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Preface

NSS 2013, the 7th International Conference on Network and System Security,
was held in Madrid, Spain, during June 3–4, 2013. The conference was organized
and supported by the Universidad Autonoma de Madrid, Spain.

NSS constitutes a series of events covering research on all theoretical and
practical aspects related to network and system security. The aim of NSS is
to provide a leading edge forum to foster interaction between researchers and
developers within the network and system security communities, and to give
attendees an opportunity to interact with experts in academia, industry, and
governments.

In response to the call for papers, 176 papers were submitted to NSS 2013.
These papers were evaluated on the basis of their significance, novelty, technical
quality, and practical impact. The review and discussion were held electronically
using EasyChair. From the papers submitted, 41 full papers (less than 24%) were
selected for inclusion in this Springer volume. Additionally, 17 short papers and
13 industrial track papers were invited to the conference program and also for
inclusion in the volume.

The conference also featured two keynote speeches, one by Arun Ross entitled
“Biometrics: The Future Beckons” and one by Wanlei Zhou entitled “Authenti-
cation, Privacy, and Ownership Transfer in Mobile RFID Systems”.

We are very grateful to the people whose work ensured a smooth organi-
zation process: Javier Ortega-Garcia (Full Professor), Julian Fierrez (Associate
Professor), and Javier Eslava (Electrical Engineer) for taking care of the local
organization, and Yu Wang for managing the conference website.

Last but certainly not least our thanks go to all authors who submitted
papers and all attendees. We hope you enjoy the conference proceedings!

June 2013 Javier Lopez
Xinyi Huang
Ravi Sandhu
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Abstract. Traffic identification is a relevant issue for network operators
nowadays. As P2P services are often used as an attack vector, Internet
Service Providers (ISPs) and network administrators are interested in
modeling the traffic transported on their networks with behavior identi-
fication and classification purposes. In this paper, we present a stochastic
detection approach, based on the use of Markov models, for classifying
network traffic to trigger subsequent security related actions. The de-
tection system works at flow level considering the packets as incoming
observations, and is capable of analyze both plain and encrypted commu-
nications. After suggesting a general structure for modeling any network
service, we apply it to eDonkey traffic classification as a case study.

After successfully evaluating our approach with real network traces,
the experimental results evidence the way our methodology can be used
to model normal behaviors in communications for a given target service.

1 Introduction

Traffic characterization and modeling is fundamental for management purposes,
as this allows a number of supervision activities: services performing and plan-
ning, fault diagnosis, security control, among others. Specifically, as P2P services
are often used as an attack vector to communications and users, it would be in-
teresting to estimate a behavioral model for this kind of transmissions. This
way, we would be able to determine the occurrence of deviations in the observed
behavior and, from them, to conclude the appearance of non-legitimate events
from the security perspective of the system.

Three main issues should be highlighted regarding a typical traffic classifica-
tion process:

– Traffic parameterization: Several features have been studied in the literature
to represent network traffic in order to model and subsequently classify the
observed events as belonging to different classes [1] [2].

– Analysis level : Once the traffic is parameterized, two main different levels
are considered in the literature to carry out the identification or classification
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process [3]: flow-based analysis, and packet-based analysis. In the flow-based
case the goal is to classify each flow as belonging or not to a given service.
On the other hand, in packet-based analysis the objective is to classify each
individual packet.

– Identification process : Finally, the schemes involved in performing the iden-
tification itself cover a broad range of techniques. From simple heuristics or
indicators to complex data mining or pattern learning algorithms.

Regarding the aforementioned aspects, this paper presents an efficient approach
for traffic classification, with the following characteristics which constitute the
main contributions of this work:

1. First of all, a flow-based approach is considered at the analysis level. For
that, the source and destination ports of each packet are used to define a
flow or communication.

2. To carry out the flow level representation, each packet in the flow is con-
sidered as an incoming observation to the system. For that, every packet is
parameterized as a three-dimensional vector: <psize, itime, chdir>, where
psize is the packet size, itime is the inter-arrival time, and chdir represents
the change of direction in the flow.

3. Finally, the modeling and classification of a given flow is based on the dis-
posal of a Markov model representing the communications belonging to the
associated service.

4. Taking this classification methodology as a base, two main benefits are ob-
tained. First, the monitored traffic could be classified as belonging to dif-
ferent types, e.g., P2P, HTTP, SMTP, VoIP, etc. Second, as the modeling
approach relies on the estimation of the normal behavior of the target service,
the detection of behavioral deviations allows us to conclude the occurrence
of non-legitimate events from the security perspective.

The rest of the paper is organized as follows. Section 2 deals with the related
work in the field of traffic classification, specially regarding the particular mod-
eling considered here: hidden Markov models. In Section 3 the fundamentals
of Markov modeling for classification purposes are described. After that, our
specific parameterization and Markov model structure for traffic classification
is discussed in Section 4. The evaluation of this traffic detection approach is
carried out by analyzing some traffic datasets in Section 5 Finally, some main
conclusions regarding this work are drawn in Section 6.

2 Related Work

Most of the existent research in the field of traffic classification can be divided
into three groups: (i) based on well-known port, (ii) based on packet content,
and (iii) based on flow features. Several studies highlight the low effectiveness of
port-based identification for present network traffic [4]. To address the problems
related to this type of classification, several techniques based on packet content
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have been proposed. Given the limitations of previous traffic classification tech-
niques, the research community focused on the third type of traffic classification:
based on flow features.

In this paper, we propose a technique for traffic modeling and identification
based on flow features and on the use of Markov models. There is no much
contributions in the field of traffic classification based on Markov modeling, but
in the following, we present the most relevant ones and compare them with
respect to our proposal.

The authors in [5], use Markov modeling to collect the behaviour of a specific
flow. The observations for the model are control packets, e.g. SYN, ACK, PSH,
etc. They need a high number of control packets in a flow to be able to classify
it with high accuracy. For example, to differentiate HTTP flows from HTTPS
at least 50 control packets are necessary to achieve 90% of true detection rate
with more than 10% of false positive rate. Our approach is independent of the
number of packets in a flow and moreover, is able to achieve higher detection
results.

Wright et al. [6] follow a similar design to that used for protein sequence
alignment. The authors use a left-right HMM with a number of states equal to
the mean number of non-zero payload packets in a flow of the target protocol.
The obtained true detection rates vary from 58.20% to 92.90%, and the false
positive rates from 7.90% to 0.62%. As we will show in the experimental section
our approach achieves much higher detection results.

Dainotti et al. model in [7] present a different model per service to be classified.
An important weak point of this contribution is the reduced dataset used both
in training and detection stages. For example, AoM is trained with only 4 flows
and evaluated with 2, and eDonkey is trained with 109 and evaluated with 82.
Instead, our training and evaluation use more than 240 thousands of eDonkey
flows, reaching a higher true detection rate and a similar false positive one.

In probability theory, Markov modeling refers to a stochastic model that as-
sumes the Markov property for a given process. That is, the probability of future
states depends only upon the present state, not on the sequence of events that
preceded it.

The strength of Markov modeling relies on its capacity to represent the dy-
namic behavior of a system. This way, it has been successfully applied in a
number of fields since its introduction in 1954 [8], which range from speech
recognition to medicine, from seismology to engineering [9]. In this variety of
fields, two main types of models appear: Markov chains and hidden Markov
models (HMM). In the first case, each state of the system is modeled through a
random variable that changes over time, that is there exists a state associated
to each variable/observation. Instead, a HMM is a Markov chain for which the
state is only partially observable, that is observations are related to the state of
the system, but they are typically insufficient to precisely determine the state.

HMMs are the dominant technique in the context of classification and pattern
recognition [10], so that we focus our attention on this type of modeling in
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the rest of the section, as it constitutes the basis of our proposal for traffic
classification in this paper.

3 Fundamentals of Markov Modeling for Classification

3.1 General Concepts in HMM

Given a discrete time Markov chain with a finite set of states S = {s1, s2, ..., sN},
a HMM is defined as the tuple λ = (Π,A,B), where

1. Π = {π1, π2, ..., πN} is the initial probability vector, that is the probability
that the ith state is the first one in the sequence: πi = P (q1 = si), i ∈
[1, ..., N ]

2. A = [aij ] is the transition probably matrix, each term representing the prob-
ability of the transition from the ith state at time t to the jth state at time
t+ 1: aij = P (qt+1 = sj |qt = si), i, j ∈ [1, ..., N ]

3. B = [bjk] is the probability observation matrix, that is the probability that
the kth observation occurs in the state i at t: bik = P (ot = vk|qt = si), i ∈
[1, ..., N ], k ∈ [1, ...,M ]

3.2 HMM-Based Classification

Classification with HMM implies solving two main problems: decoding and train-
ing. Decoding refers to the determination of the sequence of states Q of λ asso-
ciated to the sequence O observed. For that, the Viterbi algorithm [11] is used
to calculate the a-posteriori probability:

Q = argmax
Q′

P (Q′|O, λ) = argmax
Q′

P (O|Q′, λ)

where
P (O|Q′, λ) = πq1bq1o1

T∏
t=2

aqt−1qtbqtot (1)

On the other hand, training is about how to estimate the parameters Π , A
and B which define the model associated to the target system. Although several
training procedures can be found in the literature with this aim, the Baum-Welch
algorithm [12] is the most used one.

To reduce the size of the observation space, and thus the complexity of the
parameterization of the observations of the system a vector quantization process
(VQ) is involved. Two main issues should be highlighted regarding the VQ pro-
cess: (i) the quantization algorithm to be used (K-means is widely accepted), and
(ii) the distance measure to determinate the proximity between two observations
(Euclidean distance is the most common).

Summarizing, a HMM-based classification process follows the general scheme
shown in Fig. 1. Every event in the system is first parameterized by using a multi-
dimensional vector. Then, a training stage from a given (pre-recorded) dataset
of observations is initially performed. The main purpose in the training stage is
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Fig. 1. General scheme for a HMM-based classification

the estimation of the parameters which define the HMM. Once the training of
the system is complete, the classification of each sequence of VQ observations
occurred is dealt with as follows:

1. The associated generation probability is first obtained according to (1), that
is the sequence is decoded.

2. This probability is compared with a given detection threshold, Pth, so that
the observation is considered as generated by the model if the probability
threshold is surpassed, and not otherwise.

4 Detection System Overview

In an identification system based on Markov models it is necessary to specify: (i)
the network traffic features that should be used as observations for the Markov
model, and (ii) the Markov model itself (i.e., states, transitions, etc).

4.1 Model Observations: Preprocessing

Our traffic classification approach relies on a flow identification basis.
Here, we consider that a flow [13] is the bidirectional traffic identi-
fied by the tuple <source-IP-address, source-port, destination- IP-address,

destination-port, IP-protocol>, where source and destination are interchange-
able to allow bidirectional traffic. Since we are interested in the detection
of application traffic, we specifically focus on packets containing high level
information.

Each flow is specified in terms of a sequence of packets and every packet
constitutes an incoming observation. A task before introducing observations to
our system is a preprocessing stage which is composed of three modules: (i)
parameterization, (ii) normalization, and (iii) vector quantization.

Parameterization. The election of the vector features is a key issue and it
directly influences on the discerning capability of the system.
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First, it is desirable that the selected features are independent of the transmis-
sion mode for the information. This allows the detection of both plain and en-
crypted communications. Second, the features should be representative enough,
in the sense that their combination for a given service should be as different as
possible from other services. With this criteria in mind we suggest the following
three features:

1. Inter-arrival time (itime): it is defined for a packet as the difference, in
seconds, between the arrival time of that packet and the arrival time of the
previous one in the same flow.

2. Payload size (psize): it is the size, in bytes, of the information carried out
by a packet.

3. Change of direction (chdir): this feature takes a value ’1’ for a given packet
if it travels in the opposite direction than the previous packet in the same
flow. Otherwise, it takes a value ’-1’.

Both inter-arrival time and payload size are two common characteristics. How-
ever, up to our knowledge, change of direction has never been used to charac-
terize network packets in the field of traffic classification. This feature allows to
characterize UDP and TCP based protocols. This is due to the fact that it does
not assume the existence of a server or a client.

Normalization.The normalization module is aimed at giving the same dynamic
range for the three extracted features of a packet. The selected range is [-1,1], so
that the change of direction should not be modified. With regard to the inter-
arrival time feature, we first apply a logarithmic transformation to reduce the
dynamic range of time [14]. Then, we normalize the obtained value by mean
shifting and auto-scaling. The normalization is expressed as vs = (vo − μ)/σ,
where vs is the scaled value, vo the original value, and μ and σ the mean and
standard deviation of the values to be scaled. For the payload size feature, only
the mean shifting and auto-scaling transformation is applied.

To apply this normalization the mean and standard deviation of the expected
payload size and the logarithm of the inter-arrival time should be calculated.
The estimation of these values is done from the training dataset.

Vector Quantization. We finally carry out a quantization process on the ob-
tained vectors of features for every observation (packet) in a flow. The vector
quantization process used in our system is based on the K-means algorithm [15],
in such a way that all the possible combinations of values for the three features
are reduced to K possible vectors. These vectors are the most representative
centroids for clustering the data contained in the training dataset. Regarding
the metric used for the distance, we select the Euclidean metric.

From the K-clustered space, each incoming feature vector will be replaced by
the centroid of the nearest cluster. Summarizing, an incoming packet, after this
preprocessing stage, will be a sequence of indexes which are the observations of
the HMM.
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4.2 HMM Structure

The key feature of the proposed detection methodology is the use of a Markov
model to describe traffic corresponding to a given protocol/service. Although
the specific definition of the parameters of the Markov model depends on the
protocol to be detected in the following a generic model to represent most of the
communication services is proposed:

1. Initial dialog: This represents the start of the communication. Frequently
in this step, the members of the communication interchange an identifier
that will be used afterwards. For example, in the case of SSH, it is neces-
sary to carry out an user authentication request which is responded by the
corresponding answer.

2. Information exchange: Here, the participants transmit the information that
constitutes the main purpose of the communication, e.g., file transfer, web
page retrieval, email sending, etc. Thus, it is expected that the bulk of the
packets in the flow are transferred in this step.

3. Termination: After the information exchange step, it is usual that many pro-
tocols exchange some messages with the aim of finalizing the communication.
SSH protocol is an example of this.

An important issue in the design of our Markov model is the variability in
the number of packets (observations) of different flows, even for a same proto-
col/service. To consider in our model this variability we define the information
exchange step as re-executable. Finally, note that the initial dialog and the ter-
mination are two steps executed only once in the model.

4.3 HMM for the Detection of eDonkey Flows

With the aim of exploring the proposed generic model in a case study, we have
carried out an adaptation to build a detection system for the eDonkey protocol.

The eDonkey protocol presents some features that makes it suitable to high-
light the potential of our proposal. First of all, it is a P2P protocol and thus, a
node can act both as a client and as a server. Secondly, eDonkey is a protocol
used to shared files and, thus, it uses flows plenty of data and also flows with
a reduced number of short size packets. Finally, eDonkey allows two communi-
cation modes: encrypted and plain communications. For these reasons, eDonkey
flows present a high variability which make them hard to be modeled.

The eDonkey protocol communicates through TCP and UDP. However, TCP
flows represent more than 95% of the total eDonkey flows and more than 99%
of the transmitted bytes1. Thus, we focus our detection in eDonkey TCP flows.

The proposed Markov model is shown in Fig. 2. The first and the last steps
are composed of two states each one and there exists only a possible transition
between them. This is due to the own behavior of the protocol. The messages
interchanged during the initial dialog step are the Hello (represented by state

1 These percentages have been extracted studying the traces described in Section 5.
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Fig. 2. HMM for modeling eDonkey protocol

H) and Hello answer (state H’). The messages transmitted in the termination
step are Start upload request (state B) and Queue rank (state B’).

Regarding to the information exchange step we cannot define a state for every
packet in the flow, as there is a variable number of packets in different flows.
Now, we define two possible ways: (i) one for data flows (high number of packets
with a high size per packet), and (ii) the other one for signaling flows (reduced
number of packets with a low size per packet). Each one of these flows are
composed of two states, one representing signaling packets (S), and the other
(D) data packets. The transitions defined here allow a variable number of packets
in every transfer, and all the possible combinations between these two types of
packets. Finally, the transition to the termination step can occur also from both
signaling or data states.

5 Experimental Evaluation

Here we describe the experimental evaluation done for assessing the validity of
the proposed approach.

5.1 Datasets

Two groups of network traces have been used to carry out the evaluation of the
proposed detection system. The principal features of these traces are exposed
now.

– eDonkey traffic traces, eD-DB: This trace is composed of the eDonkey traffic
generated by a node during 45 days (during of 2011). In order to simulate a
normal user behavior, this client connected to the eDonkey network during
5 hours each day. aMule 2.2.6 version [16] was used as eDonkey application.
The client was connected to the eDonkey server called se-Master Server 1.
To cover a wide range of different eDonkey peers to communicate with, we
selected files to download and share with a high, medium and low number
of peers sharing them.
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These network traces contain 240, 851 TCP flows and 7, 003 UDP flows,
all of them belonging to the eDonkey protocol. Among the total amount of
TCP flows, 22, 409 are obfuscated. All these communications were carried
out between more than 12 thousands of different IPs and they transferred
more than 20GB in the download direction and uploaded more than 25GB.

– Middle East University trunk traces, ME-DB: This trace is taken in a net-
work trunk of a Middle East University. It contains all the traffic generated
during 48 hours (November of 2010). In summary, there are around 73, 000
IPs and 300 million packets transmitted.

We analyze the entire trace using deep packet inspection (OpenDPI [17]),
the most common protocols that appear being: Bittorrent, HTTP, DNS,
SSL, and RTP. The eDonkey protocol is not present in these traces, due
to the fact that the P2P file sharing applications used in this Middle East
University are based on Bittorrent protocol, and also maybe because the
obfuscation techniques used by the protocol does not allow the deep packet
inspector to identify it.

To train the model we need to provide eDonkey flows to the model and, thus, we
use a specific subset of the eD-DB trace. For the tuning of the system, we use
a dataset which contains the rest of eD-DB plus a subset of ME-DB. Moreover,
it should be remarked that a cross-validation process is carried out with 9 parts
used to train and 1 to test.

(a)

(b)

Fig. 3. TD (a) and FP (b) obtained in the cross validation process
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5.2 Analysis of Real eDonkey Flows

A first step in our validation process is to carry out a preliminary evaluation to
check if real eDonkey flows behave as expected. To carry out this evaluation, we
have monitored the evolution of the 240,851 TCP flows in eD-DB, in order to
check which are the two first and the two last packets in the communication. As
we are monitoring the contents of the flows, and many of them are obfuscated
by means of cyphering, we have modified the aMule eDonkey client.

As a result of this inspection, we have confirmed that, in 99.89% of the flows,
the two first packets correspond to the HELLO and HELLO answermessages. More-
over, 96.24% of the flows contain, as the two last packets, the Start upload

request and the Queue rank messages. We have checked that these percentages
does not reach 100% due to the existence of incomplete flows in the trace.

These results confirm us the correctness in the selection of two states for
both the initial dialog and the termination steps of the generic model when
particularized for eDonkey.

5.3 Detection Results

Next we are interested in checking if the proposed detection system achieves the
expected detection rates. For the preprocessing of the observations, we have used
K-means with a value K = 32 and the distance metric was the Euclidean one.

In Fig. 3, we show the results extracted from the cross validation process.
Fig. 3(a) shows the results obtained for the true detection rate, while the false
positives rates are shown in Fig. 3(b). We can see that our system is able to
achieve more than 95% of true detection with around 4% of false positives.

Now we carry out the validation of our system with the validation dataset.
Here we study the dependency of the quality of the detection with respect to the
selection of the detection threshold, Pth. To do this, we carry out the detection
with several different values of Pth in the probability margin [0.0293,0.3488].

Fig. 4. ROC curve of the eDonkey detection
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Table 1. False positive rates for the detection of eDonkey when other protocols are
analyzed

Total flows FP rate

HTTP 710,037 0.036

Multimedia streaming (RTP) 58,509 0.001

P2P file sharing 215,203 0.017

The results of this study are presented as a ROC curve in Fig. 4. As it can be
seen, there exists a wide range of TD rate (between 0.9 and 0.95) in which the
system gives a small range of false positive values (from 0.036 to 0.038). Note
that the results obtained from the validation dataset does not differ substantially
from those obtained from the cross validation in the training phase, what leads
us to the conclusion that our model generalizes well.

As we mentioned, eD-DB contains both obfuscated and plain flows. Specifi-
cally, the TD with eDonkey obfuscated flows is 96.6% and 94.2% for not obfus-
cated ones. These results demonstrate the independence of the system and the
encryption of the target protocol.

Once we have demonstrated that our stochastic model for eDonkey represents
conveniently the corresponding flows, an additional detection experiment is car-
ried out to study how behavioral deviations in subsequent observed flows can
be used to classify them as generated by other different protocols/services than
eDonkey. In particular, we have chosen three groups of services in the ME-DB
trace: (i) HTTP, (ii) multimedia streaming protocols (RTP), and (iii) P2P file
sharing protocols. The last type of traffic is collected here to show not only the
classification capability of our proposal but also its ability to discriminate be-
tween normal P2P traffic (eDonkey) and abnormal P2P traffic (non-eDonkey).

The results obtained from this evaluation are shown in Table 1. Here, we
can see the total amount of flows and the rate of false positives yielded by our
detection system. Note that, our system is able to distinguish flows from other
files sharing applications and from multimedia streaming giving a very low false
positive rate. Finally, HTTP is also well discarded by the detection system,
yielding an acceptable false positive rate.

Summarizing, all the detection results obtained show the higher performance
of our approach in comparison with similar schemes in the literature, as discussed
along Section 2. This way, our stochastic traffic identification system can be used
both as a multi-protocol classifier and as an anomaly-based detection scheme
with security purposes.

6 Conclusions and Future Work

In this paper, we introduce a stochastic methodology based on the use of Markov
models to classify network traffic. First, a generic HMM is contributed, which
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relies on a flow-based detection and the consideration of every packet in the flow
as an incoming observation for the system. After that, the model is particular-
ized to represent eDonkey communications as a particular case study. For that,
different key issues are discussed: vector parameterization and normalization,
system structure, etc.

To validate our classification proposal several experiments with eDonkey and
non-eDonkey network traces are carried out. The results obtained show that
our approach is able to detect normal eDonkey flows with high accuracy, both in
terms of true detection rate and false positive rate. Even when the processed flows
are obfuscated or belong to a different P2P file sharing protocol, like bitTorrent
or Gnutella, the proposed detection system achieves really good detection results.

This work could be seen as a proof of concept of the capabilities of stochastic
traffic identification techniques in the field of security management. Due to the
extremely hard task of having a complete and current P2P attack database we
choose to detect a specific P2P protocol. We assume that if we are able of dis-
tinguishing a particular P2P protocol (eDonkey) from other P2P protocols with
the same purpose (file sharing), we will be able of distinguishing, for example,
a P2P protocol used by P2P bots to communicate between them from normal
P2P traffic. However, there is much work still to be done, in the following we
present some future research:

– To use our classification proposal to differentiate traffic generated by a P2P
botnet from the normal P2P traffic.

– To extend the modeling to other different services, in order to check the
versatility of the proposed detection system.

– To develop and evaluate a continuous variant of the HMMs (CHMM). In
this case, each feature vector is not associated with a discrete centroid in the
VQ, but with a probability density function.
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Abstract. With currently more than 178 million users worldwide, the demand 
on real-time multimedia communication services (e.g. VoIP, video conference) 
grows steadily. However, whilst the protocols utilised in such communications 
are standardised, internal aspects are not. For example, if calling parties utilise 
incompatible media codecs or security mechanisms, a real-time multimedia 
communication cannot be established. The latter would result in either a failure 
to establish a connection or a plaintext connection that leaves the communica-
tion open to attacks. This paper proposes a novel technology independent secu-
rity gateway for real-time multimedia communications which offers ciphering 
assistance for these terminals when they have incompatible security mechan-
isms and/or media codecs, allowing them to communicate in a seamless and se-
cure manner despite their incompatibilities. The proposed security gateway op-
erates across standard IP protocols and provides a flexible, scalable and robust 
system that is capable of managing the ciphering requirements of a modern 
communications system. 

Keywords: IMS, security gateway, SIP, cross-ciphering. 

1 Introduction 

With the foundation laid by the IP Multimedia Subsystem (IMS), Internet users can 
establish real-time multimedia calls not only within the Internet Protocol (IP) world 
but also interconnect with terminals from other types of communication networks, 
such as the traditional telephony network and Terrestrial Trunked Radio (TETRA) 
networks. For instance, users can utilise their IMS terminals to participate a business 
video conference, make a Voice over IP (VoIP) call to a normal telephone and even 
communicate to a police officer’s TETRA terminal in a life threaten situation [1]. In 
comparison with other communication networks, the IMS architecture provides a 
cheap, flexible and convenient communication channel to many Internet users. In-
deed, with currently more than 178 million subscribers worldwide, the demand on 
real-time multimedia communication services grows steadily on a yearly basis [2]. 
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In order to facilitate the high demand for real-time multimedia communication ser-
vices, various types of terminals have been developed by different providers around 
the world [3]. Within the IMS architecture, it is universal that these terminals rely 
upon the Session Initiation Protocol (SIP) for call setup and control in the signalling 
plane and the Real-time Transport Protocol (RTP) or Secure RTP (SRTP) for media 
transmission in the media plane [4-6]. However, they can utilise various types of  
codecs to encode and decode the media and different security mechanisms to secure 
the media transmission. As a result, in addition to the existing mismatch issues among 
terminals from different communication networks (e.g. between IMS and TETRA), 
this may also create incompatibility issues (e.g. early call termination during the setup 
phase in the signalling plane) between various IMS terminals.  

Regarding the challenge posed by incompatible codecs, many media gateways 
have been devised in the media plane for the purpose of transcoding (i.e. converts 
media data from the format of one codec into another’s), enabling two terminals to 
establish a communication despite utilising different codecs and/or from different 
network domains [7]. For instance, Asterisk which is one of the most popular open 
source media gateways supports more than 10 popular codecs enabling various tran-
scoding options, such as facilitating an IMS terminal which utilises G.711 codec to 
communicate a normal mobile phone terminal which employs Adaptive Multi-Rate 
Narrowband (AMR-NB) codec [8]. Another example, by utilising its own media  
gateway, Skype, one of the most well-known proprietary VoIP applications, can  
establish communication with landline telephones despite utilising different codecs.  

When users utilise different media security mechanisms within terminals to com-
municate with one another, a call cannot be established in normal circumstances un-
less in plain text (i.e. RTP format). However, it is well documented that unprotected 
real-time media traffic is open to eavesdropping and man-in-the-middle attacks [9]. 
By utilising these tricks, attackers can collect user’s sensitive information (e.g. bank 
account details) and then abused them. As a result, a security gateway, which can 
provide ciphering support (i.e. transforms encrypted data from one format to another), 
is required to ensure the communication can be established and protected between 
security mechanisms and/or media codecs incompatible terminals. In comparison with 
the maturity of the media gateway, little work has been carried out on investigating 
the need of a security gateway. Therefore, this paper proposes a novel technology 
independent security gateway for real-time multimedia services that can provide ci-
phering support for terminals with incompatible security controls allowing them to 
communicate in a safe and secure fashion.  

This paper begins by presenting the popularity and importance of the real-time 
multimedia services. The paper then proceeds to describe existing gateways that sup-
port real-time multimedia services. In section 3, a novel technology independent secu-
rity gateway for real-time multimedia communication is proposed and details of its 
components, capabilities, working modes and challenges are thoroughly described 
and discussed. The paper finishes by highlighting the future development of the  
security gateway.  
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2 Existing Gateways for Real-Time Multimedia Services 

In order to allow real-time multimedia services to run smoothly between incompatible 
terminals and/or different types of communication networks, a gateway which pro-
vides media and/or security support is required (as illustrated in Figure 1). During a 
call setup phase, control elements (e.g. Serving Call Session Control Function  
(S-CSCF)) of a communication network (e.g. IMS) examine the capability of the 
caller and callee’s terminals and decide whether the assistance of the gateway is re-
quired; if it is required, the element of the signalling plane will notify the Resource 
Function Controller of the gateway and exchange configuration parameters with it for 
setting up both the incoming and outgoing legs. Once the call setup phase is com-
pleted, the Resource Function Processor of the gateway will provide the media and/or 
ciphering support in a transparently manner allowing two terminals to communicate 
despite their incompatibility.  

 

Fig. 1. A generic gateway for real-time multimedia services  

Based upon the functionality, a gateway can be either categorised as a media gate-
way or a security gateway.   

A media gateway is dedicated to provide media support when terminals have in-
compatible codecs. It is further divided into a Media Resource Function Controller 
(MRFC) and a Media Resource Function Processor (MRFP) [10].  The MRFC is a 
signalling node that is in charge of interpreting information coming from the  
signalling plane and also controlling the MRFP; the MRFP is a media plane node that 
is utilised to transparently perform media transcoding process if required. Ideally, the 
media gateway should be equipped with as many codecs as possible, to support a 
wide range of transcoding tasks.   
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The idea of the media gateway was first proposed in 1999 by [11], describing a 
VoIP call being established between terminals from Asynchronous Transfer Mode 
(ATM), IP and Integrated Services Digital Network (ISDN) networks despite the 
incompatibility of the terminals. Since then much research in the field of media gate-
ways have been carried out to provide interoperability between incompatible termin-
als from the same or different networks, including: [12-16]. In addition to the work 
performed by the research community, telecommunication bodies and manufacturers 
have also contributed significantly towards the maturity of the media gateway. For 
instance, 3rd Generation Partnership Project (3GPP) has published a series of technic-
al reports (e.g. 3GPP TS 29.232 (from release 4 to 12) on regulating the functionali-
ties of the media gateway [17]. Also, Cisco, one of the world leading networking 
equipment manufacturers, has a wide range of gateways, which can support multime-
dia communication [18]. Nevertheless, it is not authors’ intention to discussion the 
capability and performance of these existing media gateways, but to highlight the 
amount of work have been given in the area of media gateway.  

A security gateway is designed for providing ciphering support when terminals 
have different security mechanisms and/or incompatible codecs. Similar to the media 
gateway, it should also have two components: Security Resource Function Controller 
(SRFC) and Security Resource Function Processor (SRFP). The SRFC is a signalling 
node that communicates with other controlling functions in the signalling plane and 
also controls the SRFP. In order to provide ciphering assistance, the security gateway 
should also support as many security mechanisms as possible.  

With the purpose of providing security for the real-time multimedia traffic, several 
media gateways are equipped with security mechanisms to support SRTP traffics. 
[19] describes a security gateway that provides secured communications for terminals 
that do not support any security controls within its local network. As a result, the call 
is transported in plain text between the security gateway and the security incompatible 
terminal, allowing anyone on the same local network to listen to the conversation via 
a network monitoring tool (e.g. Wireshark). Asterisk, one of the most popular open 
source media gateways, offers terminals with same security compatibilities to estab-
lish secured communication [20]; nonetheless, it cannot provide any cross-ciphering 
support for terminals with incompatible security mechanisms. Skype, one of the most 
popular proprietary VoIP applications, utilises AES encryption to secure end-to-end 
Skype-to-Skype calls [21]; however, it does not support interoperability with any 
other proprietary or open source VoIP applications. In addition, as these existing 
gateways are designed predominately for the purpose of transcoding, it would be dif-
ficult for them to provide sufficient security support to these high demands real-time 
multimedia services. Therefore, a dedicated security gateway that can provide cipher-
ing support allowing interoperability between incompatible terminals is required for 
real-time multimedia services.  

In the next section, a novel security gateway that can provide interoperability sup-
port for incompatible terminals will be proposed and fully described, along with its 
internal components and functionalities.  
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3 A Technology Independent Security Gateway  
for Real-Time multimedia communication 

With the purpose of enabling a wide range of incompatible terminals to securely 
communicate with each other at a high level of performance, a novel technology  
independent security gateway (TI-SGW) for real-time multimedia service is proposed. 
In order to provide the ciphering support in a secure and timely fashion, a number of 
internal modules of the TI-SGW architecture have been devised and are illustrated in 
Figure 2.  

 

Fig. 2. TI-SGW Architecture 

The architecture is largely divided into three areas: the signalling, media and man-
agement segments. For the signalling plane, its principal responsibility is to securely 
establish signalling communication with the IMS controlling system. From the  
IMS controlling system, the TI-SGW can obtain all the parameters required to set up  
a seamless media plane ciphering process for both calling parties upon request.  
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The media plane is responsible for identifying incoming media flows, applying ap-
propriate ciphering on the media and forwarding it to the appointed receivers in a 
secure and timely manner. The Management segment of the TI-SGW controls both 
the media and signal plane interfaces and also provides resource management, error 
control, performance monitoring and accountability functionalities.  

3.1 Components of the TI-SGW Architecture  

The following sections describe each of the architectural components in more detail, 
providing an overview of its role and the relationship between components. 

Security Resource Function Controller (SRFC) is mainly responsible for estab-
lishing mutual authentication with the IMS signalling plane and determining the  
parameters for setting up media plane security when any ciphering assistance is  
required. Two functions have been designed to achieve these responsibilities: 

• Authentication function (TI-SGW-AF) 
• Media plane security setup function (TI-SGW-MPS) 

The TI-SGW-AF is employed to facilitate all signalling plane security setup proce-
dures between the TI-SGW and the IMS signalling plane, including mutual authenti-
cation, key establishment and security association setup [22]. In addition, the TI-
SGW-AF is utilised to perform the mutual authentication process between the TI-
SGW and a Key Management Server (KMS). This permits the TI-SGW to securely 
request and retrieve keys and tickets from the KMS when a KMS is utilised as the key 
management solution. All details to assist the setup of authentication processes are 
stored in the Signalling Plane Security database.  

The TI-SGW-MPS is responsible for configuring the security associations for the 
setup of media transmissions between the TI-SGW and a real-time multimedia ter-
minal. When ciphering assistance is requested, the TI-SGW-MPS selects an appropri-
ate set of crypto suite and key management solutions from a capability list to set up 
both the incoming and outgoing calling legs. Also, all the information which is related 
to the configuration, such as caller and callee’s contact details (e.g. IP addresses), 
their crypto suites and key management solutions, will be securely stored in the Me-
dia Communication database as a reference for the later ciphering process in the me-
dia plane.  

Security Resource Function Processor (SRFP) is the interface of the TI-SGW to 
any media transmissions. Upon receiving the media traffic, the SRFP inspects it based 
upon the information stored in the Media Communication database for obtaining de-
tails (e.g. cipher keys) which will be utilised for requesting computing resources (e.g. 
storage and processing power) to establish the ciphering process. Once the ciphering 
process is completed, the SRFP will send the processed media to the appointed re-
ceiver. Details of the whole process will then be stored in the Audit Log for the  
purpose of accounting.   

Resource Management is employed to manage the allocation of computer 
processing resource for the ciphering process. It constantly monitors the resource, and 
reserves and distributes it based upon each ciphering request. At the same time, it also 
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gathers all necessary security parameters (e.g. crypto suites) from each request and 
passes it onto the ciphering process. This will enable the ciphering process to be taken 
smoothly and also enable the TI-SGW to scale up accordingly with large volumes of 
media connections. 

Ciphering Controller serves the TI-SGW by providing the actual ciphering and 
deciphering process. Upon receiving the media data, it decrypts the media on the in-
coming leg by utilising crypto suites and cipher keys that are used by the caller; and 
then encrypts the plain text media by employing crypto suites and ciphering key 
which are utilised by the callee. As the TI-SGW is designed to serve multiple incom-
ing communications, the ciphering function operates in a multitasking manner. All 
details of ciphering process (e.g. cipher suites and time of ciphering process) will be 
stored in the Performance Log storage for the purpose of valuation of the ciphering 
process. For media connections that also require a change in codec, the deciphered 
text is sent to a media gateway (MGW) for transcoding prior to the re-ciphering 
process. 

Error Management provides oversight and control of internal errors that can arise 
from any unexpected events that may be experienced. Controls will ensure errors 
within any of the architectural components are identified and reported. All details of 
the error event will be stored in the Error Log for the purpose of accountability.  

Management Controller is the primary controller of the TI-SGW that regulates 
the system and liaises between components. Apart from overseeing the entire cipher-
ing process, it is also responsible for managing the ciphering capability of the TI-
SGW and the feedback of the ciphering process; both tasks are carried out by the 
Capability List function and the Performance Enquiries function respectively.    

• Capability List function: By default, the TI-SGW is equipped with various crypto 
suites and key exchange solutions that are utilised to assist the ciphering process. 
During the setup process of these security mechanisms, details of them are ex-
tracted by the Capability list function and then stored in the Capabilities storage. 
This is utilised to assist the negotiation of the media plane security during the call 
setup process. 

• Performance Enquiries function: is utilised to present answers to any enquires 
regarding the performance of the ciphering process which is stored in the Perfor-
mance Log storage, such as which crypto suite was utilised, how long a typical ci-
phering process takes, what the memory and processing consumptions are for a 
particular ciphering task. The primary propose of this function is to ensure the ci-
phering process is undertaken in a timely manner and in accordance with Quality 
of Experience (QoE) expectations. The resulting audit is useful in identifying par-
ticular issues with crypto suites and performance. For instance, security policies 
could be amended based upon particular performance characteristics of certain 
crypto suites.  

3.2 Ciphering Capability of the TI-SGW 

As mentioned in the previous section, the main task of the TI-SGW is to provide cipher-
ing assistance. In order to offer the assistance whenever it is requested, the TI-SGW 
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needs to support as many real-time multimedia security mechanisms as possible. It is 
well established that these security mechanisms utilise the SRTP as the fundamental 
protocol for securing the real-time multimedia traffic and the SRTP employs a number of 
crypto suites and key exchange solutions to achieve that. Therefore, all the crypto suites 
and key exchange solutions which the TI-SGW should support are described in the fol-
lowing section.   

Crypto Suites of the TI-SGW. A crypto suite is a combination of encryption and 
message authentication code (MAC) algorithms that provide confidentiality, integrity 
and authentication for data. The default encryption method for the SRTP is Advanced 
Encryption Standard (AES) which can operate in two modes: Segmented Integer 
Counter Mode AES (AES_CM) and AES in f8-mode [6]; while the default message 
authentication and integrity method for the SRTP is HMAC-SHA1 [6]. By utilising 
the combination of encryption methods, message authentication and integrity solu-
tions, in addition to various key lengths, a number of crypto suites (as demonstrated in 
Table 1) can be obtained [23-24]. Furthermore, it is envisaged that the TI-SGW 
should also provide support for future releases of crypto suites for the SRTP, enabling 
future compatibility and longevity of the system. 

Table 1. A list of crypto suites of the SRTP 

Crypto suites 
AES_CM_128_HMAC_SHA1_80 
AES_CM_128_HMAC_SHA1_32 
AES_F8_128_HMAC_SHA1_80 

AES_192_CM_HMAC_SHA1_80 
AES_192_CM_HMAC_SHA1_32 
AES_256_CM_HMAC_SHA1_80 
AES_256_CM_HMAC_SHA1_32 

Key Exchange Solutions of the TI-SGW. A number of key exchange protocols have 
been proposed to manage the key exchange between terminals to enable the estab-
lishment of the SRTP communication [25]. The decision as to whether the assistance 
of the TI-SGW should be required is decided by the IMS signalling plane. Any poten-
tial key exchange protocols of the TI-SGW must be indicated and initialized in the 
IMS signalling plane, otherwise the call which is meant to be supported by the  
TI-SGW cannot be established. Therefore, key management solutions that utilize the 
media plane for advertising their usage will not be supported by the TI-SGW. Based 
upon these premises, the IT-SGW will support the following key exchange protocols: 
Session Description Protocol (SDP) Security Descriptions for Media Streams (SDES)  
[23], MIKEY pre-shared key (MIKEY-TICKET) [26], MIKEY-public key encryption 
(MIKEY-IBAKE) [27], IMS Authentication and Key Agreement (AKA) [25],  
Otway-Rees based key management solution [25]  and ZRTP [28]. In addition, the 
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TI-SGW should be easily adaptable with any future key exchange solutions that also 
utilize the IMS signalling plane for initialization of the key management. 

3.3 Operational Modes of the TI-SGW 

When two terminals share common codecs and security mechanisms, the media flow 
can be directly established between them. While two terminals do not have common 
security mechanisms and/or codecs, the TI-SGW and/or MGW will be required in the 
media flow to provide ciphering and/or transcoding support respectively allowing 
interoperability between the two incompatible terminals. The usage of the MGW is 
required only when two calling parties do not share common codecs. In comparison, 
the need of the TI-SGW will be compulsory in the following three scenarios:  

1. Two terminals do not share same security mechanisms but same codec. 
2. Two terminals do not share same security mechanisms or same codec. 
3. Two terminals do share same security mechanisms but not same codec. 

Each of these scenarios defines one working mode of the TI-SGW. As a result, the TI-
SGW has three working modes accordingly to the above scenarios: 

• Cross-ciphering mode without the presence of the MGW. 
• Cross-ciphering mode with the presence of the MGW.  
• Mono-ciphering mode with the presence of the MGW. 

3.4 Challenges of the TI-SGW 

The proposed the TI-SGW can provide ciphering support for the real-time multimedia 
services whenever it is required. Hence, this solution can ensure that the real-time 
multimedia services are protected during a session despite terminals may have  
incompatible security mechanisms and/or codecs. Nonetheless, there are a number of 
challenges that the TI-SGW has both internally and externally.  

For the internal challenges, they are related to the TI-SGW itself, including the se-
curity mechanism, multitasking and performance:  

• Security mechanisms: the TI-SGW needs to be regularly updated with any newly 
released security mechanisms to ensure that the gateway can provide maximum  
ciphering support for the real-time multimedia services.  

• Multitasking: the TI-SGW is required to simultaneously handle multiple ciphering 
jobs if required. These jobs can be concurrently carried out in various working modes 
of the TI-SGW. In addition, should operational requirements exceed a singular  
TI-SGW, a load-balancing approach with multiple TI-SGWs can be implemented.  

• Performance: as the real-time multimedia services require a high level of demand 
on performance. The TI-SGW has to be able to complete the ciphering job in a 
timely manner to minimise the impact that is introduced by the encryption and  
decryption process.  
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For the external challenges, they are the surrounding environments and factors which 
affect the TI-SGW, including: 

• Upgrading of the IMS control element: the IMS control element (e.g. SCSCF) is 
required to be equipped with an intelligent function which can intercept and ana-
lyse the SDP message, detect the need of the TI-SGW and configure it for the ci-
phering support. 

• Regulations: efforts of standardisation bodies and industrial forums are also re-
quired for setting up new standards and regulations to govern the development of 
the TI-SGW and avoid any incompatibilities between any future security gateways. 

All of the aforementioned challenges are critical for the development of the TI-SGW 
as any of them can affect the role that the TI-SGW is designed to complete, enabling a 
secured communication channel between media security mechanisms and codecs 
incompatible terminals to be established.   

4 Conclusions and Future Work 

The paper has identified the need for a technology independent security gateway that 
is capable of meeting the needs of incompatible security requirements in an efficient 
and effective manner. The proposed TI-SGW has been devised to incorporate a series 
of management control functions that permit various performance and accountability 
functions in addition to providing wide-spread security compatibility.   

In the next phase of the research, a prototype of the designed security gateway that 
can provide ciphering assistance for incompatible terminals of real-time multimedia 
services will be developed. This will be incorporated within a complete inter-domain 
IMS/TETRA-based system that will permit an operational evaluation of the system. 
With respect to performance, a series of experiments will be devised to study the ci-
phering, multitasking and performance capabilities of the security gateway.     
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Abstract. In this work, we provide a solution to help mitigate the prob-
lem of the large ciphertext size in designing access control mechanism
using Attribute Based Encryption (ABE) for vehicular communications.
Our approach is to use access policy in Disjunctive Normal Form (DNF)
enabling the length of ciphertext linear in the number of conjunctions
instead of number of attributes in the access policy. This reduces com-
munication overhead in contrast to the existing works in the area. The
proposed scheme is computationally efficient as it requires only a con-
stant number of pairings during encryption and decryption. Vehicles can
validate their secret attribute-keys obtained from the Central Authority
(CA) as well as from an Road Side Unit (RSU) individually. Remark-
ably, our approach allows vehicles to send multiple messages in a single
ciphertext. Our scheme is collusion-resistant, secure under compromised
RSUs and is proven to be secure in generic group model.

Keywords: vehicular ad hoc network, access control, attribute based
encryption, disjunctive normal form, generic group model.

1 Introduction

The development of Vehicular Ad Hoc Network (VANET) allows vehicles to
communicate on roads to increase awareness of their environment and thereby
optimize road safety, comfortable road traffic and efficient utilization of infotain-
ment services. However, concerns over loss of privacy and message authentication
is an overwhelming barrier to the adoption of VANET by consumers. For ex-
ample, a selfish user can send a bogus traffic message to reduce traffic on the
road he is taking, thereby more traffic on another road in the network. The
main security issues addressed in VANET include message authentication, en-
tity authentication, location privacy, trust management and revocation [12], [19].
Message authentication is an active area of research in the literature [16], [17],
[18]. Location privacy is another crucial security issue in VANET. An excellent
way to assuage location privacy is to assign to each vehicle a set of unrelated
pseudonyms. Along with each pseudonym, a public and secret key pair is also
assigned by a Central Authority (CA) to respective vehicle. Access control in
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VANET has received very little attention so far [10, 11, 13–15] and is an inter-
esting avenue of research. Adoption of Attribute Based Encryption (ABE) can
satisfactorily address the access control concerns for VANET. ABE is a gener-
alization of Identity Based Encryption (IBE) proposed by Shamir [1]. The first
ABE scheme was proposed in [2] by Sahai and Waters. Subsequently, there have
been various ABE schemes in the literature [3]-[9]. In ABE, each user is ascribed
a set of descriptive attributes, while secret key and ciphertext are associated
with an access policy or a set of attributes. Decryption is then successful only
when the attributes of ciphertext or secret key satisfy the access policy.

In this work we focus on designing a computationally efficient access control
scheme with low communication overhead for vehicular ad hoc network adapting
Müller et al. [8] concept of distributed attribute based encryption. Our access
control policies are expressed in Disjunctive Normal Form (DNF) wherein each
conjunction consists of static and dynamic attributes of selected vehicles which
are all monitored essentially by one RSU. An attribute which remains the same
during a long period of time is called static (e.g. vehicle type, manufacturing
year) whereas if it changes frequently, it is called dynamic (e.g. road name,
lane number). A vehicle can disseminate data in terms of DNF formula over
attributes issued from CA and any chosen set of RSUs. Our approach enables
a vehicle to communicate with any number of vehicles which are monitored by
different RSUs. The length of ciphertext is proportional to the number of con-
junctions occur in the DNF access policy instead of the number of attributes in
it. This reduces communication cost significantly when compared to the existing
access control schemes [10] and [11] for VANET. On a more positive note, the
number of required pairing operations in our scheme is constant. If the commu-
nication amongst vehicles is limited to one RSU’s range, the computation and
communication costs of our construction are constant. In this case, our approach
utilizes only three exponentiations and two pairing operations during encryption
and decryption, respectively, in addition with one pre-computed pairing during
system setup. Moreover, it uses constant length ciphertexts to transmit data.

Another interesting feature of the proposed scheme is that it can send dif-
ferent messages simultaneously to different vehicles through a single ciphertext,
thus reduces network traffic significantly. In our system, vehicles can validate
their secret attribute keys obtained from the CA as well as from an RSU indi-
vidually. To achieve location privacy, each vehicle is assigned a set of unrelated
pseudonyms by the CA. Our scheme has a collusion resistance capability and is
secure in the presence of compromised RSUs. We analyze security of our scheme
in the generic bilinear group model. In the proposed scheme, no RSU can alone
decrypt any ciphertext and any RSU may join the network by simply publishing
the public keys of its dynamic attributes. The security against collusion attacks
is not addressed by [10] and this scheme does not withstand attacks mounted
by compromised RSU. The scheme in [11] is collusion resistant and provides se-
curity against compromised RSUs. However, no formal security proofs are given
in [10], [11] in existing security models. Our scheme is proven to be collusion
resistant, secure against compromised RSUs and is supported by formal security
proof in the generic group model.
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2 Preliminary

Definition 1 (Bilinear Groups). Let G and GT be multiplicative cyclic groups
of prime order p. Let g be a generator of G. A mapping e : G×G → GT is said
to be bilinear if e(ua, vb) = e(u, v)ab, for all u, v ∈ G and a, b ∈ Zp and non-
degenerate if e(g, g) �= 1T (where, 1T is the unit element in GT ). We say that G is
a bilinear group if the group operation in G can be computed efficiently and there
exists GT for which the bilinear map e : G ×G → GT is efficiently computable.
Notice that the map e is symmetric since e(ga, gb) = e(g, g)ab = e(gb, ga).

2.1 Communication Model

Following [10] and [11], a VANET consists of a Central Authority (CA), a number
of Road Side Units (RSUs) and several Vehicles which are equipped with a
wireless communication device, called an On-Board Unit (OBU). Each vehicle
can be considered as a node. Each node in the network is assigned a set of
pseudonyms to preserve location privacy, by the CA. Two or more pseudonyms
cannot be linked together. Each node is capable of changing pseudonyms from
time to time. The CA provides each node a set of public keys and secret node-
keys corresponding to the set of pseudonyms of the node. The CA also distributes
static attributes along with the corresponding secret attribute-keys to all nodes.
All the attributes and keys issued by the CA are preloaded into OBU. The
attribute and key distribution is carried out over a secure communication channel
between nodes and the CA.

The network has several RSUs each of which is responsible for a specified
region, called communication range of that RSU. Each RSU has a set of dy-
namic attributes. When a node enters within the communication range of an
RSU, the RSU gives it certain dynamic attributes along with corresponding se-
cret attribute-keys through a secure communication channel between them after
receiving the public key associated with current pseudonym of the node. RSUs
can also send messages to a set of selected nodes in the network for authorized
access.

2.2 DNF Access Policy

Let S be the universe of static attributes, R be the set of all RSUs and Dj be
the set of dynamic attributes of RSU Rj . Assume that S ∩Dj = ∅, for all j and
Dj1 ∩ Dj2 = ∅, for Rj1 , Rj2 ∈ R with j1 �= j2, which means that every static
attribute is different from every dynamic attribute and the attributes chosen by
two different RSUs are all different from each other.

Suppose a vehicle vs wants to send a message to a set V1 of vehicles which
are in region of RSU R1 and a set V2 of vehicles which are in region of RSU R2.
Then vs creates one conjunction, say (

∧
w∈W1

w), on a set W1 of some static and
dynamic attributes of the vehicles in V1 and another conjunction, say (

∧
w∈W2

w),
on a set W2 of some static and dynamic attributes of the vehicles in V2, and then
vs formulates the DNF access policy as W = (

∧
w∈W1

w)
∨
(
∧

w∈W2
w). We note
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here that the first conjunction is committed to RSU R1 and second conjunction
is committed to RSU R2. A receiver vehicle vr which is in region of RSU R1 first
finds the respective conjunction in the access policy W, which is (

∧
w∈W1

w) in
this case, and then checks whether the conjunction is satisfied by the attribute
set that it possesses. This means all attributes occurring in W1 should match
with the attributes that vr possesses. If this is not the case, the vehicle will be
unable to decrypt the message, otherwise it decrypts the message.

If a vehicle wants to communicate with a set of selected nodes belonging to
one RSU’s region, the access policy contains only one conjunction while the set
of selected nodes belong to k different RSU regions, the access policy contains k
conjunctions wherein each conjunction is meant for one RSU region. Note that
two conjunctions may serve one RSU region. In this case, any vehicle in the
region of that RSU satisfies two conjunctions and can randomly select one of
them in order to recover a message. To specify the access policy for a ciphertext,
we use the following notation: W =

∨k
l=1(

∧
w∈Wl

w) which is an OR-gate on k
conjunctions and each conjunction is anAND-gate on some attributes; whereWl

is a set of attributes occurring in the l-th conjunction of the DNF representation
of the access policy W. All dynamic attributes occurring in one conjunction are
essentially belong to one RSU, i.e., each conjunction in W is dedicated to exactly
one RSU in the network.

For example, when a vehicle wants to send a message to other vehicles in the
network regarding the road situation (e.g. a car accident is ahead), it decides
firstly the intended vehicles (e.g. ambulance, police car, breakdown truck) and
then formulates an associated access policy W over some attributes, e.g. W =
(ambulance ∧ road1) ∨ (policecar ∧ road1 ∧ lane2) ∨ (breakdowntruck∧road2). The
vehicle uses the public keys of the attributes occurring in the access policy to
encrypt the message and transmits the ciphertext.

Definition 2 (Satisfiability). Given a set of attributes A and an access policy
W, A satisfies W, denoted as A |= W if and only if Wl ⊂ A, for some l, 1 ≤
l ≤ k, and otherwise A does not satisfy W. In the case where the access policy
W possesses one conjunction say W =

∧
w∈W ′ w, the satisfiability condition

is defined as : A satisfies W if and only if W ′ ⊂ A. In this context, W is a
monotone access policy.

2.3 Security Model

Following [8], we define our security model in terms of a game which is carried
out between a challenger and an adversary, where the challenger plays the role
of the CA and all RSUs.

Setup. The challenger runs the Setup algorithm and gives all public parameters
to the adversary.

Query Phase 1. The adversary is allowed to make queries for public and secret
node-keys of an arbitrary number of nodes with several different pseudonyms.
For each node the adversary can request an arbitrary number of public and
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secret attribute-keys of static and dynamic attributes that the node has.
Since every node has a set of different pseudonyms, the adversary can query
for secret attribute-keys of the same node with different pseudonyms.

Challenge. The adversary submits two messages M0 and M1 and an access
policy W such that none of the nodes whose keys have been queried before
in Query Phase 1 satisfy the access policy W. If attributes of any such node
from Query Phase 1 satisfies the access policy W, the challenger aborts,
otherwise the challenger flips a random coin μ ∈ {0, 1}, and encrypts Mμ

under W. The ciphertext is then given to the adversary.
Query Phase 2. Query Phase 1 is repeated. In addition, the adversary can

also request for more secret attribute-keys of the nodes that he has already
queried in Query Phase 1 and 2. If any secret attribute-key that would give
the respective node a set of attributes satisfying W, then the challenger
aborts.

Guess. The adversary outputs a guess bit μ′ ∈ {0, 1} for the challenger’s secret
coin μ and wins if μ′ = μ.

The advantage of an adversaryA in this game is defined as AdvA = |Pr[μ′ = μ]−
1
2 |, where the probability is taken over all random coin tosses of both adversary
and challenger.

Definition 3. A scheme is secure in the above game if all polynomial time ad-
versaries have at most a negligible advantage in the security parameter κ.

3 Proposed Access Control Scheme

Our scheme consists of (1) System Initialization,(2) Key Generation, (3) En-
cryption and (4) Decryption. Let N be the set of all nodes and R be the set of
all RSUs.

(1) System Initialization. This algorithm in turn consists of three algorithms:
(a) GlobalSetup, (b) CASetup and (c) RSUSetup.

(a) GlobalSetup. This algorithm takes as input the implicit security parameter
κ. The CA chooses a prime number p, a bilinear group G, a generator g ∈ G

and a bilinear map e : G × G → GT , where G and GT are multiplicative
groups of same prime order p. The CA selects a random point Q ∈ G, a
random exponent y ∈ Zp and computes gy, Y = e(g, g)y. The global public
parameters of the system are params =〈p,G,GT , e, g,Q, Y 〉 and the global
secret key of the system is gk = gy.

(b) CASetup. The CA defines the universe of static attributes S. For each static
attribute s ∈ S, the CA chooses a random exponent ts ∈ Zp and computes
Ps = gts . The public key of CA is PubCA = {Ps : s ∈ S} and the master
secret key of CA is MkCA = {ts : s ∈ S}.

(c) RSUSetup. Each RSU Rj ∈ R has a set of dynamic attributes Dj , Rj chooses
a random exponent td ∈ Zp, for each dynamic attribute d ∈ Dj and computes
Pd = gtd . The public key of Rj is PubRSUj = {Pd : d ∈ Dj} and the master
secret key of Rj is MkRSUj = {td : d ∈ Dj}.
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(2) Key Generation. This algorithm consists of two algorithms (a) CAKeyGen
and (b) RSUKeyGen which are described below.

(a) CAKeyGen
– For each node ni ∈ N , the CA chooses a keyed hash function Hkeyi :

{0, 1} → Zp from a hash family, which we model as random oracle. For
each pseudonym pit of the node ni, the CA computes a public and se-
cret node-key pair as PKpit = gHkeyi

(pit) and NodeSKpit = gk ·QHkeyi
(pit),

respectively; these public keys PKpit are made available to every par-
ticipant in the network including RSUs and secret node-keys NodeSKpit

are secretly issued to respective nodes in the network. All keyi are kept
secret for the CA itself.

– The CA issues each node ni ∈ N a set of static attributes Si through a
secure communication channel between them.

– For each pseudonym pit, the CA also issues secretly a set of secret
attribute-keys {AttrSKs,pit = gts·Hkeyi

(pit) : s ∈ Si}, where each ts ∈
MkCA to the node ni.

(b) RSUKeyGen
– When a node with a pseudonym pit enters the communication range of

an RSU Rj , Rj gives secretly the node a set of dynamic attributes Dj
i .

– Next, the RSURj issues secretly a set of secret attribute-keys {AttrSKd,pit

= (PKpit)
td : d ∈ Dj

i }, where each td ∈ MkRSUj , to the node ni. Note

that AttrSKd,pit = (PKpit)
td = gtd·Hkeyi

(pit).

(3) Encryption

– Suppose ni wants to communicate with k different categories of vehicles
belonging to k′ different communication regions, where k′ ≤ k. Then the
access policy in DNF is

W =

k∨
l=1

( ∧
w∈Wl

w

)
(1)

where Wl denotes the set of attributes in the l-th conjunction ofW, 1 ≤ l ≤ k.
Note that W1,W2, . . . ,Wk are not necessarily pairwise disjoint sets although
all Wl are distinct and contain both static and dynamic attributes.

– Choose a random exponent r ∈ Zp and compute

C = M · Y r, C̃ = gr, for each 1 ≤ l ≤ k, Cl = (Q ·
∏

w∈Wl

Pw)
r. (2)

– The ciphertext is CT = 〈W,C, C̃, {Cl}kl=1〉.
(4) Decryption

– Suppose the attribute set Apit of the node ni with pseudonym pit satisfies
the l-th conjunction of W, i.e., Wl ⊂ Apit . Then ni aggregates the secret
attribute-keys corresponding to the attributes in Wl and computes
Kl = NodeSKpit ·

∏
a∈Wl

(AttrSKa,pit) .

– Now, ni computes C · e(PKpit , Cl)/e(Kl, C̃), which returns the message M.
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A couple of remarks are in order.

Remark 1. (Constant length ciphertext)
Suppose a node ni decides on a group of nodes which are all monitored by
single RSU to send a message M. This restricts the encryption algorithm to
communication region of one RSU, thereby the access policy consists only of
a single conjunction which is of the form W =

∧
w∈W ′ w. Then the ciphertext

CT = 〈W,C, C̃, C′〉, which is constant in length, where C = M ·Y r, C̃ = gr, C′ =
(Q ·

∏
w∈W ′ Pw)

r.
The node ni with pseudonym pit recovers the message M only when W ′ ⊂

Apit . The node ni computes K = NodeSKpit ·
∏

a∈W ′ (AttrSKa,pit) and recovers

the message M by computing C · e(PKpit , C
′)/e(K, C̃).

Remark 2. (Packing many messages in a single ciphertext)
Suppose node ni would like to send different messages to each category of ve-
hicles. Let M1,M2, . . . ,Mk be k messages which may or may not be distinct.
In order to send simultaneously all these messages to different categories of
nodes by broadcasting a single ciphertext, ni first defines an access policy W
given in Eq. (1) over a set of attributes associated with the selected nodes in
the network. All dynamic attributes occurring in one conjunction are essen-
tially belong to one RSU. For each l-th conjunction, ni chooses a random expo-
nent rl ∈ Zp and computes the ciphertext CT = 〈W, {Cl,1, Cl,2, Cl,3}kl=1〉, where
Cl,1 = Ml · Y rl , Cl,2 = grl , Cl,3 = (Q ·

∏
w∈Wl

Pw)
rl .

If the attribute set Apit of the node ni with pseudonym pit satisfies the l-
th conjunction of W, i.e., Wl ⊂ Apit , then ni aggregates the secret attribute-
keys corresponding to the attributes in Wl and computes Kl = NodeSKpit ·∏

a∈Wl
(AttrSKa,pit). Then ni recovers the respective message Ml by computing

Cl,1 · e(PKpit , Cl,3)/e(Kl, Cl,2).

4 Security

Theorem 1. Our scheme resists collusion attacks made between any number of
nodes.

Proof. Our scheme is said to be collusion-resistant if no two or more nodes can
combine their secret attribute-keys in order to decrypt a message that they are
not entitled to decrypt alone. Let us assume that nodes can collude and have
secret attribute-keys such that the associated attributes satisfy the l-th con-
junction of the access policy W =

∨k
l=1(

∧
w∈Wl

w), for some l, 1 ≤ l ≤ k. The
encryption algorithm blinds the message M with e(g, g)yr, where g is a generator
of the group G, y and r are two random elements chosen from Zp. In order to
recover the message M, the decryptor, say ni, needs to compute the blinding
term e(g, g)yr by pairing the secret node-key NodeSKpit of pseudonym pit, secret
attribute-keys, AttrSKw,pit for the pseudonym pit with the respective ciphertext
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components C, C̃ and Cl, for some l. To this end, ni introduces terms of the
form e(gtwHkeyi

(pit), C̃) = e(gtwHkeyi
(pit), gr). If Wl ⊂ Apit , for some l, 1 ≤ l ≤ k,

then the node ni can recover the blinding term from the following computation

e
(
Kl, C̃

)
e(PKpit , Cl)

=

e(gyQHkeyi
(pit), gr) ·

∏
w∈Wl

e(gtwHkeyi
(pit), gr)

e(gHkeyi
(pit), Qr) ·

∏
w∈Wl

e(gHkeyi
(pit), grtw)

= e(g, g)yr.

If two nodes n1 and n2 with different pseudonyms p1t and p2t respectively,
at time t, try to collude and combine their secret attribute-keys, then there
will be some terms of the form e(gtwHkey1

(p1t), gr) and some terms of the form
e(gtwHkey2

(p2t), gr) and these terms will not cancel with each other, thereby pre-
venting the recovery of the blinding term e(g, g)yr, so is the message M. This
demonstrates that our scheme is collusion-resistant. �

Theorem 2. Our construction is secure against corrupted RSUs unless the static
attributes of a node in communication range of the corrupted RSU match with
static attributes occur in the respective conjunction of the corrupted RSU in the
access policy W given in Eq.(1).

Proof. Note that the access policy is W =
∨k

l=1

(∧
w∈Wl

w
)
, where the l-th

conjunction (
∧

w∈Wl
w), for 1 ≤ l ≤ k, is meant for an RSU Rj ∈ R and

contains both static and dynamic attributes. As a more systematic approach,
the set of attributes in each conjunction and the attribute set of each node
could be partitioned into static and dynamic attributes as follows. For each l,
1 ≤ l ≤ k, let Wl = WS

l ∪ WD
l ; where WS

l and WD
l , respectively, are the set

of static and dynamic attributes occurring in the l-th conjunction of W with
WS

l ∩ WD
l = ∅. Each node ni with pseudonym pit has an attribute set Apit

which can be written as Apit = AS
pit

∪ AD
pit

, where AS
pit

= Si and AD
pit

= Dj
i , for

some RSU Rj ∈ R with AS
pit

∩AD
pit

= ∅. Then node ni is authorized node if and
only if the attribute set Apit of ni satisfies the access policy W, i.e., if and only
if Wl ⊂ Apit for some l, 1 ≤ l ≤ k, i.e., if and only if WS

l ⊂ AS
pit

and WD
l ⊂ AD

pit
,

for some l, 1 ≤ l ≤ k.
Suppose an RSU Rj′ is compromised. This means that it reveals the master

secret key td of each attribute d ∈ Dj′ . Consequently, the secret attribute-key
AttrSKd,pit , for each d ∈ Dj′ is known to every node that is monitored by Rj′ . In
turn, the following key information is available to every node ni with pseudonym
pit in the communication range of Rj′ .

– PKpit ,NodeSKpit

– Si, {AttrSKs,pit : s ∈ Si}, where AS
pit

= Si

– Dj′ , {AttrSKd,pit : d ∈ Dj′}, where AD
pit

= Dj′
i ⊂ Dj′

Suppose the l-th conjunction of the access policy W is meant for the RSU Rj′ .
Consequently, all nodes in communication range of Rj′ can be divided into the
following four categories according to the satisfiability condition of the access
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policy W : (i) WS
l ⊂ AS

pit
and WD

l ⊂ AD
pit

(ii) WS
l �⊂ AS

pit
and WD

l ⊂ AD
pit

(iii)

WS
l �⊂ AS

pit
and WD

l �⊂ AD
pit

(iv) WS
l ⊂ AS

pit
and WD

l �⊂ AD
pit

.
In the compromised RSU scenario, security totally depends on static at-

tributes because of the fact that all the secret dynamic attribute-keys of respec-
tive RSU are revealed, thereby the second satisfiability condition on dynamic
attributes is immaterial. In the first category all nodes are authorized, thereby
can decrypt a message. All the nodes in second and third category are unau-
thorized so that they cannot recover a message since their attribute sets do not
satisfy the first satisfiability condition on static attributes. Although the nodes
in the fourth category are not satisfying the access policy W corresponding to
the ciphertext CT = 〈W,C, C̃, {Cl}kl=1〉, they can still recover a message M as
follows.

(i) In order to recover a message, ni first needs to compute Kl. Note that Kl =
NodeSKpit ·

∏
s∈WS

l
(AttrSKs,pit) ·

∏
d∈WD

l
(AttrSKd,pit). Since WS

l ⊂ AS
pit

and

ni has {AttrSKs,pit : s ∈ Si = AS
pit

}, it can compute
∏

s∈WS
l
(AttrSKs,pit). As

all the secret dynamic attribute-keys AttrSKd,pit , d ∈ Dj′ are disclosed by the
compromised RSU Rj′ , the node ni can also compute

∏
d∈WD

l
(AttrSKd,pit),

thereby can compute Kl.
(ii) Now, similar to the decryption algorithm, ni can recover the message M

from the following computation C · e(PKpit , Cl)/e
(
Kl, C̃

)
= M.

Thus, not every node belongs to Rj′ ’s communication range can recover a mes-
sage, only the nodes whose static attributes satisfy the condition WS

l ⊂ AS
pit

irrespective of the second satisfiability condition on dynamic attributes namely
WD

l ⊂ AD
pit

. Hence the theorem. �

Remark 3. We point out here that the construction proposed in [11] guarantees
the same security as ours against compromised RSUs as stated in Theorem 2,
i.e., the unauthorized nodes of fourth category as classified in the proof of this
theorem will be able to decrypt the ciphertext which they are not entitled to in
[11] also and hence does not provide full security against compromised RSUs.

Theorem 3. Our scheme is secure in the generic group model.

Proof. Without loss of generality, we can assume that all RSUs are non-corrupt
in our security proof. We follow the structure of the security proof in [8]. In our
security game, say Game1, the adversary A has to distinguish between X0 =
M0 · e(g, g)yr and X1 = M1 · e(g, g)yr. We can alternatively consider a modified
game, say Game2 as follows: Setup, Query Phase 1 and Query Phase 2 are
similar to Game1, but changes will be made in Challenge phase. After receiving
an access policy W subject to the condition mentioned in the Challenge phase,
the challenger flips a random coin b ∈ {0, 1} and generates a ciphertext based
on the access policy W, wherein the ciphertext component C is computed as
C = e(g, g)yr if b = 1 and C = e(g, g)δ if b = 0, where δ is uniformly and
independently chosen from Zp, and other ciphertext components are computed
according to Eq. (2). Then we have the following claim.
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Claim 1: If there is an adversary A1 that has advantage AdvA1 to win Game1,
then there is an adversary A2 who wins Game2 with advantage AdvA2 such that
AdvA1 ≤ 2× AdvA2 .

Proof of Claim 1: Suppose there is an adversaryA1 who has an advantage AdvA1

to win Game1. According to A1, we can construct an adversary A2 as follows:
In Setup, Query Phase 1 and Query Phase 2, A2 forwards all messages he
receives from A1 to the challenger and all messages from the challenger to A1.
In the Challenge phase, A2 receives two messages M0 and M1 from A1 and the
challenge ciphertext CT (which contains C that is either e(g, g)yr or e(g, g)δ)
from the challenger. Now, A2 flips a random coin μ ∈ {0, 1} and computes
C′ = Mμ ·C and finally sends the resulting ciphertext CT′ to the adversary A1.
Guess: A1 outputs his guess μ′ ∈ {0, 1} on μ. If μ′ = μ, A2 outputs as its guess
b′ = 1; otherwise he outputs b′ = 0.

– In the case where b = 1, CT′ is a correct ciphertext of Mμ. Consequently,
A1 can output μ′ = μ with the advantage AdvA1 , i.e., Pr[μ

′ = μ|b = 1] =
1
2 + AdvA1 . Since A2 guesses b′ = 1 when μ′ = μ, we get Pr[b′ = b|b = 1] =
1
2 + AdvA1 .

– In the next case where b = 0, the challenge ciphertext CT is independent
of the messages M0 and M1, so A1 cannot obtain any information about μ.
Therefore, A1 can output μ′ �= μ with no advantage, i.e., Pr[μ′ �= μ|b = 0] =
1
2 . Since A2 guesses b′ = 0 when μ′ �= μ, we get Pr[b′ = b|b = 0] = 1

2 .

Thus, we have AdvA2 =
∣∣Pr[b′ = b]− 1

2

∣∣ ≥ 1
2 · (12 + AdvA1) +

1
2 · 1

2 − 1
2 =

AdvA1

2 .
This proves the claim 1.

This claim demonstrates that any adversary that has a non-negligible advan-
tage in Game1 can have a non-negligible advantage in Game2. We shall prove
that no adversary can have non-negligible advantage in Game2. From now on,
we will discuss the advantage of the adversary in Game2, wherein the adversary
must distinguish between Y0 = e(g, g)yr and Y1 = e(g, g)δ.

To simulate the modified security game Game2, we use the generic bilinear
group model described in [4]. Consider two injective random maps ψ, ψT : Zp →
{0, 1}�3 log(p)�. In this model every element of G and GT is encoded as an arbi-
trary random string from the adversary’s point of view, i.e., G = {ψ(x) : x ∈ Zp}
and GT = {ψT (x) : x ∈ Zp}. The adversary is given three oracles to compute
group operations of G, GT and to compute the bilinear pairing e. The input of
all oracles are string representations of group elements. The adversary is allowed
to perform group operations and pairing computations by interacting with the
corresponding oracles only. It is assumed that the adversary can make queries
to the group oracles on input strings that were previously been obtained from
the simulator or were given from the oracles in response to the previous queries.

We use the notations gx := ψ(x) and e(g, g)x := ψT (x) throughout our proof.
During GlobalSetup time, the simulator chooses two random exponents y, q ∈ Zp

and gives g = ψ(1), Q = ψ(q) and e(g, g)y = ψT (y) to the adversary. When
the adversary requests public and secret node-key of a node ni with pseudonym
pit for the first time, the simulator chooses a unique random value uit ∈ Zp,
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which simulates the term Hkeyi(pit), queries the group oracle for gHkeyi
(pit) and

gy ·QHkeyi
(pit), and returns PKpit = ψ(uit) and NodeSKpit = ψ(y + q · uit) to the

adversary. The association between values uit and nodes ni is stored in UList for
subsequent queries in the future. When the adversary requests for public key of
an attribute a of the node ni, the simulator chooses a new, unique random value
ta ∈ Zp, computes gta using respective group oracle and gives Pa = ψ(ta) to the
adversary. We note here that the attribute a might be either static or dynamic
attribute. If the adversary requests for a secret attribute-key of an attribute a of
the node ni with pseudonym pit, the simulator supplies AttrSKa,pit = ψ(uitta)
to the adversary. If uit has not been stored in UList before, it is determined as
above.

When the adversary specifies an access policy W for a challenge ciphertext CT,
the simulator first chooses a random r ∈ Zp. The simulator then flips a random
coin b and if b = 1, he sets δ = yr, otherwise δ is set to be a random value from
Zp. The simulator finally computes the components of challenge ciphertext CT by

using group oracles as follows: C = ψT (δ), C̃ = ψ(r), Cl = ψ(blr+qr), for all 1 ≤
l ≤ k. Recall that bl =

∑
w∈Wl

tw. The ciphertext CT = 〈W,C, C̃, {Cl}kl=1〉 is
sent to the adversary.

We note that if the adversary requests for a secret attribute-keys for a set of
attributes that satisfies the access policy W , the simulator aborts.

The adversary now can have in his hand, all values that consists of encodings
of random values δ, 1, y, q, uit and ta, and combination of these values given by
the simulator or results of queries on combination of these values to the oracles.
In turn, we can see that each query of the adversary is a multivariate polynomial
in the variables δ, y, q, uit and ta. We keep track of the polynomials PList used
to query the oracles. We assume that any pair of the adversary’s queries on
two different polynomials result in two different answers. This assumption is
false only when our choice of the random encodings of the variables ensures
that the difference of two query polynomials evaluates to zero. Similar to the
security proof in [9], this assumption occurs with overwhelming probability. In
the following we will condition that no such random collisions occur.

Under this condition, we consider how the adversary’s views differ between
two cases: δ = yr if b = 1 and δ is random, if b = 0. If we prove that the views
are identically distributed for both cases, then any adversary cannot distinguish
them in the generic bilinear group model. We prove this by contradiction. Let us
assume that the views are not identically distributed. The adversary’s views can
only differ when there exist two queries which are equal in the view where δ = yr,
and unequal in the view where δ is random. Since δ only appears as C = ψT (δ)
and elements of ψT cannot be used as input of pairing, the adversary can make
queries involving δ which are only of the form: q1 = c1δ + q′1 and q2 = c2δ + q′2,
for some q′1 and q′2 that do not contain δ, and for some constants c1 and c2. This
implies that c1yr + q′1 = c2yr + q′2 and it gives q′2 − q′1 = (c1 − c2)yr. We may
then conclude that the adversary can construct the query cyr, for some constant
c �= 0.

Claim 2: The adversary cannot construct a query of the form ψT (cyr).
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Table 1. Possible adversary’s query terms in GT

uit uituit∗ (y + quit)(y + quit∗) blr

y + quit uity + quituit∗ ybl + quitbl blbl′r + qrbl
bl uitbl yr + uitqr r2

r uitr (y + quit)(blr + qr) blr
2 + qr2

blr + qr uitqr + uitblr blbl′ (blr + qr)(bl′r + qr)

Proof of Claim 2: To prove this claim, we examine the information given to
the adversary during the simulation. Since all r and y are random, the only
way that the adversary can construct ψT (cyr) is by pairing two elements of G
using the pairing oracle. We observe that bl can be constructed by querying the
multiplication oracle for encodings of the terms containing ta for all a ∈ Wl.

In Table 1, first column represents the adversary’s information received from
the simulator during simulation and the next three columns represent all com-
binations, as results of pairing oracle, of the terms listed in the first column. So,
the queries listed in Table 1 are all possible queries of the adversary. The only
appearance of yr in the above table is yr + uitqr. In order to make a query for
yr, the adversary has to eliminate the additional term uitqr. The adversary can
cancel this term by using uitqr+uitblr, which leaves behind the term uitblr. The
only way uitblr can be constructed is by querying the pairing oracle for encodings
of the terms containing uitbl and r. Since bl =

∑
w∈Wl

tw and AttrSKw,pit are the
only appearances of uittw, in order to construct uitbl the adversary multiplies
representations of AttrSKw,pit which results in a query of the form∑

i

(
ciuit

∑
a

ca,ita

)
, (3)

for some constants ci, ca,i. Note that i stands for node ni in Eq. (3). Recall from
our security game Game1 that the adversary cannot have all secret attribute-keys
corresponding to any one node ni that satisfies any conjunction of the challenge
access policy W. As a consequence, Eq. (3) yields no information about uitbl.
Therefore, the adversary cannot construct a term of the form ψT (yr) and thus
cannot break the system.

Thus, we have shown that the adversary cannot make a query of the form
cyr, for any c, without having a sufficient set of attributes that satisfy the access
policy W. This contradicts our assumption that the adversary’s views in the
modified game Game2 are not identically distributed and therefore, the adversary
has no non-negligible advantage in Game2, so is in the original game Game1. �

5 Performance

We compare our scheme with the existing schemes in Table 2 and Table 3. Here
EG stands for the number of exponentiations in a group G, EGT denotes the
number of exponentiations in a group GT , Pe is the number of pairing com-
putations, α is the number of attributes in the access policy W, β denotes the
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Table 2. Comparison of Computation Costs

Key Generation Encryption Decryption

Scheme EG EG EGT Pe EG EGT Pe

[10] 2Γ + 2 2α+ 2 2 - - O(β) O(β)

[11] 2Γ 3α 2α+ 1 1 - O(β) O(β)

Proposed Γ + 2 k + 1 1 - - - 2

Table 3. Comparison of Communication Overheads

Scheme Secret Key Size Ciphertext Size Expressiveness of Access Policy

[10] (2Γ + 1)BG (2α+ 3)BG +BGT + τ AND

[11] (Γ )BG (2α)BG + (α+ 1)BGT + τ Boolean formula

Proposed (Γ + 2)BG (k + 1)BG +BGT + τ DNF

number of attributes satisfying the access policy W, k stands for the number of
conjunctive terms in the access policy W, BG stands for bit size of an element
in G, BGT stands for bit size of an element in GT , Γ denotes the number of
attributes associated with secret key of a node and τ is size of an access policy.

The number of pairing computations in [10] and [11] is linear in the minimum
number of attributes required for decryption whereas our scheme uses only two
pairing computations. If we restrict our scheme to one communication region of
RSU like [10], our access policy consists of one conjunction, i.e., k = 1, then the
access policy is a monotone access policy, the ciphertext is of constant length,
has constant computation cost and constant communication cost. We note here
that all receivers essentially belong to one RSU, however the sender may or may
not belong to the same RSU unlike [10].

The length of ciphertexts in [10] and [11] is linear in the number of attributes,
α, occurring in the access policy. On the other hand, our access policy consists of
k conjunctions so the length of ciphertext grows linearly with k, thereby making
our scheme more efficient than [10] and [11] as k is significantly smaller than α.
For example, if an access policy in DNF contains ρ conjunctive terms and each
conjunction contains η different attributes, then k = ρ, but α = ρ × η.

6 Conclusion

In this work, we have proposed an access control paradigm for vehicular com-
munications that enables only the authorized users to decrypt a message. Our
proposed construction is efficient as it requires only a constant number of pair-
ings during encryption and decryption, while having a significant improvement
in the communication overhead as compared to the existing schemes. We have
shown that our scheme resists collusion attacks and is secure against compro-
mised RSUs. The security of our scheme is proven under generic group model.
Our approach provides secret key verification. Moreover, it develops a mechanism
for packing multiple messages in a single ciphertext.
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Abstract. Wireless sensor network (WSN) is vulnerable to a wide range of at-
tacks due to its natural environment and inherent unreliable transmission. To pro-
tect its security, intrusion detection systems (IDSs) have been widely deployed
in such a wireless environment. In addition, trust-based mechanism is a promis-
ing method in detecting insider attacks (e.g., malicious nodes) in a WSN. In this
paper, we thus attempt to develop a trust-based intrusion detection mechanism
by means of Bayesian model and evaluate it in the aspect of detecting malicious
nodes in a WSN. This Bayesian model enables a hierarchical wireless sensor
network to establish a map of trust values among different sensor nodes. The hi-
erarchical structure can reduce network traffic caused by node-to-node commu-
nications. To evaluate the performance of the trust-based mechanism, we analyze
the impact of a fixed and a dynamic trust threshold on identifying malicious nodes
respectively and further conduct an evaluation in a wireless sensor environment.
The experimental results indicate that the Bayesian model is encouraging in de-
tecting malicious sensor nodes, and that the trust threshold in a wireless sensor
network is more dynamic than that in a wired network.

Keywords: Intrusion Detection, Network Security, Wireless Sensor Network,
Trust Computation, Bayesian Model.

1 Introduction

A wireless sensor network (WSN) is usually composed of a number of small, resource-
limited, autonomous sensor nodes (SNs) to transmit data to a main location and provide
access points for human interface. Such networks nowadays are being widely used in
many fields such as agriculture [4], transportation [7] and homeland security [13]. Due
to its natural environments (i.e., deployed in a hostile environment) and inherent unreli-
ability of transmission, a WSN is vulnerable to a wide range of attacks (e.g., DoS) [5].
Attackers can exploit rogue access points within an organization or poorly configured
hotspots to launch attacks [16]. For example, an attacker can gain access to wireless
user’s data by placing an unauthorized access point.

To mitigate the above problems, intrusion detection systems (IDSs) [16] have been
widely implemented aiming to protect a WSN. Generally, an IDS can be classified as:
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misuse-based IDS and anomaly-based IDS. The misuse-based detection [20] (or called
signature-based detection) looks for network attack sequences or events through match-
ing them with its stored signatures1. The detection capability is as good as the available
signatures. The anomaly-based detection [12], on the other hand, detects anomalies by
comparing current network events with pre-defined normal traffic behavior on the net-
work. In this case, sensor nodes can monitor their deployed network for deviations and
produce alerts when anomalies are discovered.

However, an IDS suffers from some inherent issues (i.e., generating a lot of false
alarms [1,24]). In a wireless environment, due to limitations of resource restrains such
as computational power, memory of a SN, traditional complex security mechanism is
difficult to be implemented in a WSN [19]. Specifically, attacks in a WSN can be cat-
egorized into outsider attacks and insider attacks. Authentication is used as a defense
mechanism against the outsider attacks (e.g., spoofing), while the insider attacks (e.g.,
malicious nodes) are more difficult to identify [2]. In this paper, we develop a trust-
based intrusion detection mechanism by using Bayesian model to compute trust values
for each node in a hierarchical WSN, and this mechanism can then detect malicious
nodes by selecting an appropriate trust threshold. The hierarchical structure can be used
to reduce network traffic caused by node-to-node communications. The contributions
of our work can be summarized as below:

– We develop a trust-based intrusion detection mechanism by means of Bayesian
model to compute trust values and detect malicious nodes in a WSN, which relies
on a scalable hierarchical structure including sensor nodes (SNs) and cluster heads
(CHs). The SNs can initially record trust information during the node-to-node com-
munication, and a CH collects trust reports from all SNs and calculates comprehen-
sive trust values for all nodes in its effective range (e.g., clusters). Malicious nodes
can be identified by selecting an appropriate trust threshold.

– We further conduct a simulation in a WSN to identify an appropriate trust threshold
for detecting a malicious node. By computing and analyzing the trust values of 10
clusters, we point out that the trust threshold in a wireless network is more dynamic
than that in a wired network.

– In the experiment, we evaluate the performance of the Bayesian model in a WSN
with a fixed trust threshold and a dynamic threshold respectively. The results illus-
trate that this model is encouraging in detecting malicious nodes by selecting an
appropriate trust threshold, with an acceptable false positive rate and false negative
rate. Additionally, we compare and analyze the current findings with our previous
results obtained in a wired network [18], and present possible overhead with respect
to our developed trust-based intrusion detection mechanism.

The remaining parts of this paper are organized as follows. In Section 2, we review some
related work about trust calculation and trust management in a WSN. We describe the
details of calculating trust values using Bayesian model in Section 3. In Section 4, we
conduct a simulation to choose an appropriate (initial) trust threshold. We perform an
evaluation and present the experimental results in Section 5. Finally, we conclude our
work with future directions in Section 6.

1 A signature is a kind of descriptions to describe a known attack or exploit.
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2 Related Work

In computer science, the notion of trust has been extensively studied, which is borrowed
from the social science literature attempting to evaluate and predict the behavior of tar-
get objects [11]. In a WSN, a lot of trust-based mechanisms regarding trust computation
and trust management have been developed [8].

Probst and Kasera [21] presented a distributed approach that established reputation-
based trust among sensor nodes to identify malfunctioning, malicious sensor nodes and
minimize their impact on applications. Their proposed method could compute statistical
trust values and a confidence interval around the trust, based on sensor node behavior.
Wang et al. [22] presented a novel intrusion detection mechanism based on the Trust
Model (called IDMTM) for mobile Ad hoc networks. To judge whether it is a malicious
node, they evaluated the trust values using two concepts: Evidence Chain (EC) and Trust
Fluctuation (TF). They further indicated that the IDMTM could greatly decrease the
false alarm rate by efficiently utilizing the information collected from the local node and
the neighboring nodes. Later, Chen et al. [6] proposed an event-based trust framework
model for WSNs, which used watchdog scheme to observe the behavior in different
events of these nodes and broadcast their trust ratings. In their work, different events of
a sensor node have different trust-rating values, that is, a sensor node could have several
trust-rating values stored in its neighbor nodes. Zahariadis et al. [28] proposed a secure
routing protocol (ATSR) by adopting the geographical routing principle to cope with
the network dimensions, and the ATSR could detect malicious neighbors based on a
distributed trust model incorporating both direct and indirect trust information.

For trust management, Shaikh et al. [23] proposed a new lightweight Group-based
Trust Management Scheme (GTMS) employing clusters for wireless sensor networks.
The GTMS evaluated the trust of a group of SNs and worked on two topologies: intra-
group topology where distributed trust management approach was used and intergroup
topology where centralized trust management approach was adopted. Then, Zhang et
al. [29] proposed a dynamic trust establishment and management framework for hierar-
chical wireless sensor networks. Their framework takes into account direct and indirect
(group) trust in trust evaluation as well as the energy associated with sensor nodes in
service selection. Their approach also considers the dynamic aspect of trust by devel-
oping a trust varying function which can be used to give greater weight to the most
recently obtained trust values during the trust calculation. In addition, their approach
has the capability of considering movement of nodes from one cluster to another. The
hierarchical structure (e.g., base station, clusters, sensor nodes) used in our work is very
similar to their work.

Later, Guo et al. [14] presented a trust management framework to generate trust
values by using Grey theory and Fuzzy sets. The total trust value in their work was
calculated by using relation factors and weights of neighbor nodes, not just by simply
taking an average value. Bao et al. [2] proposed a trust-based IDS scheme by utilizing
a hierarchical trust management protocol for clustered wireless sensor networks. They
considered a trust metric including both quality of service (QoS) trust and social trust
for detecting malicious nodes. They further developed an analytical model based on
stochastic Petri nets for performance evaluation and a statistical method for calculat-
ing the false alarm probability. Their experimental results showed that an optimal trust
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threshold for minimizing false positives and false negatives was existed, and that this
optimal trust threshold could differ based on the anticipated WSN lifetime. Their ex-
tended work [3] showed that their trust-based IDS algorithm outperformed traditional
anomaly-based IDS techniques (e.g., weighted summation-based IDS and fixed width
data clustering-based IDS) in the detection probability while maintaining sufficiently
low false positives (i.e., less than 5%). Several other work about trust management pro-
tocols can be referred to [9], [10], [17] and [25].

Different from the above articles, in this work, we mainly attempt to compute trust
values of sensor nodes by means of Bayesian model and further develop a trust-based
intrusion detection mechanism in a hierarchical WSN. This mechanism can compute
trust values for each node and detect malicious nodes by means of a trust threshold. To
the best of our knowledge, the Bayesian model used in our work has not been explored
in a WSN. Based on the results in our previous work [18], we additionally compare the
effect of this Bayesian model with its applications in a wired network.

3 Our Proposed Method

In this section, we introduce the architecture of hierarchical (clustered) wireless sensor
networks, describe the calculation of trust values using Bayesian model for sensor nodes
and present our developed trust-based intrusion detection mechanism.

3.1 Hierarchical Wireless Sensor Network

A hierarchical (clustered) WSN is usually composed of multiple clusters, in which each
cluster contains a cluster head (CH) and a number of sensor nodes (SNs). In this net-
work, a cluster head is assumed to have more computational power and energy resources
than a sensor node. We present the typical architecture of a hierarchical WSN in Fig. 1.
In this model, a WSN consists of a base station, several cluster heads and a number of
clusters (e.g., Cluster 1, Cluster 2,..., Cluster N) grouped by multiple sensor nodes.

The cluster head in each cluster can be selected by using election protocols [27]. The
clusters can be grouped based on various criteria [29] such as location and communi-
cation range or using several cluster algorithms [15]. Generally, a sensor node forwards
its data (or information) to its corresponding cluster head and the cluster head then
forwards the data to the base station. The basic assumptions for a clustered WSN are
described as below:

– All sensor nodes and cluster heads are stationary, and the physical location and
communication range of all nodes in the hierarchical WSN are known.

– All the sensor nodes and cluster heads have unique identities and all SNs are orga-
nized into clusters.

– The base station is a central control authority and virtually has no resource con-
straints. In addition, the base station is fully trusted by all nodes.

– Cluster heads have more computational power and more memory compared to other
sensor nodes in the WSN.

– The base station communicates with the cluster head and each cluster head manages
all the sensor nodes in its own group.
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Base Station

……

Cluster1 Cluster N 

Cluster Head (CH) 

Sensor Node (SN) 

Fig. 1. The typical architecture of hierarchical wireless sensor network

In this work, our mechanism implements a misuse-based IDS in each node and cal-
culates their trust values by means of Bayesian model. With the rapid development
of computer networks, we further assume that: all sensor nodes can be deployed with
a misuse-based IDS (i.e., constructing a wireless misuse-based detection sensor) and
have the basic capability of launching the process of signature matching.

3.2 Bayesian Model

In statistics, Bayesian Model (or called Bayesian inference) is a method of inference
in which Bayes’ rule is utilized to update the probability estimate for a hypothesis as
additional evidence [26]. The objective of using the Bayesian Model in our work is to
calculate the trust values for sensor nodes (and cluster heads) in a clustered WSN. This
model is based on a major assumption described as follows:

– Assumption. We assume that all packets sent from a node are independent from
each other. That is, if one packet is found to be a malicious packet, the probability
of the following packet being a malicious packet is still 1/2.

This probability assumption indicates that the attacks can appear in various forms, either
in one packet or in a number of packets. To derive the calculation of trust values. We
assume that N packets are sent from a node, of which k packets are proven to be normal.
Next, we provide some terms as those described in our previous work [18].

P (ni : normal) = p (means the probability of the ith packet is normal.)

Vi (means that the ith packet is normal.)

n(N) (means the number of normal packets.)
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In terms of the analysis in work [11,26] and the above assumption, we can assume that
the distribution of observing n(N) = k is governed by a Binomial distribution2, which
can be described as below.

P (n(N) = k|p) = (Nk )pk(1 − p)N−k (1)

In this case, our final objective is to estimate the probability: P (VN+1 = 1|n(N) = k)
(determining whether the N + 1 packet is normal or not). We can use the approach of
Bayesian Inference to calculate this probability. Based on the Bayesian theorem, we can
have the following probability distribution.

P (VN+1 = 1|n(N) = k) =
P (VN+1 = 1, n(N) = k)

P (n(N) = k)
(2)

For the above equation, we apply marginal probability distribution3 and we then can
have two equations:

P (n(N) = k) =

∫ 1

0

P (n(N) = k|p)f(p) · dp (3)

P (VN+1 = 1, n(N) = k) =

∫ 1

0

P (n(N) = k|p)f(p)p · dp (4)

There is no prior information about p, so that we assume that p is determined by a
uniform prior distribution f(p) = 1 where p ∈ [0, 1]. Therefore, using equation (1),
(2), (3) and (4), we can have the following equation:

P (VN+1 = 1|n(N) = k) =

∫ 1

0 P (n(N) = k|p)f(p)p · dp∫ 1

0
P (n(N) = k|p)f(p) · dp

=
k + 1

N + 2
(5)

Therefore, trust values (denoted tvalue) can be calculated based on equation (5) for all
nodes in a WSN (i.e., obtaining the number of normal packets k and the total number of
packets N ). In terms of the trust values calculated for each node (i.e., constructing a map
of trust values), a potential malicious node can be identified by giving an appropriate
trust threshold. Note that a node can be regarded as a malicious node by only sending
one malicious packet, but our approach has the capability of evaluating the trust of a
node based on its long-term performance.

3.3 Trust-Based Intrusion Detection Mechanism

As described above, trust values can be calculated based on equation (5). To obtain the
trust value for a certain node, we therefore should record the total number of its sent

2 Binomial distribution is the discrete probability distribution that represents the number of suc-
cesses in a sequence of n independent, which the possibility of each n is the same p.

3 Marginal distribution of a subset of random variables is the probability distribution of the
variables contained in the subset.
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packets and the number of normal packets. In current mechanism, we use a misuse-
based IDS (e.g., Snort) to identify malicious packets (i.e., the number of malicious
packets is m) so that the number of normal packets can be computed as: k = N−m. As
the nature of the misuse-based detection, malicious packets can be detected by means
of signature matching between incoming payloads and stored IDS signatures.

Maliciousness. Based on equation (5), we can determine a malicious node by using a
trust threshold. If we set the trust threshold to T ∈ [a, b] (the selection of the threshold
will be discussed later), then we can judge a malicious node as follows:

– If tvalue ∈ T , then the corresponding node is regarded to be a normal node.
– If tvalue is not in T , then the corresponding node is regarded to be a malicious (or

untrusted) node.

Trust Value of a Node. In a hierarchical WSN, each sensor could have two main func-
tions: sensing and relaying. Sensors collect and gather data and then transmit the col-
lected information to the cluster head directly in one hop or by relaying via a multi hop
path. Sensors transmit or relay data only via short-haul radio communication. It is also
assumed that each cluster head (CH) has the capability of reaching and controlling all
the sensor nodes in its cluster. Each cluster head can receive the data from different
sensor nodes, and it then processes, extracts and sends the data to the base station.4

Base Station Cluster Head (CH) 

Sensor Node (SN) 

Target Node 

Data

Data

Data

Data

Require data 

Send data 

Fig. 2. Trust calculation in a hierarchical wireless sensor network

In Fig. 2, we give an example of calculating trust values for a target node in a hier-
archical WSN. Each sensor node will deploy a misuse-based IDS to examine incoming
packets. The calculation of node’s trust values is based on a time window t. The time
window usually consists of several time units. The sensor nodes in a cluster record the
information (e.g., the number of sent packets, the number of malicious packets) about
other nodes in each time unit and then send the information to its cluster head. After
several time units elapse, the time window slides to the right (e.g., one time unit), and

4 In this structure, the trust of a cluster head (CH) can be evaluated by the base station.
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the sensor nodes can drop the data collected during the earliest unit aiming to reduce
the storage consumption. The cluster head receives the data and then calculates the trust
values for the target node during a selected time period, as shown in Fig. 2, based on
equation (5). Later, the cluster head sends data to the base station.

Specifically, the cluster head will periodically request the trust state for a target node
and thus can establish a map of trust values. In response, all sensor nodes in the cluster
forward the recorded information to the cluster head. Suppose there are n sensor nodes,
the cluster head can then establish a map of trust values as follows:

Tmap = [tvalue,i] (i = 1, 2, ..., n)

Where Tmap represents the matrix (or map) of trust values in the cluster, and tvalue,i
represents the trust values for sensor node i. If a trust threshold is given, then the cluster
head can quickly identify malicious nodes based on the matrix. In the mechanism, bad
behavior of a node (i.e., sending malicious packets) can reduce its trust value greatly.
For a sensor node, its trust value can be computed by its cluster head, while for a cluster
head, its trust value can be computed by the base station.

4 Trust Threshold

To efficiently detect a malicious node using the Bayesian model, a trust threshold should
be identified in advance. According to equation (5), we can find that if k becomes
bigger, then the tvalue will become larger. Because k (the number of normal packets)
is always smaller than N (the total number of incoming packets), the range of tvalue
is belonging to the interval of [0,1]. In this case, the best scenario for tvalue is that its
value infinitely close to 1, which means that a node is more credible by sending most
normal packets. On the other hand, if tvalue declines, it means that malicious packets
are detected for that node during the node-to-node communications.

We define a as the lower limit of the threshold, thus, the trust threshold can be
initially presented as [a,1]. In order to determine the lower limit a, we simulate a clus-
tered WSN with the purpose of identifying an appropriate trust threshold. The simu-
lated WSN consists of 100 sensor nodes (SNs) and 10 cluster heads (CHs) uniformly
distributed in a 110m×110m area. The duration of a time unit for calculating the trust
values is initially set to 10 minutes. To evaluate the trust threshold, we performed the
experiment for a day by randomly selecting 5 clusters. The average trust values for each
cluster are presented in Fig. 3.

The average trust values are calculated by using the trust values of all sensor nodes in
a cluster within an hour5. In the figure, it is visible that each cluster has a different range
of trust values. Take Cluster 1 for an example, its trust values are ranged from 0.856 to
0.937, whereas for Cluster 2, its trust values are ranged from 0.742 to 0.912. For the
Cluster 3, Cluster 4 and Cluster 5, the corresponding trust values are in the range from
0.785 to 0.904, from 0.765 to 0.931, and from 0.731 to 0.893 respectively.

5 In this simulation, we consider an hour is an appropriate time unit for our mechanism to collect
trust information, whereas the time duration can be configured based on real settings.
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Fig. 3. The average trust values for 5 clusters in the simulated WSN

As shown in Fig. 3, it is visible that the trust values are very dynamic in different
clusters. For the other 5 remaining clusters, we conduct the same simulation and find
that their trust values are mainly ranged from 0.724 to 0.916. In [18], we evaluated the
trust values calculated by means of the Bayesian model in a wired network and found
that the corresponding trust values are ranged from 0.75 to 0.92. In this scenario, the
results show that the trust values in a wireless sensor network are more dynamic than
in a wired network. Based on the simulation results, we set the lower limit a to 0.72 so
that the (initial) trust threshold for the simulated WSN is [0.72,1]. If the trust value of a
node is below this threshold, then this node can be regarded as a malicious node.

Note that the lower limit a may be varied in different network deployment (i.e., the
characteristics of traffic may be distinct). In this work, we can only say that a = 0.72
is an appropriate value regarding our simulated WSN. Whether it is suitable for other
WSNs needs to be verified in our future experiments.

5 Evaluation

In this section, we evaluate the performance of our proposed trust-based intrusion de-
tection mechanism on the simulated WSN. In particular, we mainly conducted two ex-
periments by using a fixed and a dynamic trust threshold respectively:

– Experiment1. This experiment evaluated the performance of our proposed method
by using a fixed trust threshold of [0.72,1]. During the experiment, we launched
some wireless attacks and malicious packets by means of testing tools6 (i.e., flood-
ing the WSN with deauthentication packets-WVE-2005-0045).

– Experiment2. This experiment evaluated the performance of our proposed method
by implementing a dynamic trust threshold, which would be updated in every time

6 http://code.google.com/p/wireless-intrusion-detection-system-
testing-tool/

http://code.google.com/p/wireless-intrusion-detection-system-
testing-tool/
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Fig. 4. The false positive rates and the false negative rates for (a) the Experiment1 and (b) the
Experiement2

unit. The dynamic trust threshold for each cluster is an average trust value computed
by all nodes in that cluster during the latest time unit. As being deployed in the same
WSN, we attempt to compare the performance of the fixed trust threshold and the
dynamic trust threshold.

5.1 Experiment1

In this experiment, a fixed trust threshold of [0.72,1] is used. The sensor nodes may
randomly send malicious packets by using the wireless IDS testing tools. Therefore, a
sensor node in a cluster may become a malicious node by sending a number of malicious
packets. The experiment was conducted for 2 days. The false positive rates and the false
negative rates are described in Fig. 4 (a).

In the figure, the false positive rates are ranged from 0.31 to 0.68 while the false
negative rates are ranged from 0.11 to 0.28. The results show that the false alarm rate is
very fluctuant and a bit high regarding the fixed trust threshold. The main reason is that
the traffic in a WSN is very dynamic whereas the fixed trust threshold cannot reflect the
traffic changes in the WSN.

5.2 Experiment2

In this experiment, we used a dynamic trust threshold for each cluster. The dynamic
trust threshold is an average trust value computed by all nodes in its cluster during the
latest time unit. Through analyzing the same WSN data, the false positive rates and the
false negative rates are described in Fig. 4 (b).
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Fig. 5. The trust threshold for cluster 1 and cluster 2 in the Experiement2

In the figure, it is visible that the false positive rates and the false negative rates are
greatly reduced. For the false positive rates, the rate-range is maintained from 0.2 to 0.3
excluding the first several hours. The range for the false negative rate is from 0.05 to
0.15. These experimental results indicate that the use of dynamic trust thresholds can
significantly reduce the false alarm rate and keep the rate at a relatively stable level. The
reason is that the dynamic trust threshold can vary with the latest traffic changes in a
cluster and can more accurately reflect the current network traffic.

In Fig. 5, we illustrate an example of computing dynamic trust thresholds for cluster
1 and cluster 2 during the experiment. It is easily visible that the trust thresholds for
these two clusters are varied. For the cluster 1, the trust threshold is ranged from 0.705
to 0.812, while for the cluster 2, the trust threshold is ranged from 0.713 to 0.82. This
situation is similar to other clusters.

5.3 Discussion

The above experimental results indicate that, by employing the mechanism of comput-
ing the trust threshold in an adaptive way, the false positive rates and false negative
rates for detecting malicious nodes can be greatly reduced and maintained at a stable
level. However, as compared to our previous results obtained in a wired network envi-
ronment [18] (where the false positive rate is about 0.084 and the false negative rate is
about 0.068), the false alarm rate achieved in this work is still a bit higher. This com-
parison reflects that the traffic in a wireless network is more dynamic than that in a
wired network. In other words, it is more difficult to model the traffic by means of the
Bayesian model in a wireless sensor network than in a wired network environment.
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To enhance the detection performance of our proposed trust-based intrusion detec-
tion mechanism, several additional measures (e.g., energy consumption, cooperative-
ness) could be used to compute a weighted trust value. During the experiments, we also
find that the implementation of a misuse-based IDS brings less burden on a sensor node
since all nodes can perform the process of signature matching well. Next, we briefly
analyze possible overhead with respect to our developed mechanism.

Communication Overhead. We assume the worst case scenario: every sensor node
wants to communicate with every other node in the cluster and every cluster wants
to communicate with the other clusters in the WSN. If there are Nct clusters and the
average size of a cluster is S, then the maximum communication overhead within a
cluster is 2S(S − 1)(S − 2) (since a node sends S − 2 and receives S − 2 packets by
communicating with other S − 1 nodes), while the maximum communication overhead
between clusters is 2Nct(Nct − 1) (i.e., a cluster should send a request to the base
station when communicates with another cluster). Thus, the maximum communication
overhead in the WSN is: Nct[2S(S − 1)(S − 2)] + 2Nct(Nct − 1).

Storage Overhead. For sensor nodes, each of them needs to store a 2∗ (S−1) matrix
to record the information (i.e., the number of malicious packets and the total number of
packets) of other nodes. For the cluster head, it needs to store a (S−1)∗ (S−1) matrix
(i.e., recording information sent from other nodes) and a 1 ∗ (s − 1) matrix.

Computation Overhead. In current mechanism, the trust calculation is conducted in
the cluster head. To compute the trust values, the cluster head begins by establishing a
(S − 1) ∗ (S − 1) matrix to record collected information sent from sensor nodes, and
then computes one 1 ∗ (S − 1) matrix of trust values.

Note that in this work, our goal is to compute and evaluate the trust values of WSN
nodes by using the Bayesian model. A detailed comparison of our proposed mechanism
with other existing solutions in the aspect of CPU cycle, memory consumption and
communication overhead will be investigated in our future work.

6 Conclusion and Future Work

In this paper, we proposed a trust-based intrusion detection mechanism by means of
Bayesian model to detect malicious nodes in a hierarchical wireless sensor network.
The Bayesian model enables a hierarchical wireless sensor network to establish a map
of trust values among different sensor nodes. In particular, the sensor nodes collect and
sent data about other nodes to its corresponding cluster head. The cluster head can cal-
culate the trust values for all nodes in its cluster, and the base station can calculate the
trust values for all cluster heads. We then evaluated the trust mechanism in a simulated
WSN and identified an initial trust threshold that can be used at the beginning of detect-
ing malicious nodes. In the evaluation, we conducted two experiments to explore the
effect of a fixed trust threshold and a dynamic trust threshold. The experimental results
show that the way of dynamically computing trust thresholds can greatly reduce both
the false positive rates and the false negative rates, and maintain the false alarm rate at
a lower and more stable level. We also find that the traffic in a wireless sensor network
is more dynamic than that in a wired network by comparing our current results with our
previous work in a wired network environment.
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Our work is developed at an early stage and there are many possible topics for our fu-
ture work. One is to implement our approach into a more larger wireless sensor network
and validate the results obtained in this work. Future work could also include exploring
how to effectively identify a trust threshold, and applying other measures (e.g., energy
consumption) in calculating a weighted trust threshold. In addition, future work could
include investigating the impact of the number of clusters and the time unit on the cal-
culation of trust values, and conducting a comparative performance analysis of existing
trust-based IDS mechanisms.

References

1. Axelsson, S.: The Base-rate Fallacy and the Difficulty of Intrusion Detection. ACM Trans-
actions on Information and System Security 3(3), 186–205 (2000)

2. Bao, F., Chen, I.-R., Chang, M., Cho, J.-H.: Trust-Based Intrusion Detection in Wireless
Sensor Networks. In: Proceedings of the 2011 IEEE International Conference on Communi-
cations (ICC), pp. 1–6 (2011)

3. Bao, F., Chen, I.-R., Chang, M., Cho, J.-H.: Hierarchical Trust Management for Wireless
Sensor Networks and its Applications to Trust-Based Routing and Intrusion Detection. IEEE
Transactions on Network and Service Management 9(2), 169–183 (2012)

4. Beckwith, R., Teibel, D., Bowen, P.: Report from the Field: Results from an Agricultural
Wireless Sensor Network. In: Proceedings of the 29th Annual IEEE International Conference
on Local Computer Networks, pp. 471–478 (2004)

5. Chen, X., Makki, K., Yen, K., Pissinou, N.: Sensor Network Security: A Survey. IEEE Com-
munication Surveys & Tutorials 11(2), 52–73 (2009)

6. Chen, H., Wu, H., Hu, J., Gao, C.: Event-based Trust Framework Model in Wireless Sensor
Networks. In: Proceedings of the 2008 International Conference on Networking, Architec-
ture, and Storage (NAS), pp. 359–364 (2008)

7. Cheung, S.-Y., Varaiya, P.: Traffic Surveillance by Wireless Sensor Networks: Final Report.
California PATH Research Report, UCB-ITS-PRR-2007-4. Institue of Transportation Stud-
ies, University of California, Berkeley (2007), http://www.its.berkeley.edu/
publications/UCB/2007/PRR/UCB-ITS-PRR-2007-4.pdf

8. Cho, J.-H., Swami, A., Chen, I.-R.: A Survey on Trust Management for Mobile Ad Hoc
Networks. IEEE Communications Surveys & Tutorials 13(4), 562–583 (2011)

9. Daabaj, K., Dixon, M., Koziniec, T., Lee, K.: Trusted Routing for Resource-Constrained
Wireless Sensor Networks. In: Proceedings of the 2010 IEEE/IFIP International Conference
on Embedded and Ubiquitous Computing (EUC), pp. 666–671 (2010)

10. Ganeriwal, S., Balzano, L.K., Srivastava, M.B.: Reputation-based Framework for High In-
tegrity Sensor Networks. ACM Transitions on Sensor Network 4(3), 1–37 (2008)

11. Gonzalez, J.M., Anwar, M., Joshi, J.B.D.: A Trust-based Approach against IP-Spoofing At-
tacks. In: Proceedings of the 9th International Conference on Privacy, Security and Trust
(PST 2011), pp. 63–70 (2011)

12. Ghosh, A.K., Wanken, J., Charron, F.: Detecting Anomalous and Unknown Intrusions
Against Programs. In: Proceedings of the 1998 Annual Computer Security Applications Con-
ference (ACSAC), pp. 259–267 (1998)

13. Grilo, A., Piotrowski, K., Langendoerfer, P., Casaca, A.: A Wireless Sensor Network Archi-
tecture for Homeland Security Application. In: Ruiz, P.M., Garcia-Luna-Aceves, J.J. (eds.)
ADHOC-NOW 2009. LNCS, vol. 5793, pp. 397–402. Springer, Heidelberg (2009)

http://www.its.berkeley.edu/publications/UCB/2007/PRR/UCB-ITS-PRR-2007-4.pdf
http://www.its.berkeley.edu/publications/UCB/2007/PRR/UCB-ITS-PRR-2007-4.pdf


Evaluation of Detecting Malicious Nodes Using Bayesian Model 53

14. Guo, J., Marshall, A., Zhou, B.: A New Trust Management Framework for Detecting Mali-
cious and Selfish Behaviour for Mobile Ad Hoc Networks. In: Proceedings of the 10th IEEE
International Conference on Trust, Security and Privacy in Computing and Communications
(TrustCom), pp. 142–149 (2011)

15. Gupta, G., Younis, M.: Performance Evaluation of Load-Balanced Clustering of Wireless
Sensor Networks. In: Proceedings of the 10th International Conference on Telecommunica-
tions (ICT), pp. 1577–1583 (2003)

16. Hutchison, K.: Wireless Intrusion Detection Systems. SANS GSEC Whitepaper, 1–
18 (2005), http://www.sans.org/reading room/whitepapers/wireless/
wireless-intrusion-detection-systems 1543

17. Liu, K., Abu-Ghazaleh, N., Kang, K.-D.: Location Verification and Trust Management for
Resilient Geographic Routing. Journal of Parallel and Distributed Computing 67(2), 215–228
(2007)

18. Meng, Y., Kwok, L.-F., Li, W.: Towards Designing Packet Filter with a Trust-Based Ap-
proach Using Bayesian Inference in Network Intrusion Detection. In: Keromytis, A.D., Di
Pietro, R. (eds.) SecureComm 2012. LNICST, vol. 106, pp. 203–221. Springer, Heidelberg
(2013)

19. Mishra, A., Nadkarni, K., Patcha, A.: Intrusion Detection in Wireless Ad-Hoc Networks.
IEEE Wireless Communications 11(1), 48–60 (2004)

20. Porras, P.A., Kemmerer, R.A.: Penetration State Transition Analysis: A Rule-based Intru-
sion Detection Approach. In: Proceedings of the 8th Annual Computer Security Applications
Conference (ACSAC), pp. 220–229 (1992)

21. Probst, M.J., Kasera, S.K.: Statistical Trust Establishment in Wireless Sensor Networks.
In: Proceedings of the 2007 International Conference on Parallel and Distributed Systems
(ICPADS), pp. 1–8 (2007)

22. Wang, F., Huang, C., Zhang, J., Rong, C.: IDMTM: A Novel Intrusion Detection Mechanism
based on Trust Model for Ad-Hoc Networks. In: Proceedings of the 22nd IEEE International
Conference on Advanced Information Networking and Applications (AINA), pp. 978–984
(2008)

23. Shaikh, R.A., Jameel, H., d’Auriol, B.J., Lee, H., Lee, S., Song, Y.J.: Group-based Trust
Management Scheme for Clustered Wireless Sensor Networks. IEEE Transactions on Paral-
lel and Distributed Systems 20(11), 1698–1712 (2009)

24. Sommer, R., Paxson, V.: Outside the Closed World: On Using Machine Learning for Network
Intrusion Detection. In: Proceedings of the 2010 IEEE Symposium on Security and Privacy,
pp. 305–316 (2010)

25. Sun, Y., Luo, H., Das, S.K.: A Trust-Based Framework for Fault-Tolerant Data Aggregation
in Wireless Multimedia Sensor Networks. IEEE Transactions on Dependable and Secure
Computing 9(6), 785–797 (2012)

26. Sun, Y., Yu, W., Han, Z., Liu, K.: Information Theoretic Framework of Trust Modeling and
Evaluation for Ad Hoc Networks. IEEE Journal on Selected Areas in Communications 24(2),
305–317 (2006)

27. Younis, O., Fahmy, S.: HEED: A Hybrid Energy Efficient, Distributed Clustering Approach
for Ad Hoc Sensor Network. IEEE Transaction on Mobile Computing 3(3), 366–379 (2004)

28. Zahariadis, T., Trakadas, P., Leligou, H.C., Maniatis, S., Karkazis, P.: A Novel Trust-Aware
Geographical Routing Scheme for Wireless Sensor Networks. Wireless Personal Communi-
cations, 1–22 (2012)

29. Zhang, J., Shankaran, R., Orgun, M.A., Varadharajan, V., Sattar, A.: A Dynamic Trust Estab-
lishment and Management Framework for Wireless Sensor Networks. In: Proceedings of the
2010 IEEE/IFIP International Conference on Embedded and Ubiquitous Computing (EUC),
pp. 484–491 (2010)

http://www.sans.org/reading_room/whitepapers/wireless/wireless-intrusion-detection-systems_1543
http://www.sans.org/reading_room/whitepapers/wireless/wireless-intrusion-detection-systems_1543


 

J. Lopez, X. Huang, and R. Sandhu (Eds.): NSS 2013, LNCS 7873, pp. 54–67, 2013. 
© Springer-Verlag Berlin Heidelberg 2013 

Model the Influence of Sybil Nodes in P2P Botnets 

Tianzuo Wang*, Huaimin Wang, Bo Liu, and Peichang Shi 

School of Computer Science, National University of Defense Technology, ChangSha, China 
{tianzuow,pcshi.nudt}@gmail.com, whm_w@163.com, 

boliu615@yahoo.com.cn 

Abstract. Sybil attacks are suitable to mitigate P2P botnets, and the effects  
depend on the influences of Sybil nodes. However, the problem of how to  
evaluate the influences of Sybil nodes is rarely studied. Considering Kademlia 
based botnets, we formulate a model to evaluate the influence of Sybil nodes 
during the publishing of commands. Simulation results show the correctness of 
this model, and it is found that the percentage of Sybil nodes in the botnet,  
the value of K, and the size of the botnet are three important factors which  
significantly affect the influence of Sybil nodes. For defenders who want to  
determine how many sybil nodes should be inserted to achieve the goal of  
mitigation, this model can provide valuable guidance. 

Keywords: P2P botnets, Sybil, mitigation, influence, model, Kademlia. 

1 Introduction 

Botnets are complex, flexible and efficient platforms for network attacks, and are threat-
ening the Internet severely. Recent years, for the absence of single point of failure, more 
and more botnets are built on P2P, e.g., Storm [1], Waledac [2] and Conficker [3].  

Attacking the publishing of commands can efficiently mitigate P2P botnets. For the 
botmaster of a P2P botnet, in order to control the whole botnet, he has to deliver 
commands to all the bots through two stages. First, the botmaster publishes the com-
mands on certain root nodes. Second, commands are spreaded to all the bots. The 
efficient way to mitigate P2P botnets is to disrupt the first stage, because it is in the 
upstream of the control over the botnet. The earlier the delivery of commands is 
blocked, the better the effect of mitigation will be.  

In P2P botnets, the delivery of commands is resilient to eliminating bots, but is 
vulnerable to Sybil attacks. A Sybil node originally means an entity that has multiple 
identities, and now in general, the fake identities are also called Sybil nodes [4].  
Douceur [5] et al. pointed out that in a purely decentralized network without a centric 
authority, it is almost impossible to completely solve the problem of Sybil attacks. 
Even though some approaches [4, 6, 7] have been proposed to relieve the problem of 
Sybil attacks, usually, they are not suitable to P2P botnets.  

In P2P botnets, the mitigation effect of Sybil nodes is usually exerted through res-
ponding to inquiring bots with misleading messages. From existing methods [8-10] 
                                                           
* Corresponding author. 
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which use Sybil nodes to mitigate P2P botnets, we concluded that the effect of mitiga-
tion depends on the probability that bots inquire Sybil nodes during their activities. 
We call this probability the influence of Sybil nodes in P2P botnets. 

If there is a model that can predict the influence of Sybil nodes, proper suggestions 
will be provided to the practical mitigation. However, there are no such models as far 
as we know.  

This paper studies the influence of Sybil nodes on the publishing of commands. 
Taking Kademlia [11] based botnets (e.g. Storm, Overbot [12] and TLD-41) as the 
most important case, through the analysis of some critical factors that affect the influ-
ence of Sybil nodes, a prediction model is proposed to calculate the probability for 
bots to inquire Sybil nodes during the publishing of commands. This model has been 
validated by our experiments. In accord with our model, simulations show that the 
percentage of Sybil nodes in the Kademlia-botnet, the value of K, and the size of the 
botnet are three important factors which significantly affect the influence of Sybil 
nodes. Big values of these factors will lead to large influence of Sybil nodes. 

The reason that we focus on Kademlia based botnets is that Kademlia is often 
adopted by botmasters to construct their P2P botnets, for example, Storm botnet,  
Waledac botnet and Conficker botnet all utilized Kademlia protocol to construct their 
P2P overlays. Further, structured P2P protocols have much in common, so the study 
on Kademlia based botnets can also shed lights on mitigating other kinds of structured 
P2P botnets. 

The rest of this paper is organized as follows. In Section 2, the background on the 
Kademlia protocol is presented. In Section 3, the prediction model of the influence of 
Sybil nodes are deduced. In Section 4, the results of experiments are analyzed, and 
our model is validated. Related work is reviewed in Section 5, and the paper is  
concluded in Section 6. 

2 Background 

2.1 Route List of Kademlia 

Kademlia is a kind of structured P2P protocol. Between a structured P2P network and 
an unstructured one, the efficiency of searching is one of the most important differ-
ences. Unstructured P2P protocols often adopt flooding algorithm to search, and make 
use of TTL (Time To Live) to limit the massive requesting messages generated. This 
kind of searching not only is inefficient for the directionless inquiries, but also may 
miss the targets because of the limit of TTL. Structured P2P protocols provide the 
nodes with the information about the structure of the network, so that the publisher 
can store objects in specific locations and the nodes can issue directed searching for 
those objects. It is necessary for structured P2P nodes to determine the distances to 
the target objects, so each node or object need to be assigned an ID. 

                                                           
1 http://www.securelist.com/en/analysis/204792180/TDL4_Top_Bot 
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2.3 Publishing of the C&C Information 

To publish a <key, value> pair, one node W has to find the K nearest nodes to key 
first, and this process is called “node lookup”. After that, the STORE RPC will be 
used to store this pair on each of the K nodes. The K nearest nodes is also called root 
nodes for key. During node lookup, the initiator W will firstly select α nearest nodes 
to key in its own k-buckets, and then issue FIND_NODE RPCs to them concurrently 
and asynchronously. If no response is received from one node, the information of this 
node will be deleted from the k-buckets. This process will be repeated to find the root 
nodes. 

Input：Ckey，C&C information 

Output：K-list 
1  Construct a K-list which consists of K nearest bots to Ckey in k-buckets; 
2  While( there are bots not requested in K-list) 
3  { 
4  Request the nearest unrequested bot(bot_u) for its K nearest neighbors(K-neighbors);   
5  Wait for K-neighbors from bot_u; 
6  If ( no response from bot_u) 
7  { 
8   Delete bot_u from K-list; 
9  } 
10  Else 
11 { 
12   K-list = K nearest bots from K-list and K-neighbors; 
13  } 
14  } 
15 Store(K-list, C&C information)  

Fig. 2. Algorithm of Publishing in Kademlia 

If no nearer nodes are received in a round of α FIND_NODE RPCs, the node W 
will take the K nearest nodes to its knowledge as the possible root nodes. At the mo-
ment, W has to send FIND_NODE to all the nodes not inquired among the nearest K 
ones. After receiving the responses of the K nodes, the process of node lookup ends. 
Fig. 2 shows the algorithm of publishing in Kademlia, and the K-list contains the K 
nearest nodes to the current knowledge of node W. For the sake of simplicity, α is set 
1 here. 

Whatever complex C&C mechanisms are adopted by Kademlia based botnets, the 
delivery of C&C information have to make use of this publishing process of Kadem-
lia. When publishing <CKey, C&C information> into the botnet, the publishing node 
W has to find the K nearest nodes to CKey first, and then store the <CKey, C&C in-
formation> pair on these nodes respectively. In a Kademlia-based botnet, the CKey is 
often a rendezvous value between bots and the botmaster. 

3 Prediction Model of Influence 

3.1 Concepts and Assumptions 

For the convenience of description, some concepts are presented here. 
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Publishing path: the set of all the nodes that are visited during a publishing activity. 

Meet a Sybil during publishing: there is at least one Sybil in the publishing path. 

A Sybil-meet pub: a publishing activity that meet a Sybil. 

Confronting space: the smallest nodeID subspace which contains the nodes in the  
K-list. 

Target space: the smallest nodeID subspace that contains the K root nodes. 

Inquiry round: a round of inquiries begins with the sending of α requests, and ends 
with the receiving of α responses or timeouts. 

For simplicity but without loss of generality, we assume the Kademlia-botnet as 
the assumption 1, which constitute the basic scenario for the deduction of our model. 

Assumption 1. The size of the Kademlia based botnet is M, and the percentage that 
Sybil nodes take in the botnet is x. The bots and Sybil nodes are both distributed in 
the nodeID space randomly, and Sybil nodes are as active as bots. <CKey, C&C in-
formation> is to be published into the botnet by the botmaster through node W. 

According to the feature of structured P2P protocols, the confronting space will 
shrink after each round of α FIND_NODE inquiries. The node lookup process can be 
considered as a process that the confronting space shrinks gradually onto the target 
space. So, we propose assumption 2. 

Assumption 2. Before the confronting space has already shrunk onto the target space, 
the inquiries of FIND_NODE RPCs are issued round after round. In each round, α 
FIND_NODE RPCs are issued asymmetrically, and this round does not end until all 
the α inquiries are responded or timeout. Until the previous round ends, the new round 
would not start. Once the confronting space shrinks onto the target space, the K root 
nodes will be inquired one by one. 

Normally, the target space should always be located in the confronting space.  
According to the assumption 1, the distribution of nodes can be roughly considered 
uniform, thus the size of the subspace represented by each node is also roughly equal. 
During each round, the node W selects α nodes from the K-list, and sends them 
FIND_NODE messages. The space represented by the α nodes is α/K of the current 
confront space. Each of the inquired nodes will return the K nearest nodes to CKey in 
their route list, so node W will get the information of α*K nodes. Then from the α*K 
nodes, W will select K nearest nodes to CKey to update the K-list, so the space would 
shrink to K/(α*K). Thus, we can get the ideal shrinking rate U of confronting space in 
each round. 

 K
K

K

K
U =

⋅
⋅= )/(1
α

α  (1) 

Thus, assumption 3 is made as below. 

Assumption 3. After each round of inquiries, the size of confronting space shrinks to 
its 1/U. In this paper, U is called the shrinking rate, and its value is considered to be 
constantly K. 
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3.2 Deduction of the Model 

According to the assumptions above, if the number of  nodes located in the initial 
confronting space is M0, the number of inquiry rounds needed for the confronting 
space to shrink onto the target space will be R=logkM0-logKK, which means that there 
will be α*R inquiries. When the confronting space is the same as the target space, 
other K inquiries are still needed for each node in the K-list. Thus, α*R+K inquiries 
are needed during the whole process of publishing. 

According to the assumption 1, the probability to visit a Sybil in each inquiry is x, 
so the probability for the node W to meet at least one Sybil during publishing is  
1-(1-x)α*R+K . 

Now, it is clear that if we can calculate the probability distribution of M0, we will 
be able to get the total probability for W to meet a Sybil during the publishing of 
<CKey, C&C information>. This total probability is the influence of Sybil nodes. 

In this paper, we name the k-bucket of [2i, 2i+1) the NO_(i) k-bucket, and name [2i, 
2i+1) the NO_(i) k-bucket scope. It can be proved that the length of the path from one 
node to any node in its NO_(i) k-bucket scope is the same in the sense of statistics, 
which means that probability is the same to meet with Sybil nodes when searching for 
any node in the NO_(i) k-bucket scope. In this sense, we can take the k-bucket scope 
which contains the target space as the initial confronting space.  

Assume the nodeID contains L bits. M is the size of the botnet according to as-
sumption 1. If the target space is located in the NO_(i) k-bucket scope, the size of the 
initial confronting space would be 2i, so M0 would be M*2i/2L=M*2i-L.  

Thus, the probability distribution of M0 is determined by the distribution of the 
target space. If for each k-bucket scope of the node W, we can calculate the probabili-
ty that the target space is located in it, we will get the probability distribution of M0. 

