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Abstract. Fully homomorphic cryptosystems allow the evaluation of ar-
bitrary Boolean circuits on encrypted inputs and therefore have very im-
portant applications in the area of secure multi-party computation. Since
every computable function can be expressed as a Boolean circuit, it is the-
oretically clear how to achieve function evaluation on encrypted inputs.
However, the transformation to Boolean circuits is not trivial in practice.
In this work, we design such a transformation for certain functions, i.e., we
propose algorithms and protocols which make use of fully homomorphic
encryption in order to achieve privacy-preserving multi-party reconcilia-
tion on ordered sets. Assuming a sufficiently efficient encryption scheme,
our solution performs much better than existing approaches in terms of
communication overhead and number of homomorphic operations.

Keywords: privacy, secure group computation, cryptographic proto-
cols, multi-party reconciliation protocols, fully homomorphic encryption.

1 Introduction

The problem of secure multi-party computation was first introduced by Yao [1]. It
is about jointly computing a function on private inputs of multiple parties with-
out involving another trusted party and without revealing the private inputs of
any party. Privacy-preserving reconciliation protocols on ordered sets are proto-
cols that solve a particular subproblem of secure multi-party computation. Here,
each party holds a private input set in which the elements are ordered according to
the party’s preferences. The goal of a reconciliation protocol on these ordered sets
is then to find all common elements in the parties’ input sets that maximize the
joint preferences of the parties. A reconciliation protocol is privacy-preserving, if
it does not reveal anything about the private inputs of a party to any other party
except from what can be deduced from the desired output of the protocol.

Two-party protocols that solve the reconciliation problem for totally ordered
input sets of equal size have first been proposed in [2,3]. The performance of these
two-party protocols was studied in [4]. They make use of a privacy-preserving set
intersection protocol such as [5]. In [6,7] the first protocols were proposed which
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address the multi-party case. These protocols are based on privacy-preserving op-
erations on multisets, i.e., sets in which elements may occur more than once. In
particular, the protocols use set intersection, set union, and set reduction opera-
tions. Privacy-preserving protocols for these three operations were first introduced
in [8]. Recently, further protocols for multi-party set intersection [9,10,11,12] and
set union [13,14] have been proposed. An overview on a variety of applications
of privacy-preserving reconciliation protocols, including scheduling applications,
electronic voting, and online auctions, is provided in [15].

As a main contribution of this paper, we utilize fully homomorphic encryption
[16,17] to design two new protocols for multi-party reconciliation on ordered sets
and analyze their security properties and efficiency. Our two variants can guar-
antee more privacy regarding the output of the protocol compared to [6,7]. Our
evaluation shows that the new protocols outperform the previously developed
protocols in terms of communication and number of homomorphic operations.

The rest of this paper is structured as follows: In Sect. 2, we briefly review
basic concepts used in our paper. In Sect. 3, we describe our two new reconcil-
iation protocols. Sect. 4 presents the comparison of our new protocols with the
previously developed protocols. In Sect. 5, we draw conclusions of our results.

2 Preliminaries

In this section, we will lay down some preliminaries. In particular, we will define
the setting of reconciliation problems as well as outline the multi-party solution
by Neugebauer et al. [6] since their core idea is the ground work for our solution
in the next section. We introduce some necessary notation and tools from the
area of Fully Homomorphic Encryption (FHE).

We consider n parties A1, ...,An with private input sets PA1 , ..., PAn ⊆ P ,
each having exactly k (pairwise distinct) elements chosen from a common input
domain P . Each party has certain “preferences” associated with its input set
which orders a party’s elements. The preference of a rule in this ordering is
called its rank and is identified by a bijective function rankAi : PAi → {1, ..., k}.

The goal of a reconciliation protocol is to find the “best” common input ele-
ments in a fair way, i. e., taking the preferences of all parties equally into account.
The two notions of fairness introduced by Meyer et al. [3], called preference order
composition schemes, are defined by the following two functions.

