference, pp. 511–520. Wis�la, Poland (2006)

Mapping Named Entities from NKJP Corpus
to Składnica Treebank and Polish Wordnet

Elżbieta Hajnicz

Institute of Computer Science, Polish Academy of Sciences

Abstract. In this paper a method of mapping named entities from
NKJP corpus, where their annotation is rather coarse, to Składnica tree-
bank, where their annotation is wordnet-based, is discussed. The method
is based on the fact that Składnica is a subcorpus of the one-million-word
manually annotated balanced subcorpus of NKJP. The method to find a
corresponding node in a parse tree is presented. Next, several heuristics
to match the lemma of an NE in Polish Wordnet and to choose the most
probable semantic interpretation of ambiguous ones are suggested. The
results of the mapping are evaluated.

1 Introduction

The ultimate goal of our research is to create a semantic valence dictionary
and to establish automatic methods supporting achievement of this goal. Such
a dictionary combines syntactic (by means of syntactic frames and slots) and
semantic (by means of semantic roles and selectional preferences) information.
Therefore, an important resource for our research is a semantically annotated
treebank.
Named entities (NEs) play an important role in natural language texts and

they occur quite frequently in them. Therefore, the methods of identifying NEs
in texts is a vital part of NLP. However, named entities do not have meanings:
one cannot say that Warsaw, Berlin or London means a city, they a r e cities.
Nevertheless, named entities can be in a way semantically interpreted: even
though they do not have senses, they do have their semantic types.
During semantic annotation of a text, named entities are often ignored. How-

ever, as a consequence many sentences are not completely semantically inter-
preted, which causes a drastic reduction of the language material. This has
negative consequences in automatic semantic preferences detection [1, 2, 3],
diathesis alternation detection [4, 5] and semantic valence frame extraction [6].
Therefore, we decided to annotate named entities as a preprocessing phase of

a complete semantic annotation of treebank Składnica.
Our task is quite untypical for the community of named entities, mainly de-

voted to named entities classification [7, 8] and recognition [9, 10, 11], whereas
we deal with already identified and classified NEs.

M.A. Kłopotek et al. (Eds.): IIS 2013, LNCS 7912, pp. 92–105, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Conversion of Named Entities from NKJP to Składnica 93

2 Data Resources

The presented work was based on three resources: National Corpus of Polish
(pl. Narodowy Korpus Języka Polskiego, NKJP), Polish Treebank Składnica and
Polish Wordnet Słowosieć (PlWN).

2.1 NKJP

The National Corpus of Polish (http://nkjp.pl) [12] is the largest text cor-
pus of Polish annotated on several levels. In our work we use the one-million-
word manually annotated balanced subcorpus of NKJP. Its texts are annotated
linguistically at the following levels:

– segmentation into sentences and word-level tokens (called segments),
– morphosyntactic,
– syntactic [13],
– named entities,
– word senses (a little over 100 frequent and clearly ambiguous lexemes were
annotated).

Technically, all kinds of annotation are encoded in XML, using mark-up
schemata based on TEI guidelines [14]. On morphosyntactic level, each token
has its unique identifier of the form morph <p>.<s>-seg, where <p> is the num-
ber of a paragraph and <s> is the number of a token. This identifier is referred
to in the other levels of annotation.
On the named entities level, the following types and subtypes of NEs are

distinguished [15]:

– personal names
• forename (e.g., Lech),
• surname (e.g., Wałęsa),
• nickname;

– names of organisations and institutions (e.g., Uniwersytet Warszawski ‘War-
saw University’);,
– geographical names (e.g., Warta river);,
– place names (referring to geopolitical entities)

• bloc (e.g., Unia Europejska ‘European Union’),
• country (e.g., Polska ‘Poland’),
• region (e.g., Wielkopolska),
• settlement (e.g., Poznań),
• district (e.g., Jeżyce, a district of Poznań);

– basic temporal expressions;
– words related to (most often derived from) the above categories: relational
adjectives (e.g., poznański), names of inhabitants (e.g., Poznaniak), both
derived from Poznań, and organisation members (e.g., gestapowiec derived
from gestapo—secret police of Nazi Germany).

http://nkjp.pl

94 E. Hajnicz

<seg xml:id="named_1.28-s_n3">
<fs type="named">
<f name="type">
<symbol value="geogName"/>
</f>
<f name="base">
<string>ulica Piaskowa</string>
</f>
</fs>
<ptr target="ann_morphosyntax.xml#morph_1.22-seg"/>
<ptr target="ann_morphosyntax.xml#morph_1.25-seg"/>
</seg>

Fig. 1. Representation of a single named entity in NKJP

The XML representation of a name contains its lemma, semantic type and
(optionally) subtype. For our goals it is important that the boundaries of an NE
are marked as ptr links (recursively) targeted at subnames of compound named
entities or at tokens of morphosyntactic level. For example, the representation
of the NE ulica Gdyńska w Koziegłowach from sentence (1) targets at its sub-
names ulica Gdyńska and Koziegłowy, which in turn target at their elements on
morphosyntactic level. The representation of the NE ulica Gdyńska (Gdyńska
street) is presented in Fig. 1.

(1) Pierwsza z wymienionych sygnalizacji pojawi się u zbiegu
First of listed signaling appear

FUT
self at junction

ulic Gdyńskiej i Piaskowej w Koziegłowach.
street

PL
street name and street name in village name

(First of the mentioned traffic lights will appear at the crossroad of Gdyńska
and Piaskowa streets at Koziegłowy.)

(2) Kolejna sygnalizacja pojawi się u zbiegu
Next signaling appear

FUT
self at junction

ulic Okrężnej i Gdyńskiej.
streetPL street name and street name
(Next traffic lights will appear at the crossroad of Okrężna and Gdyńska
streets.)

2.2 Składnica

Składnica is a bank of constituency parse trees for Polish sentences taken from
the balanced hand-annotated subcorpus of NKJP. To attain consistency of the
treebank, a semi-automatic method was applied: trees were generated by an
automatic parser1 and then selected and validated by humans. The resulting
version 0.5 of Składnica contains 7841 manually validated trees.

1 Świgra parser [16] based on the revised version [17, 18] of metamorphosis grammar
GFJP [19].

Conversion of Named Entities from NKJP to Składnica 95

<node nid="59" from="9" to="10" subtrees="2" chosen="true">
<nonterminal>
<category>fpt</category>

</nonterminal>
<children rule="pt1" chosen="true">
<child nid="60" from="9" to="10" head="true"/>

</children>
</node>
<node nid="60" from="9" to="10" subtrees="2" chosen="true">
<nonterminal>
<category>formaprzym</category>

</nonterminal>
<children rule="n_pt1" chosen="true">
<child nid="61" from="9" to="10" head="true"/>

</children>
<children rule="n_pt1">
<child nid="62" from="9" to="10" head="true"/>

</children>
</node>
<node nid="61" from="9" to="10" subtrees="1" chosen="true">
<terminal token_id="morph_1.23-seg"
interp_id="morph_1.23.2.1-msd" disamb="true" nps="false">
<orth>Gdyńskiej</orth>
<base>Gdyński</base>
<f type="tag">adj:sg:gen:f:pos</f>

</terminal>
</node>
<node nid="77" from="9" to="12" subtrees="4" chosen="true">
<nonterminal>
<category>fpt</category>

</nonterminal>
<children rule="ptsz3" chosen="true">
<child nid="59" from="9" to="10" head="false"/>
<child nid="63" from="10" to="11" head="true"/>
<child nid="78" from="11" to="12" head="false"/>

</children>
</node>

Fig. 2. A fragment of the representation of a sentence in Składnica

Parse trees are encoded in XML, each parse being stored in a separate file.
Each tree node, terminal or nonterminal, is represented by means of an XML
node element, having two attributes from and to determining the boundaries of
the corresponding phrase. Terminals additionally contain a token id attribute
linking them with corresponding NKJP tokens. As a result, the first and last
NKJP tokens of a phrase represented by a particular node can be determined.
Nonterminal nodes contain sub-elements children pointing at child nodes of
the node in the parse tree. The head attribute shows whether a child is a head
of a phrase.
A fragment of the representation of sentence (1) in Składnica is shown in

Fig. 2.
Fig. 3 (a) contains a subtree of the phrase ulic Gdyńskiej i Piaskowej w

Koziegłowach (Gdyńska and Piaskowa streets in Koziegłowy) from sentence (1),
whereas Fig. 3 (b) contains a subtree of the phrase ulic Okrężnej i Gdyńskiej
from sentence (2). Thick gray shadows emphasising some branches in the tree
show heads of phrases.

96 E. Hajnicz

(a) (b)

Fig. 3. Exemplary parse subtrees from Składnica

124 aparycja 1
136 apteka 1
139 arbiter 2
198 atrybut 3
199 atrybut 1
18382 atrybut 2
19474 arbiter 1

Fig. 4. The fragment of the table of triples 〈identifier, lemma, meaning〉 of PlWN 1.6

2.3 Polish Wordnet—Słowosieć

In contrast to NKJP, we decided to annotate named entities with very fine-
grained semantic types represented by wordnet synsets. For this sake we used
the Polish WordNet [20], called Słowosieć (English acronym PlWN).
PlWN is a network of lexical-semantic relations, an electronic thesaurus with

a structure modelled on that of the Princeton WordNet and those constructed
in the EuroWordNet project. Polish WordNet describes the meaning of a lexical
unit comprising one or more words by placing this unit in a network representing
relations such as synonymy, hypernymy, meronymy, etc.
A lexical unit [LU] is a string which has its morphosyntactic characteristics

and a meaning as a whole. Therefore, it may be an idiom or even a collocation,
but not a productive syntactic structure [21]. An LU is represented as a pair
〈lemma, meaning〉, the last being a natural number. Technically, any LU has
also its unique numeric identifier. Each lexical unit belongs to a synset, which
is a set of synonyms. Synsets have their unique numeric identifiers as well. A
fragment of the table of triples 〈identifier, lemma, meaning〉 is presented in Fig. 4.

Named Entities in PlWN. Polish WordNet contains some number of named
entities, selected rather randomly. They are represented by means of analogous
lexical units as common words. LUs representing NEs are grouped in synsets as
well, since the same object can be identified by means of several NEs (e.g., a full

Conversion of Named Entities from NKJP to Składnica 97

name and its acronym). The only difference is that they are connected by ‘type’
and ‘instance’ relations instead of ‘hypernym’ and ‘hyponym’.
The representation of NEs in PlWN is far unsatisfactory. Therefore, a table

of names was created, in which a list of semantic types represented by PlWN
synset identifiers is assigned to every NE lemma. The order of synsets in a list
reflects their preference.

3 A Method of Mapping

Differences in the representation of named entities in NKJP and Składnica in-
fluence the method and scope of their conversion. The main difference lies in
the way of representing information itself. In Składnica, each sentence is stored
in separate XML file; in NKJP a single XML file contains a whole document
divided into paragraphs and sentences. NKJP representation is linear, i.e., a
sentence is a sequence of tokens; Składnica contains parse trees. On the other
hand, NKJP has mechanisms for representing discontinuous phenomena which
are ignored in Składnica.
Since the named entities are identified and interpreted in NKJP and Składnica

contains complete parses of sentences, the method is strongly resource-dependent
but completely language independent.
In order to map named entities from NKJP to Składnica, we have to perform

two subtasks:

1. Identify a node representing a particular NE in the parse tree of a sentence,
2. Find a fine-grained PlWN-based semantic type of the NE.

These two subtasks are completely independent.

3.1 Identifying a Phrase in a Parse

Named entities are often multi-word units, and their semantic interpretation is
often not compositional. Because of that we decided to ascribe the semantic type
of an NE to the lowest corresponding nonterminal in a parse tree. In the case
of single-word named entities, they are nodes having category formarzecz (noun-
form) for noun names and category formaprzym (adjform) for adjective names.
The method uses the fact that each terminal in Składnica contains information

which NKJP token it represents, hence we can assign corresponding from and
to attributes to each token.
NKJP NEs are sets of tokens which have identifiers that can be numerically

ordered. Thus, we can find the first and last token of any NE. The from attribute
of the first token and the to attribute of the last token determine from and to
attributes of the whole NE. This enables us to link every NE with a corresponding
node in a parse tree, on condition that the NE is represented in Składnica as a
separate phrase.
This is however not always the case. Observe that neither ulica Gdyńska

(Gdyńska street) nor ulica Piaskowa (Piaskowa street) from sentence (1) have a

98 E. Hajnicz

corresponding subtree in the parse (see Fig. 3 (a)). On the other hand, ulica
Gdyńska from sentence (2) was mapped to the whole phrase ulic Okrężnej
i Gdyńskiej (Okrężna and Gdyńska streets), whereas ulica Okrężna (Okrężna
street) obtained no mapping. The reason is that ulic is the first token, whereas
Gdyńskiej is the last token of both NE ulica Gdyńska and phrase ulic Okrężnej
i Gdyńskiej. The above is the consequence of differences in the representation of
various units in both solutions and cannot be overcome in any way.

3.2 Finding a PlWN Semantic Interpretation

Finding the semantic type for a named entity seems to be an easy task. Named
entities are lemmatised in NKJP. Therefore, the only thing to do should be
finding it in PlWN itself or in table of names and copying the corresponding
unit or type. Unfortunately, many NEs are absent in both resources on one hand,
and on the other hand some names are ambiguous. Therefore, we should first
find a corresponding lemma, and then disambiguate it.

Finding the Lemma of an NE. In order to find the most likely lemma for
an NE absent in our resources, the following heuristics were implemented:

1. change of the case:
– first letter to upper case (lis to Lis)2,
– all letters to upper case (bmw to BMW),
– all letters to lower case (BANK to bank),
– all letters but the first to lower case (JAWORSKI to Jaworski);

2. changing a female form of a surname to the male form3;
3. choosing the head of a phrase;
4. heuristics 1 and 2 applied together;
5. heuristics 1 and 3 applied together.

The heuristics are applied in the above order; finding a match terminates the
procedure. The need for using the changing case heuristics is caused by the fact
that lemmatising in NKJP is not consistent w.r.t. case.
Surnames are the largest group in the table of names, they constitute above

50% of all names. They are the largest set of names in NKJP as well. The char-
acteristic feature of Polish, similarly as other Slavic languages, is the existence
of female forms of surnames. The first group of such surnames are forms ending
with -cka, -dzka, -ska (Lipnicka, Gilowska), derivated from male forms ending
with -cki, -dzki, -ski (Lipnicki, Gilowski). Such forms are completely regular.
The second group are forms ending with -owa, -ówna (Boryczkowa, Florczakowa,
Gawlikowa, Skowronówna) derivated from male forms ending with a consonant
(Florczak, Gawlik, Skowron) or with -o preceded by a consonant (Boryczko).
Such derivatives are not as regular as the previous ones, but they are rather

2 Lis is an example of surname being also a common word meaning fox.
3 Only male forms of surnames are represented in the table of names.

Conversion of Named Entities from NKJP to Składnica 99

rare in contemporary Polish. The third group are surnames having adjectival
inflection (Cicha, Dymna, Konieczna).
The most important heuristics in the process of matching a lemma in PlWN

to a named entity is the head heuristics. The important feature of named en-
tities is that they are often multi-word units. Some of them are represented
directly in PlWN or in the table of names. Usually, they are semantically
non-compositional. Most of them are geographic names (cities Los Angeles, Rio
de Janeiro, Góra Kalwaria, countries New Zealand, rivers Rio Grande), but
also surnames (ben Laden, di Palma), companies (Canal Plus) or even polit-
ical parties (Platforma Obywatelska, literally Citizen Platform). Nevertheless,
many named entities, especially names of firms and institutions, are semanti-
cally compositional. For such names, the interpretation of the head (usually
a common word) of a corresponding phrase already interprets the name as a
whole. This concerns factories (Warszawska Fabryka Dźwigów—Warsaw Lift
Factory), schools, universities (Uniwersytet Warszawski—Warsaw University),
banks (Wielkopolski Bank Kredytowy— Credit Bank of Wielkopolska), ministries
(Ministerstwo Rolnictwa—Ministry of Agriculture) etc., etc. This also concerns
some geographic names, e.g., names of streets often contain the word ulica or
its abbreviation ul.
In order to implement the head heuristic for mapping named entities from

NKJP to Składnica we use the fact that each phrase in Składnica has its head
marked. Actually, it only shows which child of a node is its head child. Never-
theless, it is easy to link the head terminal descendant to each nonterminal node
by a simple recursive procedure. The lemma of that head terminal descendant
is then identified in PlWN or the table of names.

Disambiguation. Quite a lot of named entities are ambiguous. For instance,
Mars denotes a planet, a Roman god of war and a chocolate bar, Alberta is
a female name, a lake and a Canadian province. On the other hand, the com-
mon word szkoła (school) being a lemma of head terminal descendant of many
particular school names has 10 lexical units in PlWN. Such names need to be
disambiguated.
We do not apply any elaborated WSD algorithm [22]. Instead, we used infor-

mation about NKJP type and subtype of each NE (cf. section 2.1). We assigned
a list of PlWN-based semantic types (synset’s identifiers used in the table of
names) to each NKJP type and subtype. The length of these lists varies a lot,
see Table 1 (columns denoted ‘Syns’).
The set of senses (corresponding synset identifiers) of each named entity was

intersected with the list of synsets assigned to its NKJP type and subtype. In
the case of NEs present in PlWN itself, all the hypernyms were considered
as well. If the resulting set was empty, the whole set of senses was taken into
consideration.
For the resulting set of senses (lexical units for NEs present in PlWN itself

or synsets for NEs considered in the table of names), the variation of the most

100 E. Hajnicz

Table 1. The number of PlWN synsets assigned to particular NKJP types and sub-
types and the number of mapped NEs of that types

geogName orgName persName placeName time
Syns Freq Syns Freq Syns Freq Syns Freq Syns Freq

23 268 55 683 89 1915 1 1233 8 29
addName 1 81 bloc 1 9
forename 2 759 country 3 553
surname 1 721 district 2 19

region 11 38
settlement 5 587

frequent sense heuristic [23, 22] was applied. This means the lowest sense number
for NEs present in PlWN and the first synset identifier for NEs considered in
the table of names.

4 Evaluation of Automatic Mapping of Named Entities

The method of automatic mapping of named entities from NKJP to Składnica
presented above was applied to Składnica 0.5 and PlWN 1.6. From among
4473 NEs present in NKJP sentences having a correct parse tree in Składnica,
4294 NEs (96%) were mapped to Składnica, i.e., the corresponding tree nodes
were assigned to them. Fiasco of mapping of the remaining NEs was caused by
differences between the range of the NE in NKJP and the boundaries of the
corresponding phrase in Składnica. The resulting annotation was manually cor-
rected and evaluated w.r.t. this correction. Among them, there were 473 adjective
named entities that are not discussed in the present paper.

4.1 Manual Correction of Named Entities Annotation

The goal of the manual correction of NEs annotation in Składnica automatically
mapped from NKJP was four-fold:

1. correcting heuristically chosen lemmas and PlWN-based semantic types of
NEs,

2. establishing semantic types of NEs absent both in PlWN and in the table
of names,

3. finding corresponding nodes for NEs ignored during the automatic procedure,
4. adding NEs ignored in NKJP.

The last two tasks were performed only if omitting given NE resulted in leaving
uninterpreted words that cannot be correctly interpreted as common words.
The main task 1 was performed in the case when NEs were incorrectly an-

notated. If the correct unit or type existed, the choice was modified. Otherwise
the corresponding semantic type was added. Differentiating these situations is
important for two reasons. First, it influences evaluation. Second, it shows the

Conversion of Named Entities from NKJP to Składnica 101

<named name_id="named_4.62-s_n2">
<nambase>Wik</nambase>
<nkjp_type type="geogName"/>
<plwn_types part="whole" case_agreement="Full" polysemy="false">
<type typid="n2-tv1" status="auto" chosen="false">
<nbase>Wik</nbase>
<plwntype>200001</plwntype>

</type>
<type typid="n2-tv2" status="added" chosen="true">
<nbase>Wik</nbase>
<plwntype>4267</plwntype>

</type>
</plwn_types>

</named>

Fig. 5. NE with added correct interpretation

lack of the corresponding NE in the table of names. An example of an NE with
added interpretation is presented in Fig. 5. Task 2 is similar.
Realisation of task 3 led to assigning 15 subphrases and 28 superphrases of

corresponding NEs, realisation of task 4 led to adding 122 NEs, 7 foreign ex-
pressions, 5 lexicalisations, 4 neologisms, 3 cases of metonymy and 1 dialectal
expression.

4.2 Actual Evaluation

Evaluation concerns only NEs that were automatically mapped. Table 1 contains
the number of mapped NEs w.r.t. their NKJP types and subtypes (columns de-
noted ‘Freq’). The largest group of names are personal names (45%), geographi-
cal and place names constitute 35% of all names. For 493 of 3821 (13%) NEs the
lemma matching procedure failed. For 56 of the remaining 3319 NEs there was
not a correct interpretation among the suggested ones, hence the corresponding
heuristics had no chance to work properly. On the other hand, 151 NEs were
interpreted both in PlWN itself and in the table of names.
The number of detected female forms of surnames is 28.
The task 1 of manual correction consists in changing the automatic choice,

which results in one false positive (the automatically chosen wrong interpreta-
tion) and one false negative (the different, manually chosen, proper interpre-
tation). Therefore, the number of false positives and false negatives is equal,
hence precision, recall and F-measure are equal as well. Actually, they equal
correctness, since the number of true positives denotes the number of NEs an-
notated properly, whereas the number of false positives denotes the number of
NEs annotated improperly.

102 E. Hajnicz

Table 2. Evaluation of all named entities w.r.t. lemma matching heuristics

info
Full AllLow FirstUp TOTAL

H W T H W T H W T H W T

freq 429 940 1369 20 118 138 0 0 0 449 1058 1507
acc 93.9 98.0 95.9 90.7 95.8 95.3 — — — 93.8 97.5 95.8
corr 92.3 98.9 96.9 90.0 94.1 93.5 — — — 92.2 98.4 96.5
added 6 1 7 0 2 2 0 0 0 7 3 10

P
lW
N

freq 43 1762 1805 0 0 0 0 1 1 43 1764 1807
acc 100 99.6 99.6 — — — — 100 100 100 99.6 99.6
corr 100 99.8 99.8 — — — — 100 100 100 99.8 99.8
added 14 29 43 0 2 2 0 0 0 16 31 47ta

b
le

freq 472 2702 3174 20 118 138 0 1 1 492 2822 3314
acc 94.2 99.0 97.7 90.7 95.8 95.2 — 100 100 94.1 98.7 97.5
corr 93.0 99.5 98.5 90.0 94.1 93.5 — 100 100 92.9 99.2 98.3
added 20 30 50 0 4 4 0 0 0 0 0 0

b
o
th

Table 2 shows the evaluation of all named entities w.r.t. lemma matching
heuristics: case heuristics (Full means that the case of the NE lemma was not
changed). Each corresponding column is divided into tree subcolumns w.r.t. head
heuristics: H meaning that the head of NE was found in the resources,Wmeaning
that an NE was interpreted as a whole and T for total figures. The ‘freq’ row
shows how often a particular heuristic was applied. The ‘acc’ row contains the
accuracy, whereas the ‘corr’ row includes the correctness calculated for NEs with
a particular heuristics applied to find its lemma. Finally, the ‘added’ row sums
up situations in which the lemma found in PlWN or in the table of names was
not the actual lemma of an NE or it was not interpreted in the resource.
It is easy to notice that the case change heuristics was applied occasionally;

whereas head heuristics is quite often. On the other hand, both lemma heuristics
are much more often used to much lemma in PlWN than in the table of names.
Obviously, the reason is that the table of names contains actual NEs’ lemmas.
The head heuristics could be applied if there exists a multi-word NE having its
head being a single-word NE (e.g., villages Bartodzieje, Bartodzieje Podleśne,
rivers Nida, Czarna Nida). In the case of PlWN, head heuristics is much more
appropriate, as it was explained in section 3.2.
The evaluation shows that the proposed heuristics work properly: the total

accuracy for all NEs is 97.5 whereas the total correctness is 98.3. The results
are better for the table of names than for PlWN, the reason is that attempts
to interpret named entities as common nouns often fail. It is not surprising that
applying the heuristics lowers the figures. The results for ambiguous NEs pre-
sented in Fig. 3 are still really good. Note that accuracy better than correctness
suggests that the task was hard (the level of ambiguity was high).

Conversion of Named Entities from NKJP to Składnica 103

Table 3. Evaluation of ambiguous named entities w.r.t. lemma matching heuristics

info
Full AllLow FirstUp TOTAL

H W T H W T H W T H W T

freq 285 54 339 14 92 106 0 0 0 299 146 445
acc 92.9 82.8 91.8 89.2 95.5 94.8 — — — 92.8 92.0 92.6
corr 88.4 81.5 87.3 85.7 92.4 91.5 — — — 88.3 88.4 88.3P

lW
N

freq 11 115 126 0 0 0 0 1 1 11 116 127
acc 100 96.9 97.2 — — — — 100 100 100 96.9 97.2
corr 100 96.5 96.8 — — — — 100 100 100 96.6 96.9ta

b
le

freq 296 169 465 14 92 106 0 1 1 310 262 572
acc 93.1 92.6 93.0 89.2 95.5 94.8 — 100 100 92.9 93.9 93.3
corr 88.9 91.7 89.9 85.7 92.4 91.5 — 100 100 88.7 92.0 90.2b

o
th

5 Conclusions and Future Work

The present paper reports on the task of mapping named entities annotation
from NKJP corpus to Składnica treebank. Even though the method was elab-
orated for particular resources, the heuristics used to accomplish it can be ap-
plied for mapping semantic or named entities annotation between other corpora,
especially when the target annotation schema is more fine-grained than the
source one.
The result of the actual mapping performed on Składnica 0.5 are good, but

there is still room for improvement. For instance, PlWN contains many single-
letter LUs, such as vitamins (A, B, C, D, E, K) or chemical element symbols (H
for hydrogen, O for oxygen, etc.). This led to misinterpreting initials represented
by a letter in upper case followed by a dot. Their PlWN type shows clearly that
this is a misinterpretation to be corrected. Second, when an attempt at matching
lemma of an NE fails, the more coarse heuristics based on its NKJP type and
subtype may be used, for instance person identified by their surname/forename for
personal names, town as most often settlement etc.

Acknowledgements. This research is supported by the POIG.01.01.02-14-013/
09 project which is co-financed by the European Union under the European
Regional Development Fund.

References

[1] Agirre, E., Martinez, D.: Learning class-to-class selectional preferences. In: Pro-
ceedings of the Conference on Natural Language Learning, Toulouse, France,
pp. 15–22 (2001)

[2] Brockmann, C., Lapata, M.: Evaluating and combining approaches to selectional
preference acquisition. In: Proceedings of the 10th Conference of the European
Chapter of the Association for Computational Linguistics (EACL 2003), Budapest,
Hungary, pp. 27–34 (2003)

104 E. Hajnicz

[3] Ribas, F.: An experiment on learning appropriate selectional restrictions from
parsed corpus. In: Proceedings of the 15th International Conference on Computa-
tional Linguistics (COLING 1994), Kyoto, Japan, pp. 769–774 (1994)

[4] Lapata, M.: Acquiring lexical generalizations from corpora: a case study for diathe-
sis alternations. In: Proceedings of the 37th Annual Meeting of the Association for
Computational Linguistics (ACL 1999), College Park, MA, pp. 397–404 (1999)

[5] McCarthy, D.: Lexical Acquisition at the Syntax-Semantics Interface: Diathesis
Alternations, Subcategorization Frames and Selectional Preferences. PhD thesis,
University of Sussex (2001)

[6] Hajnicz, E.: Automatyczne tworzenie semantycznego słownika walencyjnego.
Problemy Współczesnej Nauki. Teoria i Zastosowania: Inżynieria Lingwistyczna.
Academic Publishing House Exit, Warsaw, Poland (2011)

[7] Cimiano, P., Völker, J.: Towards large-scale, open-domain and ontology-based
named entity classification. In: Proceedings of the Recent Advances in Natural Lan-
guage Processing (RANLP 2005), Borovets, Bulgaria, INCOMA Ltd., pp. 166–172
(2005)

[8] Fleischman, M., Hovy, E.: Fine grained classification of named entities. In:
Proceedings of the 19th International Conference on Computational Linguistics
(COLING 2002), Taipei, Taiwan, pp. 1–7 (2002)

[9] Cucchiarelli, A., Velardi, P.: Unsupervised named entity recognition using syntac-
tic and semantic contextual evidence. Computational Linguistics 27(1), 123–131
(2001)

[10] Etzioni, O., Cafarella, M., Downey, D., Popescu, A.M., Shaked, T., Soderland, S.,
Weld, D.S., Yates, A.: Unsupervised named-entity extraction from the web: An
experimental study. Artificial Intelligence 165(1), 91–134 (2005)

[11] Nadeau, D., Sekine, S.: A survey of named entity recognition and classification.
Lingvisticae Investigationes 30(1), 3–26 (2007)

[12] Przepiórkowski, A., Górski, R.L., Łaziński, M., Pęzik, P.: Recent developments in
the National Corpus of Polish. In: [24]

[13] Głowińska, K., Przepiórkowski, A.: The design of syntactic annotation levels in
the National Corpus of Polish. In: [24]

[14] Przepiórkowski, A., Bański, P.: XML text interchange format in the National Cor-
pus of Polish. In: Goźdź-Roszkowski, S. (ed.) Practical Applications in Language
Corpora (PALC 2009), Frankfurt am Main, Peter Lang, pp. 55–65 (2009)

[15] Savary, A., Waszczuk, J., Przepiórkowski, A.: Towards the annotation of named
entities in the National Corpus of Polish. In: [24]

[16] Woliński, M.: An efficient implementation of a large grammar of Polish. In:
Vetulani, Z. (ed.) Proceedings of the 2nd Language & Technology Conference,
Poznań, Poland, pp. 343–347 (2005)

[17] Świdziński, M., Woliński, M.: A new formal definition of Polish nominal phrases.
In: Marciniak, M., Mykowiecka, A. (eds.) Aspects of Natural Language Processing.
LNCS, vol. 5070, pp. 143–162. Springer, Heidelberg (2009)

[18] Świdziński, M., Woliński, M.: Towards a bank of constituent parse trees for polish.
In: Sojka, P., Horák, A., Kopeček, I., Pala, K. (eds.) TSD 2010. LNCS, vol. 6231,
pp. 197–204. Springer, Heidelberg (2010)

[19] Świdziński, M.: Gramatyka formalna języka polskiego. Rozprawy Uniwersytetu
Warszawskiego. Wydawnictwa Uniwersytetu Warszawskiego, Warsaw, Poland
(1992)

[20] Piasecki, M., Szpakowicz, S., Broda, B.: A Wordnet from the Ground Up. Oficyna
Wydawnicza Politechniki Wrocławskiej, Wrocław, Poland (2009)

Conversion of Named Entities from NKJP to Składnica 105

[21] Derwojedowa, M., Piasecki, M., Szpakowicz, S., Zawisławska, M., Broda, B.:
Words, concepts and relations in the construction of Polish WordNet. In: Tanacs,
A., Csendes, D., Vincze, V., Fellbaum, C., Vossen, P. (eds.) Proceedings of the
Global WordNet Conference, Seged, Hungary, pp. 162–177 (2008)

[22] Agirre, E., Edmonds, P. (eds.): Word Sense Disambiguation. Algorithms and Ap-
plications. Text, Speech and Language Technology, vol. 33. Springer, Dordrecht
(2006)

[23] Gale, W., Church, K., Yarowsky, D.: Estimating upper and lower bounds on the
performance of word-sense disambiguation programs. In: Proceedings of the 30th
Annual Meeting of the Association for Computational Linguistics (ACL 1992),
Newark, DL, pp. 249–256 (1992)

[24] Proceedings of the 7th International Conference on Language Resources and
Evaluation (LREC 2010), Valetta, Malta, ELRA (2010)

Automatic Detection of Annotation Errors
in Polish-Language Corpora

Łukasz Kobyliński

Institute of Computer Science, Polish Academy of Sciences,
ul. Jana Kazimierza 5, 01-248 Warszawa, Poland

lkobylinski@ipipan.waw.pl

Abstract. In this article we propose an extension to the variation n-
gram based method of detecting annotation errors. We also show an
approach to finding anomalies in the morphosyntactic annotation layer
by using association rule discovery. As no research has previously been
done in the field of morphosyntactic annotation error correction for Pol-
ish, we provide novel results based on experiments on the largest available
Polish language corpus, the National Corpus of Polish (NCP). We also
discuss the differences in the approaches used earlier for English language
data and the method proposed in this article, taking into account the
characteristics of Polish language.

1 Introduction

Annotated text corpora are one of the most important resources used in linguis-
tics. Particularly, in computational linguistics, they serve as a basis for training
automated taggers, as well as may be used as a source of information for speech
recognition and machine translation systems. These corpora are either annotated
manually by qualified linguists, or automatically, using taggers. Unfortunately
even the most recent automated taggers are far from being 100% accurate. For
example, in the case of part-of-speech tagging of Polish texts, the best-performing
automated taggers achieve “weak correctness” (measured as the percent of words
for which the sets of interpretations determined by the tagger and the gold stan-
dard are not disjoint) of between 91.06% (TaKIPI, [1]) to 92.44% (PANTERA,
[2]). The reliability of annotation has a direct impact on the results of most other
language-related research, as the methods used there usually rely on corpora and
their annotation to perform their tasks. There is thus a burning need to improve
the tagging accuracy, as each incorrectly annotated word potentially lowers the
results of other, higher-level text processing techniques.

As manual correction of errors in the entire corpus is impractical, it is therefore
necessary to employ an automated method of tagging error detection in the
corpus to filter only potential mistakes and present them to human annotators.

2 Previous Work

Below we discuss some of the prominent representatives of the approaches pre-
viously proposed to the problem of annotation error detection.

M.A. Kłopotek et al. (Eds.): IIS 2013, LNCS 7912, pp. 106–111, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Automatic Detection of Annotation Errors in Polish-Language Corpora 107

Dickinson and Meurers [3] show an effective approach to annotation error de-
tection, which is based on the idea of finding “variation n-grams” in a corpus.
Variation n-grams are sequences of tokens, which appear multiple times in the
text and contain at least one word that has been assigned different annotation
tags throughout the corpus. The word with ambiguous annotation is called the
“variation nucleus” and is a potential place, where an annotation error might
have occurred. The n-grams are discovered in the corpus using an incremental
approach: at first unigrams are found and their position stored; next, each uni-
gram is extended left or right by one word (if possible) and the resulting n-gram
stored; the second step is repeated until no n-gram can be further extended. It
is thus a method of finding the largest contexts of words, for which a tagging
error might have been introduced during the annotation process.

A method of using association rules directly mined from the corpus data
to find frequent relationships between the annotations of segments appearing
in similar contexts has been proposed by [4]. Rules with high confidence and
support have then been used to detect word occurrences, which violate these
strong rules. The authors have concluded that the method achieved ca. 20%
precision and that the limiting factor was the sparse annotation of the Czech
PDT corpus.

There are no published works dealing with automated detection of morphosyn-
tactic annotation errors in Polish language corpora. Having in mind the fact that
very large corpus of Polish has just been released (the National Corpus of Pol-
ish [5] is a reference corpus of Polish language containing over fifteen hundred
millions of words) and that they are used regularly in most other projects re-
lated to language processing, it is an important research problem to provide such
a method, which would provide accurate results for Polish and to improve the
approaches already described in the literature for other languages.

3 Variation N-grams in Annotation Error Detection

A variation n-gram ([3]) is an n-gram of words from a collection of texts, which
contains one or more words annotated differently in another occurrence of the
n-gram in the corpus. For example, the following is a variation 9-gram taken
from the manually annotated 1 million word subcorpus of the NCP:

– Zamykam dyskusję. Do głosowania [głosować:ger:sg:n:imperf:n] nad uch-
wałą Senatu przystąpimy jutro rano.
I close the discussion. We will proceed to a vote on the resolution of the
Senate tomorrow morning.

– Zamykam dyskusję. Do głosowania [głosowanie:subst:sg:gen:n] nad uchwałą
Senatu przystąpimy w bloku głosowań.
I close the discussion. We will proceed to a vote on the resolution of the
Senate in a series of votings.

The word “głosowania” in above example is annotated as a gerund in one occur-
rence, while in another occurrence it is tagged as a noun. Dickinson and Meurers

108 Ł. Kobyliński

call such a word a “variation nucleus”, as it constitutes a variation n-gram, which
indicates an existence of inconsistency in corpus annotation.

In the original formulation of the algorithm, a variation n-gram is created
by first finding words in a corpus, which have exactly the same orthographic
form, but different annotation. Such unigrams are then extended to neighboring
words, if their orthographic form appears in more than one fragment. Applica-
tion of this method to the manually annotated 1 million subcorpus of the NCP
resulted in finding variation n-grams of length up to 67. Intuitively, longer vari-
ation n-grams, representing more similar contexts with annotation anomaly, are
the most promising candidates for annotation errors. Unfortunately, the vast
majority of unique n-grams found was not longer than 6 words. Unique n-grams
are understood as n-grams, which are not contained by any longer n-gram dis-
covered.

To evaluate the actual accuracy of the method, we have firstly prepared a list
of annotation errors spotted and corrected manually in the corpus by a trained
linguist. In course of his work the linguist corrected 2 692 mistakes in the corpus,
of which 1 332 corrections considered the morphosyntactic annotation layer. We
have used this information to estimate the recall of the approach, understood
as the fraction of previously found annotation mistakes in the corpus, which
were also detected by the automatic method. Table 1 presents the number of
manually corrected segments, which have also been detected by the variation
n-gram approach.

Table 1. Errors detected automatically vs errors corrected manually in the corpus;
minN – minimum length of variation n-grams that were inspected, TP – true positives
(among the 1 332 manual corrections), FP – false positives, F – value of the F measure

minN suspicious segments TP FP precision recall F
3 54970 398 38 0.72% 29.88% 1.41%
4 10448 97 3 0.93% 7.28% 1.65%
5 2513 24 0 0.96% 1.80% 1.25%
6 873 12 0 1.37% 0.90% 1.09%

We have also performed a direct evaluation of the precision of the method,
by inspecting manually the list of possible annotation mistakes produced by the
algorithm. The results of such an experiment are presented in Table 2.

The previously stated intuition that longer n-grams have a much greater prob-
ability of indicating an actual annotation error is clearly backed by the exper-
imental data, as precision of variation n-grams longer than 10 surpasses 70%,
while global average was 52.55%. Another intuition, suggested by the authors
of [3], is that variation nuclei appearing on a verge of a variation n-gram are
usually not an annotation error, as the context is different on that side of the n-
gram. We have repeated such an experiment, including only non-verge variation
n-grams and the results show an increase in precision of the method, but at a
cost of lower recall (see Table 3).

Automatic Detection of Annotation Errors in Polish-Language Corpora 109

Table 2. Manual verification of the list of errors detected automatically; N - length of
variation n-grams, verified – number of manually verified contexts, errors – number of
actual annotation errors

N suspicious contexts verified errors precision
4 1192 19 10 52.63%
5 373 9 5 55.56%
6 104 21 9 42.86%
7 32 16 11 68.75%
8 24 15 5 33.33%
9 23 20 6 30.00%

>=10 37 37 26 70.27%
1785 137 72 52.55%

Table 3. Errors detected automatically using the non-fringe heuristic vs errors cor-
rected manually in the corpus

minN segments TP FP precision recall F
3 18855 203 10 1.08% 15.24% 2.01%
4 4870 73 2 1.50% 5.48% 2.35%
5 1605 23 0 1.43% 1.73% 1.57%
6 678 11 0 1.62% 0.83% 1.09%

4 Increasing Recall of the N-gram Detector

Experiments with the original annotation error detection method proposed by [3]
have shown a difficulty in the direct application of the approach to Polish lan-
guage texts. The number of discovered variation n-grams in corpora of similar
sizes is much lower for Polish than it is for English. As Polish is inflectional, the
number of n-grams that can be built on the basis of orthographic word forms
is far more limited than for English. It thus possible to achieve similar preci-
sion ratio as for English, but the number of detected suspicious contexts and
consequently the (estimated) recall is much lower. Based on the original varia-
tion n-gram method, here we propose modifications to increase the recall of the
approach and make the algorithm more suitable for inflectional languages.

Firstly, we have experimented with generalization of certain word types, by
eliminating the need of two words to have exactly the same orthographic form to
be included in an n-gram. For example, in case of punctuation, abbreviations and
numbers the exact word form used should not differentiate two similar contexts.
Table 4 shows the results of experiments, in which n-grams have been extended
to neighboring words of such types, regardless of their orthographic form (e.g.
an n-gram has been extended to include a comma, even if in another context a
period was used in that place).

Secondly, we have experimented with building variation n-grams based solely
on the part-of-speech tags of words, ignoring their orthographic form. In such a
scenario we assume that similar sequences of POS tags represent contexts, having
similar grammatical structure. Table 5 presents the results of error detection

110 Ł. Kobyliński

Table 4. Errors detected automatically vs errors corrected manually in the corpus;
orthographic form of interp, brev, num, numcol types ignored

minN segments TP FP precision recall F
4 8939 90 2 1.01% 6.76% 1.75%
5 2878 32 0 1.11% 2.40% 1.52%
6 1107 16 0 1.45% 1.20% 1.31%

using that approach. Clearly, the recall of the method has successfully been
increased, at a cost of lower precision.

Table 5. Errors detected automatically vs errors corrected manually in the corpus;
n-grams extended based on their POS tags

minN segments TP FP precision recall F
4 28499 257 30 0.90% 19.29% 1.72%
5 9547 98 9 1.03% 7.36% 1.80%
6 2762 36 0 1.30% 2.70% 1.76%

5 Detecting Anomalies in Annotation Using Association
Rules

Association rule mining has been proposed in [6], originally as a method for mar-
ket basket analysis. This knowledge representation method focuses on showing
frequent co-occurrences of attribute values in data. Based on the original idea
of [4], we have used association rule mining to identify relationships in corpus
morphosyntactic annotation, which were of very high confidence, but still not
equal to 100%. This allowed us to detect word-annotation pairs, which were
suspiciously rare and therefore could constitute an error. We have mined rules
having support greater or equal to 0.1% and confidence above 99% in a random
sample of corpus contexts. We have then transformed the discovered rules into
search queries, allowing us to identify instances, which did not support the 99%
confident rules. Given a rule of the form:

attr1, . . . , attrn −→ attrn+1, . . . , attrm,

we have formed a search query as follows:

attr1 & . . . & attrn & !attrn+1 & . . . & !attrm.

Below we give an example of several rules mined from the corpus and associated
search queries, along with the number of actual errors identified by the query.
Numbers in parenthesis indicate the number of segments that supported the rule
antecedent / rule consequent.

Automatic Detection of Annotation Errors in Polish-Language Corpora 111

– base=my −→ ctag=ppron12 (276/274)
• query [base=my&pos!=ppron12] returns 1 error in 7 results,

– ctag=aglt −→ base=być (290/288)
• query [pos=aglt&base!=być] returns 10 errors in 24 results,

– base=no msd=[null] −→ ctag=qub (446/442)
• query [base=no&pos!=qub] returns 2 errors in 13 results,

– base=tak ctag=adv −→ msd=pos (118/117)
• query [base=tak&pos=adv°ree!=pos] returns 27 errors in 27 results.

6 Conclusions and Future Work

We have presented experimental results of two approaches to automatic detec-
tion of annotation errors applied to the National Corpus of Polish, a reference
linguistic resource for Polish. We have successfully adapted methods proposed
earlier for English language corpora to inflectional Polish language and proposed
extensions, which may be used to increase recall of the detector, regardless of
the target language. Described approaches to automatic detection of annotation
errors proved to reduce the amount of time needed to identify mistakes and
facilitated correction of a large corpus, namely the National Corpus of Polish.

In the future, we plan to combine various detection methods to further improve
both the precision and recall of the system. As each of the approaches may
identify different contexts as potentially erroneous, aggregating their results is a
promising direction of further work.

Acknowledgements. The author would like to thank Łukasz Szałkiewicz for
his linguistic work and Michał Lenart for sharing algorithm implementations.
The work has been funded by the National Science Centre project number DEC-
2011/01/N/ST6/01107.

References

1. Piasecki, M.: Polish tagger TaKIPI: Rule based construction and optimisation. Task
Quarterly 11(1-2), 151–167 (2007)

2. Acedański, S.: A morphosyntactic brill tagger for inflectional languages. In: Loftsson,
H., Rögnvaldsson, E., Helgadóttir, S. (eds.) IceTAL 2010. LNCS, vol. 6233, pp. 3–14.
Springer, Heidelberg (2010)

3. Dickinson, M., Meurers, D.: Detecting errors in part-of-speech annotation. In: Pro-
ceedings of the 10th Conference of the European Chapter of the Association for
Computational Linguistics (EACL 2003), Budapest, Hungary (2003)

4. Novák, V., Razímová, M.: Unsupervised detection of annotation inconsistencies us-
ing apriori algorithm. In: Proceedings of the Third Linguistic Annotation Work-
shop, Suntec, Singapore, pp. 138–141. Association for Computational Linguistics
(August 2009)

5. Przepiórkowski, A., Bańko, M., Górski, R.L., Lewandowska-Tomaszczyk, B. (eds.):
Narodowy Korpus Języka Polskiego. Wydawnictwo Naukowe PWN, Warsaw (2012)

6. Agrawal, R., Imielinski, T., Swami, A.N.: Mining association rules between sets of
items in large databases. In: Proceedings of the ACM SIGMOD International Con-
ference on Management of Data, Washington, D.C., USA, pp. 207–216 (May 1993)

Unsupervised Induction of Persian Semantic

Verb Classes Based on Syntactic Information

Maryam Aminian1, Mohammad Sadegh Rasooli2, and Hossein Sameti1

1 Department of Computer Engineering,
Sharif University of Technology, Tehran, Iran

maminian@ce.sharif.edu, sameti@sharif.edu
2 Department of Computer Science, Columbia University, New York, NY, USA

rasooli@cs.columbia.edu

Abstract. Automatic induction of semantic verb classes is one of the
most challenging tasks in computational lexical semantics with a wide
variety of applications in natural language processing. The large num-
ber of Persian speakers and the lack of such semantic classes for Persian
verbs have motivated us to use unsupervised algorithms for Persian verb
clustering. In this paper, we have done experiments on inducing the se-
mantic classes of Persian verbs based on Levin’s theory for verb classes.
Syntactic information extracted from dependency trees is used as base
features for clustering the verbs. Since there has been no manual classi-
fication of Persian verbs prior to this paper, we have prepared a manual
classification of 265 verbs into 43 semantic classes. We show that spectral
clustering algorithm outperforms KMeans and improves on the baseline
algorithm with about 17% in Fmeasure and 0.13 in Rand index.

1 Introduction

Persian is an Indo-European language as the first language by more than 100
million speakers in Iran, Afghanistan, Tajikestan, and a few other countries.
Several challenges such as free order of words, colloquial texts, pro-drop and
complex inflections [1] in addition to the lack of efficient annotated linguistic
data have made processing of Persian texts very hard. As an instance, there are
more than 100 verb conjugates and 2800 noun declensions for some word forms in
Persian [2], some words in the Persian language do not have a clear word category
(i.e. lexical category mismatching) [3] and so many compound verbs (complex
predicates) can be separable (i.e. the non-verbal element can have a distance from
the position of the light verb) [4]. Despite the high importance of computational
lexical semantics, there have not been much considerable researches on this area
for the Persian language.

Many verbs have similar semantic components, e.g. walk and run are two
verbs that have similar meanings. In both, an actor moves from a source to a
location. In addition to the semantic redundancy, knowing the similar frequent
words of a rare word (i.e. having a prior knowledge of lexical classes) may help
overcome data sparsness. This seems an interesting issue for researchers as a

M.A. K�lopotek et al. (Eds.): IIS 2013, LNCS 7912, pp. 112–124, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Unsupervised Induction of Persian Semantic Verb Classes 113

means to improve common natural language processing tasks such as parsing [5],
word sense disambiguation [6], subcategorization acquisition [7] and semantic
role labeling [8].

The large amount of the applications of lexical classification has lead to the
popularity of the task in natural language processing. In addition to the expenses
of manually classifying words, the existing available lexical resources which are
manually constructed lack useful statistical information. While the existing man-
ually constructed lexicons are hard to be extended, automatic classification is
cost-effective and provides statistical information as a consequence of the classi-
fication process. Unsupervised clustering methods are more popular than other
machine learning techniques for lexical classification. These algorithms do not
require any annotated corpora. Moreover, unsupervised methods can be used
as a starting point for manual annotation in order to speed up the annotation
process.

Among all word categories, verbs usually act as the main part of the sentence
and provide useful information about the meaning and structure of the whole
sentence. The centrality of verbs in linguistic approaches such as dependency
grammar makes the task of semantic classification of verbs very important. Man-
ual classifications of semantic verb classes exist for several languages. Levin verb
taxonomy [9] is one of these lexical semantics resources that is mostly used by
researchers. It is based on the hypothesis that there is a tight relation between
the verb meaning and its alternation behavior which is captured by diathesis
alternation. Diathesis alternation is an alternation in the expression of the argu-
ments of a verb, such as different mappings between transitive and intransitive
aspects. Based on Levin’s idea, verbs that are in the same semantic classes are
expected to have similar syntactic behaviors. Since recognizing the syntactic be-
havior of verbs is a challenging task and has many ambiguities, the syntactic
behavior of verbs is captured by just finding the subcategorization frames in so
many studies just for the sake of simplicity. As an example, consider two Persian
verbs “ ����� ��	
 ��
” (to speak) and “ ����� ��� ��” (to escape) which govern prepo-

sitions “ ��
” (with) and “ ��
 � ���” (from, to) respectively. While these verbs have
similar syntactic behavior, they do not belong to the same semantic clusters.
However, considering the lexical features (such as prepositions), the ambiguity
may decrease.