According to the protocol of Kademlia, when the node W publishes <CKey, C&C 
information>, the target space is determined by CKey. If CKey is located in its 
NO_(L-i) k-bucket scope, and if the target space is no larger than the NO_(L-i)  
k-bucket scope, the target space is in the NO_(L-i) k-bucket scope. The size of the 
smallest k-bucket scope that contains the target space should be no smaller than K. 

The probability that the target space is located in the NO_(L-h) k-bucket is Ph=2L-

h/2L=2-h, because the probability that CKey is located in the NO_(L-h) k-bucket is 
Ph=2L-h/2L=2-h. In this situation, M0 equals M/2h. If we can identify the smallest k-
bucket scope that can accommodate the target space, we will get the probability  
distribution of the target space. 

The proportion taken by the NO_(i) k-bucket scope in the total space is 2-(L-i).  
The proportion taken by the target space in the total space is K/M=2-log

2
(M/K), so  

the index of the smallest k-bucket scope containing the target space should be  
L-⌊log2(M/K)⌋, which means the smallest k-bucket containing the target space is 
NO_(L-⌊log2(M/K)⌋).  

Thus, we get the distribution of M0 as well as the probability to meet a Sybil for 
the node W when publishing, as is shown in Table II.  

The probability that the node W itself is located in the target space is 
1/2⌊log

2
(M/K)⌋≈K/M, and in this situation, the publishing path would not include a Sybil 
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node unless there is a Sybil node in the other K-1 root nodes. In this situation, the 
probability to meet a Sybil during publishing is 1-(1-x)K-1. According to the analysis 
above, for each node which is publishing commands, the average probability to meet 
a Sybil during publishing is P. 
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It can be find out that with the increase of the size of network, the Sybil percentage or 
the K value, the probability to meet a Sybil during publishing increases. 

Table 2. Distribution of the probability to meet a Sybil during publishing 
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4 Experiments and Validation 

In order to validate this model, a number of simulation experiments are conducted. 
There are some important variables to consider in experiments: the size of the  
Kademlia-botnet (n_size), the number of Sybil nodes (n_sybil), the number of bots 
(n_bot), the proportion taken by Sybil nodes (Sybil percentage), the number of  
Sybil-meet pub (np_sybil), the total number of publishing (np_total), the proportion of 
Sybil-meet pub (Sybil-meet-pub rate) and so on. In fact, P in equation (2) is the Sybil-
meet-pub rate estimated through the model. The following conditions are satisfied. 

n_size = n_sybil + n_bot 
Sybil percentage = n_sybil / n_size 
Sybil-meet-pub rate = np_sybil / np_total 
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4.1 Simulation Platform 

Our experiments are carried out on our simulation tool based on PeerSim [14].  
PeerSim is a well-known open sourced simulation tool written in JAVA for P2P  
networks, and Furlan and Bonani implemented Kademlia protocol for PeerSim. Based 
on these works, we devised the Kademlia protocol implementation and added certain 
functions into PeerSim. Thus we got a simulation platform for Kademlia-botnets, 
which can simulate the publishing of C&C information and calculate the results we 
concern. PeerSim supports two kinds of simulation modes, one is cycle-based which 
is efficient but ignores the transport layer in the communication protocol stack, the 
other is event-based which is less efficient than the former but supports transport layer 
simulation. Our simulation platform works upon the event-based mode.  

Parameters such as Sybil percentage, n_bot and K (which determines the number 
of bots to return when receiving FIND_NODE message in Kademlia) are the most 
important to be set. Under each set of parameters, the simulator runs for 20 times and 
the average of results are adopted. 

During each time of the simulations, at least two publishing activities are issued by 
every node in the botnet, and the objectIDs for the publishing activities are generated 
by the simulator randomly. For example, if there are 2000 nodes in the network, 4000 
searching actions will be issued. The value of np_sybil and np_total are recorded 
accumulatively, and the mitigation rate is calculated at the end of each time of simula-
tion. The requests for C&C information are issued concurrently and asynchronously. 
The concurrent number is set 3, which means that at most three requests from a bot 
can exist simultaneously in the network.  

4.2 Results and Analysis 

1) Impact of Sybil percentage 

 
Fig. 3. Impact of Sybil percentage 
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To check whether this model can correctly reflect the impact of Sybil percentage on 
the Sybil-meet-pub rate, simulations are carried out with the value of n_bot being 
respectively 2048, 4096, 6144 and 8192. The value of K is set 20, and the comparison 
between the results of experiments and the prediction of the model is shown in Fig. 3. 
The dotted line represents the results of simulation, and the active line represents the 
prediction of the model, and the two curves fit well. This means that this model can 
reflect the impact of Sybil percentage well. 

According to the model, the Sybil-meet-pub rate should increase obviously with 
the increase of Sybil percentage, which is verified in the experiments. The reason is 
that with the increase of the density of Sybil nodes, the probability for a bot to meet a 
Sybil in the iterative inquiries during publishing will also increase. 

2) Impact of the Botnet Size 

In order to check whether this model can correctly reflect the impact of botnet  
size on the Sybil-meet-pub rate, simulations are carried out under different Sybil  
percentages. In experiments, the value of K is set 20, and the results are shown in  
Fig. 4. In Fig. 4(a), the results with bot number being respectively 2048, 8192 and 
16384 are compared, and in Fig. 4(b), the comparison predicted by our model is 
made. Both results demonstrate that the Sybil-meet-pub rate increases with the  
enlargement of the botnet. The reason for this phenomenon is that with the enlarge-
ment of the botnet, the average length of paths would increase, which makes the 
number of inquiry rounds increase and results in the increase of Sybil-meet-pub rate. 

The impact of the botnet size is more obviously shown in Fig. 4(c) and Fig. 4(d). 
The experimental results are represented by the dotted line, and the prediction results 
are represented by the active line. The errors between two kinds of results are always 
below 10%, which means the model can effectively reflect the impact of botnet size 
on the Sybil-meet-pub rate. 

 
Fig. 4. Impact of the botnet size 
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The fact that Sybil-meet-pub rate increases with the enlargement of the botnet  
implies that for large scale Kademlia-botnets, Sybil nodes can do better in counter 
attacking. 

3) Impact of the K Value 

In order to check whether this model can correctly reflect the impact of the value of K 
on the Sybil-meet-pub rate, simulations are carried out under different K values.  
In experiments, the n_bot is set 4096, and the results are shown in Fig. 5. Fig. 5(a) 
demonstrates the relationship between Sybil-meet-pub rate and Sybil percentage dur-
ing simulations, with the value of K being set 8, 10, 16, 20 and 32 respectively.  
Fig. 5(b) shows the results calculated by the model. The relationships between differ-
ent curves in Fig. 5(a) are nearly the same with that in Fig. 5(b).  

Fig. 5(c) and Fig. 5(d) demonstrate the relationships between Sybil-meet-pub rate 
and the K value, and it is more obviously displayed that Sybil-meet-pub rate increases 
with the growth of the K value. According to calculation, the errors between the  
results of experiments and that of model are always below 10%, which indicates that 
our model can correctly reflect the impact of the K value on the Sybil-meet-pub rate. 

The impact of the K value implies that for botmasters, the smaller K should be 
adopted; while for the defenders, a bigger K is preferred. 

 

Fig. 5. Relationships between the K value and the Sybil-meet-pub rate 
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The relationship between the Sybil-meet-pub rate and the value of K is showed in 
Fig. 6, with Sybil percentage being 1/K. According to the prediction of our model, 
when the Sybil percentage equals 1/K, the Sybil-meet-pub rate would be high, as is 
shown by the active line in Fig. 6. This is because there would be one Sybil node in 
every K nodes in average. The dotted line in Fig. 6 shows the results of experiments. 
The errors between the results of experiments and that of the model are always below 
10%, which means that the prediction of our model is acceptable. 

 

Fig. 6. Comparisons between the results of experiments and model when Sybil percentage = 
1/K 
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nodes were added into the botnet, and the Sybil nodes always responded to the inquir-
er with error messages which would cheat bots to stop searching. The results of the 
experiments demonstrated that the Sybil nodes could mitigate the delivery of C&C 
information obviously, with no need to predict the keys used by the botmaster. How-
ever, the impacts of some important parameters (such as the size of the botnet and the 
value of K) were not studied, and no prediction model was proposed to calculate the 
effect of Sybil attacks, which is important for mitigation in practice. 

Holz et al. [8] proposed a method to separate a part of the P2P botnet from the rest. 
To eclipse a particular keyword CKey, they position a certain number of fake nodes 
closely around CKey, i.e., the DHT IDs of the nodes are closer to the hash value of 
CKey than that of any other regular peers. They then announce these nodes to regular 
peers in order to “poison” their routing lists and to attract all the route requests for 
CKey. However, this method can only be effective to the particular key at a moment.  

In fact, the method of Holz is a kind of eclipse attack[15]. Eclipse attack is an im-
portant pattern of the Sybil attack. Singh et al.[16] pointed out that the effect of the 
eclipse attack depends on the in-degrees of Sybil nodes, so they proposed a method to 
defend against Sybil nodes by limiting the degrees of nodes in the network. In their 
method, the in-degrees of all nodes are nearly the same, including the Sybil nodes.  

Ping Wang et al. [17] proposed a good mathematical model to estimate the  
probability that bots inquire at least one Sybil nodes during their network activities. 
However, there are at least four import differences between the model in [17] and that 
in this paper. First, the number of inquiry rounds, which is a critical value for the 
model, was directly estimated in [17], rather than calculated as in this paper. Second, 
the model in [17] is only for one node, but our model of equation (2) is for the whole 
botnet, which may give more valuable guidance. Third, the impacts of some critical 
parameter, such as Sybil percentage, the size of botnet and the value of K, were not 
clarified in [17]. Further, the model in [17] was not verified by experiments.  

In this paper, we studied the influence of Sybil nodes under the most restrict limita-
tion: the degrees of Sybil nodes are no higher than bots. In fact, the prediction of our 
model is a lower limit for the influence of Sybil nodes; once the Sybil nodes have 
high in-degrees than bots, the influence will be enhanced obviously. 

6 Conclusion 

The mitigation of P2P botnets is a relatively challenging problem in the field of secu-
rity research, and Sybil attacks should be regarded as a powerful method to counter 
attack P2P botnets. However, it is rarely studied how to evaluate the influence of 
Sybil nodes in P2P botnets, especially during the publishing of C&C information. 

Since Kademlia is very suitable to build large P2P networks and there have already 
been some typical P2P botnets based on it, we take the Kademlia based botnet as  
the object of our study. In this paper, the features of C&C information publishing in 
Kademlia botnets are analyzed, and then some important concepts and assumptions 
are presented. Based on the study of the impacts of some important factors, a predi-
tion model is proposed to evaluate the influence of Sybil nodes on the C&C informa-
tion publishing. This model is validated by extensive simulations.  
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As a future work, the influence of Sybil nodes under different preconditions, for 
example, Sybil nodes are more active than bots, or Sybil nodes are distributed in the 
botnet in different manners, will be studied. These researches are to provide better 
suggestions for the mitigation of P2P botnets. 
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Abstract. The Locator/ID Separation Protocol (LISP) is a routing ar-
chitecture that provides new semantics for IP addressing. In order to sim-
plify routing operations and improve scalability in future Internet, the
LISP uses two different numbering spaces to separate the device iden-
tifier from its location. In other words, the LISP separates the ’where’
and the ’who’ in networking and uses a mapping system to couple the lo-
cation and identifier. This paper analyses the security and functionality
of the LISP mapping procedure using a formal methods approach based
on Casper/FDR tool. The analysis points out several security issues in
the protocol such as the lack of data confidentiality and mutual authen-
tication. The paper addresses these issues and proposes changes that are
compatible with the implementation of the LISP.

Keywords: Location/ID Split Protocol, Casper/FDR, Future Internet,
Address Resolving.

1 Introduction

Since the public Internet first became part of the global infrastructure, its dra-
matic growth has created a number of scaling challenges. Among the most fun-
damental of these is helping to ensure that the routing and addressing systems
continue to function efficiently as the number of connected devices increases.
To deal with these issues, a number of proposals have been described in the
literature such as the LINA, ILNP [1] [2] and the addressing scheme proposed
by Aiash et al in [3] [4]. Unlike IP addresses, which combines hosts’ locations
and identifiers in a single numbering space, the proposals adopted the concept
of ID/Location split with uses two separate numbering spaces; one specifies the
host’s identifier while the other defines its location.

An IETF working group along with the research group at Cisco, are working
on the Locator/ID Separation Protocol (LISP) [10]. This protocol shows a great
potential; firstly, in addition to dealing with addressing and routing issues, it
considers issues like security, QoS, multi-casting and mobility in different envi-
ronments such as cloud computing and Next Generation Networks (NGNs) [5].
Secondly, large amount of research papers and Internet drafts have been pro-
duced by Cisco and the LISP working group which describe the progress in the
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design of the LISP [6]. Thirdly, some of the routing and addressing concepts of
the LISP have already been implemented in the new Cisco Nexus 7000 Series
Switches. Due to these reasons, this paper considers the LISP protocol as an ex-
ample of the new routing/addressing schemes for future Internet and investigates
the security of this protocol.

A key concept of the LISP is that end-systems (hosts) operate the same
way they do today. The IP addresses that hosts use for sending and receiving
packets do not change. In LISP terminology, these addresses are called Endpoint
Identifiers (EIDs). Routers continue to forward packets based on IP destination
addresses, the IP addresses of gateway routers or LISP-capable routers at the
edge of end-sites are referred to as Routing Locators (RLOCs). To map hosts’
EIDs to the authoritative RLOC, the LISP assumes the existence of a mapping
or address resolving system that consists of a Map Server (MS) and a distributed
database to store and propagate those mappings globally. The functionality of
the mapping system goes through two stages:

1. Registration Stage: in this stage, the Map Server learns the EIDs-to-RLOC
mappings from an authoritative LISP-Capable Router and publishes them
in the database.

2. Addresses resolving Stage: the Map Server (Ms) accepts Map-Requests from
routers, looks up the database and returns the requested mapping.

These two stages will be explained in more details in section 2.2.
Currently, the research concentrates mainly on defining the LISP architecture

as well as the structure of the packets such as the Map-Request and Map-Reply
messages. However, the security-related research is still at an early stage, the
research in [7] [8] have highlighted potential threats as an introduction to come
up with the required security mechanisms. These research efforts have not defined
specific attacks against the deployment of the LISP. Therefore, this paper uses
formal methods approach based on the well developed CASPER/FDR [15] tool
to investigate the security of implementing the LISP architecture. Our main
concern here is the security of the address resolving stage (stage 2), where a
LISP-capable router approaches the Map Server with a Map-Request message
and expects the required EID-to-RLOC mapping in a Map-Replay message.

This study adds the following contributions: firstly, using formal methods ap-
proach, it discovers and describes possible attacks against the implementation
of the LISP architecture. Secondly, to fix these problems, the paper proposes
feasible solution that is in line with the goals of the LISP’s security require-
ments as defined in [8]. The proposed solution has been formally verified using
Casper/FDR. We believe that, this paper will help researchers and developers
to realize some of the actual security threats and use the proposed solution as a
guideline to come up with the most complete security solutions.

The rest of the paper is organised as follows: Section 2 describes related work
in the literature. Section 3 formally analyses the security of the basic address
procedure of the LISP, then using a progressive approach, it explains and for-
mally verifies the refinement stages, which led to the final version of the secure
protocol. The paper is concludes in Section 4.
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2 Related Work

2.1 An Overview of The LISP

To improve routing scalability while facilitating flexible address assignment in
multi-homing and mobility scenarios, the LISP describes changes to the Inter-
net architecture in which IP addresses are replaced by routing locators (RLOCs)
for routing through the global Internet and by endpoint identifiers (EIDs) for
identifying network sessions between devices [9]. As shown in Fig 1, three essen-
tial components exist in the LISP environment: the LISP sites (EID space), the
non-LISP sites (RLOC space), and the LISP Mapping System which comprises
Map Servers and databases.

– The LISP sites (EID space): they represent customer end-sites in exactly
the same way that end-sites are defined today. However, the IP address in
the EID space are not advertised to the non-LISP sites, but are published
into the LISP Mapping Systems which performs the EID-to-RLOCmapping.
The LISP functionalities is deployed on the site’s gateway or edge routers.
Therefore, based on their roles, two types of routers are defined: firstly, the
Ingress Tunnel Routers (ITRs) which receive packets from hosts and send
LISP packets toward the Map Server. Secondly, the Egress Tunnel Routers
(ETRs) which receive LISP packets from the Map Server and pass them to
hosts [10] [9].

– Non-LISP sites (RLOC space): it represents current sites where the IP
addresses are advertised and used for routing purpose.

– LISP Mapping Systems: These are represented by Map Servers (MS)
and a globally distributed database that contains all known EID prefixes
to RLOC mappings. Similar to the current Domain Name System (DNS),
the Mapping systems are queried by LISP-capable devices for EID-to-RLOC
mapping.

2.2 Interactions with Other LISP Components

The functionality of the LISP goes through two stages:

1. The EID Prefix Configuration and ETR Registration Satge
As explained in [11], an ETR publishes its EID-prefixes on a Map Server
(MS) by sending LISP Map-Register messages which includes the ETR’s
RLOC and a list of its EID-prefixes. Initially, it has been presumed that
prior to sending a Map-Register message, the ETR and Map Server must be
configured with a shared secret or other relevant authentication information.
Upon the receipt of a Map-Register from an ETR, the Map Server checks
the validity of the Map-Register message and acknowledges it by sending a
Map-Notify message. When registering with a Map-Server, an ETR might
request a no-proxy reply service which implies that the Map Server will
forward all the EID-to-RLOC mapping requests to the relevant ETR rather
than dealing with them.
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Fig. 1. The LISP Network Architecture Design [9]

The registration stage, shown in Fig 2, is vulnerable to serious security
threats such as replay and routing table poisoning attacks. A detailed secu-
rity analysis of this stage has been presented in another work of our group
in [12].

Fig. 2. The ETR Registration Process

2. The Address Resolving Stage: Once a Map Server has EID-prefixes
registered by its client ETRs, it will accept and process Map-Requests. In
response to a Map-Request (sent from an ITR), the Map Server first checks
to see if the required EID matches a configured EID-prefix. If there is no
match, the Map Server returns a negative Map-Reply message to the ITR.
In case of a match, the Map Server re-encapsulates and forwards the resulting
Encapsulated Map-Request to one of the registered ETRs which will return
Map-Replay directly to the requesting ITR as shown in Fig 3.
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Fig. 3. The No Proxy Map Server Processing

The LISP working group in [10] has defined the structure of all the LISP
Packets including the Map-Request, the Map-Notify, the Map-Register and
the MAP-Reply. However, for the security analysis in section 3, only security-
related parameters of the LISP messages are explicitly mentioned.

2.3 Verifying Security Protocols Using Casper/FDR

Previously, analysing security protocols used to be done using two stages. Firstly,
modelling the protocol using a theoretical notation or language such as the
CSP [13]. Secondly, verifying the protocol using a model checker such as Failures-
Divergence Refinement (FDR) [14]. However, describing a system or a protocol
using CSP is a quite difficult and error-prone task; therefore, Gavin Lowe [15]
has developed the CASPER/FDR tool to model security protocols, it accepts a
simple and human-friendly input file that describes the system and compiles it
into CSP code which is then checked using the FDR model checker. Casper/FDR
has been used to model communication and security protocols as in [16], [17].
The CASPER’s input file that describes the systems consists of eight headers as
explained in Table 1.

Table 1. The Headers of Casper’s Input File

The Header Description

# Free Variables Defines the agents, variables and functions in the protocol
# Processes Represents each agent as a process
# Protocol Description Shows all the messages exchanged between the agents
# Specification Specifies the security properties to be checked
# Actual Variables Defines the real variables, in the actual system to be

checked
# Functions Defines all the functions used in the protocol
# System Lists the agents participating in the actual system with

their parameters instantiated
# Intruder Information Specifies the intruder’s knowledge and capabilities
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3 Analysing the Security of the Address Resolving
Procedure

3.1 System Definition

As shown in Fig 3, and based on the notations in Table 2, the procedure of the
mapping procedure goes as follows:

Msg1. ITR→ MS : ITR, N1, MapRequest, h(ITR, N1, MapRequest)

The ITR sends a Map-Request message which includes a 4-byte random nonce
(N1) and the addresses of the ITR. The ITR expects to receive the same nonce
in the Map-Reply message.

Msg2. MS→ ETR : ITR, N1, MapRequest, h(ITR, N1, MapRequest)

The Map Server (MS) encapsulates Msg1 and passes it to the relevant ETR as
Msg2.

Msg3. ETR→ ITR : ETR, N1, MapReply, h(ETR, N1, MapReply)

The ETR composes Msg3 which includes a Map-Reply and the received nonce
(N1). Upon receiving this message, the ITR checks the included nonce and only
when the check succeeds, the ITR authenticates the ETR.

Table 2. Notation

The Notation Definition

ITR The Ingress Tunnel Router in the source EID Space
ETR The Egress Tunnel Router in the destination EID Space
MS The Map Server
N1 The Nonce
h(m) Hash value of the message (m)
{m}{K} The message (m) being encrypted with the key (K)

3.2 Formal Analysis of the Basic Mapping Procedure

To formally analyse the basic mapping procedure, we simulate the system using
Casper/FDR tool. A Casper input file describing the system in Figure 3 was
prepared. for conciseness, only the #Specification and the #Intruder Information
headings are described here, while the rest are of a less significance in terms of
understanding the verification process.

The security requirements of the system are defined under the # Specification
heading. The lines starting with the keyword Secret define the secrecy proper-
ties of the protocol. The Secret(ITR, N1, [Ms, ETR]) specifies the N1 nonce
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as a secret between ITR, Ms and ETR. The lines starting with Agreement de-
fine the protocol’s authenticity properties; for instance Agreement(ETR, ITR,

[N1]) specifies that, the ETR is correctly authenticated to ITR using the ran-
dom number N1. The WeakAgreement(ITR, Ms) assertion could be interpreted
as follows: if ITR has completed a run of the protocol with Ms, then Ms has
previously been running the protocol, apparently with ITR.

#Specification

Secret(ITR, N1, [Ms, ETR])

WeakAgreement(ITR, Ms)

WeakAgreement(ITR, ETR)

WeakAgreement(ETR, ITR)

Agreement(ETR, ITR, [N1])

The # Intruder Information heading specifies the intruder identity, knowledge
and capability. The first line identifies the intruder as Mallory, the intruder
knowledge defines the Intruder’s initial knowledge, i.e., we assume the intruder
knows the identity of the participants and can fabricate Map Request and Map
Reply messages.

#Intruder Information

Intruder = Mallory

IntruderKnowledge = {ITR, ETR, Ms, Mallory, mapRequest, mapReply}

After generating the CSP description of the systems using Casper and asking
FDR to check the security assertions. The following attacks were found:

1. The First attack is against the WeakAgreement(ITR, Ms) assertion, and it
goes as follows:
1. ITR -> I Ms : ITR, N1, mapRequest, h(ITR, N1, mapRequest)

1. I ETR -> Ms : ETR, N1, mapReply, h(ETR, N1, mapReply)

2. Ms -> I ETR : ETR, N1, mapReply, h(ETR, N1, mapReply)

Where the notations I Ms, I ETR and I ITR represent the case where the
Intruder impersonates the Ms, ETR and ITR, respectively. This is an ac-
tive Man-in-the-Middle attack; the Intruder blocks the first message and
composes message two, acting as the ETR. Upon receiving this message,
the Map Sever mistakenly believes that the message came from ETR and
hence replies with a Map-Replay message, which will be intercepted by the
Intruder.

2. The second attack compromises three assertions Secret(ITR, N1, [Ms,

ETR]), Agreement(ETR, ITR, [N1]), WeakAgreement(ETR, ITR), and it
goes as follows:
1. ITR -> I Ms : ITR, N1, MapRequest, h(ITR, N1, MapRequest)

3. I ETR -> ITR : ETR, N1, MapReply, h(ETR, N1, MapReply)

The intruder knows N1
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In this attack, the intruder intercepts the first message and replays to the
ITR acting as ETR. Since there is no encryption, the Intruder acquires the
nonce N1 and uses it to impersonate ETR; consequently, the ITR runs this
process believing it is with ETR while in reality it is with the Intruder.
Furthermore, the basic protocol uses the nonce N1 to authenticate the ETR
to the ITR. However, it does not provide any approach to authenticate the
ITR to the ETR.

The discovered attacks are due to the lack of security in the transaction between
the participating parties. Therefore, the following subsections will propose secu-
rity measures to address the discovered attacks.

3.3 The First Proposed Enhancement

The first discovered attack in section 3.2 was due to the exposure of the nonce
(N1). Therefore, to stop this attack, there is a need to secure the (ITR-MS)
and the (MS-ETR) connections. As explained in section 2, for the Registration
process, it is presumed that LISP-Capable routers (ITR, ETR) and MS have
already agreed on secret keys. Similarly, we will presume that these keys will
be used to secure the transactions in the resolving procedure. Hence, two pre-
configured secret keys: (K1) is shared between ITR and MS, and (K2) is shared
between the MS and ETR. The enhanced version of the protocol looks as follows:

Msg1. ITR→ MS : {ITR, N1, MapRequest, h(ITR, N1, MapRequest)}{K1}
Msg2. MS→ ETR : {ITR, N1, MapRequest, h(ITR, N1, MapRequest)}{K2}
Msg3. ETR→ ITR : ETR, N1, MapReply, h(ETR, N1, MapReply)

We modelled the new version of the protocol with Casper and checked it with
FDR, the following attack against the secrecy assertion was discovered.

1a. ITR -> I Ms : {ITR, N1, mapRequest, h(ITR, N1, mapRequest)}{K1}
1b. I ITR -> Ms : {ITR, N1, mapRequest, h(ITR, N1, mapRequest)}{K1}
2a. Ms -> I ETR : {ITR, N1, mapRequest, h(ITR, N1, mapRequest)}{K2}
2b. I Ms -> ETR : {ITR, N1, mapRequest, h(ITR, N1, mapRequest)}{K2}
3a. ETR -> I ITR : ETR, N1, mapReply, h(ETR, N1, mapReply)

3b. I ETR -> ITR : ETR, N1, mapReply, h(ETR, N1, mapReply)

The intruder knows N1

Here, the Intruder passively replays the messages between the participants. This
attack could be interpreted as follows: the ITR will complete running the proto-
col believing that it was with the ETR, while it was with the Intruder instead.
Similarly, the ETR will believe it has been running the protocol with the ITR,
while in reality it was with the Intruder. Again, this attack is ascribed to the
exposure of the nonce (N1), which highlight the need for securing the direct
transaction between the ITR and ETR. Also, there is a need to propose an
authentication mechanism, through which the ETR can authenticate the ITR.
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3.4 The Final Enhancement: The Proposed AKA Protocol

In order to secure the direct connection between the ITR and ETR, and to
achieve a mutual authentication between them. We propose an Authentication
and Key Agreement (AKA) protocol that does not require major modifications to
the basic LISP protocol. The proposed AKA protocol is based on the Challenge-
Response paradigm and it goes as follows:

Msg1. ITR→ MS:{ITR,N1,MapRequest,K3,h(ITR, N1,MapRequest,K3)}{K1}
Msg2. MS→ ETR:{ITR,N1,MapRequest,K3, h(ITR,N1,MapRequest,K3)}{K2}

The ITR composes Msg1 and includes a freshly generated secret key (K3) to
be used by the ETR to encrypt the Map-Reply packet. This message is for-
warded by the MS towards the ETR.

Msg3. ETR→ ITR:{ETR, N1, N2 MapReply, h(ETR, N1,N2 MapReply)}{K3}

Upon receiving the Map-Request in Msg2, the ETR replies with a Map-Reply
message with a challenge nonce (N2). The message is encrypted using the sug-
gested key (K3).

Msg4. ITR → ETR : {N2}{K3}

The ITR returns the challenge (N2) encrypted using the key (K3). The ETR
will check the returned challenge to authenticate ITR.

To verify the proposed AKA protocol, we prepared a Casper file that de-
scribes the protocol (the full Casper input file is shown in the Appendix). To
check the mutual authentication, the Agreement(ITR, ETR, [N2]) assertion
has been added to the # Specification heading as shown below:

#Specification

Secret(ITR, N1, [Ms, ETR])

WeakAgreement(ITR, Ms)

WeakAgreement(ITR, ETR)

WeakAgreement(ETR, ITR)

Agreement(ETR, ITR, [N1])

Agreement(ITR, ETR, [N2])

We simulated this security considerations with Casper and asked FDR to check
for attacks. Casper/FDR failed to find attacks against any of the checked asser-
tions as shown in Fig 4.

Protocol Analysis: The main goals of the proposed protocol are to achieve
mutual authentication between ETR and ITR and to secure the direct con-
nection between them. Furthermore, it is crucial to achieve these goals with a
minimum modification to the basic LISP. The security-related goals could be
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Fig. 4. The FDR Verification

achieved using different protocols, examples of there are the Internet Key Ex-
change (IEK) [18], and Virtual Private Network (VPN) protocols such as the
Internet Protocol Security (IPsec) [19]. However, these protocols will increase
the number of exchanged messages significantly, At least five extra messages in
the case of IKE and more than this in the case of IPSec (based on the IPSec
mode). Furthermore, packets-encapsulation due to the tunnelling process in VPN
protocols will lead to adding extra headers to the LISP packets which make them
incompatible with the current implementation of the LISP-capable devices.

The fact that the formal verification of the proposed protocol, using Casper/
FDR, found no attacks against any of the checked assertions, implies that the
protocol successfully achieves a number of crucial security requirements such as
mutual authenticating the participating parties and maintaining the secrecy of
the session key between the ITR and ETR. Furthermore, the protocol does not
require major modification to the basic LISP transactions and no extra headers
are needed for packets encapsulation.

4 Conclusion

This paper analysed the security of the address resolving process in LISP proto-
col. Analysing and verifying the basic LISP using Casper/FDR shows that the
protocol is vulnerable to authentication and secrecy attacks. Therefore, a new
security protocol was introduced in this article, the article described the refine-
ment stages of the protocol along with the discovered attacks. The final version
of the proposed protocol was proven to be secure and to comply with the design
of the LISP protocol.
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Appendix: The Final Version of the Protocol

#Free variables

Itr, Etr : Agent

na, nb, seq2, n1, n2 : Nonce

K1, K2: PreSharedKey

Ms: Server

K3: SessionKey

MappRequest,MappReply: Messages

InverseKeys = (K3,K3),(K2, K2), (K1, K1)

h : HashFunction

#Processes

INITIATOR(Itr,Ms,Etr,n1, MappRequest, K1, K3)

SERVER(Ms, Etr, K1, K2)

RESPONDER(Etr, MappReply, K2, n2)

#Protocol description

0. -> Ms : Itr

1. Itr -> Ms : {Itr, n1,MappRequest, K3, h(Itr, n1, MappRequest)}{K1}
2. Ms -> Etr : {Itr, n1,MappRequest, K3, h(Itr, n1, MappRequest)}{K2}
3. Etr -> Itr : {Etr, n1,MappReply,n2, h(Etr, n1, MappReply)}{K3}
4. Itr -> Etr : {n2}{K3}
#Specification

Secret(Itr, n1, [Ms, Etr])

WeakAgreement(Itr, Ms)

WeakAgreement(Itr, Etr)

WeakAgreement(Etr, Itr)

Agreement(Etr, Itr, [n1])

Agreement(Itr, Etr, [n2])

#Actual variables

itr, etr, Mallory : Agent

Na, Nb, Seq2, N1, N2 : Nonce

k1, k2: PreSharedKey

ms: Server

mappRequest,mappReply: Messages

InverseKeys = (k2, k2), (k1, k1), (k3,k3)

k3: SessionKey

#System

INITIATOR(itr,ms, etr, N1, mappRequest, k1, k3)

SERVER(ms, etr, k1, k2)

RESPONDER(etr, mappReply, k2, N2)

#Intruder Information

Intruder = Mallory

IntruderKnowledge = {itr, etr, ms, Mallory, mappRequest, mappReply}
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Abstract. Strong authentication for online service access typically re-
quires some kind of hardware device for generating dynamic access cre-
dentials that are often used in combination with static passwords. This
practice have the side effect that users fill up their pockets with more and
more devices and their heads with more and more passwords. This situa-
tion becomes increasinlgy difficult to manage which in turn degrades the
usability of online services. In order to cope with this situation users often
adopt insecure ad hoc practices that enable them to practically manage
their different identities and credentials. This paper explores how one
single device can be used for authentication of user to service providers
and server to users, as well as provide a range of other security services.

1 Introduction

Over the last decade there has been a radical evolution in procedures for au-
thentication. Before the Internet revolution and the invention of the World Wide
Web, system passwords were typically simple, physical keys were still the most
widely used method to access offices, and bills were still being paid by signing
pieces of paper. Today, computer systems are globally interconnected and ex-
posed to millions of host, physical access control to offices is typically based on
electronic access cards, and sensitive documents e.g. for financial transactions are
now digital, which require digital signatures instead of hand-written signatures.
In order for this evolution to remain secure and sustainable there are strong
requirements for authentication of entities. By taking into account the distinc-
tion between system entity (client or server) and legal/cognitive entity (person
or organisation) there are in fact two entities on each side of a communication
session, as illustrated in Fig.1.

The distinction between the human user and the client system on the user
side, as well as between the SP organisation and the server system on the server
side, leads to the conclusion that each of the 4 entities can be authenticated in 2
different ways leading to 8 different classes of peer entity authentication between
the two sides, as illustrated in Fig.1 and described in Table 1 and Table 2 below.

For online services applications the entity authentication classes [S → U] and
[U → S] are the most relevant because of the need for end-to-end security. In the
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Fig. 1. General entity authentication classes

Table 1. Classes of authentication of user side entities by server side entities

Class Authentication by server side: Origin and Target

[O → U] The SP organisation (O) authenticates the human user (U)
[O → C] The SP organisation (O) authenticates the user client (C)
[S → U] The server system (S) authenticates the human user (U)

(commonly called user authentication)
[S → C] The server system (S) authenticates the user client (C)

Table 2. Classes of authentication of server side entities by user side entities

Class Authentication by user side: Origin and Target

[U → O] The human user (U) authenticates the SP organisation (O)
[U → S] The human user (U) authenticates the server system (S)

(which can be called Cognitive Server Authentication)
[C → O] The user client (C) authenticates the SP organisation (O)
[C → S] The user client (C) authenticates the server system (S)

typical case where a human user accesses an online service, semantic end-to-end
communication takes place between the human user (U) and the server system
(S). It is therefore pragmatic to require mutual authentication between those
two entities. Traffic encryption and authentication between the server system
(S) and user client (C) typically provides communication confidentiality, but
can not provide cognitive server authentication in a meaningful way.

In case of one-factor user authentication based on static passwords, corporate
computer networks and online service providers typically require long, complex
and unique passwords. Two-factor authentication is often required for access to
sensitive online services and for physical access to buildings, where one of the
factors is a dynamic credential generated by a device, such as an OTP (One-
Time Password). Two-factor authentication typically combines “something you
know” (the password) with “something you have” (the authentication device).
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Personal authentication devices combined with static passwords have been
used by online banks, e-governments and other online service providers for sev-
eral years. The device is usually an OTP-generator, or a smart card (with reader)
of varying complexity. The reason for service providers to use two-factor authen-
tication is to have a higher level of authentication assurance. Some banks offer
smart phone authentication applications to log into their services.

In [14], Jøsang and Pope describe the Personal Authentication Device (PAD),
a secure device external to the computer. The PAD is used as an identity man-
agement system to which the user authenticates once (with a PIN, password
or similar), and for one session1. The user can authenticate to every supported
service automatically using the PAD as his identity manager. This is done by
transient (replay protected) challenge-response communication between the PAD
and the remote server, through the user’s computer.

Service providers have identities that also need adequate management. Inter-
estingly, technologies for service provider authentication are very different from
those of user authentication, because e.g. user authentication (class [S → U])
mainly takes place on the application layer, whereas traditional server authen-
tication (class [C → S]) mainly takes place on the transport layer.

In [16], Klevjer et al. describe a more secure PAD, the physically decoupled
OffPAD, which supports mutual authentication between user and server, as well
as user-centric identity management, i.e. secure and usable management of dig-
ital identities and credentials on the OffPAD rather than in the user’s brain.
The OffPAD supports management and authentication of both user and service
provider identities. It should be (mostly) offline and contain a secure element,
to protect its contents and the privacy of the user.

The idea of having a secure device to do different kinds of authenticated
operations is also proposed in a position paper by Laurie and Singer [17]. The so-
called “Nebuchadnezzar” is a device that can run multiple security applications
such as authentication and transaction signing. Another device similar to the
OffPAD is the Pico by Frank Stajano, which is designed to replace passwords
everywhere[21]. Stajano describes a number of different solutions where the Pico
can be used instead of a password or PIN, such as client authentication to
websites, logging into one’s home computer or unlocking a screen saver.

In this paper we will first present some requirements for an OffPAD, followed
by descriptions of different applications that can be implemented with contem-
porary technology. Finally, the limitations of the device are addressed.

2 Requirements

The OffPAD is an Offline Personal Authentication Device. The security require-
ments specified for the Nebuchadnezzar device [17] are aimed at the operating
system on the device and can easily be transferred to the concept of an OffPAD.
The system requirements they propose to the device is to have a securely built
operating system, with a bullet-proof kernel that can run multiple applications

1 Limited to either time or connection.
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which can interact with untrusted systems. The user interface of such a device
must be non-spoofable and it should be able to attest to the software is running.
The device is not for general purpose (e.g. it does not run a web browser). The
device has to support cryptographic functions and being updateable.

Klevjer et al. [16] describe that the OffPAD should also have limited con-
nectivity, a secure element and access control. The requirement of limited con-
nectivity can be met by using NFC or other physically activated (contactless)
communication. Other (live) means of communications may be appropriate, de-
pending on the required assurance level. The infrastructure for secure messaging
and storage in a secure element is described in ISO 7816-4.[10] For access to the
OffPAD, the user must unlock the device by using a PIN, pass phrase, biometrics
or other adequate authentication credentials, which prevents unauthorized users
from activating the device.

The OffPAD must also be tamper resistant, so that an attacker with physical
access to the device cannot easily access information stored on the OffPAD or
alter any of the OffPADs characteristics. A possible design of the OffPAD is
illustrated in Fig.2 below.

LED indicator 

Display 

Switch 

Finger pad 

Camera Microphone 

NFC 

Connector 

Microphone/headset 

Fig. 2. OffPAD design

The OffPAD may have several interfaces for communication. Microphone and
camera may be used for voice and face recognition, and a fingerprint reader may
be used for both authenticating to the device and elsewhere.

Communication

Some form of electronic communication is essential for practical integration of
the OffPAD into online authentication. Options for electronic communication
technologies are listed in table 3. The OffPAD must be restricted with regard
to connectivity, and should remain offline as much as possible, meaning that it
should only be able to communicate securely, in controlled formats and in short,
restricted time periods. This decoupling from networks improves security on the
device, as it is less vulnerable to outside attacks. Any specific electronic commu-
nication technology described in the list above should normally be disconnected,
and should only be connected whenever it is needed for authentication or for
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Table 3. OffPAD communication technologies

NFC Short point-to-point connections over limited range.
Bluetooth Medium range point-to-point communication.
ZigBee Longer point-to-point connections with low power consumption

and transmission range up to 100 m[4].
WiFi Communication that over the Internet.
USB Wired connection, can also be used to charge the device’s battery

(but this will make the OffPAD online).

management of the device. However, the connection should be fast and easy to
set up, which might exclude WiFi and Bluetooth.

NFC with a backup USB connection is probably the most suitable communi-
cation technology for the OffPAD. Both technologies are fast, USB guarantees
(physically) that the correct device is connected, and NFC gives high visual
assurance that the correct device is connected. This limits the threat of a man-
in-the-middle attack when connecting an OffPAD to a computer.

The first connection to the OffPAD builds upon the concept of Trust-On-First-
Use (TOFU), also known as leap-of-faith. On first use there is no cryptographic
way to verify that the connection is only between the device and the software,
this must be based on trust (or faith) in the physically observed set-up. On the
first connection some kind of pairing between the device and computer occurs, so
that the subsequent connections can be verified to be between the same device
and computer.

3 Services

One OffPAD may be used for a number of different security services simultane-
ously. With a simple menu system the user can select which service she wants
to use. Each service can also be used in different environments (e.g. locations),
where either the OffPAD can detect the environment or the user can select it
depending on the type of application and communication protocol.

3.1 Digitally Signed Bank Transactions

Normally, when doing online banking, the user can review information on a
transaction in the web browser window before confirming and submitting the
transaction. The data shown on the screen in such a scenario is vulnerable to
change by a man-in-the-browser (MITB). The integrity of the transaction data
may be broken (e.g. the amount and receiver account may be changed) before
being submitted to the bank’s server. With an OffPAD, the transaction data may
be signed with the bank’s private key and be presented on the device’s screen.
This data may be verified on the trusted device by validating the signature
using the bank’s public key. Alternatively, a photo of the browser window may be
taken with the OffPAD camera, and the text from the photo analysed with OCR
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Fig. 3. Multi usage device

(Optical Character Recognition) software. The resulting text may be compared
with the expected transaction details. This ensures that the specified transaction
data received by the server is exactly as specified by the user, and that it is
consistent with what is presented in the client’s browser window [1].

Another way to keep the user from signing malformed transaction data, is
by having the OffPAD display all the information that is to be signed, e.g. the
amount and destination of a bank transfer. Studies have shown that users do
not check all the details before confirming such transactions, especially when
long rows of numbers are involved, and only a few of them are wrong[18]. The
OffPAD would then require a simple keyboard, and the protocol would need to
support the OffPAD to be able to not only sign data, but also to generate and
modify transactions.

3.2 User Authentication

People who frequently use online services will typically accumulate a large num-
ber of online identities and related passwords, and managing these quickly be-
comes impossible. The OffPAD may be used to manage and authenticate a user
to a system in a secure way. This would improve usability by providing a tool
for identity management, and would also improve security in several respects.
In a traditional scenario where the user types his password, or the password
is decrypted by a password manager (e.g. LastPass2), the password is exposed
in the computer’s memory and is vulnerable to attacks such as key logging or
memory inspection. A solution for password authentication using an OffPAD is
proposed by Klevjer et al. in [16], consisting of an extension to the originalHTTP
Digest Access Authentication scheme specified as a part of the HTTP standard

2 http://lastpass.com

http://lastpass.com
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in [8]. User credentials are stored in a hashed format on both the server and
the OffPAD. When the client requests a protected resource, the server responds
with an authentication challenge, which on the client side is hashed with the
user credentials and returned to the server. The server does the same challenge-
response calculations locally, and compares the result and the response. If the
two values match and the user corresponds to an authorized entity, the user is
granted access to the resource. This can be done securely through an insecure
channel, such as over HTTP, not requiring an extra connection to the server,
just a browser plugin or extension.

TheOffPADmay be used as an authenticator to servers that supports challenge-
response authentication protocols. For existing systems that do not want to change
their authentication system, the OffPAD may still be able to provide the server
with the credentials. This, however, would require the use of HTTPS or another
protection mechanism, as the username and password would be sent in plaintext
from the OffPAD to the user’s computer.

3.3 Validation of DNSSEC

DNSSEC is a mechanism for confirming the validity of a domain name system
(DNS) record using asymmetric cryptography. DNSSEC rests on a hierarchic
PKI where the public key of the DNSSEC root is globally known and acknowl-
edged. The OffPAD can store a copy of the DNSSEC root public key, and get
all the other required DNS-records from the computer. Then the OffPAD can
validate each record and alert the user if validation fails.

The validation process of DNSSEC is quite simple and described in [3, 2].
Each resource record (RR) in DNS has a Resource Record Signature (RRSIG)
containing the signature for the current record. This signature can be authenti-
cated with the public key stored in the DNSKEY RR. A digest of the DNSKEY
is stored in a Delegation Signer (DS) RR in the parent DNS zone3, which in
turn has a RRSIG. The validation process propagates all the way to the root.

For services that take the advantage of DNSSEC and stores their server cer-
tificate in the new TLSA resource record[9], would also make the OffPAD able
to validate the server certificate through DNSSEC instead of or in addition to
X.509. The TLSA RR is a resource record that gives you enough information
to be able to validate the targeted server certificate, and it also tells you if you
should validate it through X.509 or not. Public keys for other usage could also
be stored in DNSSEC, in other RR types.

To be able to validate a server through DNSSEC, the OffPAD must be fed
the chain of RRs, keys and their respective signatures. This must come from
the untrusted computer when the authentication should take place. Man-in-the-
middle attacks are still not a threat, since the whole chain of data is indirectly
signed by the root node’s key, which must be pre installed on the OffPAD.

3 A DNS zone is a collection of RR that is administrated by the same entity, thus
signed with the same DNSKEY.
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3.4 Server Authentication

There are multiple ways for an attacker to lure a victim to access a fake website
with phishing attacks. Users are normally not well aware of the possible threats,
and will in many cases not notice that the fake website is not the intended
website, even if the user tries to inspect the server certificate [13]. To make
it easy for the user to verify that she is connected to the correct service, the
user can use a petname system [22, 7]. The petname system allows the user
to associate server identities with personally recognisable identifiers such as a
logo, name or tune, which are called petnames. Having a personally recognisable
petname enables the user to easily validate the identity of the service. If the
user navigates to a web site and there is a mismatch between its identifier and
the one stored, the system should alert the user, or ask the user to add a new
petname for the new service. Petname systems protects users from falling victim
to phishing attacks[7].

As proposed by Ferdous et al.[6], the Petname system can be implemented on
an OffPAD, validating the service being accessed. This will make the Petname
system more user-friendly, since the user only needs to manage one central col-
lection of petnames. DNSSEC combined with a petname system can give a quite
strong service authentication, which gives a good base for the Server Authenti-
cation Assurance as proposed by Jøsang et al. [12].

3.5 Generation of One-Time Passwords

Several service providers that offer two factor authentication use one-time pass-
words (OTP) generated by a device. An OTP is considered to be a dynamic
password, and is typically combined with a static password for authentication
to an online service. The OTP is generated as a function of a secret string of
bytes and either a timestamp or a counter value. Standards exist for how these
functions can be implemented, e.g. Time-Based One-Time Password Algorithm
(TOTP) [20] and HMAC-Based One-Time Password Algorithm (HOTP) [19].

Both TOTP and HOTP works by taking pseudorandom bytes from a HMAC4

using a shared secret key and the time or counter value as input. The resulting
string of pseudorandom bytes is the OTP. The key and the expected time or
counter value are known to the service provider so that it can perform the same
calculations and compare the received OTP with the locally computed OTP.
The simplicity of the OTP mechanism makes it possible to install any practical
number of different OTP services on the same OffPAD, to manage OTP-based
authentication for access to different service providers.

3.6 Encryption and Decryption of Messages

E-mail is still widely used for exchanging private and confidential information be-
tween people. While the user’s connection to the mail server might be encrypted,

4 Hash-based Message Authentication Code.
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the connection between different mail servers is not. This is problematic when
it comes to “forgotten passwords” request, where some service providers send a
temporary password in plain text, or a time limited link to reset the password.
Sometimes the forgotten current password is even resent in clear. A solution is
to let the service provider encrypt a message containing a password reset code
with the public key for the OffPAD, so that it can only be decrypted by the
OffPAD. This ensures that only the correct user can reset his password.

This can also be used to encrypt and decrypt other messages for the user, e.g.
notifications from a bank. It is particularly useful were the user’s computer is
considered compromised.

3.7 Physical Access Control

Physical access control based on NFC technology is increasing in popularity.
An OffPAD with passive NFC capability can support physical access control
in the same way that standard NFC-enabled identity cards do, but can also
support more advanced functionality, e.g. using personal stored fingerprints or
other biometric information. A fingerprint can be scanned and validated on the
OffPAD instead of on a central system, which enhances convenience, hygiene
and privacy for the user. After matching the fingerprint the OffPAD can send
an assertion to the access control system. If the user is authenticated on the
OffPAD, she might not need to enter her PIN-code on the keypad by the door,
limiting the possibility for an attacker to observe the PIN-code.

4 Limitations

The OffPAD is primarily intended to be a security device. Since complexity is
the enemy of security it implies that the OffPAD should be simple and be limited
in functionality. In contrast to smart phones or tablets that are designed to be
open and have maximum connectivity and flexibility, the OffPAD should be a
closed platform and have strictly controlled connectivity. This design principle is
aimed at reducing the attack surface. The challenge is to offer adequate usability
despite these limitations.

4.1 Deployment and Updating Applications on the OffPAD

A challenge for the OffPAD is to upgrade the software on the device itself, as
known bugs can make the OffPAD vulnerable, and even the process of updating
the software might create vulnerabilities. There is a number of ways to update
software, including the use of physical service stations, but this is quite imprac-
tical and it is hard for a user to build trust relations with such stations even if
they are completely trustworthy.

The easiest, and still secure method for updates, is through the user’s com-
puter. Where the user (or OffPAD driver) downloads update files and transfer
them to the OffPAD. If these files are signed, the OffPAD can validate the files
and their source before running them. This is somewhat similar to how applica-
tion distribution systems for smart phones work.
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4.2 Controlled Connectivity

One of the requirements for the OffPAD is to enforce strictly controlled connec-
tivity, e.g. by not having a direct connection to the Internet, and by enforcing
time limits for connections to client computers or to other systems. The user
should explicitly activate a connection, the OffPAD should clearly indicate when
a connection is active, and should indicate when the connection ends. Typically,
every connection should not last longer than one second at a time, just enough to
exchange authentication information. If the communication takes much longer
the user is likely to leave the OffPAD connected to the client computer which
would introduce new attack vectors.

The short connection time requires either high transmission rate, or small
amounts of data, or a combination of both. The standard for NFC [11] describes
two communication modes: passive and active. Passive means that the target
entity does not have a power source itself. It gets its power from a radio frequency
(RF) field generated by the other part in the communication (the initiator). In
active communication, both entities have a power source and the initiator and
target alternate between making the RF field. The top speed is defined to be up
to 424 kbit/s for passive mode and up to 6780 kbit/s for active mode. This limits
the amount of data to transferred, but will probably not introduce any practical
constraints for the security services mentioned here. Services that need to send
or receive relatively large amounts of data might need to use active mode.

4.3 Driver Software and Browser Plug-ins

The OffPAD is intended to communicate with a variety of computer systems
using one or several of the communication technologies listed in Table3. For
each communication modality, specific software driver is needed, which a priori
will be installed by the OffPAD hardware manufacturer. In case software update
of any of the drivers is needed it is important that the driver can be securely
obtained, and that it is easy to install.

Communication between the client computer and the OffPAD requires drivers
and software installed on the client computer. It is important for the software to
not introduce new security vulnerabilities to the host computer. A client com-
puter must be used to transfer data to the OffPAD, and in case the client com-
puter has been infected with malware the data to be transferred to the OffPAD
could give attackers some information about the OffPAD, and potentially an op-
portunity to compromise the OffPAD itself. This can be prevented with pairing,
where the user physically operates the client computer to initialise the pairing
process. The pairing process can be done using Diffie-Hellman key exchange[5],
where both the client computer and the OffPAD select unique keys for each
other. As the user starts the pairing process and observes that there is only the
host and the OffPAD, this gives a small chance for a man-in-the-middle-attack
(unless the man is already in the host system).

If there is malicious code on the host computer (in the drivers, browser plug-in
or other places), applications that base themselves on information from the host
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may take wrong actions. Applications where the information is validated with a
public key, with DNSSEC for instance, can be secure even if the host computer
is compromised.

4.4 Protecting the OffPAD in Case of Theft

Even if there is strong access control on the device it is challenging to protect
against all forms of attacks when the device is in the hands of the attacker, but
some security measures can provide relatively robust protection against compro-
mise. It should not be possible to rapidly do an exhaustive search through the
entire PIN code space, or rapidly try many different fingerprints. A limit of e.g.
3 attempts can e.g. trigger a delay of e.g. 10 minutes before the OffPAD can be
accessed again.

5 Commercial Adoption

The OffPAD might be relatively expensive to produce compared to a simple
OTP-calculator, but as mentioned already some banks and institutions are al-
ready deploying relatively advanced devices to the public, such as card readers
with a display and keypad. With an OffPAD as a general purpose security de-
vice many more security services can be supported and the resulting security for
online transactions will be higher than that which can be achieved with most of
the calculators used today.

The challenge is to get the average Internet users to discover the advantages
of adopting this device for all their security solutions, and therefore to be will-
ing to pay for it. Since the OffPAD is not a web-browser, an MP3-player or
gaming console, people would probably not carry it with them everywhere, as
they typically do for mobile phones. Adoption would certainly be increased in
case different service providers and system developers (e.g. Facebook, Google,
Microsoft and Apple) decided to promote an OffPAD, or a protocol supported
by the OffPAD. But initially, it will most likely be companies with high secu-
rity requirements that will see the need for having people use a device like the
OffPAD.

5.1 Using a Mobile Phone as the OffPAD

Modern mobile phones, or smart phones, are packed with advanced features
and must be considered a “general purpose computing platform”. This certainly
provides great flexibility and support for many new business models, but it also
opens up many new attack vectors. From 2010 to 2011 Juniper MTC reported
a 155% increase in malware on mobile phones [15]. It should be noted that all
the different mobile phone operating system manufacturers are trying to make
their system more secure. At the same time the market pressure enforces them
to provide more connectivity and more flexibility into their devices, which nec-
essarily also introduces new vulnerabilities. This makes a normal mobile phone
unreliable for high security applications.
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It is important that the user can be assured that she is interacting with the
operating system and not an application pretending to be the operating system.
Windows Phone, iOS and Android5 have a “trusted path” button that ensures
that the user is directed to the home screen and not to an application.

The French company TazTag has introduced a mobile phone (TPH-ONE) [23]
based on Android, and also integrates a secure element which can be accessed
in a secure state. The secure element can potentially offer some of an OffPAD’s
functionality, by providing identity management and security services.

6 Conclusion

In this paper we describe the OffPAD as a general purpose security device for
all types of users, which can replace or complement the different multi-factor
authentication devices that already exist. This paper also describes specific se-
curity services that can be implemented on the OffPAD. It can be integrated
with many of the existing systems and can offer a general security solution for
the client and user side, both in enterprise and private settings.

7 Future Work

Prototypes for the different security services mentioned in this paper are cur-
rently being developed. User experiments are planned to test if security services
offered by the OffPAD are superior to solutions that already exist. Still to be
developed are solutions for updating software and the operating system. The
security enhanced smart phone produced by TazTag will be tested to see if the
security of the operating systems and hardware can meet the requirements for
an OffPAD. For instance, it must be possible to switch between the OffPAD
functionality and the normal smart phone context using a physical switch on
the device.
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Abstract. In Vehicular Ad-Hoc Networks (VANETs), applications are typically
realized by forwarding and exchanging messages among vehicles. The integrity
and trustworthiness of messages directly impacts the quality of the applications.
Though there have been extensive works on authentication protocols in VANETs,
authentication can only certify message origin but cannot guarantee that the iden-
tity holders will send truthful and accurate messages. Therefore, in this paper, we
propose a novel trust model to directly evaluate the trustworthiness of the content
of a message received from other vehicles. The model is built based on various
factors such as content similarity, content conflict and route similarity. Trustwor-
thiness of message content will be evaluated at the individual vehicle level and
will not introduce any additional architectural assumptions. We have conducted
extensive experiments and the results indicate both efficiency and effectiveness
of the proposed approach.

1 Introduction

The integration of on-board computers (e.g., engine control units) and positioning de-
vices (e.g., GPS receivers), along with communication capabilities based on the use
of Dedicated Short Range Communications (DSRC) radios, have made vehicular ad
hoc networks (VANETs) one of the most promising commercial applications of mobile
ad hoc networking. In VANETs, vehicles are able to communicate with one another,
thereby creating a large network with vehicles acting as the network nodes.

VANETs, originally created to enhance safety on the road using cooperative collision
warning via vehicle-to-vehicle (V2V) communication [8], are now a predominant and
widely powerful technology. The scope of VANET now range from driving assistance
to mobile entertainment [10,18]. For example, a vehicle may send inquiries to vehicles
around certain landmarks to obtain the up-to-date parking information, the condition
of a road, or convenient lodging; vehicles can exchange files via pure V2V commu-
nication. Messages can be propagated through multiple hops and the typical one-hop
communication range is 300 meters.

For these VANET applications to be effective and beneficial to drivers, a possibly
large number of messages among vehicles is exchanged and forwarded. The integrity
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Fig. 1. Real-time Message Content Validation in VANETs

and trustworthiness of these messages critically impacts the quality of the applica-
tions. Henceforth, messages’ content should be vouched and verified prior to being
distributed. Otherwise, VANET nodes may purposely or accidentally send fake mes-
sages that disrupt the traffic, with potentially dramatic consequences, including loss of
human lives. In particular, without proper controls, an adversary may easily exploit the
VANET mobility and short-term connections to cheat on his temporary and short-lived
neighbors and gain personal benefit. A victim may find out that the received message
was malicious or misleading too late to avoid the loss caused by the wrong information,
be it in terms of time, information or other resources. For example, a driver may already
be stuck in a traffic jam and not able to reroute when he realized that the message he
received via VANETs was incorrect.

Due to the unique contextual and network settings of VANETs, solutions for in-
formation validation in alternative domains such as P2P and social network environ-
ments [1, 2, 6, 7, 12, 13, 23], are not suitable. For example, in social network sites, users
typically gain reputation if they contribute correct information. Based on one’s repu-
tation (and possibly content analysis [2]), other users can determine whether his infor-
mation is trustworthy. However, reputation is established using a stable network over a
relatively long period of time (a day, a week or even longer), and neither one of them
exists in VANETs. In VANETs, even if an individual keeps a historical database of ve-
hicles that he traveled along with, the database may not be useful since he may not come
across the same vehicles again in the future. Moreover, compared to social networks,
the mobility of vehicles imposes strict time constraints on making informed decisions.
Notice that authentication protocols are also not sufficient, as they can only certify mes-
sage origin but cannot guarantee that the identity holder will send truthful and accurate
messages in VANETs.

In this paper, we propose a Real-time Message Content Validation (RMCV) scheme.
It empowers each individual vehicle with the capability of evaluating the trustworthi-
ness of the possibly large amount of messages received in VANETs, without relying
on any infrastructure support such as road-side units or central servers. The core of the
RMCV scheme is an information-oriented trust model which assigns each message a
trust score indicating the estimated probability of the message being true. The proposed
trust model considers a variety of factors that have impact on the trustworthiness of
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messages, including message content similarity, content conflict and message routing
path similarity. Figure 1 shows an overview of the system. Suppose that one vehicle (the
one in the center of the image) wants to know the traffic condition at one road that it
will soon pass by. The vehicle sent its query via the VANET and received six response
messages. However, the six messages contain conflicting information of one another.
The group of three messages (denoted by Message1) claimed that there was a traffic
jam whereas the group of the other three messages (denoted by Message2) claimed
that there was no traffic jam. It becomes difficult for the querying vehicle to tell which
message is more trustworthy. In this situation, the proposed RMCV system will help an-
alyze the received six messages and compute the trust scores for the messages based on
the trust model. If the trust score of Message2 is much higher than that of Message1,
the RMCV system would inform the user that Message2 is probably telling the truth.

We have implemented the RMCV scheme and conducted extensive experiments by
simulating various scenarios. We also compare our model with the state-of-the art [16].
The experimental results demonstrate the efficiency and effectiveness of our work.

The rest of the paper is organized as follows. Section 2 gives a brief review on related
works. Section 3 presents the proposed trust model. Section 4 reports experimental
studies. Finally, Section 5 concludes the paper.

2 Related Work

Existing works on information trustworthiness in VANETs can be classified into three
main categories [22]: (i) entity-oriented trust model; (ii) data-centric trust model; and
(iii) combined trust model.

In entity-oriented trust model, trustworthiness of information is estimated based on
trustworthiness of the message sender. For example, in [15], Raya et al. utilized static in-
frastructure such as a Certification Authority (CA) to evict malicious vehicles in VANETs.
A critical assumption they have made is the existence of an honest majority in the at-
tacker’s neighborhood. This will allow vehicles to trust their honest neighbors in order
to evict attackers. They proposed two methods for misbehaving node revocation by the
CA. The first one is called RTC (Revocation of the Trust Component) which deprives the
misbehaving node from its cryptographic keys; thus confirming that all its messages are
disregarded by all other legal nodes. However, RTC is not robust against a sophisticated
adversary that controls the communication link between the CA and the TC. The other
method that they propose is a localized MDS (Misbehavior Detection System) and the
LEAVE (Local Eviction of Attackers by Voting Evaluators) protocol. The main principle
of LEAVE is that the neighbors of the misbehaving vehicle temporarily evict it. In [9,11],
a vehicle needs to build up a profile of each vehicle it comes in contact with. The vehicle
evaluates the trustworthiness of its peers based on its past interactions and then deter-
mines whether the information received is trustworthy or not based on the sender’s pro-
file. However, entity-oriented trust models have the following common limitations. First,
VANET is a very dynamic environment and relationships among entities do not last for
long, which causes difficulties to collect enough evidences to trust an interacting entity.
Second, even if an entity is trustworthy and honestly forwarded a message it received,
we still do not know whether the message itself is correct.
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To address limitations in entity-oriented trust models, recent work proposed to evalu-
ate message content directly rather than just validating the identities of message senders.
The most related work is by Raya et al. [16] who use Bayesian inference and Dempster-
Shafer theory to evaluate the evidences received regarding an event occurrence. Their
approach relies on the availability of trust scores of individual evidence (i.e., message)
related to an event. However, the calculation of trust scores of individual messages is
presented as a black box which is considered system dependent. Our work should be
distinguished from it in the following aspects. First, we design specific functions to
compute the trust score for each message rather than just a framework. Second, we ex-
plore a more thorough set of factors including similarity among message routing paths,
rather than information received from directly interacting nodes [16].

Last, the combined trust model [3, 5, 14] aims to determine trustworthiness of the
messages based on opinions provided by other peer vehicles. The basic idea is to suggest
a vehicle to trust a message that has been evaluated to be trustworthy by many other
trusted peer vehicles. When a vehicle provided many trusted opinions, the vehicle’s
honesty value will be increased (i.e., the vehicle becomes more trusted). This is an
iterative process and similar to the true fact discovery problem in Internet [4, 21] an
approach to evaluate Data Trustworthiness based on Data Provenance. However, such
model has similar limitations of the entity-oriented model. Also, this model assumes
the existence of certain methods for the peer vehicles to evaluate the trustworthiness
of message content, while we actually develop the specific approach for evaluating the
message content.

3 Information-Oriented Trustworthiness Evaluation

In this section, we first give an overview of the proposed Real-time Message Content
Validation (RMCV) scheme, and then elaborate on each step of the scheme and the
associated trust model.

The core of the RMCV is an information-oriented trust model which estimates the
trustworthiness of message content by taking into account a variety of VANET-specific
dimensions, such as who handled the message at what location and what time. The
RMCV scheme consists of two main components: (i) Message Classification; and (ii)
Information-oriented Trust Model. The outcome of the scheme is a “trustworthiness”
value associated to each received message.

The model applies to information inquiry or information sharing applications, for
which we adopt the following format of messages:

Definition 1. Let Msg(locq, locint, etype, info, te, mpath) be a message transmitted in
VANETs for information inquiry or sharing:

– locq: The location of the query issuer or the entity to receive the shared information.
– locint: The querying location that the query issuer would like to know about the

information, or the location of the shared information.
– etype: The event type which could be “traffic condition”, “road condition”,

“coupon”, etc.
– info: The information about the location locint, which could be the query results or

shared information.
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(a) Information Query (b) Information Sharing

Fig. 2. Example Scenarios

– te: The time the query results or the shared information is available.
– mpath: This records the message propagation path. It is in the form of [(locs1 ,

ts1 ),(locs2 , ts2 ), ...), which means a vehicle at locs1 generated the message Msg
at ts1 and then the message was forwarded by the vehicle at locs2 at ts2 , and so
on. We assume the locations of senders and message sending time are stamped by
a tamper-proof device installed in the vehicle.

Figure 2(a) illustrates an example scenario of information inquiry. Vehicle V1 at location
loc1 initiates a query on traffic condition at location loca. The query message is in the
form of Msg1(loc1, loca, “traffic”, NULL, NULL, [(loc1, t1)]), where two fields info
and te are waiting to be answered. The query was propagated to vehicles (V2, V3, V4)
close to the querying location loca. V2 and V3 honestly reported that there was a traffic
jam by sending back the messages Msg2 and Msg3 respectively:

Msg2(loc1, loca, “traffic”, “traffic jam”, t2, [(loc2, t2)])
Msg3(loc1, loca, “traffic”, “traffic jam”, t3, [(loc3, t3)])
However, a malicious node V4 who lied that the traffic was fine and sent the following

message: Msg4(loc1, loca, “traffic”, “traffic fine”, t4, [(loc4, t4)]). Further, in order to
make the message appear trustworthy, V4 forwarded the message to multiple vehicles
(V7 and V8) instead of the one close to V1. A malicious vehicle may not know how
many other malicious vehicles out there. Thus vehicle V4 has to spread his messages to
more vehicles otherwise his false messages can be easily ruled out based on a simple
majority vote by V1.

Upon receiving the messages initially sent by V2, V3 and V4, the querying vehicle
V1 needs to analyze the conflicting information carried by the messages and figure out
which one to trust. Our proposed RMCV scheme can be executed by V1 to conduct
the trust evaluation, and we expect that the true messages provided by V2 and V3 will
receive higher trust scores.

The RMCV scheme also works for scenarios wherein one would like to share in-
formation with others. As shown in Figure 2(b), the owner of vehicle V2 would like to
share a coupon from a restaurant that he/she just visited. Thus, V2 broadcasts the coupon
code to other vehicles using message Msg5, where locq is set to NULL as this is a
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broadcasting message: Msg5(NULL, loca, “coupon”, “15% off code of TJ Restaurant
15OFF”, t5, [(loc2, t5)]).

During the message propagation, some malicious nodes may purposely modify the
coupon code to be invalid such as given by Msg13. However, the malicious node would
not be able to fake location and time information (i.e., mpath) which is directly gener-
ated by vehicle’s tamper proof device by using techniques such as [17]. For a vehicle
which receives multiple coupon messages, it will again utilize the RMCV scheme to
help identify the more trustworthy version: Msg11(NULL, loca, “coupon”, “15% off
code of TJ Restaurant 15OFF”, t6, [(loc2, t5),(loc5, t6]).

3.1 Message Classification

In VANETs, one vehicle may receive multiple messages with different and possibly
contrasting information from different vehicles during a short period of time. These
messages may be related to different events (or different queries) occurring at same or
different places. Therefore, the first step is to identify the messages describing the same
event from the potentially large amount of received messages so that the analysis can
be conducted separately for each event.

One may think of using clustering algorithms to cluster these messages. Messages
corresponding to the same event may be similar or conflicting, if spurious or inaccurate
messages are included. Direct adoption of conventional clustering algorithms is likely
to put these related but conflicting messages in different groups, and hence affect the
construction of the trust model. For example, applying a conventional K-means clus-
tering algorithm to messages received by the vehicle V1 illustrated in Figure 2, three
clusters may be obtained: cluster C1 (containing messages of “traffic jam”), cluster C2

of messages about “traffic fine”, and cluster C3 for the coupon code. Such clustering
did not provide any hint that information in C1 and C2 is in fact responding to the same
query and they are conflicting. Moreover, the cluster of C3 did not identify the false
coupon code either since the messages are very much similar in terms of content and
other values of other components (e.g., location, event type) in the messages.

Thus, in order to better classify messages disseminated in VANETs, we propose a
two-level clustering algorithm. The first level clustering groups messages describing
the same event regardless the message content. To achieve this, we cluster messages
based on their similarity on the three components: locint, te, and etype. Specifically,
two messages (Msgi and Msgj) would be placed in the same cluster if they satisfy all
the following conditions:

– Dl(locinti , locintj ) ≤ ρd: Dl is the Euclidean distance of two locations. This con-
dition requires that the two messages are reporting events not further than distance
ρd so that we may infer that the two messages are likely to be about the same event.
In this work, we select ρd to be the width of a road which is about 20 meters for a
three-lane road.

– |tei − tej | ≤ ρt: Messages sent from the same locations may not refer to the same
event. For example, messages responding to different queries may be sent from the
same location at different timestamps. Therefore, we use the time threshold ρt to
constraint the consideration within messages sent during nearby timestamps. In the
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experiments, we set ρt to be 30s within which most query results would not have
big changes. For example, traffic condition would not change a lot within 30s.

– etypei = etypej: Two messages about the same event obviously need to have the
same event type.

For each cluster obtained from the first level clustering, we further conduct the second
level clustering that aims to identify conflicting information regarding the same event.
The second-level clustering is conducted mainly by examining the message content, i.e.,
the similarity between the value of component (info) in the message. To compute the
similarity of message content, we first extract the keywords from info of a message by
excluding articles (“a”, “an”, “the”) and connection words that do not carry important
information. For example, given a message “there is no traffic jam”, we convert it to
a set of keywords {“no”, “traffic”, “jam”}. Then, we sort the keywords in the set in
the alphabetical order. After that, we apply the edit distance [19] and WordNet [20]
to compute the distance between keywords belonging to two messages. The distance
calculation of two keyword sets KW1 and KW2 consists of three steps:

1. We first identify the pairs of keywords that fully match each other and remove them
from further consideration.

2. Next, we consider if the remaining keywords in the two sets are pairs of synonyms
based on WordNet. We remove all such pairs.

3. For remaining keywords, we pair the keywords in KW1 and KW2 which have
small edit distance, and sum up the obtained edit distance (denoted as Ded).

4. If there is any keyword left unpaired, such as when the two keyword sets have
different number of keywords, we sum up the total characters of the unpaired key-
words and add to Ded.

If the distance (Ded) between two message content is smaller than ρinfo, the two mes-
sages will be put in the same cluster. To ensure that conflicting information would have
a high probability to be placed in different clusters, we adopt a strict threshold ρinfo
which is set to 2 (the length of an important keyword “no”). For example, suppose that
KW1={“no”, “traffic”, “jam”} and KW2={“traffic”, “congestion”}. After sorting the
keywords in each set, step 1 removes the matching keyword “traffic”. Step 2 removes
the synonyms “jam” and “congestion”. Step 3 is skipped since there is no more pair left.
Step 4 returns the final distance Ded = 2 which is the length of the remaining keyword
“no”. It is worth noting that due to variety of the ways to express the same informa-
tion, the distance here is just an estimation and may not be always accurate in some
cases when messages have same meaning but are expressed in very different ways. The
discussion on advanced natural language processing is out of the scope of this paper.

To obtain a better understanding of the whole process of the message classification,
let us step through the example scenarios given in Figure 2. Vehicle V1 received 7 mes-
sages which are Msg7, Msg8, ..., Msg13. Suppose that te in all the messages are fairly
close to one another, i.e., the difference less than ρt. Applying the three conditions on
locint, te and etype, we obtain the following two clusters after the first-level clustering:

C1 = {Msg7,Msg8,Msg9,Msg10}, C2 = {Msg11,Msg12,Msg13}.
This is because messages in C1 report the same type of event “traffic” at the same

location loca almost at same time, while messages in C2 are about coupon information
at loca.
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Next, we conduct second-level clustering for C1 and C2 respectively. The cluster C1

is further divided into two clusters based on the message content:
C11 = {Msg7,Msg8}, C12 = {Msg9,Msg10}.
Similarly, the cluster C2 is also divided into two clusters based on the content:
C21 = {Msg11,Msg12}, C22 = {Msg13}.

3.2 Information-Oriented Trust Model

After the message classification, the next task is to determine which group of messages
are truth-telling. To achieve this, we design an information-oriented trust model. The
overall process is to identify the factors that may be indicative of message trustworthi-
ness, and then quantify their impact and integrate their effects to generate an overall
trustworthiness score that can be easily understood by end users for making decisions.
To this end, we identify three important factors that affect message trustworthiness,
which are content similarity, content conflict and routing path similarity. In what fol-
lows, we explain why they are important, how they affect the trust score. Finally, we
derive the trust model based on these factors.

Effect of Content Similarity. Given a group of messages associated to a same event,
similar messages are generally considered to be supportive to one another. Moreover,
similar to daily life conversations, the more people supporting the same fact, the more
likely the fact would have some true ground. Though this observation may not always
hold as we will discuss later in Section 3.2, it is certainly an important factor to be con-
sidered when judging the trustworthiness of a message. To model these two effects, we
use two parameters. The first parameter is the maximum distance (maxDc) of content
between two messages in the same cluster. It quantifies the similarity of information in
the same cluster. The smaller the distance, the higher support level of the information
given by each other. The second parameter is the number of messages (Nc) in the clus-
ter which models the second effect: the more messages in the cluster, the higher support
the message received. The two parameters are then integrated to compute the support
value by using Equation 1.

Support(c) =
e

Nc
Ne (32 − maxDc

ρed
)

2
3e

(1)

We now explain the rationale behind Equation 1.

– In the first part of the formula, Ne is the total number of messages regarding the
event. Dividing Nc by Ne is for the purpose of obtaining a normalized value ranging
in 0 and 1, since 0 ≤ Nc ≤ Ne. Such normalization helps make values obtained
from different clusters of messages comparable. The effect of Nc is then modeled

by an exponential function e
Nc
Ne . The reason to choose the exponential function is

that the resulting value grows faster when the effect becomes more dominant. This
maps the following scenario. For groups of few number of messages (e.g., two or
three messages), it is hard to say one group is more trustworthy than the other just
because of it has one more supportive message. Therefore, such groups will have
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very close trust scores. When the number of messages in a group is much bigger, the
trust score will grow much faster using the exponential function, and this represents
that the probability of the message being true is higher.

– In maxDc

ρed
, maxDc is normalized to the range of 0 to 1 by using the possible max-

imum distance ρed. Recall that ρed is the threshold used to determine whether two
messages can be placed in the same cluster. The value 3

2 is used for two purposes.
First, it reverses the effect of maxDc

ρed
so that when the difference of messages is

greater, the trust score would be lower. Second, it ensures that the second part will
have certain effect on the overall trust score even if it reaches the maximum dis-
tance. In particular, when messages in the cluster are the same, i.e., maxDc = 0,
the second part returns a value 1.5. In contrast, when maxDc = 1, the second part
returns value 0.5.

– The value obtained from the product of the previous two components ranges from
1
2 to 3

2e. By dividing the product by 3
2e, the final similarity score is normalized to

be less than 1. It is always greater than 0 since messages in the same cluster are
expected to have at least some similarity.

Effect of Routing Path Similarity. It is likely for one to trust a message which has a
large number of other similar messages as the support. However, considering content
similarity may not be sufficient to determine the trustworthiness of the message since
in some cases a large number of messages may also cause illusion. An extreme case
is that if all messages have the same origin and the origin is a malicious vehicle, these
messages should not be trusted. From the example shown in Figure 2, the vehicle V1 re-
ceived two groups of conflicting messages about the traffic condition. These two groups
of messages have equal content similarity scores according to Equation 1 in Section 5,
making it difficult to tell which is more trustworthy. However, if observed closely, one
may notice that the group of false messages (Msg9 and Msg10 are actually provided
by the same source vehicle, while the group of true messages (Msg7 and Msg8) have
different source providers. Following a general assumption that majority of people are
honest, it is less likely that the majority of people purposely provide wrong informa-
tion. Therefore, the probability of multiple source providers reporting the same wrong
information is expected to be lower than that of a single source provider in most cases.
More generally speaking, if similar messages share more common nodes during their
routing paths, the risk of messages being tampered increases.

Based on the above discussion, we model the effect of routing path similarity by
using three parameters: the number of messages (Nc) in the cluster, the number of the
origins of the messages (Nsrc), and the number of distinct vehicles (Ndif ) in the routing
paths of messages in the same cluster. Then, we design the path similarity function
based on the following guidelines:

– If there are a large number of source providers (Nsrc), the message routing paths
are less likely to be similar.

– If there are common vehicles in multiple paths and the common vehicle is mali-
cious, all messages forwarded by the malicious vehicle may be tampered. To model
this, the more distinct vehicles (Ndif ) involved in the same cluster of messages, the
lower path similarity should be.
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The following equation sums up the above effects:

Pathc = 1−
(
0.5

Nsrc

Nc
+ 0.5

Ndif

Nall

)
(2)

In Equation 2, Nall denotes the total number of vehicle nodes involved in forwarding
the messages in the cluster C. If the same vehicle occurs in different paths, each of its
occurrence would be counted to Nall. Then, Ndif

Nall
yields the percentage of the distinct

vehicles in the routing paths. Though this percentage also reflects the difference of
source providers to certain degree, we still put an equal weight (0.5) to the number of
source providers due to its importance.

We now use the example in Figure 2 to illustrate the steps of computing the path
similarity. In cluster C11 = {Msg7,Msg8}, the routing paths are the following:

Msg7 : V2 – V5; Msg8 : V3 – V6.
Observe that in the above two (Nc = 2) messages, there are two different sources

(Nsrc = 2), four different nodes (Ndif = 4), and total four nodes (Nall = 4). There-
fore, the Pathc = 1− (0.5 · 22 +0.5 · 44 )=0, which means the paths are totally different.

In cluster C12 = {Msg9,Msg10}, the routing paths are the following:
Msg9:V4 – V7; Msg10 : V4 – V8.
Accordingly, we have Nc = 2, Nsrc = 1, Ndif = 3, and Nall = 4. Then, plug in

the numbers to Equation 2, we obtain Pathc = 1− (0.5 · 1
2 + 0.5 · 3

4 ) = 0.375, which
has a higher path similarity score compared to cluster C11.

The path similarity serves as a penalty value to the support value of a cluster of
messages. The more similar the routing paths of messages in the same cluster, the less
support to each other will be considered. In other words, the more independent of rout-
ing paths, the less probability of messages being tampered. We revise the Equation 1 as
follows:

Support′(c) = (1− Pathc) · Support(c) (3)

Effect of Content Conflict. The analysis of messages referring to a same event, may
result in more than one cluster of messages. Messages in different clusters indicate the
inconsistency of the information of the event. As shown in the example of Figure 2, one
cluster of messages claim there is traffic jam while the other claim the traffic is fine. It is
obvious that content conflict has a negative impact on the trustworthiness of messages,
and the more conflicting messages the heavier impact. Specifically, let C1, ..., Ck be
the clusters of messages regarding the same event. For each cluster of messages, we
compute a conflicting value Conci given by Equation 4.

Conci =
e

∑k
j=1 Support′cj −Support′ci∑k

j=1
Support′cj

e
(4)

A higher conflicting value will be obtained if there are more messages against current
cluster Ci. The conflicting value is 0 if there is not any conflicting clusters. Here, the
exponential function is adopted for the same purpose of amplifying the effect.
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Final Trust Score. To obtain the final trust score trust(c), we integrate the conflicting
value to the support score Support’(c). In particular, the conflicting value is used to
further penalize the support value as given by the following equation.

trust(c) =
(eξ − eξ·Conc)Support′(c)

eξ − 1
(5)

We model it based on the following rationale. When the conflicting value is small,
its effect should not be very dominant. In this way, if there exist few false messages,
these false messages would not affect the overall trustworthiness of the true messages.
When the conflicting value is big, its effect grows faster as it is more likely that the
information in the cluster being affected is not true regarding the existence of a large
number of opponents. Therefore, as can be seen from Equation 5, eξ·Conc models the
impact of the conflicting value whereby the exponential function along with a parameter
ξ make the resulting value grow faster with the increase of Conc. Here, ξ is a positive
value that helps adjust the importance of the conflicting value, and it is set to e in the
experiments. Finally, the score is normalized to range 0 to 1 by multiplying 1

eξ−1
. The

higher the trust score, the more trustworthy the message may be.
Finally, we summarize the overall process of estimating the trustworthiness of a mes-

sage. Given a bunch of messages received by vehicle V within a short time interval ρt,
the RMCV scheme first clusters messages according to the events, and then further clus-
ters messages based on their content. After that, trust scores are computed for all the
clusters of messages. For clusters of the same event, the one which received the highest
trust score is selected. If its trust score is above an experience threshold (e.g., 0.5), the
system would report that the content of this cluster may be trustworthy. Otherwise, the
system would report that none of the received messages are trustworthy.

In addition, we introduce one more interesting scenario that can also be handled by
our approach. Suppose that a vehicle Vx sends the following two messages:

– Msgx1: At time t1, there is a traffic jam between exits 25 and 30 in HWY 65.
– Msgx2: At time t2, there is no traffic jam between exits 25 and 30 in HWY 65.

It may be the case that between t1 and t2 things have changed, or it could be the case
that a vehicle can only observe some partial view and later on may see a complete view
and send a different message for correction.

For the given scenario, our RCMV will deal with it as follows:

– Case 1: Suppose that t2 is far from t1 (e.g., 30 minutes later). All messages (includ-
ing the one from vehicle Vx and others) about traffic jam sent around time t1 would
be considered as message for one event. We compare these messages to see if there
was a real traffic jam at t1. Messages sent around t2 will be considered as another
event (no jam) which could be true if the traffic was clear at t2.

– Case 2: Suppose that t2 is close to t1 (e.g., only a couple of minutes different), and
there is in fact no traffic jam but vehicle Vx made a wrong observation at t1. In
this case, the message of “traffic jam” will be considered as a conflicting message.
Assuming that majority is honest, we expect to have more messages of “no traffic
jam” around timestamp t1, so that the receiver would not be confused.
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4 Experimental Study

In this section, we first present the experimental settings and then reports a comparative
study of our approach against the existing work.

The implementation is written in JAVA and conducted in a desktop of 64-bit Intel(R)
Xeon(R) E5630 2.53GHz machine. We simulate the message disseminated in VANETs
as follows. We adopt a parameter that controls the number of hops Nhop between the
source provider and the query issuer (or the last message receiver) being considered. In
the experiments, we vary Nhop from 1 to 5. At each hop, we generate 100 vehicles. For
each event, we randomly select one hop and then select δ percent of malicious vehicles.
For the vehicles at the first hop, we generate true messages about several events for
honest vehicles, and conflicting messages for malicious vehicles. Honest vehicles will
honestly forward whatever messages they receive to one vehicle at the next hop, while
malicious vehicles will modify the received messages and forward them to multiple
vehicles (ranging from 1 to Nf ) at the next hop.

We compare our approach with the work by Raya et al. [16] which is the latest
representative work on data-centric trust establishment in VANETs. As their work is
based on Bayesian Inference, we denote it as BI in the experiment figures. Since the
BI work only considers a single event, we limit the messages to one event when com-
paring to them. Also, the BI work assumes the existence of trust scores (probability of
trustworthiness) of each message for computing the final trust score of the event. In the
simulation in their work, they assume the probability of trustworthiness of individual
messages follows a Beta distribution with the mean equals to 0.6 and 0.8. We adopt the
same parameters for their work in our experiments.

4.1 Experimental Results

In the first two rounds of experiments, we examine the properties of our RMCV, and in
the last round of experiments, we compare our approach with the BI work in terms of
the ability of preventing attack.

Efficiency. In the first round of experiments, we aim to evaluate the efficiency of our
RMCV scheme. Unlike the BI work which assumes the existence of scores of indi-
vidual messages and just computes one equation for the final trust score, our RMCV
scheme offers detailed steps to obtain the trust scores of individual messages. These
steps include message classification and routing path similarity analysis. In Figure 3(a),
we report the total time taken by the RMCV scheme from messages being received till
the trust score being computed. We vary the total number of messages from 100 to 1000
that a vehicle received during ρt. There are five hops along each routing path. It is not
surprising to see that the processing time increases with the number of messages to be
handled. This is because the more messages, the more time needed for message classi-
fication and path analysis. We also observe that the time for processing 1000 messages
is really short (less than 50ms), which indicates that our scheme is feasible and efficient
to meet the strict time constraint in real-time applications.

Effect of Conflicting Value and Path Similarity on Trustworthiness Score. In this
experiment, we show how conflicting values and path similarity values affect the over-
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(a) Processing Time (b) Trustworthiness Score

Fig. 3. The RMCV Approach

all trustworthiness score. From Figure 3(b), we can see that the trustworthiness score
decreases with the increase of conflicting values or path similarity values. More impor-
tantly, the trust score drops faster when the conflicting value and path similarity value
become larger. Thus, the model is tolerant to cases when there are few false reports (i.e.,
conflicting information), and becomes more sensitive when the number of false reports
increases.

Fig. 4. RCMV vs. BI

Impact of False Messages on Vehicles
Accepting True Messages. We now pro-
ceed to compare our approach with the BI
work. We examine the effect of increase in
the percentage of false messages per vehi-
cle to the percentage of good vehicles ac-
cepting true messages. We ran a simulation
of 1000 rounds for a group of 100 vehicles.
The results are reported in Figure 4. From
the figure, we can see that when the amount
of false messages is less than 50%, both the
BI work and our RCMV approach can very
well identify false reports, yielding close to
100% acceptance rate of true messages. However, once there are more than 50% false
messages, the BI work results in very low (close to 0%) acceptance rate of true mes-
sages. In fact, the BI work almost downgrades to a majority vote. In contrast, our RCMV
approach yields much better performance even if there are many false messages. This is
attributed to the way we model the conflicting information and path similarity. Specifi-
cally, since false messages tend to have higher path similarity scores, the penalty score
from path similarity decreases the impact of the large amount of false messages on
making the final decision.

5 Conclusion

This paper presents a novel information-oriented scheme for evaluating trustworthiness
of messages disseminated in VANETs, which incorporates content similarity, content
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conflict and route similarity into the trust model to best suit the dynamics of VANET
environment. In the future, we aim to integrate in-depth message content analysis tech-
niques to further improve the accuracy.
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Abstract. In cloud networking users may want to control where their
virtual resources are stored or processed, e.g., only in western Europe and
not in the US. Cloud networking is the combined management of cloud
computing and network infrastructures of different providers and enables
dynamic and flexible placement of virtual resources in this distributed
environment. In this paper, we propose a mechanism for verifying the
geographic location of a virtual resource. Our approach uses Trusted
Platform Modules (TPM) to identify physical machines and a trusted
authority which verifies the actual location. In addition, our approach
enables the verification of the trustworthiness of the machine of the cloud
operator.

Keywords: Security, Cloud Networking, TPM, Location.

1 Introduction

Nowadays, cloud computing is used for various applications and offers the pos-
sibility to flexibly allocate and use scalable and cheap computing, storage, or
networking resources. The resources are offered at different abstraction layers,
known as Infrastructure-as-a-Service (IaaS), where the pure hardware function-
alities are offered (e.g., Amazon’s EC2 [2]), Platform-as-a-Service (PaaS), where
a platform is offered on which applications can be run on (e.g., Google’s Ap-
pEngine [4]), and Software-as-a-Service (SaaS), where ready-to-use applications
are offered (e.g., Google Docs [5]). A company which wants to use cloud services
can either roll-out its own cloud infrastructure for its own usage (private cloud),
it can use cloud infrastructure of other cloud operators (public cloud), or it can
use a combination of these two use models (hybrid cloud).

A new approach called cloud networking combines the classical cloud com-
puting with advanced networking functionality and intelligent management of
both. A cloud networking provider is responsible for the management of virtual
resources, i.e., to move the virtual resources to a cloud operator and to instan-
tiate network connections at network operators. The cloud networking provider
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has contracts with both, the cloud networking users and the cloud and network
operators, takes care of the billing in both directions, and is able to globally
optimize the placement of virtual resources, e.g., reduce latency for accessing
virtual resources, choose the cheapest cloud and network operator, or minimize
the network load.

For both, static cloud computing and cloud networking, virtual resources can
be placed on cloud infrastructures that are not under control of the user. There-
fore, the user might want to define a security policy which gives rules on how
the data contained in the virtual resource must be handled. The cloud network
provider has to choose a cloud operator that has the capability to fulfill the se-
curity policy of the user and the cloud operator has to implement these security
policies on its cloud infrastructure. However, the user has no means to verify
whether a cloud operator really follows these security policies or just claims to
follow the policies.

One important policy is the guarantee that data is stored and processed only
at a defined geographic location [18], e.g., only in western Europe and not in
the US or other countries. This is of particular interest for some companies
because of some regulations such as the US patriot or similar acts. However,
for a cloud operator it may be beneficial to move the user’s data to another
location where storage space and computation are cheaper. Thus, a mechanism
is required which enables the verification whether the actual location complies
to the defined security policy of the user. Some approaches have been proposed
to address this issue [11,10,17]. However, they are all based on the measurement
of round trip times which results in high error rates [19].

In this paper, we introduce a mechanism for detecting the geographic location
of a virtual resource to prevent a cloud operator to move the virtual resources of
a user to an undesired location. Our approach uses Trusted Platform Modules
(TPM) which are placed on the physical machines in the cloud infrastructure as
unique identifier. The geographic position of these TPMs is verified by a trusted
authority. Users can use the TPM to reliably locate their virtual resources and
to verify that the actually used system of the cloud infrastructure is trustworthy,
i.e., is not maliciously manipulated by the cloud operator or someone else.

The rest of the paper is organized as follows. First, we provide relevant back-
ground of the TPM and the used functionalities in our approach in Section
2. Then, we introduce our approach on geolocating virtual resources based on
TPMs in Section 3 and discuss the security of our approach in Section 4. In
Section 5, we show related work on geolocating techniques and other techniques
to place resources at untrusted cloud operators. Finally, in Section 6 we conclude
our work and discuss ongoing work.

2 Background on TPM-Mechanisms

The TPM is the core of the TCG specifications [23] and provides functionalities
of a smartcard, i.e., protected storage for cryptographic keys and hardware en-
hanced calculation engines for random number generation, key generation, hash
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computation, and RSA operations. Although the TPM chip was not specified as
necessarily being tamper-resistant, many hardware vendors offer security mech-
anisms for preventing tampering and the unauthorized extraction of protected
keys, such as active security sensors.

When an owner first activates a platform, the TPM is initialized using the
TPM TakeOwnership command which requires physical presence at the system.
An owner password is set which is required to access the TPM. This process
cannot be executed remotely and a new initialization requires physical presence
and a special reset sequence.

The manufacturer pre-configures an individual so-called Endorsement Key
(EK) pair on the TPM and a corresponding certificate at the trusted platform.
The EK and the certificate can be used to clearly identify a specific TPM. The
private part of the key pair EKpriv is non-migratable, i.e., the private key is
always protected by the TPM and must not leave its protected storage. Due
to security and privacy reasons, EKpriv cannot be used to perform signatures.
EKpriv can only be used to decrypt sensitive data which has been encrypted
with the public part EKpub, e.g., to perform attestations. The certificate of the
EK is called EK Credential. It contains EKpub and is signed with the private
key of the TPM manufacturer attesting the validity of the TPM and the EK.

In addition to the EK Credential, a trusted platform is delivered with Con-
formance Credentials and the Platform Credential to provide assurance that its
components have been constructed to meet the requirements of the TCG Speci-
fications. The Conformance Credentials are issued by an evaluation service (e.g.,
platform manufacturer, vendor, or independent lab) to confirm that design and
implementation of the Trusted Building Blocks (TBB) comply with the TPM
specification. The Platform Credential is issued by the platform manufacturer,
vendor or an independent entity to provide evidence, that the platform contains
a TPM as described by the EK Credential.

To perform signatures, an owner can generate an Attestation Identity Key
(AIK) pair which is an alias for the EK. It is usually used to prove the authen-
ticity of the TPM to a third party without revealing the actual identity (i.e., the
EK) of the TPM. The private part of the AIK AIKpriv is also non-migratable,
just like EKpriv. The AIK is solely a signature key, and is never used for en-
cryption. It is used to sign information generated internally by the TPM. The
TPM can create a virtually unlimited number of AIKs. An AIK key pair can
be created using the TPM MakeIdentity command. To prove that an AIK is
tied to valid Endorsement, Platform and Conformance credentials, a certificate
called AIK Credential is used. The AIK Credential creation process uses an ex-
ternal certification authority (CA) for this purpose. The TPM sends a request,
signed with the AIKpriv, containing EK Credential, Conformance Credentials,
Platform Credential, and public part of the generated AIK AIKpub. If the cre-
dentials are valid, the CA generates the AIK Credential and sends it encrypted
with EKpub (from the EK Credential) back to the trusted platform.

Since there could be a very large number of keys, possibly more than can be
stored within the TPM, many keys such as AIKs can be stored externally, e.g.,
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on a hard disk. Every externally stored key is encrypted by the TPM’s Storage
Root Key (SRK) which is also a non-migratable RSA key pair and builds the
Root of Trust for Storage. An SRK can be changed when a new user takes
ownership of the TPM.

The TPM also offers so-called Platform Configuration Registers (PCRs), which
are used to store platform-dependent configuration values. These registers are
initialized on power up and are used to store software integrity values. Software
components (BIOS, bootloader, operating system, applications) are measured
by the TPM before execution and the corresponding hash-value is then written
to a specific PCR by extending the previous value:

Extend(PCRN , value) = SHA1(PCRN ||value) (1)

SHA1 refers to the cryptographic hash function used by the TPM and || denotes
a concatenation. The trust anchor for a so-called trust-chain is the Core Root
of Trust Measurement (CRTM), which resides in the BIOS and is first executed
when a platform is powered up. The CRTM then measures itself and the BIOS,
and hands over control to the next software component in the trust-chain. For
every measured component, an event is created and stored in the Stored Mea-
surement Log (SML). The PCR values can then be used together with the SML
to attest the platform’s state to a remote entity using for example the Integrity
Measurement Architecture (IMA) proposed in [20]. To initiate an attestation, a
verifier creates a Nonce and sends it to the attesting system. The TPM of this
system creates a signature of the Nonce and the PCR values using an AIK and
sends signature and Nonce together with the SML back to the challenger. The
verifier can verify the signature and compare these values with reference values
to see if the system integrity is trustworthy.

3 TPM-Based Location Assurance

The general idea of our approach is to use the TPM of the physical machine as a
trust-anchor for validating the geo-position of virtual machines. The identity of a
TPM is registered together with its actual geographic location at a Certification
Authority (CA). A user starts a software client running in the virtual machine to
initiate an attestation protocol to clearly identify the identity of the TPM and
verify the location with the help of the CA. In addition, the attestation protocol
ensures that nobody has tampered with the software components running on
the machine, i.e., BIOS, bootloader, hypervisor etc.

In the following, we first describe the setting we assume for our protocol for
TPM-based Location Assurance before we describe our protocol in detail.

3.1 Setting

Figure 1 shows the setup we assume for the TPM-based location assurance. The
virtual machine V M1 of a user runs on a machine of a cloud operator CO at
some specific geographic location. The cloud operator provides a machine with
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Fig. 1. Setup

a TPM. On top of the hardware runs the hypervisor which executes the VMs of
the different users. The TPM of the machine can be accessed by all VMs running
on this machine via a LICT module which provides functionalities for Location
verification and Integrity Check as well as a TPM driver. The module is part of
the hypervisor and manages the access of the different users to the TPM for lo-
cation assurance and implements the necessary parts of an IMA (cf. Section 2) to
ensure that the hypervisor and the LICTmodule is not manipulated. A LocCheck

client running within the VM of a user uses the LICT module to get the unique
identity of the TPM. The identity of the TPM is registered with the location
of the physical machine at a trusted CA. By contacting the CA, the location of
the TPM and the machine can be verified. We assume that the location of the
machine is verified during some anyway performed regular system inspection by
some trusted service provider (or the CA itself). For example, this could be part
of an anyway performed security audit according to ISO/IEC 27001 which is
repeated in regular intervals. For the sake of simplicity, we assume that the CA
also maintains a database with fingerprints of trustworthy software components
which is required by the IMA. This could also be realized by another third party.
Furthermore, we assume that the communication between user, cloud operator,
and CA is secured using mechanisms such as IPsec or TLS.

3.2 Protocol

The protocol is divided into two phases: Initialization andVerification Phase. The
Initialization Phase is usually performed only once when a cloud operator sets up
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Table 1. Protocol Steps: Initialization Phase

1a. LICT → TPM: TPM TakeOwnership

1b. LICT → TPM: TPM MakeIdentity

1c. TPM Generate (AIKpriv,AIKpub)
1d. TPM AR = AIKpub, EC, PC,CC
1d. TPM RSA Sign(AR|EKpriv) = Sig
2. LICT → CA: AR, Sig
3a. CA Verify Credentials
3b. CA Verify RSA Verify(Sig|EKpub)=AR
3c. CA Generate AC
3d. CA Generate K
3e. CA RSA Enc(K|EKpub)
3f. CA Sym Enc(AC|K)
4. CA → LICT: RSA(K|EKpub), Enc(AC|K)
5a. LICT → TPM: TPM ActivateIdentity

5b. TPM Decrypt K
5c. TPM Decrypt AC
6a. LICT → TPM: TPM Quote(hAIK, passAIK, locM , SPCR)
6b. TPM RSA Sign(locM,SPCR|AIKpriv)=SigL
6c. LICT → CA: locM , PCR[SPCR], SML, SigL
7a. CA Verify SigL
7b. CA Verify platform integrity
7c. CA Verify locM
7d. CA Mark locM of M as verified

a new machine to register the machine (with the integrated TPM) and location
at the CA. We adapted the AIK Credential Generation process for this purpose.
During the Initialization Phase, the CA also verifies the trustworthiness of the
machine by means of an attestation protocol. After the CA has verified that the
alleged location of the machine is correct and that the system is trustworthy, users
of the machine can also verify the location by executing the Verification Phase of
the protocol.

Initialization Phase. When a new machine M is set up by a cloud operator CO,
the LICT module initiates the following protocol steps (cf. Table 1).

First, the TPM TakeOwnership command is executed to initialize the TPM
and the owner password pass to access the TPM is set and stored in the LICT

module. Next, the TPM MakeIdentity command is invoked to cause the TPM
to generate an AIK key pair (AIKpriv,AIKpub). A key handle hAIK is associated
with this RSA key pair, since multiple AIK pairs can be generated on a TPM.
When generating the keys another password passAIK is set, which is required to
use AIKpriv.

An AIK-Request AR containing the AIK public key AIKpub, Endorsement
Credential EC, Platform Credential PC, and Conformance Credential CC is
generated and signed by the TPM using EKpriv. The TPM sends this signature
Sig and AR to the LICT module which forwards them to the CA. Since the
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endorsement credential contains the public endorsement key EKpub, the AIK
key pair is exclusively bound to the TPM. The LICT module stores pass, hAIK,
passAIK, AIKpub, and all credentials for future use.

After receiving this message, the CA verifies the validity of the credentials (cf.
Section 2) and of the signature Sig. If both verifications pass, the CA generates
an AIK Credential AC, i.e., AIKpub is signed with the private key of the CA. AC
is encrypted with a symmetric encryption scheme Sym Enc using a generated
session key K. Note that TPMs use symmetric encryption and decryption only
internally for purposes such as session key encryption or encryption of externally
stored data. The session key K itself is RSA-encrypted with EKpub and sent
together with AC to the LICT module.

The LICT module calls the TPM ActivateIdentity command to decrypt the
session key K using EKpriv. Thus, this operation ensures that only the TPM is
able to decrypt AC in the next step.

Now the LICT module starts the registration of the claimed location locM of
the machine M at the CA. As stated in the setting, we combine this location
registration process with a check of the platform integrity and an attestation to
enable the CA to verify that nobody has tampered with the machine M , i.e.,
BIOS, Bootloader, Hypervisor, and LICT module are trustworthy (cf. Section
2). The TPM is requested to sign the location locM and the set of PCR values
SPCR used for measurements by the IMA during the boot process using the just
generated AIKpriv by invoking the TPM Quote command. The key handle hAIK is
used as parameter to point to the correct AIK and the password passAIK to get
permission to use the key. The message to the CA contains the location locM ,
the set of PCR values PCR[SPCR], the Stored Measurement Log SML, and the
signature SigL.

When the CA receives this message, it first verifies the validity of the signa-
ture using AIKpub. Next, the SML is validated against the PCR values and the
individual measurements are validated using the fingerprint database to verify
that the platform is trustworthy. After the location is verified by some external
party, e.g., during an anyway performed audit, the CA marks this machine (with
its TPM) and its location as verified.

After the initialization phase, the AIK key pair of the TPM installed in CO’s
machine is successfully registered at the CA with its current location and can
be used in the subsequent verification phase.

Verification Phase. The protocol steps of the Verification Phase are shown in
Table 2.

When a user U wants to verify that his virtual machine V M1 (cf. Fig. 1) is
indeed running on a machine of the cloud operatorCO at the alleged location and
is still trustworthy, he chooses randomly several memory areas MA1, . . . ,MAn of
its virtual resource V M1 (cf. Fig. 2) and sends a pointer MA to their locations
as input to initialize the LocCheck client. During every verification, different
memory areas MA1, ...,MAn are chosen. Including these memory locations in
the verification process, renders relay attacks pointless (cf. Section 4).
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Table 2. Protocol Steps: Verification Phase

0. User → LocCheck: Memory areas MA
1a. LocCheck → LICT: Request AIK
1b. LICT → LocCheck: AIKpub

1c. LocCheck Generate hash(MA)
1d. LocCheck → CA: hash(MA), AIKpub

2a. CA Select SPCR

2b. CA → LocCheck SPCR

2c. LocCheck → LICT MA, SPCR

3a. LICT Generate hash(MA)
3a. LICT → TPM: TPM Quote(hAIK,passAIK, hash(MA), SPCR)
3b. TPM RSA Sign(hash(MA), SPCR|AIKpriv) = SigMA
3c. TPM → LICT PCR[SPCR], SigMA
4a. LICT → LocCheck PCR[SPCR], SML, SigMA
4b. LocCheck → CA: PCR[SPCR], SML, SigMA
5a. CA Verify SigMA
5b. CA Verify platform integrity
5c. CA Verify locM marked as verified
5d. CA Verify hash(MA)
6a. CA → LocCheck Location locM confirmed
6b. LocCheck → User Location locM confirmed

Fig. 2. Memory Areas included in the verification

Next, the LocCheck client requests the public AIK AIKpub of the TPM from
the LICT module and sends the public AIK and the hash over the memory areas
hash(MA1, . . . ,MAn) to the CA with the request to confirm the location. The
public AIK is used as the identifier of the TPM.

When the CA receives AIKpub, it looks in its database which PCR values are
required to attest the platform integrity of the machine M and sends the set of
identifiers of the PCRs SPCR back to the LocCheck client. The LocCheck client
sends SPCR and the pointer to the memory areas MA to the LICT module.
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The LICT module builds the hash value hash(MA) = hash(MA1, . . . ,MAn)
over the memory areas denoted by MA and uses the TPM Quote command to
request the TPM to sign hash(MA) and the PCR values listed in SPCR with
AIKpriv. Again, the key handle hAIK is used as parameter to point to the correct
AIK and the password passAIK to get permission to use the key. The TPM sends
the signature SigMA over hash(MA) and the PCR values as well as the PCR
values themselves PCR[SPCR] to the LICT module.

Next, the LICTmodule sends this data together with the SML to the LocCheck
client which directly forwards this message to the CA.

The CA verifies the validity of the signature, the platform integrity, that the
location locM is marked as verified, and that hash of the memory areas calculated
by LocCheck and the signed one of LICT are the same. If all verifications pass,
the CA uses its own private key to sign a confirmation message for the stated
location locM and sends it to the LocCheck client which forwards this message to
the User. Finally, the User uses the public key of the CA to verify the signature
of the confirmation message and verifies that the location locM is indeed the
location he requested.

4 Security Discussion

In this section, we discuss the security of our protocol. We assume a cloud oper-
ator behaves adversarial and tries to move virtual resources to another location
which might be cheaper and helps him saving costs.

For our protocol, we assume that the locations of the TPMs are verified and
that they are indeed at their alleged location stored at the CA. Furthermore, we
assume that the adversary can neither circumvent the tamper-protection mech-
anisms of the TPM to read out cryptographic keys nor break any cryptographic
mechanisms, e.g., forge signatures without knowing the key or inverting hash
functions.

Basically, there exist two ways how the adversary could attack our protocol:
he can either try to forge the location of a machine or perform a relay attack.

In the first case, the adversary tries to forge the location of a machine to be
compliant with the user’s policy. Since the result of the initialization phase is
verified during an audit, he can only attack during the verification phase. To
pass the verifications of the CA in steps 5a to 5d (cf. Table 2) and to gener-
ate SigMA, direct access to AIKpriv, which is securely stored in the TPM, is
required. The adversary would need to circumvent the tamper-protection mecha-
nisms of the TPM, to get access to AIKpriv which is a contradiction to our above
stated assumption. Alternatively, the adversary could remove the (motherboard
with the) TPM from the machine and install it in another machine at another
location. However, this would be detected at the latest during the next audit.
Thus, the audit should be performed in regular intervals to make this attack
uneconomical for the adversary since he needs to regularly uninstall, ship, and
reinstall (motherboards with) TPMs.
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In the latter case, the adversary could use two machines to perform a relay
attack. Machine MA is located at a correct location according to the user’s policy
and is not modified and operates correctly. The adversarial cloud operator has
its own virtual resource V Mx running on this machine. In addition, he sets
up another machine MB at a location not compliant to the user’s policy. On
MB, the hypervisor and the LICTB module are modified to forward the protocol
requests to a modified LocCheckx client running in V Mx on MA. Using this
construction, the adversary could move the user’s V M1 from MA to MB and
relay all protocol messages and the verification would still pass. To address this
issue, we adapted the idea of software-based attestation [9] in our protocol by
extending the verification over the virtual resource V M1. The TPM of a machine
generates in steps 3a to 3c (cf. Table 2) the signature SigMA over the hash of the
memory regions MA1, . . . ,MAn of the respective virtual machine. To pass this
verification on machine MA, the virtual machine V Mx of the adversary must
be identical to the user’s virtual machine V M1 running on MB. Thus, a relay
attack is pointless for an adversary, since he always needs to maintain a copy of
V M1 at MA and in addition requires additional resources at machine MB.

On general problem of attestation, which is not specific to our solution, is
Time-of-check Time-of-use (TOCTOU). This means that between the verifica-
tion and the use of a machine, the state of the machine could be changed by the
adversary. Thus, we propose that the verification process is regularly repeated.

5 Related Work

There exist several regulations on the placement and the access to digital data.
The European data protection law [1] restricts the placement of data to juristic
borders. Both, a Gartner report on assessing the security of cloud infrastructures
[15] and an ENISA report on general risks in cloud computing [12], highlight the
importance of data location and its jurisdiction in cloud computing. On the
other hand the US Patriot Act [13] gives US governmental institutions the right
to access digital data if it is located in the US or it is located at a data center
that belongs to a US company.

Policy enforcement in cloud computing is addressed by the cloud audit group
[3]. The cloud audit community works on automation of audit, assertion, assess-
ment, and assurance in cloud computing. Iskander et al. [16] introduces mecha-
nisms on the enforcement of authentication policies. The same does Vimercati
et al. [24] by selective resource sharing enforced by encryption. Basescu et al. [8]
defines a security management framework for specifying and enforcing security
policies. However, none of the work give means for checking if the security poli-
cies are fulfilled. The work in this paper concentrates on the assurance of the
location of a virtual resource, which can be part of a security policy.

Another approach to restrict access to data in the cloud is homomorphic
encryption [14]. Homomorphic encryption allows to process encrypted data. By
applying this technique to cloud computing the confidentiality of processed data
can be guaranteed. At the time of writing homomorphic encryption only works
for a restricted set of operations and is not applicable to cloud computing.
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A similar approach is secure multiparty computation (SMC) [21,25]. In SMC
the data to be processed is distributed over different cloud operators and pro-
cessed cooperatively so that none of the operators have all information to reveal
the original data. Because of efficiency reasons and because it does not support
all operations, SMC is not applicable to cloud computing.

Another geolocation technique used in the internet is the use of network co-
ordinate systems [11,10,17]. By measuring the round trip times of ping messages
sent from different known locations in the internet to one destination, network
coordinate systems estimate the geoposition of a device. For using this technique
no trust in the hypervisor is needed because a VM can directly be accessed. How-
ever, Ries et al. [19] show that this approach works in general but gives a high
error rate which makes it useless for reliably checking the geoposition of virtual
resources in cloud computing.

Work on how to use TPMs in cloud computing environments already exist
[22] but concentrates only on using the TPM for encryption.

6 Conclusion

Cloud computing and cloud networking is widely used and users might want
to define security policies how their data is handled. One important aspect is
the location where data is stored and processed, e.g., only in western Europe
and not in the US or other countries. This is of particular interest for some
companies because of regulations such as the US patriot act. In this paper, we
propose a mechanism based on Trusted Platform Modules and a trusted third
party to enable users to verify the actual location of their virtual resources and
the trustworthiness of the machine of the cloud operator. An attestation protocol
is used to verify the platform configuration of the machine of the cloud operator
and to uniquely identify the TPM of the machine. The actual location of the
TPM and data to attest the platform integrity of machines of cloud operators
are stored at a trusted third party which is contacted during the attestation.
Our security discussion shows that our approach provides an adequate level of
security. In contrast to previously proposed approaches, our approach enables a
reliable location verification, however, with the additional costs for a TPM and
the overhead for the location audits.

We are currently working on the implementation of our location assurance
mechanism for cloud networking. A standard PC, equipped with a TPM ac-
cording to the TPM specification 1.2 [23], is used for the machine of the cloud
operator running Xen [7] as hypervisor. The LICT module is implemented as a
Back-End in the dom0 domain with a native device driver to access the TPM.
The corresponding Front-End Device Driver implements the LocCheck client in
the unprivileged virtual machines (domU ) of the users. To verify the platform
integrity of the machine, we use Trusted GRUB [6] as bootloader and implement
the IMA [20] mentioned in Chapter 2. The CA will be implemented on another
machine using self signed certificates and the communication will be secured
using OpenSSL to set up a TLS tunnel between the machines.
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Abstract. Tracing down anonymous slow attackers creates number of
challenges in network security. Simply analysing all traffic is not feasible.
By aggregating information of large volume of events, it is possible to
build a clear set of benchmarks of what should be considered as normal
over extended period of time and hence to identify anomalies. This paper
provides an anomaly based method for tracing down sources of slow
suspicious activities in Cyber space. We present the theoretical account
of our approach and experimental results.

1 Introduction

As computer networks scale up in terms of number of nodes and volume of
traffic, analysing slow attack activity, deliberately designed to stay beneath the
threshold, becomes ever more difficult. Traditional attackers relied more on brute
force attacks. However, increasingly nowadays attackers are trying to remain
undetected and to steal information over and over again, adopting a much more
patient type of structure to compromise a network. An attacker may take days,
weeks or months to complete the attack life cycle against the target host. Attacks
may blend into the network noise in order to never exceed detection thresholds
and to exhaust detection system state. Such persistent attacks are known as
slow attacks. For example [3,2] present tools and technique to perform such
attacks. Our previous work [17] presents a detection algorithm for such attacks,
based on the underlying assumption that attack activity can be attributed to
a meaningful specific source. This assumption is not valid for anonymous slow
attackers. Identifying the source of such an attack requires tracing the packets
back to the source hop by hop. Current approaches for tracing these attacks
require the tedious continued attention and cooperation of each intermediate
Internet Service Provider (ISP). This is not always easy given the world-wide
scope of present day Networks [8].

This paper presents a methodological way to trace anonymous slow activities
to their approximate sources by prioritizing evidence acquisition. First, we map
paths from victim to all possible networks as a tree. And then each path is
profiled in a Bayesian framework [23,15] and highest scored path is selected to
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move towards. Experimental results are promising proposed approach eliminates
all but a handful of nodes that could be the source of the suspicious activity.

The paper is organised as follows. Section 2 presents a brief overview of related
work. Theoretical account of the underlying methodology is presented in Section
3. A novel tracing algorithm is presented in Section 4. Experimental set-up
(including two scenarios), and their outcomes are presented in Sections 5 and 6
respectively. Section 7 concludes the paper.

2 Related Work

Tracing back is one of the most difficult problems in network security. There is
a lot of research being conducted in this area (refer to survey papers [4,19]).
Deterministic packet marking and Out-of-band approaches are not relevant to
this work. Burch and Cheswick control flooding tests network links between
routers to approximate the source [8]. Sager and Stone suggest to log packets
at key routers and then use data mining techniques to determine the path that
the packets traversed [16,25]. The upside of the property is that it can trace
an attack long after the attack has completed. As it is obvious, downside is
this approach is not scalable. Snoeren et al. propose marking within the router,
to reduce the size of packet log and provide confidentiality, hash-based logging
is proposed [5]. Savage et al. suggest probabilistically marking packets as they
traverse through routers [24]. They propose that the router mark the packet with
either the routers IP address or the edges of the path that the packet traversed
to reach the router. With router based approaches, the router is charged with
maintaining information regarding packets that pass through it. Most of above
approaches are focus on DDoS attacks. Since our interest is not on events related
to quick attacks, our work differs from all above works.

As Davidoff and Ham claim flow record analysis techniques are statistical in
nature, but exceptionally powerful and very useful [13]. Especially, in slow at-
tack environments where full content captures are limited by the amount of disk
space and processing power. The purpose of flow record collection is to store a
summary of information about the traffic flows across the network, which lets
devices to save records for much longer than full packet captures. There are
number of open source and commercialised flow record collection and analysed
tools [6,12,9,21] at present while some switches (Cisco catalyst), routers and
firewalls (current revisions of Cisco) support flow record generation and export-
ation [13]. A typical flow record of existing tools may include IP addresses, ports
& flags, protocols, date, time, and the amount of data transmitted in each flow.
It is possible to use suspicious events related to these parameters as inputs to
our profiling method, but has not limited to flow records elements only. Any
suspicious event in the scene is an important input to our profiling method. For
example alerts of multiple login failures or an execution of cmd.exe are also in-
terested and important events to our method. Essentially the profiling technique
used in our approach combines all suspicious events in the scene into a single
score using a Bayesian technique. This evidence fusion is especially important for
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scalable solutions. It scales well our approach to very large networks with high
throughput. Most of existing flow analysis tools collect, analyse, interpret and
present data of above parameters separately without combining them. Hence
our approach is certainly different to existing flow record analysis techniques,
though our’s too is statistical in nature.

Chivers et al. use Bayes formula for combining evidence from multiple sources,
to provide a scalable solution to identify suspicious slow insider activities [11,10].
Authors profile all nodes in the target network against the time line, and distin-
guish between anomaly and normal behaviours by setting a control (base line).
Most deviant node from the control is identified as the attacker. Kalutarage et
al. similarly motivated, but show that such a decision criteria is not valid for
situations where there are more than one attacker in a same subnet with higher
variations of node behaviours [17]. Since it can be affected by even dimensions
of the drawing canvas, Kalutarage et al. claim standardisation of profile scores
should be performed before any comparison. Authors use Z-Scores, instead of row
profile scores, together with concept of statistical normality for this task [17,18].
In [17], they use evidence fusion and aggregation (in a Bayesian framework) as
the profiling method and have discussed the necessity and possibility to integrate
contextual information with the detection. However Chivers et al. themselves
identify a need for a different decision criteria other than the maximum score
function method they used.

Phillip et al.’s work [7] is a much more similar study to Chivers et al.s work. In
[7], users are profiled according to their behaviour and that information is used
to identify users who require further investigations. Streilein et al. use multiple
neural network classifiers to detect stealthy probes [26]. Evidence accumulation
as a means of detecting slow activities has been proposed in [27]. That work
differs from us as it uses a counting algorithm and also in its decision criteria.
In next section we explain why simple counting approach is not suitable herein.

3 Profiling Method

Profiling plays a key role in our approach. We use a probabilistic approach for
this task. Because, such approaches performs well in noisy environments than
deterministic approaches. The environment we are working is noisy due to two
types of uncertainties (motivation and source) of each event of interest.

The motivation behind an event is not always easy to judge. Some suspicious
events can be appeared as a part of attack signatures as well as could be origin-
ated from normal network activities. For example, a major router failure could
generate many ICMP unreachable messages; an alert of multiple login failures
could result from a forgotten password. An execution of cmd.exe could be a part
of malicious attempt or a legitimate as it is frequently used by malicious pro-
grams to execute commands while it is also frequently used by legitimate users
during their normal day-to-day operations. By just looking at such an event you
cannot simply judge its motivation that it is a part of malicious attempt or not.
As Davidoff and Ham claim other information (contextual/multivariate) can be
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used to narrow down the meaning of such an event [13]. For example suspicious
port scanning activity may have the following characteristics: a single source
address, one or more destination addresses, and target port numbers increasing
incrementally. When fingerprinting such traffic, we examine multiple elements
and develop a hypothesis for the cause of behaviour on that basis. We use a
multivariate approach handling the above uncertainty.

There is no guarantee on publicly visible source of an event is to be the true
source. As mentioned in [14], to remain anonymous, the attacker attempts to
either disguise the elements that characterize the attack or hide the source of its
acts. The localization process becomes evermore difficult when the attacker em-
ploys various proxy methods (e.g. Generic port routing, HTTP, Socks, IRC etc)
and zombie (e.g. bots) nodes. Manipulation of TCP/IP elements (e.g. IP Spoof-
ing), using relay or random routing (e.g. Tor networks, Crowds, Freenet systems
etc) approaches can help an attacker protecting her location. Proliferation of
weakly encrypted wireless networks could also help an attacker getting anonym-
ous locations. In nature, some security monitoring parameters (e.g. bandwidth)
do not have the source information.

The critical challenge is how to keep information about activities of each node
over an extended period of time while acknowledging above uncertainties? As
a solution we propose to use an incremental approach in a Bayesian framework
which updates normal node profiles dynamically based on changes in behaviour.

3.1 The Bayesian Paradigm

The posterior probability of the hypothesis Hk given that E is given by the
well-known formula:

p(Hk/E) =
p (E/Hk) .p(Hk)

p(E)
(1)

In order to fit this formula into our case, let Hk : hypothesis that kth node is
an attacker, E ={E1=e1,E2=e2,E3=e3,...,Em=em}is the set of all suspicious
evidence observed against node k during time t from m different independent
observation spaces. Here P(E) is the probability of producing suspicious events
by node k, but on its own is difficult to calculate. This can be avoided by using
the law of total probability and reformatted (1) as:

p(Hk/E) =
p (E/Hk) .p(Hk)∑
i

p(E/Hi).p(Hi)
(2)

For independent observations, the joint posterior probability distribution:

p(Hk/E) =

∏
j

p(ej/Hi).p(Hk)∑
i

∏
j

p(ej/Hi).p(Hi)
(3)

Once we observed E from node k, to calculate the posterior probability of node
k being an attacker p(Hk/E), it is necessary to estimate:
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1. the likelihood of the event E given the hypothesis Hi, i.e.p(E/Hi) and,
2. the prior probability p(Hi), where n ≥ i > 0.

Assuming that we know the prior and likelihoods, it is obvious that (3) facil-
itates to combine evidence from multiple sources to a single value (posterior
probability) which describes our belief, during a short observation period, that
node k is an attacker given E. Aggregating short period estimations over time
helps to accumulate relatively weak evidence for long periods. This accumulated
probability term

∑
t

p(Hk/E) (t is time) is then divided by number of nodes

behind the target node (i.e. nk - size of the subnet behind node k, if there is
one) and, known as profile value hereafter, can be used as a measurement of
the level of suspicion for node k at any given time. Schultz et al. claim that
profiling suspected insiders provides one of the best ways of reverse engineering
an attacker [22]. Although there are some significant differences between the
characteristics of insiders and outsiders, profiling can still be used effectively in
tracing down anonymous slow attackers at any location in the Network, if the
topological information is available. Let:

ckt =

∑
t

p(Hk/E)

nk
(4)

is the cumulative node score of kth node at time t. Then

zkt =
ckt − c̄t

σt
(5)

is the Z-score of node k at time t. where c̄t =

∑
i

cit

n , σt =

√∑
i

(cit−c̄t)
2

n−1 , and

i = 1, 2, 3, ..., n.
Calculating standardised node profiles (Z-scores) as shown in (4) and (5)

above, instead of node profiles themselves, will resolve the comparison issues
discussed in Section 2.

4 Tracing Algorithm

Here we present our algorithm for tracing slow suspicious nodes by prioritising
the likely source of evidence. The tracing algorithm has two segments: tree form-
ation and tree traversal.

4.1 Tree Formation

Tree formation is the process of building an equivalent tree structure for a given
attack scenario. Victim node is the starting point. Gateway node to the victim is
considered as the root of the tree and all immediate visible nodes (either internal
or external) to the root are considered as children of the root. If a given child
is a host node in the network then it becomes a leaf of the tree. Else, if it is a
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gateway, it becomes a parent node of the tree and all immediate visible nodes to
that node is attached as its children. This process is continued until the entire
topology is covered (see Figure 2).

ϑ: Tree;
ω: A node;
τ : Set of all nodes in the given topology;
input : Topological information together with victim’s location
output: Tree structure for the given attack scenario
Initialize the tree ϑ to have the root as the gateway of the victim;
List all nodes into the list τ ;
/* attached each node to the tree*/;
tree-construction(ϑ,τ);
foreach node ω in τ do

if num-of-hops-between(ϑ,ω)==1 then
insert ω into ϑ;

end

end
foreach ϑ.child do

tree-construction(ϑ.child,τ)
end

Algorithm 1. Tree formation for a given attack scenario

4.2 Tree Traversal

Once the equivalent tree structure is built, proposed tree traversal algorithm is
applied. To traverse a non-empty tree, perform the following operations recurs-
ively at each node, starting from the root of the tree, until suspected node is
found.

1. Visit the parent node
2. Compute profile scores for all children of the parent (as in section 3.1)
3. Traverse the highest profile scored sub tree (if an attacker node is found,

backtrack to the parent)
4. Traverse next highest profile scored sub trees (only sub trees significantly

deviate from rest of nodes of same parent)

The algorithm continues working towards a built tree node by node, narrow
downing the attack source to one network and then to a node. At this point
we can run more standard trace back methods by contacting the entity which
controls that network, if it is beyond our control.
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Fig. 1. Network topology used for the experiment. For the particular scenario presented
in this paper, subnet sizes are: S1(25), S2(25), S3(50), S4(25), S5(15), S6(25), S7(25),
S8(5), S9(5), Server farm(10).

input : A Tree constructed for anonymous slow attack scenario
output: A node where attacker is located
proposed-traverse(ϑ);
while not found do

visit node ω;
if node ω is a leaf then

return;
else

profile all children of node;
proposed-traverse(node.top scored child);
proposed-traverse(node.next scored child);

end

end
Algorithm 2. Tree traversal (pointer representation)

5 Experiment

To test the proposed approach, we have formulated number of scenarios and
have conducted series of experiments. Figure 1 presents the network topology
used for our experiments. Its equivalent tree structure is presented in figure 2.

5.1 Scenario

Suppose that security staff have noticed someone’s suspicious activity on a node
in the server farm (see Figure 1) for sometime. Though they have a packet
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Fig. 2. Tree structure. root is the victim’s gateway, gij - a gateway node, hij - a host
node, i-level of the tree, j- a node number. Dashed rectangles represent a collection of
leaves relevant to hosts in each subnet.

capture of the activity, they can’t figure out what’s going on, whether those
events are a result of simple user mistakes or a malicious attempt. Origin of
packets seems to be fake and the time gap between two consecutive events of
that particular activity seems to be significantly high.

5.2 Implementation

We implemented the above scenario in a simulated environment and run the
proposed approach until the attacker is found. ns3 [20] was used to build above
topology and to generate the traffic patterns of interest. Poison arrival model was
assumed. Inter arrival time gap between two consecutive events was modelled as
an exponential. Each simulation was run for a reasonable time period to ensure
that enough traffic was generated (over one million events). Two cases were
considered: single and multiple attackers. In single attacker case, an attacker was
located at a node in subnet S6. And in multiple attackers case, three attackers
were located one in each in three different subnets S6, S5 and S3.

Attacker Modelling. If λs, λn are mean rates of generating suspicious events
by suspicion and normal nodes respectively, we ensured maintaining λs = (λn ±
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3
√

λn) and λn(≤ 0.1) sufficiently smaller for all our experiments to characterise
slow suspicious activities which aim at staying beneath the threshold and hiding
behind the background noise.

√
λn is the standard deviation of rates of suspicious

events generated by normal nodes.