Definition 1. For a common input x ∈ PA1 ∩ ... ∩ PAn , define the functions
fSR, fMR :

⋂n
i=1 PAi → N by

fSR(x) := rankA1(x) + ...+ rankAn(x) and
fMR(x) := min(rankA1(x), ..., rankAn(x))

called sum of ranks (SR) and minimum of ranks (MR).

With fSR, maximizing the combined rank means finding one or more rules which
are ranked as high as possible by all parties, i.e., the ranks of all parties count.
With fMR, we want to find a rule which is not ranked very low by any party,
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i.e., only the smallest ranking of that rule counts. Depending on the concrete
application, one of those two definitions of “fairness” might be preferred.

2.1 Reconciliation on Ordered Sets

We now give a formal definition of a reconciliation protocol.

Definition 2 (Reconciliation on Ordered Sets). A reconciliation protocol
on ordered sets for a preference composition scheme f is a multi-party protocol
between n parties A1, ...,An, each with an ordered input set (PAi , rankAi) as
described above. As output of the protocol, each party learns the maximal rank
maxx∈I f(x) (if one exists) as well as the set of all rank-maximizing elements
argmax

x∈I
f(x) = {x ∈ I | ∀y ∈ I : f(y) ≤ f(x)} where I := PA1 ∩ ... ∩ PAn .

In the following, we will refer to the multi-party reconciliation problem on or-
dered sets as MPROS and the variants for minimum of ranks and sum of ranks
as MPROSMR and MPROSSR, respectively.

2.2 Adversary Model

In this paper, we consider the honest-but-curious adversary model, which is also
referred to as the semi-honest model [18]. In this model, all parties are assumed
to act according to the prescribed actions in the protocols. They may, however,
try to infer as much information as possible from all results obtained during the
execution.

Definition 3 (Security of Reconciliation Protocols). A reconciliation pro-
tocol on ordered sets (as defined in Definition 2) is said to be privacy-preserving
(in the semi-honest model) if none of the participating parties gains any addi-
tional information about the other party’s private inputs except from what can
be deduced from the protocol output, i.e., the maximal rank and the set of rank-
maximizing elements.

2.3 Prior Privacy-Preserving MPROS Protocols

Neugebauer et al. [6,7] proposed an approach which is based on the work of
Kissner and Song [8] about privacy-preserving multiset operations. The essential
idea of the operations proposed by Kissner et al. is to encode the elements of
multisets as the roots of an encrypted polynomial and compute the result of the
set operations using an additively homomorphic cryptosystem, which allows to
perform certain operations on encrypted polynomials.

The basic idea of Neugebauer et al. is to encode the ordered inputs as mul-
tisets where the rank of each element is encoded by the element’s multiplicity
in the set. The preference order composition schemes fSR and fMR can then be
modeled using operations on these multisets. Privacy is preserved by the use of
a semantically secure [19] additively homomorphic cryptosystem.



496 F. Weingarten et al.

Let PA1 , ..., PAn ⊆ P be the inputs of the parties and P ⊆ M be the set of
possible inputs, encoded as elements of the plaintext space M of some semanti-
cally secure and additively homomorphic cryptosystem. Assume the rank of each
input element p ∈ PAi is encoded by its multiplicity in the set SAi , i.e., p appears
rankAi(p) times in SAi . Every such set SAi with k distinct elements can now be
identified by a polynomial fi of degree

∑k
j=1 j =

1
2k(k+1) such that the distinct

roots of fi correspond to the distinct set elements and the multiplicity of the root
corresponds to the multiplicity of the element in SAi . When using such multiset
representations, the multiset intersection operation precisely coincides with the
definition of fMR. The MPROSMR protocol computes Rdt(SA1 ∩ ... ∩ SAn) for
t = k− 1, k− 2, ..., 0 until the resulting set is non-empty for the first time, where
Rdt(A) for some multiset A denotes the set which results from reducing the
multiplicity of each element in A by (up to) t. All elements in this non-empty
set then maximize the minimum of ranks. The emptiness check is done by a
threshold decryption of the result set and a computation of the roots of the
decrypted polynomial. Threshold decryption is possible in a threshold version
of an additively homomorphic cryptosystem. The private key is shared among
the n parties with each party Ai holding a private share si. Using si, a party
can now compute a partial decryption of a ciphertext. To successfully decrypt
a given ciphertext, a certain number of key shares are required to compute the
plaintext by combining the partial decryptions of the ciphertext.