To the best of our knowledge, no comparable Persian verb classification study
has been reported so far. Therefore, such a research can fill gaps in lexical
knowledge for Persian. In this paper, we use diathesis alternation as an ap-
proach to characterize verb behavior. Subcategorization frames for each verb
is extracted from the Persian Dependency Treebank [10]. Two clustering algo-
rithms (KMeans [11] and Spectral Clustering [12]) are used for the clustering
task. Evaluation is done based on the manual conversion of German verb classes
in [13] to Persian by considering Persian verbs in the Persian verb valency lexi-
con [14]. This type of conversion is done for the first time in the Persian language

114 M. Aminian, M.S. Rasooli, and H. Sameti

by the authors of this paper1. The evaluation results show an improvement on
the baseline methods.

The remainder of the paper is as follows. In Sect. 2, previous studies on
verb classification is reviewed. In Sect. 3, we present a brief introduction to
the clustering algorithms used in the paper. Sect. 4 describes the procedure of
evaluation data preparation and experimental results. In Sect. 5, mathematical
analysis and evaluation are presented. In the last Section, conclusions are made.

2 Related Work

One of the first considerable studies on verb clustering is proposed by Schulte im
Walde [15] for German verbs. In that work, subcategorization frame acquisition
is done by a robust statistical head-lexicalized parser. Lexical heads for each
syntactic complement is included in the extracted frames, e.g. each prepositional
phrase is accompanied by the lexical prepositional head plus the head noun
of the subordinated noun phrase. Lexical heads are used to extract selectional
preferences for each verb argument. Selectional preferences are the amount of
information that a verb provides about its semantic arguments [16]. In [15],
selectional preferences extraction is done using the co-occurrence of verbs with
their WordNet synsets for calculating the probability of WordNet conceptual
classes for each verb-frame type. Clustering is done in two ways: I) a pairwise
clustering algorithm is initialized by assuming each data point as a singleton
cluster and clusters are merged by measuring the distance between clusters; and
II) unsupervised latent class analysis where a verb cluster is assumed as a latent
variable that is to be optimized during E and M steps of the EM algorithm.

Since subcategorization frames are the main features used for verb clustering,
the clustering accuracy is directly affected by the subcatgorization frame acqui-
sition process [13]. In [17], spectral clustering is used in order to transform high
dimensional original data points to a set of orthogonal eigen vectors. This trans-
formation reduces the risk of being trapped in local optima which may happen in
certain classic algorithms such as KMeans. In [17], 38 subcategorization frames
are extracted from a subcategorization lexicon and information about preposi-
tional phrases for each verb are used as the feature vectors. In [18], attempts
are made to cluster 57 German verbs into 14 classes utilized by subcategoriza-
tion frame acquisition using the lexicalized form of a probabilistic grammar for
German which is trained on a large corpus with KMeans algorithm. In [19,20],
the effect of prepositional information is studied. In those studies, results show
that prepositional information may improve verb clustering. Furthermore, the
number of prepositions that are used are not significantly effective.

As mentioned earlier in this paper, in Levin’s idea, verbs in the same semantic
clusters are expected to have similar syntactic behavior while verbs with similar
syntactic features may not be categorized similarly. Therefore, with subcatego-
rizaion frames, the semantic classes of verbs can not be distinguished completely.

1 The dataset is available from
http://www.cs.columbia.edu/~rasooli/index_files/pvc.tar.gz

http://www.cs.columbia.edu/~rasooli/index_files/pvc.tar.gz

Unsupervised Induction of Persian Semantic Verb Classes 115

Sun and Korhonen [21] showed that selectional preferences for different argu-
ments such as subject and object in addition to the prepositional information
improve the verb clustering accuracy. This improvement is not significantly bet-
ter than using prepositional information alone.

Polysemous verbs (i.e., verbs that have multiple meanings) are one of the
challenging problems in verb clustering. Several works consider the most frequent
sense of verbs as the dominant sense and ignore polysemy. A number of other
researches have tried to overcome this connivance [22,23]. In [22], a generative
model and in [23], the information bottleneck as an iterative soft clustering
method based on information theoretic grounds, are used to overcome the verb
polysemy.

Sun et al. [24] employed hierarchical graph factorization clustering (HGFC)
as a graph-based probabilistic clustering algorithm. The method had been ap-
plied to the identification of social network communities prior to this study and
Vlachos et al. used it for natural language processing tasks for the first time.
Results show that this algorithm outperforms other hierarchal clustering algo-
rithms such as AGG for verb clustering. Bayesian nonparametric models based
on Dirichlet process mixture models (DPMM) are also used for lexical semantic
classification of verbs [25]. In DPMM, unlike other clustering methods, there is
no need to specify the number of target clusters.

The only study about computational semantics for Persian verbs that we are
aware is done by Saeedi and Faili [26] which is about argument classification of
Persian verbs using syntactic frames (valency structures) and chunks.

3 Semantic Clustering of Persian Verbs

3.1 Persian Lexical-Semantic Verb Classes

Since no semantic verb classification exists for Persian verbs, we have constructed
an evaluation data in a manual process. We used Levin style verb classes used
in [13] where 168 German verbs were manually classified into 43 semantic verb
classes based on their common semantic properties. We translated the equivalent
English verbs of those verbs using Google translate API to Persian. There were
a number of polysemous verbs among the translations prepared by Google. To
overcome the problem of polysemy, we assigned each verb to the class that has
the dominant sense of that verb. We ignored the translations that do not act
as verbs in Persian and tried to substitute them manually with their equivalent
Persian verbs. Therefore, some clusters were removed in this process because
their members did not have proper equivalent Persian verbs. Semantic classes
were given in two levels including coarse and fine labels; however we combined
fine labels and formed them as a coarse class to increase classification generality.

We only consider verbs in the Valency Lexicon for Persian verbs [14] to con-
struct the gold verb classes and ignore irrelevant verbs. In the conversion process,
the main question is whether transferring verb classes to Persian preserves the
verb syntactic-semantic relations or not. Our linguistic investigation confirms the

116 M. Aminian, M.S. Rasooli, and H. Sameti

hypothesis that semantic relations are not transferred completely after transla-
tion, therefore some clusters are modified manually in order to integrate verb
classes. This modification is done based on semantic intuitions completely and is
not affected by the facts about the syntactic behavior of verbs. The final Persian
verb classes consist of 265 verbs that are classified into 30 coarse grained (43 fine
grained) classes. We use the coarse grained classes in our experiments. Details
about the classes are shown in Table 1.

3.2 Empirical Distribution for Persian Verbs

Verbs are represented by distributional vectors with values acquired from the
Persian Dependency Treebank [10]. The value of each feature in the feature vec-
tor represents the probability of each syntactic frame that is obtained from the
syntactic relations in the Persian Dependency Treebank. Base structures show all
possible combinations of syntactic complements that can generate all sentences
of the language. Table 2 represents these structures in Persian. Possible comple-
ments in these frames include nine kinds of syntactic complements for verbs in
Persian which Rasooli et al. [14] enumerate: subject (SBJ), object (OBJ), preposi-
tional complement (VPP), Ezafe complement (EZC), complement clause (VCL),
Mosnad (MOS), Tamiz (TAM), adverbial complement (ADVC), and second ob-
ject (OBJ2). Among the 28 Persian base structures as syntactic frame types in
Persian, we consider only 25 structures and ignore the structure with the null
subject (obligatory absence of subject). Null subjects are rare in Persian and it
is hard to distinguish between pro-drops and null subjects. We extract features
in two levels:

1. Frequency Distributions of Persian Verbs over 25 Subcategorization Frames.
For each verb (vi), the empirical distribution of each frame (f) is obtained

by C(vi,f)
C(vi)

where C(vi, f) is the joint frequency of a verb-frame couple and

C(vi) is the total number of the specified verb in the corpus. We constrain
our verb clustering task to the verbs that exist in the Persian verb valency
lexicon [14] and among all verbs in the lexicon, we only consider verbs with
a frequency higher than 100, leaving a final list of 653 verbs. Among the list,
only 129 verbs exist in the semantic verb classes in Table 1. Therefore, we
only consider 129 verbs for the clustering task.

2. Information about Prepositions in Each Frame. Since subcategorization frames
can only capture pure syntactic information about the verb behavior, we at-
tach information about the prepositions accompanied by each verb in special
frame types to the verb feature vector. We capture all possible preposition
combinations for Persian verbs using the Persian dependency trees and add
them to the feature vector. The values of these new features are calculated
by C(vi,pps)

C(vi)
in which C(vi, pps) is the joint frequency of each verb with the

special preposition groups.

Unsupervised Induction of Persian Semantic Verb Classes 117

Table 1. Persian verb classes based on [13]. Some class labels include finer levels shown
in sub-columns. Eng. Trans. refers to the English translation of the sample verbs. Only
coarse grained classes are used in the experiment and evaluation. There are no verbs
in some of the clusters; however we keep such clusters in the table in order to provide
a comparative view with [13].

Class label No.Mem. Sample verb(s) Eng. trans.

Aspect 12 ����� ��� ��
�
� start

Propositional Attitude 13 ��� �� ��� guess

Desire
wish 3 ������
 �	��� hope

need 0 - -

Transfer of Possession
Obtaining 4 ����� !�� obtain

Giving
Gift 10 ����� ��"�# present

Supply 10 �����	$� �� send

Manner of Motion

Locomotion 8 ���� ��� go

Rotation 4 ������ ���%& rotate

Rush 3 ���� ����	 '$ hurry

Vehicle 5 �������& fly

Flotation 3 ������() glide

Emotion
Origin 2 ���	��
*

�#� be annoyed

Expression 8 ����� �+� �� cry

Objection 2 ������$��� frighten

Facial Expression 4 ��� �� ��	 �,	
 + smile

Perception 14 ����� -% feel

Manner of Articulation 8 ��� �� �.	�%
 scream

Moaning 5 ����� �����/ '$ complain

Communication 11 ��� �� �0�% talk

Statement
Announcement 5 ����� ��
 �� announce

Constitution 10 ����$��
�
� arrange

Promise 2 ����� ����1 �2�� ensure

Observation 7 ����� 3�"� '�� observe

Description 7 ����� �4�
 ��� interpret

Presentation 6 ����� ��� '��� demonstrate

Speculation 4 ���	� '������ �# think

Insistence 4 ����� ���(
�# insist

Teaching 6 ����� ��� teach

Position
Be in Position 7 ����� ����� set

Bring into Position 8 ���	� '�� ����� lie

Production 6 ���� ���$ produce

Renovation 9 ����$�����& decorate

Support 13 ����� �����4� support

Quantum Change 9 ����� '-"�5 diminish

Opening 5 ���� '�6 open

Existence 5 ������� �� live

Consumption 5 ���	��� '$
�
� drink

Elimination 8 ����� �0 ��� delete

Basis 0 - -

Inference 4 ���� ���6 �,
 	��7 �� conclude

Result 0 -

Weather 6 ��������
 rain

118 M. Aminian, M.S. Rasooli, and H. Sameti

Since the version of the Persian Dependency Treebank that is used in this
paper has 25497 sentences2 which seems insufficient for robust statistics, we
have extended the treebank by automatically converting Bijankhan corpus [27]
into a dependency treebank. After finding the sentence boundaries based on
punctuation clues and refining unicode characters with Virastyar open source
library [28]3, we have used a Persian verb analyzer [29]4 to preprocess the corpus.
Finally, a trained MST parser [30] is run on Bijankhan corpus with sentences of
the length less than or equal to 200. After attaching the automatically created
dependency corpus with 354879 sentences to the original dependency treebank,
a treebank with 381983 sentences is created.

Table 2. Possible sentence base structures in Persian [14]

Persian Sentence Base Structures

	SBJ				SBJ,VPP,VPP	
	NULL-SBJ,VCL				SBJ,VPP,EZC	
	SBJ,OBJ				SBJ,VPP,ADVC	
	SBJ,VPP				SBJ,VPP,VCL	
	SBJ,EZC				SBJ,VPP,TAM	
	SBJ,VCL				SBJ,EZC,VCL	
	SBJ,MOS				NULL-SBJ,VCL,VPP	
	SBJ,ADVC				NULL-SBJ,OBJ,VPP,VPP	
	SBJ,OBJ,VPP				SBJ,VPP,VPP,ADVC	
	SBJ,OBJ,EZC				SBJ,EZC,ADVC	
	SBJ,OBJ,VCL				SBJ,OBJ,VPP,TAM	
	SBJ,OBJ,TAM				SBJ,OBJ,VPP,ADVC	
	SBJ,OBJ,MOS				SBJ,OBJ,VPP,OBJ2	
	SBJ,OBJ,ADVC				SBJ,VPP,VPP	

3.3 Clustering Algorithm and Evaluation Techniques

We employ two clustering algorithms in this paper: KMeans [11] and spectral
clustering [12].

KMeans for Verb Clustering. Since KMeans is one of the best performed
algorithms that has been used for the lexical-semantic verb clustering task, we
use it for Persian verb clustering. KMeans is an unsupervised hard clustering
method assigning n data objects to k clusters. In this algorithm, k verbs are

2 The treebank is just a middle version of the main dependency treebank that was
available during our experiments. The official version of the treebank is available at
http://dadegan.ir/en

3 The open source code is available at
http://sourceforge.net/projects/virastyar/

4 The source code is available at
https://github.com/rasoolims/PersianVerbAnalyzer

http://dadegan.ir/en
http://sourceforge.net/projects/virastyar/
https://github.com/rasoolims/PersianVerbAnalyzer

Unsupervised Induction of Persian Semantic Verb Classes 119

selected as initial centroid of clusters randomly. Clusters are reorganized by as-
signing each verb to the closest centroids and by recalculating cluster centroids
iteratively until meeting certain criteria. In our experiments, the algorithm iter-
ates until certain number of iterations occurs. The number of semantic classes
for verbs is chosen as the number of clusters in the KMeans algorithm.

Spectral Clustering Algorithm for Verb Clustering. Spectral clustering
is the second clustering method used in this paper. Other multivariate clustering
algorithms such as KMeans do not guarantee to reach the global optimum, spe-
cially in high dimensional spaces. Spectral methods, first reduce data dimension
and then cluster data points by using a multivariate algorithm. The key steps
of spectral clustering algorithm for a set of points S = {s1, ..., sn} are:

1. Constructing the distance matrix D ∈ IR2: We use Euclidean distance and
Skew divergence as two different distance measures to construct D and in-
vestigate the effect of the distance measure in spectral clustering results.
Since Lee [31] has shown that Skew divergence measure (cf. (1)) is the most
effective measure for distributional similarity, we use this measure as a dis-
tance measure to construct distance matrix. In (1), α is a parameter close to
1 for controlling the smoothing rate. We set it to 0.9 following [31]. In (1),
v and v́ are two feature vectors which v is smoothed with v́ and D is the
KL-divergence measure.

Dskew(v, v́) = D(v́ ‖ α · v + (1− α).v́) (1)

2. Calculating affinity matrix A from D following (2) where σ2 is a scaling
parameter that controls the rate at which affinity drops with distance.

Aij =

{
exp(

D2
ij

σ2) for i �= j,

0 otherwise,
(2)

3. Creating the matrix L = D− 1
2AD− 1

2 where D is the diagonal form of the
distance matrix in which the (i, i)th element is the sum of elements in the
A′s ith row.

4. Taking the eigen values and eigen vectors of L.
5. Finding the {x1, ..., xk} k largest eigen vectors of L and making the matrix

X = [x1, ..., xn] ∈ IRn×k. Ng et al. [32] show that usually k well separated
clusters exist in a reduced dimension space. Hence, k is the number of classes
in the gold standard and the number of selected eigen vectors is equal to the
number of Persian verb classes in our task. We also use this approach to
find the number of clusters. After normalizing each row in X to have a unit
length which forms the matrix Y following (3), each row of Y is treated as
a data point in the reduced dimension space IRk.

Yij =
Xij

(
∑

j X
2
ij)

1
2

(3)

120 M. Aminian, M.S. Rasooli, and H. Sameti

6. Clustering data points in the new dimension space using KMeans or other
clustering algorithms. Eventually, the original data point si is assigned to
cluster j if and only if the row i in the matrix X is assigned to the cluster j.

We test the clustering task for different values of σ between 0.01 to 0.09 in steps
of 0.005 to choose the best solution since our experiments show that the results
are degraded out of this range of σ. After transforming the data points to the
reduced dimension space, Kmeans clustering is used to cluster data points.

4 Evaluation Metrics

Evaluation is done using four measures:
(I)Modified purity (mPUR), which evaluates the mean precision of the clusters

as shown in (4). Each cluster is associated with its prevalent class. The number
of verbs in a cluster K that take this class is denoted by nprevalent(K). Singleton
clusters are ignored by conditioning on nprevalent(ki) > 2 .

mPUR =

∑
nprevalent(ki)

>2 nprevalent(ki)

number of verbs
(4)

(II) weighted class accuracy (ACC) which is shown in (5) and denotes the
proportion of members of dominant clusters DOM-CLUSTi within all of possible
verb classes ci.

ACC =

∑C
i=1 verbs in DOM-CLUSTi

number of verbs
(5)

The two measures, mPUR and ACC, can be explained as precision and recall
respectively [24] .

(III) Fscore that can be rewritten as the harmonic mean of precision and
recall as in (6).

F =
2 ·mPUR ·ACC

mPUR+ ACC
(6)

(IV) Adjusted Rand index is another measure that is used to evaluate agree-
ment vs. disagreement between clusters, cf. (7). The agreement between clus-
tering results (C) and manual classification (M) is represented in a contingency
matrix C ×M : tij denotes the number of common verbs in clustering result Ci

and manual class Mj . In (7), t.i and tj. represent the number of verbs in cluster
Ci and manual class Mj respectively.

Randadj(C,M) =

∑
ij

(
tij
2

)− ∑
i (

ti.
2)

∑
j (

tj.
2)

(n2)

1
2 (
∑

i

(
ti.
2

)
+

∑
j

(
tj.
2

)
)−

∑
i (

ti.
2)

∑
j (

tj.
2)

(n2)

(7)

Unsupervised Induction of Persian Semantic Verb Classes 121

Table 3. Experimental results for semantic clustering of Persian verbs. mPUR, ACC,
and Randadj represent modified purity, accuracy, and adjusted Rand index respectively.

mPUR ACC FScore Randadj
Random Basline 32.55 41.96 34.76 0.015

KMeans
SCFs 37.20 58.14 45.37 0.043
SCFs+PPs 43.20 55.20 48.47 0.078

Spectral Clustering

SCFs (Euc.) 40.62 55.47 46.90 0.067
SCFs (Skew) 41.40 57.03 47.98 0.067
SCFs+PPs (Euc.) 41.93 57.26 48.41 0.142
SCFs+PPs (Skew) 45.97 58.06 51.31 0.099

5 Experimental Results

We employ KMeans and spectral clustering algorithms for our verb clustering
task. Verbs are represented by two levels of information. The first includes un-
lexicalized syntactic information, captured by subcategorization frames and for
the second level, the syntactic information in the first level is enriched by adding
information about prepositions accompanied by verbs. We only consider verbs
with a frequency higher than 100 in the Persian Dependency Treebank. This
constraint results to 129 verbs.

We have initialized KMeans cluster centers with k randomly chosen data
points. Euclidean distance is used as distance measure in the KMeans algorithm.
Choosing the number of clusters as an input parameter for KMeans is done us-
ing a prior information about number of semantic classes in the gold data which
is 28 classes. Table 3 shows experimental results. Evaluation is done using four
evaluation measures mentioned in Sect. 4. Results of evaluation by each measure
is reported for each clustering algorithm and feature set separately in Table 3
where SCFs and PPs show subcategorization frames and prepositional lexical
head which are used as features to represent verbs respectively. In this paper,
distance matrix construction in the first step of spectral clustering algorithm is
done using two distance measures, Euclidean distance (Euc.) and Skew diver-
gence (Skew) which is separated in the parenthesis. The first row of Table 3 refers
to the experiment baseline which is obtained by assigning the verbs randomly
to a cluster with the number between 1 and the number of gold classes.

6 Analysis and Conclusion

As a comparison, we can make the following observations according to the ex-
perimental results in Table 3. The first observation is the effect of using syntactic
features to represent verb behavior. The comparison between the results and the
baseline demonstrates that using purely syntactic features gives rise to the verb
clustering task above the baseline. Although syntactic information seems to be
the most informative features in the verb classification task, it is not sufficient to
use them in isolation and selectional restrictions must be added to the syntactic
information at both syntactic and semantic levels [33].

122 M. Aminian, M.S. Rasooli, and H. Sameti

The second observation is the effect of lexical information. As shown in Table
3, both Fscore and adjusted rand index are improved by adding information
about prepositions accompanied by verbs regardless of the clustering algorithm
and distance measures used in it. This improvement indicates that prepositions
have distinctive information for distinguishing semantic clusters of Persian verbs.
In cases such as the example in Sect. 1, when lexical information about the prepo-
sitions are added to the features, the algorithm will be able to distinguish their
semantic clusters correctly. The third observation is the effect of the clustering
algorithm. Our experiments show that spectral clustering generally outperforms
KMeans having similar feature sets.

The final observation is the effect of the distance measures. Results of spectral
clustering with different distance measures indicate that distance matrix con-
struction with Skew divergence achieve better results than Euclidean distance in
the terms of Fscore. These results confirm arguments in [31] which stated that
Skew divergence is the most effective measure for distributional vectors. On the
other hand, with Euclidean measure, we can gain better adjusted Rand index in
comparison to the Skew divergence. We can conclude that with Skew divergence
more pure clusters can be achieved, while with the Euclidean measure we may
have so many verb couples which are in the same real semantic clusters but are
not in the dominant class of their assigned clusters. It seems that our choice
of the distance measure for building the distance matrix is strongly dependent
on what our aim is. If one aims to have more pure and accurate clusters, Skew
divergence may be a good choice. On the other hand, if the goal is to have
a clustering in which the dominant clusters are not very important, Euclidean
measure seems to be better.

In this paper, we assume that each verb belongs to one cluster which involves
the most dominant sense of that verb. This assumption allows us to use (I) hard
clustering algorithms such as KMeans and spectral clustering; and (II) construct-
ing the Persian semantic verb classes in which each polysemous verb is assigned
to its most dominant sense. Therefore, considering polysemy and employing soft
clustering algorithms is an important direction in the future research in order to
improve the task. Other approaches for future works include: extending manual
definition of Persian verb classes to cover a greater number and larger variety of
Persian verbs, employing other initialization methods for KMeans algorithm such
as hierarchal clustering and enriching the feature vectors by adding selectional
preferences extracted from resources such as FarsNet [34] or information about
named entities.

Acknowledgments. We would like to thank Behrang Mohit, Nizar Habash,
Morteza Rezaei and anonymous reviewers for their helpful comments on the draft.

References

1. Shamsfard, M.: Challenges and open problems in Persian text processing. In: 5th
Language & Technology Conference (LTC): Human Language Technologies as a
Challenge for Computer Science and Linguistics, Poznań, Poland, pp. 65–69 (2011)

Unsupervised Induction of Persian Semantic Verb Classes 123

2. Rasooli, M.S., Kashefi, O., Minaei-Bidgoli, B.: Effect of adaptive spell checking
in Persian. In: 7th International Conference on Natural Language Processing and
Knowledge Engineering (NLP-KE), pp. 161–164 (2011)

3. Karimi-Doostan, G.: Lexical categories in Persian. Lingua 121(2), 207–220 (2011)
4. Karimi-Doostan, G.: Separability of light verb constructions in Persian. Studia

Linguistica 65(1), 70–95 (2011)
5. Agirre, E., Bengoetxea, K., Gojenola, K., Nivre, J.: Improving dependency parsing

with semantic classes. In: Proceedings of the 49th Annual Meeting of the Associ-
ation for Computational Linguistics: Human Language Technologies (ACL:HLT),
Portland, Oregon, USA, pp. 699–703 (June 2011)

6. Chen, J., Palmer, M.: Improving english verb sense disambiguation performance
with linguistically motivated features and clear sense distinction boundaries. Lan-
guage Resources and Evaluation 43(2), 181–208 (2009)

7. Korhonen, A.: Semantically motivated subcategorization acquisition. In: Proceed-
ings of the ACL 2002 Workshop on Unsupervised Lexical Acquisition, Philadelphia,
USA, pp. 51–58 (2002)

8. Titov, I., Klementiev, A.: A Bayesian approach to unsupervised semantic role in-
duction. In: Proceedings of the 13th Conference of the European Chapter of the
Association for Computational Linguistics (EACL), Avignon, France, pp. 12–22
(April 2012)

9. Levin, B.: English verb classes and alternations: A preliminary investigation,
vol. 348. University of Chicago press (1993)

10. Rasooli, M.S., Kouhestani, M., Moloodi, A.: Development of a persian syntactic
dependency treebank. In: The 2013 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies
(NAACL HLT), Atlanta, USA (2013)

11. Forgy, E.: Cluster analysis of multivariate data: efficiency versus interpretability of
classifications. Biometrics 21, 768–769 (1965)

12. Alpert, C., Kahng, A., Yao, S.: Spectral partitioning with multiple eigenvectors.
Discrete Applied Mathematics 90(1), 3–26 (1999)

13. Schulte im Walde, S.: Experiments on the automatic induction of German semantic
verb classes. Computational Linguistics 32(2), 159–194 (2006)

14. Rasooli, M.S., Moloodi, A., Kouhestani, M., Minaei-Bidgoli, B.: A syntactic valency
lexicon for Persian verbs: The first steps towards Persian dependency treebank. In:
5th Language & Technology Conference (LTC): Human Language Technologies as
a Challenge for Computer Science and Linguistics, Poznań, Poland, pp. 227–231
(2011)

15. Schulte Im Walde, S.: Clustering verbs semantically according to their alternation
behaviour. In: Proceedings of the 18th Conference on Computational Linguistics
(COLING), Saarbrücken, Germany, vol. 2, pp.747–753 (2000)

16. Resnik, P.: Selectional preference and sense disambiguation. In: Proceedings of the
ACL SIGLEX Workshop on Tagging Text with Lexical Semantics: Why, What,
and How, Washington DC., USA, pp. 52–57 (1997)

17. Brew, C.,Schulte im Walde, S.: Spectral clustering for German verbs. In: Pro-
ceedings of the ACL 2002 Conference on Empirical Methods in Natural Language
Processing (EMNLP), Philadelphia, USA, pp. 117–124 (2002)

18. Schulte im Walde, S., Brew, C.: Inducing German Semantic Verb Classes from
Purely Syntactic Subcategorisation Information. In: Proceedings of 40th Annual
Meeting of the Association for Computational Linguistics, Philadelphia, Pennsyl-
vania, USA, pp. 223–230 (July 2002)

124 M. Aminian, M.S. Rasooli, and H. Sameti

19. Sun, L., Korhonen, A., Krymolowski, Y.: Verb class discovery from rich syntactic
data. In: Gelbukh, A. (ed.) CICLing 2008. LNCS, vol. 4919, pp. 16–27. Springer,
Heidelberg (2008)

20. Sun, L., Korhonen, A., Krymolowski, Y.: Automatic classification of English verbs
using rich syntactic features. In: Third International Joint Conference on Natural
Language Processing (IJCNLP), Hyderabad, India, pp. 769–774 (2008)

21. Sun, L., Korhonen, A.: Improving verb clustering with automatically acquired se-
lectional preferences. In: Proceedings of the 2009 Conference on Empirical Methods
in Natural Language Processing (EMNLP), Suntec, Singapore, vol. 2, pp. 638–647
(2009)

22. Lapata, M., Brew, C.: Verb class disambiguation using informative priors. Com-
putational Linguistics 30(1), 45–73 (2004)

23. Korhonen, A., Krymolowski, Y., Marx, Z.: Clustering polysemic subcategorization
frame distributions semantically. In: Proceedings of the 41st Annual Meeting on As-
sociation for Computational Linguistics (ACL), Sapporo, Japan, vol. 1, pp. 64–71
(2003)

24. Sun, L., Korhonen, A.: Hierarchical verb clustering using graph factorization. In:
Proceedings of the Conference on Empirical Methods in Natural Language Pro-
cessing, pp. 1023–1033. Association for Computational Linguistics (2011)

25. Vlachos, A., Korhonen, A., Ghahramani, Z.: Unsupervised and constrained Dirich-
let process mixture models for verb clustering. In: Proceedings of the Workshop
on Geometrical Models of Natural Language Semantics (GEMS), Athens, Greece,
pp. 74–82 (2009)

26. Saeedi, P., Faili, H.: Feature engineering using shallow parsing in argument classifi-
cation of Persian verbs. In: Proceedings of the 16th CSI International Symposiums
on Artificial Intelligence and Signal Processing (AISP 2012), Shiraz, Iran (2012)

27. Bijankhan, M.: The role of the corpus in writing a grammar: An introduction to a
software. Iranian Journal of Linguistics 19(2) (2004)

28. Kashefi, O., Nasri, M., Kanani, K.: Automatic Spell Checking in Persian Lan-
guage. Supreme Council of Information and Communication Technology (SCICT),
Tehran, Iran (2010)

29. Rasooli, M.S., Faili, H., Minaei-Bidgoli, B.: Unsupervised identification of persian
compound verbs. In: Batyrshin, I., Sidorov, G. (eds.) MICAI 2011, Part I. LNCS
(LNAI), vol. 7094, pp. 394–406. Springer, Heidelberg (2011)

30. McDonald, R., Crammer, K., Pereira, F.: Online large-margin training of depen-
dency parsers. In: Proceedings of the 43rd Annual Meeting on Association for
Computational Linguistics (ACL), Sydney, Australia, pp. 91–98 (2005)

31. Lee, L.: On the effectiveness of the skew divergence for statistical language analysis.
In: Artificial Intelligence and Statistics, vol. 2001, pp. 65–72 (2001)

32. Ng, A., Jordan, M., Weiss, Y.: On spectral clustering: Analysis and an algorithm.
In: Advances in Neural Information Processing Systems, vol. 2, pp. 849–856 (2002)

33. Croce, D., Moschitti, A., Basili, R., Palmer, M.: Verb classification using distribu-
tional similarity in syntactic and semantic structures. In: Proceedings of the 50th
Annual Meeting of the Association for Computational Linguistics (ACL), Jeju
Island, Korea (2012)

34. Shamsfard, M., Hesabi, A., Fadaei, H., Mansoory, N., Famian, A., Bagherbeigi,
S., Fekri, E., Monshizadeh, M., Assi, S.: Semi Automatic Development of FarsNet;
the Persian WordNet. In: Proceedings of 5th Global WordNet Conference, Mumbai,
India (2010)

Translation- and Projection-Based
Unsupervised Coreference Resolution for Polish�

Maciej Ogrodniczuk

Institute of Computer Science, Polish Academy of Sciences

Abstract. Creating a coreference resolution tool for a new language is
a challenging task due to substantial effort required by development of
associated linguistic data, regardless of rule-based or statistical nature of
the approach. In this paper, we test the translation- and projection-based
method for an inflectional language, evaluate the result on a corpus of
general coreference and compare the results with state-of-the-art solu-
tions of this type for other languages.

1 Introduction

A widely known problem of coreference resolution — the process of “determining
which NPs in a text or dialogue refer to the same real-world entity” [1], crucial
for higher-level NLP applications such as text summarisation, text categorisa-
tion and textual entailment — has so far been tackled from many perspectives.
However, there still exist languages which do not have state-of-the-art solutions
available, which is most likely caused by the substantial effort required by de-
velopment of language resources and tools, some of them knowledge-intensive,
either leading to development of language-specific rules or preparation of training
data for statistical approaches.
One of the solutions to this problem is following the translation-projection

path, i.e., (1) translating the text (in the source language) to be coreferentially
annotated into the target language, for which coreference resolution tools are
available, (2) running the target language coreference resolver, (3) transferring
the produced annotations (mentions — discourse world entities and clusters —
sets of mentions referring to the same entity) from the target to the source
language. Such a solution has so far been proposed e.g. by Rahman and Ng [2]
and evaluated for Spanish and Italian with projection from English (see Section
2). Although the source and target languages in this setting come from two
different language families, they differ markedly from inflectional languages such
as Polish, which makes the approach interesting to test with different language
pairs.

� The work reported here was carried out within the Computer-based methods for coref-
erence resolution in Polish texts (CORE) project financed by the Polish National
Science Centre (contract number 6505/B/T02/2011/40) and University Research
Program for Google Translate.

M.A. Kłopotek et al. (Eds.): IIS 2013, LNCS 7912, pp. 125–130, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

126 M. Ogrodniczuk

For Polish, there currently exist two resolvers of general coreference, a rule-
based [3] and a statistical one [4], yet they were evaluated with a dataset of
limited size — unavailable at the time of their preparation. Presently, a new
corpus is being built to improve development and evaluation of coreference res-
olution tools — a Polish Coreference Corpus [5], parts of which have been used
to evaluate our experimental results.

2 Related Work

Rahman and Ng’s paper refers to many previous projection attempts in NLP
tasks, mostly in the context of projecting annotations from a resource-rich to a
resource-scarce language, starting from parallel corpus-based solutions to newer,
machine translation-based ones. In the context of coreference resolution, two
Romanian-English works are mentioned: [6] and [7] and a Portuguese-English
one [8], all involving projection of hand-annotated data. Unlike others, Rahman
and Ng’s approach concentrated on “a technology for projecting annotations
that can potentially be deployed across a large number of languages without
coreference-annotated data”1.
The article presents three settings differing in terms of application of linguis-

tic tools, potentially caused by their (un)availability for the source language.
Setting 1 assumes no linguistic tools available, which results in projecting not
only coreference clusters, but also complete mentions. Setting 2 employs existing
mention extractors (as in our case), while setting 3 makes use of all available lin-
guistic processing tools used to generate features and train coreference resolvers
on the projected coreference annotation.
As expected, the results of Setting 1 are highly unsatisfactory, with CONLL2

F1 = 37.6% for Spanish and 21.4% for Italian. Results of setting 2 and 3 show
considerable improvement, amounting to 50-60% F-measure.

3 The Experiment

Our experiment concentrated on a configuration combining Rahman and Ng’s
settings 1 and 2. A Polish text has been translated into English and mentions
have been identified in the Polish part (as with setting 2), but an English coref-
erence resolver was running on plain English text — and not on pre-identified
Polish mentions transferred to English (as with setting 1). Only then English
coreference clusters were used to form Polish clusters using original Polish men-
tions aligned with English mentions. We believe that this configuration can
generally improve translation-based coreference resolution since predetermining
mentions might propagate errors resulting e.g. from incorrect classification of
nominal constituents of idiomatic expressions as referential. With no mentions

1 See [2], bottom of p. 721.
2 Calculated as (MUC + B3+ CEAFE) / 3.

Translation- and Projection-Based Coreference Resolution for Polish 127

predefined, the resolver can exclude non-referential expressions in the very first
step of the process.
Google Translate service has been used for producing translations, end-to-

end coreference baseline system presented in [3] was used for Polish mention
detection (see Table 1 for results of mention detection) and Stanford CoreNLP
[9], one of the best coreference resolution systems up to date, has been used for
English mention detection and coreference resolution. Instead of using external
aligners such as GIZA++ [10] employed by Rahman and Ng, we decided to make
use of the internal alignment algorithm of Google3, concentrating the two steps
of the process into one, potentially offering better coherence of the result due to
internal dependence of both steps — translation and alignment.

Table 1. Polish mention detection

Mention statistics Mention detection results

Gold mentions 23069 Precision 68.89%
Sys mentions 21861 Recall 65.28%
Common mentions 15060 F1 67.04%

Texts for the experiment were acquired from the Polish Coreference Corpus to
facilitate evaluation. They constituted 260 gold samples (all currently available),
each between 250 and 350 segments, manually annotated with information on
mentions and coreference clusters4.
The following algorithm was used:

Algorithm 1. Translation and projection-based coreference resolution
annotate pl-text to detect pl-mentions
translate pl-text into en-text with word-to-word alignment
run en-coreference resolution tool on en-text to detect en-mentions and en-clusters
for all en-clusters (including singletons) do
for all en-mentions in en-cluster do
if exists alignment between en-mention head with any pl-mention head then
put pl-mention in pl-cluster corresponding to en-chain
end if
end for
end for
for all pl-mentions not in any pl-cluster do
create singleton pl-clusters
end for

3 Made available by the University Research Program for Google Translate, see
http://research.google.com/university/translate/

4 See [5], Section 5, for detailed information on organization of the annotation proce-
dure.

http://research.google.com/university/translate/

128 M. Ogrodniczuk

4 Evaluation

All usual evaluation metrics have been calculated by comparing projection re-
sults with the golden data:

Table 2. Experimental results

Evaluation metrics P R F

MUC 50.30% 29.62% 37.28%
B3 93.34% 84.20% 88.53%
CEAFM 81.51% 81.51% 81.51%
CEAFE 81.06% 89.62% 85.12%
BLANC 71.43% 60.51% 64.01%
CONLL 74.90% 67.81% 70.31%

The final results show a promising direction and surpass figures given by
Rahman and Ng for Spanish and Italian (as compared with best results —
except for MUC — in all settings). They even withstand comparison with the
official scores of CoNLL-2011 for the top ranked system5 (below 60% average
F1).
The figures could be further improved by investigating how target language-

specific properties are being used by the translation-projection process, since
inability to fully capture such features is usually considered to be the major
weakness of projection-based approaches. However, the commonly cited prob-
lematic example of zero pronouns does not hold in the case of languages such
as Polish, since their features can easily be propagated onto verbs based on
inflectional endings, as in:

(1) Maria od zawsze kochała
����
Jana. Gdy

�
Øpoprosił ją o rękę, Øbyła szczęśliwa.6

’Maria has always loved
���
John. When

��
he asked her to marry

��
him, she was happy.’

This fact, along with the integration of alignment into translation, might explain
the better results for Polish than for Italian or Spanish.
It has also been noticed that the translation-based approach benefited from

pragmatic information integrated in the source coreference resolver and propa-
gated without integrating any similar resources into the resolution process for
the target language. For example, atrakcja ’attraction’ mention has been correctly
linked by the process with parada ’parade’ and miano ’appellation’ with tytuł ’ti-
tle’. This seems to be a very interesting feature since it introduces the idea of
exploiting the knowledge used by various coreference resolution tools, also from

5 See e.g. http://nlp.stanford.edu/software/dcoref.shtml
6 Actual translation from Polish to English produced by Google Translate, as of March
2013.

http://nlp.stanford.edu/software/dcoref.shtml

Translation- and Projection-Based Coreference Resolution for Polish 129

different languages. Similarly, a voting mechanism between several target lan-
guage coreference resolvers could be used in the process to improve the final
result.

5 Conclusions and Further Work

We believe that the presented approach can facilitate construction of computa-
tional coreference resolvers in two respects: firstly, by creating a useful baseline
for languages still lacking coreference resolution tools, and secondly, by applying
external knowledge resources to current systems.
A new branch of research could concentrate on the application of different

algorithms of alignment of coreference clusters; for languages which have coref-
erence resolvers available, their efficiency could be improved e.g. by testing how
corresponding clusters align in the source vs. target language. This could at-
tach singleton mentions in the source language to existing clusters, pointed out
by a respective cluster in the target language (i.e. containing a “target” men-
tion aligned with the singleton “source” mention). Investigating how translation
quality influences projection results seems another interesting issue.
Last, but not least, the combined translation-alignment procedure could be

applied to the data sets used by Rahman and Ng to further improve their results.

References

1. Ng, V.: Supervised Noun Phrase Coreference Research: The First Fifteen Years.
In: Proceedings of the 48th Annual Meeting of the Association for Computational
Linguistics, Uppsala, Sweden, pp. 1396–1411 (2010)

2. Rahman, A., Ng, V.: Translation-Based Projection for Multilingual Coreference
Resolution. In: Proceedings of the Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies
(HLT-NAACL 2012), Montréal, Canada, pp. 720–730. Association for Computa-
tional Linguistics (2012)

3. Ogrodniczuk, M., Kopeć, M.: End-to-end coreference resolution baseline system for
Polish. In: Vetulani, Z. (ed.) Proceedings of the Fifth Language and Technology
Conference: Human Language Technologies as a Challenge for Computer Science
and Linguistics, Poznań, Poland, Wydawnictwo Poznańskie, pp. 167–171 (2011)

4. Kopeć, M., Ogrodniczuk, M.: Creating a Coreference Resolution System for Polish.
In: Proceedings of the Eighth International Conference on Language Resources and
Evaluation, LREC 2012, Istanbul, Turkey, pp. 192–195. ELRA, European Language
Resources Association (2012)

5. Ogrodniczuk, M., Zawisławska, M., Głowińska, K., Savary, A.: Coreference anno-
tation schema for an inflectional language. In: Gelbukh, A. (ed.) CICLing 2013,
Part I. LNCS, vol. 7816, pp. 394–407. Springer, Heidelberg (2013)

6. Harabagiu, S.M., Maiorano, S.J.: Multilingual coreference resolution. In: Proceed-
ings of Sixth Applied Natural Language Processing Conference, North American
Chapter of the Association for Computational Linguistics (ANLP-NAACL 2000),
Seattle, Washington, USA, pp. 142–149 (2000)

130 M. Ogrodniczuk

7. Postolache, O., Cristea, D., Orasan, C.: Transferring Coreference Chains through
Word Alignment. In: Proceedings of the Fifth International Conference on Lan-
guage Resources and Evaluation (LREC 2006), Genoa, Italy, pp. 889–892. ELRA,
European Language Resources Association (2006)

8. de Souza, J.G.C., Orăsan, C.: Can projected chains in parallel corpora help coref-
erence resolution? In: Hendrickx, I., Lalitha Devi, S., Branco, A., Mitkov, R. (eds.)
DAARC 2011. LNCS, vol. 7099, pp. 59–69. Springer, Heidelberg (2011)

9. Lee, H., Chang, A., Peirsman, Y., Chambers, N., Surdeanu, M., Jurafsky, D.: De-
terministic coreference resolution based on entity-centric, precision-ranked rules.
Computational Linguistics 39(4) (forth., 2013)

10. Och, F.J., Ney, H.: Improved statistical alignment models. In: Proceedings of the
38th Annual Meeting on Association for Computational Linguistics. ACL 2000,
Stroudsburg, PA, USA, pp. 440–447. Association for Computational Linguistics
(2000)

WCCL Match – A Language
for Text Annotation

Michał Marcińczuk and Adam Radziszewski

Institute of Informatics
Wrocław University of Technology

Wybrzeże Wyspiańskiego 27,
Wrocław, Poland

{michal.marcinczuk,adam.radziszewski}@pwr.wroc.pl

Abstract. In this paper we present a formalism for text annotation
called WCCL Match. The need for a new formalism originates from our
works related to Question Answering for Polish. We examined several
existing formalisms to conclude that none of them fulfills our require-
ments. The new formalism was designed on top of an existing language
for writing morphosyntactic functional expressions, namely WCCL. The
major features of WCCL Match are: creation of new annotations, mod-
ification of existing ones, support for overlapping annotations, explicit
access to tagset attributes and referring to context outside of captured
annotation. We discuss three applications of the formalism: recognition
of proper names, question analysis and question-to-query transforma-
tion. The implementation of WCCL Match is language-independent and
can be used for almost any natural language.

1 Background

The work presented here originates from our efforts at development of a Ques-
tion Answering system for Polish. We faced the necessity to annotate texts with
several types of linguistic entities using hand-written rules. One of the project
assumptions was to be able to enrich morphosyntactically tagged text with sev-
eral layers of annotation, including: (1) proper names, (2) semantic relations
between proper names and (3) annotations related to question analysis, such as
question stems and answer type term [4].

It was also important to be able to process texts already annotated with some
structural information. The rules should be able to add new annotations, but
also, modify or remove existing ones (e.g. post-processing of a statistical named
entity recogniser). Also, support for overlapping annotations was crucial as we
planned to include several annotation layers corresponding to independent or
partially dependent task definitions. For instance, to peek at syntactic chunks
while attempting at recognition of named entities, while still being able to cap-
ture those named entities that cross chunks boundaries (the chunking guidelines
are different to the principles of named entity annotation).

Another requirement stemmed from the characteristics of Polish language. It
is an inflectional language and substantial amount of inflectional and syntactic

M.A. Kłopotek et al. (Eds.): IIS 2013, LNCS 7912, pp. 131–144, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

132 M. Marcińczuk and A. Radziszewski

information is typically stored in morphosyntactic tags. We use the positional
tagset of the National Corpus of Polish [5], where tags encode not only part of
speech, but also values of grammatical case, number, gender, aspect and many
other important grammatical categories. Thus, the requirement was to be able
to refer to the values of these categories instead of treating the tags as atomic
symbols.

There was also a couple of important technical requirements. We sought a
solution that would be able to process large amounts of text in reasonable time.
The rules were to be fired against questions, but also against large corpora
containing possible answers. As the rule-based component was to be integrated
into a whole system, it should support pipeline processing or at least ability to
process smaller portions of input without considerable start-up time (e.g., user’s
questions should be processed real-time).

We reviewed a couple of existing solutions (next section) and decided to de-
velop our own formalism, which we built on top of an existing language for
writing morphosyntactic functional expressions, namely WCCL [8]. In the next
sections we motivate our decisions, present the resulting formalism and its ap-
plications.

2 Why Another Formalism?

We reviewed a few formalisms and their implementations with respect to the
requirements stated in the previous section.

Spejd [6] is a formalism devised for rule-based partial parsing and morphosyn-
tactic disambiguation of Polish (and possibly other languages). The formalism
seems very attractive, since it was tailored for Polish and features full support
for positional tagsets. Spejd allows for writing rules that group together tokens
or already captured sequences of tokens. There is, however, a limitation that
excludes its usage in our scenario: new groups may be added only on top of
existing groups without the possibility of having separate layers of annotation.
This means that it is impossible to have two annotations of different type par-
tially overlapping. What is more, Spejd is not well suited to enhance partially
annotated text with new annotations, e.g. it is impossible to write a rule that
adds a smaller group that would be ‘covered’ by one already existing. This means
that if we were to adapt it to our requirements, we would have not only to ex-
tend the language with new constructs, but also to redefine the behaviour of the
existing matching expressions.

JAPE [2] is a popular formalism for writing annotation rules whose imple-
mentation is a part of the GATE platform. Each annotation rule consists of a
matching part and an action part. The matching mechanism corresponds to a
regular language over tokens and annotations. Those latter may be referred to by
their name or attribute value assertions. The rules may also reference external
dictionaries (gazetteers) and it is possible to embed arbitrary Java code in rule
actions. The main disadvantage of JAPE from our point of view is the lack of any
direct support for positional tagsets. In JAPE and other GATE components [1],

WCCL Match – A Language for Text Annotation 133

tags are normally encoded as strings attached to tokens, which is quite a crude
and cumbersome solution for a structured tagset and a language with about
1000 different tags appearing in real corpora. A possible work-around would be
to use additional processing stage to decompose each tag and encode it as mul-
tiple key–value pairs assigned to each token. Note that if rule application is to
be followed by another processing stage that operates on the level of tags, this
GATE key–value decomposition would have to be converted back into standard
tag representation.

We also considered using the NooJ platform [9]. The very first problem we
faced is a technical one: at least until recently, NooJ was strictly bound to
Microsoft .NET platform and as such it worked only under Microsoft Windows
operating systems. One of the requirement of our project was to integrate the tool
being developed with existing tools and architectures for processing of Polish,
most of which are developed for UNIX platforms. Also, the computational servers
and clusters (at least academic) are UNIX-based.

XTDL is a grammar formalism utilized by a multi-purpose engine for text
processing called SProUT [3]. The formalism combines regular and unification-
based grammars. XTDL grammars consist of pattern–action rules. Patterns are
regular expressions over Typed Feature Structures (TFS), actions create new
TFS. Although SProUT has already been applied successfully in several projects,
not all of our requirements are met. Most notably, XTDL does not support the
following: contextual constraints, modification of existing annotations, as well as
testing if tokens overlap with annotations.

The immediate conclusion was that we couldn’t take any of the above solutions
and use it ‘as-is’ in our processing pipeline. If we had to put considerable effort
into integration, we preferred to use some of the tools already available for Polish
and build our own formalism and its implementation on top of them.

3 WCCL

A significant part of a desired formalism would have to deal with matching
tokens that satisfy given constraints, including morphosyntactic information in-
ferred from positional tags. Such constraints are part of the Spejd formalism,
but also, of another formalism developed for Polish called WCCL [8]. WCCL
is a language of functional expressions that are evaluated against morphosyn-
tactically annotated sentences. These functional expressions may return values
belonging to one of four data types:
1. Boolean: such functions are predicates, either simple (e.g. if the wordform is

‘Berlin’) or complex (e.g. arbitrary number of conjunctions and alternatives
of other predicates, constraint satisfaction search, tests for set intersection).

2. Set of strings, e.g., functions gathering wordforms or lemmas from tokens.
3. Set of symbolic values taken from the tagset, e.g. possible values of gram-

matical case.
4. Position, that is, an index designating a particular token in a sentence (useful

for further processing).

134 M. Marcińczuk and A. Radziszewski

A functional expression may be built from other expressions of various types.
For instance, the following WCCL expresion checks if there exists a token of the
noun class (assuming that nouns bear subst mnemonic in the tagset definition
file used) and returns a set of grammatical case values assigned to it (assuming
cas mnemonic for this category) or an empty set otherwise. The token is sought
in the range starting from the token currently being processed (position 0) and
the end of the sentence (end).

if(
rlook(

0, end , $S ,
equal(class[$S], {subst })

),
cas[$S],
{}

)

The above example shows that simple expressions may be combined to form
more complex ones. For instance, class[$S] obtains the grammatical class of
a token at the position pointed to by the variable $S, while equal(class[$S],
{subst}) turns it into a predicate — if the returned value equals a set containing
noun class only (if corpus annotation is unambiguous, there should always be
exactly one class per token).

We found it very convenient to use this flexible formalism as a means of ex-
pressing rule constraints. The main advantage is that WCCL was designed with
the intention that the functional expressions, simple or complex, may be used
as standalone functors for various purposes. The language is strongly typed and
the syntax and semantics of each singular expression is well defined in the lan-
guage specification. This allowed us to reuse all the existing language expressions
without introducing any changes to their semantics. Instead, we built our rule
formalism, which we called WCCL Match, on top of this functional language.
As WCCL defines uniform syntax for ‘whole WCCL file’ where functional ex-
pressions of given types may be grouped under given names, we also extended
this syntax to optionally contain a special section for WCCL Match rules. What
is more, the assumptions underlying the formalism are consistent with our re-
quirements regarding the annotation structure: it is assumed that annotations
are organised in independent ‘channels’, each containing chunk-style annotations
with the possibility to mark chunk heads. This allows referring to arbitrary num-
ber of annotation layers, whose elements may mutually overlap. WCCL provides
a couple of predicates checking annotations in a given ‘channel’, e.g. if there is
any noun phrase that crosses the given token position (assuming the input data
contains a ‘channel’ with the results of NP chunking).

WCCL also comes with an open-source implementation. We extended this im-
plementation with the WCCL Match language, thanks to which we could benefit
from the existing parser, support for positional tagsets, corpus I/O routines and
implementations of the functional expressions.

WCCL Match – A Language for Text Annotation 135

4 WCCL Match

Each rule consists of three sections:
1. match specification (match),
2. additional condition that may be used to reject a match (cond, optional),
3. actions (actions).

Below is an example rule that annotates highlands’ names assuming that adjec-
tives (possibly multiword) that belong to a dictionary have already been anno-
tated as dict_adj.

apply(
match(

in(["wyżyna"], base [0]), // eng. highland
is(" dict_adj ")

),
cond(

agrpp(first (:1) , first (:2) , {nmb ,gnd ,cas })
),
actions (

mark(M, " HIGHLAND_NAM ")
)

)

The rule first matches a token whose base form is wyżyna (highlands), or,
strictly speaking, the set of possible base forms that are left after disambiguation
contains this one. Then an annotation of type dict_adj is expected. If matched,
the additional condition is checked, which in this case tests for agreement on
number, gender and case between the two elements of this match. If succeeded,
an annotation of HIGHLAND_NAM is added around the whole matched sequence,
which is accessible via M keyword1. :1 and :2 are notational shorthands for M:1,
M:2. vec:index is a simple subscripting operator for match vectors (explained
in the following subsection).

4.1 Match Specification

A match specification may consist of the following expression types:
1. Single-token match, which is essentially any valid WCCL predicate, e.g.

in(["wyżyna"], base[0]) in the above example. The WCCL functional
expresions are evaluated against a sentence with one of the tokens set as
the current position (position 0). In WCCL Match the current position is
shifted automatically by the match operator and position 0 always refers to
the token being matched at the moment, while any other integer designates
a token relatively to this token.

1 M is syntactic sugar for $m:_M, that is a variable named _M of match data type (we
added fifth data type to the core functional language to represent match vector
elements).

136 M. Marcińczuk and A. Radziszewski

2. Annotation match. It is required that a whole annotation bearing the given
name starts at the current position.

3. Nested match: repeat (one or more repetitions of the matching expressions
given), optional (zero or one repetition), text (a sequence of tokens whose
forms make up the given text), longest (each of the given match specifica-
tions is examined and the longest one is selected).

While attempting at a match, a match vector is being built. If succeeded, the
vector may be referred to in the additional condition and in rule actions. A
nested match expression also produces a nested match vector. This way it is
possible to refer to arbitrary fragments of the matched sequence.

4.2 Additional Conditions

The additional conditions are convenient means of performing more sophisticated
post-checking of a match. There are two kinds of expressions allowed here:

1. Any valid WCCL predicate. Hence WCCL functional expressions did not
operate on matches, we added two auxiliary functions to the functional lan-
guage — first and last. The functions allow to convert match vectors to
the position data type, which is already supported by a number of WCCL
functions.

2. Two convenience tests: ann and annsub, allowing to check if a given match
has the same boundaries or is a subsequence of an existing annotation.

4.3 Actions

There are two kinds of actions:

1. Related to annotations, that is adding, modification or removal of annota-
tions (mark, remark, unmark).

2. Adding of key–value properties (setprop).

5 Applications

To present the usefulness of the formalism we present a couple of use cases in
which its features were utilised.

5.1 Named Entity Recognition

We used WCCL Match to construct a set of rules to disambiguate category
of proper names on the basis of their context. The candidate proper name is
being recognised using gazetteers or general rules based only on orthographical
features (for example, a sequence of upper case letters). Listing 1.1 presents a
simple rule which disambiguates city and country name appearing in a phrase
“the capital of COUNRTY is CITY”.

WCCL Match – A Language for Text Annotation 137

apply(
match(

in(" stolica ", base [0]) , // eng. capital
is(" dict_country_nam "),
in("być", base [0]) , // eng. is
is(" dict_city_nam ")

),
actions (

mark (:2 , " COUNTRY_NAM "),
mark (:4 , " CITY_NAM ")

)
)

Listing 1.1. Sample WCCL Match rule disambiguating city and country name

Listing 1.2 presents another rule which disambiguates two first names one
after another. One interpretation can be one person name containing two first
names if both names agree in case (one PERSON_NAM annotation). The other inter-
pretation is two person names when they do not agree in case (two PERSON_NAM
annotations). The cond section is used to test the case agreement.

apply (
match (

is(" dict_first_nam "),
is(" dict_first_nam ")

),
cond(

not(agrpp(first (:1) , first (:2) , {cas }))
),
actions (

mark (:1, ’PERSON_NAM ’),
mark (:2, ’PERSON_NAM ’)

)
)

Listing 1.2. Sample WCCL Match rule disambiguating two first names in a row

5.2 Question Analysis

During question analysis we perform a couple of subtasks. These include heuris-
tic identification of questions among sentences (non-question sentences are as-
signed to question context, which is processed with a different pipeline) as well
as identification of question phrases. By question phrases we understand noun
or prepositional phrases that contain question word stems. Question phrases are
sometimes limited to question stems as in [Gdzie] urodził się Chopin? (‘[Where]
was Chopin born?’). In other cases they may contain multiple elements, e.g., [Na
ilu kandydatów] można głosować? ([For how many candidates] one may vote?).

138 M. Marcińczuk and A. Radziszewski

Below is one example rule that tries to recognises question phrases contain-
ing the question word stem ile (how many or how much). Recognised phrases are
marked as qphrase annotations with phrase head set to ile. Besides, this word is
assigned a property that it is a good indicator that the whole sentence is a ques-
tion. The match specification tests for an optional preposition followed by any
wordform having the base form of ile, followed by an optional noun in genitive.
In the additional condition a safety check is performed to avoid capturing relative
pronouns as question stems (e.g. Nie wiem, ile . . . — ‘I don’t how many. . . ’). Left
context of the match is examined and first token to the left is sought such that
it is not a punctuation mark nor particle, adverb or interjection. If such token is
found, the token must not belog to any verbal class. The match is also accepted if
the token is not found (i.e., sentence begin was reached).

apply(
match(// prep? ile genitive ?

optional (in({ prep}, class [0])) ,
in(["ile"], base [0]) ,
optional (and(in({ subst}, class [0]) , in({ gen}, cas [0])))

),
cond(

if(
// go left from the match , set $L there
skip(first(M), $L , // skip punctuation and indeclinable

inter(class[$L], {interp ,qub ,adv , interj }),
-1), // one token left not counting the above

// if still within sentence , assert this is not a verb
not(inter (class [$L], {praet ,fin ,bedzie ,imps ,impt ,inf ,

pant ,pcon ,aglt , winien })),
True // if out of bounds , it is ok

)
),
actions (

mark(M, M, M:2, " qphrase "),
setprop (M:2, " question ", "yes")

)
)

5.3 Question Transformation

WCCL Match was also used as a means of writing rules performing transforma-
tion of natural language questions into SQL queries. Such queries were posed to
a database containing semantic relations between named entities. First, we de-
fined a set of question patterns reflecting different ways of asking about proper
names being in a given semantic relation. For each question pattern we con-
structed a pair of elements — a WCCL Match rule and a SQL query pattern.
The task of each rule is to match for relevant questions and capture all their
arguments. When a rule matches, the associated query pattern is instantiated
with captured arguments. The generated query is used to extract an answer

WCCL Match – A Language for Text Annotation 139

from the database. Also, a set of question attributes (question type, subtype,
object category, argument category) is defined for each rule. Listing 1.3 contains
a sample rule matching a question about facilities located by a given street in a
given city. The rule matches two arguments — a street name and a city name.

apply(
match(

inter(base [0], ["jaki"]), // eng. what
inter(base [0], [" budowla "]), // eng. facilty
inter(base [0], [" znajdowa ć"]), // eng. located
inter(base [0], ["się"]),
inter(base [0], ["przy"]), // eng. by
inter(base [0], ["ulica"]), // eng. street
is(" road_nam "),
inter(base [0], ["w"]), // eng. in
is(" city_nam "),
inter(base [0], ["?"])

),
actions (

mark (:8 , " arg_road_nam "), // argument : road name
mark (:10 , " arg_city_nam ") // argument : city name

)
)

Listing 1.3. Sample WCCL Match rule matching a question about facilities located
at given street in given city

6 WCCL Match Is Language-Independent

WCCL Match is not bound to any particular language. It may be used to process
any language as long as the tagset used conforms to the following requirements:

– the tagset defines a non-empty set of grammatical classes (parts of speech),
– the tagset defines a possibly empty set of attributes (grammatical cate-

gories),
– each grammatical class is assigned a set of attributes that are required for

the class and a set of optional attributes,
– each attribute is assigned a set of its possible values,
– mnemonics used for grammatical classes and attribute values are unique,
– the tags are represented as a string of comma-separated mnemonics.

Note that in case of simple tagsets, such as those for English, the whole tagset
definition is limited to a set of grammatical classes and their mnemonics.

The WCCL implementation uses simple configuration files to define tagsets
(this is handled by the Corpus2 library, [7]). Tagset definitions consist of three
sections: declaration of attributes and their values (ATTR), declaration of gram-
matical classes and applicable attributes (POS) and a tag selected to represent

140 M. Marcińczuk and A. Radziszewski

nkjp.tagset

[ATTR]

ptb.tagset

[ATTR]
nmb sg pl
cas nom gen dat acc inst loc voc [POS]
gnd m1 m2 m3 f n CC
... CD
[POS] DT
adja ...
... UNK
subst nmb cas gnd
depr nmb cas gnd [IGN]
... UNK

Fig. 1. Sample tagset definitions for Polish (nkjp.tagset) and English (ptb.tagset)

unknown words (IGN). Figure 1 presents fragments of tagset definitions for Polish
(nkjp.tagset) and English (ptb.tagset).

The implementation handles data in several formats including two based on
XML (XCES, CCL) and some simple plain-text formats that are convenient for
storage of large corpora and script processing. The complete list of input/output
formats can be found at . http://www.nlp.pwr.wroc.pl/redmine/projects/
corpus2/wiki/Inputoutput_formats.

7 Conclusion

WCCL Match is a language-independent formalism for text annotation which
may be used in many natural language processing tasks that involve text match-
ing and annotation. The language has already been used for several applications
including question analysis and proper name recognition.

The presented formalism has several unique features which make it an attrac-
tive alternative for other related tools. WCCL Match is now part of the WCCL
toolkit. The toolkit provides core C++ implementation, which compiles into
a shared library and a set of command-line utilities, but also, simple Python
wrappers that facilitate rapid application development. The whole package is
available under GNU LGPL 3.02.

The current implementation assumes sequential firing of rules, while the pos-
sibility of using finite-state techniques should be considered. On the other hand,
the current processing speed seems quite satisfactory for the applications tested.

Acknowledgements. The work was funded by the NCBiR NrU.: SP/I/1/
77065/10.

2 Project site: http://www.nlp.pwr.wroc.pl/redmine/projects/joskipi/wiki

http://www.nlp.pwr.wroc.pl/redmine/projects/corpus2/wiki/Inputoutput_formats
http://www.nlp.pwr.wroc.pl/redmine/projects/corpus2/wiki/Inputoutput_formats
http://www.nlp.pwr.wroc.pl/redmine/projects/joskipi/wiki

WCCL Match – A Language for Text Annotation 141

References

1. Cunningham, H., Maynard, D., Bontcheva, K., Tablan, V., Aswani, N., Roberts, I.,
Gorrell, G., Funk, A., Roberts, A., Damljanovic, D., Heitz, T., Greenwood, M.A., Sag-
gion, H., Petrak, J., Li, Y., Peters, W.: Text Processing with GATE (Version 6) (2011),
http://tinyurl.com/gatebook

2. Cunningham, H., Maynard, D., Tablan, V.: JAPE: a Java Annotation Patterns
Engine. Tech. Rep. CS–00–10, University of Sheffield, Department of Computer
Science (2000)

3. Drozdzynski, W., Krieger, H.U., Piskorski, J., Schäfer, U., Xu, F.: Shallow process-
ing with unification and typed feature structures — foundations and applications.
Künstliche Intelligenz 1, 17–23 (2004),
http://www.kuenstliche-intelligenz.de/archiv/2004_1/sprout-web.pdf

4. Paşca, M.: Open-Domain Question Answering from Large Text Collections. Univer-
sity of Chicago Press (2003)

5. Przepiórkowski, A.: A comparison of two morphosyntactic tagsets of Polish. In:
Koseska-Toszewa, V., Dimitrova, L., Roszko, R. (eds.) Representing Semantics in Dig-
ital Lexicography: Proceedings of MONDILEX Fourth Open Workshop, pp. 138–144.
Warszawa (2009)

6. Przepiórkowski, A.: A preliminary formalismfor simultaneous rule-based tagging
and partial parsing. In: Data Structures for Linguistic Resources and Applications:
Proceedings of the Biennial GLDV Conference 2007, pp. 81–90. Gunter Narr Verlag,
Tuebingen (2007)

7. Radziszewski, A., Śniatowski, T.: Maca — a configurable tool to integrate Polish
morphological data. In: Proceedings of FreeRBM 2011 (2011)

8. Radziszewski, A., Wardyński, A., Śniatowski, T.: WCCL: A morpho-syntactic fea-
ture toolkit. In: Habernal, I., Matoušek, V. (eds.) TSD 2011. LNCS, vol. 6836,
pp. 434–441. Springer, Heidelberg (2011)

9. Silberztein, M.: NooJ manual (2003), user’s manual available on-line at
http://www.nooj4nlp.net

A WCCL Match Grammar

This appendix contains a brief definition of WCCL Match grammar. A compre-
hensive documentation can be found at http://www.nlp.pwr.wroc.pl/wccl.

A.1 Set of Rules and Rule Structure

wccl_file := match_rules (
rule (; rule)*

)

rule := apply(
sec_match ,
(sec_cond ,)?
sec_actions

)

http://tinyurl.com/gatebook
http://www.kuenstliche-intelligenz.de/archiv/2004_1/sprout-web.pdf
http://www.nooj4nlp.net
http://www.nlp.pwr.wroc.pl/wccl

142 M. Marcińczuk and A. Radziszewski

A.2 Match Section (sec_match)

It contains a list of operators matching a sequence of tokens and annotations.

sec_match := match(
op_match (, op_match)*

)

op_match := op_match_token | op_match_seq |
op_match_ann

op_match_token := op_equal | op_inter | op_regex |
op_isannpart | op_isannhead |
op_isannbeg | op_isannend |
... (any WCCL predicate)

op_match_seq := op_text | op_optional | op_repeat |
op_longest | op_oneof

op_match_ann := op_is

op_match_token_list := op_match_token
(, op_match_token)*

Operators matching a single token (op_match_token)
Any WCCL predicate may be used to match the current token, including the
following.

– equal(arg1, arg2) — arg1 is equal to arg2 (defined for all data types),
– inter(arg1, arg2) — arg1 ∩ arg1 �= ∅ (set of strings or set of symbols),
– regex(arg1, arg2) — string arg1 matches regular expression arg2,
– isannpart(arg1) — current token is a part of annotation of type arg1,
– isannhead(arg1) — current token is a head of annotation of type arg1,
– isannbeg(arg1), isannend(arg1) — current token starts (ends) an anno-

tation of type arg1,
– not(...), or(...), and(...) — usual Boolean connectives

Operators matching a sequence of tokens (op_match_seq):
Matches sequence of tokens if given condition is satisfied.

– text(arg1) — concatenation of orthographic forms is equal to arg1,
– optional(match) — zero or one match of the parenthesized expression,
– repeat(match) — one or more repetitions of the parenthesized match,
– longest(variants) — choose the longest match,
– oneof(variants) — choose the first matched.

WCCL Match – A Language for Text Annotation 143

Matching a single annotation (op_match_ann):

– is(arg1) — matches an annotation of type arg1.

A.3 Additional Condition Section (sec_cond)

It contains a list of additional conditions to be satisfied to accept a completed
match.

sec_cond := cond(
op_cond
(, op_cond)*

)

op_cond := op_cond_token | op_ann | op_annsub

op_cond_token := op_match_token

Token-level conditions (op_cond_token) are used to test token attributes.
Any WCCL predicate may be used here. The token index may be obtained from
matched groups using first or last (returns first/last token from a match
vector element).

There are two condition operators to examine annotations, possibly occupying
different ‘channels’:

– ann(arg1, arg2) — test if a sequence of tokens spanning over group with
index arg1 is annotated with arg2,

– ann(arg1, arg2, arg3) — test if a sequence of tokens spanning from group
arg1 to arg2 (inclusive) is annotated with arg3,

– annsub(arg1, arg2) — test if a sequence of tokens spanning over group
with index arg1 is a part of annotation of type arg2,

– annsub(arg1, arg2, arg3) — test if a sequence of tokens spanning from
group arg1 to arg2 (inclusive) is part of annotation of type arg3.

A.4 Action Sect ion (sec_actions)

It contains a set of actions performed on the matched elements.

sec_actions := actions (
op_action
(, op_action)*

)

op_action := op_mark | op_remark | op_unmark | op_setprop

144 M. Marcińczuk and A. Radziszewski

Operators:

– mark(vec, chan) — creates an annotation of type chan spanning over to-
kens belonging to the given vector,

– mark(vec_from, vec_to, chan) — as above, but the annotation will span
from the first token of vec_from to the last vector of vec_to,

– mark(vec_from, vec_to, vec_hd, chan) — as above, but the annotation
head will be set to the first token of vec_hd.

– remark(...) — as mark but removes any annotations in the given channel
that would intersect with the one being added.

– unmark(vec, chan) — removes the annotation matched.
– setprop(vec, key, val) — adds a key–value property to the first token

of vec.

Diachronic Corpus Based Word Semantic

Variation and Change Mining

Xiaojun Zou1, Ni Sun1, Hua Zhang2, and Junfeng Hu1,�

1 Key Laboratory of Computational Linguistics, Ministry of Education,
School of Electronics Engineering & Computer Science, Peking University,

Beijing, 100871, P.R. China
2 School of Foreign Languages, Peking University
{xiaojunzou,sn96,zhang.hua,hujf}@pku.edu.cn

Abstract. The study of language variation has achieved a significant
growth in the past half-century, but there is seldom research conducted
from the aspect of computational lexical semantics. This paper applies
a typical computational based algorithm to a diachronic corpus and at-
tempts to track word semantic variation and change. The preliminary
experiments show that our approach achieves a helpful result in seman-
tic variation and change analysis in both overall trends and word level
characteristics.

Keywords: Language Variation and Change, Computational Lexical
Semantics, Distributional Semantic Model.

1 Introduction

The study of language variation and change has achieved a significant growth
in the past half-century, and it has now become a highly productive subfield
of research in sociolinguistics [1–3]. However, the methods of language study
adopted by sociolinguists are generally empirical investigation (which may con-
tain qualitative or quantitative analysis) based on fieldwork [3], which are usually
laborious and time consuming, and there is seldom such research conducted from
the aspect of computational lexical semantics.

The key difference between the two methodologies is that the former aims to
give accurate description of the language variation by meticulous data collection
and analysis [3], while the latter is a typical corpus based statistical method
which relies on the context (lexical or syntactic) of the target words and gives
their statistical trends in semantic or usage [4–6]. The former attempts to track-
ing the style of speaking which most closely approximates “everyday speech” [7],
while the latter analyzes and reflects the statistical characteristics of any given
text corpus computationally.

As an important method of language research, corpus based approach has
gained extensive attentions for centuries. Initially, it was widely adopted by lin-
guists in dictionary construction and grammar research. With the birth and

� To whom all correspondence should be addressed.

M.A. K�lopotek et al. (Eds.): IIS 2013, LNCS 7912, pp. 145–150, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

146 X. Zou et al.

development of sociolinguistics in the last half-century, it was attached impor-
tance to by the sociolinguists and utilized as a helpful tool in the research of
language variation and change.

This paper proposes to conduct word semantic variation and change min-
ing on a diachronic corpus from the aspect of computational lexical semantics.
Intuitively, it reveals the lexical semantic variation and change laws on the di-
achronic text corpus. The written text at each period can in some way reflects
the real language usage at that time, thus this result can also supply important
clues for sociolinguists and save their efforts in seeking for such potential cases
for variation study. Moreover, since many words and phrases bear a distinctive
characteristic of a particular time, by collecting and analyzing these words, the
trajectory of times change and social development can be discerned.

The rest of this paper is organized as follows. In the second section, the com-
putational approach to mining word semantic variation and change is elaborated.
The preliminary experimental results are presented in Section 3. The last section
concludes this paper and discusses the future work.

2 Computational Based Approach

Although language varies across both time and space [8], in this paper, we take a
nationwide publication, People’s Daily, as the corpus, ignore the geographical fac-
tors and just consider word semantic variation and change over time. We also take
the collection of the most semantically similar words to represent the senses (or
meanings) of a word in each particular period. The advantage is that polysemies
can be easily represented by all the similar words of each sense. As all the similar
words are scored and ranked, even the distribution of the senses can be reflected by
the proportion of their corresponding similar words—the main or more commonly
used senses may have more corresponding words selected to this collection.

Further, we adopt the typical distributional method [6], which is also refer-
enced as distributional semantic model (DSM), to compute the similarity be-
tween two words on the corpus of each period. DSM is known to be based on
distributional hypothesis [9], of which the essence is that a word is characterized
by the company it keeps [10]. In other words, it assumes words appearing in
analogous contexts tend to be similar. The contexts considered fall roughly into
two categories, one is syntactic context, the other is lexical context.

The construction of syntactic contexts relies on the syntactic trees of
sentences, which are typically the output of a syntactic parser [4, 5, 11] and
are extremely time-consuming to obtain on a large corpus. As an alternative,
lexical context has been studied. One commonly used lexical context is text
window, where a context c for a word w0 in a sentence S is defined as a sub-
string of sentence containing but removing w0. For instance, given sentence
“. . . w−3w−2w−1w0w1w2w3 . . .”, a text window context for w0 with size 4 can
be “w−2w−1w1w2” [12]. For the sake of simplicity, we adopt lexical context in
this preliminary research.

By tracking the semantic similarity collection of a word in each period, we can
obtain its semantic variation and usage preference evolution over time. We call

Diachronic Corpus Based Word Semantic Variation Mining 147

the word whose senses change remarkably with time diachronic sensitive word,
whereas the one whose senses change little with time diachronic insensitive word.
The diachronic sensitive words witness the times change and social development.

3 Experimental Results

The preliminary experiments were based on a diachronic corpus of People’s Daily
in half-century (from 1947 to 1996). For simplicity, we ignored the influence of
linguistic variation in word segment and the Chinese Lexical Analysis System
(ICTCLAS) [13] was applied to segment the raw text and tag the words with a
part of speech. In lexical context construction, we defined the co-occurrence as,
if and only if the two words are within the same clause, or exactly a sub-sentence
separated by any punctuation. In other words, we used a variable text window,
the boundaries of which are determined by the most nearest punctuations on each
side of the target word. Frequent words (e.g., stop words) that tend not to be
very discriminative were ignored to keep these contexts efficient. The pointwise
mutual information (PMI) [14] was adopted as the weight in building the co-
occurrence vectors and the cosine or normalized dot product was applied to
compute the distributional similarity for each word pair.

Based on the experimental setup above, the similarity of each word pair was
calculated throughout the corpus from 1947 to 1996 respectively. In this section,
we study word semantic variation and change from the following two aspects:
one is the overall data analysis, and the other is word level analysis.

3.1 Word Semantic Variation and Change Trends Analysis

In order to measure the intensity of word semantic variation, we define the K
level Semantic Stability Index (SSI) of word w from time y1 to y2 as

SSIKy1,y2
(w) =

SimilarKy1
(w) ∩ SimilarKy2

(w)

K
× 100% , (1)

where SimilarKy1
(w) and SimilarKy2

(w) denote the top K similar words collection
for word w at time y1 (in the year y1, for example) and time y2 respectively. (Note
that we also refer similar words collection as semantic similarity collection.)
The numerator on the right side denotes the intersection of semantic similarity
collections (ISSC). Intuitively, SSI describes the semantic stability degree of a
word by evaluating the ratio of items in semantic similarity collection that remain
unchanged. Meanwhile, the K level Semantic Variation Index (SVI) of word w
from time y1 to y2 can be defined as

SV IKy1,y2
(w) = 1− SSIKy1,y2

(w) . (2)

In Table 1, we take the word “��” (change color) in 1976 (here we mean y2 is
1976) as an example, where K is set as 100. It can be seen that the SSI declines
from 27% to 2% (Column 3) as the year gap (namely the y2−y1) increasing from

148 X. Zou et al.

1 to 20 (Column 1). This result accords with people’s intuition: the semantic or
usage of a word tends to keep stable within a shorter time gap. Limited by
the computational burden, we randomly selected a thousand words to do the
overall analysis. We calculated yearly the SSI of each selected word taking the
year gap of 1, 2, 3, 5, 10, and 20 respectively. Table 2 shows the average SSI on
the thousand words on each year gap. It can be seen that the average SSI also
declines as the increasing of year gap.

This preliminary experiment reveals that the semantic or usage of a word
tends to keep stable within a shorter time gap and semantic variation and change
exhibits a characteristic of gradualness.

Table 1. The ISSC and SSI of the word “��” (change color) when y2 = 1976 with
the year gap of 1, 2, 3, 5, 10, and 20 respectively (K = 100)

Year ISSC
SSI ISSC

Gap Size

1 27 27% ��/loosen, ��/halt, ��/rust, ��/overcome, �
�/drain, ��/truce, ��/color, ��/humanity, ��
��/change color, ��/landscape, ����/throughout
the ages, ��/forever, ���/detachment of women, �
���/Φgrim, ��/perish, ��/destroy, ��/benefit,
��/red, ��/fade, ���/screw, ��/obliterate, �
�/radio wave, ��/splendid, ���/doyen, ��/lose
one’s course, �	/give directions, ���/Zhejiang
Province

2 17 17% ��/pool side, ��/red, ��/splendid, ��/landscape,
���/screw, ��/presbyopia, ����/throughout the
ages, ����/hard-won, ��/halt, ��/forever, �
��/detachment of women, ��/lose one’s course, �
�/perish, ��/truce, ��/obliterate, ��/color, �
�/rust

3 14 14% ��/halt, ��/fade, ��/overcome, ��/landscape, �
��/screw, ����/throughout the ages, ��/forever,
��/lose one’s course, ��/drain, ��/truce, �
�/obliterate, ��/perish, ��/color, ��/rust

5 14 14% ��/loosen, ��/red, ��/splendid, ��/fade, �
�/drain,��/urgency,��/landscape,���/screw,�
���/throughout the ages, ��/halt, ��/forever, �
�/obliterate, ��/lose one’s course, ��/rust

10 10 10%
�/perform, ��/fade, ��/magnificent, ��/drain,
��/landscape, ���/screw, ����/throughout the
ages, ��/forever, ��/color, ��/rust

20 2 2% ��/obliterate, ��/forever

Table 2. The average SSI on each year gap

Year Gap 1 2 3 5 10 20

SSI(%) 1.65 1.38 1.26 1.13 0.98 0.73

Diachronic Corpus Based Word Semantic Variation Mining 149

3.2 Diachronic Sensitive and Insensitive Words Mining

The average SSI of each word on all the year gaps can also be calculated. This
value reflects the diachronic sensitivity of a word to semantic variation and
change. By ranking the words in SSI, we can obtain the diachronic sensitive and
insensitive words. Table 3(a) and 3(b) display the top 10 diachronic sensitive
and insensitive words respectively over the half-century by ranking the thousand
randomly sampled words mentioned above. Taking “���” (middle and poorer
classes) as an example, it generally has two senses in the corpus, one is middle-
and lower-level of something (usually thick or deep), the other is middle and
poorer social groups. The emphasis of each sense in the corpus varies with time
going by. We take the former sense as an example. At first, it describes things
such as haystacks (agricultural industry), with the economic development, it
describes rivers or seas (fishery industry), and then the mines (mining industry).
Thus its similar words collections vary notably and have few intersections, in
other words, “���” is a diachronic sensitive word in the corpus. On the
contrary, the similar words collections of “��” (friendship) keep relatively
stable with time and the intersections between different years always include
“��”(forever), “��” (deep), “��”(maintain) and so on. Thus, “��” is a
diachronic insensitive word in the corpus.

Table 3. The ranked diachronic sensitive and insensitive words

(a) The top 10 diachronic sensitive words.

Rank Word SSI(%) Rank Word SSI(%)

1 ���/middle and poorer classes 0.10 6 	�/bankbook 0.14

2
��
�/across

0.10 7
���	/yearn day

0.14
vast oceans and night

3 �	�/be at odds with sb. 0.12 8 ��/be lucky 0.15
4 		
�/a silly little girl 0.13 9 �
/coarse 0.15
5
���/product manufacture 0.14 10 ��/dine together 0.15

(b) The top 10 diachronic insensitive words.

Rank Word SSI(%) Rank Word SSI(%)

1 ���/commander in chief 8.65 6
	�/concrete 7.37
2 ��/friendship 8.36 7 ��/revolution 7.09
3 ��/India 8.15 8 ��/physics 7.02
4 ��/slacken 7.85 9 �	/dollar 6.82

5 	�	
�/Mauritania 7.47 10
�
�/political

6.28
department

4 Conclusions and Future Work

This paper studies word semantic variation and change mining on a diachronic
corpus from the aspect of computational lexical semantics. The preliminary ex-
periments show that our approach achieves a helpful result in words diachronic
semantic variation and change analysis in both overall trends and word level

150 X. Zou et al.

characteristics (eg., diachronic sensitivity). Our future work will focus on the
following aspects. Firstly, using more refined algorithm to process the diachronic
corpus and designing more elaborate model in word semantic mining. Secondly,
many other social historical changes mining can be conducted based on the di-
achronic corpus of People’s Daily.

Acknowledgments. We thank Ma Yongfang for her initial work on synony-
mous relationship extraction [15] and Shi Weijia for his web based demo system
based on Ma’s work [16]. Thanks to Dou Xiaotian for his further improvement on
this demo system. This work is supported by the Chiang Ching-kuo Foundation
for International Scholarly Exchange under the project “Building a Diachronic
Language Knowledge-base” (RG013-D-09) and the Open Project Program of the
National Laboratory of Pattern Recognition (NLPR).

References

1. Labov, W.: The Social Stratification of English in New York City. Center for Ap-
plied Linguistics, Washington, D.C (1966)

2. Chambers, J.K., Trudgill, P., Schilling-Estes, N. (eds.): The Handbook of Language
Variation and Change. Blackwell, Oxford (2002)

3. Bayley, R., Lucas, C.: Sociolinguistic Variation: Theories, Methods, and Applica-
tions. Cambridge University Press, Cambridge (2007)

4. Hindle, D.: Noun Classification from Predicate-Argument Structures. In: ACL
1990, pp. 268–275. Association for Computational Linguistics, Stroudsburg (1990)

5. Lin, D.: Automatic Retrieval and Clustering of Similar Words. In: COLING/ACL
1998, pp. 768–774. Association for Computational Linguistics (1998)

6. Jurafsky, D., Martin, J.H.: Speech and Language Processing: An Introduction to
Natural Language Processing, Computational Linguistics, and Speech Recognition.
Prentice-Hall, Englewood Cliffs (2000)

7. Cedergren, H.J., Sankoff, D.: Variable Rules: Performance as a Statistical Reflec-
tion of Competence. Language 50, 333–355 (1974)

8. Radford, A., Atkinson, M., Britain, D., Clahsen, H., Spencer, A.: Linguistics: An
introduction. Cambridge University Press, Cambridge (1999)

9. Harris, Z.S.: Distributional Structure. Word, pp. 146–162 (1954)
10. Firth, J.R.: A Synopsis of Linguistic Theory, 1930-1955. Studies in linguistic anal-

ysis. Philological Society Blackwell, Oxford (1957)
11. Pantel, P., Lin, D.: Discovering Word Senses from Text. In: SIGKDD 2002,

pp. 613–619. ACM Press (2002)
12. Shi, S., Zhang, H., Yuan, X., Wen, J.R.: Corpus-based Semantic Class Mining:

Distributional vs. Pattern-Based Approaches. In: COLING 2010, pp. 993–1001.
Association for Computational Linguistics (2010)

13. Zhang, H.P.: ICTCLAS. Institute of Computing Technology, Chinese Academy of
Sciences (2002), http://ictclas.org/index.html

14. Fano, R.M.: Transmission of Information: A Statistical Theory of Communications.
American Journal of Physics 29, 793–794 (1961)

15. Ma, Y.: Synonymous Relationship Extraction and Evaluation Based on Large-scale
Corpus. Bachelor Degree Thesis. Peking University (2012) (in Chinese)

16. Shi, W.: A Web Application of Semantics Visualization Based on Synonyms Net-
works. Bachelor Degree Thesis. Peking University (2012) (in Chinese),
http://162.105.80.205:8080/keywords/key.swf

http://ictclas.org/index.html
http://162.105.80.205:8080/keywords/key.swf

A Representation of an Old Polish Dictionary
Designed for Practical Applications

Jakub Waszczuk

Institute of Computer Science, Polish Academy of Sciences
Jakub.Waszczuk@ipipan.waw.pl

Abstract. We describe an efficient representation of an old Polish dic-
tionary designed for practical applications. This representation consists
of two components: a memory-efficient automaton and a binary version
of the dictionary. We have developed a separate automata library and
we show some practical applications of the library within the context of
the old Polish dictionary.

1 Introduction

Machine-readable dictionaries can be represented in many different ways. A dic-
tionary resource in its primary form should be stored using a standard for-
mat which makes the dictionary more interoperable. Another advantage of the
standard representation is that it suggests a verified structure of the dictionary
which should be easily extensible with additional information characteristic for
resources of the particular type. Nevertheless, when it comes to a particular ap-
plication of the dictionary, other factors often become more important: lookup
speed and memory performance, for example.

A preliminary version of the old Polish dictionary has been constructed on the
basis of the paper dictionary ([1,2]). An XML structure compatible with an LMF
(Lexical Markup Framework, http://www.lexicalmarkupframework.org, [3])
meta-format has been chosen as the primary representation of the dictionary.
The dictionary has been also complemented with new word forms on the basis of
a collection of historical documents and part of speech tags has been assigned to
individual lexical entries on the basis of their contemporary equivalents (unlike
part of speech tags, equivalents were included in the paper dictionary). The
process of part of speech inferring has been described in [4].

Here we describe a structure of the old Polish dictionary developed with anal-
ysis of old Polish texts in mind. This dictionary version allows fast and memory-
efficient lookup and it can be used in practice to label words with dictionary
data such as contemporary equivalents or definitions. The dictionary structure
consists of two complementary elements:
– A minimal, acyclic finite-state automaton in which a morphology-related

part of the dictionary is stored. See section 2 for a description of an automata
library. Details about a method of storing the old Polish dictionary in the
automaton can be found in section 3.

– A binary version of the old Polish dictionary. See section 4 for more details.

M.A. Kłopotek et al. (Eds.): IIS 2013, LNCS 7912, pp. 151–156, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://www.lexicalmarkup framework.org

152 J. Waszczuk

Using the dictionary to analyze old Polish texts can be problematic because
descriptions of many lexical entries in the historical dictionary are incomplete.
Fortunately, there are language resources (morphological dictionary PoliMorf,
http://zil.ipipan.waw.pl/PoliMorf, in particular) developed for contempo-
rary Polish which can be used to supplement the historical dictionary with miss-
ing word forms. This process is described in section 3.4.

2 Automata Library

Acyclic, deterministic finite-state automata (also called directed acyclic word
graphs, DAWGs) provide a memory-efficient way to store language dictionaries.
They can be used to represent a map from words to domain-specific annotations
and, as long as the set of distinct annotations is small, a minimized DAWG is
usually much more compact than a corresponding trie built with respect to the
same dictionary.

We have developed a generic DAWG implementation in a Haskell language in
order to store the old Polish dictionary in the automaton. The implementation is
available in a form of a library at http://hackage.haskell.org/package/dawg
under the 2-clause BSD license.

2.1 Interface

The library provides a high-level interface and from a user perspective a DAWG
can be treated as a map from words1 to totally ordered values. All elements equal
with respect to an ordering relation are represented with one distinct value in
the automaton. Here is a list of basic functions provided by the library interface:

DAWG a is a polymorphic type which represents a DAWG with elements (values
kept in automaton states) of type a. Ord a is a type class which states that
elements of type a are totally ordered. A lookup function can be used to search
for an element assigned to a particular word. Functions insert, insertWith and
delete can be used to modify the DAWG. The insertWith function takes an
additional argument which tells what action should be performed when a word
is already a member of the DAWG. All three functions preserve minimality of
the automaton.
1 The actual interface is parametrized over a type of alphabet symbols, but for sim-

plicity we assume that words are built over the set of Unicode characters.

http://zil.ipipan.waw.pl/PoliMorf
http://hackage.haskell.org/package/dawg

A Practical Representation of an Old Polish Dictionary 153

2.2 Incremental Construction

There are two main methods of building a DAWG from a finite collection of
(word, value) pairs. The first one involves an additional, prior stage during
which a trie of the input collection is constructed. Only afterwards the DAWG
is built on the basis of the trie. Disadvantage of such a solution is that the trie
can be very inefficient in terms of memory usage, which sometimes makes the
method impossible to use in practice.

Another solution is to build the automaton incrementally. It doesn’t require
any intermediate stage of trie construction and it works directly on the finite set
of (word, value) pairs. The DAWG construction method implemented in the
DAWG library is a functional version of the incremental algorithm described in
[5].

3 Automaton Representation of a Dictionary

The old Polish dictionary can be viewed as a version of a morphological dictio-
nary extended with additional data: contemporary equivalents, definitions etc.
Only the morphology-related part is kept in the automaton while the rest of
information is stored in a binary part of the dictionary (see section 4). We start
by showing how a morphological dictionary PoliMorf can be stored in a DAWG.

3.1 PoliMorf

A lexical entry in PoliMorf consists of three components: a base form (Base),
a part of speech (POS) and a set of word forms (WordForms, each form accom-
panied with a set of potential morphosyntactic descriptions, MSDs). Therefore,
an entry can be represented with a (Base, POS, Map WordForm (Set MSD))
triple, where Set a corresponds to a set with elements of type a and Map a b
corresponds to a map from keys of type a to values of type b.2 In order to reduce
the number of distinct values stored in automaton states and, consequently, to
make the automaton minimization process more efficient, a rule (Rule) which
translates a base form into a particular word form can be used in place of the
word form itself. This modification yields the following representation of an en-
try: (Base, POS, Map Rule (Set MSD)). Since a (Base, POS) pair uniquely
identifies a lexicon entry, the entire dictionary can be represented with a DAWG
of type

type PoliMorf = DAWG (Map POS (Map Rule (Set MSD))),

where keys of the DAWG correspond to base forms of individual entries.
Assuming that POS, Rule and MSD types are already instances of the Ord

class,3 an appropriate Ord instance will be automatically generated for the en-
tire Map POS (Map Rule (Set MSD))) type, which makes it possible to use func-
tions defined in the library interface (see section 2.1) on the DAWG specific to the
2 A http://hackage.haskell.org/package/containers package provides standard,

functional implementations of Set and Map.
3 In Haskell, instances of the Ord class can be usually derived automatically.

http://hackage.haskell.org/package/containers

154 J. Waszczuk

PoliMorf dictionary. The DAWG can be constructed by folding the insertWith
function over the collection of dictionary entries starting with the empty DAWG.
This shows that adapting the polymorphic DAWG type to a particular dictionary
is a straightforward task.

3.2 Old Polish Dictionary

Since only the morphology-related part of the old Polish dictionary is stored
in the DAWG, structure of this specific DAWG is very similar to the structure
described in the previous section. However, there is one important difference
regarding the assumptions under which the two DAWG structures are designed.
The assumption that lexical entry can be uniquely identified by its base form
and its part of speech is too strong within the context of the constantly evolving
old Polish dictionary, which contains a lot of automatically generated data (in
particular, some POS tags may be assigned incorrectly).

Therefore, we assume a weaker condition which states that every lexical entry
contains at least one word form. Based on this basic assumption an object which
uniquely identifies a particular entry can be defined as a pair of:

– KEY: A first textual representation of a first word form described within the
entry (base form is preferred, when available).

– UID: An identifier unique among all entries with the same KEY.

This definition can be used to specify a DAWG adapted to the old Polish dic-
tionary as

type OldPolish = DAWG (Map UID (Map Rule (Set MSD))),

where keys of the DAWG correspond to KEY values assigned to individual dic-
tionary entries.

3.3 Inverse Automaton

Both automata described in the two previous sections can be used to map a
textual representative of a lexical entry (base form in case of PoliMorf, KEY in
case of the old Polish dictionary) into a morphological description of the entry
using the lookup function provided by the DAWG library. However, a DAWG
can be used to represent an inverse dictionary as well, in which keys corre-
spond to word forms and rules kept in automaton states are used to translate
word forms into corresponding base forms (or KEYs, in case of the old Polish
dictionary). In fact, this representation is used in a morphological analysis tool
Morfeusz (http://sgjp.pl/morfeusz, [6]). It is important to note that this
modification doesn’t change the type of the DAWG and both specific DAWG
types described earlier (PoliMorf and OldPolish) are still adequate. Moreover,
in case of PoliMorf and the old Polish dictionary, both automata – direct and
the inverse one – yield the same compression level.

http://sgjp.pl/morfeusz

A Practical Representation of an Old Polish Dictionary 155

3.4 Updating the Old Polish Dictionary with Contemporary Forms

Since the old Polish dictionary is still under development, its coverage of the
old Polish language is not perfect at this point. It doesn’t contain entries cor-
responding to many old Polish lexemes and descriptions of lexemes which are
included in the dictionary are often incomplete. Based on the similarity between
the contemporary Polish language and its older version, we can alleviate this
problem by using PoliMorf as an alternative source of morphological knowledge.
The problem is that, if we look up a word in both dictionaries and find only the
contemporary interpretation, there is no guarantee that there is no lexical entry
in the old Polish dictionary which also corresponds to this word form. It may be
just that this particular word form is not yet included in the lexical entry of the
old Polish dictionary.

A solution to this problem is to supplement the old Polish automaton with con-
temporary word forms which can be directly linked with forms already present
in the old Polish dictionary. A process which utilize two PoliMorf automata (the
standard and the inverse one, see sections 3.1 and 3.3) can be used to identify
PoliMorf entries which correspond to a particular old Polish dictionary entry:

1. For each word form of the entry a set of contemporary entries which contain
the same word form is identified,

2. Contemporary entries which do not agree on the part of speech tag with the
historical entry are rejected. This step can be used to reduce the number
of false-positive links between entries at the expense of the number of false-
negatives which, due to possible errors in automatic POS assignment, can
be increased.

4 Binary Representation of the Old Polish Dictionary

The first step in designing a binary representation of the old Polish dictio-
nary was to develop a Haskell data structure which mirrors the original, LMF
structure of the lexical entry. This structure is used in Haskell programs which
operate on the dictionary and, additionally, constitutes an intermediate struc-
ture between the XML and the binary form of the lexical entry. Lexical en-
try serialization method has been developed using the Haskell binary library
(http://hackage.haskell.org/package/binary) which provides methods for
encoding Haskell values as streams of bytes. An interface has been developed
which provides functions for reading and writing individual lexical entries from
and to a disk, respectively. Path at which a particular entry is located is uniquely
identified with a (KEY, UID) pair (as well as the entry itself, as described in sec-
tion 3.2).

5 Summary and Future Works

An efficient representation of the old Polish dictionary can be obtained by com-
bining the automaton, which includes morphological data and provides a fast

http://hackage.haskell.org/package/binary

156 J. Waszczuk

lookup method, with the binary version of the dictionary, which consists of a
collection of serialized lexical entries from the original, LMF dictionary. In order
to look up a word in the old Polish dictionary:

1. A morphological description and a (KEY, UID) identifier has to be found by
looking up the word in the automaton,

2. Additional data which may be relevant for a particular application has to be
extracted from the binary representation of the entry. The location at which
the entry is stored can be determined on the basis of the (KEY, UID) pair.

3. When the word is not found in the automaton, PoliMorf (or Morfeusz) can
be consulted to obtain morphological information about the input word.

The binary version of the old Polish dictionary doesn’t hold information about
multiword lexical entries and syntactic relations. Support for these structures is
planned to be added in the next release of the binary dictionary implementation.

Acknowledgments. This work was financed by the National Centre for Re-
search and Development (NCBiR) project SP/I/1/77065/10 (SYNAT).

References

1. Mykowiecka, A., Głowińska, K., Rychlik, P., Waszczuk, J.: Construction of an elec-
tronic dictionary on the base of a paper source. In: Vetulani, Z. (ed.) Proceedings
of the 5th Language & Technology Conference: Human Language Technologies as
a Challenge for Computer Science and Linguistics, Poznań, Poland, pp. 506–510
(2011)

2. Reczek, S.: Podręczny słownik dawnej polszczyzny. Ossolineum (1968)
3. Francopoulo, G., Bel, N., George, M., Calzolari, N., Monachini, M., Pet, M., Soria,

C.: Multilingual resources for nlp in the lexical markup framework (lmf). Language
Resources and Evaluation 43, 57–70 (2009)

4. Mykowiecka, A., Rychlik, P., Waszczuk, J.: Building an electronic dictionary of
an old polish basing on the paper resource. In: Calzolari, N (Conference Chair),
Choukri, K., Declerck, T., Doǧan, M.U., Maegaard, B., Mariani, J., Odijk, J.,
Piperidis, S. (eds.) Proceedings of the Adaptation of Language Resources and Tools
for Processing Cultural Heritage Objects Workshop Associated with the 8th Inter-
national Conference on Language Resources and Evaluation (LREC 2012), Turkey,
Istanbul. European Language Resources Association (ELRA) (2012)

5. Daciuk, J., Watson, B.W., Mihov, S., Watson, R.E.: Incremental construction of
minimal acyclic finite-state automata. Comput. Linguist. 26, 3–16 (2000)

6. Woliński, M.: Morfeusz a practical tool for the morphological analysis of Polish.
In: Kłopotek, M.A., Wierzchoń, S.T., Trojanowski, K. (eds.) Intelligent Information
Processing and Web Mining. Advances in Soft Computing, pp. 503–512. Springer,
Berlin (2006)

Related Entity Finding Using Semantic

Clustering Based on Wikipedia Categories

Georgios Stratogiannis, Georgios Siolas, and Andreas Stafylopatis

National Technical University of Athens,
Department of Electrical and Computer Engineering Intelligent Systems Laboratory

Zografou Campus Iroon Polytexneiou 9, 15780 Zografou
{stratogian,gsiolas}@islab.ntua.gr, andreas@cs.ntua.gr

Abstract. We present a system that performs Related Entity Finding,
that is, Question Answering that exploits Semantic Information from the
WWW and returns URIs as answers. Our system uses a search engine
to gather all candidate answer entities and then a linear combination of
Information Retrieval measures to choose the most relevant. For each
one we look up its Wikipedia page and construct a novel vector rep-
resentation based on the tokenization of the Wikipedia category names.
This novel representation gives our system the ability to compute a mea-
sure of semantic relatedness between entities, even if the entities do not
share any common category. We use this property to perform a semantic
clustering of the candidate entities and show that the biggest cluster con-
tains entities that are closely related semantically and can be considered
as answers to the query. Performance measured on 20 topics from the
2009 TREC Related Entity Finding task shows competitive results.

Keywords: Related Entity Finding, Wikipedia category vector repre-
sentation, Semantic clustering.

1 Introduction

Question Answering (QA), offline or online, is a complex task. In most cases, the
question is transformed into keywords which enter to a search engine and retrieve
all web pages containing these keywords. These pages possibly contain the an-
swers we are looking for. The drawback of this search method is that we are not
taking into account any Semantic Information in the form of already acquired
knowledge. Initial QA approaches were restricted asking very simple questions
that could be answered by factoid answers (e.g. “What is the name of the man-
aging director of Apricot Computer?” or “How far is Yaroslavl from Moscow?”).
To answer these queries they used classic textual question answering approaches
that rely on statistical keyword relevance scoring [6]. These approaches did not
make use of any kind of semantic knowledge, so the answers to the questions
consisted of a small text excerpt returned from a database search that was meant
to include the correct information.

With the maturation of structured knowledge sources like Wikipedia and the
more recent projects of ontologies like DBpedia and Freebase, a number of richer

M.A. K�lopotek et al. (Eds.): IIS 2013, LNCS 7912, pp. 157–170, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

158 G. Stratogiannis, G. Siolas, and A. Stafylopatis

knowledge bases became available for use by QA systems. In ontologies the
knowledge about entities and the relations between them are semantically or-
ganized and information can be extracted easily. Unfortunately, this approach
also has limitations; most ontologies cover a specific domain of knowledge and
this means that one has to search in more than one ontology. This adds com-
plexity to the task because usually ontologies are different in their construction
and need different methods to be accessed. An additional problem is that on-
tologies are manually constructed, so an important human effort is needed for
their construction.

Recently, QA has made progress in handling queries that require more than
one answer. A direction of QA systems of this kind is the Related Entity Find-
ing (REF) track of the Text Retrieval Conference (TREC) [2], which actually
searches both the entities that answer to a question and their representative
URIs that might be their homepages or other pages that contain information for
some entities.

In this paper we present a system that makes use of the TREC dataset in
order to achieve automated Related Entity Finding. Our system makes use of
both Information Retrieval (IR) and structured knowledge extraction methods.
First, it uses IR methods to obtain a large number of potential answers, called
candidate entities. At this step, the system aims to achieve high recall and in-
evitably has low precision. For this reason it is followed by a second step which
makes use of Semantic Information in the online ontology of Wikipedia that
helps to discriminate the subset of right answers.

In more detail, in the IR part, starting with the initial question, its searches
in the World Wide Web (WWW) using a search engine and the narrative of the
question. Then, it uses a Part-Of-Speech Tagger on the top ranked web pages
and detects all the candidate entities from the search results, extracting the noun
phrases. After the collection of all different entities it uses IR measures to get
the ranking of the potential importance of the candidate entities. Next, in the
Semantic part, for a number of the top ranked entities, it gets the Wikipedia
pages whenever this is possible. Our contribution is that our system tries to get
the Semantic Information of the category names of the Wikipedia pages using
a new vector representation for each entity. It constructs each vector by lever-
aging the category names of the Wikipedia pages and splitting them to words.
Every vector’s attributes contain the number of appearances of each word in the
category names, excluding its stopwords. Afterwards, it clusters these vectors
by using an intelligent method of clustering and automatically decides the total
number of the clusters. The cluster which contains the maximum number of enti-
ties is considered to be the winning cluster, as it contains entities that share the
same Wikipedia categories vocabulary and hence are more related to each other.
Then it exploits the category information of the winning cluster to decide for the
rest of the candidate entities if they are related to the question. Subsequently it
searches for the homepages (or relevant pages) retrieving three URLs for each
entity. Finally, we test our experimental results using the ClueWeb09 Dataset1

1 http://lemurproject.org/clueweb09.php/

http://lemurproject.org/clueweb09.php/

Related Entity Finding Using Semantic Clustering 159

and the track files released from TREC 2009 Entity. Obviously it is required to
find the corresponding IDs in ClueWeb09 Dataset of the entity’s homepages and
Wikipedia pages, so a batch query service2 is used.

The paper is structured as follows. Section 2 discusses related work in the
fields of QA and REF. Section 3 analyzes the first part of our system, that is,
using IR methods to get a set of ranked candidate entities. Section 4 describes
the Semantic part of the method which returns the final set of answers. Section
5 describes how the system finds the homepages of the entities returned from the
previous section. Section 6 reports the experimental results. Finally, in Section
7 we draw our conclusions.

2 Related Work

With the rapid development of WWW, web data offers a huge amount of infor-
mation to many fields. Before that, users would have to collect a lot of different
documents in order to find information related to their query. In our days all
the information is widely available online but problems persist; a lot of work is
needed by users if they want to pinpoint the exact information they are looking
for, which can be not only plain text answers but also homepages or URIs. QA
tasks have evolved over time to reflect this differentiation in user needs.

2.1 Question Answering from Texts

QA is a task requiring a good expertise in several natural language processing
fields to properly understand information needs in the questions, to obtain a
list of candidate answers from documents and to filter them based on solid ev-
idence that justifies each answer’s correctness. Historically, in the first years of
the development of this task, due to the weak spread of the WWW, QA sys-
tems were grown on offline text collections. Most state-of-the-art QA approaches
are textual QA systems built around a passage retrieval core, where questions
or affirmative re-phrasings of a question are treated only as bag-of-words or n-
grams, ignoring all their semantic content. These question representations, which
are very simplified, are given into an information retrieval engine to obtain the
paragraphs or the article that is most likely to contain answers. The candidates
are then extracted based on their type and ranked based on their frequency in
the article or the union of the articles returned from the information retrieval
engine. Passage-retrieval QA systems have their share of success in QA evalu-
ation tracks such as QA@CLEF [17], which include a considerable amount of
concrete questions (such as factoid or definition questions). Answers to these
questions can usually be found in the collection within a paragraph containing
a sentence similar to the question, for example for question “Where is X located
?” something like “X is located in Y”, or by exploiting redundant information in
large collections such as the WWW. As textual QA systems focus on selecting

2 http://boston.lti.cs.cmu.edu/Services/batchquery/

http://boston.lti.cs.cmu.edu/Services/batchquery/

160 G. Stratogiannis, G. Siolas, and A. Stafylopatis

text excerpts from the collection, it is true that they cannot address structurally
complex questions that require advanced reasoning over key entities, nor ques-
tions whose answers are not explicitly represented in a text excerpt, but must
be inferred from knowledge that may be automatically derived from those text
excerpts.

2.2 Semantic QA

With the recent rapid growth of the Semantic Web (SW) and projects like DBpe-
dia [1], YAGO [20] and the recent interest in Linked Open Data3, the processes of
searching and querying content that is both massive in scale and heterogeneous
have become increasingly challenging. The main difference between textual and
semantic QA is that in systems of the second kind, external sources of knowledge
are used empowering the system with semantic capabilities. Also, in contrast to
textual QA, semantic QA employs processes that go beyond matching questions
and documents: external knowledge in a formal representation (such as RDF)
can be used to reason over disambiguated concepts and entities, derive relations
between them and infer answers from the question representation. While tex-
tual QA approaches can be successful in finding explicitly stated answers from
documents, semantic QA aims at complex questions where several information
sources must be merged. The main differences between textual and semantic QA
are presented in Table 1 [3].

Table 1. Key differences between textual QA and semantic QA approaches

Textual QA Semantic QA

[web of] documents [web of] data

document retrieval (IR core) search for and derive facts (IE core)

query expansion on word level question expansion on entity level

keywords & co-occurrence concepts & relations

ambiguous words (or even word forms) disambiguated concepts

textual snippets graph patterns

gazetteers RDF data

lexical semantics (thesaurus oriented) formal semantics

Text with entities Linked entities with text

2.3 Related Entity Finding (REF)

An evolution of semantic QA is Related Entity Finding. REF is defined as fol-
lows: Given an input entity, by its name and homepage, the type of the target
entity, as well as the nature of their relation, described by a narrative, we seek
to find related entities that are of target type, standing in the required relation
to the input entity. The main differences between REF and the two previous

3 http://linkeddata.org/

http://linkeddata.org/

Related Entity Finding Using Semantic Clustering 161

types of question answering (textual and semantic) are i) the answer in gen-
eral consists of many entities so the system must return a list and ii) instead
of returning only plain text containing the answer, the system must return the
entities with their URIs, homepages and optionally related web pages. Systems
that perform REF share a common multiple-stage framework which consists of
the following five stages: document retrieval, entity extraction, entity filtering,
entity ranking and homepage detection. REF has been investigated by the Text
REtrieval Conference (TREC) in 2009 [2]. Table 2 shows an example of a topic
of this track.

Table 2. Topic 4 of TREC 2009

<query>
<num>4</num>
<entity_name>Philadelphia</entity_name>
<entity_URL>clueweb09-en0011-13-07330</entity_URL>
<target_entity>organization</target_entity>
<narrative>Professional sports teams in Philadelphia.</narrative>
</query>

3 Implementation: Information Retrieval Part

3.1 Candidate Entity Extraction

In this part, we investigate how to gather candidate entities that might be an-
swers to the question. In our implementation we shall consider as questions the
narratives of the TREC REF topics4. The motivation for using this dataset is
that the topics are simplified questions and extra information about the category
of the target entities is given. Some of the narratives of the topics are “Profes-
sional sports teams in Philadelphia”, “Airlines that currently use Boeing 747
planes” and “CDs released by the King’s Singers”. An example of a full topic is
defined in XML form in Table 2.

At first, for each narrative-question we search the WWW by using the Bing
Search API5 and the narrative as the query, after the removal of stopwords. The
first 40 HTML page results are retrieved. After this, all the pages retrieved are
parsed and plain text is extracted from HTML. It is well known that the entities
which answer to the queries are noun phrases. For this acceptance we use the
Stanford Log-linear Part-Of-Speech Tagger (POS Tagger)6 for each word (and
other token) contained in the text. A part of speech tag, such as noun, verb,
adjective, etc is assigned to every word. Next, we extract all the noun phrases
in every plain text using a pattern for the tagged words. The pattern used
is <JJ>?<NN.*|FW>+<IN>?<DT|CC>?<JJ>?<JJ>?<NNP.*>+, where JJ, NN.*, FW,
IN, DT, CC and NNP.* are for adjectives, nouns, foreign words, prepositions or

4 http://trec.nist.gov/data/entity/09/09.entity-topics
5 https://datamarket.azure.com/dataset/5BA839F1-12CE-4CCE-BF57-

A49D98D29A44
6 http://nlp.stanford.edu/software/tagger.shtml

http://trec.nist.gov/data/entity/09/09.entity-topics
https://datamarket.azure.com/dataset/5BA839F1-12CE-4CCE-BF57-A49D98D29A44
https://datamarket.azure.com/dataset/5BA839F1-12CE-4CCE-BF57-A49D98D29A44
http://nlp.stanford.edu/software/tagger.shtml

162 G. Stratogiannis, G. Siolas, and A. Stafylopatis

subordinating conjunctions, determiners, coordinating conjunctions and proper
nouns, respectively, used in the Penn Treebank Project [16]. For creating the
pattern we started from [7] which we further developed to make it more efficient.

Usually, the related entities that are possible answers to a query are located
near the entity name (see Table 2, third line) or the remaining words of the
narrative of the query. For this reason we retain only the entities that are in the
same sentence with the target entity or at least one of the words contained in
the narrative, after stopwords removal. Additionally, we remove all the common
nouns that might be retrieved, since answers to the REF task cannot contain
common nouns. These entities constitute the set of our candidate entities. Our
next task is to rank these entities so that the candidate entities that are ranked
at the top of the list are more likely to be in the set of the correct answers.

3.2 Entity Ranking

We have a set of all the extracted candidate entities and we need to find the most
relative ones. We rank them using a linear combination of five measures. These
are: a) the Term Frequency (TF); b) the Inverse Document Frequency (IDF);
c) the average number of the appearances of the candidate entity in the pages in
which appeared in at least at once; d) the average number of the entities between
the candidate entity the entity name of the topic; and e) the sum of the inversed
rank of the web pages the candidate entity appeared in (SumRank). All of them
are normalized in [0,1]. To find the optimal weights of the above measures for
the linear combination we used a small dataset, taking as answers for the topics
the examples of the topics for the ELC task [2], a task similar to the REF task,
sharing the same topics and narratives. The optimal weights are the ones that
used in a linear combination rank higher the entities that we know beforehand
are correct answers to the queries. Only two of the measures we used ended up
with non-zero weights, IDF and SumRank:

IDF [15]. IDF is a measure of whether the term is common or rare across all
documents. It is obtained by dividing the total number of web pages returned
by the Bing Search API by the number of web pages containing the candidate
entity and then taking the logarithm of the quotient (1)

idf(t,D) = log
|D|

|{d ∈ D : t ∈ d}| , (1)

where |D| is the total number of web pages returned by the Bing Search API and
|{d ∈ D : t ∈ d}| is the number of web pages where the candidate entity t appears
in the sentences we have kept. The base of the log function does not matter and
constitutes a constant multiplicative factor towards the overall result.

Sum Rank. Sum Rank is the sum of the inversed rank of the web pages,
returned by the Bing Search API, in which the candidate entity appeared at least
once. For example, if a candidate entity appears in the sentences of the first, the

Related Entity Finding Using Semantic Clustering 163

fourth and the fifteenth web page, returned by Bing Search API, and the total
number of the pages we keep is 40, the sum is (40−1)+(40−4)+(40−15) = 100.
Sum Rank is a measure of the quality of the pages an entity appears in, since
the first returned by a search engine are usually the most relevant.

So the final linear combination is:

rank = a× IDF + b× SumRank. (2)

The weights a and b found to give the best results for the values 0.9 and 0.1
respectively. In the end, we keep the top 75 entities for every query topic and
we assign a ranking ID from 1 (the top ranked) to 75 (the least ranked).

4 Implementation: Semantic Part

4.1 Entity Vector Representation Based on Wikipedia Categories

In this part, we start by using the ranked candidate entities from the previous
part. We choose only the top 25 best ranked entities and search for their cor-
responding Wikipedia page if one exists. For every candidate entity we find its
corresponding article using the MediaWiki API7. Mediawiki is a free server-based
software written in PHP, which helps access the Wikipedia articles, searching
for the respective articles of an entity, their categories and their links. In many
cases, more than one Wikipedia article may correspond to an entity, so a link
to a disambiguation page also exists. A disambiguation page may be used to
disambiguate a number of homonym terms that are written in the same way but
have different meanings. For example, the term “Eagle” may refer to the bird, to
the Philadelphia Eagles team or to a film named “Eagle”. The title of a disam-
biguation page contains the ambiguous term itself, concatenated with the word
”disambiguation” for example “Eagle (disambiguation)”. If only one Wikipedia
article corresponds to a candidate entity, then there is no disambiguation page.
We first collect this single-meaning entities in a set called the disambiguated set.
The rest of the entities, having more than one meaning, which could correspond
to different Wikipedia pages, form another set that we call set for disambigua-
tion. We will propose a Word Sence Disambiguation (WSD) method in Section
4.3. After the WSD process we gather all category names of each entity in the
disambiguated set. The category names in Wikipedia consist, in general, of more
than one word. For example, for the Wikipedia page “Philadelphia Eagles” three
of its categories are “Steagles”, “National Football League teams” and “Sports
in Philadelphia, Pennsylvania”. Although the first category consists of only one
word (Steagles) the next two consist of four words. As the Wikipedia category
names for every page are manually added, it is very common to be inconsistent.
For example, noticing the category names “Sports in Philadelphia, Pennsylva-
nia” and “National Football League teams” for the entity “Philadelphia Eagles”
and the category names “Soccer clubs in Philadelphia, Pennsylvania” and “Penn-
sylvania soccer teams” for the entity “Philadelphia KiXX”, we presume that both

7 http://en.wikipedia.org/w/api.php

http://en.wikipedia.org/w/api.php

164 G. Stratogiannis, G. Siolas, and A. Stafylopatis

entities are “teams in Philadelphia, Pennsylvania” although they don’t belong to
any common category. We then proceed to splitting all these categories into the
individual words they are made of. Furthermore, all stopwords like “and”, “or”
etc are removed. The remaining words are stemmed with the Porter2 stemming
algorithm [14]. Finally, a vector is constructed with its dimension equal to the
cardinality of all the different stemmed words that are found in all the categories
of every candidate entity included in the disambiguated set. The attributes of
this vector are the stemmed category words. The value of each attribute for
each candidate entity is the term frequency of every stemmed word found in
its Wikipedia page categories. For example, if we have the candidate entities
“Philadelphia Eagles” and “Philadelphia Flyers” and the Wikipedia page of the
first one belongs to the categories “National Football League teams”, “Philadel-
phia Eagles”, “Sports in Philadelphia, Pennsylvania” and the Wikipedia page
of the second to “Philadelphia Flyers” and “Professional ice hockey teams in
Pennsylvania”, the resulting vectors are shown in Table 3. Zero values mean
that the corresponding attributes do not exist in any category of this candidate
entity. Representing the information given by the category names of the entities
in vectors, such as the example above, helps use unsupervised methods, such as
clustering, to get the relevance between the candidate entities.

Table 3. Vectors of the entities “Philadelphia Eagles” and “Philadelphia Flyers”

entity name ice hocke philadelphi sport pennsylvani nation football leagu team professional flyer eagl

Philadelphia Eagles 0 0 2 1 1 1 1 1 1 0 0 1

Philadelphia Flyers 1 1 1 0 1 0 0 0 1 1 1 0

4.2 Data Pre-processing

Before proceeding to clustering we need to pre-process the data to eliminate any
differences between two vectors, such as differences of scale. We use the Stan-
dard score or Z-value [5], which indicates by how many standard deviations an
observation or datum is above or below the mean. It is a dimensionless quantity
derived by subtracting the population mean from an individual raw score and
then dividing the difference by the population standard deviation. Our processed
values of the vectors are estimated by Equation (3)

yiu =
xiu − x̄u

Range(xu)
, (3)

where x is the dataset, i a given vector of an entity and u are the attributes of
the vector. The result yiu is the standardized form of xiu.

4.3 Semantic Clustering

We will describe our entity clustering method and illustrate how clustering the
entities in this new vector space provides semantic properties to the resulting
clusters, in the sense that entities belonging to the same cluster are more closely
related semantically.

Related Entity Finding Using Semantic Clustering 165

Defining the Number of Clusters. We now have a set of vectors pre-
processed by Standard score that we wish to cluster. In this step, we must decide
for the number of clusters. We set the number of clusters between two and six
using the silhouette width [12], a well-balanced coefficient, which has shown good
performance in experiments [13]. The concept of silhouette width involves the
difference between within-cluster tightness and separation from the remaining
clusters. Specifically, the silhouette width s(i) for entity i ∈ I is defined by
Equation (4)

s(i) =
b(i)− a(i)

max (a(i), b(i))
, (4)

where a(i) is the average distance between i and all other entities of the cluster
to which i belongs and b(i) is the minimum of the average distances between i
and all entities in each other cluster. The silhouette width values lie in the range
from -1 to 1.

Clustering Using k-Means. We use the simple k-means clustering algorithm
[18]. Its input is the set of vectors returned from the previous step. The number
of clusters is defined as the minimum number between two and six, such that
the mean silhouette width value of the clusters is more than 0.5. If the mean
silhouette width is not more than 0.5 for any number of clusters between two
and six, then we arbitrarily set the number of clusters equal to six.

Fig. 1 shows the clusters resulting for the query of topic 4 (“Professional sports
teams in Philadelphia”) after Principal Component Analysis (PCA) [11] [9] is
applied for two-dimensional visualization of the clustered vectors. We observe
that 3 clusters were created for the candidate entities. Cluster 1 contains the
entity “NASCAR” which is a motor racing championship. Cluster 2, which is
the biggest, contains entities that are sport teams which is the right type of
category for the answers. Finally, cluster 3 contains entities that are stadiums.
As we can see the system already has the capacity to discriminate groups of
entities belonging to different semantic categories.

Choosing the Winning Cluster and Obtaining the Rest of the Seed
Entities. To choose the cluster that corresponds to the right categories we
simply select the cluster with the most data points in it and, if there is a tie
between two clusters, the cluster that contains entities that have the lesser sum
of the ranking IDs. For example, for the clusters in Fig. 1, cluster 2 is chosen,
because it contains the most entities. We call these entities, included in the
winning cluster, seed entities. These entities enter the answer set.

WSD for the Rest of the Entities. We first get the stemmed words from
the category names of the seed set in the same way we did before. We also keep
the frequency of every unique stemmed word from all the category names of all
the seed entities, which were in the winning cluster. These values are normalized
to (0,1]. After this procedure, for each entity for disambiguation, we get all the
different Wikipedia articles that this entity could be assigned to. Obviously, ev-
ery different meaning and corresponding different Wikipedia page of each entity

166 G. Stratogiannis, G. Siolas, and A. Stafylopatis

Fig. 1. Clusters for the candidate entities of disambiguated set of topic 4 after Principal
Component Analysis is applied for visualization in a two-dimensional graph

belongs to different categories. For every Wikipedia article corresponding to a
different meaning, all its categories are again collected, split into words, have
their stopwords removed and finally stemmed. Then, for each meaning we pro-
duce the inner product of the term frequency vector of the words in the categories
in common with the categories of the winning cluster and the normalized vector
of the previous procedure. For each of these entities we keep only the meaning
with the highest score. This meaning is much more probable than the others
to answer the query, because it shares similar Semantic Information with the
entities in the answer set. We must then decide whether this chosen meaning of
the entity shares enough category words with the winning cluster to be relevant
and enter the answer set. To achieve this goal, we first define a quantity, called
minimumb,

minimumb = min
e∈E

scoree
|We| , (5)

where E is the seed entities set, e is every entity in seed entities set and |We|
is the cardinality of the words found in the categories of the seed’s entity e
Wikipedia article, excluding stopwords. Scoree is computed by the Equation (6)

Related Entity Finding Using Semantic Clustering 167

scoree =
∑

w∈c:Ce

w

wE
, (6)

where Ce is the set of categories of seed entity e, w is every word in the categories,
excluding stopwords and wE is the maximum number of appearances of the
most frequent word of the categories. We have empirically found that if the
inner product is more than three quarters of the minimumb, then the entity is
very likely to share very common Semantic Information with the entities in the
remaining answer set and therefore be one of the query answers.

If the entities that have been appended to the answer set are more than 60%
of the initial 25 candidate entities, that is more than 15, there is a high proba-
bility that there exist more entities that could be added to the answer set from
the remaining 50 candidate entities. For this reason, we check whether some of
the next 25 ranked entities, with rank IDs from 26 to 50, could be added to the
answer set. This is done in the same way we did for the candidate entities of
the set for disambiguation before. Again, if the total number of entities entering
the answer set continues to be more than 40% of the candidate entities that have
been checked, we proceed to check the remaining last 25.

5 Finding Primary and Relevant Homepages

In order to be able to compare our system with other algorithms on the TREC
2009 REF data, we need to retrieve three candidate homepages for every entity
in the answer set in addition to its Wikipedia page. Starting from the already
known Wikipedia page, it is possible in some cases to find the official homepage
of the entity by parsing the Infobox, if one exists. If there is no Infobox, we simply
collect the top links returned by Bing so as to have three candidate homepages
for each entity, outside its Wikipedia page. Table 4 shows an example of three
URLs the system retrieved for the entity “British Airways”. The first one is
evaluated in the track as the primary homepage of the entity, the second one
as a relevant homepage and the last one as an irrelevant page. Furthermore, all
evaluations of this track are performed by using ClueWeb09 dataset, so it is also
required to find the corresponding ClueWeb09 IDs of the homepages. This is
easily done by using a batch query service8.

6 Results

In this section we present our experiments. We evaluated our method in the
TREC 2009 Entity Track Dataset which contains 20 topics. These topics give
additional information about the type of the target entity and the entity name.

The evaluation of the REF task is complicated since it is not always possible
to gather all possible answers with certainty. For topics such as “carriers that
BlackBerry makes phones for” finding all the answers is feasible. On the other

8 http://boston.lti.cs.cmu.edu/Services/batchquery/

http://boston.lti.cs.cmu.edu/Services/batchquery/

168 G. Stratogiannis, G. Siolas, and A. Stafylopatis

Table 4. Pages retrieved for the entity “British Airways”

ID ’URI

1 ’http://ba.com
2 ’http://www.guardian.co.uk/business/britishairways
3 ’http://www.justtheflight.co.uk/news/18339089-aer-lingus-announces-british-

airways-codeshare.html

hand, for topics such as “airlines that currently use Boeing 747 planes” this is
more difficult, since the set of correct answers changes rapidly over time and,
even if an airline has ceased to use Boeing 747 planes, a number of web pages in
the WWW may still list it as an answer, a problem known as Concept Drift [19].
Because of these difficulties, in order to evaluate our results, we use the “Category
B” subset of ClueWeb09 dataset, manually annotated pages considered pertinent
to the topics. First, we have to pass our resulting URLs to their respective
ClueWeb09 IDs. For this task we use the ClueWeb09 batch query service. If a
URL exists in ClueWeb09, then its ClueWeb09 ID is returned, otherwise -1. To
evaluate our results we used the qrel file9, released by the TREC 2009 Entity
Track. For every topic in this file, there exist a number of records that have a
ClueWeb09 ID or a name of an entity, and help us check whether the homepages
(or entities) retrieved are primary or relevant. It must be noted that a name
was judged correct if it matched up in the record, even if the record was neither
primary nor relevant to the topic. This means that the qrel file may include false
entries. Evaluation results are computed using a script10 developed specifically
for the 2009 edition of the Entity track.

The main evaluation measures we use are the number of primaries and relevant
homepages for all topics, P@10 (the fraction of records in the first ten ranks with
a primary homepage) and the normalized discounted cumulative gain (NDCG)
[10] at rank R (NDCG@R). A record with a primary homepage (or an entity
name) scores 2 points, and a record with a relevant page scores 1 point. For
example for the URIs retrieved for the entity “British Airlines” (see Table 4),
the first URI scores 2 points, the second scores 1 and the last scores 0. Table 5
shows our evaluation results compared with the results obtained by other groups
presented within the Related Entity Finding task of TREC 2009 Entity Track,
ordered by the number of primary homepages found.

Comparative results show that our system yields the best performance for the
primary retrieved homepages and the fraction of records in the first 10 ranks with
a primary homepage. It also scores comparable results for the relevant retrieved
homepages and the NDCG at rank R measure.

9 http://trec.nist.gov/data/entity/09/09.entity.qrels
10 http://trec.nist.gov/data/entity/09/eval-entity.pl

http://trec.nist.gov/data/entity/09/09.entity.qrels
http://trec.nist.gov/data/entity/09/eval-entity.pl

Related Entity Finding Using Semantic Clustering 169

Table 5. Number of primary retrieved, number of relevant retrieved, P@10 and
NDCG@R measures for each group as reported in [2]

Group #pri #rel P@10 NDCG@R

Our system 93 56 0.25000 0.1020

uogTr 79 347 0.1200 0.2662

CAS 70 80 0.2350 0.2103

NiCT 64 99 0.1550 0.1907

Purdue 61 126 0.2350 0.3061

TUDelft 42 108 0.0950 0.1351

UAms (Amsterdam) 19 198 0.0450 0.1773

EceUdel 10 102 0.0000 0.0488

BIT 9 81 0.0200 0.0416

Waterloo 5 55 0.0100 0.0531

UALR CB 4 15 0.0200 0.0666

BUPTPRIS 3 48 0.0150 0.0892

UIUC 3 64 0.0100 0.0575

UAms (ISLA) 1 30 0.0000 0.0161

7 Conclusion and Future Work

We presented a system that performs Related Entity Finding. It collects candi-
date answers from the WWW and ranks them using IR measures, thus overcom-
ing usual content shortcomings of QA systems based on specialized ontologies.
We propose a novel vector representation for the entities by splitting into words
the Wikipedia categories they belong to. This representation gives our system
the ability to calculate a measure of the semantic relatedness between entities,
even if they don’t share common categories or are not related in an hierarchical
way like in most ontologies. We exploit this property by proposing a Semantic
Clustering which groups semantically related entities and show that the most
important (winning) cluster corresponds to the right category for answers. Fi-
nally, we show how to effectively enlarge the winning cluster so as to include
more candidate answers. Results on the TREC 2009 REF Track show very com-
petitive performance, outperforming all other algorithms on the two criteria
related to finding primary homepages and performing comparably on the other
two criteria, taking also into account related homepages.

In the future we will try to further enhance the performance of our system by
using LingPipe [4] as a noun phrase extractor or the Stanford NER [8] for Named
Entity Recognition. We would also try to leverage the semantics of additional
ontologies, exploiting the properties of Linked Data. Finally, it would be useful
to explore better methods for extracting the relevant pages.

170 G. Stratogiannis, G. Siolas, and A. Stafylopatis

References

1. Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.G.: DBpedia:
A nucleus for a web of open data. In: Aberer, K., et al. (eds.) ASWC 2007 and
ISWC 2007. LNCS, vol. 4825, pp. 722–735. Springer, Heidelberg (2007)

2. Balog, K., de Vries, A.P., Serdyukov, P., Thomas, P., Westerveld, T.: Overview of
the trec 2009 entity track. In: TREC (2009)

3. Cardoso, N., Dornescu, I., Hartrumpf, S., Leveling, J.: Revamping question answer-
ing with a semantic approach over world knowledge. In: Braschler, M., Harman,
D., Pianta, E. (eds.) CLEF (Notebook Papers/LABs/Workshops) (2010),
http://dblp.uni-trier.de/db/conf/clef/clef2010w.html#CardosoDHL10

4. Carpenter, B., Baldwin, B.: Natural Language Processing with LingPipe 4. Ling-
Pipe Publishing, New York, draft edn. (June 2011),
http://alias-i.com/lingpipe-book/lingpipe-book-0.5.pdf

5. Cheadle,C.,Vawter,M.P., Freed,W.J., Becker,K.G.:Analysis ofmicroarray dataus-
ing z score transformation. The Journal of Molecular Diagnostics 5(2), 73–81 (2003),
http://www.sciencedirect.com/science/article/pii/S1525157810604552

6. Demner-fushman, D., Lin, J.: Answering clinical questions with knowledge-based
and statistical techniques. In: Computational Linguistics 2006, pp. 63–103 (2007)

7. Figueroa, A., Neumann, G.: Mining web snippets to answer list questions. In: Pro-
ceedings of the 2nd International Workshop on Integrating Artificial Intelligence
and Data Mining, vol. 84, pp. 61–71. Australian Computer Society, Inc. (2007)

8. Finkel, J.: Named entity recognition and the stanford ner software (2007)
9. Jackson, J.: A User’s Guide to Principal Components. Wiley series in probabil-

ity and mathematical statistics: Applied probability and statistics. Wiley (1991),
http://books.google.com.sg/books?id=f9s6g6cmUTUC

10. Järvelin, K., Kekäläinen, J.: Cumulated gain-based evaluation of ir techniques.
ACM Transactions on Information Systems (TOIS) 20(4), 422–446 (2002)

11. Jolliffe, I.T.: Principal Component Analysis, 2nd edn., Springer (October 2002),
http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20&path=

ASIN/0387954422
12. Leonard, K., Peter, R.: Finding groups in data: an introduction to cluster analysis

(1990)
13. Pollard, K., Van Der Laan, M.: A method to identify significant clusters in gene

expression data. U.C. Berkeley Division of Biostatistics Working Paper Series,
p. 107 (2002)

14. Porter, M.F.: The Porter2 stemming algorithm (2002)
15. Robertson, S.: Understanding inverse document frequency: On theoretical argu-

ments for idf. Journal of Documentation 60, 2004 (2004)
16. Santorini, B.: Part-of-speech tagging guidelines for the penn treebank project

(3rd revision) (1990)
17. Santos, D., Cabral, L.M.: Gikiclef: Crosscultural issues in an international setting:

asking non-english-centered questions to wikipedia. In: Cross Language Evaluation
Forum: Working Notes of CLEF 2009, Corfu (2009)

18. Seber, G.A.F.: Frontmatter, in Multivariate Observations. John Wiley & Sons,
Inc., Hoboken (2008), doi:10.1002/9780470316641.fmatter

19. Šilić, A., Dalbelo Bašić, B.: Exploring classification concept drift on a large
news text corpus. In: Computational Linguistics and Intelligent Text Processing,
pp. 428–437 (2012)

20. Suchanek, F.M., Kasneci, G., Weikum, G.: Yago: a core of semantic knowledge.
In: Proceedings of the 16th International Conference on World Wide Web, WWW
2007, pp. 697–706. ACM, New York (2007),
http://doi.acm.org/10.1145/1242572.1242667

http://dblp.uni-trier.de/db/conf/clef/clef2010w.html#CardosoDHL10
http://alias-i.com/lingpipe-book/lingpipe-book-0.5.pdf
http://www.sciencedirect.com/science/article/pii/S1525157810604552
http://books.google.com.sg/books?id=f9s6g6cmUTUC
http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20&path=ASIN/0387954422
http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20&path=ASIN/0387954422
http://doi.acm.org/10.1145/1242572.1242667

Locality Sensitive Hashing for Similarity Search
Using MapReduce on Large Scale Data

Radosław Szmit

Warsaw University of Technology - Electrical Engineering
Institute of Control and Industrial Electronics

Abstract. The paper describes a very popular approach to the problem
of similarity search, namely methods based on Locality Sensitive Hashing
(LSH). To make coping with large scale data possible, these techniques
have been used on the distributed and parallel computing framework
for efficient processing using MapReduce paradigm from its open source
implementation Apache Hadoop.

1 Introduction

Similarity search is an important problem present in many branches of science
like databases, data mining, machine learning, information retrieval, clustering
and near-duplicate detection [1]. In the XXI century the amount of data increases
tenfold every five years. For this reason we are forced to take advantage of new
approaches in computing such large data sets. We can do it thanks to MapReduce
paradigm implemented in Apache Hadoop project.

2 Problem Definition

The aim of similarity search is in general to retrieve the top-k most similar
objects to searched object q from a given collection D [1,2]. It is also possible to
search for all objects such that their similarity is stronger then given threshold t.
This article presents a more specific version of similarity search problem, All

Pairs similarity search problem, where we do not have any query object and we
are searching for all pairs of objects with similarity greater than some thresh-
old [1].

3 Jaccard Similarity

The Jaccard similarity coefficient, also known as the Jaccard index or Tanimoto
coefficient, is a simple and effective coefficient which measures similarity of two
sets [2].
It is defined as:

J(A,B) =
|A ∩B|
|A ∪B| , (1)

M.A. Kłopotek et al. (Eds.): IIS 2013, LNCS 7912, pp. 171–178, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

172 R. Szmit

where A and B are two sets to be compared. As we see, the more the two sets
overlap, the stronger similarity they display; it is a number between 0 and 1 -
when sets are more similar then their Jaccard index is closer to 1, when more
dissimilar then Jaccard index is closer to 0.
In this paper, Jaccard similarity index is used to measure similarity between

documents.

4 Locality Sensitive Hashing

Locality Sensitive Hashing (LSH) is an algorithm used for solving probabilistic
dimension reduction of high dimensional spaces. It is widely used in nearest
neighbour search on large scale data. It was introduced in [3].
The main idea is to hash the input data and put it into some buckets. The

more similar the objects are, the higher probability they are in the same bucket.

5 MinHash

MinHash or the min-wise independent permutations locality sensitive hashing
scheme was introduced in [4] and used to detect duplication in [5]. MinHash was
used initially to detect duplicated web pages and eliminate them from search
result in AltaVista search engine [6]. Currently used for example in the recom-
mendations of Google News [7].
Let h be a random hash function that transforms members of set into distinct

integers (or some other bigger space). The Min-Hashing function is defined as:

mh(S) = mh(v) = argmin{h(v[i])}, (2)

where v is a vector of set S and v[i] is the i-th component of v. As we see,
MinHashing function returns the smallest hash value from given collection of
hashes calculated by function h.
For two different sets A and B, the results of Min-Hash function are equal

mh(A) = mh(B) when the minimum hash value of the union A ∪ B lies in the
common part of A ∩B [2], therefore:

Pr[mh(A) = mh(B)] = J(A,B), (3)

where:

– Pr - probability
– mh(S) - Min-Hash value for set S
– J(A,B) - The Jaccard similarity coefficient (see section 3)

Defining random variable such that it has the value of one whenmh(A) = mh(B)
and zero in the opposite case, we can assume that is an unbiased estimator of
J(A,B). This estimator has too high variance to be useful, therefore in the
MinHash scheme the idea is to reduce variance by averaging together several
variables constructed in a similar way (see section 5.2).

LSH for Similarity Search Using MapReduce 173

5.1 MinHash with Many Hash Functions

One of the simplest ways to implement MinHash scheme is to use k different
hash functions. In this approach we get k values of mh(S) for these k functions.
In this scheme to estimate J(A,B) we use y/k as the estimate, where y is the

number of hash function for which mh(A) = mh(B). As we see, this estimate
is the average of k different 0-1 random variables, each of which is an unbiased
estimator of J(A,B), therefore their average is also an unbiased estimator with
the expected error O(1/

√
k).

Number of hashes depends on an expected error and similarity threshold. For
example, with an expected error lower than or equal to 0.05, we need 350 hashes
for similarity equal to 0.5 and only 16 hashes for similarity of 0.95 [1].

5.2 MinHash with a Single Hash Functions

Calculating multiple hash function very often is expensive computationally, there-
fore in this variant of MinHash scheme to avoid this hindrance we can use only
one hash function and use it to select multiple values from given set S rather
than selecting the smallest value per one hash function.
In this approach we define mk(S) to be function returning the subset of the

k smallest values of h function. This subset mk(S) is used as a signature of set
S, and the similarity is evaluated by comparing two signatures of any two sets.
To estimate J(A,B) for two given sets A and B let define

X = mk(mk(A) ∪mk(B)) = mk(A ∪B). (4)

X is a set of k smallest elements of A ∪B. The subset:

Y = X ∩mk(A) ∩mk(B), (5)

is the set of members belonging to the intersection A ∩ B. The unbiased esti-
mator for this variant is |Y |/k with expected error O(1/

√
k). As we see, this

version gives the same result with the same expected error, but is computation-
ally cheaper. The second difference is between estimators, where for multi hash
variant we can get k or less values because two different hash functions may re-
turn the same value, but in the second approach of single hash function, subset
Y always has exactly k members. However, when k is small compared to the size
of sets, this difference is irrelevant.

6 Apache Hadoop

Hadoop is an open source, free, Java-based software framework that supports the
distributed processing of large data sets. It was developed for reliable, scalable
and distributed computing across clusters of computers using simple program-
ming models. It is core of the Apache Hadoop project sponsored by the Apache
Software Foundation [8,9].

174 R. Szmit

It is constructed to scale up from single machine to thousands of nodes and
more without any limits. The preferred operating systems is Linux but Hadoop
can also work with BSD, OS X and Windows on any kind of computer without
special hardware requirements. This library is designed to detect and handle
failures on runtime, so allows the system to continue operating uninterrupted in
case of a node failure.
The whole project includes modules like Hadoop MapReduce, Hadoop Dis-

tributed File System (HDFS) and related sub projects eg. HBase, ZooKeeper,
Mahout etc.
Hadoop is used by companies and organizations such as Google, Yahoo, Face-

book, Amazon, Allegro, eBay, IBM, ICM [8].

6.1 MapReduce

Hadoop implements a computational paradigm named MapReduce introduced
by Google inc. in [10]. MapReduce is a programming model for processing and
generating large data sets.
Input data is divided into many small fragments of work and passed into user

specified function called map and reduce. Map function processes a key/value
pair of input data to generate a set of intermediate key/value pairs and a reduce
function merges all intermediate values associated with the same intermediate
key together generating key/value output pairs of proceeded data.
MapReduce programs are automatically parallelized and executed on a clus-

ter. Hadoop takes care of the details of partitioning the input data, scheduling
the job’s execution across a set of nodes, handling node failures, and managing
the required communication between nodes and map-reduce functions. Every job
may be executed or re-executed on any node in the cluster, but Hadoop tries
to maximize local computation storaged data effectively. This allows for writ-
ing parallel and distributed jobs using large scale data without any specialist
knowledge.
Hadoop implementation of MapReduce can run on a large cluster of commod-

ity machines and is highly scalable; Yahoo cluster has 11000 nodes and it is used
to manage 40 petabytes of enterprise data [11].

6.2 HDFS

Hadoop Distributed File System (HDFS) is a second core project of Apache
Hadoop platform. It is a distributed file system invented to run on standard,
various and low-cost hardware. HDFS is optimized for storing large data sets
and providing high throughput access to this data. A typical file is the size of
gigabytes to terabytes and it supports tens of millions of files in a single instance.
It can be used like standard standalone file systems, but it implements write-
once-read-many access model for files with the ability to append them.
HDFS is secured and designed to automatically detect and handle failures.

Each node stores a part of the file system’s data. It achieves reliability by repli-
cating the data across multiple nodes with the default replication value equal to

LSH for Similarity Search Using MapReduce 175

3 and that means that data is stored on three nodes: two on the same rack, and
one on a different rack. It also rebalances data, moves copies around and keeps
the replication of data high.

7 System Architecture

The architecture of tested system is a standard Hadoop architecture (mas-
ter/slave) with one master node called NameNode and 18 slave nodes called
DataNodes. The NameNode has the ability to execute file system operations like
opening, closing, and renaming files and directories and also to determine the
mapping of blocks to DataNodes. The DataNodes are responsible for serving
read and write requests from the file system’s clients and also performing block
creation, deletion, and replication on the command from the NameNode.
On the HDFS runs a key-value database called DDB. This database stores

pairs of documents as values and their hashes as keys. All data is crawled via
internet with the use of a special program called Spider. All documents are
indexed and preprocessed to obtain their words lemmas.

8 Algorithms

Similarity search algorithms can be divided into two main steps – candidate
generation and candidate verification. In the step of candidate generation we
select pairs of objects that are good candidates for having similarity above the
given threshold. During candidate verification phase, the similarity of pairs is
verified against the threshold by exact computation of the similarity or other
method [1].
The classic approach to this problem such as kd-trees and R-trees works well

only in low dimensions data sets. Invention of Locality Sensitive Hashing (see
section 4) made a big impact on computing very large scale data sets [3,12,1].

Fig. 1. Candidate generation phase

176 R. Szmit

8.1 Candidate Generation Phase

In this step we used LSH method MinHash (min-wise independent permutations)
described in section 5 adapted to Google MapReduce paradigm from section 6.1.
What was really handy was the use of the basic implementation of MinHash

on Hadoop, that is the use of library Likelike [13]. The library was adapted to
our specialised data input format and also it was adjusted to cooperate with
DDB database working on Hadoop.
For all words in a document (exactly its lemma) hash value is counted by

function h. Depending on MinHash variant with single hash function (see section
5.2), we calculate MinHash function value mk(S) defined as k smallest values of
integers from vector v produced by hash function h. From that subset of v we
calculating signature represented by single integer value. This signature lets us
to assign this document to proper bucket or in the other words to proper cluster.
This step was presented on figure 1.

8.2 Candidate Verification Phase

In this phase we must verify the similarity of all pairs of objects received from a
single bucket. For that purpose we use the computation of the similarity of two
documents based on Jaccard similarity coefficient shown in section 3. This step
was presented on figure 2.

Fig. 2. Candidate verification phase

9 Summary of Results

In this article, we have presented Locality Sensitive Hashing scheme approach
for similarity search problem using MapReduce paradigm on large scale data
set. In candidate generation phase we used MinHash (min-wise independent
permutations) scheme implemented in Likelike library. We adjust this approach
and library to our needs and technical requirements. The results of similarity
search were used to eliminate duplicated web pages from search results in search
engine from Natively Enhanced Knowledge Sharing Technologies project.

LSH for Similarity Search Using MapReduce 177

As we predicted, locality sensitive hashing allows us to compute this task in fi-
nite and short time in comparison to traditional methods like kd-trees or R-trees.
For example computing candidate generation phase on our cluster takes 15 mins,
07 sec for 8 167 022 documents and produced 6 348 635 baskets. Computational
complexity of this task was linear, what is presented on figure 3.

Fig. 3. Timing comparisons

10 Future Work

In the next step of research on similarity search problem we recommend to
use the idea described in [14], namely to hash only sentences instead of whole
documents. In this approach we are able to measure similarity also between
some pairs of documents, for example citation, inclusion, partial copy. We can
also hash lemmas instead of words omitting meaningless words, giving in this
way a method for semantic and partial similarity comparison which is a very
interesting topic for future research.

Acknowledgments. The author would like to acknowledge the contributions of
NEKST team, especially his coordinator Dariusz Czerski. This research project
was supported by funds from the science budget of the Republic of Poland and
is cofounded by the European Union from resources of the European Regional
Development Fund, Project Innovative Economy [15].

References

1. Venu Satuluri, S.P.: Bayesian locality sensitive hashing for fast similarity search.
In: Proceedings of the VLDB Endowment (2012)

2. Yuan, P., Sha, C., Wang, X., Yang, B., Zhou, A., Yang, S.: XML structural sim-
ilarity search using mapreduce. In: Chen, L., Tang, C., Yang, J., Gao, Y. (eds.)
WAIM 2010. LNCS, vol. 6184, pp. 169–181. Springer, Heidelberg (2010)

178 R. Szmit

3. Piotr Indyk, R.M.: Approximate nearest neighbors: towards removing the curse
of dimensionality. In: Proceedings of the Thirtieth Annual ACM Symposium on
Theory of Computing (1998)

4. Broder, A.: On the resemblance and containment of documents. In: Proceedings of
Compression and Complexity of Sequences 1997, pp. 21–29 (1997)

5. Broder, A.Z., Charikar, M., Frieze, A.M., Mitzenmacher, M.: Min-wise independent
permutations. JCSS 60(3), 630–659 (2000)

6. Broder, A.Z., Charikar, M., Frieze, A.M., Mitzenmacher, M.: Min-wise independent
permutations. In: Proc. 30thACMSymposiumonTheory of Computing, STOC1998
(1998)

7. Das, A., Datar, M., Garg, A.: Google news personalization: Scalable online collab-
orative filtering. In: Industrial Practice and Experience, Banff, Alberta, Canada,
May 8-12 (2007)

8. Foundation, A.S.: ApacheTM hadoop R©, http://hadoop.apache.org/
9. Cloudera: Hadoop and big data, http://www.cloudera.com/content/cloudera/
en/why-cloudera/hadoop-and-big-data.html

10. Dean, J., Ghemawat, S.: Mapreduce: Simplified data processing on large clusters.
In: OSDI 2004: Sixth Symposium on Operating System Design and Implementa-
tion, pp. 1–13 (2004)

11. Chansler, R., Kuang, H., Radia, S., Shvachko, K., Srinivas, S.: The hadoop dis-
tributed file system, http://www.aosabook.org/en/hdfs.html

12. Gionis, A., Motwani, P.I.R.: Similarity search in high dimensions via hashing. In:
VLDB (1999)

13. Ito, T.: Likelike - an implementation of locality sensitive hashing with mapreduce.,
http://code.google.com/p/likelike/

14. Ceglarek, D., Haniewicz, K.: Fast plagiarism detection by sentence hashing. In:
Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A.,
Zurada, J.M. (eds.) ICAISC 2012, Part II. LNCS, vol. 7268, pp. 30–37. Springer,
Heidelberg (2012)

15. NEKST: Natively enhanced knowledge sharing technologies (2009),
http://www.ipipan.waw.pl/nekst/

http://hadoop.apache.org/
http://www.cloudera.com/content/cloudera/en/why-cloudera/hadoop-and-big-data.html
http://www.cloudera.com/content/cloudera/en/why-cloudera/hadoop-and-big-data.html
http://www.aosabook.org/en/hdfs.html
http://code.google.com/p/likelike/
http://www.ipipan.waw.pl/nekst/

Stabilization of Users Profiling Processed
by Metaclustering of Web Pages

Michał Dramiński1, Błażej Owczarczyk2, Krzysztof Trojanowski1,2,
Dariusz Czerski1, Krzysztof Ciesielski1, and Mieczysław A. Kłopotek1

1 Institute of Computer Science of the Polish Academy of Sciences
2 Cardinal Stefan Wyszyński University in Warsaw

Abstract. In this paper we report on an ongoing research project aim-
ing at evaluation of the hypothesis of stabilization of Web user segmen-
tation via cross site information exchange. We check stability of user
membership in segments derived at various points of time from the con-
tent of sites they visit. If it is true that users of the same service share
segments over time that pulling together clustering information over var-
ious services may be profitable. If not then the way how users are profiled
or clustered needs to be revised.

1 Introduction

Profiling of users is nowadays viewed as an important way to improve quality
of various services, especially of information services. The idea is to support the
user in finding the piece of information he needs by exploiting the background
knowledge about the group of users the user probably belongs to.
So one seeks to split the set of users into homogenous segments such that they

can be described by features useful for the purposes of the service to be delivered.
This may be done using some clustering methods or by other techniques.
One of the problems encountered is the instability of segments that are sus-

ceptible to noisy behaviour due to the sparseness of the set of users in particular
if the number of potential interesting segments is large. In this paper we want to
pose the question if we can be helped by pulling together clustering information
from various services, potentially with disjoint sets of users, but with a similar
type of service, in creating more robust or stable clusters than it is the case for
a single service.
Imagine we have applied a clustering procedure to a set of session data and

obtained a clustering of user profiles (splitting of data into clusters) and a clus-
tering rule. Then new data come. We can both apply the clustering rule to assign
the profiles in new data to the existing clusters or (re)cluster the old and new
data from scratch. We will say that the clustering is stable if:

– the optimal number of clusters did not change or new clusters (after reclus-
tering) are subclusters of existing ones
– new session data of old users (the users that were present in old data) fall
into the same clusters as the old ones if we apply the clustering rule

M.A. Kłopotek et al. (Eds.): IIS 2013, LNCS 7912, pp. 179–186, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

180 M. Dramiński et al.

– after reclustering old users from the same old cluster fall into the same new
cluster.