Parameter Estimation. Prior probabilities and Likelihoods are assigned as
follows.

p(Hm) = p(Hn) =
1

Number of nodes in the target network
(6)

Equation (6) assumes that all nodes in the scene have a same prior belief (equally
likely) to be subverted. However, this is not the case in many situations. One
node may have a higher prior belief of suspicion than another. A node attached
to a Public Zone (PZ) in the network may have a higher chance to be subverted
than a node in a Special Access Zone (SAZ) (refer to Network Security Zones
Implementation Model in [1]). We followed the equally likely assumption for
the single attacker case. But, for multiple attacker case, we assumed there is a
slightly higher chance (55%) sitting back the attacker at a node outside to the
server-farm.

p(ej/Hm) = p(ej/Hn) = k (7)

for all j, m, n and m �= n. (7) explains the likelihood of producing event ej by
any node, if it was subverted. For the purpose of demonstration, we assigned
arbitrary values (≤1) for k for the certain types of events we produced in the
simulation. However it can be estimated as follows. If ej is an event such as UDP
scan or land attack which cannot be expected from a non-subverted node, then k
can be assigned to one. However, k cannot always be one, as described in section
2 there are some suspicious events (e.g. an alert of multiple login failures) can be
a part of attack signatures as well as could be originated from normal network
activities. The question is how to estimate p(ej/Hm), i.e. the true positives
ratio, if ej becomes such an observation? One possible answer would be using
IDS evaluation datasets such as ISCX 2012 or DARPA as corpus and using
similar techniques used in the natural language processing domain [17]. Chivers
et al. claim that, in some cases, the historical rate of occurrences of certain
attacks is known and can be used to estimate the likelihood that certain events
derive from such attacks or it may be sufficient to quantify these frequencies,
in a similar way to estimating risk likelihoods, to an accuracy of an order of
magnitude. As Davidoff and Ham claim the biggest challenge for anyone who
analyses network traffic is the absence of large publicly available data sets for
research and comparison. However according to them, within an organization, it
is entirely possible to empirically analyse day-to-day traffic and build statistical
models of normal behaviour.

6 Results

Figures 3 and 4 present Z-score graphs created at each step in the process of
tracing suspicious node(s). Step 1 graph in Figure 3 is created at the root of the
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Fig. 3. Z-Score graphs at each node until the attacker is found for one attacker case

derived tree. Min and Max represent the minimum and maximum Z-scores of all
visible nodes (11 in total, except g13) to the root at each time point. As step 1
suggested moving towards g13 , step 2 graph was created at node g13 , and so on.
Finally search is narrow downing to the subnet S6. Step 4 graph is created at S6’s
gateway node g34 . In that graph, S represents the Z-scores corresponded to the
true attacker we located in that subnet. Min and Max represent the minimum
and maximum Z-scores of all other nodes in subnet S6. A similar manner should
be followed in interpreting graphs in Figure 4.

One of interesting features of above graphs: if the subnet size is sufficiently
large (≥ 30), they follows the characteristics of statistical normality clearly (see
step 4 in Figure 3 and steps 3,6,8 in Figure 4). A node lies outside to the ±3 in
the Z-score graph can be considered as an outlier from the majority (normality).
For very small size subnets, it is possible to see a significant deviation of attacker
node from the normal nodes though its value does not go beyond ±3, and hence
identifying the attacker or finding directions to her location is possible.

Proposed approach is independent from the subnet size. Increasing (or de-
creasing) the subnet sizes, but keeping the same topological structure, does not
change the number of steps required in tracing the suspicious node. Table 1
presents travel sequences for tracing single and multiple attackers. In multiple at-
tackers case, once an attacker is found, tracing algorithm should be back tracked
to its immediate parent node and should proceed with next highest Z-scored sub
tree (if it deviates significantly from the majority), to find other suspicious nodes.
Step 1 of Figure 4 depicts such a situation. After step 3 and 6, algorithm back
tracks to step 1.
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Fig. 4. Z-Score graphs at each node until the attacker is found for multiple attackers
case
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Table 1. Traversal sequences in tracing attackers

Scenario Travel sequence (until all attackers are
found)

Single attacker: Attacker is at a node in
subnet S6

root, g13 , g25 , g34

Multiple attackers: Attackers are at a
node in subnets S3, S5 and S6

root, g12 , g23 , root, g13 , g25 , g34 ,root,
g11 , g21

7 Conclusion

Proposed approach changes its traversal sequence according to the suspicious
traffic. As a result, suspicious node comes forward in the sequence and probability
of trapping it early becomes high. Proposed approach assumes that attacker
is not moving to other networks as a part of launching the attack. However
attributing collusion activities still remain unsolved. We acknowledge that use
of sophisticated attack activities such as use of bot-nets, throwaway systems and
distributed sources makes it very difficult to attribute slow attacks. Of further
interest is to determine the target of such activity. In future we will investigate
methods to profile such nodes, where we adapt our profiling algorithm to profile
target nodes for possible slow and suspicious activities, as a defensive mechanism.
The underlying principle remains the same: we trade in state for computation.
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Abstract. Regular expressions are a concise yet expressive language
for expressing patterns. For instance, in networked software, they are
used for input validation and intrusion detection. Yet some widely de-
ployed regular expression matchers based on backtracking are themselves
vulnerable to denial-of-service attacks, since their runtime can be expo-
nential for certain input strings. This paper presents a static analysis for
detecting such vulnerable regular expressions. The running time of the
analysis compares favourably with tools based on fuzzing, that is, ran-
domly generating inputs and measuring how long matching them takes.
Unlike fuzzers, the analysis pinpoints the source of the vulnerability and
generates possible malicious inputs for programmers to use in security
testing. Moreover, the analysis has a firm theoretical foundation in ab-
stract machines. Testing the analysis on two large repositories of regular
expressions shows that the analysis is able to find significant numbers of
vulnerable regular expressions in a matter of seconds.

1 Introduction

Regular expression matching is a ubiquitous technique for reading and validat-
ing input, particularly in web software. While pattern matchers are among the
standard techniques for defending against malicious input, they are themselves
vulnerable. The root cause of the vulnerability is that widely deployed regular
expression matchers, like the one in the Java libraries, are based on backtracking
algorithms, rather than the construction of a Deterministic Finite Automaton
(DFA), as used for lexers in compiler construction [13,2]. One reason for relying
on backtracking rather than a DFA construction is to support a more expressive
pattern specification language commonly referred to as “regexes”. Constructs
such as back-references supported by such regex languages go beyond regular
and even context-free languages and are known to be computationally expen-
sive [1]. However, even if restricted to purely regular constructs, backtracking
matchers may have a running time that is exponential in the size of the input [6],
potentially causing a regular expression denial-of-service (ReDoS) attack [19].
It is this potentially exponential runtime on pure regular expressions (without
backreferences) that we are concerned about in this paper. Part of our motiva-
tion is that, for purely regular expressions, the attack could be defended against
by avoiding backtracking matchers and using more efficient techniques [7,26]
instead.
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For a minimalistic example [6], consider matching the regular expression a**

against the input string a. . . a b, with n repetitions of a. A backtracking matcher
takes an exponential time [6] in n when trying to find a match; all matching at-
tempts fail in the end due to the trailing b. For such vulnerable regular expres-
sions, an attacker can craft an input of moderate size which causes the matcher
to take so long that for all practical purposes the matcher fails to terminate,
leading to a denial-of-service attack. Here we assume that the regular expression
itself cannot be manipulated by the attacker but that it is matched against a
string that is user-malleable.

While the regular expression a** as above is contrived, one of the questions
we set out to answer is how prevalent such vulnerable expressions are in the
real world. As finding vulnerabilities manually in code is time consuming and
error-prone, there is growing interest in automated tools for static analysis for
security [14,5], motivating us to design an analysis for ReDoS.

Educating and warning programmers is crucial to defending against attacks on
software. The standard coverage of regular expressions in the computer science
curriculum, covering DFAs in courses on computability [13] or compiler con-
struction [2], is not necessarily sufficient to raise awareness about the possibility
of ReDoS. Our analysis constructs a series of attack strings, so that developers
can confirm the exponential runtime for themselves.

This paper makes the following contributions:

1. We present an efficient static analysis for DoS on pure regular expressions.
2. The design of the tool has a firm theoretical foundation based on abstract

machines [20] and derivatives [4] for regular expressions.
3. We report finding vulnerable regular expressions in the wild.

In Section 2, we describe backtracking regular expression matchers as abstract
machines, so that we have a precise model of what it means for a matching
attempt to take an exponential number of steps. We build on the abstract ma-
chine in designing our static analysis in Section 3, which we have implemented
in OCaml as described in Section 4. Experimental results in testing the analysis
on two large corpora of regular expressions are reported in Section 5. Finally,
Section 6 concludes with a discussion of related work and directions of further
research. The code of the tool and data sets are available at this URL:
http://www.cs.bham.ac.uk/~hxt/research/rxxr.shtml

2 Regular Expression Matching by Backtracking

This and the next section present the theoretical basis for our analysis. Readers
primarily interested in the results may wish to skim them.

We start with the following minimal syntax for regular expressions:

e ::= ε Empty expression

a Constant, where a is an input symbol
e1 · e2 Concatenation
e1 | e2 Alternation
e∗ Kleene star

http://www.cs.bham.ac.uk/~hxt/research/rxxr.shtml
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The · in concatenation e1 · e2 is usually omitted, except when it is useful for em-
phasis, as in a syntax tree. Following the usual parser construction methods [2],
we can define a parser which is capable of transforming (parsing) a given regular
expression into an AST (abstract syntax tree) which complies with the above
grammar. As an example, the AST constructed by such a parser for the regular
expression (a | b)∗c can be visualized in the following manner:

p0
·

p1
∗

p2
|

p3
a

p4
b

p5
c

p π(p)

p0 p1 · p5
p1 p2

∗

p2 p3 | p4
p3 a

p4 b

p5 c

Notice that we have employed a pointer notation to illustrate the AST struc-
ture; this is quite natural given that in most programming languages, such an
AST would be defined using a similar pointer-based structure definition. Each
node of this AST corresponds to a unique sub-expression of the original regular
expression, the relationships among these nodes are given on the table to the
right. We have used the notation π(p) to signify the dereferencing of the pointer
p with respect to the heap π in which the above AST is constructed. A formal
definition of π was avoided in order to keep the notational clutter to a minimum,
interested readers may refer [20] for a more precise definition of π.

Having parsed the regular expression into an AST, the next step is to construct
an NFA structure that allows us to define a backtracking pattern matcher. While
there are several standard NFA construction techniques [2], we opt for a slightly
different construction which greatly simplifies the rest of the discussion. The
idea is to associate a continuation pointer cont with each of the nodes in the
AST such that cont points to the following (continuation) expression for each
of the sub-expressions in the AST. In other words, cont identifies the “next sub-
expression” which must be matched after matching the given sub-expression.
More formally, cont is defined as follows:

Definition 1. Let cont be a function

cont : dom(π) → (dom(π) ∪ {null})

Such that,

– If π(p) = (p1 | p2), then contp1 = contp and contp2 = contp

– If π(p) = (p1 · p2), then contp1 = p2 and contp2 = contp

– If π(p) = (p1)
∗, then cont p1 = p

– contp0 = null, where p0 is the pointer to the root of the AST.
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The following example illustrates the NFA constructed this way for the regular
expression (a | b)∗c:

null

p0
·

p1
∗

p2
|

p3
a

p4
b

p5
c

p π(p) contp

p0 p1 · p5 null

p1 p2
∗ p5

p2 p3 | p4 p1

p3 a p1

p4 b p1

p5 c null

Here the dashed arrows identify the cont pointer for each of the AST nodes.
Readers familiar with Thompson’s construction [26,2] will realize that the re-
sulting NFA is a slightly pessimized version of that resulting from Thompson’s
algorithm. The reason for this pessimization is purely of presentational nature; it
helps to visualize the NFA as an AST with an overlay of a cont pointer mesh so
that the structure of the original regular expression is still available in the AST
portion. Furthermore, this presentation allows the definitions and proofs to be
presented in an inductive fashion with respect to the structure of the expressions.

With the NFA defined, we present a simple non-deterministic regular expres-
sion matcher in the form of an abstract-machine called the PWπ machine:

Definition 2. A configuration of the PWπ machine consists of two components:

〈p ; w〉

The p component represents the current sub-expression (similar to a code pointer)
while w corresponds to the rest of the input string that remains to be matched.
The transitions of this machine are as follows:

〈p ; w〉 → 〈p1 ; w〉 if π(p) = (p1 | p2)
〈p ; w〉 → 〈p2 ; w〉 if π(p) = (p1 | p2)
〈p ; w〉 → 〈q ; w〉 if π(p) = p1

∗ ∧ cont p = q

〈p ; w〉 → 〈p1 ; w〉 if π(p) = p1
∗

〈p ; w〉 → 〈p1 ; w〉 if π(p) = (p1 · p2)
〈p ; aw〉 → 〈q ; w〉 if π(p) = a ∧ contp = q

〈p ; w〉 → 〈q ; w〉 if π(p) = ε ∧ cont p = q

The initial state of the PWπ machine is 〈p0 ; w〉, where p0 is the root of the AST
corresponding to the input expression and w is the input string. The machine
may terminate in the state 〈null ; w′′〉 where it has matched the original regular
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expression against some prefix w′ of the original input string w such that w =
w′w′′. Apart from the successful termination, the machine may also terminate if
it enters into a configuration where none of the above transitions apply.

The PWπ machine searches for a matching prefix by non-deterministically mak-
ing a choice whenever it has to branch at alternation or Kleene nodes. While this
machine is not very useful in practice, it allows us to arrive at a precise model for
backtracking regular expression matchers. Backtracking matchers operate by at-
tempting all the possible search paths in order; this allows us to model them with
a stack of PWπ machines. We call the resulting machine the PWFπ machine:

Definition 3. The PWFπ machine consists of a stack of PWπ machines. The
transitions of the PWFπ machine are given below:

〈p ; w〉 → 〈q ; w′〉
〈p ; w〉 :: f → 〈q ; w′〉 :: f

〈p ; w〉 �→
〈p ; w〉 :: f → f

〈p ; w〉 → 〈q1 ; w〉 〈p ; w〉 → 〈q2 ; w〉
〈p ; w〉 :: f → 〈q1 ; w〉 :: 〈q2 ; w〉 :: f

The initial state of the PWFπ machine is [〈p0 ; w〉]. The machine may terminate
if one of the PWπ machines locates a match or if none of them succeeds in finding
a match. In the latter case the PWFπ machine has exhausted the entire search
space and determined that the input string cannot be matched by the regular
expression in question.

The PWFπ machine allows us to analyze backtracking regular expression match-
ers at an abstract level without concerning ourselves about any implementation
specific details. More importantly, it gives an accurate cost model of backtrack-
ing matchers; the number of steps executed by the PWFπ machine corresponds
to the amount of work a backtracking matcher has to perform when searching
for a match. In the following sections we employ these ideas to develop and
implement our static analysis.

3 Static Analysis for Exponential Blowup

The problem we are aiming to solve is this: given a regular expression e, repre-
sented as in Section 2, are there input strings x, y, and z, such that:

1. Reading x takes the machine to a pointer p0 that is the root of a Kleene star
expression.

2. Reading the input w takes the machine from p0 back to p0, and in at least
two different ways, that is, along two different paths in the NFA.

3. Reading the input z when starting from p0 causes the match to fail.

We call x the prefix, w the pumpable string by analogy with pumping lemmas in
automata theory [13], and z the failure suffix.
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r

p0

p0

p0

fail

z

w

p0

fail

z

w

w

p0

p0

fail

z

w

p0

fail

z

w

w

x

Fig. 1. The search tree for xww y

From these three strings, malicious inputs can be constructed: the n-th ma-
licious input is xwn z. Figure 1 illustrates the search tree that a backtracking
matcher has to explore when w is pumped twice. Because w can be matched in
two different ways, the tree branches every time a w is read from the input. All
branches fail in the end due to the trailing z, so that the matcher must explore
the whole tree.

To state the analysis more formally, we will need to define paths in the
matcher.

Definition 4. A path of pointers, t : p
w−→ q is defined according to the following

inductive rules:

– For each pointer p, [p] : p
ε−→ p is a path (identity).

– If t : p
w−→ q is a path and there exists a PWπ transition such that:

〈q ; w′w1〉 → 〈q′ ; w1〉

Then t · [q′] : p ww′
−→ q′ is also a path.

Lemma 1. The path t : p
w−→ q (q �= p) exists if and only if a PWπ run exists

such that:
〈p ; ww′〉 → · · · → 〈q ; w′〉

Lemma 1 associates a unique string w with each path of pointers (the sub-string
matched by the corresponding PWπ run). However, note that the inverse of this
implication does not hold; there can be input strings for which we may find more
than one PWπ run. In fact, it is this property of paths that leads us to the main
theorem of this paper:
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Theorem 1. For a given Kleene expression p0 where π(p0) = p1
∗, if at least

two paths exist such that t1 : p1
w−→ p0, t2 : p1

w−→ p0 and t1 �= t2, then a
regular expression involving p0 exhibits o(2n) runtime on a backtracking regular
expression matcher for input strings of the form xwnz where x is a sub-string
matching the prefix of p0 and z is such that xwnz fails to match the overall
expression.

While a formal proof of Theorem 1 is outside of the scope of this paper, we sketch
its proof with reference to Figure 1. The prefix x causes the PWFπ machine to
advance into a state where it has to match p0 against the remainder of the input
string, which leads to the branching of the search tree. Finally, the suffix z at the
end of the input causes each search path to fail, which in turns forces the PWFπ
machine to backtrack and explore the entire search tree before concluding that a
match cannot be found. For the complexity, note that each additional pumping
increases the size of the input by a constant (the length of w) whereas it doubles
the size of the binary subtree given by the w branches, as well as the number of
failed attempts to match z at the end. If there are more than 2 ways to match the
pumpable string, say b, then b rather than 2 becomes the base of the exponent,
but 2 is still a lower bound. The matching of the prefix x at the beginning
contributes a constant to the runtime, which can be disregarded relative to the
exponential growth. Thus the lower bound for the number of steps is exponential.

3.1 Generating the Pumpable String

The most important step in generating an attack string for a vulnerable regular
expression is to generate the pumpable string w in xwnz (for some Kleene sub-
expression). In order to arrive at the machine for building the pumpable string,
we must first introduce several utility definitions. Note that in the remainder of
this discussion, p0 refers to a Kleene expression such that π(p0) = p1

∗.

Definition 5. For a given pointer p, the operation � p (called evolve) is defined
as:

� p = [q | ∃t.t : p ε−→ q ∧ ∃a.π(q) = a]

Notice that the result of � p is a list of pointers.

Definition 6. The function Da(P ), (called derive) is defined on a list of pointers
P and an input symbol a according to the following rules:

Da([ ]) = [ ]

Da(h :: t) =

⎧⎪⎨⎪⎩
Da(t) if π(h) = b, b �= a

q :: Da(t) if π(h) = a ∧ conth = q

Da(� h · t) otherwise.

The definition Da(P ) is analogous to Brzozowski’s derivatives of regular expres-
sions [4]. In essence, the analysis computes derivatives of a Kleene expression in
order to find two different matcher states for the same input string.
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Definition 7. A wP frame is defined as a pair (w,P ) where w is a string and
P is a list of pointers. A non-deterministic transition relation is defined on wP
frames as follows:

Da(P ) �= [ ]

(w,P ) → (w a,Da(P ))

Definition 8. The HFπ machine has configurations of the following form:

〈H ; f〉

Here H (history) represents a set of (sorted) pointer lists and f is a list of wP
frames. A deterministic transition relation defines the behavior of this machine
as follows:

(w,P ) → (wx0, P0) . . . (w,P ) → (wxn, Pn) ∀i.xi ∈ Σ Pi /∈ H

〈H ; (w,P ) :: f〉 → 〈H ∪ {P0, . . . , Pn} ; f · [(wx0, P0), . . . , (wxn, Pn)]〉
The initial configuration of the HFπ machine is 〈∅ ; [(ε, [p1])]〉 and the machine
can terminate in either of the following two configurations:

〈H ; [ ]〉

〈H ; (w,P ) :: f〉 where ∃p′, p′′ ∈ P. ∃t′, t′′. t′ : p′ ε−→ p0 ∧ t′′ : p′′
ε−→ p0

In the former configuration the machine has determined the Kleene expression
in question to be non-vulnerable while in the latter it has derived the pumpable
string w.

3.2 Generating the Prefix and the Suffix

For a regular expression of the form e1 (e2
∗) e3, apart from a pumpable string w,

we must also generate a prefix x and a suffix z. The intention is that x would
lead the matcher to the point where it has to match e2

∗, after which we can
pump many copies of w to increase the search space of the matcher. However, a
successful exploit also needs a suffix z that forces the matcher to fail and so to
traverse the entire search tree.

Generating the prefix and the suffix might at first appear to be straight-
forward, since x and z can be generated from e1 and e3 such that x is in the
language of e1 and z is not in the language of e3. However, upon closer inspection
we realize that the choice of x and z can have un-intended effects on the final
outcome of the match, as it is possible that e1 could match part of the pumped
string wn in addition to the intended sub-string x. A similar situation could
occur with e2 and z. In other words, x, w and z are dependent on each other
in complicated ways. Writing e ↓ y for e matches y, we have the following
conditions:

e1 ↓ x e2 ↓ w (with multiple traces) e1 e2
∗ e3 �↓ xwn z

At present, we have chosen not to solve this problem in full generality, but
resolve to employ heuristics that find prefixes and suffixes for many practical
expressions, as illustrated in the results section.
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4 Implementation of the Static Analysis

We have implemented the HFπ machine described in Section 3 using the OCaml
programming language. OCaml is well suited to programming abstract syntax,
and hence a popular choice for writing static analyses. One of the major ob-
stacles faced with the implementation is that in order to be able to analyze
real-world regular expressions, it was necessary to build a sophisticated parser.
In this regard, we decided to support the most common elements of the Perl /
PCRE standards, as these seem to be the most commonly used (and adapted)
syntaxes. It should be noted that the current implementation does not support
back-references or look-around expressions due to their inherent complexity; it
remains to be seen if the static analysis proposed in this work can be adapted
to handle such “regexes”. However, as it was explained earlier, exponential vul-
nerabilities in pattern specifications are not necessarily dependent on the use of
back-references or other advanced constructs (although one would expect such
constructs to further increase the search space of a backtracking matcher). A
detailed description of the pattern specification syntax currently supported by
the implementation has been included in the resources accompanying this paper.

The implementation closely follows the description of the HFπ machine pre-
sented in Section 3. The history component H is implemented as a set of sorted
integer lists, where a single sorted integer list corresponds to a list of nodes
pointed by the pointer list P of a wP frame (w,P ). This representation allows
for quick elimination of looping wP frames. While the size of H is potentially
exponential in the number of nodes of a given Kleene expression, for practical
regular expressions we found this size to be well within manageable levels (as
evidenced in the results section).

A technical complication not addressed in the current work is that the PWFπ
machine (and naive backtracking matching algorithms in general) can enter into
infinite loops for Kleene expressions where the enclosed sub-expression can match
the empty string, i.e., where the sub-expression is nullable [9,12]. A similar prob-
lem occurs in the HFπ machine during the � p operation. We have incorporated
a variation of the technique proposed by Danvy and Nielsen [9] for detecting
and terminating such infinite loops into the OCaml code for the � p function,
so that it terminates in all cases.

5 Experimental Results

The analysis was tested on two corpora of regexes (Figure 1). The first of these
was extracted from an online regex library called RegExLib [21], which is a
community-maintained regex archive; programmers from various disciplines sub-
mit their solutions to various pattern matching tasks, so that other developers
can reuse these expressions for their own pattern matching needs. The second
corpus was extracted from the popular intrusion detection and prevention sys-
tem Snort [25], which contains regex-based pattern matching rules for inspecting
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Table 1. Experimental results with RegExLib and Snort

RegExLib Snort

Total patterns 2994 12499

Analyzable (only regular constructs) 2213 9408

Uses Kleene star 1103 2741

Pumpable Kleene and suffix found 127 15

Pumpable Kleene only 20 4

No pumpable Kleene 2066 9389

Max HFπ steps 509 256

Total classification time 40 s 10 s

(Intel Core 2 Duo 1.8 MHz, 4 GB RAM)

IP packets across network boundaries. The contrasting purposes of these two
corpora allow us to get a better view of the seriousness of exponential vulnera-
bilities in practical regular expressions.

The regex archive for RegExLib was only available through the correspond-
ing website [21]. Therefore, as the first step the expressions had to be scraped
from their web source and adapted so that they can be fed into our tool. These
adaptations include removing unnecessary white-space, comments and spurious
line breaks. A detailed description of these adjustments as well as copies of both
adjusted and un-adjusted data sets have been included with the resources ac-
companying this paper (also including the Python script used for scraping). The
regexes for Snort, on the other hand, are embedded within plain text files that
define the Snort rule set. A Python script (also included in the accompanying
resources) allowed the extraction of these regexes, and no further processing was
necessary.

The results of the HFπ static analysis on these two corpora of regexes are
presented in Table 1. The figures show that we can process around 75% of each
of the corpora with the current level of syntax support. Out of these analyzable
amounts, it is notable that regular expressions from the RegExLib archive use
the Kleene operator more frequently (about 50% of the analyzable expressions)
than those from the Snort rule set (close to 30%). About 11.5% of the Kleene-
based RegExLib expressions were found to have a pumpable Kleene expression
as well as a suitable suffix, whereas for Snort this figure stands around 0.55%.

The vulnerabilities reported range from trivial programming errors to more
complicated cases. For an example, the following regular expression is meant to
validate time values in 24-hour format (from RegExLib):

^(([01][0-9]|[012][0-3]):([0-5][0-9]))*$

Here the author has mistakenly used the Kleene operator instead of the ? opera-
tor to suggest the presence or non-presence of the value. This pattern works per-
fectly for all intended inputs. However, our analysis reports that this expression is
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vulnerable with the pumpable string “13:59” and the suffix “/”. This result gives
the programmer a warning that the regular expression presents a DoS security risk
if exposed to user-malleable input strings to match.

For a moderately complicated example, consider the following regular expres-
sion (again from RegExLib):

^([a-zA-z]:((\\([-*\.*\w+\s+\d+]+)|(\w+)\\)+)(\w+.zip)|(\w+.ZIP))$

This expression is meant to validate file paths to zip archives. Our tool identifies
this expression as vulnerable and generates the prefix “z:\ ”, the pumpable
string “\zzz\” and the empty string as the suffix. This is probably an unexpected
input in the author’s eye, and this is another way in which our tool can be
useful in that it can point out potential mis-interpretations which may have
materialized as vulnerabilities.

It is worth noting that the HFπ machine manages to classify both the corpora
(the analyzable portions) in a matter of seconds on modest hardware. This shows
that our static analysis is usable for most practical purposes, with the average
classification time for an expression in the range of micro-seconds. The two
extreme cases for which the machine took several seconds for the classification
are given below (only the respective Kleene expressions):

([\d\w][-\d\w]{0,253}[\d\w]\.)+

([^\x00]{0,255}\x00)*

Here counting expressions [-\d\w]{0,253} and [^\x00]{0,255}were expanded
out during the parsing phase. The expansion produces a large Kleene expression,
which naturally requires more analysis during the HFπ simulation. However, it
should be noted that such expressions are the exception rather than the norm.

Finally, it should be mentioned that all the vulnerabilities reported above
were individually verified using a modified version of the PWFπ machine (which
counts the number of steps taken for a particular matching operation). A sample
of those vulnerabilities was also tested on the Java regular expression matcher.

6 Conclusions

We have presented a static analysis to help programmers defend against regular
expression DoS attacks. Large numbers of regular expressions can be analysed
quickly, and developers are given feedback on where in their regular expressions
the problem has been identified as well as examples of malicious input.

As illustrated in Section 5, the prefix, pumpable string and failure suffix can
be quite short. If their length is, say, 3, 5 and 0 characters, then an attacker
only needs to spend a very small amount of effort in providing a malicious
input of length 3+5*100 characters to cause a matching time in excess of 2100

steps. Even if a matching step takes only a nanosecond, such a running time
takes, for all intents and purposes, forever. The attacker can still scale up the
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attack by pumping a few times more and thereby correspondingly multiplying
the matching time.

The fact that the complexity of checking a regular expression for exponential
runtime may be computationally expensive in the worst case does not necessarily
imply that such an analysis is futile. Type checking in functional languages like
ML and Haskell also has high complexity [16,23], yet works efficiently in practice
because the worst cases rarely occur in real-world code. There are even program
analyses for undecidable problems like termination [3], so that the worst-case
running time is infinite; what matters is that the analysis produces results in
enough cases to be useful in practice. It is a common situation in program
analysis that tools are not infallible (having false positives and negatives), but
they are nonetheless useful for identifying points in code that need attention by
a human expert [10].

6.1 Related Work

A general class of DoS attacks based on algorithmic complexities has been ex-
plored in [8]. In particular, the exponential runtime behavior of backtracking
regular expression matchers has been discussed in [6] and [22]. The seriousness
of this issue is further expounded in [24] and [18] where the authors demonstrate
the mounting of DoS attacks on an IDS/IPS system (Snort) by exploiting the
said vulnerability. The solutions proposed in these two works involve modifying
the regular expressions and/or the matching algorithm in order to circumvent
the problem in the context of IDS/IPS systems. We consider our work to be
quite orthogonal and more general since it is based on a compile-time static
analysis of regular expressions. However, it should be noted that both of those
works concern of regexes with back-references, which is a feature we are yet to
explore (known to be NP-hard [1]).

While the problem of ReDoS has been known for at least a decade, we are not
aware of any previous static analysis for defending against it. A handful of tools
exist that can assist programmers in finding such vulnerable regexes. Among
these tools we found Microsoft’s SDL Regex Fuzzer [17] and the RegexBuddy [15]
to be the most usable implementations, as other tools were too unstable to be
tested with complex expressions.

While RegexBuddy itself is not a security oriented software, it offers a debug
mode, which can be used to detect what the authors of the tool refer to as
Catastrophic Backtracking [11]. Even though such visual debugging methods
can assist in detecting potential vulnerabilities, it would only be effective if the
attack string is known in advance—this is where a static analysis method like
the one presented on this paper has a clear advantage.

SDL Fuzzer, on the other hand, is aimed specifically at analyzing regular
expression vulnerabilities. While details of the tool’s internal workings are not
publicly available, analyzing the associated documentation reveals that it oper-
ates fuzzing, i.e., by brute-forcing a sequence of generated strings through the
regular expression in question to detect long running times. The main disadvan-
tage of this tool is that it can take a very long time for the tool to classify a
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given expression. Tests using some of the regular expressions used in the results
section above revealed that it can take up to four minutes for the Fuzzer to
classify certain expressions. It is an inherent limitation of fuzzers for exponen-
tial runtime DoS attacks that the finding out if something takes a long time
by running it takes a long time. By contrast, our analysis statically analyzes
an expression without ever running it. It is capable of classifying thousands of
regular expressions in a matter of seconds. Furthermore, the output produced
by the SDL Fuzzer only reports the fact that the expression in question failed
to execute within a given time limit for some input string. Using this generated
input string to pin-point the exact problem in the expression would be quite
a daunting task. In contrast, our static analysis pin-points the exact Kleene
expression that causes the vulnerability and allows programmers to test their
matchers with a sequence of malicious inputs.

6.2 Directions for Further Research

In further work, we aim to broaden the coverage of our tool to include more
regexes. Given its basis in our earlier work on abstract machines [20] and deriva-
tives [4], we aim for a formal proof of the correctness of our analysis. We intend
to release the source code of the tool as an open source project. More broadly,
we hope that raising awareness of the dangers of backtracking matchers will help
in the adoption of superior techniques for regular expression matching [7,26,20].
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Abstract. In this paper, we study distributed denial of service (DDoS)
attacks that establish connections at the higher layers of the protocol
stack, in order to maximize resource depletion on the targeted servers. In
particular, we concentrate on attacks directed at SMTP applications on
incoming mail servers. We first describe our experiments on the feasibility
of such attacks on two widely used SMTP server applications: Microsoft
Exchange 2010 and Postfix 2.8. The results show that both applications
can survive relatively strong attacks, if configured properly. Although it
was shown that Microsoft Exchange 2010 handles the attacks better than
Postfix, both applications can benefit from hardened configurations.

In particular, we show the efficacy of their connection timeout mech-
anisms as a protection against this kind of DoS attack. We first show
that default timeout parameters give weak protection for Postfix, but
that Exchange’s default throttling policy makes attacks ineffective. We
then statically modify the timeout value and other parameters in Postfix
in order to measure their impact on the performance under an SMTP
flood attack. The results obtained allow us to make recommendations
about optimal configurations in terms of quality of service for legitimate
clients.

1 Introduction

Denial of service (DoS) attacks were once considered one of the most danger-
ous threats on the Internet. Significant amounts of research was conducted to
improve their detection and prevention. However, just as DoS research seemed
to have fallen out of fashion, DoS attacks against Estonia, CNN, Georgia, Iran
and more recently the attacks by the hacktivist group called Anonymous, have
showed that not only DoS attacks are still a real threat, but also that they have
evolved and they have become more effective against existing countermeasures.
Even if it seems that most DoS attacks are still largely based on SYN floods,
others try to exhaust bandwidth of their victim by sending multiple ping packets
or UDP packets. Another type is those that try to exhaust server resources by
sending properly formed application traffic that will be handled and force ex-
tensive resource allocation by the targeted application, for example, by sending
multiple HTTP GET requests to a Web server. These latter type of attack is
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potentially more insidious because this kind of traffic is harder to discriminate
from legitimate traffic and filtering it can have a stronger impact on legitimate
users. Given the increased financial and political significance of DoS attacks,
it becomes necessary to study the current and potential future impact of such
newer types of attacks. We also need to consider the ones that have not yet been
reported to prevent them from causing damage in the future.

While these application-targeting attacks have been traditionnaly less com-
mon, they are not new. There have been attacks of this kind targetting websites
as early as October 2003, such as reported in [16]. Most of the research on
application-layer DoS has focused on HTTP flood [17,21,14], with much less at-
tention having been paid to the potential consequences of such attacks on SMTP
servers. Also, while many different ways of attacking the application layer have
been studied, our research especially focuses on idling the connection to max out
the resources given for a TCP connection. However, while there has been little
work on DoS protection of SMTP servers per se, much research has been con-
ducted on their protection against unwanted SPAM traffic [9,10,8,13,12]. Numer-
ous hardware and software solutions are available that can help mitigate spam on
SMTP servers. However, these are not necessarily well suited to defend against
STMP floods where the attacker’s objective is not to send spam mail traffic, but
to prevent anybody from sending legitimate mail. In particular, an SMTP flood
does not need to send messages with a particular pattern or message, and in
some cases (as we shall see) might not need to send any properly formatted mail
at all! In addition, the deployment of spam protection counter-measures could in
fact worsen the situation by increasing resource consumption and decrease the
level of DoS protection.

Some noteworthy previous work on SMTP DoS attacks is that of Bencsath et
al. [3,4], whose work includes a comparative study of DoS resilience on SMTP
servers. The main difference, however, is that the attack model described is one
where the attackers send multiple e-mails to the MTA. Although this research
is similar to ours, our paper is broader in that it focuses on different aspects
of the server to evaluate the performance under an attack, not just the number
of simultaneous connections. Also, we demonstrate that with an attack that is
easier to mount than sending multiple mails, we can still exhaust the server
relatively easily. More recently, Still and McCreath [19] published a comparison
of different solutions for DDoS protection against SMTP server. The work of
Bencsath et al. is referred to and the conclusion is that the implementation of
its push back router technique would help in mitigating DDoS attacks.

More precisely, the attack scenario that we consider in this paper is composed
of an attacker owning multiple machines (e.g. zombies in a botnet) and opening
multiple SMTP connections to the targeted server. Once a connection is estab-
lished, the bad clients will idle until a certain timeout is reached after which
the server closes the connection. Our claim is that every non-completed SMTP
connection uses resources on the server. Whether it is the memory, the number
of threads created or the number of process started, resources are bounded in
a system and one of them will be the ultimate limiting factor or bottleneck.
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When the server exhausts all its resources, it will stop accepting new SMTP
connections, thus creating a denial of service. Our research is thus essentially
an improvement on the work of Bencsath, in that we demonstrate that with a
simpler to mount DoS, we can easily exhaust the server resources. Furthermore,
our results are potentially more general, in that this kind of idling attack could
more easily applied to other applications such as HTTP servers.

The main objective of this research is to evaluate the performance of various
SMTP applications with an adaptive behaviour against SMTP flood attacks and
to propose solutions that would improve their resilience against such attacks. By
analyzing as examples Microsoft Exchange 2010 on Windows Server 2008 and
Postfix 2.8 on Linux 2.6, we aim to answer the following questions:

• How good is the performance of these applications, with their default set-
tings, while under an SMTP flood attack?

• Is it possible to optimize their configuration parameters, especially the time-
out, to achieve better results in this case?

• Is the mechanism described and implemented in our previous work on SYN
flood [7,6,5] suitable to protect these applications against SMTP flood?

Our work and results attempting to answer these questions are presented in the
rest of the paper as follows. Section 2 presents the SMTP applications that we
studied. We discuss its viability when aimed at SMTP applications, based on
preliminary experiments that we performed. We cover those in Section 3, where
we describe our testing methodology first and then present our experimental
setup. We then present our experimental results and a discussion follows about
their interpretation and relevance. We also briefly discuss the use of SPAM filters
as DoS counter-measures in the light of these results. Finally, we summarize
our results, provide recommendations on protection against these attacks, and
discuss directions for future work in Section 4.

2 SMTP Flood Attacks

As discussed in our previous work [5], the attack described in this paper can
be viewed as an extension of the SYN flood attack at the higher layers of the
protocol stack. While in general IP address spoofing is not possible, this type of
flooding has the advantage of forcing the target to commit more resources.

For our research, we studied two SMTP server applications: Microsoft Ex-
change 2010 and Postfix 2.8. Microsoft Exchange 2010 is the latest version of
the Exchange serie. We chose the latter because it is quite commonly used and
although it is a complex application providing much more than e-mail services,
we decided that, if properly configured, we would get better results than the
much simpler (and deprecated) Microsoft SMTP Service. More importantly, both
these applications implement a defence mechanism when under stress. We ran
Exchange on a Windows Server 2008 machine. On the Linux side, Postfix is one
of the most widely used SMTP servers. We chose it for its simplicity, its pop-
ularity and because it offers most of the functionalities of every other SMTP
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server application running on Linux. Postfix also seemed a good choice, given
the fact that its creator, Wietse Venema, is a well established security researcher
and hence the application was built with a big emphasis on security. As such,
it’s often recognized as the best alternative to sendmail.

There have been several surveys comparing the various SMTP server applica-
tions [18,15,20]. Our choices are mostly confirmed with those surveys except for
Sendmail and Exim, that are stated to be the most popular. One survey shows
that sendmail is still the most widely used application for SMTP servers, but
the article is dated of 2007. Nonetheless, we decided not to choose since it is
not being updated anymore and its popularity seems to lower drastically. We
also noted that qmail is renowned for being one of the most secure SMTP server
applications. We did not experiments on this particular application because it is
not widely used due to its complexity. Our Postfix server was run on a machine
with Ubuntu 9.04 Server Edition, Kernel version 2.6.27.7.

As a preliminary step, we decided to conduct proof-of-concept experiments
to verify whether SMTP flood was viable in practice with the two applications
chosen and, in the case where it would be, to determine what the limiting factor
was. Our results show that, indeed, a successful SMTP flood is possible on both
applications, but the limiting factor differs from one to the other.

2.1 Preliminary Analysis of Microsoft Exchange 2010

Our initial analysis covered a study of the relevant configuration settings, and
determining which can be modified and which cannot. The most interesting pa-
rameter is without doubt the connection timeout whose default value is 5 minutes
and is customizable down to as low as 10 seconds. The only other interesting
parameter is the maximum number of users since, which can be modified, but
is set to 5000 by default; a value we chose to keep for our initial tests. For these
tests, the application was run on a server with 4 Gb of memory and two quad-
core processors with 2.00 GHz clock speed. Using 7 similar machines running
Ubuntu, we flooded the server with completed TCP connections.

The Windows Reliability and Performance Monitor [11] that comes with Win-
dows Server 2008 showed that the server can indeed handle a maximum of 5000
opened TCP connections. When this limit is reached, the server denies any new
connection by first sending a timeout message and then by immediately closing
the connection with a FIN packet. At its maximum capacity, the application
still runs in only one process and a small number of threads have been cre-
ated. However, a lot of memory is used by the process. Our hypothesis was that
the application allocates significant amount of memory when a TCP connection
completes. We then modified the default number of maximum number of users
to unlimited to determine the limiting factor in this case. When the number
of simultaneous users is set to unlimited, the server can handle to as many as
about 61000 connections. With the server accepting an unlimited number of
connections and even putting it through an attack of as many as 1000 connec-
tions per second, it manages to serve the legitimate connection with a success
rate of almost 100%. We can thus conclude that the attack is possible but not
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effective. It is still interesting to see that the limiting factor is, as we thought,
the memory that is almost completely used when the server reaches the maxi-
mum connections. We can also note that the attackers failure rate starts going
up and then stops at an average of 12000 connections refused. After that, the
server keeps on handling the attackers without refusing them. Exchange 2010
implements a throttling policy that changes its settings for specific users that
seems to abuse the system. Since the attackers create connections and idle them,
when the server is saturated, Exchange starts throttling the maximum number
of concurrent connections which is by default set to 20. Although the server han-
dles the attack efficiently, further experiments shows that lowering the default
timeout value is improving the efficiency rate to almost 100%.

2.2 Preliminary Analysis of Postfix

In the case of Postfix, the timeout can also be modified: its default value is 5
minutes and in this case it can be adjusted in seconds. It is also interesting to
note that Postfix have numerous timeout settings providing the server maximum
flexibility such as a timeout before receiving the HELO command or the MAIL
FROM command. Like in Exchange, the maximum number of connections is
configurable and its default is set to 50. Another interesting configuration pa-
rameter of Postfix is the maximum number of processes it can start. Indeed,
Postfix starts daemon processes to handle connections to the server. We decided
to keep its default value of 100 for our tests. We flooded Postfix using the same
method as for Exchange. We then set the maximum number of connections to
unlimited and our experiments show that it can handle a maximum of 202 con-
nections with its default process settings. We then set the maximum number
of processes to 1000 in the Postfix configuration and ran the test again. This
time, the server could handle 6108 connections. By giving different values to this
setting, our tests showed that the limiting factor in Postfix is indeed the maxi-
mum number of processes it can create. Table 1 summarizes the results from our
preliminary analysis of Microsoft SMTP Service and Postfix. It is important to
note that the maximum number of connections that the application can handle
is inferred by the limiting factor and is thus dependent on the specifications of
the machine it is running on.

In summary, our preliminary experiments demonstrated that Exchange and
Postfix have different limiting factors (memory vs. number of processes)and that
both restrict the number of simultaneous TCP connections. Although Exchange
is highly resilient to such an attack, we showed that this inferred capacity is

Table 1. Default timeout value, maximum number of connections with default param-
eters and the limiting factor for Microsoft SMTP Service and Postfix

SMTP server app. Default timeout Maximum conn. Limiting factor
Microsoft Exchange 5 minutes 61000 Memory

Postfix 5 minutes 202 Number of processes
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relatively small and that, together with high timeout values, Postfix can be
easily flooded by an attacker using a low quantity of its resources.

3 Performance Analysis Experiments

To evaluate the performance of SMTP applications against SMTP flood and
in order to make recommendations on timeout optimization techniques, we con-
ducted three different experiments. The first experiment was aimed at evaluating
the performance of SMTP server applications with their default settings while
under an SMTP flood attack. The second experiment shows the impact of the
timeout value on their performance and aims at finding the best timeout value.
We also discuss the adaptive techniques of both applications when under stress
and their effectiveness against such an attack. The first part of this section
presents the testing methodology we used. The next part explains our experi-
mental setup. We then describe in detail each of the experiments and present
and discuss the results obtained.

3.1 Testing Methodology

For each of our experiments, we generated two kinds of traffic: malicious traffic
and legitimate traffic. The malicious clients open a TCP connection with the
server and then idle until they are disconnected after the timeout is reached.
Legitimate clients open a connection with the server and then send an email of a
size between 1 Kb and 2 Mb. This choice was motivated by the analysis of mail
server logs from the École Polytechnique de Montréal for a six weeks period in
2009, that showed that 90% of emails were between 20 bytes and 500 Kb. Every
test was done on both the Microsoft Exchange server and the Postfix server. For
each of them, the only interesting performance metric is the connection success
rate of the legitimate clients which can be defined as

φ =
ϕc

ϕc + ϕf + ϕt

where φ is the connection success rate, ϕc is the number of SMTP sessions
completed for all legitimate clients, ϕf is the number of failed SMTP sessions,
and ϕt is the number of timed-out SMTP sessions. A client completes its session
when it gets on the server, sends its message, and then disconnects with the
QUIT command. A session fails when the client cannot get on the server because
it is unavailable, that is, because it is full. Finally, a session times out when the
server disconnects the client when it has been idle for the timeout value.

3.2 Experimental Setup

SMTP Servers. We tested both Microsoft Exchange and Postfix 2.8 in our
experiments. Microsoft Exchange 2010 was installed on a machine running the
32 bits version of Windows Server 2008 and Postfix 2.8 was installed on a machine



Next-Generation DoS at the Higher Layers: A Study of SMTP Flooding 155

running the 32 bit version of Ubuntu 9.04 Desktop Edition with Linux 2.6 kernel.
Both machines have the same specifications: 4 GB of RAM and two Intel Xeon
E5405 quad-core processors with a clock speed of 2.00 GHz.

Malicious and Legitimate Traffic Generator. Both malicious and legiti-
mate traffic were generated using a home-made application that connects to the
server. For malicious traffic, it idles the connections infinitely and for legitimate
connections it sends an email of varying size. The malicious machines consisted
of 10 physical machine from a cluster, each connected with a 1 Gbps ethernet
connection to the switch. Since the legitimate clients produce considerably less
traffic, we used 5 machines from the cluster to generate the traffic.

Both the malicious and the legitimate clients connected to a command and
control server that sent them specific details on the attack traffic to generate.
The legitimate clients typically connected following a Poisson distribution with
10 conn/s. For the attackers, the connections followed either a Poisson or a burst
distribution with an attack rate betwee 10 and 1000 conn/s. Both attackers
and legitimate clients keep tally the number of connections attempts, whether
successful, refused or timed out. Moreover, network traffic traces (PCAP files)
were kept for each run for further analysis, as required.

Network Setup. To connect all these machines together and create a network,
we used a Linksys SRW2016 16-port gigabit switch. Figure 1 illustrates the
network connections.

Fig. 1. Network connections of the experimental setup

The command and control was used to send the commands to the legitimate
and malicious clients and controlled the testing. Both SMTP servers were always
up and running during every experiment, even when the other server was tested.
The SMTP servers were handling the emails themselves, storing them inside the
proper mailboxes. We chose this scenario for its simplicity and the fact that the
bottleneck would not be caused by the relaying to another server.
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3.3 Experiments Conducted and Results

Performance Analysis of SMTP Applications with Default Settings.
The first experiment is measures the performance of SMTP applications with
their default timeout settings during an STMP flood attack. For this experiment,
we kept the default settings for Postfix but modified the number of connections
to unlimited for Exchange. Although we did the experiment with all the default
settings on Exchange, the results are predictable and uninteresting. The server
stops receiving connections when the default maximum of 5000 is reached and
the failure rates start increasing afterward. For the default timeout values with
unlimited connections, the connection rate of legitimate clients was set to 10
conn/s and set to follow a Poisson distribution. The malicious connection rate
was also Poisson, since it represents an attack with little or no coordination where
the attacker just gives orders to all machines to constantly attack his victim. Our
main performance metric, the connection success rate of the legitimate clients,
was computed for the connection arrival rate of malicious clients, also called
attack strengths, of 10, 100 and 1000 conn/s.

For both applications, each test was set to last five times the timeout delay,
with a minimum of 10 minutes. For each malicious connection arrival rate, a
minimum of five runs were completed. In the cases where the standard deviation
of the results was not within 5% of the mean, additional runs were performed.

To compute the legitimate connection success rate, we used the statistics gen-
erated by our application. Additionally, during all the tests a network trace was
taken with the switch allowing us to analyze the attacks a posteriori for cross-
verification of results. The data from our application was recorded a specified
time intervals (1 second, by default). The metrics we decided to use for the statis-
tics are the number of failed and succeeded malicious sessions and the number
of disconnected, failed and succeeded legitimate connections. In the case of le-
gitimate connections, it may happen that the client gets disconnected during
his session due to the volume of requests. We decided not to evaluate the de-
lays created while the server is under attack because of how we built our setup.
The fact that the clients are connected almost directly to the server through the
switch, the delays are thus negligible. We also believe that the number of failed
legitimate connections is more interesting as it shows that the server simply can-
not handle any more clients. It is important to note that the number of failed
connections on the attacker is calculated based on the completed connections,
there is thus a delay before the failed connections starts growing. Figure 2 shows
these statistics for the first 10 minutes of an attack with a malicious connection
arrival rate of 10 conn/s.

We can see in Fig. 2 that sessions start failing almost immediately. Indeed, the
Postfix server, as mentioned in Section 2.2, does not allow more than 202 simul-
taneous connections with the default settings. Although the failure rate of the
attacker is almost constantly growing, the server does not allow any legitimate
connection, it is quite evidently unable to serve the clients. It also interesting
to note that at about 5 minutes, the legitimate clients connections seems to
peak and stops growing for almost the end of the test. This behaviour could be
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explained by the fact that Postfix is completely flooded and cannot even com-
plete the TCP handshake. The legitimate clients application is not behaving the
same way the attacker does because it uses POSIX sockets while the attackers
use RAW sockets. That behaviour is noticeable throughout the test but does
not affect the results because it is clear that the server is not allowing any other
kind of connections at this point.

For the Exchange server, we ran the initial tests by modifying the default value
of the maximum concurrent connections which we set to unlimited. Figure 3
shows the variation of the success rate of the legitimate connections for the
Postfix server and the Exchange Server. The successful rate of Exchange seems
counter intuitive in the graph, but it is mainly because a connection cannot be
counted as successful until it completes. There is thus a delay in the sum of the
successful rate, but it is still clear from Fig. 3 that Exchange is highly resilient
to such an attack, and this, even with its default timeout settings. In the case of
Postfix, since the server capacity is low (202 conn.), the legitimate connection
success rate is already below 5% at an attack strength of 10 conn/s. For this
reason, we did not experiment higher malicious clients connection arrival rates
for Postfix. As Table 2 summarizes the legitimate connection success rates by
presenting their final values, that is at the end of the experiment, for each case.

Fine Tuning the SMTP Applications. As it was demonstrated earlier, Post-
fix is unable to subsist an attack as low as 10 connections per seconds with its
default settings. The application allows us to fine tune many settings to be able
to get the best performances possible. Since we were able to determine that the
number of created process by Postfix was the bottleneck, it is fair to assume
that increasing this number will give us a better performance for the same at-
tack rate. As there is no maximum value for this setting, we ran multiple tests
by increasing it 10 times for each test. Given that the default is 100 processes,
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Table 2. Final legitimate connection success rate for different malicious connection
arrival rates on Microsoft Exchange and Postfix

SMTP server application
MS Exchange Postfix

Attack strength (conn/s) φ (%) φ (%)
10 98.40 3.83
100 98.35 –
1000 90.11 –

we ran an attack of 10 conn/s with maximum numbers of processes created of
100, 1000, 10000 and 100000. Figure 4 displays that an efficiency of almost 55%
can be achieved by fine tuning this parameters. It becomes obvious that there
is a point where increasing the number of processes is not helping performance,
i.e. beyond 10,000 processes, but rahter slightly decreasing it. Consequently, we
thus kept this value at 10,000 for subsequent tests.
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As mentioned earlier, both applications implement adaptive behaviour that
adjusts some parameters when the server is under great loads. For Exchange,
this worked out of the box, as the preliminary tests demonstrated that an attack
with rates as high as 1000 conn/s were highly ineffective against the server with
its default timeout values. The throttling policy of Exchange is simply limiting
the number of concurrent connections to a specific IP when under load. The
policies are applied to a specific service and new policies can be added for ex-
tra safety. Nonetheless, it is still interesting to see what would be the effects of
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modifying the timeout value. It is obvious that the rate of successful connection
could only benefit from lowering the timeout, but since the rate is already high
with the default value, we could neglect its change. Figure 5 shows a significant
improvement in the number of concurrent connections when tuning the timeout.
Not only is it helping to keep the server load lower, but it also provides a better
quality of service to the legitimate clients. This small tuning coupled with the
throttling policy of Exchange makes it highly resilient to DDoS attacks.

Postfix also has a stress adaptive behaviour which, in our case, did not work di-
rectly. While the Postfix documentation states that versions 2.5 and later of Post-
fix implement the stress adaptive behaviour should automatically starts without
closing current sessions when under load [2], we ran our test by forcing the stress
adaptive behaviour. This does not have significant effect on our results as the
switch between the normal mode of operation to the stress adaptive behaviour
is negligible. For our first experiment, we decided to keep the stress adaptive
settings to their default which in this case results in lowering the timeout delay
to 10 seconds [1]. We attacked the server with 3 different strengths: 10 conn/s,
100 conn/s and finally 1000 conn/s.
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Figure 6 shows clearly that the stress adaptive behaviour implemented by
Postfix offers improved protection for a DDoS attack. Even with the default
timeout values under stress, the server is able to serve about 50% of the legitimate
connections. Postfix allows the customization of the timeout value to as low as
1s. Since it was clear that an uncoordinated attack of strength lower than 1000
conn/s was not efficient, we lowered the timeout to 5 and 1 second and tested
how the success rate of our legitimate clients was to change. Figure 7 shows the
results of this experiment.
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Table 3. Final legitimate connection success rate for different malicious connection
arrival rates on different timeout values under stress for Postfix

Postfix timeout values under stress
Attack strength (conn/s) 10 secs 5 secs 1 sec

10 99.99 – –
100 99.98 – –
1000 46.43 71.21 18.43

3.4 Discussion

The results from our first experiment showed that Postfix with its default value
is weak against SMTP flood attacks. Although in the first experiment Postfix
did not go into stress adaptive behaviour, we can guess that any Postfix setup
with a version before 2.5 (before the automatic stress adaptive behaviour was
implemented) would get extremely weak performances. With the stress adaptive
behaviour and some fine tuning, we were able to get a 46% success rate for an
attack of 1000 conn/s, a great improvement compared to the weak 3.83% that
the default settings offers at 10 conn/s. Postfix profits largely from the increase
of processes but also from the stress adaptive feature. Even if we did not test the
server with a general timeout value lower than the default 300 seconds, we can
easily guess that the results would show significant improvement based on the
results of the Exchange experiment and the results of the under stress Postfix
experiment.

One interesting point is that in Fig. 7, and its associated numerical results in
Table 3, the curve for timeout of 1 second seems promising at first but starts
going downhill after about 2 minutes and then stays at about 20%. This can be
explained by the fact that at a 1 second delay, the server keeps handling numerous
new connections and closing other ones, at some point the server seems frozen
and does not accept any other connections for quite some time. It is hard to
explain exactly how the server behaves but we can assume that the server is
too busy handling the connections and thus keeping a 5 second timeout is a
better solution. It is also more appropriate for real life settings as large emails
could take more than 5 seconds to send. Giving these results, the question that
needs to be asked is Should the default timeout value of SMTP applications be
lowered? We believe so. First, our experiments show that lower timeout values
give a better protection against SMTP flood. Second, lowering the timeout value
will not affect the QoS of the server.

Indeed, for all of our experiments, we only experienced a couple of timeout
for the legitimate clients. xThat is because the timer that checks for the timeout
gets reset each time a packet is received by the client. Generally speaking, to
send an email, the client needs five commands: EHLO, MAIL FROM, RCPT
TO, DATA and QUIT. After the DATA command, the client sends its actual
mail content. Each command is some bytes long, so the time between receptions
of each command is negligible. The only data with a significant size that could be
sent is the actual mail. However, packets are fragmented on a network, and their
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fragments size is equal to the MTU (Maximum Transmission Unit). The MTU
on Ethernet is 1500 bytes, and is said to be at least 576 bytes on the Internet.
Therefore the waiting time upon reception of a packet from a client is the time it
takes to send a maximum of roughly 1 Kb. Even with a very low bandwidth, this
is very unlikely to take more than a (very) few seconds, unless the other party
is down, in which case the connection better be closed soon. Some SMTP server
applications, such as Postfix, offer the possibility of setting a timeout value for
each SMTP command. However, this does not give better protection to SMTP
flood attacks, since the timeout is also reset upon the reception of each packet.
To the best of our knowledge, Microsoft Exchange 2007 and higher and qMail
are the only applications which implement a per session timeout. In this case,
this timeout value could have an important impact on the protection against
SMTP flood and it is part of our future work to investigate this application.
Nonetheless, default timeout settings should be lowered in SMTP applications
since it increases the security against SMTP flood without reducing the QoS.

4 Conclusion and Future Work

In this paper, we have conducted a study of a newer kind of DoS attacks, TCP
application flooding attacks. For this type of attack, the aggressor tries to ex-
haust the resources on a server by opening a large number of TCP connections
and let them idle until they get disconnected when a certain timeout value is
reached. We argued that TCP connection flooding cannot be successful when it
is aimed at the transport layer alone. In order to be efficient, such attacks need
to be aimed at the application layer. We focused our work on incoming SMTP
servers, in which case the attack is named SMTP flood.

In order to evaluate the performance of SMTP applications against SMTP
flood, we then conducted three different kind of experiments on two famous
SMTP server applications: Microsoft Exchange 2010 and Postfix 2.8. The first
experiment was aimed at evaluating the performance of SMTP server applica-
tions with their default settings. The second experiment showed the impact of
fine tuning various parameters to get the best performance for Postfix. The last
experiment aimed at demonstrating the benefits of modifying the timeout values
for both Postfix and Exchange and also validate that the throttling and stress
adaptive behaviour was an asset to both applications. The results we obtained
allowed us to answer the three research questions of our study.

In the case of Microsoft Exchange, even with the default settings, the server is
highly resilient to an SMTP flood attack. Postfix showed devastating results as
the server could not resist an attack of as many as 10 conn/s. However, by just
adjusting a few parameters, we were able to get a better resistance to attacks
as high as 1000 conn/s. Afterward, we have showed that for both Exchange and
Postfix, modifying the timeout greatly increases the performance of the server.
In the case of Exchange, although the server resist an attack with its default
settings, it is clear that much better performance can be achieved with lowering
the timeout values. In the case of Postfix, modifying the stress adapted timeout
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value will benefit the server although with the default settings, it still offers a
much better defence than the normal timeout. We believe that in light of these
results, advanced techniques such as dynamic timeout management presented in
[7,6,5] improve the performance of the servers. The implementations are similar
to the one we proposed and we have shown their performance against an SMTP
flood attack.

This study was not only intended to evaluate the threat of SMTP flood at-
tacks, but also to help prevent against them. It showed that SMTP flood attacks
can be avoided by modifying the timeout value of the SMTP server. We demon-
strated that the latest version of both Postfix and Exchange offer a good counter-
measure when under stress. We would recommend for system administrator to
change the default timeout value to as low as 30 seconds although lower settings
can be used. It will increase the server’s performance against SMTP flood at-
tack without degrading the service to legitimate users since timeouts are likely
to never occur as it has been demonstrated above. As a matter of fact, time-
out value higher than a few tens of seconds should never be used except testing
purpose since it really has no desirable positive effects.

As part of future work, we intend to construct a mathematical model of attack
and performance against SMTP flood attacks. It could then be used to extend our
results to other parts of the parameter space not yet explored by our experiments
on current applications and (e.g. shorter timeout values, higher legitimate traffic
rates). This would help us discover what parameter changes or policies would
be more effective, and drive the development of a new generation of more DoS-
resistant SMTP applications. Indeed, many other SMTP servers applications are
available, and testing some others such as qmail or Exim which are widely used.
Qmail is known as the most secure server, and Exim implements a dynamic
rate limiting worth testing in a future work. Finally, as mentioned above, TCP
connection flooding attacks can be aimed at any high level TCP application. It
would thus be important to apply our methodology to other applications such
as HTTP and compare our results with that of previous work on Web server
DoS-resilience.
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Abstract. We present a scalable honeynet system built on Xen us-
ing virtual machine introspection and cloning techniques to efficiently
and effectively detect intrusions and extract associated malware bina-
ries. By melding forensics tools with live memory introspection, the sys-
tem is resistant to prior in-guest detection techniques of the monitoring
environment and to subversion attacks that may try to hide aspects
of an intrusion. By utilizing both copy-on-write disks and memory to
create multiple identical high-interaction honeypot clones, the system
relaxes the linear scaling of hardware requirements typically associated
with scaling such setups. By employing a novel routing approach our sys-
tem eliminates the need for post-cloning network reconfiguration, allow-
ing the clone honeypots to share IP and MAC addresses while providing
concurrent and quarantined access to the network. We deployed our sys-
tem and tested it with live network traffic, demonstrating its effectiveness
and scalability.

Keywords: Honeypot, Honeynet, Introspection, Virtual Machine, Net-
work Security, Memory Forensics, Malware Analysis.

1 Introduction and Background

In the last decade there have been significant efforts to push high-interaction
honeypots (HIHs) to virtualized environments. Virtualized environments provide
many benefits for HIHs as they simplify containment and isolation of infections
while providing easy and convenient methods for reverting a compromised HIH
to a clean state. Furthermore, virtual environments enable real-time monitoring
of the execution, disk and memory of the virtual HIHs, providing a direct way to
observe infections as they occur and their effects on the compromised systems.

In order for these observations to provide meaningful, high-level state informa-
tion, one must tackle a semantic-gap problem: given a virtual machine identify
the features that are relevant to malware analysis, cf. [3][5]. While primarily
system-call interception based approaches have been employed [7][4][8], recent
advances in virtual machine introspection (VMI) techniques based purely upon
memory observation have been shown to be an effective and practical solution

J. Lopez, X. Huang, and R. Sandhu (Eds.): NSS 2013, LNCS 7873, pp. 164–177, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://www.cse.uconn.edu/


Towards Hybrid Honeynets via Virtual Machine Introspection and Cloning 165

[15]. Memory based VMI can enable a transparent and tamper resistant view
into the state of a HIH, without revealing the presence of the monitoring envi-
ronment [12].

While memory introspection based honeypot operations have been shown to
be effective, the deployment of the technique on a large-scale honeynet setup
presents numerous obstacles. Virtual HIHs provide complete systems and ap-
plication code for an attacker, thus, a scaling issue arises as the hardware re-
quirements increase linearly with the number of HIHs. Furthermore, networking
challenges are present when creating quarantined network connectivity to iden-
tical HIH clones without internal “in-guest” network reconfiguration. In-guest
network reconfiguration would inadvertently lead to changing the initial memory
state of the HIH, making comparative analyses of the HIHs more difficult from
a pure memory perspective. This issue leads to the “clone-routing” problem,
which asks for a way to concurrently route packets to multiple clones that have
identical network configurations.

In this paper we present a practical honeynet deployment utilizing a pure
virtual machine memory introspection approach. The system takes advantage
of recent developments in the open-source Xen hypervisor to effectively tackle
the scalability problem with multiple operating systems as honeypots. We also
present a novel approach to the “clone-routing” problem using the open-source
Honeybrid engine that enables us to deploy clone HIHs simultaneously without
requiring in-guest network reconfiguration.

2 Related Work

While many research papers have been published about implementing IDS and
Honeypot solutions based on VMI techniques [7][9], the majority of these tech-
niques approach the semantic-gap problem by intercepting system calls through
the virtual machine monitor (VMM). These approaches, while effective, are vul-
nerable to in-guest detection of the monitoring environment by observation of
the time-skew introduced by the system call interception [1][14]. In the following
we highlight prior work that focuses on the memory scaling and introspection
aspects of VMI based IDS and Honeypot solutions.

In 2005, Vrable et. al. implemented a highly scalable honeynet system named
Potemkin using the Xen VMM [16]. Potemkin solved the scaling issue associated
with running a large number of nearly identical VMs by introducing memory
sharing that de-duplicates identical memory pages present across the VMs.While
Potemkin was limited to paravirtualized (PV) Linux systems, later works, such
as SnowFlock [11], support fully virtualized (HVM) systems as well. As of the
latest version of Xen, Potemkin-style VM cloning of fully virtualized systems is
now natively supported, enabling the creation of dense honeynet systems using
a wide range of operating systems [10].

In 2008, Srivastava et. al. implemented a VMI-based firewall called VMwall
using the Xen VMM [15]. VMwall captured network flows in the most privileged
domain (Dom0) and correlated them with processes running within a VM by
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using the XenAccess library. VMwall accomplishes the correlation by extracting
information from data-structures of the guest Linux kernel. In 2011, Dolan-
Gavitt et. al. noted that the same functionality can be achieved by utilizing
forensics tools, such as Volatility, which in conjunction with XenAccess allows
the inspection of guest kernel data-structures [13].

In 2012, Biedermann et. al. presented a dynamic honeypot cloning system
using CoW techniques for cloud platforms which enabled incoming attack traffic
to be redirected to a stripped-down clone of the Linux VM under attack [2]. The
clone honeypot system’s memory was monitored to detect new processes spawn-
ing in the honeypot. This monitoring worked in concert with parsing of log files
inside the clone’s filesystem to detect relevant information about ongoing events.
While the cloning techniques’ performance was comparable to SnowFlock, the
VMI techniques employed were susceptible to in-guest subversion attacks be-
cause an exploit could unhook its process structure from the kernel. Furthermore,
the use of a production VM as the base for a clone honeypot raises security and
manageability concerns, as all sensitive information in the original VM has to be
found and stripped out during the cloning procedure. While Biedermann et al.
explain stripping the contents of the filesystem as part of the cloning procedure,
one must also take into account the non-trivial problem of stripping the CoW
RAM of sensitive information as well, otherwise the clone honeypot could leak
sensitive information.

In 2012, building upon the XenAccess successor library LibVMI , Volatility
and LibGuestFS Lengyel et. al. implemented a pure memory observation based
Honeypot monitor, VMI-Honeymon, which was capable of automatically de-
tecting and extracting infections from a Windows XP HIH VM [12]. By taking
advantage of Volatility’s memory scanning approach for state reconstruction,
VMI-Honeymon was shown to be increasingly resistant against kernel manipula-
tion techniques used to evade detection in the monitored VM. VMI-Honeymon
was deployed in a hybrid honeypot architecture using Honeybrid, which provided
improved resiliency against DoS attacks, such as SYN-floods, while at the same
time expanded the range of malware captures by utilizing the low-interaction
honeypot (LIH) Dionaea as a fall-back system.

3 System Architecture and Design

Our system is a direct extension VMI-Honeymon, focusing on improving the
stealth and tamper resistance of the original VMI-Honeymon system and fus-
ing it with Potemkin-style dense VM deployment. The following is an in-depth
description of our system.

3.1 Hybrid Setup

Drawing from the operational experiences with the original VMI-Honeymon sys-
tem, we opted to use a similar hybrid setup with Honeybrid and Dionaea as our
LIH. The hybrid honeypot setup fuses the benefits of low- and high-interaction
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honeypots to enable efficient use of available resources. In the hybrid setup all
incoming connections are handled by the LIH first, utilizing HIHs only when
needed to bypass the problem of wasting HIH resources on scans or handling
a SYN-flood. The hybrid setup also provides a highly configurable firewall to
monitor and contain potential intrusions. Figure 1 shows an overview of our
setup.

Fig. 1. VMI-Honeymon System Version 2

While the LIH provides DoS resiliency and emulated services in case the HIH
resources are exhausted, the HIHs provide native systems and application code
for intrusions. The HIHs are controlled by VMI-Honeymon and are periodically
scanned with Volatility or when a network event is detected by Honeybrid. The
use of Volatility in conjunction with LibVMI simplifies the state-reconstruction
of various HIHs, including Windows XP, Vista and 7 as Volatility provides op-
timized routines for memory scanning and kernel data-structure fingerprinting
for these operating systems.

The Volatility plugins can be characterized by their approach to state re-
construction: scanning or non-scanning plugins. The scanning plugins operate
by performing a search for pool tag headers in the VM’s memory, while non-
scanning plugins operate by following standard kernel data-structures and paths.
The trade-off between these two types of plugins is between performance and
evasion resistance: scanning the entire memory of a VM takes longer, especially
with large memory spaces, but is less likely to miss structures that are unhooked
or hidden from the kernel. The Volatility scans in our experiments were limited to
running only scanning plugins, which include: open files (filescan), open sockets
(sockscan), network connections (connscan), processes (psscan), kernel modules
(modscan), drivers (driverscan), mutexes (mutantscan), threads (thrdscan) and
registry hives (hivescan).

To avoid introducing heavy memory latency that may lead to side-channel
attacks potentially revealing the presence of the monitoring environment by
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measuring fluctuations in memory bandwidth, VMI-Honeymon was extended to
include a limitation on running parallel memory scans to a pre-defined maximum
concurrency level.

3.2 Memory Sharing

To achieve dense HIH deployment while avoiding the linear memory require-
ments associated with running multiple HIHs we take advantage of Xen’s native
memory sharing subsystem. Memory sharing enable the creation of nearly iden-
tical clones that transparently share the memory pages that have not changed
during HIH execution. The system is designed so that the origin (parent) VM
is paused, and all clones created initially point to the parent’s static memory.
When a clone writes to memory, Xen performs a copy-on-write (CoW) routine
and duplicates the memory page for the clone, providing an optimized use of the
overall memory of the physical host.

Recent developments of the memory sharing subsystem enables the creation
of nearly identical clones without requiring modifications to Xen itself. While
the subsystem is capable of carrying out Potemkin-style flash-cloning of VMs,
implementing such cloning remains a future task on the official Xen roadmap.
Nevertheless, cloning can also be achieved by performing the standard snapshot-
and-restore routine with the XenLight library and de-duplicating the memory
pages of the clone afterwards. While the approach is suboptimal, it is sufficient
for evaluating the nature of several HIHs in a memory sharing setup.

A key aspect in performing the XenLight (XL) snapshot-restore routine is that
the snapshot operation is performed only once when a VM is being designated
as a honeypot origin. This snapshot operation also encompasses the scanning of
the VM’s memory with Volatility and performing a full filesystem fingerprinting
with LibGuestFS, so that later infections can be correlated to a known clean-
state of the honeypot. By taking advantage of features in the XL utility, the
restore routine is further customized, so that the memory snapshot is restored
with a dynamically created configuration to place the clone system on a QEMU
copy-on-write (qcow2) filesystem.

3.3 Clone-Routing

While the combination of CoW RAM and filesystem enables the creation of
identical clones, from a networking perspective, the identical clones pose a new
challenge: the network interface in each clone will also remain identical, shar-
ing both the MAC and IP address of the original VM. Placing these clones on
the same network bridge leads to MAC and IP collisions that prevents proper
routing. Both Potemkin and SnowFlock solve the problem of clone-routing by
performing post-cloning IP reconfiguration of the VMs. However, this approach
is untenable for a memory introspection based system: such reconfiguration will
inadvertently change the initial state of the memory in the clone, leading to
noisy analysis results when comparing memory states between the clone and
its origin. This ’noise’ is caused by the process of unpausing the VM to alter
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settings, which inadvertently allows suspended processes to resume execution,
subsequently causing potentially substantial deviation from the original mem-
ory state. It could be argued that unpausing the VM for reconfiguration would
alter the state so minimally that it does not appreciably impact the analysis
goal. Nevertheless, eliminating any opportunity for the introduction of other-
wise avoidable noise appears to be a sensible approach to reach our objectives.

To ensure the creation of truly identical clones and enable pure comparison
between a clone and the origin, we retain the MAC and IP of the original VM
for each clone. To do so, each clone is placed upon a separate network bridge
to provide isolation for the MAC of the clone and avoid a collision. As seen in
Figure 2, the clone’s bridge is also attached to the VM that runs Honeybrid.
This solution enables us to avoid collisions on the bridge, but requires custom
routing to be setup on the Honeybrid VM that can identify clones based on the
network interface they are attached to instead of their (identical) IP and MAC
addresses.

Fig. 2. Clone routing layout - externally initiated

In order to provide transparent connection switching between the LIH and
an HIH, Honeybrid acts as a man-in-the-middle. Using iptables, each incoming
connection in the Honeybrid VM is DNATed to the LIH and then queued to be
processed by Honeybrid. Each TCP connection performs the TCP handshake
with the LIH, and if the connection sends any additional packets, Honeybrid
evaluates if the connection should be switched to an HIH. The evaluation is
performed in conjunction with VMI-Honeymon where Honeybrid asks for a ran-
dom available clone from VMI-Honeymon through an SSH tunnel. When there
is one available, VMI-Honeymon responds with the clone’s name and Honeybrid
looks up the clone’s interface from the pre-defined configuration file. If VMI-
Honeymon reports that all HIHs are taken, the attacker’s IP is pinned to use
Dionaea. When the connection is switched to an HIH, Honeybrid replays the
TCP handshake with the HIH. The incoming packets bound to the LIH there-
after are duplicated and modified to be directed to the clone and transmitted
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through a raw socket bound to the clone’s network interface. The use of raw
sockets forces the incoming packets to egress on the proper bridge. Packets from
the HIH in return are also duplicated and modified to look like the packet was
sent by the LIH.

For connections that are initiated from a clone, which happens for example
when an exploit performs a reverse TCP connection, Honeybrid must be aware
to route incoming packets for that connection back to the clone that initiated the
connection. We use additional routing tables to specify which interface each clone
is bound to and by using iptables marks and ip rules we can direct incoming reply
packets to specific routing tables which in effect lead to specific clones, shown
in Figure 3. We utilize Honeybrid to set the iptables mark on the reply packets
by looking up Honeybrid’s internal NAT table to identify the original source of
the connection. An alternate approach would be to use iptables’ CONNMARK
save and restore feature to restore connection marks on the packets. We opted
to use Honeybrid for this task as it allows for a potential configuration where
internally initiated connections are dynamically switched between honeypots as
well.

Fig. 3. Clone routing layout - internally initiated

Since currently the network setup requires manual configuration of the routing
tables, network interfaces, iptables marks and ip rules, we used a pre-defined pool
of clones for testing. This choice was made for our initial testing purposes and
it should be noted that by using Xen’s network hotplug features it would be
possible to add new clones to the honeynet on-the-fly.

4 Operational Experiences

We have conducted several tests and experiments which are discussed in the
following section. The tests were focused on the scalability of the memory sharing
subsystem when used with Windows XP SP2 x86, Windows XP SP3 x86, and
Windows 7 SP1 x86 clones. The experiments were conducted on a single server
with the following hardware specs: second generation Intel i7-2600 quad-core
CPU, Intel DQ67SWmotherboard and 16GB DDR3 1333Mhz RAM. In our tests
the Windows systems were running with the minimum recommended memory,
which is 128MB RAM for Windows XP x86, and 1GB RAM for Windows 7 SP1
x86.
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4.1 Idle Clones

An important aspect of our intrusion detection approach and of effective mem-
ory sharing is to limit the memory changes that are not related to an incoming
attack. While in Windows XP the number of background processes that gener-
ate unrelated memory changes are limited to a handful of services (automatic
updates, NTP, background disk defragmentation and background auto-layout),
in Windows 7 the number of such services have increased significantly. The ef-
fect of these background services on Windows 7 is significant as even within two
minutes the amount of shared memory decreases below 25%, effectively requiring
over 750MB RAM to be allocated to the clone. At the same time, the clone itself
reported only using 26% of its available memory, therefore the allocated CoW
memory pages had only short-lived purposes.

By disabling background services which required the allocation of unneces-
sary resources and polluted our Volatility scans, we were able the minimize
the resources allocated to idle clones. The disabled Windows 7 services include
prefetch, superfetch, BITS, RAC, indexing, offline files and font cache. Figure 4
shows the resulting memory sharing state of the clones when idle, in terms of
shared memory and Figure 5 in terms of additional RAM allocated to the Win-
dows 7 SP1 clones. It is important to note that disabling too many services in the
HIH will inevitably impact the attack surface of the HIH, as these services may
contain vulnerabilities that could be looked for and/or exploited by the attacker.
Since the services we disabled were not listening for incoming connections on the
network we deemed their absence to be a reasonable trade-off from a network
intrusion perspective. Further examining this performance / detection trade-off
is an interesting question that can be tackled in future work.

Fig. 4. Clone shared memory when
system is idle

Fig. 5. CoW RAM allocated when sys-
tem is idle

4.2 SMB and RDP

The second set of tests we ran on our system were targeting open services in our
clones, namely the standard SMB and Remote Desktop services as both of these
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services have known vulnerabilities. The RDP sessions had significant impact on
the RAM allocated to both the Windows XP and Windows 7 clones, reducing
the amount of shared memory to 25% in case of the Windows XP clone and 50%
for the Windows 7 clone, as seen in Figure 6. In terms of actual RAM allocation,
the Windows 7 clone’s 50% memory allocation translates to allocating 500MB
RAM for the clone, while the Windows XP clone at 75% required 96MB RAM.

Fig. 6. Clone shared memory after
RDP connection

Fig. 7. Clone shared memory after
SMB exploitation

The SMB tests were only conducted on Windows XP clones as Windows 7
SP1’s SMB stack has no publicly available exploit. We used a manual Metasploit
exploit session (ms08 067 netapi) to benchmark the effect on the Windows XP
clone when used with a meterpreter payload that performs a reverse TCP call-
back. This exploit was chosen because Conficker uses the same vulnerabilities,
which has been observed many times during our live tests. Figure 7 shows the
result of the benchmark compared to a live Conficker infection. Only the first 60
seconds were benchmarked since the Conficker infection performed a connection
attempt to a third party at that point, triggering our pause-scan-revert operation
with VMI-Honeymon. The Windows XP clones retained 25% of their memory
in a shared state, which translates to saving 32MB of RAM.

4.3 Live Sessions

Our experiments were conducted using multiple HIH back-ends drawn from a
pool of clones consisting of five Windows XP SP3 x86 and five Windows 7
SP1 x86 VMs. Each Windows VM was configured with the firewall, automatic
updates, time synchronization and memory paging turned off and remote desk-
top enabled. Windows 7 had additional adjustments as described previously in
Section 4.1.

For the live captures we utilized a single IP on a university network with all
firewall ports open. Over two weeks of activity, we recorded a total of 52761
connections out of which 6207 were forwarded to an HIH. Currently we forward
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any incoming connection that passes the TCP handshake to an HIH (if one is
available), regardless of whether the HIH is actually listening on the port the
attack is targeting. In this way, 1466 forwarded connections never actually es-
tablished real communication with the HIHs, because these connections targeted
ports that were closed (MsSQL, MySQL, SSH, HTTP, VNC).

For the live sessions, one aspect we were interested in was the concurrency of
active clones and the amount of memory savings achieved due to CoW RAM.
Figure 8 and Figure 9 shows the breakdown of the concurrency that occurred
in our system. Figure 10 and 11 show the distribution of the memory remaining
shared at the end of the clones’ life cycle.

Fig. 8. Clone activity by number of oc-
currences

Fig. 9. Clone activity by time spent in
each state

While VMI-Honeymon is configurable to scan the clones periodically during
their life-span, we decided to limit such scans to a single instance which happens
when the clone reaches its maximum allowed life-span or when a network event
is detected. The maximum life-span was set at two minutes, which is cut short if
the clone initiates a connection to an IP other than the attacker’s. The highest
concurrency of active clones was observed as seven, therefore our pool of ten
clones was never depleted. The HIHs were actively handling incoming attack
traffic 41% of the time during our experiment.

By using the information gathered during these sessions we calculate the pro-
jected memory savings when running multiple clones concurrently, shown in
Figure 12 and Figure 13. From these projections it is clear that the savings are
more significant when the base memory of the HIH is large, as in the case of
Windows 7 SP1, allowing for a larger percentage of the overall memory to remain
shared. We estimate that we would be able to run 40 Windows 7 SP1 clones con-
currently and not run out of memory even if all forty clones were three standard
deviations above the observed average memory allocation with our 16GB RAM
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Fig. 10. Shared memory distribution
of Windows XP SP3

Fig. 11. Shared memory distribution
of Windows 7 SP1

limitation (this would still use only 13.34GB RAM out of the available 16GB).
Similarly, we would be able to run 140 Windows XP SP3 clones concurrently
and not run out of memory which would allocate 14.6GB RAM assuming all
clones are three standard deviations above the observed average.

Fig. 12. Projected memory savings
of Windows XP SP3. μ=75.52MB
σ=10.1MB

Fig. 13. Projected memory savings
of Windows 7 SP1. μ=170.94MB
σ=48.3MB

The malware samples we obtained were all Conficker variants verified by
VirusTotal and all of the samples were extracted from the Windows XP HIHs.
Nevertheless, we have observed several intrusions in our Windows 7 HIHs as
well, which resulted in the clones trying to perform DNS queries. The service
exploited during these attack sessions were against the SMB server running on
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port 445. To allow these intrusions to further interact with the HIH to potentially
drop a payload we will be refining our firewall policy to allow some DNS queries
and to allow connections to the IP’s mapped in the DNS response (with certain
rate-limiting applied as to avoid potential malware propagation from within the
honeynet).

5 Future Work

Attackers wishing to DoS our system could produce slightly-interactive SYN-
flood like traffic which would step just past the initial handshake, causing an
HIH to be deployed for every connection, depleting our pre-defined pool of avail-
able HIHs. Another DoS approach could use the compromised HIHs to make
small changes throughout the memory of the VM in order to produce changes
in as many memory pages as possible, making Xen CoW RAM less effective and
diminishing the benefits of the memory deduplication. Both of these issues re-
quire the system to be modified so that safety checks are included that mitigate
these problems. The slightly interactive connection problem could be avoided
by dynamically shortening the life-span of the clone when network inactivity
is detected instead of running it for a pre-defined period of time. The memory
dedup attack could be potentially mitigated by dynamically checking the con-
currency of the clones running in the system and their memory sharing stage
to automatically pause and halt clones whose memory sharing is approaching a
critical state.

While our cloning routine is effective and required no changes to Xen, it can
clearly be improved. Further work is necessary to be able to perform flash-cloning
rather than restoring the entire memory image to the clone just to be discarded
by the memory sharing. Similarly, instead of running a pre-defined pool of clones,
it would be beneficial to allow the pool to dynamically balloon up and down to
match the incoming attack rate. This inevitably requires Honeybrid to be able
to automatically add and remove clones from its routing engine, which could
be achieved by careful cordination with VMI-Honeymon and by utilizing Xen’s
network hotplug features.

Although Volatility’s memory scanning and fingerprinting routines are al-
ready optimized, there is more room for improvement. Currently each Volatility
scan has to evaluate the target memory from start to end independently of one-
another. Combining the scans in such a way that Volatility detects all structures
by traversing the memory only once would improve performance considerably.
However, it should be noted that the pool tag headers that these scans rely on
can still be manipulated by rootkits and therefore a more robust scanning ap-
proach should be taken into consideration that uses, for example, data-structure
invariants for fingerprinting [6].

Building upon the nature of Xen’s CoW RAM it would be possible to direct
Volatility to examine only the specific memory regions which have changed dur-
ing the execution of the HIH, drastically reducing the memory space the scans
have to evaluate. Furthermore, through Xen’s memory events subsystem, these
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directed and combined Volatility scans can potentially allow for real-time moni-
toring of the HIHs, instead of the current one-time evaluation at the end of the
clone’s life cycle.

Our current experiments were performed using a single IP on a university
network but, as we have shown, the system is capable of effective scaling and
it is possible to utilize a darknet to increase the rate of the incoming connec-
tions. Furthermore, our experiments focused on x86 versions of Windows XP and
Windows 7, but as Volatility supports both 64-bit versions of these operations
systems, as well as Linux, it is possible to use these OSs as HIHs as well in future
experiments.

6 Conclusion

We have shown a practical solution to deploying a scalable honeynet system on
Xen using virtual machine introspection techniques to detect intrusions and ex-
tract associated malware binaries. By melding forensics tools with live memory
introspection the system remains effectively transparent to in-guest detection of
the monitoring environment and is increasingly resilient against in-guest sub-
version attacks. By utilizing both copy-on-write disks and memory, the system
mitigates the linear increase in hardware requirements typically associated with
running multiple virtual HIH. Additionally, our novel routing approach elimi-
nates the need for post-cloning network reconfiguration of the HIHs. While our
implementation is an effective and practical solution to achieve scalable and au-
tomated malware capture, both opportunities and challenges remain for future
enhancements.
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Abstract. The use of mobile phones has increased in our lives because
they offer nearly the same functionality as a personal computer. Besides,
the number of applications available for Android-based mobile devices
has also experienced a importat grow. Google offers to programmers
the opportunity to upload and sell applications in the Android Market,
but malware writers upload their malicious code there. In light of this
background, we present here Malicious Android applications Detection
through String analysis (MADS), a new method that extracts the con-
tained strings from the Android applications to build machine-learning
classifiers and detect malware.

Keywords: malware, android, machine learning, security.

1 Introduction

Smartphones have become very popular. They allow us to check the email, to
browse the Internet, or to play games with our friends, wherever we are. But, in
order to take advantage of every possibility these devices may offer, applications
have to be previously installed in the devices.

In the past, the installation of applications was a source of problems for the
users because there was not a centralised site for users to download their appli-
cations and they used to search them in the Internet. Several operating systems
like Symbian, in an attempt to avoid piracy and protect the device, used an au-
thentication protocol that certified the application and, usually, caused several
inconveniences to the users (e.g., they could not install applications although
they had bought them).

Nowadays, new methods for the distribution and installation have appeared
thanks to the widely used Internet connection in mobile devices. Therefore, users
can install any application they want, avoiding the connection of the device to
a personal computer. The App Store of Apple was the first online store to bring
this new paradigm to novel users. The model was praised and it became very
successful, leading to other vendors such as RIM, Microsoft or Google to adopt
the same business model and developing application stores for their devices.
These factors have led a large number of developers to focus on these platforms.
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However, malware has also arrived to the application markets. To this end,
both Android and iOS have different approaches to deal with malicious software.
According to their response to the US Federal Communication Commission’s
July 20091, Apple applies a very strict review process by at least two review-
ers. Android, on the other hand, relies on its security permission system and
on the user’s sound judgement. Unfortunately, users have usually no security
consciousness and they do not read required permissions before installing an
application.

Both the AppStore and Android Market include in their terms of service,
clauses that do not allow developers to upload malware to their markets but both
markets have hosted malware. Therefore, we can conclude that both models by
themselves are insufficient to ensure safety and other methods must be developed
in order to enhance the security of the devices.

Machine learning classification has been widely used in malware detection
[1–5]. Several approaches [6, 7] have been presented that focus on classifying ex-
ecutables specifying the malware category (e.g., Trojan horses, worms or viruses)
or even the malware family.

Regarding Android, the number of new malware samples is also increasing ex-
ponentially and several approaches have already been proposed to detect malware.
Shabtai et al. [8] built several machine learningmodels using as features: the count
of elements, attributes and namespaces of the parsed Android Package File (.apk).
To validate their models, they selected features using three selection methods: In-
formation Gain, Fisher Score and Chi-Square. Their approach achieved 89% of
accuracy classifying applications into only 2 categories: tools or games.

There are other proposals that use dynamic analysis for the detection of ma-
licious applications. Crowdroid [9] is an approach that analyses the behaviour
of the applications. Blasing et al. [10] created AASandbox, which is a hybrid
dynamic-static approximation. The dynamic part is based on the analysis of the
logs for the low-level interactions obtained during execution. Shabtai and Elovici
[11] also proposed a Host-Based Intrusion Detection System (HIDS) which uses
machine learning methods that determines whether the application is malware
or not. Google has also deployed a framework for the supervision of applications
called Bouncer. Oberheide and Miller [12] revealed how the system works: it is
based in QEMU and it performs both static and dynamic analysis.

In light of this background, we present MADS (Malicious Android appli-
cations Detection through String analysis), a novel approach for detection of
malware in Android. This method employs the strings contained in the dis-
assembled Android applications, constructing a bag of words model in order to
train machine-learning algorithms to provide detection of malicious applications.

In summary, our main contributions are: (i) we present a new technique for the
representation of Android applications, based on the bag of words model formed
by the strings contained in the disassembled application; (ii) we adapt well-
known machine learning classifiers to provide detection of malicious applications

1 http://online.wsj.com/public/resources/documents/

wsj-2009-0731-FCCApple.pdf

http://online.wsj.com/public/resources/documents/wsj-2009-0731-FCCApple.pdf
http://online.wsj.com/public/resources/documents/wsj-2009-0731-FCCApple.pdf
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in Android; and (iii)we found out that machine-learning algorithms can provide
detection of malicious applications in Android using the strings contained in the
disassembled application as features.

The reminder of this paper is organised as follows. Section 2 presents and
details MADS, our new approach to represent applications in order to detect
malware in Android. Section 3 describes the machine-learning algorithms we
have used. Section 4 describes the empirical evaluation of our method. Finally,
section 5 discusses the obtained results and outlines the avenues of further work
in this area.

2 Representation of Applications Using String Analysis

One of the most widely-used techniques for classic malware detection is the usage
of strings contained in the files [13, 2]. This technique extracts every character
strings within an executable file. The information that may be found in these
strings can be, for example, options in the menus of the application or malicious
URLs to connect to. In this way, by means of an analysis of these data, it
is possible to extract valuable information in order to determine whether an
application is malicious or not.

The process that we followed in MADS is the following. We start by disas-
sembling the application using the open-source Android disassembler smali2.
Hereafter, we search for the const-string operation code within the disassem-
bled code.

Using this disassembler, the representation of Android binaries are semanti-
cally richer than common desktop binaries. For example, the strings extraction
in desktop binaries are complex and it is usual that malware writers obfuscate
them to hide relevant information. Instead, the obfuscation of strings in the bi-
naries of Android is more difficult, given the internal structure of the binaries in
this platform.

In order to conform the strings, we tokenise the found symbols using the
classic separators (e.g., dot, comma, colon, semi-colon, blank space, tab, etc.).
In this way, we construct a text representation of an executable E , that is formed
by strings si, such as E = (s1, s2, ..., sn−1, sn) where n is the number of strings
within a file.

C is the set of Android executables E , {E : {s1, s2, ...sn}}, each comprising n
strings s1, s2, . . . , sn, we define the weight wi,j as the number of times the string
si appears in the executable Ej if si is not present in E , wi,j = 0. Therefore, an ap-
plication Ej can be represented as the vector of weights Ej = (w1,j , w2,j , ...wn,j).

In order to represent a string collection, a common approach in text mining
area is to use the Vector Space Model (VSM) [14], which represents documents
algebraically, as vectors in a multidimensional space.

This space consists only of positive axis intercepts. Executables are repre-
sented by a string-by-executable matrix, where the (i, j)th element illustrates
the association between the ith string and the jth executable. This association

2 http://code.google.com/p/smali/

http://code.google.com/p/smali/
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reflects the occurrence of the ith string in executable j. Strings can represent can
be individually weighted, allowing the strings to become more or less important
within a given executable or the executable collection C as a whole.

We used the Term Frequency – Inverse Document Frequency (TF–IDF) [15]
weighting schema, where the weight of the ith string in the jth executable, de-
noted by weight(i, j), is defined by:

weight(i, j) = tfi,j · idfi (1)

where term frequency tfi,j is defined as:

tfi,j =
ni,j∑
k nk,j

(2)

where ni,j is the number of times the string si appears in a executable Ej , and∑
k nk,j is the total number of strings in the executable Ej. The inverse term

frequency idfi is defined as:

idfi = log

(
|C|

|C : ti ∈ E|

)
(3)

where |C| is the total number of executables and |C : si ∈ E| is the number of
executables containing the string si.

Once we have characterised the application, we must classify it. In order to
achieve it, we use machine learning algorithms. These algorithms allow us to,
given a training dataset, assign a category (i.e., malware or goodware) to a
sample under evaluation.

3 Machine-Learning Algorithms

Machine-learning is an active research area within Artificial Intelligence (AI)
that focuses on the design and development of new algorithms that allow com-
puters to reason and decide based on data [16].

Machine-learning algorithms can commonly be divided into three different types
depending on the training data: supervised learning, unsupervised learning and
semi-supervised learning. For supervised algorithms, the training dataset must be
labelled (e.g., the class of an executable) [17]. Unsupervised learning algorithms
try to determine how data are organised into different groups named clusters.
Therefore, data do not need to be labelled [18]. Finally, semi-supervised machine-
learning algorithms use a mixture of both labelled and unlabelled data in order to
build models, improving the accuracy of solely unsupervised methods [19].

Because executables can be properly labelled, we use supervised machine-
learning; however, in the future, we would also like to test unsupervised and
semi-supervised methods for detection of malware in Android.
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3.1 Bayesian Networks

Bayesian Networks [20], which are based on the Bayes Theorem, are defined as
graphical probabilistic models for multivariate analysis. Specifically, they are di-
rected acyclic graphs that have an associated probability distribution function
[21]. Nodes within the directed graph represent problem variables (they can be
either a premise or a conclusion) and the edges represent conditional dependen-
cies between such variables. Moreover, the probability function illustrates the
strength of these relationships in the graph [21].

The most important capability of Bayesian Networks is their ability to deter-
mine the probability that a certain hypothesis is true (e.g., the probability of an
executable to be malware) given a historical dataset.

3.2 Decision Trees

Decision Tree classifiers are a type of machine-learning classifiers that are graphi-
cally represented as trees. Internal nodes represent conditions regarding the vari-
ables of a problem, whereas final nodes or leaves represent the ultimate decision
of the algorithm [22].

Different training methods are typically used for learning the graph structure
of these models from a labelled dataset. We use Random Forest, an ensemble
(i.e., combination of weak classifiers) of different randomly-built decision trees
[23], and J48, the WEKA [24] implementation of the C4.5 algorithm [25].

3.3 K-Nearest Neighbour

The K-Nearest Neighbour (KNN) [26] classifier is one of the simplest supervised
machine-learning models. This method classifies an unknown specimen based on
the class of the instances closest to it in the training space by measuring the
distance between the training instances and the unknown instance.

Even though several methods to choose the class of the unknown sample exist,
the most common technique is to simply classify the unknown instance as the
most common class amongst the K-nearest neighbours.

3.4 Support Vector Machines (SVM)

SVM algorithms divide the n-dimensional space representation of the data into
two regions using a hyperplane. This hyperplane always maximises the margin
between those two regions or classes. The margin is defined by the farthest
distance between the examples of the two classes and computed based on the
distance between the closest instances of both classes, which are called supporting
vectors [27].

Instead of using linear hyperplanes, it is common to use the so-called kernel
functions. These kernel functions lead to non-linear classification surfaces, such
as polynomial, radial or sigmoid surfaces [28]
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4 Experimental Results

In this section we describe the empirical validation of our method for Android
malware applications detection.

4.1 Dataset Description

In this subsection, we detail how the dataset has been composed. The require-
ments that the final dataset has to meet are the following: (i) it must be hetero-
geneous, showing the diversity in the types of applications that are available in
the Android market; and (ii) it must be proportional to the number of samples
that already exist of each type of application, to this end, two different datasets
were created: one composed of the benign applications and other composed of
malicious software.

Malicious Software. To compile the malware dataset, the samples were ob-
tained from the company VirusTotal3. VirusTotal offers a series of services called
VirusTotal Malware Intelligence Services, which allow researchers to obtain sam-
ples from their databases.

To generate the dataset, we first selected the samples. Initially, we collected
2,808 samples. Next, we normalised the values given by the different antivirus
vendors. The goal of this step was to determine their reliability detecting malware
in Android.

To this end, we assumed that every sample that was detected as an specific
piece of malware (i.e., already cataloged, not generic) by at least one antivirus
was malware. Then, we evaluated the detection rate of each antivirus engine
with respect to the complete malware dataset:

aw =
n

nt
(4)

where n is the number of samples detected by the antivirus and nt is the total
number of each antivirus detecting malware on the Android platform. Then, we
evaluated each malware sample taking into account the weights of each antivirus.

For this evaluation, we applied the next metric:

mw =
∑

aw|∀a ∈ A (5)

being A = (a1, a2, , a�) the set of the weights of the antivirus computed before,
for the antiviruses that detect the sample. Therefore, mw rates the detection
taking into account the antiviruses that detect the sample.

We determined a threshold below which a sample cannot enter the dataset, in
order to ensure that the samples belonging to it are relevant enough. The thresh-
old was set empirically to 0.1, which provided us a total number of 1,202 malware
samples. Besides, we focused on the results given by the different antiviruses to
determine whether the samples were actually Android-based applications. This

3 http://www.virustotal.com

http://www.virustotal.com
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was performed using the naming convention of the different antivirus engines.
Finally, we also removed any duplicated samples.

We finally acquired a malware dataset composed of 333 unique samples. Ac-
cording to the report elaborated by LookOut4, this dataset represents the 75%
of the malware that existed in July, 2011.

Benign Software. To generate this dataset, we gathered 1,811 Android samples
of diverse types. To classify them adequately, we categorised them using the
same scheme that Android market follows. To this extent, we categorised the
applications by means of an unofficial library called android-market-api5. Once
the samples were classified, we selected a subgroup of samples to be part of the
final benign software dataset. The employed methodology was the following:

Table 1. Number of samples for each category.

Arcade and Action 32 Multimedia & Video 23
Books 10 Music & Audio 12
Business 1 News & magazines 7
Card Games 2 Personalisation 6
Casuals 10 Photography 6
Comics 1 Productivity 27
Communication 20 Puzzles 16
Education 0 Races 2
Enterprise 4 Sales 3
Entertainment 16 Society 25
Finance 3 Sports 5
Health 3 Tools 80
Libraries & Demos 2 Transportation 2
Lifestyle 4 Travels 8
Medicine 1 Weather 2

Total number of benign applications: 333

1. Determine the number of total samples. To facilitate the training of the
machine-learning models, it is usually desirable for both categories to be
balanced. Therefore, given that the number of malware samples is inferior to
the benign category, we opted to reduce the number of benign applications
to 333.

2. Determine the number of samples for each benign category. Second, we de-
cided to follow the proportion present in the Android market and, therefore,
selected the number of applications accordingly.

3. Types of application. There are different types of applications: native ones
(developed by means of the Android SDK), web (developed through HTML,

4 https://www.mylookout.com/ downloads/

lookout-mobile-threat-report-2011.pdf
5 http://code.google.com/p/android-market-api/

https://www.mylookout.com/_downloads/lookout-mobile-threat-report-2011.pdf
https://www.mylookout.com/_downloads/lookout-mobile-threat-report-2011.pdf
http://code.google.com/p/android-market-api/
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JavaScript and CSS) and widgets (simple applications displayed in the An-
droid desktop). All these applications have different features. To generate
the dataset, we made no distinction in the type of application and included
samples of the different types in the final dataset.

4. Selection of the samples for each category. Once the number of applications
for each category was determined, we selected the applications randomly
using a Monte Carlo sampling method, avoiding different versions of the
same application.

Following this methodology, we constructed the benign dataset. The number of
samples for each category is shown in Table 1.

4.2 Configuration

For the evaluation of the different machine learning algorithms we used the tool
WEKA (Waikato Environment for Knowledge Analysis) [24]. Specifically, the
algorithms used in this tool can be seen in Table 2. In those cases in which no
configuration parameters are specified, the configuration used was the default.

Table 2. Configuration of the algorithms

Used Algorithms Configuration

NäıveBayes N/A
Bayessian Network K2 and TAN
SVM Polynomial and Normalised Polynomial Kernel
KNN K: 1, 3 and 5
J48 N/A
RandomForest N = 10, 50 and 100

The dataset was divided using the k-cross-validation technique [29, 30]. It
divides k times the input dataset in k complementary subsets using one shap-
ing sample data set, called test set, while the rest of subsets forming the joint
training. To obtain the error ratio for the final sample, the arithmetic mean of
the error rates obtained for each of the k iterations is calculated.

4.3 Evaluation

The evaluation was performed by measuring the following metrics:

– True Positive Ratio (TPR)

TPR =
TP

TP + FN
(6)

where TP is the number of malware cases correctly classified (true positives)
and FN is the number of malware cases misclassified as legitimate software
(false negatives).
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– False Positive Ratio (FPR)

FPR =
FP

FP + TN
(7)

where FP is the number of benign software cases incorrectly detected as
malware and TN is the number of legitimate executables correctly classified.

– Accuracy. It is the total number of the classifier’s hits divided by the num-
ber of instances in the whole dataset:

Accuracy =
TP + TN

TP + FN + FP + TN
(8)

– Area under the ROC Curve (AUC). AUC establishes the relation be-
tween false negatives and false positives [31]. The ROC curve is obtained by
plotting the TPR against the FPR.

4.4 Results

Table 3 shows the obtained results for the tested algorithms.

Table 3. Obtained results

Algorithm TPR FPR AUC Accuracy (%)

Näıve Bayes 0.93 0.17 0.90 88.07%
Bayesian Network: K2 0.71 0.13 0.89 78.68%
Bayesian Network: TAN 0.83 0.11 0.94 86,09%
SVM: Poly 0.93 0.03 0.95 94.70%
SVM: NPoly 0.77 0.04 0.86 86.45%
KNN K=1 0.35 0.02 0.84 66.24%
KNN K=3 0.22 0.03 0.82 59.85%
KNN K=5 0.17 0.03 0.79 56.75%
KNN K=10 0.08 0.04 0.77 51.77%
J48 0.83 0.12 0.86 85.54%
Random Forest N=10 0.92 0.13 0.96 89.74%
Random Forest N=50 0.93 0.09 0.97 91.81%
Random Forest N=100 0.94 0.09 0.97 92.04%

The best results were obtained the Random Forest configured with 100 trees,
obtaining an AUC of 0.97 and an accuracy of 92.04%. Regarding TPR, this
classifier can detect the 94% of the malware, whilst a 9% of the legitimate appli-
cations are misclassified. TPR and FPR establish the cost of misclassification.
It is important to set the cost of false negatives (1 − TPR) and false positives,
in other words, establish whether is better to classify a malware as legitimate
or to classify a benign software as malware. In particular, if our framework is
devoted to detect new and unknown malware, one may think that it is more
important to detect more malware than to minimise false positives. However,
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for commercial reasons, one may think just the opposite: a user can be bothered
if their legitimate applications are flagged as malware. Therefore, we consider
that the importance of the cost is established by the way our framework will
be used. If it is used as a complement to standard anti-malware systems then
we should focus on minimising false positives. Otherwise, if the framework is
used within antivirus laboratories to decide which executables should be further
analysed then we should minimise false negatives (or maximise true positives).
To tune the proposed method, we can apply two techniques: (i) whitelisting and
blacklisting or (ii) cost-sensitive learning. White and black lists store a signa-
ture of an executable in order to be flagged either as malware (blacklisting) or
benign software (whitelisting). On the other hand, cost-sensitive learning is a
machine-learning technique where one can specify the cost of each error and the
classifiers are trained taking into account that consideration [32].

4.5 Comparison with Related Work

To combat the problem of malware that has risen in recent years in Android,
researchers have begun to explore this area, using the experience acquired in
other platforms.

“Andromaly” [33], a framework for detecting malware on Android mobile de-
vices, is one of these examples. This framework collected 88 features and events
and, then, applied machine-learning algorithms to detect abnormal behaviours.
Their dataset was composed of 4 self-written malware, as well as goodware sam-
ples, both separated into two different categories (games and tools). Their ap-
proach achieved a 0.99 area under ROC curve and 99% of accuracy. Despite
these results, their framework had to collect a huge number of features and
events, overloading the device and, consequently, draining the battery. Our ap-
proach only needs information extracted from .apk files, making the extraction
process almost trivial. Although our results are not as sound as theirs, our ap-
proach requires less computational effort and our dataset is larger and sparser
in malware samples than theirs.

On the other hand, Peng et al. [34] ranks the risks in Android using proba-
bilistic generative models. They selected the permissions of the applications as
key feature. Specifically, they chose the top 20 most frequently requested permis-
sions in their dataset, composed by 2 benign software collections, obtained from
the Google Play (157,856 and 324,658 samples, respectively) and 378 unique
samples of malware. They obtained a 0.94 area under ROC curve as best re-
sult. We complemented the information provided by the permissions with the
uses-features, enhancing the results and approaching them to those obtained by
previous methods.

5 Discussion and Conclusions

Smartphones are a first class citizen nowadays. Unfortunately, malware writers
are focused in this devices too. Malware detection techniques have moved from
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desktop to mobile devices. The main difference between both environment are the
available resources. Despite the evolution of the last years, current smartphones
have several limitations (i.e., computational performance or battery life). Due
to these limitations, the application of various techniques used in the desktop
environment to smartphones is doubtful.

In this paper we propose a new method for detecting Android malware using
string features to train machine-learning techniques. In order to validate our
method, we collected several malware samples of Android applications. Then,
we extracted the aforementioned features for each application and trained the
models, evaluating each configuration. Random Forest was the best classifier
obtaining very high accuracy levels. Nevertheless, there are several considerations
regarding the viability of our approach.

The use of supervised machine-learning algorithms for the model training, can
be a problem in itself. In our experiments, we used a training dataset that is
very small when compared with commercial antivirus databases. As the dataset
size grows, so does the issue of scalability. This problem produces excessive stor-
age requirements, increases time complexity and impairs the general accuracy
of the models [35]. To reduce disproportionate storage and time costs, it is nec-
essary to reduce the original training set [36]. In order to solve this issue, data
reduction is normally considered an appropriate preprocessing optimisation tech-
nique [37, 38]. Such techniques have many potential advantages such as reducing
measurement, storage and transmission; decreasing training and testing times;
confronting the curse of dimensionality to improve prediction performance in
terms of speed, accuracy and simplicity and facilitating data visualisation and
understanding [39, 40]. Data reduction can be implemented in two ways. On the
one hand, Instance Selection (IS) seeks to reduce the evidences (i.e., number of
rows) in the training set by selecting the most relevant instances or re-sampling
new ones [41]. On the other hand, Feature Selection (FS) decreases the number of
attributes or features (i.e., columns) in the training set [42]. Both IS and FS are
very effective at reducing the size of the training set and helping to filtrate and
clean noisy data, thereby improving the accuracy of machine-learning classifiers
[43, 44].

Besides, our method has several limitations due to the representation of exe-
cutables. In this way, because the bag of words model is based on the frequencies
with which strings appear within executables, malware writers may start modi-
fying their techniques to evade filters. For example, in the field of spam filtering,
Good Word Attack is a method that modifies the term statistics by appending
a set of words that are characteristic of legitimate e-mails, thereby bypassing
spam filters. In case that happens in our domain, we can adopt some of the
methods that have been proposed, such as Multiple Instance Learning (MIL)
[45]. MIL divides an instance or a vector in the traditional supervised learning
methods into several sub-instances and classifies the original vector based on the
sub-instances [46].

Morever, because of the static nature of the proposedmethod, it cannot counter
packed malware. Packed malware is the result of cyphering the payload of the



MADS: Malicious Android Applications Detection through String Analysis 189

executable and deciphering it when the executable is finally loaded into memory.
Indeed, static detection methods can deal with packed malware only by using the
signatures of the packers. Accordingly, dynamic analysis seems a more promising
solution to this problem [47]. Forensic experts are developing reverse engineering
tools overAndroid applications, fromwhich researchers could retrieve new features
to enhance the data used to train the models.

Future work of this Android malware detection tool is oriented in three main
directions. First, we will enhance the representation of data using data reduction
techniques. Second, we will explore several attacks to this statistical model and
propose solutions. Finally, we will use dynamically extracted features in order
to improve our method.
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(eds.) International Symposium on DCAI. AISC, vol. 91, pp. 415–422. Springer,
Heidelberg (2011)

4. Santos, I., Laorden, C., Bringas, P.G.: Collective classification for unknown mal-
ware detection. In: Proceedings of the 6th International Conference on Security
and Cryptography (SECRYPT), pp. 251–256 (2011)

5. Santos, I., Brezo, F., Ugarte-Pedrero, X., Bringas, P.G.: Opcode Sequences as Repre-
sentation of Executables for Data-mining-based UnknownMalware Detection. Infor-
mation Sciences 231, 64–82 (2013) ISSN: 0020-0255, doi:10.1016/j.ins.2011.08.020

6. Rieck, K., Holz, T., Willems, C., Düssel, P., Laskov, P.: Learning and classification
of malware behavior. In: Zamboni, D. (ed.) DIMVA 2008. LNCS, vol. 5137, pp.
108–125. Springer, Heidelberg (2008)

7. Tian,R.,Batten,L., Islam,R.,Versteeg, S.:Anautomated classification systembased
on the strings of trojan and virus families. In: Proceedings of the 4th International
Conference on Malicious and Unwanted Software (MALWARE), pp. 23–30 (2009)

8. Shabtai, A., Fledel, Y., Elovici, Y.: Automated static code analysis for classifying
android applications using machine learning. In: Proceedings of the International
Conference on Computational Intelligence and Security (CIS), pp. 329–333 (2010)

9. Burguera, I., Zurutuza, U., Nadjm-Tehrani, S.: Crowdroid: behavior-based malware
detection system for android. In: Proceedings of the 1st ACMWorkshop on Security
and Privacy in Smartphones and Mobile Devices, pp. 15–26. ACM (2011)



190 B. Sanz et al.

10. Blasing, T., Batyuk, L., Schmidt, A., Camtepe, S., Albayrak, S.: An android ap-
plication sandbox system for suspicious software detection. In: Proceedings of the
5th International Conference on Malicious and Unwanted Software (MALWARE),
pp. 55–62 (2010)

11. Shabtai, A., Elovici, Y.: Applying behavioral detection on android-based devices.
In: Cai, Y., Magedanz, T., Li, M., Xia, J., Giannelli, C. (eds.) Mobilware 2010.
LNICST, vol. 48, pp. 235–249. Springer, Heidelberg (2010)

12. Oberheide, J., Miller, J.: Dissecting the android bouncer. In: SUMERCON 2012
(2012), http://jon.oberheide.org/files/summercon12-bouncer.pdf

13. Santos, I., Penya, Y., Devesa, J., Bringas, P.G.: N-Grams-based file signatures
for malware detection. In: Proceedings of the 11th International Conference on
Enterprise Information Systems (ICEIS), vol. AIDSS, pp. 317–320 (2009)

14. Baeza-Yates, R.A., Ribeiro-Neto, B.: Modern Information Retrieval. Addison-
Wesley Longman Publishing Co., Inc, Boston (1999)

15. Salton, G., McGill, M.: Introduction to modern information retrieval. McGraw-
Hill, New York (1983)

16. Bishop, C.: Pattern recognition and machine learning. Springer, New York (2006)
17. Kotsiantis, S., Zaharakis, I., Pintelas, P.: Supervised machine learning: A review of

classification techniques. Frontiers in Artificial Intelligence and Applications 160,
3 (2007)

18. Kotsiantis, S., Pintelas, P.: Recent advances in clustering: A brief survey. WSEAS
Transactions on Information Science and Applications 1(1), 73–81 (2004)

19. Chapelle, O., Schölkopf, B., Zien, A.: Semi-supervised learning. MIT Press (2006)
20. Pearl, J.: Reverend bayes on inference engines: a distributed hierarchical approach.

In: Proceedings of the National Conference on Artificial Intelligence, pp. 133–136
(1982)

21. Castillo, E., Gutiérrez, J.M., Hadi, A.S.: Expert Systems and Probabilistic Network
Models, Erste edn., New York, NY, USA (1996)

22. Quinlan, J.: Induction of decision trees. Machine Learning 1(1), 81–106 (1986)
23. Breiman, L.: Random forests. Machine Learning 45(1), 5–32 (2001)
24. Garner, S.: Weka: The Waikato environment for knowledge analysis. In: Proceed-

ings of the 1995 New Zealand Computer Science Research Students Conference,
pp. 57–64 (1995)

25. Quinlan, J.: C4.5 programs for machine learning. Morgan Kaufmann Publishers
(1993)

26. Fix, E., Hodges, J.L.: Discriminatory analysis: Nonparametric discrimination:
Small sample performance. Technical Report Project 21-49-004, Report Number
11 (1952)

27. Vapnik, V.: The nature of statistical learning theory. Springer (2000)
28. Amari, S., Wu, S.: Improving support vector machine classifiers by modifying kernel

functions. Neural Networks 12(6), 783–789 (1999)
29. Kohavi, R.: A study of cross-validation and bootstrap for accuracy estimation

and model selection. In: International Joint Conference on Artificial Intelligence,
vol. 14, pp. 1137–1145. Lawrence Erlbaum Associates Ltd. (1995)

30. Devijver, P., Kittler, J.: Pattern recognition: A statistical approach. Prentice/Hall
International (1982)

31. Singh, Y., Kaur, A., Malhotra, R.: Comparative analysis of regression and machine
learning methods for predicting fault proneness models. International Journal of
Computer Applications in Technology 35(2), 183–193 (2009)

32. Elkan, C.: The foundations of cost-sensitive learning. In: Proceedings of the 2001
International Joint Conference on Artificial Intelligence, pp. 973–978 (2001)

http://jon.oberheide.org/files/summercon12-bouncer.pdf


MADS: Malicious Android Applications Detection through String Analysis 191

33. Shabtai, A., Kanonov, U., Elovici, Y., Glezer, C., Weiss, Y.: Andromaly: a be-
havioral malware detection framework for android devices. Journal of Intelligent
Information Systems, 1–30 (2012)

34. Peng, H., Gates, C., Sarma, B., Li, N., Qi, Y., Potharaju, R., Nita-Rotaru, C.,
Molloy, I.: Using probabilistic generative models for ranking risks of android apps.
In: Proceedings of the 2012 ACM Conference on Computer and Communications
Security, pp. 241–252. ACM (2012)

35. Cano, J., Herrera, F., Lozano, M.: On the combination of evolutionary algorithms
and stratified strategies for training set selection in data mining. Applied Soft
Computing Journal 6(3), 323–332 (2006)

36. Czarnowski, I., Jedrzejowicz, P.: Instance reduction approach to machine learning
and multi-database mining. In: Proceedings of the 2006 Scientific Session Organized
during XXI Fall Meeting of the Polish Information Processing Society, Informatica,
ANNALES Universitatis Mariae Curie-Sk�lodowska, Lublin, pp. 60–71 (2006)

37. Pyle, D.: Data preparation for data mining. Morgan Kaufmann (1999)
38. Tsang, E., Yeung, D., Wang, X.: OFFSS: optimal fuzzy-valued feature subset se-

lection. IEEE Transactions on Fuzzy Systems 11(2), 202–213 (2003)
39. Torkkola, K.: Feature extraction by non parametric mutual information maximiza-

tion. The Journal of Machine Learning Research 3, 1415–1438 (2003)
40. Dash, M., Liu, H.: Consistency-based search in feature selection. Artificial Intelli-

gence 151(1-2), 155–176 (2003)
41. Liu, H., Motoda, H.: Instance selection and construction for data mining. Kluwer

Academic Pub. (2001)
42. Liu, H., Motoda, H.: Computational methods of feature selection. Chapman &

Hall/CRC (2008)
43. Blum, A., Langley, P.: Selection of relevant features and examples in machine

learning. Artificial Intelligence 97(1-2), 245–271 (1997)
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Abstract. In spite of the fact that security applications can greatly
benefit from virtualization, hypervisor-based security solutions remain
sparse. The main cause for this is the semantic gap, which makes the
development of hypervisor-based security applications cumbersome,
error-prone, and time-consuming. In this paper, we present X-TIER, a
framework that enables hypervisor-based security applications to bridge
the semantic gap by injecting kernel modules from the outside into a
running virtual machine (VM). While previous approaches bridge the
semantic gap by reading kernel objects from memory, X-TIER goes be-
yond such work and allows the injected code to manipulate the guest
operating system (OS) state and even call kernel functions without sacri-
ficing the overall security. We have implemented a prototype of X-TIER
on the x86 architecture that supports module injection for Windows
and Linux guests. The evaluation of our system shows that kernel mod-
ule injection only incurs a very small performance overhead, leaves no
traces within the guest system, and provides access to all exported guest
OS data structures and functions. Consequently, the mechanism is well-
suited for creating hypervisor-based security applications.

Keywords: Security, Virtual Machine Introspection, Semantic Gap.

1 Introduction

Virtualization provides essential security properties such as isolation and in-
trospection that are predestined for the development of novel and robust secu-
rity applications [8]. Nevertheless, hypervisor-based security applications remain
sparse. The main reason for this is the semantic gap. While hypervisor-based
security applications have access to the complete virtual hardware state, the
semantic knowledge of the guest OS that is necessary to interpret the binary
view of this state is essentially lost. Without this knowledge, hypervisor-based
security mechanisms can neither access the data structures of the guest OS
nor invoke guest functions that operate on these data structures. As a result,
the development of hypervisor-based security applications becomes cumbersome,
error-prone, and time-consuming. Although researchers have proposed various
methods to narrow this semantic gap [2,5,6,7,11,15], reconstructing the complete
semantic view of the guest OS remains an open problem. This is especially true
when it comes to a practical approach that not only bridges the semantic gap, but
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does so efficiently, securely, and supports the development of hypervisor-based
security mechanisms in a straight forward manner.

In this paper, we present X-TIER, a framework that allows security applica-
tions residing within the hypervisor to inject kernel modules, also referred to as
kernel drivers, into a running VM. An injected module will thereby, similar to
a module that was loaded by the OS, be able to access all exported guest OS
data structures and functions. In contrast to a normally loaded module, how-
ever, an injected module will be inaccessible to any other code residing within
the VM. Even in the case that the injected module invokes a guest OS function,
the function will neither be aware of the existence of the module nor be able
to access any data of the module besides its function arguments. In fact, if a
module constrains itself to only reading state information, its execution leaves
no detectable traces within the VM (with the exception of timing attacks). A
module may, however, apply selective changes to the state, for example, to re-
move a rootkit from a compromised system. Consequently, our system provides
a secure and elegant way for hypervisor-based security applications to bridge the
semantic gap.

X-TIER is not targeted at a particular OS or kernel module file format. In-
stead, it aims to provide a general and secure mechanism for module injection
on the x86 architecture. Our framework achieves this goal by making use of a
converter that transforms an existing module into a universal binary format that
we call the X-Format. This step can either happen on-the-fly as the module is
injected or ahead of time and requires no changes or re-compilation of existing
kernel modules. Once a module has been converted to the X-Format (in the fol-
lowing referred to as X-Module), it can be injected into any VM as long as the
guest OS provides the same API as the OS that the original module has been
compiled for. This design enables X-TIER to support any OS for a particular
hardware platform as long as it is known to the converter.

To support a wide range of security applications, X-TIER is capable of period-
ically injecting X-Modules into a VM as well as injecting X-Modules in reaction
to a specific event. In addition, our system offers a hypercall-based communi-
cation channel that enables injected modules to communicate with X-TIER or
a security application that resides on the hypervisor level. This communication
channel makes it particularly easy to transfer information obtained by an in-
jected module to the hypervisor.

We implemented a prototype of X-TIER for the x86 architecture that relies
on full hardware virtualization and is based on the KVM hypervisor. To demon-
strate the possibilities of our approach, we created an on-access virus scanner
for Linux as well as multiple Linux and Windows modules that retrieve security
relevant information from within a guest system. The experiments that we con-
ducted show that the proposed mechanism is not only able to securely bridge
the semantic gap for Linux and Windows guests, but also incurs only a very
small performance overhead (4.30% for Linux and 2.76% for Windows guests in
the worst case in our experiments) which makes it well-suited for the creation
of security applications.
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In summary, this paper makes the following contributions:

– We specify a uniform binary format, the X-Format, for injectable kernel
modules on the x86 architecture (Section 2.1).

– We show how a kernel module can be injected and executed within the
context of a guest OS in a secure way (Section 2.2).

– We present an intuitive communication mechanism that allows X-Modules
to transfer arbitrary information to the hypervisor (Section 2.3).

– We demonstrate the effectiveness and efficiency of our approach with our
prototype implementation, X-TIER, and its evaluation (Section 3).

2 System Design

The overall design of X-TIER is shown in Figure 1. Before a kernel module can
be injected by the injector it must be transformed into an X-Module by the
converter. The key difference between a kernel module and an X-Module is that
the latter provides its own loader code, which enables an X-Module to execute
from an arbitrary memory address without having to rely on an external loader.
By converting a kernel module into an X-Module, we can thus separate the
loading of a module from the injection of a module, which allows our framework
to obtain two essential properties: First, we can provide a general mechanism
for hypervisor-based code injection on the x86 architecture. This is due to the
fact that the injector does not require any knowledge about the guest OS or
an X-Module to be able to inject and execute it. Second, our system will be
able to support a wide-range of OSs, since the converter is the only component
of X-TIER that must actually be able to handle different module file formats.
Consequently, all that needs to be done to support an additional OS is to add
a handler to the converter that can transform kernel modules for the OS into
X-Modules. In the following the converter, the injector, and the communication
component of our system will be covered in a subsection of their own.

2.1 Converter

The task of the converter is to transform an existing kernel module into
an X-Module. The binary format of an X-Module is the X-Format. The
motivation behind the X-Format is to provide a single common struc-
ture for module injection in which existing kernel module formats such
as the Linux Executable and Linkable Format (ELF) and the Windows
Portable Executable (PE) format can be embedded. This is achieved by defining a
wrapper format, the X-Format, that is capable of encapsulating all of the different
existing module formats. By wrapping the existing formats into a common
structure, it can be guaranteed that all modules provide the same interface and
fulfill the necessary requirements for use with our system independent of their
original format.

The common structure of the X-Format is shown in the underpart of Figure 1.
As one can see, it consists of four main parts. At the beginning of the X-Format
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Fig. 1. The architectural view of our system is shown in the upper-half of the picture,
while the underpart shows the effects of the architectural components on a kernel
module that is injected into a VM

resides the X-Loader (1). The X-Loader functions as the common entry point
for all modules in X-Format and also controls the execution of the preprocessing
phase of a module. Similar to normal executables, kernel modules must usually
be preprocessed before they can be executed. This preprocessing is normally
conducted by the OS when a kernel module is loaded. Since we inject kernel
modules from the outside into a VM without the support of the guest OS, the
necessary preprocessing steps have to be executed by our system.

Although preprocessing code varies from OS to OS, it encompasses in general
at least two steps that are reflected in the design of the X-Format: Relocation (2a)
and symbol resolution (2b). Relocation is required since kernel modules are usu-
ally position independent and can be loaded to an arbitrary memory address.
To support this functionality, a position independent module provides a list of
addresses that have to be updated when the module is loaded. During relocation
this list is processed and the given addresses are adjusted according to the base
address of the module.

Besides relocation, symbol resolution is the second common step that is usu-
ally executed by the module loader. As the name suggests, the purpose of this
step is to resolve the addresses of any external kernel symbols that the module
uses. How this resolution is performed heavily depends on the OS and will for
the sake of brevity be omitted in this paper.

After the loader code follows the kernel module (3) itself. The loader code will
patch this module at runtime. When the X-Loader finally transfers the control
to the entry point of the module, which is a user-specified function, it will be
ready to execute from its current memory location. Since the X-Loader invokes
the entry point of the module, control will be returned to the X-Loader once
the entry point function has been executed. Thus, the X-Loader is not only the
entry point of an X-Module, but also the exit point. This enables the X-Loader to
notify our system when a module has finished its execution and can be removed.
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Finally, the last part of the X-Format is the X-Code section (4). It contains
wrapper functions that are required for security and communication purposes.
We defer a more detailed description of these wrapper functions to the next
section and to Section 2.3 respectively.

2.2 Injection

The process of injecting an X-Module from the outside into a VM consists of
three individual steps that are shown in Figure 1. First, the module must be
loaded into the memory of the guest. Then the actual execution phase begins,
where the control flow of the VM is altered and execution is transferred to the
injected module. This phase is particularly important for the security of the
proposed mechanism, since it must be ensured that the X-Module is protected
from foreign accesses during its execution within a potentially malicious guest.
Finally, the injected module must be removed from the guest after it has finished
its execution. In the following, each of these steps will be discussed in more detail.

Module Injection. X-TIER supports three injection modes: count-based in-
jection, which injects a module exactly n-times, interval-based injection, where
a module is repeatedly injected after a certain period of time, and event-based
injection, where a module is injected based on an event. However, in the inter-
est of space we will not cover all the details of the individual injection modes.
Instead we will only focus on the common injection process.

To inject an X-Module from the hypervisor into a VM, the module must be
loaded into the guest’s memory. This is basically a twofold process. In the first
step, we have to select the guest physical memory regions that will be used to
hold the data, code, stack, and external function area of the injected module.
In the case of X-TIER, this is accomplished by adding additional guest physical
memory for each of these memory areas to the VM at runtime as has been
proposed by Gu et al. [9]. The external function area is thereby an additional
memory area that is required during external function calls and will be covered
in more detail in the following section of the paper.

In the second step, a virtual memory mapping has to be established for the
newly added guest physical memory areas such that they can be accessed by the
hardware. This is realized by directly updating the guest’s page tables, which
are accessible through the CR3 register.

Module Execution. Once a module has been loaded into the memory of a VM,
it must be securely executed within the context of the guest. While the execution
of a module can be triggered by simply setting the instruction pointer (EIP) of
the guest to the injected module, isolating the module from other code within the
VM is a hard problem. Our system uses two separate techniques to achieve this
goal: runtime isolation and function call unmapping. Both of these techniques
will be described in more detail below. For the sake of simplicity, we will assume
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a cdecl calling convention and a single core VM. We discuss how these tech-
niques can be applied to multi-core systems in Section 3.4.

The main idea behind runtime isolation is to execute an injected module atom-
ically within the guest. This requires that our system disables timer interrupts
within the VM by unsetting the interrupt enable flag (IF) within the RFLAGS
register. Consequently, the injected module will no longer be interrupted during
its execution. However, other guest OS code could still be executed in the case
of an exception or an external interrupt. To avoid this problem, X-TIER further
intercepts all exceptions and interrupts that occur within the VM on the hyper-
visor level by enabling every bit in the exception bitmap [10] and setting the
Interrupt Descriptor Table Register (IDTR) base to 32 as suggested by Pfoh et
al. [14], respectively. This will constrict the execution of the VM to the injected
module. All other code within the VM will effectively be frozen during the run-
time of the module. Even in the event of an exception or an interrupt, no guest
OS code will be executed.

The only problem that remains is the handling of external function calls. If the
injected module invokes an external function, this function will have access to the
module’s code and data regions in spite of runtime isolation. X-TIER solves this
problem by temporarily unmapping an injected module from the guest’s memory
whenever an external function is invoked. For this purpose, the converter adds
an individual wrapper for each external function that is used by a module to the
X-Code section of an X-Module and additionally modifies each external function
call such that it will invoke the wrapper. As a result, all external function calls
within an X-Module will actually invoke wrapper functions.

Once invoked, it is the task of the wrapper to prepare the external function
call. In particular, this means that the wrapper must copy all data structures
that will be required by the external function and reside within the module’s
data area to a memory region that will be accessible to the function. During this
process, the wrapper must also update any pointers that are used within the
data structures such that they no longer point to the original data structures
but to their copies. Our system uses the external function area for this purpose,
which has been reserved by X-TIER during the module injection and is used as
stack region during external function calls.

After the necessary data was copied, the wrapper will modify the function
arguments that were provided by the module such that every reference points
to the copied data structures. Finally, it will modify the stack pointer (ESP)
to point to the external function region, place the modified function arguments
into the correct register and stack locations as it would do if it would invoke
the external function, and use the communication channel of our framework
(see next section) to notify X-TIER of the function call. Thereby the wrapper
will also provide X-TIER with the address of the external function, which the
wrapper in turn obtains during the symbol resolution phase of the X-Module.

Upon receiving the notification that an external function is about to be ex-
ecuted, X-TIER will first unmap the injected module from the VM’s mem-
ory by marking all memory regions of the module as not present within the
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Extended Page Tables (EPT). Next, it will reenable interrupts and invoke the
external function from the hypervisor by pushing the current EIP on the stack
and setting the EIP to the specified address. This will trigger the execution of
the external function within the VM. As soon as the external function returns,
an EPT violation will occur, since X-TIER placed a return address on the stack
that is no longer accessible. If the current EIP coincides with the value that our
system pushed on the stack, this event will be interpreted as the return of the
external function call. In this case our system will reenable the interception of
interrupts and will return the control to the wrapper. The wrapper will then
restore the stack and copy the possibly modified function arguments back from
the external function area to their original location. Finally, the wrapper returns
control to the X-Module which concludes the external function call.

Module Removal. When the injected module has finished its execution, the
hypervisor component needs to be notified that the module can be removed and
control can be returned to the VM. In our system, this is realized through the
X-Loader component. Since the X-Loader invokes the entry point of the injected
module, control will be returned to it as soon as the function returns. Once
the X-Loader regains control of the execution, it will notify X-TIER that the
injected module has finished its execution and can be removed.

During the module removal phase, all changes that were applied during mod-
ule injection must be reverted. First, all modifications that were made to the
guest pages tables will be undone. In the next step, the now unmapped physical
memory regions of the injected module are removed from the VM. Finally, the
original values of all general purpose registers are restored. This last step com-
pletes the module removal and enables the VM to resume its execution from the
last EIP before the injection.

2.3 Communication

The system we described so far provides the possibility to inject kernel modules
into a VM at runtime. However, without a mechanism to communicate with the
hypervisor, the information that is obtained by an injected module is confined
within the VM. In this section, we will first describe the basic communication
channel that our system provides, before we explain how it can be used in con-
junction with output functions to transfer information to the hypervisor.

Communication Channel. X-TIER provides a hypercall mechanism that en-
ables an injected module to notify the hypervisor about specific events such as
external function calls. To execute a hypercall, an injected module places the
numerical representation of the event which it wants to communicate to the hy-
pervisor into a predefined command register, e.g. EAX, and invokes an interrupt.
Due to runtime isolation, the invocation of the interrupt will lead to a VM exit.
Based on the interrupt number and the value of the command register, X-TIER
can identify the communication attempt from the module and handle the event.
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Function Call Translation. Although the above described hypercall mecha-
nism is well-suited to inform our system about certain events, it cannot easily
be used to send information obtained by an injected module such as the list of
currently running processes to the hypervisor. A more intuitive approach would
be to make use of an output function for this purpose. As an example, consider
the printk function, which is an output function of the Linux kernel that ba-
sically provides the same functionality as the well-known C function printf. If
a developer of a kernel module could simply use printk statements to transfer
information from an injected module to the hypervisor, modules that retrieve
information from the guest could be easily implemented. X-TIER provides this
functionality by making use of a technique we refer to as function call translation.

The main idea of function call translation is to redirect a function call oc-
curring within a VM to an equivalent function call that is executed on the host
system or a different VM. To illustrate this technique, let us once more consider
a call to a printk function occurring within a VM. Let us further assume that
we want to translate this function call to an equivalent printk function call that
occurs on the host system instead of the guest system. X-TIER achieves this by
executing the following steps:

1. Intercept the in-guest call to printk from the hypervisor before it occurs. X-
TIER already provides this functionality, since printk is an external function
that will lead to the invocation of a wrapper function and a VM exit.

2. Obtain the arguments of the in-guest printk call, which either reside on the
guest’s stack and/or within the guest’s general purpose registers depending
on the architecture and the guest OS.

3. Translate the guest virtual address referenced by each pointer argument to
the corresponding host virtual address.

4. Finally, move the now translated arguments to the appropriate stack and/or
general purpose registers on the host system and invoke printk.

X-TIER currently uses function call translation to translate all calls to output
functions occurring within an injected module to calls to output functions that
are executed on the host system instead. In particular calls to printk (Linux)
and DbgPrint (Windows) functions that are executed by an X-Module are trans-
lated to calls to printf on the host system. Notice, however, that the proposed
mechanism of function call translation is general and could be applied to arbi-
trary function calls. Moreover function call translation is completely transparent
to the developer of a kernel module.

3 Evaluation

We implemented a prototype of our X-TIER framework for the x86 architecture
that is based on the Linux KVM hypervisor. In this section, we describe the
experiments that we conducted with this prototype to evaluate the performance
of our approach and state the results that we obtained. In addition, we present
an example application that demonstrates the possibilities of module injection
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Table 1. The X-Modules that were used
to conduct the performance evaluation

Name Description

tasklist Shows the running processes.
lsmod Prints a list of the loaded

modules.
netstat Displays the open TCP and

UDP connections for each
process.

files Prints a list of all open files
for each process. Fig. 2. The average execution time distri-

bution of all modules shown in Table 1

and will discuss the security properties of X-TIER as well as the limitations of
the current prototype.

3.1 Performance

We used four different kernel modules that extract typical security relevant infor-
mation from within a guest system to empirically evaluate X-TIER. The name
of these modules as well as a description of their functionality is shown in Table
1. Each of the modules was implemented for Linux and Windows. To test func-
tion call translation, each module was designed to print the information that it
obtains using printk (Linux) and DbgPrint (Windows), respectively.

For the purpose of implementation, compilation, and injection of the kernel
modules, we used two VMs. The virtual hardware configuration of both VMs
consisted of a single virtual CPU, 512 MB of guest physical memory, and a 20
GB virtual hard disc. As OSs we chose the 64-bit version of Ubuntu 11.04 Server
and the 32-bit version of Windows 7 Professional SP1. We purposely selected a
64-bit OS and a 32-bit OS for the VMs to verify that our framework is generic
enough to handle both system types. The host OS was Ubuntu 12.04 64-bit
running on a machine with an Intel Core i7-2600 3.4 GHz CPU and 8 GB RAM.

The modules were compiled with gcc 4.6.3 (Linux) and Build Utility 6.1 (Win-
dows), respectively. While we used the default flags to compile the Windows
modules, we compiled the Linux modules with the option mcmodel=large. This
flag instructs the compiler to reserve 8 bytes for each address within the module
code instead of 4 bytes. Although this option is not required, it allows us to
inject a Linux module anywhere within the 64-bit virtual address space.

After compilation, we used X-TIER’s converter to transform each module
into an X-Module. The mean time required for the conversion was 55ms for
a Windows module and 7ms for a Linux module. On average the resulting X-
Modules had an increased size of 14% (Windows) and 17% (Linux).

To measure the performance of X-TIER, we compiled (Linux) or respectively
extracted (Windows) the Linux 3.6 Kernel Image, a 467 MB tar file, within the
guest. In the process, we repeatedly injected one of the modules into the VM
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Table 2. Results of the experiments. The columns show for each module its average
run-times of the injection (load), execution (exec), and removal (unload) phase in
ms, the total number of injections (in), of external function calls (func) and calls to
output functions (out), and the total overhead that the modules’ injection incurred.

Experiment Run-time [ms] Result

OS Module load exec unload in func out Overhead

Win tasklist 0.11 1.21 0.16 1047 0 31531 0.15%
Win lsmod 0.11 7.21 0.16 1051 140975 144128 0.80%
Win netstat 0.10 2.93 0.23 1182 0 30322 0.28%
Win files 0.13 25.38 0.16 1030 469939 528131 2.76%

Linux tasklist 0.30 2.43 0.59 2925 0 209581 0.18%
Linux lsmod 0.30 0.49 0.61 2957 0 38990 0.05%
Linux netstat 0.30 0.45 0.64 2967 0 21603 0.05%
Linux files 0.32 12.37 0.79 2954 523098 451233 1.08%

Linux LxS 0.24 5.18 0.52 28330 3944284 89058 4.30%

at intervals of one second. The information that was obtained by an injected
module was printed on the host system using function call translation. Thereby,
each call to an output function within a module lead to an individual VM exit.
No output data was buffered within the module to increase the performance.
This experiment was repeated for each of the modules and the resulting run-
time overhead was measured from the hypervisor.

The results of the experiments are shown in Table 2. On average, each mod-
ule was injected 2950 times on Linux and 1078 times on Windows. The highest
performance overhead was introduced by the filesmodules, which led to a over-
head of 1.08% and 2.76% respectively. The reason for this is that these modules
had the longest run-time within the VMs. The more time a module requires
to execute, the longer all other code within the guest will be frozen and conse-
quently the higher will be the resulting performance impact. As Figure 2 shows,
the run-time itself is heavily influenced by the number of external functions that
a module invokes. This is a result of the fact that the invocation of an external
function leads to at least one VM exit, which is a costly operation. Since output
functions account for almost 50% of the run-time in the current implementation,
we expect that the performance of our prototype could be considerably increased
by buffering output data within the guest system instead of processing each call
to an output function individually.

In summary, the experiments show that our system is capable of effectively
bridging the semantic gap by injecting normally created kernel modules from
the hypervisor. The overhead of the approach is very small even if a module is
frequently injected into a VM. The performance impact of the injection mainly
depends on the execution time of the injected module, which in-turn is influenced
by the number of external functions that the module invokes.
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3.2 Example Application

We implemented an on-access virus scanner for Linux using X-TIER that we
call LxS. This virus scanner consists of two parts: a hypervisor component and
a kernel module. The kernel module is injected by X-TIER every time a file is
executed within the VM using the execve system call. In this particular case,
we trap this event by setting a debug breakpoint on the address of the execve

system call using the debug registers of the x86 architecture. Notice, however,
that this mechanism is independent of X-TIER. Intercepting in-guest events in
a secure manner is beyond the scope of our framework.

Once the kernel module has been injected, it reads the file that should be
executed, calculates its SHA-1 hash, and transfers the file name as well as the
SHA-1 hash to the hypervisor component using function call translation. The
hypervisor component will then compare the calculated hash to a virus database
and signal to the injected module whether the file is malicious or benign. In the
first case, the module will deny access to the file by returning an error code, while
the module will invoke the original sys execve function in the latter case, which
will trigger the execution of the file. This mechanism is completely transparent
to the guest OS and cannot be evaded.

We tested the above described virus scanner once more by monitoring the
compilation of the Linux kernel. Thereby we used a clam-av database that con-
tained 45039 SHA-1 hashes to check the executed binaries. The results of this
experiment are shown in Table 2. As one can see, the virus scanner application
tested 28330 executables during compilation and only incurred an overhead of
4.30%. In addition, we verified the detection mechanism of the approach by exe-
cuting serveral malicious files including the adore-ng rootkit, the suckit rootkit,
the mood-nt rootkit, and the enyelkm rootkit. In all cases, the access to the
malicious files was denied. No false positives were observed.

3.3 Security

From a security standpoint, one of the most important properties of virtualiza-
tion is isolation. Isolation ensures that a security application that runs on the
hypervisor level cannot be accessed by code running in a VM. By injecting a
module into a VM and executing it within the context of the guest, we break
this isolation. Ideally, however, a module that was injected into a VM should
have the exact same security properties that it would have if it was running
outside of the guest. X-TIER achieves this by making use of runtime isolation
and function call unmapping.

Runtime isolation restricts the execution of the guest system to the injected
module and the guest code that it invokes. Any code that is not explicitly re-
quired by the X-Module will be frozen during its execution. This effectively iso-
lates the module within the VM. Even in the case that the X-Module is faulty,
exceptions will not be handled by the guest system, but on the hypervisor level as
they would if the module would run outside of the guest. The only way to disable
the proposed lightweight isolation mechanism is to reenable the timer-interrupts
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within the guest system by setting the IF flag, which is the only mechanism that
is used by our system that cannot be protected from the hypervisor. However,
due to the fact the injected module controls the virtual CPU, this can only be
done by the module itself. Therefore we do not consider this to be an issue.

While runtime isolation is sufficient to protect the execution of an injected
module, it cannot ensure a module’s isolation if the module itself invokes an
external function. This is why X-TIER temporarily unmaps an X-Module from
the guest system when it calls an external function. Since this unmapping is
realized with the help of the EPT and the EPT can only be modified by the
hypervisor, the proposed mechanism of function call unmapping can reliably
isolate a module during external function calls. To be useful in practice, however,
our system does not extend this isolation to the function arguments. That is
an external function will be able to access and modify its function arguments
arbitrarily even if they reside within the module’s data region. Although the
access of an external function will be restricted to the function arguments alone,
this provides a small attack surface. This attack surface, however, is not limited
to our system, but rather inherent to the problem of invoking untrusted code.
In fact, if the module would reside on the hypervisor level and would invoke a
function within a guest system, the same problem would exist. Nevertheless, our
system reduces the attack surface by using individual wrapper functions for each
external function. Rather than updating all arguments after an external function
call, each wrapper only updates the function arguments within a module’s data
region that a specific function is supposed to modify.

Finally, it is worth to emphasize that the execution of an injected module
leaves no traces within a guest system unless the module purposely modifies
the state of the guest. This is due to the fact that our system only operates on
memory regions that will be removed once a module finished its execution. As a
result, an injected module that constrains itself to only reading data structures
within a guest system can only be detected based on timing attacks, since it is
atomically executed and leaves no traces.

3.4 Limitations

There currently exist two limitations within our prototype. First of all, our
prototype is not yet able to operate on multi-core systems. To support multi-
core systems, the concept of runtime isolation must be expanded such that an
X-Module cannot be accessed during its execution from one of the other cores. A
possible solution to this problem would be to disable the interrupts on all CPUs
and to put the additional cores into busy waiting loops while the X-Module
executes on a single core. As a result, all other CPUs would be idle during the
execution of an X-Module, which would affect the performance of the approach.

Second, there is a single functional limitation that our system places on the
creation of kernel modules. Since X-TIER injects a kernel module from the hy-
pervisor without involving the guest OS, specific OS data structures that are
related to the module itself will not be created within the guest OS. For instance,
an X-Module will not be able to use the this module (Linux) or respectively
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the DriverObject (Windows) variable, because the internal OS data structures
that usually exist for each loaded module will not be available for an X-Module.
In fact, if these data structures would exist, the guest OS would be aware of the
existence of the injected module, which is why they are not created by X-TIER.

4 Related Work

The semantic gap [3] is a fundamental problem that every hypervisor-based se-
curity application faces. Existing approaches that try to bridge this gap can
roughly be divided into in-band delivery approaches, out-of-band delivery ap-
proaches, and derivative approaches [13]. In-band delivery approaches, as the
one presented within this paper, rely on an in-guest component to bridge the
semantic gap. Lares [12] and SIM [16] use this in-guest component to actively
monitor an untrusted VM. In contrast to X-TIER, however, both approaches do
not dynamically inject the in-guest component and are unable to invoke guest
OS functions without compromising the security of the system. SADE [4] is also
capable of injecting a kernel agent into a VM at runtime, but it relies on guest
OS functions to reserve the necessary virtual memory space for the in-guest
agent and does not protect the agent during its execution. Process Implanting
[9] provides the possibility to inject statically linked binaries into the address
space of a victim process running within a VM, where they will be executed in
the context of the victim process. Unlike injected modules, implanted processes
are unable to access kernel data structures or functions directly and additionally
require a trusted guest OS. Finally, SYRINGE [1] aims to provide hypervisor-
based security applications with the possibility to inject secure function calls
into a VM. For this purpose, SYRINGE monitors the complete execution of all
injected function calls within the guest system and verifies that only trusted
code is executed. In contrast to SYRINGE, X-TIER provides access to both
guest OS functions and data structures. In addition, our system does not place
any restrictions on the code that can be executed by an injected module. Instead
it guarantees the isolation of a module even if it invokes hostile functions.

5 Conclusion

We proposed X-TIER, a framework that allows a security application residing
on the hypervisor level to inject kernel modules into a VM at runtime. Our
system makes use of runtime isolation and function call unmapping to execute
an injected module isolated within the context of an untrusted guest system.
Nevertheless, injected modules are able to access all exported guest OS data
structures and can even invoke guest OS functions without sacrificing isolation
or compromising their security. Consequently, our system enables hypervisor-
based security applications to securely bridge the semantic gap.

Prior to injection, X-TIER converts modules into our uniform X-Format. This
step requires no changes or recompilation of existing kernel modules and allows
our system to support multiple OSs while remaining extensible. In addition,
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X-TIER provides an intuitive communication channel that allows injected mod-
ules to send and receive information from a security application residing on the
hypervisor level.

Our prototype implementation of X-TIER is capable of injecting kernel mod-
ules into Windows and Linux guests. The evaluation of our system shows that
the performance impact of module injection is small even for frequently in-
jected modules. Due to its functionality, security, and performance, X-TIER is
very well-suited for creating hypervisor-based security applications as has been
demonstrated with the implementation of an on-access virus scanner for Linux.
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Abstract. Signature-based malware detection will always be a step be-
hind as novel malware cannot be detected. On the other hand, machine
learning-based methods are capable of detecting novel malware but clas-
sification is frequently done in an offline or batched manner and is often
associated with time overheads that make it impractical. We propose
an approach that bridges this gap. This approach makes use of a sup-
port vector machine (SVM) to classify system call traces. In contrast to
other methods that use system call traces for malware detection, our ap-
proach makes use of a string kernel to make better use of the sequential
information inherent in a system call trace. By classifying system call
traces in small sections and keeping a moving average over the probabil-
ity estimates produced by the SVM, our approach is capable of detecting
malicious behavior online and achieves great accuracy.

Keywords: Security, Machine Learning, Malware Detection, System
Calls.

1 Introduction

Detecting malware is an ever present challenge in the field of security. Tradition-
ally, malware detection makes use of signature-based methods. That is, known
malware samples are analyzed to create a repository of signatures which are then
matched against a static object to determine whether the particular object is
infected with malware. While this approach is straightforward, it has two fun-
damental issues. The first stems from the static nature of the analysis. A static
analysis indicates that it is performed on an inert object, that is, an object that
is not being executed or in any other way active. Malware authors take advan-
tage of this fact by obfuscating the inert object in such a way that it no longer
matches any of the the signatures in the repository. However, when executed,
the actions of the active process prove malicious. This may be achieved by sim-
ple packing and unpacking of the malicious portions of the object or by more
advanced polymorphism techniques.

The second issue with such an approach is a result of its reliance on signatures.
These signatures must be generated prior to a successful match, which makes
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such an approach disadvantageous in situations where no prior sample existed for
signature generation. For example, novel malware that makes use of so-called “0-
day” exploits (exploits which have not yet been seen in the wild) are difficult to
detect with a signature-based method. To address these issues, dynamic machine
learning-based analysis has often been considered in various forms [1–5].

In a dynamic analysis, the behavior of the malware is analyzed rather than
the inert object. This circumvents traditional code obfuscation as the behavior
remains malicious and it is this behavior that is analyzed. Obfuscating behavior
becomes much more difficult as the malicious act must be carried out in some
form. That is, one can attempt to conceal their intentions, but once the ma-
licious act is carried out, this behavior is ideally observable and can be acted
upon. Furthermore, machine learning techniques lend themselves well to mal-
ware detection as such techniques make an attempt to generalize and learn the
features of malware that differentiate them from benign software. This can then
also be applied to novel malware, thus countering the threat of 0-day exploits.

While dynamic approaches show much promise they are not immune to short-
comings of their own. While obfuscating behavior is more difficult than obfus-
cating code, it is not impossible. Depending on how the behavior of a process
is modeled, dynamic analysis is generally vulnerable to a class of attacks called
mimicry attacks [6, 7]. This class of attack attempts to “act benign” while se-
cretly carrying out some malicious action. Additionally, the large time complex-
ity combined with the massive amount of data that needs to be classified often
makes a practical solution difficult.

In this paper we model process behavior though system call traces and present
a practical machine learning-based method for malware detection. Specifically,
we make use of a support vector machine (SVM) in combination with a string
kernel function called a string subsequence kernel (SSK) [8]. This kernel function
has properties that lend themselves well to malware detection in spite of mimicry
attacks. Additionally, we present a novel method for classifying the behavior of
processes in an online manner. Finally, we present an evaluation of our approach
which includes several comparisons with other machine learning methods for
malware detection.

2 Background

For the classification of system call traces, we make use of support vector ma-
chines (SVMs) [9]. SVMs are a maximal margin hyperplane classifiers. That is,
given a training set X = {(xm, ym)}Mm=1, where xm is a training vector and ym
is the associated class +1 or −1, the SVM identifies the hyperplane for which
the separation between the most relevant training vectors (i. e., the support vec-
tors) and the hyperplane is maximized, then classifies new vectors based on their
relation to this hyperplane. The hyperplane is represented by a weight vector
w ∈ RD and a variable b ∈ R and is formally defined for some C > 0 in the
following optimization problem:
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minimize
w,ξ,b

‖w‖2
2

+
C

M

M∑
m=1

ξm

subject to ym(〈w,xm〉+ b) ≥ 1− ξm,m = 1, · · · ,M
(1)

where ξi represents slack variables that are responsible for preventing an over-
fitting of the model.

By introducing a Lagrangian with multipliers αm ≥ 0, the training phase de-
termines which training vectors will become support vectors. Then, the classifi-
cation occurs by comparing the test vector to each support vector and measuring
the similarity. The decision function f is formally defined as:

f(x) = sgn(g(x)) (2)

where

g(x) =

M∑
m=1

ymαm〈x,xm〉+ b (3)

Here the dot product (〈a,b〉) plays the role of the kernel function, which mea-
sures the similarity between the two vectors. For simple geometric classification,
a dot product may suffice as a measure of similarity. However, for detecting mal-
ware through system call traces, a more complex kernel function is necessary.
This kernel function must be carefully chosen for a given domain and is discussed
in further detail in Section 2.1.

While SVMs produce a binary result as seen in (2), it is often beneficial to work
with a posterior probability P (y = 1|g(x)) based on g(x) defined in (3). Such
a posterior probability is especially helpful when the output is to be combined
with other factors to reach a final decision.

Several methods for probability estimation have been proposed. We make
use of a method proposed by Platt [10]. Platt’s method estimates the posterior
probability by using the following sigmoid function:

P (y = 1|g(x)) = 1

1 + eAg(x)+B
(4)

where A and B are found by minimizing the negative logarithmic likelihood of
the training data.

2.1 Kernel Function

In looking for a kernel function, we begin by examining the nature of the input
itself. The input consists of a string (i. e., sequence) of system call numbers. For
the language processing domain, string kernels were introduced to classify texts
or strings [8]. In essence, our input is very similar, though instead of classifying
strings over the roman alphabet, for example, we are interested in classifying
strings over the alphabet of all system calls. That is, we define our alphabet,
Σ, as all possible system calls and a string is a sequence s ∈ Σ∗ of letters (i. e.,
system calls). Based on this similarity, we choose a string kernel for our method.
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Specifically, we choose to use the string subsequence kernel (SSK) [8]. This
kernel measures the similarity between inputs by considering the number of
common subsequences. A subsequence allows for non-matching, interior letters
between its elements, though the kernel penalizes the similarity as this number
of interior letters increases. For example, the string ABC would clearly match
on the string ABC, but it would also match on the string AaaaBbbbCccc, though
with a lower similarity measure due to the interior aaa and bbb. This property
of the kernel is especially attractive as a sequence of system calls may contain
interior system calls that might be irrelevant to the malicious nature of the
sequence.

The SSK is formally defined as:

k(s, t) =
∑
u∈Σn

∑
i:u=s[i]

∑
j:u=t[j]

λl(i)+l(j) (5)

where n is the size of the subsequence and λ ∈ (0, 1) is the decay factor used
to weight the contribution of the match based on the number of interior letters.
The notation u = s[i] denotes that u is a subsequence of s for which there exist
indices i = (i1, . . . , i|u|), with 1 ≤ i1 < · · · < i|u| ≤ |s|, such that uj = sij , for
j = 1, . . . , |u|. Finally, l(i) represents the length of the subsequence including
interior letters.

3 Method

We begin this section by arguing for system call traces as a model for process
behavior. We present the observation that a process in complete isolation cannot
perform any malicious action on the rest of the system. Hence, in order for a
process to act maliciously it must interact in some manner with the rest of the
system and if the isolation mechanism in place is sound, this interaction must
take place through the interface provided by the operating system (OS) (i. e.,
system calls). System calls are necessary to perform actions such as file operation,
network communication, inter-process communication, etc. As a result of the
above observation, system call traces are often used to model process behavior
[1, 3, 4].

However, previous approaches often make use of polynomial kernels or other
methods that do not fully consider the sequence of the system calls [1, 3, 5].
That is, in the most trivial case, the number of times that a system call occurs
in the trace is taken into account without considering the order of the system
calls. This is most likely due to the fact that string kernels incur a massive time
overhead when used with large amounts of data. However, if one can mitigate
the increased time overhead, an approach that considers sequential data has the
potential to produce very high accuracy rates. Intuitively, considering sequential
data is logical. If one were to manually analyze a system call trace, one would
consider the order of the system calls in addition to which system call is being
executed. In an effort to baseline the time overhead, we began training the SSK
with our raw data and broke the test off after two months of running with no
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result in sight. So with practical analysis as a goal, clearly this time overhead
must be addressed.

We address the time overhead of the SSK with the observation that if we
are able to classify a process by updating an interim classification value and
making a decision before the process has finished, we inherently address online
classification while reducing the time overhead by not having to analyze the
entire system call trace.

Training. To prepare the training data, we iterate over each individual system
call trace and extract contiguous sub-traces of size S starting at random points
within the traces. We iterate over all the training traces several times in order to
get several sub-traces from each original trace. These size S sub-traces become
our training set. We do this for two reasons. First, training the SSK with circa
2000 full-length traces, some of which may contain hundreds of thousands of sys-
tem calls, takes months even on modern hardware. Second, classifying against a
support vector with hundreds of thousands of system calls is equally time con-
suming. The clear concern is that some of these sub-traces may not be indicative
of the class they belong to because they represent a relatively small fraction of
the entire trace. However, with enough sub-traces we will eventually collect some
that are indicative of the class they belong to. The beauty of a SVM is that it
will decide which of the sub-traces to use as support vectors (hopefully those
indicative of the training class) and which to disregard.

Classification. The classification works by sliding a window of size S over the
system call trace that is to be classified. This sliding window moves forward by
S/2 elements in the trace for each iteration. Then, for each iteration, probability
estimates are taken using Platt’s method [10] as described in Section 2 and
factored into a cumulative moving average for each class. If we let pi = P (y =
1|xi) represent the probability estimate as approximated by (4) for an iteration
i, we represent the cumulative moving average after iteration i as:

Ui =
p1 + · · ·+ pi

i
(6)

In addition to calculating the cumulative moving average, we also experimented
with a simple moving average of the probability estimates. This is a similar
method, though instead of considering all previous window iterations, a simple
moving average only considers the last y window iterations in the average (where
y may be arbitrarily set). Formally,

Si =
pi−y + · · ·+ pi

y
(7)

where i ≥ y.
We continue our classification by defining two thresholds T1 ∈ [0.5, 1] and

T−1 ∈ [0.5, 1]. These thresholds are compared to Ui and 1 − Ui, respectively
and if either threshold is exceeded, the classification ends by predicting the
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class represented by the exceeded threshold. Formally, the decision function is
represented as follows:

Di =

⎧⎪⎨⎪⎩
1 if Ui > T1,

−1 if 1− Ui > T−1,

Di+1 else

(8)

Clearly, Ui > 0.5 ∧ (1 − Ui) > 0.5 can never be true if Ui ∈ [0, 1], therefore
if T1 ∈ [0.5, 1] and T−1 ∈ [0.5, 1], only one single case of the decision function
will ever be true for a given iteration. For practicality, if the cumulative moving
average never exceeds either threshold and there are no more system calls in
the trace, the decision function simply predicts 1 if Ui > 0.5 or it predicts −1
otherwise.

4 Evaluation

In this section we present the results of our experiments when testing our SVM-
based method for malware detection on real-world data

4.1 Data Collection

We ran this experiment on two sets of sample traces collected from Windows
XP SP3. We chose Windows XP as it is a popular commercial OS and numerous
malware samples are available for this platform.

The first set of system call traces was collected using Nitro [11], a VMI-based
system for system call tracing and trapping. This dataset includes 1943 system
call traces of malicious samples taken from VX Heavens1 and 285 system call
traces of benign samples taken from a default Windows XP installation and
selected installations of well-known, trusted applications.

The second set of traces is taken from a level slightly above system calls.
Windows XP wraps its system calls in APIs that it provides to programmers
through system libraries. While these traces are technically at a level slightly
above the system calls themselves, they serve the same purpose and demonstrate
that our method works at both levels. This dataset was collected by hooking
these API functions and was first used by Xiao and Stibor [4]. It consists of 2176
API call traces of malicious samples and 161 API call traces of benign samples.

We chose to introduce the second independent data set for two reasons. First,
the second data set makes use of API call traces rather than system call traces
directly. This gives us a chance to observe the accuracy of our approach for
system calls as well as API calls. The second and perhaps more important reason
for including a second data set is to confirm that our method also works on
an independent data set that was not collected by us. This strengthens the
credibility of our approach as it allows us to present results based on data that

1 http://www.vxheavens.com

http://www.vxheavens.com
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others have previously used in similar experiments. In fact, we directly compare
the results of our method with that of Xiao and Stibor in Section 5.

One might notice that the amount of benign and malicious samples are some-
what imbalanced. We address this by making use of cross-validation as described
in Section 4.2 and by reporting the false positive rate in addition to the recall
as seen in Section 4.3.

4.2 Setup

We begin by preparing the training set as described in Section 3. That is, we it-
erate over the full system call traces and extract random contiguous subsequence
of size S (in our experiments S = 100). We iterate a number of times as to have
2000 random contiguous subsequences in each training set. We take care that the
training samples can be traced back to their original trace as to make sure we
properly perform a two-fold cross-validation. That is we are careful that, when
testing, we train the SVM with samples that do not come from traces in the
testing set. Making use of cross-validation allows us to “simulate” the detection
of 0-day malware as the classification is performed on data that was not seen
during the training phase.

With the data collected and prepared, we make use of LIBSVM [12] along with
a provided string kernel extension to perform both training and classification
as described in Section 3. Since the SSK is not implemented in LIBSVM or
the string kernel extension, we incorporated the SSK implementation proposed
by Herbrich [13]. This implementation had to be further modified such that it
accepts an input over an integer alphabet as opposed to a roman letter alphabet
used in text classification. It is also important to note that LIBSVM calculates
probability estimates by making use of an improved algorithm for minimizing
the negative logarithmic likelihood proposed by Lin et al. [14].

With these tools and the data prepared, we set up the experiment as described
in Section 3. We also found that it was necessary to factor several values into
the moving average before checking either threshold. This allows the moving
average to factor in the first several iterations before a decision is made. For this
reason we always factor the probability estimates for the first 10 iterations in
our moving average before we begin considering the thresholds.

4.3 Results

For each experiment, P represents the number of positive (malicious) samples
and N represents the number of negative (benign) samples. The variables asso-
ciated with tuning our detection mechanism (n, λ, T−1, T1) are experimentally
optimized. A discussion of each of these variables can be found below. Then, as
each experiment runs, we collect the number of correctly and incorrectly clas-
sified results as true positives (TP ), true negatives (TN), false positives (FP ),
and false negatives (FN). With this information we calculate the classification
measures presented in Table 1 and Table 2 and discussed below. Finally, we also
present the number of average iterations (the average number of times the SVM
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Table 1. Experimental results for system call trace dataset (P = 1943, N = 285)

Test Average
Num. n λ T−1 T1 Avg. TP FP TN FN Iterations

1 3 0.50 0.50 0.75 CMA 1929 11 274 14 13.2608
2 4 0.50 0.50 0.75 CMA 1910 15 270 33 29.4753
3 5 0.50 0.50 0.75 CMA 1903 20 265 40 19.7244
4 3 0.25 0.50 0.75 CMA 1702 17 268 241 209.4165
5 3 0.75 0.50 0.75 CMA 1902 14 271 41 120.6194
6 3 0.40 0.50 0.75 CMA 1919 12 273 24 14.1831
7 3 0.60 0.50 0.75 CMA 1929 14 271 14 22.4475
8 3 0.50 0.50 0.50 CMA 1941 35 250 2 10.8406
9 3 0.50 0.50 0.75 SMA 1869 7 278 74 11.3321

10 3 0.50 1.00 0.90 SMA 1906 48 237 37 722.3012

Test FP Rate Recall Precision Accuracy F-Measure

Num. FP
N

TP
P

TP
TP+FP

TP+TN
P+N

2
1

Precision
+ 1

Recall

1 0.0386 0.9928 0.9943 0.9888 0.9936
2 0.0526 0.9830 0.9922 0.9785 0.9876
3 0.0702 0.9794 0.9896 0.9731 0.9845
4 0.0596 0.8760 0.9901 0.8842 0.9295
5 0.0491 0.9789 0.9927 0.9753 0.9857
6 0.0421 0.9876 0.9938 0.9838 0.9907
7 0.0491 0.9928 0.9928 0.9874 0.9928
8 0.1228 0.9990 0.9823 0.9834 0.9906
9 0.0246 0.9619 0.9963 0.9636 0.9788

10 0.1684 0.9810 0.9754 0.9618 0.9782

classifier had to be called until either threshold was met) and the type of moving
average (CMA = cumulative moving average, SMA = simple moving average)
used in each experiment.

We began by considering the threshold values. These values are quite impor-
tant as they most directly affect the average number of iterations it takes to make
a decision. As the thresholds rise, so does the average number of iterations in
general. However, if a threshold is too low, the number of false positives and/or
negatives rises. In addition, we noticed that our SVM was much more sensitive
to malicious samples than it was to benign samples. That is, the average of the
malicious probability estimates rose much more quickly to 1 for malicious sam-
ples than the average of the benign probability estimates for benign samples.
We speculate that this is due to the fact that the traces from the malicious sam-
ples are more similar to one another than the traces from the benign samples.
That is, the diversity among the benign samples is higher due to the fact that
while malicious behavior is generally easier to define, benign behavior is simply
“everything else”.

We next considered the size n of the subsequence that the kernel function looks
for in the traces being compared. What we observed is that as we increased n
from the initial value of 3, the classification measures for both datasets became
worse. This may seem somewhat counterintuitive. However, n is very dependent
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Table 2. Experiment results for API call trace dataset (P = 2176, N = 161)

Test Average
Num. n λ T−1 T1 Avg. TP FP TN FN Iterations

1 3 0.6 0.5 0.75 CMA 2029 19 142 147 37.2174
2 3 0.5 0.5 0.75 CMA 1971 19 142 205 31.3479
3 3 0.4 0.5 0.75 CMA 1699 15 146 477 32.8015
4 4 0.5 0.5 0.75 CMA 1660 20 141 516 29.1656
5 5 0.5 0.5 0.75 CMA 1697 18 143 479 32.2657
6 3 0.5 0.5 0.75 SMA 1456 16 145 720 14.1694
7 3 0.5 0.7 0.9 SMA 1961 21 140 215 51.3697

Test FP Rate Recall Precision Accuracy F-Measure

Num. FP
N

TP
P

TP
TP+FP

TP+TN
P+N

2
1

Precision
+ 1

Recall

1 0.1180 0.9324 0.9907 0.9290 0.9607
2 0.1180 0.9057 0.9905 0.9042 0.9462
3 0.0932 0.7808 0.9912 0.7895 0.8735
4 0.1242 0.7629 0.9881 0.7706 0.8610
5 0.1118 0.7799 0.9895 0.7873 0.8723
6 0.0993 0.6691 0.9891 0.6851 0.7982
7 0.1304 0.9012 0.9894 0.8990 0.9432

on S (the size of the window). Since the SSK function does not compute distance
between matched subsequences, it must look for exact subsequence matches and
as n approaches S, the probability that two subsequences of size n exist in two
separate traces of relatively small size decreases.

We then began to experiment with various values for λ ∈ (0, 1). λ is the
decay factor used to weight the contribution of the match based on the number
of interior letters. That is, as λ approaches 1, interior letters are increasingly
penalized. We were surprised by the drastic increase in the average number of
iterations it took for a decision to be reached as λ moved away from 0.5. This
can most dramatically be seen for values λ = 0.25 and λ = 0.75 in Table 1. We
found that these values caused the probability estimates to remain closer to 0.5,
this caused the decision function to take longer when the probability estimates
where favoring the malicious (i. e., “+1”) class, as this threshold is set to 0.75.

Finally, we considered using simple moving averages as opposed to cumulative
moving averages to make a classification. We found that using a cumulative
moving average performed slightly better than a simple moving average. We
reasoned that because the average number of iterations is so low when using the
cumulative moving average, the success of two methods would not differ greatly if
all other factors remained the same. One would expect to see a greater difference
in the performance of the two methods if the average number of iterations is much
higher. This is supported by the API call dataset in which the average number
of iterations is higher and the success of the two methods differ more greatly.
In both cases, however, the experiments that made use of a cumulative moving
average performed better.
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Table 3. A comparison of results from various machine learning approaches to malware
detection using system call traces. The � symbol indicates that the information is not
available.

Author Approach FP Rate Recall Accuracy

1 Pfoh et al. SVM+SSK (syscalls) 0.0386 0.9928 0.9888
2 Pfoh et al. SVM+SSK (API) 0.1180 0.9324 0.9290
3 Rieck et al. [3] SVM+Poly � � 0.88
4 Rieck et al. [3] SVM+Poly (extended) � � 0.76
5 Liao and Vemuri [15] kNN (total) 0.0 0.917 �
6 Liao and Vemuri [15] kNN (novel) 0.0 0.75 �
7 Xiao and Stibor [4] STT 0.4286 0.9955 0.9721
8 Xiao and Stibor [4] STT+SVM 0.3748 0.9997 0.9790

After having experimentally optimized the various variables, we see that n =
3, λ = 0.5, T−1 = 0.5, T1 = 0.75, and using a cumulative moving average
produces the best results for the system call datasets. We show that these values
contribute to a 99.28% recall, a 99.43% precision, a 98.88% accuracy, and a
99.36% F-measure, with only a 3.86% false positive rate. We performed more
thorough testing on the system call data set as it is the data we collected and
it is the system call traces that our system focuses on rather than API call
traces. We tested our method on the second dataset (i. e., the API call dataset)
to strengthen our claim that our approach performs well. For this dataset, we
produced the best results with n = 3, λ = 0.6, T−1 = 0.5, T1 = 0.75. With these
inputs, our approach produced a 93.24% recall, a 99.07% precision, a 92.90%
accuracy, and a 96.07% F-measure, with a 11.80% false positive rate.

5 Related Work

In this section, we compare the results of our approach with those of other
approaches. To our knowledge, there are no other approaches that make use of
string kernels with SVMs, however we compare our approach with another SVM-
based approach, a k-nearest neighbor approach, and an approach that makes use
of probabilistic topic models.

5.1 SVM/Polynomial Kernel Function

The first approach we will compare our results with is the work of Rieck et
al. [3]. This approach models the system trace by counting the frequency of each
system call. The frequency of a system call becomes the weight of that particular
system call and this information is stored in a separate vector for each trace.
These vectors can then be introduced as arguments to a kernel function. In this
case, Rieck et al. make use of a polynomial kernel.

For their testing, they made use of a corpus of 10,072 malware samples divided
into 14 malware families. The results of this approach can be seen in Table 3, lines
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3 and 4. Line 3 represents a round of testing the authors did using normal cross-
validation as is the case in our testing, while line 4 represents testing that took
place with an extended dataset that included malware that belonged to none of
the malware families along with benign processes. We see that, comparatively,
our approach is more accurate. This is not surprising as the approach used by
Rieck et al. does not consider any sequential information at all.

5.2 k-Nearest Neighbor Classifier

Liao and Vermuri [15] present an approach that makes use of a k-nearest neigh-
bor (kNN) classifier. A kNN classifier makes use of frequencies by storing the
frequency of a single system call on a per-trace basis. That is, to train such a
classifier each trace is processed and the frequency with which each system call
is used is stored per trace. In order to classify an unknown trace, the classifier
computes the k most similar traces from the training set and classifies the un-
known trace based on the labels associated with the k most similar traces. In
this instance, the authors make use of the cosine similarity.

For their experimentation, the authors made use of 5,285 benign traces and
24 malicious traces. When training, they used 16 of the 24 malicious traces. This
leads to a situation in which the results in line 5 of Table 3 include the same 16
of 24 traces when testing as when training. Clearly, the classifier classified these
16 traces 100% correctly. Therefore, the results on line 6 of Table 3 represent
results that are a better measure of the approach. Despite this, our approach
achieves a higher recall than both approaches and the 0% false positive rate for
each test can be attributed to the fact that there are far more benign traces than
malicious traces.

5.3 Probabilistic Topic Model

Finally, Xiao and Stibor present an interesting approach that makes use of the
supervised topic transition (STT) model. This approach assigns system calls to
topics. That is, the algorithm groups the system calls based on co-occurrence.
The model is then built by modeling the topic transitions rather than the system
call transitions that one might expect.

This approach makes use of an algorithm that iteratively alternates between
a Gibbs sampling approach and a gradient descent approach to update the topic
assignment and the topic transition model in parallel to train the algorithm.
The classification then takes place by generating a topic transition model for the
unknown trace and probabilistically predicting a label.

In addition to a pure STT approach, the authors also considered a classifier
that makes use of a SVM. In this instance, the same training method is used,
however the topic transitions are fed into a SVM. This SVM makes use of a
Radial Basis Function (RBF) kernel.

In their experimentation, the authors made use of the same API call dataset
we used and tested several methods. The two most successful are described here
and the results are depicted in Table 3. Line 7 represents the pure STT approach
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while line 8 represents the approach in which the authors combined their STT
model with a SVM classifier. While this approach performs slightly better than
our approach when considering the recall, the fact that they report a 37% and
43% false positive rate favors our approach in this regard.

6 Discussion

In this section we discuss the applicability of our approach to online scenarios
and discuss the impact of mimicry attacks on our approach.

6.1 Online Classification

As mentioned in Section 3, our method inherently lends itself to online classifica-
tion due to the fact that it considers additional system calls as they are produced
by the process (i. e., while the process is still running). However, we must also con-
sider the time overhead. The issue with classifying an entire system call trace using
the SSK is that a single trace may be hundreds of thousands of system calls long
and examining two traces of this length for matching subsequences will clearly
lead to a large time overhead. We solve this problem by keeping the lengths (S)
of the traces that we input into the SVM relatively small (100 system calls).

By setting S to a relatively small value we make the use of the SSK feasi-
ble. However, in order for our classification to be accurate, we need to iterate
over some number of windows before a final decision can be made. That is, we
must still consider the number of iterations that it takes our method to make a
decision. As is shown in Table 1, the average number of iterations for the exper-
iment with the highest accuracy is 13.26, while in Table 2 the average number
of iterations for the experiment with the highest accuracy is 37.22. That is, our
method of classification can make a decision after only considering a relatively
small number of system calls, which significantly reduces the time overhead and
allows for online classification.

One may criticize the point that our approach does not consider the entire
trace, however all such approaches must address this practical problem somehow.
The problem is that one may have to wait an indefinite amount of time for a
process to finish. For example, a permanently resident process will only end
execution once the system is shut down. That is, practically, one will always
have to set a maximum trace length to address this and other approaches do
this arbitrarily [16] while our approach makes use of the given thresholds to
determine when to stop.

6.2 Mitigating Mimicry Attacks

Mimicry attacks [6, 7] are a class of attacks in which either an adversary drowns
the individual steps necessary for delivering the malicious payload in “benign
steps” or an adversary “acts benign” for a certain amount of time before deliv-
ering a malicious payload.
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While this class of attacks is certainly a concern for any system that models
program behavior through system call traces, the use of the SSK significantly
raises the bar against this type of attack. As mentioned in Section 2.1, the
SSK matches on subsequences, where the definition of a subsequence allows for
interior system calls. In a simple case, if we consider the system call sequence
“12,19,39” to be indicative of malicious behavior, a mimicry attack might try
to fool the security mechanism by introducing interior “benign” system calls.
For example, the attacker might augment the malicious program such that the
system call trace was as follows: “12,17,13,19,32,39”. This may be enough to
fool signature-based or simple “bag of words” approaches to malware detection,
but the beauty of the SSK is that it, by design, will still match on these traces.

On the other hand, if an adversary decides to “act benign” for a time before
delivering a payload, our approach may miss the payload if either threshold has
been met. The solution for this is simply to raise the threshold. In the most
extreme case, one could raise the threshold for the benign class to 1.0. This
will result in a system that continuously scans a trace and will only exit if a
malicious classification is made. Such an approach would also be applicable in
detecting injected code (e. g., shellcode). Due to the fact that any process will be
scanned until the threshold for malicious activity is reached, any benign process
that is injected with malicious code will also be potentially detected. In order
for such an approach to be successful one would most likely have to consider the
simple moving average of the probability estimates as described in Section 3. We
performed such a test on our system call data and were able to produce 96%
accuracy as can be seen in Table 1.

7 Conclusion

This paper proposes a novel method for practical malware detection with system
calls using the SSK. We address the large time overhead generally associated with
such an approach by considering the moving average of probability estimates
over a sliding window. This moving average is then compared to a threshold to
predict a class.

Our experimentation shows that this method is both accurate and consider-
ably reduces the time overhead associated with using the SSK for this domain.
We test our method on two separate datasets and the fact that our method
shows promising results for both datasets makes us confident that this method
is universally applicable. Additionally, we compare our approach with other ma-
chine learning-based approaches and could show that our approach performs very
well in comparison. Finally, we argue that our approach raises the bar against
mimicry attacks through the use of the SSK and our threshold mechanism.
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Abstract. Social media have widened society’s opportunities for communicati-
on, while they offer ways to perform employees’ screening and profiling. Our 
goal in this paper is to develop an insider threat prediction method by (e)valuat-
ing a users’ personality trait of narcissism, which is deemed to be closely con-
nected to the manifestation of malevolent insiders. We utilize graph theory tools 
in order to detect influence of and usage deviation. Then, we categorize the 
users according to a proposed taxonomy. Thus we detect individuals with nar-
cissistic characteristics and manage to test groups of people under the prism of 
group homogeneity. Furthermore, we compare and classify users to larger sub-
communities consisting of people of the same profession. The analysis is based 
on an extensive crawling of Greek users of Twitter. As the application of this 
method may lead to infringement of privacy rights, its use should be reserved 
for exceptional cases, such as the selection of security officers or of critical in-
frastructures decision-making staff. 

Keywords: Insider Threat, Social Media, Twitter, Narcissism, Personality Pro-
filing, Usage Deviation, Group Homogeneity, Security Officer. 

1 Introduction 

Information security officers, analysts, and researchers are often asked to tackle hard 
to deal with problems. That is, they are asked to find appropriate solutions to resource 
intensive problems, identify the correct analogy between security and functionality, 
battle a wide range of threats, etc. Research indicates [1] that one of the most demand-
ing problems in cyber and corporate security is the insider threat. In principle, the ma-
levolent insider manifests when a trusted user of the information system behaves in a 
way that the security policy defines as unacceptable [2]. One should not discriminate 
between advanced and not advanced users while eligible access to the information sy-
stem is a prerequisite in order to classify an intruder as an insider threat. For the needs 
of this work we adopt the following definition [2]: “Insider threat refers to threats 
 originating from people who have been given access rights to an information system 
and misuse their privileges, thus violating the information system security policy of 
the organization”. 
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In this paper we will utilize the multifaceted information that information shared/ 
revealed in the (context of) social media offer us, in order to propose prediction and 
deterrence measures against the insider threat. Our goal is to extract conclusions over 
the users regarding the personality trait of narcissism, which is a common characteri-
stic among insiders. Unfortunately, it is not possible, for us, to evaluate the results of 
our research on real-life insiders since most of them never face justice [1] and even 
those cases which have been publicized are related to older incident when social 
media did not exist.  

Furthermore, we propose a method for analyzing existing groups of people. We 
consider that a homogeneous group consists of users with similar valuations of speci-
fic characteristics, in our case the trait of narcissism. A dysfunctional group could le-
ad to conflicts, less appealing working environment, and personal antipathies, which 
facilitate or even “create” malevolent insiders.  

Finally, we introduce a method to compare and classify users to larger groups of 
users who share the same profession. This way we achieve a more equitable outcome, 
as we can observe noteworthy usage differentiation between different professions.  

We use data crawled by Twitter, so as to analyze the collected users in a graph-the-
oretic manner. We identify connections between usage patterns and define which u-
sers’ behavior could be considered as deviating from the average. The use of such 
method interferes with the personality and privacy rights of the affected persons. Mo-
reover, the ability to rapidly conduct psychometrics for such a large number of people 
may become a social threat. Thus, we have adopted a privacy-sensitive and pro-emp-
loyee attitude over the results of this work. The potentially intrusive nature of this 
method dictates the necessity of its confined application to certain information sys-
tems and organizations. This application may be clearly acceptable for selecting secu-
rity officers, as well as for personnel involved in the decision-making process within 
security-critical information systems and critical infrastructures. 

The paper is organized as follows: in section 2 we refer to existing methods to tac-
kle the insider threat, along with a review of the graph theoretic methodologies utiliz-
ed in social media analysis. In section 3 we describe the proposed methodology and 
test environment. In section 4 we describe the adopted graph theoretic approach. In 
section 5 we describe a method of outlier detection, i.e., we note some common  
characteristics of the outliers and propose a user’s taxonomy. In section 6 we discuss 
issues that relate to group homogeneity and propose ways to utilize our methodology 
in smaller or larger groups. Section 7 is dedicated to ethical and law issues. In  
section 8 we sum up our findings and frame our plans for future work.  

2 Relevant Literature and Motivation 

For a long time academic and corporate security researchers have been trying to pro-
pose solid countermeasures to deal with the insider threat [3]. The battle against the 
insider threat has three major fronts, i.e., the detection, the prediction, and the preven-
tion of this kind of threats. 

Regarding the detection of malevolent insiders, numerous ideas, methods and techni-
ques have been proposed. Intrusion Detection Systems and anomaly detection techniques 
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have been widely utilized [4-5], together with log file analysis [6]. Another detection met-
hod uses honeynets and honeytokens [7]. Host and network sensors have been also 
proposed to mitigate the problem [8]. The area of insider threat prediction is active, too. In 
[9-10], various methods and techniques have been proposed to predict insiders. Other 
approaches include scope-specific attempts in relational databases [11] or highlight the 
need for both technical and psychological approaches [12]. The psychosocial perspective 
of the insider is also referred to by Greitzer et al. [13] and Brdiczka et al. [14]. 

In this work, we gathered data from social media so as to extract results over each 
user’s predispositions. It is important to mention that data is gathered from publicly  
available information, which results from Twitter communication. The selected data 
are used for prediction and deterrence purposes, since we analyze each user under the 
prism of usage deviation with the tool of graph theory. Social media and collaborative 
environments have been used in the battle against the insider threat [15]. Usage devia-
tion aids in detecting narcissistic behavior through social media popularity and intense 
usage of the media [16-18]. Interestingly, the psychosocial trait of narcissism is close-
ly related to delinquent behavior, especially regarding the insider threat [19-20]. Shaw 
et al. [20] were the first to conduct a research on the psychological characteristics of 
the insider threat. They detected a close connection between malevolent insiders and 
narcissism, under the prism of the “sense of entitlement” and “lack of empathy”. They 
highlighted that convicted insiders have been found to share this personality trait, 
which often led to anger and the so called “revenge syndrome”. Their results have 
been supported/strengthened by many psychologists and psychological researches. 
Butts et al. [19] confirmed the aforementioned by stating that narcissism may motiva-
te malevolent insiders who “suffer from excess self-importance or preoccupation and 
have difficulty living up to their own expectations” due to their inflated self-image.  
Ego and self-image are considered suspicious personal factors in the manifestation of 
an insider threat, by the Federal Bureau of Investigation [21]. 

Twitter is a popular social medium. Data from Twitter are often utilized in order to 
find out why some users of certain communities distinct from other users of the same 
communities. A distinct community is defined as a set of users who share common 
characteristics. In [22], Mislove et al. present a large-scale study of multiple online 
social networks and refer to the small-world phenomenon [23].  

An important question for the research with a social medium is "who is influential 
in a social network". User influence can be defined as the ability to convince an au-
dience to engage in a single act. In [24], Cha et al. present ways of measuring some-
one's influence in Twitter by taking into account his number of mentions, retweets 
and indegree. As only a minority of users has the ability to persuade others in a higher 
level, research shows that influential users have a certain way of expressing themsel-
ves via social media, while they decorate their tweets with appropriate sentiment [25].  

3 Methodology and Testing Environment 

In our work we focus on a Greek community of Twitter, since our research is context 
sensitive and utilizes ethnological features rooted in locality, thus, we are able to 
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extract results and analyze them appropriately. We provide a graph analysis of this 
community using specific metrics. We also define the content and measures of user 
influence. Furthermore, we analyze the different ranks of users, ordered by their inf-
luence valuation score, and present the set of users who are outliers both in the whole 
graph and in smaller communities. The graph theoretic methods are utilized so as to 
tackle the insider threat under the prism of outlier detection, narcissism detection, and 
group homogeneity. Our goal is to analyze the collected data, in order to extract use-
ful results about the psychosocial trait of narcissism of the users, as well as the group 
they belong to inside an organization.  

A Twitter user can have more than one label that characterizes her social actions. 
Thus, there are three types of user categories: (a) follower, i.e., she is followed by so-
meone, (b) following, i.e., she follows someone, and (c) retweeter, i.e., she spreads 
the speech of someone else via tweets. 

Regarding the crawling, as Twitter poses a rate limit for calls towards its API, there 
are two ways to crawl data from it: (a) by using unauthenticated calls towards its API, 
and (b) by making calls that must have an embedded OAuth token within their con-
tent. In the second case, the OAuth token is used to identify the client who makes the 
calls and is provided with every user profile. We chose to use the first way, in order to 
use the REST protocol that simplifies and accelerates the procedure. However, the un-
authenticated calls permit 150 requests/hour and are measured against the public IP of 
the device making the requests. Taking into account the huge amount of information 
that a single user produces and when the scope is a whole community, one needs to 
collect a vast amount of data. 

As for the algorithmic part of crawling, we used a set of Greek users who had 
Twitter accounts as initial seeds, and then run a breadth-first search. This set of seeds 
consisted of 1.500 users. The process of data collection began by crawling the profile 
data of each user. Then, we distinguished the users who were connected to the initial 
seeds and collected their data. In order to create a community consisting only of 
Greeks, we crawled only those users who have published on their profiles that they 
are Greeks. In case someone had not published such information, we checked the lan-
guage she used or her geolocation. Starting from initial seeds and crawling their  
followers and followings, a social graph of 1.075.859 distinct users with 7.125.561 
connections among them was created. The graph created on the basis that (a) each 
user is a node, and (b) every connection is a directed edge.  

For the test of the data we used the SNAP (snap.stanford.edu) library. We propose three 
ways to measure user influence and tested these metrics with 41.818 users. As a result, we 
ranked the users by their scores and we identified ways for distinguishing users who are 
outliers in a community. The crawling software and the algorithms that detect the 
influential users are developed in a Java environment. Also, in order to collect the klout 
scores of each user we made calls to their API retrieving messages in json type of files.  

Regarding the set of 41.818 users, we have managed to collect their full profile. 
We have both personal and statistical details for each one of them. Furthermore, we 
kept each user’s screen name, id, the description that she wrote about herself, her url, 
her language, and her geolocation. We also kept the state of her profile (protected or 
not), the number of lists she is participating, the numbers of her following and follow-
er users, all her tweets, the number of her favorites, the number of tweets she has 
mentioned, and the number of retweets she has made. 
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5 Outlier’s Common Characteristics and Detection 

The proposed approach can be used for the identification of users who perform quite 
differentiated usage of the specific social media. Our initial hypothesis was that the 
users’ usage distribution would be Gaussian, i.e., few users perform a very limited  
usage of the media, the vast majority been normally active, and few users been quite 
popular. The results that refer to the Greek Twitter Community (Fig. 5) indicate that 
this is not true, i.e., (a) the majority of the Greek users make very poor use of the me-
dium, (b) there are a lot of normally active users, and (c) very few users are popular.  

Now we propose a general taxonomy of the Twitter users, the data of whom were 
crawled and analyzed. According to our findings, the most influential users’ influence 
valuation is between 942 and 3604 and usage valuation is between 21004 and 569000 
(Fig. 5). Based on this, users whose sum of the previous values is higher of the  
threshold of 22000 are classified in a different category of the taxonomy. 
Furthermore, the majority of the users with usage valuation above 21000 are either 
real life celebrities or news media. This leads us assume that the “normal” users with 
high scores should belong to a different category. The proposed categories appear on 
Table 2.  

Table 2. The proposed Twitter user taxonomy  

Category Influence valuation Klout score Usage valuation 

Loners 0 - 90 3.55 - 11.07 0 - 500 

Individuals 90 - 283 11.07 - 26.0 500 - 4500 

Known users 283 - 1011 26.0 - 50.0 4500 - 21000 

News Media & Personas 1011 - 3604 50.0 - 81.99 21000 - 569000 

 

The question that emerges is “why one should care of the usage differentiation or 
deviation between the users”. Based on the available data, we can spot a threshold  
above which the users may become quite influential and perform intense medium  
usage. Therefore, we can define a specific point where a user turns from a normal one 
to a “media persona”. Research has proved that individuals tend to transfer their 
offline behavior online. Thus, more extravert individuals tend to form large groups 
and communicate easier in the territory of social media, while introvert individuals 
tend to communicate less [29-30]. Furthermore, research work has connected  
excessive usage of social media to the personality trait of narcissism [16-18].  

The connection between narcissism and insider threat has been verified in a  
number of research works. In specific, research has demonstrated that a narcissistic 
personality is more vulnerable to become a malevolent insider [19-20]. The first one 
to make the connection between narcissism and the predisposition towards becoming 
a malevolent insider was Shaw et al. [20]. In order to determine a user’s narcissism 
and the level of usage differentiation, our method first utilizes a user’s fully crawled 
Twitter profile. Then, this user’s influence over a social medium, as well as his 
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overall activity in this medium, is also evaluated. These actions may - in certain cases 
- be considered intrusive and violate privacy, therefore they should only be performed 
in the course of a legitimate action.  

6 Group Homogeneity 

Research clearly indicates that poor relations with co-workers and/or supervisors, as well 
as dysfunctional working groups not only facilitate the manifestation of insider threats, 
but also catalyzes an insider’s malevolent behavior [15]. Some researchers refer to the 
need for thorough screening of the employees prior to employment, especially for those 
who are going to occupy high risk positions [31-32]. As a result, it has been suggested 
[15] that a background check would be essential, not only regarding a users’ criminal 
background, but also under the prism of work group homogeneity.  

Researchers have suggested that management and human resources staff should 
maintain awareness of users’ satisfaction and well-being [33]. An important parame-
ter of employees’ satisfaction is the sense of belonging to the group, which depicts the 
group’s homogeneity. Show et al. [31] explains that 90% of insider cases involve  
serious employment crises and personnel problems prior to the attack. Moreover,  
destructive group dynamics analysis has identified similar results [14]. 

Based on the above, a three-step process can be used for user screening and group 
homogeneity testing. The scope of each step is the following: (a) how well could a 
new user fit to an existing group, in terms of group homogeneity, (b) how homogene-
ous is an existing group inside the organization, and (c) how similar is the specific 
user’s social media behavior to other users’ of the same profession. Human Resources 
experts could utilize this screening/testing, in order to assess the employees who may 
pose the most significant threat on becoming malevolent insiders [13]. This process 
can be, in principle, utilized for the benefit of both, the employer and the employee. 
However, as one or more of these steps might be considered privacy-intrusive in cer-
tain legal contexts, they must be only performed in the course of a legitimate action. 

In order to evaluate how well a newcomer could fit in an existing group, one could 
check her Twitter account and crawl it. Then, the crawled data could be sent as input 
to a graph theoretic analysis that calculates her influence on the media and her overall 
usage valuation. Having a collection of data about the users of the group, one can de-
fine a range of acceptable media influence and usage values for the newcomers. 

In case we wish to study the homogeneity of a specific group in an organization, 
we can utilize a fraction of the above process. In specific, we need to crawl each 
group member’s Twitter account and feed the results to the appropriate algorithms. 
Then, we should analyze the results of each user’s influence and usage assessment, so 
as to decide over the homogeneity of the group. 

Another proposal for user screening is to compare each individual with others with 
the same profession. This technique was feasible to deploy, as it does not need eva-
luation of real life groups and further authorization by the research subjects. Thus, we 
collected and analyzed Twitter users who have declared their profession in their profi-
les. As mentioned before, the profession clusters that we distinguished were referring 
to Lawyers, IT personnel, Academics, and Artists. The distribution of their Twitter 
usage is showed in Fig. 6.  
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monitoring may extent to private spaces, activities, and time [35-36]. Methods (such 
the proposed in this paper) allows employers to collect and aggregate information, 
which reflects behavior of the user and her interaction with other users, in order to 
produce relevant patterns/profiles and anticipate future behaviors and threats. 

Employers are, in principle, not prohibited to consider information about a person 
who is documented in publicly available social media profiles, public posts, or public 
Twitter accounts. However, both the wide availability of private information, as well 
as its use beyond the initial context that this information has been produced, may have 
far reaching effects for the employees’ rights and liberties. With regard to the findings 
referred to in our paper, we should take into consideration that the insider threat  
prediction and prevention raises ethical and legal issues concerning the protection of 
employees’ privacy, personality, and dignity. 

The openness and sharing culture that dominates the online social media reflects a po-
pulation that does not construct communication on the traditional division between private 
and public contexts. Many argue that when one publishes something to all comers it is not 
reasonable to expect (current and future) employers to respect her privacy and freedom of 
expression and refrain from judging her based on publicly available information [38]. This 
is true, in particular when employers have legitimate interests to protect their secrets and 
reputation, and ensure a secure business environment and operation. 

On the other hand (informational), privacy responds to the requirement that every-
one should be in control of the information concerning her, so as to formulate concep-
tions of personal identity, values, preferences, goals, and to protect her life choices 
from public control, social disgrace, or objectification. Individuals tailor their social  
identities and aim at controlling others’ impressions and opinions of them through  
behavior and performances within particular audiences [38]. Informational privacy of-
fers safeguards to preserve an underlying capacity for autonomous decision - and 
choice-making [35] and to maintain a variety of social identities and roles. Moreover, 
privacy is a requirement for maintaining the human condition with dignity and res-
pect.  As related to privacy, dignity summarizes, among other principles, the recogni-
tion of an individual’s personality, non-interference with another’s life choices, and 
the possibility to act and express freely in society. Employer’s intrusion into an emp-
loyee’s personal life through “social media background checks” may lead employers 
to judge opinions and behaviors out of their initial context. De-contextualization is an 
inherent characteristic of social media that pertains to over-simplification of social  
relations and the wide dissemination of information [40]. 

However, as Nissenbaum [41] underlines, the definitive value to be protected by the 
right to privacy is exactly the “contextual integrity” of a given contextual-self having 
different behaviors and sharing different information depending on the context.  
Information gathered through social media analysis is normally not only unintended as 
application information but often job-irrelevant or, moreover, related to sensitive activities 
and, consequently, information of the person concerned (religion, political beliefs, etc.) 
[42]. We should also take into account that this information may be inaccurate or not 
timely, reflecting a different life-phase of the person. Due to the Internet’s excessive and 
perpetual memory, it is becoming harder and harder for persons to escape their past. 

Furthermore we should consider that the social and communication norms which 
dominate the social media appear not only to lead to projected identities that job  
applicants may not wish to be seen by potential employers [43] but also to encourage 
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exaggeration, bravado or shameless behavior [44]. Moreover, social media screening 
may expose employees and candidates to discrimination [37]. Profiling with the aim 
to gain probabilistic knowledge from data of the past and (to) propose/ predictions 
and identify risks for the future may infringe privacy as a right to be a multiple perso-
nality and carries far-reaching consequences in terms of social selection and  
unjustified and - often - invisible discrimination. Profiling may indeed entail the risk 
of formatting and customization of individual behavior that affects her personal auto-
nomy [40]. Extending monitoring to social communication relationships of employees 
and candidates augments the chances of employers to influence behavior and promote 
the “well-adjusted employee” [45]. Information gathering about employee performan-
ces outside the traditionally conceived work sphere not only increases the dependence 
on (future) employers but has also a chilling effect on individuals’ personality and 
freedom of speech. This is so, as they may sacrifice “Internet participation to segrega-
te their multiple life performance” [37] and, thus, refrain from expressing themselves.  

Employees are routinely asked to sacrifice privacy rights to managerial interests  
like productivity, prevention and detection of threats and liability risks. Given the 
workplace belongs to the “public sphere”, scholars argue that employees, who are  
hired to attend company business, cannot have a (subjective) “reasonable expectation 
of privacy” that society (objectively) accepts and legitimizes. American Courts are  
reluctant to recognize a workplace privacy right: in any case reasonable expectation 
of privacy of employees should be judged under all the circumstances and must be 
reasonable both in inception and scope (Supreme Court, Case O’Connor vs. Ortega). 
In the employment context privacy, if any, seems to be exchanged for something of 
commensurate value, like taking or keeping a job [46]. Regarding privacy as a purely 
bargainable and alienable right ignores the dignity element, inherent in the notion of 
privacy. The European approach seems diametrically opposite in many respects:   
Privacy is not conceived as a right to seclusion and intimacy but as a phenomenon, a 
protectable situation that regards the relationships between a person and its  
environment/other persons. The European Court of Human Rights (Niemitz v.  
Germany) rejected the distinction between private life and professional life. 
According to the Court, European employees have “a right to dignity and a private 
life that does not stop at the employer’s doorstep”.   

Finally, it has been found that excessive monitoring disturbs the relationship  
between the employer and the employees. It has been proved that employees whose 
communications were monitored, suffered from higher levels of depression, anxiety 
and fatigue than those who were not monitored, within the same organization [36]. 
The panoptic effect of being constantly monitored even concerning activities that fall 
out of the workplace frame has negative impacts on the employer-employee 
relationship that should be based on mutual trust and confidence [47-48]. 

8 Conclusions and Future Work 

In this paper we dealt with the insider threat prediction and prevention. Malevolent  
insiders and predisposition towards computer crime has been closely linked to the 
personality trait of narcissism.  
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Personal data, views, and considerations, often disclosed and referred to in social 
media, may be used for both, the social good/in the interest of the society (e.g. Forensics, 
e-commerce, etc.), or in a way that infringes fundamental rights and liberties or private 
interests (e.g. social engineering, discriminations, etc.) [49-53]. Herein, we proposed a 
method of outlier detection in social media via influence, usage intensity, and klout score 
valuation, in order to detect users with narcissistic behavior. We have also proposed a 
method for group analysis under the prism of group homogeneity, as this homogeneity is 
a valuable characteristic to deter the manifestation of insider threats. In order to improve 
the efficiency of our results, we have proposed a way to compare and classify users with 
communities of users of the same profession. These methods can be used to strengthen 
legal employee screening and monitoring efficiency within an organization. 

To demonstrate the efficiency of the proposed method, we collected a vast amount 
of data from Twitter. Then, we adopted a specific graph theoretic approach to analyze 
the crawled data. We focused on a fraction of Twitter users, i.e., a community of 
41.818 Greek users. Along with this whole community, we distinguished four smaller 
sub-communities, which consist of users that share the same profession (lawyers, IT 
personnel, academic personnel, artists).  

Privacy violations may occur, in case someone chooses to apply the proposed method 
in an illegal or unethical manner. Users’ privacy and dignity may be at stake if someone 
uses the method to promote employee/user discrimination and careless punishment. 
Therefore, the method should be utilized in the course of a legitimate action. Due to the 
nature of the employment relationship, in which there is an inherent asymmetry of power, 
reliance on consent for monitoring and screening is highly questionable. Consent should 
be confined only to, the very few, cases where the employee has a genuine free choice and 
is subsequently able to withdraw the consent without detriment [54-55]. 
Monitoring/screening techniques and psychological tests as indicated in the proposed 
method have to comply with privacy and data protection principles. According to the core 
principle of proportionality monitoring/screening must, in all cases, be necessary, 
appropriate, relevant, and proportionate with regard to the aims that it is pursuing.  

The employer’s monitoring policy should be tailored to the type and degree of risk the 
employer faces and the level of tolerated privacy intrusion depends on the nature of the 
employment as well as on the specific circumstances surrounding and interacting with  
the employment relationship [48]. To further elaborate on this issue, we propose that the 
method is applied for security officers and for personnel involved in the decision making 
process within security-critical information systems and critical infrastructures. 

For future work, we plan to focus on locating real life groups inside Twitter and 
study a number of parameters regarding their behavior, together with each group’s  
dynamics. Furthermore, it is claimed that narcissism is a characteristic that both extra-
vert and introvert individuals share. In this work we located only the extravert ones. 
Our future plans include the development of methods capable of detecting introvert 
individuals with minor social media usage who manifest this personality trait.  
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Abstract. While considerable research effort has been put in the identification 
of technical vulnerabilities, such as buffer overflows or SQL injections, busi-
ness logic vulnerabilities have drawn limited attention. Logic vulnerabilities are 
an important class of defects that are the result of faulty application logic. 
Business logic refers to requirements implemented in algorithms that reflect the 
intended functionality of an application, e.g. in an online shop application, a 
logic rule could be that each cart must register only one discount coupon per 
product. In our paper, we extend a novel heuristic and automated method for the 
detection of logic vulnerabilitieswhich we presented in a previous publication. 
This method detects logic vulnerabilities and asserts their criticality in Java GUI 
applications using dynamic analysis and static together with a fuzzy logic 
system in order to compare and rank its findings, in an effort to minimize false 
positives and negatives. An extensive analysis of the code ranking system is 
given along with empirical results in order to demonstrate its potential.  

Keywords: Bug Detection, Vulnerability, Business Logic, Propositional Logic. 

1 Introduction 

A software error or fault is the difference between a computed, observed, or measur-
ed value and the true, specified, or theoretically correct value or condition inside the 
software code [1].A software vulnerability is the characteristics and degree of the fatal 
software-failure occurrence caused by a software fault [2]. An “Application Business 
Logic Vulnerability” (BLV) is the flaw present in the faulty implementation of  
business logic rules within the application code [3]. 

In this paper we extend the method presented in [3], formally define its BLV rank-
ing system, and demonstrate empirical results. To do that, we inject logic BLVs in 
commercial and test bed applications developed in our research lab. In Section 2 we 
briefly review previous work. In Section 3 we analyze how our framework evaluates 
potential BLV and ranks them according to a fuzzy analysis process. In Section 4 we 
formally define the ranking method’s rules. Section 5 details our experiments on real-
world and lab Application Under Test (AUT). Finally, in Section 6 we conclude and 
describe our plans for future research. 
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The task of detecting logic vulnerabilities is inherently difficult, since logic vulner-
abilities differ according to the intended functionality of an application. Therefore, it 
is hard to define a general specification that allows for the discovery of logic vulnera-
bilities in different applications [5]. Our method to discover BLV extends our  
previous work [3] and is divided in four steps:  

1) Our APP_LogGIC framework uses an Abstract Syntax Tree (AST) from Java 
compiler to detect points inside the source code that are considered “dangerous” 
for BLV. According to [5,17], we consider these points to be input vectors where 
data is inserted by the user and Conditional execution Branches (CB), i.e. IF-state-
ments, that control the execution flow of an AUT, since these sets of source code 
points reflect the intent of theprogrammer. According to their position, we rank 
these points using a “Severity” Likert scale in order to rank the risk of having a 
BLV in each code point of interest.We name this step (1) procedure, “Information 
Extraction Method” (IEM). 

2) We use dynamic analysis with the Daikon tool from MIT [14], so as to extract va-
riable rules called invariants that describe the intended use of the AUT in source 
code level. Afterwards, we use scripted execution with static analysis using the 
JPF tool from NASA [7] to gather all possible execution paths and variable states 
of an AUT. We combine the results from dynamic analysis and static analysis  
using a method to find violations between the intended use of the AUT and execu-
tion states we gathered from static analysis. By violations, we mean situations 
where an invariant rule extracted from dynamic analysis is simultaneously found 
both TRUE and FALSE in different versions of the same execution path [5] (i.e. 
static analysis produces variants of the same execution path from different executi-
ons. Invariant violations are identified when one version of an execution path 
violates an invariant AND another version verifies it). These invariant violations 
are ranked using a “Vulnerability” Likert scale that reflects how certain we are that 
a BLV does exist in this violation of an invariant rule. Step (2) procedure is called 
“Invariant-Based Method” (IBM). 

3) APP_LogGIC executes a source code analyzer inside APP_LogGIC called “Input 
Vector Analysis Method” (IVAM), which uses the above mentioned AST tree from 
(1) to analyze the sanitization checks enforced upon input data held in source code 
variables. By sanitization checks we mean source code control points that check 
data context in variables (OWASP [17]) states that all input data should be sanitiz-
ed before use, regardless of the situation. The verification of personal information 
before providing services and the privacy of such information is of growing con-
cern [4], information usually implemented as input data. IEM ranks AUT’s input 
vectors on the Vulnerability scale according to the type of sanitization used (if a-
ny) on variables holding input data; e.g., if a variable that holds input data is never 
used in a check (say, an IF-statement), this point inside the code is ranked as high 
as possible in the Vulnerability scale, indicating that a BLV exists on that point. 

4) APP_LogGIC implements a Fuzzy Logic system [18] to compute the Criticality of 
variables by using linguistic rules of type “If Severity is High and Vulnerability is 
High then Criticality is High” in order to congregate Severity and Vulnerability 
values given for each source code point of interest separately. It provides a clear, 
numerical and graphical measurement on how “certain” APP_LogGIC is that a 
BLV. The Criticality of a source code variable might be different (e.g. "High" and 
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"Medium"), according to its point inside the source code in conjunction with the 
certainty that the variable indeed contains a BLV. 

The paper extends previous work by contributing the following: 
(a) A formal presentation of an extendedBLV ranking method presented in [3], capab-

le of detecting BLV in GUI applications with almost zero false positives on all 
tests ran, close to how a security analyst would detect potentially dangerous code. 

(b) We limit the Trusted Computing Base (TCB) needed for our method by proving 
that all ranking method’s rules can be derived by only three axiomatic rules; thus, 
APP_LogGIC’s implementation is small and can be easily proven sound. 

(c) Extensions of APP_LogGIC to support analysis for nested IFs and complex struc-
tures in Java.  

(d) Testing results on real-world Java applications and test beds alike.We use injection 
for our proof-of-concept tests, since there is no official application intended as a BLV 
test bed. We demonstrate APP_LogGIC’s capability in detecting all BLV injections on 
real-world software and lab test beds.We provide descriptions of the BLV injected. 
We classify these BLV using known vulnerability classification taxonomies [17]. 

2 Related Work 

In Waler [5], authors use ΜΙΤ's Daikon tool to infer a set of behavioral specifications 
that describe web applications and filter learned specifications. Then, they check 
whether results from Daikon are enforced or violated by using NASA's Java Pathfin-
der (JPF) tool [7] for model checking over symbolic input. They identify program 
paths that, under specific conditions, may indicate the presence of a certain type of 
web application logic flaws.  

A variation of the method is used in APP_LogGIC’s step (2), Invariant-Based Met-
hod as mentioned earlier. This approach targets only single-execution web applets and 
does not provide a solution for false negatives/positives. Also, it does not scale well 
with larger applications.  

In [21], a study of logic flaws in web applications is presented, called Execution 
After Redirect, with a focus on web applets and a specific type of vulnerability, mani-
festing only in web applications. In [22], authors combine analysis techniques to iden-
tify multi-module vulnerabilities in web applications but do not focus on BLV, per se, 
rather in web application workflow attacks in PHP with state variables and programs 
that do not contain object-oriented code.  

In [3], we presented APP_LogGIC, a tool for detecting and ranking possible BLV 
close to how a security code advisor would do. The method focuses on GUI applicati-
ons and heuristically detects BLV in applications using methods from [5] but focuses 
on GUI applications and also, presents a preliminary deployment of a novel fuzzy 
ranking method of the source code to detect BLV. Herein we formally define an ex-
tended fuzzy ranking system and provide various testing results with it. 

3 How APP_LogGIC Works 

We provide a brief presentation of each APP_LogGIC method and then give a formal 
definition of the fuzzy evaluation ranking system. Our framework analyzes GUI  
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3.2 Information Extraction Method (IEM) 

The IEM extracts AUT information from a Java C compiler AST, including data entry 
points (input vectors) so as to refine variables related to possibleBLV. IEM provides 
structural info about the AUT. The code is represented as a tree, with variables or va-
lues as leaves and instructions as nodes [3]. Analysis is fed to IBM and Input Vector 
Analysis for enhancing the filtering of the invariant rules and JPF execution paths. 
This way, we only keep invariant rules and execution paths we are interested in, thus 
lowering APP_LogGIC memory consumption for medium sized AUTs. 

3.3 Input Vector Analysis Method 

The Input Vector Analysis component monitors the checks enforced on source code 
variables that hold data from input vectors. It performs structural (REGEX) checks 
and analyzes: a) the tainted variable (i.e. the variable that contains dangerous data) 
that holds the initial value passed from a vector; b) the structure of the data inside a 
tainted variable (but not their actual content); and c) occasions where user input is ne-
ver checked or sanitized in any way [3]. 

3.4 Fuzzy Logic Ranking System 

We use a scalable Fuzzy Logic system [18] to rank possible BLV according to their 
vulnerability and position in code. A critical point in the source code is conditional 
branching, which has a decision-making ability in its conditional control transfer [5,8] 
since control flow restrictions and application business logic rules manifest as branch 
restrictions. All variables may be linked with a BLV at the CBs, which are inherently 
bound to a binary Boolean decision (all branches result to a true/false decision on 
whether to execute or not). 

We define three evaluation scales to classify BLV in source code variables: a) Se-
verity (the risk level according to variable position), b) Vulnerability (the level of cer-
tainty that a vulnerability manifests on the specific variable), and c) Criticality (the fi-
nal result calculated from previous two scales inside the fuzzy logic mechanism). 
APP_LogGIC uses 1-to-5 Likert scales so as to provide a quantitative way of measur-
ing BLV. A Likert scale captures the intensity of beliefs for a given item by assigning 
a value from 1-5 and provide a quantitative way of measuring the risk of a specific 
point in the source code [9]. Each scale maps into 3 groups (Low, Medium, High), 
with an approximate width of each group of (5/3) = 1,66~1,5 (final ranges: Low in 
[0…2], Medium in (2…3,5] and High in (3,5…5]). 

Severity 

Severity aims to assess the importance of source code variables. Each variable is as-
signed a severity value by taking into account two facts, i.e., the involvement in a CB 
restriction and the storage of data dependent on the user input. A check on a variable 
is a control flow operation that constrains this variable on a path; e.g., the IF-state-
ment if (isAdmin == true) {...} represents a CB check on “isAdmin” [5]. Source code 
CBs (and all decision statements) are key points where unintended control-flow  
deviations occur [5,8]. Thus, the involved variables are classified as important.  
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By important variable data we mean user input data or any data constructed from 
user input, since improperly validated user input is the underlying root cause for a 
wide variety of attacks [10]. Table 1 depicts all Likert ranks for the Severity. 

Table 1. App_LogGIC's Severity ranks in the Likert scale 

Linguistic 
Value 

Condition 
Severity 

Level 

Low Random variable Severity 1 

Low Random variable Severity 2 

Medium 
Severity for variables used as data sinks (i.e. dataoriginated from 
user input) 

3 

Medium 
Severity for variables used in a CB ONCE on an “IF” branchand/-
or a‘SWITCH’ branch 3 

High 
Severity for variables used in a CB TWICE OR MORE on an 
“IF” branchand/or a ”SWITCH” branch 4 

High 
Severity for variables used as a data sink AND in a CB on an “IF” 
branchand/or a ”SWITCH” branch 

5 

Random Variable is any variable that is neither used in a CB, nor as a user input 
data container and gets a value in [1,2], depending on the frequency used inside the 
source code. The TWICE OR MORE condition targets variables used two or more 
times inside the source code. Intuitively, we consider that variables used in two diffe-
rent CBs have the same risk as those used in, say, ten CBs, since the risk of a CB vari-
able affecting execution paths in two different points is already high enough. 

Vulnerability 

NIST SP 800-30 defines vulnerability as “a flaw or weakness in system security  
procedures, design, implementation, or internal controls that could be exercised  
acid/violation of the system's security policy” [11]. APP_LogGIC detects such flaws 
by assigning a 5-grade Vulnerability level to each variable of interest, i.e. a quantitati-
ve confidence level that a BLV exists (Table 2). 

Table 2. APP_LogGIC Vulnerability levels in the Likert scale 

Linguistic 
value 

Condition 
Vulnerability 

level 

Low No invariant incoherencies or improper check of variables. 0 

Medium 
Multiple propagation of variable dependent in input data with gene-
ral checks. 

2 

Medium 
Sound checks in variable but multiple propagation to method 
variables with relatively improper checks (Input Vector Method) 

3 

High 
No check or improper checks in variables depended on input data 
for branch conditions 

4 

High 
Invariant enforcement AND invariant violation in alternate versions
of same execution path  (Invariant-Based Method) 

5 
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Criticality 

Criticality is the final, calculated risk value assigned for each variable, by combining 
the relevant Severity and Vulnerability ranks. Our tool produces a set of graphs where 
the combined risk factor of possible BLV is drawn (e.g. Figure 5). It is calculated us-
ing Fuzzy Set Theory, using Fuzzy Logic’s linguistic variables and IF-THEN rules 
(Figure 3). For clarity, all scales (Severity, Vulnerability and Criticality) share the  
same linguistic variables “Low”, “Medium” and “High”. Criticality is based on 
Vulnerability and Severity since source code variables might have different values at 
the same time, according to the Severity and Vulnerability ranks. 
 

 
 

Fig. 3. Example of a Fuzzy Logic rule 

The Criticality for each variable is calculated separately, as the conjunction 
between Severity and Vulnerability with one numerical and one fuzzy result: 

Criticality(x) = Severity(x) ∩ Vulnerability(x) 

This result is calculated by using defuzzification and the Center of Gravity technique. 
Defuzzification is the process of producing a quantifiable result in fuzzy logic, given 
fuzzy sets (i.e. Severity and Vulnerability values) and corresponding membership 
degrees (i.e. the involvedness of each fuzzy set presented in Likert values). 
APP_LogGIC computes a discrete value as output using the Center of Gravity techni-
que, across-section calculation of geometrical shapes created by Severity and Vulner-
ability values. All source code variables of interest are checked separately. Figure 4 
shows the way that Fuzzy Logic is used in APP_LogGIC. 

First, the results of the Severity and Vulnerability values (1) and (2) calculated using 
Table 1 rules, are added together using a fuzzy set membership function (in our case, a 
conjunction between the sets) (3). Then, defuzzification calculates final values based on 
percentage (4). These shapes corresponding to Severity and Criticality values are then cut 
in a straight horizontal line between the top and the bottom, and the top portion is 
removed. These trapezoids are then superimposed one upon another, forming a single 
geometric shape. Lastly, the centroid of this shape, called the fuzzy centroid, is calculated. 
The x coordinate of the centroid is the defuzzified value [12], which gives a precise measu-
rement of the Criticality in any particular point of interest inside the source code. 

2 APP_LogGIC’SFUZZY Ranking Basis 

APP_LogGIC calculates Criticality as the fuzzy intersection or conjunction (AND) of 
two fuzzy sets, Severity and Vulnerability, which are specified by a binary mapping T 
that aggregates two membership functions as follows: A∩B(x) = T(μA(x), μB(x)), 
e.g., the binary operator T represents the conjunction of    [14]. Next, 
we define the axiomatic rules used in our method, using premises shown in Table 3 
below. The first step is to define the premises needed to express these rules. 

IF Severity IS low AND Vulnerability IS low THEN Criticality IS low 
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Medium Severity point (i.e., an element without all set characteristics) cannot be ran-
ked 5/5. Logically, there is a mutual exclusion between the three linguistic variables 
(Low, Medium, High) in all ranking scales. 

 
Four formal Severity rules expressed in formal mathematical Logic [6] define the 

base for ranking Severity in variables: 
SR1. (LOCON-1, LOCON-2) Slow      ↔ ￢Var_Input ^ ￢var_Branch 
Iff a logical error variable is used neither on a branch, nor on an input data variab-

le, then the Severity of that error is Low. 
SR2. Smed ↔ ￢Slow ^ ￢Shi 
Iff a logical error variable has a Medium Severity rank, then it can have neither a 

Low Severity rank, nor a High Severity rank. 
SR3. (LOCON-5) Var_MultiBranch ↔ Shigh 
Iff a variable is used in two or more different branch statements in the source code, 

then this variable is ranked high on the Severity scale. 
SR4. (LOCON-6) Shi ↔ var_Branch ^ Var_Input   
Iff a logical error variable is used both on a branch and as an input data variable, 

then the Severity of that error is High. 
 

Rules for Calculating Vulnerability  

These four formal Vulnerability rules (VRx) define the base for ranking Vulnerability 
in source code variables: 

VR1. Vlow ↔ ￢violation_inv ^ ￢Violation_noChecks 
Iff a branch or input data variable is neither holding any invariant vulnerability 

flags, nor does it lack sanitization checks, then the Vulnerability level is Low. 
VR2. Vmed ↔ ￢Vlow ^ ￢Vhi 
Iff a focus variable has a Medium Vulnerability rank, then it can have neither a Low 

Vulnerability rank, nor a High Vulnerability rank. 
VR3. Vhi ↔ violation_inv v (Violation_noChecks) 
Iff a focus variable holds any invariant vulnerability rank higher than “0” OR if it 

is lacking sanitization checks, then the Vulnerability level of that variable is High. 
VR4. ￢Vlow ↔ ￢Violation_noChecks ^ pass2sink 
Iff a focus variable has robust sanitization checks AND that variable’s content is 

spread to numerous other variables inside the source code, then that variable’s 
Vulnerability level cannot be low. 

Calculating Criticality  

Table 3 shows all possible results from the IF-THEN linguistic Fuzzy Logic conjunc-
tion rule for calculating Criticality. Severity set plays a more important role than the 
Vulnerability set because we can calculate a variable’s Severity value with high  
precision (points inside the source code of an application are discrete), unlike assign-
ing Vulnerability values, a procedure prone to false positives/negative due to the  
nature of logical errors themselves; BLV are based on the programmer’s coding logic, 
something relatively difficult to identify patterns, while the source code locations 
where a variable is used, are discrete. Criticality is a combination (aggregation) of  
Severity and Vulnerability (C=SxV). 
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Table 4. C = SxV 

                                    Severity 

Vulnerability 
Low Medium High 

Low Low Low Medium 

Medium Low Medium High 

High Medium High High 

5 Real-World Application Testing 

A comparison between APP_LogGIC and existing tools does not exist at the moment, as 
there are currently no tools nor frameworks that are able to detect code BLVs or injections 
for logic vulnerabilities. To demonstrate our approach, we evaluated the effectiveness of 
APP_LogGIC in detecting BLV on three injected applications, i.e., one real-world 
application (CleenSheets) and two research lab test beds called LogicBombs in which we 
injected BLV. Lab test beds were written as part of this project. All AUTs were coded in 
Java. Injected BLV used during our experiments were built to match specific categories in 
a BLV taxonomy developed by Common Weakness Enumeration, CWE-840 [17]. 
APP_LogGIC generates reports for each potential BLV found that contains the variable 
involved, the method, Class and line number where it manifests. 

CleanSheets AUT 

Our first test used a real-world application “CleanSheets” [16], an extensible Java 
GUI spreadsheet. CleanSheets was injected with three (3) types of input vector BLV. 
The types of BLV injected are common mistakes found at several applications [15], 
specifically, OWASP has a separate chapter [17] dedicated to this type of vulnerabili-
ties. This AUT uses Java’s getText() method to fetch user input data into source code 
variables. According to APP_LogGIC’s ranking system, injections fall into the  
Medium Severity category from Table 1 and High Vulnerability category from Table 
2 inside the Fuzzy ranking system: 

Severity scale 

Medium 
Severity for variables used as data sinks (i.e. dataoriginated from user 
input) 3 

 

Vulnerability scale 

High 
No check or improper checks in variables depended on input data for 
branch conditions 4 

 

1) For our first injection, we removed all content-type (sanitization) checks imposed 
on variables holding input data from the source code (i.e. checks that were im-
posing restrictions on the variable’s data content, in the AUT’s case, a series of 
IF-statements).APP_LogGIC correctly noticed the lack of proper sanitization 
checks on input data and ranked variables holding data from the “getText()” high 
(4) on the Vulnerability scale and medium (3) on the Severity scale, since data 
from variables did not affect a big portion of the total execution path (the possible 
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diversions were limited, only 1 IF-statement was found capable of diverting the 
control-flow based on input data from that variable and the execution path would 
soon return to the same flow no matter what). 

2) We injected two more complex variations of an improper sanitization BLV.  
Specifically, we replaced sanitization statements with ones comparing initializa-
tion data to actual variable data, a common logical error since that kind of check 
proves that a variable has updated memory state compared to the initial, but does 
not impose any check on whether the updated data are harmful or not. Example: 

 

 
 
 
 
Our method managed to correctly evaluate and detect the BLV. APP_LogGIC 
sample output results for one BLV report can be seen in Figure 5. 

3) The third injection included keeping the initial sanitization checks. We injected a 
transfer of input data into other variables in different methods (viral tainting of in-
put data [10]). APP_LogGIC correctly ranked the initial (pre-injection), safe  
sanitization checks with zero (0) rank on the Vulnerability scale and tracked other 
methods flow checks using the newly added support for nested-if statements.  
Due to current limitations concerning state explosion, APP_LogGIC can perform 
limited deep source code analysis on taint propagation (taint propagation is the 
method in which all input data are considered dangerous (tainted) and are 
followed inside the source code [10]). For this reason, it ranked this potential BLV 
with a two (2) rank on the Vulnerability scale, providing a degree of uncertainty. 

 

APP_LogGIC detected javax.swing input fields in the AUT avoiding native method  
name collisions,detected all control flow checks implemented on input vector variables 
and ranked the sanitized, safe vectors with a zero vulnerability rank. Thus, APP_LogGIC 
had no false negative results in this AUT. The above mentioned BLV injected fall in the 
CWE-754 category, according to the taxonomy: "The software does not check or 
improperly checks for unusual or exceptional conditions that are not expected to occur 
frequently during day to day operation of the softwar " [17]. APP_LogGIC managed to 
detect all BLV injections in variables depended on input data. Intuitively, it properly 
ranked safe, sanitized variables with “Medium-to-High” Severity (as their risk factor due 
to positioning was High) but with Low (0) Vulnerability rank. 

 

Fig. 5. APP_LogGIC Result graphs (Single BLV) 

String dataContainer = “”;          // variable initialization 
dataContainer = input.getText(); // User input - update variable data 
if ( !dataContainer.equals(“”)) { // initialization check 
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LogicBombs 

We ran APP_LogGIC on two LogicBomb version applications written specifically for 
this project. LogicBombs is a set of functions deploying a sample authentication sys-
tem that allows users to send and receive money using their own private accounts and 
supports a “Forgot your Password?” option. This option asks for a valid username and 
corresponding email and allegedly sends the password to the specific email address. 

Our first injection in LogicBombs was to test the Invariant-Based Method (IBM) 
concerning possible invariant violations. This injection falls into the Medium Severity 
category from Table 1 as the invariant that raised the alert was about a variable used 
only once in a control-flow check (IF-statement), but ranked High on the Vulnerabili-
ty scale from Table 2 due to a violation detected. 

Three versions of the same execution path were found concerning the “Forgot 
your Password?” functionality. Two of them proved that invariant rule “identity”, on 
exiting execution from method initComponents(), is True and is enforced on these two 
execution paths but one variation of that execution path was violating the invariant 
(memory state of the variable was identity == "1" on that execution path). 

 
 

 
 

Severity scale 

Medium 
 Severity for variables used in a CB ONCE on: 

o An “IF” branch 
o A‘SWITCH’ branch 

3 

 
Vulnerability scale 

High 
Invariant enforcement AND invariant violation in alternate 
versions of same execution path  (Invariant-Based Method) 

5 

 
The aforementioned BLV injected fall in the CWE-288: Authentication Bypass Using 
an Alternate Path or Channel category, according to the taxonomy: "A product requi-
res authentication, but the product has an alternate path or channel that does not re-
quire authentication" [17]. APP_LogGIC detected our injection by cross-checking al-
ternate execution paths upon its dynamic analysis invariants and correctly ranked this 
BLV with “High” Criticality (“High” Vulnerability and “High” Severity). 

Similarily, we injected LogicBombs with all BLVused in real-world AUT test 
CleanSheets in order to test the diversity of our first, preliminary results. Following 
CleanSheets, the results in LogicBombs were identical to CleanSheets. APP_LogGIC 
managed to provide the same results with zero false negatives in all injections. 

APP_LogGIC framework ran on an Intel Core 2 Duo E6550 PC (2.33 GHz, 4GB 
RAM). Table 4 shows the execution times for the tools used (including the APP_Log 
GIC analysis). Dynamic Analysis includes the user time to manually execute the 
AUT. 

 

--LoginFrame.initComponents():::EXIT 
identity == "-1"
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Table 5. Execution Times 

Type of execution Time (sec) for CleanSheets Time (sec) for LogicBombs 

Dynamic Analysis 72.1 26.5 

Static Analysis (JPF) 4.8 6.2 

APP_LogGIC analysis 68.9 1.2 

Limitations 

The current version of the framework, though able to detect BLV in real-world and 
research lab applications, suffers by a number of limitations. The types of vulnerabili-
ties found are limited to those in control flow restrictions found inside an execution 
path. Also, due to inherent incompatibilities in the Daikon tool, APP_LogGIC does 
not support analysis of loops (“While” and “For”). AUT dynamic execution must co-
ver all possible paths for the BLV to be discovered.  

JPF cannot analyze complex GUIs due to the lack of support from JPF, although 
progress is being made at the moment from NASA. The use of scripted configuration 
files limits the amount of execution paths generated and, concurrently, the amount of 
information for checking the validity of invariants. Moreover, APP_LogGIC support 
for switch-statement type CBs is lacking. Finally, our approach at the moment cannot 
detect BLV based on the application variables’ context. 

6 Conclusions and Further Research 

We extended a method for detecting BLV in Java GUI applications using a novel fuz-
zy ranking system. We formally presented an axiomatic basis on how our fuzzy rank-
ing system works.  

In addition, we demonstrated test results that stem from real-world and test bed ap-
plications alike. APP_LogGIC managed to correctly analyze AUTs, found possible 
points that might hold BLV and correctly ranked them, whether these points had a 
BLV or not.  

Ranking results and BLV injected are consistent with the reality of BLV: Real  
vulnerabilities got high grades in Criticality and well-coded points of interest got zero 
ranks. Results were classified using a known BLV taxonomy, thus defining a prelimi-
nary BLV subset that can be detected by APP_LogGIC. 

We extended support for tree-like structure and packaged source code. We injected 
different types of BLV and demonstrated APP_LogGIC’s analysis ability. 

We plan to extend our work to “While” and “For” constructs and further define a 
formal, complete set of possible BLV that can be found with APP_LogGIC. 

Also, we are in the process of making a thorough empirical analysis of  
APP_LogGIC’s potential on numerous real-world AUTs and, to address what appears 
to be a hard part in BLV detection (i.e. the detection of BLV based on the data 
context), we plan to explore the use semantic constructs such as XBRL [19] or OWL 
[20] to describe business rules and feedthem to APP_LogGIC. 
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Abstract. In remote areas of developing countries, the mobile phone
network may be the only connection with outside organizations such
as banks. SMS messages are used in branchless banking schemes such
as M-PESA in Kenya, but can be vulnerable to SMS spoofing exploits.
This paper proposes a branchless banking system for withdrawal, deposit
and transfer transactions, using an application on the phone’s tamper-
resistant Subscriber Identity Module (SIM) equipped with a Smart Card
Web Server (SCWS) and public key cryptography capabilities.

Keywords: Smart Card Web Server, Branchless Banking, Security, Mo-
bile Phone, PKI-SIM.

1 Introduction

In developing countries, banking via mobile phone is popular with low income
people, especially where poor infrastructure makes access to conventional bank
accounts difficult. SMS messaging is the most common method branchless bank-
ing systems use to carry out financial transactions: the most successful service to
date is M-PESA, operated by Safaricom in Kenya [1]. This provides cash transac-
tions and fund transfers using SMS messages and a network of authorized agents.
However, there have been attacks on M-PESA, where spoofed SMS messages
exploited a lack of authentication of bank-originating messages [9]. Also, the
underlying GSM network architecture has well documented weaknesses e.g. [28].
An alternative, secure branchless banking scheme is therefore desirable.

One possibility would be to use phone-based online banking: typically the
bank’s online site is accessed via the phone browser, or a specialized mobile ap-
plication. However, bank web servers are exposed to all standard online security
threats [8], and Distributed Denial of Service attacks (DDoS) [22]. Customer cre-
dentials transmitted over the Internet can also be targeted. Additionally, highly
sensitive (and valuable) information is stored on the phone, making phone oper-
ating systems an attractive target for malware designed to steal credentials [18].
The phone handset is therefore regarded as an untrusted platform.

A mobile phone’s Subscriber Identity Module (SIM) could be used to store
the banking application and credentials. The SIM is on the Universal Integrated
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Circuit Card (UICC) smart card in mobile phones, and is an application used
to access the mobile network [25]. (In this paper, the term SIM will be used
generically to represent the smart card used in phone handsets.) The SIM is a
tamper-resistant environment, providing secure storage and processing of cryp-
tographic keys. Modern SIMs can have advanced features such as the Smart
Card Web Server (SCWS) [11] which introduces web server functionality to the
SIM environment and provides a rich interface for the user. Advanced SIMs
can also perform public-key processing (PKI-capable SIM), using standardized
cryptographic algorithms for encryption/ digital signatures [19,23].

The proposal in this paper uses a PKI-capable SCWS/SIM in a branchless
banking scheme, catering for both cash-based transactions and third party trans-
fers using a network of authorized bank agents as intermediaries. The protocols
presented here provide security without requiring the customer to obtain expen-
sive equipment: all that is required is an existing phone handset (complete with
a standard browser) which can have an advanced SIM installed. No specialized
software needs to be installed onto the phone.

The paper is structured as follows: branchless banking security is presented in
Section 2 and the security and usability of the SCWS is outlined in Section 3. The
entities and assumptions needed for the proposed design are detailed in Section 4.
Banking transaction protocols are then described in Section 5 (Withdrawals),
Section 6 (Deposits) and Section 7 (Transfers). Section 8 analyzes the security
of the proposal, and the paper concludes in Section 9.

2 Branchless Banking Security

Branchless banking services must provide all the security expected of a financial
system, but they may have to operate in difficult environments where a number of
additional challenges exist. For example, customers could be illiterate, unfamiliar
with technology and unable to access conventional text-based user interfaces [26].
Additionally, a different concept of privacy to that found in the developed world
means that security credentials will not necessarily be kept secret and equipment
may be shared. There may be low levels of trust between participants [27], and
mobile network connectivity may be unreliable.

Existing branchless banking schemes use combinations of SMS, Unstructured
Supplementary Service Data (USSD) and Interactive Voice Response (IVR)
mechanisms to communicate financial and authentication data between parties.
For example, M-PESA (Kenya) [1], uses two-factor authentication (i.e. posses-
sion of a phone and knowledge of a PIN) with USSD and proprietary security
via a SIM Toolkit (STK) application [25], with SMS messages for transaction
data: customers are issued with a SIM containing the M-PESA application.
Other branchless banking schemes include: EKO Bank (India) [29], ALW/ZMF
(India) [12], FSB (not yet deployed) [30], M-ATM (SriLanka) [20], and mChek
(India) [2]. Their authentication methods are shown in Table 1.

Security concerns about SMS-based banking schemes exist, however. Many
use proprietary security mechanisms (security by obscurity), and there are well
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Table 1. Customer Authentication Methods in Branchless Banking Schemes

Scheme Authentication Mechanism

M-PESA PIN sent via USSD with proprietary encryption

EKO 6-digit printed nonces combined with user’s 4-digit PIN

ALW Voice/Fingerprint Biometrics

FSB Voice Biometrics plus scratch-card nonces

M-ATM PIN/phone no. generate key for encrypted SMS, also SMS Nonces

mChek 6-digit PIN, IVR and SMS One Time Password (OTP)

documented security issues in GSM/3G mobile networks (e.g. [28]). The SMS
service operates on a ‘best effort’ basis: messages can be delayed, dropped or ar-
rive out of order, and they are not usually encrypted. Messages can be spoofed [3]:
an attack on M-PESA involved spoofed bank-originating SMS messages (along
with knowledge of a secret obtained by social engineering) and caused a security
breach which defrauded an agent of 35,000 Kenyan Shillings [9].

Alternatively, a Wireless Application Protocol (WAP) browser on the phone
could connect a customer to the bank’s web server. Here, authentication creden-
tials are sent over the Internet to the bank for checking; SMS OTP codes are
sometimes used as an added security measure. However, transmitted customer
credentials can be attacked: and the bank’s web server is exposed to all stan-
dard Internet security threats, e.g. the Open Web Application Security Project
(OWASP) Top Ten [8], or DDoS attacks [22]. Sensitive (i.e. high-value) informa-
tion is stored on phone handsets, forming attractive targets for malware. Mal-
ware can intercept/ suppress SMS messages [13], point to phishing websites and
specifically target banking applications, e.g. mobile Zeus trojan [17]. Infection
can occur via MMS messages or Bluetooth connections e.g. Commwarrior [4].
The phone cannot be regarded as a trustworthy platform.

SIM-based applications, on the other hand, have many desirable security prop-
erties. Access to the SIM is tightly controlled, so it is difficult for malware on
a phone to affect a SIM application. The SIM environment is tamper-resistant,
which protects against physical attacks. If the SIM is able to perform public key
cryptographic operations (PKI-capable) it can use standardized security algo-
rithms [19,23], which is a useful security feature for branchless banking.

Branchless banking systems should meet the following security requirements:

Confidentiality: sensitive information should not be disclosed to unauthorized
parties, during processing, in transit, or at rest: this applies to all messages sent
to/from the bank, and all information stored on agent/ customer equipment.
Integrity: information must not be tampered with by unauthorized parties dur-
ing processing, in transit or at rest, and a system must perform its tasks without
unauthorized manipulation: this applies to all messages sent to/from the bank,
and all information stored and processed on agents’ and customers’ equipment.
Authentication: all participants in a transaction must be authorized, and all
transaction data must be genuine. So, a customer needs assurance that the agent
is genuine and authorized to deposit their money in the correct account, an agent
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Fig. 1. Smart Card Web Server Architecture (adapted from [10])

must make sure that the individual withdrawing money from an account is not
an impostor, and all bank-originating messages must be authenticated.
Availability: a service is not denied to authorized entities: for example, through
network connectivity problems, loss of equipment such as phones, or distributed
denial of service (DDoS) attacks.
Non-repudiation: none of the participants in a transaction (i.e. agent, cus-
tomer or bank) can subsequently deny taking part in it.

The next section describes the SCWS environment and its maintenance proce-
dures, which will be used later in a proposed branchless banking solution.

3 The Smart Card Webserver (SCWS)

The Smart Card Web Server (SCWS) is a HTTP 1.1 server implemented on
a SIM, standardized by the Open Mobile Alliance (OMA) [11]. The SCWS is
owned and operated by the the Mobile Network Operator (MNO), and is only
accessible from authorized applications on the phone handset or a trusted Re-
mote Administration Server (RAS) controlled by the MNO or an authorized
third party (e.g. a bank). Figure 1 shows the SCWS architecture.

The RAS updates the content of the SCWS using one of two standardized pro-
tocols, depending on the amount of data required: small amounts of data are sent
by the Lightweight Administration Protocol (LAP) Over-The-Air (OTA); larger
amounts of data use the Full Administration Protocol (FAP) via an HTTPs [5]
channel between the RAS and SCWS. A FAP session can be initiated by the
RAS, or triggered by the SCWS, and is handled by an on-SIM entity, the Ad-
ministration Agent (AA). If a network connection problem occurs during a FAP
session the AA attempts reconnection according to a pre-defined retry policy:
if the session is abandoned, an error SMS is sent to the RAS (see [11] for de-
tails). The SCWS communicates with the phone browser via HTTP/HTTPs: a
JavaCard v.3.0 SIM can do this directly using a TCP/IP stack; for other SIMs,
the Bearer Independent Protocol (BIP) is used, via a BIP Gateway. An Access
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Control Policy (ACP) Enforcer on the phone restricts local access to the SCWS
to authorized applications only.

Applications can be installed and run in the SCWS environment using tech-
niques described in [16]. As the MNO owns and operates the SIM/SCWS, service
providers must have a business relationship with the MNO in order to install
their applications on the SIM. The use of a Trusted Services Manager (TSM) to
manage the business ecosystem has been suggested in the context of supporting
Near Field Communication (NFC) applications on mobile phones [14]. Three
business models are identified: simple mode, where only the MNO can manage
applications on the UICC; delegated mode, where the TSM can manage appli-
cations on the UICC but needs a pre-authorization token from the MNO; and
authorized mode where the TSM manages a specific area of the UICC without
reference to the MNO. (For examples of the key management of these business
models, please see [14].) In the SCWS scenario, as the RAS is a trusted entity,
the TSM could control it on behalf of a service provider.

The SCWS provides interoperability across phone handsets and operating
systems, and can be used to access web content offline using standard phone
browsers. This gives a powerful, feature-rich interface, which can incorporate
files, images and multimedia as required [7]. This is particularly helpful for il-
literate users, where graphical and voice based interactions are more effective
than menu-style SIM-toolkit applications [26], or for the visually challenged [31].
Other work uses the SCWS architecture and management to provide DDoS re-
sistant distributed processing (e.g. e-voting [21]).

The tightly controlled SCWS management procedures make a SCWS solution
suitable for addressing branchless banking security requirements. This paper
therefore proposes a branchless banking system which uses a PKI-capable SIM
with SCWS (referred to in future as SCWS-Banking). The next section describe
entities and assumptions needed for this.

4 Entities and Assumptions

Entities in the proposed branchless banking system are now described, and their
relationship illustrated in Figure 4.

Bank (B): processes all financial transactions, and maintains central databases
of customer/agent accounts. It uses the procedures outlined in Section 3 to
install its banking application and relevant security credentials on customers’
and agents’ SCWS/SIMs.(See assumptions below for details of credentials.)
Agent (A): is authorized to process transactions on the bank’s behalf.
Customer (C): an individual who performs financial transactions.
Recipient (R): an individual who receives transferred value from a customer.
Smart Card Web Server (SCWS): as described in Section 3. A Java applet
running on the SCWS will use relevant credentials and keys present on the SIM,
and create dynamic content whenever requested: this applet will be referred to
as the SCWS-Banking application throughout this paper.
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Remote Administration Server (RAS): see Section 3. The RAS is a mere
conduit between the bank and participants’ SCWS/SIMs: it may be part of an
MNO, TSM or bank, and passes messages unaltered to/from the bank’s trans-
action processing system, with additional phone/SIM routing information as
required. The RAS communicates with each SCWS using FAP/HTTPs sessions:
however as HTTPs is not running end-to-end throughout a whole transaction,
application level security mechanisms are required to prevent confidential infor-
mation being visible at the RAS.
Mobile Network Operator (MNO): provides the technical mobile infras-
tructure and standardized SCWS administration protocols (see Section 3). The
MNO provides a managed space on the SCWS/SIM for the bank’s exclusive
use, as described in [15]: delegated or authorized mode business models could be
used to update SIM content. In certain regulatory environments, the MNO can
act as the bank by storing value on behalf of the customer: the mobile phone
number is the account number, as in M-PESA [1]. The simple mode business
model is appropriate here. In this paper, the term ‘bank’ will be used for both
MNO-centric and bank-centric scenarios.

The assumptions underlying the proposed SCWS-Banking system are:

Registration: agents and customers register with the bank, when appropriate
identity documents are checked to satisfy banking regulations (e.g. Know Your
Customer (KYC), Anti-Money-Laundering (AML) and Countering the Financ-
ing of Terrorism (CFT)). In some regulatory environments agents can check and
register customers [24]: in others, customers/agents must go to the bank to reg-
ister. Customers’ identity details are stored by the bank for later use. Agents
are allocated an Agent ID to display publicly. Customers/agents are issued with
SCWS/SIMs, containing the SCWS-Banking application and their account cre-
dentials, installed using the procedures outlined in Section 3.
Banking Credentials on SCWS: these are a SCWS PIN (passwords may not
be suitable for illiterate customers [26]); two customer public/private key pairs
(for key separation purposes, one pair for encryption/decryption and one pair
for signing/verifying), with key sizes following recommended guidelines e.g. [6];
and two bank public keys, for encrypting/verifying messages to/from the bank.
Availability of Equipment and Services: it is envisaged that the customer
will possess a mobile handset with a browser, but if necessary their SCWS/SIM
could be inserted in a shared phone to access SCWS-Banking. An agent must
have a phone with SCWS/SIM. It is assumed a mobile phone network is avail-
able, although connectivity could be intermittent.
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Table 2. Notation

Notation Description

A Agent(entity)
ACX Account Number for entity X
B Bank(entity)
BALX Balance in Account ACX for entity X
BAL′

X Updated Balance in Account ACX for entity X
C Customer(entity)
CHX Result of identity check for entity X, value = true/false
EK(Z) Encryption of data Z with key K
IDX Identity of entity X
NX Random Nonce generated by entity X
NAMEX Name of entity X, (i.e. a short identifying text)
PhX Phone Number of entity X
PKX/ SKX Public/ Secret Key pair of entity X
R Recipient(entity)
SX/ VX Signing/ Verification key pair of entity X
Tr Transaction Type:’W’=Withdrawal, ’D’=Deposit, ’T’=Transfer
TrAmt Transaction Amount
TrCountX Transaction Counter for entity X
TrNo Transaction Number
X→Y: Message sent from entity X to entity Y
(Z)SignK Signature on data Z with signature key K

Access to SCWS-Banking System: customers and agents participating in
a SCWS-Banking transaction must first authenticate themselves to the SCWS
environment by inputting a PIN to the phone browser.
Account Structure: there is a one-to-one correspondence between a SCWS
and a bank account number: this means that a SCWS mobile phone number can
be used to uniquely identify a customer or agent.
Trust: the customer does not trust the agent, and vice-versa. The bank and
RAS are fully trusted.

The next sections will present SCWS-Banking transaction protocols: with-
drawals, deposits and transfers. For simplicity, it is also assumed in the following
descriptions that: if any of the protocol validation checks fail an error message
is sent to all participants, the transaction is terminated and logged as unsuc-
cessful; all cryptographic keys are checked for validity before use; data is padded
according to best practice recommendations before being encrypted using a stan-
dardized public key algorithm e.g. RSA [19]; and a standardized digital signature
algorithm is used e.g. DSA [23]. The notation used is shown in Table 2.

5 SCWS-Banking Withdrawal Protocol

In a withdrawal, the customer enters transaction details, the bank authorizes
them and forwards them on to the agent to authorize in the presence of the
customer. Figure 3 shows the messages in a withdrawal transaction.
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Step 1: Customer enters data: (TrAmt, IDA). The SCWS-Banking applica-
tion generates NC , increments TrCountC and creates message W1 using PKB,
SC to encrypt and sign. The SCWS triggers a FAP session, the RAS retrieves
message W1 (over HTTPs), adds PhC and passes it on to the bank.
W1 C→B: (EPKB (Tr, T rAmt, IDA, NC , T rCountC))SignSC

Step 2: Bank authorizes transaction: the bank uses PhC to find ACC ,
BALC , VC , PKC , NAMEC and IDC , and verifies/ decrypts message W1 us-
ing relevant keys. The bank checks TrCountC , and uses IDA to obtain PhA,
BALA, VA and PKA. If TrAmt ≤ BALC , the bank generates NB and TrNo,
creates message W2 (encrypted/signed with PKA/SB) and sends it to the RAS
(with PhA) to forward on to the agent via FAP/HTTPs.
W2 B→A: (EPKA(Tr, T rNo, T rAmt,NAMEC , IDC , NB, BALA))SignSB

Step 3: Agent authorizes transaction: the agent SCWS-Banking application
verifies/decrypts message W2 using VB/ SKA, then checks that TrNo has not
been received before. The agent inputs IDC , and the SCWS-Banking application
checks if IDC(input) = IDC(from W2) and sets CHC : NB is incremented, NA

is generated, and a transaction log is updated. Message W3 is created, retrieved
via RAS/FAP/HTTPs, the RAS adds PhA and passes it to the bank.
W3 A→B: (EPKB (Tr, T rNo,CHC , NB + 1, NA))SignSA

Step 4: Bank finalizes and confirms transaction: the bank uses PhA to
obtain agent keys to verify/decrypt message W3. The bank inspects NB + 1
and CHC : if the CHC = true, TrAmt is used to create BAL′

A and BAL′
C . The

transaction is logged, then time-stamped confirmation messages are sent to the
agent/customer via SMS, and (encrypted and signed) to their SCWS-Banking
applications, via RAS/FAP/HTTPs (messages W4A and W4C).
W4A B→A:(EPKA(Tr, T rNo, T rAmt, IDC , NB + 1, NA + 1, BAL′

A))SignSB

W4C B→C: (EPKC (Tr, T rNo, T rAmt, IDA, NC + 1, BAL′
C))SignSB

Step 5: Agent and customer finalize transaction: the SCWS-Banking ap-
plications verify/ decrypt message W4A or W4C (as appropriate) from the bank,
update the SCWS-Banking files with transaction data, and the transaction is
logged. The agent should only give the customer cash once the confirmation mes-

(EPKA(Tr,TrNo,TrAmt,NAMEC,IDC,NB,BALA) )SignSB 

SCWS(C) SCWS(A) BANK/RAS 

(EPKB(Tr, TrAmt, IDA, NC, TrCountC) )SignSC 

(EPKC(Tr,TrNo,TrAmt,IDA, NC+1, BAL’C) )SignSB (EPKA(Tr, TrNo,TrAmt, IDC,NB+1,NA+1, BAL’A) )SignSB 

(EPKB(Tr, TrNo, CHC,,NB+1, NA) )SignSA 

WI 
HTTPs 

W2 
HTTPs 

W3 
HTTPs 

W4C 
HTTPs W4A 

HTTPs 

Fig. 3. SCWS-Banking Withdrawal Protocol
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sage has arrived from the bank. A paper transaction log is also maintained by the
agent, which the customer must sign to acknowledge receipt of the cash.

6 SCWS-Banking Deposit Protocol

A deposit is an agent-initiated transaction similar to a withdrawal, but with the
message flow reversed. The deposit protocol messages are shown in Figure 4,
and summarized below: again, phone numbers are added to messages between
the bank and the RAS for routing purposes.

Step 1: Agent enters data (TrAmt, IDC) (Agent to Bank)
D1 A→B:(EPKB (Tr, T rAmt, IDC , NA, T rCountA))SignSA

Step 2: Bank authorizes transaction (Bank to Customer)
D2 B→C:(EPKC (Tr, T rNo, T rAmt, IDA, NB, BALC))SignSB

Step 3: Customer authorizes transaction (Customer to Bank)
D3 C→B: (EPKB (Tr, T rNo,CHA, NB + 1, NC))SignSC

Step 4: Bank finalizes and confirms transaction
D4A B→A:(EPKA(Tr, T rNo, T rAmt, IDC , NA + 1, BAL′

A))SignSB

D4C B→C:(EPKC (Tr, T rNo, T rAmt, IDA, NB+1, NC+1, BAL′
C))SignSB

7 SCWS-Banking Transfer Protocol

The bank transfers value TrAmt from a customer to a recipient (R), directly if the
recipient’s account is known, otherwise via an SMS to the recipient for redeeming
TrAmt from an agent later. Transfer messages are shown in Figure 5.

Step 1: Customer enters data (TrAmt, PhR) (Customer to Bank)
T1 C→B: (EPKB (Tr, T rAmt, PhR, NC , T rCountC))SignSC

Step 2: Bank processes transaction (Bank to Customer/ Recipient)
T2R-SMS is sent via SMS to PhR if the recipient does not have a SCWS-Banking
account: Steps 3 and 4 are also needed in this case.

(EPKC(Tr, TrNo,TrAmt, IDA, NB,BALC) )SignSB 

(EPKC(Tr,TrNo,TrAmt,IDA,NC+1,NB+1,BAL’C) )SignSB 

(EPKB(Tr,, TrAmt, IDC ,NA, TrCountA) )SignSA 

(EPKA(Tr, TrNo,TrAmt,IDC,NA+1,BAL’A) )SignSB 

(EPKB(Tr, TrNo, CHC,,NB+1, NC) )SignSC 

SCWS(C) BANK/RAS SCWS(A) 

D1 
HTTPs D2 

HTTPs 

D3 
HTTPs 

D4A 
HTTPs D4C 

HTTPs 

Fig. 4. SCWS-Banking Deposit Protocol
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(EPKR(Tr, TrNo, TrAmt, NAMEC,BAL’R) )SignSB 

(EPKA(Tr, TrNo,TrAmt,PhR,NA+1 ,NAMEC,BAL’A) )SignSB 

(EPKB(Tr, TrNo, PhR,,NA,TrCountA) )SignSA 

(EPKB(Tr,TrAmt,PhR,NC,TrCountC ))SignSC 

(EPKC(Tr,TrNo,TrAmt,PhR,NC+1,BAL’C))SignSB 

(Tr, TrNo) 

SCWS(C) BANK/RAS Recipient SCWS(A) 

TI 
HTTPs 

T2C 
HTTPs 

T2R-SCWS 
HTTPs 

T4 
HTTPs 

T2R-SMS 
SMS T3 

HTTPs 

Alternative 
if account 
details not 

known 

Fig. 5. SCWS-Banking Transfer Protocol

T2C B→C: (EPKC (Tr, T rNo, T rAmt, PhR, NC + 1, BAL′
C))SignSB

T2R-SCWS B→R: (EPKR(Tr, T rNo, T rAmt,NAMEC, BAL′
R))SignSB

T2R-SMS B→R: (Tr,TrNo)
Step 3: Recipient redeems SMS transfer (Agent to Bank)
The recipient gives the agent PhR and TrNo.
T3 A→B:(EPKB (Tr, T rNo, PhR, NA, T rCountA))SignSA

Step 4: Bank confirms transaction to agent (Bank to Agent)
The bank obtains full transaction details from its records and instructs the agent
to pay the recipient TrAmt. NAMEC can be given to the recipient for their
records. The agent should also manually record the recipients ID credentials,
and maintain a paper transaction log for non-repudiation purposes,
T4 B→A:(EPKA(Tr, T rNo, T rAmt, PhR, NA+1, NAMEC , BAL′

A))SignSB

8 Security Analysis

The proposal is now discussed with respect to the security requirements set
out in Section 2. Potential attacks will be identified and a comparison with the
SMS-Banking scheme M-PESA is made.

Addressing Security Requirements

Confidentiality: All information sent between the SCWS, RAS, and phone
browser are protected by HTTPs against eavesdropping and man-in-the-middle
attacks whilst in transit. As HTTPs is not running end-to-end (there are separate
RAS/FAP/HTTPs sessions for each message) application level security is also
used to meet security requirements. Public key encryption and the PIN-protected
tamper-resistant SCWS environment ensure that sensitive information is kept
confidential at all times.

Integrity: Using HTTPs between the RAS/SCWS/phone browser gives rea-
sonable assurance that messages are not tampered with. Digital signatures al-
low detection of unauthorized changes, and challenge-responses prevent replay
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attacks. The tamper-resistant SIM makes attacks on data integrity extremely
hard.

Authentication: ID credentials are input by the customer/agent and verified
by the bank, so imposters will be identified. Digital signatures are used in all
messages for assurance that the bank/customer/agent is genuine. The RAS and
SCWS authenticate each other using HTTPs. Also, the bank sends confirmations
via two separate channels (SMS/ SCWS-FAP).

Availability: Network connection problems encountered during a FAP ses-
sion are automatically handled by the SCWS on-card Administration Agent
(see [11]). Data held on the SCWS is available offline, only accessible via a PIN.
Back-office procedures are needed for remote locking/reissue of the SIM/SCWS
application and credentials when phones/SIMs are lost/damaged. The SCWS-
Banking application and credentials are installed on many SIMs, so DDoS at-
tacks are hard to mount because each phone has to be targeted individually.

Non-Repudiation: Digital signatures provide non-repudiation; also, transac-
tion logs are securely held on both the agent/customer SCWS and centrally by
the bank. Paper-based transaction logs are maintained by the agent and signed
by the customer to acknowledge each transaction. Bank confirmation messages
are sent via two channels, to minimize the likelihood of losing a message.

Potential Attacks: The SCWS is a web server, and as such is vulnerable to
most of the attacks identified in the OWASP Top Ten project [8]. Strict filter-
ing of input fields in the phone browser should prevent injection and cross site
scripting exploits. Although attacks on the SCWS from the phone browser are
theoretically possible, they are not scalable: the attacker needs physical pos-
session of the handset to access the SCWS. Remote attacks on the SCWS are
hard, as access to it is only permitted through the trusted RAS. It is difficult
for malware on the phone to attack the SCWS, as the ACP enforcer only allows
access to authorized applications. Even if the ACP enforcer is compromised, the

Table 3. M-PESA /SCWS-Banking Security Comparison

Security M-PESA SCWS-Banking
Requirement

Confidentiality Unencrypted SMS messages, read-
able from phone’s SMS inbox

Encrypted messages, HTTPs,
data PIN protected on SCWS

Integrity Malware could intercept and tam-
per with SMS messages on phone

Digital Signatures and HTTPs
protect integrity

Authentication Customer is authenticated, bank-
originating messages are not

Digital Signatures and physical
IDs are used for authentication

Availability Procedures for lost/stolen phones,
but large number of SMS mes-
sages could flood mobile network:

Procedures for lost/stolen SIMs:
DDoS resistant

Non-repudiation Messages from bank not authenti-
cated, so no non-repudiation

Digital signatures provide non-
repudiation
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SCWS has a small attack surface due to its restricted processing capability. Re-
play attacks, where messages W1/D1/T1 are recorded and subsequently resent
to the bank to generate multiple transaction authorization numbers (TrNo) are
prevented by the use of transaction counters held on the SCWS and checked
by the bank. As stated previously, DDoS attacks are hard to mount, although
a Denial of Service attack against a single SCWS is feasible but difficult. The
RAS is potentially a single point of failure in the SCWS-Banking protocol, as it
controls the entire message flow. However, as it is a trusted entity, owned and
operated by the MNO, it is subject to tightly controlled management procedures
which should make unauthorized usage and attacks difficult.

Comparison with SMS Banking: Table 3 compares the security of SCWS-
Banking with M-PESA. It can be seen that M-PESA only partially meets all the
identified security requirements, whereas the proposed SCWS-Banking solution
satisfies them all.

9 Conclusion

This paper has presented a SCWS-Banking scheme which uses PKI-capable SIMs
equipped with a SCWS to process branchless banking withdrawals, deposits and
transfers in a secure and user-friendly manner. The main strength of the proposal
is that it uses standardized hardware, protocols and communications to protect
sensitive information, without the need for specialized equipment and phone
applications. All communication to/from the SCWS is done via HTTPs. By
storing security information on the tamper-resistant SIM, local authentication
of PINs can be done by the SCWS without communicating credentials across a
network. All transactions pass through a trusted Remote Administration Server,
owned and operated by the MNO or trusted third party. It is hard to mount
large scale attacks against the system, as credentials and applications stored on
each SIM must be targeted individually. PKI-capable SIMs enable application
level public key encryption/ digital signatures to provide authentication and
non-repudiation, using keys stored on the tamper-resistant SCWS/SIM. Agents
and customers need new advanced SIMs containing the SCWS-Banking applica-
tion and their account credentials. Even though these are more expensive than
conventional SIMs, this is a cheaper overall solution than setting up physical
bank branches. All systems present a trade-off between usability and security: a
practical implementation would enable performance measurements to be taken
for each stage of the protocol, to give an indication how speed of processing will
impact the usability of the system, and its suitability for use with various phone
handsets. A preliminary security analysis indicates that SCWS-Banking secu-
rity is higher than that offered by M-PESA. A more detailed security analysis
of the protocols would be useful in future to examine their security properties in
more depth. However, the initial findings are promising, and the SCWS-Banking
proposal meets branchless banking security challenges very well.
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Abstract. Data breaches are a rising concern in personal data man-
agement. While the damages due to data breaches fall primarily on the
end customer, the service provider should be held liable. A sanctioning
approach is proposed to promote a greater responsibility by the service
provider, where sanctions are proportional to the service providers rev-
enues. The interactions between the customer and the service provider
are modelled as a game, where the customer decides the amount of tol-
erable loss (a proxy for the amount of information released) and the
service provider decides the amount of security investment. The solution
of the game for a typical scenario shows that sanctions effectively spur
the service provider to invest more in security and lead to a reduced data
breach probability.

Keywords: Security investments, Data Breaches, Sanctions, Privacy,
Security economics.

1 Introduction

Security incidents where customers’ personal data are stolen (often to be put to
malicious use), a.k.a. data breaches, are rising. After a temporary decrease, the
number of compromised records, which went from 361 million in 2008 to 144
million in 2009 [1] marking an all-time low, went back to 174 million in 2011
[2] (which is the second-highest data loss total since Verizon started keeping
track in 2004). Large economic interests work behind the scenes: the industry of
developing and selling toolkits for exploits alone is worth 100 million dollars a
year [3]. And the payoff per victim ranges from $2000 for mass attacks to $80000
for focused attacks, according to Cisco [3].

The ultimate sources of personal data are customers who release them in a
variety of contexts. Though we can expect customers to have the most interest to
protect their data, they exhibit a peculiar behaviour when valuing their privacy:
they are willing to accept money to release their data more than they are willing
to pay to protect them [4].

On the other hand, service providers hosting their customer’s data can do
much to protect them. They can make their systems and transactions more

J. Lopez, X. Huang, and R. Sandhu (Eds.): NSS 2013, LNCS 7873, pp. 264–277, 2013.
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secure by investing in security technology. It has however been recognized that
security investments must be related to the benefit they provide in reducing the
potential loss deriving from a data breach [5]. If the loss deriving from a data
breach falls on the customer’s shoulders alone, the service provider may have no
strong incentive to invest more in security.

Among the possible remedies and countermeasures envisaged in [3], legislation
is mentioned as the foremost approach. Though class actions against a sloppy
service providers may experience difficulties in proving direct causality relation-
ships in court, regulatory actions are being put forward, e.g., in the European
Union.

An approach based on damage sharing, which apportions the damage between
the service provider and the customer, has been proposed in [6]. In [7], it has
been shown that the policy may be ineffective unless the fraction of damage
charged to the service provider is quite large, beyond 60%.

In this paper, we propose an alternative regulatory action, where the sanction
is related to the service provider’s turnover rather than the damage suffered by
the customer. This new approach is finding its way in the European legislation,
since a sanctioning approach based on the revenues of the company hosting the
data is under examination in the European Parliament [8]. We employ models
for the behaviour of both the customer and the service provider and derive a
game-theoretic formulation of their interaction. For both stakeholders, we obtain
their best response function and show that the game solution can be found
numerically. For a typical scenario, we find that the sanctioning approach based
on the service provider’s turnover is quite effective in leading the service provider
to invest more in security and reducing the data breach probability. As a side
effect of sanctions, customers have a more relaxed attitude when releasing their
personal data.

The paper is organized as follows. In Section 2, we describe the relationship
between the behaviour of the two players and the probability of data breaches.
The sanctioning approach based on the service provider’s turnover is defined in
Section 3, leading to the definition and solution of the game in Section 4, while
the results of its application to a typical scenario are reported in Section 5. A
list of the parameters involved is reported in Table 1.

2 Data Breaches and Security Investments

Customers are led to expose themselves when requiring services, which increases
the probability of data breaches At the same time, service providers can miti-
gate that risk by investing in security. We associate the two phenomena to the
stakeholders responsible for them: in the following, we refer to the probability of

data breach (and the resulting loss) P
(c)
db due to the customer as that originating

because of two effects: the release of personal information that is intercepted by
an attacker, and the installation of malware of the customer’s equipment. The

probability P
(s)
db will denote instead the probability that a data breach and the

associated loss occur due to inadequate investment in security by the service
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provider. In this section, we provide models for both effects. We largely draw on
the models already employed in [6] and [7].

Let’s consider first the impact of what the customer itself releases. Rather
than considering the amount of information as the driver of the probability of
data breaches, we consider the more easily measurable amount L of potential
loss as a proxy. That is the loss occurring when a data breach takes place. We
assume that it is known, or at least estimated, by both the customer and the
service provider. After normalizing the potential loss to the maximum customer’s
exposure Lmax, we assume that the following power law holds

P
(c)
db = P (c)

max

(
L

Lmax

)θ

θ ∈ R
+, (1)

where P
(c)
max is the probability of breach corresponding to the maximum release

of information.
For the probability of data breach due to inadequate investment in security

by the service provider, we consider a power law as well. Of course, the curve is
now a decreasing one. In the absence of additional investments, the probability

of data breaches is P
(s)
max. When the investment per customer is the maximum

envisaged Imax, the probability of data breaches decreases by A · 100%, where
A is a suitable coefficient, satisfying the inequality 0 < A < 1, since, no matter
the amount of investments in security, the data cannot be granted total security.
The resulting power law relationship is

P
(s)
db = P (s)

max

[
1− A

(
I

Imax

)k
]
, (2)

Since a data breach can occur due to either reason, and independently of each
other, the overall probability Pdb of a data breach and its associated loss can be
obtained by the logical OR combination of the two events, leading to

Pdb = 1− (1− P
(c)
db )(1− P

(s)
db )

= P
(s)
db + P

(c)
db − P

(s)
db · P (c)

db .
(3)

3 Sanctioning Procedure

Though investing in security leads to reduced data breaches, service providers
do not directly benefit from such a reduction. In the absence of any incentive,
investments in security may appear just as a cost item. In this section, we propose
a sanctioning procedure that makes service providers liable for data breaches.

In most countries’ jurisdictions, sanctions for data breaches are defined through
their maximum value, with no reference to the extent of the damage suffered by
customers. A survey is reported in [9]. A notable exception is France, where the
maximum sanction is stated as a percentage (5%) of the data controller’s turnover
in the case of a second violation. A sanctioning approach based on the revenues of
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the company hosting the data is under examination in the European Parliament
[8].

Hereafter, we consider a sanctioning regime where the sanction M is propor-
tional both to the expected damage inflicted on the customer and to the revenues
of the service provider, through a proportionality factor Ω. Since the revenues
are the product of the unit price p and the amount of services q, the resulting
sanction is

M = ΩLPdbpq. (4)

The sanction is expected to be imposed on the service provider by a regula-
tory agency. Service providers are therefore led to reduce the probability of
data breaches by investing more in security. We consider a strict proportionality
rather than a ceiling based on revenues to allow for a fairer treatment of smaller
companies. It is to be noted that, through Equation (4), the service provider
is held liable and subject to sanctions even when the data breach has occurred
due to the customer’s fault. In fact, in Equation (4) the overall probability Pdb

of data breach appears, rather than just the service provider-related term P
(s)
db .

Though this treatment may appear as unfair to the service provider, we observe
that tracking the root cause of a data breach may prove difficult.

4 A Game-Theoretical Model

In the previous sections, we have seen that opposite forces drive the stakehold-
ers. Customers are led to release more personal information to get more services,
but expose themselves to a greater risk of data breaches and subsequent money
losses. On the other side, service providers would like to reduce their security
investments as much as possible but are forced to invest by a sanctioning proce-
dure that reduces their revenues when data breaches take place. Such contrasts
may be formalized by building a game-theoretical model. In this section, we set
up such a model, defining the players and their strategical leverages. We show
that the game can be solved to provide a rational direction for both stakeholders
and the regulatory authority.

We consider a customer who gets services offered through a communications
network by a service provider. We do not refer to a specific service, so that what
follows can be applied on rather general terms. If services are provided without
the service provider asking for personal information, we assume a simple linear
relationship between the quantity q of services and their price p:

q =

{
q∗

(
1− p

p∗

)
if p < p∗

0 if p ≥ p∗
(5)

where p∗ is the maximum price the customer can tolerate (its willingness-to-
pay), and q∗ is the maximum amount of service the customer is capable to
consume, even if the service is free. Examples of demand measurement units
are the minutes of conversation for the telephone service, the amount of data
transferred, the number of transactions accomplished. In the following, we treat
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the demand as a continuous quantity, though it is possibly discrete, since this
allows us to use continuous calculus tools; the problem is a minor one, since
the granularity is so fine that the quantity can be practically considered as
continuous.

However, in many cases the service provider is keen on getting come personal
information about its customers. This may be due to several reasons: profiling
its customers better so as to induce them into buying a wider range of services
or even just selling that information to third parties who may in turn use it to
target those customers. Whatever the reason, the service provider wishes to get
as much personal data as possible and, in order to do so, is willing to reward
those customers who release their personal data. Though the rewards may take
many forms, we assume here that it basically consists in allowing the customer
to get more services at the same price. The impact on the demand function is
shown in Fig. 1, so that the demand function takes the following form instead
of Equation (5)

q =

{
q∗(1 + α)

(
1− p

p∗

)
if p < p∗

0 if p ≥ p∗
(6)

The demand in the absence of personal information is multiplied by a factor
1 + α. The coefficient α is a measure of the reward, which is envisaged to be
directly related to the amount of personal information released. At the same
time, releasing personal data exposes the customer to those data being stolen
and put to malicious use. Apart from other consequences, the most apparent
result of a data breach is the monetary damage caused to the customer. Here
we assume that the relationship between the amount of information released
(embodied by α) and the potential monetary loss L is the power law

Unit price

Demand

p*

q* q*(1+α)

Pre-release After-release

Fig. 1. Demand function
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α = αmax

(
L

Lmax

)ν

ν ∈ R
+. (7)

In Equation (7), the parameter ν > 0 measures the degree of attention to pri-
vacy. If ν < 1, the customer releases its information starting with the most
potentially damaging, and the additional risk associated to further releases is a
decreasing function of the information released. In particular, if ν � 1 (i.e., the
service provider is privacy-friendly), the customer gains a large benefit (i.e., a
large extension of the maximum quantity of services) even for small pieces of the
information released (i.e., small potential losses). When ν = 1, we have instead
a linear relationship between the information released and the associated eco-
nomical loss. The case ν > 1 models instead the situation where the customer
releases information starting with the least sensitive one. Here we don’t support
strongly any specific value for the privacy parameter.

Let’s consider now the economic quantities that measure the welfare of the
two stakeholders: the customer and the service provider. When the customer
obtains the services at the unit price p, it gets a surplus given by the excess of
its willingness-to-pay with respect to the actual price. If we integrate this surplus
over the range of purchased quantity, we obtain the overall customer’s surplus,
which is lowered by the expected loss due to data breaches. By recalling the
demand function (6), we obtain the customer’s net surplus

Sc =
(p − p∗)2

2p∗
q∗

[
1 + αmax

(
L

Lmax

)ν]
− LPdb. (8)

On the other hand, the service provider gets a profit p(1 − γ) for each unit of
service it sells, with γ, 0 < γ < 1, being the cost-to-price ratio. But the service
provider has to spend a part of its profit to invest in security and pay the sanction
(4), so that the net profit of the service provider is

Ssp = qp(1− γ)− I − qpΩLPdb = qp(1− γ − ΩLPdb)− I

= q∗p(1 + α)

(
1− p

p∗

)
(1− γ − ΩLPdb)− I.

(9)

By introducing the normalized variables X = L/Lmax and Y = I/Imax, we can
express the surplus functions (8) and (9) in the following form, which highlights
the most relevant variables

Sc =
(p − p∗)2

2p∗
q∗ [1 + αmax (X)

ν
]− LPdb,

Ssp = q∗p(1 + α)

(
1− p

p∗

)
(1− γ − ΩLmaxXPdb)− ImaxY,

(10)

where
Pdb = 1−

(
1− P (c)

maxX
θ
) [

1− P (s)
max

(
1− AY k

)]
. (11)
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Equations (10) show that the two major stakeholders’s surpluses are driven
in different directions by the two strategic variables on which they can act.
The customer is led to reveal as much personal information as it can to get
extra services at the same price, but this could expose it to larger losses, which
could completely offset that benefit. On the other hand, the service provider can
mitigate the sanction by reducing the probability of a data breach through larger
investments in security, but this represents an upfront expense, which lowers its
profit. The contrasting interests of the service provider and the customer can
therefore be modelled as a game, where the strategic variables are respectively
the amount of security investments for the service provider and the potential loss
(which acts as a proxy for the amount of information revealed) for the customer.

We now wish to solve the game and find the optimal values for the strategic
variables. We look first for the best response functions of the two players. We
recall that, in a two-player game, the best-response function of player i is the
function Zi(aj) that, for every given action aj of player j, assigns an action
ai = Zi(aj) that maximizes player i ′s payoff. In our case, the actions taken
by the two players consist in setting the normalized loss X and the normalized
investment Y , and their payoffs are represented by their surpluses, so that their
best response functions are

X̂ = argmax
X

{Sc(X,Y, Lmax, Imax, p, p
∗, q∗, αmax, P

(c)
max, P

(s)
max, θ, A, k, ν)},

Ŷ = argmax
Y

{Ssp(X,Y, Lmax, Imax, p, p
∗, q∗, αmax, P

(c)
max, P

(s)
max, θ, A, k, γ,Ω)}.

(12)

By applying those definitions to the surpluses (10), we obtain the following best
response function for the customer

X̂ = X :

{
∂Sc

∂p
= 0

}
= X : Y −

[
1

A
− ΔXν−1 − LmaxΛXθ

Υ (1− ΛXθ)

]1/k
= 0

(13)

where we have used the following positions

Δ =
(p∗ − p̂)2

2p∗
q∗αmaxν,

Λ = P (c)
max(1 + θ),

Υ = P (s)
maxALmax,

(14)

Here we have preferred to express the best response function in such an im-
plicit form, because writing X̂ as a function of Y would result in an awkward
expression. The best response for the service provider is instead

Ŷ =
[
ΦXΩ(1 + αmaxX

ν)
(
1− P (c)

maxX
θ
)] 1

1−k

, (15)
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where we use the position

Φ =
q∗p

(
1− p

p∗

)
LmaxAkP

(s)
max

Imax
(16)

From the couple of best response functions we can determine the Nash equilib-
rium: we have to find the pair of actions with the property that player 1’s action
is a best response to player 2’s action, and player 2’s action is a best response to
player 1’s action [10]. A Nash equilibrium is then reached as the solution of the
system of two equations (13) and (15). In graphical terms, the Nash equilibrium
is the intersection of the curves representing the best response functions. In this
case, we must be content with obtaining the Nash equilibrium (if any) through
a numerical procedure.

5 Effectiveness of the Sanctioning Approach

In Section 4, we have described the interaction between the customer and the
service provider as a strategic game, where the former decides how much infor-
mation to release and the latter decides how much to invest in security. The
solution of the game, represented by the Nash equilibrium, has to be found by a
numerical approach. In this section, we analyse the results obtained for a typical
scenario and assess the impact of the regulatory intervention.

We consider a typical scenario, represented by the values reported in Table
1, which has been built by gathering gathered data from a variety of sources,
including [11], [12], [13], and [14].

In order to assess the effectiveness of the sanctioning approach, we look for
some metrics. The ultimate goal of sanctions is to reduce the probability of data

Table 1. Parameters’ values for the reference scenario

Parameter Symbol Value

Max potential loss Lmax 25000 �
Max investment Imax 20 �
Willingness to pay p∗ 350 �
Price p 200 �
Max service consumption q∗ 7
Max reward coefficient αmax 0.15

Max probability of loss (service provider) P
(s)
max 5 · 10−3

Max probability of loss (customer) P
(c)
max 5 · 10−3

Power law exponent (service provider) k 0.5
Loss probability decrease coefficient A 0.9
Power law exponent (info release) ν 0.139
Power law exponent (customer) θ 0.139
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breaches by inducing the service provider to invest more in security. For that
purpose, we analyse here the impact of sanctions on the amount of investments
in security, the service provider’s revenues, and the probability of data breaches.

We analyze first the impact of the sanctioning factor Ω on the game’s out-
come. In Fig. 2, we see what happens when the sanctioning factor spans two
orders of magnitude, from 10−4 to 1.9 · 10−2; that curve represents the locus of
equilibria points as the sanctioning factor varies. As desired, raising Ω moves
both coordinates of the Nash equilibrium point upwards. If the sanction is more
severe, the service provider is induced into investing more in security, since that
will reduce the probability of data breaches and will help it avoid sanctions. At
the same time, if sanctions are higher, the customer takes a more relaxed attitude
and accepts to reveal more personal information (hence, risking more), since it
knows that the service provider will be more protective of its data. However,
the impact on the two stakeholders is of quite different intensity; more precisely,
the impact is much heavier on the service provider than on the end customer.
In fact, over the whole range of the sanctioning factor, the strategic leverage
exercised by the customer (the amount of tolerable loss) roughly doubles, while
the amount of security investment goes from nearly zero to 80% of its maximum
envisaged value. After an initial slower ascent, the trend of the curve in Fig. 2 is
roughly linear, meaning that the optimal amount of security investment grows
as a fixed multiple of the optimal amount of tolerable loss. On the other hand,
the impact of the sanctioning factor on either strategic leverage is more than
linear. As can be ascertained from Equation (15), the optimal value of security
investment grows as the 1/(1−k) power of the sanctioning factor; for the values
of the typical scenario of Table 1, that means that the security investment has
to grow as the square of the sanctioning factor, as shown in Fig. 3.

Since the aim of introducing a sanction is to induce the service provider into
investing more in security, the increase of that investment shown in Fig. 2 is a
proof of the effectiveness of the sanctioning approach. An additional indication
of such effectiveness can be obtained by observing the revenues of the service
provider, since the means adopted to act on the service provider is to punish
it by curtailing its revenues. In Fig. 4, we report the impact of the sanctioning
factor on the service provider’s revenues. The effect is quite harsh: by increasing
the sanctioning factor up to its maximum value, the revenues are slashed down
by a factor of three. This confirms the effectiveness of the approach, though it
also signals that it can be overdone.

Since the service provider is heavily affected by sanctions, we have to see if and
how much the other stakeholder, i.e., the customer, benefits from the regulatory
intervention. We report in Fig. 5 the customer’s surplus. The trend is opposite to
that experienced by the service provider: when the sanctioning factor rises, the
customer’s surplus grows. However, the effect is really limited: the whole range
of variation of the sanctioning factors results in a mere 0.74% increase of the
customer’s surplus. We can safely conclude that the sanctioning approach has a
heavy negative impact on the service provider without resulting in a significant
net benefit for the customer.
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Fig. 2. Impact of the sanctioning factor on equilibrium
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Fig. 3. Impact of the sanctioning factor on investments in security



274 M. Naldi, M. Flamini, and G. D’Acquisto

0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018

Sanctioning factor

20

30

40

50

60

S
er

vi
ce

 p
ro

vi
de

r 
su

rp
lu

s

Fig. 4. Impact of the sanctioning factor on the service provider’s surplus
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Fig. 5. Impact of the sanctioning factor on the customer’s surplus

Finally, we consider the ultimate goal of the sanctioning policy: reducing the
probability of data breaches. In our model, that probability is linked to the be-
haviour of both the service provider and the customer, as embodied by Equations
(1), (2), and (3). We expect sanctions to reduce the data breach probability as
a by-product of the spur to invest more in security. Actually, in Fig. 6 we see
that the contribution to the data breach probability due to the service provider
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Fig. 6. Impact of sanctions on the the data breach probability (P
(s)
db )
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Fig. 7. Impact of sanctions on the data breach probability P
(c)
db

(P
(s)
db ) reduces by a factor of three over the range employed for the sanctioning

factor. Hence, the sanctioning policy is effective in spurring a virtuous behaviour
on the service provider’s side.

On the other hand, the sanctioning policy inspires confidence in the customer,
who is led to a more relaxed attitude when releasing its personal data. Its con-

tribution to the overall data breach probability P
(c)
db increases as sanctions grow,

as shown in Fig. 7, though by a very small amount.
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As security is concerned, sanctions have therefore an effect of different sign on
the two players. The net effect is shown in Fig. 8; the introduction of sanction
leads anyway to a reduction of the data breach probability.
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Fig. 8. Impact of sanctions on the overall data breach probability

6 Conclusions

We have modelled the impact of security on the interactions between customers
and service providers as a game, where the strategic leverages employed by the
two players are the amount of tolerable loss (considered as a proxy for the amount
of information released) for the customer and the amount of investments in se-
curity for the service provider. In the game, the negative effect of poor security
practice on the probability of data breaches is punished through a sanction im-
posed by the regulator on the service provider, proportional to its turnover. The
solution of the game for a typical scenario shows that sanctions lead the service
provider to increase its investments in security and reduce the probability of
data breaches, while inducing a more relaxed attitude of the customer to release
its personal data. While the latter effect may not be positive, the sanctioning
approach proves to be effective as a means to promote a greater responsibility
of the service provider in dealing with data breaches.
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Katsikas, S., Quirchmayr, G. (eds.) TrustBus 2012. LNCS, vol. 7449, pp. 149–160.
Springer, Heidelberg (2012)

8. European Commission. Proposal for a Regulation of the European Parliament and
of the Council on the protection of individuals with regard to the processing of
personal data and on the free movement of such data (General Data Protection
Regulation). COM (2012) 11 final (Co-decision procedure) (January 25, 2012)

9. The Practical Law Company. The PLC multi-jurisdictional guide to data protection
(June 1, 2012), http://uk.practicallaw.com/5-518-8056#

10. Gibbons, R.: A Primer in Game Theory. Prentice-Hall (1992)
11. Javelin: 2011 identity fraud survey report. Technical report, Javelin Strategy (2011)
12. Osservatorio eCommerce B2c. B2c eCommerce in Italy (in Italian). Technical re-

port, Netcomm-School of Management of Politecnico di Milano (2011)
13. Casaleggio Associati. E-commerce in Italy 2011 (in Italian). Technical report (April

2011), http://www.casaleggio.it/e-commerce/
14. AGCOM (Italian Communications Regulatory Authority). Annual report (2011),

http://www.agcom.it

http://uk.practicallaw.com/5-518-8056#
http://www.casaleggio.it/e-commerce/
http://www.agcom.it


Efficient and Private Three-Party Publish/Subscribe

Giovanni Di Crescenzo1, Jim Burns1, Brian Coan1, John Schultz3, Jonathan Stanton3,
Simon Tsang1, and Rebecca N. Wright2

1 Applied Communication Sciences, NJ, USA
{gdicrescenzo,bcoan,stsang,jburns}@appcomsci.com

2 Rutgers University, NJ, USA
rebecca.wright@rutgers.edu

3 Spread Concepts, MD, USA
{jschultz,jonathan}@spreadconcepts.com

Abstract. We consider the problem of modeling and designing publish/subscribe
protocols that safeguard the privacy of clients’ subscriptions and of servers’ pub-
lications while guaranteeing efficient latency in challenging scenarios (i.e., real-
time publication, high data arrival rate, etc.). As general solutions from the theory
of secure function evaluation protocols would not achieve satisfactory perfor-
mance in these scenarios, we enrich the model with a third party (e.g., a cloud
server). Our main result is a three-party publish/subscribe protocol suitable for
practical applications in such scenarios because the publication phase uses only
symmetric cryptography operations (a result believed not possible without the
third party). At the cost of only a very small amount of privacy loss to the third
party, and with no privacy loss to the publishing server or the clients, our proto-
col has very small publication latency, which we measured for large parameter
ranges to be just a small constant factor worse than a publish/subscribe protocol
guaranteeing no privacy.

1 Introduction

Publish/subscribe protocols address the problem of publishing data items to interested
participants. In a simple formulation of the problem, a publish/subscribe protocol can
be considered a protocol between multiple clients, each with its own interests, and mul-
tiple servers with data items and associated topics. The servers would like to distribute
a data item to a client if there is a match between the data item’s topics and the client’s
interests. These protocols come in many different formulations and variations, as well
surveyed in [1], and find applications in a large number of areas. In many applications,
however, privacy is a sensitive issue that may deter from the implementation or use of
a publish/subscribe system. For instance, in finance, a publish/subscribe system that al-
lows clients to receive quotes from a stock market server, while revealing the clients’
interests, may not only impact clients’ privacy but also significantly alter the stock mar-
ket pricing process and overall integrity.

In this paper, we investigate the modeling and design of publish/subscribe proto-
cols with satisfactory levels of both privacy and efficiency in a challenging scenario of
high arrival-rate data and real-time publishing. First, we note that designing a private
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publish/subscribe protocol in the two-party model (i.e., with no third party) using gen-
eral solutions from the area of secure function evaluation protocols (e.g., [2]) would
not meet our efficiency targets, one reason being that such protocols require public-key
cryptographic primitives [3], which are significantly more expensive than their private-
key cryptography counterparts. Departing from the two-party model and considering a
three-party model helps towards efficiency. General solutions in this three-party model
(i.e., client, server and third party), such as [4–6], would likely still be not efficient in
our scenario because of significant resource requirements (e.g., interaction and/or ran-
domness and/or cryptographic operations) for each gate and each input bit of the circuit
associated with the publish/subscribe predicate. Instead, we consider the problem of
designing efficient three-party publish/subscribe protocols, possibly at the expense of
allowing some minimal privacy leakage to the third party (but not to the server or the
clients and not about actual interests, topics or data items).

Our Contribution and Solution Sketch. Under this problem formulation, we design a
publish/subscribe protocol that satisfies a highly desirable set of requirements: publica-
tion correctness (i.e. clients obtain a data item if their subscription predicate is satisfied
by their interests and the data item’s topics), privacy against malicious adversaries (i.e.,
a malicious adversary corrupting any one of client, server or third party cannot extract
any information about interests, topics or data items) and efficiency (i.e., the publi-
cation, which is the real-time part of the protocol, only requires a small number of
private-key cryptography operations).

Our protocol is natural and simple, and uses pseudo-random functions [7] and sym-
metric encryption as cryptographic primitives (but could be implemented using only
information-theoretic tools). Our main technical contribution is that of representing
client’s interests and data item’s topics using two-layer cryptographic pseudonyms, re-
quiring only a few symmetric cryptography operations per (interest,topic) pair, and then
directly performing computation over such pseudonyms, by testing equality statements
without need for cryptographic operations. The computation of the topic pseudonyms
is performed by the server during publication (with a randomizer specific to the data
item) and the computation of the interest pseudonyms is split into two phases: the 1st
layer is computed by the client during subscription (with a client-specific randomizer)
and the 2nd layer is computed by the third party during publication (and given the ap-
propriate randomizer by the server). During publication, the third party can evaluate the
client’s subscription predicate using interest and topic pseudonyms, without any further
cryptographic operation. A high-level description can be found in Figure 1.

We prove privacy properties of our protocol using a natural adaptation of the real/ideal
security definition approach (frequently used in cryptography), and show that our pro-
tocol leaks no information to server and clients, and only minimal information to the
third party: the structure of each client’s subscription predicate (but not the client’s in-
terests) and how many (interest,topic) pairs match. We also describe measurements of
the protocol’s publication latency, which, for large and practical parameter ranges, is
only a small (≤ 6) constant slower than a publish/subscribe system with no privacy.

Related Work. Although there are a number of interesting publish/subscribe protocols
with various security or privacy properties (e.g., [8–14]), they do not our combined
functionality and privacy requirements for a mixture of reasons, including: a differ-
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Fig. 1. Informal description of our publish/subscribe protocol

ent participant model (i.e., they typically consider entirely distributed models with no
servers or third parties), and a different set of capabilities and functionalities (i.e., they
typically target simple rules for content publication). Perhaps the closest solutions to
our paper are [8, 12], which use essentially the same participant model as ours. To the
best of our knowledge, no previous work presents rigorous modeling of security or pri-
vacy requirements for publish/subscribe systems or rigorous proofs that the proposed
solutions meet any such requirements.

2 Models and Definitions

In this section we detail definitions of interest during our investigation of private pub-
lish/subscribe protocols: data, participant, topology, network and protocol models and
publication correctness, privacy and efficiency requirements.

Data Model. We consider the following data objects or structures.

Data items. We represent the published data items as binary strings of length �d.

Dictionary and topics. To each data item, we associate d keyword tags, also denoted
as topics, taken from a known set, called the dictionary, assumed, for simplicity, to be
the set of all �t-bit strings. To each client, we associate c keyword tags, also denoted as
interests, taken from the dictionary.

Subscription predicate: for i = 1, . . . , n, a subscription from client Ci is formally
represented as a boolean predicate, denoted as pi, having equality statements of the type
“toph = intj” as inputs, where toph denotes the h-th topic associated with the current
data item and intj denotes the j-th interest associated with Ci, for h ∈ {1, . . . , d} and
j ∈ {1, . . . , c}. For each subscription predicate pi, we define the associated predicate
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structure psi as the representation of the predicate obtained by replacing each equality
statement “toph = intj” with the pair (h, j). That is, each input to psi keeps pointers to
the same topic and the same interest as in pi, but does not explicitly contains the topic
and interest strings. (This allows parties to have some workable representation of the
predicate, without revealing the actual strings representing interests or topics).

Data items and associated topics are assumed to be streamed (at possibly large speed)
to the server. Generalizations to other data arrival scenarios are possible, but not further
discussed in this paper. We have, for simplicity, defined length and number variables
�d, �t, d, c as system parameters with value known to all parties; however, smaller values
for specific clients or data items can be accommodated by simple padding techniques.

Participant and Network Model. We consider the following types of participants,
all assumed to be efficient (i.e., running in probabilistic polynomial-time in a common
security parameter, denoted in unary as 1σ). A client is a party that submits subscription
updates based on his interests and a specific subscription predicate; we assume there are
n parties, denoted as C1, . . . , Cn; a generic client may also be denoted as C. The server
is the party, denoted as S, processing submitted data items (and associated topics) and
client interests to realize the publish/subscribe functionality. The third party, denoted
as TP , helps clients and servers to carry out their functions.

Each client is assumed to be capable of communicating with both the server and the
third party. All clients are capable to be communicating with each other, but are not
required to do so in our proposed protocol. For simplicity, we consider a confidential
and authenticated network (this assumption is without loss of generality as parties can
use a security protocol like TLS) with no packet loss. Additionally, we also restrict
to the scenario where server and third party are assumed to be always connected to
the network; clients are allowed to temporarily disconnect from the network (and thus
potentially not receive matching data items while disconnected).

Protocol Model. A publish/subscribe protocol includes the following subprotocols:

Init: S and TP may exchange messages with C1, . . . , Cn, to initialize their data struc-
tures and/or cryptographic keys. Formally, on input a security parameter 1σ, protocol
Init returns private outputs for all parties, denoted as outinS , outinTP , {outinC : ∀C}.

Subscribe: C submits his updated subscription (based on C’s set of interests and a
subscription predicate) to S (and possibly TP ) who update their record of C’s sub-
scription. Formally, on input a security parameter 1σ to all parties, and a set of interests
int1, . . . , intc and a subscription predicate pi as private inputs of client Ci, for some
i ∈ {1, . . . , n} protocol Subscribe returns private outputs for all participants, denoted
as outsuS , outsuTP , {outsuC : ∀C}.

Publish: S distributes the data item to each client based on the item’s topics and the
clients’ interests and subscription predicate, possibly in collaboration with TP . In terms
of distribution strategy, this protocol follows the so-called ‘push mode’: as soon as a new
data item arrives, it is processed by S and TP and eventually sent to the appropriate
subset (or all) of the clients. Formally, on input a security parameter 1σ to all parties,
and a data item m and a set of topics top1, . . . , topd as private inputs of server S,
protocol Publish returns a (possibly empty) data item m as private output for (possibly
a subset of the) clients and additional private outputs for all participants, denoted as
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outpuS , outpuTP , {outpuC : ∀C}. Generalizations to other distribution strategies, like the
so-called ‘pull mode’, are possible but not further discussed in this paper.

Requirements. Let σ be a security parameter. A function over the set of natural num-
bers is negligible if for all sufficiently large σ ∈ N , it is smaller than 1/p(σ), for
any polynomial p. Two distribution ensembles {D0

σ : σ ∈ N} and {D1
σ : σ ∈ N}

are computationally indistinguishable if for any efficient algorithm A, the quantity
|Prob[x ← D0

σ : A(x) = 1 ] − Prob[x ← D1
σ : A(x) = 1 ]| is negligible in σ (i.e.,

no efficient algorithm can distinguish if a random sample came from one distribution
or the other). A participant’s view in a protocol (or a set of protocols) is the distribution
of the sequence of messages, inputs and internal random coins seen by the participant
while running the protocol (or the set of protocols). We address publish/subscribe pro-
tocols that satisfy the following classes of requirements: correctness (i.e., correctness
of publication of data items to clients with matching predicate and interests), privacy
(i.e., privacy of data items, interests and topics against all protocol participants, and of
the subscription predicate against the third party), and efficiency (i.e., minimal time,
communication and round complexity). We will use the following requirements.

Publication Correctness: for each data item m and associated topics top1, . . . , topd,
each client Ci with subscription predicate pi and interests int1, . . . , intc, the probabil-
ity ε that, after an execution of Init on input 1σ, an execution of Subscribe on input
int1, . . . , intc, pi, and an execution of Publish on input m, top1, . . . , topd, one of the
following two events happens, is negligible in σ: (a) predicate pi is satisfied by interests
int1, . . . , intc and topics top1, . . . , topd but outpuCi

�= m; (b) predicate pi is not satisfied
by interests int1, . . . , intc and topics top1, . . . , topd but outpuCi

= m.

Privacy: We use a natural adaptation of the real/ideal and universal composability (see,
e.g., [15]) security frameworks, which are commonly used in the cryptography litera-
ture. Assume an environment E that delivers private inputs and randomness to all par-
ties, as needed in the publish/subscribe protocol lifetime. For any efficient (i.e., prob-
abilistic polynomial time) adversary Adv corrupting one of the three party types (i.e.,
client C, server S or third party TP ), there exists an efficient algorithm Sim (called the
simulator), such that for any efficient environment algorithm E, Adv’s view in the “real
world” and Sim’s output in the “ideal world” are is computationally indistinguishable
to E, where these two worlds are defined as follows. In the real world, runs of the
Init, Subscribe and Publish subprotocols are executed, while Adv acts as the corrupted
party. In the ideal world, each run of the Init, Subscribe and Publish subprotocols
is replaced with an ‘ideal execution’ that is specifically designed to only reveal some
‘minimal information’, in addition to system parameters, inputs and outputs based on
the publish/subscribe funtionality and related condition (see, e.g.,[16]). Here, we choose
this minimal information to be the predicate structure psi and the evaluation results of
the ‘interest = topic’ equality statements inputs to psi for TP (and no additional in-
formation for C and S). Thus, we define these ideal executions of Init, Subscribe and
Publish as follows:
1. Ideal-Init, on input security parameter 1σ, returns all system parameters and an ok

string to all participants.
2. Ideal-Subscribe, on input a predicate p and a sequence of c interests int1, . . . , intc

from C, returns a predicate structure ps to TP and an ok string to C, S and TP .
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3. Ideal-Publish, on input a data item m and a sequence of d topics top1, . . . , topd of
known length from S, returns an ok string to S and the following for each client
Ci: the data item m to Ci if predicate pi is satisfied by Ci’s interests and m’s topics
top1, . . . , topd; and the following to TP : the predicate structure psi and bits bhj
denoting which pairs (h, j) input to psi satisfy “topic(h)=interest(j)” (or not).

Efficiency: The protocol’s latency is measured as the time taken by a sequential exe-
cution of subprotocols Init,Subscribe,Publish (as a function of σ and other system
parameters). The protocol’s communication complexity (resp., round complexity) is de-
fined as the length (resp., number) of the messages, as a function of σ and other system
parameters, exchanged by C, S and TP during subprotocols Init,Subscribe,Publish.
Even if we will mainly focus our analysis on publication latency, our design targets
minimization of all the mentioned efficiency metrics.

Although we have focused our formalization on the correctness, privacy and efficiency
properties, we note that our design has targeted a number of additional security proper-
ties, which are however obtained using well-known techniques. Specifically, properties
like confidentiality of the communication between all participants, message sender au-
thentication, message receiver authentication, and communication integrity protection,
can be immediately obtained by using a security protocol like TLS. Other simple and
inexpensive steps to add security properties (i.e., to prevent TP to modify the encryp-
tion of the data item received by S before transferring it to the appropriate clients) are
directly discussed in the presentation of our protocol. In the rest of this document, we
describe our protocol, prove that it satisfies the above correctness and privacy require-
ments, and show some runtime analysis of its efficiency properties.

3 A Simple and Efficient Publish/Subscribe Protocol

In this section we describe our publish/subscribe protocol. We start with a formal state-
ment of the properties of our protocol, then discuss the known and new cryptographic
primitives used in the protocol, and give an informal description, a detailed description,
and a proof of the properties of our protocol.

Theorem 1. In the model of Section 3.1, there exists (constructively) a publish/subscribe
protocol satisfying the following properties:

1. publication correctness with error negligible in security parameter σ;
2. privacy against adversary Adv corrupting S, under no unproven assumption;
3. privacy against adversary Adv corrupting C, under no unproven assumption;
4. privacy against adversary Adv corrupting TP , assuming that F is a family of

pseudo-random functions and (KG,E,D) is a secure symmetric encryption scheme.

An important claim of our paper is that our protocol, in addition to satisfying The-
orem 1, has desirable performance on all efficiency metrics: round complexity, com-
munication complexity, subscription latency, and, especially, publication latency. Our
testing experiments and results on the latter metric can be found in Section 3.2.
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3.1 Cryptographic Primitives and Properties Used

Our publish/subscribe protocols use the following cryptographic primitives or tools or
approaches: pseudo-random functions [7], symmetric encryption schemes, and 2-layer
cryptographic pseudonyms.

Pseudo-random Functions and Secure Symmetric Encryption Schemes. A pseudo-
random function F [7] maps a key k ∈ {0, 1}κ and an input x to an output y ∈ {0, 1}�,
for some values κ, � suitably related to the security parameter σ, and with the property
that to any efficient algorithm making queries to an oracle O, the case O = F (k, ·),
when k is randomly chosen, is computationally indistinguishable from the case O =
R(·), for a random function R with input and output of the same length. For our results,
F could be realized using standard cryptographic tools like block ciphers or crypto-
graphic hashing.

A symmetric encryption scheme [17] is a triple (KG,E,D), where KG, the key gen-
eration algorithm, returns a key k on input a security parameter 1κ; E, the encryption
algorithm, returns a ciphertext c on input a key k and a message m; D, the decryption
algorithm, returns a plaintext m′ on input a key k and a ciphertext c. For our results,
(KG,E,D) can be realized using textbook schemes based on block ciphers and pseudo-
random functions, which satisfy well accepted security notions such as security in the
sense of indistinguishability against chosen ciphertext attacks.

Two-Layer Cryptographic Pseudonyms. To protect the privacy of clients’ interests
and data item’s topics, we use cryptographic pseudonyms (possibly involving repeated
applications of F ) so to later allow TP to perform computation directly on crypto-
graphic pseudonyms, instead of the individual interest and topic bits (as done in other
techniques like secure function evaluation). To enable equality checks between client
interests and item topics by the third party, the interests and topics’ pseudonyms will be
defined using the same pseudonym function pF , consisting of repeated application of
F , and defined as follows: on input x, function pF returns

F (ks,tp, F (ks,c(i), x|ri)|s),
where ks,c(i) is a key shared between S and Ci, ks,tp is a key shared between S and
TP , ri is a client specific randomizing nonce, and s is a data item specific randomizing
nonce. Building on [18], cryptographic pseudonyms use keys shared by different parties
and achieve the following: C can generate 1-layer interest pseudonyms, S can generate
topic pseudonyms, TP can check whether an interest pseudonym is equal to a topic
pseudonym, and leakage of both interests and topics to TP is prevented. Furthermore,
the computation of key ks,c(i) is re-randomized at each execution of the Subscribe
protocol and for each interest, using a random counter ctr and computing ks,c(i),j =
F (ks,c(i), ctr+j), for j = 1, . . . , c. We note that the function pF satisfies the following

Lemma 1. If F is a pseudo-random function the following holds: (1) if interest intj
and topic toph are equal, then so are the associated interest pseudonym pF (intj) and
topic pseudonym pF (toph); (2) if the interest intj and topic toph are distinct, then the
associated interest pseudonym pF (intj) and topic pseudonym pF (toph) are computa-
tionally indistinguishable from two random and independent strings of the same length.
(Hence, they are not different only with negligible probability).
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Proof of Lemma. Part (1) of this fact follows from the fact that pF (intj) is computed
from intj in the same way as pF (toph) is computed from toph (i.e., using a triple
application of F , based on the same counter ctr, and the same randomizing nonces
ri, s, and the same keys ktp,s, ks,c(i),j). Part (2) of this fact follows by observing that
when intj �= toph, the function pF is pseudo-random (as so is F ) and, when evaluated
on two distinct inputs, returns two outputs that are computationally indistinguishable
from two random strings of the same length. �

In our publish/subscribe protocol, TP can compute 2-layer interest pseudonyms,
with help from client and server, and receive 2-layer topic pseudonyms from the server.
Later, it can then evaluate the client’s subscription predicate using interest and topic
pseudonyms as input, without further cryptographic operations. By Lemma 1, this is
equivalent, except with negligible probability, to evaluating the client’s predicate pi on
input interests and topics, but without any leakage of information about interests or
topics to any unintended parties. Depending on the result of the predicate evaluation,
TP sends or does not send an encrypted version of the data item to the client, who
decrypts it.

The privacy of interests and topics is guaranteed by the computation of cryptographic
pseudonyms via pseudo-random functions. The privacy of the data item is guaranteed
by use of encryption. We avoid TP to learn correlations among interests in the same
subscription (e.g., if the same interest is used more than once) by using an independent
key ks,c(i),j , computed using a key ks,c(i) and a random counter ctri, to compute the
pseudonym for each j = 1, . . . , c. We avoid TP to learn correlations among interests in
different subscriptions (e.g., if the same interest is used on two different subscriptions)
by randomizing the pseudonym computation with random nonce ri. We avoid TP to
learn correlations among topics in different data items (e.g., if the same topic appears
on two different data items) by randomizing the pseudonym computation with random
nonce s. We achieve high efficiency on publication latency as the Publish subprotocol
only requires highly efficient symmetric-key computations.

3.2 Detailed Description

We proceed with a formal description of our publish/subscribe protocol (see Figure 2
for a pictorial description, however omitting some steps for better clarity).

Preliminaries: This protocol assumes a point-to-point secure communication proto-
col such as TLS to be used for all exchanged communication, and suitable message
headers including protocol name, subprotocol name, and unique session, sender and
receiver ID’s. While for simplicity of presentation, we always refer to a single client C
in the description below, we note that in our multiple-client scenario, each client runs
C’s program described below (using independently chosen random strings), and the
other parties repeat their program, described below, for each of the clients (again, using
independently chosen random strings).

Init: Server S sets a key length parameter κ (e.g., κ = 128). Then S and each client
Ci, for i = 1, . . . , n, run a secure key-agreement protocol to jointly generate a ran-
dom and independent key ks,c(i) ∈ {0, 1}κ (such a protocol can be built using standard
cryptographic protocols [19] or even just requiring S to choose a key and send it to Ci).
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Analogously, S and third party TP run a secure key-agreement protocol to jointly gen-
erate a random and independent key ks,tp ∈ {0, 1}κ. As a result of these subprotocols,
one symmetric key is shared by S and Ci but not by TP , and one key is shared by S and
TP but not by any of C1, . . . , Cn. Moreover, these keys will actually be used as inputs
to a pseudo-random function to generate, using standard techniques (e.g., a counter and
a block cipher like AES), an arbitrarily large number of pseudo-random keys with the
same property (i.e., being shared by only two of the parties).

Subscribe: Let C be a client with interests int1, . . . , intc, and a subscription predicate
p with predicate structure ps. In this operation, S, TP and client Ci, for some i ∈
{1, . . . , n}, run the following instructions:

1. Ci uniformly and independently chooses a random nonce ri ∈ {0, 1}� and a ran-
dom starting counter ctri ∈ {0, 1}�

2. For j = 1, . . . , c, Ci computes pseudo-random key ks,c(i),j = F (ks,c(i), ctri + j)
and 1-layer interest pseudonym ipij,1 = F (ks,c(i),j , (intj|ri))

3. Ci sends the current subscription predicate structure psi and 1-layer pseudonyms
(ipi1,1, . . . , ip

i
c,1) to TP

4. Ci sends (ri, ctri) to S
5. TP replacesCi’s 1-layer interest pseudonyms with the just received (ipi1,1, . . . , ip

i
c,1)

6. TP replaces Ci’s subscription predicate structure with the just received psi
7. S replaces Ci’s random nonce and counter with the just received (ri, ctri)

Publish: We assume that S receives a new data item m, with topics top1, . . . , topd. In
this operation, involving S, TP and clients C1, . . . , Cn, the parties run the following
instructions:

1. S uniformly and independently chooses a nonce s ∈ {0, 1}�
2. S computes data item ciphertext M = E(k,m) and Ki = E(ks,c(i), k), for i =

1, . . . , n
3. For j = 1, . . . , c and i = 1, . . . , n,

S computes ks,c(i),j = F (ks,c(i), ctri + j), using last ctri received from Ci

4. For each h = 1, . . . , d, j = 1, . . . , c and i = 1, . . . , n,
S computes 1-layer topic pseudonym tpih,j,1 as = F (ks,c(i),j , toph|ri))
S computes 2-layer topic pseudonym tpih,j,2 as = F (ks,tp, (tp

i
h,j,1|s))

5. S computes tags tagi = F (ks,c(i),M |Ki), for i = 1, . . . , n
6. S sends (M, s, {tpih,j,2 : h, j, i}, {(Ki, tagi) : i = 1, . . . , n}) to TP
7. For i = 1, . . . , n,

for j = 1, . . . , c,
TP computes 2-layer interest pseudonyms ipij,2 = F (ks,tp, (ip

i
j,1|s))

TP evaluates psi on input {tpih,j,2 : h, j, i} and {ipij,2 : j = 1, . . . , c}
if psi evaluates to 1, then TP sends (M,Ki, tagi) to Ci

if Ci receives a message (M,Ki, tagi),
if tagi �= F (ks,c(i),M |Ki) then Ci returns: “error” and halts.

else Ci computes k = D(ks,c(i),Ki), m = D(k,M) and returns: m.

In the rest of this section we discuss why our protocol satisfies publication correctness,
privacy and efficiency properties, as defined in Section 2.
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Server Third Party  Client i  

{ipj1: j}, predicate structure psi 
 

item, d topics 

            M, s, {tphj2: h,j,i}, {Ki, tagi : i}  

         does psi over  
{tphj2=F(ks,tp,ipj1|s)}: h,j}  
           evaluate to 1? 
 

ksc(i) 

randomly generate ri and ctri 
{ipj1 = F(ks,c(i),j; interest(j)|r)): j =1,…,c} 
 

M = E(ksc; item); tag=F(ksc;M) 
randomly generate nonce s 
for each h=1,…,d and j=1,…,c 
    tphj2=F(ks,tp;F(ks,c,j;topic(h)|ri)|s)   

(yes): M, Ki, tagi 

(no) 
check that tagi=F(ksc;M|Ki) 
if yes, then item = D(ksc(i); M) 

Init 

Publish 

Subscribe 
     

ri and ctri 

ks,tp 

Fig. 2. Our publish/subscribe Protocol

3.3 Properties: Correctness, Privacy and Efficiency

Publication Correctness. We observe that a client Ci receives data item m from TP if
the subscription predicate structure psi returns 1 when its input equality statements are
evaluated over the interest and topic pseudonyms (rather than the interests and topics
themselves). However, we note that psi returns the same value, except with negligible
probability, regardless of whether the equality statements are evaluated over the inter-
est/topic pseudonyms or over the interests/topics. This latter claim, implying the publi-
cation correctness property, is implied by observing that there is a polynomial number
of interests and topics and by an application of Lemma 1.

Privacy. We achieve privacy against a malicious adversary Adv that corrupts any one
of the participants; i.e., either S, or TP , or a client Ci. The protocol only leaks val-
ues of global parameter (i.e., length parameters) and the intended protocol functionality
outputs (i.e., the data items to the matching clients) to clients or server. To the third
party, the protocol only leaks the following: the client’s predicate structure, but not the
interests, (here, we note that it is not unreasonable for a practical system to have the
client’s predicate structure as a known protocol parameter), and the bits bhj denoting
whether the j-th interest in a client’s subscription is equal to the h-th topic associated
with a data item (without revealing anything else about interests, topics or data items).
Actually, our proof extends to malicious adversaries that corrupts all clients or a subset
of them. We divide the formal proof into 3 cases, depending on whether Adv is corrupt-
ing S, TP , or a client Ci. In all cases, the simulation of the Init protocol directly fol-
lows from the simulation properties of the key agreement protocol used. Thus, we only
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focus on the Subscribe and Publish subprotocols. Let m(S, TP ) denote the message
(M, s, {tpih,j,2 : h, j, i}, {(Ki, tagi) : i = 1, . . . , n}) sent from S to TP .

Case Adv=S: Assume an adversary, denoted as Adv, corrupts S. For any such Adv, we
show a simulator Sim that produces a view for Adv in the ideal world (while posing as
S) that is computationally indistinguishable from Adv’s view in the real world (while
posing as S), during the execution of the Init, Subscribe and Publish protocols.

To simulate Adv’s view in the Subscribe subprotocol, Sim invokes the ideal Sub-
scribe functionality, which only returns an ok string to S, and then randomly chooses
a randomizing nonce ri and a random starting counter ctri for each client Ci, for
i = 1, . . . , n. Then Sim simulates the subscription message from Ci to S as (ri, ctri).

To simulate Adv’s view in the Publish subprotocol, on input the data item m and
the associated topics top1, . . . , topd, Sim invokes the ideal Publish functionality, which
only returns an ok string to S, and then runs Adv on input m, top1, . . . , topd to obtain
a message m(S, TP ). If S does not return such a message, then Sim simply halts.

We note that for all three protocols, the simulation from Sim is perfect, in that the
distribution of Sim’s output (representing Adv’s view in the ideal world) and the dis-
tribution of Adv’s view in the real world are the same.

Case Adv=TP: Assume an efficient malicious adversary, denoted as Adv, corrupts TP .
For any such Adv, we show a simulator Sim that produces a view for Adv in the ideal
world (while posing as TP ) that is computationally indistinguishable from Adv’s view
in the real world (while posing as TP ), during the execution of the Init, Subscribe and
Publish protocols.

To simulate Adv’s view in the Subscribe subprotocol, Sim invokes the ideal Sub-
scribe functionality, which returns client Ci’s subscription predicate structure psi to
TP , and sends psi to Adv. Moreover, Sim randomly and independently chooses val-
ues ipi,·j,1 ∈ {0, 1}�, for j = 1, . . . , c, and sends them to Adv.

Finally, to simulate Adv’s view in the Publish subprotocol, Sim invokes the ideal
Publish functionality, which returns to TP bits bihj denoting whether equality “topic(h)
= interest(j)” in predicate pi is satisfied or not. Then, to simulate message m(S, TP ),
Sim simulates each value in this message’s tuple either as a suitable encryption of
a random value of the appropriate length (which is known as it is a protocol param-
eter) or as the output of the appropriate length (also known as a protocol parame-
ter) of a pseudo-random evaluation, as follows. First of all, Sim randomly chooses
keys k′, s′, k′

s,c(1), . . . , k
′
s,c(n), a data item m′, and hash tags tag′1, . . . , tag

′
n, and com-

putes an encryption M ′ = E(k′,m′) and encryptions K ′
i = E(k′

s,c(i), k
′), for i =

1, . . . , n. Furthermore, to simulate the topic pseudonyms, Sim considers each equation
“topic(h)=interest(j)” in predicate structure psi, for each i = 1, . . . , n. If bihj = 0 (i.e.,

the equation does not hold), then Sim uniformly chooses a value tpi,·h,j,2. If bihj = 1

(i.e., the equation holds), then Sim sets value tpi,·h,j,2 = ipi,·j,2 = F (ks,tp, (ip
i,·
h,j,1|s)).

Finally, Sim can simulates m(S, TP ) as (M ′, s′, {tpi,·h,j,2 : h, j, i}, {(K ′
i, tag

′
i) : i =

1, . . . , n}) and the message by TP to clients by simply running Adv’s program.
We now show that Sim’s output (i.e., Adv’s view in the ideal world) and Adv’s

view in the real world are computationally indistinguishable. With respect to the sim-
ulation of subprotocols Subscribe and Publish, we can prove that the simulation is
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computationally indistinguishable from Adv’s view in the real world, as follows. First,
we observe that the only differences between the two views are the following:

1. the value M , an encryption of data item m, in Adv’s view vs. the value M ′, an
encryption of a random value of the same length, in Sim’s output: this difference
is proved to be computationally indistinguishable by using the security property of
the used symmetric encryption scheme;

2. the values tag1, . . . , tagn, where tagi is a MAC tag of (M,Ki), for i = 1, . . . , n,
in Adv’s view vs. the randomly chosen values tag′1, . . . , tag

′
n in Sim’s output: this

difference is proved to be computationally indistinguishable by using the pseudo-
randomness property of the used function F ;

3. the 1-layer interest pseudonyms ipij,1 in Adv’s view vs. the randomly chosen values

ipi,·j,1 in Sim’s output: this difference is proved to be computationally indistinguish-
able by using the pseudo-randomness property of the used function F ;

4. conditioned on the interest pseudonyms, the topic pseudonyms tpih,j,2 in Adv’s

view vs. the values tpi,·h,j,2 in Sim’s output: these values are equally distributed
when bihj = 1 (i.e., the equation holds) since they are computed in the same way in
both spaces, and are proved to be computationally indistinguishable when bihj = 1
(i.e., the equation does not hold) by using the pseudo-randomness property of F .

We then observe that by combining the above observations and a standard hybrid ar-
gument [17], we can prove that the entire Sim’s output and the entire Adv’s view in
the real world are computationally indistinguishable, assuming the pseudo-randomness
property of F and the security of the symmetric encryption scheme used.

Case Adv=C: Assume an adversary, denoted as Adv, corrupts a client Ci. For any
such Adv, we show a simulator Sim that produces a view for Adv in the ideal world
(while posing as Ci) that is computationally indistinguishable from Adv’s view in
the real world (while posing as Ci), during the execution of the Init, Subscribe and
Publish protocols. To simulate the Subscribe subprotocol, given as input interests
int1, . . . , intc and predicate pi, Sim invokes the ideal Subscribe functionality, which
only returns an ok string to Ci, and invokes C to obtain the messages for TP and
S. Finally, to simulate the Publish subprotocol, Sim invokes the ideal Publish func-
tionality, possibly obtaining (or not) data item m and topics top1, . . . , topd as output
for Ci, depending on whether the predicate pi is satisfied by topics top1, . . . , topd and
interests int1, . . . , intc or not. In the former case, Sim has to simulate the message
M,Ki, tagi from TP and can use data item m to do that perfectly, as follows. Sim
computes M ′ = E(ks,c(i),m), randomly chooses key k′ ∈ {0, 1}κ, and computes
K ′

i = E(ks,c(i), k
′) and tag′i = F (ks,c(i), (M

′|K ′
i)). By inspection, we see that the

simulation of subprotocol Init is perfect, in that the distribution of Sim’s output and the
distribution of Adv’s view in the real world are the same.

Efficiency. While it is easy to verify that our protocol is very efficient on the commu-
nication complexity, round complexity and subscription latency metrics, it is of special
interest to evaluate the publication latency metric, under varying parameter values. We
implemented both our protocol, called P1, and a publish/subscribe protocol, called P0,
that performs no additional cryptographic operation, other than using the TLS protocol
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on all messages between parties. The testing was done on a collection of 6 Dell Pow-
erEdge 1950 processors and one Dell PowerEdge 2950 processor. We divided clients
in groups of size 25 each, and each group was run on each of 4 PowerEdge 1950 pro-
cessors. The server was run on a dedicated 1950 processor, the third party was run on
dedicated 1950 processor, and the testing control was run on the 2950 processor. All
initialization, subscription, and publication traffic was run over a dedicated gigabit Eth-
ernet LAN. Testing control and collection of timing measurement traffic was isolated
on a separate dedicated gigabit Ethernet LAN.
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Fig. 3. Publication Latency Measurements for P1 and P0

We compared P1 and P0 under varying values for one of the following parameters: the
total number of clients, the length of the data item and the number of matching clients.
The initial parameter setting was: 100 clients, 10 matching clients per publication, 10
interests, 10 topics, and 1 publication of a 10K data item per second, where the match-
ing predicate is the OR of all possible equalities between an interest and a topic. (We
restricted to this predicate as in our protocol more complex predicates require no addi-
tional cryptographic operation other than TLS processing.) Under this setting, in Fig-
ure 3, the top left chart reports the max latency vs the number of clients when the latter
varies from 25 to 100; the top right chart reports the max latency vs the size of the data
item varying from 1K to 1M; the bottom chart reports the max latency vs the number
of matching clients varying from 1 to 88. The labels on P1 columns indicate the ratio
of the P1 latency to the P0 latency. In all three cases, the P1 latency is at most a small
(1.5, 5, and 6, respectively) constant worse than the latency in P0 and scales well as the
parameter increases.
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Abstract. Code-reuse attacks, such as return-oriented programming
(ROP), bypass defenses against code injection by repurposing existing
executable code toward a malicious end. A common feature of these at-
tacks is the reliance on the knowledge of the layout of the executable
code. We propose a fine grained randomization based approach that
modifies the layout of executable code and hinders code-reuse attack.
Our solution, Marlin, randomizes the internal structure of the executable
code, thereby denying the attacker the necessary a priori knowledge of
instruction addresses for constructing the desired exploit payload. Our
approach can be applied to any ELF binary and every execution of this
binary uses a different randomization. Our work shows that such an ap-
proach is feasible and significantly increases the level of security against
code-reuse based attacks.

Keywords: Return-oriented programming, Security, Integrity, Malware.

1 Introduction

The evolution of software exploits, such as buffer overflows and string format vul-
nerabilities, shows a pattern of an arms race. On one side, stack smashing attacks
gave way to heap-based code injection. Defenders countered this with canary
words, instruction set randomization, base address randomization, and related
techniques [9,10,28,1]. Attackers found ways to bypass these defenses [34,33] and
execute their injected malicious code. Defenders then responded with Write-or-
Execute (W ⊕X), which prevents the execution of injected code. To get around
W ⊕X , return-into-libc and return-oriented programming (ROP) [31,5] attacks
were launched that leverage existing code rather than injecting their own. In the
former case, a corrupted return address is used to jump to a libc function, such
as system. In the latter, the attacker strings together gadgets (small sequences
of binary instructions) in the existing executable code to perform arbitrary com-
putation.

As these attacks rely on knowing the location of code in the executable and
libraries, the intuitive solution is to randomize process memory images. In basic
address space layout randomization (ASLR), only the start address of the code
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segment is randomized. However, 32-bit machines provide insufficient entropy, as
there are only 216 possible starting addresses, making the system vulnerable to
brute-force [32]. While upgrading to 64-bit helps, it is not a universal solution.
Specifically, 32-bit (and smaller) architectures will continue to be used as legacy
systems and in the area of embedded systems. Furthermore, recent work has
demonstrated that an attacker can use information leakage to discover the ran-
domization parameters, thus eliminating the defensive benefits of upgrading [30].

Our approach is to revisit the granularity at which randomization is per-
formed. Rather than randomizing only a single parameter, our technique (Mar-
lin) breaks an application binary into function blocks and shuffles them. This
significantly increases the entropy of the system; for instance, an application with
500 functions allows for 500! ≈ 23767 permutations, making brute-force infeasi-
ble. Our approach, which can be applied to any ELF binary without requiring
source code, is performed transparently at load time to ensure every execution
instance is unique. Finally, by paying a (quite reasonable) performance cost up
front, Marlin avoids the overhead of on-going monitoring of critical data, such
as return addresses, which other systems impose.

We are not the only researchers to have investigated software diversity as
ROP attack mitigation. While Section 2.2 offers a detailed comparison, existing
approaches suffer from one or more of the following limitations. First, diversi-
fication is not done frequently enough. Second, source code or other additional
information is required. Third, the granularity of randomization is insufficient,
leaving large code chunks unrandomized. Fourth, on-going monitoring imposes
significant run-time overhead by introducing additional data structures. Marlin
provides strong and efficient defense while addressing these limitations.

After surveying code-reuse attacks and defenses in Section 2, we describe the
design of Marlin in Section 3. Section 4 discusses our prototype, which consists
of an off-line tool to randomize the binary image of an executable. Section 5
shows the results of various evaluation experiments. Our evaluation of the time
to randomize compiled binaries of the SPEC CPU2006 benchmark suite shows
the average performance penalty is reasonable. Section 6 highlights both the
merits and limitations of Marlin, and we conclude in Section 7.

2 Background and Related Work

The focus of our work is on ROP attacks, which are a special case of code-
reuse attacks that leverage existing code in the application binary to execute
arbitrary instructions. In this section, we start with a brief summary of these
attack techniques and existing defenses. We then summarize critical factors of
code-reuse attacks and define our threat model.

2.1 Return-oriented Programming

Return-oriented programming (ROP) is an exploit technique that has evolved
from stack-based buffer overflows. In ROP exploits, an attacker crafts a sequence
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of gadgets that are present in existing code to perform arbitrary computation.
A gadget is a small sequence of binary code that ends in a ret instruction. By
carefully crafting a sequence of addresses on the software stack, an attacker can
manipulate the ret instruction semantics to jump to arbitrary addresses that
correspond to the beginning of gadgets. Doing so allows the attacker to perform
arbitrary computation. These techniques work in both word-aligned architec-
tures like RISC [4] and unaligned CISC architectures [31]. ROP techniques can
be used to create rootkits [19], can inject code into Harvard architectures [16],
and have been used to perform privilege escalation in Android [12]. Initiating a
ROP attack is made even easier by the availability of architecture-independent
algorithms to automate gadget creation [15]. Additionally, the same technique of
stringing together gadgets has been used to manipulate other instructions, such
as jmp and their variants [5,8,3].

2.2 Defenses

Address obfuscation [1], ASLR (e.g., PaX [28]), and Instruction Set Randomiza-
tion (ISR) aim to defend against code-reuse attacks by introducing randomness
into processes’ memory images. They randomize with coarse granularity and are
subject to brute force attacks [33,32], especially on 32-bit architectures. While
upgrading to 64-bit increases the randomization, information leakage can allow
an attacker to bypass the defense [30]. Furthermore, for some settings (e.g.,
embedded devices), upgrading to 64-bit is simply not feasible. While [1] sug-
gests randomizing function blocks as a potential technique (which we employ in
Marlin), no further implementation, discussion, or evaluation was attempted.

Researchers have also considered dynamic monitoring defenses. For instance,
DROP [6] dynamically compares the execution of ret instructions with statis-
tically defined normal program behavior. DynIMA [13] combines TPM mem-
ory measurement capabilities with dynamic taint analysis to monitor process
integrity. Other approaches store sensitive data (e.g., return addresses) in a pro-
tected shadow stack [14,7]. These techniques impose a non-zero performance
cost for every checked instruction, yielding non-trivial cumulative overhead. In
contrast, Marlin imposes a one-time cost at process start-up and no additional
on-going penalty.

Other approaches introduce randomness at compile time. For instance, com-
pilers can be modified to generate code without ret instructions [25,22]. These
mechanisms, however, fail to handle attacks leveraging jmp instructions; fur-
thermore, if a new type of gadget is proposed, the compiler would have to be
modified yet again. Alternatively, app store-based diversification [17] and link-
age techniques for performance optimization [23,24] can be applied to produce
unique executables. However, these techniques do not stop an attacker with a
known singular target image, do not help legacy systems, and, in the case of the
former, rely on centralized control of software deployment. In contrast, proac-
tive obfuscation [29] applies a semantics-preserving transformation to compiled
server applications. Marlin is similar to this work in spirit, but the former aimed
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at diversifying replicas in distributed systems; as such, their threat model and
techniques differed from our own.

Other techniques similar to Marlin have also been proposed to randomize
processes. ASLP [21] rewrites the ELF headers and shuffles sections, functions,
and variables. As such, ASLP requires relocation information (or recompilation
of source code), as well as user input. In contrast, as Marlin randomizes func-
tion blocks within the text segment, this additional information is not necessary.
Bhatkar et al. [2] associates a pointer with every function and adds a layer
of indirection to every function call. Unlike Marlin, the function reordering is
not done at load time. ILR [18] randomizes the location of every instruction
and uses a process-level virtual machine, which imposes a significant on-going
performance cost, to find the called code. Pappas et al. [26] use in-place ran-
domization that probabilistically breaks 80% of the useful gadgets. However, by
shuffling the entire memory image, Marlin provides stronger guarantees, proba-
bilistically breaking all sequences. Furthermore, [18] and [26] do not randomize
the binary at every execution, which Marlin does. XIFER [11] and STIR [35]
defend against ROP by randomizing at the basic block granularity, rather than
at the function level. The finer granularity incurs more overhead than Marlin;
however, we show that function-level randomization is sufficient to defeat brute
force attacks, and the additional granularity is unnecessary.

2.3 Enabling Factors for Code-Reuse Attacks

Based on our survey of ROP attacks and defenses, we have identified a number of
distinct characteristics and requirements for a successful exploit. We argue that
a defensive technique that undermines these invariants will present a robust
protection mechanism against these threats. The fundamental assumption and
enabling factor for such attacks is as follows:

The relative offsets of instructions within the application’s code are constant.
That is, if an attacker knows any symbol’s address in the application code, then
the location of all gadgets and symbols in application’s codebase is deterministic.

2.4 Threat Model

The proposed defense, Marlin, is aimed to protect a vulnerable application
against code reuse attacks, such as ROP attacks. This application may have
a buffer overflow vulnerability that can be leveraged by an attacker to inject the
exploit payload. The system is assumed to be protected using W ⊕ X policy
and the attacker can not inject arbitrary executable code in the stack or the
heap. The attacker is assumed to have access to the target binary that has not
yet undergone Marlin processing. The attacker is also assumed to be aware of
the functionality of Marlin. However, the attacker cannot examine the memory
dump of the running process and is unaware of how exactly the code is random-
ized for the currently executing process image. Our approach protects against
both remote and local exploits as long as the attacker is not able to examine the
memory of the target process.
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Fig. 1. Processing steps in Marlin

(a) Unique output with every run (b) Mitigation of ROP attack

Fig. 2. Effect of function block randomization

3 Marlin

Code-reuse attacks make certain assumptions (as discussed in section 2.3) about
the address layout of the target application’s executable code and shared li-
braries. Marlin’s randomization technique aims at breaking these assumptions
by shuffling the function blocks in the binary’s .text section with every exe-
cution of this binary. This significantly increases the difficulty of such attacks
since the attacker would need to guess the exact permutation being used by the
current process image. This shuffling is performed at the granularity of func-
tion blocks. Marlin randomizes the target application just before the control is
passed over to this application for execution. Thus, every execution of the pro-
gram results in a different process memory image as illustrated in Figure 2(a).
Figure 2(b) illustrates how shuffling the code results in a sequence of gadgets
that is not intended by the attacker. We now present Marlin technique in detail.
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3.1 Preprocessing Phase

As mentioned above, Marlin randomizes the application binary at the granu-
larity of function blocks. This requires identifying the function blocks in the
application binary. Preprocessing phase parses the ELF binary to extract the
function symbols and associated information such as start address of the func-
tion and length of the function block. However, traditional binaries are typically
stripped binaries and do not contain symbol information. In such cases, we first
restore the symbol information using an external tool, Unstrip [27]. Once the
symbol information is restored and identified, we proceed on to the next stage
of Marlin processing that randomizes the application binary.

3.2 Randomization Algorithm

Once the function symbols have been identified, Marlin generates a random per-
mutation of this set of symbols. The resulting permutation determines the order
in which the mmap system calls are issued, which changes the order of the mapped
symbols in memory. The function blocks are then shuffled around according to
this random permutation. Shuffling the function blocks in an application binary
changes the relative offsets between instructions that may affect various jump
instructions. These jumps may be either absolute jumps or relative jumps. Rel-
ative jumps increment or decrement the program counter by a constant value
as opposed to absolute jump that directly jump to a fixed address. When the
function blocks are randomized, these jumps will no longer point to the desired
location and must be ‘fixed’ to point to the proper locations. We achieve this by
performing jump patching.

The randomization algorithm described in Algorithm 1 involves two stages.
In the first stage, the function blocks are shuffled according to a certain random
permutation. During this shuffling, we keep a record of the original address of the
function and also the new address where the function will reside after the binary
has been completely randomized. This information is stored in a jump patching
table. Note that this jump patching table is discarded before the application
is given control, thus preventing attacker from utilizing this information to de-
randomize the memory layout. In the second stage, the actual jump patching is
done where the jump patching table is examined for every jump that needs to
be patched. Whenever a relative jump is encountered, the algorithm executes
PatchJump() method to redirect the jump to the correct address in the binary.
PatchJump() method takes the current address of the jump and the address of
the jump destination to determine the new offset and patch the jump target.

The run-time shuffling of the function blocks prevents multiple instances of the
same program from having the same address layout. Thus, to defeat Marlin, an
attacker would need to dynamically construct a new exploit for every instance
of every application which is not possible since the randomized layout is not
accessible to attacker. We now discuss the security guarantees offered by Marlin.
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Algorithm 1: Code Randomization algorithm

Input : Original program, P
Output: Randomized program, PR

L = All symbols in P
F = A list of forbidden symbols that should not be shuffled
L = L− F
OL = Ordered sequence of symbols in L
S.AddrP = Address of symbol S in program P
J.AddrP = Address of jump instruction J in program P
J.DestP = Destination address of jump J in program P
J.Sym = Symbol that J is jumping into

/* Permutation stage */

for Every symbol S ∈ L do
R = Randomly select another symbol in L
Swap S and R in OL

PR = Permuted program according to symbol order in OL

/* Jump patching stage */

for Every symbol S ∈ L do
for Every jump J ∈ S do

if J is a relative jump to within S then
/* No action needed */

else if J is a relative jump to outside S then
J.DestPR =
J.DestP +(J.Sym.AddrPR −J.Sym.AddrP )− (S.AddrPR −S.AddrP )
PatchJump(J.AddrPR , J.DestPR)

else if J is an absolute jump then
PatchJump(J.AddrPR , J.DestPR)

3.3 Security Evaluation

We now show that our randomization technique significantly increases the brute
force effort required to attack the system. In a brute force attack, the attacker
will randomly assume a memory layout and craft exploit payload according to
that address layout. A failed attempt will usually cause a segmentation fault
due to illegal memory access and the crashed process or thread will need to
be restarted. We now compute the average number of attempts required by an
attacker to succeed. A successful attack is assumed to be equivalent to guessing
the correct permutation used for randomization.

In the discussion that follows, let n denote the number of symbols (excluding
forbidden symbols) in an application binary. The total number of possible per-
mutations that can be generated for this application is N = n!. Let P (k) denote
the probability that the attack is successful after the kth attempt. Let X be a
random variable denoting the number of brute force attempts after which the
attack is successful for the first time (that is, the attacker guesses the correct
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permutation). We will now estimate the average value of X . We consider the
following two cases.

Case 1: A failed attempt crashes the process and causes it to be restarted.
In this event, the process will be restarted with a new randomization. The

subsequent brute force attempts by an attacker will be independent since he
would learn nothing from the past failed attempts. That is, P (k) is constant (
= 1

N ) and independent of k. Let P (k) = p, ∀ k. Then, the average number of
attempts before the attack is successful for the first time is

E[X ] = (p ∗ 1) + (1− p) ∗ (1 + E[X ]) =
1

p

⇒ E[X ] = n!

Thus, the attacker would have to make an average n! number of attempts to
correctly guess the randomized layout and launch a successful ROP attack.

Case 2: A failed attempt crashes a thread of the process and causes only that
thread to be restarted.

In this event, since the process is still executing, the memory layout will remain
same. Every failed attempt will eliminate one permutation. The probability that
first success is achieved at kth attempt is

P (k) =

(
k−1∏
i=1

N − i

N − i+ 1

)
∗ 1

N − k + 1
=

1

N

The average number of attempts before first success can be computed as

E[X ] =
N∑

x=1

x ∗ P (x) =
N∑

x=1

x ∗ 1

N
=

N + 1

2

⇒ E[X ] =
n! + 1

2

So, the attacker will need an average n!
2 number of brute attempts to correctly

guess the randomization and launch successful ROP attack. Given enough time
and resources, the attacker can try all possible permutations one after the other
and will require at most n! attempts for a successful brute force attack.

As an example, to launch a successful ROP attack against an application with
500 symbols that is protected using Marlin, an average 500! = 23767 number of
attempts will be required for the first case. This is clearly computationally in-
feasible. A more extensive evaluation performed using SPEC2006 benchmarks is
presented later in Section 5 that demonstrates the effectiveness of our technique.

4 Prototype Implementation

We have implemented a Marlin prototype that can operate on any ELF binary
without requiring its source code. As a pre-processing step, we use objdump
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Fig. 3. Overhead measurements of Marlin

utility to obtain a disassembly listing of the application binary that contains
the program instructions as well as its internal symbols. These listings are then
used to generate a set of parameter files. These parameter files contain a list of
symbols (functions) present in the binary, as well as their starting addresses and
lengths. Another file is created which lists the addresses where the relative jumps
inside functions of interest are located. It is important to note that not every
function is considered to be a function of interest, since randomizing certain
functions, such as start, will render the binary inoperable. These parameter
files are used as input in the next phase of processing that performs the shuffling
and jump patching operations. Upon completion, the parameter files are deleted
and the the new “marlinized” binary is ready to be run like a normal executable
binary.

5 Evaluation

We now describe various experiments to evaluate our Marlin prototype. These
experiments test three aspects of Marlin. First, we show that Marlin successfully
defends against a ROP attack. Second, we study the brute force effort that would
be required to circumvent the protection offered by Marlin. Third, we evaluate
the processing costs incurred by using Marlin. The experiments were performed
on a Linux machine with Intel Core i7 3.40GHz CPU and 8GB RAM. This
machine had ASLR and W ⊕ X protection enabled while the experiments were
being performed. We used SPEC CPU2006 benchmarks to conduct the various
experiments. To launch attacks against Marlin-protected binary, we use ROP-
gadget (v3.3.3) [20], an attack tool that automatically creates exploit payload
for ROP attacks by searching for gadgets in an application’s executable section.

Effectiveness. We tested the effectiveness of Marlin using a test application
that has a buffer overflow vulnerability. This application, ndh rop, was included
as a part of the ROPgadget test binaries. We used ROPgadget on this target
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Table 1. Brute force effort

Benchmark Number of Time for one Avg. # of attempts Avg. time (sec)

Symbols attempt (sec) for successful attack† for successful attack†

999.specrand 10 0.126 3.63×106 4.57×105

470.lbm 26 0.269 4.03×1026 1.08×1026

429.mcf 31 0.269 8.22×1033 2.21×1033

410.bwaves 14 0.385 8.72×1010 3.36×1010

473.astar 97 0.559 9.62×10151 5.38×10151

462.libquantum 106 0.529 1.15×10170 6.06×10169

401.bzip2 79 0.691 8.95×10116 6.18×10116

437.leslie3d 29 1.164 8.84×1030 1.03×1031

458.sjeng 142 1.703 2.69×10245 4.59×10245

433.milc 242 1.408 2.37×10473 3.34×10473

482.sphinx3 335 2.302 1.16×10702 2.66×10702

444.namd 142 2.681 2.69×10245 7.23×10245

434.zeusmp 83 2.399 3.95×10124 9.47×10124

456.hmmer 502 3.269 3.07×101139 1.00×101140

459.GemsFDTD 102 4.217 9.61×10161 4.05×10162

450.soplex 918 5.386 1.22×102323 6.59×102323

464.h264ref 531 5.532 1.50×101218 8.31×101218

436.cactusADM 1299 8.347 2.43×103482 2.03×103483

435.gromacs 1098 10.373 4.42×102863 4.59×102864

471.omnetpp 2023 7.594 3.19×105811 2.42×105812

453.povray 1633 9.039 4.06×104539 3.68×104540

445.gobmk 2547 32.019 1.29×107571 4.12×107572

400.perlbench 1730 12.625 3.22×104852 4.07×104853

454.calculix 1324 18.509 2.16×103560 3.99×103561

481.wrf 2883 47.437 6.17×108724 2.93×108726

465.tonto 4096 51.328 ∗∗ > 1.97×109997 ∗∗ > 1.01×109999

403.gcc 4623 50.28 ∗∗ > 1.97×109997 ∗∗ > 9.92×109998

416.gamess 2893 91.312 2.49×108759 2.28×108761

483.xalancbmk 13848 42.903 ∗∗ > 1.97×109997 ∗∗ > 8.47×109998

†
These correspond to the average number of attempts for Case 1 in section 3.3.The values for Case 2 will be

approximately half of the value for Case 1.
∗∗

We were unable to compute factorial for values larger than 3248. The value used in these columns is 3248!.

application and found 162 unique gadgets. These were sufficient to craft a shell
code exploit payload. When this exploit payload was provided as an input to
the unprotected binary, it gave us a shell. Next, we randomized this application
using Marlin technique and tried to attack it using the same input payload. The
attack did not succeed and failed to provide us with a shell.

This highlights the sensitivity of these attacks to slight changes in the address
layout. ROP attacks operate under the strong assumption of a static address
layout of executable code. Also, notice that in our threat model, the attacker only
has access to the unprotected binary and is not aware of the exact permutation
that has been used for randomization. So he can only run ROP-gadget on the
unprotected test application.

Attacks on Marlin. In section 3.3, we computed the average number of at-
tempts required to successfully attack a “marlinized” binary. We performed an
extensive evaluation of this using SPEC CPU 2006 benchmarks. Table 1 shows
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the number of brute force attempts and the time it takes to craft one exploit.
We noticed that around 80% of these benchmarks have more than 80 symbols
(indicating an effort of 80! attempts). We observed an average of 1496 symbols
and a median of 502 symbols present in these applications. Thus, the number
of brute force attempts in a general case can be approximated to 500! ≈ 23767

attempts which is quite significant. Also, on an average, we observed the time
to compute one attack payload is 14.3 seconds.

It is interesting to note that the effectiveness of protection offered by Marlin
depends on the modularity of the program. An application that has several func-
tion modules will be more secure against brute force attempts when protected
with Marlin. If the entire code of an application is organized in few functions,
then irrespective of the size of the binary, it will still be quite susceptible to
brute force attacks since it would contain large chunks of unrandomized code.
Randomizing at finer granularity, for example at the granularity of gadgets or
instructions, will solve this issue. However, we believe that randomization breaks
the locality principle and the randomized binary may suffer a performance hit.
Thus, as a trade off, we chose to randomize at the granularity of function block.

Overhead Analysis. We evaluated the efficiency of Marlin by measuring the
overhead incurred while loading an application. We use SPEC CPU2006 bench-
marks to conduct this performance evaluation. When an application is loaded,
Marlin identifies the function blocks and records information about them (such
as start address, length) that is used later in jump patching. This computation
is independent of the individual randomizations and referred to as preprocessing
phase. Next phase involves shuffling the function blocks and patching the jumps.
This computation is referred to as startup processing phase.

Figure 3 shows the overhead incurred during preprocessing and startup pro-
cessing phase respectively. The benchmark 483.xalancbmk took significantly
longer time to process. This is because it contained 13848 symbols in contrast
to a median of 500 symbols by other applications. The average time taken by
preprocessing phase was 4.2 seconds, while average time taken by the startup
processing phase was 3.3 seconds. It is quite evident from these numbers, that
the preprocessing phase is the major contributor to these performance costs.

Since preprocessing phase is independent of individual randomizations, it can
be executed just once per application and the results can be stored in database.
The randomization phase, that runs with every execution, can read and process
information from this database. This simple optimization can greatly improve ef-
ficiency of Marlin. Also, the performance hit due to Marlin is incurred only at the
load time of the application. Once the application binary has been randomized,
it executes like a normal application binary.

6 Discussion

Our proposed solution to defend against code-reuse attacks was to increase the
entropy by randomizing the function blocks. One may apply this randomization
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technique at various levels of granularity - function level, block level or gadget
level. The level of granularity to choose is a trade off between security and
performance. In our implementation, we implemented the randomization at the
function level which is the most coarse granularity amongst the three mentioned
above. However, we show that even this coarse level of granularity provides
substantial randomization to make brute force attacks infeasible.

Our prototype implementation requires the binary disassembly to contain
symbol names, i.e. a non-stripped binary. In practice however, binaries may
be stripped and not contain the symbol information. We address this by using
external tools such as Unstrip [27] that restore symbol information to a stripped
binary. Another approach to process stripped binaries is to randomize at the
level of basic blocks since they don’t require symbol information to be identified.
Moving forward, we will explore using basic block level instead of function level
as the unit of randomization for Marlin.

7 Conclusion

In this work, we proposed a fine-grained randomization based approach to de-
fend against code reuse attacks. This approach randomizes the application binary
with a different randomization for every run. We have implemented a prototype
of our approach and demonstrated that it is successful in defeating real ROP
attacks crafted using automated attack tools. We have also evaluated the effec-
tiveness of our approach and showed that the brute force effort to attack Marlin
is significantly high. Based on the results of our analysis and implementation, we
argue that fine-grained randomization is both feasible and practical as a defense
against these pernicious code-reuse based attack techniques.
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Abstract. Trusted computing technology can establish trust in the lo-
cal computer platform by a trusted boot, and can further transfer the
trust to a remote verifier through a remote attestation mechanism. How-
ever, no standard solution is provided to convey the trust information to
users in a friendly manner. Existing methods have no implementation,
or need users to buy a specific USB device (an additional purchasing
burden for users). To establish user-based trust, we summarize possible
solutions and classify the related works according to each solution. After
comparing these solutions, we provide a better method “Mobile Trusted
Agent (MTA)”, which uses a general mobile device as a reliable medium
to establish a secure channel between the local user and the remote ver-
ifier. Finally, we have implemented MTA using an ARM SoC device and
evaluated the performance of the protocol for secure channel. The eval-
uation results demonstrate that MTA has high quality and flexibility for
building user-based trust.

Keywords: Trusted Computing, Remote Attestation, User-Based Trust,
Mobile device, ARM.

1 Introduction

Computer has been an indispensable part in our daily life. Using personal com-
puters, users can do many things, like sending or receiving emails, reading or
editing confidential documents, shopping online, etc. Sometimes, users have to do
these things on their friends’ computers or even on public computers. However,
computers (especially public computers) are usually not trustworthy, which will
compromise user’s security and privacy. So before doing any sensitive operations,
users need some assurance that the computer is in a “trust” state.

One way to establish trust in a computer is using trusted computing mech-
anism, which is developed and promoted by the Trusted Computing Group
(TCG)[1]. Trusted computing uses a secure chip (like TPM/TCM[1–3]) as a
root of trust. The trust state of computer platform can be decided by its soft-
ware state and configuration, the secure chip will measure all software codes
loaded for execution and extend the measurement values to Platform Configura-
tion Registers (PCRs). By remote attestation, TPM/TCM signs PCRs with its
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private key and sends the signature together with the measurement log to a re-
mote verifier. The verifier will verify the signature and the log. If the verification
fails, the verifier will send back the symbol ‘No’(which means untrusted platform
state) to platform, otherwise respond with ‘Yes’(which means the platform being
used is trustworthy). In this way, trusted computing can establish trust for the
whole computer platform.

However, the problem still exists: How do users know the trust state? Cur-
rently, many systems based on trusted computing have not considered this prob-
lem, or they only suppose that there is a trusted channel to transfer the verifi-
cation result (‘Yes’ or ‘No’) to users. Actually, most of the systems just handle
the verification result through a software agent and show the result to users by a
display connected to the computer platform. If the agent or the code controlling
the display is not secure (e.g. replaced by malware), then the result present to
users may not be true. Thus, we need an effective method to show the true state
of infected computers to users.

Users usually believe the facts they see with their eyes. We need transfer the
true “trust” state to users’ eyes, but if the medium (e.g., a software agent) doing
this is not trusted, we will fail. If the medium is a hardware agent owned and
trusted by users, we can use a more secured method to establish trust for them.
So we support to design a trusted agent (acts as the medium) based on a uni-
versal commodity hardware for users. In this paper, we give a conclusion about
potential solutions and related technologies. After comparing existing solutions,
we propose our method Mobile Trusted Agent (MTA), which is based on users’
mobile devices. MTA can be used as the trusted medium between the local user
and the remote verifier. Furthermore, MTA can also be used as a secure chip for
computers without a TPM/TCM. Finally, we have succeeded in implementing
such a mobile trusted agent based on an ARM development board Real210[20].
In conclusion, this paper makes the following contributions:

– We summarize and classify existing solutions. After comparing their advan-
tages and disadvantages, we propose our method MTA based on general
mobile devices.

– We implement a prototype of MTA using a general ARM development board
Real210. We have ported the trusted computing functions and related cryp-
tographic algorithms to our prototype device. Using MTA as the trusted
medium, we design, implement and evaluate a protocol for secure channel
between the local user and the remote verifier.

Organization: The rest of the paper is organized as follows: First, we present
some background knowledge in Section 2. Then, we describe the problem of
establishing user-based trust informally in Section 3. Next, we summary and
classify possible methods and related work in Section 4, and give our MTA
method including the device design, the device usage, the protocol for secure
channel and the evaluation of MTA in Section 5. Finally, we conclude the paper
in Section 6.
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2 Background

Trusted computing uses a secure chip (like TPM/TCM[1–3]) as a root of trust for
the whole computer platform. When powered[6], the system uses the hardware-
based root of trust to initiate the chain of trust by measuring the initial BIOS
code.The BIOS thenmeasures and executes the bootloader, and the bootloader, in
turn, measures and executes the operating system. Finally the OS might measure
and record each application that it executes. Note that system must always mea-
sure programs before executing them. All measurements are recorded in a mea-
surement log (or measurement list) and extended into PCRs of secure chip (by
TPM Extend operation). PCRs are protected by the hardware chip and can en-
sure the credibility of the log, so that PCRs and the log can represent the true state
of the whole platform. In this way, trust is transferred from hardware to software
and established in the local platform.

TPM/TCM

BIOS

OS
(code+config)

Bootloader

Apps
(code+config)

Measure 
Log

PCR Pri-
AIK

measure
record

Remote

Verifier

Local

Attestor

2.Quote
Request

3.Quote
Respond

4.Get 
Measure Log

5.Quote,
PCRs and 

Log

6.verify 
signature 
and Log

7.
Verification 

result

1.Nonce

Fig. 1. Trusted Boot and Remote Attestation

Remote attestation can further transfer the local trust to a remote verifier.
During the attestation process[6], the verifier supplies the attestor with a nonce
to ensure freshness. The attestor then asks the secure chip to generate a Quote
(by TPM Quote operation), which is a digital signature covering the nonce and
PCRs. Then the attestor sends the quote with the measure log to the verifier.
The verifier then checks the Quote using a public key of Attestation Identity
Key (AIK), and then the verifier computes the hash aggregate of the log and
compares the result with PCRs. If both succeed, the verifier can ensure the log
is truly from the target platform protected by a secure chip. After checking each
measurement in the log, the verifier will know whether target platform is trusted.
Finally, the verifier sends the verification result back to attestor and the user
will know the state of platform he is using.
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The exact process of establishing trust in local and transferring trust to remote
using trusted computing technology is shown in Fig.1.

3 Problem Description

In this section, we give an informal description of establishing user-based trust.
Our goal is to show the truly trust state of platform to its user. But in Fig.1, we
don’t know how the user gets the verification result. When we implement such an
attestation system, we easily find that the objects interacting with the user are
displays and keyboards. When the verifier gives the verification result back, it is
the attestor (Local Attestor in Fig.1) that receives the result and prints it on the
display to the user. Note that the attestor is just an agent software. Assuming
the whole process in Fig.1 is performed correctly. Actually, the assumption is
based on many other hypotheses. For example, the secure chip TPM/TCM is
trusted and the private keys of the chip can not be disclosed, PCRs can not be
tampered and the chip can defend against physical attack, the remote verifier is
trusted and the channel between attestor and verifier is secure. These hypotheses
have been adopted by many researches and actual systems. We also assume that
users believe the result they see with their eyes. Based on these assumptions,
we can infer that the result (step 7 in Fig.1) from the verifier is true, and if the
true result can be seen by users, then our goal is achieved. We will analyze the
process of Fig.1 in the following two cases:

– Case 1. If the platform itself is in a trust state. We can know the attestor
is also trusted because it is part of platform configuration. Since all software
states are good, the measurements must match with standard values. So
the verifier will return a symbol ‘Yes’. The trusted attestor will show the
result ‘Yes’ on the display, and user will get the correct result and believe
the platform.

– Case 2. If the platform itself is not trusted, maybe the attestor is a malware,
or maybe some other software codes are controlled by attackers. In this case,
the verifier will return the result ‘No’ and the attestor will get the result. If
attestor is replaced by malware, it can print ‘Yes’ on the display to cheat
user. Of course, if some other codes are malwares and attestor is good, it
should print ‘No’. To print ‘Yes’ or ‘No’ is under the control of attacker, so
the state transferred to user’s eyes may not be true.

If you are the user and your display says ‘Yes’, will you believe it?I don’t think
so. From above, we know that the result ‘Yes’ may come from case 1 and it may
cheated by attacker in case 2. User cannot distinguish them.

4 Potential Solutions and Related work

Through the informal analysis above, the key point is to remove the possibility
of an untrusted attestor. In this section, we will conclude possible methods to
achieve this. We also give some related works about each method.
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4.1 Keeping the Computer State Always Trustworthy

From the informal analysis, if only Case 1 can happen, the cheating result from
Case 2 can be avoided. An intuitive method is to keep the computer state always
trustworthy so that the true trusted state will be transferred to users by remote
attestation. However, the computer for daily use can not be always in a trust
state. Many researchers propose to create two running environments for each
user: secure environment and normal environment. If users want to perform any
sensitive operations, the secure environment will be loaded. Because the secure
environment can carry a trusted attestor, the users will get the correct result. If
users want to do normal tasks, the normal environment can be loaded.

How to create such two environments? The simplest way is to prepare two
computers for each user (one for normal user and another for security use). A
better method is to create two environments in one physical machine. With
the development of virtual technologies, the VMM/hypervisor can separate two
virtual machines (VMs), one for secure environment and another for normal
use. However, the VMM/hypervisor may become the security bottleneck. To
solve this, Keller provides NoHyper[11], which uses existing physical isolation
technologies to run two or more operating systems on the same computer. But
Keller have not implemented such a NoHype. Here we suggest a good method
Lockdown[7], which has implemented such two environments based on Advanced
Configuration and Power Interface(ACPI). Users can decide to use any environ-
ment by pressing an external button, and an indicator light is used to inform
users about the environment they are using. One disadvantage of this method is
that the switching time between the two environments is close to reboot time.

4.2 Isolating Attestor

From another point of view, Case 2 leads to possible cheating attacks. The major
reason is that the untrusted computer state may influence the code attestor. To
address this problem, we need to ensure that the state of attestor will not be
influenced by other configurations of the computer platform.

A possible way is to isolate the attestor process from operating system and
other applications. Flicker[12] and TrustVisor[13] are two useful systems, which
use new features of AMD and Intel’s processors to achieve the isolation. AMD’s
Secure Virtual Machine (SVM)[14] and Intel’s Trusted Execution Technology
(TXT)[15] can provide Dynamic Root of Trust for Measurement (DRTM) for
remote attestation. DRTM can run some security sensitive codes on a relatively
isolated environment. Based on DRTM, attestor can run in the isolated environ-
ment, and can show the result to user without any cheat. In more detail, even
if the state of computer is not trusted, DRTM can ensure that the attestor is
not affected. Note that the code running in the isolation environment must be
self-contained, and this limits its use for many complex systems. Anyway, it is
a good idea to construct an isolation execution environment for safety-sensitive
codes, although how to achieve this remains an open problem.
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4.3 Using Local Peripherals as Verifier

We know that an untrusted attestor may cheat users by using forged attestation
result. The main reason for this is that one function of attestor is showing the
returned verification result to users, an untrusted attestor can cheat users by the
chance. Thus, we can strip the function out of attestor and integrate it into the
trusted verifier. That is, if a trusted party (e.g. verifier) is selected to interact
with the users, the true result can be shown.

Now the question is how to integrate the function (of showing the verification
result to users) into the verifier. It is impossible for the remote verifier to show
the result directly to the local users. Since we cannot force the users to be
remote, we can move the remote verifier to local. In Turtles[4], authors have
realized the problem and they proposed to implement the verifier as a local USB
device, which has a commodity microprocessor and a LED light to show the
verification result. They suggest that such a device can act as a local verifier,
but they have not implemented such a USB device. Actually, the local USB
device is owned and trusted by users and can be used as the secure medium
for users. Moreover, in many scenarios like crisis management[23], we cannot
assume that a remote verifier is always available and on-line (e.g. intermittent
network failures). Therefore, a local verifier is needed. The possible flaw of the
method is that it needs users to buy a specialized USB device. Our MTA can
be used to implement such a local verifier based on users’ mobile devices rather
than additional USB devices.

4.4 Establishing Secure Channel between Local Agent and Remote
Verifier

From section 4.3, if we choose a trusted entity to notify users and the attacks
may be avoided. But a local verifier only suits to some specific scenarios. If we
can establish a secure channel between a local trusted agent and the remote
verifier, we don’t need to move the remote verifier to local. For example, we
can add the function of interacting with users to the local TPM itself and use
the TPM secure chip as the trusted agent to design a secure channel. But we
have no permission to modify an actual hardware TPM which is controlled by
its manufacturer, so we plan to design our own trusted device (or agent). One
possible way is to integrate the functionalities of TPM into a USB device. In
PTM[9, 10], authors have designed and implemented such a USB device. PTM
is a cryptographic chip based on USB interface, and it has part functions of
trusted computing and can act as a trust root of universal computer platform.
In prototype, PTM[9] chooses a Watachdata USB Key with Java Card Runtime
Environment and implements TPM commands as a Java Card Applet. But their
PTM implementation may not be compatible with TCG specification[1], and the
java-based program is not effective for resource-constrained embedded devices.
What’s more, they need users to buy an additional specialized USB device. Our
method MTA is similar with PTM, but we use the C code to implement Trusted
Computing abilities and adopt the general mobile device (which has stronger
computing power and storage resources than USB device) as the trusted device.
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After the design of a local trusted device for users, the question remains how
to establish a secure channel between the local trusted agent and the remote
verifier. The most effective method is using cryptographic protocols. Now that
the trusted device can perform cryptographic operations and trusted computing
commands, it is possible to design such a protocol. In PTM[9], they designed
a public key protocol and used a little LCD screen to interact with users. But
their protocol has not taken full advantage of trusted computing commands and
provides no confirmation respond to the remote verifier. As you will see from
the next section, MTA is more agile and practical.

5 Our Method: Mobile Trusted Agent

In the above section, we have summarized four kinds of methods. For each
method, we have also analyzed some related work. Our method MTA belongs to
the fourth method and can also support the third method by using MTA as a lo-
cal verifier. We focus on the implementation of the fourth method. Thus, in this
section we first introduce the design and usage of our trusted device MTA and
then give a protocol for secure channel between the local user and the remote
verifier. Finally, we describe MTA prototype and overheads evaluation.

5.1 Design of Mobile Trusted Agent

The MTA device should own two major functions: (1)It should provide the nec-
essary cryptographic algorithms and the trusted computing functions. Thus, we
can establish a secure channel between the device and the remote verifier; and if
necessary, the device can also act as TPM/TCM to provide trusted computing
commands for host platform. (2)The device can show the verification result to
users friendly. That is to say, the device should be owned and trusted by users,
and it can interact with users in an intuitive and physical way.

Mobile Trusted Agent
 (mobile devices)

Computer Platform 
(Host)

 
Network

 cable 
& 

USB
 cable

Hardware (Embedded CPU, Wired/Wireless 
NetCard, USB OTG, LED etc.)

Embedded Kernel

USB Gadget Driver
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(tpmd, tddl)

tpmd_dev

System libraries
GNU MP, 

OpenSSL
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Hardware TPM/TCM or 
not

USB Device Driver

Kernel (Windows or Linux)
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Fig. 2. The design and usage of our Mobile Trusted Agent
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Through careful study, we choose the general mobile devices as the basic hard-
ware environment of MTA. Firstly, many mobile devices and embedded systems
can provide enough software and hardware resources to design a trusted device.
Secondly, we can port the relative cryptography libraries such as OpenSSL to
mobile devices, so that they can support the necessary cryptographic operations.
We can also transplant the software TPM Emulator [18] to provide the trusted
computing commands. Thus, our function (1) can be met. Finally, mobile devices
usually support many peripherals like LCD and LED to interact with users, and
they also support to ring or vibrate. These are enough to realize our function
(2).

The whole design of MTA and its connection with the host platform is shown
in Fig.2. The left part of Fig.2 is our trusted device MTA, which is composed of
the following modules:

– Hardware: It uses the general embedded processor (e.g. ARM processor),
which supports the cryptography acceleration and the floating point arith-
metic. It also supports many peripherals and we can choose the LED light (or
others) to interact with users. The mobile devices are usually equipped with
wired/wireless network cards for communication. The USB OTG interface
can make MTA look like a removable device for host with USB interface.

– Kernel: It needs to compile an embedded kernel for MTA. A USB Gadget
Driver is designed in the kernel to enable USB communication between MTA
and host.

– USB gadget driver: The driver talks over USB to a USB Device Driver
running on a host PC. Using the driver, the MTA can act as a TPM-like
chip with USB bus for host.

– USB dameon: The module is responsible for listening on the USB gadget
driver for incoming TPM commands. Upon the reception of a valid com-
mand, it is forwarded to the TPM emulator. After processed by the TPM
emulator, USB dameon returns the corresponding response to the sender of
the command.

– TPM Emulator: For TPM functions, we use a modified version of TPM
Emulator[18]. We cross-compiled the modified code of TPM Emulator and
transplanted the TCG-compliant TPM functions into the mobile environ-
ment. The TPM emulator[18] comprises three main parts: a user-space dae-
mon (tpmd) that implements the actual TPM emulator, a TPM device driver
library (tddl) as the regular interface to access the emulator, and a kernel
module (tpmd dev) that provides the character device /dev/tpm for low-level
compatibility with TPM device drivers.

– System libraries: TPM emulator depends on the GNU MP library. Fur-
thermore, MTA should support some cryptography operations, we choose the
open source OpenSSL. We need build these system libraries to our device.

– TPM Proxy: For TPM access using network, we use IBM’s libtpm and
proxy[19]. The TPM Proxy is located in the MTA and it keeps listening the
requests from libtpm running in the host platform.
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– Attestor: We implement an attestor module (called AttestorMTA) in the
embedded environment. When the attestor in PC (called AttestorPC) re-
ceives the verification result (encrypted), it can’t resolve the result and just
forwards the ciphertext to AttestorMTA. AttestorMTA will decrypt the in-
formation and show the result to user with a LED light. Actually, MTA
is our trusted device and AttestorMTA (running on MTA) is the function
module stripped from the original AttestorPC . AttestorMTA is also respon-
sible for establishing a secure channel between MTA and the remote veri-
fier using a well-designed cryptography protocol, which we will introduce in
Section 5.3.

The right part of Fig.2 is the general-purpose computer platform that can com-
municate with MTA by a wired/wireless network cable or a USB cable. Both
Windows and Linux hosts can use MTA to build user-based trust, no matter
whether there is a TPM/TCM secure chip or not. The specific usage of MTA is
described in Section 5.2.

5.2 Usage of Mobile Trusted Agent

According to Fig.2, there are two kinds of communication modes between MTA
and the host platform: Network mode and USB mode. For the flexibility of MTA,
both of the two modes can be used.

For host equipped with a TPM/TCM, MTA can be used only as the reliable
medium to establish a secure channel between the local user and the remote
verifier. The protocol is introduced in Section 5.3. For this case, we can use the
network mode (wired or wireless) between MTA and host. Attestor module on
MTA interacts with the attestor on PC through network mode (TCP/IP). At-
testor module on MTA will parse the verification result using the TPM Emulator
and show the result to users by a LED light. Fig.3 depicts the usage of MTA
as a reliable hardware medium to build user-based trust for general-purpose
computer platform.

For host without a TPM or TCM chip,MTA can further acts as the TPM/TCM
chip for the host to use trusted computing functions. In this case, both modes can
be used. When using network mode, it just depends on the TPM Proxy module

Network
(wired or 
wireless)

Attestor 
in PC

Attestor 
in MTA

TPM/TCMTPM Emulator

user LED

Fig. 3. Use MTA as a trusted agent (or medium)
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on the MTA and the Libtpm module on the host. The USB mode depends on the
USB dameon and the USBGadget Driver on the MTA, and the USB device driver
and USB tddl on the host. The most convenient way to access a TPM is TPMDe-
vice Driver Library (TDDL) as specified by the TCG. We have implemented the
USB tddl owning the same interfaces with a TPMTDDL. Thus, through our USB
connection, theMTAcan act as aTPM/TCMchip, which is affixed to the hostwith
a universal serial bus (USB). Any secure application (e.g. attestor on PC) of host
can rely on the two communication modes to use the trusted computing functions
of MTA, as described in Fig.4.

Attestor 
in PC

USB Device Driver
Libtpm

USB Gadget Driver

USB_daemon USB_tddl

TPM Emulator

usb cablenetwork cable

 Attestor on PCTPM 
Emulator

TPM Proxy

Fig. 4. Two modes for using the trusted computing functions of MTA: the left is
network mode and the right is usb mode

5.3 Protocol for Secure Channel

Based on MTA, we design a protocol to establish the secure channel between
the device and the remote verifier. We not only use cryptographic operations
but also the TPM commands of TPM Emulator. At first, we generate signature
key pair (PubKSIG, P riKSIG) and binding key pair (PubKBIND, P riKBIND)
for MTA. The two keys are all non-migratable, 2048 bits RSA keys. The remote
verifier knows the public keys PubKSIG and PubKBIND in advance. The public
key of the verifier is PubKVER, and the private key is PriKV ER and they
are also 2048 bits RSA keys. V R represents the verification result, Enc is the
encryption algorithm, Dec is the decryption algorithm (we use TPM UnBind
command), Sig is the signature algorithm (we use TPM sign command), V er is
the verification algorithm.

The protocol is shown in Fig.5. The first four steps is based on a standard
remote attestation in which a Nonce (for freshness) is sent to host, and the
host calls our MTA (instead of TPM/TCM) to produce a quote. Nonce1 is used
to request verification result from the remote verifier. ML represents the mea-
surement log. The rest steps consist of the core of secure channel, for which
we use a signature scheme combined with an encryption scheme. The signature
can prevent forgery of the verification result and the encryption scheme ensures
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MTA Host PC Verifier
1. Nonce

2. Nonce
Quote=

TPM_QuoteAIK_MTA(Nonce,PCR) 3. Quote,Nonce1 4. Quote, 
Nonce1, ML VR=Yes or No

SIGVER=Sig(VR||Nonce1, PriKVER)
Result=Enc(SIGVER||VR||Nonce1, 

PubKBIND)

5. Result
6. Result

SIG1||VR1||Nonce2=
Dec(Result, PriKBIND)
If Nonce2!=Nonce1

Stop;
Else check

VR1||Nonce2=Ver(SIG1,
PubKVER)

If  check fails then
        Stop;

User

7a. VR1 by LED
(Red for no, Green 

for yes)

Else compute
SIGMTA=Sig(VR1||Nonce1, 

PriKSIG)
fb=Enc(SIGMTA, PubKVER)

7b. fb

SIG2=Dec(fb, PriKVER)
Check:

VR||Nonce==Ver(SIG2,PubKSIG)
If  check succeeds, then verifier 

knows that the user has confirmed 
receipt of the verification result

Fig. 5. Protocol for Secure Channel and Confirmation based on MTA

confidentiality. For MTA, it executes one Dec operation and one V er opera-
tion to obtain the true trust state; after that, it also performs one Sig and one
Enc operation to return a confirmation message. Compared with the protocol
in PTM[9], our protocol makes good use of TPM keys and commands. The
private parts of binding key and signature key will never leave MTA, so only
the MTA with TPM Emulator can perform TPM UnBind command to obtain
the verification result and only the MTA can produce a unforgeable and unde-
niable signature using TPM sign command. Furthermore, our protocol adds a
confirmation information from users to the verifier and this is very important in
many secure applications, especially online transaction. The verifier is usually
an online service provider and it may expect to receive the undeniable feedback
information (fb in Fig.5) from users.

5.4 Prototype and Evaluation of MTA

As ARM processors are adopted by most mobile and embedded devices, we
choose ARM development board[20] to implement our MTA prototype. The
prototype is called MTA-Real210, which is equipped with a 1GHz ARM Cortex-
A8 processor (Samsung’s S5PV210), with a 512MB DDR2 memory and 256MB
NAND Flash. Our cryptography operations are adapted from the open-source
OpenSSL library (openssl-0.9.8g) and TPM commands are from the software-
based TPM Emulator[18]. We port the code of TPM Emulator from the x86
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architecture to the ARM processor and embedded Linux. Because the processors
and kernels are different, we have made some changes to the original TPM
Emulator. For TPM access and tests, we adopt IBM’s libtpm and proxy[19],
a C/C++ interface for trusted computing.

Fig. 6. A picture of the prototype
system MTA-Real210

Command or Operation Time on
Real210

Time on
Ubuntu

TPM TakeOwnership 3193ms 424ms

TPM CreateWrapKey 2637ms 408ms

TPM LoadKey 314ms 117ms

TPM Sign 51ms 25ms

RSA Verify 2.8ms 0.438ms

RSA BIND 3.3ms 0.66ms

TPM UnBind 51.9ms 24.9ms

Fig. 7. Evaluation Results

A picture of the prototype system MTA-Real210 is shown in Fig.6. The board
has a 100M network card and a MiniUSB (USB OTG) interface, and these are
enough for us to implement both the network and the USB modes. For network
connection, we started a TPM Proxy on the board and the host can use the libtpm
to access the relative functions (like TPM commands and RSA cryptography
operations). For USB connection, we compiled a kernel module g serial.ko (a
USB gadget serial driver) for the embedded kernel (Linux-2.6.32) on the board,
the gadget serial driver talks over USB to a CDC ACM driver (a USB Device
Driver) running on a host PC. We wrote the code USB daemon for the board
to listen the request from the gadget serial driver, and we also wrote the code
USB tddl for the host to use the CDC ACM driver. With the help of these
components, MTA-Real210 can act as a TPM/TCM chip used by the host with
a USB cable. For interacting with the user, we choose the LEDs on the board.
At present, both network and USB connection are running normally.

Using MTA-Real210, we test the execution time of related TPM commands
and cryptography operations in the protocol of Fig.5. The cryptography op-
erations executed are: RSA Verify (this operation verifies the signature using
the public key PubKSIG) and RSA BIND (this operation encrypts the veri-
fication result using the public key PubKBIND). The TPM commands used
are: TPM TakeOwnership, TPM CreateWrapKey, TPM LoadKey, TPM Sign,
TPM UnBind. The first three commands are used to produce related key pairs.
The command TPM Sign is used to produce the signature of the verification
result and nonce, and TPM UnBind is adopted to decrypt the information con-
taining the verification result. All these operations and commands are tested on
MTA-Real210. For comparison, we also evaluate the execution time of these op-
erations and commands on our VMware Virtual Machine Ubuntu Linux system
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with a 2.4GHz Intel(R) Core(TM)2 Duo CPU and 512MB memory. The evalu-
ation results are reported in Figure 7. The Enc operation (RSA BIND) only
take 3.3ms and the related Dec operation (TPM UnBind) only needs 51.9ms.
The Sig operation (TPM Sign) costs 51ms and V er operation (RSA V erify)
only needs 2.8ms. The total time of AttestorMTA in the protocol is about 109ms
(3.3+51.9+2.8+51). Thus we can conclude that these operations in the mobile
and embedded environment are accepted for actual system and our protocol is
feasible for mobile and embedded devices.

6 Conclusion and Future Work

This paper presented MTA, a trusted agent that can establish user-based trust
for general-purpose computer platform. MTA is designed based on uses’ mobile
devices, which can use trusted computing commands and cryptographic opera-
tions to establish a secure channel for local users and remote verifiers. MTA uses
the physical property of mobile devices to interact with users. MTA can also
be used to act as the TPM for PCs without any secure chips. Finally, we have
implemented MTA using a general ARM development board and evaluated the
overheads. Our evaluation results show that MTA is a feasible way for building
user-based trust. As the mobile devices may not be secure now, we consider to
strengthen our MAT architecture using secure elements (e.g. ARM TrustZone,
Smart Card, etc.) for future work.

Acknowledgments. This work has been supported by the National Natural
Science Foundation of China (under grants No.91118006 and No.61202414) and
the National 973 Program of China (under grants No.2013CB338003). This work
has also been supported by Project of ”Trusted Terminal System development
and Terminal Product Industrialization for Self-help tax service” (under grants
No.2011BY100042). We would also like to thank anonymous reviewers for their
valuable comments and suggestions to improve the manuscript.

References

1. Trusted Computing Group. Trusted platform module main specification. Version
1.2, Revision 103 (2007)

2. State Cryptography Administration. Functionality and Interface Specification of
Cryptographic Support Platform for Trusted Computing (2007)

3. Ryan, M.: Introduction to the TPM 1.2 (March 24, 2009)
4. McCune, J.M., Perrig, A., Seshadri, A., van Doorn, L.: Turtles All The Way

Down: Research Challenges in User-Based Attestation. In: Proceedings of the 2nd
USENIX Workshop on Hot Topics in Security. USENIX, Boston (2007)

5. Parno, B.: Bootstrapping Trust in a “Trusted” Platform. In: Proceedings of the
3rd USENIX Workshop on Hot Topics in Security, San Jose, CA (July 29, 2008)

6. Parno, B., McCune, J.M., Perrig, A.: Bootstrapping Trust in Commodity Com-
puters. In: Proceedings of the IEEE Symposium on Security and Privacy (May
2010)



320 W. Feng et al.

7. Vasudevan, A., Parno, B., Qu, N., Gligor, V., Perrig, A.: Lockdown: A Safe and
Practical Environment for Security Applications, CMU-CyLab-09-011 (2009)

8. Sparks, E.R.: A security assessment of trusted platform modules. Technical Report
TR2007-597, Dartmouth College (2007)

9. Zhang, D., Han, Z., Yan, G.: A Portable TPM Based on USB Key. In: Proceedings
of the 17th ACM Conference on Computer and Communications Security, New
York, NY, USA (2010)

10. Han, L., Liu, J., Zhang, D.: A Portable TPM Scheme for General-purpose Trusted
Computing Based on EFI. In: International Conference on Multimedia Information
Networking and Security. IEEE, Wuhan (2009)

11. Keller, E., Szefer, J., Rexford, J., Lee, R.B.: NoHype: Virtualized cloud infrastruc-
ture without the virtualization. In: Proc. International Symposium on Computer
Architecture (June 2010)

12. McCune, J.M., Parno, B., Perrig, A., Reiter, M.K., Isozaki, H.: Flicker: An Execu-
tion Infrastructure for TCB Minimization. In: Proceedings of the ACM European
Conference on Computer Systems, Glasgow, Scotland (2008)

13. McCune, J.M., Li, Y., Qu, N., Zhou, Z., Datta, A., Gligor, V., Perrig, A.: TrustVi-
sor: Efficient TCB Reduction and Attestation. In: IEEE Symposium on Security
and Privacy (2010)

14. Advanced Micro Devices. AMD64 architecture programmer’ manual. System pro-
gramming, vol. 2. AMD Publication no. 24593 rev.3.14 (September 2007)

15. Intel Corporation. Intel trusted execution technology-software development guide.
Document number 315168-005 (June 2008)

16. Aaraj, N., Raghunathan, A., Jha, N.K.: Analysis and design of a hardware/software
trusted platform module for embedded systems. ACM Transactions on Embedded
Computing Systems 8(1), 1–31 (2008)

17. Aaraj, N., Raghunathan, A., Ravi, S., Jha, A.K.: Energy and Execution Time
Analysis of a Software-based Trusted Platform Module. In: Proceedings of the
Conference on Design, Automation and Test in Europe. IEEE (2007)

18. Strasser, M.: TPM Emulator, http://tpm-emulator.berlios.de
19. Software TPM Introduction (IBM), http://ibmswtpm.sourceforge.net
20. Real210, http://www.realarm.cn/pic/?78_490.html
21. CodeSourcery ARM EABI toolchain, https://sourcery.mentor.com/sgpp/lite/

arm/portal/subscription?template=lite

22. Dietrich, K., Winter, J.: Implementation Aspects of Mobile and Embedded Trusted
Computing. In: Proceedings of the 2nd International Conference on Trusted Com-
puting, Oxford, UK, April 06-08 (2009)

23. Hein, D.M., Toegl, R., Pirker, M., Gatial, E., Balogh, Z., Brandl, H., Hluchy, L.:
Securing mobile agents for crisis management support. In: STC 2012: Proceedings
of the Seventh ACM Workshop on Scalable Trusted Computing, pp. 85–90. ACM,
New York (2012)

http://tpm-emulator.berlios.de
http://ibmswtpm.sourceforge.net
http://www.realarm.cn/pic/?78_490.html
https://sourcery.mentor.com/sgpp/lite/arm/portal/subscription?template=lite
https://sourcery.mentor.com/sgpp/lite/arm/portal/subscription?template=lite


Anomaly Detection for Ephemeral Cloud IaaS
Virtual Machines

Suaad Alarifi2 and Stephen Wolthusen1,2

1 Norwegian Information Security Laboratory,
Department of Computer Science,
Gjøvik University College, Norway

2 Information Security Group,
Department of Mathematics,

Royal Holloway, University of London, UK
{s.alarifi,stephen.wolthusen}@rhul.ac.uk

Abstract. In public Infrastructure-as-a-Service (IaaS), virtual machines
(VMs) are sharing the cloud with other VMs from other organisations.
Each VM is under the control of its owner and security management
is their responsibility. Considering this, providers should deal with the
hosted VMs as potential source of attacks against other VMs and/or
against the cloud infrastructure. The cloud model is flexible enough to
allow consumers to initiate VMs to perform specific tasks for an hour or
two, then terminate; so call VMs short-lived VMs. The provider dilemma
here is monitoring these VMs, including short-lived ones, and detecting
any change of behaviour on them as a sign of anomaly with a low level
of intrusiveness for legal and practical reasons.

In this paper, we therefore propose a hypervisor based anomaly de-
tection system that monitors system calls in between a VM and its host
kernel. This host intrusion detection system (HIDS),is able to detect
change in behaviour in even short-lived VMs without requiring any prior
knowledge of them. To achieve this goal, a Hidden Markov Model (HMM)
is used to build the classifier and system calls are analysed and grouped
to reflect the properties of a VM-based cloud infrastructure. We also
report on the experimental validation of our approach.

Keywords: IDS, HIDS, IaaS security, Cloud Computing Security.

1 Introduction

Cloud computing is a service for providing resources to consumers on demand
and allow them to request, increase, and/or shrink the used resources without
human intervention from the provider side. Consumers in cloud model access
the requested resources through the public Internet (in case of public cloud) or
through their private networks (in case of private cloud). The cost model in the
cloud is to pay for what is used. The main idea is sharing resources to reduce
cost, and virtualization technique is used to allow the sharing. The most pop-
ular three cloud services are infrastructure as a service (IaaS), where resources

J. Lopez, X. Huang, and R. Sandhu (Eds.): NSS 2013, LNCS 7873, pp. 321–335, 2013.
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such as network, storage and computing power are offered for sharing; platform
as a service (PaaS), where platforms are offered for sharing by consumers to
develop their applications on them; finally software as a service (SaaS), where
applications are offered to consumers. In this research, we focus on the security
of public IaaS from the provider side.

The technologies used in IaaS cloud are not new but the combination of tech-
nologies and the special cloud features introduce new security requirements and
new threats; for instance, one of the main features of cloud network is high data
volume, which may require a distributed security system to cope with the high
traffic volume. Furthermore, in cloud network there exist some VMs which live
for an hour or two to perform specific tasks then terminate. This scenario of
using the IaaS cloud to perform specific tasks is popular and it requires secu-
rity systems that are built and work on the fly. These new threats and special
security requirements are discussed in detail in the literature review section.

In IaaS, consumers initiate VMs in the provider network; these VMs are hosted
in servers where they are co-located with other VMs owned by other consumers.
This introduces the threat of VMs attacking each other (inter-VM attack). In
IaaS, each VM is owned and 100% controlled by its owner. Owners might not
apply security patches or might use highly vulnerable applications or operating
systems. Providers can obligate them to maintain the security of their VMs
legally by contract, and technically by monitoring the behaviour of these VMs.
Providers can only monitor these VMs from outside because monitoring these
VMs from inside requires accessing them or installing agents on them which
increase the level of intrusiveness and might introduce legal complications. The
providers’ dilemma here is hosting these VMs, protecting them, and maintaining
the security of the environment without accessing VMs or requiring any prior
knowledge of them.

In this paper, we develop a Host Based Intrusion Detection System (HIDS)
that monitors the VMs from outside without any prior knowledge of them. The
proposed system monitors invoked system calls by the hosted VM. System-calls
based HIDS are well established and have been used for long time [1]; however,
monitoring system calls in cloud environments is different because of the nature
of the cloud and the fact that VMs live in a virtual environment [2]. For instance,
in our IaaS cloud environment, Kernel-based Virtual Machine KVM is the main
hypervisor; in KVM networks, VMs are communicating with virtual resources
using IOCTL system call1. Therefore, when dealing with system call based HIDS,
it is important to analyse IOCTL system calls, understand its structure, and deal

1 IOCTL system call stands for input/output control and is used to manipulate a
character device via a file descriptor. From Linux man page, IOCTL system call
has the following format: Int ioctl(int d, int request, ...). -Int d is the open file
descriptor, -Int request is the device-dependent request code. -The third argument
is an untyped pointer to memory. It is represented by dots because this pointer could
lead to unlimited amount of data, -The return value is zero on success and it could
be also used as an output parameter.
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with it in a special way. More details about how to analyse IOCTL system call
are in [3].

The most important feature of the proposed system is its ability to monitor
short-lived VMs, then to detect any anomalies in their behaviour and generate
a strong enough anomaly signal.

Many approaches can be used to build a classifier that perform this task.
The choice of approach depends on many factors such as the available data for
training, the acceptable cost and the nature of collected data. In our environ-
ment, only normal non-malicious data are available to train the classifier and
this approach is called supervised training.

Training classifiers is a machine learning problem and also is related to the
artificial intelligence field. Many methods are used in the literature but the one
used here is Hidden Markov Model (HMM).

The rest of the paper is designed as following: section 2 is the literature
review. Section 3 is the hypothesis, assumptions and requirements. Section 4 is
to describe the used method to build the classifier, the application of the method
and the results. Section 5 is the discussion and section 6 is the conclusion and
future work.

2 Literature Review

There are three types of HIDS that can be deployed in the cloud, type 1 is
the one placed in the host system itself (the place where VMs live and share
resources) and it is used to monitor the host. This is a regular HIDS with almost
a full knowledge on the structure of the host OS, applications, hardware states,
and log files. Type 2 is the one placed in the VMs that are hosted by the host
system in the cloud. VMs owners see this HIDS as a regular one but in reality
this HIDS monitors virtual machines that work on virtual resources. Type 3 is
the one placed in the host machine but is used to monitor the VM lives in that
host not the host itself; it is called hypervisor based HIDS and this type works
in virtualization based environments such as cloud computing. In this paper we
investigate type 3 HIDS (hypervisor based anomaly detection system) that is
placed in the host system and used to monitor virtual machines.

The hypervisor based HIDS introduced first in 2003 by Garfinkel and Rosen-
blum [4]. They design a system called virtual machine introspection, VMI, used
to monitor VMs from the host system and detect anomalies. This system came
as a solution for the problem of low attack resistance that HIDS usually suf-
fers from. Once the host system is compromised, the attacker can then disable
or neutralise the detection system. This problem is common for HIDSs in gen-
eral [2], [5] and [4]. Researchers in [4] decided to convert the targeted physical
machine to virtual ones to be able to separate the HIDS from the targeted ma-
chine so if this machine get breached the attacker won’t be able to neutralise
the HIDS. VMI requires prior knowledge about the VM structure and its OS.
It also uses a modified version of VMware to collect some of the required data
and monitors hardware states in the VM such as memory pages and registers.
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Similar solution, of separating the HIDS from the host using virtualisation, is
suggested in [5]. Laureano et al. [5] used a modified version of User-Mode Linux
(UML) to collect data from processes inside the VM. UML communicates with
the processes inside VM through named pipes and the host operating system
synchronises the data flow between them. They analyse system calls using For-
rest et al. method from [6] and [7], which is by using a sliding window to register
system calls, they have not specify the used length in their paper. It is not also
clear which processes they chose to monitor from inside the VM.

Low attack resistance is one of two problems cloud HIDSs suffer from; the
second problem is that cloud models usually have high volume of data, [2], [8]
and [9], which might cause overloading of the IDS and dropping of data traffic.
In [2], researchers believe that these two limitations are critical enough to stop
using HIDS in the cloud. They state “a network based IDS would be more suitable
for deployment in cloud like infrastructure. NIDS would be placed outside the
VM servers on bottle neck of network points such as switch, router or gateway
for network traffic monitoring to have a global view of the system“ [2]; however
we think that this is not a solution because as argued in [10], NIDS cannot deal
with attacks from inside the network; for this reason Jiankun and his colleagues
state in [10] “an effective IDS should include an HIDS as a complement to the
NIDS“. Another crucial reason we note for having HIDS is that NIDS cannot
detect inter-VM attacks.

For the second problem, which is high volume data in the cloud, many research
papers, such as in [8] and [9], suggest distributed IDS (DIDS).

We believe that there is an urgent need for a host intrusion detection system;
it allows cloud providers, who have no control at all over what is inside the
hosted VMs, to maintain the security of the cloud and to detect any breached or
misbehaved VM before being used to attack the infrastructure or neighbouring
VMs. Furthermore, it helps providers to draw a security picture for each VM,
and this help them to take future decisions for example weather to renew the
contract with a specific consumer or not, or whether there is a need to notify a
specific consumer to improve his security. The target here is to reduce the level
of intrusiveness by monitoring VMs (including short-lived ones) from outside
without accessing them or installing any agent for efficiency and legal reasons.

In this research, we monitor VMs from the host system which makes the HIDS
safe when the VM is compromised but there is still the threat of compromising
the host system and disabling the hypervisor-based IDS. It is important to state
here that the suggested system is not an alternative for the NIDS but that it is
a complementary system. We also suggest a separate normal behaviour profile
for each VM to be able to suit the mobility characteristic of VMs in the cloud.
These profiles or small HIDS should be able to migrate with VMs.

In addition to these two problems there is a special requirement for cloud
based IDS suggested in [3] which is monitoring VMs with the minimum or no
instrumentation within VMs. This requirement is vital as [3] states “this is de-
sirable as VMs may be required to be under exclusive control of the client,
and hence not be amenable to internal instrumentation by the IaaS provider“.
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Furthermore, legal restrictions may bound the acceptable level of instrumenta-
tion the provider can perform to the minimum. Reducing the level of instrumen-
tation may also quicken the monitoring process that could allow the detection
mechanism to work on the fly as argued by [3].

In previous research [3] we designed, a hypervisor based HIDS more suitable
for cloud IaaS environments. The designed HIDS requires no knowledge from
inside the hosted VMs; it deals with them as black boxes. It also uses plain KVM
to accomplish the task. The representation method for our first HIDS is the low
demanding bag of system calls which is a frequency based representation method
that requires no probabilities calculation at all. The produced classifier generates
very strong anomaly signals with a very high detection rate. However, it needed
about 6G of data to train the classifier and 1G for testing. This is a relatively
large amount of data and it is acceptable in long term VMs especially gives
that high volume of flow data is one of the prominent characteristics of cloud
environments [4]. However, for short term VMs there is a need for a classifier that
can be build faster even if it consumes more computing resources but not time.
The scenario of a machine living for an hour is normal in the cloud especially
for VMs that are used for testing purposes or analysing data. For instance, an
organisation might have a very large amount of data which require fast analysis
once a year to generate annual reports; so instead of buying servers to perform
this annual task they initiate hundreds of VMs in the cloud to analyse the data
in few hours then terminated.

Requiring more resources to build this classifier rather than time is acceptable
in the cloud where resources such as computational power are not scarce because
it is the main service the cloud provides. Hence, with these requirements in mind,
we modify our first classifier by changing the used machine learning approach
and also by changing the part of the data being analysed to reduce noise. Then
a new classifier has been produced in the same environment as [3].

Some research papers, such as [11], categorise anomaly detection modelling
approaches into two categories: Dynamic approach, which is based on probabili-
ties calculation such as HMM, and static approaches which is based on frequency
distributions and the principle of minimum cross entropy such as bag of system
calls [12]. Researchers in [11] argue that dynamic modelling approaches are bet-
ter than static modelling approaches for system call datasets and worse in the
shell command datasets. In this research we monitor system calls using Hidden
Markov Model (HMM) approach which is a dynamic approach.

HMM is an old but sophisticated representation method. HMM almost always
provides a high detection rate and a low minimum false positives but with high
computational demand [1] and [13].

There are many research papers about how to improve HMM for anomaly
detection by reducing the used power such as in [10], [14] and [15]; however, in
this paper, we test a regular HMM and HMM improvements can be tested in
future research.

HIDS can be categorised depending on the source of data; it could be log
files, hardware status, memory pages, registers, system calls, and/or system files
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modifications. In this research we are monitoring only system calls for two rea-
sons. First, previous research proves that monitoring system calls gave high effi-
ciency and efficacy to detect anomalies in hosts [6], [12], and [16]. Second, moni-
toring hardware status or applications log files require installing some agents in
the VM or prior knowledge for the VM OS structure which is against the cloud
HIDS requirement stated earlier in this section; while system calls invoked by
the VM are sent to the host system and they can be intercepted by the HIDS
and used to build an identity for each VM and detect abnormality.

Some research papers, such as [17], suggest monitoring only privileged sys-
tem calls or system calls with high threat, other suggest monitoring only root
processes or processes with high privileges [6]. In this paper, one of the methods
used to pre-processing data is by categorising them depending on their threat
level and another method by only monitoring specific threads in the VM.

3 Hypothesis, Assumptions, and Requirements

The main hypothesis is that a strong anomaly signal can be generated by build-
ing a normal behaviour profile for each VM hosted in IaaS cloud model and
represented as a single process in the host system using HMM to build a hyper-
visor based anomaly detection system. The strong anomaly signal is generated
when evaluating abnormal sequences of system calls using the generated model
and we argue that this model is sufficient to cover even short-lived VMs.

We assume that VMs are not malicious from the beginning, to be able to
collect normal data for training the classifier. In the context of our research,
this assumption is acceptable because if the monitored VM is malicious from
the beginning that means either the owner of this VM is an attacker or the VM
get hijacked the moment it starts. These two possibilities are not the security
problems we try to investigate here; they are more related to authentication
mechanisms and the process of initiating new VM, and it is out of the scope of
this paper.

There are two main requirements to be satisfied by the proposed system. First,
the required amount of data to train the classifier should be the minimum to
be able to build the profile for short-lived VMs in acceptable time. Second, the
model should provide acceptable accuracy, detection rate and false positive rate
and the acceptable level will be discussed later. There should be also a balance
between efficiency and efficacy.

4 Approach

The data used in this research imported from our previous research [3]. Data was
collected from IaaS cloud environment based on KVM hypervisor. We collected
normal and malicious samples of invoked system calls by hosted virtual machines.
Normal samples are used for initializing, training and testing the classifier and
malicious samples for testing the classifier. Malicious samples are generated using
a DoS attack called ‘stress test attack‘, more details about this attack can be
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found in [3]. The choice of the attack is not of great importance because what is
matter here is the detection of behaviour change whether it is legitimate or by
an attack. In cloud environments detecting any change of behaviour suppose to
be treated as a strong sign of abnormality because as stated in [3] that "regular
best practices for IaaS cloud services would argue against such mixed workloads
being deployed in single VM instances". They also observe that "server systems
tend to perform similar operations repeatedly, providing a sound training data
set".

Another important point to be mentioned here, that the HIDS would not be
able to detect attacks that do not change the internal behaviour of the VM’s
operating system; however, this kind of attacks usually related to network thus
they might be detected by the NIDS and that is why we state earlier that both
HIDS and NIDS are required.

For analysing system calls, we also use the same method from [3] by consid-
ering each IOCTL system call with different first and second arguments as a
distinct system call because they request different actions from the kernel. We
also apply the idea of adding extra item to the list of system calls called ‘other‘
to cover any rarely used system call; this trick is to save time and space [3] by
decreasing the number of states in the model.

The used data set for training and testing was collected from a cloud IaaS
environment built in the lab with the minimum acceptable setup for production
environments; three VMs were hosted in the cloud and they provide an Enter-
prise Resource Planning (ERP) service which is popular in the cloud. To obtain
sufficient activity, the ERP system “was exercised using a number of different
scenarios (more than 30 use cases) for the ERP, which were automated using a
scripting mechanism consisting of Python scripts and the Dogtail open source
automation framework. The selection of use cases and intervals was performed
randomly to mimic realistic usage patterns and to avoid generating spurious
similarities among data sets“ [3].

In this stage we want to build HMM based classifier that generates matrix rep-
resenting VMs normal behaviour and detect any occurring change of behaviour.

4.1 Building HMM to Model VM Normal Behaviour

HMM is known to provides a very powerful model to capture the structure of
sequential data. It generates two sequences of symbols the first is observable
and the second is hidden. The hidden states can be discovered only through the
observable states. The probabilities of transition from a hidden state to another
and from a hidden state to observable state are represented using two probability
density functions. The model is denoted as λ = {A,B, π}.

HMM Symbols

– A: is transition matrix of size N*N which stores the probabilities of transition
from one state to another and it is row stochastic (the sum of each row is
equal to 1).
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– B: is the observation matrix of size N*M which stores the probabilities of an
observable event occurring given that the system is in a certain hidden state
and it is row stochastic too.

– π: is the initial state probabilities of each state being the starting of the
sequence. It is of size M and it is row stochastic.

– T: length of the observation sequence (is the number of observations taken)
– S: S1, S2... SN is the set of hidden states with N item
– O: O1, O2... OM is the set of observable states which is the set of used

distinct system calls with M item

The collected system call traces of the targeted VM are considered as the obser-
vation sequence and each system call as an observation symbol. Before building
and training the classifier we need first to specify the size of the HMM. HMM
consists of two finite sets of states hidden states set S with N item and observable
events set O with M item. It is a common practice in HMM anomaly detection
classifiers based on system calls to chose the size of N equal to the size of M equal
to the number of distinct system calls, as suggested in [18], and in our case the
number of distinct system calls are 252. After specifying the size of the HMM
becomes the stage of pre-processing the data to train and test the classifier. We
import three samples, two are normal and one is malicious. The first normal
sample is used to train the classifier while the second and third are for testing
purposes.

Training Steps

– Step 1: Imports a normal samples for training
– Step 2: Processes the sample by removing errors, incomplete system calls and

IOCTL system calls with missed first or second arguments. We pre-process
data using three methods for comparison purposes.
• Method one: We consider all system calls invoked by the targeted VM.

This method is the main method in this research paper however, we will
show the results of method two and three in the result and discussion
sections.

• Methods two: We consider only IOCTL system calls and system calls of
threat level one from the list of used system calls. The threat level of
each system call was imported from [17] but modified depending on the
research environment.

• Method three: Each VM represented in the system with one process, but
this process has many threads or child processes. In this method, only
main threads are considered. We define main threads as the thread that

2 In Linux there are more than 300 system calls but the number 25 come from ex-
periment and it is the same used in [3] where only frequently used system calls are
considered which are 24 in our setup and then we add one more item called "other"
which represent any rarely used system calls. This technique reduce the number of
states in HMM which reduce the computation time significantly. In addition, by
experiment we found that other system calls are rarely used.
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initiate IOCTL system calls; because in this research environment (KVM
based virtual environment), IOCTL system call is the most critical sys-
tem call in our environment for the reason that VMs communicate with
resources in the host kernel using IOCTL.

– Step 3: Take a small part of the normal sample and use it to create the
list of used distinct system calls then specify the value of M which is 25 for
methods one and three and 8 for method two.

– Step 4: Transfer system calls to vector of numbers; for instance system call
‘ioctl(11,0xae80,‘ represented by number 10 and the system call called ‘other‘
represented by number 24. The list of numbers is representing the items of
the observable states O.

– Step 5: Convert all of system calls in the training sample to the corresponding
number and divide them into group of k = 6 using sliding window from [13];
k is the number of items in each sequence of system calls and it is a common
to choose the value of k = 6 [1]. The following example is to simplify the
technique of sliding window; for instance if this is the trace of system calls

[‘ioctl(5,0xae03‘ ‘ioctl(5,0xae03‘ ‘clone‘ ‘read‘ ‘read‘]

It generates the following sequences if k = 3

[‘ioctl(5,0xae03‘ ‘ioctl(5,0xae03‘ ‘clone‘],
[‘ioctl(5,0xae03‘ ‘clone‘ ‘read‘],
[‘clone‘ ‘read‘ ‘read‘]

– Step 6: Decide the number of sequences of system calls used to train the
classifier. Since this classifier is targeting short-lived VMs, the number of
sequences used for training should be kept to the minimum. The number of
sequences for training and for testing have been chosen by experiment and
is shown later in the section.

– Step 7: After deciding the number of sequences to train the classifier, we
train the classifier using Baum-Welch algorithm, which is an expectation
maximisation algorithm to find the unknown parameters of HMM; the input
of the algorithm is sequences of system calls of size 6 and the output is a
trained classifier to be used later for testing

– Step 8: End of training process

The next stage is testing the performance of the classifier.

4.2 Testing the Classifier

To test the classifier we used 1500 traces (1000 are normal and 500 are mali-
cious). We enter them to the classifier and calculate the log-likelihood of each
trace and calculate two sets of values; Set1 is the difference between the log-
likelihood of 500 normal traces ‘TR1‘ and 500 abnormal traces ‘TR2‘. Set2 is
the difference between the log-likelihood of TR1 (the same normal traces used
in Set1) and another 500 normal traces ‘TR3‘. To label traces as normal or
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malicious and generate the anomaly signal, two thresholds should be designed.
The first threshold ‘T1‘ is to decide if a trace is normal (represented by 0) or
mismatch (represented by 1). The value of this threshold is calculated using the
following equation:

P1 = the average of difference in log-likelihood of normal samples
P2 = the average of difference in log-likelihood of abnormal samples
The threshold T1 = (P1 - P2)/2

For each entry in TR1 and TR2 we calculate the difference in log-likelihood and
compare it to T1; If the difference is less than T1, the value set to ‘1‘ and the
trace is registered as mismatch otherwise the value set to ‘0‘, and the trace is
registered as normal.

The second threshold T2 is to decide if a chunk of traces are normal or mali-
cious which make the final decision to send anomaly signal or not. Each chunk
of traces contain 10 traces. If a chunk of traces registers over 4 mismatches it
is considered as a malicious trace and an alert should be raised; however, by
experiment, we found that about 50% of the malicious chunks register 10 out of
10 mismatches, which means all traces in the chunk are malicious. If the chunk
has 4 or less mismatches it is considered as normal chunk, however about 60%
of normal chunks has 8,9 or 10 out of 10 normal traces on them. Dividing traces
into chunks helps to make the classifier work on the fly using small amount of
data for detecting anomalies. When the classifier starts processing a chunk and
it registers 5 mismatches there is no need to continue processing the rest of the
chunk because 5 is enough to label it as malicious and the classifier can ignore
the rest of the chunk and move to the next one. The choice of T2 and the number
of traces in each chunk are defined by experiment.

The amount of data used to train the classifier are relatively small, we used
about 780000 system calls to train the classifier which is about 19 MB of collected
data and it contains system calls, their arguments and return values. The traces
used for detection are of size about 150 KB which contains 6000 system calls
with their arguments and return values. The size of a chunk is equal to 1500 KB
and in 50% of the samples the classifier is able to decide if a chunk is malicious
or not by checking only the first 750 KB of the chunk.

4.3 Efficacy Analysis

To decide if the system used generates a strong enough anomaly signals or not,
we use hypothesis testing.

Hypothesis Testing. Q1 is number of anomaly signals in malicious samples in
comparing with normal sample, and Q2 is number of anomaly signals in normal
sample in comparing with another normal sample.

1. The null hypothesis: H0 : Q1 − Q2 > 5
H1 : Q1 − Q2 <= 5 (one sided hypothesis)

2. Assume H0 is true
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Fig. 1. Difference in log-likelihood between normal and abnormal samples

3. The difference in anomaly signals which is based on the difference in log-
likelihood follows approximately normal distribution see Fig. 1

4. Level of significance α = 0.001(99.9% confidence level)
5. Find Z scores3: Zα = Z0.001 = −3.09
6. Find the region of rejection RR which is a set of values less than or equal to

α: (RR <= −3.09)
7. Collect samples
8. Extract difference in anomalies signals for sequences for each chunk and

calculate statistics shown in table 1. N is sample size and μ is the average.

Table 1. Statistics collected from the samples

Normal Malicious
N1 = 8 N2 = 8
μ1 = 0.625 μ2 = 9.625

SD =
√

σ2
1

N1
+

σ2
2

N2
= 0.320

Δ = 5 (the value in the null hypothesis)
μ = μ2 − μ1 = 9 the new centre
ME = Zα ∗ SD = Z0.001) ∗ SD = −0.99014
Range: 8.06 to 9.99
Z = μ−Δ

SD = 12.48303
9. Draw a conclusion: the test statistics Z = 12.48303 is not in the RR so we

retain the null hypothesis

3 Z Score is a statistical measurement represent the relationship of a score to the mean
in a group of scores.
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Accuracy, detection rate, and false positive rate criteria are used to measure the
efficiency of the detection system. The result of testing 1500 samples with chunk
size 10, sequence length 6, each sample contains 1000 sequences and 8 iterations
are used to train the classifier is shown in table2

Table 2. Result of testing 1500 samples with chunk size 10, sequence length 6, each
sample contains 1000 sequence and 8 iterations

Accuracy Detection Rate False Positive Rate
97% 100% 5.66%

4.4 Complexity Analysis

Two main factors are affecting the time and memory complexity of the algo-
rithms. “The time complexity of the Baum-Welch algorithm per iteration scales
linearly with the sequence length and quadratically with the number of states.
In addition, its memory complexity scales linearly with both sequence length
and number of states“ [19]. The time complexity is O(N2k) and the memory
complexity is O(Nk) [20]. Therefore, to reduce the required computational com-
plexity, we reduce the value of N to an acceptable level. Although Linux has
about 326 different system calls, we only consider 25 of them which reduces the
time complexity considerably.

4.5 Results

We found that method one provided the best results. Method two, when only
IOCTL system calls were monitored, provided a detection rate ≈ 83%. For
method three, when only main threads were monitored, we found that there
are three main threads; the first one provided a very low anomaly signal while
the other two fail to distinguish between normal and malicious samples.

The other comparison we made is between different size of training samples
of method one. The chunk approach has not been used to provide the results
shown in table 3.

Table 3. Different size of training samples

# of System Calls 195000 390000 780000
Detection Rate ≈ 93% ≈ 96% ≈ 97%

After having this primitive results, we decided to use the 780.000 system calls
for training then applied the chunk approach which generates the results showed
earlier in the section.
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5 Discussion

As has been shown earlier, method one detected all of the malicious samples but
also labelled some normal chunks as malicious (False Positive rate 5.66%). The
FP rate can be lowered by reducing the threshold T1. For instance, instead of
dividing the difference in average by 2, as we did, we divide it by 4. This will
decrease the FP rate but will increase the False Negative one. Therefore, the
choice of this threshold depends on how critical this VM is, in addition to other
factors. Providers should design this threshold depending on the nature of their
clients, their industry and the geographical area.

We argue that method two fail because IOCTL system calls were not the
main system calls to distinguish the ‘stress test attack‘. Other attacks might
be detected by monitoring mainly IOCTL system calls; however, deciding which
system call to monitor is a complicated task and going deeper in this track might
convert the anomaly detection system to a misuse detection system.

The reason for the failure of task three might be that we monitor the wrong
threads. Threads in general are not stable they are created and terminated con-
tinually; therefore, the approach of monitoring specific threads under the main
process of the VM should be flexible and change with time. More research can
be done in this area to find a better definition of ‘main threads‘ rather than (the
thread that initiates IOCTL system calls), which is the definition used in this
paper. We argue that by monitoring the right threads, the training and detection
time will be less and the accuracy will be more.

6 Conclusion

In this research a system call based anomaly detection system was designed using
HMM for IaaS public cloud environments to detect anomalies in short-lived VMs
traffic. The designed detection system only required about 19 MB of data to train
the classifier and less than 150 KB of data for detection. This classifier is based
on the fact that VMs in public clouds has a very steady behaviour because of
the cost model of the cloud4 and that their is no need to increase the utilisation
of cloud VMs by installing multiple services on them.

Our anomaly detection system successfully detects anomalies without any
prior knowledge about the VM from inside, dealing with VMs as black boxes,
which is a requirement in public IaaS cloud where VMs are under the full control
of their owners.

There are many published papers investigating the area of reducing the cost
of HMM; most of the ideas can be applied to our system; however, we have not
covered this area in this paper. Also, more research can be done to improve the
performance of the classifier by monitoring specific threads, changing the list of
4 The cost model in the cloud is ’pay for what you use’ reduces the importance of

increasing servers utilisation by installing multiple services in them. Because instead
of doing that consumers can initiate multiple VMs for multiple services and still pay
the same.
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distinct system calls or improving the representation of IOCTL system calls. Fur-
thermore, system calls arguments can be considered by the classifier to increase
the performance. We also think that there is a need for more research to test and
find solutions for classifier drafting problem in short-lived VMs. Another interest-
ing problem is how to determine if a newly initiated VM is a short-lived one or
not; although this is not a security problem but many security solutions may rely
on it. Therefore, we think that there is a need to more research in this area.
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Abstract. With the advent of the Cloud Computing (CC) paradigm and the ex-
plosion of new Web Services proposed over the Internet (such as Google Office
Apps, Dropbox or Doodle just to cite a few of them), the protection of the pro-
grams at the heart of these services becomes more and more crucial, especially
for the companies making business on top of these services. In parallel, the over-
whelming majority of modern websites use the JavaScript programming language
as all modern web browsers – either on desktops, game consoles, tablets or smart
phones – include JavaScript interpreters making it the most ubiquitous program-
ming language in history. Thus, JavaScript is the core technology of most web
services. In this context, this article focuses on novel obfuscation techniques to
protect JavaScript program contents.

Informally, the goal of obfuscation is to make a program "unintelligible" with-
out altering its functionality, thus preventing reverse-engineering on the program.
However, this approach hardly caught attention from the research community af-
ter stand-alone obfuscation for arbitrary programs has been proven impossible in
2001. Here we would like to renew this interest with the proposal of JSHADOBF,
an obfuscation framework based on evolutionary heuristics designed to optimize
for a given input JavaScript program, the sequence of transformations that should
be applied to the source code to improve its obfuscation capacity. Measuring this
capacity is based on the combination of several metrics optimized simultaneously
with Multi-Objective Evolutionary Algorithms (MOEAs). Whereas our approach
cannot pretend to offer an absolute protection, the objective remains to protect
the target program for a sufficiently long period of time. The experiment results
initially conducted on a pedagogical example then on JQuery – the most popular
and widely used JavaScript library – outperform existing solutions. It demon-
strates the validity of the approach and its concrete usage in reference codes used
worldwide.

Keywords: Obfuscation, JavaScript Compilation, MOEA.

1 Introduction

The Obfuscation of source code is a mechanism to modify a source code to make it
harder to understand by humans even with the help of computing resources. More pre-
cisely, the objective is to conceal the purpose of a program or its logic without altering
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its functionality, thus preventing the tampering or the reverse engineering of the pro-
gram. While this research area used to be popular in the 90’s, it has raised far less
enthusiasm after stand-alone obfuscation for arbitrary programs has been proven im-
possible in 2001 [10]. Yet this aversion might change with the recent advent of the
Cloud Computing (CC) paradigm and the explosion of new Web Services proposed
over the Internet (such as Google Office Apps, Dropbox or Doodle just to cite a few
of them). More and more companies are making business on top of such services, with
the limitations and drawbacks inherent to this context as part or all the web service
are executed in the client browser. That’s where obfuscation techniques catch back the
interest of the industrial: whereas this approach cannot pretend to offer an absolute
protection over time, preventing the reverse-engineering of a program containing the
enterprise core business for a certain amount of time definitely makes sense until better
techniques (homomorphic encryption etc.) become available.

In this article, we present and detail JSHADOBF, an obfuscation framework based on
evolutionary heuristics designed to optimize for a given input JavaScript program, the
sequence of transformations that should be applied to the source code to improve its ob-
fuscation capacity. Our work focuses here on the JavaScript language as the overwhelm-
ing majority of modern websites use the JavaScript programming language. Also, all
modern web browsers – either on desktops, game consoles, tablets or smart phones –
include JavaScript interpreters making it the most ubiquitous programming language
in history. That’s probably why a company such as Google heavily uses this language
for most of its services (Gmail or Google Docs, just to cite a few). Measuring the ob-
fuscation capacity within JSHADOBF is based on the combination of well known met-
rics, coming from Software Engineering, which are optimized simultaneously thanks to
Multi-Objective Evolutionary Algorithms (MOEAs). We have validated our approach
over two concrete examples: one pedagogical (a classical matrix multiplication pro-
gram) and one more serious on the most popular and widely used JavaScript library,
named JQuery. We obtained experimental results that outperformed existing solutions.
Thus, it demonstrates not only the feasibility of the approach but also its concrete usage
in reference codes used worldwide.

This article is organized as follows: section 2 presents the background of this work
(from the JavaScript programming language to the notion of Evolutionary Algorithms
(EAs) and code obfuscation), and reviews related works. The section 3 describes the
JSHADOBF proposal, an EA-based JavaScript Obfuscator. The validation of JSHADOBF

on concrete applications is expounded in the section 4 and presents the associated ex-
perimental results. Finally, the section 5 concludes the paper and provides the future
directions.

2 Context and Motivations

2.1 The JavaScript Programming Language

Quoting [18], JavaScript is the programming language of the Web. The overwhelming
majority of modern websites use the JavaScript programming language and all modern
web browsers – either on desktops, game consoles, tablets or smart phones – include
JavaScript interpreters making it the most ubiquitous programming language in history.
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More concretely, JavaScript is a high-level, dynamic, untyped interpreted programming
language which is well-suited to object oriented and functional programming styles.
JavaScript derives its syntax from Java, its first-class functions from Scheme, and its
prototype-based inheritance from Self. Initially, many professional programmers deni-
grated the language for various reasons, ranging from design errors to buggy implemen-
tation in the first versions of the language. The standardization of the language within
the European Computer Manufacturer’s Association (ECMA) and, more importantly,
the advent of Asynchronous JavaScript and XML (AJAX) returned JavaScript to the
spotlight and brought more professional programming attention. It resulted in the pro-
liferation of comprehensive frameworks and libraries, improved JavaScript program-
ming practices, together with an increased usage of JavaScript outside of web browsers
within server-side JavaScript platforms.

Generally speaking, JavaScript has long since outgrown its scripting-language roots
to become a robust and efficient general-purpose language. The latest version of the
language defines new features for serious large-scale software developments, which
also explains the interest of all major vendors such as Microsoft or Google. In paral-
lel, the recent explosion of novel web services that goes along with the early advent of
the Cloud Computing (CC) paradigm increase the widespread adoption of JavaScript
at the core of the development of these services. To cite a few well-known examples,
one can mention Google Office Apps (featuring GMail or Google Docs), Dropbox (a
popular web-based storage service – see https://www.dropbox.com/) or Doodle (a
web-based scheduling service – see http://www.doodle.com/). Google is so deeply
dependent on this language that they released their home-made development frame-
work for JavaScript under the banner of the Closure Tools project [1]. Of interest for
the work presented in this article, we can cite the Closure Compiler which compiles
JavaScript into compact, high-performance code. This compiler removes dead code,
then rewrites and minimizes what’s left so that it downloads and runs quickly on the
client’s browser. It also checks syntax, variable references, and types, and warns about
common JavaScript pitfalls. These checks and optimization are meant to help writing
applications that are less buggy and easier to maintain.

2.2 Evolutionary Algorithms (EAs)

EA is a class of solving techniques based on the Darwinian theory of evolution [15]
which involves the search of a population Xt of solutions. Members of the population
are feasible solutions and called individuals. Each iteration of an EA involves a com-
petitive selection that weeds out poor solutions through the evaluation of a fitness value
that indicates the quality of the individual as a solution to the problem. The evolution-
ary process involves at each generation a set of stochastic operators that are applied
on the individuals, typically recombination (or cross-over) and mutation. Execution of
simple EAs requires high computational resources in case of non-trivial problems, in
particular the evaluation of the population is often the costliest operation in EAs. There
exists many useful models of EAs yet a pseudo-code of a general execution scheme is
provided in the Algorithm 2.2.

EAs are popular approaches to solve various hard optimization problems: on average,
they generally converge to "good" solutions more quickly than the naive exhaustive

https://www.dropbox.com/
http://www.doodle.com/
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Algorithm 1. General scheme of an EA in pseudo-code.
t ← 0;
Generation(Xt); // generate the initial population
Evaluation(Xt); // evaluate population
while Stopping criteria not satisfied do

X̂t ← ParentsSelection(Xt); // select parents
X ′

t ← Modification(X̂t); // cross-over + mutation
Evaluation(X ′

t); // evaluate offspring
Xt+1 ← Selection(Xt,X ′

t); // select survivors of the next generation
t ← t+ 1;

end while

search algorithm. This article investigates the use of EAs for the protection of JavaScript
programs by means of obfuscation, a notion reviewed in the next section. In this context,
several criteria are optimized simultaneously to effectively explore and measure the
trade-off that might be selected among these objectives. That’s why our work comes
into the framework of Multi-Objective Evolutionary Algorithms (MOEAs).

2.3 Code Obfuscation

Usually, when talking about security, the matter is about protecting a computer from
intrusions or malicious software. Here, we are interested in the mechanisms that permit
to protect software from piracy. More precisely, the objective is to deliberately obfuscate
the source code of a program to conceal its purpose or its logic without altering its
functionality, thus preventing the tampering or the reverse engineering of the program.
We now provide the preliminary definitions required for the sequel of this paper. Most
of them have been defined in the seminal work of Collberg [13]:

Definition 1 (Obfuscating Transformation)
Let P

τ−→ P ′ be a transformation of a source program P into a target P ′. P
τ−→ P ′ is

an obfuscation transformation if P and P ′ have the same observable behavior. More
precisely, if P fails to terminate or terminate with an error condition, then P ′ may or
may not terminate. Otherwise P ′ must terminate and produce the same output as P .

Observable behavior can be defined as being the behavior experienced by the user. This
means everything the user can notice at first sight. Hence, if P ′ has side effects (new
created files, network communications ...) that are not noticed by the user, it can still
have the same observable behavior (provided it has the same user experienced effects
as P ).

Obfuscating transformations can affect different aspects of a program structure. They
can be classified in three main classes:

1. Data obfuscation: this gathers all the transformations that obscure the data struc-
tures used in a program. This includes for instance the changes in variable
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representation (from their encoding to their promotion1), the conversion from static
data to procedural data, the split or the aggregation of variables etc.

2. Layout obfuscation. In this case, the transformations change the information in-
cluded in the code formatting, typically by scrambling identifier names or the code
indentation.

3. Control obfuscation which affect the aggregation, ordering or computations per-
formed within the program control-flow. Applying control obfuscation technique
often implies slowing down the program. Under the different approaches that fall
under this category, we can mention the manipulation of predicates within the pro-
gram to make them opaque, the insertion of dead code, the extension of loop con-
ditions, the conversion of a reducible flow graph to a non-reducible one, the addi-
tion of redundant operands or interleaving functions, the inlining (or outlining) of
function, the code parallelization or all the loop transformations (such as the loop
unrolling).

In order to evaluate the obfuscation capacity induced by an obfuscating transformation,
several metrics can be considered. McCabe proposes a graph theory oriented metric [23]
in which the control flow of programs is seen as graphs. Here, a program complexity
is measured by the number of linearly independent paths which is equal to e − n + p
in strongly connected graphs (e being the number of edges, n the number of vertices
and p the number of connected components of the graph). Control flows of programs
being assumed to have a strongly connected structure, we can see how adding more
independent paths in a program can increase its complexity.

Chidamber and Kemerer listed several metrics for object oriented programs [12] like
giving weight to classes, measuring coupling between classes (i.e. evaluating the inter-
actions between classes) or the lack of cohesion in methods (i.e. measure the similarity
between two methods counting the instance variables used in common). When not us-
ing object oriented program, some parallel lines can be drawn with data structures (e.g.
Measuring global variable or data structures used by several functions, evaluation in-
teractions between variables ...). The most well-known static metrics used to measuring
software complexity are the following ones [14]:

μ1 Program Length [19]. The more P has operators and operands, the more complex
it gets.

μ2 Cyclomatic Complexity [23]. The complexity of a function is measured by the num-
ber of predicates it contains.

μ3 Nesting Complexity [20]. The more conditionals of a function are nested, the more
complex that function is.

μ4 Data Flow Complexity [24]. The complexity of a function increases with the num-
ber of variables references in inter-basic blocks.

μ5 Fan-in/out Complexity [21]. A function is more complex if it has more formal pa-
rameters, its complexity also increases with number of global data structures it
reads or writes.

1 Promoting a variable means replacing a specialized storage structure by a more general one.
For example, in a language such as Java, an integer typed variable can be replaced by an Integer
class. The variable promotion could also be an increasing of its lifetime, like making a local
variable global.
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μe or μ6 the efficiency of the code measured as the average execution time of the code
on a reference machine, using one or more test cases representing normal execution
of the program.

2.4 Obfuscation of JavaScript Programs

The obfuscation of a JavaScript program has been addressed by the Internet commu-
nity as well as by hackers to embed malicious code in websites, for instance to redirect
requests to another website so as to increase the number of visitors. In reaction, the
research community had done many studies to detect malicious websites and thus ob-
fuscated code through the analysis of JavaScript source code. For instance, the authors
in [11] analyze the string variables contained in the JavaScript source code to classify
the websites as malicious or not. The metrics used in this paper are string related metrics
(this includes string length, frequency of particular function or entropy of the function
or variable names). Following the same trend, the authors of [17] have patched the Spi-
derMonkey [6] JavaScript interpreter (which is used in the well known web browser
firefox) to make some statistics about the code, like counting the number of newly
generated strings or counting the number of eval calls during the execution of the pro-
gram and thus can help to detect obfuscated code. As regards the obfuscation process
in itself, there exists relatively few studies or tools in the literature. Indeed the current
JavaScript obfuscation techniques mostly use data obfuscation on string variables and
the eval function provided by the JavaScript language allowing the dynamic execution
of strings. These techniques are used for instance by the on-line JavaScript obfuscator
[3] or in packer [5] Another tool worth to mention is UgligyJS, a JavaScript obfuscator,
compressor (minifier) or beautifier. Depending of the user’s request, it performs many
small optimizations and obfuscations to alter the initial JavaScript source code. The
possible transformations are listed on the uglifyjs website [7]. ObfuscateJS has been as
well included in the tools tested against JShadObf even if the last version of the soft-
ware dates from 2006 [4]. The non-free JavaScript obfuscator, Jasob [2] has been used
for the tests with the trial version. The other ones we wish to mention in this section
are minifiers, an operation that can be seen as a partial obfuscation as it complexifies
the JavaScript code. In this framework, we can cite the minifier of Yahoo, called YUI
Compressor [8], which works on a few simple example but fail to parse complex codes
such as the one of the JQuery library. A more powerful alternative is the minifier of
Google called closurecompiler [1].

To sum up, obfuscation of JavaScript programs is still at a early stage and there is
place for huge improvements. That’s where comes the main contribution (and interest)
of this article with the proposal of JSHADOBF, an obfuscation framework based on
evolutionary heuristics designed to optimize for a given input JavaScript program, the
sequence of transformations that should be applied to the source code to improve its
obfuscation capacity.

3 JSHADOBF: An EA-Based JavaScript Obfuscator

This part is describing how is operating the JSHADOBF program, an overview of the
full process is shown in figure 1. The implementation of the solution had to answer
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Fig. 1. Overview of JSHADOBF, describing the full process of the generation of new representa-
tions of the code

the four issues exposed in the following subsections. §3.1: How to parse a JavaScript
program? §3.2: What transformations can be applied ? §3.3: How do you measure their
efficiency? And §3.4: How to use EA to increase the obfuscation level of an individual?

3.1 AntLR Parsing

The JavaScript code is parsed using the grammar AntLR [25] developed with the help
of the ECMAScript Standardization document [22]. Thanks to this grammar, the AntLR
Parser is able to parse a file containing complex JavaScript source code and some
JavaScript 1.8 “dialect” syntax. This grammar has been validated on the well known
JQuery framework [9]. AntLR generates the Abstract Syntax Tree (AST) representa-
tion of a JavaScript source code. The Abstract Syntax Tree (AST) is a standard type of
representation of a source code and almost all compilers (source to source or
source to binary) are using to apply modification, optimization or to generate other
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representations of the code e.g binary. It is a tree-based representation of the source
code containing all the information about the source code, and the structure tree em-
beds the structure of the source code i.e., without the parenthesis, brackets. Source code
of programs translated into an AST representation are easier to work with when deal-
ing with any kind of modifications. Indeed this representation allow the programming
of a generic tree_walker used to compute the metrics but as well to perform the
different transformations. This tree_walker is given in parameter the function to
used depending on the desired action, either the computation of a metric or some mod-
ifications on the AST. The following subsections §3.2 and §3.3 describe computation
applied using this standard way of walking into the AST.

3.2 Considered Transformations

The different transformations developed within the framework of JSHADOBF are ap-
plied directly on the AST, and are not modifying the output of the program. They are
simple in order to be easier to check, but applied many times on different parts of the
program, they make the program harder to read. Here is the list of the transformations
already developed:

– Renaming. This transformation is modifying and changing the name of some iden-
tifier randomly (except the identifiers which are used globally, or the one specified
not to be).

– Outlining. The outlining transformation takes a set of statements and outline them.
This create a new function either in the same scope or in an higher scope depending
on the side effects of the selected set.

– Dummy If insertion: adds dummy if statements with randomly generated predicate.
– Dummy variable insertion: adds unused variables in the code.
– Dummy expression insertion: generation of random expressions and insertion at

random position in the code.
– Changing place of variable declaration: when applicable, moving the variable dec-

laration.
– Re-formatting string constants: replacement of the string constants, by concatena-

tion of sub strings contained in variables declared in the same scope of the program.

These transformations have been tested on a test-suite of JavaScript programs, to en-
sure that the first requirement of the definition of a obfuscation holds i.e. keeping the
functionality of the program intact. Because transformations applied on the source code
can interfere between themselves, JSHADOBF uses very simple transformations tested
on multiple JavaScript programs as well as many different combinations to ensure their
validity. This aggregation of modifications used with the power of EA increases a lot
the level of obfuscation of the program. However in order to determine the level of ob-
fuscation of a source code, some metrics are needed. The next subsection will present
the selected ones.

3.3 Metrics Used to Measure JSHADOBF Individual Quality

The metrics used to evaluate a source code complexity are the metrics presented in the
§2.3. They will be used in the fitness functions to compute the fitness values. As we
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decided to explore the search space to minimize all these values, the fitness function are
defined as follows: ∀x ∈ [1..5], f itnessx(I) = 1/μx. Only the time of execution μe is
directly the fitness value: fitnesse(I) = μe.

The AST representation has been helpful also to compute the static metrics. In order
to compute the time of execution, test-cases which are representatives to normal execu-
tions of the program are needed, preferably covering every portion of code within the
program, in order to verify that transformations do not lead to a too important time of
execution. The next section explains how the transformations are used in the EA at the
heart of JSHADOBF.

3.4 Evolutionary Algorithms (EAs) Used within JSHADOBF

As the different metrics used are nearly independent from each others, they have to be
taken into account in the EA, thus JSHADOBF relied on Multi-Objective Evolutionary
Algorithm (MOEA) to search for solutions of the obfuscating process. We now review
the classical steps EA as presented in the §2.2 in the context of JSHADOBF. The figure 1
illustrated all these phases.

Reproduction and Crossover. The reproduction selected is a simple recopy of individ-
uals, we didn’t implement any crossover, due to the nature of individuals. As stated in
[26] there is no reason to say that crossover should always be used. Indeed one could
think that a quite straight forward crossover could be the exchange of functions be-
tween individuals, however transformations such as outlining, and renaming make it
more difficult, this is nonetheless a subject to be studied in future work.

Mutation. Individual mutation corresponds to the application of a randomly selected
transformation, on a randomly selected portion of the AST assuming it makes sense
for the considered transformation. This transformation is applied at most n times, with
n selected by the user at the beginning of the process, allowing the limitation of the
number of transformations at each step.

Evaluation. This stage is performed by computing the fitness functions defined previ-
ously. First, the five static metrics are computed by browsing through the AST represen-
tation, then a sub-process is launched to run the individual with standard input, leading
preferably to a deterministic output, and the time taken by the sub-process to complete
its task is the sixth metric. To counter the non-regularity of the execution time of pro-
cess, this dynamic metric is computed n times, and the average is taken as the result of
the computation. This dynamic evaluation of the individuals guarantees as well that the
population stays valid according to the definition of obfuscation.

Selection. We use here NSGA-II [16], which is one of the reference selection algorithm
for MOEAs. It is selecting the individuals by taking into account the non-domination
criteria and the distance from one to the others to guarantee a good diversity as well
as the leading individuals of the population. The selection uses the values of the fitness
function computed during the evaluation part of the EA.

The cycle of the EA then continues until a certain number of generations has been
reached, or until the different fitness values obtained are small enough for the user of
JSHADOBF.
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4 Experiments and Validations

We have validated our approach over two concrete examples: one pedagogical (a clas-
sical matrix multiplication program matmul.js which is outputting the result of the
multiplication of two matrix) and one more serious on the most popular and widely
used JavaScript library, named JQuery [9]. For the Matrix multiplication program the
MOEA used a population of a size 1000 individuals, performing over 50 generations.
The size of the population for the JQuery framework is 100 individuals which is smaller
due to the size of the initial program which is approximately 8000 lines of code (160ko
without comments), and the number of generations as well 50. JSHADOBF can as well
be run with as target not the number of generation but rather some values for the objec-
tive functions. This however could lead to infinite computation if the objective are not
reachable e.g. time of execution too small.

4.1 Experiments on a Matrix Multiplication Program

The graphs in the figures 2 are showing the relation between different metrics every
tenth generation after the first generation for the Matrix multiplication program.

The pareto fronts are easily distinguishable on the different figures, they have dif-
ferent shapes as they are projections of the results of a MOEA algorithm with six ob-
jectives. On the different graphs may appear some alignment of the individuals (like
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Fig. 2. Experimental results obtained for the obfuscation of a Matrix Multiplication program by
JSHADOBF. (a), (b), (c): Example of 2D pareto fronts. (d): Evolution of the mean values of the
different metrics.
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when comparing μ2 and μ6, or when evaluating μ1 and μ2), this is explained by way
the fitness function is computed, indeed it is often the inverse of an integer value.

The figure 2(d) represents the means values meanx(n
th) of the fitness function

fitnessx of a generation nth of size m which is computed as follows:

meanx(n
th) =

∑m
i=1 fitnessx(I

nth

i )

m

These mean values are then normalised with the mean values of the first generation to
be able to represent them on the same graphic:

fx(n
th) =

meanx(n
th)

fitnessx(I1
st)

The function fx is computed with in argument the generation’s number nth for all
the six metrics μx selected. We can then see the evolution of mean of the population
regarding the selected metrics. On one of the individuals of the last generation, which
has been chosen a priori, the metrics presented in the table 1 has been computed to show
the evolution from the initial program and to compare with other obfuscator / minifier.

4.2 Experiments on JQuery

For the second experiment, we decided to apply JSHADOBF on a more serious appli-
cation. For this reason, we selected one of the most popular and widely used JavaScript
library i.e. JQuery [9], in the hope that it can illustrate the robustness and the usability
of the technique presented here. JQuery is a fast and concise JavaScript Library that
simplifies HTML document traversing, event handling, animating, and AJAX interac-
tions for rapid web development. JQuery in its development version, is distributed
with a test-suite verifying, in the version used, 3884 assertions. We use this test suite
as a way to demonstrate the correct behaviour or the library, knowing that the original
non-obfuscated version of jquery.js fails on 7 assertions over the 3884. The figure 3
depicts the evaluation of the different obfuscator/minifier for the JQuery framework
against this test suite. It is worth to notice that when the considered framework is able
to parse completely the library and thus to generate an obfuscated version, we observe
the same behavior i.e. 7 assertions failed. Obviously, it would have been very unlikely
to decrease this value as all framework derive the original code. At least it proves that
the obfuscated/minified versions do have the expected action.

4.3 Comparison of JSHADOBF with Other Obfuscators/Minifiers

We compared the results obtain with the JSHADOBF program with other existing Ob-
fuscator/Minifier. The comparison uses the metrics already shown in the §2.3. The re-
sults shown in table 1 reveal that JSHADOBF program performs better than the others
on the selected metric. This is quite obvious because it uses EA to increase these val-
ues, whereas the others do not target these specific metrics. Indeed the transformations
used by UglifyJS are not inserting dead code, but rather modifying a bit the different
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Fig. 3. Experimental results obtained for the obfuscation of the jquery.js program by
JSHADOBF. (a), (b): Example of 2D pareto fronts, JQuery Unit test suite results, and (c) evo-
lution of the mean values of the different metrics.

Table 1. Summary of the obtained results. Green cells indicate the best results so far.

matmul.js μ1 μ2 μ3 μ4 μ5 μe/μe(ref)

Original sources 254 10 4 84 51 1

UgligyJS [7] 252 8 4 84 51 1.0024
YUI compressor [8] 254 10 4 84 51 1.0086

javascriptobfuscator [3] 318 10 4 97 35 1.6055
Closure Compiler [1] 243 8 4 81 51 0.992706

Jasob [2] 254 10 4 84 51 1.0052
ObfuscateJS [4] 254 10 4 84 51 1.0058

Packer [5] 127 4 3 40 91 1.7918
JSHADOBF 6343 355 11 955 952 6.30254

jquery.js μ1 μ2 μ3 μ4 μ5 μe/μe(ref)

Original sources 18169 673 9 5519 16511 1

UgligyJS [7] 17990 359 9 5318 18673 1.009
Jasob [2] 18005 669 10 5463 16405 1.0074
Packer [5] 127 4 3 40 91 1.008

Closure Compiler [1] 17677 374 8 5486 28051 1.000
JSHADOBF 88843 7030 15 7410 20735 1.013

expressions and even removing unreachable code. Closure Compiler is as well reducing
the source code and not only the length but the number of operand, indeed this is shown
by the values in the two tables. The μ1 which takes into account the number of operand
i.e. the length of the variable name does not matter, is inferior than the initial value.
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Table 2. Correlation of the metrics for the 20 first generations of the JQuery program

μ1 μ2 μ3 μ4 μ5 μe

μ1 1.0000000 0.9585020 0.8961660 0.5712278 0.3797580 -0.5521950
μ2 1.0000000 0.8407987 0.4467864 0.2861682 -0.4422623
μ3 1.0000000 0.5999287 0.3358829 -0.5806230
μ4 1.0000000 0.7937583 -0.5900691
μ5 1.0000000 -0.4642683
μe 1.0000000

4.4 Summary of the Obtained Results

The table 1 summarised the results obtained with JSHADOBF and the other obfuscator
available in the literature.

The table 2 shows the coefficients of correlation of the different metrics computed
for the 200 individuals of the 40 first generations on the JQuery program, the green
cells reflect highly correlated values. This shows that for the selected transformations
the μ1 , μ2 and μ3 are correlated and the μ4 and μ5 are as well correlated. This however
is dependent to the selected transformations and might not occurs on the selection of a
different set of modifications. Some individuals are available on JSHADOBF. website2.

5 Conclusion

We have presented in this article JSHADOBF, a source to source JavaScript obfuscator
based on Multi-Objective Evolutionary Algorithms (MOEAs). Our proposed framework
optimizes simultaneously six metrics – five evaluating the obfuscation capacity of the
population being evolved and one quantifying the performance of each individual solu-
tion by measuring the execution time on a reference computing machine. Experimen-
tal results on two concrete JavaScript applications have been provided. We first tested
JSHADOBF on a simple pedagogical example, i.e. a matrix multiplication function where
we outperformed the few existing tools. We then decided to validate our approach on one
of the most popular and widely used JavaScript library i.e. JQuery. When the existing
tools were not even able to parse successfully the library, JSHADOBF managed to parse
it completely and to generate the different obfuscated versions to effectively explore and
measure the trade-off that might be selected among the six objectives analyzed.

Of course, this work opens many perspectives. We are currently investigating the
implementation of additional transformations (such as the modification of strings, the
loop unrolling, the inlining of functions...) but also other metrics. In particular, we are
investigating ways to adapt the data structure complexity to the case of the JavaScript
programming language, and also ways to take into account the string length and the
number of calls to the eval function which most of the time decrease the readability of
a program, like in [17] because the complexity added by packer [5] cannot be measure
by the selected metrics. Also, to accelerate the convergence of the evolutionary process
and permit a distributed execution, we are adapting the island model to JSHADOBF and
the first results are promising.

2 http://jshadobf.gforge.uni.lu/



JShadObf: A JavaScript Obfuscator Based on MOEAs 349

Acknowledgments. The experiments presented in this paper were carried out using the
HPC facility of the University of Luxembourg. This work is supported by the Fonds
National de la Recherche (FNR), Luxembourg PHD-09-142.

References

1. Closure compiler, https://developers.google.com/closure/compiler/
2. Jasob, http://www.jasob.com/
3. Javascriptobfuscator, http://www.javascriptobfuscator.com/
4. Obfuscatejs, http://tools.2vi.nl/
5. Packer, http://dean.edwards.name/packer/
6. Spidermonkey, https://developer.mozilla.org/en-US/docs/SpiderMonkey
7. Ugligyjs, https://github.com/mishoo/UglifyJS
8. Yui compressor, http://developer.yahoo.com/yui/compressor/
9. Jquery (2012), http://www.jquery.org/

10. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S., Yang, K.: On the
(Im)possibility of obfuscating programs. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139,
pp. 1–18. Springer, Heidelberg (2001)

11. Byung-Ik Kim, H.-C.J., Im, C.-T.: Suspicious malicious web site detection with strength
analysis of a javascript obfuscation. International Journal of Advanced Science and Technol-
ogy

12. Chidamber, S.R., Kemerer, C.F.: A metrics suite for object oriented design (1994)
13. Collberg, C., Nagra, J.: Surreptitious Software: Obfuscation, Watermarking, and Tamper-

proofing for Software Protection. Addison-Wesley Professional (2009)
14. Collberg, C., Thomborson, C., Low, D.: A taxonomy of obfuscating transformations. Rapport

technique l’Université d’Auckland, -1 (1997)
15. Darwin, C.: The Origin of Species. John Murray (1859)
16. Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A fast elitist non-dominated sorting genetic

algorithm for multi-objective optimization: NSGA-II. In: Deb, K., Rudolph, G., Lutton, E.,
Merelo, J.J., Schoenauer, M., Schwefel, H.-P., Yao, X. (eds.) PPSN 2000. LNCS, vol. 1917,
pp. 849–858. Springer, Heidelberg (2000)

17. Feinstein, B., Peck, D.: Caffeine monkey: Automated collection, detection and analysis of
malicious javascript. In: DEFCON 15 (2007)

18. Flanagan, D.: JavaScript: The Definitive Guide Activate Your Web Pages, 6th edn. O’Reilly
Media, Inc. (2011)

19. Halstead, M.H.: Elements of software science (1977)
20. Harrison, W.A., Magel, K.I.: A complexity measure based on nesting level. SIGPLAN No-

tices 16(3), 63–74 (1981)
21. Henry, S., Kafura, D.: Software structure metrics based on information flow. IEEE Transac-

tions on Software Engineering SE-7(5) (1981)
22. E. C. M. A. International. ECMA-262: ECMAScript Language Specification. ECMA (Eu-

ropean Association for Standardizing Information and Communication Systems), 3rd edn.,
Geneva, Switzerland (December 1999)

23. McCabe, T.J.: A complexity measure. IEEE Transactions on Software Engineering SE-2(4)
(1976)

24. Oviedo, E.I.: Control flow, data flow, and program complexity. In: Proceedings of IEEE
COMPSAC, pp. 146–152 (1980)

25. Parr, T.J., Parr, T.J., Quong, R.W.: Antlr: A predicated-ll(k) parser generator (1995)
26. Reeves, C.R., Rowe, J.E.: Genetic algorithms: principles and perspectives. A guide to GA

theory. Kluwer Academic Publishers (2003)

https://developers.google.com/closure/compiler/
http://www.jasob.com/
http://www.javascriptobfuscator.com/
http://tools.2vi.nl/
http://dean.edwards.name/packer/
https://developer.mozilla.org/en-US/docs/SpiderMonkey
https://github.com/mishoo/UglifyJS
http://developer.yahoo.com/yui/compressor/
http://www.jquery.org/


J. Lopez, X. Huang, and R. Sandhu (Eds.): NSS 2013, LNCS 7873, pp. 350–364, 2013. 
© Springer-Verlag Berlin Heidelberg 2013 

Forward Secure Certificateless  
Proxy Signature Scheme 

Jiguo Li*, Yanqiong Li, and Yichen Zhang  

College of Computer and Information Engineering, Hohai University,  
Nanjing 210098, China  
ljg1688@163.com 

Abstract. In order to deal with key exposure problem, we introduce forward 
secure technique into certificateless proxy signature scheme, and propose the 
formal definition and security model of forward secure certificateless proxy 
signature. Furthermore, we present a construction of forward secure 
certificateless proxy signature scheme with bilinear maps. Based on the 
difficulty of computational Diffie-Hellman problem, we prove the scheme is 
secure against chosen message attack in the random oracle model. 

Keywords: forward secure, certificateless proxy signature, computational 
Diffie-Hellman problem, random oracle model. 

1 Introduction 

In 1996, Mambo, Usuda and Okamoto [1] firstly proposed a proxy signature scheme, in 
which the proxy signer can sign the message on behalf of the original signer. Proxy 
signature has a lot of practical applications, such as mobile communications, distributed 
system and electronic auction, etc. In order to satisfy different situations, researchers 
proposed many extensions of proxy signature, including designed verifier proxy 
signature [2], ID-based proxy signature [3], one-time proxy signature [4] and so on. 
However, we found that most of the proxy signatures are proposed in the identity based 
cryptography (IBC) setting or the traditional public key cryptography (PKC) setting. We 
know that IBC has key escrow problem while PKC has certificate management problem. 

In order to solve the above problems, Al-Riyami and Paterson [5] firstly presented 
the certificateless public key cryptography (CL-PKC). Compared with PKC, CL-PKC 
does not require any certificates to ensure the authenticity of public keys. Moreover, 
CL-PKC overcomes the key escrow problem of IBC. Due to its advantage, many 
researchers have been interested in CL-PKC and some certificateless proxy signatures 
[6-8] have been proposed. 
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Key exposure is an important threat to the security of signature scheme. In 2009, 
Schuldt et al. [9] presented a proxy signature against proxy key exposure, which 
effectively solved the problem. It is obviously that there also exists key exposure 
problem in certificateless proxy signature. If the secret key of proxy signer is exposed, 
a malicious user can forge proxy signature instead of proxy signer, which will damage 
the benefit of original signer. Furthermore, all signatures that have ever been 
generated by proxy signer become invalid. How to minimize the damage caused by 
key exposure has been an open problem. 

Forward secure technique can efficiently deal with key exposure problem. In 1997, 
Anderson [10] firstly introduced the concept of forward security in digital signature. 
In the forward secure signature scheme, the public key keeps unchanged in all time 
periods, while the private key updates in every time period. By this means, the past 
signature is still valid even if the private key in a time period is exposed. In 1999, 
Bellare and Miner [11] proposed a concrete construction of forward secure signature 
scheme. In their construction, they use the numbers of a binary tree to denote the total 
life time periods of the scheme. In every time period, the scheme derives a new 
private key from the private key of the last time period and uses it to sign messages. 
The public key remains unchanged in all time periods. In 2001, Itkis and Reyzin [12] 
put foward another forward secure signature scheme. The scheme can be verified 
effectively, but costs much time on private key generation and evocation algorithm. In 
2004, Kang et al. [13] presented two forward secure signature schemes based on 
Diffie-Hellman group. The scheme is superior to Bellare and Miner’s scheme in the 
time of key generation and evocation, and the time is fixed within the total time 
periods. In 2009, Nakanishi et al. [14] proposed a forward secure group signature 
scheme based on the group signature with paring, in which the complexity of the key 
evocation and signature verification is (log )O T . At present, many scholars and 

experts have proposed effective forward secure signature schemes [15-17].  
In 2010, Chen et al. [18] firstly proposed a forward secure cerficateless proxy 

signature scheme, but they didn’t give the formal definition and security model of the 
scheme. Moreover, they didn’t prove the security of the scheme in the random oracle 
model. In this paper, we firstly introduce the formal definition and security model of 
the scheme, and propose another forward secure certificateless proxy signature with 
bilinear maps. The security of our scheme is reduced to computational Diffie-Hellman 
problem. The scheme is not only avoiding certificate management problem, but also 
solving key escrow problem. At the same time, the scheme has forward secure 
property, which can solve the key exposure problem in certificateless proxy signature. 

2 Preliminaries 

Bilinear Pairing  

Let 1G  denote an additive group of prime order q  and 2G  be a multiplicative 

group of the same order. Let P  denote a generator in 1G . Let 1 1 2:e G G G× →  be 

a bilinear mapping with the following properties:  
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— Bilinear: ( , ) ( , )abe aP bQ e P Q=  for all 1,P Q G∈ , , qa b ∗∈ . 

— Non-degenerate: ( , ) 1e P Q ≠  for 1,P Q G∈ . 

— Computable: There is an efficient algorithm to compute ( , )e P Q  for any 

1,P Q G∈ . 

Definition 1. Computational Diffie-Hellman (CDH) Problem  

Let 1G  denote an additive group of prime order q , and P  denote a generator in 

1G . Given ( , , )P aP bP , for some , qa b ∗∈ , compute abP . 

The success probability of any probabilistic polynomial-time algorithm A  
solving CDH problem in 1G  is defined to be: 

1, Pr[ ( , , ) : , ]CDH
A qGSucc A P aP bP abP a b ∗= = ∈ . 

The CDH assumption states that for every probabilistic polynomial-time algorithm 

A , 
1,

CDH
A GSucc  is negligible. 

3 The Concept and Security Model of forward Secure 
Certificateless Proxy Signature 

3.1 The Concept of forward Secure Certificateless Proxy Signature 

A forward secure certificateless signature scheme is defined by nine probabilistic 
polynomial-time algorithms: Setup, Partial-Private-Key-Extract, User-Key-Generate, 
Partial-Proxy-Key-Generate, Partial-Proxy-Key-Verify, Initial-Proxy-Key-Generate, 
Proxy-Key-Update, Proxy-Sign and Proxy-Verify. 

— Setup: Takes a security parameter k  and a total numbers of time periods N  as 
input, it returns the master key s  and system public parameters params . This 

algorithm is run by key generation center (KGC). 
— Partial-Private-Key-Extract: Takes the master key s  and a user’s identifier 

ID  as input, it outputs a partial private key IDD . This algorithm is run by KGC. 

— User-Key-Generate: Takes system public parameters params , a user’s 

identifier ID  as input, it outputs a secret value IDx  and a public key IDP . This 

algorithm is run by the original signer A and the proxy signer B. 
— Partial-Proxy-Key-Generate: Takes system public parameters params , a 

warrant wm , an original signer’s identity AID , partial private key AD , secret 

value Ax  and public key AP  as input, it outputs a partial proxy key Aσ . This 

algorithm is run by the original signer A. 
— Partial-Proxy-Key-Verify: Takes system public parameters params , a warrant 

wm , an original signer’s identity AID  and public key AP , and a partial proxy 
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key Aσ  as input, it returns true if the partial proxy key Aσ  is correct or false 

otherwise. This algorithm is run by a proxy signer B. 
— Initial-Proxy-Key-Generate: Takes system public parameters params , a 

partial proxy key Aσ , an original signer’s identity AID  and public key AP , a 

proxy signer’s identity BID , partial private key BD , secret value Bx  and public 

key BP  as input, it outputs a initial proxy key 0
Bσ . This algorithm is run by a 

proxy signer B. 
— Proxy-Key-Update: Takes system public parameters params , the current time 

period ( 0)t t > , a partial proxy key Aσ , an original signer’s identity AID  and 

public key AP , a proxy signer’s identity BID , partial private key BD , secret 

value Bx  and public key BP , a proxy key 1t
Bσ −  of last time period as input, it 

outputs the proxy key t
Bσ  of current time period, and deletes the proxy key 1t

Bσ −  

of last time period completely. This algorithm is run by a proxy signer B. 
— Proxy-Sign: Takes system public parameters params , the current time period 

t , a message m , a warrant wm , a proxy signer’s identity BID  and public key 

BP , a proxy key t
Bσ  as input, it outputs a proxy signature ψ . This algorithm is 

run by a proxy signer B. 
— Proxy-Verify: Takes system public parameters params , a message m , a 

warrant wm , an identity AID  and public key AP  of the original signer A, an 

identity BID  and public key BP  of the proxy signer B, the current time period 

t  and a proxy signature ψ  as input, it returns true if the signature ψ  is correct 

or false otherwise. This algorithm is run by a verifier. 

3.2 The Security Model of forward Secure Cerificateless Proxy Signature 

According to the security model of forward secure signature scheme proposed in [11] 
and the super adversary security model of cerificateless signature scheme defined in 
[19], we put forward the security model of forward secure certificateless proxy 
signature.  

There are two types of adversary in forward secure certificateless proxy signature: 

IA  and IIA . IA  simulates malicious users (anyone except the KGC) who have the 

following capabilities. (1) IA  does not know the master key, but IA  can replace any 

user’s public key. (2) IA  can get any proxy signer’s message/proxy signature in any 

time period t ( 0 t T≤ ≤ , T  is the key exposure time period). IIA  simulates a 

dishonest KGC who has the following capabilities. (1) IIA  knows the master key, but 

IA  cannot replace the target user’s public key. (2) IIA  can get any proxy signer’s 

message/proxy signature in any time period t ( 0 t T≤ ≤ , T  is the key exposure 
time period). 
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We define the security model of forward secure certificateless proxy signature scheme 
by using the game between a challenger C and an adversary { , }A AΙ ΙΙΓ ∈  as follows. 

Game 1 

Setup: C runs the algorithm to generate master key s  and system parameters 

params , C then sends params  to IA  while keeping master key secret.  

Chosen Message Attack Phase: IA  can perform the following queries: 

— Public-Key-Query: On receiving a user’s identity iID , the challenger C 

performs User-Key-Generate algorithm to generate a public key iP  of iID , and 

returns iP  to IA .  

— Partial-Private-Key-Query: On receiving an identity iID , C runs Partial-

Private-Key-Extract algorithms to generate the partial private key iD , and  

returns iD  to IA . 

— Public-Key-Replacement-Query: On receiving an identity iID  and a new 

public key '
iP . C replaces the public key of iID  with the new one. 

— Secret-Value-Query: On receiving an identity iID , C performs User-Key-

Generate algorithm to generate a secret value ix  of iID , and returns ix  to IA . 

— Partial-Proxy-Key-Query: On receiving a warrant wm  and an identity AID  of 

an original signer A, C runs Partial-Proxy-Key algorithm to generate a partial 
proxy key Aσ , and return it to IA . 

— Proxy-Key-Query: On receiving a time period t , a warrant wm , an identity 

AID  of an original signer A and an identity BID  of a proxy signer B, if 0t = , C 

runs Initial-Proxy-Key-Generate algorithms to generate initial proxy key 0
Bσ , 

and returns it to IA . Otherwise, C runs Proxy-Key-Update algorithms to 

generate a proxy key t
Bσ  and returns it to IA . 

— Proxy-Signature-Query: On receiving a time period t , an identity AID  of an 

original signer A , an identity BID  of a proxy signer B, a message m  and a 

warrant wm , C returns a proxy signature ψ  of the current time period to IA .  

At the end of every time period, IA  can continue to make chosen message attack or 

enter the breakin  phase, while IA  must query according to the sequence of the 

time period strictly. 

Breakin  Phase: When IA  puts forward a breakin  query, C simulates the key 

exposure situation, and will give all proxy signer’s (including the target proxy signer) 
proxy key of time period T ( T  is key exposure period) to IA . Here, IA  cannot 



 Forward Secure Certificateless Proxy Signature Scheme 355 

achieve the partial private key and secret value of the proxy signer, but can replace 
the public key of the proxy signer.  

Forgery Phase: IA  outputs { , , , , , , , }w A A B Bm m ID P ID P μ ψ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗  of the time period 

μ∗ (0 )Tμ∗≤ <  as its forgery. We say IA  wins the game, if { , ,wm m∗ ∗  

, , , , , }A A B BID P ID P μ ψ∗ ∗ ∗ ∗ ∗ ∗  satisfies the following conditions. The advantage of IA  

winning the game is defined as , ,cma cida breakin
ASucc

Ι
. 

(1) Verify { , , , , , , , }w A A B Bm m ID P ID P μ ψ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ = True.  

(2) IA  has never made Partial-Private-Key-Query on AID∗ . 

(3) IA  has never made Partial-Proxy-Key-Query on { , , }w A Am ID P∗ ∗ ∗ . 

(4) In the time period μ∗ , IA  has not made Proxy-Key-Query on { , , ,w A Am ID P∗ ∗ ∗  

, }B BID P∗ ∗ . 

(5) In the time period μ∗ , IA  has not made Proxy-Signature-Query on 

{ , , , , , }w A A B Bm m ID P ID P∗ ∗ ∗ ∗ ∗ ∗ . 

Definition 2. The forward secure certificateless proxy signature is existentially 
unforgeable against chosen message attack of adversary IA , if the probability of IA  

winning in the Game 1 is negligible in polynominal time. In other words, 
, ,cma cida breakin

ASucc ε
Ι

≤ , where ε  is negligible.  

Game 2 

Setup: C runs the algorithm to generate master key s  and system parameters 

params , C then sends params  and master key to IIA .  

Chosen Message Attack Phase: In this phase, IIA  can ask Public-Key-Query, 

Public-Key-Replacement-Query, Secret-Value-Query, Partial-Proxy-Key-Query, 
Initial-Proxy-Key-Query, Updated-Proxy-Key-Query and Proxy-Signature-Query, 
and C will respond respectively. The operation is same as Game 1.  

Breakin Phase: When IIA  puts forward a breakin  query, C simulates the key 

exposure situation, and will give all proxy signer’s (including the target proxy signer) 
proxy key of time period T (T  is key exposure period) to IIA .  

Forgery Phase: IIA  outputs { , , , , , , , }w A A B Bm m ID P ID P μ ψ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗  of the time period 

μ∗ (0 )Tμ∗≤ <  as its forgery. We say IIA  wins the game, if 

{ , , , , , , , }w A A B Bm m ID P ID P μ ψ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗  satisfies the following conditions. The advantage 

of IIA  winning the game is defined as , ,cma cida breakin
ASucc

ΙΙ
. 
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(1) Verify { , , , , , , , }w A A B Bm m ID P ID P μ ψ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ = True.  

(2) IIA  has never made Secret-Value-Query on AID∗ , and has never made Public-

Key- Replacement-Query on AID∗  and BID∗ .  

(3) IIA  has never made Partial-Proxy-Key-Query on { , , }w A Am ID P∗ ∗ ∗ . 

(4) In the time period μ∗ , IIA  has not made Proxy-Key-Query on 

{ , , , , }w A A B Bm ID P ID P∗ ∗ ∗ ∗ ∗ . 

(5) In the time period μ∗ , IIA  has not made Proxy-Signature-Query on 

{ , , , , , }w A A B Bm m ID P ID P∗ ∗ ∗ ∗ ∗ ∗ . 

Definition 3. The forward secure certificateless proxy signature is existentially 
unforgeable against chosen message attack of adversary IIA , if the probability of IIA  

winning in the Game 2 is negligible in polynominal time. In other words, 
, ,cma cida breakin

ASucc ε
ΙΙ

≤ , where ε  is negligible. 

4 The Construction of forward Secure Certificateless Proxy 
Signature 

In this section, we present the construction of forward secure certificateless proxy 
signature scheme. We let k  be a security parameter and N  be system total time 
periods.  

Setup: This algorithm runs as follows.  

(1) Let 1G , 2G  be groups of the same order q  where 1G  is an additive group 

and 2G  is a multiplicative group, and 1 1 2:e G G G× →  is a bilinear paring.  

(2) Choose a random generator 1P G∈ , and select qs ∗∈  randomly. Let s  be 

the master key and set 0P sP= .  

(3) Choose cryptographic hash functions 1 1:{0,1}H G∗ ∗→ , * *
2 1:{0,1}H G× ×  

* *
1{0,1} qG ∗× →  , * * * * * *

3 1 1 1:{0,1} {0,1} {0,1} qH G G G ∗× × × × × →  , 4 :H  

* * * * *
1 1{0,1} {0,1} {0,1} qG G ∗× × × × →  .  

The system parameters are 1 2 0 1 2 3 4( , , , , , , , , , , )params G G e q P P N H H H H= .  

Partial-Private-Key-Extract: Given a user’s identity {0,1}iID ∗∈ , the algorithm 

computes 1( )i iQ H ID=  and outputs the user’s partial private key i iD sQ= . 
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User-Key-Generate: Given system parameters params  and a user’s identity iID , 

the algorithm selects i qx ∗∈  randomly as the user’s secret value, and computes the 

user’s public key ( , )i i iP X Y= = 0( , )i ix P x P .  

Partial-Proxy-Key-Generate: Given system parameters params , a warrant wm , an 

original signer A’s identity AID , partial private key AD , secret value Ax  and public 

key AP , the algorithm computes the proxy signer B’s partial proxy key as follows. 

(1) Randomly pick A qr ∗∈  and compute A AR r P= .  

(2) Compute 2 ( , , , )A w A A Ah H m ID P R=  and ( )A A A A A AI h D x r Q= + + .  

(3) Output ( , )w Am σ  to B, and take ( , )A A AR Iσ =  as the partial proxy key.  

Partial-Proxy-Key-Verify: Given ( , )w Am σ , the algorithm computes 

2 ( , , , )A w A A Ah H m ID P R= . If 0( , ) ( , )A A A A Ae I P e h P X R Q= + + , accept Aσ . 

Otherwise, reject Aσ .  

Proxy-Key-Generate: If ( , )w Am σ  is accepted, the algorithm generates the initial 

proxy key according to the following steps:  

(1) Randomly pick 0
B qr ∗∈  and compute 0 0

B BR r P= .  

(2) Compute 0 0
3 ( , , , , , )B w A A B B Bh H m ID P ID P R=  and 0 0 0

B A B B B B BK I h x D r Q= + + .  

(3) Output 0 0 0( , )B B BR Kσ =  as the initial proxy key of time period 0.  

Proxy-Key-Update: Given the current time period [1, 1)t N∈ − , the algorithm 

computes the t
Bσ   of time period t  from 1t

Bσ −  of time period 1t − .  

(1) Randomly pick t
B qr ∗∈  and compute 1

0

t
t t t t t
B B B B B

t

R R r P r P u P−

=

= + = = , while 

0

t
t t
B B

t

u r
=

= .  

(2) Compute 3 ( , , , , , )t t
B w A A B B Bh H m ID P ID P R=  and 

1

0 0

t t
t t t t
B B B B

t t

z h h h
−

= =

= = + =   

1t t
B Bz h− + .  

(3) Compute 1

0 0

t t
t t t t t t
B B B B B B B A B B B B B A

t t

K K h x D r Q I h x D r Q I−

= =

= + + = + + = +   

t t
B B B B Bz x D u Q+ .  

(4) Output ( , , )t t t t
B B B BR z Kσ =  as the proxy key of the time period t , and delete 

t
Br  and 1t

Bσ − .  
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Proxy-Sign: Given the current time period t  and a message m , the algorithm 
performs the following steps to generate the proxy signature. 

(1) Compute 4 ( , , , , )t
w B B Bh H m m ID P R= . 

(2) Compute t
BV hK= . 

(3) Output ( , , , )t t
A B BR R z Vψ =  as the proxy signature of the time period t . 

Proxy-Verify: Given the message/signature ( , , )wm m ψ , the algorithm performs the 

following steps to verify the validity of proxy signature: 

(1) Check whether the message m  is consistent with wm . If not, return false and 

abort. Otherwise, continue (2).  

(2) Compute 2 ( , , , )A w A A Ah H m ID P R= , 4 ( , , , , )t
w B B Bh H m m ID P R= . If ( , )e V P =  

0( ( A Ae h h P X+ ), ) ( ( ), )t t
A A B B B BR Q e h z Y R Q+ + , return true. Otherwise, return 

false. 

5 Security Analysis 

5.1 Correctness 

We can easily verify the proposed scheme is correct. 

0 0

( , ) ( , ) ( ( ), )
t t

t t t
B A B B B B B

t t

e V P e hK P e h I h x D r Q P
= =

= = + +   

      
0 0

( ( ) , ) ( ( ), )
t t

t t
A A A A A B B B B B

t t

e hh D h x r Q P e h h x D r Q P
= =

= + + +   

      ( , ) ( ( ) , ) ( ( ), )t t
A A A A A B B B B Be hh D P e h x r Q P e h z x D u Q P= + +  

      0( , ) ( ( ), ) ( ( ), )t t
A A A A A B B B Be hh P Q e h X R Q e h z Y R Q= + +  

      0( ( ), ) ( ( ), )t t
A A A A B B B Be h h P X R Q e h z Y R Q= + + +  

5.2 Strong Unforgeability 

According to the definition and security model of forward secure certificateless proxy 
signature provided in section 3, we prove our scheme is unforgeable as follows.  

Theorem 1. Suppose there exists a polynomial bounded adversary IA  against our 

scheme with the success probability , ,cma cida breakin
ASucc

Ι
 after asking at most PKq  

Public-Key-Query, PPKq  Partial-Private-Key-Query, ProKq  Proxy-Key-Query. Then 

there exists an algorithm C that can solve the CDH problem with the success 

probability 
1 1

(1 ) PPK ProKq qCDH
C

PK PK

Succ
Nq q

+= −  , ,cma cida breakin
ASucc

Ι
 in polynomial time.  



 Forward Secure Certificateless Proxy Signature Scheme 359 

Proof: We construct an algorithm C to solve the CDH problem. Let 

1 2( , , )P P aP P bP= =  be a random instance of the CDH problem in 1G , and C will 

play as a challenger to interact with IA . We show how C compute abP  with the 

ability of IA .  

Setup: C sets N  as the total numbers of time periods, and (0 1)T T N≤ ≤ −  as the 

key exposure time period. In time period T , adversary will make breakin  query. C 

sets 0 1P aP P= =  and the system parameters 1 2 0( , , , , , ,params G G e q P P=  

1 2 3 4, , , , )N H H H H , and returns params  to IA . 

C initializes the time period 0t = , and adversary IA  will output a value of d  

after every time period query. If 0d = , IA  will continue to make chosen message 

attack. If d breakin= , then IA  will enter breakin  phase. At the end of chosen 

message attack of time period 0, IA  outputs 0d = . If d breakin≠  and T N≠ , 

then IA  will enter the next time period to continue the chosen message attack. 

Chosen Message Attack Phase: In this phase, C regards hash functions as the 
random oracles. IA  can ask Public-Key-Query, Partial-Private-Key-Query, Secret-

Value-Query, Public-Key- Replacement-Query, Partial-Proxy-Key-Query, Proxy-
Key-Query and Proxy-Signature-Query. Without loss of generality, we assume that 

IA  doesn’t repeat any two identical query. C keeps seven lists 1L , 2L , 3L , 4L , 

2H , 3H , 4H  to store the user’s answers, where each list includes items of the form 

( , , , , , )i i i i i iID x P Q Dα , ( , , , , , , )
i i i i i i iw A A A A A Am ID P r R Iβ , ( , , , , ,

i i i i iA A A B Bm ID P ID P  

, , , , , , , , )
i i i i i i i i

t t t t t
A A A B B B B Bt r R r R z Kβ γ , ( , , , , , , , , , , )

i i i i i i i i

t t
i w A A B B A B Bm m ID P ID P t R R z V , 

( , , , , )
i i i i iw A A A Am ID P R β , ( , , , , , , )

i i i i i i i

t t
w A A B B B Bm ID P ID P R γ , ( , , , , , )

i i i i i

t t
i w B B B Bm m ID P R κ .  

— Public-Key-Query: C randomly picks {1,2, , }PKf q∈ ⋅ ⋅ ⋅ . On receiving each of 

public key query, if i f≠ , C will randomly select ,i i qxα ∗∈ , and set 

0( , )i i iP x P x P= , i iQ Pα= , 0i iD Pα= . Otherwise, C sets 0( , )f f fP x P x P= , 

2f fQ P Pα= + , fD =⊥ . Finally, C adds ( , , , , , )i i i i i iID x P Q Dα  into the 1L  

list, and returns iP  to IA . 

— Partial-Private-Key-Query: On receiving such a query on iID , if i f= , C 

aborts. Otherwise, C checks whether the iID  has been created in 1L  list. If not, 

C randomly select ,i i qxα ∗∈ , and set 0( , )i i iP x P x P= , i iQ Pα= , 0i iD Pα= .  

C adds ( , , , , , )i i i i i iID x P Q Dα  into the 1L  list, and returns iD  to IA . 

Otherwise, C returns iD  to IA  directly.  
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— Public-Key-Replacement-Query: On receiving such a query on '( , )i iID P , C 

checks whether the iID  has been created in 1L  list. If not, C adds 
'( , , , , , )i iID P⊥ ∗ ∗ ∗ into the 1L  list. Otherwise, C updates the item of iID  as 
'( , , , , , )i i i i iID P Q Dα⊥ . 

— Secret-Value-Query: On receiving such a query on iID , C checks whether the 

iID  has been created in 1L  list. If not, C randomly select ,i i qxα ∗∈ , and set 

0( , )i i iP x P x P= , i iQ Pα= , 0i iD Pα= . C adds ( , , , , , )i i i i i iID x P Q Dα  into the 

1L  list, and returns ix  to IA . Otherwise, if ix =⊥ , C returns ⊥  to IA . 

Otherwise, C returns ix  to IA  directly.  

— 2H Query: On receiving such a query on ( , , , )
i i i iw A A Am ID P R , C randomly 

selects 
iA qβ ∗∈  that hasn’t appeared in the 2H  list. Then C adds 

( , , , , )
i i i i iw A A A Am ID P R β  into the 2H  list and returns 

iAβ  to IA . 

— 3H Query: On receiving such a query on ( , , , , , )
i i i i i i

t
w A A B B Bm ID P ID P R , C 

randomly selects 
i

t
B qγ ∗∈  that hasn’t appeared in the 3H  list. Then C adds 

( , , , , , , )
i i i i i i i

t t
w A A B B B Bm ID P ID P R γ  into the 3H  list and returns 

i

t
Bγ  to IA . 

— 4H Query: On receiving such a query on ( , , , , )
i i i i

t
i w B B Bm m ID P R , C randomly 

selects 
i

t
B qκ ∗∈  that hasn’t appeared in the 4H  list. Then C adds 

( , , , , , )
i i i i i

t t
i w B B B Bm m ID P R κ  into the 4H  list and returns 

i

t
Bκ  to IA . 

— Partial-Proxy-Key-Query: On receiving such a query on ( , )
i iA wID m , C firstly 

browses the 1L  list to get the current public key of the 
iAID . Then C generates 

the partial proxy key according to the following steps. 

(1) Randomly pick ,
i iA A qr β ∗∈  that 

iAβ  hasn’t appeared in the 2H  list.  

(2) Set 2 ( , , , )
i i i i iw A A A AH m ID P R β=  and compute 0( )

i i iA A A AR r P P Xβ= − + . 

(3) Compute 
i i iA A AI r Q= . 

C adds ( , , , , , , )
i i i i i i iw A A A A A Am ID P r R Iβ  into the 2L  list and returns 

( , )
i i iA A AR Iσ =  to IA . 

— Proxy-Key-Update: This process is completed by C alone, which makes 
preparations for 'IA s  proxy key query and breakin  query, and IA  can’t 

make any query in the process. Given the current time period, C simulates the 
proxy key update process from the initial time period 0. The specific steps are as 
follows: 
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(1) Firstly check whether the item ( , )
i iA wID m  is in the 2L  list. If not, C 

performs Partial-Proxy-Key-Query to obtain the tuple ( , , , )
i i i iA A A Ar R Iβ . 

Otherwise, C returns the tuple ( , , , )
i i i iA A A Ar R Iβ  directly. 

(2) Randomly pick ,
i i

t t
B B qr γ ∗∈  that 

i

t
Bγ  hasn’t appeared in the 3H  list. 

(3) Set 3 ( , , , , , )
i i i i i i i

t t
w A A B B B BH m ID P ID P R γ=  and compute 1

i i i

t t t
B B Bz z γ−= + . 

(4) Compute 
i i i

t t t
B B B BR r P z Y= −  and ( )

i i i i i

t t
B A A B BK r Q r Q= + . 

C adds ( , , , , , , , , , , , , , )
i i i i i i i i i i i i i

t t t t t
w A A B B A A A B B B B Bm ID P ID P t r R r R z Kβ γ  into the 

3L  list. 

— Proxy-Key-Query: On receiving such a query on ( , , )
i i iw A Bm ID ID  in the time 

period  t (0 )t N≤ < , C firstly checks the 1L  list. If 
iBx =⊥ , C returns ⊥  to 

IA . Otherwise, C checks 3L  list according to ( , , , )
i i iA B wID ID m t . If 

iB fID ID= , C aborts. Otherwise, C returns ( , , )
i i i i

t t t t
B B B BR z Kσ =  to IA . 

— Proxy-Sign-Query: On receiving such a query on ( , , , )
i i ii w A Bm m ID ID  in the 

time period t (0 )t N≤ < , C generates the proxy signature according to the 

following steps: 

(1) Firstly check whether the item ( , , , )
i i iA B wID ID m t  is in the 3L  list. If not, 

C performs Proxy-Key-Query to obtain the tuple ( , , , , , ,
i i i i i i

t t t
A A A B B Br R r Rβ γ  

, )
i i

t t
B Bz K . Otherwise, C returns the tuple ( , , , , , , , )

i i i i i i i i

t t t t t
A A A B B B B Br R r R z Kβ γ  

directly. 

(2) Randomly pick 
i

t
B qκ ∗∈  that hasn’t appeared in the 4H  list. 

(3) Set 4 ( , , , , )
i i i i i

t t
i w B B B BH m m ID P R κ= and compute ( )

i i i i i

t t
B A A B BV r Q r Qκ= + .  

C adds ( , , , , , , , , , , )
i i i i i i i i

t t
i w A A B B A B Bm m ID P ID P t R R z V  into the 4L  list and 

returns ( , , , )
i i i

t t
A B BR R z Vψ =   to IA . 

Breakin Phase: IA  outputs a decision value d , and C decides whether to enter the 

breakin  phase. If 0 t T≤ <  and 0d = , IA  enters the next time period to continue 

the chosen message attack. If t T=  and d breakin= , C returns all proxy signer’s 

(including the target proxy signer) proxy key of the current time period to IA . 

Otherwise, C aborts. 
Once IA  enters into the breakin  phase, he can’t continue the chosen message 

attack. After the breakin  query, IA  enters into the forgery phase. 
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Forgery Phase: If C doesn’t aborts in the simulation, then IA  outputs a validly 

forged proxy signature { , , , , , , , }w A A B Bm m ID P ID P μ ψ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗  of the time period 

(0 )Tμ μ∗ ∗≤ < . 

Analysis: If A fID ID∗ ≠ , aborts. If A fID ID∗ =  and { , , , , , , ,w A A B Bm m ID P ID P μ∗ ∗ ∗ ∗ ∗ ∗ ∗  

( , , , )}A B BR R z Vμ μψ ∗ ∗ ∗ ∗ ∗=   satisfies the requirements as defined in game 1, according 

to forking lemma[20], C selects different hash function '
2H  and uses 'IA s  capability 

to get another valid tuple '{ , , , , , , , ( , ,w A A B B A Bm m ID P ID P R Rμμ ψ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗=  ', )}Bz Vμ∗ ∗ . 

Then C gets two tuples * *
0( , ) ( ( ), ) ( (A A A A B Be V P e hh P h X R Q e h z Yμ∗ ∗ ∗ ∗ ∗= + +  

), )B BR Qμ∗ ∗+  and ' ' * *
0( , ) ( ( ), ) ( ( ), )A A A A B B B Be V P e hh P h X R Q e h z Y R Qμ μ∗ ∗ ∗ ∗ ∗ ∗ ∗= + + + , thus 

' '
0( , ) ( ( ) , )A A Ae V V P e h h h P Q∗ ∗ ∗ ∗ ∗− = − . Then ' '( , ) ( ( )A Ae V V P e h h h∗ ∗ ∗ ∗− = − ⋅  

, )AaQ P∗ , and ' ' '= ( ) = ( ) ( )A A A A A fV V h h h aQ h h h a a P bP∗ ∗ ∗ ∗ ∗ ∗ ∗− − − + . C checks 1L  list, 

2H  list and 4H  list to get fα , A Ah β∗ ∗= , ' '=A Ah β∗ ∗  and Bh μκ ∗=  respectively, and 

computes abP =  ' ' 1 1
1( )( )A A B fV V Pμβ β κ α∗ ∗ ∗ ∗ − ∗−− − − . 

Probability of Success: Event 1Ε  denotes that the algorithm C does not exit throughout 

the simulation. Event 2Ε  denotes that IA  outputs t T=  and d breakin= . Event 3Ε  

denotes that IA  forges a valid proxy signature in the time period (0 )Tμ μ∗ ∗≤ < . 

Event 4Ε  denotes that IA  outputs a valid tuple { , , , , , , , }w A A B Bm m ID P ID P μ ψ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ , 

and A fID ID∗ =  when event 3Ε  occurs. Then 

1 2 3 4 1 2 1 3 1 2 4 1 2 3Pr[ ] Pr[ ]Pr[ | ]Pr[ | ]Pr[ | ]CDH
CSucc E E E E E E E E E E E E E E= Λ Λ Λ = Λ Λ Λ

. Among that 1

1
Pr[ ] (1 ) PPK ProKq q

PK

E
q

+= − ,
2 1

1
Pr[ | ]E E

N
= , 

, ,
3 1 2Pr[ | ] cma cida breakin

AE E E Succ
Ι

Λ = , 4 1 2 3

1
Pr[ | ]

PK

E E E E
q

Λ Λ = . Hence 

, ,1 1
(1 ) PPK ProKq qCDH cma cida breakin

C A
PK PK

Succ Succ
Nq q Ι

+= ⋅ − .  

Due to the space limitation, we delete the proof of theorem 2. The reader refers to 
that of theorem 1 or our full version.                                                                              

6 Conclusion 

In this paper, we propose a forward secure certificateless proxy signature in the 
random oracle model. Our security model takes into account the super adversary in 
certificateless signature. We prove our scheme is existentially unforgeable against 
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chosen message attack under CDH assumption. What is worth mentioning is that the 
proxy signature phase has no pairing operation and the proxy signature verification 
phase only requires three paring operations. Moreover, the scheme has effectively 
dealt with the key exposure problem and has no certificate management problem. 
 
Acknowledgments. We would like to thank anonymous referees for their helpful 
comments and suggestions.  
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Abstract. Leakage-resilient zero-knowledge proofs for all NP was pre-
sented by Garg et al in 2011. How to construct leakage-resilient zero-
knowledge proofs of knowledge for all NP languages is an interesting
problem. This paper focuses on this problem and presents a constructions
of leakage-resilient zero-knowledge proofs of knowledge for HC (Hamil-
tonian Cycle) problem.

Keywords: zero-knowledge proofs, leakage-resilient, proofs of knowl-
edge, black-box simulation.

1 Introduction

Zero-knowledge proofs (ZKP), first introduced by Goldwasser et al.[9], are proto-
cols that allow the prover to convince the verifier that an assertion is true without
providing the verifier with any additional information about the assertion be-
ing proved. It is proved that any language in NP has a zero-knowledge proof
system [10]. ZKP is required to protect the honest verifier from an all-powerful
prover. Zero-knowledge arguments (ZKA) are a relaxation of the zero-knowledge
proofs, in which the soundness property is required to hold only with respect to
a computationally bounded prover.

Proofs of knowledge [9] are proofs that allow the prover to convince the verifier
that it knows a secret witness w about a given common input x. If a ZKP
or ZKA system for L is also a proof of knowledge system, it is known as a
zero knowledge proof of knowledge (ZKPoK) or zero knowledge argument of
knowledge (ZKAoK) for L. Now, ZKP (or ZKA) and ZKPoK (or ZKAoK) playe
a crucial role in the design of cryptographic schemes and protocols.

In the conventional zero-knowledge, it is assumed that the verifier is given only
black-box access to the honest prover’s algorithm. That is, the prover’s internal
state, including the witness and the random coins, is perfectly hidden from the
verifier. Unfortunately, this assumption is too strong to be met in many settings
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(Grant No. 60970139), Strategic Priority Program of Chinese Academy of Sciences
(Grant No. XDA06010702), and IIEs Cryptography Research Project.
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where a malicious verifier has the ability to use different type of side-channel
attacks to obtain leakage about prover’s internal state.

Very recently, Garg et al. [7] first investigated zero knowledge proof in such
a leaking setting (known as leakage-resilient zero-knowledge proof, LR-ZKP),
where the malicious verifier is able to learn an arbitrary amount of leakage on
the internal state of the honest prover by making a series of leakage queries
f1, f2, · · · throughout the execution of the protocol. Their definition of LR-ZK
requires that no such malicious verifier can learn anything beyond the validity
of the assertion and the leakage.

An interesting problem left by this work is whether it is possible to obtain
leakage-resilient ZKPoK. In fact, [7] discussed how to modify their protocol such
that the modified protocol is a proof of knowledge. The presented method needs a
public-coin zero knowledge proof of knowledge. Concretely, the modified protocol
requires V only to reveal ch in stage 3 and then to prove that it is one that was
committed in Stage 1 by a public-coin zero knowledge proof of knowledge. We
will focus on this problem and give a new simpler construction under perfectly
hiding commitment schemes.

1.1 Related Works

In the past few years there have been many works on developing cryptographic
primitives resilient against such leakage attacks in variousmodels, such as leakage-
resilient encryption schemes, leakage-resilient signature schemes and leakage-
resilient interactive protocols. Bitansky et. al. [1] considered leakage-resilient pro-
tocols for general functionality which are secure against semi-honest adversaries
in the UC framework. Boyle et. al. [5] studied leakage-resilient multi-party coin
tossing protocol. Damgard et. al. [6] considered leakage-resilient two-party secure
protocols against semi-honest adversary. Two types of leakage attack are consid-
ered in their model: global leakage model (the adversary use a leakage function on
the input and the entire randomness of an honest party) and local leakage model
(the adversary chooses different leakage functions at different points of time dur-
ing the protocol execution). Very recently, Boyle et. al. [4] constructed a general
leakage-resilient multiparty computation (MPC) protocol with stronger security
notion: an adversary obtaining leakage on the honest party’s secret state is guar-
anteed to learn nothing beyond the input and output of corrupted parties.

2 Preliminaries

In this paper, we use some standard notations. If A(·) is a probabilistic algorithm,
A(x) is the result of running A on input x and y = A(x) (or y ← A(x)) denotes
that y is set to A(x). For a finite set S, we denote by y ∈R S that y is uniformly
selected from S. We write [n] for any n ∈ N to denote the set {1, · · · , n} and
poly(·) to denote an unspecified polynomial.

We use the following standard definitions and tools.
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2.1 Leakage-Resilient Zero-Knowledge Proof

We recall the definitions of leakage-resilient zero-knowledge from [7].
Let P and V be a pair of randomized interactive Turing machines, 〈P, V 〉(x)

be a random variable representing the local output of Turing machine V when
interacting with machine P on common input x, when the random input to
each machine is uniformly and independently chosen. Customarily, machine P is
called the prover and machine V is called the verifier. We denote by 〈P, V 〉(x) = 1
(〈P, V 〉(x) = 0) that machine V accepts (rejects) the proofs given by machine P .

Definition 1. A pair of interactive Turing machines 〈P, V 〉 is called an inter-
active proof system for a language L if machine V is polynomial-time and the
following two conditions hold:

– Completeness: there exists a negligible function c such that for every x ∈ L,

Pr[〈P, V 〉(x) = 1] > 1− c(|x|)

– Soundness: there exists a negligible function s such that for every x /∈ L and
every interactive machine B, it holds that

Pr[〈B, V 〉(x) = 1] < s(|x|)

c(·) is called the completeness error, and s(·) the soundness error.

In the execution of interactive proofs, P has the ability to select a random coin
ri at the beginning of round i and uses it in round i. Synchronously, P updates
his current secret state. Denote by state (initialized to the private input w) the
current secret state of P . P updates state by setting state = state||ri in round
i. The cheating verifier V launches a leakage attack by means of any number of
arbitrary leakage queries throughout the interaction. A leakage query on provers
state in round i is a leakage function fi, to which the prover responds with
fi(state). We denote by � the number of leaking bits, i.e. � =

∑
i |fi(statei)|.

Classic zero knowledge is formalized by requiring that for any polynomial-time
verifier V ∗ there exists a polynomial-time algorithm S (a.k.a the simulator)
such that the view of V ∗ can be simulated by S. Under the leakage attack
setting, leakage information fi(state) obtained by V ∗ cannot be simulated by
any polynomial-time algorithm S only upon common input x. To formulate
leakage-resilient zero-knowledge, S is allowed to access to an leakage oracle by
a series of query. A query to the leakage oracle is an efficiently computable
function f ′

j(·), to which the oracle responds with f ′
j(w). We denote by �′ the

number of bits that S received from the leakage oracle, i.e. �′ =
∑

j |f ′
j(statej)|.

It is required that �′ ≤ λ · �, where λ is a leakage parameter. The leakage oracle
only holds the witness w and is denoted by Ln,λ

w (·).
Leakage-resilient zero knowledge require that no malicious verifier, launching

leakage attack, can learn anything beyond the validity of the assertion and the
leakage. This is formulated by requiring that for any polynomial-time verifier
V ∗ with any auxiliary input z there exists a polynomial-time algorithm S (a.k.a
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the simulator) such that the view of V ∗ is indistinguishable from the output of

SLn,λ
w (·)(x, z).

Definition 2 (Leakage-Resilient Zero Knowledge). An interactive proof
system (P, V ) for a language L with a witness relation R is said to be λ-
leakage-resilient zero knowledge if for every PPT machine V ∗ that makes
any arbitrary polynomial number of leakage queries on P ’s state (in the man-
ner as described above) with � bits of total leakage LP , there exists a PPT
algorithm S that obtains at most λ · � bits of total leakage LS from a leakage or-
acle Lk,λ

w (·) (as defined above) such that for every (x,w) ∈ R, every z ∈ {0, 1}∗,
{V iewV ∗(x, z)}x∈L,z∈{0,1}∗ and

{
SLk,λ

w (·)(x, z)
}
x∈L,z∈{0,1}∗

are computationally

indistinguishable.

To formulate that no malicious verifier can learn anything beyond the validity
of the assertion and the leakage, it is natural to require λ ≤ 1. However, [7] had
showed that it is impossible to realize the above definition for any λ < 1. On the
other hand, black-box λ-leakage-resilient zero knowledge proofs exist only when
λ > 1.

2.2 Proof of Knowledge

In a proof of knowledge for a relationship R, the prover, holding a secret input
w such that (x,w) ∈ R, and the verifier interact on a common input x. The
goal of the protocol is to convince the verifier that the prover indeed knows such
w. This is in contrast to a regular interactive proof, where the verifier is just
convinced of the validity of the statement.

The concept of “knowledge” for machines is formalized by saying that if a
prover can convince the verifier, then there exists an efficient algorithm that can
“extract” a witness from this prover (thus the prover knows a witness because
it could run the extraction procedure on itself).

Definition 3. An interactive protocol 〈P, V 〉 is a system of proofs of knowledge
for a (poly-balanced) relation R with knowledge error κ if the following conditions
hold:

– (efficiency): 〈P, V 〉 is polynomially bounded, and V is computable in proba-
bilistic polynomial time.

– (non-triviality): There exists an interactive machine P such that for every
(x,w) ∈ R all possible interactions of V with P on common input x and
auxiliary y are accepting.

– (validity with knowledge error κ): Denote by p(x, y, r) the probability that the
interactive machine V accepts, on input x, when interacting with the prover
specified by P ∗

x,y,r (the prover’s strategy when fixing common x, auxiliary
input y and random tape r). There exists an expected polynomial-time oracle
machine K and a polynomial q such that on input x and access to oracle
Px,y,r, KPx,y,r (x) outputs w, such that (x,w) ∈ R, with probability of at least
(p(x, y, r) − κ(|x|))/q(|x|)
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2.3 Commitment Schemes

In this paper, we use two types of commitment schemes. One is Naor’s sta-
tistically binding commitment scheme[16]. This scheme is constructed using a
pseudorandom generator g : {0, 1}n → {0, 1}3n. Recall that in this scheme,
the receiver first selects τ ∈R {0, 1}3n and sends it to the sender. To com-
mit to bit b, the sender selects υ ∈R {0, 1}n, and then sends to the receiver
c = g(υ) if b = 0, or c = τ ⊕ g(υ) otherwise. Obviously, when the first message
τ ∈ {g(s0)⊕ g(s1) : s0, s1 ∈ {0, 1}n}, the commitment to b, by sending g(s0) to
the receiver, can be decommit to two different values: b = 0 by revealing s0, or
b = 1 by revealing s1.

The other is a two-round statistically hiding commitment schemeCommsh(·; ·).
In such a scheme, the first message denoted bym is from the receiver, and a corre-
sponding commitment algorithm is denoted by Commm

sh(·; ·). In particular, this
scheme can be constructed based on claw-free collections [8].

3 A Leakage-Resilient Zero-Knowledge Proof of
Knowledge for HC

Suppose that the language HC consists of all directed graphs that contain a
Hamiltonian cycle. Our goal in this section is to construct a LR-ZKPoK for HC.

We start by reviewing Blum’s 3-round zero knowledge proof for HC.

Common input: G = (V,E) ∈ HC, |V | = n.
– Prover’s first step(P1): The prover randomly selects a permutation π, and

sends the commitments to the adjacency of Gi = π(G) to the verifier.
– Verifier’s first step(V1): The verifier uniformly selects a challenge ch ∈R

{0, 1} and sends it to the prover.
– Prover’s second step(P2): If ch = 1, the prover reveals the partial commit-

ments corresponding to the edges of the Hamiltonian cycle π(H). If ch = 0
then the prover reveals all the commitments and π.

– Verifier’s second step(V2): The verifier V checks P ’s revealment.

The protocol of [7] adds a preamble to n parallel Blum’s protocol. Roughly
speaking, their construction proceeds in three stages. In Stage 1, V commits to
its challenge ch and a random string rV using a public-coin statistically hiding
commitment scheme. In Stage 2, P selects a random string rP and V reveals
rV . And then, P and V compute r = rP ⊕ rV . Finally, in Stage 3, P and V run
n (where n denotes the security parameter) parallel repetitions of the 3-round
Blum protocol, described as follows. In the first round, P uses Naor’s commit-
ment scheme to commit to the adjacency of the permuted graphs, where the
string generated in Stage 2 is used as the first massage. In the second round,
V reveals the commitment to its challenge ch. Finally, P responds to this chal-
lenge and V verifies the response from P . To allow the simulator to extract the
challenge ch committed by V and to force r to obey a special distribution of its
choice with minimal use of the leakage oracle, the commitment schemes in Stage
1 need a preamble of iterating challenge-response many times as in [18]
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In the protocol of [7], V commits to its challenges ch before P sends its
commitment. This implies that the permutation that P use to compute its com-
mitments may depend on the challenge selected by V . This results in knowledge
extractor cannot work efficiently. Therefore, the protocol in [7] is no longer a
proof of knowledge. The LR-zero-knowledge property requires that for any V ∗

there exists a simulator (with a leakage oracle) that can simulate the view of V ∗,
while proofs of knowledge require that there exists a knowledge extractor that
accesses to the prover’s strategy P ∗ to extract a witness from P ∗. The approach
of requiring the verifier to commit to its challenges ch in advance ensures that
the simulator S can output a simulated view indistinguishable from the view of
V ∗ by rewinding the algorithm of V ∗ to obtain the challenge ch in advance, but
then seemingly destroys the proof of knowledge property.

To solve the above problem, our protocol requires P first sends its commit-
ments before the verifier’s challenge is generated. Zero-knowledge property re-
quires that the simulator can simulate the view of V ∗ without the witness.
Therefore, the simulator must learn the real challenge before generating the
prover’s commitments. To this end, we use a jointly coin-flipping to generate
real challenge, as in [13,15]. It results in that the simulator has the ability to
control over the real challenge by rewinding the coin-flipping process.

Our protocol consists of four stages. Let t = 3n4 and k = ω(n). In Stage 1,

V commits to a random string rV ∈ {0, 1}t and two sequences {rbi,j}
i= k

ε ,j=k
i=1,j=1 ,

b = 0, 1, using a public-coin statistically hiding commitment scheme, where
r0i,j ⊕ r1i,j = rV for every i, j. After this, n iterations follows. In the ith iteration
P sends a random k-bit string σi = σi,1 · · ·σi,k, and V reveal the commitments
to r

σi,1

i,1 , · · · , rσi,k

i,k . Finally, the prover sends a random string rP ∈ {0, 1}t to the

verifier, which responds with the decommitments to rV and to r
1−σi,1

i,1 for every i.
In Stage 2, the prover commits n random permuted graphes by Naor’s com-

mitment scheme with r = rV ⊕ rP as the first message. In Stage 3, P and V
jointly generate a random string ch ∈ {0, 1}n. First, V commits to a random

string q ∈ {0, 1}n and two sequences {qbi,j}
i= k

ε ,j=k
i=1,j=1 , b = 0, 1, using a public-

coin statistically hiding commitment scheme, where q0i,j ⊕ q1i,j = q for every i, j.
Subsequently, n iterations follows. In the ith iteration P sends a random k-bit

string δi = δi,1 · · · δi,k, and V reveal the commitments to q
δi,1
i,1 , · · · , qδi,ki,k . Finally,

the prover selects a random string q′ ∈ {0, 1}n and sends the commitment to q′

to the verifier.
In Stage 4, P computes ch = q ⊕ q′, and uses it as challenge to execute P2

(Prover’s second step of Blum’s protocol). Then, V executes V2 with ch = q⊕q′.
The details of our protocol Π is described in Figure 1.

Theorem 1. Protocol Π is a LR-ZKPoK for HC, assuming Commsh(·; ·) is
a two-round statistically hiding commitment scheme and g is a pseudorandom
generator meeting with |g(x)| = 3|x|.
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Common input: G = (V,E) ∈ HC, |V | = n.
Auxiliary input to the prover: A Hamilton cycle H in G.

– Stage 1: Jointly coin-tossing:
• P sends the first random message m to V .
• V selects rV ∈ {0, 1}t and r0i,j , r

1
i,j ∈ {0, 1}t, i ∈ [k

ε
],j ∈ [k], such that

rV = r0i,j⊕r1i,j . Then, V sends RV = Commm
sh(rV ) and Re

i,j = Commm
sh(r

e
i,j)

for i ∈ [k
ε
],j ∈ [k] and e = 0, 1.

• For i = 1, · · · , k
ε
:

∗ P selects σi = σi,1 · · ·σi,k ∈R {0, 1}k and sends σ to V .
∗ V decommits to r

σi,j

i,j , j ∈ [k].

• P selects rP ∈R {0, 1}t, sets s = rP ⊕ rV , and sends rP to V .

• V decommits to rV and r
1−σi,j

i,j , i ∈ [k
ε
],j ∈ [k], and sets r = rP ⊕ rV .

• P aborts if the decommitments fails.
– Stage 2: The prover’s commitment.

• Let r = r1 · · · rn, where ri = ri,1 · · · ri,n2 satisfying |ri,v| = 3n for i ∈ [n] and
v ∈ [n2]. For every i ∈ [n], P selects a random permutation πi and commits
to the adjacency of Gi = πi(G) using Naor’s scheme with ri as the first
message for i ∈ [n].

– Stage 3: Jointly coin-tossing
• V selects q ∈R {0, 1}n and q0i,j , q

1
i,j ∈ {0, 1}n, i ∈ [k

ε
],j ∈ [k], such that

q = q0i,j ⊕ q1i,j . Then, V sends Q = Commm
sh(q) and Qe

i,j = Commm
sh(q

e
i,j) for

i ∈ [k
ε
],j ∈ [k] and e = 0, 1.

• For i = 1, · · · , k
ε
:

∗ P selects δi = δi,1 · · · δi,k ∈R {0, 1}k and sends δ to V .

∗ V decommits to q
δi,j
i,j , j ∈ [k].

• P selects q′ ∈R {0, 1}n, and sends it to V .

• V decommits to q and q
1−δi,j
i,j , i ∈ [k

ε
],j ∈ [k], and computes ch = q ⊕ q′.

• P aborts if the decommitment fails.
– Stage 4: The prover open its commitments corresponding to ch = ch1 · · · chn.

• P reveals the partial commitments to the adjacency of Gi corresponding to
the edges of the Hamiltonian cycle πi(H) if chi = 1 or all the commitments
to the adjacency of Gi and πi if chi = 0.

• For every i ∈ [n], V checks wether P correctly reveals a simple Hamiltonian
cycle when chi = 1, or a graph Gi and a permutation πi such that Gi = πi(G)
when chi = 0.

Fig. 1. LR-ZKPoK

Proof. Completeness: Completeness is obvious.

Soundness: It follows directly from the statistically hiding property of
Commsh(·; ·) and the statistically binding property of Naor’s commitment.
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Let the message that P sends in Stage 2 be C̃ = (C1, · · · , Cn). Say that C̃
matches with ch = ch1 · · · chn if P can answer every chi correctly. Let

Bad = {r : ∃s0, s1 ∈ {0, 1}k, such that r = g(s0)⊕ g(s1)}
Match = {(C̃, ch) : C̃ = (C1, · · · , Cn) match with ch = ch1 · · · chn}

For any r generated in Stage 1, define an event Eventr = {r ∈ Bad}. For every
(C̃, ch), where C̃ is generated in Stage 2 and ch is defined by q and q′ in Stage

3, define an event Match(C̃,ch) = {(C̃, ch) ∈ Match}.
Obviously,

Pr[〈P ∗, V 〉(G) = 1] = Pr[Match(C̃,ch)]

= Pr[Eventr ∧ Match(C̃,ch)] + Pr[Eventr ∧ Match(C̃,ch)]

≤ Pr[Eventr] + Pr[Eventr ∧ Match(C̃,ch)]

It has been proved in [7] that Pr[Eventr] is negligible. Next, we show that
Pr[Eventr ∧ Match(C̃,ch)] is negligible.

If G /∈ HC and Eventr does not occur, it follows from the statistically binding
property of Naor’s commitment scheme that for any fixed C̃ = (C1, · · · , Cn) there

exists only one ch, denoted by c̃h, such that (C̃, c̃h) ∈ Match takes place. Hence,
it holds that,

Pr[Eventr ∧ Match(C̃,ch)] = Pr

⎡⎣ q ⊕ q′ = c̃h : q ←R {0, 1}n
Q = Commm

sh(q)

q′ ← P ∗(C̃, Q, · · ·)

⎤⎦
= Pr

⎡⎣ q′ = q ⊕ c̃h : q ←R {0, 1}n
Q = Commm

sh(q)

q′ ← P ∗(C̃, Q, · · ·)

⎤⎦
So, that Eventr ∧Match(C̃,ch) takes place implies that P ∗ can guess q from the

commitment to q. From the statistically hiding property of Commsh, we have
that Pr[Eventr ∧ Match(C̃,ch)] is negligible.

Leakage-Oblivious Simulator: Leakage-oblivious simulator[7] is permitted to
directly receive leakage query f(state) from V ∗ as a real prover, where state
consists of the witness and all random value used so far. Without holding any
witness, however, the simulator cannot respond leakage query f directly. It is just
well that the simulator can access a leakage oracle Ln,λ

w that holds the witness.
To respond the leakage query, the simulator first generates a new leakage query
function f ′ ( takeing the witness as input) and sends it to leakage oracle Ln,λ

w .
Instead of returning leakage information f ′(w) to the simulator, leakage oracle
Ln,λ
w leaks f ′(w) directly to verifier V ∗, and does not leak any information to the

simulator. What the simulator does is to construct a new function f ′ such that
f ′(w) is indistinguishable from f(state) with which the prover responds directly
to f .
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Note that leakage query f takes the form of f(w;R), where w is the prover’s
witness, R = R(w) is a function that, on inputting the prover’s witness w, out-
puts the prover’s random coins. To creates a new query f ′ after receiving a query
f(w,R(w)) from the verifier, the simulator first define R(w) to be an appropriate
random coins and lets f ′ be residual f(w,R(w)) with R(w) hardwired in such
that f ′(w) = f(w;R(w)).

Leakage resilient zero knowledge: Let t = 3n4 and ε > 0 such that n
ε is an

integer. On inputting common n-vertex graph G, the leakage-oblivious simulator
SV ∗

showing its zero-knowledge property operates as follows:

Simulating Stage 1:
� V ∗’s Commitment:
1. S � V ∗: S acts just like a real prover and obtains the commitments

to rV , rei,j ∈R {0, 1}t from V ∗ for i ∈ [kε ], j ∈ [k] and e = 0, 1.
2. S ↔ V ∗: V ∗ could make multiple leakage queries in the above step.

S uses Ln,λ
w (·) to answer all these leakage queries (in the

manner as described in the main text). S aborts when V ∗

aborts.

� Challenge-Response: For 0 ≤ a ≤ k − 1, proceed as follows:
3. For 1 ≤ b ≤ 1

ε , do the following. Let i = a
ε + b.

3.1 S → V ∗: S chooses k-bit random strings σi = σi,1 · · ·σi,k, and
sends σi to V ∗.

3.2 S ↔ V ∗: S uses Ln,λ
w (·) to answer the leakage queries (in the man-

ner as described in the main text). Let the output length
of the leakage query be �i bits.

3.3 S ← V ∗: V ∗ reveals the commitments to r
σi,j

i,j for j = 1, · · · , k. If
the decommitments is not correct, S aborts.

4. Find ia (aε + 1 ≤ ia ≤ a+1
ε ), such that �ia = min a

ε+1≤i≤ a+1
ε

�i.

4.1 S → V ∗: S rewinds V ∗ to 3.1 of ia iteration. Then S Chooses n-
bit random strings σ′

ia = σ′
ia,1 · · ·σ′

ia,k
, and sends σ′

ia to
V ∗.

4.2 S ↔ V ∗: Let the output length of the leakage query be �′ia bits.

If �′ia ≤ �ia , then S uses Ln,λ
w (·) to answer the leakage

queries. Otherwise S aborts.

4.3 S ← V ∗: V ∗ reveals the commitments to r
σ′
ia,j

ia,j
, j = 1, · · · , k. If

the decommitments in 4.3 is correct and σi0 �= σ′
ia
, S

extracts rV and proceeds next step. Otherwise, S exe-
cutes the next iteration or aborts when a = k − 1.
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� Generating r:
5. Assume rV = r′1 · · · r′n, where r′i = r′i,1 · · · r′i,n2 and |r′i,j | = 3n.

For i ∈ [n], j ∈ [n2], S selects z0i,j , z
1
i,j ∈ {0, 1}n and computes

r′′i,j = r′i,j ⊕ g(z0i,j)⊕ g(z1i,j).
5.1 S → V ∗: S sends rP = r′′1 · · · r′′n to V ∗, where r′′i = r′′i,1 · · · r′′i,n2 ,

and sets r = rP ⊕ rV .
5.2 S ↔ V ∗: S uses Ln,λ

w (·) to answer the leakage queries.

5.3 S ← V ∗: V ∗ reveals the commitments to rV , r
1−σi,j

i,j , i ∈ [kε ], j ∈
[k]. If the decommitments is not correct, S abort.

Response to Query Leakage in Simulating for Stage 1: In this stage, the
response to the query leakage is very easy since P only reveals its random coin.
In fact, R(w) at any point is just the concatenation of all public cion. Assume
that R′ is the concatenation of all public cion sent by the simulator.

Then, the simulator sets R(w)
	
= R′ and f ′(w)

	
= f(w,R(w)). The simulator

then queries the leakage oracle with f ′(·) and V ∗ obtains f ′(w). Since R that
is used by an honest prover is identical to R′, it is easy to see that f ′(w) =
f(w;R(w)).

Lemma 1. That S reaches the end of Stage 1 but fails to extract rV is negligible.

Proof. Let E be the event that S reaches the end of Stage 1 but fails to extract
rV . Let Ei be the event that V ∗ does not abort in the ith challenge response
slot, E′

i be the event that S rewinds V ∗ in the ith challenge response slot, and
V does not abort. E′′

i be the event that �′i > �i, where �i is the output length
of the leakage query in the ith challenge response slot, �′i is the output length of
the leakage query in the rewound ith challenge response slot. Then, we obtain
the following

E = (
∧kε−1

i=1 Ei)
∧k−1

a=0(E
′
ia

∨ (E′
ia ∧ E′′

ia)) ⊆
∧k−1

a=0(E0 ∧ (E′
ia

∨ (E′
ia ∧ E′′

ia)))

where E0 =
∧kε−1

i=1 Ei. Since the rewinds are independent, it holds that

Pr[E] ≤
∏k−1

a=0 Pr[E0 ∧ (E′
ia

∨ (E′
ia ∧ E′′

ia )]

≤
∏k−1

a=0 Pr[Eia ∧ (E′
ia

∨ (E′
ia

∧ E′′
ia
)]

≤
∏k−1

a=0(Pr[Eia ∧ E′
ia
] + Pr[Eia ∧ E′

ia ∧ E′′
ia ])

≤
∏k−1

a=0(Pr[Eia ∧ E′
ia
] + 1

2Pr[Eia ∧ E′
ia
])

=
∏k−1

a=0(Pr[Eia ]− 1
2Pr[Eia ∧ E′

ia
])

=
∏k−1

a=0(Pr[Eia ]− 1
2Pr[Eia ]

2)

Note that Pr[Eia ]− 1
2Pr[Eia ]

2 ≤ 1
2 . It follows that Pr[E] ≤ 1

2k
is negligible.
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Simulating Stage 2:

1. S → V ∗: For every i ∈ [n], S chooses a random permutation πi and
sets Gi = πi(G). Then, S sends to V ∗ the commitments
to the adjacency of Gi using Naor’s commitment scheme
with ri as the first message, i ∈ [n]. Accurately, S sends

Ci = {g(z0i,j)}
j=n2

j=1 , i ∈ [n] to V ∗.

2. S ↔ V ∗: S uses Ln,λ
w (·) to answer the leakage queries.

Response to Query Leakage in Simulating for Stage 2: It is not a simple
thing to deal with query leakage in this stage although S acts seemly as the
same as an honest prover.

Let ω = H be a Hamiltonian cycle in G and R be the concatenation of all
random cion used by the simulator before Stage 2. S simply constructs a a new
leakage query f ′, after receiving leakage query f(H,R(H)) from V ∗, by letting
f ′(H) = f(H,R||π1||r̃1|| · · · ||πn||r̃n) (here, πi is used by S in Stage 2, r̃i is related
to ri which is used in Naor’s commitment), S does not have ability to make the re-
sponse (to the challenge ch in Stage 4) consistentwith f ′(H).To solve this problem,
S must define a random function, denoted as Select(H, {z0i,j, z1i,j}), to determine

the random coins used by S. Select(H, {z0i,j, z1i,j}i,j) proceeds as follows:

– Randomly select a challenge ch = ch1 · · · chn ∈ {0, 1}n.
– For every i ∈ [n]

• If chi = 0, define ρ(0, H) and ϕ(0, H, {z0i,j, z1i,j}) as follows:
(1) ρ(0, H) returns the permutation πi selected by S in Stage 2. Let

{gi,j}j∈[n2] be the adjacency matrix of Gi = πi(G).

(2) ϕ(0, H, {z0i,j , z1i,j}) returns yi,1|| · · · ||yi,n2 , where yi,j = zbi,j if gi,j = b

for each j ∈ [n2].

Then, set r̃i = ρ(0, H)||ϕ(0, H, {z0i,j , z1i,j}).
• If chi = 1, select a random cycle Hi, and define two functions ρ(1, H,Hi)
and ϕ(1, H,Hi, {z0i,j, z1i,j}) as follows:
(1) ρ(1, H,Hi) first selects a permutation π′ such that Hi = π′

i(πi(H)).
Thus, ρ(1, H,Hi) returns π′

i ◦ πi. Let {g′i,j}j∈[n2] be the adjacency
matrix of Gi = π′

i(π(G)).
(2) ϕ(1, H,Hi, {z0i,j, z1i,j}) returns yi,1|| · · · ||yi,n2 , where yi,j = zbi,j if

g′i,j = b for each j ∈ [n2].

Then, set r̃i = ρ(1, H,Hi)||ϕ(1, H,Hi, {z0i,j, z1i,j}).

– Output R′ = r̃1|| · · · ||r̃n.

Then, S defines a new leakage query f ′(H) = f(H,R||Select(H, {z0i,j, z1i,j})),
where R is the concatenation of all random cion used by the simulator before
Stage 2. S then queries Ln

w(·) with f ′(·) and V ∗ obtain f ′(H). It is easy to see
that f ′(H) is the same as one leaked from P .
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Simulating Stage 3:
� V ∗’s Commitment:
1. S � V ∗: S acts just like a real prover and obtains the commitments to

q, qei,j , i ∈R {0, 1}n from V ∗ for i ∈ [kε ], j ∈ [k] and e = 0, 1.
2. S ↔ V ∗: V ∗ could make multiple leakage queries in the above step.

S uses Ln,λ
w (·) to answer all these leakage queries (in the

manner as described in the main text). S aborts whenever
V ∗ aborts.

� Challenge-Response: For 0 ≤ a ≤ k − 1, proceed as follows:
3. For 1 ≤ b ≤ 1

ε , do the following. Let i = a
ε + b.

3.1 S → V ∗: S chooses n-bit random strings δi = δi,1 · · · δi,k, and
sends δi to V ∗.

3.2 S ↔ V ∗: S uses Ln,λ
w (·) to answer the leakage queries (in the man-

ner as described in the main text). Let the output length
of the leakage query be �i bits.

3.3 S ← V ∗: V ∗ reveals the commitments to q
σi,j

i,j for j = 1, · · · , k.
4. Find ia such that �ia = min a

ε+1≤j≤ a+1
ε

�j , proceeds as follows:

4.1 S → V ∗: S rewinds V ∗ to 3.1 of ia iteration. Then S Chooses n-
bit random strings δ′ia = δ′ia,1 · · · δ

′
ia,k

, and sends δ′ia to
V ∗.

4.2 S ↔ V ∗: Let the output length of the leakage query be �′ia bits.

If �′ia ≤ �ia , then S uses Ln,λ
w (·) to answer the leakage

queries . Otherwise S aborts.

4.3 S ← V ∗: V ∗ reveals the commitments to q
δ′ia,j

ia,j
, j = 1, · · · , k. If the

decommitments in 4.3 is correct and δia �= δ′ia , S extracts
q and proceeds next step. Otherwise, S executes the next
iteration or abort when a = k − 1.

� Generating challenge ch:
5. S computes q′ = ch ⊕ q, where ch is selected when responding to

query leakage in simulating for Stage 2, q = q1 · · · qn is extracted
in 4.3.
5.1 S → V ∗: S sends q′ to V ∗.
5.2 S ↔ V ∗: S uses Ln,λ

w (·) to answer the leakage queries.
5.3 S ← V ∗: V sets ch = q⊕ q′, and reveals the commitments to q

and q
1−δi,j
i,j , i ∈ [kε ], j ∈ [k].

Response to Query Leakage in Simulating for Stage 3: Assume that R′

is the concatenation of all public cion sent by the simulator in Stage 3. The

simulator set R(w)
	
= R||R′ and f ′(w)

	
= f(w,R(w)), where R denotes the

concatenation of all random cion used by the simulator before Stage 3. The
simulator then queries the leakage oracle with f ′(·) and V ∗ obtain f ′(w). Since
R used by an honest prover is identical to R′, it is easy to see that f ′(w) =
f(w;R(w)).

Lemma 2. That S reaches the end of Stage 3 but fails to extract q is negligible.

Proof. Similar to the proof of Lemma 1.
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Simulating Stage 4:
1. S → V ∗: S reveals πi and the commitments to the adjacency of

Gi = πi(G) when chi = 0, or the commitments of Ci corre-
sponding to the edges to Hi when chi = 1, for every i ∈ [n].

Simulator’s Output Distribution: Note that one difference between S and
the honest prover is that S does not have ability to reveal the commitments (of
Ci) corresponding to hi,j = 0 when chi = 1. Very fortunately, the protocol does
not require P to reveal these commitments. The other difference between S and
the honest prover is that all the first messages, used by S in Naor’s commitment
in Stage 2, take the form of g(z0i,j)⊕ g(z1i,j). Hence, assuming g is a pseudoran-
dom generator, it is follows from the hiding property of Naor’s scheme that the
Simulator’s output distribution is indistinguishable from the view of the verifier.

Define two hybrid simulators Ŝ0 and Ŝ1: Ŝ0 is the same as S except that it
obtains a valid Hamiltonian cycle H0 as auxiliary input and then directly reply
to the leakage queries. Ŝ1 is the same as S0 except that it responds to the leakage
queries as the honest prover. More precisely, instead of selecting a random cycle
Hi, Ŝ1 sets Hi = πi(H) when replying to the query in Stage 2.

Lemma 3. Assume that g : {0, 1}n → {0, 1}3n is a pseudorandom generator.

Then,
{
ŜLk,λ

w (·)
0 (G)

}
G∈HC

and
{
SLk,λ

w (·)(G)
}
G∈HC

are computationally indis-

tinguishable.

Proof. Note that the only difference between Ŝ0 and S is that, for any simple
Hamiltonian cycle Hi, Ŝ0 can find π′

i such that Hi = π′
i(H0) and then can re-

veal Ci to be the commitments to π′
i(G) whereas S cannot. Fortunately, Ŝ0 only

reveals what S does. It follows from the hiding property of Commsh(·) that{
ŜLk,λ

w (·)
0 (G)

}
G∈HC

and
{
SLk,λ

w (·)(G)
}
G∈HC

are computationally indistinguish-

able.

Lemma 4. Assume that Commsh(·) is a two round statistically hiding commit-

ment scheme. Then,
{
ŜLk,λ

w (·)
1 (G)

}
G∈HC

and {V iewV ∗(G)}G∈HC are computa-

tionally indistinguishable.

Proof. The only difference between V iewV ∗(G) and Ŝ1 is that, owing to obtain

rV in advance, Ŝ1 can select a special rP such that r = rP ⊕ rV obeys a pre-
determined distribution whereas P selects randomly rP such that r = rP ⊕ rV
obeys a uniform distribution. Suppose r = r1 · · · rn and ri = ri,1 · · · ri,n2 . It is
clear that ri,j is uniformly distributed on {0, 1}3n in the real running. How-
ever, S selects a special rP such that ri,j = g(z0i,j) ⊕ g(z1i,j) is uniformly dis-

tributed on {g(z0)⊕ g(z1) : z0, z1 ∈R {0, 1}n}. If there exists a PPT algorithm

D such that it can distinguish
{
ŜLk,λ

w (·)
1 (G)

}
G∈HC

from {V iewV ∗(G)}G∈HC ,

then there exists a PPT algorithm D̂ to distinguish the uniform distribution on
{g(z0)⊕ g(z1) : z0, z1 ∈R {0, 1}n} from the uniform distribution on {0, 1}3n. It
is contradiction with the assumption that g is pseudorandom generator.
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In addition, the difference between ŜLk,λ
w (·)

0 and ŜLk,λ
w (·)

1 is that ŜLk,λ
w (·)

0 inter-
prets Ci (the commitment to πi(G)) as the commitment to π′

iπi(G), where π′
i is

determined by H and a random cycleHi. it is easy to see that
{
ŜLk,λ

w (·)
0 (G)

}
G∈HC

and
{
ŜLk,λ

w (·)
1 (G)

}
G∈HC

are indistinguishable.

Over all, it follows that
{
SLk,λ

w (·)(G)
}
G∈HC

and {V iewV ∗(G)}G∈HC are com-

putationally indistinguishable.

Simulator’s Getting Leakage:The following lemma is proved in [7].

Lemma 5. he simulator S at most requires (1 + ε)� bits of leakage, assuming
that V ∗ receives � bits of leakage.

Proof of Knowledge: To show that the protocol is a proof of knowledge, we
need to construct an knowledge extractor K, which has access to the prover-
strategy oracle P ∗.

On input G, K first interacts with P ∗ to execute the protocol acting as a
honest verifier. If the proof is rejected, K aborts. Otherwise, K rewinds P ∗ to
the beginning of Stage 3 to rerun the residual protocol with a fresh q. K repeats
this until another acceptable proof occurs. Thus, K obtains two accepting proofs
corresponding to two different challenge strings respectively. Finally, K extracts
a Hamiltonian cycle from these proofs. The details is in Figure 2.

Step 1 K, playing the role of the honest verifier, interacts with P ∗ to complete
Stage 1 and Stage 2. Then, K obtains the commitment Ci to the adjacency
of Gi (i ∈ [n]) from P ∗.

Step 2 K honestly executes Stage 3. After selecting q ∈R {0, 1}n), K obtains q′

and computes ch = q ⊕ q′.
Step 3 After receiving the response to ch sent by P ∗ in Stage 4, K verifies the

response. If the verification fails, K aborts. Otherwise, K proceeds next
step.

Step 4 K rewinds P ∗ to the point of the beginning of Step 3. After selecting
q̂ ∈R {0, 1}n, K obtains q̂′ and computes ĉh = q̂ ⊕ q̂′.

Step 5 K receives the response to ĉh from P ∗. K verifies the response. If the
verification fails, K return to the point of the beginning of Step 4.

Step 6 If ch = ĉh, K fails and aborts. Otherwise, let i be such that chi �= ĉhi,
K obtains two accepting responses corresponding to two different queries
chi and ĉhi respectively. That is, K obtains a random permutation πi and
a cycle Hi of πi(G). Thus, K can extract a Hamiltonian cycle π−1

i (Hi).

Fig. 2. Knowledge extractor

It is clear that K outputs a Hamiltonian cycle when it does not abort. In
addition, K runs in expected polynomial time. In fact, let p be the probabil-
ity that P ∗ convinces the verifier, p′ be the probability that K terminates the
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repetition successfully in Step 4 and Step 5. It is easy to see that p′ ≥ p. Note
that K clearly runs in strict polynomial time when p = 0. So we assume that
p > 0 in what follows. Therefore, the expected running time of K is given by
(1− p) · poly(n) + p · 1

p′ · poly(n) = poly(n).
Next, we show that the probability for K to output a Hamiltonian cycle is at

least p − 2−n when p > 2−n.
Let Acceptch denote the event that K obtains ch = ch1 · · · chn and P ∗’s

acceptable response to ch, Terminate denote the event that K terminates the
repetition. Obviously, p =

∑
ch Pr[Acceptch]. Assuming p = m

2n > 2−n, we have
the following

Pr[(G,H) ∈ RHC : H ← K(G)] =
∑

ch Pr[Acceptch ∧ Terminate∧ (ch �= ĉh)]

=
∑

ch Pr[Acceptch] · Pr[Terminate∧ (ch �= ĉh)|Acceptch]

where ĉh is determined when Terminate occurs. Since
Pr[Terminate∧(ch �= ĉh)|Acceptch] = (m−1

2n +· · ·+(1− m
2n )

k ·m−1
2n +· · ·) = m−1

m

we obtain the following Pr[(G,H) ∈ RHC : H ← K(G)] = pm−1
m ≥ p − 2−n.

That is, K succeeds in computing a Hamiltonian cycle in G with probability of
at least p − 2−n when p > 2−n.

4 Conclusions and Open Problems

We constructed a leakage-resilient zero-knowledge proof of knowledge for HC
(Hamiltonian Cycle) problem under perfectly hiding commitment schemes. Re-
cently, Pandey [17] present a construction of constant round LR-ZK, so it is also
interesting to construct a constant round LR-ZKoK.
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Abstract. In CT-RSA 2011, Maji et.al proposed an attribute-based sig-
nature (ABS) scheme, which is the most efficient ABS scheme that sup-
ports general predicates until now. They claimed that their ABS scheme is
unforgeable under generic group model. Unfortunately, we found a forgery
attack on this ABS scheme. In this paper, we firstly give a forgery exam-
ple, then analyze the reason cause this attack and gives the conditions this
attack worked. We found this attack is fatal to Maji et.al’s ABS scheme.

Keywords: Attribute-based, signature, cryptoanalysis.

1 Introduction

Background. As a novel cryptographic primitive, attribute-based signature
(ABS) enables a party to sign a message with expressive access policies. In a
typical ABS system, users obtain private keys containing their attribute infor-
mation from an authority, with which they can later sign messages for any pred-
icate satisfied by their attributes. This signature could be verified to be satisfied
with the predicate without leaking signer’s identity. Since ABS provides good
expression ability and privacy protection, it is very useful in a wide range of
applications including private access control, anonymous credential, distributed
access control, etc.

Since Maji et.al proposed the conception of ABS proposed in 2008[1], many
ABS schemes have been proposed[2–9]. According to the predicates they sup-
ported, we can divide the existing ABS schemes into two types: ABS schemes
supporting only simple predicates(usually threshold gates)[6–9] and expressive
ABS supporting more generic predicates[2–5]. In practical applications, the lat-
ter type is much more useful, but the construction is difficult and the signature
size is much longer.

In 2011, Maji et.al proposed three expressive ABS schemes in paper[2], in the
third instantiation(denoted as MPR-ABS for short), similar construction with
mesh signatures[10] and novel randomization method were used, instead of using
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heavy-weight Non-Interactive Witness-Indistinguishable proofs[11], and achieves
the shortest signature size among ABS schemes supporting general predicates.

Compared with other expressive ABS schemes, we can learn that the signa-
ture size of MPR-ABS scheme is over 80% shorter than the other four schemes
(detailed comparison can be found in Table 1). Due to the high efficiency, this
scheme was considered as the most practical ABS scheme and was cited by many
other papers[3–5] as an important reference.

Unfortunately, we found that the MPR-ABS cannot resist the forgery attack.
In this paper, we will propose our forgery attack on the MPR-ABS scheme and
give the reason that cause this forgery.

Outline. The remainder of this paper is organized as follows: In section 2, we
firstly introduce the cryptographic primitives and notations used in this paper,
then we propose some Lemmas. In section 3, we review the formal definition
and security requirements of attribute-based signature, as well as the concrete
construction of MPR-ABS scheme. In section 4, we give the security analysis of
the MPR-ABS scheme and propose a forgery attack on it. In section 5, we give
the conclusion of this paper.

2 Preliminaries

2.1 Bilinear Groups

Let G,H and GT be groups of prime order q, then bilinear pairing is a map
e : G×H → GT satisfy the following properties:

Bilinearity. For all g ∈ G, h ∈ H, a, b ∈ Zp, e(g
a, hb) = e(g, h)ab;

Non-degeneracy. For all generators g ∈ G, h ∈ H, e(g, h) generates GT ;
Efficiency. There exists an efficient algorithm to compute e(g, h) for any

g ∈ G, h ∈ H.

2.2 Monotone Span Programs

Let Υ : {0, 1}n → {0, 1} be a monotone boolean function. A monotone span
program for Υ over a field F is an l × t matrix M with entries in F, along with
a labeling function a : [l] → [n] that associates each row of M with an input
variable of Υ , that, for every (x1, . . . , xn) ∈ {0, 1}n, satisfies the following:

Υ (x1, . . . , xn) = 1 ⇐⇒ ∃v ∈ F
1×l : vM = [1, 0, 0, . . . , 0]

and (∀i : xa(i)) = 0 ⇒ vi = 0.

2.3 Notations

Let M be a matrix, then rk(M) denotes the rank of M, moreover, if M is a square
matrix, |M| denotes the value of the determinant of M. E indicates an identity
matrix and O indicates a zero matrix over field F.

If Υ is a predicate, then an attribute a is “Key Attribute” of Υ if it satisfy
the following property:
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Definition 1. (Key Attribute) For a predicate Υ , we say attribute a is a key
attribute of Υ if for all attributes set A satisfied with Υ (A) = 1, we have a ∈ A.

2.4 Lemmas

Lemma 1. For any finite number of non-zero n-dimension vectors (v1,v2,
. . . ,vk), we can find n − 1 extra n-dimension vectors (y1,y2, . . . ,yn−1) that
for any i ∈ [1, k], the vector group (y1,y2, . . . ,yn−1,vi) is linearly independent.

Proof. Denote vi = (vi1, . . . , vin),yi = (yi1, . . . , yin), then we can find (y1,y2,
. . . ,yn−1) fulfil the requirements by executing the following procedure:

1. Set x1 = 1, then for each vi2 �= 0, compute −x1vi1
vi2

, and select x2 different
from these values.

2. For each vi3 �= 0, we can compute −x1vi1+x2vi2
vi3

, and select x3 different from
these values.

3. Repeat step 1 and 2 we can finally generate a group of values x1, . . . , xn.
Since (v1,v2, . . . ,vk) are all non-zero vectors, it is easy to see that

Σn
j=1xjvij �= 0

4. Now set y1 = (−x2, 1, 0, . . . , 0),y2 = (−x3, 0, 1, . . . , 0),
. . . ,yn−1 = (−xn, 0, . . . , 0, 1), then the value of determinant

|Vi| = |vi,y1,y2, . . . ,yn−1| = Σn
j=1xjvij �= 0

which means the corresponding vector group is linearly independent.

Lemma 2. For any predicate Υ with corresponding attribute set Ω and MSP
matrix M, if ∀a ∈ Ω, a is not a key attribute of Υ . Then the rank of Ml×t is less
than l.

Proof. It is obvious that rk(Ml×t) ≤ l, if rk(Ml×t) = l, then the corresponding
equation vM = (1, 0, . . . , 0) has unique solution. For any non-zero value in the
solution, the corresponding attribute a will be a key attribute of Υ , which leads
to a contradiction.

Lemma 3. Assume u1, . . . , un ∈ Zp are n distinct numbers, denote Pi(a, b) =∏
j=1,...,n,j 
=i(a+ ujb), then for any homogeneous polynomial Y (a, b) with order

n − 1, we can find k1, . . . , kn ∈ Zp that Y (a, b) = k1P1(a, b) + . . .+ knPn(a, b).

Proof. If the coefficients of Pi(a, b) are linearly independent, then it is easy to
find k1, . . . , kn ∈ Zp for any Y (a, b). Otherwise, we can find k1, . . . , kn ∈ Zp that

k1P1(a, b) + . . . + knPn(a, b) = 0

with at least one ki �= 0, when we set a = −ui, b = 1, we have

ki ·
∏

j=1,...,n,j 
=i

(uj − ui) = 0

since u1, . . . , un are distinct numbers, this means ki = 0, which leads to a con-
tradiction.
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3 Attribute-Based Signatures: Definition and Security

3.1 Syntax of Attribute-Based Signatures

In this section, we will review the syntax of Attribute-Based Signatures proposed
in [2]. Let A be the universe of possible attributes. A claim-predicate over A is a
monotone boolean function, whose inputs are associated with attributes of A. We
say that an attributes set A ⊆ A satisfies Υ if Υ (A) = 1, then an Attribute-based
Signature scheme is defined as follow:

An Attribute-based Signature(ABS) scheme consists of the following five al-
gorithms:

TSetup. (Run by a signature trustee): Generates public parameters params.
ASetup. (Run by an attribute authority): Generates a key pair APK,ASK

from the params.
AttrGen. On input (ASK,A ⊆ A),outputs a signing key SKA.
Sign. On input (PK = (params, APK, SKA,m, Υ ),where Υ (A) = 1,outputs a

signature σ.
Ver. On input (PK = (params, APK,m, Υ, σ),outputs accept or reject.

3.2 Security of Attribute-Based Signatures

According to [2], an ABS scheme should be satisfied with the following unforge-
ability:

An ABS scheme is unforgeable if the success probability of any polynomial-
time adversary in the following game is negligible:

1.Run params ← TSetup and ASK,APK ← ASetup. Give PK = (params,
APK) to the adversary.

2.The adversary is given to access to two oracles: AttrGen(ASK, ·) and
Sign(ASK, ·).

3.At the end the adversary outputs (m∗, Υ ∗, σ∗)

We say the adversary succeeds if (m∗, Υ ∗) was never queried to the Sign and
Ver(PK,m∗, Υ ∗, σ∗) = accept and Υ ∗(A) = 0 for any A queried to the AttrGen
oracle.

Furthermore, we have the weak unforgeability under selective predicate model
where the challenge predicate is submitted before TSetup.

3.3 MPR-ABS Scheme

Then we will review the MPR-ABS scheme, according to [2], the detailed scheme
was proposed as follow:

TSetup. Choose suitable cyclic groups G and H of prime order p and a bilinear
pairing G × H → GT . Then choose a collision-resistant hash function H :
{0, 1}∗ → Z∗

p. Choose random generators g ← G, h0, . . . , htmax ← H, where
tmax is the maximum width of monotone span program the supported by the
scheme. Finally, the public parameter is params = (G,H, H, g, h0, . . . , htmax)
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ASetup. Choose random a0, a, b, c ← Z∗
p and set:

C = gc, A0 = ha0
0 , Aj = ha

j , Bj = hb
j(∀j ∈ [tmax])

The master key is ASK = (a0, a, b). The public key

APK = (A0, . . . , Atmax , B1, . . . , Btmax , C)

AttrGen. On input ASK and attribute set A ⊆ A, randomly choose Kbase ←
G. Set:

K0 = K
1/a0

base ,Ku = K
1/(a+bu)
base (∀u ∈ A)

The signing key is then SKA = (Kbase,K0, {Ku|u ∈ A})
Sign. On input (PK, SKA,m, Υ ) such that Υ (A) = 1, first convert Υ to

its corresponding monotone span program M ∈ (Zp)
l×t, with row label-

ing u : [l] → A. Also compute the vector v that corresponds to the satisfying
assignment A. Compute μ = H(m||Υ ). Then pick random r0 ← Z∗

p and
r1, . . . , rl ← Zp and compute:

Y = Kr0
base, Si = (Kvi

u(i))
r0 · (Cgμ)ri(∀i ∈ [l]),

W = Kr0
0 , Pj =

n∏
i=1

(AjB
ui

j )Mijri(∀j ∈ [t])

Since the signer may not have Ku(i) for every attribute u(i), but when this
is the case, vi = 0, and so the value is not needed. After all, the signature is
σ = (Y,W, S1, . . . , Sl, P1, . . . , Pt).

Ver. On input PK, σ = (Y,W, S1, . . . , Sl, P1, . . . , Pt),m, Υ ), first convert Υ to
its corresponding monotone span program M ∈ (Zp)

l×t, with row labeling
u : [l] → A. Compute μ = H(m||Υ ). if Y = 1, then output reject. Otherwise
check the following constraints:

e(W,A0) = e(Y, h0)

l∏
i=1

e(Si, (AjB
ui

j )Mij ) =

{
e(Y, h1)e(Cgμ, P1), j = 1

e(Cgμ, Pj), j > 1

for j ∈ [t]. Return accept if all the above checks succeed, and reject otherwise.

4 Forgery Attack on MPR-ABS Scheme

4.1 A Simple Example of OR Predicate

In this section, we will propose a forgery example on an OR predicate Υ = (u1∨
u2 . . .∨un). The corresponding matrix M is a n× 1 matrix M = (M1, . . . ,Mn)

T

(Mi �= 0). Then the adversary A executes as follows:
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1. A first obtain a secret key for an irrelevant attribute u (u /∈ {u1, . . . , un})
from the AttrGen oracle. The MPR-ABS secret key of A will be {Kb,K0 =

K
1/a0

b ,Ku = K
1/(a+bu)
b }, where a0, a, b is the master secret key.

2. Now A can compute α1 = u−u2

M1(u1−u2)
, α2 = u1−u

M2(u1−u2)
and set αi = 0(i > 2),

we have the following equations:

n∑
i=1

Miαi =
M1(u − u2)

M1(u1 − u2)
+

M2(u1 − u)

M2(u1 − u2)
= 1

and
n∑

i=1

Miuiαi =
M1u1(u − u2)

M1(u1 − u2)
+

M2u2(u1 − u)

M2(u1 − u2)
= u

3. A randomly selects r0 ∈ Z∗
p, r1, . . . , rn ∈ Zp and computes Y = Kr0

b ,W =

Kr0
0 , P1 =

∏n
i=1(A1B

ui
1 )Miri and Si = Kαir0

u · (Cgμ)ri(i = [1, . . . , n])

then the tuple (Y,W, P1, Si(i = [1, . . . , n])) will be satisfied with the verification
equations of MPR-ABS scheme, the correctness can be verified by the following
equations:

e(W,A0) = e(Kr0
0 , ha0

0 ) = e(K
r0/a0

b , ha0
0 ) = e(Kr0

b , h0) = e(Y, h0)

and

n∏
i=1

e(Si, (A1B
ui

1 )Mi)

=

n∏
i=1

e(Kαir0
u · (Cgμ)ri , (A1B

ui
1 )Mi)

=

n∏
i=1

e((Cgμ)ri , (A1B
ui
1 )Mi)

n∏
i=1

e(Kαir0
u , (A1B

ui
1 )Mi)

=

n∏
i=1

e((Cgμ), (A1B
ui
1 )riMi)

n∏
i=1

e((K
1/(a+bu)
b )αir0 , (h

(a+bui)
1 )Mi)

= e((Cgμ),

n∏
i=1

(A1B
ui
1 )riMi)

n∏
i=1

e((K
1/(a+bu)
b )αir0 , (h

(a+bui)
1 )Mi)

= e((Cgμ), P1)
n∏

i=1

e((K
1/(a+bu)
b )r0 , h1))

αi(a+bui)Mi

= e((Cgμ), P1)e((K
1/(a+bu)
b )r0 , h1))

∑n
i=1 αi(a+bui)Mi

= e((Cgμ), P1)e((K
1/(a+bu)
b )r0 , h1))

(a·
∑n

i=1 αiMi+b·
∑n

i=1 αiuiMi)

= e((Cgμ), P1)e((K
1/(a+bu)
b )r0 , h1))

(a+bu)
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= e((Cgμ), P1)e(K
r0
b , h1)

= e((Cgμ), P1)e(Y, h1)

Finally, we get a forgery signature σ = (Y,W, P1, Si(i = [1, . . . , n])) of the MPR-
ABS scheme.

4.2 Forgery Attack on General Predicates

In this section, we will propose the forgery attack on general predicates, to
forge a predicate with matrix size l × n, we demand that the A has secret keys
skA = {Kb,K0,Ku(u ∈ ΩA)} with at least l attributes. These attributes could
be arbitrary values, which may be disjoint with the attributes set defined by the
predicate at all, so it is easy to get them from the AttrGen oracle.

1. The usage of values r0, r1, . . . , rn ∈ Zp is to randomize the signature, so
the adversary A can randomly choose these values. Then A compute Y =
Kr0

b ,W = Kr0
0 , Pj =

∏n
i=1(AjB

ui

j )Mijri and the first verification equation
e(W,A0) = e(Y, h0) will be automatically satisfied.

2. For the second equation, if we set Ti = [ Si

(Cgμ)ri ]
1/r0 , then Ti should be

satisfied with the following equation:

n∏
i=1

e(Ti, (AjB
ui

j )Mij ) =

{
e(Kb, h1), j = 1

1GT , j > 1

3. Let ti be the discrete logarithm of Ti to the base of Kb, then ti satisfied with
the following equation:

n∑
i=1

tiMij(a + bu(i)) =

{
1, j = 1

0, j > 1

4. Since A has the secret key of more than l attributes, he select l attributes
ũ1, . . . , ũl from ΩA to form a set Ω∗.

5. If we denote Ω∗(a, b) =
∏l

i=1(a+ bũi), then by Lemma 3, it is easy for A to

compute F = K
F (a,b)/Ω∗(a,b)
b using Kũi = K

1/(a+bũi)
b for any homogeneous

polynomial
F (a, b) = f1a

l−1 + f2a
l−2b+ . . .+ flb

l−1

with order l − 1.
6. A set ti = fi(a, b)/Ω

∗(a, b), where

fi(a, b) = fi1a
l−1 + fi2a

l−2b+ . . . + filb
l−1

is homogeneous polynomials with undetermined coefficients. Then we have:

n∑
i=1

fi(a, b)Mij(a+ bu(i)) =

{
Ω∗(a, b), j = 1

0, j > 1
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7. Although A did not know the value a, b, he could still try to solve these
equations to make all coefficients equal. After he gets the solution of fik,

he could compute the corresponding Ti = K
fi(a,b)/Ω

∗(a,b)
b and then com-

pute Si = T r0
i (Cgμ)ri and find a forgery signature σ = (Y,W, Pi(i =

[1, . . . , l]), Sj(j = [1, . . . , n])).

4.3 Applicable Situations of Our Attack

In section 4.2, we show a forgery attack on MPR-ABS scheme, in this section, we
will give the precisely condition this method works. At first, we have Theorem 1:

Theorem 1. For any predicate Υ with corresponding attribute set Ω and MSP
matrix M, if ∀a ∈ Ω, a is not a key attribute of Υ , then any adversary A with
attributes set Ω∗ where |Ω∗| ≥ |Ω| could use our method mentioned in section
4.2 to forge a signature of MPR-ABS scheme on any message.

Proof. According to section 4.2, if A could find (f11, f12, . . . , f1l, f21, . . . , f2l, . . . ,
fll) ∈ Zp to make fi(a, b) = fi1a

l−1+fi2a
l−2b+ . . .+filb

l−1 satisfy the following
equations:

n∑
i=1

fi(a, b)Mij(a + bu(i)) =

{
Ω∗(a, b), j = 1

0, j > 1

Then he can successfully generate a forgery of MPR-ABS scheme, we will show
the existence of these values when there is no key attribute in the predicate.

At first, consider the vi(a, b) = fi(a, b)(a + bu(i))/Ω∗(a, b) as a whole, then
v = (v1(a, b), . . . , vl(a, b)) satisfied with the equation v · M = (1, 0, . . . , 0), we
can simplify M to a equivalent full rank matrix Mfull as follows:

1. If M is full-ranked, then Mfull = M, otherwise, we can find a subset (m1, . . . ,
mk) consisting of the column vectors of M and a1, . . . , ak ∈ Zp where

a1m1 + . . . + akmk = 0

2. Since there exists at least one vector v satisfied with this equation (otherwise,
the corresponding predicate will be a full negation predicate), then the first
column of M cannot appear in this subset. We can discard any one column
in this subset, it is clear that for all vectors satisfied with the new equation,
it will automatically be satisfied with the original one.

3. Repeat step 1 and 2 we will finally get a full rank matrix Mfull.

Then we use Gaussian elimination method to simplify the equations v ·Mfull =
(1, 0, . . . , 0), andMfull will be transformed to its row canonical form. SinceMfull

is full-ranked, there will be no zero column in it and we can exchange the rows
of it to get a matrix with the form

M
′
= (E|M̂)T



On the Security of an Efficient Attribute-Based Signature 389

Since exchanging the rows of M only means to change the order of attributes,
it will not affect the existence of solution. If we denote the new equations as
vM′ = y′, the solution v will still satisfy the same predicate Υ as M.

After that, we can extend the equations as follows:

1. Since all attributes defined by the predicate Υ are not the key attributes, then
the width of M′ is less than l by Lemma 2. If we denote M̂ as (m̂1, . . . , m̂t),
then m̂i is a n-dimension vector where n = l − t ≥ 1.

2. Moreover, we have m̂1, . . . , m̂t �= 0, otherwise, there will be a row of M
′

which is all 0 except one 1 in it, then the corresponding attribute has unique
solution, if the solution is non-zero then it means there is a key attribute
in Υ . Else, the attribute will be redundant and we can remove it from the
predicate.

3. By Lemma 1, we can find n − 1 extra vectors p1, . . . ,pn−1 that for each
m̂i(i ∈ [1, . . . , t]), (p1, . . . ,pn−1, m̂i) is linearly independent.

4. Extend the equations as vM′′ = (y′, 0, . . . , 0), where

M
′′
l×(l−1) =

⎛⎜⎜⎝
E M̂
O p1

· · ·
O pn−1

⎞⎟⎟⎠
T

It is easy to see all solutions of this extended equations will match the original
constraints vM = (1, 0, . . . , 0), too.

Now we use the Gaussian elimination method again, since p1, . . . ,pn−1 was
chosen to be linearly independent with m̂1, . . . , m̂t, it is easy to see that M′′ is
full-ranked and rk(M′′) = t + n − 1 = l − 1. The final result will be equations
like vM′′′ = y′′′, where

M
′′′ = (E|M̂ ′′′)T

and M̂ ′′′ = (m′′′
1 , . . . ,m′′′

l−1)
T is a (l − 1)-dimension vector. Furthermore, since

p1, . . . ,pn−1 was linearly independent with m̂1, . . . , m̂t, we have m′′′
i �= 0 for all

i ∈ [1, . . . , l − 1].
Now we expand this simplified matrix by setting vi(a, b) = fi(a, b)(a+ bu(i))

/Ω∗(a, b), then the equations will be f(a, b)M
′′′ = z′′′(a, b), where

f(a, b) = (f1(a, b)(a + u(1)b), . . . , fl(a, b)(a + u(l)b)

Since we did not know the value of secret key a, b, we can let the polynomi-
als on both sides of equations exactly match, which means all terms of these
polynomials equal. Then the question becomes to solve the following equations:

(f11, f12, . . . , f1l, f21, . . . , f2l, . . . , fll)M̄ = z

where

M̄ =

⎛⎜⎜⎜⎝
E1 O . . . O N1

O E2 . . . O N2

...
. . .

...
O O . . . El−1 Nl−1

⎞⎟⎟⎟⎠
T
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with

Ei =

⎛⎜⎜⎜⎜⎜⎝
1 0 . . . 0

u(1) 1 . . . 0
...

. . .
...

0 . . . u(1) 1
0 0 . . . u(1)

⎞⎟⎟⎟⎟⎟⎠ , Ni =

⎛⎜⎜⎜⎜⎜⎝
m′′′

i 0 . . . 0
m′′′

i u(l) m′′′
i . . . 0

...
. . .

...
0 . . . m′′′

i u(l) m′′′
i

0 0 . . . m′′′
i u(l)

⎞⎟⎟⎟⎟⎟⎠
Then we can use elementary transformation to simplify the coefficient matrix M̄

to

M̄′ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

E O . . . O N ′
1

O E . . . O N ′
2

...
. . .

...
O O . . . E N ′

l−1

v1 O . . . O y1
O v2 . . . O y2
...

. . .
...

O O . . . vl−1 yl−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

T

where

N′
i =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

m′′′
i 0 0 . . . 0 0

m′′′
i Δ(i) m′′′

i 0 . . . 0 0

m′′′
i Δ(i)(−u(i)) m′′′

i Δ(i) m′′′
i . . . 0 0

.

.

.

.
.
.

.

.

.

m′′′
i Δ(i)(−u(i))l−3 m′′′

i Δ(i)(−u(i))l−4 m′′′
i Δ(i)(−u(i))l−5 . . . m′′′

i 0

m′′′
i Δ(i)(−u(i))l−2 m′′′

i Δ(i)(−u(i))l−3 m′′′
i Δ(i)(−u(i))l−4 . . . m′′′

i Δ(i) m′′′
i

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,Δ(i) = u(l) − u(i)

and
vi = (0, . . . , 0, u(i)), yi = (0, . . . , 0,m′′′

i u(l))

This matrix could be further simplified to

M̄′′ =

⎛⎜⎜⎜⎜⎜⎝
E O . . . O N ′

1

O E . . . O N ′
2

...
. . .

...
O O . . . E N ′

l−1

O O . . . O Z

⎞⎟⎟⎟⎟⎟⎠
T

where

Z =

⎛
⎜⎜⎜⎝

m′′′
1 Δ(1)(−u(1))l−1 m′′′

1 Δ(1)(−u(1))l−2 . . . m′′′
1 Δ(1)

m′′′
2 Δ(2)(−u(2))l−1 m′′′

2 Δ(2)(−u(2))l−2 . . . m′′′
2 Δ(2)

...
. . .

...

m′′′
l−1Δ(l − 1)(−u(l − 1))l−1 m′′′

l−1Δ(l − 1)(−u(l − 1))l−2 . . . m′′′
l−1Δ(l − 1)

⎞
⎟⎟⎟⎠
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Since u(i) are distinct attribute values, we have Δ(i) = u(l) − u(i) �= 0 and
m′′′

i �= 0(i ∈ [1, l− 1]). According to the properties of Vandermonde matrix, it is
obvious that rk(Z) = l− 1 and rk(M̄) = rk(M̄′′) = (l − 1)× (l+ 1) = l2 − 1. As
we have l2 undetermined coefficients, we can know that the solution will always
exist no matter which value the z is. Thus we have proved Theorem 1.

Moreover, if the adversary have some of the attributes in the predicate, we can
extend the Theorem 1 to more general situations as follow:

Theorem 2. For any predicate Υ with corresponding attribute set Ω and MSP
matrix M, and adversary A with attributes set Ω∗, if |Ω∗| ≥ |Ω| and ∀a ∈ Ω−Ω∗,
a is not a key attribute of Υ , then A could use our method mentioned in section
4.2 to forge a signature of MPR-ABS scheme on any message.

Proof. Since all private keys of these key attributes were held by the adversary,
he can normally generate Si = (Kvi

u(i))
r0 · (Cgμ)ri . If we eliminate these vis from

the equations, we can use the similar method to forge the reminder part. The
existence of forgery could be proved similarly as Theorem 1.

4.4 Discussions

Applicability in Practical Applications. From Theorem 2, we learn the
applicability of our attack. As we know, for any predicate other than the AND
gate, the attribute set containing all key attributes won’t satisfy the predicate.
Then the adversary could ask the AttrGen oracle to get all the key attributes
and sufficient irrelevant attributes and generate a forgery signature, i.e. for all
predicates other than the AND gate in MPR-ABS scheme, our forgery attack
could successful works.

Moreover, our attack cannot be prevent by introducing extra verification pro-
cedure: according to the forgery procedure, the value r0, r1, . . . , rl is randomly
selected by the adversary, so the value of Y, S1, . . . , Sl was uniformly distributed
over group G. Since W,P1 . . . , Pt was uniquely determined by Y, S1, . . . , Sl and
the predicate Υ , the distribution of the forgery signature is exactly the same
with a true signature.

Table 1. Comparison of Expressive ABS Schemes

(l, t denotes the length and width of the span program, λ is the security parameter)
MPR11[2] MPR11[2] EHM11[3] OT11[4] OT12[5]

Instantation3 Instantation2

Signature Size l + t+ 2 36l + 2r + 9λ+ 12 8l + t+ 7 7l + 11 13l

Security Model generic group standard standard standard random oracle

Predicates monotone monotone monotone non-monotone non-monotone

Sig. size example1 17 1534 92 81 130
(l = 10, t = 5, λ = 128)

Sig. size example2 152 4864 857 711 1300
(l = 100, t = 50, λ = 128)
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Main Flaw of MPR-ABS. Then we discuss the main reason causes this attack,
according to [2], the MPR-ABS was inspired by the mesh signatures proposed by
Boyen[10]. In the original mesh signatures, the master secret key related to each
atom-signature(i.e. the attribute private key) is different. However, Maji et. al
simplified this construction to a single key pair (a, b) in the MPR-ABS. This flaw
allows the adversary to generate a forgery signature by using the linear relation
between the private keys, which leads to our attack.

5 Conclusion

In this paper, we proposed a forgery attack on the ABS scheme proposed by
Maji et.al in paper [2]. This attack can be implemented under both selective
and adaptive security model, and works on almost all predicates, which totally
breaks the unforgeablity of Maji et.al’s ABS scheme.

Acknowledgements. We thank Mr. Nan Zhang of New York University for
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Abstract. This paper investigates the problem of factoring RSA mod-
ulus N = pq with some known bits from both p and q. In Asiacrypt’08,
Herrmann and May presented a heuristic algorithm to factorize N
with the knowledge of a random subset of the bits (distributed over
small contiguous blocks) of a factor. However, in a real attack, an
adversary often obtain some bits which distributed in both primes.
This paper studies this extended setting and introduces a lattice-based
approach. Our strategy is an extension of Coppersmiths technique on
more variables, thus it is a heuristic method, which we heuristically
assumed that the polynomials resulting from the lattice basis reduction
are algebraically independent. However, in our experiments, we have
observed that the well-established assumption is not always true, and
for these scenarios, we also propose a method to fix it.

Keywords: lattices, RSA, Coppersmith’s method, factoring with known
bits.

1 Introduction

Factoring large integer is an old and fascinate problem in number theory which is
important for cryptographic applications, especially after the birth of the public-
key cryptosystem RSA. However, until now, there is no known deterministic or
randomized polynomial-time algorithm without the help of quantum computers
to solve it, the best algorithm to date is Number Field Sieve (NFS), which has
an expected runtime O(exp(c(lnN)1/3(ln lnN)2/3)) where c is a constant.

In practice, an attacker might obtain partial information from both p and q
via side-channel attacks, it is important to investigate that how these affect the
hardness of factorization problem. In Eurocrypt’85, Rivest and Shamir [11] first
introduced the factoring with known bits problem, they applied Integer Pro-
gramme technique and factored N given two-thirds of the least significant bits
(LSBs) of either p or q. In Eurocrypt’96, Coppersmith [3] improved the above
result, and showed that N can be factored given half of the LSBs or most signif-
icant bits (MSBs) of a factor. He used the lattice reduction technique to output
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small solutions to a bivariate polynomial. Note that for the above results, the
unknown bits are within one consecutive block. Then in Asiacrypt’08, Herrmann
and May [6] presented a heuristic algorithm that extend to n blocks, they also
used the lattice reduction technique but for a linear modular polynomial. How-
ever, the running time of this algorithm is polynomial only for n = O(log logN)
blocks.

A scenario different from the above setting is based on the cold boot attack
[4], where one may only recover information stored in the computer memory with
certain probability less than 1. Heninger and Shacham [5] studied the problem
and presented a new algorithm to factorize N given a certain fraction of the
random bits of the primes. Since the known bits are randomly distributed, their
algorithm cannot make use of the lattice reduction or integer programming tech-
niques. The reconstruction method is a modified brute-force search exploiting
the known bits to prune wrong branches of the search tree, thereby reduced the
total search space towards possible factorization.

To summarize, in practice we prefer to use the lattice-based approach for
its better performance, on the other hand, the lattice-based approach requires
strigent constraints: the knowledge of contiguous blocks. We notice that the
previous lattice-based methods only consider the scenario which the leaked bits
lie in a single prime. While in a real attack, we may obtain known bits from
both primes. This raises the question whether we have any efficient lattice-based
approach to utilize such additional information?

Our Treatments. In this paper we present a new heuristic algorithm to
factorize N with the knowledge of a random subset of the bits (distributed
over small contiguous blocks) in both primes. Suppose that p has n1 unknown
blocks, q has n2 unknown blocks, it leads to a multivariate polynomial equation
f(x1, · · · , xn1 , y1, · · · , yn2) = N − (a0 + a1x1 + · · · + an1xn1)(b0 + b1y1 + · · · +
bn2yn2) = 0 (ak = 2l: the k-th unknown block of p starts in the l-th bit position,
bi = 2j: the i-th unknown block of q starts in the j-th bit position). Then we
can use Coppersmith’s method to recover the small solution of f .

Our algorithm relies on a heuristic assumption that the polynomials output
by the LLL algorithm are algebraically independent, which is also assumed in
many works [1,8,10,6]. However, in our experiments, we met some unsuccess-
ful instances, in particular, if the unknown blocks are significantly unbalanced
in size, the polynomials output are not always algebraically independent, thus
one may not find enough independent polynomials to recover all the unknown
bits. Therefore, for completeness, we give a detailed report for the failure of the
assumption, and also present a method to fix these “unsuccessful” situations.

The rest of the paper is organized as follows. In Section 2, we introduce some
useful background on lattice basis reduction and list some previous results. In
Section 3, we give the analysis of the factoring with four unknown blocks of
primes p, q, and provide various data obtained through numerical experiments.
In Section 4, we generalize the analysis to an arbitrary number n of unknown
blocks. At last, in Section 5 we give a conclusion.
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2 Preliminaries

2.1 Lattices

Consider a set of linearly independent vectors u1, · · · , uw ∈ Zn, with w � n. The
lattice L, spanned by {u1, · · · , uw}, is the set of all integer linear combinations
of the vectors u1, · · · , uw. The number of vectors is the dimension of the lattice.
The set u1, · · · , uw is called a basis of L. In lattices with arbitrary dimension,
finding the shortest vector is a very hard problem, however, approximations of a
shortest vector can be obtained in polynomial time by applying the well-known
LLL basis reduction algorithm [9].

Lemma 1. (LLL) Let L be a lattice of dimension w. With polynomial time, the
LLL-algorithm outputs reduced basis vector vi, 1 � i � w that satisfy

‖ v1 ‖�‖ v2 ‖� · · · �‖ vi ‖� 2
w(w−1)

4(w+1−i) det(L)
1

w+1−i

We state Howgrave’s result [7] to find small solutions of integer equations.

Lemma 2. (Howgrave −Graham) Let g(x1, · · · , xk) ∈ Z[x1, · · · , xk] be an
integer polynomial that consists of at most w monomials. Suppose that

1. g(y1, · · · , yk) = 0 mod pm for | y1 |� X1, · · · , | yk |� Xk and

2. ‖ g(x1X1, · · · , xkXk) ‖< pm

√
w

Then g(y1, · · · , yk) = 0 holds over the integers.

Let g(x1, · · · , xk) =
∑

i1,··· ,ik ai1,··· ,ikx
i1
1 · · ·xik

k . We define the norm of g by the

Euclidean norm of its coefficient vector: ‖ g ‖2=
∑

i1,··· ,ik a2i1,··· ,ik .
The approach we used in the rest of the paper relies on the following heuristic

assumption for computing multivariate polynomials.

Assumption 1. The lattice-based construction yields algebraically independent
polynomials, the common roots of these polynomials can be efficiently computed
using techniques like calculation of the resultants or finding a Gröbner basis.

The first part of Assumption 1 assures that the constructed polynomials allow
for extracting the common root, while the second part assures that we are able
to compute these common roots efficiently.

2.2 Previous Results

Let lN denote the bit size of N , we have the following lemma [12]:

Lemma 3. (Sarkar) Let N = pq where p, q are of the equal bit-size. If one
knows t MSBs of p: pm, then we can compute the approximation qm =  N/pm!
of q, the probability that q and qm share the first t − t

′ − 1 MSBs is at least
Pt′ = 1 − 1

2t
′ which 0 ≤ t

′ ≤ t. If one knows t LSBs of p: pl, then we can

compute t LSBs of q: ql.
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In [12], the authors presented another lattice based method to handle the fol-
lowing situation:

Lemma 4. (Sarkar) Let N = pq where p, q are of equal bit-size. Suppose τlN
LSBs of p, q are unknown but the subsequence ηlN LSBs of p, q are known. Then,
under Assumption 1, one can recover the τlN unknown LSBs of p, q in polynomial
time, if τ < η

2 .

3 Factoring with Four Unknown Blocks

In this section, we present an algorithm to factorize N with four unknown blocks
of p and q. This attack model is illustrated in Figure 1.

α1lN LSBs α2lN MSBs

β1lN LSBs β2lN MSBs

p

q

known bits unknown bits

Fig. 1. Four unknown blocks of p, q

3.1 Our Algorithm

Let p0, p1, p2 denote the known bits, the unknown α1lN LSBs, the unknown
α2lN MSBs of p, let q0, q1, q2 denote the known bits, the unknown β1lN LSBs,
the unknown β2lN MSBs of q, respectively. Then we have

p = 2α1lN p0 + p1 + 2(1/2−α2)lNp2
q = 2β1lN q0 + q1 + 2(1/2−β2)lN q2

Hence we are interesting in finding the small root (p1, p2, q1, q2) of

f(x1, x2, y1, y2) = N−(2α1lN p0+x1+2(1/2−α2)lNx2)(2
β1lN q0+y1+2(1/2−β2)lN y2)

Furthermore, we have the upper bounds

|pi| ≤ Xi = Nαi , |qi| ≤ Yi = Nβi for i ∈ {1, 2}.

Following we use Coppersmith’s method [3] to find the small integer root of
polynomial f . Notice that the maximal coefficient of f(x1X1, x2X2, y1Y1, y2Y2)
is N − p1q1, and the corresponding monomial is 1. Therefore, we define two
sets: the set S is defined as the set of all monomials of fm−1 for a given posi-
tive integer m; the set M is defined as the set of all monomials that appear in
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xi1
1 xi2

2 yj11 yj22 f(x1, x2, y1, y2) with xi1
1 xi2

2 yj11 yj22 ∈ S. We introduce the shift poly-
nomials

hi1i2j1j2(x1, x2, y1, y2) = xi1
1 xi2

2 yj11 yj22 f(x1, x2, y1, y2)

for xi1
1 xi2

2 yj11 yj22 ∈ S.
We also use the notations s = |S| for the total number of shift polynomials

and d = |M |− |S| for the difference of the number of monomials and the number
of shift polynomials. Next we build a (d + s)× (d + s) matrix L.

The upper left d×d block is diagonal, where the rows represent the monomials
xi1
1 xi2

2 yj11 yj22 ∈ M\S. The diagonal entry of the row corresponding to xi1
1 xi2

2 yj11 yj22
is (X i1

1 X i2
2 Y j1

1 Y j2
2 )−1. The lower left s × d block contains only zeros.

The last s columns of the matrix L represent the shift polynomials hi1i2j1j2 .
The first d rows correspond to the monomials in M \ S, and the last s rows to
the monomials of S. The entry in the column corresponding to hi1i2j1j2 is the
coefficient of the monomial in hi1i2j1j2 . If we sort the shift polynomials according
to some ordering, the corresponding matrix defines a upper triangular lattice
basis.

The determinant of the matrix L is

det(L) =

⎛⎜⎝ ∏
x
i1
1 x

i2
2 y

j1
1 y

j2
2 ∈M\S

(X i1
1 X i2

2 Y j1
1 Y j2

2 )−1

⎞⎟⎠ · (N − p1q1)
s

= Xs1
1 Xs2

2 Y
s∗1
1 Y

s∗2
2 · (N − p1q1)

s

For the lattice attack to work, we require the enabling condition det(L) > 1 (see
[3] and [8] for detail). Then after some computations, we yield the bound:

(X1X2Y1Y2)
5
12m

4+◦(m4) < N
1
4m

4+◦(m4)

To obtain the asymptotic bound, we let m grow to infinity, and substitute the
values of X1, X2, Y1, Y2. Finally we obtain

α1 + α2 + β1 + β2 < 0.6

Then under this condition and Assumption 1, we can compute another three
polynomials that share the same root (p1, p2, q1, q2) over the integers, which
finally find the desired root.

3.2 Experimental Results

Our algorithm is heuristic, therefore, we state some experimental results in Table
1 to illustrate the performance of the above algorithm. All the experiments
have been performed in Magma [2] over Windows 7 on a laptop with Intel(R)
Core(TM) i5-2430M CPU 2.40 GHz, 2 GB RAM. In all the cases, we suppose
N is an 1000-bit RSA modulo with equal-size prime p, q.
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Table 1. Experimental results for the attack in case of partial leakage of p, q

m p(MSBs/LSBs) q(MSBs/LSBs) expt(bit) theory(bit) dim(L) time(sec) result

1 2 107/107 107/107 428 428 27 3.463 success

2 2 84/130 130/84 428 428 27 4.321 success

3 2 84/130 84/130 428 428 27 3.682 x2, y2
4 2 90/150 90/150 480 428 27 3.479 x2, y2
5 3 119/119 119/119 476 473 64 1932.681 success

6 3 50/185 185/50 470 473 64 3071.519 success

7 3 50/185 50/185 470 473 64 657.638 x2, y2
8 3 50/250 50/250 600 473 64 2603.844 x2, y2

1 The word “success” in the column “result” means that we can successfully re-
cover the desired small root; whereas the symbol “x2, y2” means that we can
only recover the values of x2 and y2.

For given lattice parameterm, we presented the number of bits that one should
theoretically be able to recover from p and q (column theory of Table 1). For sim-
plicity, we suppose that p and q have equal size of unknownbits in our experiments.

We observe that Assumption 1 does not always hold in our experiments. In our
experiments, if the unknown blocks are equal in bit size (X1 ≈ X2 ≈ Y1 ≈ Y2),
we will recover the unknown bits of p, q just as theoretically predicted (see the
second row and the sixth row of Table 1)). However in the unbalanced case, the
situation is more complicated, the success of the experiment greatly depends on
the location of the unknown blocks.

For instance, if the unknown blocks with smaller size are located at MSB side
of p and LSB side of q(X1 " X2, Y1 � Y2), we can also successfully recover the
unknown bits (see the third row and the seventh row of Table 1)). Otherwise
if they are both located at MSB side of p, q (X1 " X2, Y1 " Y2), we observe
that only smaller variables x2 and y2 are eliminated (see the fourth row and the
eighth row of Table 1)), in this case, we notice that the smaller vectors lie in a
sublattice of small dimension, which may be the reason why Assumption 1 fails;
on the other hand, the sublattice structure is helpful to recover the unknown
blocks with smaller size, which require less exposed bits practically (see the fifth
row and the ninth row of Table 1)).

3.3 Main Theorem

The method of Coppersmith is able to exploit the algebraic relation among
the variables, but it completely ignores the coefficients of the polynomial. That
is may be the main reason why Assumption 1 fails in many experiments of
Section 3.2. However, based on the experimental results, we observe that though
sometimes we may not get enough algebraic independent polynomials to recover
all variables, we can still recover some smaller unknown variables with only
limited number of polynomials we got. With this observation we can summarize
a weaker assumption which is more close to the real fact.
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Assumption 2. The lattice-based construction of Section 3.1 at least yields
two algebraically independent polynomials, and the smaller unknown variables
of these polynomials can be efficiently computed using Gröbner basis technique.

Based on Assumption 2, we can get our theorem.

Theorem 1. Let N = pq where p, q are of equal bit-size. Let α1, α2, β1, β2 be
parameters satisfy 0 < α1, α2, β1, β2 < 1. Suppose α1lN LSBs of p, α2lN MSBs
of p, β1lN LSBs of q, β2lN MSBs of q are unknown, and the rest bits of p, q
are known. Then one can factorize N in polynomial time if one of the following
conditions is satisfied:

1. α1 + α2 < 0.207 or β1 + β2 < 0.207 (Under Assumption 1).
2. α1 + α2 + β1 + β2 < 0.6 and αi < 0.25 or βi < 0.25 for i ∈ {1, 2} (Under

Assumption 2).

Proof. We can get Condition 1 directly from Herrmann and May’s result [6], we
focus on Condition 2.

In our algorithm, under the condition α1 + α2 + β1 + β2 < 0.6 and Assump-
tion 1, we are able to recover the root efficiently. However, sometimes we only
get two algebraic independent polynomials (Assumption 2), in these cases two
smaller variables are eliminated, we bring the two of known variables back to the
polynomial f , and construct a new polynomial with two variable. Then we can
apply Coppersmith’s method [3] which acts on two variables to find the desired
root. There are only two cases which this method fails:

– α1 > 0.25 and β1 > 0.25. In this case the unknown blocks with smaller
size are both located at MSB side of p, q, we can only recover the unknown
variables x2, y2, however, we can not get x1, y1 using Coppersmith’s method
which requires the knowledge of half of the LSBs of p or q.

– α2 > 0.25 and β2 > 0.25. In this case the unknown blocks with smaller
size are both located at LSB side of p, q, we can only recover the unknown
variables x1, y1, however, we can not get x2, y2 using Coppersmith’s method
which requires the knowledge of half of the MSB of p or q.

Combining with the above discussions, we can get Condition 2.

Remark 1. Our algorithm can be improved if the the unknown blocks are signif-
icantly unbalanced (see experiment performances in Table 1), one could employ
additional extra shifts in the smaller variables, which intuitively means that the
smaller variable gets stronger weight since it cases smaller costs. We do not give
the optimization process because of the enormous modes of the location of the
unknown blocks.

4 Extension to Arbitrary Number of Unknown Blocks

In this section, we consider the scenario the number of the unknown blocks of the
factors p, q is arbitrary. Suppose there are n1 blocks unleaked whose respective
length is αilN (1 ≤ i ≤ n1), similarly, the length of unleaked blocks for q is
βilN (1 ≤ i ≤ n2) respectively. Figure 2 illustrates the description of this attack
model.
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α1lN α2lN α3lN αn1 lN
· · · · · ·

β1lN β2lN β3lN βn2 lN

· · · · · ·

p

q

known bits unknown bits

Fig. 2. Arbitrary number of unknown blocks of p and q

4.1 A General Algorithm

Since p is unknown for n1 blocks, q is unknown for n2 blocks, we can write
p = a0 + a1p1 + · · ·+ an1pn1 , q = b0 + b1q1 + · · ·+ bn2qn2 , where pi, qj(1 ≤ i ≤
n1, 1 ≤ j ≤ n2) are unknowns, and ak = 2l is the k-th unknown block of p starts
in the l-th bit position, bi = 2j is the i-th unknown block of q starts in the j-th
bit position. This gives the following two equations:

p = a0 + a1x1 + a2x2 + · · ·+ an1xn1

q = b0 + b1y1 + b2y2 + · · ·+ bn2yn2

with unknown variables x1, · · · , xn1 , y1, · · · , yn2 . We multiply the two equations,
then get a multivariate polynomial:

f
′
(x1, · · · , xn1 , y1, · · · , yn2) = N−

n1∑
i=1

n2∑
j=1

aibjxiyj−a0

n2∑
j=1

bjyj−b0

n1∑
i=1

aixi−a0b0

In particular, suppose that the leaked bits include γmlN MSBs and γllN LSBs
of p, q, we redefine the polynomial as follows:

f(x1, · · · , xn1 , y1, · · · , yn2) = f
′
(x1, · · · , xn1 , y1, · · · , yn2)/2

γllN

Furthermore, we have the upper bounds:

|pi| ≤ Xi = Nαi , |qj | ≤ Yj = Nβj for i ∈ {1, 2, . . . , n1} j ∈ {1, 2, . . . , n2}.

Following we use Coppersmith’s method [3] to find the small integer root of
polynomial f . Notice that the maximal coefficient of f(x1X1, x2X2, y1Y1, y2Y2)
is (N − p1q1)/2

γ1lN , and the corresponding monomial is 1. Therefore, we define
two sets: the set S is defined as the set of all monomials of fm−1 for a given
positive integer m; the set M is defined as the set of all monomials that appear
in xi1

1 xi2
2 yj11 yj22 f(x1, x2, y1, y2) with xi1

1 xi2
2 yj11 yj22 ∈ S. We introduce the shift

polynomials

hi1i2j1j2(x1, x2, y1, y2) = xi1
1 xi2

2 yj11 yj22 f(x1, x2, y1, y2)

for xi1
1 xi2

2 yj11 yj22 ∈ S.



Factoring RSA Modulus with Known Bits from Both p and q 401

At first we define two sets:

S =
⋃

{xi1
1 · · ·xin1

n1 yj11 · · · yjn2
n2 : xi1

1 · · ·xin1
n1 yj11 · · · yjn2

n2 is a monomial of fm−1},

M = {monomials of xi1
1 · · ·xin1

n1 yj11 · · · yjn2
n2 f : xi1

1 · · ·xin1
n1 yj11 · · · yjn2

n2 ∈ S}

Next we built a matrix L to find at least n1 +n2 − 1 polynomials that share the
root (p1, · · · , pn1 , q1, · · · , qn2) over the integers. Then the matrix has triangular
form if the coefficient vectors are sorted according to the order. Then we have
to satisfy the following condition to get these polynomials:

Xs1
1 · · ·Xsn1

n1 Y
s∗1
1 · · ·Y s∗n2

n2 < W s

for sk =
∑

x
i1
1 ···xin1

n1
y
j1
1 ···yjn2

n2
∈M\S ik, s∗t =

∑
x
i1
1 ···xin1

n1
y
j1
1 ···yjn2

n2
∈M\S jt

with k ∈ {1, · · · , n1}, t ∈ {1, · · · , n2}, s = |S| and W =
||f(x1X1, · · · , xn1Xn1 , y1Y1, · · · , yn2Yn2)||∞ = N1−γm−γl .

The explicit computation of s, s1, s2, · · · , sn1 , s∗1, s
∗
2, · · · , s∗n2

is given in Ap-
pendix A, while we only state the results here.

dim(L) = |M | =
(
m+ n1

m

)(
m + n2

m

)
s =

(
m+ n1 − 1

m − 1

)(
m + n2 − 1

m − 1

)
s1 = · · · = sn1 =

(
m+ n2 − 1

m

)(
m + n1 − 1

m − 2

)
+

(
m+ n2

m

)(
m + n1 − 1

m − 1

)
s∗1 = · · · = s∗n2

=

(
m+ n1 − 1

m

)(
m + n2 − 1

m − 2

)
+

(
m+ n1

m

)(
m + n2 − 1

m − 1

)
Put the above values to the condition, we can get∑n1

i=1 αi

n2 + 1
+

∑n2

j=1 βj

n1 + 1
<

1− γm − γl
n1 + n2 + 1

The runtime of our algorithm is dominated by the time to run LLL reduction
algorithm on the lattice L, which takes polynomial time in the dimension of the
lattice and in the bit-size of the entries. Thus the total time complexity of our
algorithm is polynomial in logN but exponential in n1 + n2.

Let n1 = n2 = 1, after some calculations, we can get γm + γl > 0.25. It
means that we can factorize N given γmlN MSBs and γllN LSBs of a prime
p if γm + γl > 0.25. If we assume γl = 0, then γm > 0.25, that is exactly
Coppersmith’s result on the problem of factoring with high bits known. Note
that our result can be regard as an extension of Coppersmith’s result.

This seems a perfect solution to the problem we posed at the beginning: Check
whether or not the bit-size of unknown blocks satisfies the above conditions, if so,
applies the above lattice method to recover the unknowns. However, in practice
it not always works because of the failure of Assumption 1. Therefore, a natural
problem is asked how we can repair this flaw.
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4.2 A Combined Algorithm

In this section we present a combined algorithm to fix it. The main idea behind is
as follows: Apply the lattice method to the original polynomial, though we may
not recover all the unknown variables once, we still can get a part of them, then
we reconstruct a new polynomial with the variables we recovered, and repeat
the process until the lattice method fails. Now we give the detail.

Step 1. In this routine, we try to recover the MSBs and LSBs of p, q as much as
possible. First check whether or not it satisfies the conditions of 4, if so, apply
it. Secondly try to recover LSBs and MSBs of p, q using Lemma 3.

Step 2. Construct the polynomial with the known blocks of p, q, and apply the
lattice method to this attack scenario.

Step 3. Check whether or not the algorithm of Step 2 recovers all the unknown
variables of the polynomial, if so, terminate and return p, q; if not, test whether
or not the algorithm recovers a part of variables, if that happens, go back Step
1 with the information of bits we have recovered, but if not, terminate and
return fail.

This combined algorithm is a complement for the general algorithm of Section 4,
it can not fully resolve the problem of the failure of Assumption 1, but it works
in practice (see the discussions of Section 3).

5 Conclusion

In this paper we propose a lattice-based approach to factorize N with partial
known bits of factors. Unlike previous works, we focus on the setting of the known
bits from both primes. We give the detailed analysis for this extend setting, and
provide the numerical experiments to support our theoretical bounds.
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A Counting s, s1, s2, · · · , sn1, s
∗
1, s

∗
2, · · · , s∗n2

Note that s is the number of solutions of 0 ≤ i1 + i2 + · · · + in1 ≤ m − 1,
0 ≤ j1 + j2 + · · ·+ jn2 ≤ m − 1. Thus

s =

⎛⎝m−1∑
i1=0

m−1−i1∑
i2=0

· · ·
m−1−i1−···−in1−1∑

in1=0

1

⎞⎠⎛⎝m−1∑
j1=0

m−1−j1∑
j2=0

· · ·
m−1−j1−···−jn2−1∑

jn2=0

1

⎞⎠
=

(
m−1∑
t=0

(
t+ n1 − 1

t

))(
m−1∑
t=0

(
t + n2 − 1

t

))

=

(
m+ n1 − 1

m − 1

)(
m+ n2 − 1

m − 1

)
Next we consider s1, we have

s =
m∑

i1=0

m−i1∑

i2=0

· · ·
m−i1−···−in1−1∑

in1=0

m∑

j1=0

m−j1∑

j2=0

· · ·
m−j1−···−jn2−1∑

jn2=0

i1
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−
m−1∑

i1=0

m−1−i1∑

i2=0

· · ·
m−1−i1−···−in1−1∑

in1=0

m−1∑

j1=0

m−1−j1∑

j2=0

· · ·
m−1−j1−···−jn2−1∑

jn2=0

i1

=
(m+ n2

m

) m∑

i1=0

i1
(m− i1 + n1 − 1

m− i1

)
−

(m+ n2 − 1

m− 1

)m−1∑

i1=0

i1
(m− i1 + n1 − 2

m− i1 − 1

)

=
(m+ n2

m

) m∑

T=0

(m− T )
(T + n1 − 1

T

)
−

(m+ n2 − 1

m− 1

)m−1∑

T=0

(m − 1− T )
(T + n1 − 1

T

)

=
(m+ n2

m

)(m+ n1

m− 1

)
−

(m+ n2 − 1

m− 1

)(m+ n1 − 1

m− 2

)

=
(m+ n2 − 1

m

)(m+ n1 − 1

m− 2

)
+

(m+ n2

m

)(m+ n1 − 1

m − 1

)

According to the structure of f , we have s1 = · · · = sn1 .
Because of the symmetric characteristic of x and y in f , we have

s∗1 = · · · = s∗n2
=

(m+ n1 − 1

m

)(m+ n2 − 1

m− 2

)
+

(m+ n1

m

)(m+ n2 − 1

m − 1

)



Performance Prediction Model

for Block Ciphers on GPU Architectures

Naoki Nishikawa, Keisuke Iwai,
Hidema Tanaka, and Takakazu Kurokawa

Department of Computer Science and Engineering
National Defense Academy of Japan

1-10-20 Hashirimizu, Yokosuka-shi, Kanagawa-ken, 239-8686, Japan
{ed11001,iwai,hidema,kuro}@nda.ac.jp

Abstract. This paper presents a proposal of a performance prediction
model of block ciphers on GPU architectures. The model comprises three
phases: micro-benchmarks, analyzing code, and performance equations.
Micro-benchmarks are developed in OpenCL considering scalability for
GPU architectures of all kinds. Performance equations are developed,
extracting some features of GPU architectures. Overall latencies of AES,
Camellia, and SC2000, which covers all types of block ciphers, are inside
the range of estimated latencies from the model. Moreover, assuming that
out-of-order scheduling by Nvidia GPU works well, the model predicted
overall encryption latencies respectively with 2.0 % and 8.8 % error for
the best case on Nvidia Geforce GTX 580 and GTX 280. This model
supports algebraic and bitslice implementation, although evaluation of
the model is conducted in this paper only on table-based implementation.

Keywords: Performance prediction, GPU, OpenCL, AES, Camellia,
SC2000, Micro-benchmark.

1 Introduction

High-speed encryption processing on Graphics Processing Units (GPUs) has
been noticed for encryption of a large amount of data because it is benefited
from software flexibility and hardware-based computing performance. Block ci-
pher primitives in practical use are very numerous, as seen in recommended
cipher lists of CRYPTREC[1] and NESSIE[2]. Several vendors (Nvidia, AMD,
Intel, and ARM) provide individual GPU architectures. Consequently, the num-
ber of combinations of block ciphers and GPU architectures has doubled, forcing
programmers to undertake implementation through trial-and-error. However, if
a model exists that estimates prospective performance of the implementation
on GPUs, programmers can predict the performance improvement rate a pri-
ori. In addition, such a model contributes to the design of next-generation of
cryptographic algorithms appropriate for GPU architectures.

Therefore, in the paper, we propose a performance prediction model of block
ciphers on GPU architectures. The most important aspect of the model is its
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design based not on vendor-dependent language or tools such as CUDA[3] or
Nvidia Visual Profiler[4], but on micro-benchmarks in OpenCL[5], a common
framework for parallel processing.

The remainder of this paper is organized as follows. Section 2 reviews related
works about performance estimation to highlight important points of our model.
In Section 3, we overview OpenCL-compliant GPU architectures and extract the
fundamental features. In Section 4, from achievements of previous works about
block cipher implementations on a GPU, we summarize the implementation
methodology. In Section 5, on the basis on the above findings, we design a
performance prediction model for block ciphers on a GPU. The points of the
design are as follows: In a workflow of the model, we first obtain these latencies
from micro-benchmarks and do their numbers from GPU code. Next we calculate
encryption latency for one batch using their products and sum. Finally we obtain
the range of estimated overall latencies using prediction equations designed by
extracting some features of GPU architectures. Section 6 presents the evaluation
of our model. Measured values of three block ciphers (AES[6], Camellia[7], and
SC2000[8]) on Nvidia Geforce GTX 580 and GTX 280 are each generally within
the range of estimated encryption latencies. In particular, assuming that out-
of-order scheduling works well on Nvidia GPUs, the model predicted overall
latencies of the three block ciphers with 2.0–15.7 % error on GTX 580 and
with 8.0–22.0 % error on GTX 280. This paper ends in Section 7, with some
concluding remarks and future works.

2 Related Works

2.1 Performance Estimation of Block Cipher Primitives

Matsui used an approach similar to ours to calculate the latency ofAESandCamel-
lia on two x86 64 processors[9]. He obtained overall encryption latencies frommul-
tiplying latencies of S-Box and instructions by their numbers respectively and then
summing the products. The instruction latencies were each measured using code
written in x86 64 assembly language.However,Matsui’s technique presents a tough
challenge forGPUprogrammers because native-assembly languages such asNvidia
SASS[10] are certainly published in someGPU architectures but the languages are
never made uniform even in single vendor circumstances[11]. Therefore our model
is designed based on simple micro-benchmarks.

2.2 Performance Prediction of GPU Applications

No research has been reported of performance prediction of block ciphers on
GPUs or of performance modeling with OpenCL framework for other applica-
tions. However, some investigations of other GPGPU applications with CUDA
language have been reported.

Kotohapalli et al. proposed simple and beneficial performance predictionmodel
for the Nvidia GPU and evaluated it onNvidia GeforceGTX280 using three appli-
cations with different characteristics (matrix multiplication, list ranking, and his-
togram generation)[12]. In the model, latency for one thread was calculated first.
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Then the overall latency was computed by multiplying the result by the number
of all threads and dividing by the number of processor cores and pipeline stages.
Moreover, to discuss a latency hiding effect by scheduling multiple warps, they de-
fined the calculationmethod for one thread’s latency in two ways: the MAXmodel
(in which the latency of all computation instructions is hidden under that of mem-
ory access instructions) and the SUMmodel (in which it never does). The authors
assume that the measured value is sandwiched between values estimated from the
two models. Using their prediction model, they predicted histogram generation
with 6,400 million element size at 18 % relative error, which includes many shared
memory accesses. For calculation of one-thread latency, they used literature data
published in the Nvidia programming guide[3] as instruction latencies. However,
in accordance with the result of our micro-benchmarks, the latency fluctuates at
various batch sizes; the literature data at what batches in the programming guide
are unclear. Moreover, instruction latencies in some GPU architectures are not
even published. Therefore, their technique is flawed for calculation of the latency
of GPU applications.

Guo et al. proposed performance modeling for 32 cases of sparse matrix–
vector multiplication (SpMV), which is the combination of eight sparse matrices
and four SpMV formats (e.g. Compressed Sparse Row) with the use of micro-
benchmark matrices partitioned from the target matrix[13]. Using the model,
they predicted their execution times at less than 10 % error on an Nvidia Tesla
C2050, but they neglect features of GPU architectures (e.g. scheduling between
multiple warps).

Hong et al. proposed an analytical model for Nvidia GPU architectures ab-
stracting scheduling between multiple warps, and geometric means of estimated
CPI error for six different benchmarks (Sepia, Linear, SVM, Mat.(naive),
Mat.(tiled), and Blackscholes) was 13.3 % on four Nvidia GPUs (8800GTX,
FX5600, 8800GT, and GTX 280)[14]. However, they used Nvidia PTX, a vendor-
dependent and virtual assembly language, of which the scope is limited to Nvidia
GPUs. In addition, 27 parameters are used in the model, which is complicated
for programmers. Moreover, the model does not consider cache memory built
into memory hierarchy of GPU. However, our model absorbs such cache effects
through the use of micro-benchmarks.

Zhang et al. developed a performance model for Nvidia Geforce 200-series
GPUs based on micro-benchmarks, of which the error was 5–15 % for three
algorithms (dense matrix multiply, tridiagonal solver, and sparse matrix vec-
tor multiply) on Nvidia Geforce GTX 285[15]. Unlike Hong’s model, they used
Decuda[16], a specialized disassembler for Nvidia GPUs, to obtain real code ex-
ecuted on actual GPUs. Moreover, to obtain input parameters for their model,
they used an existing Nvidia GPU simulator Barra[17]. Unfortunately, these
tools were all dependent on a particular vendor.

Baghsorkji et al. also proposed performance modeling on GPU architectures
and evaluated it on Nvidia Geforce 8800[18]. This model has similar charac-
teristics as ours: Scalability was considered so as not to be tightly coupled to
any specific GPU architectures or high-level programming interface. Moreover,
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it captured performance effect of major GPU microarchitecture features and
then showed the breakdown of overall encryption latency. Based on graphs pre-
sented in the paper, the errors between estimated and measured values were
approximately 13–48 %, 3–25 %, 1–14 %, and 4–14 % for dense matrix multipli-
cation, FFT, prefix sum scan, and sparse matrix-vector multiplication, respec-
tively. However, their model used an approach based on Program Dependency
Graph (PDG), which targets all GPGPU applications but is complicated for
beginner programmers. In contrast, we offer a simple performance prediction
model of block ciphers primitives, by focusing on a characteristic of implemen-
tation of the applications. Moreover, their model also does not support cache
memory effect, unlike our model.

3 GPU Architecture and the Programming Model

Some leading processor vendors have announced their own GPUs supporting
OpenCL technology. OpenCL-compliant GPU architectures are comprised of hi-
erarchical structure of processor cores, of which the chip has N × Compute Units
(CUs) and for which each CU includes several Processor Elements (PEs), regis-
ters, an instruction unit, and a local memory. High-capacity but low-speed global
memory is outside of the chip and is connected to CUs via an interconnection
network. Moreover, the programming model in OpenCL is large-scale thread-
level parallel processing corresponding to the architecture. A GPU scheduler
distributes thread blocks to CUs evenly and each thread of a thread block is
executed on a PE. The thread block and thread are designated respectively as
work-group and work-item in OpenCL.

These are the requirements for OpenCL-ready GPU architectures, but the
design details depend strongly on the GPU vendor. Most successful GPU ar-
chitectures of the present day come from Nvidia Corp., whose design is natural
considering the OpenCL requirement with parallel processing for use of quite a
few work-items. The fundamental points are the following. (i) Instruction issue
for batch grouping of a specific number of work-items on a single instruction to
lessen the area of instruction units and increase the percentage of processor cores
in a GPU chip (ii) Deeply pipelined PEs to raise the efficiency to execute instruc-
tions of work-items in lock-step (iii) High-bandwidth memory system to receive
memory requests concurrently from several PEs (iv) Out-of-order scheduling
to hide the latency of arithmetic and logical instructions by a batch when PE
pipelines stall attributable to memory access instructions by another batch. For
that reason, we decided to incorporate the four points above into the design of
our performance prediction model.

The point (iii) is realized, for example, as the mechanism by which local
memory is split into several banks to receive memory requests from several PEs
in parallel. However, if indexes of work-items belong to the same bank, then
bank conflict occurs and the effective bandwidth decreases. In the case of Nvidia
GPUs, because the indexes are exactly the same address, broadcast access occurs
as conflict-free[19]. In addition, some GPU architectures such as Nvidia Fermi
have cache memory inserted to the data path between PE and global memory[20].
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Incidentally AMDCorp., another leadingGPUvendor, has up to now promoted
VLIW-based GPU architecture different from Nvidia’s, but has now changed its
development guidelines to a similar architecture to that of Nvidia’s[21]. In fact,
the above four points are also shared with AMD GPUs[22]. Therefore, our model
is available for other GPUs such as AMD Radeon HD Graphics, although we eval-
uated the model only on Nvidia GPUs in this study.

4 Implementation of Block Ciphers on a GPU

4.1 Targeted Block Cipher Primitives

To test our model, we targeted three 128-bit block cipher primitives (AES[6],
Camellia[7], and SC2000[8]), which cover all types of structure (see Table 1).
Also, we deal only with 128-bit key size.

Electronic Code Book (ECB), CountTeR (CTR), or Xor-encrypt-xor Tweak-
able code book mode with ciphertext Stealing (XTS)[23] are known as paralleliz-
able modes in block cipher. ECB use a single key applied to all plaintexts, and
CTR uses a key stream generated from a secret key and combined to plaintexts.
In the CTR mode, the generation of the key stream is conducted in the same
manner as ECB. In the XTS mode, plaintexts are encrypted using two ECB
modes. Therefore, we deal only ECB mode in this study.

4.2 Outline of the Implementation

For implementation of block ciphers on a GPU, we take advantage of achieve-
ments of previous works[24][25]. Almost all the modern block cipher primitives
on a GPU are composed mainly of arithmetic and logical instructions and ac-
cesses to substitution tables and a key deployed in a memory with low latency.
The implementation has some phases, as presented in Fig. 1.

Kernel Invocation Phase. The first phase is invoking a kernel. For encryption
on a GPU, we only invoke single kernel because all plaintext blocks are encrypted
in a kernel.

Load Data Phase. In spite of frequently accessed data, tables and key are
located in global memory at the beginning of the encryption kernel. Therefore,
before the encryption primitive phase starts, to lessen the access latency, we
deploy them to local memory in CUs with parallel processing by work-items.
However, synchronization between work-items is necessary before moving on to
the next phase.

Encryption Primitive Phase. At the beginning of this phase, plaintexts are
also located in global memory. Then work-items load a 128-bit plaintext to
individual registers before encrypting the plaintext. During encryption, work-
items process 128-bit plaintext blocks independently in parallel and therefore
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Encryption Kernel

Kernel Invocation

Load Data

Copy tables and a key from global memory to local memory

Encryption Primitive  

Load plaintexts from global memory to registers

Store ciphertexts from registers to global memory

Encrypt plaintexts using each encryption primitive

Add stride value to plaintext pointer

Receive plaintexts from host

Send back ciphertexts to host

Fig. 1. Abstraction of implementation of block cipher on a GPU

keep hold on the plaintext data in registers. After encryption, each work-item
stores a 128-bit ciphertext to global memory. Additionally work-items access
tables in a random manner, although they access the same address of a key
in a regular manner because the key is not changed during the process. This
“regular” means a somewhat tricky pattern in which all work-items load a value
from the same address because the encryption mode is ECB. When encrypting a
large amount of data, after encryption of a plaintext, each work-item adds stride
value to plaintext pointers and then continues to encrypt other one. Although
extra registers for loop counter is necessary, once tables and key are deployed to
local memory, the work-items can use the same tables and key directly.

5 Performance Modeling for Implementation of Block
Ciphers on a GPU

5.1 Workflow

The workflow of our prediction model is presented in Fig. 2. In the model, four
per-batch latencies are obtained from micro-benchmarks, whereas their numbers
are collected from encryption primitive part of kernel program. The obtained
parameters become inputs for a prediction equation (see (3)).

5.2 Performance Modeling

For expedience, we first discuss performance modeling. Letting Lker, Lld, and
Lenc respectively denote latency of kernel invocation, load data, and encryption
primitive phases as shown in Fig. 1, latency of overall encryption kernel on a
GPU, Lenc total, is represented simply as

Lenc total = Lker + Lld + Lenc. (1)
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Block cipher 

code in OpenCL

Analyzing 

code

GPU
Micro-

benchmarks

Performance 

equations

Per-batch latency of random access 

of local memory (Llocal_rand_bt)

Per-batch latency 

of global memory (Lglb_bt)

Per-batch latency of arithmetic & 

logical instructions (Linst_bt)

Per-batch latency of regular access 

of local memory (Llocal_rgl_bt) 

The quantities of accesses to 

plaintext/ciphertext, table, key, 

and arithmetic & logical instruction 

(Npt/Nct, Ntbl, Nkey, and Ninst)

A range of 

estimated latencies

Fig. 2. Workflow of our prediction model

Latency of last subphase of encryption primitive phase (i.e., “Add stride value
to plaintext pointer” in Fig. 1) is disregarded because it is lightweight compared
to other main phases.

Next, we describe a calculation procedure of Lenc. In the model we refer to
latency for one batch in one loop of encryption primitive phase as Lenc bt, the
number of batches and work-groups specified by a programmer respectively as
Nbatch and Nwg, and the number of CUs in a GPU and iterations of encryption
primitive respectively as Ncu and Niter . Then similar processing is executed for
the number of work-groups assigned to a CU. Because identical processing is
executed on all CUs in parallel, Lenc is represented as shown below.

Lenc = Lenc bt × Niter × Nbatch × Nwg

Ncu
(2)

Therein,
Nwg

Ncu
stands for the number of work-groups evenly distributed on CUs

by a GPU scheduler. In Nvidia GPUs, the number of work-items in a batch are
32 and Nbatch obtained dividing the number of work-items per work-group by
32. Point (i) described in Section 3 is incorporated in (2).

Finally, we describe the calculation procedure of Lenc bt. In our model, la-
tency for one batch of access to plaintext/ciphertext, table access, key access,
and arithmetic and logical instructions are respectively designated as Lglb bt,
Llocal rand bt, Llocal rgl bt, and Linst bt and their numbers in each encryption
primitive as Npt/Nct, Ntbl, Nkey , and Ninst. As presented in Section 4.2, Lglb bt,
Llocal rand bt, and Llocal rgl bt are obtained respectively as latency for one batch
of global memory, of local memory in random, and of local memory in regular.
Npt/Nct are the numbers of loading/storing plaintext/ciphertext from/to global
memory, as presented in Section 4.2. Consequently, Lenc bt is represented simply
as products of a latency and a number for respective component and their sum.
Out-of-order scheduling of point (iv) in Section 3 is incorporated not into (2)
but into (3). Out-of-order scheduling has a strong impact on overall latency. We
draw on Kothapalli’s work[12] described in Section 2 for our model. Our model
is based on latency per batch, although his model does on one thread latency
because per-batch latencies of the input components fluctuate greatly depending
on the number of working batches (see Section 6.2). According to Kothapalli’s
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work, Lenc bt is calculated in the following two submodels: scheduling-aware sub-
model (SA submodel), in which latency of all arithmetic and logical instructions
are assumed to be hidden completely under that of memory access instructions;
and scheduling-ignored submodel (SI submodel), in which they are never hidden.
Consequently Lenc bt is represented as

Lenc bt =

{
Lglb bt×(Npt+Nct)+Llocal rand bt×Ntbl+Llocal rgl bt×Nkey (SA submodel)

Lglb bt×(Npt+Nct)+Llocal rand bt×Ntbl+Llocal rgl bt×Nkey+Linst bt×Ninst (SI submodel).

(3)
Therefore, overall encryption latency is expected to be between two Lenc total,
as estimated from both submodels.

5.3 Analyzing Code

The quantities of input components for (3) (i.e., Npt, Nct, Ntbl, Nkey , and Ninst)
are derived from GPU code of each block cipher primitive. For getting Ninst,
a methodology of counting up the quantities of operators is used. Additionally,
in a 128-bit block cipher, the number of loading/storing plaintext/ciphertext
from/to global memory is 4/4 because a unit of loading or storing by a work-
item is 32-bit. A summary of these parameters is presented in Table 1.

In AES, the structure is an SPN network. The algorithm of 128-bit key defines
10-round processes. In AES, each round process is a transformation including
16 lookup tables (T-Boxes) and an XOR instruction with a 32-bit key.

In Camellia, the structure is a Feistel network. The algorithm of the 128-
bit key defines 18-round processes. Each round includes an F-function which
includes 8 table substitutions, 2 XOR instructions with two 32-bit keys, and
several logical operations. Furthermore, FL and FL−1-functions consisting of
logical operations are inserted.

In SC2000, the structure is a hybrid of SPN and Feistel. The algorithm of 128-
bit key defines seven-round processes. In each round, a plaintext is encrypted
through five functions in sequence (I, B, I, R, and R). I-function is XORs with
four 32-bit keys and B-function consists of logical operations. The R-function
includes several table substitutions and logical operations. The inputs of these
tables are separation of 32-bit and can be selected from multiple options such as
(6-bit, 10-bit, 10-bit, 6-bit) or (11-bit, 10-bit, 11-bit) depending on the computer
memory capacity. In the former, two tables with 6-bit input and two tables with
10-bit are used for substitution. In the latter, two tables with 11-bit input and
one table with 10-bit input are done.

5.4 Micro-benchmark

As shown in Fig. 4, we developed micro-benchmarks to obtain latencies of input
components of (3). Unfortunately in OpenCL, no built-in function to measure
thread execution cycles inside of a kernel such as clock() in the CUDA plat-
form is available. Therefore we first run an empty kernel eliminating a sequence
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1 // The "l_Te0", "l_Te1", "l_Te2", and "l_Te3" are T-Boxes in local memory.

2 // The "l_key" is the round key on local memory. The "in" is plaintext.

3 // Start AES encryption

4 *(u32*)s0=GETU32(in+ tid *16)^l_key [0]; *(u32*)s1=GETU32(in+ 4+tid *16)^l_key [1];

5 *(u32*)s2=GETU32(in+ 8+tid *16)^l_key [2]; *(u32*)s3=GETU32(in+12+ tid *16)^l_key [3];

6 // Round 1

7 t[0]= l_Te0[s0 [0]]^ l_Te0[s1 [0]]^ l_Te0[s2[0]]^ l_Te3[s3 [0]]^ l_key [4];

8 t[1]= l_Te0[s1 [1]]^ l_Te0[s2 [1]]^ l_Te1[s3[1]]^ l_Te0[s0 [1]]^ l_key [5];

9 t[2]= l_Te0[s2 [2]]^ l_Te0[s3 [2]]^ l_Te2[s0[2]]^ l_Te1[s1 [2]]^ l_key [6];

10 t[3]= l_Te0[s3 [3]]^ l_Te0[s0 [3]]^ l_Te3[s1[3]]^ l_Te2[s2[3]]^ l_key [7];

Fig. 3. Code of implementation of AES on GPU (snippet)

Table 1. Summary of parameters of block cipher primitive. In SC2000 left side sep-
arated by a comma for (11-bit, 10-bit, 11-bit) option and right side for (6-bit, 10-bit,
10-bit, 6-bit).

Structure # tables # keys # arith. and logical instructions # loading plaintexts # storing ciphertexts
(Ntbl) (Nkey) (Ninst) (Npt) (Nct)

AES SPN 160 44 436 4 4

Camellia Feistel 144 48 642 4 4

SC2000 Hybrid 72, 96 56, 56 506, 590 4 4

of instructions as well as the original micro-benchmark kernel, measuring both
the elapsed times using clGetEventProfilingInfo API, thereby obtaining the
difference between the two values as instruction latency. Micro-benchmarks com-
prised of the sequence of instructions are executed twice, throwing away the ini-
tial iteration to avoid a cold instruction cache miss. Then we obtained elapsed
cycles by dividing the elapsed time by the reciprocal of the GPU core clock
frequency.

First, we discuss a micro-benchmark of arithmetic and logical instructions. A
micro-benchmark for Linst bt is designed to run a kernel of a sequence of their
dependent arithmetic and logical instructions in an unrolled loop. Instruction
latency is adopted as the average value. The number of work-groups is configured
to one because the measurement is wrapped up in a single CU.

Next we discuss micro-benchmarks of latency of memory access. Micro-
benchmarks of Lglb bt, Llocal rand bt, and Llocal rgl bt are all set to run a sequence
of dependent reads from array in global or local memories. The access patterns
of work-items to the array are controlled by a given initial value to work-items as
well as arrays with precomputed data. Like Linst bt, memory access latencies are
adopted as the average value. For Llocal rand bt, note that the choice of random
values in an array is critical for accuracy in the measurement. More specifically,
if generated by imperfect random number function such as rand() in standard
C library, then random values might be duplicated; the index of multiple work-
items might be matched during several iterations. Then the obtained latency is
no longer for purely random access. Therefore, for random values, we take ad-
vantage of S-Box out of AES, which is designed from 0–255 values over GF (28)
and which are random but never duplicated. However, considering the case of a
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number of work-item that exceeds the number of the S-Box array, a remainder
divided work-item ID by 256 is set to the initial value of the work-item, as shown
in line 15 of Fig. 4. For Llocal rgl bt, we only replace j=lid%256 to j=0 in the line
to realize the regular access pattern described in Section 4.2. For Llocal rand bt

and Llocal rgl bt, the number of work-groups is set as one for the same reason as
Linst bt.

As described briefly in Section 4.2 and Section 5.3, the access pattern of global
memory for loading/storing 128-bit plaintext/ciphertext by work-items is 32-bit
(1-word) access four consecutive times with 128-bit stride. Lglb bt is the latency
for one batch. Therefore, to measure Lglb bt, specific initial variables are prepared
for work-items and value sorted in ascending order. They are set to the array as
the 23rd line of Fig. 4. Moreover unlike Llocal rand bt and Llocal rgl bt, the number
of work-groups in the micro-benchmark is configured as the number of CUs in a
GPU because global memory is connected to all CUs and because Lglb bt should
be measured in case memory requests from all CUs arise concurrently.

1 // Kernel for instructions (XOR)

2 __kernel void inst_latency(__global uint out , uint p1, uint p2 , int its){

3 uint lid=get_local_id (0);

4 unsigned int a=p1 , b=p2;

5 for(int i=0; i<its; i++) repeat256(a^=b; b^=a;)

6 out[lid]=a+b;

7 }

8 // Kernel for local memory latency (Random)

9 // "aes_sbox" is an array with S-Box of AES.

10 __kernel void local_latency(__global uint aes_s_box , __global uint out , int its){

11 uint lid=get_local_id (0);

12 __local l_data [256]; // l_data are an array in local memory.

13 if(lid ==0){for(i=0; i <256; i++) l_array[i]= aes_s_box[i];}

14 barrier(CLK_LOCAL_MEM_FENCE);

15 uint j=lid %256; // If j=0, the access pattern becomes regular.

16 for(int i=0; i<its; i++) repeat256(j=l_array[j];)

17 out[lid]=j;

18 }

19 // Kernel for global memory latency

20 // "data" is an array with precomputed data in global memory.

21 __kernel void global_latency(__global uint data , __global uint out , int its){

22 uint gid=get_global_id (0);

23 uint j=4*gid , k=4*gid+1, l=4*gid+2, m=4*gid+3; // Specialized in 128-bit encryption

24 for(int i=0; i<its; i++) repeat256(j=data[j]; k=data[k]; l=data[l]; m=data[m];)

25 out[gid]=j+k+l+m;

26 }

Fig. 4. Micro-benchmark for respective instructions. In micro-benchmark for memory
access, the access patterns by multiple work-items are controlled by the initial value of
work-items and array data for the access.

6 Evaluation

6.1 Evaluation Environment

For the evaluation of our model, we used Nvidia Geforce GTX 580 with Fermi
architecture of recent generation and Nvidia Geforce GTX 280 with GT200 ar-
chitecture of one generation earlier. The quantities of CUs of GTX 580 and
GTX 280 are, respectively, 16 and 30; the quantities of PEs in a CU are, respec-
tively, 32 and 8. Local memory capacities in a CU on GTX 580 and GTX 280



Performance Prediction Model for Block Ciphers 415

are, respectively, 64 KB and 16 KB. The maximum available number of work-
item batches per work-group differs depending on their architectures as most 32
and 16 batches on GTX 580 and GTX 280, respectively. The quantities of split
banks of local memory in a CU are, respectively, 32 and 16 on GTX 580 and
GTX 280; local memory bandwidth on GTX 580 is wider than that on GTX
280. In addition, global memory bandwidths are, respectively, 193 GB/s and
142 GB/s on GTX 580 and GTX 280. The two GPUs are equipped alternatively
with a machine for evaluation which has an Intel Core i7-2600K 2.66 GHz CPU
and CentOS 6.0 operation system. Kernel programs are built by OpenCL driver
bundled with Nvidia CUDA toolkit ver. 4.2 on both GPUs.

6.2 Acquisition of Component Latency of GPUs

Arithmetic and Logical Instructions (Linst bt). First, as an example, this
report describes measurement results of latency and throughput of XOR at var-
ious batch sizes, as presented in Fig. 5. They are the data justifying our micro-
benchmark, although parameters used for our model are latency per batch.
Throughput increases linearly when the PE pipeline is not full, but once the
pipeline is full, throughput saturates at about 31.1 ops/cycle for GTX 580 and
about 7.5 ops/cycle for GTX 280, of which the values roughly coincide with the
number of PEs in a CU. This fact indicates that XOR instructions of batches of
work-items are processed ideally in parallel through PE pipelines. Incidentally in
GTX 580, the latencies at the number of 2N-1 and 2N (N: natural number) are
almost identical values, as derived from scheduling by Fermi architecture that
instructions are issued to two batches in parallel[20]. Next, we display measure-
ment results of XOR latency per batch in Fig. 6, which is divided latency at
various batch sizes by their quantities of batches. When the PE pipeline is full,
the XOR latencies per batch each become flat.

With the same micro-benchmark as that described above, results of micro-
benchmarks for several arithmetic and logical instructions often used in block
cipher primitives are presented in Table 2. However, MUL and MAD instructions
are used for comparison to other instructions. Throughput is measured as the
maximum available number of batches in a CU and latency for use of a single
batch. In contrast, latency per batch is the value of latency at maximum num-
ber of batches divided by the batch number. In accordance with the result, we
know that arithmetic and logical instructions in block cipher primitives are pro-
cessed efficiently in PE pipeline for each GPU. In many instructions, our results
match the values measured using the CUDA-based micro-benchmark previously
reported in [26] and [27]. In this paper, for simplicity, 1.0 cycle/batch and 4.3
cycle/batch are adopted as Linst bt of GTX 580 and GTX 280, respectively.

Memory Access Instructions (Llocal rand bt, Llocal rgl bt, and Lglb bt).
First, latency and latency per batch of random and regular access to local mem-
ory at various batch sizes are presented, respectively, in Fig. 7 and Fig. 8. The
latencies per batch on GTX 580 and GTX 280 become flat roughly at 18 batches
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Table 2. List of throughputs, latencies, latencies per batch of arithmetic and logical
instructions on GPUs. Digits in parentheses are the numbers of batches when latency
per batch becomes flat.

GPU Geforce GTX 580 Geforce GTX 280

Throughput Latency Latency per batch Throughput Latency Latency per batch
(ops/cycle) (cycles) (cycles/batch) (ops/cycle) (cycle) (cycles/batch)

ADD, SUB 31.1 18.3 1.0 (18) 7.5 24.9 4.3 ( 8)
Arithmetic MUL 15.9 18.3 2.0 ( 9) 1.7 111.1 18.5 ( 9)

MAD 15.9 20.3 2.0 (10) 1.4 138.7 22.6 (10)

Logical XOR, AND, OR 31.1 18.3 1.0 (18) 7.5 27.9 4.3 ( 8)
SHL, SHR 15.6 37.0 2.0 (18) 3.9 53.3 8.2 ( 9)
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Fig. 5. Throughput and latency of XOR instructions
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Fig. 6. Latency per batch of XOR instructions

and 8 batches respectively, which indicates that local memory bandwidth reaches
the maximum values at the number of batches above, irrespective of the access
patterns. Their numbers are almost identical to the number of batches that ex-
ecute arithmetic and logical instructions used in block ciphers at maximum effi-
ciency. With regard to block cipher encryption primitives, the CUs in an Nvidia
GPU are apparently designed to endanger maximum power at a specific number
of batches (GTX 580: 18 batches, GTX 280: 8 batches). Moreover the latencies
with both the access patterns in GTX 580 increase in a staircase pattern, which
is derived from a two-batch instruction issue in parallel in common with the
measurement of Linst bt. More interestingly, random access latency on GTX 580
at 2N − 1 batches is worse than that at 2N . This reason is not describable from
Nvidia’s documents or from findings of previous works in Section 2. However,
we conjecture that the Fermi architecture is designed to optimize for scheduling
at 2N batches and extra procedures are inserted in the case of random access to
local memory at 2N − 1 batches. Next, latency and latency per batch of global
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memory access at various batch sizes are presented in Fig. 9. The latency per
batch on GTX 580 and GTX 280 become flat respectively once they become
roughly at 8 batches and 2 batches, which are fewer batches than those of lo-
cal memory access. The reason is that global memory is connected to all CUs
via interconnection network. Therefore, memory requests from CUs concentrate
and reached the maximum bandwidth with fewer batches, unlike local memory.
Consequently, the latencies per batch for Llocal rand bt, Llocal rgl bt, and Lgbl bt

are each measured as the maximum available number of bathces in a CU, like
Linst.

A list of per-batch latencies of input components for (3) is presented in Table 3.
The difference between local memory latency on GTX 580 and GTX 280 results
from effective bandwidth caused by the number of banks. Moreover, the effective
bandwidth for each GPU differs depending on access patterns, as described in
Section 3. Additionally, latency per batch of global memory access in GTX 580
is considerably small compared to that in GTX 280, which results from cache
memory with 128-bit line width inserted between PEs and global memory[20].
Micro-benchmarks for global memory make the best use of this cache line size. In
this way, our prediction model based on micro-benchmarks offers programmers
a single and easy-to-use methodology with or without cache memory.

Kernel Invocation (Lker) and Load Data (Lld). Finally, let us present a
measurement result of latency of both Kernel Invocation and Load Data phases
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Fig. 7. Random access latency to local memory
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Fig. 8. Regular access latency to local memory
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Fig. 9. Access latency to global memory

Table 3. List of per-batch latencies of input components on GPUs

Geforce GTX 580 (cycles/batch) Geforce GTX 280 (cycles/batch)

Llocal rand bt 6.5 28.0

Llocal rgl bt 3.1 15.5

Lglb bt 22.6 162.4

Linst bt 1.0 4.3

in Fig. 1. For encryption of a large amount of data, Lker and Lld become much
lower than Lenc.

We ran an empty kernel for Lker and obtained 0.002× 107 and 0.0007× 107

cycles respectively on a GTX 580 and GTX 280 irrespective of the number of
batches. We each ran kernels comprised of only the deployment part of AES,
Camellia, and SC2000 and obtained for AES and Camellia respectively 0.003×
107 and 0.002 × 107 on GTX 580 and GTX 280, and for SC2000 respectively
0.004× 107 and 0.003× 107 on GTX 580 and GTX 280.

6.3 Estimation of Encryption Latencies Using Prediction Equations

As an example of a procedure of estimating the range of overall encryption
latency, we present the calculation process of AES encryption for 256 MB data
size on GTX 580. Using (3) Lenc bt is calculated in two ways based on SI and
SA submodels. The number of input components and their latencies required in
(3) are, respectively, in Table 1 and Table 3. Consequently, Lenc bt of AES on
GTX 580 is calculated as follows:

Lenc bt =

{
22.6×(4+4)+6.5×160+3.1×44=1357.2(cycles) (SA submodel)

22.6×(4+4)+6.5×160+3.1×44+1.0×436=1793.2(cycles) (SI submodel)

(4)
Next we present a procedure of Lenc using (4) assuming that a programmer
specified 64 work-groups and 1024 work-items per work-group for the encryption
kernel. In Nvidia GPUs, a batch has 32 work-items and then Nbatch = 1024/32 =
32 and Nwg = 64. Moreover, the number of CUs is 16 and then Ncu = 16. Next



Performance Prediction Model for Block Ciphers 419

we discuss Niter . Each work-item encrypts 128-bit data (16 Bytes). Therefore,
16×Nwg×(32×Nbatch) Bytes of plaintext are encrypted for one iteration shown
in Fig. 1. Therefore, Niter required for 256 MBytes encryption is calculated as
Niter = 256×1024×1024

16×Nwg×(32×Nbatch)
= 256. Consequently, using (2) Lenc based on the

SA submodel is calculated as shown below.

Lenc = 1357.2× 256× 32× 64

16
= 44472729.6 # 4.447× 107 (cycles) (5)

Lenc based on SI submodel is similarly calculated as 5.876× 107 cycles. Finally,
Lker and Lld on GTX 580 are, respectively, 0.002× 107 and 0.003× 107. Using
(1) Lenc total based on SA submodel is calculated as shown below.

Lenc total = (0.002 + 0.003 + 4.447)× 107 = 4.452× 107 (cycles) (6)

Therein, Lenc total based on SI submodel is similarly calculated as 5.881× 107.
Thereby, the range of overall estimated latency of AES encryption on GTX 580
is obtained.

Fig. 10 and Fig. 11 present a comparison of measured latency and a range
of estimated encryption latencies of three block ciphers on GTX 580 and GTX
280 using respective specific quantities of work-groups and work-items per work-
group to extract best performance for each GPU (GTX 580: 64 work-groups and
1024 work-items per work-group, GTX 280: 90 work-groups and 512 work-items
per work-group). As for SC2000, (11-bit, 10-bit, 11-bit) and (6-bit, 10-bit, 10-
bit, 6-bit) options are adopted, respectively, for implementation on GTX 580 and
GTX 280 because of local memory capacity on each GPU. A range subtracting
latency on the SI submodel from that on SA submodel represents the range of
estimated latencies. Differences between the estimated value on the SI submodel
and the measured one represent the number of cycles of arithmetic and logical
instructions hidden under latency of memory access instructions.
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Fig. 10. Comparison of measured and the range of estimated encryption latency on
Geforce GTX 580
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Fig. 11. Comparison of measured and the range of estimated encryption latency on
Geforce GTX 280

6.4 Discussions

As shown in Fig. 10 and Fig. 11, comparisons between the measured latencies
and the range of estimated encryption latencies on GTX 580 and GTX 280
each show different tendencies. In the former GPU, the measured values of three
block ciphers are each within the range of estimated latencies. In the latter
GPU, the measured values are each slightly below the estimated value based on
the SA submodel. This reason results from very different instruction sets of the
two GPUs (GTX 580: Fermi instruction set, GTX 280: GT200 instruction set),
as published in an Nvidia document[11]. Moreover, assuming that out-of-order
scheduling works well on Nvidia GPUs and the estimated values follow the SA
submodel, the model predicted overall encryption latencies of three block ciphers
with 8.8–22.0 % error on GTX 280 and particularly did those with 2.0–15.7 %
error on GTX 580. Therefore, our prediction model can predict latency of block
cipher encryption kernel on recent Nvidia GPUs with absolute accuracy.

As shown in Fig. 10 and Fig. 11, in accordance with comparison of AES and
Camellia, irrespective of GPUs, the Camellia latency estimated from the SI sub-
model is worse than that of AES, which results from the numbers of arithmetic
and logical instructions: 642 is for Camellia and 436 is for AES. That difference
is reflected in the estimated value based on the SI submodel. Surprisingly, mea-
sured latencies of Camellia become nearly the same or less than that of AES
because, in Camellia, the arithmetic and logical instructions are almost hidden
under the access to tables, key, and plaintext/ciphertext. In fact, Camellia has
144 tables compared to 160 in AES, whereas the numbers of other components
with memory access such as key are almost identical. Therefore, Camellia has
less margins for latency hiding than AES, but actually 144 table access and
the other instructions with memory access in Camellia are sufficient to hide 642
arithmetic and logical instructions which surpasses 432 arithmetic and logical
instructions of AES. The SC2000 has 72 tables for the implementation on GTX
580 and 96 tables on GTX 280; each is fewer than those of Camellia. As a result,
the latency of arithmetic and logical instructions does not be hidden as much as
Camellia. For that reason, we know that the Camellia cipher algorithm benefits
considerably from the out-of-order scheduling of Nvidia GPU architectures.
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Fig. 12. Relative error between measured overall encryption latency and estimated one
based on SA submodel

In the model, the quantities of input components are assessed directly from
GPU code as that shown in Fig. 3. The OpenCL compiler optimizes the code, but
the impact is absolutely limited only on the numbers of arithmetic and logical
instructions because fluctuation of the number of table or key accesses implies
generation of the wrong ciphertext. For a similar reason, skill of writing code
by programmers also affects only them. However, latency of a arithmetic and
logical instruction is less than that of a memory access instruction, as presented
in Table 3. Furthermore, using several batches, out-of-order scheduling allows
the latencies of arithmetic and logical instructions to be hidden. Therefore, the
decrease of the arithmetic and logical instructions caused by the compiler opti-
mization has lesser impact on overall latency. For that reason, this methodology
of counting up the quantities of input components of each GPU code is excellent
considering the simplicity of modeling.

Our model also supports algebraic and bitslicing implementation[28] for block
ciphers because their estimated latencies are calculated based on the SI sub-
model. For example, bitslicing DES implementation methodology on a GPU was
previously reported[29]. However, using a bitslicing implementation on a GPU,
programmers have to accept the fact that it does not benefit from out-of-order
scheduling effect of GPU architecture, because the implementation methodology
includes no memory access to key and tables and then arithmetic and logical in-
structions are never hidden.

7 Conclusion and Future Works

We developed a performance prediction model of block ciphers on GPU ar-
chitectures based on vendor-independent OpenCL micro-benchmarks. From the
evaluation results, we confirm that the overall encryption latencies are inside of
the range of estimated values calculated from our prediction model. Moreover,
assuming that out-of-order scheduling works well on Nvidia GPUs, the model
predicts overall encryption latencies respectively with 2.0 % and 8.8 % errors for
the best case on GTX 580 and GTX 280.

Our future work will evaluate our model on other GPUs such as AMD Radeon
HD Graphics and Intel HD Graphics.
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Abstract. Fair exchange protocol aims to allow two parties to exchange
digital items in a fair manner. It is well-known that fairness can only be
achieved with the help of a trusted third party, usually referred to as
arbitrator. A fair exchange protocol is optimistic if the arbitrator is not
involved in the normal execution of the fair exchange process. That is, its
presence is necessary only when one of the exchanging parties is dishon-
est. Traditionally, the items being exchanged are digital signatures. In
this paper, we consider the items to be threshold signatures. Specifically,
the signatures are created by a subset of legitimate signers instead of a
single signer. We define a security model for this new notion, and pro-
vide an concrete instantiation. Our instantiation can be proven secure in
the random oracle model. Our definition covers the case when the item
being exchanged is a secret key of an identity-based encryption where
the master secret key is split amongst a set of authorities.

1 Introduction

Optimistic fair exchange (OFE), first introduced by Asokan, Schunter and Waid-
ner [1], is a kind of protocols aiming to guarantee fairness for two parties ex-
changing digital items. In OFE, a trusted third party named “arbitrator” is
needed but only involved when there is a dispute between the participants. Tra-
ditionally the digital items of interest are digital signatures and the optimistic
fair exchange of digital signatures constitutes an important part of any business
transaction. Typically such a protocol comprises three message flows. First Alice
the signer initiates the exchange by sending a partial signature to the receiver,
say Bob. The partial signature serves as a commitment assuring Bob of Alice’s
full signature at the end of the protocol. After verifying the validity of Alice’s
partial signature, Bob sends its full signature to Alice in the second message
flow. Later, Alice should send her full signature back to Bob and complete the
exchange. In the case there is a network failure or Alice attempts to cheat by
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refusing to send her own full signature, Bob can ask the arbitrator to make a
resolution with Alice’s partial signature and his own full signature. In this case
the arbitrator will convert Alice’s partial signature into a full one and send it
back to Bob. Note that at the end of this exchange, either both Alice and Bob
gain the other’s full signature, or neither does. Thus the exchange is fair.

1.1 Related Work

As a useful tool in applications such as contract signing, electronic commerce
and even peer-to-peer file sharing, OFE has been extensively researched since
its introduction. There are several approaches in the construction of OFE, in-
cluding schemes based on verifiably encrypted signatures [2,6,5,16,21,19], and
sequentially two-party multisignatures [8]. It was further showed that OFE can
be constructed from OR signature [7], and conventional signatures and ring sig-
natures [12]. Some desirable properties such as setup-free [22], stand-alone [22],
abuse-free [9], signer ambiguity [11], resolution ambiguity [17] and accountabil-
ity [13] are proposed in literatures as well.

In [3] and [15], OFE employing multiple arbitrators are discussed to reduce the
trust placed on the single arbitrator. Unfortunately, the existing techniques are
either expensive or rely on synchronized clocks, which is undesirable as achieving
synchronization in a peer-to-peer setting in which the arbitrators do not even
know each other is hard.

Most of the previous works on OFE are done in the individual setting, in which
the two involving parties are individual users and they represent themselves. An
interesting scenario in OFE is that either party consists of a group of users. In
such a scenario, every single user in the group can represent its party to execute
transactions with another party. In [18], the authors employ a ring signature
such that all the group of users’ public keys are involved in the ring to ensure
that each signer can sign on behalf of the party. Later, optimistic fair exchange
of group signatures is considered in [10].

To the best of our knowledge, there is no previous work on OFE discussing
about the scenario that only a least number of users together can represent a
party. That is, for a party involving a group of n users, only at least t users of
them together can sign on behalf of the party and make exchanges with other
parties. We introduce the notion of threshold-oriented optimistic fair exchange
(TOFE), which in essence is optimistic fair exchange of threshold signatures.
This can be viewed as a natural way to reduce the trust placed on every single
user of the group.

Besides, TOFE has other practical applications. For example, consider the
case in which two parties intend to exchange a secret key of an identity-based
encryption (IBE) [4]. In an identity-based setting, the key generation centre
(KGC) is a high value target to adversaries as compromising the master key will
break the whole system. Thus the master key is typically split amongst a set of
authorities so that only when a threshold of authorities together can create a
secret key for an identity [14]. Remember that the secret key of an identity can
be viewed as a digital signature on the user’s identity from the KGC [4]. Thus,
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fair exchange of secret key of an identity-based encryption also falls within the
model of OFE. In case when the master key is split amongst a set of authorities
and two KGCs, perhaps each for a certain geographic location, would like to
exchange a secret key of a specific identity, TOFE would be useful.

The table below summarizes the categories of exchanged digital items that
have been discussed in the literatures.

Table 1. digital items that are exchanged in OFE

Schemes Digial Items Exchanged

traditional OFE individual signatures

Qu et al. [18] ring signatures

Huang et al. [10] group signatures

Our Scheme threshold signatures / secret keys of an IBE

1.2 Contribution

In this paper, we study optimistic fair exchange in a threshold-oriented setting.
Specifically, we present a formal definition for TOFE. We propose a concrete
construction and demonstrate that our construction is secure in the random
oracle model.

Organization. The rest of the paper is organized as follows. In Section 2, we
review notations and technical preliminaries. In Section 3, the syntax of TOFE
and its security definitions are presented. We present our construction and prove
the security of our construction under well-known assumptions in Section 4.
Finally, we conclude our paper in Section 5.

2 Preliminary

If n is a positive integer, we use [n] to denote the set {1, . . . , n}. If p is a prime,
we use Zp to denote the set {0, . . . , p − 1} and Z∗

p to denote the set {a|a ∈
Zp ∧ gcd(a, p) = 1}.

2.1 Bilinear Pairing

Let G, GT be two cyclic groups such that |G| = |GT | = p. We say that ê is a
bilinear map if ê : G×G → GT possesses the following properties.

– the group operation in G and the map ê are both efficiently computable.
– For all elements of g, h ∈ G, a, b ∈ Zp, it holds that

ê(ga, hb) = ê(g, h)ab

– There exists g, h ∈ G such that ê(g, h) is not the identity element of GT .
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2.2 Number-Theoretic Assumptions

We review the following well-known computational assumptions.

Definition 1 (DL Assumption). Let G = 〈g〉 be a cyclic group of prime order
p. The discrete logarithm assumption states that given a tuple (g, Z) ∈ (G,G),
it is computationally infeasible to compute the value z ∈ Zp such that Z = gz.

Definition 2 (CDH Assumption). Let G = 〈g〉 be a cyclic group of prime
order p. The computational Diffie-Hellman assumption states that given a tuple
(g, ga, gb) ∈ (G,G,G), it is computationally infeasible to compute the value gab.

2.3 Secret Sharing

We review the principle of the well-known Shamir secret sharing scheme [20]
here. Roughly speaking, a secret sharing scheme allows a user to divide a secret
into n pieces, called shares, so that any t share holders together can recover the
secret. The major idea is that it takes t points to define a polynomial, say, f(x)
of degree t − 1. One could generate f in such a way that f(0) is the secret to
be shared. Each share is then a point (i, f(i)). Now with t points, one could
recover the polynomial and thus the value f(0). On the other hand, with only
t− 1 points, nothing about f(0) would be revealed since there are exponentially
many curves that pass through those t − 1 points.

Preparation Let x be the secret to be shared. Randomly pick a polynomial f
of degree t− 1 such that f(0) = x. Each share is defined as (i, f(i)) for i = 1
to n.

Reconstruction One could make use of Lagrange interpolation to recover the
value f(0) when t points are given.
– Let I be a set such that |I| = t and that for all i ∈ I, f(i) is known.
– The Lagrange polynomial interpolation technique states that

f(x) :=
∑
i∈I

f(i)λi(x),

where λi(x), called the Lagrange basis polynomials, is defined as

λi(x) :=
∏

j∈I\{i}

x− j

i − j
.

Since we are interested in f(0) in the secret sharing scheme, we use λi

to denote the value of λi(0) and refer to it as the Lagrange coefficient.
– Thus, to recover the secret, one first computes the Lagrange coefficient

λi as

λi :=
∏

j∈I\{i}

−j

i − j
.

– Then, f(0) can be recovered as

f(0) :=
∑
i∈I

f(i)λi.
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3 Definition of TOFE

3.1 Syntax

We adapt the definitions and security models of OFE from various literatures
for our TOFE. For efficiency consideration, our definition of TOFE consists of
non-interactive algorithms only. The following is the syntax of a construction of
TOFE, which consists of seven algorithms. In addition, we adopt the common
reference string model.

– Common Reference String Generation On input a security parameter 1k,
this algorithm outputs a common reference string paramCRS which includes
the security parameter 1k. We assume paramCRS is an implicit input to all
algorithms described below.

– (pkA, skA) ← AGen() This algorithm outputs the arbitrator key pairs (pkA,
skA).

– (pkU , {skU,i}ni=1) ← UGen(n, t) This algorithm takes as input the required
number of signers n, the threshold t and output the public key of the user
pkU , together with n secret signing keys for the signers skU,i.

– PSign = (PSign(s),PSign(v),PSign(g)) This is a suite of three algorithms
which allows a subset of signers to create a partial signature.
• σ̂i ← PSign(s)(pkA,M, skU,i) On input the public key of the arbitrator
pkA, a message M and a secret signing key of signer i, this algorithm
outputs a partial signature share for signer i.

• valid/invalid ← PSign(v)(pkA, pkU ,M, σ̂i, i) On input the public key
of the arbitrator pkA and that of the user pkU , a message M , a partial
signature share σ̂i from signer i, this algorithm checks the validity of the
partial signature share created by signer i.

• σ̂ ← PSign(g)(pkA, pkU ,M, {σ̂i}i∈I , I) On input the public key of the
arbitrator pkA and that of the user pkU , a message M , t partial signature
shares {σ̂i} for i ∈ I such that I ⊂ [n] and |I| = t, this algorithm outputs
a partial signature.

– valid/invalid ← PVer(pkA, pkU ,M, σ̂) This algorithm checks the valid-
ity of a partial signature σ̂ on message M based on the public key of the
arbitrator pkA, the public key of the user pkU .

– Sign = (Sign(s), Sign(v), Sign(g)) Similar to the partial signature generation
process, the signing algorithm is also a set of three algorithms which allows
a subset of signers to create a signature.
• σi ← Sign(s)(pkA,M, skU,i) On input public key of the arbitrator pkA,
message M and secret signer key of signer i, this algorithm outputs a
signature share for signer i.

• valid/invalid ← Sign(v)(pkA, pkU ,M, σi, i) This algorithm checks the
validity of the signature share σi created by signer i based on the public
key of the arbitrator pkA, the public key of the user pkU and message
M .
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• σ ← Sign(g)(pkA, pkU ,M, {σi}i∈I , I) On input the public key of the
arbitrator pkA and that of the user pkU , a message M , t signature shares
{σi} for i ∈ I such that I ⊂ [n] and |I| = t, this algorithm outputs a
signature.

– valid/invalid ← Ver(pkA, pkU ,M, σ) This algorithm checks the validity of
a signature σ on message M based on the public key of the arbitrator pkA
and that of the user pkU .

– σ ← Res(pkA, pkU ,M, σ̂, skA) Given a valid partial signature σ̂, a message
M , public key of the user pkU , key pair of the arbitrator (pkA, skA), this
algorithm allows the arbitrator to output a signature on message M . Note
that ⊥ is returned if invalid ← PVer(pkA, pkU ,M, σ̂).

Correctness. A construction of TOFE is correct if the following conditions hold:

1. Any partial signature created by any t honest signers using PSign will be
valid under PVer.

2. Any signature created by any t honest signers using Sign will be valid under
Ver.

3. Any signature created by the arbitrator using Res based on a valid partial
signature will be valid under Ver.

Furthermore, it is required that any signature created by the arbitrator using Res
based on a valid partial signature will be indistinguishable from the signature
created by any t honest signers using Sign.

3.2 A Typical Usage of the TOFE Algorithms

Note that in OFE with three message flows between the initiator Alice and the
receiver Bob, the item to be sent by Bob is not restricted to any format. It could
be a digital item such as electronic money. For simplicity we assume the item to
be sent by Bob is a digital signature. Nonetheless, it could be a ring signature,
a group signature or a threshold signature. Below we show how Alice and Bob
can conduct an exchange based on our definition of TOFE. Note that the party
Alice in TOFE consists of a group of n signers, and an exchange is possible only
when at least t-out-of-n signers agree to participate.

Our definition of TOFE does not require the set of t signers to communicate
with each other. Below is a typical usage of our definition of TOFE algorithms.

1. Partial Signature Shares Collection Bob approaches each signer indepen-
dently and the signers agree on the items to be exchanged. The signer, say
signer i, invokes PSign(s) and sends the share of the partial signature σ̂i to
Bob. Bob uses PSign(v) to verify the share.

2. Partial Signature Generation Upon collecting t partial signature shares, Bob
invokes PSign(g) to generate a partial signature σ̂. He invokes PVer to ensure
its validity.

3. Obligation Fulfillment If the partial signature Bob obtained is valid, he fulfills
his obligations. In this example, Bob sends his digital signature to all the
signers involved.
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4. Signature Shares Collection Each signer validates that Bob has fulfilled his
obligations. In this example, each signer checks that the digital signature sent
by Bob is valid. If yes, each signer, say signer i, invokes Sign(s) and sends
the share of the signature σi to Bob, who checks its validity with Sign(v).

5. Signature Generation Upon collecting t signature shares, Bob invokes Sign(g)
to generate a signature σ. He invokes Ver to ensure its validity. If yes, the
exchange process is completed.

6. Resolution Suppose some signers refuse to send their signature shares, or that
the signature created in signature generation is invalid, Bob can approach
the arbitrator for assistance. Specifically, he approaches the arbitrator and
proves that he has fulfilled his obligation. After that, Bob submits the valid
partial signature σ̂ to the arbitrator. The arbitrator sends back the signature
σ by invoking Res and this completes the exchange.

7. Remarks In this example, Bob can send his digital signature to the arbitrator
as a proof of obligation fulfillment. Even if Bob is lying, the arbitrator can
still give this digital signature to the signers should they also complain and
thus the exchange could be completed regardless of what happens afterwards.

3.3 Security Model

Traditionally, any construction of optimistic fair exchange should be secure in
three aspects, namely, security against signers, security against verifiers and se-
curity against the arbitrator respectively. As suggested by the respective names,
they intend to cover the scenarios when the named party is dishonest. We modify
the traditional model in the threshold setting. Specifically, the verifier can col-
lude with t−1 malicious signers in our consideration of security against verifiers.

Security against Signers. This property guarantees that even when all the
signers collude together, they cannot create a partial signature that passes the
partial signature verification algorithm PVer yet it cannot be resolved into a full
signature by the arbitrator. This property intends to protect honest verifiers.
Specifically, we use the following three-phase game between a challenger C and
an adversary A to define this property.

Initialization A specifies the number of signers n and the threshold t. C creates
the common reference string paramCRS and invokes

(pkA, skA) ← AGen(),

(pkU , {skU,i}ni=1) ← UGen(n, t).

C gives (paramCRS , pkA, pkU , {skU,i}ni=1) to A.
Query A can adaptively issue the following query to C.

– Res Query. A gives (σ̂,M) to C, who invokes

σ ← Res(pkA, pkU ,M, σ̂, skA)

and returns σ to A.
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End-Game A submits (M∗, σ̂∗) and wins the game if

valid ← PVer(pkA, pkU ,M∗, σ̂∗)

invalid ← Ver
(
pkA, pkU ,M∗,Res(pkA, pkU ,M, σ̂∗, skA)

)
Security against Verifiers. This property guarantees that even when the
verifier colludes with t − 1 signers, they cannot create a valid full signature.
This property intends to protect honest signers. Our model is static in the sense
that the subset of signers to be controlled by the attacker is fixed during the
initialization phase. Specifically, we use the following three-phase game between
a challenger C and an adversary A to define this property.

Initialization A specifies the number of signers n and the threshold t, together
with an index set I ′ ⊂ [n] such that |I ′| = t − 1. C creates the common
reference string paramCRS and invokes

(pkA, skA) ← AGen(),

(pkU , {skU,i}ni=1) ← UGen(n, t).

C gives (paramCRS , pkA, pkU , {skU,i}i∈I′) to A.
Query A can adaptively issue the following query to C.

– PSign(s) Query. A gives (M, i) to C, who invokes σ̂i ← PSign(s)(pkA,M ,
skU,i) and returns σ̂i to A.

– Sign(s) Query. A gives (M, i) to C, who invokes σi ← Sign(s)(pkA,M ,
skU,i) and returns σi to A.

– Res Query. A gives (σ̂,M) to C, who invokes σ ← Res(pkA, pkU ,M, σ̂,
skA) and returns σ to A.

End-Game A submits (M∗, σ̂∗) and wins the game if

valid ← Ver(pkA, pkU ,M∗, σ̂∗)

and that (M∗, ·) did not appear in any Sign(s) query. Furthermore, if there
exists a PSign(s) query with input (M∗, ·), (·,M∗) should not appear as input
in any Res query.

Security against the Arbitrator. This property guarantees that the arbi-
trator cannot create a signature on behalf of the user unless it is given a valid
partial signature. In TOFE, we allow the arbitrator to collude with t − 1 sign-
ers. As in the case of security against verifiers, our model is static in the sense
that the subset of signers to be controlled by the attacker is fixed during the
initialization phase. Specifically, we use the following three-phase game between
a challenger C and an adversary A to define this property.
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Initialization A specifies the number of signers n and the threshold t, together
with an index set I ′ ⊂ [n] such that |I ′| = t − 1. C creates the common
reference string paramCRS and invokes

(pkA, skA) ← AGen(),

(pkU , {skU,i}ni=1) ← UGen(n, t).

C gives (paramCRS , pkA, pkU , {skU,i}i∈I′, skA) to A.
Query A can adaptively issue the following query to C.

– PSign(s) Query. A gives (M, i) to C, who invokes σ̂i ← PSign(s)(pkA,M ,
skU,i) and returns σ̂i to A.

– Sign(s) Query. A gives (M, i) to C, who invokes σi ← Sign(s)(pkA,M ,
skU,i) and returns σi to A.

End-Game A submits (M∗, σ̂∗) and wins the game if

valid ← Ver(pkA, pkU ,M∗, σ̂∗)

and that (M∗, ·) did not appear in any Sign(s) query nor PSign(s) query.

4 Construction

Our TOFE is motivated by the ordinary OFE by [5]. Indeed, when t = n = 1,
our construction degenerates to their scheme.

Common Reference String Our construction works in the common reference
string model. For a security parameter 1k, let G, GT be cyclic groups of prime
order p with g as a generator of G, where p is a k-bit prime. Further, let ê :
G×G → GT be a bilinear map. The common reference string is defined to be

paramCRS := (1k,G,GT , p, g, ê).

AGen On input paramCRS , the arbitrator picks at random y ∈R Zp and computes
Y = gy. The public key and secret key of the arbitrator is defined as

(pkA, skA) :=
(
Y, y

)
.

UGen On input paramCRS , the required number of signers n and the threshold
t, the user picks at random a polynomial of degree t−1 in Zp, say f . Assume the
signers are indexed by i, for i = 1 to n, with n ≥ t ≥ 1. The user further picks
at random a hash function H : {0, 1}∗ → G. Note that H is to be modelled as a
random oracle.

For i = 1 to n, the secret signing key of signer i is defined as f(i).
The user computes the public key as

pkU := (H,X,X1, . . . , Xn) := (H, gf(0), gf(1), . . . , gf(n)).

The value f(0), which is the actual master secret, should be deleted. This ensures
only a set of t signers together could create a threshold signature.
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PSign. The partial signature generation process consists of three sub-algorithms.

– Generation of a Partial Signature Share On input paramCRS , pkA, a message
M and the signing key of signer i f(i), signer i randomly picks ri ∈R Zp and
outputs the partial signature share as

σ̂i := (αi, βi) :=
(
H(M)f(i)Y ri , gri

)
.

– Verification of a Partial Signature Share The partial signature share σ̂i can
be verified by evaluating the following relation:

ê(αi, g)
?
= ê(H(M), Xi)ê(Y, βi).

– Generation of a Partial Signature When t partial signature shares, say, σ̂i

for i ∈ I ⊂ [n] such that |I| = t on the same message, say M , have been
collected, anyone can output the partial signature on message M as:

σ̂ := (α, β) := (
∏
i∈I

αλi

i ,
∏
i∈I

βλi

i ).

where λi is defined as

λi :=
∏

j∈I\{i}

−j

i − j
.

As discussed, f(0) =
∑

i∈I f(i)λi.

PVer. On input paramCRS , pkA, pkU , a message M and a partial signature σ̂,
the algorithm outputs valid if and only if the following equality holds:

ê(α, g) = ê
(
H(M), X

)
ê(Y, β).

Sign. The full signature generation process consists of three sub-algorithms as
well.

– Generation of a Signature Share On input paramCRS , pkA, a message M
and the signing key of signer i f(i), signer i outputs the signature share as

σi := H(M)f(i).

– Verification of a Signature Share The signature share σi can be verified by
evaluating the following relation:

ê(σi, g)
?
= ê(H(M), Xi).

– Generation of a Signature When t signature shares, say, σi for i ∈ I ⊂ [n]
such that |I| = t on the same message, say M , have been collected, anyone
can output the signature on message M as:

σ :=
∏
i∈I

σλi

i

where λi is defined as

λi :=
∏

j∈I\{i}

−j

i − j
.
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Ver. On input paramCRS , pkA, pkU , a message M and a signature σ, the algo-
rithm outputs valid if and only if the following equality holds:

ê(σ, g) = ê(H(M), X).

Res. On input paramCRS , pkA, pkU , a message M , a partial signature σ̂ and the
secret key of the arbitrator y, the full signature can be computed as follows.

– Check that σ̂ is a valid partial signature by evaluating the relation

ê(α, g)
?
= ê(H(M), X)ê(Y, β).

– Output σ as
σ := α/βy.

Regarding the security of our construction of TOFE, we have the following the-
orem.

Theorem 1. Our construction of TOFE is secure against signers, verifiers and
the arbitrator under the CDH assumption in the random oracle model.

Proof. Security against signers. Given a valid partial signature σ̂∗ := (α∗, β∗)
on message M∗, such that

ê(α∗, g) = ê(H(M∗), X)ê(Y, β∗),

the resolved signature σ is defined as α∗/(β∗)y where Y = gy.
Note that

ê(σ, g) =
ê(α∗, g)

ê((β∗)y, g)
=

ê(H(M∗), X)ê(Y, β∗)

ê((β∗), gy)
= ê(H(M∗), X),

any valid partial signature will always be resolved to a valid full signature.

Security against verifiers. Suppose the final output of A is (M∗, σ∗). If A has not
made a PSign(s) query with input (M∗, ·), the analysis of this type of attack is
covered in the security against the arbitrator to be discussed later. Thus without
loss of generality, we safely assume that A has made a PSign(s) query with input
(M∗, ·). In this setting, we show how to construct a simulator S that is given
A = ga, B = gb and tries to solve the CDH problem by outputting gab.

Initialization A specifies the number of signers n and the threshold t, together
with an index set I ′ ⊂ [n] such that |I ′| = t − 1. S sets the common
reference string paramCRS , pkA = By for some randomly picked y ∈R Zp.
For each i ∈ I ′, S picks si ∈R Zp and computes Xi = gsi . S sets X = ga.
Consider a degree t−1 polynomial f(x) such that f(0) = a and f(i) = si for
i ∈ I ′. Note that the set of points (0, a) ∪ {(i, si)}i∈I′ uniquely determines
this polynomial yet the coefficients are unknown to S. However, S can still
compute Xi = gf(i) for i ∈ [n] \ J where J := 0 ∪ I ′ using the Lagrange
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polynomial interpolation technique discussed in Section 2. Specifically, for
i ∈ [n] \ J ,

gf(i) = g
∑

j∈J f(j)λj(i) =
∏
j∈J

(
gf(j)

)λj(i)
.

Note that both λj(i) and gf(j) for all j ∈ J are computable by S and thus
S can compute Xi = gf(i) for all i = 1 to n. S also specifies the random oracle
H . pkU is set to be (H,X,X1, . . . , Xn). S gives (paramCRS , pkA, pkU , {si}i∈I′)
to A.

Query A can adaptively issue the following query to S.
– Random Oracle H Query. Suppose A makes q queries of this type. S

picks an index z ∈ [q] at random. For the h-th query, A submits a value
Mh and is expecting the value of H(Mh). If h �= z, S replies with gdh

for a random dh ∈R Zp. For the z-th query, S replies with gb.
– PSign(s) Query. A gives (M, i) to S. Then, S locates the random oracle

H query for M . If there exists h such that M = Mh and that h �= z, S
picks r ∈R Zp at random and responses with (α, β) = (Y rXdh

i , gr). If M
has not been queried, S makes such a random oracle query on input M .
If M = Mz, S responses as follows.
• Note that each Xi for i ∈ [n] \ I ′ is of the form guia+vi for some
constant ui �= 0, vi known by S.

• S computes r such that ui = −yr.
• S randomly picks ti ∈R Zp, computes βi = (ga)rgti and αi =
(gb)vi+yti and returns (αi, βi) to A.

– Sign(s) Query. A gives (M, i) to S. If M = Mz, S aborts. Otherwise, S
can locate h such that H(M) = gdh . Next, S computes σi = Xdh

i and
returns σi to A.

– Res Query. A gives (σ̂,M) to S. S first checks the validity of σ̂ and
proceeds if it is valid. Otherwise it returns⊥. Then, S locates the random
oracle H query for M . If M = Mz, S aborts. Otherwise, there exists h
such that H(M) = gdh . Next, S computes σ = Xdh and returns σ to A.

End-Game A submits (M∗, σ̂∗). If M∗ �= Mz, S aborts. In the random oracle
model, M must have been submitted as an input in the random oracle H-
query. Thus, with probability 1/q, S does not abort. S outputs σ as the
solution to the CDH problem. Note that in order to win,

ê(σ, g) = ê
(
H(M∗), X

)
.

It implies that σ = gab.

Security against the arbitrator. We show any adversary A that breaks the secu-
rity against the arbitrator can be converted into a simulator S that solves the
CDH problem. S is given A = ga, B = gb and its goal is to output gab.

Initialization A specifies the number of signers n and the threshold t, together
with an index set I ′ ⊂ [n] such that |I ′| = t − 1. S sets the common
reference string paramCRS , pkA = gy for some randomly picked y ∈R Zp.
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For each i ∈ I ′, S picks si ∈R Zp and computes Xi = gsi . S sets X = ga.
Consider a degree t−1 polynomial f(x) such that f(0) = a and f(i) = si for
i ∈ I ′. Note that the set of points (0, a) ∪ {(i, si)}i∈I′ uniquely determines
this polynomial yet the coefficients are unknown to S. However, S can still
compute Xi = gf(i) for i ∈ [n] \ J where J := 0 ∪ I ′ as

gf(i) = g
∑

j∈J f(j)λj(i) =
∏
j∈J

(
gf(j)

)λj(i)
.

S also specifies the random oracle H . pkU is set to be (H,X,X1, . . . , Xn). S
gives (paramCRS , pkA, pkU , {si}i∈I′ , y) to A.

Query A can adaptively issue the following query to S.
– Random Oracle H Query. Suppose A makes q queries of this type. S

picks an index z ∈ [q] at random. For the h-th query, A submits a value
Mh and is expecting the value of H(Mh). If h �= z, S replies with gdh

for a random dh ∈R Zp. For the z-th query, S replies with gb.
– PSign(s) Query. A gives (M, i) to S. Then, S locates the random oracle

H query for M . If there exists h such that M = Mh and that h �= z, S
picks r ∈R Zp at random and responses with (α, β) = (Y rXdh

i , gr). If M
has not been queried, S makes such a random oracle query on input M .
If M = Mz, S aborts.

– Sign(s) Query. A gives (M, i) to S. If M = Mz, S aborts. Otherwise, S
can locate h such that H(M) = gdh . Next, S computes σi = Xdh

i and
returns σi to A.

End-Game A submits (M∗, σ̂∗). If M∗ �= Mz, S aborts. In the random oracle
model, M must have been submitted as an input in the random oracle H-
query. Thus, with probability 1/q, S does not abort. S outputs σ as the
solution to the CDH problem. Note that in order to win,

ê(σ, g) = ê
(
H(M∗), X

)
.

It implies that σ = gab.

This completes the proof of the theorem. �

5 Conclusion

We present the first threshold-oriented fair exchange protocol which allows a
subset of signers to exchange a digital item with a counter party. Indeed, in
our specific construction, the item being exchanged is a threshold signature. We
define formal security model for TOFE, present an efficient construction and
show that it is secure in the random oracle model under well-known assumptions.
We leave construction of TOFE in the standard model as an open problem.
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Abstract. Outsourcing database has attracted much attention recently
due to the emergence of Cloud Computing. However, there are still two
problems to solve, 1) how to encipher and protect the sensitive informa-
tion before outsourcing while keeping the database structure, and 2) how
to enable better utilization of the database like fuzzy queries over the
encrypted information. In this paper we propose a new solution based on
format-preserving encryption, which protects the privacy of the sensitive
data and keeps the data structure as well in the encrypted database.
We also show how to perform fuzzy queries over such enciphered data.
Specially, our scheme supports fuzzy queries by simply exploiting the in-
ternal storing and query mechanism of the databases, thus the influence
on both the inner relation of databases and the construction of appli-
cations are minimized. Evaluation indicates that our scheme is able to
efficiently perform fuzzy query on encrypted database.

1 Introduction

In recent years, the blossoming of internet and the rise of cloud computing makes
outsourced (or remote) database a popular choice for applications. Meanwhile,
since in practice oursourced databases are considered as running on some un-
trusted servers, privacy of data in such databases has becoming a major concern
for network users. An extreme case of the problem is remotely stored sensitive
information, for the consequence of leaking such data can be severe. Accordingly,
protecting sensitive information in outsourced databases has become a burning
problem needed to be solved.

To encipher on databases where massive data are processed frequently, sym-
metry ciphers (or block ciphers) becomes the most obvious choice. The problem
is, traditional block ciphers have the following problems: (1) If the length of the
plaintext is not a multiple of that of the cipher’s block, the ciphertext will be
longer than the plaintext, called ciphertext expansion. (2) All plaintexts, regard-
less of their types and formats, are simply treated as binary strings. It means
that the types and formats of ciphertexts are uncontrollable.
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As a result, applying such block ciphers requires changing either the innards
of databases or the basic structure of applications (which come at tremendous
cost). Otherwise, the enciphered data could not be stored properly. Enciphering
will also disrupt characteristics of the original data. In this way, it will be unable
to perform many common database operations such as SQL query, data sorting,
statistical analysis and data collection. This makes database encryption a disas-
ter for system designing, since anything involves the mentioned database oper-
ations cannot work. Conversely, for ensuring availability, such problem becomes
a main restriction in providing systematic protection for sensitive information.

Related works. The notion of format-preserving encryption (FPE) [4] was pro-
posed to design block ciphers whose output could fit the requirement of different
applications like databases. Black and Rogaway (2002) formalized the FPE prob-
lem, and proposed three basic methods for implementing such cipher [7]. Several
FPE schemes [5, 18, 21, 22, 28] with provable-security have been presented in the
last decade, such as FFSEM, Thorp Shuffle, FFX mode and Swap-or-not et al.
The idea of FPE is to encipher target data without disrupting their format, which
makes it a promising solution for protecting sensitive information on databases.

Table 1. A brief summary on the existing cryptographic methods of supporting queries
over enciphered data in database

method requires index supports exact query supports fuzzy query

Hacigumus et. al. [16] Yes Yes No

Amanatidis et. al. [2] No Yes No

Bao et. al. [3] Yes Yes No

Evdokimov et. al. [13] No Yes No

Ge et. al. [14] Yes Yes No

Wang et. al. [32] No Yes Partial

Yang et. al. [34] Yes Yes No

Raluca et. al. [26] Yes Yes Partial

On the other hand, several cryptographic tools were also developed in order to
provide solutions for operating on encrypted databases, such as order-preserving
encryption for sorting enciphered data [1, 8], and homomorphic encryption for
performing any function computations [12, 15]. Specifically, researchers have
developed schemes for searching keywords over encrypted data [9, 11, 27] and
processing queries on encrypted databases [2, 3, 13, 14, 16, 26, 32, 34]. Although
these works have provided some methods to solve the outsourcing database prob-
lem, as shown in Table 1, they are impractical: (1) the methods from [2],[13] and
[32] works without changing innards of databases. However, [2] and [13] pro-
vide only equality comparisons, while [32] is only able to acquire a coarse result
from fuzzy querying over enciphered data, precise matching still needs to be
done over deciphered data ; (2) the symmetry searchable encryption methods
(as [9, 11, 20, 27, 29–31]) require severs for data storage to be capable of per-
forming test operations for querying, therefore they are impractical for databases
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where such operations are not supported; (3) other methods need to change the
innards of databases, due to the need of maintaining indexes on the data at the
server, meanwhile fuzzy queries are still not supported.

Considering sensitive information (e.g. name, ID, account, password, e-mail
and address) exists in the form of character data, and are usually required to
be queryable, how to perform SQL queries (especially fuzzy queries due to the
practical utility) on enciphered character data is certainly a critical problem
in designing protection mechanism for such information. Though many existing
work were proposed as mentioned, they are still insufficient to support such
complex queries in a practical and efficient way.

Our contributions. In this paper, we propose a secure system model for out-
sourced database by introducing the cryptographic notions of FPE and univer-
sal hashing. We also show how to support fuzzy query over the enciphered data.
Unlike existing work, the proposed model is database-independent since: (1) we
exploit FPE to ensure the encipherment do not change the format of data; (2) we
maintain the assistant messages for searching enciphered data by adding extra
fields to the database instead of making more fundamental modifications; (3) it
supports fuzzy queries on the basis of database inner query mechanism.

We propose a scheme for the proposed model. The scheme supports fuzzy
queries on the enciphered data by transforming their SQL statements from
searching for patterns of the data. It generates keywords for each character and
forms keyword strings of the same length as the corresponding data, thus it per-
forms fuzzy query at a cost of O(n) times of AES and negligible redundancies in
the query results. Generally the scheme is practically secure, while there exists
a potentially of leaking semantical structure of the enciphered data.

2 System Model

2.1 Our Model

Our system model provides secure modules for the application, which handles
security-involved processes, respectively are enciphering, deciphering and what
we called query interpretation. The purpose is to implement secure storage and
basic queries (in specific, exact queries and fuzzy queries) over sensitive informa-
tion, without deciphering data in advance, or changing either the inner relations
of present databases or the construction of application systems. For each en-
crypted data field in databases, an extra keyword field is added to maintain the
corresponding keyword strings.

Two secure modules are in our model consist. One is enciphering/deciphering
module, which handles data storage to the databases (connected with encipher-
ing), and responding for queries from the applications (connected with decipher-
ing). On enciphering, the module takes string data from the applications, then
generates its keyword string so that all substrings of the data can be represented
using the keywords. After that, the module enciphers the data, and respectively
stores the ciphertext into the target field of the database, and the keyword string
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data field keyword field

Deciphering Query 
interpretationEnciphering

ciphertext keyword string

Fig. 1. System model of secure storage and fuzzy query over encrypted database

into the corresponding keyword field. The deciphering part is simpler, when the
module receives encrypted records from the database as the result of queries,
it directly deciphers data in the records and send them to the application. The
other is query interpretation module, which explains the queries into that on
the encrypted data. Using the same method as the former module, it transforms
terms in the original query into combinations of keywords, and generates a new
query where such combinations are used as terms, which searches for matches
on the keyword field instead of directly for the data.

Implementation requirements. The main purpose of the proposed model is to
support fuzzy query on encrypted databases, considering the practice, certain
requirements need to be emphasized: 1) For exploiting the query mechanism of
the database itself in performing secure fuzzy query, the keyword strings gener-
ated for the enciphered data must be stored in nvarchar fields. 2) To minimize
the storage burden caused to databases, the keyword strings should not be too
long (expected to be less than 512 characters).

Advantages. Overall, the proposed model has the following advantages over ex-
isting work: (1) it stands independently, neither the encipher/decipher nor the
query interpretation process needs any specific constructional support from the
target databases. Thus it’s considered to be database-independent. (2) since
adding new field to a database do not affect its original construction, the pro-
posed model can be applied in reforming existing databases without making any
fundamental modification, thus significantly reduce the reform cost. This makes
it highly practical.
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2.2 Security Notions

Firstly, the challenge scenario of the problem should be declared. In this pa-
per, the enciphered data and the keyword strings are supposed to be stored in
the same unprotected database (or say, untrusted server), where the adversary
is assumed to be fully authorized to access any data. Therefore, no auxiliary
protection from any part of the system other than our model, is expected.

As mentioned above, unprotected data never appears in the communication
between the security modules and the database. In another word, even if an
adversary breaks into the database and observes communications between the
database and the middleware, it learns nothing but enciphered information.
Therefore, an adversary can only perform ciphertext-only attack. This means
that traditional attack modes on symmetry ciphers, such as known plaintext at-
tack (KPA), chosen plaintext attack (CPA) and chosen ciphertext attack (CCA),
have no practical meaning against this model.

However, as a famous work on cryptographic schemes for querying enciphered
data, Song et. al. once termed a few useful security notions for the scenario [27], re-
spectively are: (1)Query isolation, meaning that the untrusted server cannot learn
anythingmore about the plaintext than the search result; (2)Controlled searching,
meaning that the untrusted server cannot search for an arbitrarywordwithout the
user’s authorization; (3) Hidden queries, meaning that the user may ask the un-
trusted server to search for a secret word without revealing the word to the server.

The above notions are used in describing the security of our scheme.

3 Technical Preliminaries

3.1 Format-Preserving Encryption

We will first give a review to the classical definition of FPE [4], which is described
as follows:

Definition 1 (FPE). A format-preserving encryption scheme is a function

F : K × N × T × X → X × {⊥}, (1)

where ⊥ �= X , and nonempty sets K, N , T , X are respectively called the key
space, format space, tweak space and domain.

3.2 Universal Hash Function

Universal hash functions (or UTF), which was first introduced by Carter and
Wegman [10, 33], can be described as:

Definition 2 (UTF-1). Define M , K and b the bit length of the message, the
key and the output, denote R = {0, 1}K, X = {0, 1}M and Y = {0, 1}b, a
universal hash function, denote as h(k,m), is then described a function

Fuh : R × X → Y (2)

for any k ∈ R and m ∈ X .



444 Z. Liu et al.

Normally, the requirement of a UHF is that for any pair of distinct messages
m,m0 ∈ X , the collision probability h(k,m) = h(k,m0) is small when key k is
randomly chosen from R, described as:

Definition 3 (UTF-2). An εd-balanced and εc-almost universal hash function,
Fuh : R × X → Y , satisfies{

∀ m ∈ X/{0}, y ∈ Y : Pr{k∈R}[h(k,m) = y] � εd

∀ m,m
′ ∈ X (m �= m

′
) : Pr{k∈R}[h(k,m) = h(k,m

′
)] � εc

(3)

3.3 Notations

Throughout the rest of the paper, let Chars be the set of all possible charac-
ters, and Chars∗ be character strings over Chars of any length. Given any two
character strings A,B ∈ Chars∗, denote A ‖ B as their concatenation, therefore
∀ X ∈ Chars∗ ⇔ X = x1 ‖ x2 ‖ · · · ‖ xi ‖ · · · ‖ x∗, xi ∈ Chars. Since fuzzy
query is involved in our model, denote “%” as the wildcard used in the queries,
which is also treated as a character.

Moreover, given secret keys k1 ∈ KS1, k2 ∈ KS2, k3 ∈ KS3, where KS1,KS2,
KS3 are key spaces, we define the following functions:

– Ek1(·) and E
′
k1
(·) denote FPE schemes for character strings, which take in

a character string and return an enciphered string of the same length and
size.

– Hk2(·) denotes a short-output UHF, which takes in a for fixed-length (say n
bits) binary string and returns a 2-byte digest. In correspondence to function
H , we let DIG be the set of all possible digests.

– Pk3({·}) denotes a key-based pseudo-random permutation (or PRP) on an
arbitrary set.

– Exp(·) denotes a string expansion function, for expanding any l-bit binary
string μ (l � n) into an n-bit binary string by:

Exp(μ) ← μ ‖
n−l bits︷ ︸︸ ︷
11 · · ·1 . (4)

– Ksg(·) denotes a keyword generater, which takes a digest generated by H ,
and transforms it into a unicode character (a keyword). Each distinct 2-byte
digest is represented with a unique character by Ksg(·).

Finally, for concision, we now denote DATA as the data field in the database
for storing enciphered character strings, and KeyW as the keyword field, where
keyword strings of data in DATA are kept.

4 Practical Scheme for Our Model

In this section, we give a detailed scheme for the proposed model.
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character

Ek

DATA KeyW

E' k

Exp
Hk

Exp Exp Exp
Hk Hk Hk

character character character

E' k E' k E' k
Ksg Ksg Ksg Ksg

Fig. 2. Demonstration of storage procedure (given a character string of 4 characters)

4.1 Our Scheme

Since the system model consists of two modules, our scheme is described by a
storage procedure and a querying procedure.

Storage procedure. As demonstrated in Figure 2, for a character string D =
d1 ‖ d2 ‖ · · · ‖ dn, the storage procedure includes a keyword generation process
(denote as KGA) and an enciphering process (denote as EncA), respectively
described as:

Definition 4 (KGA). Given secret keys k1 and k2, the keywords generater KGA
sets D’s keywords by

KGA(D, k1, k2) = {ka1, ka2, ..., kan}, (5)

where

∀ 1 � i � n, kai ← E
′
k1
(Ksg(Hk2(Exp(di)))). (6)

Definition 5 (EncA). Given FPE schemes Ek1(·) and E
′
k1
(·) and master key

km = k1 ‖ k2, for plaintext D, enciphering process of scheme A is described as:

(D
′
,KWD) ← EncAkm(D), (7)

where {
D

′ ← Ek1(D)

KWD = ka1 ‖ · · · ‖ kan, ka∗ ∈ KGA(D, k1, k2)
. (8)

After the above processes, the scheme inserts/updates a record in the database,
where the value of DATA is D’s ciphertext D

′
, and the value of KeyW is the

keyword string KWD.
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Fuzzy query procedure. It is supposed that applications know the fact that en-
ciphered data are stored in DATA, but can still only search for unencrypted
patterns with statements described in section 3.3. Let the data aimed by the
searched pattern be SeD = sd1 ‖ · · · ‖ sdt, sd∗ ∈ Chars. Assume pattern is:⎧⎪⎨⎪⎩

keyw1 = sd1 ‖ · · · ‖ sdi1
keyw2 = sdi2 ‖ · · · ‖ sdi3
keyw3 = sdi4 ‖ · · · ‖ sdn

, 1 � i1 < i2 < i3 < i4 � n, (9)

the query interpretation module will extract the terms, and generate their cor-
responding keyword strings by:⎧⎪⎨⎪⎩

keyw
′
1 ← ka1 ‖ · · · ‖ kai1

keyw
′
2 ← kai2 ‖ · · · ‖ kai3

keyw
′
3 ← kai4 ‖ · · · ‖ kan

(10)

where ka∗ ∈ KGA(SeD).
After that, the module interprets the original query sentence into

select ∗ from Table where KeyW like ‘keyw
′
1%keyw

′
2%keyw

′
3’

which is able to find D
′
(as mentioned above, the ciphertext of D) from DATA,

while both DATA and KeyW remains enciphered during the procedure. The
result is handed to the deciphering module of the model, which recovers D and
send it to the applications.

4.2 Security Analysis

In consideration of provable security, we suggest using existing FPE and UHF
schemes in our model. Options for FPE schemes include FFX [5] and generalized
Numeric Feistel [19], since the security bound of such structures has already been
proved to be strong [24, 25]. Different FPE schemes are required respectively for
enciphering data and keywords. Besides the reason that schemes like FFX cannot
work on single characters, such deployment also increases security of the scheme.
For the UHF function, several short-output schemes, like MMH [17], NH [6] and
digest()[23], are available, whose main properties are given in Table 2.

Cryptographically, the ciphertext and keyword string of a data are generated
in two independent procedures. Although the same key k1 is shared, the FPE
schemes in the two procedures are completely different. Additionally, due to
the UHF invoked in generating keywords, given the ciphertext and the keyword

Table 2. A summary on the main properties of digest(), MMH and NH

Scheme Key length εc εd Output length

MMH M 6× 2−b 22−b b

NH M 2−b 2−b 2b

digest() M + b 21−b 2−b b
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string, the adversary cannot learn anything about the plaintext, or the relation
between the keywords and the ciphertext. I.e., the security of enciphered data
can be reduced to that of the FPE schemes Ek1(·), E

′
k1
(·), and that of the UHF

Hk2(·).
Specifically, our scheme

– provides query isolation for searches, since the untrusted server can only
get access to the ciphertexts and the keyword strings of data;

– provides controlled searching, untrusted server is free to search for any
keyword or ciphertext, but it is unable to locate a record with a query that
search for an unprotected data.

– provides hidden queries, since the scheme queries in the implied way (using
keywords), unprotected data never appears in such queries.

Remark. In this scheme, the same keyword will be encrypted to the same char-
acter (required by its correctness). Therefore, the keyword strings could leak
semantic information of the corresponding data. In this case, the adversary can
perform frequency attack. However, the frequency attack relies on experience
of adversary and the statistical validity of character frequency. Considering the
following two practical aspects

– The different sensitive information(For example, postal code in different
countries, mailing address in different countries, et al.) may lead to different
statistical distribution.

– It is difficult to perform frequency attack when the number of character set is
large, because the character frequency statistics becomes hard. For example,
the character number of GBK is 21886, which is more bigger than ASCII.

Therefore, considering the tradeoff between efficiency and security, we believe
that the scheme provides enough security for the practical characteristic of sup-
porting fuzzy query efficiently.

4.3 Performance Evaluation

First of all, it is easy to see that compared with the storage procedure, query
procedure of our scheme works much faster, therefore we will mainly analyze
the efficiency of the scheme’s storage procedure. Based on the construction,
it can be considered that the time cost lies mainly on that of the functions
Ek1(·), E

′
k1
(·), Hk2(·) and Pk3({·}). Consider the following implementation:

– Use the FFX mode as Ek1 (·), and the unbalanced numeric Feistel as E
′
k1
(·),

where in each Feistel round constructed from CBC-MAC, AES is invoked
for 2 times (for security, 6 or more rounds is suggested for both scheme);

– Use any of MMH, NH or digest() as Hk2(·);
– implement Pk3({·}) with AES-based Prefix (given in [7]), where for each

member of the input set, AES is invoked once.
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Since the short-output UHFs available for Hk2(·) are all multiplicative universal
hashing in nature, where only addition, multiplication and modular addition for
short integers (those can be represented using short or int) are involved, the
time cost of Hk2(·) is negligible compared to the other functions where block
cipher is involved in each round.

Suppose both Ek1(·) and E
′
k1
(·) have 6 rounds, for enciphering a character

string of length n needs n + 1 times of FPE processing, our scheme invokes
AES with 12(n + 1) times. Therefore, given the length n of a character string,
our scheme is able to encipher it in a searchable way with O(n) times of AES
operations.

5 Conclusion

To protect sensitive information in outsourced databases, we proposed a new
model for secure storage on databases, as well as fuzzy query over enciphered
data. FPE and UHF were applied in the model for enciphering and keyword
generation, while the inner mechanisms of storage and query provided by the
database itself are also fully exploited. The model provides an original solution
towards data enciphering that supports both format-preserving structure and
keyword search. Moreover, we proposed one practical scheme. Analysis indicated
that our scheme is secure under the proposed model. Performance evaluation
showed that our scheme is efficient and practical.
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Abstract. There is a common situation among current distance bound-
ing protocols in the literature: they set the fast bit exchange phase after
a slow phase in which the nonces for both the reader and a tag are
exchanged. The output computed in the slow phase is acting as the re-
sponses in the subsequent fast phase. Due to the calculation constrained
RFID environment of being lightweight and efficient, it is the impor-
tant objective of building the protocol which can have fewer number of
message flows and less number of cryptographic operations in real time
performed by the tag. In this paper, we propose a new highly efficient
mutually-authenticated RFID distance bounding protocol that enables
pre-computation which is carried out off-line by the tag. There is no eval-
uation on any PRF during the real time protocol running which makes
the tag significantly more efficient at a low-cost. The protocol requires
only O(1) complexity for achieving tag privacy. In addition, we give a
detailed security analysis to prove that our protocol is secure against all
common attacks in distance bounding.

Keywords: RFID,Distance Bounding, Privacy, Mutual Authentication.

1 Introduction

Radio Frequency IDentification (RFID) technology mainly consists of tags and
readers that can be used to identify and encode a variety of information. It has
been widely applied in many applications in the modern world. For example,
the building access control, library book borrowing services, and E-channel for
immigration, etc. In general, there are two types of RFID tags, namely active
and passive tags. Active tags contain an internal power source while the low-cost
passive tags don’t. Nowadays, many RFID-enabled authentication protocols are
based on symmetric-key encryption system in order to keep them low-cost.

In 1987, Desmedt et al. [4] introduced the Mafia fraud that could defeat
any authentication protocol. An adversary can successfully pass the protocol by
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relaying the messages between the legitimate reader and a remote legitimate tag.
One way to prevent such attack is using distance-bounding protocol. It was first
designed by Brands and Chaum in 1993 [1]. The concept of distance bounding
is based on the combination of distance checking and authentication, under the
measurement of the Round Trip Time (RTT) of messages exchanged by the
reader and a tag. Based on RTT, the reader can evaluate the distance between
itself and a tag in order to compare the value with an upper bound which can
be estimated according to the assumption that nothing propagates faster than
light. Brands and Chaum’s protocol is too expensive in practice because there
is a signature at the end in order to realize mutual authentication. In 2005,
Hancke and Kuhn [2] designed another protocol without the final signature that
contains only one slow phase and one fast bit exchange phase. Their protocol
has been treated as a key-reference in the state-of-art publications regarding to
RFID distance-bounding.

Since then quite a few distance bounding protocols have been published
[3,7,8,9,10,11,14,15,16,17]. There are five common attacks in RFID distance
bounding scenario: Impersonation fraud [1], Distance fraud [1], Mafia fraud [4],
Terrorist fraud [4], and Distance hijacking attack [6]. In this paper, we only con-
sider distance hijacking attack in the single-protocol environment defined in [6].
In 2011, Avoine et al. [5] used secret-sharing scheme to defeat terrorist frauds.
They made the conclusion that at least a (3, 3) threshold secret-sharing scheme
should be applied to resist terrorist fraud, while most existing works only used
(2, 2) schemes that is susceptible to the terrorist fraud attack.

We introduce in this paper a prominent feature called “Pre-Computation” in
RFID distance bounding protocols. This idea let us break away from traditional
approach that the slow phase should always be ahead of the fast phase. Actually,
the computation in the very beginning can be carried out off-line. In fact, the pre-
computation in RFID is not new [13], but it has never been deployed in distance
bounding. The existing protocols proposed recently require the tag to perform
one/more time-consuming PRFs or signatures in real time. It is susceptible to
the high power and high cost. The pre-computation is done by an ultra low power
micro-controller which is powered by a large capacitor. It has been implemented
and proved in [12]. And most important of all, the cost for planting a large
capacitor in an RFID tag is negligible.

We find most distance bounding protocols use the idea of the fast bit exchange
by transmitting only one-bit challenges for each round. In fact, the communi-
cation channels used in nowadays have a much bigger bandwidth to transmit
more than one bit. As pointed out in [16], the two-bit challenges sent in the
fast phase can be encapsulated to a much bigger packet over the communica-
tion channels. In addition, [18] pointed out a practical terrorist attack to the
protocol proposed by Yang et al.[15] due to only one-bit challenges sent in each
round. Having these observations in mind, our proposed protocol is designed by
adopting two-bit challenges in the fast phase in order to prevent such attacks
and make better use of the communication channels.
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Our Contributions
In this paper, we combine all the features described above in an RFID authen-
tication system and propose a highly efficient RFID distance bounding protocol
with tag privacy.

The protocol features pre-computation on the tag, mutual authentication,
resistance to all common attacks, and significantly more efficient at a low cost.
It eliminates all online PRF evaluation and leaves only two if-else decisions
to make in runtime for the tag. One more advantage of this elimination can
minimize the processing time for response and make the propagation time of
the bits dominate the round trip time (RTT), and at the same time, make the
response processing time as invariant as possible. Consequently, we can get a
more accurate estimation on the distance between the reader and a tag. To the
best of our knowledge, our protocol is the first distance bounding protocol that
realizes the tag online PRF-free by introducing the concept of pre-computation.

We also provide privacy-preserving in our protocol by an anonymous way,
which requires only O(1) complexity for achieving privacy. We show our protocol
is much more efficient in terms of tag’s cost when compared with existing ones.

To show our contributions more precisely, we make a detailed comparison be-
tween our proposed protocol and others in Table 2, Section 4.

Paper Organization
The rest of the paper is organized as follows. In Section 2, we show our protocol
with detailed description. In section 3, we give the security analysis with respect
to the five attacks and how reader authentication is realized. In section 4, there
will be a comparison between our protocol and previous proposed protocols. In
the last section, we conclude the paper.

2 Our Proposed Protocol

In this section, we first give some preliminaries including the system description,
the adversary model, and the definition of Pseudo-Random Function that we
used as the underlying cryptographic primitive. Then we describe our proposed
protocol in detail. At last, we have a discussion of several important issues in
our protocol.

2.1 Preliminaries

System Description. The RFID system consists of multiple tags T1,T2,· · ·,Tn

and a reader R, associated with a database. Each tag Ti stores a secret key xi

which is shared with the reader R, its identity ID, pseudonym ID′, as well as
the counter NT which is initialized to zero. The reader maintains tag’s identity
ID, counter N ′

T as well. In addition, the reader also maintains TID and TID′ for
achieving tag privacy. The reader and a tag communicate via the wireless chan-
nel. The upper bound for the transmission speed cannot exceed the speed of light.
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Adversary’s Capabilities. It is important to define a generic model for adver-
sary’s capabilities in a realistic and fair condition. In our model, an adversary A
can be “active” which means she can eavesdrop, intercept, modify messages. A
can control the transmission time between the reader and a tag. But A cannot
perform unlimited computations. In addition, we assume that an honest tag will
not give its security parameters to any third party.

Pseudo-random Function. Our protocol uses an Pseudo-Random Function
(PRF) as the underlying cryptographic primitive. A family of efficiently com-
putable functions f = {FK : D → R|K ∈ K } is called a pseudo-random function
family, if for any polynomial time algorithm C,

Advprf
f ,C (k) = Pr[CFK(·)(1k) = 1]−Pr[CRF(·)(1k) = 1].

is a negligible function of the security parameter k, where K is randomly selected
from the key space K, FK is an instance of function family f , and RF : D → R
is a truly random function.

2.2 Protocol Description

Our protocol has two stages, namely the pre-computation stage and real-time
stage as shown in Figure 1.

Pre-computation Stage. We introduce two flag bits to facilitate the steps
during the pre-computation stage: Flagpre and Flagsync, where the former indi-
cates whether the pre-computation has been done successfully; while the latter is
to determine whether the reader authentication was successful in last execution.
The Flagpre should be set to 1 before performing the pre-computation by the
tag. In the meantime, Flagsync has to be 1 before updating pseudonym ID′.

We use a counter NT (initialized to zero) as one of the three inputs to compute
the Pseudo-Random Function (PRF) f and NT should be updated each time at
the very beginning whenever the tag is powered up. It is also worth mentioning
that NT cannot be a random number. Otherwise, it may suffer from the replay
attack due to the absence of reader’s nonce.

Because the contents of the input for computing of f and ID′ are independent
from the reader. Therefore, they can be computed before the protocol starts.
This stage can cope with the limited resources of RFID tags, who will compute
v = f(x, ID,NT )

3n. Then split v into three shares: v1, v2, and v3, respectively.
Each of them carries n bits. After that the tag needs to check the value of
Flagsync such that it will update ID′ in pre-computation only when Flagsync=1,
which means the reader authentication was successful in the last execution. The
update is computed as ID′ = f(x, ID′). In the meanwhile, the tag is going to
flip Flagpre to 0 indicating that the pre-computation has been finished. The tag
now has the updated value of v1, v2, v3, and k for running the real-time stage.

The pre-computation is carried out off-line as follows: by using an ultra low
power micro-controller and a large capacitor, each time during the protocol run-
ning, the tag will receive enough RF (Radio Frequency) energy and rectifies it
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Reader Tag

(x,ID,TID,TID′,N
′
T ) (x,ID,ID′,NT )

Pre-Computation Stage

Flagpre = 0
NT = NT + 1
v1||v2||v3 = f(x, ID,NT )

3n

k = v1 ⊕ v2 ⊕ x
If Flagsync = 1 then
ID′ = f(x, ID′)
Flagsync = 0

Real-Time Stage
If Flagpre = 1 then
Run Pre-Computation

Flagpre = 1

Start of Fast Phase
for i = 1 to n

Pick Ci, Di ∈R {0, 1}
Start Clock; Send [CiDi]

Ri =

⎧⎪⎨⎪⎩
v1i , C

′
iD

′
i = 00

v2i , C
′
iD

′
i = 11

ki, C
′
iD

′
i = 01 or 10

Stop Clock; Send Ri

Store Ri, &ti
End of Fast Phase

Send NT , ID
′

If NT < N
′
T then Reject

N ′
T = NT + 1

If ID′ �= TID And ID′ �= TID′

then Reject
Else If ID′ = TID′ then
TID = TID′, TID′ = f(x, TID)

Compute
u1||u2||u3=f(x, ID,NT )

3n

For i = 1 to n
set R′

i based on CiDi

Check
e1 = �{i : R′

i �= Ri}
e2 = �{i : &ti > &tmax}
If e1 + e2 > T then Reject
Else Success

Send u3

If u3 = v3 then
Flagsync = 1
Success

Else Reject

Fig. 1. The Protocol without Real-Time PRF Evaluation
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into DC (Direct Current) voltage stored in the large capacitor. After protocol
finished, the tag will use this stored DC voltage to power the system in order to
compute two PRFs and then stored in the non-volatile memory for next round
protocol execution.

Real-Time Stage. The real-time stage consists of one fast bit exchange phase
(a.k.a. fast phase), which has total n rounds, and one slow phase in which mu-
tual authentication is provided. The communication channel used during the
fast phase may suffer from noises. Hence the reader should setup a checking
mechanism by a given error threshold (Fault Tolerance). The reader must abort
the protocol if the threshold has been exceeded. This stage requires no PRF
evaluation but only if-else decisions to make for the tag.

Before starting the fast phase, the tag needs to check the status of the flag
bit once more. If Flagpre = 1, the tag is aware that the pre-computation is
not completed due to several reasons (details in Section 2.3). Under whatever
circumstances, the tag needs to ensure the pre-computation has been completely
done before running the fast phase. Therefore, the tag should perform the pre-
computation in real time for once if Flagpre = 1. In contrast, if the tag identifies
that Flagpre = 0, which means the pre-computation stage has been successfully
finished, then it flips Flagpre to 1. The protocol now moves to the fast phase:

(1) The reader randomly picks two-bit challenge CiDi, starts the clock and sends
CiDi to the tag.

(2) The tag sends corresponding Ri according to both C′
iD

′
i.

(3) Upon receiving Ri, the reader immediately stops the clock, stores the time
delay &ti, and Ri. There will be no checking at this time.

(4) Above three steps are repeated for n rounds.

When proceed to the last slow phase, no time delays are measured:

(1) The tag sends the counter NT together with its pseudonym ID′ to the reader.
(2) The reader then produces the checking procedures by means of several if-else

decision makings. Note that the reader’s database also maintains N ′
T , TID

and TID′, where N ′
T is the tag’s counter which maintained on the reader

side; TID and TID′ are used as the index to quickly search the tag’s ID,
they are initialized as TID=f(x, ID) and TID′=f(x, f(x, ID)), respectively.
There are three parts during the checking mechanism.

(2.1) Counter Checking. When received all the information from the tag,
the reader will first check whether the received counter NT is equal to or
greater than its stored value N ′

T . If NT is small than N ′
T , the reader is going

to reject the tag and abort the protocol in the sense that a replay attack
has been launched because an honest tag will never use an old counter value
when initiating a new protocol execution. If it is satisfied, then the reader’s
counter N ′

T will be updated as N ′
T = NT +1. Otherwise the reader will reject

the tag and leave the counter unchanged.
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(2.2) Index Searching on Tag’s ID. After checking the counter, the reader
moves to the 2nd part by comparing ID′ with either TID or TID′. If none
of them is equal to ID′, there may be an attack launched by the adversary
(i.e. de-synchronization attack). Therefore, the reader will reject the tag and
abort the protocol immediately. In contrast, if ID′ is indeed equal to TID′,
the reader is going to update its local stored TID and TID′ to synchronize
with the tag in the sense that there may be one step ahead by the tag. Sim-
ilarly, if ID′ is equal to TID, which means the reader has already catch up
with the tag and no update is needed.

(2.3) Fault Tolerance. The reader is going to compute u=f(x, ID,NT )
3n

and split it into three shares, u1, u2, and u3, respectively. Each of them
carries n bits. Based on challenge CiDi picked in the fast phase, the reader
should set R′

i in order to facilitate the fault tolerance. Now the reader will
perform two concurrent checking on the validity of two different values:
– it counts the number of errors e1 of positions for the responses R′

i �= Ri;
– it counts the number of errors e2 of the transmission delay &ti > &tmax;

If e1+e2 > T , where T is the fault tolerance threshold, the reader will reject
the tag and abort the protocol. Otherwise, the reader can accept the tag.

(3) After above three checking parts, the reader is able to tell whether the pro-
tocol succeeds or not and sends u3 to the tag for mutual authentication.

(4) Finally, the tag is going to check the validity of the u3 computed by the reader
and flip the flag bit Flagsync to 1 if reader authentication is successful. But
on the tag side, the counter NT is always updated at the very beginning no
matter what decision the tag made.

2.3 Discussions

The Counter. Intuitively, the counter N ′
T stored on the reader side should

be synchronized with the counter NT that stored on the tag. However, if some
attacks are launched (i.e. de-synchronization attack), the tag’s counter NT is
always greater than reader’s N ′

T . But it has no effect on the protocol execution
in the sense that the checking mechanism only ensures NT should be equal to
or greater than N ′

T to prevent replay attack.

The Flag Bit. The RFID chip can loose power at any time. If that happens, it
might be possible to force a tag to reuse pre-computed values more than once. If
there is no flag bit presented in the tag, the adversary is able to extract the secret
key. Nevertheless, we use in our protocol two flag bits Flagpre and Flagsync

to ensure the integrity of the RFID environment and the pre-computation has
been completely done before the real-time protocol execution. The purpose for
Flagpre is to guarantee the counter NT is updated each time before computing
f . If the Flagpre = 1 before starting the fast phase, the tag is aware that either
insufficient power stored in the large capacitor so that the tag cannot perform the
pre-computation or some sort of attacks have been launched, such as the reset
attack. Even this kind of attack has been identified, the tag only needs to perform
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the pre-computation in real time once. This makes our protocol much more
robust. On the other hand, Flagsync can prevent the de-synchronization attack
in the sense that the tag should only update ID′ after reader authentication is
successful. Otherwise, if the adversary modifies/blocks u3 twice, then the tag
can no longer be identified by the reader anymore.

3 Security Analysis

We will make a detailed security analysis against all common attacks in the dis-
tance bounding protocols.

Impersonation Fraud Resistance. In the impersonation attack, the adver-
sary A does not know the tag’s secret key x and must correctly answer the
challenge CiDi during the fast phase. Thus, the success probability of the im-
personation attack for one round is given by:

Pimp = Pr[A guesses Ri correctly] =
1

2
The overall success probability is

(
1
2

)n
since there are n rounds in the fast phase.

Distance Fraud Resistance. The adversary A is the tag itself in a distance
fraud. There are three choices for A to launch the distance fraud attack. In
addition, A has to carry out the early-reply strategy (to send each reply before
receiving the challenges) for all choices during the fast phase in order to make
the RTT within the threshold &tmax.

(1) Randomly Reply. A can choose the most naive way to get a probability
of 1

2 for each round by randomly picking the responses regardless of reader’s
challenges. Therefore, the success probability for one round is given by:

Pdis−1 = Pr[A randomly replies Ri] =
1

2
Up to n rounds in the fast phase, the overall success probability is

(
1
2

)n
.

(2) Challenge Guessing. A may perform PRF computation during the pre-
computation stage to get v1, v2, v3, and k, respectively. With this choice, A
needs to guess the reader’s challenges correctly and send the response Ri in
advance. Hence the success probability for one round is given by:

Pdis−2 = Pr[A guesses CiDi correctly]

= Pr[C′
iD

′
i = 00 | CiDi = 00]×Pr[CiDi = 00]

+Pr[C′
iD

′
i = 11 | CiDi = 11]×Pr[CiDi = 11]

+Pr[C′
iD

′
i = 01 or 10 | CiDi = 01]×Pr[CiDi = 01]

+Pr[C′
iD

′
i = 01 or 10 | CiDi = 10]×Pr[CiDi = 10]

=

(
1

4
· 1
4
+

1

4
· 1
4
+

1

2
· 1
4
+

1

2
· 1
4

)
=

3

8

Up to n rounds in the fast phase, the overall success probability is
(
3
8

)n
.
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(3) “Majority Vote” Attack. Although the presence of PRF guarantees
the pure random output each time, it could happen that v1i , v

2
i and ki will have

the same value. By Dirichlet’s Box principle1, at least two of them are the same.

Table 1. “Majority Vote” Attack

v1i 0 0 0 0 1 1 1 1

v2i 0 0 1 1 0 0 1 1

ki 0 1 0 1 0 1 0 1

Success
Probability

1
1

2

3

4

3

4

3

4

3

4

1

2
1

Table 1 shows all possible success probabilities for three registers with respect
to the “Majority Vote” attack. The 1st column provides three registers v1i , v2i ,
and ki, together with the success probability for each i. There are eight different
combinations for three registers in the table (From 2nd to 9th columns). With
this attack, the adversary A can simply select the value which has a majority,
that is, two or three equal registers (Majority wins) and reply this particular
value to the reader. Since ki is determined by either 01 or 10 for CiDi, it has
the higher probability if the majority wins. Thus, the probability that A can
succeed in this case is given by:

Pdis−3 = Pr[Majority Wins]

=

(
1

8
·
(
1 +

1

2
+

3

4
+

3

4
+

3

4
+

3

4
+

1

2
+ 1

))
=

3

4

Up to n rounds in fast phase, the overall success probability is
(
3
4

)n
.

Remark 1. A may choose the “Majority Vote” attack since it provides the high-
est success probability among three different choices in distance fraud attack.

Mafia Fraud Resistance. The tag does not collude with the adversaryA in the
Mafia fraud. A may launch the attack by using one of the following strategies.

(1) Post-ask strategy. By acting as a malicious tag, A first executes the
fast phase with the reader in order to learn the correct challenges CiDi. After
knowing all challengesA pretends to be a fake reader and runs the fast phase with
the legitimate tag so that A can obtain valid response Ri. At last, A relays the
final slow phase. With this strategy, A has to answer to the reader with arbitrary
answers. This strategy has the same probability as in the impersonation fraud.
Thus, the success probability in the post-ask strategy is given by:

Pmaf−1 = Pr[A guesses Ri correctly] =
1

2
For n rounds in fast phase, the overall success probability is

(
1
2

)n
.

1 Dirichlet’s Box principle: Given n boxes and m (m > n) objects, if m objects are
placed into n boxes, at least one box must contain more than one (m/n) object.
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(2) Pre-ask strategy. A needs to pretend to be a fake reader and execute the
fast phase with the tag before the reader to do so. Afterwards, A runs the fast
phase by acting as the malicious tag with the reader and relays the final slow
phase. With this strategy, A needs to transmit the anticipated challenge bits
C′

iD
′
i to the tag before the reader sends out its real challenge CiDi. However,

there are two special cases with this strategy.
(i) A chooses CiDi solely from [00,11,01,10]. Thus, the success probability in

this case is given by:

Pmaf−2 = Pr[A guesses CiDi correctly]

+Pr[A guesses CiDi incorrectly ∧ A randomly replies Ri correctly]

= Pr[A guesses CiDi correctly] +
1

2
[1−Pr[A guesses CiDi correctly]]

=
1

2
[1 +Pr[A guesses CiDi correctly]]

=

(
1

2

(
1 +

3

8

))
=

11

16

The overall success probability is
(
11
16

)n
for n rounds in fast phase. This approach

provides a higher success probability when compared with the post-ask strategy.
But A may choose another special case.

(ii) A only sends C′
iD

′
i=01 (or 10) to the tag in the first fast phase execution

in order to obtain the whole share of k. Then A runs the second fast phase with
the reader. Therefore, A can succeed in this case will be:

Pmaf−3 = Pr[A replies Ri correctly | CiDi = 01 or 10]×Pr[CiDi = 01 or 10]

+Pr[A guesses Ri correctly | CiDi = 00 or 11]×Pr[CiDi = 00 or 11]

=

(
1 · 2

4
+

1

2
· 2
4

)
=

3

4

For n rounds in fast phase, the overall success probability is
(
3
4

)n
.

Remark 2. For any strategy, the success probability is upper bounded by
(
3
4

)n
.

It is obvious that the pre-ask strategy has the higher success probability.

Terrorist Fraud Resistance. In a terrorist fraud attack, the malicious tag
colludes with the adversary who will run the fast phase and relay the last slow
phase on behalf of the malicious tag. The tag could give some sensitive informa-
tion to the adversary so that she could defeat the protocol for one session. To be
more specific, the malicious tag cannot give all registers v1, v2, and k to A, since
A will be able to recover the secret key x by x = v1 ⊕ v2 ⊕ k. But NT and ID′

can be passed to A directly. Hence there are three scenarios to be considered.
(1) A has k and v1 (same probability for k and v2) at hand. When receiving

the challenge CiDi, A knows the exact response from v1i or ki. But A needs
to guess the value of v2i when CiDi =11. Thus, for A has (k, v1) , the success
probability in this situation is given by:
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Pterr−1 = Pr[A guesses Ri correctly | CiDi = 11]×Pr[CiDi = 11]

+Pr[A replies Ri correctly | CiDi �= 11]×Pr[CiDi �= 11]

=

(
1

2
· 1
4
+ 1 · 3

4

)
=

7

8

For n rounds in fast phase, the overall success probability is
(
7
8

)n
(2) A has both v1 and v2. A can reply with good answer when Ci=Di. But

A needs to randomly guess when Ci �=Di since she has no knowledge of k. Then
the success probability in this situation is given by:

Pterr−2 = Pr[A guesses Ri correctly | CiDi = 01 or 10]×Pr[CiDi = 01 or 10]

+Pr[A replies Ri correctly | CiDi = 00 or 11]×Pr[CiDi = 00 or 11]

=

(
1

2
· 2
4
+ 1 · 2

4

)
=

3

4

For n rounds in fast phase, the overall success probability is
(
3
4

)n
(3) It’s the opposite of case (2) when A only obtains k. Therefore, the success

probability in this situation is given by:

Pterr−3 = Pr[A replies Ri correctly | CiDi = 01 or 10]×Pr[CiDi = 01 or 10]

+Pr[A guesses Ri correctly | CiDi = 00 or 11]×Pr[CiDi = 00 or 11]

=

(
1 · 2

4
+

1

2
· 2
4

)
=

3

4

For n rounds in fast phase, the overall success probability is
(
3
4

)n
Distance Hijacking Attack Resistance. We only consider the distance hi-
jacking attack in the single-protocol environment. Under this situation, the ad-
versary A outside the legal authentication region exploits an inside legitimate
tag to execute the fast phase so that A can cheat on its real distance to the
reader. To launch such attack, A first does nothing during the fast phase as she
is far away from the reader. When the fast phase ends, A will impersonate a
fake reader to communicate with the exploited tag in order to get the counter
NT , and tag’s pseudonym ID′. Upon receiving these information, A is going to
act as a fraudulent tag to send NT (untouched) and her own pseudonym ID′

A to
the legitimate reader. Finally, the reader will make decision on acceptance of the
fraudulent tag. It is obvious that A cannot win because she does not have the
secret key x of the exploited tag. Besides, the ID′

A is different so that the output
of the PRF is absolutely different. Therefore, the success probability of A is (12 )

n.

Reader Authentication. Up to now, many distance bounding protocols do not
feature reader authentication. They focus on unilateral authentication where the
tag tries to convince the reader of a statement related identity and the physical
distance between them. They make the assumption that the reader should be
honest, but we would like to argue that this may not be the case when considering
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the Mafia fraud attack, the adversary launches the attack by exchanging the roles
of the reader and a tag. Therefore, it is crucial to support mutual authentication
in distance bounding protocol as well. In fact, our protocol is the one providing
reader authentication by introducing v3. The presence of v3 as one of the three
registers let the tag be able to make a decision on reader’s authenticity.

4 Comparison

In Table 2, we make a comparison between our proposed protocol and others
with respect to several properties: the success probabilities of the Mafia fraud
and terrorist fraud; mutual authentication (MA); tag privacy; number of message
flows in slow phase; real-time tag computation, as well as the pre-computation.

Table 2. Comparison of distance bounding protocols

Mafia Terrorist MA Privacy
# of Msg
Flows

Real-time
Tag Comp

Pre-
Comp

BC [1] ( 1
2
)n No No No 2

1 commit,
1 signature

No

SP [14] ( 1
2
)n No No No 2

1 commit,
1 MAC, ECC

No

HK [2] ( 3
4
)n No No No 2 1 PRF No

MP [7] ( 1
2
)n No Partial No 3 2 Hash No

KA [11] ( 1
2
)n No Partial No 2 1 PRF No

Swiss-Knife [3] ( 1
2
)n ( 3

4
)n Yes Yes 4 3 PRF Partial

YZW [15] ( 3
4
)n No Yes Yes 2 2 PRF No

Our Protocol ( 3
4
)n ( 3

4
)n/( 7

8
)n† Yes Yes 2 0 PRF Yes

† The success probability for the terrorist fraud depends on how many registers the
adversary obtains. There are three situations discussed in Section 3.

As we can see from the table, most protocols achieve the success probability
of

(
1
2

)n
for the Mafia fraud resistance except HK’s [2] and YZW’s [15] since the

absence of the signature in the last slow phase. It might be high risk but more
efficient. MP [7] and KA [11] used mixed challenges in the fast phase that could
converge toward the expected probability of

(
1
2

)n
. Our proposed protocol, which

does not have a signature, has two strategies that yield three different success
probabilities by using two-bit challenges in the fast phase.

Speaking of the terrorist fraud attack, only the Swiss-Knife [3] and ours which
are secure against it. However, [15] is not secure against terrorist fraud when
considering the attack in [18]. Regarding to the distance hijacking attack [6], it
seems that most protocols are secure in the single protocol environment with an
ideal probability except Brands and Chaum’s [1].

Next we consider mutual authentication (MA) of the distance bounding pro-
tocols. Most protocols assume that the reader should be honest, but this may
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not be the case when considering the Mafia fraud attack. Among all previous
protocols in Table 2, only the Swiss-Knife [3] and YZW [15] are mutually au-
thenticated that is achieved in our proposed protocol as well. For MP [7] and KA
[11], their protocols are based on (binary) mixed challenges that enable partially
mutual authentication during the fast phase.

When referring to the privacy of the tag, the Swiss-Knife [3], YZW [15] and
ours support tag privacy protection. Our protocol realizes the privacy by using
an index on tag’s ID in an anonymous way. Note that our protocol requires
only O(1) complexity for achieving privacy in the sense that the reader’s cost
is O(1) PRF, rather than O(n) PRF (For example, in Swiss-Knife [3]) in order
to protect tag’s privacy. Our protocol prevents the de-synchronization attack
with the presence of both TID and TID′. When launching a de-synchronization
attack, the adversary either prevents the tag updating ID′ or prevents the reader
updating TID and TID′. It is obvious that no matter what the adversary does,
the value of ID′ sent by the tag will always be the same as either TID or TID′

so that the tag is synchronized with the reader, and vice versa.
The number of message flows in the slow phase is essential to the protocol

execution time and power consumption. As for most protocols including ours
have only one single slow phase when compared with the Swiss-Knife which
needs four message flows in two slow phases. It is susceptible to much power
consumption for a low-cost tag.

Finally, we make a special comparison in terms of the real-time tag computa-
tion and pre-computation. As all previous proposed protocols do not explicitly
have the pre-computation stage, their protocols must have at least one time-
consuming PRF, hash or signature evaluation in the real-time stage. But for the
Swiss-Knife [3], they state that, one of three PRFs can be pre-computed before
starting the protocol in the sense that the contents of the input for this PRF
are irrelevant to the reader. It means that they still need two computations of
PRFs in real time for achieving mutual authentication. Our proposed protocol,
however, let the tag finish two PRF computations in the pre-computation stage
by using a large capacitor which makes the real-time stage extremely faster than
any of previous protocols.

5 Conclusion

In this paper, we proposed a highly efficient pre-computed RFID distance bound-
ing protocol with tag privacy. It makes use of a large capacitor to store the DC
voltage which can power the tag in order to compute the PRF off-line. Our proto-
col is mutually authenticated and secure against all common attacks in distance
bounding. To the best of our knowledge, our proposed protocol is the first one
that provides online PRF-free for the tag meaning that there is no evaluation
on any PRF during the real-time protocol running which significantly makes the
tag more efficient and low-cost. We also take tag’s privacy into account through
the method of index to search tag’s ID which requires only O(1) complexity for
achieving privacy. We give the detailed security analysis for our protocol and
make a comprehensive comparison against others.
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Abstract. Modern pub/sub systems perform message routing based on the
message content and allow subscribers to receive messages related to their sub-
scriptions and the current context. Both content and context encode sensitive in-
formation which should be protected from third-party brokers that make routing
decisions. In this work, we address this issue by proposing an approach that as-
sures the confidentiality of the messages being published and subscriptions being
issued while allowing the brokers to make routing decisions without decrypting
individual messages and subscriptions, and without learning the context. Further,
subscribers with a frequently changing context, such as location, are able to issue
and update subscriptions without revealing the subscriptions in plaintext to the
broker and without the need to contact a trusted third party for each subscrip-
tion change resulting from a change in the context. Our approach is based on a
modified version of the Paillier additive homomorphic cryptosystem and a novel
group key management scheme. The former construct is used to perform pri-
vacy preserving matching, and the latter construct is used to enforce fine-grained
encryption-based access control on the messages being published. We optimize
our approach in order to efficiently handle frequently changing contexts. We have
implemented our approach in a prototype using an industry strength JMS broker
middleware. The experimental results show that our approach is highly practical.

1 Introduction

The publish/subscribe (pub/sub) paradigm is a well known approach for disseminating
information between multiple interested parties in a decoupled and asynchronous man-
ner [7]. Message producers submit messages to a broker network which routes them
to interested subscribers. Subscribers express their interest by issuing subscriptions.
Content-based pub/sub systems allow subscribers to express their interest based on the
message content. This content can be an arbitrary payload, e.g., a set of attribute-value
(att/val) pairs, XML documents, or combinations of different types. The supported mes-
sage content depends on the pub/sub middleware which performs message routing and
matching. In many systems it is common to use att/val pairs to describe content and to
express subscription filters as logical expressions on these attributes (e.g., MessageType
== StockTickMessage ∧ StockPrice > 38).

Context-sensitive message dissemination extends pub/sub content dissemination by
taking into account the subscriber context [6]. Subscribers express interest in messages

J. Lopez, X. Huang, and R. Sandhu (Eds.): NSS 2013, LNCS 7873, pp. 465–478, 2013.
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based on their current context, e.g., their current location. A major challenge for context-
sensitive message dissemination is that the context of subscribers, and thus the sub-
scriptions, change frequently over time, e.g., as the location changes. Context-dependent
information dissemination is however a crucial requirement in many application scenar-
ios. One example is a traffic information system (TIS) where information about the traffic
situation is provided. Due to the characteristics of this scenario a pub/sub middleware
supporting context-sensitive message dissemination is an appropriate infrastructure. In-
formation about the current traffic situation is published and participants express their
interest in information with subscriptions. As subscribers move and thus their contexts
constantly change, subscriptions need to change accordingly, e.g., subscribers would
typically be interested in traffic information along the route they are traveling.

A major shortcoming of existing context-based pub/sub approaches is that they do
not assure privacy. In such systems, the broker receives subscriptions in plaintext and is
thus aware of the context of subscribers. In case of the TIS example, this implies that
brokers are aware of the exact position of subscribers. In order to assure privacy, we
propose an approach to construct a privacy-preserving context-based pub/sub system.
We extend and improve our preliminary work [15] in order to propose a new security
model and construct our privacy preserving context-based pub/sub system.

In our previous model [15], each subscriber is required to submit a new subscrip-
tion via a secure channel to a trusted third-party (TTP) that encrypts the subscription
in a special way. This special encryption operation is called blinding and the encrypted
value blinded value. Such blinded values are semantically secure (IND-CPA secure)
where two blindings of the same value result in two different blinded values. The sub-
scriber then registers with such blinded subscriptions at an untrusted broker. Such an
approach allows the use of honest-but-curious brokers1 to perform matching and routing
on encrypted notifications using the blinded subscriptions. Although such an approach
is privacy preserving, it is not suitable for context-based pub/sub systems. The reason is
that as the context of subscribers changes frequently, subscriptions have to be updated
often and involving a TTP to blind every subscription is not any longer feasible. Fur-
ther, the previous model does not support fine-grained access control of notifications.
Thus, a new security model and mechanisms are required whereby subscribers are al-
lowed to create their own blinded subscriptions without compromising the security of
the overall system and enforce fine-grained access control of notifications. In this work,
we achieve our first objective by allowing authorized subscribers to create blinded sub-
scriptions after obtaining some public security parameters at the time of registration.
After the initial interactions, subscribers are not required to contact a TTP unless the
public security parameters are updated. We achieve the second objective by introducing
a fine-grained encryption-based access control mechanism. An advantage of such an
approach compared to approaches based on shared secrets is that no secret information
is given to subscribers to generate blinded subscriptions and therefore our approach
avoids the problem of leakage of shared secrets by malicious subscribers.

Each notification in our approach is encrypted twice. The first encryption, referred to
as blinding operation, is performed to blind each attribute value in the notification that is

1 Brokers are obliged to follow the protocol, but they are curious to learn as much as possible
during the execution of the protocol.
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used by brokers to perform matching operations. The notification blinding is similar to
the subscription blinding operation mentioned earlier except that the two operations use
different blinding parameters so that certain parameters cancel off when a blinded noti-
fication and a subscription are homomorphically added by multiplying them. It should
be noted that brokers cannot decrypt individual blinded values and they only learn a
randomized difference between subscription and notification values when they perform
matching operations. The second encryption, referred to as broadcast encryption, is
performed to encrypt the payload of notifications based on fine-grained access control
policies (ACPs). According to current initiatives on identity management [17], fine-
grained ACPs are specified using the attributes of subscribers, referred to as identity
attributes. Our broadcast encryption is based on a recently proposed group key man-
agement (GKM) scheme, referred to as attribute based GKM (AB-GKM) [20,14,16].
In the AB-GKM scheme, unlike conventional GKM schemes [2,9], subscribers are al-
lowed to dynamically derive the data decryption keys based on the attribute credentials
they possess and some public information provided by publishers.

We also provide support for multiple publishers that produce messages with over-
lapping attribute sets; a blinded subscription may match notifications from several pub-
lishers. Especially for context-based pub/sub, it is crucial to support multiple publishers
located in the same context, e.g., the same geographical region. We thus introduce con-
text managers as TTPs in our approach. Context managers provide publishers as well
as subscribers with information required to publish encrypted/blinded notifications and
to issue blinded subscriptions. Once publishers and subscribers obtain the required se-
curity parameters, the context manager is responsible for controlling the level of pro-
tection. It decides when to renew and redistribute security parameters to publishers and
subscriber in order to reduce the risk of adversaries learning the content of notifications
and subscriptions.

We implement our scheme based on the Java Message Service (JMS), the de-facto
industry standard for messaging. We chose Apache ActiveMQ as JMS broker and ex-
tended it to support subscription evaluation on encrypted data. This allows us to perform
a realistic evaluation of our approach since ActiveMQ is used in many real-world pro-
duction pub/sub systems.

Our paper is structured as follows. Section 2 introduces the cryptographic constructs
used in our approach. Section 3 introduces context-based pub/sub systems and presents
an overview of our solution. Sections 4 and 5 present the technical details of the mod-
ified Paillier cryptosystem which is used to blind subscriptions and notifications, and
our overall scheme. Section 6 shows experimental results for various algorithms and
the overall system implemented in Apache ActiveMQ. Section 7 discusses related work
and Section 8 concludes the paper.

2 Background

2.1 Paillier Homomorphic Cryptosystem

The Paillier homomorphic cryptosystem is a public key cryptosystem by Paillier [18]
based on the “Composite Residuosity assumption (CRA)”. The Paillier cryptosystem
is homomorphic in that, by using a public key, the encryption of the sum m1 + m2 of
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two messages m1 and m2 can be computed from the encryption of m1 and m2. Our
approach and protocols are inspired by how the Paillier cryptosystem works. Hence, we
provide some internal details of the cryptosystem below so that readers can follow the
rest of the paper.

Key Generation
Set n = pq, where p and q are two large prime numbers. Set λ = lcm(p−1, q−1), i.e.,
the least common multiple of p − 1 and q − 1. Randomly select a base g ∈ Z/(n2)×

such that the order of gp is a multiple of n. Such a gp can be efficiently found by
randomly choosing gp ∈ Z/(n2)×, then verifying that gcd(L(gλp (mod n2), n)) =
1, where L(u) = (u− 1)/n. for u ∈ Sn = {u < n2|u = 1 (mod n)}. In this case, set

μ =
(
L(gλp (mod n2))

)−1
(mod n). The public encryption key is a pair (n, gp). The

private decryption key is (λ, μ), or equivalently (p, q, μ).

Encryption E(m, r)
Given plaintext m ∈ {0, 1, . . . , n − 1}, select a random r ∈ {1, 2, . . . , n − 1}, and
encrypt m as E(m, r) = gmp · rn (mod n2). When the value of r is not important to
the context, we sometimes simply write a short-hand E(m) instead of E(m, r) for the
Paillier ciphertext of m.

Decryption D(c)
Given ciphertext c ∈ Z/(n2)×, decrypt c as D(c) = L(cλ (mod n2)) · μ (mod n).

In the construction of our pub/sub system, the Paillier homomorphic cryptosystem is
used in a way that public and private keys are judiciously distributed among publish-
ers, subscribers, and brokers such that the confidentiality and privacy are assured based
on homomorphic encryption. A detailed description of the construction is presented in
Section 4.

2.2 Attribute Based Group Key Management

Broadcast Group Key Management (BGKM) schemes [24,20] are a special type of
GKM scheme whereby the rekey operation is performed with a single broadcast with-
out requiring private communication channels. Unlike conventional GKM schemes,
BGKM schemes do not give subscribers private keys. Instead subscribers are given
a secret which is combined with public information to obtain the actual private keys.
Such schemes have the advantage of requiring a private communication only once for
the initial secret sharing. The subsequent rekeying operations are performed using one
broadcast message. Further, in such schemes achieving forward and backward security
requires only to change the public information and does not affect the secrets given
to existing subscribers. However, BGKM schemes do not support group membership
policies over a set of attributes. A recently proposed attribute based GKM (AB-GKM)
scheme [13] provides all the benefits of BGKM schemes and also supports attribute
based access control policies (ACPs).

Subscribers are required to show their identity attributes to the group controller to
obtain secrets using the AB-GKM scheme. In order to hide the identity attributes from
the group controller while allowing only valid subscribers to obtain secrets, we utilize
oblivious commitment based envelope (OCBE) protocols [8]. We omit the details of the
OCBE protocols due to the page limit.
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The idea behind the AB-GKM scheme is as follows. A separate BGKM instance for
each attribute condition, which is a predicate over an attribute, is constructed. The ACP,
a Boolean expression over attribute conditions, is embedded in an access structure T . T
is a tree with the internal nodes representing threshold gates and the leaves representing
BGKM instances for the attributes. T can represent any monotonic policy. The goal
of the access tree is to allow deriving the group key for only the subscribers whose
attributes satisfy the access structure T .

The AB-GKM scheme consists of five algorithms: Setup, SecGen, KeyGen, Key-
Der and ReKey. Setup initializes the system. SecGen generates a unique secret for
each attribute condition. For a given ACP, KeyGen creates a symmetric key, public
information and an access structure. KeyDer derives the symmetric key given one or
more secrets and public information. ReKey regenerates the symmetric key and public
information.

3 Overview

Our approach requires a modification of the matching algorithm inside the message
broker to support the evaluation of blinded subscriptions against blinded notifications
without decrypting them. Our system also supports fine-grained encryption based ac-
cess control over notifications. Publishers encrypt notifications so that only authorized
subscribers can derive the key and decrypt the notifications. In order to assure privacy,
publishers and subscribers must perform an initialization to obtain secrets and pub-
lic parameters that they later need for encryption and blinding operations. In this sec-
tion, we give an overview of the modified Paillier cryptosystem and our context-based
pub/sub model and present our system architecture. We describe the initialization phase
as well as the regular runtime behavior. Finally, we present the trust model assumed in
our approach.

3.1 Modified Paillier Cryptosystem

In our work, we adapt the Paillier cryptosystem so that brokers can perform match-
ing operations without decrypting individual subscriptions and notifications. A high
level overview of the modifications we perform to the Paillier cryptosystem and the
rationale behind our modifications are provided below. We first shift the computation
towards encryption so that decryption is computationally more efficient than the Pail-
lier decryption. We also allow brokers to perform certain operations without knowing
the private key. Such shifting of computation improves the performance of the overall
pub/sub system since publishers and subscribers, which perform encryption, are typi-
cally distributed to many nodes while brokers have to handle notifications from many
publishers and subscribers. Thus, by making decryption efficient, we eliminate a bot-
tleneck in the system and improve the overall efficiency. We also blind the encrypted
values and make μ, a parameter of the Paillier cryptosystem, public so that individual
values cannot be decrypted, but a blinded subscription and a blinded notification can be
multiplied together to obtain the difference. In order to make the correct matching de-
cision by calculating the difference, we limit the domain size (l bits) of the subscription
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and notification values. We assume that l is much smaller compared to the plaintext
space of the Paillier cryptosystem, n. For example, the subscription and notification
for the attribute age, which may take values from 0 to 200, can be represented using a
domain size of 8 bits. Since the domain size is much smaller than the plaintext space,
brokers can make the matching decision by calculating the difference as follows: If the
difference between a notification and a subscription value is in the first half of the plain-
text space, the difference is positive and the notification value is greater than or equal to
the subscription value. Otherwise, the difference is negative and the notification value
is less than the subscription value.

The above modifications allow brokers to make matching decisions without learn-
ing the actual values. However the modified matching protocol still reveals the actual
difference between the notification value and subscription values which leaks informa-
tion about these values. In order to address this issue, we introduce controlled random
values to the subscription and notification blinding operations so that the difference is
randomized. The brokers can still make correct matching decisions by comparing which
half the computed difference falls in the plaintext space, without however learning the
actual difference.

3.2 System Architecture

We assume that logical expressions based on att/val pairs are used by subscribers to
express their interest in notifications. We distinguish between two sets of attributes,
namely context set and static set, and an additional payload which by itself can be a set
of att/val pairs. The context set contains attributes representing the subscriber context,
e.g., location. The static set represents general attributes describing the message, e.g.,
message type.

Our approach consists of four entities (see Figure 1a and Figure 1b): publisher, sub-
scriber, broker, and context manager. In order to assure the privacy of subscriptions,
subscribers must hide the content of their subscriptions from brokers. Further, since
the attributes in the context set frequently change, subscribers must be able to update
their subscriptions without contacting a TTP, referred to as the context manager. In our
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approach, publishers and subscribers communicate with context managers only either
during the initialization phase or when security parameters change in order to obtain
secrets and public parameters.

A context manager is responsible for a certain context in the system. The context
is described by a set of attributes, such as location with attributes latitude and longi-
tude. To assure the privacy of the context, subscribers must be able to issue and update
subscriptions with blinded context set attribute values and publishers must be able to
publish notifications and blind context set attribute values.

When publishers join the system and want to publish messages for a certain context,
they first contact the responsible context manager. After successful authentication the
context manager provides some security parameters and a set of secrets corresponding
to valid subscribers to the publishers which allow them to blind and encrypt notifi-
cations. The blinding operation is performed using the modified Paillier cryptosystem
described in the next section and the encryption is performed using the symmetric key
generated using the AB-GKM’s key generation algorithm.

A similar bootstrapping process is necessary for subscribers. They contact the con-
text manager and receive some other security parameters which allow them to issue
blinded subscriptions for a certain context and secrets for identity attributes they have.
Further, our scheme allows the subscribers to update their subscriptions within a context
without contacting the context manager.

Brokers only receive blinded and encrypted notifications, and blinded subscriptions.
Upon receiving a notification, they execute the matching operation on the blinded no-
tification and the blinded subscriptions to make forwarding decisions. If a notification
matches a subscription, the broker strips the blinded portion of the notification and
sends only the encrypted notification to matching subscribers. It should be noted that
brokers do not learn the individual notification and subscription values during matching
operations.

Once subscribers receive encrypted notifications, using the secrets obtained from the
context manager during the initialization phase, they can derive the decryption key using
the AB-GKM’s key derivation algorithm. The AB-GKM scheme makes sure that only
valid subscribers can derive the key and hence decrypt notifications. Since subscribers
are not given decryption keys during the registration and they must dynamically derive
the keys, our approach can efficiently handle subscriber revocations and additions as
well as access control policy changes without affecting the existing subscribers.

3.3 Trust Model

We consider threats and assumptions from the point of view of publishers and
subscribers with respect to third-party brokers. We assume that brokers are honest but
curious; they perform pub/sub operations correctly, but are curious to know the notifi-
cations and subscriptions. In other words, brokers are not trusted for the confidentiality
of the notifications and subscriptions. The context manager is fully trusted. Publishers
are trusted to keep the secrets obtained from the context manager confidential and to
perform notification blinding and encryption as specified. Subscribers are not trusted in
our system. They can decrypt encrypted notifications only if they have valid credentials.
Brokers may collude with one another as well as with malicious subscribers.
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4 Modified Paillier Cryptosystem

In this section we provide the details of our modified Paillier cryptosystem.

Making μ Public
Recall that in the original Paillier cryptosystem, the tuple (λ, μ) is the private key.
However, μ does not need to be private since it is hard to decrypt an encrypted message
by only knowing μ. In order to decrypt, one needs to know both λ and μ. It can be
shown that if a probabilistic polynomial time (PPT) adversary can obtain λ from μ, it
can solve the discrete logarithm problem (DLP). Since DLP is a known hard problem,
it is hard to obtain λ from μ. Hence, we can make μ public while achieving the same
security guarantees as the unmodified Paillier cryptosystem. We take advantage of this
fact in order to shift the computation towards encryption and make decryption light
weight.

Shifting the Computation
With the above modification, the new public and private keys are (n, gp, μ) and λ re-
spectively. First, we modify the Paillier cryptosystem so that anyone can decrypt using
the new public key, but only those holding the private key can encrypt. This is similar to
how digital signatures work. The following equations show the modifications to the en-
cryption and decryption algorithms: Encryption E′(m, r, λ) = E(m, r)λ = gmλ

p · rnλ
(mod n2) = c. and Decryption D(c) = L(c (mod n2)) · μ (mod n).

It should be noted that one can perform all the homomorphic operations on the mod-
ified Paillier cryptosystem similar to the unmodified Paillier cryptosystem as the above
modification only shift the computation from decryption to encryption.

Computing Differences (but not Individual Values)
With the shift of computation described above, anyone can find the difference by sim-
ply decrypting each value. However, such an approach does not assure the privacy of
individual values. Therefore, we introduce an additional parameter to the encryption
operation in order to allow one to compute the difference while at the same time not
allowing the decryption of individual values.

Assume that there are two values x1 and x2. We perform the following modifica-
tion to the encryption operation so that a decryptor can learn the difference (x1 − x2)
without learning either x1 or x2. We call the modified encryption as blinding operation.
The modified encryption E′′(x1, x2) outputs x′

1 and x′
2 where x′

1 = gt · E′(x1, r1)
(mod n2) and x′

2 = g−t · E′(−x2, r2) (mod n2).
Notice that even though the decryptor knows μ, it can decrypt neither x′

1 nor x′
2 as

they are modular multiplied with gt and g−t respectively. Due to the additive homo-
morphic property, the following holds: x′

1 · x′
2 = E′(x1 − x2, r3).

Since the multiplication of x′
1 and x′

2 cancels the blinding parameters, anyone can
compute the difference as follows using the public key of the modified Paillier cryp-
tosystem: D(x′

1 · x′
2) = x1 − x2.

Allowing Comparison
Recall that in Section 3.1 we introduced the notion of domain size which is much
smaller than the plaintext space of the Paillier cryptosystem. According to our assump-
tions, 0 ≤ x1, x2 ≤ 2l where l is the domain size and 2l << n. Let the difference of
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x1 and x2 be d. Due to the restriction on the domain size, d is either between 0 and 2l

or n − 2l and n. We use this fact to compare the numbers; if d ≤ 2l, then x1 ≥ x2 and
if d > n − 2l, then x1 < x2.

During the above comparison process, the party performing the comparison learns
the difference d which leaks certain information about the actual values. Hence, the
comparison is not privacy preserving. We introduce a technique to randomize the dif-
ference so that it is difficult to learn the difference yet the party can learn the exact
comparison result.

Notice that in the above calculation, we only utilize a small range of the plaintext
space to make the comparison decision. We utilize the unused space in the plaintext
space in the above calculation to randomize the difference while still allowing one to
make the correct matching decision. The key idea is to expand the difference from
0 − 2l to 0 − n/2 and (n − 2l) − n to n/2 − n by introducing controlled random
values to the encryption operation. We introduce two random values rp and rq during
the encryption operation shown below: x′′

1 = gt · E′(x1, r1)
rpE′(rq) (mod n2) and

x′′
2 = g−t · E′(−x2, r2)

rp (mod n2). The decryption results in the following output:
D(x′′

1 · x′′
2 ) = rp(x1 − x2) + rq = d′.

rp and rq are randomly selected so that d′ ≤ n/2 if x1 ≥ x2 and d′ > n/2 if
x1 < x2. Each time a party performs the comparison it gets a different d′ due to the
random values and thus the difference preserves the privacy of the individual values
under comparison.

5 Privacy-Preserving Brokering Scheme

In this section, we describe in detail our approach to construct a privacy preserving
context-aware publish subscribe system using the modified Paillier cryptosystem pre-
sented in Section 4 and the AB-GKM scheme.

As introduced in Section 3, there are four entities in our system: context manager,
publisher, subscriber, and broker. The context manager acts as a TTP and generates
the parameters for the modified Paillier cryptosystem and manages secrets obtained by
the SecGen algorithm of the AB-GKM scheme to subscribers based on the identity
attributes they possess. The context manager maintains a set of contexts C and a set of
secrets issued to subscribers. Each context Ci ∈ C is a tuple of the following form:
Ci = 〈λi, μi, ti, ri〉, where λi and μi are Paillier parameters for E′ and D′ algorithms.
ti and ri are random values.

Brokers match notifications with subscriptions within the same context only. μi val-
ues are public. λi and ti values are private to the context manager.

Subscriber Registration
Each subscriber registers with the context manager. Let the context of a random sub-
scriber be Ci. During the registration, the subscriber receives the following values from
the context manager: E′(−ri), E′(−1), and g−ti · E′(−ri).

These parameters are used by the subscriber to blind subscriptions. Since μi is public,
the subscriber may decrypt E′(−ri) using D′ and obtain ri. However, the subscriber
can recover neither g−ti nor ti from g−ti · E′(−ri).
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Using the SecGen algorithm of the AB-GKM scheme, each subscriber i also obtains
secrets sij for each identity attribute j they possess from the context manager. These
secrets are later used to derive the decryption key using the key derivation (KeyDer)
algorithm of the AB-GKM scheme and decrypt notifications.

It should be noted that the identity attributes are not revealed to the context manager
in plaintext as the SecGen algorithm internally utilizes the OCBE protocols. Thus the
privacy of the identity attributes are preserved from the context manager.

Publisher Registration
Each publisher also registers with the context manager. Let the context of a random
publisher be Ci. During the registration, the publisher receives the following values
from the context manager: E′(ri), E′(1), and gti · E′(ri).

Similar to subscriber registration, these parameters are used by the publisher to blind
notifications. Since μi is public, the publisher may decrypt E′(ri) using D′ and obtain
ri. Notice that the context manager may provide E′(1) and ri, and allow the publisher to
compute E′(ri) homomorphically instead of providing the value directly. Also, notice
that the publisher can recover neither gti nor ti from gti · E′(ri).

In addition to the above modified Paillier cryptosystem parameters, each publisher
also obtains the set of secrets issued to subscribers using the SecGen algorithm. These
secrets are used to selectively encrypt notifications based on the identity attributes that
subscribers possess. The publisher first uses the key generation (KeyGen) algorithm of
the AB-GKM scheme to generate the encryption key based on these secrets and then
encrypts the notifications using the generated key. Notice that these secrets do not reveal
the actual identity attributes of subscribers to publishers. Thus the identity attributes of
subscribers are preserved from publishers as well.

Notifications
Assume that a publisher wants to publish a notification for the attributes a1 and a2 with
values v1 and v2 respectively. The publisher first blinds v1 and v2 to create v′1 and v′2
respectively using the modified Paillier cryptosystem presented in Section 4. We show
the blinding operation for a general value v as follows: v′ = gti · E′(ri) · E′(ri(v −
1)) ·E′(rv) = gti ·E′(riv+ rv), where rv is a controlled random value selected by the
publisher. E′(ri(v − 1)) is homomorphically computed using E′(ri). Notice that this
value can be computed efficiently using fast multiplication.

Based on the ACP and the secrets issued to subscribers, the publisher generates the
encryption key k using the KeyGen algorithm of the AB-GKM scheme. It then encrypts
the payload of the notification (a1 = v1, a2 = v2) using the key k. We denote the
encrypted payload as Ek(payload). The publisher sends the blinded and encrypted
notification ((a1 = v′1, a2 = v′2), Ek(payload)) to brokers. Notice that brokers cannot
decrypt any of the blinded values as well as the encrypted payload.

An advantage of having two sets of encrypted values for each notification is that
our approach allows to perform privacy preserving matching and enforce fine-grained
ACPs independently.
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Subscriptions
Assume that a subscriber wants to subscribe for the attribute a1 with the value x. The
subscriber blinds x and creates x′ as follows: x′ = g−ti · E′(−ri) · E′(ri(1 − x)) =
g−ti · E′(−rix). E′(ri(1− x)) is homomorphically computed using E′(−ri).

The tuple (a, x′, α), where α = {<,>}, is sent to brokers. Similar to the blinded
notifications, notice that brokers cannot decrypt x′.

The tuple (a, x′, α) represents a single attribute condition and we call such a sub-
scription an atomic subscription. A subscription, in general, can be a Boolean expres-
sion over a set of atomic subscriptions and is called a composite subscription. Notice
that the atomic subscription intentionally leaves the equality comparison operator. The
motivation behind such a scheme is to further hide subscriptions and notifications from
brokers. In our scheme, equality subscriptions are performed using range queries so that
brokers cannot distinguish between equality subscriptions and range queries. In order
to submit an equality subscription for attribute a with the value x, the subscriber sub-
mits the query (a, x1, >) ∧ (a,x2, <), where x1 and x2 are the blinded values of x − 1
and x+1. Since the blinded values are semantically secure, the conjunctive query does
not reveal any information about the range and therefore brokers cannot distinguish an
equality subscription from a general range subscription.

Broker Matching
For each context Ci, brokers receive μi. Assume that for the context Ci, a broker has
received the blinded notification and subscription values v′1 and x′ respectively for the
attribute a1. As mentioned above, we emphasize that the broker can decrypt neither v′1
nor x′. As described in Section 4, the broker computes the randomized difference d′ as
follows: d′ = D′(v′ · x′) = ri(v − x) + rv

It decides v1 > x if d′ ≤ n/2 and d′ �= 0, v1 < x otherwise. The above matching
algorithm is described for an atomic subscription. Usually notifications contain more
than one attribute and the broker has to match such notifications with either atomic
or composite subscriptions. The matching for a composite subscription is performed
by evaluating each atomic subscription in the subscription and evaluating the Boolean
expression. After successful matching, the broker forwards only the encrypted payload
Ek(payload) to matching subscribers. Subscribers having valid credentials can derive
the key k using the KeyDer algorithm of the AB-GKM scheme and access the payload
of the notification.

6 Implementation and Evaluation

We extended Apache ActiveMQ, a production strength and widely used messaging mid-
dleware, with our proposed mechanisms for privacy preserving pub/sub. We used a
distributed setup with one 8 core and one 16 core Intel Xeon machine as message gen-
erating clients connected to an 8 core Intel Xeon 3.5 GHz machine running Linux 2.6
that acts as our extended ActiveMQ broker. An extended discussion of the evaluation is
presented in our technical report [11].

Figures 2a, 2b, and 2c show CPU utilization and latency for the CONSTANT sce-
nario where a constant number of entities are used.



476 M. Nabeel et al.

●

●

●

●

●

0 500 1000 1500 2000 2500

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

CPU Utilization Broker

Messages per Second

C
P

U
 U

ti
liz

a
ti
o
n

● Plain

Enc 32

Enc 512

Enc 1024

Enc 2048

(a) CPU Broker

●
●

●

●

●

0 500 1000 1500 2000 2500

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

CPU Utilization Client
Normalized to Generator Client I

Messages per Second

C
P

U
 U

ti
liz

a
ti
o
n

● Plain

Enc 32

Enc 512

Enc 1024

Enc 2048

(b) CPU Client

● ●

●

●

●

0 500 1000 1500 2000 2500

0
5

1
0

1
5

2
0

2
5

Latency

Messages per Second

L
a
te

n
c
y
 [
m

s
]

● Plain

Enc 32

Enc 512

Enc 1024

(c) Latency

Fig. 2. Results CONSTANT Scenario: CPU Utilization and Latency for Different Message Rates
and Blinding Strength

Plain Enc 32 Enc 1024

Broker Utilization with Dynamic Subscribers

Encryption Strength

C
P

U
 U

til
iz

at
io

n 
pe

r 
(M

es
sa

ge
s 

pe
r 

S
ec

on
d)

0e
+

00
1e

−
04

2e
−

04
3e

−
04

4e
−

04
5e

−
04

6e
−

04
7e

−
04

Static
Low Dynamics
High Dynamics

(a) DYNAMIC: CPU Broker

Plain Enc 32 Enc 1024

Client Utilization with Dynamic Subscribers
Normalized to Generator Client I

Encryption Strength

C
P

U
 U

ti
liz

a
ti
o
n
 p

e
r 

(M
e
s
s
a
g
e
s
 p

e
r 

S
e
c
o
n
d
)

0
.0

0
0

0
0

.0
0

0
2

0
.0

0
0

4
0

.0
0

0
6

0
.0

0
0

8
0

.0
0

1
0

0
.0

0
1

2
0

.0
0

1
4

Static

Low Dynamics

High Dynamics

(b) DYNAMIC: CPU Client

● ● ● ● ● ●

1 2 3 4 5 6

0
.0

0
0

0
.0

0
1

0
.0

0
2

0
.0

0
3

0
.0

0
4

0
.0

0
5

CPU Utilization for Different Filter Lenghts
Broker and Client

Selector Length

C
P

U
 U

ti
liz

a
ti
o
n
 p

e
r 

(M
e
s
s
a
g
e
s
 p

e
r 

S
e
c
o
n
d
)

● Broker Plain

Broker Enc 1024 

Client Enc 1024

(c) COMPLEXITY: Different
Selector Length

Fig. 3. Results DYNAMIC and COMPLEXITY Scenarios: Frequent Re-Subscriptions and Dif-
ferent Filter Lengths

Figures 3a and 3b show the CPU utilization for the DYNAMIC scenario where sub-
scribers leave and join the system at a certain rate to simulate context changes and user
churn. The results show that the additional overhead of joining subscribers is not the
factor that dominates CPU utilization at the broker. Further, the increase occurs inde-
pendent of blinding which shows that the overhead of joining is inherent to the broker.
On the client side CPU utilization is increased by about one third in the High Dynamics
configuration compared to the Static configuration.

The results for the COMPLEXITY scenario, where subscribers use different message
selector lengths, are shown in Figure 3c. For unencrypted subscriptions an increase in
CPU utilization is not observable. For blinded subscriptions the CPU utilization of the
broker increases slightly with increasing complexity. The utilization on the client side
increases faster since for each message all attributes have to be blinded, but the broker
does not necessarily evaluate the whole message selector.
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7 Related Work

In this section, we compare our approach with existing work on secure content based
pub/sub systems, and search over encrypted data.

Secure Content Based pub/sub Systems: Most of prior work on data confidentiality
in the context of content based pub/sub systems is based on the assumption that brokers
are trusted with respect to the privacy of the subscriptions [1,22,12]. However, when
such an assumption does not hold, both publication confidentiality and subscription
privacy are at risk. Further, such approaches limit brokers’ ability to make routing deci-
sions based on the content of the messages and thus their applicability is very limited.
Approaches have also been proposed to assure confidentiality/privacy in the presence
of untrusted third-party brokers. These approaches however suffer from several limita-
tions [19,23,10,5]: inaccurate content delivery, because of the limited ability of brokers
to make routing decisions based on content; weak security protocols; lack of privacy
guarantees. For example, some of these approaches are prone to false positives, that is,
sending irrelevant content to subscribers.

Search over Encrypted Data: Search on encrypted data is a privacy-preserving tech-
nique used in the outsourced storage model where a user’s data are stored on a third-
party server and encrypted using the user’s public key. The user can use a query in the
form of an encrypted token to retrieve relevant data from the server, whereas the server
does not learn any more information about the query other than whether the returned
data matches the search criteria. There have been efforts to support simple equality
queries [21,3] and more recently complex ones involving conjunctions and disjunctions
of range queries [4]. These approaches cannot be applied directly to the pub/sub model.

8 Conclusions

We proposed an approach to construct a privacy preserving context-based pub/sub sys-
tem. Our approach assures the confidentiality of notifications and subscriptions from
third-party brokers while allowing the brokers to perform matching operations. Further,
publishers are able to enforce fine grained ACPs over encrypted notifications. Our so-
lution is based on a modified Paillier cryptosystem and a recent group key management
scheme. Unlike the existing approaches, in our approach, publishers and subscribers are
able to generate notifications and subscriptions without contacting a TTP. We imple-
mented our approach in ActiveMQ and the experimental results show that our approach
is practical and efficient. As part of future work, we plan to investigate performance
improvement techniques and specifically the trade-off between subscriber privacy and
the message routing efficiency.

References

1. Bertino, E., Carminati, B., Ferrari, E., Thuraisingham, B., Gupta, A.: Selective and authentic
third-party distribution of XML documents. IEEE TKDE 16(10), 1263–1278 (2004)

2. Bertino, E., Ferrari, E.: Secure and selective dissemination of XML documents. ACM
TISS 5(3), 290–331 (2002)



478 M. Nabeel et al.

3. Boneh, D., Di Crescenzo, G., Ostrovsky, R., Persiano, G.: Public key encryption with key-
word search. In: Cachin, C., Camenisch, J. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp.
506–522. Springer, Heidelberg (2004)

4. Boneh, D., Waters, B.: Conjunctive, subset, and range queries on encrypted data. In: Vadhan,
S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 535–554. Springer, Heidelberg (2007)

5. Choi, S., Ghinita, G., Bertino, E.: A privacy-enhancing content-based publish/Subscribe
system using scalar product preserving transformations. In: Bringas, P.G., Hameurlain, A.,
Quirchmayr, G. (eds.) DEXA 2010, Part I. LNCS, vol. 6261, pp. 368–384. Springer, Heidel-
berg (2010)

6. Cugola, G., Margara, A., Migliavacca, M.: Context-aware publish-subscribe: Model, imple-
mentation, and evaluation. In: ISCC (2009)

7. Eugster, P., Felber, P.A., Guerraoui, R., Kermarrec, A.: The many faces of publish/subscribe.
ACM Computing Surveys 35(2), 114–131 (2003)

8. Li, J., Li, N.: OACerts: Oblivious attribute certificates. IEEE TDSC 3(4), 340–352 (2006)
9. Miklau, G., Suciu, D.: Controlling access to published data using cryptography. In: VLDB

(2003)
10. Minami, K., Lee, A.J., Winslett, M., Borisov, N.: Secure aggregation in a publish-subscribe

system. In: WPES (2008)
11. Nabeel, M., Appel, S., Bertino, E., Buchmann, A.: Privacy preserving context aware publish

subscribe systems. Technical Report 2013-1, Purdue University, CERIAS (2013)
12. Nabeel, M., Bertino, E.: Secure delta-publishing of XML content. In: ICDE (2008)
13. Nabeel, M., Bertino, E.: Towards attribute based group key management. In: CCS (2011)
14. Nabeel, M., Bertino, E., Kantarcioglu, M., Thuraisingham, B.M.: Towards privacy preserving

access control in the cloud. In: CollaborateCom (2011)
15. Nabeel, M., Shang, N., Bertino, E.: Efficient privacy preserving content based publish sub-

scribe systems. In: SACMAT (2012)
16. Nabeel, M., Shang, N., Bertino, E.: Privacy preserving policy based content sharing in public

clouds. In: IEEE TKDE (2012)
17. OpenID, http://openid.net/ (last accessed: July 18, 2012)
18. Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In:

Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg
(1999)

19. Raiciu, C., Rosenblum, D.S.: Enabling confidentiality in content-based publish/subscribe in-
frastructures. In: Securecomm (2006)

20. Shang, N., Nabeel, M., Paci, F., Bertino, E.: A privacy-preserving approach to policy-based
content dissemination. In: ICDE (2010)

21. Song, D.X., Wagner, D., Perrig, A.: Practical techniques for searches on encrypted data. In:
SP (2000)

22. Srivatsa, M., Liu, L.: Securing publish-subscribe overlay services with eventguard. In: CCS
(2005)

23. Srivatsa, M., Liu, L.: Secure event dissemination in publish-subscribe networks. In: ICDCS
(2007)

24. Zou, X., Dai, Y., Bertino, E.: A practical and flexible key management mechanism for trusted
collaborative computing. In: INFOCOM (2008)

http://openid.net/


A New Unpredictability-Based

RFID Privacy Model

Anjia Yang1, Yunhui Zhuang1, Duncan S. Wong1, and Guomin Yang2

1 City University of Hong Kong, Hong Kong
{ayang3-c,yhzhuang2-c}@my.cityu.edu.hk,

duncan@cityu.edu.hk
2 University of Wollongong, Australia

gyang@uow.edu.au

Abstract. Ind-privacy and unp-privacy, later refined to unp∗-privacy,
are two different classes of privacy models for RFID authentication proto-
cols. These models have captured the major anonymity and untraceabil-
ity related attacks regarding RFID authentication protocols with privacy,
and existing work indicates that unp∗-privacy seems to be a stronger no-
tion when compared with ind-privacy. In this paper, we continue study-
ing the RFID privacy models, and there are two folds regarding our
results. First of all, we describe a new traceability attack and show that
schemes proven secure in unp∗-privacy may not be secure against this
new and practical type of traceability attacks. We then propose a new
unpredictability-based privacy model to capture this new type of at-
tacks. Secondly, we show that this new model, where we called it the
unpτ -privacy, is stronger than both unp∗-privacy and ind-privacy.

Keywords: RFID, privacy models, mutual authentication protocol.

1 Introduction

RFID (Radio Frequency Identification) technology has been widely applied in
many applications such as payments, supply chain management, tracking goods,
and electronic passports. Generally speaking, an RFID system comprises a reader,
a set of tags and a database. RFID tags authenticate themselves to an RFID
reader through an authentication protocol and the reader may also need to au-
thenticate itself to the tags if mutual authentication is required. However, there
may exist privacy issues if the authentication protocol is not designed with a
proper privacy protection mechanism. We mainly focus on the RFID tags’ pri-
vacy since once the tags’ privacy is disclosed, their owners or bearers will also
suffer from privacy problems. To keep the tags’ privacy means that the adversary
cannot identify, trace or link tag appearances.

There are mainly two ways to deal with the RFID tags’ privacy issues. The
first one is to construct RFID protocols which can preserve the tags’ privacy
and the second one is to formalize privacy models for RFID systems. As to the
former way, lots of protocols have been proposed in recent years [2,5,8–10,18,19],
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while many of them are claimed to have privacy flaws according to [11]. For the
latter way, many privacy models have been proposed [1,3,4,6,7,11–17]. Among
them, there are two major notions: one based on the indistinguishability of two
tags [7], denoted as ind-privacy, and the other one based on the unpredictability
of RFID protocol’s outputs [4], denoted as unp-privacy. Ind-privacy is reasonably
good; however, it is difficult to apply ind-privacy model to prove whether a given
protocol is ind-private. To address this problem, Ha et al. [4] proposed the unp-
privacy model and it has been rectified to eunp-privacy by Ma et al. [12]. In [11],
Li et al. pointed out the limitation of eunp-privacy and proposed a new privacy
model called unp∗-privacy.

In this paper, we focus on the privacy models for RFID authentication pro-
tocols and point out some limitations of unp∗-privacy. Then we propose a new
privacy model and explore the relations between our proposed model and the
previous models.

1.1 Our Contributions

(1) We revisit the unpredictability-based RFID privacy model denoted as unp∗-
privacy [11], and we point out the limitations of the unp∗-privacy model
by giving a protocol as a counterexample that is secure under unp∗-privacy
model while vulnerable to a practical attack given in Section 4.1. In this new
attack, the adversary can observe the protocol results, i.e., the reaction of
the reader and the tag, in an RFID authentication protocol. Through this
attack the adversary can trace RFID tags.

(2) We propose a new unpredictability-based privacy model, denoted as unpτ -
privacy (τ is short for traceability), and prove that our new model can handle
the new attack and thus is more appropriate.

(3) We investigate the relationship among ind-privacy, unp∗-privacy and unpτ -
privacy and obtain the result that unpτ -privacy is stronger than both ind-
privacy and unp∗-privacy.

Fig. 1 illustrates the relations among the previous privacy models and the unpτ -
privacy model that we elaborate in this paper. Note that the ind∗-privacy model
is a “bridge” which is proven to be equivalent to ind-privacy model and is used
to explore the relation between ind-privacy and unpτ -privacy.

2 RFID Security Architecture

2.1 RFID System Model

We consider an RFID system which consists of n tags belonging to a set T ,
and a reader R that is connected with a database. The reader and the tags are
probabilistic polynomial time (PPT) interactive Turing machines. Each tag Ti
stores an internal secret key ki which is shared with the reader R, and some
optional state information sti. The reader R has a database to store ki, sti, IDi

which is the identifier of Ti, and some other information for each tag Ti.
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privacyunp

privacyunp* privacyind*

privacyind

Fig. 1. Relations among privacy models

To start an authentication session, the reader R first sends a fresh challenge
message c to a tag Ti. Then Ti responds with a message r computed based on its
secret key ki, c, sti, and random coins cni. We write r as r = FT (ki, cni, sti, c),
where FT denotes the function used by the tag. Upon receiving r, the reader
verifies the response and will output either ‘accept’ or ‘reject’ as its reaction.
If there is a third round (i.e. for mutual authentication), R will respond to Ti
with a final message f which is computed according to the tag’s response r, ki,
c, the reader’s own state information stR and random coins cnR. We write it as
f = FR(ki, cnR, stR, c, r), where FR is the function used by the reader. Similarly,
when the tag receives f , it will verify whether f is valid or not and will output
either ‘accept’ or ‘reject’ as its reaction, and terminate the session. Typically, in
this paper, we focus on three-round RFID authentication protocols.

Definition 1. An RFID system RS is composed of a tuple (R,T ,SetupReader,
SetupTag, ReaderStart, TagCompute, ReaderCompute,π), where

SetupReader. It is a function used to initialize the system with some system
parameters and make the reader R ready to work.

SetupTag. It is a function used to generate the secret keys and set the initial
state information for the tags. It also associates each tag with an unique ID.

ReaderStart. It is a function for R to generate a session identifier of a fresh
session, denoted as sid, and a fresh challenge message csid of this session.

TagCompute(Ti, sid, csid). It is a function for Ti to compute its response
message rsid, with sid and csid as inputs.

ReaderCompute(sid, csid, rsid). It is a function for R to compute the final
message fsid, with sid, csid and rsid as inputs.

Protocol π(R, Ti). It is a polynomial time interactive protocol between R
and Ti. When executing the protocol, it will invoke the functions of Reader-
Start,TagCompute, ReaderCompute.

We say a protocol π(R, Ti, sid) is successful if R and Ti accept each other.

For the completeness and soundness of RFID systems, we adopt the definitions
by Li et al. [11]. Informally, completeness means that valid tags should always be
accepted by a legitimate reader and soundness means that only valid tags/reader
should be accepted. In the following sections, when we mention an RFID system,
we mean it is complete and sound.
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Remark 1. We assume any tag Ti can be involved in only one protocol session
at a time and it will overwrite the old ki and sti when updating them.

2.2 Adversary Model

We consider a PPT adversary A who has the ability to eavesdrop, intercept,
modify and remove messages transmitted between the reader and the tag. A
also can generate its own messages. We assume that A can obtain the reaction
of the reader and tag, i.e. A will know if the reader or any tag makes a decision
(‘accept’ or ‘reject’). In a word, we allow the adversary to adaptively query the
following oracles.

InitReader. It invokes the reader R to start a new protocol session. R gen-
erates and returns a fresh session identifier sid and challenge message csid.

SendTag(Ti, sid, csid). It invokes the tag Ti to start a new protocol session
with the inputs sid and csid, and return a message rsid.

SendReader(sid, csid, rsid). It invokes R to compute and return the final
message fsid with the inputs sid, csid and rsid.

Result(sid, fsid). A queries the reaction of the tag in the session sid with the
message fsid.

SetTag(Ti). A obtains the secret key and internal state information of Ti.
For convenience, we useO1, O2, O3, O4, O5 to denote InitReader, SendTag,

SendReader, Result, SetTag oracles respectively. We define some parameters
for the adversary as follows. κ is the security parameter and n is the number
of tags in T , and q, s, u, v, and w are the number of O1, O2, O3, O4 and O5

queries respectively allowed for the adversary in one game.

2.3 Mathematical Notations

Definition 2. A function f is negligible if for every polynomial p(·) there exists
an integer N such that for all integers n > N it holds that f(n) < 1

p(n) .

Let F : K ×D → R be a family of functions, where K is the set of indices of F ,
D is the domain of F and R is the range of F . Let |K| = m, |D| = n, |R| = p.
Let RF : D → R be the family of all functions with domain D and range R.
A polynomial time test (PTT ) for F is an experiment, where a probabilistic
polynomial time algorithm T with inputs m,n, p and access to an oracle Of ,
guesses whether the function f is chosen from whether F (·) or RF (·). b ∈R {0, 1}
means that b is chosen uniformly at random from {0, 1}. We illustrate the PTT
experiment in Fig. 2.

Definition 3. An algorithm T passes the PTT experiment for the function fam-
ily F if the advantage that it guesses the correct value of bit b is non-negligible,
where the advantage of T is defined as AdvT (m,n, p) =

∣∣Pr[b′ = b]− 1
2

∣∣, k and
f chosen uniformly at random from K and RF (·), respectively.
Definition 4. A function family F : K × D → R is a pseudorandom function
family (PRF) if there is no probabilistic polynomial time algorithm which can
pass the PTT experiment for F with non-negligible advantage.
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Experiment ExpPTT
T (F,m, n, p)

1. Select b ∈R {0, 1};

2. If b = 1, select a random k ∈ K and set f = Fk; otherwise, select a random
f ′ ∈ RF (.) and set f = f ′;

3. b′ ← TOf ;

4. The experiment outputs 1 if b′ = b, 0 otherwise.

Fig. 2. Polynomial time test for F

3 Ind-Privacy and Unp*-Privacy

3.1 Ind-Privacy

Fig. 3 describes the ind-privacy experiment, denoted by Expind
A [κ, n, q, s, u, w].

At first, the experiment sets up the RFID system by initializing a reader R and
a set of tags T = (T1, T2, · · · , Tn) according to the system security parameter κ.
It associates each tag Ti with a secret key ki and an internal state information
sti, and also stores these keys and state information in the database connected
with R. Then in the learning stage, the adversary can issue O1, O2, O3, O5 oracle
queries at most q, s, u and w overall calls, respectively. The adversary also selects
two uncorrupted tags (Ti, Tj), which it has not sent SetTag (O5) queries to, and
outputs the state information st which will be used in the guess stage. Next,
the experiment randomly selects a bit b and sets the challenge tag Tc = Ti if
b = 0, and Tc = Tj otherwise. Finally, in the guessing stage, the adversary A is
required to guess the random bit b by outputting a bit b′. During the guessing
stage, A can issue O1, O2, O3, O5 oracle queries on Tc ∪ (T − {Ti, Tj}) at most
q, s, u and w overall calls respectively, with the restriction that it cannot query
SetTag(Tc). We use Expind

A to represent the ind-privacy experiment.
Let

Advind
A [κ, n, q, s, u, w] =

∣∣∣∣Pr[Expind
A = 1]− 1

2

∣∣∣∣ .
Experiment Expind

A [κ, n, q, s, u, w]

1. Initialize the RFID system with a reader R and a set of tags T with |T | = n;

2. {Ti, Tj , st} ← AO1,O2,O3,O5(R, T ); //learning stage

3. Set T ′ = T − {Ti, Tj};

4. b ∈R {0, 1};

5. If b=0, let Tc = Ti, else Tc = Tj ;

6. b′ ← AO1,O2,O3,O5(R, T ′, st, Tc); //guess stage

7. The experiment outputs 1 if b′ = b, 0 otherwise.

Fig. 3. Ind-privacy experiment
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Definition 5. An RFID system RS is said to be ind-private if for any PPT
adversary A, AdvindA [κ, n, q, s, u, w] is negligible.

Discussion. In Juels and Weis’ ind-privacy experiment [7], we cannot conclude
directly whether the adversary has the ability to observe the reaction of the
reader, that is, either accepts or rejects a tag. Nevertheless, in their following
Section 3.1 where the OSK/AO protocols are analyzed, they described a kind of
attack in which the adversary can observe the reaction of the reader. We believe
they presume the adversary has this ability. In addition, Juels and Weis consid-
ered two-round RFID authentication protocols. However, Li et al. [11] proved
Juels and Weis’ ind-privacy model also works for three-round protocols. In this
paper, we consider ind-privacy for three-round RFID authentication protocols,
which support mutual authentication.

3.2 Unp∗-Privacy

Fig. 4 illustrates unp∗-privacy experiment, denoted by Expunp∗
A [κ, n, q, s, u, v,

w]. In the learning stage, the adversary A selects an uncorrupted challenge tag
Tc which it has not sent SetTag queries to. Next, the challenger picks a random
bit b. When receiving an oracle query, the challenger will decide what to respond
to A according to the value of b. A is required to guess the value of b. We use

Expunp∗
A to represent unp∗-privacy experiment. Let

Advunp∗
A [κ, n, q, s, u, w]=

∣∣∣∣Pr[Expunp∗
A = 1]− 1

2

∣∣∣∣ .
Definition 6. An RFID system RS is said to be unp∗-private if for any PPT

adversary A, Advunp
∗

A [κ, n, q, s, u, w] is negligible.

Experiment Exp
unp∗
A [κ, n, q, s, u, w]

1. Initialize the RFID system with a reader R and a set of tags T with |T | = n;

2. {Tc, st} ← AO1,O2,O3,O5(R, T ); //learning stage

3. b ∈R {0, 1}
4. b′ ← AO1,O2,O3(R, Tc, st) //guess stage

4.1 When A queries O1, O2, O3 oracles, if b=1, run the algorithm ReaderStart, Tag-

Compute, ReaderCompute respectively, and return the results (c, r, f);

4.2 else b=0 pick c, r, f randomly from their respective domains and return them to A.

5. The experiment outputs 1 if b′ = b, 0 otherwise.

Fig. 4. Unp∗-privacy experiment
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Reader R Tag Ti
{(ki, ctri, IDi)} (ki, ctri, si)

c ∈R {0, 1}lc
r2 ∈R {0, 1}lr ,
If si = 0

r1 = Fki
(c||pad)⊕ ctri;

Else

r1, r2 r1 = Fki(c||r2)⊕ ctri;

If find (ki, ctr
′
i, IDi), so that ctri = ctri + 1,

ctr′i = Fki
(c||pad)⊕ r1, then si = 1.

ctr′i = ctr′i + 1,

f = Fki(c||ctr′i||r2) and accept Ti,
Else if ∃(ki, ctr′i, IDi) so that f

ctr′i = Fki
(c||r2)⊕ r1, then

ctr′i = ctr′i + 1, If f = Fki
(c||ctri||r2),

f = Fki
(c||ctr′i||r2) and accept Ti, si = 0 and accept R.

Else Else

f ∈R {0, 1}lr and reject Ti. reject R.

Fig. 5. A Counterexample

4 Limitation of Unp∗-Privacy

Note that in unp∗-privacy experiment, the adversary A can not observe the
reaction of R and Ti. However, in practice, for most RFID tag applications, this
ability is easily obtainable. For example, a staff card either opens a door when
authenticated successfully or fails to open a door when failed to be authenticated
to the reader equipped in the door; a payment card is either accepted or rejected
by a sale device. In the following section, we will show a counterexample which
is secure under unp∗-privacy model, while vulnerable to a kind of attack that is
easy to launch in our daily life. This example implies a limitation of unp∗-privacy
when it is applied to RFID authentication protocols.

4.1 A Counterexample

Let F : {0, 1}lk ×{0, 1}ld → {0, 1}lr be a PRF family. Let ctr ∈ {0, 1}lr be a
counter, and pad ∈ {0, 1}lpad be a padding such that lr + lpad = ld. When the
system calls SetupTag(Ti), it will initialize ctri = 1 and set si = 0. After the
initialization phase, the system will go on as the following steps.

(1) The reader R generates a random challenge message c to the tag Ti.
(2) Ti randomly selects r2 and computes r1 according to the value of si: r1 =

Fki(c||pad)⊕ ctri if si = 0, else r1 = Fki(c||r2)⊕ ctri.
(3) Ti sends the response r1, r2 to R, updates ctri = ctri + 1, and sets si = 1.
(4) R searches from the database for the tuple (ki, ctr′i, IDi) such that ctr′i =

Fki(c||pad)⊕ r1 or ctr′i = Fki(c||r2)⊕ r1. If such a tuple exists, then update
ctr′i = ctr′i+1, compute f = Fki(c||ctr′i||r2), send it to Ti and accept Ti; else
response with f ∈R {0, 1}lr and reject Ti.



486 A. Yang et al.

(5) Upon receiving f , Ti checks if f = Fki(c||ctri||r2). If yes, Ti accepts R and
sets si = 0, else Ti rejects R.

A Traceability Attack. Now we launch a traceability attack against this proto-
col. We consider an adversary A who has the ability to know whether R accepts
Ti or not and vice versa. A can find out the value of a tag’s state si easily, for
if si=0, then r1 = Fki(c||pad) ⊕ ctri which means the value of r1 is not related
with r2. Therefore, A can change the value of r2 that is sent by Ti and observe
whether R will accept Ti. If R accepts Ti, then it means si = 0; otherwise, it
means si=1. Note that under normal circumstances the value of si is 0. Thus,
an active attacker can flag a tag by setting its state si = 1 and then trace the
tag. However, we can prove this counterexample is secure under unp∗-privacy
model.

Theorem 1. The counterexample is unp∗-private, given that the function family
F : {0, 1}lk×{0, 1}ld →{0, 1}lr is a PRF family.

Proof. Assume the counterexample in Fig. 5 is not unp∗-private. That is, there
exists an adversary A who can win the unp∗-privacy game with advantage at
least ε, and the running time at most t. We construct an algorithm B that uses A
as a subroutine and can pass the PTT experiment for PRF family F . Algorithm
B can simulate unp∗-privacy experiment for A as follows.

Simulate the learning stage. At the beginning, B selects a random index i ∈
[1, n] and sets ctri = 1, si = 0. The key of Ti is set as ki implicitly, which is
unknown to B. For any tag Tj ∈ {T − Ti}, B sets ctrj = 1, sj = 0 and sets
the secret key of Tj as kj which is selected randomly from the secret key space.
When A queries O1, O2, O3, O5, B invokes Of and the keys k1, k2, · · · , ki−1,
ki+1, · · · , kn to respond. Note that when A queries O5 on tag Ti, B aborts and
randomly outputs a bit.

Simulate the challenge stage. A submits an uncorrupted challenge tag Tc. Note
that if Tc �= Ti, B aborts and randomly outputs a bit.

Simulate the guess stage. Every time when A queries about O1, O2, O3, B
will answer A using Of and the keys k1, k2, · · · , ki−1, ki+1, · · · , kn as follows.

① When A queries O1, B selects a random session sid and a random challenge
message c and returns sid, c to A.

② When A queries O2, B selects a random string r2 ∈R{0, 1}lr . If si = 0, B
queries Of on x = c||pad, gets the response y and sets r1 = y ⊕ ctri; else
queries Of on x = c||r2, gets the response y and sets r1 = y ⊕ ctri. Then
update ctri=ctri + 1 and si=1, and return r1, r2 to A.

③ When A queries O3, B queries Of on c||ctri||r2, gets the response f and
sends f to A.

Output. When A outputs a bit b′, B also takes b′ as its output.
We can see that when Of = Fki , then the simulation is identical to the

experiment with b = 1; otherwise, if Of = RF , then the simulation is identical
to the experiment with b = 0. Thus, if B does not abort during the simulation,
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Experiment Exp
unpτ

A [κ, n, q, s, u, v, w]

1. Initialize the RFID system with a reader R and a set of tags T with |T | = n;

2. {Tc, st} ← AO1,O2,O3,O4,O5(R, T ); //learning stage

3. b ∈R {0, 1}
4. b′ ← AO1,O2,O3,O4(R, Tc, st) //guess stage

4.1 When A queries O1, O2, O3, O4 oracles, if b=1, run the algorithm ReaderStart, TagCompute,

ReaderCompute, Result respectively, and return the results; the challenger also returns the
reaction of the reader R to A, either accept or reject, when O3 is queried.

4.2 else b=0

4.2.1 When A queries O1, O2 oracles, pick random elements sid, c and r from their respective
domains, and return them to A;

4.2.2 When A queries O3, the challenger compares whether r is equal to the output of
O2(Tc, sid, c). If yes, the challenger returns a random element f from its domain, and re-
turns the reader’s reaction as accept; else it returns a random element f from its domain and
returns the reader’s reaction as reject;

4.2.3 When A queries O4, the challenger checks whether f is equal to the output of O3(sid, c, r)
and the reaction of the reader for this session sid is accept. If yes, the challenger returns the
tag’s reaction as accept; else it returns the tag’s reaction as reject;

5. The experiment outputs 1 if b′ = b, 0 otherwise.

Fig. 6. Unpτ -privacy experiment

B’s simulation is perfect. The probability that B does not abort during the
simulation is 1

n . Thus, if the adversaryA can pass unp∗-privacy experiment with
the advantage at least ε, then the advantage that B passes the PTT experiment
is at least ε

n . In addition, the running time of B is approximate to that of A.
This completes the proof. �

5 Our Proposed Privacy Model: Unpτ -Privacy

Fig. 6 illustrates the unpτ -privacy experiment, denoted by Expunpτ

A [κ, n, q, s, u,
v, w]. In this experiment the adversaryA can queryO4. Note that when b = 1 and
O3 is queried, the challenger will return f as well as the reaction of the reader, and
when b = 0 and O3 is queried, the challenger needs to send the reader’s reaction
to A, since it’s in accordance with the situation when b = 1 so that A can not
distinguish b=0 or b=1 only according to the reaction of the reader R.

We use Expunpτ

A to represent the unpτ -privacy experiment. Let

Advunpτ

A [κ, n, q, s, u, v, w] =

∣∣∣∣Pr[Expunpτ

A = 1]− 1

2

∣∣∣∣ .
Definition 7. An RFID system RS is said to be unpτ -private if for any PPT
adversary A, Advunp

τ

A [κ, n, q, s, u, v, w] is negligible.

Note that the counterexample in Fig. 5 does not satisfy our privacy model. In
unpτ -privacy experiment, when the adversary modifies the second message r2
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randomly, if b = 1, the reader R will accept the tag Tc with overwhelming prob-
ability, since the value of r1 is not related with r2 under normal circumstances;
otherwise, if b = 0, the reader R will reject the tag Tc. That is, the adversary
can distinguish the two cases with overwhelming probability. Hence the coun-
terexample is not unpτ -private.

5.1 Relation between Unpτ -Privacy and Ind-Privacy

In order to explore the relation between unpτ -privacy and ind-privacy, we first
introduce a restricted ind-privacy model, denoted as ind∗-privacy, as a “bridge”,
which is equivalent to ind-privacy.

Ind∗-Privacy Fig. 7 illustrates the ind∗-privacy experiment, denoted byExpind∗
A

[κ, n, q, s, u, v, w], which is identical to the ind-privacy experiment given in
Fig. 3 except that the adversary A in ind∗-privacy experiment is not allowed
to query oracles on other tags except for Tc in the guess stage. Since we have
showed that the adversary in the ind-privacy model has the ability to know the
result of the reader’s reaction, we explicitly allow A to query O4 in ind∗-privacy
experiment. We use Expind∗

A to simply represent ind∗-privacy experiment. Let

Advind∗
A [κ, n, q, s, u, v, w] =

∣∣∣∣Pr[Expind∗
A = 1]− 1

2

∣∣∣∣ .
Experiment Expind∗

A [κ, n, q, s, u, v, w]

1. Initialize the RFID system with a reader R and a set of tags T with |T | = n;

2. {Ti, Tj , st} ← AO1,O2,O3,O4,O5(R, T ); //learning stage

3. Set T ′ = T − {Ti, Tj};

4. b ∈R {0, 1};

5. If b=0, let Tc = Ti, else Tc = Tj ;

6. b′ ← AO1,O2,O3,O4(R, Tc, st); //guess stage

7. The experiment outputs 1 if b′ = b, 0 otherwise.

Fig. 7. Ind∗-privacy experiment

Definition 8. An RFID system RS is said to be ind∗-private if for any PPT
adversary A, Advind

∗
A [κ, n, q, s, u, v, w] is negligible.

Ind∗-Privacy ⇐⇒ Ind-Privacy On the one hand, the adversary in ind-
privacy experiment can query oracles on any tag from T ′ ∩ Tc in the guess
stage, while the adversary in ind∗-privacy experiment can only query oracles on
Tc in the guess stage. There is no any other difference between ind-privacy and
ind∗-privacy. That is, there are more restrictions on the adversary in ind∗-privacy
experiment, and thus ind-privacy implies ind∗-privacy. On the other hand, the
adversary in ind∗-privacy experiment can launch O5 queries on all tags in T ′
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before the guess stage in order to obtain the secret keys and internal state in-
formation of all the tags in T ′ and then store them in a list TagKey-List.
Then in the guess stage when the adversary queries those oracles on any tag
in T ′, the adversary itself can obtain the corresponding answers using the list
TagKey-List. That is, the adversary’s power in ind∗-privacy experiment is not
weakened compared with that in ind-privacy experiment.

Theorem 2. Ind∗-privacy is equivalent to ind-privacy for an RFID system RS.

Proof. First, it is obvious that ind-privacy =⇒ ind∗-privacy as what we have
analyzed above. In the following, we will prove ind-privacy ⇐= ind∗-privacy.

Assume that RS is not ind-private. That is, there exists an adversaryA which
can win the ind-privacy game with advantage at least ε, and the running time at
most t. We construct an algorithm B that uses A as a subroutine and can pass
ind∗-privacy experiment. Algorithm B can simulate ind-privacy experiment for
A as follows.

Simulate the learning stage. When A queries O1, O2, O3, O5 oracles, algo-
rithm B queries these oracles in ind∗-privacy experiment and sends the results
it receives to A. Actually, we have shown that in ind-privacy experiment, the
adversary A also has the ability to observe the protocol results, which means it
can query O4 (can be seen in ind∗-privacy experiment).

Simulate the challenge stage. When A outputs two uncorrupted tags Ti, Tj ,
algorithm B will also submit Ti and Tj to the challenger in ind∗-privacy experi-
ment, and get the response with a challenge tag Tc ∈ {Ti, Tj}. Then B sends O5

oracles on all the tags in T ′ = T − {Ti, Tj} and stores the results in TagKey-
List. Then B forwards Tc to A.

Simulate the guess stage. When A queries O1, O2, O3, O5 oracles on T ′ ∪Tc,
B also uses the oracles O1, O2, O3, together with the list TagKey-List to
answer A.

Output. When A outputs a bit b′, B also takes b′ as its own output.
We can see the simulation of B is perfect. Thus if A can pass ind-privacy

experiment with the advantage at least ε, then the advantage that B passes
ind∗-privacy experiment is at least ε, too. In addition, the running time of B is
approximate to that of A. This completes the proof. �

Unpτ -Privacy =⇒Ind∗-Privacy

Theorem 3. Given an RFID system RS, if RS is unpτ -private, then it is ind∗-
private.

Proof. Assume that RS is not ind∗-private. That is, there exists an adversary A
which can win ind∗-privacy game with advantage at least ε, and the running time
at most t. We construct an algorithm B that uses A as a subroutine and can pass
unpτ -privacy experiment. Algorithm B can simulate ind∗-privacy experiment for
A as follows.

Simulate the learning stage. When A queries O1, O2, O3, O4, O5 oracles,
algorithm B queries these oracles in unpτ -privacy experiment and sends the
results it receives to A.
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Simulate the challenge stage. When A outputs two uncorrupted tags Ti, Tj
which it has not queried O5 oracle on, algorithm B will pick a random bit b and
set the challenge tag Tc = Ti if b = 0 and Tc = Tj otherwise. Then B sends Tc
to A as its challenge tag and B also submits Tc as its own challenge tag to the
challenger in unpτ -privacy experiment.

Simulate the guess stage. When A queries O1, O2, O3, O4 oracles on Tc, B
also queries these oracles on Tc in unpτ -privacy experiment and sends the results
it receives to A

Output. When A outputs a bit b′, if b′ = b, B outputs 1, otherwise it outputs 0.
We can see the simulation of B is perfect. Let b0 be the random bit selected in

unpτ -privacy experiment. If b0 = 0, then the challenge tag Tc is in fact a virtual
tag in A’s view since A will always obtain the random responses when it queries
O1, O2, O3 in the guess stage. Hence, in this case, the probability of b′ = b is
equal to 1

2 . Otherwise, if b0 = 1, the probability of b′ = b is 1
2 + ε. That means

the advantage of B in unpτ -privacy experiment is equal to | 12 − (12 + ε)| = ε,
which is the same as that of A in ind∗-privacy experiment. Thus if A can pass
ind∗-privacy experiment with the advantage at least ε, then the advantage that
B passes unpτ -privacy experiment is at least ε, too. In addition, the running
time of B is approximate to that of A. This completes the proof. �

Unpτ -Privacy =⇒Ind-Privacy From Theorem 2 and Theorem 3, we can
obtain the following Theorem 4:

Theorem 4. Given an RFID system RS, if RS is unpτ -private, then it is ind-
private.

Unpτ -Privacy �⇐= Ind-Privacy

Theorem 5. Given an RFID system RS, if RS is ind-private, then it does not
imply RS is unpτ -private.

Proof. (Sketch) We can use the same RFID system as in Li et al.’s paper [11]:
RS = {R, T , SetupReader, SetupTag, π} such that the protocol transcripts will
have the format (c, r||r, f). Then we can show that RS is ind-private since for
any PPT adversary, r1||r1 and r2||r2 are just two independent random strings.
However, in unpτ -privacy experiment, the adversary can easily distinguish if the
output r1||r2 comes from a real protocol transcript or it is chosen randomly
by the challenger. If r1||r2 is chosen by the challenger randomly, then we know
r1 �= r2 with overwhelming probability; otherwise, if it is from the real protocol
transcript, then r1 = r2 definitely. That is to say, RS is not unpτ -private. This
completes the proof. �

5.2 Relation between Unpτ -Privacy and Unp∗-Privacy

According to the counterexample in Fig. 5, we have known that unp∗-privacy
does not imply unpτ -privacy. Since the adversary are more powerful in unpτ -
privacy experiment than in unp∗-privacy experiment, intuitively we can under-
stand that unpτ -privacy implies unp∗-privacy.
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Theorem 6. Given an RFID system RS, if RS is unpτ -private, then it is unp∗-
private.

Proof. Assume that RS is not unp∗-private. That is, there exists an adversaryA
which can win the unp∗-privacy game with advantage at least ε, and the running
time at most t. We construct an algorithm B that uses A as a subroutine and can
pass the unpτ -private experiment. Algorithm B can simulate the unp∗-private
experiment for A as follows.

Simulate the learning stage. When A queries O1, O2, O3, O5 oracles, algo-
rithm B queries these oracles in unpτ -privacy experiment and sends the results
it receives to A.

Simulate the challenge stage. When A outputs one uncorrupted tag Tc as its
challenge tag, algorithm B also makes Tc as its own challenge tag in unpτ -privacy
experiment.

Simulate the guess stage. When A queries O1, O2, O3 oracles on Tc, B also
queries these oracles on Tc in unpτ -privacy experiment and sends the results it
receives to A.

Output. When A outputs a bit b′, B also takes b′ as its output.
We can see the simulation of B is perfect. Thus if A can pass unp∗-privacy

experiment with the advantage at least ε, then the advantage that B passes
unpτ -privacy experiment is at least ε, too. In addition, the running time of B is
approximate to that of A. This completes the proof. �

Up to now, we have explored all these relations among ind-privacy, unp∗-privacy
and our newly proposed unpτ -privacy. As shown in Fig. 1, we can obtain the
following claim:

Claim. Unpτ -privacy is stronger than both unp∗-privacy and ind-privacy.

6 Conclusion

In this paper, we revisited the unp∗-privacy model which is based on the
unp-privacy and pointed out its limitations by giving a counterexample and
demonstrating a new traceability attack on it. Then we proposed a new
unpredictability-based privacy model, denoted as unpτ -privacy. We investigated
the relationship among ind-privacy, unp∗-privacy and unpτ -privacy and formally
proved that our unpτ -privacy is stronger than both ind-privacy and unp∗-privacy.
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Abstract. Fully homomorphic cryptosystems allow the evaluation of ar-
bitrary Boolean circuits on encrypted inputs and therefore have very im-
portant applications in the area of secure multi-party computation. Since
every computable function can be expressed as a Boolean circuit, it is the-
oretically clear how to achieve function evaluation on encrypted inputs.
However, the transformation to Boolean circuits is not trivial in practice.
In this work, we design such a transformation for certain functions, i.e., we
propose algorithms and protocols which make use of fully homomorphic
encryption in order to achieve privacy-preserving multi-party reconcilia-
tion on ordered sets. Assuming a sufficiently efficient encryption scheme,
our solution performs much better than existing approaches in terms of
communication overhead and number of homomorphic operations.

Keywords: privacy, secure group computation, cryptographic proto-
cols, multi-party reconciliation protocols, fully homomorphic encryption.

1 Introduction

The problem of secure multi-party computation was first introduced by Yao [1]. It
is about jointly computing a function on private inputs of multiple parties with-
out involving another trusted party and without revealing the private inputs of
any party. Privacy-preserving reconciliation protocols on ordered sets are proto-
cols that solve a particular subproblem of secure multi-party computation. Here,
each party holds a private input set in which the elements are ordered according to
the party’s preferences. The goal of a reconciliation protocol on these ordered sets
is then to find all common elements in the parties’ input sets that maximize the
joint preferences of the parties. A reconciliation protocol is privacy-preserving, if
it does not reveal anything about the private inputs of a party to any other party
except from what can be deduced from the desired output of the protocol.

Two-party protocols that solve the reconciliation problem for totally ordered
input sets of equal size have first been proposed in [2,3]. The performance of these
two-party protocols was studied in [4]. They make use of a privacy-preserving set
intersection protocol such as [5]. In [6,7] the first protocols were proposed which
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address the multi-party case. These protocols are based on privacy-preserving op-
erations on multisets, i.e., sets in which elements may occur more than once. In
particular, the protocols use set intersection, set union, and set reduction opera-
tions. Privacy-preserving protocols for these three operations were first introduced
in [8]. Recently, further protocols for multi-party set intersection [9,10,11,12] and
set union [13,14] have been proposed. An overview on a variety of applications
of privacy-preserving reconciliation protocols, including scheduling applications,
electronic voting, and online auctions, is provided in [15].

As a main contribution of this paper, we utilize fully homomorphic encryption
[16,17] to design two new protocols for multi-party reconciliation on ordered sets
and analyze their security properties and efficiency. Our two variants can guar-
antee more privacy regarding the output of the protocol compared to [6,7]. Our
evaluation shows that the new protocols outperform the previously developed
protocols in terms of communication and number of homomorphic operations.

The rest of this paper is structured as follows: In Sect. 2, we briefly review
basic concepts used in our paper. In Sect. 3, we describe our two new reconcil-
iation protocols. Sect. 4 presents the comparison of our new protocols with the
previously developed protocols. In Sect. 5, we draw conclusions of our results.

2 Preliminaries

In this section, we will lay down some preliminaries. In particular, we will define
the setting of reconciliation problems as well as outline the multi-party solution
by Neugebauer et al. [6] since their core idea is the ground work for our solution
in the next section. We introduce some necessary notation and tools from the
area of Fully Homomorphic Encryption (FHE).

We consider n parties A1, ...,An with private input sets PA1 , ..., PAn ⊆ P ,
each having exactly k (pairwise distinct) elements chosen from a common input
domain P . Each party has certain “preferences” associated with its input set
which orders a party’s elements. The preference of a rule in this ordering is
called its rank and is identified by a bijective function rankAi : PAi → {1, ..., k}.

The goal of a reconciliation protocol is to find the “best” common input ele-
ments in a fair way, i. e., taking the preferences of all parties equally into account.
The two notions of fairness introduced by Meyer et al. [3], called preference order
composition schemes, are defined by the following two functions.

Definition 1. For a common input x ∈ PA1 ∩ ... ∩ PAn , define the functions
fSR, fMR :

⋂n
i=1 PAi → N by

fSR(x) := rankA1(x) + ... + rankAn(x) and
fMR(x) := min(rankA1(x), ..., rankAn(x))

called sum of ranks (SR) and minimum of ranks (MR).

With fSR, maximizing the combined rank means finding one or more rules which
are ranked as high as possible by all parties, i.e., the ranks of all parties count.
With fMR, we want to find a rule which is not ranked very low by any party,
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i.e., only the smallest ranking of that rule counts. Depending on the concrete
application, one of those two definitions of “fairness” might be preferred.

2.1 Reconciliation on Ordered Sets

We now give a formal definition of a reconciliation protocol.

Definition 2 (Reconciliation on Ordered Sets). A reconciliation protocol
on ordered sets for a preference composition scheme f is a multi-party protocol
between n parties A1, ...,An, each with an ordered input set (PAi , rankAi) as
described above. As output of the protocol, each party learns the maximal rank
maxx∈I f(x) (if one exists) as well as the set of all rank-maximizing elements
argmax

x∈I
f(x) = {x ∈ I | ∀y ∈ I : f(y) ≤ f(x)} where I := PA1 ∩ ... ∩ PAn .

In the following, we will refer to the multi-party reconciliation problem on or-
dered sets as MPROS and the variants for minimum of ranks and sum of ranks
as MPROSMR and MPROSSR, respectively.

2.2 Adversary Model

In this paper, we consider the honest-but-curious adversary model, which is also
referred to as the semi-honest model [18]. In this model, all parties are assumed
to act according to the prescribed actions in the protocols. They may, however,
try to infer as much information as possible from all results obtained during the
execution.

Definition 3 (Security of Reconciliation Protocols). A reconciliation pro-
tocol on ordered sets (as defined in Definition 2) is said to be privacy-preserving
(in the semi-honest model) if none of the participating parties gains any addi-
tional information about the other party’s private inputs except from what can
be deduced from the protocol output, i.e., the maximal rank and the set of rank-
maximizing elements.

2.3 Prior Privacy-Preserving MPROS Protocols

Neugebauer et al. [6,7] proposed an approach which is based on the work of
Kissner and Song [8] about privacy-preserving multiset operations. The essential
idea of the operations proposed by Kissner et al. is to encode the elements of
multisets as the roots of an encrypted polynomial and compute the result of the
set operations using an additively homomorphic cryptosystem, which allows to
perform certain operations on encrypted polynomials.

The basic idea of Neugebauer et al. is to encode the ordered inputs as mul-
tisets where the rank of each element is encoded by the element’s multiplicity
in the set. The preference order composition schemes fSR and fMR can then be
modeled using operations on these multisets. