
Factoring RSA Modulus with Known Bits

from Both p and q: A Lattice Method

Yao Lu1,2, Rui Zhang1, and Dongdai Lin1

1 State Key Laboratory of Information Security (SKLOIS),
Institute of Information Engineering (IIE),

Chinese Academy of Sciences (CAS)
2 University of Chinese Academy of Sciences (UCAS)
lywhhit@gmail.com, {r-zhang,ddlin}@iie.ac.cn

Abstract. This paper investigates the problem of factoring RSA mod-
ulus N = pq with some known bits from both p and q. In Asiacrypt’08,
Herrmann and May presented a heuristic algorithm to factorize N
with the knowledge of a random subset of the bits (distributed over
small contiguous blocks) of a factor. However, in a real attack, an
adversary often obtain some bits which distributed in both primes.
This paper studies this extended setting and introduces a lattice-based
approach. Our strategy is an extension of Coppersmiths technique on
more variables, thus it is a heuristic method, which we heuristically
assumed that the polynomials resulting from the lattice basis reduction
are algebraically independent. However, in our experiments, we have
observed that the well-established assumption is not always true, and
for these scenarios, we also propose a method to fix it.

Keywords: lattices, RSA, Coppersmith’s method, factoring with known
bits.

1 Introduction

Factoring large integer is an old and fascinate problem in number theory which is
important for cryptographic applications, especially after the birth of the public-
key cryptosystem RSA. However, until now, there is no known deterministic or
randomized polynomial-time algorithm without the help of quantum computers
to solve it, the best algorithm to date is Number Field Sieve (NFS), which has
an expected runtime O(exp(c(lnN)1/3(ln lnN)2/3)) where c is a constant.

In practice, an attacker might obtain partial information from both p and q
via side-channel attacks, it is important to investigate that how these affect the
hardness of factorization problem. In Eurocrypt’85, Rivest and Shamir [11] first
introduced the factoring with known bits problem, they applied Integer Pro-
gramme technique and factored N given two-thirds of the least significant bits
(LSBs) of either p or q. In Eurocrypt’96, Coppersmith [3] improved the above
result, and showed that N can be factored given half of the LSBs or most signif-
icant bits (MSBs) of a factor. He used the lattice reduction technique to output

J. Lopez, X. Huang, and R. Sandhu (Eds.): NSS 2013, LNCS 7873, pp. 393–404, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

394 Y. Lu, R. Zhang, and D. Lin

small solutions to a bivariate polynomial. Note that for the above results, the
unknown bits are within one consecutive block. Then in Asiacrypt’08, Herrmann
and May [6] presented a heuristic algorithm that extend to n blocks, they also
used the lattice reduction technique but for a linear modular polynomial. How-
ever, the running time of this algorithm is polynomial only for n = O(log logN)
blocks.

A scenario different from the above setting is based on the cold boot attack
[4], where one may only recover information stored in the computer memory with
certain probability less than 1. Heninger and Shacham [5] studied the problem
and presented a new algorithm to factorize N given a certain fraction of the
random bits of the primes. Since the known bits are randomly distributed, their
algorithm cannot make use of the lattice reduction or integer programming tech-
niques. The reconstruction method is a modified brute-force search exploiting
the known bits to prune wrong branches of the search tree, thereby reduced the
total search space towards possible factorization.

To summarize, in practice we prefer to use the lattice-based approach for
its better performance, on the other hand, the lattice-based approach requires
strigent constraints: the knowledge of contiguous blocks. We notice that the
previous lattice-based methods only consider the scenario which the leaked bits
lie in a single prime. While in a real attack, we may obtain known bits from
both primes. This raises the question whether we have any efficient lattice-based
approach to utilize such additional information?