Within this paper we try to address the question whether or not there exist
user behaviours that allow us to assume that such a stabilizing of clustering /
segmentation is possible.
We report on an experiment concerning stability of user membership in seg-

ments derived at various points of time from the content of sites they visit. If
it is true that users of the same service share segments over time that pulling
together clustering information over various services may be profitable. If not
then the way how users are profiled or clustered needs to be revised.

1.1 Metaclustering / Consensus Clustering

It has been long noticed that different algorithms may result in different clus-
terings of the same set of objects. In our case we look at profiles of the same
users perceivable at different points in time. In each case there is a business
need to find the most appropriate clustering. Two approaches to this issue can
be distinguished in the literature:

– the meta-clustering where it is proposed to cluster the clusterings to find out
which clusterings are similar to one another (see [5], also compare [12,4,7,6])
– the consensus clustering (called also in various brands ensemble clustering
or cluster aggregation) where a similarity measure between clusterings is
introduced and data is re-clustered to get a clustering close to the original
ones or groups of clusters are formed (a kind of meta-clustering) where the
meta-clusters compete for objects performing just a re-clustering (see [13]
and also [9,10,8]).

In this paper we are interested in a middle way between these two approaches:
Though our goal would be to construct a consensus clustering, we want ask first
if we can cluster together pairs of clusters from different clusterings.

1.2 User Profiling

User profiling means usually inferring unobservable information about users from
observable information about them. The inferred unobservable information is
usually one of business value while the observable not.
The goal of profiling is usually to achieve some degree of adaptation meaning

different (more appropriate) behaviour for different users. In particular in e-
commerce applications the user or customer profile is used to make personalized
offers and to suggest or recommend products the user is supposed to like.
In the context of internet systems, in the past various features of observed

user behaviour have been used to obtain user profiles. In [14] a limited num-
ber of features generated from an IP address were used, like generated pack-
age similarity. Profiles were grouped together by a hierarchical clustering algo-
rithm. In [1] click streams in short time intervals formed a basis to group people.

Stabilization of Users Profiling 181

The short term group memberships were put together into longer vectors which
were again subject of various clustering analyses.
In this paper we cluster the users based on textual content of documents they

clicked as a result of queries they submit.

1.3 Clustering Stability

An excellent overview of the topic of clustering stability is given in [11]. They un-
derstand clustering algorithm instability for splitting into K clusters for sample
sizes n Instab(K,n) as the expected value of the distance between two cluster-
ings CK(S1), CK(S2) obtained for samples S1, S2. Samples can be collected in
various ways (e.g. in [3] by sampling without replacement from the original set).
It is worth noting that clustering instability may have various roots [2]. The

first one can be the structure of clusterings where multiple minima of the cluster
optimization function may exist. The second source may be the sampling process
itself resulting in cluster variance. The third one may the lack of computing
resources preventing from achieving the global optimum.
It is claimed that for an ideal K-means algorithm (the one that is able to find

global optimum) clusters will be unstable if K is too large, but for the proper K
or lower they will be stable. For realistic K-means the noise level and uniform
convergence are of significant impact.

1.4 Our Contribution

In this paper we investigate a very specific brand of cluster stability related first
of all to the search behaviour of users over time, measured in terms of content
of documents they visit. We explain the way how data for such investigation
can be obtained, what kind of preprocessing work is needed and what difficulties
are encountered in such investigations due to the sparseness of users common
to various clustering points in time. We present the results and attempt to find
an explanation why the clusters of user profiles seem to be apparently unstable
over time.

2 Data

2.1 AOL Data

Our metaclustering experiment has been carried out on the so-called AOL data
set. The collection includes 20 million keywords typed in the search engine by
650,000 users over three months (from March 1 to May 31, 2006). User queries
are together with the information about clicked link for a given search results.
User names in the data were replaced by numbers (user index).
The data is stored in the form of undirected bigraph with labeled nodes and

edges. There are 2 types of nodes: query and URL. The nodes of the first type
are described by the label containing the keywords typed into a search engine,
the other nodes represent web pages with URL label. The existence of the edge
between URL and query means that at least one user looking for query clicked in
the result of the URL address. Edges are described by four following attributes:

182 M. Dramiński et al.

– click - the number of clicks on the URL address on the search results page
for keywords query
– session - IDs of users who have chosen the result URL for the query
– time - click date/time UNIX timestamp format
– rank - outcome position in search results

The graph contains 6 444 438 nodes (4 811 650 query and 1 632 788 URL) and
10 741 956 undirected edges.

3 The Experiment

The experiment is based on building of profiles of AOL users. These profiles are
created separately for two different time periods (before and after some chosen
date). We assume that each user is represented by a profile built on the web
pages visited in a given period. For each of the two periods separated clustering
is processed and finally groups from both periods are compared in a sense of
users belonging.

Downloading the Web Pages. The first step was to download the contents
of sites located at addresses described by URL. For this purpose Apache Nutch
(crawler) in combination with Apache Solr (search engine - in this case used as
a fast NoSQL database) has been used. Downloading using 10 threads took 74
days and the result has been correctly recorded for about 1.1 million pages.
Some web pages are currently unavailable because of:

– status http 403 - Forbidden
– status http 404 - Not Found
– status http 500 - Internal server error
– did not answer within 30 seconds

The content of properly downloaded pages has been filtered to remove html tags
using Apache Tika and then uploaded to Solr.

Separation of Periods. Investigation of the users stability behavior over time
requires two disjoint sets of profiles. The division can be set on the basis of cut-off
date and collections resulting from the split will be called before and after.
Users who were active in only one of the periods do not affect on the results of

the experiment and can be removed. On the other hand, we need the maximum
number of profiles and it is important that the number of removed users is
minimal. This number depends on the choice of cut-off date.AOL collection
contains information about the sites visited between March 1st and May 31th
(2006). In the middle of this range is the date of April 15th and it seemed to
be the best candidate for cut-off date. In the next step we launched a program
to select the best cut-off date. Date that allows to build the largest number of
profiles of users who have been active in before and after. The number of active
users was calculated for each day (time 00:00) in the range. As expected, the
maximum value of active users corresponded to April 15th and it was 321 307.

Stabilization of Users Profiling 183

Building of Users Profiles. The next step was to combine together the con-
tent of the pages visited by the user in one period. The following schema describes
the method to obtain one document as the user’s profile:

1: function MergeUsersDocuments(Users)
2: for all range in (before, after) do
3: for all user in Users do
4: document ← CreateEmptyDocument
5: Pages ← GetPagesVisitedByUser(user)
6: for all page in Pages do
7: document.content += page.content
8: end for
9: SaveDocument(document)
10: end for
11: end for
12: end function

As a result of this operation we abtained 2 * 321 307 documents. Two for
each user (before and after).

3.1 Text Analysis

The first step in the analysis of documents (in fact profiles) is tokenization.
The result of tokenization are words (tokens) substracted from the document.
Next these tokens are lower case normalized and filtered. Filtering removes stop
words and tokens that contain characters other than the Latin alphabet. Stop
words are selected based on total frequency. If token exists in more than 60%
of documents we assume it is a stop word.To represent text documents we used
VSM (Vector Space Model) model and to determine the importance of word we
selected popular TFxIDF measure.
These steps have been performed on both sets of profiles generated previously

(before and after) using the Apache Mahout. As a result we received two bi-
nary files containing objects org.apache.mahout.math.VectorWritable class. Re-
sult files before and after the cut-off date occupied respectively 5.7 and 5.9 GB
of disk space.
Profiles have been used for clustering by k-means algorithm. This algorithm

divides tokens vectors into k groups, trying to minimize the quantization error.
To determine the measure of similarity between the two documents we used
cosine measure. It defines the similarity between two vectors based on cosine of
the angle between the directions of the n-dimensional space.

3.2 Quality Measures

As a result of metaclustering we obtained two separated sets of clusters with
assigned users respectively for both periods. To investigate the stability of users

184 M. Dramiński et al.

there was needed to define a measure of similarity of two clusterings. It was
decided to treat the data as a classification task and describe similarity by typical
classification quality indicators. The result of the before period was considered
as a reference point for the after one.
Accuracy is very good indicator of the overall quality of classification. For

calculation of accuracy it is necessary to connect all clusters from two periods
into pairs i (before) and j (after) to maximize TP j

i (True Positive) factor. In
other words we connect clusters where maximal number of same users appeared.

accuracy =

k∑
i,j=1

Max(TP j
i)

M

Max(TP j
i) maximum TP for pair of clusters i and j

k number of clusters
M number of profiles

4 Results

The experiment was repeated 9 times with different number of groups. Table 1
presents accuracy for a defined number of groups. Second column contains exper-
iment’s result, the third column contains the value of accuracy that would result
from randomly assigning profiles to groups. The last column shows the ratio of
the real accuracy and that one related to random mapping. Values greater than
1 indicate a better result than a random assigning.

Table 1. Accuracy - number of clusters

clusters (k) Accuracy (%) Accuracyrandom (%) Accuracy
Accuracyrandom

5 9.24 20 0.46

10 11.07 10 1.11

20 2.65 5 0.53

40 2.39 2.5 0.96

50 4.88 2 2.44

55 1.96 1.81 1.08

60 2.48 1.66 1.49

80 2.43 1.25 1.94

100 1.67 1 1.67

Stabilization of Users Profiling 185

5 Summary

In this paper We investigated stability of user membership in segments derived
at various points of time from the content of sites they visit. It turned out that
users of the same service change segments over time for AOL data. This means
on the one hand that pulling together clustering information over various services
is of questionable value at least for the approach to clustering as pursued in this
paper. Therefore it is necessary to look for different ways of user profiling or
to apply different clustering procedures than those presented in this paper to
achieve the goal of clustering stability.
As an implication of this apparently negative result, one shall consider the

following issues:

– the possibility that users are in fact strongly different in their behavior over
time so that no ”flock of sheeps” behavior can be observed, at least in terms
of their interests spread over a day
– the level of noise / instability induced by the K-means algorithm and the
possibility to use a different clustering algorithm or an ”incremental” K
means in which second clustering starts with the results of the first and
while clustering the data points of the first clustering are stepwise removed
and replaced by the new data points
– the quality of search engine underlying the available data - whether or not
it returns data really relevant to the information needs of the user
– the possibility of clustering either alone on the basis of queries or on text
fragments ”close enough” to the content of the query.

References

1. Antonellis, P., Makris, C., Tsirakis, N.: Algorithms for clustering clickstream data.
Preprint Submitted to Information Processing Letters, IPL October 29 (2007),
http://students.ceid.upatras.gr/~tsirakis/publications/
Algorithms-for-Clustering-ClickStream-Data-TSIRAKIS.pdf

2. Ben-David, S., von Luxburg, U., P’al1, D.: A sober look at clustering stability
(2006), http://www.kyb.mpg.de/fileadmin/user upload/files/publications/
attachments/BenLuxPal06 %5B0%5D.pdf

3. Ben-Hur, A., Elisseeff, A., Guyon, I.: A stability based method for discovering
structure in clustered data. In: Pacific Symposium on Biocomputing (2002)

4. Bifulco, I., Iorio, F., Napolitano, F., Raiconi, G., Tagliaferri, R.: Interactive vi-
sualization tools for meta-clustering. In: Proceedings of the 2009 conference on
New Directions in Neural Networks: 18th Italian Workshop on Neural Networks:
WIRN 2008, pp. 223–231. IOS Press, Amsterdam (2009),
http://dl.acm.org/citation.cfm?id=1564064.1564092

5. Caruana, R., Elhawary, M., Nguyen, N., Smith, C.: Meta clustering. In: Proceedings
of the Sixth International Conference on Data Mining, ICDM 2006, pp. 107–118.
IEEE Computer Society, Washington, DC (2006),
http://dx.doi.org/10.1109/ICDM.2006.103

http://students.ceid.upatras.gr/~tsirakis/publications/Algorithms-for-Clustering-ClickStream-Data-TSIRAKIS.pdf
http://students.ceid.upatras.gr/~tsirakis/publications/Algorithms-for-Clustering-ClickStream-Data-TSIRAKIS.pdf
http://www.kyb.mpg.de/fileadmin/user_upload/files/publications/attachments/BenLuxPal06_%5B0%5D.pdf
http://www.kyb.mpg.de/fileadmin/user_upload/files/publications/attachments/BenLuxPal06_%5B0%5D.pdf
http://dl.acm.org/citation.cfm?id=1564064.1564092
http://dx.doi.org/10.1109/ICDM.2006.103

186 M. Dramiński et al.

6. Cui, Y., Fern, X.Z., Dy, J.G.: Learning multiple nonredundant clusterings. ACM
Transactions on Knowledge Discovery from Data (TKDD) 4, 15:1–15:32 (2010),
http://doi.acm.org/10.1145/1839490.1839496

7. Dasgupta, S., Ng, V.: Which clustering do you want? inducing your ideal clustering
with minimal feedback. J. Artif. Int. Res. 39, 581–632 (2010),
http://dl.acm.org/citation.cfm?id=1946417.1946430

8. Ghosh, J., Acharya, A.: Cluster ensembles. Wiley Interdisc. Rew.: Data Mining
and Knowledge Discovery 1(4), 305–315 (2011)

9. Goder, A., Filkov, V.: Consensus clustering algorithms: Comparison and refine-
ment. In: Munro, J.I., Wagner, D. (eds.) Proceedings of the Workshop on Algo-
rithm Engineering and Experiments, ALENEX 2008, San Francisco, California,
USA, January 19, pp. 109–117 (2008),
http://www.siam.org/proceedings/alenex/2008/alx08_011godera.pdf

10. Hore, P., Hall, L.O., Goldgof, D.B.: A scalable framework for cluster ensembles.
Pattern Recogn. 42(5), 676–688 (2009),
http://dx.doi.org/10.1016/j.patcog.2008.09.027

11. von Luxburg, U.: Clustering stability: An overview. Foundations and Trends in
Machine Learning 2(3), 235–274 (2009)

12. Niu, D., Dy, J.G., Jordan, M.: Multiple non-redundant spectral clustering views.
Proc. ICML 2010 (2010), http://citeseerx.ist.psu.edu/viewdoc/
download?doi=10.1.1.170.1490&rep=rep1&type=pdf

13. Strehl, A., Ghosh, J.: Cluster ensembles — a knowledge reuse framework for com-
bining multiple partitions. J. Mach. Learn. Res. 3, 583–617 (2003),
http://dx.doi.org/10.1162/153244303321897735

14. Wei, S., Mirkovic, J., Kissel, E.: Profiling and clustering internet hosts. In: Proc.
WorldComp2006 (2006),
http://www.isi.edu/~mirkovic/publications/DMI8155.pdf

http://doi.acm.org/10.1145/1839490.1839496
http://dl.acm.org/citation.cfm?id=1946417.1946430
http://www.siam.org/proceedings/alenex/2008/alx08_011godera.pdf
http://dx.doi.org/10.1016/j.patcog.2008.09.027
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.170.1490&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.170.1490&rep=rep1&type=pdf
http://dx.doi.org/10.1162/153244303321897735
http://www.isi.edu/~mirkovic/publications/DMI8155.pdf

Towards a Keyword-Focused Web Crawler

Tomasz Kuśmierczyk1 and Marcin Sydow2,1

1 Institute of Computer Science, Polish Academy of Sciences, Warsaw, Poland
2 Polish-Japanese Institute of Information Technology, Warsaw, Poland

t.kusmierczyk@phd.ipipan.waw.pl, msyd@poljap.edu.pl

Abstract. This paper concerns predicting the content of textual web documents
based on features extracted from web pages that link to them. It may be applied in
an intelligent, keyword-focused web crawler. The experiments made on publicly
available real data obtained from Open Directory Project1 with the use of several
classification models are promising and indicate potential usefulness of the stud-
ied approach in automatically obtaining keyword-rich web document collections.

1 Introduction and Motivation

Web crawler is a network application that automatically fetches large collections of
web documents via http protocol according to some clearly defined crawling strategy.
It is an essential module in various applications including search engines, for example.
For some applications it is important to limit the fetching process only to documents
that satisfy some criteria concerning their content, for example presence of specific
keywords, specific topic of document, etc. Such task is known as focused crawling.

A crawler generally works in iterations that, in short, are as follows. Picking a bulk
of URL addresses to be fetched, out of an internal priority queue, fetching them via http
protocol, parsing and recording the fetched documents, pushing the parsed links that
lead to new web documents into the priority queue. In real systems, the process is much
more complicated, but the idea is generally as presented.

One of the key technical problems in focused crawling is that the fact whether a
document to be fetched is worth fetching (i.e. satisfies the specified criteria) may be
verified only after it is fetched. In practice, the ratio of web documents satisfying
the focused-crawling criteria to all documents that are available in standard, BFS-like
crawling scheme may be arbitrarily low. Thus, to save crawler’s resources such as net-
work bandwidth, hard disk, CPU, etc. and to efficiently fetch large collection that is rich
of documents that satisfy the crawling criteria it is necessary to predict the contents of
documents to be fetched without fetching them.

This can be stated as a binary classification problem: given some specific criterion
and the set of already-crawled documents that contain links to an unknown web doc-
ument x, predict whether x satisfies the criterion without fetching it. More precisely, a
supervised learning approach can be used, i.e. the model is learnt on a portion of linked
web documents and it is subsequently applied to unknown portion of the web.

1 http://www.dmoz.org/

M.A. Kłopotek et al. (Eds.): IIS 2013, LNCS 7912, pp. 187–197, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://www.dmoz.org/

188 T. Kuśmierczyk and M. Sydow

In this paper, we study a specific problem of predicting the presence of pre-specified
keyword phrase on a web page rather than its topicality that makes it subtly different
from most of approaches previously studied in the literature.

Such a specified task has many important applications that usually involve preparing
a corpus of documents rich in specific keywords to be further processed by other tools.
It may be then used for various tasks ranging from information extraction to statistical
analysis of keyword presence to be subsequently used for tuning keyword-based web
ad campaigns, for example.

1.1 Related Work

The idea of biasing the crawled collections towards a pre-specified criteria has been
intensively studied since early times of web mining. Below we list a selection of repre-
sentative early works on the topic.

Focused crawling based on a classifier was proposed in [4] where a naive Bayes
approach was applied to predict categories of web pages to be fetched.

The phenomenon of “topical locality”, i.e. a topical correlation of web documents in
a link neighbourhood in WWW was studied in [5].

The idea of taking into account, during web content prediction, the pages that are a
few links away, with the concept of context graphs was studied in [6].

Most works concerning the topic use naive Bayesian classifier, though [8] studies
many other models and observes that other models may perform better, e.g. SVM (Sup-
port Vector Machine). In this paper we apply SVM and CART-Trees, besides Bayesian
classifier to evaluate our approach. At this level of work our goal is not to select the best
possible classifier and configuration but to gain some knowledge and intuition about
their properties in context of the task. Therefore, we decided to use three popular ap-
proaches that are also known to be successful in solving similar problems. In further
research one can carry additional experiments leading to slight increase in quality.

The concept of intelligent crawler that learns during the crawling was introduced in
[1]. The same work proposes to measure the quality of intelligent or focused crawling
with harvest rate – the proportion of documents “relevant” to the crawl criteria to all
harvested documents. The same measure is used in our paper.

As an example of a recent survey, [2] studies various algorithms for prioritising the
pages to be crawled with a PageRank-based importance measure.

In contrast to the cited works, and many others, our work focuses on a specific task
of crawling web pages that are rich in pre-specified keywords rather than of a specific
topic. In addition, while we adapt a combination of the machine-learning approaches
studied in other works before, including context-graphs, for example, the techniques
presented in this paper are very simple, efficient and topic-independent.

2 Problem Statement

In the work described in this paper we focus on a specific issue of short crawls based
on usage of a small list of keywords with well chosen seed pages. This keywords might
be user’s queries or names of entities therefore their length is limited to just several

Towards a Keyword-Focused Web Crawler 189

words. By short crawls we understand crawls going no farther than ten or twenty jumps
from layer of seed pages (in experiments we used 25 layers). By well chosen seed we
understand the set of pages’ URLs with high initial Harvest Ratio:

HR =
|valuable pages|
|fetched pages|

where we define valuable pages ={pages from set fetched pages that contain each of
keywords at least once} and by fetched pages we understand all pages downloaded by
crawler in specific set of crawl layers (layer = set of pages fetched by crawler in single
work cycle).

3 General Ideas and Design

In our approach to focused crawling we utilized two main concepts in this area. Our
design of a classifier can be understood as a combination of simplified content and link
(graph context) analysis approaches. In contrast to the first type of crawlers we decided
to use simple keyword-based features that can be computed in a very fast way. Also
context is analysed in a simplified way: possible partial overlapping of different link
paths is not investigated.

General design of a classification scheme is shown on Figure 1. The scheme presents
a process of deciding whether to fetch or not considered page. The process is composed
of several steps that produces different outcomes. Outcomes are denoted with consecu-
tive letters of alphabet. The result of last step is a final decision that can be then applied
by fetching module. This decision can be interpreted as mentioned in introduction "pre-
diction of content" e.g. system predicts whether considered page contains keywords or
not.

The first step of a decision making process is to extract features (denoted with letter
A on the Figure 1) of all link paths that lead to the considered URL. It is obvious that
only paths included in known part of the web-graph are considered. To avoid loops and
filter out irrelevant paths we consider only these links that lead from lower to higher
layer. In our implementation we limited paths’ length to tree hops.

For every link in the path simple features are extracted:

– whether it points out at valuable (in the sense of the criteria) page or not (of course
this feature is not known for the last link in path)

– how many hops backward is needed to get to valuable page
– what is minimum/average distance (measured in number of words) between link

position on the page and criteria keywords
– what is the number of keywords occurrences in the link source page
– what would be the fraction of valuable pages considering layers up to the one where

the source page is placed if we have not applied cutting-off

As one can see at this point we exploit textual content of previously fetched pages.
Nevertheless the content is used in a very simplified and therefore low-cost way e.g.
single occurrences and relative positions of keywords are considered. Such an approach

190 T. Kuśmierczyk and M. Sydow

Fig. 1. General schema of features extraction and classification process

uses only small part of available information but as further experiments showed final
result, after incorporating these features into graph context structures, is very promising.

During the evaluation process we tested three different subsets of features. First,
denoted as Rich, consist of all possible features. In the second, denoted as Poor, we in-
clude only 5 features: number of keywords for all pages in considered path (3 features),
whether previous page was valuable or not (1 feature) and what is the minimum dis-
tance between link and keywords in the current page (1 feature). Third set of features,
denoted as Medial, includes a number of features in between Rich and Poor sets.

In the second step, lists of features for paths are grouped according to the last link
in the path and then aggregated. For example, having two in-links for the considered
URL we obtain two vectors of features (one per each URL). These vectors (denoted
with letter B on the Figure 1) are used in classification process: either for training or for
test/final classifying.

Classifiers need to define positive and negative class for them. The simplest approach
(denoted Simple) is to select links that directly point to a valuable page. Fetching or not
of some page may influence reachabilitiy of other pages. Therefore we also considered
strategies based on harvest ratio estimation: link is added to positive class if fraction of
valuable pages reachable (in farther layers) from link destination page fulfils condition:

C · fraction > harvestRatioEstimation

Towards a Keyword-Focused Web Crawler 191

General idea is to teach classifier whether link leads to some valuable (e.g. richer in
valuable pages than the average) sub-graph or not. Right side of the inequality has the
meaning of what is current believe on what is average harvest ratio. It is calculated bas-
ing on pages fetched up to the current moment. Left side consist of real (known during
learning, but not known after deployment) fraction of future-reachable, valuable pages
and constant C that controls what level of harvest ratio is satisfying. It is important to
remember that some of the pages in the reachable sub-graph are also reachable from
other links that also will be considered, therefore C has not obvious meaning. It can be
interpreted as a measure of how much we want to risk fetching unsuitable pages. For
C = 1.0 we denote this fetch criteria as Harvest0, for C = 0.3 as Harvest1 and for
C = 0.001 as Harvest2.

The last step in URL classification process is to decide whether page should be
fetched or not basing on decisions for all in-links (denoted with letter C on the Fig-
ure 1). This decision (denoted with letter D on the Figure 1) is made by voting. If there
is ≥ F votes then page is fetched; otherwise not. Empirically we chose F = 0.95 what
in practise means that all votes must say ’yes’ for fetching.

At current level of advance of our project we set up experimental environment using
python scripts. The scripts process already downloaded results of crawls and simu-
late behaviour of focused crawler on off-line data. The data was gathered with Apache
Nutch 1.6 crawler and logical consequence of current works would be to reimplement
system using Java language as a plug-in to this crawler.

4 Experiments

4.1 Data Characterisation

In experiments we used results of crawls gathered by Apache Nutch 1.6. For seed URLs
we used three publicly available Open Directory Project directories:

1. business/e-commerce (655 URLs)
2. recreation/theme parks (485 URLs)
3. computers/mobile computing (510 URLs)

For each of these sets we crawled the web with depth parameter set to 25 layers and
maximum breadth set to 1000. It led to fetching more than 20 thousand of pages with
hundreds of thousands of links. We analysed the resulting crawls with different sets
of keywords. On Figure 2 we show dependence of harvest ratio in different layers for
different keywords in considered crawls. Brief review of this figure leads to the conclu-
sion that typical assumption that the ratio of the pages satisfying the crawling criteria
decreases with the distance from the seed set, is not necessarily true when taken verba-
tim. However, after smoothing (not shown) the charts, although quite flat, they generally
indicate weak signals of such phenomenon.

4.2 Links Classifier Parameters Selection

Classification process that is shown on Figure 1 depends on many parameters. To
choose them we performed several experiments using first crawl results (for business/e-
commerce seed). We split links basing on layers into two sets: training set out of layers

192 T. Kuśmierczyk and M. Sydow

Fig. 2. Harvest ratio in layers for different crawls and keywords (in brackets means are given)

Towards a Keyword-Focused Web Crawler 193

Fig. 3. Link classification quality (F1) for different classifiers

194 T. Kuśmierczyk and M. Sydow

3-10 and test set out of layers 11-25. For various keyword sets (shown on Figure 2)
we tested different classifiers (Gaussian Naive Bayes [7], CART-Tree [3], Linear-SVM
[9]), sets of features (Poor, Medial, Rich) and fetch criteria (Simple, Harvest0/1/2).

To select the best classifier we compared plots of F1 measures for test set. We fixed
other parameters and measured quality for different keywords with different overall
harvest ratio (harvest ratio calculated for whole crawl results). All of the plots look
similarly to each other. Three sample plots are shown on Figure 3. In general Gaussian
Naive Bayes classifier performed the best. The worst results were obtained for CART-
Trees. What can also be observed is that results of link classification increase with
number of valuable pages. It can be an effect of better representation of positive class
in training set.

To select the best subset of features and fetch criteria we performed similar proce-
dures. Table 1 shows averaged values of F1 for different features subsets and Table 2
for different fetch criteria. Final conclusion is that the best results are obtained for the
features denoted as Poor with either Simple or Harvest0 fetch criteria.

Table 1. Average (over different keyword sets) F1 of links classification for different sets of
features [Fetch Criteria = Simple]

Set of Features NaiveBayes CART-Tree LinearSVM

Poor 61% 41% 59%
Medial 52% 40% 44%
Rich 52% 39% 35%

Table 2. Average (over different keyword sets) F1 of links classification for different Fetch Cri-
teria [Features = Poor]

Fetch Criteria NaiveBayes CART-Tree LinearSVM

Simple 61% 41% 59%
Harvest0 61% 42% 49%
Harvest1 59% 43% 44%
Harvest2 57% 42% 49%

4.3 Pages Classification

To evaluate classification system’s ability to select properly pages to be fetched we
performed further simulation. We used layers 3-10 as a training set and 11-25 as a
test set. At first we calculated harvest ratio without cutting-off any branches (Original
Harvest Ratio). Then we calculated harvest ratio using classification system to cut-off
some URLs (and eventually branches). It is important to mention that this behaviour
would be quite different in real, on-line focused crawler whereas skipped (cut-off) pages
would be replaced with another ones. Anyway, assuming that in this new set of pages
we can also successfully perform classification, final ratio would be even better.

Figure 4 presents plots of harvest ratio before and after cutting-off for different fetch
criteria. Change of these criteria should strongly influence behaviour of the whole sys-
tem. Intuitively, when changing this parameter we change what classifier is learned to

Towards a Keyword-Focused Web Crawler 195

achieve: either to predict that a single page satisfies the criteria or it contains links that
can lead to such. Short analysis of this figure shows that the best results are obtained
for strategy Simple and Harvest0.

Fig. 4. Harvest ratio for different fetch criteria

Figure 5 presents changes of harvest ratio in test set in crawl results for business/e-
commerce seed. For all of considered keyword sets quality increased visibly. Ratio
improved in the best case of 50%.

Fig. 5. Harvest ratio increase in crawl for business/e-commerce seed

4.4 Final Evaluation

To confirm that our results apply to different crawl results and keyword sets we repeated
simulation for the rest of configurations from Figure 2. In each case we split pages

196 T. Kuśmierczyk and M. Sydow

Fig. 6. Harvest ratio increase in crawls for computers/mobile-computations and recreation/theme-
parks seed sets

into training and test sets similarly as before. Then, we performed classification and
measured harvest ratio change. Charts are shown on Figure 6. These results indicate that
the approach is quite successful as the harvest ratio clearly increases. The improvement
factor varies from about 1.5 (e.g. business/e-commerce:“business services”) to about 10
times (e.g. computers/mobile computations:“ericsson”).

5 Conclusions and Future Work

We proposed a machine-learning approach to efficiently predict the presence of pre-
specified keywords on unknown textual web pages, based on features extracted from
web pages in a close link neighbourhood. The features are based both on link structure
and textual content. The studied issue has applications in designing an efficient crawler
that effectively collects web documents that are rich in pre-specified keywords.

In the reported experimental evaluation we tested numerous combinations of several
parameter settings, including various feature sets, classification algorithms and key-
word sets. Preliminary experimental results, that are done in a repeatable manner on
a publicly available set of web documents from the dmoz.org web site are promising
and indicate that the applied approach seems to be successful in obtaining keyword-rich
web document collections, despite the simplicity of the applied model.

A continuation of this work would involve more systematic and extensive experimen-
tation, including statistical significance analysis, larger data sets and more sophisticated
prediction models, including multi-phrase criterion, for example.

An important improvement of the presented approach would involve incorporating
the prediction module into an intelligent crawler that incrementally learns on-line, dur-
ing the crawling process instead of the off-line learning model presented in this paper.
This would also make it possible to apply even more practical evaluation measures that
take into account also the consumption of important resources such as crawling time,
used bandwidth, etc.

Towards a Keyword-Focused Web Crawler 197

Acknowledgements. The first author was supported by research fellowship within
"Information technologies: research and their interdisciplinary applications" agreement
between IPS PAS and Polish Ministry of Science and Higher Education POKL.04.01.01-
00-051/10-00, the second author was supported by PJIIT grant ST/SI/02/2011.

References

1. Aggarwal, C.C., Al-Garawi, F., Yu, P.S.: Intelligent crawling on the world wide web with
arbitrary predicates. In: Proceedings of the 10th International Conference on World Wide Web,
WWW 2001, pp. 96–105. ACM, New York (2001),
http://doi.acm.org/10.1145/371920.371955

2. Alam, M., Ha, J., Lee, S.: Novel approaches to crawling important pages early. Knowledge
and Information Systems 33, 707–734 (2012),
http://dx.doi.org/10.1007/s10115-012-0535-4

3. Breiman, L., Friedman, J., Olshen, R., Stone, C.: Classification and Regression Trees.
Wadsworth and Brooks, Monterey (1984)

4. Chakrabarti, S., van den Berg, M., Dom, B.: Focused crawling: a new approach to topic-
specific web resource discovery. Computer Networks 31(11-16), 1623–1640 (1999),
http://www.sciencedirect.com/science/article/pii/
S1389128699000523

5. Davison, B.D.: Topical locality in the web. In: Proceedings of the 23rd Annual International
ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2000,
pp. 272–279. ACM, New York (2000),
http://doi.acm.org/10.1145/345508.345597

6. Diligenti, M., Coetzee, F., Lawrence, S., Giles, C.L., Gori, M.: Focused crawling using
context graphs. In: Proceedings of the 26th International Conference on Very Large Data
Bases, VLDB 2000, pp. 527–534. Morgan Kaufmann Publishers Inc., San Francisco (2000),
http://dl.acm.org/citation.cfm?id=645926.671854

7. John, G.H., Langley, P.: Estimating continuous distributions in bayesian classifiers. In: Pro-
ceedings of the Eleventh Conference on Uncertainty in Artificial Intelligence, UAI 1995,
pp. 338–345. Morgan Kaufmann Publishers Inc., San Francisco (1995),
http://dl.acm.org/citation.cfm?id=2074158.2074196

8. Pant, G., Srinivasan, P.: Learning to crawl: Comparing classification schemes. ACM Trans. Inf.
Syst. 23(4), 430–462 (2005), http://doi.acm.org/10.1145/1095872.1095875

9. Steinwart, I., Christmann, A.: Support Vector Machines, 1st edn. Springer Publishing
Company, Incorporated (2008)

http://doi.acm.org/10.1145/371920.371955
http://dx.doi.org/10.1007/s10115-012-0535-4
http://www.sciencedirect.com/science/article/pii/S1389128699000523
http://www.sciencedirect.com/science/article/pii/S1389128699000523
http://doi.acm.org/10.1145/345508.345597
http://dl.acm.org/citation.cfm?id=645926.671854
http://dl.acm.org/citation.cfm?id=2074158.2074196
http://doi.acm.org/10.1145/1095872.1095875

Threshold ML-KNN: Statistical Evaluation
on Multiple Benchmarks

Michał Łukasik1 and Marcin Sydow2,1

1 Institute of Computer Science, Polish Academy of Sciences, Warsaw, Poland
2 Polish-Japanese Institute of Information Technology, Warsaw, Poland
m.lukasik@phd.ipipan.waw.pl, msyd@poljap.edu.pl

Abstract. This paper concerns the performance of a recently proposed multi-
label classification algorithm called Threshold ML-KNN. It is a modification of
the established ML-KNN algorithm. The performance of both algorithms is com-
pared on several publicly available benchmarks. Based on the results, the conclu-
sion is drawn that Threshold ML-KNN is statistically significantly better in terms
of accuracy, f-measure and hamming loss.

1 Introduction

Multi-label classification is a problem, in which objects can be assigned more then
one label. Document classification might be considered as an example of multi-label
classification [3]. Threshold ML-KNN is a multi-label classification algorithm, which
has been recently proposed in [3]. It is a modification of an established algorithm: ML-
KNN [6][5].

In [3], the algorithm was evaluated on a single dataset without deeper statistical anal-
ysis. It is therefore unknown, whether it is usually better to use ML-KNN or Threshold
ML-KNN. Purpose of this work is to perform experimental comparison of the 2 al-
gorithms, using multiple established benchmarks and statistical methods. This would
allow to make some conclusions about the relative performance of the 2 classifiers.

The rest of this work is organised as follows: in section 2 we introduce the 2 stud-
ied classifiers: ML-KNN and Threshold ML-KNN. In section 3 we explain, how to
compare 2 classification algorithms across multiple domains. Section 4 contains short
overview of datasets on which algorithms have been evaluated. In section 5 we describe
the experiments and interpret the results. We end the paper with section 6, in which we
summarize our work.

2 Classifiers

In a multi-label classification problem we are given a dataset X and a set of labels L.
Each element x ∈ X may be described by a set Lx ⊂ L.

2.1 ML-KNN

ML-KNN (Multi-Label KNN) is an algorithm proposed by Zhang in [6]. It is basically
a Naive Bayes classifier, which uses features induced from the neighbourhood of an
object, therefore it uses the concept of KNN.

M.A. Kłopotek et al. (Eds.): IIS 2013, LNCS 7912, pp. 198–205, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Threshold ML-KNN: Statistical Evaluation on Multiple Benchmarks 199

Let us denote by l(x) an event that label l describes object x. Furthermore, let Ex(l)

be an event, that amongst k nearest neighbours of x there are x(l) objects described
by label l. In such case, we shall assign label l to an object x if the following holds:
P (l(x)|Ex(l)) > P (¬l(x)|Ex(l)). According to the Bayes rule, this can be rewritten to
the inequality shown in (1).

P (Ex(l)|l(x))P (l(x)) > P (Ex(l)|¬l(x))P (¬l(x)) (1)

Variables that appear in inequality (1) can be estimated using the training set. Prior prob-
abilities of occurrence of a label can be estimated by frequencies in the set. Posterior
probabilities are approximated by counting neighbourhoods of all objects. Complete
algorithm with pseudocode can be found in [6].

2.2 Threshold ML-KNN

In [3] it has been shown that ML-KNN may perform poorly on a real dataset because of
noise in the data. A solution to the problem has been proposed: instead of estimating the
Bayes probabilities, a single threshold t can be assigned to each label l. After selecting
a threshold value, label l is assigned to object x when at least t objects of class l are
found in the neighbourhood of x.

For a given label l, let us denote by cil number of objects in the training set described
by label l, that have exactly i objects with label l assigned in their neighbourhood. We
will denote by dil number of objects in the training set, that have exactly i objects with
label l assigned in their neighbourhood and which are not described by label l.

In order to choose value for a threshold, one can traverse through all t ∈ {0, . . . , k}
and check, for which t some utility function is the highest. We will consider utility
functions, which for a fixed t and the set of values cil , d

i
l can be measured using the

following variables:

– FN (false negatives), number of objects incorrectly classified as not belonging to
class l. It can be calculated as

∑
i<t c

i
l ,

– TP - (true positives), number of objects correctly classified as belonging to class l.
It can be calculated as

∑
i≥t c

i
l,

– TN - (true negatives), number of objects correctly classified as not belonging to
class l. It can be calculated as

∑
i<t d

i
l ,

– FP - (false positives), number of objects incorrectly classified as belonging to class
l. It can be calculated as

∑
i≥t d

i
l .

Example of utility function for choosing threshold value t is f-measure, as was the case
in [3], which can be expressed by the formula: f1 = H(TP

TP+FP , TP
TP+FN), where

H(x, y) = 2xy
x+y . One can use any other criterion, for example accuracy. In such case,

one would seek for maximizing the following expression: acc = TP+TN
TP+FN+TN+FP .

The modification presented is a way of shrinking the parameter space, which makes
the algorithm less prone to noise in the training data. Also, the time complexity of
modification is the same as of ML-KNN. The complete description of Threshold ML-
KNN with pseudocode and deeper analysis can be found in [3].

200 M. Łukasik and M. Sydow

2.3 Criterion for Choosing Threshold in Threshold ML-KNN

In general, it is good to choose the criterion according to the data that one has to work
on. For example, in [3] the criterion chosen was F-measure and allowed obtaining good
classification results. However, when there are some classes with very few members,
f-measure tends to maximize recall at the cost of precision, which in the end gives low
accuracy and f-measure for the whole classifier. It can be easily seen why this is the
case when we consider a dataset where some label l has only a few members. Then, for
high threshold value, recall becomes very low (around zero). In order to compensate
this, classifier chooses lower thresholds, which elevates recall, making precision drop
to lower numbers. Accuracy does not have the drawback of not dealing with the small
categories count.

As for the problem what criterion to choose in order to obtain as general solution
as possible, we have decided to choose accuracy maximization criterion, since it seems
more resistant to the problem with small number of labels.

Furthermore, we shall examine an algorithm which uses a simple sum of acc and f1
as a criterion for choosing thresholds. Any combination can be chosen and the choice
should answer to a problem one poses to himself, that is what type of data he or she is
dealing with or what measure he or she is mostly interested in maximizing. However, in
this work we are interested in as universal methods as possible, therefore in the second
approach we do not emphasize any of the 2 classification measures more.

To sum up, we are going to use 2 types of Threshold ML-KNN:

– Threshold ML-KNN with the criterion for choosing threshold being accuracy,
– Threshold ML-KNN with the criterion for choosing threshold being sum of accu-

racy and F-measure.

3 Problem Statement

We are given 2 algorithms: A and B. We also have several datasets. Based on the results
received for each data set by the 2 classifiers, we are interested in determining, which
algorithm is better. The procedure of determining this consists of the following steps:

– calculating some classification measure fc,d for each classifier c on each dataset d
– using a statistical test on the measures calculated to determine, whether one classi-

fier is generally better than the other

As for the first step, different measures exist for multi-label classification. Below we
describe some of them that we are going to use. Afterwards, we shortly describe a
statistical test for comparison of 2 classifiers on multiple datasets.

3.1 Classification Measures for Multi-label Classification

Each object x has a set of labels Lx assigned to it. On the other hand, algorithm A
assigns to it set of labels LA

x . Now, for all x ∈ X , using sets Lx and LA
x we want to

measure how well the classifier A performs. We use the following measures.

Threshold ML-KNN: Statistical Evaluation on Multiple Benchmarks 201

We use the following definition of multi-label accuracy: 1
|X|

∑
x∈X

|Lx∩LA
x |

|Lx∪LA
x | . It does

not distinguish error of choosing too many labels from not choosing labels needed.
Precision measures what part of labels from Lx have been chosen. Its formula is as

follows: 1
|X|

∑
x∈X

|Lx∩LA
x |

|Lx| .

Recall allows to see, how many labels from LA
x have been really needed. Recall is

calculated as: 1
|X|

∑
x∈X

|Lx∩LA
x |

|LA
x | .

The measure that balances between recall and precision is F-measure. For each clas-
sified item, the harmonic mean of precision and recall is calculated. Then, the result is

averaged over all items: 1
|X|

∑
x∈X H(

|Lx∩LA
x |

|Lx| ,
|Lx∩LA

x |
|LA

x |), where H(x, y) = 2xy
x+y .

Hamming Loss counts, how many labels are on average misclassified to be or not
to be assigned to an object. The formula is as follows: 1

|X|
∑

x∈X LxΔLA
x , where Δ

stands for symmetric difference.

3.2 Statistical Test

When a classification measure is fixed, based on values f i
c,d, we want to check for statis-

tical difference between 2 classifiers. According to [2], a good test for this is Wilcoxon
signed ranks test. In this test, difference between performances on each dataset d is cal-
culated: sd = fcA,d−fcB,d. The differences are sorted according to their absolute value.
Then, values RA and RB can be calculated, which denote: the sum of ranks where al-
gorithm A was better and the sum of ranks where algorithm B was better, respectively.
The test statistic is the minimum of the 2 sums.

There are a few arguments why Wilcoxon signed ranks test should be used instead of
other popular tests like t-test. One of them is that it does not assume commensurability:
results for different datasets can be very different. Furthermore, normal distributions of
results are not assumed. Such assumption is rarely met when dealing with classification
results[2].

4 Datasets

We evaluated classifiers on multi-label datasets: scene, emotions, genbase, yeast, medi-
cal, CAL500. All of them are available on-line on: http://mulan.sourceforge.net/datasets.
html. The criterion for choosing datasets was only their size - datasets with too many
samples and features have been excluded for computational reasons.

Scene dataset contains features of natural scene images, together with a few la-
bellings stating, what the picture shows. Each scene image is divided into 49 blocks
of pixels. Blocks are described by their first and second moments.

Emotions data consists of songs described by emotions that they cause. The features
were calculated based on the signal, such as amplitude spectrogram characteristics or
parameters of signal in frequency domain acquired after FFT.

Genbase dataset contains motifs associated to protein families. Feature vectors point,
which proteins are present in the family.

202 M. Łukasik and M. Sydow

Yeast dataset poses a problem of predicting gene functional classes of Yeast Saccha-
romyces cerevisiae. Genes are described by micro-array expression data and phyloge-
netic profile, preprocessed accordingly. The set of functional classes is structured into
hierarchies and only functional classes in the top hierarchy are considered.

Medical dataset contains ICD-9-CM codes assigned to clinical free text. It is about
assigning surgical, diagnostic and therapeutic procedures that should be applied, based
on information about patients.

CAL500 contains annotated musical tracks. The features describing songs are based
on the FFT.

In Table 1 we show basic statistics of the used datasets. In particular, the following
statistics concern multi-label datasets: cardinality (how many labels on average are as-
signed to an object) and density (what percentage of labels is on average assigned to an
object).

Table 1. Basic statistics of datasets used for comparison of classifiers

name domain instances labels features cardinality density

scene image 2407 6 294 1.074 0.179
yeast biology 2417 14 103 4.237 0.303
medical text 978 45 1449 1.245 0.028
genbase biology 662 27 1186 1.252 0.046
emotions music 593 6 72 1.869 0.311
CAL500 music 502 174 68 26.044 0.150

5 Experiments

We extended Orange framework [1] in order to implement Threshold ML-KNN. We
also used tools from the framework to perform analysis of multi-label measures. Statis-
tical analysis was performed using R programming language [4].

As in [6] we have also not noticed big change in obtained results when changing
parameter k for the classifiers, therefore we decided to use value 10 for all datasets.

In this section we evaluate 3 classifiers introduced in section 2. We list them below,
giving their shorter names which we are going to use in the rest of this section:

– ML-KNN
– Threshold ML-KNN with the criterion for choosing threshold being accuracy, de-

noted as T-ML-KNN Acc for short,
– Threshold ML-KNN with the criterion for choosing threshold being a sum of accu-

racy and F-measure, denoted as T-ML-KNN F1 Acc for short.

5.1 Experiment 1

First we compared all of the 3 classifiers on each dataset separately. In Tables 2, 3, 4
we show how means and standard deviations vary in results given by each classifier,
according to Hamming loss, accuracy, F-measure. The simple statistics are calculated
on results of 10-fold cross validation. The best results have been emphasized.

Threshold ML-KNN: Statistical Evaluation on Multiple Benchmarks 203

As for T-ML-KNN Acc it can be noticed, that for dataset CAL500 there is a drop
in quality according to all measures used. However, for other datasets, this type of
Threshold ML-KNN outperforms ML-KNN. For example in terms of accuracy, for
all datasets except for CAL500, Threshold ML-KNN performs much better. Similarly
when F-measure is considered. It can also be noticed, that the performance drop for
CAL500 is much smaller compared to how Threshold ML-KNN improves upon other
datasets.

Table 2. Hamming Loss (mean±std) for ML-KNN, T-ML-KNN Acc and T-ML-KNN F1 Acc

Dataset ML-KNN T-ML-KNN Acc T-ML-KNN F1 Acc

emotions 0.1981 ± 0.02247205 0.1950 ± 0.02035522 0.200 ± 0.02133588
genbase 0.004534 ± 0.001490837 0.001958 ± 0.001217603 0.001789 ± 0.0009050165
medical 0.01592 ± 0.0009839629 0.01544 ± 0.001136067 0.02160 ± 0.001906117
scene 0.08634 ± 0.004665552 0.0857 ± 0.004970515 0.08863 ± 0.007205567
yeast 0.1912 ± 0.007809137 0.1909 ± 0.00768696 0.2148 ± 0.01478159
CAL500 0.1384 ± 0.004184808 0.1389 ± 0.003986446 0.1830 ± 0.005210248

Table 3. Accuracy (mean±std) for ML-KNN, T-ML-KNN Acc and T-ML-KNN F1 Acc

Dataset ML-KNN T-ML-KNN Acc T-ML-KNN F1 Acc

emotions 0.5291 ± 0.05421192 0.5451 ± 0.04333727 0.5677 ± 0.05035647
genbase 0.9488 ± 0.01075993 0.9823 ± 0.007310215 0.9831 ± 0.006521904
medical 0.5656 ± 0.03622595 0.6027 ± 0.02660085 0.5767 ± 0.01889509
scene 0.6643 ± 0.0194494 0.6691 ± 0.01711195 0.7194 ± 0.02449533
yeast 0.5188 ± 0.02101427 0.5212 ± 0.02024027 0.5405 ± 0.02609525
CAL500 0.1964 ± 0.0110821 0.1934 ± 0.01100551 0.2878 ± 0.01146733

Table 4. F-measure (mean±std) for ML-KNN, T-ML-KNN Acc and T-ML-KNN F1 Acc

Dataset ML-KNN T-ML-KNN Acc T-ML-KNN F1 Acc

emotions 0.6049 ± 0.04901216 0.623 ± 0.03599063 0.6551 ± 0.04584066
genbase 0.9575 ± 0.01037667 0.9881 ± 0.005401398 0.9887 ± 0.005131296
medical 0.592 ± 0.04060414 0.630 ± 0.02828658 0.6297 ± 0.02032625
scene 0.6776 ± 0.01807858 0.6827 ± 0.01611694 0.7444 ± 0.02582574
yeast 0.6230 ± 0.02219235 0.6252 ± 0.02113644 0.647 ± 0.02493529
CAL500 0.323 ± 0.01513205 0.3194 ± 0.0154195 0.2878 ± 0.01146733

On the other hand, T-ML-KNN F1 Acc yields even better results as far as F-measure
and accuracy are concerned. In terms of F-measure, T-ML-KNN Acc performs better
then T-ML-KNN F1 Acc only on medical and CAL500 datasets. However, in case of
Hamming Loss, T-ML-KNN F1 Acc almost always yields worse results then T-ML-
KNN Acc.

204 M. Łukasik and M. Sydow

5.2 Experiment 2

Second experiment is performing Wilcoxon signed rank test for detecting difference
in performances of ML-KNN and T-ML-KNN Acc on all datasets considered at once.
The null hypothesis is that both classifiers behave the same whereas the alternative
hypothesis is that Threshold ML-KNN behaves better. The results for this statistical
test are shown in table 5.

Table 5. Wilcoxon test for differences in performances of ML-KNN and T-ML-KNN Acc

H-Loss Accuracy F-measure

p-value 0.07813 0.04688 0.04688

Results show, that in terms of all measures used, except for Hamming loss, T-ML-
KNN Acc is statistically significantly better under significance level 5%. This proves,
that T-ML-KNN F1 Acc is universally better, unless one is interested mainly in Ham-
ming Loss quality. However, as far as Hamming Loss is concerned, it can also not be
stated, that T-ML-KNN F1 Acc is not worse then ML-KNN, since the p-value is not
high. Under 10% significance it can be stated, that in terms of Hamming Loss T-ML-
KNN F1 Acc behaves better then ML-KNN.

5.3 Experiment 3

Third experiment is performing Wilcoxon signed rank test for detecting difference in
performances of ML-KNN and T-ML-KNN F1 Acc. The results for this statistical test
are shown in table 6.

Table 6. Wilcoxon test for differences in performances of ML-KNN and T-ML-KNN F1 Acc

H-Loss Accuracy F-measure

p-value 0.9531 0.01563 0.01563

The dominance over ML-KNN in terms of accuracy and F-measure is bigger in case
of T-ML-KNN F1 Acc then T-ML-KNN Acc. When one is interested in maximizing
overall accuracy or F-measure, this version of Threshold ML-KNN helps gain a more
sure advantage over ML-KNN. However, according to Hamming Loss, T-ML-KNN
F1 Acc does not perform well. We also conducted Wilcoxon signed ranks test for H-
Loss difference where null hypothesis was that algorithms behave the same whereas
alternative hypothesis was that algorithms do not behave the same (note that this time
alternative hypothesis is different then in calculations for tables 5 and 6). We got p-
value equal 0.1563, which is also not very big. Still, we can presume that Threshold
ML-KNN does have some drawbacks as far as this criterion is concerned.

Threshold ML-KNN: Statistical Evaluation on Multiple Benchmarks 205

6 Conclusions

In our work we have evaluated ML-KNN and 2 types of Threshold ML-KNN classi-
fiers on multiple datasets, using various classification measures. We have shown, using
Wilcoxon signed ranks test, how Threshold ML-KNN with criterion of accuracy mea-
sure for choosing threshold performs statistically significantly better then ML-KNN,
as far as accuracy or f-measure are concerned. We have also shown, that in case of
Hamming Loss, Threshold ML-KNN does not behave worse.

On the other hand, Threshold ML-KNN with the criterion for choosing threshold
being a sum of accuracy and F-measure performs much better then ML-KNN in terms
of accuracy and F-measure. However, it is probably behaving worse then ML-KNN in
terms of Hamming Loss.

The conclusion is that the more universal improvement over ML-KNN is Threshold
ML-KNN with accuracy criterion. However, when one is interested mainly in maximiz-
ing either accuracy or F-measure, he or she should rather choose the second approach.

Acknowledgements. Study was supported by research fellowship within "Information
technologies: research and their interdisciplinary applications" agreement between IPS
PAS and Polish Ministry of Science and Higher Education POKL.04.01.01-00-051/
10-00.

References

1. Curk, T., Demšar, J., Xu, Q., Leban, G., Petrovič, U., Bratko, I., Shaulsky, G., Zupan, B.:
Microarray data mining with visual programming. Bioinformatics 21, 396–398 (2005),
http://bioinformatics.oxfordjournals.org/content/21/3/
396.full.pdf

2. Demšar, J.: Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn.
Res. 7, 1–30 (2006),
http://dl.acm.org/citation.cfm?id=1248547.1248548

3. Łukasik, M., Kuśmierczyk, T., Bolikowski, Ł., Nguyen, H.S.: Hierarchical, multi-label clas-
sification of scholarly publications: Modifications of ML-KNN algorithm. In: Bembenik, R.,
Skonieczny, Ł., Rybiński, H., Kryszkiewicz, M., Niezgódka, M. (eds.) Intell. Tools for Build-
ing a Scientific Information. SCI, vol. 467, pp. 343–364. Springer, Heidelberg (2013)

4. R Core Team: R: A Language and Environment for Statistical Computing. R Foundation for
Statistical Computing, Vienna, Austria (2012), http://www.R-project.org ISBN 3-
900051-07-0

5. Tsoumakas, G., Katakis, I.: Multi-label classification: An overview. IJDWM 3(3), 1–13 (2007)
6. Zhang, M.L., Zhou, Z.H.: Ml-knn: A lazy learning approach to multi-label learning. Pattern

Recognition 40(7), 2038–2048 (2007)

http://bioinformatics.oxfordjournals.org/content/21/3/396.full.pdf
http://bioinformatics.oxfordjournals.org/content/21/3/396.full.pdf
http://dl.acm.org/citation.cfm?id=1248547.1248548
http://www.R-project.org

Supervised Content Visualization

of Scientific Publications: A Case Study
on the ArXiv Dataset

Theodoros Giannakopoulos, Harry Dimitropoulos, Omiros Metaxas,
Natalia Manola, and Yannis Ioannidis

Management of Data, Information, and Knowledge Group of the Department of
Informatics & Telecommunications of the University of Athens 15784, Greece

{tyiannak,harryd,omiros,natalia,yannis}@di.uoa.gr

Abstract. A supervised approach to visualization of collections of sci-
entific documents is presented. We have implemented a text classifica-
tion module, which leads to class probability estimations, along with a
dimensionality reduction technique which represents each class in the 2-
D space. Integrating those two procedures, any collection of unlabelled
documents can be visualized. The arXiv dataset has been adopted for
training the classification and visualization modules. We demonstrate the
system’s functionality on a corpus of automatically detected publications
of particular EU FP7 funding categories.

1 Introduction

The task of visualizing text content is crucial since it provides a representa-
tion of what particular collections of documents refer to and it can lead to
reinforcement of human cognition, with regards to abstract text. In particular,
scientific documents define a subject of major interest in the field of text analyt-
ics, while their content richness and diversity are remarkably high. In this work
we present a method for supervised classification and visualization of scientific
content, trained on the arXiv data [1]. We present intermediate results of this
procedure, applied on a particular use case, according to which we are interested
in visualizing the content of collections of publications which share a common
funding scheme (e.g. FP7-ICT). The adopted methodology is implemented un-
der the OpenAIRE+ EU project (“2nd-Generation Open Access Infrastructure for
Research in Europe” - 283595), which is an information infrastructure of publi-
cation and data repositories and implements ECs open access policies, effectively
connecting publications to research data and funding. Therefore, in such context,
content classification and visualization, when aggregated to funding schemes is
a powerful tool that can be used by research administrators to assist them in
strategy or policy making processes.

2 Overall Architecture

In Figure 1 the proposed architecture is presented. The following sub-modules can
be distinguished: (1)Content-based classification and class representation

M.A. K�lopotek et al. (Eds.): IIS 2013, LNCS 7912, pp. 206–211, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Supervised Content Visualization of Scientific Publications 207

module. The purpose of this module is two-fold: (a) to classify a document to a
set of predefined classes. (b) To represent content classes. Towards this end, we
have selected a dictionary extraction technique: each class is represented by a dic-
tionary of terms and a list of respective weights. The same dictionaries are used
in the classification process. (2) 2D Class representation module Each class
is represented in a high - dimensional feature space, based on the dictionaries ex-
tracted by the first module. Then a dimensionality reduction approach is adopted,
in order to represent the classes in the 2-D feature space.

Fig. 1. Overall architecture of the proposed method

3 Content-Based Classification and Class Representation

3.1 Adopted Taxonomy: arXiv

In order to train the content classifier and the visualization model, supervised
knowledge is needed, i.e., mappings of documents to classes. Towards this end,
we have adopted the taxonomy provided by arXiv [1], which is an electronic
archive of scientific documents, covering a wide range of content. The arXiv

categorization uses a two-level hierarchy: each “super-class” (e.g. Computer Sci-
ence) is divided into a set of sub-classes. We have not made use of this hier-
archical labeling structure. Instead, we have used those sub-classes as classes
in all involved supervised tasks. In order to retrieve documents for training
/ testing, we have made use of the arXiv.org API [2]. Finally, a maximum
number of documents per class was set equal to 5000, when retrieving docu-
ments through the API. A list of the adopted arXiv categories can be found in
http://arxiv.org/help/api/user-manual.

208 T. Giannakopoulos et al.

3.2 Class Representation and Classifier Training

In order to proceed with the classification and visualization modules, each class
needs to be represented. First, each text document d is represented as vector
according to the following text analysis steps:

1. Tokenization: the initial stream text is broken into individual words
2. Stop word removal: NLTK’s stop words list has been adopted ([5])
3. Stemming: the Wordnet lemmatizer of NLTK has been adopted ([5])
4. For each unique term t its frequency dfd(t) is extracted

In the context of a supervised task, we suppose that each document is mapped
to one or more classes. Therefore, for each class c and given a set of respective
documents, the aforementioned procedure is executed, in order to compute dfd.
In the sequel, P (t) and P (t|c) are extracted, i.e., the a-priori probability that
term t can appear, along with the probability that term t appears in some
document of class c. Given those probabilities, a dictionary Dc and an array
of respective weights Wc is built for each class c. Towards this end, for class c

and for each term t, if P (t|c)
P (t) > T (user-defined threshold), then term t is added

to dictionary Dc, while Wc(t) =
P (t|c)
P (t) is added to the respective weights array.

The outcome of this procedure is a dictionary-based representation for each class,
which will be used in the sequel for: (a) classification of unknown documents and
(b) 2-D class visualization. In order to classify an unknown document d, with

terms t1, . . . , tN , the probability Pd(c) =
∏N

i=1 Wc(j : Dc(j) = ti) is computed.
The above procedure is actually equivalent to the Naive Bayes classifier [4].

4 Visualization of Text Content

4.1 Class Representation in the 2-D Space

The purpose of this module is to map each class to a point in the 2-D space,
so that classes of similar content are close. This can be seen as a dimensionality
reduction task, though in that case we need to reduce class representations,
instead of sample representations. At first, a class similarity matrix is extracted,
based on the computed class dictionaries and respective weight arrays (Section
3.2). In particular, for any pair of classes c1 and c2, with respective dictionaries
Dc1 and Dc2 , weights Wc1 and Wc2 and number of terms per dictionary N1 and
N2, the following similarity measure is computed:

S(c1, c2) =

∑N1

i=1 Wc2(k : Dc1(i) = Dc2(k))∑N2

i=1 Wc2(i)
+

∑N2

i=1 Wc1(k : Dc2(i) = Dc1(k))∑N1

i=1 Wc1(i)

In that way, we directly use the extracted dictionaries, in order to calculate
the similarity between the respective classes. Other measures could also be used,
based on sample-to-sample similarities, though the extraction of that class-based
similarity measure is of very low computational cost and it makes direct use of
the information extracted in the training phase of the content classifier.

Supervised Content Visualization of Scientific Publications 209

The class similarity matrix S is a way of representing the class distributions
in the R

M space (M : total number of classes). Our purpose is to reduce the
dimensionality of this space to 2 using discretized class representations. Exper-
iments we conducted showed that this cannot be achieved directly, due to the
fact that the initial feature space is rather high. Therefore, before proceeding
with the core dimensionality reduction procedure, we reduce the feature space
via a clustering technique. In particular, we first apply k-means [6] on S, as-
suming raws are samples. k was selected to be equal to 20. The outcome of the
k-means algorithm is a set of k cluster centers, say Cli, i = 1, · · · , k. This leads
to clusters of similar classes, based to the dictionary-based similarity criterion.
Then we compute the Eucledian distance between each row i of the S matrix
and each cluster j: d(i, j). d can be assumed as a set of M samples in the k
feature space. Each class is now represented by its distances from the extracted
k-means clusters. This lower dimensional space (k) is used by a self organizing
map (SOM), in order to extract a 2-D discretized representation of the classes
[7]. The reason why we selected to express the original feature space as a linear
combination of distances from cluster centers, before proceeding with the main
SOM algorithm is to avoid numerical and computational issues that stem from
the high initial dimensionality and the large number of classes involved in the
SOM training procedure. Reducing the class dimensionality to k = 20 makes the
training of the SOM faster and more accurate.

4.2 Content Representation of Unlabelled Document Collections

The aforementioned modules form a system that can (a) classify an unknown
document to a set of classes, providing soft outputs (probability estimations) and
(b) represent each of the classes in the 2-D space. Applying those two modules
for a collection of unlabeled documents, we can provide a visual interpretation of
the collection’s content. In particular, we apply the content classification module
for every document i, i = 1, . . . , Nd (Nd: total number of documents in the col-
lection), leading to a set of output probabilities Pi(c) for each class c = 1, . . . ,M .
When this document-level classification procedure is completed, we can represent

the collection’s content using a 3-D vector for each class c: [Xc, Yc,
∑Nd

i=1 Pi(c)

Nd
],

where, Xc, and Yc are the estimated 2-D class coordinates described in Section
4.1. In other words, each collection of documents is represented for each class
of the adopted taxonomy, using the 2-D estimated coordinates, along with the
accumulated (average) estimated content class probability. We have selected to
adopt the “balloon” representation for the visualization of this type of 3-D data,
provided by Google.

5 Results

In Figure 2(a) we present the estimated 2-D content distribution of the arXiv

dataset. The size of the balloons is not used here, since we are only interested in
presenting the distribution of the classes in the 2-D space. The “super-classes”

210 T. Giannakopoulos et al.

(a)

(b)

Fig. 2. (a) Overall content distribution of the arXiv dataset (b) Content distribution
of almost 1000 publications of the arXiv dataset that where part of FP7-ICT funded
research projects

Supervised Content Visualization of Scientific Publications 211

(e.g., Computer Science) are just groups of classes used in the arXiv hierar-
chy and are not used in our supervised models: we just present them in the
visualization results. Figure 2(b) presents the content distribution for a collec-
tion of arXiv documents that share a common funding scheme. Funding infor-
mation is a very important type of metadata that can be useful in scientific
document analytics, e.g. to discover and present trends in a temporal way. In
this example we present content representation from FP7-ICT funded publica-
tions. In order to extract funding information a “funding metadata extractor
module” has been developed in the context of OpenAIRE+ which scans each
publication and finds matches against the current known lists of project grant
agreement numbers and/or acronyms for various funding bodies. As explained
in Section 4.2, balloon sizes represent the average (estimated) probability that
a publication from the input collection belongs to the respective content class.
More visualizations of various types of publication collections can be found at
http://www.di.uoa.gr/~tyiannak/contentAnalysis.html.

6 Conclusions and Ongoing Work

We have presented a method towards automatic visualization of collections of
scientific publications using supervised knowledge. We have trained both the
content classifier and the visualization module based on the data and the tax-
onomy of the arXiv dataset. A visualization example of scientific publications
funded by FP7-ICT EU projects has been presented. We currently conduct on-
going research towards the following directions:

1. Detailed Evaluation of both the document collection visualization.
2. Visualization enhancement by adding other types of content descriptors, e.g.,

a tag cloud for each estimated class probability.
3. Adopt semi-supervised techniques (e.g., probabilistic topic modeling [8]).

References

1. arXiv.org: Cornel University Library article archive
2. http://arxiv.org/help/api/index: The arXiv.org API
3. Manning, C.D., Prabhakar, R., Hinrich, S.: Introduction to Information Retrieval.

Cambridge University Press (2008)
4. Rish I.: An empirical study of the naive bayes classifier. In IJCAI 2001 Workshop

on Empirical Methods in AI (2001)
5. Bird, S.: NLTK: the natural language toolkit. In: Proceedings of the COLING/ACL

on Interactive Presentation Sessions, pp. 69–72. Association for Computational Lin-
guistics, Stroudsburg (2006)

6. Theodoridis, S., Koutroumbas, K.: Pattern Recognition, 4th edn. Academic Press
(2008)

7. Kohonen, T.: Self-Organizing Maps. In: Schroeder, M.R., Huang, T.S. (eds.), 3rd
edn., Springer-Verlag New York, Inc., Secaucus (2001)

8. Ramage, D., Hall, D., Nallapati, R., Manning, C.D.: Labeled LDA: A supervised
topic model for credit attribution in multi-labeled corpora. In: Conference on Em-
pirical Methods in Natural Language Processing (2009)

http://arxiv.org/help/api/index:

A Calculus for Personalized PageRank

Mieczysław A. Kłopotek, Sławomir T. Wierzchoń, Dariusz Czerski,
Krzysztof Ciesielski, and Michał Dramiński

Institute of Computer Science of the Polish Academy of Sciences
ul. Jana Kazimierza 5, 01-248 Warszawa Poland

Abstract. This paper proposes a calculus for computing personalized
PageRank for complex categories given a precomputed set of primitive
categories. This is a work in progress aiming at reduction of the neces-
sary number of precomputed PageRanks for a set of (next to disjoint)
categories.

Keywords: PageRank, composite personalization, combining PageR-
anks.

1 Introduction

Ranking of returned documents has been a headache for search engines since
the time when vast majority of queries started returning large numbers of docu-
ments containing user keywords. Among various proposals HITS algorithm [5,1]
attracted attention due to its ability to exploit link information when ranking
documents. But it suffered from the serious drawback that the computation had
to be done on-line among the retrieved documents and the iterative computa-
tion process was time- and resource consuming. So a great advantage was the
proposal of the PageRank ranking method [8] where the static ranking could
be pre-computed and easily accessed to rank the retrieved documents, hence it
earned much popularity and became component of many in formation retrieval
systems. However, a drawback here was that documents, being highly ranked
for some reason, could be ranked highly also for queries for which they are ir-
relevant just because containing by chance some keywords [2,11]. Therefore idea
was born to compute PageRank in various variants specific for the conceptual
category of the query so that a chosen ranking would really be representative
for the domain of the query (Personalized PageRank [3], Topical PageRank [4],
Query-Dependent PageRank [10] etc., see [6] for an exhaustive bibliography).
This meant of course precomputation of multiple PageRanks so that only a
limited number of categories can be taken into account at the stage of precom-
putation. In this paper we would like to focus on some possibilities of composing
personalized PageRanks from precomputed personalized PageRanks hoping to
contribute towards bridging the gap between pre-computation and flexible re-
sponding to user queries.

M.A. Kłopotek et al. (Eds.): IIS 2013, LNCS 7912, pp. 212–219, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

A Calculus for Personalized PageRank 213

2 Ideas behind PageRank

One of many interpretations of PageRank states that it is the probability that
a knowledgeable (i.e. knowing addresses of all Web pages) but mindless (for
randomly choosing next link to go) walker will visit a Web page. More precisely,
it is a stationary distribution of a special random walk on Web graph. That
is: upon entering a particular Web page, if it has no outgoing links, the walker
jumps to any Web page with uniform probability. If there are outgoing links,
he chooses with uniform probability one of the outgoing links and goes to the
selected Web page, unless he gets bored. If he gets bored (which may happen
with a fixed probability ζ on any page), he jumps to any Web page with uniform
probability.
This model refers to the original, “objective” PageRank. At the other extreme

we can consider a mindless page-u-fan random walker who is doing exactly the
same, but in case of a jump out of boredom he does not jump to any page, but
to the page u. A page ranking obtained in this way belongs to the category of
“subjective” or personalized PageRank. Note that if there exists one page-fan
for each web page then the PageRank vector of the knowledgeable walker is the
average of PageRank vectors of all these page-fan walkers. Also there are plenty
possibilities of other mindless walkers between these two extremes. E.g. a bored
walker can jump to a page from a set U with a uniform probability or with
probability proportional to the out-degree of the pages from this set.
Let us formalize these concepts. Let r denote a (column) vector of ranks:

rj will mean the PageRank of page j of the oriented Web graph W (edges
corresponding to links). Let

∑
j∈W rj = 1, and rj ≥ 0 for all j ∈ W . Let A be a

matrix (called balanced connection matrix) such that if there is a link from page
j to page i, then Ai,j = 1

outdeg(j) , where outdeg(j) is the out-degree of node j.
If a node had an out-degree equal 0, then prior to construction of A the node
is replaced by one with edges outgoing to all the other nodes of the network.
Under these circumstances PageRank r is defined as

r = (1− ζ) · A · r + ζ · s (1)

where s is the so-called “initial” probability distribution (again a column vector
such that

∑
j∈W sj = 1, and sj ≥ 0 for all j ∈ W). s is interpreted as a vector

of Web page preferences. It has been proven that for ζ ∈ (0, 1) the vector r
exists and is unique, [7]. Hence we can define a function r(A, s) as r(A, s) = r,
where r is the vector being the solution to eq. (1). For a knowledgeable walker
for each node j of the network W sj =

1
|W | , (|W | is the cardinality of the set of

nodes of W). For a page-u-fan we have su = 1, and for any other page j �= u
sj = 0. For a uniform-set-U -fan we get sj = 1

|U| for all j ∈ U , and sj = 0 for
all j �∈ U . The following property is easy to show: If A is a balanced connection
matrix as defined above and s1, s2 be two vectors of Web page preferences, and
r1 = r(A, s1), r2 = r(A, s2) and β ∈ (0, 1), then

(βr1 + (1− β)r2) = (1− ζ) · A · (βr1 + (1− β)r2) + ζ · (βs1 + (1− β)s2)

214 M.A. Kłopotek et al.

or expressing it differently

r(A, βs1 + (1 − β)s2) = βr(A, s1) + (1− β)r(A, s2) (2)

which will be exploited subsequently.

3 Personalized PageRank for Exclusive Categories

Let us consider subsequently the concept of personalized PageRank which shall
be identical with a page visit probability for a uniform-set-U -fan walker.
It is frequently claimed that Web page ranking would be better if for a query

the category of its topic would be identified and then the personalized PageRank
for this category would be applied when answering the query. For example we
would define categories like “sports”, “music” etc. and for a query like ”skies”
we would use the ranking of “sports”. However, as each personalized PageRank
requires time for precomputing and space for storage, we face the problem how
many categories we shall distinguish. Whatever decision we make, we will always
encounter queries that do not fit one single category and then there is a problem
which one to choose.
Subsequently we want to know if having personalized PageRanks for several

disjoint categories which may be considered as disjoint sets of Web pages sets
U1, U2, ..., Un we can compute personalized PageRanks for other sets, obtained
from these ones by set-theoretic operators of of union, difference or comple-
ment or their combination. Such considerations are of particular interest within
ontology-like frameworks (e.g. a simple lattice or TBox of concepts [9]).
These computations should be of course trivial compared to the direct time-

consuming operation of finding the eigen-vector so that they can be executed on
the fly while answering a query.
Let I(U) be an indicator vector such that I(U)

j = 1 if j ∈ U and I
(U)
j = 0

otherwise. So for the balanced connection matrix A the Personalized PageRank
for the (non-empty) set of pages U equals r(A, I(U)/|U |).
In this section we focus on a family of disjoint sets U1, U2, ..., Un which may

be thought of as categories assigned to Web pages such that the search engine
may easily infer the categories of interest from user query. In such a setting the
operation of intersection or difference is pointless so we will restrict ourselves to
the set-theoretic union postponing consideration of complementary sets to the
next section.
Consider first two disjoint sets U1, U2 with PageRank vectors r1, r2. Can we

compute PageRank for U1 ∪U2 for them? The clue is of course in easy construc-
tion of s12 = I(U1∪U2)/|U1 ∪ U2| from s1 = I(U1)/|U1|, s2 = I(U2)/|U2|. In fact
this is trivial: as the sets are disjoint, I(U1∪U2) = I(U1) + I(U2) therefore

I(U1∪U2)/|U1 ∪ U2| = |U1|
|U1 ∪ U2|I

(U1)/|U1|+ |U2|
|U1 ∪ U2|I

(U2)/|U2|

which via eq.(2) implies

A Calculus for Personalized PageRank 215

r

(
A,

I(U1∪U2)

|U1 ∪ U2|

)
=

|U1|r(A, I(U1)/|U1|) + |U2|r(A, I(U2)/|U2|)
|U1 ∪ U2| (3)

In general

r

(
A,

I(∪n
i=1Ui)

|∪n
i=1 Ui|

)
=

n∑
i=1

|Ui|
|∪n

i=1 Ui|r
(
A,

IUi

|Ui|

)
(4)

4 Personalized PageRank with Negation

Let us turn now to the issue of PageRank for a complementary set, a kind
of “negation” of category membership. Obviously, if for our disjoint categories
W = U1∪U2∪...∪Un would hold, then the complement of U1 (denoted here ¬U1)
would be equal to W −U1 = U2 ∪ ...∪Un and its personalized PageRank can be
computed from the above formula (4). But it would be easier if the “objective”
PageRank vector would be available that is r(A, I(W)/|W |. Then, using again
the equation (4) we would derive

r(A, I(¬U)/|¬U |) = |W |
|W | − |U | ·r(A, I

(W)/|W |)− |U |
|W | − |U | ·r(A, I

(U)/|U |) (5)

In case of the above formula there is of course a risk getting negative rank values
(due e.g. to rounding errors) so that corrections may be necessary (e.g. changing
negative values to 0).

5 Personalized PageRank for Concept Hierarchies

We can distinguish two basic brands of context hierarchies: simple ones (tree-
like) and directed-acyclic graphs.
In both cases we could imagine that hierarchy leaves have precomputed per-

sonalized PageRanks and the PageRanks of higher level concepts are obtained
by transforming them into unions of leaf concepts and then one applies equation
(4). However, if queries touching higher level concepts are more frequent then
this may be inefficient.
Therefore it may be reasonable for simple hierarchies to pre-compute PageR-

ank at each level of hierarchy for all the child nodes of a given node except for
the least frequent one (in whatever sense) and then to use a mixture of equation
(4) and equation (5) at appropriate levels of the hierarchy.
Note that a similar approach is possible for general acyclic directed graphs of

concepts. Note that under such a setting the idea of concept intersection may
make sense because concepts may have common children.

216 M.A. Kłopotek et al.

6 Personalized PageRank for Non-exclusive Categories

The beauty of the formulas derived in sections 3 and 4 relies on the fact that
both r’s and cardinalities of categories can be precomputed and stored with easy
access so that the formulas are directly applied. Non-disjoint categories of Web
pages may entail two types of relationship:

– the categories form a hierarchy in which at the leaves subcategories are
exclusive, or
– the above case does not apply

The first case was treated in the preceding section 5.
The second case does not have a direct solution because there exists no arith-

metic operation applying to indicator vectors allowing to compute intersection
indicator vector other than direct eigenvalue computation. Therefore a work-
around is necessary.
Suppose that U = {U1, .., Un} is a set of (overlaping) categories, and let

U = U1 ∪ · · · ∪ Un denotes the set of Web pages covering all these categories.
To compute the Personalized PageRank for this set, r(A, I(U)/|U|), we introduce
generalized membership functions defined as follows

I
(Ui)
j =

⎧⎨
⎩

1

|{U : U ∈ U ∧ j ∈ U}| if j ∈ Ui

0 otherwise
, i = 1, . . . n (6)

In other words, I(Ui)
j represents the probability with which a node j can be

assigned to the set Ui. Denote further

|IUi | =
∑
j∈W

I
(Ui)
j

The intuition behind this formula is to favor the pages that belong to a single
category so that the representation of a category is as sharp as possible.
Having a representation like this, we would further treat the categories as

if they were disjoint and whenever a query is issued we would transform the
expression for the set being base for personalized PageRank computation to a
union of these formally “disjoint” categories, and then compute

r

(
A,

I(U1∪U2)

|I(U1∪U2)|

)
=

|IU1 |
|I(U1∪U2)|r

(
A,

I(U1)

|I(U1)|
)
+

|IU2 |
|I(U1∪U2)|r

(
A,

I(U2)

|I(U2)|
)

where we apply the formal principle:

I(U1∪U2) = I(U1) + I(U2)

In general

r(A, I(∪n
i=1Ui)/|I|(∪n

i=1Ui)|) =
n∑

i=1

|I(Ui)|
|I(∪n

i=1Ui)|r(A, I
(Ui)/|I(Ui)|) (7)

A Calculus for Personalized PageRank 217

Fig. 1. A simple Web graph

Table 1. Details of computing r(A, I(U1∪U2)/|I(U1∪U2)|) with α = 0.9

I(U1) 1 0 1 0 1/2 0
I(U2) 0 1 0 0 1/2 0

r(A, I(U1)/|I(U1)|) 0.0759 0.0701 0.0847 0.3224 0.2010 0.2460
r(A, I(U2)/|I(U2)|) 0.0223 0.0990 0.0249 0.3606 0.2179 0.2752

r(A, I(U1∪U2)/|)I(U1∪U2)| 0.0558 0.0809 0.0623 0.3367 0.2073 0.2570

To be more concrete, consider a small example. Assume that the Web graph
has the form as depicted in figure 1. Assume that U1 = {1, 3, 5} and U2 = {2, 5}.
According to the equation (7) we should compute the generalized indicators
I(U1), I(U2). They are shown in first and second row of Table 1. On the other
hand, if we know the vectors r1 and r2, we should only compute the vector
r(A, I(U1∩U2)/|U1∩U2|) and we can combine already possessed information with
this new one by means of the equation (8).
Unfortunately, the formula (7) requires a re-computation of Personalized

PageRank with starting vectors I(Ui)/|I(Ui)| instead of Uu/|Ui|. However we
can make use of the formula (5). Let U1, U2 be two overlapping categories,
and let U12 = U1 ∩ U2. Denote ri = r(A, I(Ui)/|Ui|) for i = 1, 2). As these
values are already known, we can compute the Personalized PageRank vector
r(A, I(U1∪U2)/|U1 ∪ U2|) as follows

r

(
A,

I(U1∪U2)

|U1 ∪ U2|
)

=
r1|U1|+ r2|U2| − |U1 ∩ U2|r

(
A, I(U1∩U2)

|U1∩U2|
)

|U1 ∪ U2| (8)

That is the only effort is concerned with the computation of the vector
r(A, I(U1∩U2)/|U1 ∩ U2|.
Finally, let us return to the problem of finding rankings for a “negation”

of a given category. Suppose that we have two rankings: r(A, I(U1)/|U1|),
r(A, I(U2)/|U2|) for two categories U1 ⊂ U2. Let V be a category such that
U1 ∩ V �= ∅ and U1 ∪ V = U2. Then, applying the equation (8) we obtain

r

(
A,

I(V)

|V |
)

=
|U2|r

(
A, I(U2)

|U2|
)
− |U1|r

(
A, I(U1)

|U1|
)
+ |U1 ∩ V |r

(
A, I(U1∩V)

|U1∩V |
)

|V |
(9)

218 M.A. Kłopotek et al.

Again, in this case we should only find the vector r(A, I(U1∩V)/|U1 ∩ V |), and
combine it with the two already defined rankings.

7 Contextual Personalized PageRank

Let us consider briefly the issue of growing interest of seeking for documents in
the context of larger groups (usually domains) where first we ask a query for
the domain and then for a particular document content. We would suggest using
our proposal separately for determining personalized PageRanks for the domains
and for the documents and then to apply the eq. (2) to combine both PageR-
anks treating the domain PageRank as the PageRank of each of the documents
within it.

8 Personalized PageRank and User Preferences

The advantage of the proposed framework lies in the fact one can smoothly
integrate user preferences in case that these are defined in terms of weights of
the categories. Assume that the user gives weight w1 to the category U1 and w2

to the (disjoint) category U2 and that both of them constitute a background of
a query.
Then the equation (3) can be re-interpreted as follows. The indicator vector

would now be weighted
I(U1∪U2) = w1 · I(U1) + w2 · I(U2) therefore

I(U1∪U2)/|I(U1∪U2)| = w1 · |U1|
|I(U1∪U2)|I

(U1)/|U1|+ w2 · |U2|
|I(U1∪U2)|I

(U2)/|U2|

which via eq. (2) implies

r(A, I(U1∪U2)/|I(U1∪U2)|) = w1 · |U1|
|I(U1∪U2)|r(A, I

(U1)/|U1|)+ w2 · |U2|
|I(U1∪U2)|r(A, I

(U2)/|U2|)

9 Final Remarks

Currently, a set of experiments is planned on to what extent the ideas expressed
in this paper may prove helpful in improving responses to user queries in a large
scale search engine. We expect being able to serve thousands of different category
contexts while having to store up to 40 precomputed PageRanks.

Acknowledgements. The research is supported by POIG.01.01.02-14-013/09
grant at the Institute of Computer Sciences, Polish Academy of Sciences, aiming
at building NEKST, an experimental, semantically enhanced web search engine
particularly adapted for Polish language.

A Calculus for Personalized PageRank 219

References

1. Deng, H., Lyu, M.R., King, I.: A generalized Co-HITS algorithm and its application
to bipartite graphs. In: Proc. of the 15th ACM SIGKDD International Conf. on
Knowledge Discovery and Data Mining, KDD 2009, June 28-July 1, pp. 239–248.
ACM, New York (2009)

2. Geng, X., Liu, T.Y., Qin, T., Arnold, A., Li, H., Shum, H.Y.: Query dependent
ranking using k-nearest neighbor. In: Proceedings of the 31st Annual International
ACM SIGIR Conference on Research and Development in Information Retrieval,
SIGIR 2008, pp. 115–122. ACM, New York (2008)

3. Haveliwala, T., Kamvar, S., Jeh, G.: An analytical comparison of approaches to
personalizing PageRank. Technical Report 2003-35, Stanford InfoLab (June 2003),
http://ilpubs.stanford.edu:8090/596/

4. Haveliwala, T.H.: Topic-sensitive PageRank: A context-sensitive ranking algorithm
for web search. IEEE Trans. Knowl. Data Eng. 15(4), 784–796 (2003)

5. Kleinberg, J.M.: Authoritative sources in a hyperlinked environment. J.
ACM 46(5), 604–632 (1999)

6. Langville, A.N.: An annotated bibliography of papers about Markov chains and
information retrieval (2005),
http://www.cofc.edu/~langvillea/bibtexpractice.pdf

7. Langville, A.N., Meyer, C.D.: Google’s PageRank and Beyond: The Science of
Search Engine Rankings. Princeton University Press (2006)

8. Page, L., Brin, S., Motwani, R., Winograd, T.: The PageRank citation rank-
ing: Bringing order to the web. Technical Report 1999-66, Stanford InfoLab
(November 1999), http://ilpubs.stanford.edu:8090/422/

9. Ren, Y., Pan, J.Z., Zhao, Y.: Soundness preserving approximation for tbox rea-
soning in r. In: Grau, B.C., Horrocks, I., Motik, B., Sattler, U. (eds.) Description
Logics. Proceedings of the 22nd International Workshop DL 2009, Oxford, UK,
July 27-30. CEUR Workshop Proceedings, vol. 477, CEUR-WS.org (2009)

10. Richardson, M., Domingos, P.: The Intelligent Surfer: Probabilistic Combination
of Link and Content Information in PageRank. In: Advances in Neural Information
Processing Systems 14. MIT Press (2002),
http://citeseer.ist.psu.edu/460350.html

11. Zhang, L., Zhang, X., Shum, H.Y.: Qsrank: Query-sensitive hash code ranking for
efficient ε-neighbor search. In: 2012 IEEE Conference on Computer Vision and
Pattern Recognition, pp. 2058–2065 (2012)

http://ilpubs.stanford.edu:8090/596/
http://www.cofc.edu/~langvillea/bibtexpractice.pdf
http://ilpubs.stanford.edu:8090/422/
http://citeseer.ist.psu.edu/460350.html

Finding the Number of Clusters

on the Basis of Eigenvectors

Ma�lgorzata Lucińska1 and S�lawomir T. Wierzchoń2,3

1 Kielce University of Technology, Kielce, Poland
2 Institute of Computer Science Polish Academy of Sciences, Warsaw, Poland

3 University of Gdańsk, Gdańsk, Poland

Abstract. Finding the number of clusters is a challenging task. We
suggest a new method for an assessment of a group number. Our solution
uses only simple properties of signless Laplacian eigenvectors. The novel
method has been incorporated to our previous spectral algorithm. The
performance of the modified version is competitive to existing solutions.
We empirically evaluate the proposed approach using standard test sets
and show that it is able to find correct partitioning even for weakly
separated groups of varying densities.

Keywords: spectral clustering, nearest neighbor graph, signless Lapla-
cian.

1 Introduction

Clustering refers to a process of classifying data points into disjoint groups such
that elements belonging to same cluster are similar while elements belonging
to different clusters are dissimilar. Being a powerful tool it has been success-
fully applied in many research areas, which include data mining [4], document
clustering [3], and large scale search engines [11], to name a few.

One of the main challenges clustering algorithms cope with, is an automatic
estimation of the number of groups data should be divided in. Many approaches
come down to finding the number of clusters with a help of some functions
that measure the quality of grouping. Unfortunately, it results in additional
computation costs.

One of the techniques that offer promising tools for solving the problem is
spectral clustering. Eigenvalues and eigenvectors of a suitably chosen matrix
are used in spectral algorithms in order to partition a dataset. The matrix is
an affinity matrix (or a matrix derived from it) built on the basis of pairwise
similarity of objects to be grouped. Gaps between eigenvalues and structures of
eigenvectors are used as indicators of the cluster number.

The recently proposed Data Spectroscopic (DaSpec) clustering algorithm [21]
constitutes an example of the second approach. The algorithm estimates the
group number by finding eigenvectors with no sign change (up to a small thresh-
old) in the top spectrum of an affinity matrix and assigns labels to each point

M.A. K�lopotek et al. (Eds.): IIS 2013, LNCS 7912, pp. 220–233, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Finding the Number of Clusters on the Basis of Eigenvectors 221

based on these eigenvectors. The method fails, however, in case of close or over-
lapping subsets with different densities. Shi et al notice that smaller, or less
compact groups may not be identified using just the very top part of the spec-
trum. More eigenvectors need to be investigated to see these clusters. On the
other hand, information in the top few eigenvectors may also be redundant for
clustering, as some of these eigenvectors may represent the same group.

In order to overcome the problem, we have employed a hybrid method in our
Speclus algorithm [13]. It enables to establish the number of groups automati-
cally and employs both a structure of eigenvectors and a modularity function [18]
which measures the quality of partitioning. To limit the influence of not well sep-
arated clusters or cluster varying densities on affinity matrix structure, we have
introduced the new similarity measure. In the Speclus algorithm the similar-
ity between pairs of points is deduced from their neighborhoods. The resulting
affinity matrix reflects true relationships between data points.

The main contribution of this paper is to propose the modification of the
Speclus algorithm, called Speclum. The novelty of the last algorithm lies in the
new way of establishment of the cluster number. It is assessed only on the ba-
sis of eigenvector structures, without the use of an additional quality function.
Our method results from observations of spectral algorithms using eigenvectors
related to the biggest eigenvalues. Only some of the eigenvectors – these with
relatively large absolute mean value of their coordinates – play a significant role
in grouping. In other words, the mean values seem to be better indicators of
the eigenvector usefulness in partitioning than their related eigenvalues. Appar-
ently, the similarity measure and the resulting affinity matrix, introduced in the
Speclus algorithm, play also an important role in the automatic establishment
of the cluster number.

In section 2 the notation and related terms are presented. The next section
describes some ways of establishing the number of clusters. The main concepts
used in the Speclus algorithm are explained in section 4. Then, in section 5, we
present the policy of selecting eigenvectors that reflect the structure of dataset.
Section 6 includes the description of experiments and results obtained with the
use of the Speclum algorithm. Finally, in section 7, the main conclusions are
drawn.

2 Notation and Related Terms

Let X = (x1,x2, . . . ,xn) be the set of data points to be clustered. For each
pair of points i, j an adjacency aij ∈ {0, 1} is attached. The value aij = 1
implies the existence of an undirected edge i ∼ j in the graph G spanned over
the set of vertices X. Let A = [aij] be the adjacency matrix. Let di =

∑
j aij

denote the degree of node i and let D be the diagonal matrix with di’s on its
diagonal. A clustering C = (C1, C2, ..., Cl) is a partition of X into l nonempty
and mutually disjoint subsets. In the graph-theoretic language the clustering
represents a multiway cut in G [6]. In many spectral algorithms instead of the
affinity matrix the graph Laplacian matrix is used. The unnormalized Laplacian

222 M. Lucińska and S.T. Wierzchoń

matrix associated with G is the n× n matrix L = (lij) , defined as L = D −A
with entries given by:

lij =

⎧⎨
⎩

di if i = j
−1 if i �= j and there is an edge {i, j} ∈ E
0 otherwise

The normalized Laplacian is defined as Lsym = D−1/2LD−1/2.
In the Speclum algorithm a signless Laplacian M = D + A, introduced by

Cvetković [5], is used.
A non-zero vector x is an eigenvector of a matrix M with a corresponding

eigenvalue λ if x and λ satisfy the following equation:

Mx = λx

3 Establishing the Number of Connected Components in
a Graph

The multiplicity of one as an eigenvalue of Lsym (or of zero for unnormalized
Laplacian L) is equal to the number of connected components of the graph.
An eigenvector with one eigenvalue is a function on the vertices whose value
at i is the weighted average of its values on the neighbors of i, each neighbor
weighted by the number of edges joining it to i. Considering a vertex where the
maximum absolute value is achieved, we see that the same value occurs on all
neighbors, so the function is constant on connected components. In particular,
if the graph is connected, the one eigenvalue (called trivial) has multiplicity l;
the other eigenvalues are nontrivial. The eigenvectors for the trivial eigenvalue
are the constant vectors.

The above theorem explains why most of the spectral algorithms use for clus-
tering one or a few eigenvectors of an appropriate matrix. The eigenvectors are
related to the l closest to one (in case of normalized and signless Laplacians)
or closest to zero (for unnormalized Laplacian) eigenvalues. However, for real,
noisy, not very well separated datasets it is usually very difficult to distinguish
which eigenvalues are related to connected components.

In Figure 1 we show a few largest eigenvalues of the normalized Laplacian for
two different datasets. The first one consists of two very well separated homo-
centric circles. The other set of two noisy rings (2R3D.2) constitutes much more
difficult task for clustering and is presented in section 6 (Figure 3). The way of
the Laplacian calculation is exactly the same as in the NJW algorithm [20] that is
described later in section 6 together with details concerning its affinity measure.
One can indicate easily the number of clusters in the first case, as there are two
eigenvalues equal to one. As far as the other set is concerned it is impossible
to distinguish the right number of clusters on the basis of the eigenvalues. In
other words the Laplacian eigenvalues do not suffice when it comes to finding
the number of clusters.

Finding the Number of Clusters on the Basis of Eigenvectors 223

1 1.5 2 2.5 3 3.5 4 4.5 5
0.982

0.984

0.986

0.988

0.99

0.992

0.994

0.996

0.998

1

1.002
2 circles eigenvalues

1 2 3 4 5 6 7
0.998

0.9985

0.999

0.9995

1

1.0005
2R3D.2 eigenvalues

Fig. 1. Normalized Laplacian eigenvalues for two sets: 2 circles (left) and 2R3D.2 (right)

4 Main Contributions of the Speclus Algorithm

In order to estimate the number of groups and divide data into clusters the
Speclum algorithm utilizes structure of eigenvectors of the signless Laplacian,
similarly to its predecessor the Speclus algorithm. According to works [7] and
[21], the top eigenvectors of sparse matrices, related to points creating disjoint
subsets, reflect the structure of the data set. Figure 2 shows an ideal example,
when three clusters are completely separated and each of them can be presented
in the form of the regular graph of the same degree. The top three eigenvectors
of the signless Laplacian show clearly its structure. Each cluster is represented
by an eigenvector, which assumes relatively large values (of one sign) for points
belonging to the cluster and zero values for points from other clusters. The
additional regularity can also be seen – if a point is close to a cluster center
its value in the corresponding eigenvector is large. The points that lay on the
border of a cluster have relatively small values of the appropriate eigenvector.

In real situations, when subsets are close to each other, overlap or have dif-
ferent densities, the picture of data structure given by the top eigenvectors can
be a little confusing. First of all a graph representing such a dataset is no longer
regular and eigenvectors of an affinity matrix, or matrices derived from it, fail to
represent each cluster clearly. A few eigenvectors may represent the same group,
whereas two different groups can be reflected in one eigenvector. In the Speclus
algorithm the problems are solved with the help of a novel similarity measure
based on nearest neighbor approach.

The new similarity measure is described in [13] , and here we will present
only its general concept. Specifically the k mutual nearest neighbor graph is
constructed with points as the vertices and edges as similarities. First, for each
of the points k symmetric nearest neighbors are found with Euclidean distance
as the distance metric. Then for each two vertices xi and xj the connecting edge
vij is created if the vertex xi belongs to the k-nearest neighbors of vertex xj

and vice versa. Afterwards additional edges are created between vertices with

224 M. Lucińska and S.T. Wierzchoń

0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 5 10 15
−0.45

−0.4

−0.35

−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0 5 10 15
−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0 5 10 15
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Fig. 2. Perfectly separated clusters (top right) and their eigenvectors (top left and
bottom)

low degrees (smaller than a half of the average degree in the set). For each pair
of nodes xi and xj in such a graph the value aij is set to one if and only if there
is an edge joining the two vertices. Otherwise aij equals 0. Also all diagonal
elements of the affinity matrix A are zero. Because the number of edges k going
out from one point is usually small, we achieve sparse matrix, however weakly
connected nodes are not separated from one another.

The policy is meant to improve regularity of a graph, so that the resulting
affinity matrix is close to block-diagonal. As it is usually not perfectly block-
diagonal, another tool should be used in order to chose the right eigenvectors.
In the Speclus algorithm for this purpose we apply the modularity function.
If two eigenvectors indicate two different divisions of the set, the modularity is
calculated in order to choose a better cut in terms of modularity maximization.
The modularity function being a well known, recognized cut quality measure has,
however, some drawbacks. It prefers, for example, divisions to larger numbers
of groups. The use of the modularity also involves execution and evaluation of
preliminary cuts, thus increasing complexity of the process of clustering.

Here we select the most suitable eigenvectors on the basis of their simple
statistic properties: mean value, maximum, and minimum values, without any
additional quality functions.

Finding the Number of Clusters on the Basis of Eigenvectors 225

5 Properties of Signless Laplacian Eigenvectors

In the Speclum algorithm we utilize special features of eigenvectors related to
the signless Laplacian of a regular graph. Each top eigenvector (i.e. related to
the eigenvalue equal 1) represents one connected component of the graph and its
coordinates indicate the degree of point affiliation to the component. All coor-
dinates have the same sign and they are large if the related points belong to the
group and equal zero if they do not. The coordinate values of other eigenvectors
(related to smaller eigenvalues) change sign within the same connected com-
ponent. This means that the absolute mean value of the eigenvector carrying
information about the data structure is relatively large. The rest of eigenvec-
tors, whose mean values are relatively small and they do not differ a lot from
one another, usually repeat structures of the previous ones or include misleading
patterns.

For irregular graphs, some eigenvectors representing particular groups may
not belong to the top spectrum. If their coordinates differ in sign, their mean
values will be smaller than in the case of top eigenvectors. In other cases, they
may correspond not only to one cluster, but also to parts of other groups. Such
situation causes misleading increase in the eigenvector mean value. In order to
execute the correct division, we have to find not only eigenvectors with reason-
ably large absolute mean value but also establish which of them constitute a
true and single representation of clusters.

For the above reasons we will examine both eigenvector mean values and their
minimum and maximum values. As our task is to indicate all the eigenvectors
reflecting a dataset structure, we have to take into consideration two features
of each vector – its mean value and the change of sign of its coordinates. Our
policy is the following:

1. Calculate a few eigenvectors (about 20) of the signless Laplacian
2. Put them in descending order in terms of their absolute mean values
3. Find the first eigenvector with a large sign change
4. Select eigenvectors with absolute mean values bigger than the one of the first

eigenvector with the sign change
5. Execute division on the basis of the selected eigenvectors

According to our assumption an eigenvector changes the sign of its coordinates if
its minimum value is smaller than minus a half of its maximum for vectors with
positive coordinates, and appropriately for negative coordinates the maximum
value should be larger than minus a half of the minimum. The following formula
shows the above mentioned policy:

min > −0.5 ∗max if mean > 0
max < −0.5 ∗min if mean < 0

where mean is a mean value of eigenvector coordinates, max and min stand for
the vector coordinate maximum and minimum respectively.

226 M. Lucińska and S.T. Wierzchoń

Our policy can be clarified in the following way. If a graph is regular, the top
eigenvectors of the signless Laplacian, related to the largest eigenvalues, have
the largest absolute mean values. Other eigenvectors corresponding to smaller
eigenvalues change the sign of their coordinates. When a graph is not regular,
the structure is disturbed and the eigenvectors reflecting single components may
not be related to the largest eigenvalues. Their absolute mean value, however,
remains still relatively large. At least larger than that of eigenvectors that change
the sign of their coordinates. One should notice that in case of strongly irregular
graphs such rules cannot be applied, because eigenvector structures are deeply
disturbed.

6 The Speclum Algorithm and Experiments

The main steps of the Speclum algorithm are very similar to these of the Speclus
algorithm (presented in details in [13]) and they look in the following way:

The Speclum algorithm

Input: Data X, number of nearest neighbors k

Output: C clustering of X

Algorithm:

1. Compute, in the following order

k-nearest neighbors for each x

mutual nearest neighbors for each x

additional neighbors in case degree of x < half of the

average degree in X

2. Create the affinity matrix S and the signless Laplacian M=D+S

3. Find the set of eigenvectors A, each representing one cluster

4. Assign each point x to one eigenvector from the set A,

having the biggest entry for x

The main difference between the two solutions lies in the way the third step
is executed. The change concerns the method of establishing the number of
clusters and choosing the eigenvectors that carry most information about graph
structure. In the Speclum algorithm the third step is realized as described in
section 5. The new version establishes the number of clusters in a very natural
way and does not require any preliminary cuts and calculation of a quality
function, contrary to the previous solution.

We have compared the performance of the Speclum algorithm (implemented in
MATLAB) to two other methods: the NJW algorithm [20] and the PIC algorithm
introduced by Lin et al [12]. The first one is a standard spectral algorithm,
which uses normalized Laplacian. The other one applies power iteration to the
row-normalized affinity matrix. Both of them utilize k-means for final clustering
and need the number of clusters as an input parameter.

The NJW algorithm uses the similarity measure based on the Gaussian kernel
function defined as:

Finding the Number of Clusters on the Basis of Eigenvectors 227

A(i, j) = exp(−‖xi − xj‖2/(2σ2) (1)

where ‖xi − xj‖ denotes the Euclidean distance between points xi and xj . The
kernel parameter σ influences the structure of an affinity matrix and generally
it is difficult to find its optimal value. For the sake of algorithm comparison, the
values of the σ parameter were chosen manually, as described by Fischer et al
[8].

The PIC algorithm uses the affinity matrix based on the cosine similarity:

A(i, j) =
xi · xj

‖xi‖2‖xj‖2
(2)

where xi is a point. Such a metric avoids tuning the σ parameter.
In our experiments we use both artificial and real data sets of different struc-

tures, sizes, dimensions, densities, and noise levels. First, we test the algorithms
with the help of the same benchmark data sets as for the Speclus algorithm:
2R3D.2, RG, 2S, 4 Gaussian, 5 Gaussian, Iris, Wine, and Breast cancer, the sets
are described in details in [8]. Another group consists of three handwritten digit
sets Pen17, Opt17, and Opt1000. The first one derives from the Pen-based recog-
nition of handwritten digits dataset [2] with digits ”1” and ”7”. The second and
third one are subsets of Optical recognition of handwritten digits dataset [10]
consisting of digits ”1” and ”7”, and all the digits respectively. Some network
datasets have also been applied: Polbooks (a co-purchase network of 105 politi-
cal books [19]), UBMGBlog (a network of 404 liberal and conservative political
blogs [9]), and AGBlog (another network of 1222 liberal and conservative politi-
cal blogs [1]). The sets 20ng* derive from the 20 newsgroups text dataset [17] and
are selected by Lin et al [12]. 20ngA contains 100 documents from 2 newsgroups:
misc.forsale and soc.religion.christian. 20ngB adds 100 documents to each group
of 20ngA. 20ngC adds 200 from talk.politics.guns to 20ngB. 20ngD adds 200
from rec.sport.baseball to 20ngC.

All the datasets are labeled, which enables evaluation of the clustering re-
sults against the labels using cluster purity and normalized mutual information
(NMI), as measures of division quality. For both measures higher number means
better partitioning. We refer an interested reader to [14] for details regarding
the measures.

In case of datasets 2R3D.2, RG, 2S, 4 Gaussian, 5 Gaussian, Iris, Wine, Breast
cancer, Pen17, Opt17, and Opt1000 an appropriate metric for each algorithm has
been applied, i.e.: Gaussian kernel for NJW, cosine for PIC, and original similarity
measure of the Speclum algorithm. As far as networks are concerned, all the
algorithms use the same affinity matrix that is simply aij = 1 if an edge exists
between vertices i and j, and aij = 0 otherwise. Similarly for the text datasets
in all the cases, feature vectors are created on the basis of word counts, with
only stop words and singleton words removed.

In the first part of experiments, our intention has been to check whether our
new algorithm allows to find the most suitable eigenvectors and to establish the
right number of groups. If it succeeds, the results will be of course the same

228 M. Lucińska and S.T. Wierzchoń

as for the Speclus algorithm. We start with three datasets: the first (2R3D.2)
is a very noisy one, the second (RG) consists of two rather high density rings
and the Gaussian cluster with very low density, and the third (2S) is created by
two S-shaped clusters with varying densities within each group. In Figure 3 we
present the dataset partitioning obtained with the use of the Speclum algorithm,
eigenvalues (squares), and absolute mean values of eigenvectors of the signless
Laplacian (circles). The absolute mean values of eigenvectors and the eigenvalues
are sorted in descending order. The filled marks indicate the related eigenvectors
that are used for partitioning. The figure shows that despite varying densities and
noisy, weakly separated groups, the numbers of clusters are established correctly
and the dataset divisions are correct. One can notice that in many cases the
chosen eigenvectors are not the ones related with the largest eigenvalues. For
example, in case of the set of two Gaussian rings (2R3D.2) the selected vectors
correspond with the second and third highest eigenvalue and for the set with
three clusters to the first, fourth, and tenth eigenvalue. Moreover, there is usually
a visible gap between the absolute mean values of the chosen eigenvectors and
the rest of them.

We have also tested the presented algorithm on the rest of the benchmark
sets (used for the Speclus algorithm) which include both artificial and real
data: Iris, Wine, Breast cancer and 4 Gaussian sets. In all these cases one is able
to detect the right number of clusters and choose proper eigenvectors revealing
data structure. Figure 4 illustrates absolute mean values of eigenvectors (sorted
in descending order) for the sets.

The most interesting is the four-dimensional set 5G, consisting of five Gaussian
clusters of different densities. As can be seen in Figure 5 the four groups can be
detected easily both on the basis of absolute mean values of eigenvectors as well
as eigenvalues. The fifth one is found by the Speclum algorithm with the help
of the eigenvector related to the 30-st eigenvalue. So it is practically inseparable
for methods relying on the handful of top eigenvectors.

Table 1 and Table 2 summarize the partitioning results obtained by the
Speclus, NJW, and PIC algorithms. In cases where the original similarity measure
of the Speclum algorithm is used (the first 11 sets) its results are slightly better
than that of the NJW algorithm and far better than these for the PIC algorithm.
The last solution failed to find the partitioning in reasonable time (1 hour on 4
GHz processor). For the other sets, when the affinity matrices are the same for
all the algorithms, our solution is the runner-up, performs slightly worse than
the PIC algorithm, but better than the NJW algorithm. One should remember,
however, that the Speclum algorithm does not require the number of clusters to
be given manually, but finds it in an automatic way. Even in cases when another
metric is used, our method is able to find the right number of clusters for all the
sets except for the Polbooks set.

Finding the Number of Clusters on the Basis of Eigenvectors 229

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5
2R3D.2

0 2 4 6 8 10 12 14 16 18 20
0

0.005

0.01

0.015

0.02
2R3D2 eigenvector absolute mean values

0 2 4 6 8 10 12 14 16 18 20
14.5

15

15.5

16
2R3D2 eigenvalues

−5 −4 −3 −2 −1 0 1 2 3 4
−4

−2

0

2

4

6

8

10
RG

0 2 4 6 8 10 12 14 16 18 20
0

0.01

0.02

0.03

0.04

0.05
RG eigenvector absolute mean values

0 2 4 6 8 10 12 14 16 18 20
15.5

16

16.5

17

17.5

18
RG eigenvalues

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
2S

0 2 4 6 8 10 12 14 16 18 20
0

0.01

0.02

0.03

0.04
2S eigenvector absolute mean values

0 2 4 6 8 10 12 14 16 18 20
13

14

15

16
2S eigenvalues

Fig. 3. Data sets, their eigenvalues (squares) and absolute mean values of their eigen-
vectors (circles). The filled marks indicate related eigenvectors that are used for parti-
tioning.

230 M. Lucińska and S.T. Wierzchoń

0 5 10 15 20
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018
BC eigenvector absolute mean values

0 5 10 15 20
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05
IRIS eigenvector absolute mean values

0 5 10 15 20
0

0.005

0.01

0.015

0.02

0.025

0.03
4G eigenvector absolute mean values

0 5 10 15 20
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045
WINE eigenvector absolute mean values

Fig. 4. Absolute mean values of eigenvectors for different datasets. The filled marks
indicate eigenvectors that are used for partitioning.

0 5 10 15 20 25 30
11

12

13

14

15

16

17

18

19

20

21
5G eigenvalues

0 5 10 15 20 25 30
0

0.005

0.01

0.015

0.02

0.025

0.03
5G eigenvector absolute mean values

Fig. 5. Eigenvalues (left) and absolute mean values of eigenvectors (right) for the set
of 5G, sorted in descending order.

Finding the Number of Clusters on the Basis of Eigenvectors 231

Table 1. Comparison of NJW, PIC, and Speclum algorithms in terms of purity and NMI.
For each algorithm its original similarity measure has been used. n denotes number
of points, l – number of clusters, D – data dimension, and ls – number of clusters
obtained by the Speclum algorithm.

Data n D l ls NJW PIC Speclum

purity NMI purity NMI purity NMI

2R3D.2 600 2 3 3 0.9867 0.9038 0.5083 0.00004 0.9800 0.8585

RG 290 2 3 3 1.0000 1.0000 0.5172 0.0138 1.0000 1.0000

2S 220 2 2 2 1.0000 1.0000 0.7227 0.3112 1.0000 1.0000

4G 200 3 4 4 0.9100 0.8012 0.8500 0.7210 0.9850 0.9469

5G 250 4 5 5 0.8640 0.7394 0.6160 0.5232 0.9560 0.9041

Iris 150 4 3 3 0.9067 0.8058 0.9800 0.9306 0.9067 0.7649

Wine 178 13 3 3 0.9663 0.8781 0.7360 0.5019 0.9494 0.8666

BC 683 9 2 2 0.9722 0.8144 0.6501 0.0502 0.9707 0.8048

Pen17 200 16 2 2 0.7900 0.2587 0.7900 0.2587 0.8250 0.3342

Opt17 200 64 2 2 0.8900 0.5953 0.8850 0.5838 0.8850 0.5838

Opt100 1000 64 10 10 0.7890 0.8248 na na 0.9400 0.894

average 0.9159 0.7838 0.7255 0.3894 0.9453 0.8144

Table 2. Comparison of NJW, PIC, and Speclum algorithms in terms of purity and
NMI. For each algorithm the same affinity matrix has been used. n denotes number
of points, l – number of clusters, and ls – number of clusters obtained by the Speclum
algorithm.

Data n l ls NJW PIC Speclum

purity NMI purity NMI purity NMI

Polbooks 105 3 2 0.8286 0.5422 0.8667 0.6234 0.8572 0.6244

UBMCBlog 404 2 2 0.9530 0.7375 0.9480 0.7193 0.7871 0.2884

AGBlog 1222 2 2 0.5205 0.0006 0.9574 0.7465 0.8568 0.4779

20ngA 100 2 2 0.9600 0.7594 0.9600 0.7594 0.9200 0.6050

20ngB 200 2 2 0.5525 0.0842 0.8700 0.5230 0.8450 0.3997

20ngC 400 3 3 0.6317 0.3488 0.6933 0.4450 0.7233 0.3070

20ngD 600 4 4 0.5150 0.2959 0.5825 0.3133 0.4963 0.1778

average 0.7088 0.3955 0.8397 0.5900 0.7844 0.4114

232 M. Lucińska and S.T. Wierzchoń

7 Conclusions

We have presented a new spectral clustering algorithm that is a modification of
our previous work. Similarly to its predecessor it uses signless Laplacian eigen-
vectors and a novel affinity matrix. It is simpler than the previous one, because it
does not require executing preliminary cuts and calculating a cut-quality func-
tion. Its novelty lies in making a good use of simple statistics properties of
eigenvectors. Our experiments show superiority of clustering on the basis of
eigenvector absolute mean values over eigenvalues. The presented way of estab-
lishing the number of groups can have applications in many other clustering
problems.

References

1. Adamic, L., Glance, N.: The political blogosphere and the 2004 U.S. election. In:
WWW Workshop on the Weblogging Ecosystem, pp. 36–43 (2005)

2. Alimoglu, F., Alpaydin, E.: Combining multiple representations and classifiers for
handwrittendigit recognition. In: Proc. of ICDAR, pp. 637–640 (1997)

3. Andrews, N.O., Fox, E.A.: Recent Developments in Document Clustering. Techni-
cal Report TR-07-35, Computer Science, Virginia Tech (2007)

4. Berkhin, P.: Survey of Clustering Data Mining Techniques (2002),
http://citeseer.nj.nec.com/berkhin02survey.html

5. Cvetkovic, D.: Signless Laplacians and line graphs. Bull. Acad. Serbe Sci. Arts, Cl.
Sci. Math. Natur., Sci. Math. 131(30), 85–92 (2005)

6. Deepak, V., Meila, M.: Comparison of Spectral Clustering Methods. UW TR CSE-
03-05-01 (2003)

7. Elon, Y.: Eigenvectors of the discrete Laplacian on regular graphs a statistical
approach. J. Phys. A: Math. Theor. 41, 1–17 (2008)

8. Fischer, I., Poland, J.: Amplifying the Block Matrix Structure for Spectral Clus-
tering. Technical Report No. IDSIA-03-05, Telecommunications Lab, pp. 21–28
(2005)

9. Kale, A., Karandikar, A., Kolari, P., Java, A., Finin, T., Joshi, A.: Modeling trust
and influence in the blogosphere using link polarity. In: Proc. of ICWSM 2007
(2007)

10. Kaynak, C.: Methods of combining multiple classifiers and their applications to
handwritten digit recognition. Master’s thesis, Institute of Graduate Studies in
Science and Engineering, Bogazici University (1995)

11. Langville, A.N., Meyer, C.D.: Google’s PageRank and Beyond: The Science of
Search Engine Rankings. Princeton University Press, Princeton (2006)

12. Lin, F., Cohen, W.W.: Power iteration clustering. In: Proc. of ICML–2010,
pp. 655–662 (2010)

13. Lucińska, M., Wierzchoń, S.T.: Spectral clustering based on k-nearest neighbor
graph. In: Cortesi, A., Chaki, N., Saeed, K., Wierzchoń, S. (eds.) CISIM 2012.
LNCS, vol. 7564, pp. 254–265. Springer, Heidelberg (2012)

14. Manning, C.D., Raghavan, P., Schütze, H.: Introduction to Information Retrieval.
Cambridge University Press (2008)

15. Meila, M., Shi, J.: A random walks view of spectral segmentation. In: Proc. of
10th International Workshop on Artificial Intelligence and Statistics (AISTATS),
pp. 8–11 (2001)

http://citeseer.nj.nec.com/berkhin02survey.html

Finding the Number of Clusters on the Basis of Eigenvectors 233

16. Meila, M., Verma, D.: A comparison of spectral clustering methods. Technical
Report UW TR CSE-03-05-01 (2003)

17. Mitchell, T.: Machine Learning. McGraw Hill (1997)
18. Newman, M.E.J.: Detecting community structure in networks. European Physics.

J. B 38, 321–330 (2004)
19. Newman, M.E.J.: Finding community structure in networks using the eigenvectors

of matrices. Physical Review E 74, 036104 (2006)
20. Ng, A., Jordan, M., Weiss, Y.: On spectral clustering: Analysis and an algorithm.

In: Advances in Neural Information Processing Systems 14 (2001)
21. Shi, T., Belkin, M., Yu, B.: Data spectroscopy: eigenspace of convolution operators

and clustering. The Annals of Statistics 37(6B), 3960–3984 (2009)

Study on the Estimation of the Bipartite Graph
Generator Parameters

Robert A. Kłopotek

Institute of Computer Science, Polish Academy of Sciences,
ul. Jana Kazimierza 5, 01-237 Warsaw, Poland

robert@klopotek.com.pl

Abstract. One of possible ways of studying dynamics of real life net-
works is to identify models of network growth that fit a given network.
In this paper, we consider the evolution of bipartite graphs generated

from graph generator proposed in [1]. We propose a method of captur-
ing generator parameters from the network and evaluate it on artificial
networks generated from the very same generator.
It seems possible to discover these parameters from the network to an

extent allowing for generation of similar graphs in terms of several graph
metrics.

Keywords: bipartite graph, graph model, graph generator, parameter
identification, social network analysis.

1 Introduction

Graphs are used nowadays to model various interesting real world phenomena.
Much interest of researchers is attracted e.g. by social networks which can be
modeled in many cases via bipartite graphs.
Vertices of bipartite graph can be divided into two disjoint sets U and V

such that every edge connects a vertex in U to one in V ; that is, U and V are
independent sets. These sets can be for example customers and products. If a
customer ui buys a product vj there is an edge between vertex ui and vj and
there are no edges between customers and between items. In case of an Internet
forum one could have also two modalities: one for users and the other for threads
they participate in. Many other kinds of bipartite networks occur in real life [2].
These kinds of networks are characterized by one important dimension - their

evolution in time. There are many questions concerning graph growth over time.
One of main questions concerns real graph evolution over time and extraction
of growth patterns in real life networks. Many studies have discovered patterns
in static graphs, identifying properties in a single snapshot of a large network,
or in a very small number of snapshots. This data is sometimes not enough
for extracting interesting features, behavior of network or predicting trend in
the future which is useful in i.e recommending systems. The graph properties
between existent snapshots may be of interest e.g. when evaluating link analysis
algorithms.

M.A. Kłopotek et al. (Eds.): IIS 2013, LNCS 7912, pp. 234–244, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Bipartite Graph Generator Parameters 235

One of possible ways to study network dynamics is to construct growth models
of the network. If we fit a growth model to a real graph growth phenomenon by
e.g. getting good estimates on network parameters, we can model graph growth
in future and hence make for example better business decisions.
The quality of a model is usually evaluated by investigating if the model can

generate graphs “similar” to real world graphs. This similarity is evaluated in
terms of similarity of various graph metrics computed for the original graph and
for the one generated from the model. If they are close then we assume that the
growth model is useful.
Many real graphs exhibit properties like power law of degree distribution,

densifying over time, shrinking of average distance between nodes, in contrast to
the conventional wisdom that such distance parameters should increase slowly
as a function of the number of nodes (see [3, 4]). Prediction of structure is
much more complicated when we have more than one component (see [5]). In
real world data it is very common that we have one giant component and many
small ones. Kumar et al. [5] pointed out a possible examination. Structure outside
the giant component is largely characterized by stars. The creation of stars is
largely a result of the dynamics of invitation, in which many people are invited
to the social network, but only a small fraction choose to engage more deeply
than simply responding to an invitation from a friend. Thus in this paper we will
consider only connected graphs or giant component (biggest connected subgraph)
when we have more.
The frequently used graph metric, estimating graph density, is called local

clustering coefficient (LCC) and for a vertex i it is defined as:

LCC(i) =
|(a, b) ∈ E : (a, i) ∈ E ∧ (b, i) ∈ E|

ki(ki − 1)/2
(1)

where E is set of all edges, V is set of all vertices, a, b ∈ V are vertices and
ki is degree of vertex i. For the whole graph G clustering coefficient is just
LCC(G) =

∑
i∈V

LCC(i)
|V | .

In bipartite graph for all vertices a, b in the same set we don’t have any edges
between them, so we always get 0. This means a serious problem when studying
bipartite graphs and is an obstacle in adopting traditional graph generators to
the case of bipartite ones. Therefore in [1] another suitable metric was proposed
- bipartite clustering coefficient (BLCC).

BLCC(u) = 1− |N2(u)|∑
v∈N1(u)(kv − 1)

(2)

W is set of all vertices, Ns(n) — set of neighbors of vertex n ∈ W , which are
s ≥ 1 steps away. In other words Ns(n) = {a ∈ V : K(n, a) = s}, where K(i, j)
is minimal distance (number of edges) between vertices i and j. In [1] it is shown
that graph metric LCC and BLCC are similar in classical graphs.
Over the last decade a number of growth models for bipartite graphs have

been proposed [6–8]. Unfortunately their bipartite graph generators have some

236 R.A. Kłopotek

drawbacks. They create bipartite graphs with limited reproduction of real-life
graph properties and they create two graph structures which complicates the
models a lot.
In this paper we consider the graph generator of Chojnacki [1] that can be

viewed as a graph growth model with five parameters. In [1] it has been demon-
strated that the model qualitatively reflects quite well properties of real life
bipartite graphs. Our long term goal is to investigate whether or not it can be
used also for a quantitative analysis.
In this paper we concentrate at the first stage of this research that is on

methods of reconstructing generator models from the graph at some stage of
development. We propose a method to capture the parameters from the actual
graph and verify the similarity of metrics between the original graph and the
one obtained from the model.
But in this study we want to go one step further, trying to estimate to what

extent the model parameters can be properly recovered from the graph. There-
fore we study artificial graphs generated from Chojnacki model and apply our
model recovery method to them.
The paper is structured as follows: In section 2 we briefly recall the Chojnacki

generator. In section 3 we propose a method of parameter identification from a
graph. In section 4 we present experimental results on parameter recovery and
model quality. Section 5 contains some concluding remarks.

2 Bipartite Graph Generator

Generator presented in [1] is more flexible than graph generators mentioned in
[9] (Erdös-Réni model), [10] (Bárabasi-Albert model), [11] (Vázquez model), [12]
(White model) and [13] (Liu model). In this paper we will examine model without
“bouncing parameter”. Bouncing parameter is adaptation of surfing mechanism
in classical graphs (see [11]). Bouncing mechanism is used only to the edges
which were created according to preferential attachment.
For simplificationwewill consider graphwith set of verticesW =U∪I,U∩I=∅,

where set U we will call “users” and set I we will call “items”. We consider
both uniform attachment, where incoming nodes form links to existing nodes
selected uniformly at random, and preferential attachment, when probabilities
are assigned proportional to the degrees of the existing nodes (see [14]). The
generator has 6 parameters:

1. m - initial number of edges
2. δ - probability that new vertex v added to graph in iteration t is a user

v ∈ U , so 1− δ means probability that new vertex v is an item v ∈ I
3. du - number of edges added from vertex of type user in one iteration
4. dv - number of edges added from vertex of type item in one iteration
5. α - probability of item preferential attachment, 1 − α - probability of item
uniform attachment

6. β - probability of user preferential attachment, 1 − α - probability of user
uniform attachment

Bipartite Graph Generator Parameters 237

The Chojnacki’s procedure for generating synthetic bipartite graphs consists of
steps given below:

1. Initialize graph with m edges (we have 2m vertices)
2. Add new vertex to the graph of type user with probability δ otherwise it is
of type item

3. The choice of how to join neighbors to the new vertex:
(a) if node is item add dv edges from this node to type user vertices, but
with probability α by preferential attachment mechanism and otherwise
with uniform attachment

(b) if node is user add du edges from this node to type item vertices, but
with probability β by preferential attachment mechanism and otherwise
with uniform attachment

4. Repeat steps 2 and 3 T times

It is easy to see that after t iteration we have |U(t)| = m+δt vertices of type user
and |I(t)| = m+(1−δ)t vertices of type item. Average number of edges attached
in one iteration is η = duδ + (1 − δ)dv. After very big number of iterations we
can skip m initial edges in further calculations. Thus we can show that average
numbers of vertex of type user and of type item depend only on tine given by
iteration t and does not depend on m, dv, du. This is not a good news, because
we cannot use them to estimate all parameters of the generator, especially δ, β
and α.
So let us exploit another relationship. After many calculation (see [1]) in-

volving relaxation of degree to real positive number, defining probability density
function over degrees, we get following equation:

Φ{ku(t) < k} = 1−
(

βη + δ(1− β)k

βη + δ(1 − β)du

) −η
(1−δ)(1−β)dv

(3)

where Φ{ku(t) < k} is probability that user vertex u has degree ku, which is less
than threshold value k and other parameters are given from model. Analogously
we can construct following equation:

Φ{kv(t) < k} = 1−
(

αη + (1− δ)(1 − α)k

αη + (1 − δ)(1− α)dv

) −η
δ(1−α)du

(4)

where Φ{kv(t) < k} is probability that item vertex v has degree kv, which is less
than threshold value k.

3 Parameter Estimation

Theoretical equations from previous section after some modification are useful
to estimate parameters of bipartite graph generator. The simplest one is δ.

δ =
|U |

|U ∪ I| (5)

238 R.A. Kłopotek

For computation of β we have to modify equation (3) to obtain an expression
depending solely on the variable β, (leaving only δ, as it is easily obtained from
the former formula). Let Φ{ku(t) < k} = Φk We rewrite this equation into:

Φk = 1−
(

βη + δ(1− β)k

βη + δ(1 − β)du

) −η
(1−δ)(1−β)dv

(6)

Consider following fraction:

1− Φk+1

1− Φk
=

(
βη+δ(1−β)(k+1)
βη+δ(1−β)du

) −η
(1−δ)(1−β)dv

(
βη+δ(1−β)k
βη+δ(1−β)du

) −η
(1−δ)(1−β)dv

=

⎛
⎝ βη+δ(1−β)(k+1)

������
βη+δ(1−β)du

βη+δ(1−β)k

������
βη+δ(1−β)du

⎞
⎠

−η
(1−δ)(1−β)dv

(7)
Hence

1− Φk+1

1− Φk
=

(
1 +

δ(1− β)

βη + δ(1 − β)k

) −η
(1−δ)(1−β)dv

(8)

Thus

log

(
1− Φk+1

1− Φk

)
=

−η

(1− δ)(1 − β)dv
log

(
1 +

δ(1 − β)

βη + δ(1− β)k

)
(9)

To calculate somehow β from equations above, we construct a function F (β)
such that F (β) = 0 for optimal β. Consider

log
(

1−Φk+2

1−Φk+1

)
log

(
1−Φk+1

1−Φk

) =
log

(
1 + δ(1−β)

βη+δ(1−β)(k+1)

)
log

(
1 + δ(1−β)

βη+δ(1−β)k

) (10)

From equation 10 we get our desired function F (β)

F (β) =
log

(
1 + δ(1−β)

βη+δ(1−β)(k+1)

)
log

(
1 + δ(1−β)

βη+δ(1−β)k

) −
log

(
1−Φk+2

1−Φk+1

)
log

(
1−Φk+1

1−Φk

) (11)

From equation (10) we can easily see that F (β) = 0 for optimal β. For given bi-
partite graph from iteration t we can calculate η = |E(t)|

|U(t)|+|I(t)| and

δ = |U(t)|
|U(t)|+|I(t)| . To compute β it is enough to use some root finding method

on function F (β). Estimates for Φk = Φ{ku(t) < k} can be computed as a
cumulative sum of vertex degrees from

Φk =

∑k−1
i=1 |{u ∈ U : |N(u)| = i}|

|U | (12)

To estimate α parameter we can construct F (α) in full analogy to F (β) .

Bipartite Graph Generator Parameters 239

4 Experimental Results

Equation (11) is computably complicated and moreover it’s theoretical, when
number of vertices grows to infinity and we relaxed property of degrees to any
real number. Also this equation gives us no insight what k should we choose.
For proper estimation we made several experiments to find out, how good this
estimation of parameters is.

4.1 Choosing Threshold k

Intuitively we should choose such k that best represents our graph. Experiments
for estimation β from equation (3) and α from (4) are shown in figures 1 and 2.
We can see that when size of our graph grows, we get less accuracy on smaller
k. For other value of parameter δ relations are similar, but relative error of β is
little smaller with decreasing δ and little higher with increasing δ, and relative
error of α otherwise. It can lead to some false conclusion that it is better to
choose bigger k, because from power law distribution of vertices degrees there
is very little number of vertices with high degrees and therefore this does not
represent well graph properties. So in our experiment we took such k, that sum
k, k+1, k+2 of vertices degrees was maximal. For du = dv = 2 we chose threshold
k = 3.

���� ���� ���� ���� ���� ���� ���� ����
�

����

���

����

��	

��	�

���������	���
�

��� ��� ���� ���� ����� 	����

��
�������������������

��

�
��
��
��
��
�
�

Fig. 1. Relative error for estimation β for different graph sizes (eq. 3), dv = du = 2,
δ = 0.5, α = 0.5. On horizontal axis is logarithm of user vertex degree.

240 R.A. Kłopotek

��� ��� ��� � ��� ��� ��� ���
�

����

����

����

����

���

����

����

����

����

���

�������	
���
�
�

��� ��� ���� ���� ����� �����

	
��
������������������

��
	�
�

��
��
��

�

Fig. 2. Relative error for estimation α for different graph sizes (eq. 4), dv = du = 2,
δ = 0.5, β = 0.5. On horizontal axis is logarithm of item vertex degree.

4.2 Estimation of α and β Parameters

Tables 2, 4, 6 present relative error of 3 estimated parameters of our generator.
Estimation of parameter δ is very good, because it is simple to compute. The best
estimation of α and β is when sets of items and users have equal sizes(δ = 0.5),
As one might expect, with the growth of the network (see Iter column mean-

ing the number of iterations) the predictions improve.

4.3 Evaluation of α and β Estimation Using Graph Properties

The quality of model identification (hence in particular of the quality of parame-
ter estimation) should be in general evaluated based on reconstruction of various
graph metrics.
For dv = du = 2 there was no important difference between selected properties

of the original graph from which parameters were extracted and graph generated
from estimated parameters. As one would expect the following graph properties
were recovered correctly (as they are easy): number of vertices, number of edges,
average degree, density.
In tables 1, 3, 5 experimental results (relative errors) for the following impor-

tant graph properties are presented:

Bipartite Graph Generator Parameters 241

– Modularity - measures how well a network decomposes into modular com-
munities, a high modularity score indicates sophisticated internal structure.
This structure, often called a community structure, describes how the net-
work is compartmentalized into sub-networks (communities)
– Comm num - number of communities (sub-structures)
– User Count - number of vertices of type “user”
– Item Count - number of vertices of type “item”
– Avg Item BLLC - average bipartite clustering coefficient (see equation (2))
for items
– Avg User BLLC - average bipartite clustering coefficient (see equation (2))
for users

We present balanced experiment where α = β = 0.5 and we vary δ. For not
extreme values of α ∈ (0.1, 0.9) and β ∈ (0.1, 0.9), relative errors are more or
less the same.
From tables 1, 3, 5 we can see that all properties are estimated well except

Avg Item BLLC and Avg User BLLC. These two graph properties are in strong
relations with quality of graph generator parameters, thus they can contain im-
portant information of how two graphs differ. Graph properties Avg Item BLLC
and Avg User BLLC are estimated better for middle range generator parameters
that is when these parameters are recovered in a more reliable way.

Table 1. Graph relative error of properties for original parameters α = 0.5, β = 0.5,
δ = 0.7

Iter Comm Num Modularity User Count Item Count Avg Item BLCC Avg User BLCC
100 0 0.0127 0.0357 0.0887 1.27E-04 0.3169
500 0.0690 0.0125 0.0087 0.0183 2.50E-05 0.0745
1000 0.0130 0.0035 0.0125 0.0283 3.53E-06 0.0066
5000 0.0429 0.0013 0.0036 0.0083 2.55E-07 0.0698
10000 0.0278 0.0021 0.0043 0.0101 2.13E-07 0.0111
20000 0.0085 0.0005 0.0014 0.0034 2.29E-08 0.0447

Table 2. Graph relative error of estimation model parameters for original parameters
α = 0.5, β = 0.5, δ = 0.7

Iter Alpha Beta Delta
100 0.5000 0.3709 0.0185
500 0.4310 0.9857 0.0333
1000 0.5000 0.3303 0.0094
5000 0.2372 0.2435 0.0010
10000 0.3027 0.1750 0.0034
20000 0.6273 0.1891 0.0026

242 R.A. Kłopotek

Table 3. Graph relative error of properties for original parameters α = 0.5, β = 0.5,
δ = 0.7

Iter Comm Num Modularity User Count Item Count Avg Item BLCC Avg User BLCC
100 0.0833 0.0035 0.0365 0.0238 0.1370 0.0262
500 0.0172 0.0039 0.0087 0.0097 0.0705 0.0309
1000 0.0130 0.0027 0.0158 0.0102 0.0264 0.0718
5000 0.0274 0.0036 0.0034 0.0035 0.0294 0.0107
10000 0.0213 0.0005 0.0021 0.0022 0.0666 0.2295
20000 0.0117 0.0003 0.0057 0.0056 0.0370 0.0697

Table 4. Graph relative error of estimation model parameters for original parameters
α = 0.5, β = 0.5, δ = 0.5

Iter Alpha Beta Delta
100 0.5000 1.49E-08 0.0139
500 0.5000 0.0002 0.0167
1000 0.2183 0.4417 0.0030
5000 0.1853 0.0296 0.0155
10000 0.0309 0.3327 0.0046
20000 0.0222 0.2853 0.0005

Table 5. Graph relative error of properties for original parameters α = 0.5, β = 0.5,
δ = 0.3

Iter Comm Num Modularity User Count Item Count Avg Item BLCC Avg User BLCC
100 0 0.0144 0.0133 0.0071 0.1118 0.0050
500 0.0164 0.0023 0.0622 0.0278 0.1214 0.0580
1000 0 0.0079 0.0166 0.0071 0.4686 0.7184
5000 0.0071 0.0004 0.0032 0.0014 0.1472 0.1564
10000 0.0899 0.0012 0.0022 0.0010 0.1294 0.3452
20000 0.0167 0.0018 0.0019 0.0008 0.0169 0.1733

Table 6. Graph relative error of estimation model parameters for original parameters
α = 0.5, β = 0.5, δ = 0.3

Iter Alpha Beta Delta
100 0.2709 4.47E-08 0.1574
500 0.7279 0.1925 0.0285
1000 0.3076 0.5000 0.0030
5000 0.1116 0.1694 0.0038
10000 0.2808 0.2995 0.0166
20000 0.0542 0.3730 0.0047

Bipartite Graph Generator Parameters 243

5 Remarks and Conclusions

Estimation of parameters of considered bipartite graph generator is a hard task.
Exact values are difficult to obtain from theoretical properties. But if we compare
parameter estimation by properties of obtained graphs [3] then this estimation
can be sufficient. We found that those 3 parameters (out of 6) have big influence
on network growth and Chojnacki’s model of bipartite graphs is able to capture
patterns observed in real life networks.
One can say that the investigated problem of estimation of model parameters

can be viewed as a multidimensional optimization or machine learning problem
in 6 variables out of which only 3 are continuous. In a separate research, not
reported here, linear regression, SVN and logistic regression methods were used
to train a predictive model based on graph properties, but the models performed
poorly. Only δ parameter was estimated quite well with 10% relative error. This
failure led to trying out the approach described in this paper.
As a side effect of the performed experiments, we have noticed that the gener-

ated graphs tend to pull together the nodes into a large, dominating connected
component. However, as stated in [3], social network contain often more than
half of their mass outside the giant component and this type of network ap-
pears to travel through distinct stages of growth. Therefore Chojnackis model
needs some improvements to simulate correctly such a type of behaviors. The
multistage growth of network problem is a good research area for further inves-
tigations.
There are many other questions one may ask about a real bipartite dynamic

network. One of them is to what extent does the theoretical model fit real SN
graphs and how realistic parameter recovery would be in that case. Although
Chojnacki’s model is very flexible, Kumar et al. [5] pointed out that real network
appears to travel through distinct stages of growth, characterized by specific
behavior in terms of density, diameter, and regularity of component structure.
This observation leads us to new open problems in which point of time we have
to change parameters.

Acknowledgments. The author would like to acknowledge Szymon Chojnacki
of ICS PAS for help with understanding the bipartite graph generator. This
research project is co founded by the European Union from resources of the
European Social Fund. Project PO KL “Information technologies: Research and
their interdisciplinary applications”.

References

1. Chojnacki, S.: Analiza technicznych własności systemów rekomendujących za po-
mocą algorytmów losowych. PhD thesis, Institute of Computer Science, Polish
Academy of Sciences, Warsaw, English title: Analysis of Technical Properties of
Recommender Systems with Random Graphs (2012)

2. Krebs, V.E.: Uncloaking terrorist networks. First Monday 7(4) (2002)

244 R.A. Kłopotek

3. Leskovec, J., Kleinberg, J., Faloutsos, C.: Graphs over time: densification laws,
shrinking diameters and possible explanations. In: Proceedings of the Eleventh
ACM SIGKDD International Conference on Knowledge Discovery in Data Mining,
KDD 2005, pp. 177–187. ACM, New York (2005)

4. Berger-Wolf, T.Y., Saia, J.: A framework for analysis of dynamic social networks.
In: Proceedings of the 12th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD 2006, pp. 523–528. ACM, New York (2006)

5. Kumar, R., Novak, J., Tomkins, A.: Structure and evolution of online social net-
works. In: Proceedings of the 12th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD 2006, pp. 611–617. ACM, New York
(2006)

6. Birmelé, E.: A scale-free graph model based on bipartite graphs. Discrete Appl.
Math. 157(10), 2267–2284 (2009)

7. Zheleva, E., Sharara, H., Getoor, L.: Co-evolution of social and affiliation networks.
In: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD 2009, pp. 1007–1016. ACM, New York (2009)

8. Guillaume, J.L., Latapy, M.: Bipartite structure of all complex networks. Inf. Pro-
cess. Lett. 90(5), 215–221 (2004)

9. Erdös, P., Rényi, A.: On the evolution of random graphs. In: Publication of The
Mathematical Institute of the Hungarian Academy of Sciences, pp. 17–61 (1960)

10. Barabasi, A.: Linked - how everything is connected to everything else and what it
means for business, science, and everyday life. Plume (2003)

11. Vázquez, A.: Growing network with local rules: Preferential attachment, clustering
hierarchy, and degree correlations. Phys. Rev. E 67, 056104 (2003)

12. White, D.R., Kejzar, N., Tsallis, C., Farmer, D., White, S.: Generative model for
feedback networks. Phys. Rev. E 73(1) (January 2006)

13. Liu, Z., Lai, Y.C., Ye, N., Dasgupta, P.: Connectivity distribution and attack
tolerance of general networks with both preferential and random attachments.
Physics Letters A 303(5-6), 337–344 (2002)

14. Fotouhi, B., Rabbat, M.G.: Network growth with arbitrary initial conditions: An-
alytical results for uniform and preferential attachment. CoRR abs/1212.0435
(December 2012)

Expected Value

of the Optimization Algorithm Outcome

Krzysztof Trojanowski1,2 and Marcin Janiszewski3

1 Institute of Computer Science, Polish Academy of Sciences
Ordona 21, 01-237 Warsaw, Poland

2 Cardinal Stefan Wyszyński University
Faculty of Mathematics and Natural Sciences
Wóycickiego 1/3, 01-938 Warsaw, Poland

3 University of Zielona Góra
Faculty of Electrical Engineering, Computer Science and Telecommunications

Podgórna 50, 65-246 Zielona Góra, Poland

Abstract. In this paper, we study the influence of the constrained com-
putational resources on the expected value of the algorithm outcome. In
our case, time is the limited resource, that is, the search process can be
interrupted in any moment by the user who requests the current best
solution. Different characteristics of the user behavior are discussed and
a method for evaluation of the expected value is proposed. One of the
characteristics is selected for experimental analysis of the algorithm out-
come. The expected values of a given search process outcome for different
user characteristics are evaluated and compared.

Keywords: Heuristic optimization, dynamic optimization, expected value
of the algorithm outcome.

1 Introduction

In this paper, we are interested in a single-objective dynamic optimization in
multimodal fitness landscapes. Particularly, the aim is evaluation of expected
value of the optimization algorithm outcome. Heuristic optimization approaches
are usually based on the iterative process of continuous improvement of the
current solution or set of solutions. Due to the iterative nature of the search
process, the raw outcome of the algorithm activity is always a series of values
obtained for each of the executions of the algorithm main loop. Regardless of
whether the measured value is the quality of the current best-found solution, the
error level or the Euclidean distance to the optimum, the outcome is represented
as a series of values. The length of this series is controlled by the stopping
criterion of the algorithm.

The outcome is reported in publications in one of the two following ways: (1)
graphs with series of values or (2) single statistic values like, for example, the
averaged best values obtained for each of the time intervals between subsequent
changes in the fitness landscape, or averages of a series of values measured in

M.A. K�lopotek et al. (Eds.): IIS 2013, LNCS 7912, pp. 245–253, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

246 K. Trojanowski and M. Janiszewski

subsequent time steps. The first type of the answer representation was applied
mostly in the early publications devoted to dynamic optimization. Very quickly it
was replaced by the second type, which is much more useful for comparisons. The
second type of the answer representation has many versions which differ in the
type of measured value and the frequency of measurements. For the evaluation
of a single statistic value, it is always taken for granted, that the user is ready to
wait for the result for the full time interval between one change in the landscape
and the next one. It can be seen in the way of the outcome evaluation. Clearly,
either all the values in the series participate in evaluation of the final result with
the same weight, that is, they are equally significant, or the maximum value for
the series is returned as the final result.

However, this does not have to be the case in the real world situations. The
fact is, that in the real world there are usually two unknown parameters we have
to cope with: the time, we have to the next change in the environment, and the
time, which the user is going to wait for the recovery of the result after the last
change. We assume, that the former one is always greater than the latter one.

In spite of the full access to the entire series of values measured during sim-
ulations for each of the time intervals between subsequent changes, we need to
take into account stochastic nature of both time interval length and the user
impatience. Particularly, we have to assume that after each time step the user
can break the search process and request the solution. The user decision, con-
cerning selection of a time step for the break, may be related with a number
of circumstances, for example, with quality of the algorithm current outcome.
However, here we assume that the user motivation to stop the search process
comes solely from outside and the quality of the algorithm current outcome does
not influence the user decision. For example, in the case of an airport, where
flights are disrupted due to thick fog, we can use the optimization algorithm to
find the optimal sequence for departures of delayed planes when the fog lifts.
In this case, the optimization can be performed as long as possible because the
more computation is performed, the better solution can be obtained. The only
stopping criterion is the fog lifting which is the moment when the current best
found solution has to be provided to the airport control center.

Therefore, a new method of the algorithm performance evaluation is proposed
in this paper. The expected value of the algorithm outcome is evaluated respec-
tively to the user tendency to request the result before the end of the given
time. The evaluation is based on the previously obtained dataset containing the
algorithm outcome for a selected fitness landscape. We assume, that the dataset
represents the algorithm performance for the class of problems being a subject of
simulations and thus being also the source of the dataset. In the case of dynamic
optimization, the method evaluates expected values for each of the time interval
between subsequent changes in the landscape.

The paper consists of three sections. Section 2 presents a new idea of evalu-
ation of the expected value of the algorithm outcome. Section 3 contains sam-
ple evaluation of the algorithm outcome according to the method presented in
Sect. 2. Section 4 concludes the paper.

Expected Value of the Optimization Algorithm Outcome 247

2 Evaluation of the Algorithm Outcome Respectively to
the User Preferences

The solution request in the m-th time step, that is, a stopping time can be
represented as a random variable τ(m) = m. The variable τ(m) takes values
being numbers from the interval [1, . . . ,M], where M represents the maximum
number of time steps between subsequent changes in the fitness landscape.

The physical implementation of the random number generator for τ can be
represented as an array of M independent continuous random number genera-
tors. The generators produce uniformly distributed real numbers from the in-
terval [0, 1]. The user single decision to request the solution at m-th time step
depends on the generator in the m-th cell of the array and a threshold assigned
to this generator. The m-th threshold represents probability of the user request
at m-th time step. The value generated by the generator is compared with the
threshold. When the value is above the threshold, the user is ready to wait and
the optimization process continues. Otherwise, the user requests for the solution.
Clearly, the higher threshold the stronger impatience of the user.

Chances, that the user requests the solution precisely just in m-th time step
from the last change, can be calculated as follows. Let pmtrue represents probability
that the generator in them-cell of the array returned a value below the threshold,
that is, the user requests the solution. Then, for example, the case where the
user requested the solution just after the third time step represents the following
situation: the generator in the first cell returned a value above the threshold,
the generator in the second cell also returned a value above the threshold but
the generator in the third cell returned a value below the threshold. Thus, the
expected value of the algorithm outcome in the m-th time step equals:

E[Δ|τ = m] = EΔ(m). (1)

In our analysis, it is assumed that the algorithm outcome for the given opti-
mization problem is already known, that is, it is deterministic. For example,
this is the case when experiments have already been done and a dataset, which
contains the algorithm entire outcome, is saved. Lets have a series of outcome
values for subsequent time steps averaged over the number of runs for the same
optimization problem, the same algorithm configuration and the same starting
conditions. Now, we want to evaluate an expected value of the outcome for the
case where there exist randomness originating from the user as described above.
Thus, the expected value Δ of the outcome in the m-th time step equals:

E[Δ|τ = m] = Δ(m). (2)

In practice, the probabilities pmtrue for the subsequent generators in the array
can differ to each other. Clearly, the user is ready to wait for the solution for
some time, however, the probability of his request changes in subsequent time
steps. The impatience can grow or decline. Example graphs of the thresholds
varying in subsequent time steps are depicted in Fig. 1. In the graphs, it is
assumed that there are 50 steps between subsequent changes. The graphs can

248 K. Trojanowski and M. Janiszewski

be divided into two subgroups which represent: decreasing impatience of a user
(Fig. 1 – the top row) and increasing impatience ((Fig. 1 – the bottom row).
Both types of impatience are expressed by the threshold which changes linearly
(the first column), with acceleration (the second column), or with delay (the
third column).

 5 10 15 20 25 30 35 40 45 50

a

 5 10 15 20 25 30 35 40 45 50

b

 5 10 15 20 25 30 35 40 45 50

c

 5 10 15 20 25 30 35 40 45 50

d

 5 10 15 20 25 30 35 40 45 50

e

 5 10 15 20 25 30 35 40 45 50

f

Fig. 1. Example threshold functions which represent chances that the user requests
the solution precisely just after m-th time step from the last change; N = 50

In this case, the expected value Δ of the algorithm outcome for the time steps
from [1, . . . , N] equals:

E[Δ] =

N∑
m=1

Δ(m) · pm (3)

where Δ(m) is the algorithm outcome for the m-th time step and pm represents
the chances for selection any of the time steps from [1, . . . , N]. The total of
chances have to be equal 1, that is, the formula for evaluation of pm is as follows:

pm =

⎧⎨
⎩

[∏m−1
k=1 (1 − pktrue)

]
· pmtrue if m < N

1−∑N−1
m=1

[∏m−1
k=1 (1− pktrue)

]
· pmtrue if m = N

(4)

For each of the user characteristics depicted in Fig. 1, respective graphs with
the subsequent values of pm for m ∈ [1, 50] are shown in Fig. 2. The graphs in
Fig. 2 were generated for pmtrue varying within the range [0, 1]. As can be seen,
in every case there are a few highest values of pm which are at least several
orders of magnitude higher than the remaining values of pm present in the se-
quence. Unfortunately, this makes the characteristic rather useless. The problem
is, that the expected value of the algorithm outcome E[Δ], evaluated according
to Eq. (3), shall be dominated by a few of the outcome values in the series, that
is, the ones which are multiplied by the few highest values of pm. The graph of
pm generated for characteristic “e” is the exception. In this case, quite a large

Expected Value of the Optimization Algorithm Outcome 249

1e-020

1e-015

1e-010

1e-005

 1

 5 10 15 20 25 30 35 40 45 50

a

 1e-040
 1e-035
 1e-030
 1e-025
 1e-020
 1e-015
 1e-010
 1e-005

 1

 5 10 15 20 25 30 35 40 45 50

b

 1e-009
 1e-008
 1e-007
 1e-006
 1e-005
 0.0001
 0.001
 0.01
 0.1

 1

 5 10 15 20 25 30 35 40 45 50

c

1e-020

1e-015

1e-010

1e-005

 1

 5 10 15 20 25 30 35 40 45 50

d

 1e-007

 1e-006

 1e-005

 0.0001

 0.001

 0.01

 0.1

 1

 5 10 15 20 25 30 35 40 45 50

e

 1e-040
 1e-035
 1e-030
 1e-025
 1e-020
 1e-015
 1e-010
 1e-005

 1

 5 10 15 20 25 30 35 40 45 50

f

Fig. 2. Graphs with the subsequent values of pm for N = 50 evaluated for respective
characteristics given in Fig. 1

fraction of values in the series (for n = 50 this is about a half) belonging to the
group of the largest differ to each other by no more than one order of magnitude.

The formula of the threshold evaluation for subsequent generators according
to the characteristic “e” is:

fe(m) =
exp((m/N)q)− exp(0)

exp(1)− exp(0)
(5)

where q is the parameter which controls the strength of acceleration. The proba-
bilities pm for the function fe(m) where q ∈ [1, 15] and m ∈ [1, 5000] are depicted
in Fig. 3.

 1e-014

 1e-012

 1e-010

 1e-008

 1e-006

 0.0001

 0.01

 1

 0 1000 2000 3000 4000 5000

p m

fitness function call number

q=1
q=2
q=3
q=4
q=5
q=6
q=7
q=8
q=9

q=10
q=11
q=12
q=13
q=14
q=15

Fig. 3. Graphs with the probabilities pm of the solution request by the user in the
m-th step for the function fe(m) where q ∈ [1, 15]

250 K. Trojanowski and M. Janiszewski

Therefore, the characteristic “e” was selected for experimental part of the
research. In this part, we evaluated the expected value of the offline error re-
turned by a heuristic optimization algorithm during an experiment with a single
dynamic fitness landscape.

3 Experimental Research

Among a number of existing metaheuristics, we selected a differential evolution
(DE) for the research. This approach is recently a subject of growing interests
and has already been studied from many points of view (for detailed discussion
see, for example, monographs [3] or [4]). Our attention has been paid to the
self-adaptive version of the DE algorithm [1]. This version differs form the basic
approach in that a self-adaptive control mechanism is used to change the control
parameters F and CR during the run. Eventually, for our research we reimple-
mented the version of jDE presented in [2]. Our experiments were conducted
with the version extended by a new mutation operator inspired by a mechanism
originating from the particle swarm optimization approach [5].

A test-case for optimization was generated by Syringa dynamic landscape
generator [5]. The properties of the fitness landscape dynamics can be described
as four types of changes modifying the components: horizontal and vertical trans-
lation, scaling and rotation. These modifications occur at regular time intervals
in the environment. The components of landscape are various functions defined
by the same base formula but different parameters. In Syringa, there are several
types of functions describing the components and several types of changes for the
parameters of these functions. In our case, each of the components is generated
by spherical function: f(x) =

∑Ndim

i=1 x2
i where x ∈ [−100, 100] and Ndim is the

number of search space dimensions. For spherical function, the following type of
the parameters change was chosen which is called “a small change”:

Δ = α · r · (max−min) · φseverity (6)

where: α = 0.04; r = U(−1, 1); and φseverity = 5. The parameters max and min
represent lower and upper boundary of the parameter range of values. U(−1, 1)
is a random number generated from uniform distribution. Evaluation of the
solution x for the time step t is performed according to the formula:

F (x, φ, t) =
N∑
i=1

(wi · (f ′
i ((x−Oi(t) +Oiold)/λi ·Mi) +Hi(t))) (7)

where:
N – the number of component functions,
t – the discrete time,
φ – the landscape parameters for φ = (O,M,H), where
H – the vector of height coefficients,
M – the rotation matrix for each i-th component (the matrices remain un-

changed during the entire run of the algorithm),

Expected Value of the Optimization Algorithm Outcome 251

Oi(t) – optimum point coordinates for fi(x),
Oiold – initial optimum point coordinates for fi(x) (which is zero for each

component function).

Furthermore, function components should be normalized:

fi(x)
′
= C · fi(x)/|fmax

i | (8)

where C = 2000 and fmax
i is the value of the current optimum.

Table 1 contains values of some of the parameters from the eq. (6) and (7).

Table 1. Values of parameters used for GDBP

param value

m 10

t ∈ [1, 5000]

H ∈ [10, 100]

max 100

min 10

The landscape was generated in 5-dimensional search space where there exist
10 moving components. 60 changes occur in the landscape during a single call
of algorithm.

The offline error (oe) represents the average deviation from the optimum of
the best solution value since the last change in the landscape. The values of
oe were averaged over 30 experiments repeated for the same parameters of the
algorithm and the same landscape.

The graph of subsequent values of oe obtained for the time of the first six
changes in the fitness landscape is depicted in Fig. 4 (the top graph).

There were performed evaluations for five versions of the user impatience
characteristic: fe(m) where q ∈ {1, 3, 6, 9, 12}. Graphs with subsequent results
of multiplication pm by average values of oe are presented in Fig. 4 (the bottom
graph).

Values of expected value of oe for the six subsequent shapes of the fitness
landscape are presented in Table 2. As can be seen in Fig. 4, the expected value
of oe decreases as q grows which is easy to explain. Simply, the range of values of
m occupied by the fraction of values of pm belonging to the group of the largest
moves to the right as q increases (see Fig. 3). At the same time, in the given six
data subseries the oe values decrease during the algorithm run. The differences
between expected values of oe for subsequent values of q are significant. This
confirms our hypothesis that even little changes in the shape of user impatience
characteristic should not be regarded as negligible.

252 K. Trojanowski and M. Janiszewski

 0.1

 1

 10

 100

 1000

 10000

 0 5000 10000 15000 20000 25000 30000

fitness function call number

Output OE values for the first six changes (average of 50 measurements)

 1e-005

 0.0001

 0.001

 0.01

 0.1

 1

 0 5000 10000 15000 20000 25000 30000

p m
 b

y
de

vi
at

io
n

fitness function call number

q=1
q=3
q=6
q=9

q=12

Fig. 4. Graph with subsequent average values of oe for the first six changes in the
fitness landscape (the top figure) and graphs with subsequent results of multiplication
average values of oe by respective values of pm (the bottom figure)

Table 2. Expected value of oe for 6 subsequent shapes of the fitness landscape evalu-
ated for q ∈ {1, 3, 6, 9, 12}

shape nr 1 3 6 9 12

0 0.422553 0.037594 0.008986 0.004455 0.003070

1 0.060331 0.003576 0.000693 0.000360 0.000274

2 0.045394 0.002228 0.000491 0.000340 0.000294

3 0.035660 0.001710 0.000446 0.000334 0.000288

4 0.035365 0.001848 0.000610 0.000464 0.000394

5 0.037326 0.001753 0.000445 0.000342 0.000306

Expected Value of the Optimization Algorithm Outcome 253

4 Conclusions

In this paper, we present a new approach to the optimization algorithm evalua-
tion considering the user preferences and, particularly, the user constraints. One
of these constrains is a maximum time interval given the algorithm for compu-
tation. This interval represented as a maximum available number of evaluation
can be non deterministic due to some external conditions. Therefore, we have
to evaluate an expected value of the algorithm outcome rather than just the
value of the outcome. In the first part of the paper, we have proposed a method
of evaluation of such an expected value based on the characteristic of the user
behavior, that is, probability of interruption of the search process before it ends.
The characteristics describing random stopping time has significant influence on
the expected value of the outcome. The proposed model allows for application
of different characteristics of the user request and one of them was particularly
discussed above.

In the experimental part of the research, we applied the proposed model
to the sample algorithm output. This way we showed how the expected value
changes respectively to different user preferences. This confirmed significance of
the model and showed dependency between the user impatience characteristic
and the expected values of the outcome.

Acknowledgments. The authors would like to thank prof. Mieczys�law A.
K�lopotek, prof. Les�law Socha, and prof. Jan Mielniczuk for their valuable com-
ments and feedback. This research has been partially supported by the European
Regional Development Fund with the grant no. POIG.01.01.02-14-013/09:Adap-
tive system supporting problem solution based on analysis of textual contents of
available electronic resources.

References

1. Brest, J., Greiner, S., Boskovic, B., Mernik, M., Zumer, V.: Self-adapting control
parameters in differential evolution: A comparative study on numerical benchmark
problems. IEEE Trans. Evol. Comput. 10(6), 646–657 (2006)

2. Brest, J., Zamuda, A., Boskovic, B., Maucec, M.S., Zumer, V.: Dynamic optimiza-
tion using self-adaptive differential evolution. In: IEEE Congr. on Evolutionary
Computation, pp. 415–422. IEEE (2009)

3. Feokistov, V.: Differential Evolution, In Search of Solutions. Optimization and Its
Applications, vol. 5. Springer (2006)

4. Price, K.V., Storn, R.M., Lampinen, J.A.: Differential Evolution, A Practical Ap-
proach to Global Optimization. Natural Computing Series. Springer (2005)

5. Trojanowski, K., Raciborski, M., Kaczyński, P.: Self-adaptive differential evolution
with hybrid rules of perturbation for dynamic optimization. Journal of Telecommu-
nications and Information Technology, 18–28 (April 2011)

Solving Travelling Salesman Problem

Using Egyptian Vulture Optimization
Algorithm – A New Approach

Chiranjib Sur, Sanjeev Sharma, and Anupam Shukla

Soft Computing and Expert System Laboratory,
ABV - Indian Institute of Information Technology & Management

Gwalior, Madhya Pradesh, India - 474010
{chiranjibsur,sanjeev.sharma1868,dranupamshukla}@gmail.com

Abstract. Travelling Salesman Problem (TSP) is a NP-Hard combina-
torial optimization problem and many real life problems are constrained
replica of it which possesses exponential time complexity and requires
heavy combination capability. In this work a new nature inspired meta-
heuristics called Egyptian Vulture Optimization Algorithm (EVOA) is
being introduced and presented for the first time and illustrated with ex-
amples how it can be utilized for the constrained graph based problems
and is utilized to solve the various dimensional datasets of the traditional
travelling salesman problem. There are not many discrete optimization
bio-inspired algorithms available in the literature and in that respect it
is a novel one which can readily utilized for the graph based and assign-
ment based problems. This EVOA is inspired by the natural and skilled
phenomenal habits, unique perceptions and intelligence of the Egyptian
Vulture bird for carry out the livelihood and acquisition of food which is
inevitable for any kind of organisms. The Egyptian Vulture bird is one
of the few birds who are known for showing dexterous capability when it
comes to its confrontation with tough challenges and usage of tools with
combinations of force and weakness finding ability. The results show that
the Egyptian Vulture Optimization meta-heuristics has potential for de-
riving solutions for the TSP combinatorial problem and it is found that
the quality and perfection of the solutions for the datasets depend mainly
on the number of dimensions when considerable for the same number of
iterations.

Keywords: egyptian vulture optimization algorithm, discrete domain
problems, combinatorial optimization, graph based constrained prob-
lems, nature inspired heuristics, travelling salesman problem.

1 Introduction

Mathematical operation modeling or rather what we call algorithms for con-
strained discrete domain problems and graph based NP hard problems which
represent many real life scenarios are very difficult to achieve. The same goes for

M.A. K�lopotek et al. (Eds.): IIS 2013, LNCS 7912, pp. 254–267, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Solving Travelling Salesman Problem 255

both mathematically significant problems (like sequential ordering problems)
and path planning like combinational optimization problems. These kinds of
problems require algorithms which are randomized, converging and capable of
synthesizing combinations efficiently and thus after considerable iterations the
near optimized solution may be hit upon. With so many nature inspired heuris-
tics for optimization like Particle Swarm Optimization [4], Honey Bee Swarm
[5], League Championship Algorithm [6], Cuckoo search via Levy flights [7], Bat-
Inspired Algorithm [8], Simulated Annealing [9], Harmony Search [12], Honey-
bees mating optimization (HBMO) algorithm [14], Krill Herd Algorithm[21],
Virus Optimization Algorithm[24] etc most of them are suitable and naturally
favorable for continuous domain problem optimization and are more suitable for
exploration of variation of parameters based search problems than the sequen-
tial search problems which have discrete states for acceptance. Only Ant Colony
Optimization [3], Intelligent Water Drops Algorithm [16] etc are among the few
which are randomized graph search algorithms or coordinated cum cooperative
graph traversing based search algorithms involved with both exploration and
exploitation for achievement of global optimization. The bio-inspired algorithms
described in [3-24] are mostly the continuous domain combination capable and if
ever they are forced to be applied on the discrete domain problems one drawback
persists that once a series or sequence is formed either the whole is modified or
a restricted part (if possible) of it but lack the operator of deriving the change
of sequence in between. So in this work we have introduced for the first time an-
other biologically inspired meta-heuristics called Egyptian Vulture Optimization
Algorithm which readily applicable for the graphical problems and node based
continuity search and optimization capability and there is no requirement of
local search in the continuous space. The main advantage of the EVOA is its ca-
pability for different combination formation and at the same time prevents loop
formation and also in many problem cases (like TSP, Knapsack etc) insertion
and depletion of node sequence at will for development of the solution and at the
same time generation of new solution sequence. As illustration and performance
analysis of the Egyptian Vulture Optimization Algorithm we have optimized the
traditional travelling salesman problem with its varied range of dimension with
the new algorithm and capability of the Egyptian Vulture Optimization Algo-
rithm is reflected through the results. However the improvement of the results
for long dimensional datasets can be achieved with the increase in the number of
iterations. Literature has revealed many procedures for optimization of the TSP
problems both for deterministic approaches like [28-31] and non-deterministic
approaches like [26-27].

The remaining portion of this documentation is organized with Section 2 for
life-style of the Egyptian Vulture bird, Section 3 for EVOA algorithm and its
scope and details, Section 4 for the implementation details of the algorithm for
the TSP, Section 5 for results and 6 for conclusion and future works.

256 C. Sur, S. Sharma, and A. Shukla

2 History and Life Style of Egyptian Vulture

The Egyptian Vulture, also known as White Scavenger Vulture (Scientific Name:
Neophron percnopterus) [1], is one of the most ancient kinds of vulture that
existed on this earth and shares it features with the dinosaurs family with respect
to its food habit, strength, endurance and has surpassed them in intelligence as
well, but unfortunately a few species of its kind has become extinct. Like any
other vulture species, the primary food habitat of the Egyptian Vulture is meat,
but the opportunistic feature for food habit which makes the species unique
and thus lead to the meta-heuristic is that they eat the eggs of the other birds
available.

Fig. 1. Egyptian Vulture at Work

However for larger and strong (in terms of breakability) eggs they toss pebble
hard on them, using the pebbles as hammer, and thus break them. Also the
Egyptian Vultures have the knack of rolling things with twigs, which is another
distinguish feature of the Egyptian Vulture. Relatively the Egyptian Vulture
possess a sedentary life apart from hunting for food, but their level of perfor-
mance and technique have been unique among all the member of the class Aves
and this makes them the best lot. However due to some unavoidable reasons
of the unscrupulous activity of the human beings like poaching, cutting down
of forests, global warming, etc there has been a decrease in their numbers in
population. The breed has been famous among the Pharaohs of Egypt and was
considered as a symbol of royalty and was known as “Pharaoh′s Chicken”. In
India, there are a lot of superstitious believes are associated with the bird. The
sight of this bird is considered as unlucky and their shrilling calls believed to
signify downfall, hardship or even death. However there are tribal groups who
can actually tame them and read the activity of the vultures to detect natural
calamity or incidents. Another superstitious belief is considered in [1]. A temple
situated at Thirukalukundram in Chengalpattu (India) was reputed for a pair
of Egyptian Vulture that used to visit the place for centuries. These Egyptian
Vultures were fed ceremonially by the priests of the temple and used to arrive
just before noon to feed on offerings made from traditional Indian foods like rice,
ghee, sugar and even wheat. Although Egyptian Vultures are normally punctual
in their arrival, but in case there is failure of the Egyptian Vultures to turn up,
it is attributed to the presence of any “sinners” among the onlookers. Also ac-
cording to mythology legend has it the vultures (or “eagles”) represented eight

Solving Travelling Salesman Problem 257

sages who were punished by Lord Shiva (Hindu God), and in each of a series
of epochs two of them leave. The Egyptian Vultures possess the reputation of
practicing the habit of coprophagy that is being fed on faeces of other animals.

3 Egyptian Vulture Optimization Algorithm

The Egyptian Vulture Optimization Meta-Heuristics Algorithm has been de-
scribed here as steps, illustration through examples and explanations. The two
main activities of the Egyptian Vulture, which are considered here or rather
transferred into algorithm, are the tossing of pebbles and the ability of rolling
things with twigs. Before describing the algorithmic steps, brief description of
the data structure used for solution set is provided in the corresponding Section
4, its limitations and imposed constraints are also discussed and what are we
looking for at the end of the algorithm.

Fig. 2. Steps for Egyptian Vulture Optimization Algorithm

The overall generalized algorithm can be framed into the following steps unless
some steps are deformed or restricted to cope up with the constraints of the
problem.

Step 1: Initialization of the solution set or string which contain the representa-
tion of parameters in form of variables. The String represents a set of parameters
which as a whole represents a single state of permissible solution.
Step 2: Refinement of the variable representatives, checking of the superim-
posed conditions and constraints.
Step 3: Tossing of Pebbles at selected or random points.
Step 4: Rolling of Twigs on selected or the whole string.
Step 5: Change of angle through selective part reversal of solution set.
Step 6: Fitness Evaluation.
Step 7: Check Condition for stopping.

So at the end of the simulation the main objective of the algorithm is derivation
of a solution whose sequence respects some constraints and thus establishes a
sequence of serially connected events or states which is optimized with some
parameter(s) individually or as a whole. The solution can approached in two
ways, one is starting from an arbitrary sequence of all the nodes when it should
contain all and then performing the operator on them or starting with small
number of nodes and try creating a path between the source and the destination
when the solution dont contain all the nodes.

258 C. Sur, S. Sharma, and A. Shukla

3.1 Pebble Tossing

The Egyptian Vulture uses the pebbles for breakage of the eggs of the other
birds with relatively harder eggs and only after breakage they can have the
food inside. Two or three Egyptian Vulture continuously toss the pebbles on
the egg with force until they break and they try to find the weak points or
the crack points for success. This approach is used in this meta-heuristics for
introduction of new solution in the solution set randomly at certain positions
and hypothetically the solution breaks into the set and may bring about four
possibilities depending upon probability and the two generated parameters for
execution of the operations and selection of extension of the performance. Figure
3 provides the pictorial view of the pebble tossing step of the Egyptian Vulture.
Here the numerical values are representation of nodes or discrete events for a
solution string or array where each element of the string is represented as a
parameter. This is applicable for all the figures 3-5. The three cases generated
are the probables and in actuality only one takes place. However all the three
probables are shown for clarification.

Fig. 3. Pictorial View of Pebble Tossing

The two variables for the determination of the extent of the operation are:

PS = Pebble Size (level of occupy) where PS ≥ 0
FT = Force of Tossing (level of removal) where FT ≥ 0.
Hence, If PS > 0 Then “Get In” Else “No Get In”
Also If FT > 0 Then “Removal” Else “No Removal”

where “Get In” denotes occupancy and “Removal” is for removing. Now the
Level of occupy denotes how many solutions should the pebble carry and must
intrude forcefully into the solution set. Level of removal implies how many so-
lutions are removed from the solution set. Both are generated randomly within
a certain limit and the pebbles carrying PS number of nodes are also generated

Solving Travelling Salesman Problem 259

randomly considering that the combination can produce new solution set. Now
FT denotes the number of nodes that are removed from either side of the point
of hitting. Overall there are four combinations of operations are possible and
are:

– Case 1: Get In & No Removal
– Case 2: No Get In & No Removal
– Case 3: Get In & Removal
– Case 4: No Get In & No Removal

The last combination is of no operation and is another way refusal of operation
on the solution. Another criterion is the point of application of the step.

It is to be pointed out that the application is sole decider of up to what extent
the operation combination will take place and whether it is permissible to allow
combinations where PS FT which means that the removal and occupy or both
will be of unequal length and thus introduces the concept of variable string
length which is perhaps very necessary for route finding problems. However for
problems like TSP the required combination is always PS = FT to justify the
constraint of constant number of cities and without duplicity.

Point of hitting is another criterion which requires attention and strategy
must be determined for quickening the solution convergence process. Like for
TSP problem any point can be chosen for application of Tossing of Pebble step
but for path finding problem the best strategy is considered if the discontinuous
positions are targeted for application. In a similar way for continuous domain
problems any point and relevant and mapped positions can be the hit point and
way for removal and occupy for experimentation and combination trials.

3.2 Rolling with Twigs

The rolling with twigs is another astonishing skill of the Egyptian Vulture with
which they can roll an object for the purpose of movement or may be to perform
other activity like finding the position or weak points or just giving a look over
the other part which is facing the floor. Rolling of the objects requires not only
power but also the art of holding tight the stick with their beak and also finding
the proper stick. This is perhaps the inherited skill of any bird for finding the
right stick for any object they are trying to create or execute. Several birds have
given testimony of making high quality nests during laying eggs. Such selection
of sticks is mainly made for making the nest or positioning the right bend of
the stick at the right place. Even some birds have given evidence of sewing the
soft twigs with their beak. This activity of the Egyptian Vulture is considered as
rolling of the solution set for changing of the positions of the variables to change
the meaning and thus may create new solutions which may produce better fitness
value and also better path when it comes for multi-objective optimization. Also
when the hit point is less and the numbers of options are more, it may take a
long time for the finishing event to take place or in other words the appropriate
matching of the random event to occur. In such case this kind of operations can

260 C. Sur, S. Sharma, and A. Shukla

be helpful. Figure 4 illustrates the effect of the “Rolling with Twigs” event for
graph based problems for a particular state and for certain parameter value of
the probabilistic approach which is discussed in the subsequent paragraphs. Here
the whole string is considered for shifting (with two possibilities of either left or
right and is determined probabilistically), but in the TSP we have considered
only partial shifting and the partial string is generated randomly. The main
criteria of determination of what should be adopted is the application itself and
what far it can tolerate so that the validity of solution string is not hampered. For
the “Rolling with Twigs” to occur there is required another two more parametric
variables which will direct the mathematical formulation of the event and also
guide the implementation of the step. These two criteria for the determination
of the extent of the operation are:

DS = Degree of Roll where DS ≥ 0 denoting number of rolls. DR as Direction
of Rolling where probabilistically we have:
DR = 0 for Right Rolling/Shift

= 1 for Left Rolling/Shift

where 0 and 1 is generated randomly and deterministically the equation can be
framed as:

DR = Left Rolling/Shift for RightHalf > LeftHalf
= Right Rolling/Shift for RightHalf < LeftHalf

where RightHalf is the secondary fitness for the right half of the solution string
and LeftHalf is for left half. The reason behind this is if the RightHalf is better,
then this will be a provision to extent the source with the connected node portion
and same is for LeftHalf, which can be connected with the destination.

Fig. 4. Pictorial View of Rolling with Twigs for DS = 2

Another scheme that can be implemented in constraint environment without
hampering the partial derived solution occurs for mainly problems like path
finding etc. Here only the unstructured solution string is modified and not the
partial path already found. Link and in orderness are important factors of these
kind of constraint problems, but for problems like the datasets of the TSP,

Solving Travelling Salesman Problem 261

where a path exist between every node and distance is the Euclidean distance
between them, shifting of the partial string holds the same information as that
of the whole string as each can give rise to new solution and hence the search
procedure is more versatile and global solution can be attended easily.

3.3 Change of Angle

This is another operation that the Egyptian Vulture can perform which derives
its analogy from the change of angle of the tossing of pebbles so as to experiment
with procedure and increase the chance of breakage of the hard eggs. Now the
change of the angle is represented as a mutation step where the unconnected
linked node sequence are reversed for the expectation of being connected and
thus complete the sequence of nodes. Figure 5 gives a demonstration of such a
step. This step is not permanent and is incorporated if only the path is improved.

Fig. 5. Pictorial View of Change of Angle

This Change of Angle step can be multi-point step and the local search decides
the points, number of nodes to be considered and depends on the number of
nodes the string is holding. If the string is holding too many nodes and Pebble
Tossing step cannot be performed then this step is a good option for local search
and trying to figure the full path out of it.

3.4 Brief Description of Fitness Function

The fitness function is of utmost importance when it comes for the decision
making of the system and optimization selection, but it is noticed that in ma-
jority graph based problems, obsessed with multi-objective optimization, that
the complete path is reached after a huge number of iterations and by the mean
time it is very difficult to clearly demarcate the better incomplete result from the
others and it is in this case the act of probabilistic steps can worsen the solution.
Also the acts of the operations need to be operated in proper places mainly on
the node gaps where there is yet to make any linkage. Hence a brief description
of the secondary fitness function needs to be addressed. This secondary fitness
value can be of several types:

262 C. Sur, S. Sharma, and A. Shukla

1) The technique used in the simulation finds the linked consecutive nodes and
is numbered with a number which denotes how many nodes are linked together
at that portion. Then the secondary fitness is calculated as (summation of the
fitness)/(number of nodes). High secondary fitness denotes that more numbers
of nodes are linked together as a unit than the other solution string. But for the
TSP as there occurs a link between every node, the secondary fitness will always
be constant and will be of no use.

2) Another partial solution fitness evaluation can be through the use of the
number of partial solution that is linked portion are present in that string which
can have high probability of being processed into a complete path than the
isolated ones. Here on the count of the linked sections present in the solution
string are kept as secondary fitness value. But contrary to the previous method,
this method provides minimum as best result.

3.5 Adaptiveness of the EVOA

The Egyptian Vulture Optimization Algorithm provides the option of adaptive
experimentation for the problem which can be multi-variable during the initial
positions and gradually decreases with iterations and with the length of the
path. Also for constant length combinatorial optimization, it can be modified
accordingly and can be regarded as a special case of the algorithm. There can
be situations when the linkage between two path segments can be done through
single or multiple numbers of nodes and this requires the need of adaptive flex-
ibility in the operators. Also the operators like “rolling of twig” and “change
of angle” can be operated on selected part of the solution string and hence can
generate partly good solution which later can be united to create the complete
one.

4 EVOA for Travelling Salesman Problem

The following are the details of the steps of the Egyptian Vulture Optimization
Algorithm used for Travelling Salesman Problem Application.

Step 1: Initialize N (taken as 20) solution strings with random generation of all
the nodes present for a dataset without repetition. The String represents a set
of parameters which as a whole represents a single state of permissible solution.
Here the strings have the unrepeated nodes. However generation of the solution
strings involved Tossing of Pebbles step where the sequence of cities is generated
through the random arrival of nodes and duplicate prevention step. So at this
point the strings with no node will rise to its maximum length and is equal to
the dimension of dataset. Later the Tossing of Pebbles step in Step 3 will create
changes in the string through the same procedure but the length of string will
remain intact following the criteria of valid TSP solutions.

Step 2: Initialize the primary fitness matrix (array) only, as secondary fitness
is unnecessary as all the nodes are connected. Evaluate the initial fitness of the
strings.

Solving Travelling Salesman Problem 263

Step 3: Perform Tossing of Pebbles operation at selected or random points de-
pending upon implementation on deterministic approach or probability. The best
combination can be achieved if the selected node(s) are optimized with respect
to distance and is placed with the node with which it has the least distance by
performing a local search in a bounded area (as always searching through the
whole string is not possible, the search space is restricted to some portion be-
tween position Smax and Smin where Smax < (dimension of TSP) and Smin > 0
and Smax − Smin < threshold and threshold determines how many maximum
nodes are to be searched and is held for the computational complexity of the
algorithm.) Placement and replacement of nodes is compensated by shifting of
the nodes or the vacancies whichever required. Accept the new sequence if it
surpass the old sequence in fitness. This step will help in gradual reducing the
distance between two nodes.

Step 4: Perform Rolling of Twigs operation on selected portion only as the
operation on the whole string will not make any sense so far as the solution
quality is concerned. It can also be done by choosing a certain length with
node positions as Lstart and Lend where Lstart < Lend and Lend - Lstart <
(Dimemsion of TSP) as if the whole string is shifted (right or left) the fitness
value of the string remains unchanged, however only the starting and ending
cities gets changed.

Step 5: Perform Change of Angle operation through selective reversal of solution
subset. This is some kind of extra effort introduced by the bird for efficient result.
It is mutation operator for combination. Accept the new sequence if it surpass
the old sequence in fitness. Same procedure of Lstart and Lend is followed.

Step 6: Evaluate the fitness of each string that is the minimum distance con-
necting them.

Step 7: If New solution (derived out of combination of operation(s)) is better,
then replace the old else dont.

Step 8: Select the best result and compare with global best. If better then set
it as global best.

Step 9: After each iteration replace X% worst solutions with random initializa-
tion. (X depends on N and according to the exploration requirement)

Step 10: If number of iteration is complete then stop else continue from Step
3.

Note: It is to be mentioned here that “Tossing of Pebbles” operation occurs
under influence of some swarm of vulture bird agents each generating differ-
ent elements at different positions and this accelerates the solution generation
much quickly. The number of birds in a swarm depends on the dimension of the
dataset and how much quickly the combination is required to be varied. However
the other two operations (“Rolling of Twigs” and “Change of Angle”) are also
performed under influence of a swarm but the number of agents in swarms are
relative lower.

264 C. Sur, S. Sharma, and A. Shukla

5 Computational Results

In this section we have provided the results consisting of mean, standard devia-
tion (SD), best, worst and mean error in a tabulated form while it is compared
with the optimum value with dim denoting the dimension of the datasets. The
simulation of the EVOA on Travelling Salesman Problem datasets [25] ranging
from the 16 to 280 dimensions provides that the range of 4.7 and 28.7 percent
when all the datasets are run for 25000 iterations.

Table 1. Table for result

DATASETS EVOA

Name DimOptimum Mean SD Best Worst Error
Ulysses16.tsp 16 74.11 77.56 1.16 75.16 79.53 4.6552
att48.tsp 48 3.3524e+004 3.7119e+004 23.89 3.3781e+004 4.1136e+004 10.7237
st70.tsp 70 678.5975 730.676 105.6 694 802 7.6744
pr76.tsp 76 1.0816e+005 1.2941e+005 219.1 1.1295e+005 1.5898e+005 19.6468
gr96.tsp 96 512.3094 659.11 46.7 599.2 1002 28.6547
gr120.tsp 120 1.6665e+003 1.8223e+003 106 1.7552e+003 2.1825e+003 9.3489
gr202.tsp 202 549.9981 886.92 92.2 650.2 1202 61.2587
tsp225.tsp 225 3919 4597 196 4216 6112 17.3003
a280.tsp 280 2.5868e+003 2.9943e+003 1213 2.7976e+003 3.8236e+003 15.7531

Fig. 6. Plot for Standard Deviation & Error

The figure 6-8 also reveals the graphical view of the table with reference to
the dimension of the datasets provided in table 1. The result clearly reveal the
ability of the EVOA as a successful algorithm for TSP and experimentation has
revealed that with the increase in the number of dimensions the iteration number
must increase to get a better result.

Solving Travelling Salesman Problem 265

Fig. 7. Plot for Best Value, Worst Value & Mean

Fig. 8. Plot for Mean & Optimum Value

6 Conclusion and Future Works

So in this work we have contributed by introducing for the first time yet an-
other member for the nature inspired computing family, now for the discrete
combinatorial optimization problems and graph based search and path planning
problems mainly due to the availability of large number of continuous domain
problems. This Egyptian Vulture Optimization Algorithm is capable of combin-
ing well the options but is as usual depends on probability. It is applied well
on the TSP and the results are converging towards the best with the number
of iterations increasing with the increased number of dimensions. The EVOA
can easily be used for all kinds of node based search problems and the fitness
evaluation strategy and validation checking strategy differs in each case. Local
searches like placing the node with the nearest node without random placements
can however be good strategy when facing constraint-less problems and can help
in quick convergence but the continuous addition of such local search based may
destroy the previously placed nearest one. However it needs to be experimented

266 C. Sur, S. Sharma, and A. Shukla

with many other real life problems and other combinatorial optimization prob-
lems before coming to any conclusion and there can be other aspects related to
its performance in its future works.

Acknowledgement. The first author gratefully acknowledges the motivation,
guidance and support of Prof. Anupam Shukla, Professor, ABV-Indian Institute
of Information Technology and Management, Gwalior, India. His time to time
critics and reviews has been very helpful for the work′s improvement. The work
is motivated by a slide of Prof Ajith Abraham.

References

1. Egyptian Vulture details, http://en.wikipedia.org/wiki/Egyptian_Vulture
2. Vulture Photo, http://www.flickr.com/photos/spangles44/5600556141
3. Blum, C., Roli, A.: Metaheuristics in Combinatorial Optimization: Overview and

Conceptual Comparison. ACM Comput. Survey 35, 268–308 (2003)
4. Kennedy, J., Eberhart, R.: Particle Swarm Optimization. In: IEEE International

Conference on Neural Networks, vol. 4, pp. 1942–1948 (1995)
5. Karaboga, D.: An Idea Based on Honey Bee Swarm for Numerical Optimization.

Technical Report TR06, Erciyes University (2005)
6. Kashan, A.H.: League Championship Algorithm: A New Algorithm for Numeri-

cal Function Optimization. In: International Conference of Soft Computing and
Pattern Recognition, pp. 43–48. IEEE Computer Society, Washington, DC (2009)

7. Yang, X.S., Deb, S.: Cuckoo search via Levy flights, In: World Congress on Nature
& Biologically Inspired Computing, pp. 210-214. IEEE Publication, USA (2009)

8. Yang, X.-S.: A New Metaheuristic Bat-Inspired Algorithm. In: González, J.R.,
Pelta, D.A., Cruz, C., Terrazas, G., Krasnogor, N. (eds.) NICSO 2010. SCI, vol. 284,
pp. 65–74. Springer, Heidelberg (2010)

9. Kirkpatrick, S., Gelatt Jr., C.D., Vecchi, M.P.: Optimization by Simulated Anneal-
ing. Science 220(4598), 671–680 (1983)

10. Storn, R., Price, K.: Differential Evolution - A Simple and Efficient Heuristic
for Global Optimization Over Continuous Spaces. Journal of Global Optimiza-
tion 11(4), 341–359 (1997)

11. Farmer, J.D., Packard, N., Perelson, A.: The Immune System, Adaptation and
Machine Learning. Physica D 22, 187–204 (1986)

12. Geem, Z.W., Kim, J.H., Loganathan, G.V.: A new heuristic optimization algo-
rithm: harmo-ny search. Simulation 76, 60–68 (2001)

13. Krishnanand, K., Ghose, D.: Glowworm swarm optimization for simultaneous cap-
ture of multiple local optima of multimodal functions. Swarm Intelligence 3(2),
87–124 (2009)

14. Haddad, O.B., et al.: Honey-bees mating optimization (HBMO) algorithm: a new
heuristic approach for water resources optimization. Water Resources Manage-
ment 20(5), 661–680 (2006)

15. Tamura, K., Yasuda, K.: Primary Study of Spiral Dynamics Inspired Optimization.
IEEE Transactions on Electrical and Electronic Engineering 6, S98–S100 (2011)

16. Hamed, S.H.: The intelligent water drops algorithm: a nature-inspired swarm-based
optimization algorithm. International Journal of Bio-Inspired Computation 1,
71–79 (2009)

http://en.wikipedia.org/wiki/Egyptian_Vulture
http://www.flickr.com/photos/spangles44/5600556141

Solving Travelling Salesman Problem 267

17. Civicioglu, P.: Transforming geocentric cartesian coordinates to geodetic coordi-
nates by using differential search algorithm. Computers & Geosciences 46, 229–247
(2012)

18. Tayarani-N, M.H., Akbarzadeh-T, M.R.: Magnetic Optimization Algorithms a new
synthesis. In: IEEE Congress on Evolutionary Computation, pp. 2659–2664 (2008)

19. Reynolds, C.W.: Flocks, herds and schools: A distributed behavioral model. Com-
puter Graphics 21, 25–34 (1987)

20. Kaveh, A., Talatahari, S.: A Novel Heuristic Optimization Method: Charged Sys-
tem Search. Acta Mechanica 213, 267–289 (2010)

21. Gandomi, A.H., Alavi, A.H.: Krill Herd Algorithm: A New Bio-Inspired Optimiza-
tion Algorithm. Communications in Nonlinear Science and Numerical Simulation
(2012)

22. Tamura, K., Yasuda, K.: Spiral Dynamics Inspired Optimization. Journal of
Advanced Computational Intelligence and Intelligent Informatics 15, 1116–1122
(2011)

23. Wolpert, D.H., Macready, W.G.: No free lunch theorems for Optimization. IEEE
Transactions on Evolutionary Computation 1, 67–82 (1997)

24. Liang, Y.C., et al.: Virus Optimization Algorithm for Curve Fitting Problems. In:
IIE Asian Conference (2011)

25. Dataset Library, http://elib.zib.de/pub/mp-testdata/tsp/tsplib/
tsplib.html

26. Lin, S., Kernighan, B.W.: An effective heuristic algorithm for the travelling sales-
man problem. Operations Research 21, 498–516 (1973)

27. Helsgaun, K.: An effective implementation of the linkernighan travelling salesman
heuristic. European Journal of Operational Research 126(1), 106–130 (2000)

28. Applegate, D., Bixby, R.E., Chvátal, V., Cook, W.: TSP Cuts Which Do Not Con-
form to the Template Paradigm. In: Jünger, M., Naddef, D. (eds.) Computational
Combinatorial Optimization. LNCS, vol. 2241, pp. 261–304. Springer, Heidelberg
(2001)

29. Hahsler, M., Hornik, K.: TSP Infrastructure for the Travelling Salesperson Problem
(2007)

30. Dantzig, G.B., Fulkerson, D.R., Johnson, S.M.: Solution of a Large-scale Traveling
Salesman Problem. Operations Research 2, 393–410 (1954)

31. Miller, P.J.: Exact Solution of Large Asymmetric Traveling Salesman Problems.
Science 251, 754–761 (1991)

http://elib.zib.de/pub/mp-testdata/tsp/tsplib/tsplib.html
http://elib.zib.de/pub/mp-testdata/tsp/tsplib/tsplib.html

Author Index

Aminian, Maryam 112

Broda, Bartosz 28

Chao, Lidia S. 57
Ciesielski, Krzysztof 179, 212
Czerski, Dariusz 179, 212

Dimitropoulos, Harry 206
Dramiński, Micha�l 179, 212

Giannakopoulos, Theodoros 206

Habib, Mena B. 1
Hajnicz, Elżbieta 92
Han, Aaron L.-F. 57
Hu, Junfeng 145

Ioannidis, Yannis 206

Janiszewski, Marcin 245

K�lopotek, Mieczys�law A. 179, 212
K�lopotek, Robert A. 234
Kobyliński, �Lukasz 106
Krasnowska, Katarzyna 16, 69
Kuśmierczyk, Tomasz 187

Lucińska, Ma�lgorzata 220
�Lukasik, Micha�l 198

Manola, Natalia 206
Marcińczuk, Micha�l 131
Metaxas, Omiros 206

Ogrodniczuk, Maciej 125
Or�lowicz, Pawe�l 28
Owczarczyk, B�lażej 179

Pawlaczek, Adam 22
Przepiórkowski, Adam 69
Przyby�la, Piotr 50

Radziszewski, Adam 22, 28, 131
Rasooli, Mohammad Sadegh 112
Rubikowski, Maciej 45

Sameti, Hossein 112
Sharma, Sanjeev 254
Shukla, Anupam 254
Sikora, Piotr 39
Siolas, Georgios 157
Šojat, Krešimir 80
Srebačić, Matea 80
Stafylopatis, Andreas 157
Štefanec, Vanja 80
Stratogiannis, Georgios 157
Sun, Ni 145
Sur, Chiranjib 254
Sydow, Marcin 187, 198
Szmit, Rados�law 171

Trojanowski, Krzysztof 179, 245

van Keulen, Maurice 1

Waszczuk, Jakub 151
Wawer, Aleksander 45
Wierzchoń, S�lawomir T. 212, 220
Wong, Derek F. 57
Wróblewska, Alina 39

Zhang, Hua 145
Zou, Xiaojun 145

	Preface
	Organization
	Table of Contents
	Natural Language Processing
	A Hybrid Approach for Robust Multilingual
Toponym Extraction and Disambiguation
	1 Introduction
	2 Related Work
	2.1 Named Entity Extraction
	2.2 Toponym Disambiguation

	3 Proposed Hybrid Approach
	3.1 System Phases
	3.2 Toponym Disambiguation Approach
	3.3 Selected Features

	4 Experimental Results
	4.1 Data Set
	4.2 Experiment 1: Data Set Analysis
	4.3 Experiment 2: SVM Features Analysis
	4.4 Experiment 3: Multilinguality, Different Thresolding
Robustness and Competitors
	4.5 Experiment 4: Low Training Data Robustness

	5 Conclusion and Future Work
	References

	Towards a Polish LTAG Grammar
	1 Introduction: LTAG Grammars
	2 Extraction Procedure
	3 ParsingwithTuLiPA
	4 Evaluation
	5 Conclusions
	References

	Incorporating Head Recognition
into a CRF Chunker
	1 Introduction
	2 Encoding Chunks and Heads
	3 Dataset
	4 CRF Chunker for Polish
	5 Rule-Based Alternative
	6 Results
	7 Conclusion and Further Work
	References

	Classification of Predicate-Argument Relations
in Polish Data
	1 Introduction
	2 Syntactic Chunks and Inter-chunk Relations
	3 Related Works
	4 ProposedSolution
	4.1 General Setting
	4.2 Relation Recognition Algorithm
	4.3 Features
	4.4 Classifiers

	5 Evaluation
	6 Conclusion and Further Work
	References

	Online Service for Polish Dependency
Parsing and Results Visualisation
	1 Introduction
	2 Dependency Parsing of Polish
	3 Parsing and Visualisation
	4 Conclusions and Future Work
	References

	The Scent of Deception: Recognizing Fake
Perfume Reviews in Polish
	1 ExistingWork
	2 Corpus Construction
	2.1 Basic Creation Principles
	2.2 Finding Authentic Reviews (labeled T)
	2.3 Buying Fake Reviews (labeled F)

	3 Automated Recognition of Deceptive Reviews
	3.1 Features
	3.2 Results

	4 Conclusions
	References

	Question Classification
for Polish Question Answering
	1 Introduction
	2 Related Work
	3 Question Classifiers
	3.1 Pattern Classifier
	3.2 WordNet-Aided Classifier
	3.3 Machine Learning Classifiers

	4 Evaluation
	5 Results
	6 Conclusion
	References

	Chinese Named Entity Recognition
with Conditional Random Fields in the Light of Chinese Characteristics
	1 Introduction
	2 Chinese Characteristics
	3 Optimized Features
	4 CRFModel
	5 Experiments
	5.1 Data
	5.2 Results
	5.3 Comparisons with Related Works

	6 Discussion
	7 Conclusion and Future Works
	References

	Detecting Syntactic Errorsin Dependency Treebanks
for Morphosyntactically Rich Languages
	1 Introduction
	2 Method
	3 Experiments
	4 Evaluation
	5 Conclusions
	References

	A Method for the Computational
Representation of Croatian Morphology
	1 Introduction
	2 Related Work
	3 Word-Formation Processes in Croatian
	4 The Initial Stage of CroDeriV Development
	5 Redesigning CroDeriV
	5.1 Derivation
	5.2 Inflection

	6 Future Work and Conclusion
	References

	Mapping Named Entities from NKJP Corpus
to Składnica Treebank and Polish Wordnet
	1 Introduction
	2 Data Resources
	2.1 NKJP
	2.2 Składnica
	2.3 Polish Wordnet—Słowosieć

	3 A Method of Mapping
	3.1 Identifying a Phrase in a Parse
	3.2 Finding a PlWN Semantic Interpretation

	4 Evaluation of Automatic Mapping of Named Entities
	4.1 Manual Correction of Named Entities Annotation
	4.2 Actual Evaluation

	5 Conclusions and Future Work
	References

	Automatic Detection of Annotation Errors
in Polish-Language Corpora
	1 Introduction
	2 Previous Work
	3 Variation N-grams in Annotation Error Detection
	4 Increasing Recall of the N-gram Detector
	5 Detecting Anomalies in Annotation Using Association
Rules
	6 Conclusions and Future Work
	References

	Unsupervised Induction of Persian Semantic
Verb Classes Based on Syntactic Information
	1 Introduction
	2 Related Work
	3 Semantic Clustering of Persian Verbs
	3.1 Persian Lexical-Semantic Verb Classes
	3.2 Empirical Distribution for Persian Verbs
	3.3 Clustering Algorithm and Evaluation Techniques

	4 Evaluation Metrics
	5 Experimental Results
	6 Analysis and Conclusion
	References

	Translation- and Projection-Based
Unsupervised Coreference Resolution for Polish
	1 Introduction
	2 Related Work
	3 TheExperiment
	4 Evaluation
	5 Conclusions and Further Work
	References

	WCCL Match – A Language
for Text Annotation
	1 Background
	2 Why Another Formalism?
	3 WCCL
	4 WCCL Match
	4.1 Match Specification
	4.2 Additional Conditions
	4.3 Actions

	5 Applications
	5.1 Named Entity Recognition
	5.2 Question Analysis
	5.3 Question Transformation

	6 WCCL Match Is Language-Independent
	7 Conclusion
	References

	Diachronic Corpus Based Word Semantic
Variation and Change Mining
	1 Introduction
	2 Computational Based Approach
	3 Experimental Results
	3.1 Word Semantic Variation and Change Trends Analysis
	3.2 Diachronic Sensitive and Insensitive Words Mining

	4 Conclusions and Future Work
	References

	A Representation of an Old Polish Dictionary
Designed for Practical Applications
	1 Introduction
	2 Automata Library
	2.1 Interface
	2.2 Incremental Construction

	3 Automaton Representation of a Dictionary
	3.1 PoliMorf
	3.2 Old Polish Dictionary
	3.3 Inverse Automaton
	3.4 Updating the Old Polish Dictionary with Contemporary Forms

	4 Binary Representation of the Old Polish Dictionary
	5 Summary and Future Works
	References

	Text and Web Mining
	Related Entity Finding Using Semantic
Clustering Based on Wikipedia Categories
	1 Introduction
	2 Related Work
	2.1 Question Answering from Texts
	2.2 Semantic QA
	2.3 Related Entity Finding (REF)

	3 Implementation: Information Retrieval Part
	3.1 Candidate Entity Extraction
	3.2 Entity Ranking

	4 Implementation: Semantic Part
	4.1 Entity Vector Representation Based on Wikipedia Categories
	4.2 Data Pre-processing
	4.3 Semantic Clustering

	5 Finding Primary and Relevant Homepages
	6 Results
	7 Conclusion and Future Work
	References

	Locality Sensitive Hashing for Similarity Search
Using MapReduce on Large Scale Data
	1 Introduction
	2 Problem Definition
	3 Jaccard Similarity
	4 Locality Sensitive Hashing
	5 MinHash
	5.1 MinHash with Many Hash Functions
	5.2 MinHash with a Single Hash Functions

	6 ApacheHadoop
	6.1 MapReduce
	6.2 HDFS

	7 System Architecture
	8 Algorithms
	8.1 Candidate Generation Phase
	8.2 Candidate Verification Phase

	9 Summary of Results
	10 Future Work
	References

	Stabilization of Users Profiling Processed
by Metaclustering of Web Pages
	1 Introduction
	1.1 Metaclustering / Consensus Clustering
	1.2 User Profiling
	1.3 Clustering Stability
	1.4 Our Contribution

	2 Data
	2.1 AOL Data

	3 TheExperiment
	3.1 Text Analysis
	3.2 Quality Measures

	4 Results
	5 Summary
	References

	Towards a Keyword-FocusedWeb Crawler
	1 Introduction and Motivation
	1.1 RelatedWork

	2 Problem Statement
	3 General Ideas and Design
	4 Experiments
	4.1 Data Characterisation
	4.2 Links Classifier Parameters Selection
	4.3 Pages Classification
	4.4 Final Evaluation

	5 Conclusions and Future Work
	References

	Threshold ML-KNN: Statistical Evaluation
on Multiple Benchmarks
	1 Introduction
	2 Classifiers
	2.1 ML-KNN
	2.2 Threshold ML-KNN
	2.3 Criterion for Choosing Threshold in Threshold ML-KNN

	3 Problem Statement
	3.1 Classification Measures for Multi-label Classification
	3.2 Statistical Test

	4 Datasets
	5 Experiments
	5.1 Experiment 1
	5.2 Experiment 2
	5.3 Experiment 3

	6 Conclusions
	References

	Supervised Content Visualization
of Scientific Publications: A Case Studyon the ArXiv Dataset
	1 Introduction
	2 Overall Architecture
	3 Content-Based Classification and Class Representation
	3.1 Adopted Taxonomy: arXiv
	3.2 Class Representation and Classifier Training

	4 Visualization of Text Content
	4.1 Class Representation in the 2-D Space
	4.2 Content Representation of Unlabelled Document Collections

	5 Results
	6 Conclusions and Ongoing Work
	References

	A Calculus for Personalized PageRank
	1 Introduction
	2 Ideas behind PageRank
	3 Personalized PageRank for Exclusive Categories
	Personalized PageRank with Negation
	5 Personalized PageRank for Concept Hierarchies
	6 Personalized PageRank for Non-exclusive Categories
	7 Contextual Personalized PageRank
	8 Personalized PageRank and User Preferences
	9 FinalRemarks
	References

	Machine Learning and Search
	Finding the Number of Clusters
on the Basis of Eigenvectors
	1 Introduction
	2 Notation and Related Terms
	3 Establishing the Number of Connected Components in
a Graph
	4 Main Contributions of the Speclus Algorithm
	5 Properties of Signless Laplacian Eigenvectors
	6 The Speclum Algorithm and Experiments
	7 Conclusions
	References

	Study on the Estimation of the Bipartite Graph
Generator Parameters
	1 Introduction
	2 Bipartite Graph Generator
	3 Parameter Estimation
	4 Experimental Results
	4.1 Choosing Threshold $
k$
	4.2 Estimation of α and β Parameters
	4.3 Evaluation of α and β Estimation Using Graph Properties

	5 Remarks and Conclusions
	References

	Expected Value
of the Optimization Algorithm Outcome
	1 Introduction
	2 Evaluation of the Algorithm Out come Respectively to
the User Preferences
	3 Experimental Research
	4 Conclusions
	References

	Solving Travelling Salesman Problem Using Egyptian Vulture Optimization
Algorithm – A New Approach
	1 Introduction
	2 History and Life Style of Egyptian Vulture
	3 Egyptian Vulture Optimization Algorithm
	3.1 Pebble Tossing
	3.2 Rolling with Twigs
	3.3 Change of Angle
	3.4 Brief Description of Fitness Function
	3.5 Adaptiveness of the EVOA

	4 EVOA for Travelling Salesman Problem
	5 Computational Results
	6 Conclusion and Future Works
	References

	Author Index