The construction of [8,6] for the sum of ranks preference order composition
scheme fSR works as follows. At first glance, multiset union seems to coincide with
fSR because the multiplicity of an element in the union is defined as the sum of the
multiplicities of the element in the single sets. However, we have to rule out all el-
ements which are not in the intersection because there may be elements in the
union that are not shared by all parties. Neugebauer et al. describe a protocol for
MPROSSR which computes Rdt((SA1 ∪ ...∪SAn)∩ (S′

A1
∩ ...∩S′

An
)) where S′

Ai

contains the same elements as SAi but every element has multiplicity n · k. Like
before, the protocol continues for t = kn−1, kn−2, ..., n−1 until the resulting set
is non-empty for the first time. All elements in this non-empty set then maximize
the sum of ranks assigned by each party. The auxiliary sets S′

Ai
ensure that only

inputs that are common to all parties are contained in the resulting set.

2.4 Fully Homomorphic Encryption
In the following, we make use of an asymmetric fully homomorphic encryp-
tion scheme which operates on the binary plaintext space M = F2 = {0, 1}
and generates ciphertexts from some set C via a probabilistic polynomial-time
encryption algorithm Epk. There is a (deterministic) polynomial-time decryp-
tion algorithm Dsk such that D(E(m)) = m for all m ∈ M . Furthermore,
we have algorithms �pk and �pk which perform homomorphic operations, i.e.,
D(E(m1)� E(m2)) = m1 +m2 and D(E(m1)� E(m2)) = m1 ·m2, where + and
· denote addition and multiplication in F2, i.e., binary XOR and AND. We also
use the notations E,D,� and � on tuples to denote component-wise application.

We use the notation T A
B (�) to denote the number of times algorithm A calls

algorithm B on inputs of bit-length �, for example T A
�(�), T

A
�(�), T

A
E (�), or T A

D (�)
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to denote the runtime of A in terms of number of homomorphic additions, ho-
momorphic multiplications, encryptions, or decryptions. We will write T A(�) to
denote the total number of homomorphic operations (both additions and mul-
tiplications). For a probabilistic algorithm, we write x← A(x) to denote that x
is one possible output of algorithm A on input x.

Furthermore, we use a couple of common “tool” algorithms which operate on
Boolean inputs and only use XOR and AND operations and can therefore be
adapted to operate on encrypted data by using a fully homomorphic encryption
scheme. We omit the description of those algorithms due to lack of space, but
their implementation is straightforward and mimics the common circuit imple-
mentations of those gadgets, see e.g. [20]. In particular, for inputs c, d ∈ C� with
plaintext bit-length �, we use the following algorithms:

– Negation: Not(c) for � = 1 flips a bit, i.e., D(Not(c)) = D(c) + 1. O(1)
– Equality: Equal(c, d) returns an encryption of 1 if D(c) = D(d) and an en-

cryption of 0 otherwise. This can be generalized to m ≥ 2 inputs. O(m�)
– Greater than: GT(c, d) returns an encryption of 1 if D(c) > D(d) and an

encryption of 0 otherwise. Here, > denotes the order on M �, interpreted as
binary representations of natural numbers. O(�)

– If-Then-Else: IFE(b, c, d) for b ∈ C returns an encryption of D(c) if D(b) = 1
and an encryption of D(d) otherwise. O(�)

– Maximum and Minimum: Max(c, d) and Min(c, d) which return encryptions
of max(D(c),D(d)) and min(D(c),D(d)). This can be generalized to m ≥ 2
inputs. O(m�)

– Addition: Add(c, d) returns an encryption of D(c) + D(d), where + denotes
addition of binary numbers with carry. The output ciphertext tuple has
length �log2(m)�+ �. O(m(log(m) + �))

The asymptotic complexities are given in terms of homomorphic operations, i.e.,
homomorphic additions and multiplications. More details on the tool algorithms
are given in [21].

3 Our Contribution

3.1 FHE-Based Algorithm

We assume that PAi ⊆ {0, 1}� \ {0�}, so all parties agree on an �-bit binary
encoding of the possible inputs such that 0� is not a valid input encoding. Let
χi denote an “extended” rank function rankAi which assigns the rank 0 to all
elements which are not included in the input of party Ai at all:

χi : {0, 1}� → {0, ..., k}, x 
→
{
rankAi(x) x ∈ PAi

0 x �∈ PAi

If k := |PA1 | = ... = |PAn | ≤ |P | < 2� is the number of inputs, we can assume
that every χi maps to {0, 1}K instead of {0, ..., k} where K = �log2(k + 1)�. In
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practice, the rank function χi of a party Ai could for example be described by
an ordered list of |P | bit-strings each of length K, i.e., a complete truth table
of all K output components. Let X1, ..., Xn be “encryptions” of the extended
rank functions such that we have Xi : {0, 1}� → CK with D(Xi(x)) = χi(x) for
all x ∈ {0, 1}�. For an input element x ∈ {0, 1}�, the value Xi(x) ∈ CK is an
encryption of the rank of x in the input of Ai.

Example. Let P = {a, b, c, d, e, f} be the possible inputs and PA1 = {a, b, e} the
input of A1 with ranking a <A1 e <A1 b. We need at least � = 3 bits for encoding
the possible inputs, for example a = 001, b = 010, c = 011, d = 100, e = 101,
and f = 110. Assume that the parties agreed to use k = 3 input elements in their
inputs, we therefore need K = �log2(3 + 1)� = 2 bits to encode each possible
rank (including 0). The extended rank function of A1 and an encryption of it
now look as follows:

Input x ∈ P ⊆ {0, 1}� χ1(x) ∈ {0, 1}K X1(x) ∈ CK

000 (invalid) − −
001 (a) 01 (1) E(01)
010 (b) 11 (3) E(11)
011 (c) 00 (-) E(00)
100 (d) 00 (-) E(00)
101 (e) 10 (2) E(10)
110 (f) 00 (-) E(00)

The ordered list of |P | = 6 ciphertext K-tuples of the third column of this table
is what A1 sends to the other participants.

First, we look at the case of fMR because this can be modeled as a multiset
intersection as in [6] and as described in Sect. 2.3. We will use the tool algorithms
from Sect. 2.4.

����������	��� 
�����	
� ��� f��

������ ��������	 X1, ..., Xn 
� 	�����
�	 
����� 
�	 ��� PAi
�� ��
�������

�� ��� S := ∅ 
�	 R := ∅�
�� ∀x ∈ PAi

� ������� y ← Min(X1(x), ..., Xn(x)) 
�	 
		 (x, y) �� S�
�� ��� maxy ← E(0) ∈ CK �
�� ��� �
�� (x, y) ∈ S� ������� maxy ← Max(y,maxy)�
�� ��� �
�� (x, y) ∈ S� ������� x′ ← E(x)� Equal(y,maxy) 
�	 
		 �� ��

��� ��� R�
�� ������ (maxy, R)�

������� ��������	 �
���
� �
� maxy 
�	 
 ��� R �� ��������	 ��������
!���� ������ �
"� �
���
� �
� maxy �� 	������ �� 0�� #� ����� ������ ��
�
���
� �
� $
��
��� ��� ������ 
�� 	��%����&� maxy !��� 	������ �� 0 
�	

�� �������� �� R !��� 	������ �� 0��
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In Step 2, party Ai computes the value of fMR for all elements. Since PA1 ∩
... ∩ PAn ⊆ PAi , the set PAi is an upper bound for the intersection and party
Ai never needs to process more than k = |PAi | elements. For each element, the
minimum of ranks is computed and the result together with its encrypted rank
is added to the set S. In Step 4, we iterate over all the elements from Step 2 and
compute the maximum by comparing with the “largest” element known at this
point. In Step 5, we iterate again over all elements (of length �) and multiply
them with the result of Equal, thus effectively canceling out all elements which
have rank other than maxy. Elements which are not shared by all parties are
also implicitly canceled because they all have rank 0.

Computational Complexity. In Step 2, we loop |PAi | = k times and call Min each
time on n inputs of length K. In Step 4, we call Max on inputs of length K and
in Step 5, we call Equal on inputs of length K. The result is multiplied with �
bits. This gives a total of

=k
︷ ︸︸ ︷
|PAi | ·T nMin(K)
︸ ︷︷ ︸

Step 2

+

=k
︷︸︸︷
|S| · TMax(K)
︸ ︷︷ ︸

Step 4

+

=k
︷︸︸︷
|S| ·� · T Equal(K)
︸ ︷︷ ︸

Step 5

∈ k · (O(nK) +O(K) + O(�K)) ⊆ O(nk log(k)�)

homomorphic operations. As already mentioned in the example above, we use
K · |P | ciphertexts to encode every Xi. We want to point out that Step 5 can
easily be modified to only return one maximal element instead of all of them,
which would reduce the complexity to O(nk�). Also, we could emit the output
of the rank maxy, which would increase privacy. We chose this variant in order
to be compatible to Definition 2 and to be comparable to Neugebauer et al. [6].

We now have a look at the sum of ranks composition scheme fSR. The basic
idea is to compute a multiset union but omit all the elements which are not in
the intersection. This is achieved by adding the ranks using the Add algorithm in
combination with negated Equal calls to filter out elements which are not shared
by all parties. The basic idea is the same as before, only Step 2 differs. Here
we compute the value of fSR instead of fMR. We use Add to compute the sum
of ranks. Next, we check if any of the terms used in this sum was zero. If so,
the result will be multiplied by zero thus eliminating this entry from the set of
possible maximal elements. The algorithm is shown in detail on the next page.

Computational Complexity. In Step 2, we use Add to compute the sum of n
ciphertexts, each having length K. The result has length K + �log2(n)�. Next,
we compute Equal on inputs of length K and negate the result. This is done n
times and the product of those n bits is then multiplied with every bit of y. In
Step 4, we compute Max on inputs of length K + �log2(n)�. Summing up, we
have
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k · (T nAdd(K) + n · (T Equal(K) + TNot(1)))
︸ ︷︷ ︸

Step 2

+ k · TMax(K + �log2(n)�)︸ ︷︷ ︸
Step 4

+ k · � · T Equal(K + �log2(n)�)︸ ︷︷ ︸
Step 5

∈ k · (O(n(log(n) +K)) + nO(K) + � · O(K + log(n)))

⊆ O(n log(n)k log(k)�)

homomorphic operations.
Like before, we can reduce the complexity to O(n log(n)k�) by only computing

one maximal element instead of all. Also, we do not have to return maxy.

����������	��� 
�����	
� ��� f��

������ ��������	 X1, ..., Xn 
� 	�����
�	 
����� 
�	 ��� PAi
�� ��
�������

�� ��� S := ∅ 
�	 R := ∅�
�� ��� ����� x ∈ PAi

� �������

y ← Add(X1(x), ..., Xn(x)) ∈ CK+�log2(n)�

y′ ← y �
n

�
i=1

Not(Equal(Xi(x),E(0)))


�	 
		 (x, y′) �� ��� ��� S�
�� ��� maxy ← E(0) ∈ CK+�log2(n)��
�� ��� �
�� (x, y) ∈ S� ������� maxy ← Max(y,maxy)�
�� ��� �
�� (x, y) ∈ S� ������� x′ ← E(x)� Equal(y,maxy) 
�	 
		 �� ��
��� ��� R�

��  ����� (maxy, R)�

������� ��������	 �
���
� �
�! maxy 
�	 
 ��� R �� ��������	 ��������
"���� ������ �
�� �
���
� �
�! maxy �� 	������ �� 0�� #� ����� ������ ��
�
���
� �
�! $
��
��� ��� ������ 
�� 	��%����&� maxy "��� 	������ �� 0 
�	

�� �������� �� R "��� 	������ �� 0��

3.2 Reducing the Encoding Size

Our algorithm has runtime (almost) linear in the number of parties n but uses
�log2(k + 1)� · |P | ciphertexts to encode a k-element input where P is the input
domain with |P | < 2�. In certain situations, very large input domains P might
be necessary and such a large number of ciphertexts may not be acceptable due
to the communication overhead or bandwidth limitations.
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The factor |P | originates from the idea of using complete truth tables for
representing the rank functions χi : {0, 1}� → {0, 1}K. We now give a smaller
representation to allow our algorithm to use smaller encodings and therefore
fewer ciphertexts. The price for this is a slightly higher computational complexity
in terms of homomorphic operations. Let

Xi := {(rankAi(x)︸ ︷︷ ︸
∈{1,...,k}

,E(x)
︸︷︷︸
∈C�

) | x ∈ PAi},

so for each rule, we save an encryption of the rule itself together with its (unen-
crypted) rank.

We will be able to reuse both variants of our algorithm (fSR and fMR), the
only thing we change is the way Xi(x), the encrypted rank of the element x in
the input of party Ai, is computed. Before, this was just a lookup from a table
we have received from party Ai, therefore, this can be done in constant time
and without using any homomorphic operations. We can get that same value by
computing

Xi(x)← �
(r,c)∈Xi

⎛

⎜
⎝E(r)
︸︷︷︸
∈CK

�Equal(c,E(x))
︸ ︷︷ ︸

∈C1

⎞

⎟
⎠ .

This basically just compares x to all inputs in Xi. If one of the inputs in Xi

encrypts x, the rank of x is returned. This is correct since exactly one of the
terms in this sum will encrypt a non-zero value.

Computational Complexity. Computing Xi(x) this way takes |Xi| = k calls to
Equal on inputs of length �. The result will be multiplied by E(r) which has
length K := �log2(k + 1)�. We then use k− 1 calls to � (in each component) for
adding the results. In total, we get:

T�(�) = k · T Equal
� (�) + (k − 1) ·K ∈ O(k�)

T�(�) = k · (T Equal
� (�) +K) ∈ O(k�)

TE(�) = k · (K + �) ∈ O(k�)

Having a look at Step 2 again, we see that we need to compute Xi(x) for every
x ∈ PAi and every 1 ≤ i ≤ n. In total, we use nk computations of the above
kind, resulting in O(nk2�) additional homomorphic operations for Algorithm II
which will lead to a complexity of O(nk2�) for fMR and O(n log(n)k2�) for fSR.

Summarizing, we can change the number of ciphertexts we need for encoding
an input from |P | · �log2(k + 1)� to log2(|P |) · k by increasing the asymptotic
number of homomorphic operations by a factor of k. Which method is preferable
will depend on the application parameters. For large values of k but small values
of �, we might still be better off with the original “truth table approach”.

3.3 Putting It All Together: FHE Reconciliation Protocols

Recall that our algorithms take encrypted encodings of the parties’ sets as inputs
and return an encryption of an element which is maximal with respect to some
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preference order composition scheme. Up until now, we did not clarify how to
use those algorithms in a secure and privacy-preserving way in order to solve
the reconciliation problem. Especially, how are ciphertexts exchanged and who
holds the secret decryption key?

We assume a fully homomorphic encryption scheme (G,E,D,�,�) with plain-
text space M = F2 which is semantically secure. One way to implement a proto-
col is to assume that we have a threshold fully homomorphic encryption scheme
such that the key generation algorithm G and the decryption algorithm D have
to be jointly performed by all parties together and that no single party or collab-
oration of less than n parties can decrypt any ciphertext on its own but everyone
can compute E, � and �. Recently, the authors of [22] published such a threshold
version of Gentry’s fully homomorphic encryption scheme.

��������	�
 ��
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� ���

 
� ��
 ��
�
�
��
 
��
� �
��
�	�	
� ���
�
 ��
� ����

�
 ��
� 
� ��
 ����
� 
� 	����� k 	� 
��� ������� �
�� ��� 
� �� ���	�
�	���� 
��
�	�� 
� ��
 �
��	��
 	���� 
�
�
��� ���� ���� 0� 	� �
� � ���	�

��
�	���

�� ��� ����	
� A1, ...,An �
	���� �
�
���
 � �
� ��	� (sk, pk) ← G(λ) ����
���� 
�
���
�� ��
�� pk ��� 
��� � ����
 
� sk�

��  �
�� ����� Ai �
�
���
� �� 
������
� 
��
�	�� Xi 
� 	�� 	���� ���

�
��� 	� �
 ��
 
��
� n− 1 ����	
��
!�  �
�� ����� ���� ��
 �
�
��
� ���
�	����

"� ��� ����	
� ����	�	���
 	� � ���
��
�� �
�����	
� 
� ��� 
�������

If a semantically secure homomorphic encryption scheme is used and no party
can decrypt any ciphertexts on its own, no information about the private inputs
will leak except what can be deduced from the maximal elements and their rank.

As an alternative, we present a protocol which is based on a non-threshold
fully homomorphic cryptosystem. However, we need the help of an additional
instance which is not one of the parties participating in the actual protocol.
This additional instance is used for key generation and certain decryptions and
is therefore called the keyholder K. We require that all parties trust K not to
collude with any of the other parties. If K plays by our rules, nobody will learn
any private inputs, not even K itself. However, K is not to be seen as a trusted
third party in the traditional sense. We do not have to trust K with the entire
computation or with our secret inputs. The protocol is shown on the next page.

Like before, Step 3 will be performed by every party on its own and requires
no interaction at all. Abusing K as a decryption oracle is not possible because K
will wait until it receives ciphertexts from all parties and only send the decrypted
results back if they are all equal. Even if K is compromised, not all private inputs
will necessarily leak. However, if K colludes with some other party, this might
be the case. Assuming the semi-honest model, this will not happen.
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A possible drawback of the above protocol might be that K learns the result of
the algorithm. If this is a problem, the parties can use a blinding technique first.
The results R of the algorithms have length k�. The parties agree on an k�-bit
one-time pad x ∈ {0, 1}k� to blind the results by computing c′ ← E(x)� c. If all
parties use the same x, all c′ will encrypt the same value as required in order
for K to send back the results in Step 4. Without knowing the value of x used
by the parties, the keyholder will not learn anything at all. The parties can just
exchange x over some arbitrary confidential channel. After the decrypted result
D(c′) is received, all parties can obtain D(c) ∈ {0, 1}k� by computing D(c′) + x.

4 Comparing Results

We now compare our results using fully homomorphic encryption (FHE) with
the results by Neugebauer et al. [6]. Table 1 summarizes the complexity results
of our algorithms. Algorithm II denotes Algorithm I with reduced encoding size
as described in Sect. 3.2. Recall that n is the number of parties, k is the number
of inputs in each party’s set, � is the bit-length of the input elements (i.e., the
logarithm of the size of the input domain).

Deriving the complexity for our reconciliation protocol with keyholder from
Sect. 3.3 is now straightforward. We are counting the total number of operations,
i.e., the sum of the number of operations each single party has to perform. We
do not count key generation and distribution from Step 1 and we assume the
parties already agreed on a fully homomorphic encryption scheme, its security
parameter λ and on the one-time pad used for blinding in Step 4.

Table 1. Number of homomorphic operations

Algorithm f Homomorphic operations Ciphertexts
I fMR O(nk log(k)�) �log2(k + 1)� · |P | ∈ O(log(k)2�)
II fMR O(nk2�) k · log2(|P |) ∈ O(k�)

I fSR O(n log(n)k log(k)�)
II fSR O(n log(n)k2�)
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Beginning with Step 2, each party has to encrypt its own input. Each input
consists of k input elements and each input element has bit-length �. As Table 1
shows, with Algorithm I each party has to encrypt at most �log2(k + 1)�·|P | bits
and send those bits to all other parties. With Algorithm II, each party encrypts
k · � bits. In Step 3, every party runs the selected algorithm on the inputs it
received from the other n − 1 parties. This step requires no communication or
further encryption operations.

Finally, in Step 4, each party blinds its result with the agreed one-time pad
x ∈ {0, 1}k�. This requires a total of k� encryptions and homomorphic additions
for each party. Every party sends the blinded result c ∈ Ck� to the keyholder
K for decryption. This requires nk� calls to D. After verifying that all results
encrypt the same value, K sends the decrypted blinded result back to all n
parties.

Table 2. Complexities of reconciliation protocols

Protocol f �,�,� E D #Messages
Neugebauer et al. [6] fMR O(k6 + nk4) O(nk2) O(n2k3) O(n2k3)

FHE with Algo. I fMR O(n2k log(k)�) O(n log(k)2�) nk� O(n2 log(k)2�)
FHE with Algo. II fMR O(n2k2�) O(nk�) nk� O(n2k�)

Neugebauer et al. [6] fSR O(n4k6) O(nk2) O(n4k3) O(n4k3)
FHE with Algo. I fSR O(n2 log(n)k log(k)�) O(n log(k)2�) nk� O(n2 log(k)2�)
FHE with Algo. II fSR O(n2 log(n)k2�) O(nk�) nk� O(n2k�)

Table 2 shows the number of operations which have to be performed in the
different protocols as well as the number of messages which are exchanged. The
analysis shows total numbers for all parties combined rather than for each single
party. Recall that the new parameter � in our results stands for the length of
the input encodings (so 2� is the size of the input domain). In [6], the size of the
input domain is tightly coupled to the security parameter of the cryptosystem
whereas with our solution, � is chosen by the user and the protocol will run
faster if only small input domains are required (which we believe to be the case
in most practical applications).

Note that interpretation of those numbers themselves is complicated without
mentioning the specific cryptosystems which are used. The number of messages
are counted as number of ciphertexts. This is not the same as the actual amount
of data which has to be transmitted, which relies on the bit-length of the ci-
phertexts and will depend on the security parameter λ. Also, the number of
calls to �,�, or � does not reflect the actual computational complexity because
we cannot precisely state how expensive each of those calls is. We could try to
be more precise by comparing an instantiation of our scheme using the Gentry
scheme [23] with an instantiation of [6] using the Paillier scheme [24]. However,
since Gentry’s scheme is still under active research and little is known about
it’s practical efficiency, we do believe that such a comparison would not yield
reliable insights.
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However, we are confident in saying that given a fully homomorphic encryption
scheme with comparable efficiency to current homomorphic encryption schemes,
our protocols will outperform [6] by several orders of magnitude. Further details
on our protocols and results can be found in [21].

5 Conclusion

In this paper, we developed a privacy-preserving multi-party reconciliation pro-
tocol which utilizes fully homomorphic encryption. We showed how to use ideas
from circuit theory in order to compose algorithms which operate on encrypted
data by utilizing small tool algorithms. Our protocol consists of an initial setup
phase in which parties exchange encrypted data, followed by an offline compu-
tation phase, and a final phase for aggregating the result of the protocol.

We compare our approach to Neugebauer et al. [6] and we observe that our
protocol has several advantages. As already mentioned, our computation is per-
formed mainly offline and we only need a small and constant number of protocol
rounds. Furthermore, fewer messages have to be exchanged and we require con-
siderably fewer homomorphic operations, encryptions and decryptions. Although
the exact computational complexity (for a fixed security level) cannot be made
precise, we argued that our approach is likely to outperform Neugebauer et al. [6]
in practice, assuming our protocol is instantiated with a sufficiently practicable
fully homomorphic encryption scheme. In terms of privacy, our protocol allows
for a stricter definition than Neugebauer et al. [6], namely, we can easily adopt
our algorithms to output only one randomly chosen maximal element (instead
of all of them) and the maximal rank does not have to be part of the output.
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