Our Treatments. In this paper we present a new heuristic algorithm to
factorize N with the knowledge of a random subset of the bits (distributed
over small contiguous blocks) in both primes. Suppose that p has n1 unknown
blocks, q has n2 unknown blocks, it leads to a multivariate polynomial equation
f(x1, · · · , xn1 , y1, · · · , yn2) = N − (a0 + a1x1 + · · · + an1xn1)(b0 + b1y1 + · · · +
bn2yn2) = 0 (ak = 2l: the k-th unknown block of p starts in the l-th bit position,
bi = 2j: the i-th unknown block of q starts in the j-th bit position). Then we
can use Coppersmith’s method to recover the small solution of f .

Our algorithm relies on a heuristic assumption that the polynomials output
by the LLL algorithm are algebraically independent, which is also assumed in
many works [1,8,10,6]. However, in our experiments, we met some unsuccess-
ful instances, in particular, if the unknown blocks are significantly unbalanced
in size, the polynomials output are not always algebraically independent, thus
one may not find enough independent polynomials to recover all the unknown
bits. Therefore, for completeness, we give a detailed report for the failure of the
assumption, and also present a method to fix these “unsuccessful” situations.

The rest of the paper is organized as follows. In Section 2, we introduce some
useful background on lattice basis reduction and list some previous results. In
Section 3, we give the analysis of the factoring with four unknown blocks of
primes p, q, and provide various data obtained through numerical experiments.
In Section 4, we generalize the analysis to an arbitrary number n of unknown
blocks. At last, in Section 5 we give a conclusion.

Factoring RSA Modulus with Known Bits from Both p and q 395

2 Preliminaries

2.1 Lattices

Consider a set of linearly independent vectors u1, · · · , uw ∈ Z
n, with w � n. The

lattice L, spanned by {u1, · · · , uw}, is the set of all integer linear combinations
of the vectors u1, · · · , uw. The number of vectors is the dimension of the lattice.
The set u1, · · · , uw is called a basis of L. In lattices with arbitrary dimension,
finding the shortest vector is a very hard problem, however, approximations of a
shortest vector can be obtained in polynomial time by applying the well-known
LLL basis reduction algorithm [9].

Lemma 1. (LLL) Let L be a lattice of dimension w. With polynomial time, the
LLL-algorithm outputs reduced basis vector vi, 1 � i � w that satisfy

‖ v1 ‖�‖ v2 ‖� · · · �‖ vi ‖� 2
w(w−1)

4(w+1−i) det(L)
1

w+1−i

We state Howgrave’s result [7] to find small solutions of integer equations.

Lemma 2. (Howgrave −Graham) Let g(x1, · · · , xk) ∈ Z[x1, · · · , xk] be an
integer polynomial that consists of at most w monomials. Suppose that

1. g(y1, · · · , yk) = 0 mod pm for | y1 |� X1, · · · , | yk |� Xk and

2. ‖ g(x1X1, · · · , xkXk) ‖< pm

√
w

Then g(y1, · · · , yk) = 0 holds over the integers.

Let g(x1, · · · , xk) =
∑

i1,··· ,ik ai1,··· ,ikx
i1
1 · · ·xik

k . We define the norm of g by the

Euclidean norm of its coefficient vector: ‖ g ‖2=∑i1,··· ,ik a
2
i1,··· ,ik .

The approach we used in the rest of the paper relies on the following heuristic
assumption for computing multivariate polynomials.

Assumption 1. The lattice-based construction yields algebraically independent
polynomials, the common roots of these polynomials can be efficiently computed
using techniques like calculation of the resultants or finding a Gröbner basis.

The first part of Assumption 1 assures that the constructed polynomials allow
for extracting the common root, while the second part assures that we are able
to compute these common roots efficiently.

2.2 Previous Results

Let lN denote the bit size of N , we have the following lemma [12]:

Lemma 3. (Sarkar) Let N = pq where p, q are of the equal bit-size. If one
knows t MSBs of p: pm, then we can compute the approximation qm = �N/pm�
of q, the probability that q and qm share the first t − t

′ − 1 MSBs is at least
Pt′ = 1 − 1

2t
′ which 0 ≤ t

′ ≤ t. If one knows t LSBs of p: pl, then we can

compute t LSBs of q: ql.

396 Y. Lu, R. Zhang, and D. Lin

In [12], the authors presented another lattice based method to handle the fol-
lowing situation:

Lemma 4. (Sarkar) Let N = pq where p, q are of equal bit-size. Suppose τlN
LSBs of p, q are unknown but the subsequence ηlN LSBs of p, q are known. Then,
under Assumption 1, one can recover the τlN unknown LSBs of p, q in polynomial
time, if τ < η

2 .

3 Factoring with Four Unknown Blocks

In this section, we present an algorithm to factorize N with four unknown blocks
of p and q. This attack model is illustrated in Figure 1.

α1lN LSBs α2lN MSBs

β1lN LSBs β2lN MSBs

p

q

known bits unknown bits

Fig. 1. Four unknown blocks of p, q

3.1 Our Algorithm

Let p0, p1, p2 denote the known bits, the unknown α1lN LSBs, the unknown
α2lN MSBs of p, let q0, q1, q2 denote the known bits, the unknown β1lN LSBs,
the unknown β2lN MSBs of q, respectively. Then we have

p = 2α1lN p0 + p1 + 2(1/2−α2)lNp2
q = 2β1lN q0 + q1 + 2(1/2−β2)lN q2

Hence we are interesting in finding the small root (p1, p2, q1, q2) of

f(x1, x2, y1, y2) = N−(2α1lN p0+x1+2(1/2−α2)lNx2)(2
β1lN q0+y1+2(1/2−β2)lN y2)

Furthermore, we have the upper bounds

|pi| ≤ Xi = Nαi , |qi| ≤ Yi = Nβi for i ∈ {1, 2}.
Following we use Coppersmith’s method [3] to find the small integer root of
polynomial f . Notice that the maximal coefficient of f(x1X1, x2X2, y1Y1, y2Y2)
is N − p1q1, and the corresponding monomial is 1. Therefore, we define two
sets: the set S is defined as the set of all monomials of fm−1 for a given posi-
tive integer m; the set M is defined as the set of all monomials that appear in

Factoring RSA Modulus with Known Bits from Both p and q 397

xi1
1 xi2

2 yj11 yj22 f(x1, x2, y1, y2) with xi1
1 xi2

2 yj11 yj22 ∈ S. We introduce the shift poly-
nomials

hi1i2j1j2(x1, x2, y1, y2) = xi1
1 xi2

2 yj11 yj22 f(x1, x2, y1, y2)

for xi1
1 xi2

2 yj11 yj22 ∈ S.
We also use the notations s = |S| for the total number of shift polynomials

and d = |M |− |S| for the difference of the number of monomials and the number
of shift polynomials. Next we build a (d+ s)× (d+ s) matrix L.

The upper left d×d block is diagonal, where the rows represent the monomials
xi1
1 xi2

2 yj11 yj22 ∈ M\S. The diagonal entry of the row corresponding to xi1
1 xi2

2 yj11 yj22
is (X i1

1 X i2
2 Y j1

1 Y j2
2)−1. The lower left s× d block contains only zeros.

The last s columns of the matrix L represent the shift polynomials hi1i2j1j2 .
The first d rows correspond to the monomials in M \ S, and the last s rows to
the monomials of S. The entry in the column corresponding to hi1i2j1j2 is the
coefficient of the monomial in hi1i2j1j2 . If we sort the shift polynomials according
to some ordering, the corresponding matrix defines a upper triangular lattice
basis.

The determinant of the matrix L is

det(L) =

⎛

⎜
⎝

∏

x
i1
1 x

i2
2 y

j1
1 y

j2
2 ∈M\S

(X i1
1 X i2

2 Y j1
1 Y j2

2)−1

⎞

⎟
⎠ · (N − p1q1)

s

= Xs1
1 Xs2

2 Y
s∗1
1 Y

s∗2
2 · (N − p1q1)

s

For the lattice attack to work, we require the enabling condition det(L) > 1 (see
[3] and [8] for detail). Then after some computations, we yield the bound:

(X1X2Y1Y2)
5
12m

4+◦(m4) < N
1
4m

4+◦(m4)

To obtain the asymptotic bound, we let m grow to infinity, and substitute the
values of X1, X2, Y1, Y2. Finally we obtain

α1 + α2 + β1 + β2 < 0.6

Then under this condition and Assumption 1, we can compute another three
polynomials that share the same root (p1, p2, q1, q2) over the integers, which
finally find the desired root.

3.2 Experimental Results

Our algorithm is heuristic, therefore, we state some experimental results in Table
1 to illustrate the performance of the above algorithm. All the experiments
have been performed in Magma [2] over Windows 7 on a laptop with Intel(R)
Core(TM) i5-2430M CPU 2.40 GHz, 2 GB RAM. In all the cases, we suppose
N is an 1000-bit RSA modulo with equal-size prime p, q.

398 Y. Lu, R. Zhang, and D. Lin

Table 1. Experimental results for the attack in case of partial leakage of p, q

m p(MSBs/LSBs) q(MSBs/LSBs) expt(bit) theory(bit) dim(L) time(sec) result

1 2 107/107 107/107 428 428 27 3.463 success

2 2 84/130 130/84 428 428 27 4.321 success

3 2 84/130 84/130 428 428 27 3.682 x2, y2
4 2 90/150 90/150 480 428 27 3.479 x2, y2
5 3 119/119 119/119 476 473 64 1932.681 success

6 3 50/185 185/50 470 473 64 3071.519 success

7 3 50/185 50/185 470 473 64 657.638 x2, y2
8 3 50/250 50/250 600 473 64 2603.844 x2, y2

1 The word “success” in the column “result” means that we can successfully re-
cover the desired small root; whereas the symbol “x2, y2” means that we can
only recover the values of x2 and y2.

For given lattice parameterm, we presented the number of bits that one should
theoretically be able to recover from p and q (column theory of Table 1). For sim-
plicity, we suppose that p and q have equal size of unknownbits in our experiments.

We observe that Assumption 1 does not always hold in our experiments. In our
experiments, if the unknown blocks are equal in bit size (X1 ≈ X2 ≈ Y1 ≈ Y2),
we will recover the unknown bits of p, q just as theoretically predicted (see the
second row and the sixth row of Table 1)). However in the unbalanced case, the
situation is more complicated, the success of the experiment greatly depends on
the location of the unknown blocks.

For instance, if the unknown blocks with smaller size are located at MSB side
of p and LSB side of q(X1 � X2, Y1 � Y2), we can also successfully recover the
unknown bits (see the third row and the seventh row of Table 1)). Otherwise
if they are both located at MSB side of p, q (X1 � X2, Y1 � Y2), we observe
that only smaller variables x2 and y2 are eliminated (see the fourth row and the
eighth row of Table 1)), in this case, we notice that the smaller vectors lie in a
sublattice of small dimension, which may be the reason why Assumption 1 fails;
on the other hand, the sublattice structure is helpful to recover the unknown
blocks with smaller size, which require less exposed bits practically (see the fifth
row and the ninth row of Table 1)).

3.3 Main Theorem

The method of Coppersmith is able to exploit the algebraic relation among
the variables, but it completely ignores the coefficients of the polynomial. That
is may be the main reason why Assumption 1 fails in many experiments of
Section 3.2. However, based on the experimental results, we observe that though
sometimes we may not get enough algebraic independent polynomials to recover
all variables, we can still recover some smaller unknown variables with only
limited number of polynomials we got. With this observation we can summarize
a weaker assumption which is more close to the real fact.

Factoring RSA Modulus with Known Bits from Both p and q 399

Assumption 2. The lattice-based construction of Section 3.1 at least yields
two algebraically independent polynomials, and the smaller unknown variables
of these polynomials can be efficiently computed using Gröbner basis technique.

Based on Assumption 2, we can get our theorem.

Theorem 1. Let N = pq where p, q are of equal bit-size. Let α1, α2, β1, β2 be
parameters satisfy 0 < α1, α2, β1, β2 < 1. Suppose α1lN LSBs of p, α2lN MSBs
of p, β1lN LSBs of q, β2lN MSBs of q are unknown, and the rest bits of p, q
are known. Then one can factorize N in polynomial time if one of the following
conditions is satisfied:

1. α1 + α2 < 0.207 or β1 + β2 < 0.207 (Under Assumption 1).
2. α1 + α2 + β1 + β2 < 0.6 and αi < 0.25 or βi < 0.25 for i ∈ {1, 2} (Under

Assumption 2).

Proof. We can get Condition 1 directly from Herrmann and May’s result [6], we
focus on Condition 2.

In our algorithm, under the condition α1 + α2 + β1 + β2 < 0.6 and Assump-
tion 1, we are able to recover the root efficiently. However, sometimes we only
get two algebraic independent polynomials (Assumption 2), in these cases two
smaller variables are eliminated, we bring the two of known variables back to the
polynomial f , and construct a new polynomial with two variable. Then we can
apply Coppersmith’s method [3] which acts on two variables to find the desired
root. There are only two cases which this method fails:

– α1 > 0.25 and β1 > 0.25. In this case the unknown blocks with smaller
size are both located at MSB side of p, q, we can only recover the unknown
variables x2, y2, however, we can not get x1, y1 using Coppersmith’s method
which requires the knowledge of half of the LSBs of p or q.

– α2 > 0.25 and β2 > 0.25. In this case the unknown blocks with smaller
size are both located at LSB side of p, q, we can only recover the unknown
variables x1, y1, however, we can not get x2, y2 using Coppersmith’s method
which requires the knowledge of half of the MSB of p or q.

Combining with the above discussions, we can get Condition 2.

Remark 1. Our algorithm can be improved if the the unknown blocks are signif-
icantly unbalanced (see experiment performances in Table 1), one could employ
additional extra shifts in the smaller variables, which intuitively means that the
smaller variable gets stronger weight since it cases smaller costs. We do not give
the optimization process because of the enormous modes of the location of the
unknown blocks.

4 Extension to Arbitrary Number of Unknown Blocks

In this section, we consider the scenario the number of the unknown blocks of the
factors p, q is arbitrary. Suppose there are n1 blocks unleaked whose respective
length is αilN (1 ≤ i ≤ n1), similarly, the length of unleaked blocks for q is
βilN (1 ≤ i ≤ n2) respectively. Figure 2 illustrates the description of this attack
model.

400 Y. Lu, R. Zhang, and D. Lin

α1lN α2lN α3lN αn1 lN
· · · · · ·

β1lN β2lN β3lN βn2 lN

· · · · · ·

p

q

known bits unknown bits

Fig. 2. Arbitrary number of unknown blocks of p and q

4.1 A General Algorithm

Since p is unknown for n1 blocks, q is unknown for n2 blocks, we can write
p = a0 + a1p1 + · · ·+ an1pn1 , q = b0 + b1q1 + · · ·+ bn2qn2 , where pi, qj(1 ≤ i ≤
n1, 1 ≤ j ≤ n2) are unknowns, and ak = 2l is the k-th unknown block of p starts
in the l-th bit position, bi = 2j is the i-th unknown block of q starts in the j-th
bit position. This gives the following two equations:

p = a0 + a1x1 + a2x2 + · · ·+ an1xn1

q = b0 + b1y1 + b2y2 + · · ·+ bn2yn2

with unknown variables x1, · · · , xn1 , y1, · · · , yn2 . We multiply the two equations,
then get a multivariate polynomial:

f
′
(x1, · · · , xn1 , y1, · · · , yn2) = N−

n1∑

i=1

n2∑

j=1

aibjxiyj−a0

n2∑

j=1

bjyj−b0

n1∑

i=1

aixi−a0b0

In particular, suppose that the leaked bits include γmlN MSBs and γllN LSBs
of p, q, we redefine the polynomial as follows:

f(x1, · · · , xn1 , y1, · · · , yn2) = f
′
(x1, · · · , xn1 , y1, · · · , yn2)/2

γllN

Furthermore, we have the upper bounds:

|pi| ≤ Xi = Nαi , |qj | ≤ Yj = Nβj for i ∈ {1, 2, . . . , n1} j ∈ {1, 2, . . . , n2}.
Following we use Coppersmith’s method [3] to find the small integer root of
polynomial f . Notice that the maximal coefficient of f(x1X1, x2X2, y1Y1, y2Y2)
is (N − p1q1)/2

γ1lN , and the corresponding monomial is 1. Therefore, we define
two sets: the set S is defined as the set of all monomials of fm−1 for a given
positive integer m; the set M is defined as the set of all monomials that appear
in xi1

1 xi2
2 yj11 yj22 f(x1, x2, y1, y2) with xi1

1 xi2
2 yj11 yj22 ∈ S. We introduce the shift

polynomials

hi1i2j1j2(x1, x2, y1, y2) = xi1
1 xi2

2 yj11 yj22 f(x1, x2, y1, y2)

for xi1
1 xi2

2 yj11 yj22 ∈ S.

Factoring RSA Modulus with Known Bits from Both p and q 401

At first we define two sets:

S =
⋃

{xi1
1 · · ·xin1

n1 yj11 · · · yjn2
n2 : xi1

1 · · ·xin1
n1 yj11 · · · yjn2

n2 is a monomial of fm−1},
M = {monomials of xi1

1 · · ·xin1
n1 yj11 · · · yjn2

n2 f : xi1
1 · · ·xin1

n1 yj11 · · · yjn2
n2 ∈ S}

Next we built a matrix L to find at least n1 +n2 − 1 polynomials that share the
root (p1, · · · , pn1 , q1, · · · , qn2) over the integers. Then the matrix has triangular
form if the coefficient vectors are sorted according to the order. Then we have
to satisfy the following condition to get these polynomials:

Xs1
1 · · ·Xsn1

n1 Y
s∗1
1 · · ·Y s∗n2

n2 < W s

for sk =
∑

x
i1
1 ···xin1

n1
y
j1
1 ···yjn2

n2
∈M\S ik, s∗t =

∑
x
i1
1 ···xin1

n1
y
j1
1 ···yjn2

n2
∈M\S jt

with k ∈ {1, · · · , n1}, t ∈ {1, · · · , n2}, s = |S| and W =
||f(x1X1, · · · , xn1Xn1 , y1Y1, · · · , yn2Yn2)||∞ = N1−γm−γl .

The explicit computation of s, s1, s2, · · · , sn1 , s
∗
1, s

∗
2, · · · , s∗n2

is given in Ap-
pendix A, while we only state the results here.

dim(L) = |M | =
(
m+ n1

m

)(
m+ n2

m

)

s =

(
m+ n1 − 1

m− 1

)(
m+ n2 − 1

m− 1

)

s1 = · · · = sn1 =

(
m+ n2 − 1

m

)(
m+ n1 − 1

m− 2

)

+

(
m+ n2

m

)(
m+ n1 − 1

m− 1

)

s∗1 = · · · = s∗n2
=

(
m+ n1 − 1

m

)(
m+ n2 − 1

m− 2

)

+

(
m+ n1

m

)(
m+ n2 − 1

m− 1

)

Put the above values to the condition, we can get

∑n1

i=1 αi

n2 + 1
+

∑n2

j=1 βj

n1 + 1
<

1− γm − γl
n1 + n2 + 1

The runtime of our algorithm is dominated by the time to run LLL reduction
algorithm on the lattice L, which takes polynomial time in the dimension of the
lattice and in the bit-size of the entries. Thus the total time complexity of our
algorithm is polynomial in logN but exponential in n1 + n2.

Let n1 = n2 = 1, after some calculations, we can get γm + γl > 0.25. It
means that we can factorize N given γmlN MSBs and γllN LSBs of a prime
p if γm + γl > 0.25. If we assume γl = 0, then γm > 0.25, that is exactly
Coppersmith’s result on the problem of factoring with high bits known. Note
that our result can be regard as an extension of Coppersmith’s result.

This seems a perfect solution to the problem we posed at the beginning: Check
whether or not the bit-size of unknown blocks satisfies the above conditions, if so,
applies the above lattice method to recover the unknowns. However, in practice
it not always works because of the failure of Assumption 1. Therefore, a natural
problem is asked how we can repair this flaw.

402 Y. Lu, R. Zhang, and D. Lin

4.2 A Combined Algorithm

In this section we present a combined algorithm to fix it. The main idea behind is
as follows: Apply the lattice method to the original polynomial, though we may
not recover all the unknown variables once, we still can get a part of them, then
we reconstruct a new polynomial with the variables we recovered, and repeat
the process until the lattice method fails. Now we give the detail.

Step 1. In this routine, we try to recover the MSBs and LSBs of p, q as much as
possible. First check whether or not it satisfies the conditions of 4, if so, apply
it. Secondly try to recover LSBs and MSBs of p, q using Lemma 3.

Step 2. Construct the polynomial with the known blocks of p, q, and apply the
lattice method to this attack scenario.

Step 3. Check whether or not the algorithm of Step 2 recovers all the unknown
variables of the polynomial, if so, terminate and return p, q; if not, test whether
or not the algorithm recovers a part of variables, if that happens, go back Step
1 with the information of bits we have recovered, but if not, terminate and
return fail.

This combined algorithm is a complement for the general algorithm of Section 4,
it can not fully resolve the problem of the failure of Assumption 1, but it works
in practice (see the discussions of Section 3).

5 Conclusion

In this paper we propose a lattice-based approach to factorize N with partial
known bits of factors. Unlike previous works, we focus on the setting of the known
bits from both primes. We give the detailed analysis for this extend setting, and
provide the numerical experiments to support our theoretical bounds.

Acknowledgments. We would like to thank the anonymous reviewers for help-
ful comments. This work is supported by the National 973 Program of China
under Grant No. 2011CB302400, IIEs Research Project on Cryptography under
Grant No. Y3Z001C102, One Hundred Person Project of the Chinese Academy
of Sciences under Grant No. NSFC61100225, the Strategic Priority Research
Program of the Chinese Academy of Sciences under Grant No. XDA06010701.

References

1. Boneh, D., Durfee, G.: Cryptanalysis of RSA with private key d less than n0.292.
IEEE Transactions on Information Theory 46(4), 1339–1349 (2000) 394

2. Cannon, J., et al.: Magma computional algebraic sydstem (version: V2. 12-16)
(2012), http://magma.maths.usyd.edu.au/magma/ 397

http://magma.maths.usyd.edu.au/magma/

Factoring RSA Modulus with Known Bits from Both p and q 403

3. Coppersmith, D.: Small solutions to polynomial equations, and low exponent RSA
vulnerabilities. Journal of Cryptology 10(4), 233–260 (1997) 393, 396, 397, 399,
400

4. Halderman, J.A., Schoen, S.D., Heninger, N., Clarkson, W., Paul, W., Calandrino,
J.A., Feldman, A.J., Appelbaum, J., Felten, E.W.: Lest we remember: cold-boot
attacks on encryption keys. Communications of the ACM 52(5), 91–98 (2009) 394

5. Heninger, N., Shacham, H.: Reconstructing RSA private keys from random key
bits. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 1–17. Springer,
Heidelberg (2009) 394

6. Herrmann, M., May, A.: Solving linear equations modulo divisors: On factoring
given any bits. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp.
406–424. Springer, Heidelberg (2008) 394, 399

7. Howgrave-Graham, N.: Finding small roots of univariate modular equations revis-
ited. In: Darnell, M. (ed.) Cryptography and Coding 1997. LNCS, vol. 1355, pp.
131–142. Springer, Heidelberg (1997) 395

8. Jochemsz, E., May, A.: A polynomial time attack on RSA with private CRT-
exponents smaller than n0.073. In: Menezes, A. (ed.) CRYPTO 2007. LNCS,
vol. 4622, pp. 395–411. Springer, Heidelberg (2007) 394, 397

9. Lenstra, A.K., Lenstra, H.W., Lovász, L.: Factoring polynomials with rational co-
efficients. Mathematische Annalen 261(4), 515–534 (1982) 395

10. May, A.: New RSA vulnerabilities using lattice reduction methods. PhD thesis
(2003) 394

11. Rivest, R.L., Shamir, A.: Efficient factoring based on partial information. In: Pich-
ler, F. (ed.) EUROCRYPT 1985. LNCS, vol. 219, pp. 31–34. Springer, Heidelberg
(1986) 393

12. Sarkar, S.: Partial key exposure: Generalized framework to attack RSA. In: Bern-
stein, D.J., Chatterjee, S. (eds.) INDOCRYPT 2011. LNCS, vol. 7107, pp. 76–92.
Springer, Heidelberg (2011) 395, 396

A Counting s, s1, s2, · · · , sn1, s
∗
1, s

∗
2, · · · , s∗n2

Note that s is the number of solutions of 0 ≤ i1 + i2 + · · · + in1 ≤ m − 1,
0 ≤ j1 + j2 + · · ·+ jn2 ≤ m− 1. Thus

s =

⎛

⎝
m−1∑

i1=0

m−1−i1∑

i2=0

· · ·
m−1−i1−···−in1−1∑

in1=0

1

⎞

⎠

⎛

⎝
m−1∑

j1=0

m−1−j1∑

j2=0

· · ·
m−1−j1−···−jn2−1∑

jn2=0

1

⎞

⎠

=

(
m−1∑

t=0

(
t+ n1 − 1

t

))(m−1∑

t=0

(
t+ n2 − 1

t

))

=

(
m+ n1 − 1

m− 1

)(
m+ n2 − 1

m− 1

)

Next we consider s1, we have

s =
m∑

i1=0

m−i1∑

i2=0

· · ·
m−i1−···−in1−1∑

in1=0

m∑

j1=0

m−j1∑

j2=0

· · ·
m−j1−···−jn2−1∑

jn2=0

i1

404 Y. Lu, R. Zhang, and D. Lin

−
m−1∑

i1=0

m−1−i1∑

i2=0

· · ·
m−1−i1−···−in1−1∑

in1=0

m−1∑

j1=0

m−1−j1∑

j2=0

· · ·
m−1−j1−···−jn2−1∑

jn2=0

i1

=
(m+ n2

m

) m∑

i1=0

i1
(m− i1 + n1 − 1

m− i1

)
−

(m+ n2 − 1

m− 1

)m−1∑

i1=0

i1
(m− i1 + n1 − 2

m− i1 − 1

)

=
(m+ n2

m

) m∑

T=0

(m− T)
(T + n1 − 1

T

)
−

(m+ n2 − 1

m− 1

)m−1∑

T=0

(m − 1− T)
(T + n1 − 1

T

)

=
(m+ n2

m

)(m+ n1

m− 1

)
−

(m+ n2 − 1

m− 1

)(m+ n1 − 1

m− 2

)

=
(m+ n2 − 1

m

)(m+ n1 − 1

m− 2

)
+

(m+ n2

m

)(m+ n1 − 1

m − 1

)

According to the structure of f , we have s1 = · · · = sn1 .
Because of the symmetric characteristic of x and y in f , we have

s∗1 = · · · = s∗n2
=

(m+ n1 − 1

m

)(m+ n2 − 1

m− 2

)
+

(m+ n1

m

)(m+ n2 − 1

m − 1

)

	Factoring RSA Modulus with Known Bitsfrom Both p and q: A Lattice Method
	1 Introduction
	2 Preliminaries
	2.1 Lattices
	2.2 Previous Results

	3 Factoring with Four Unknown Blocks
	3.1 Our Algorithm
	3.2 Experimental Results
	3.3 Main Theorem

	4 Extension to Arbitrary Number of Unknown Blocks
	4.1 A General Algorithm
	4.2 A Combined Algorithm

	5 Conclusion
	References

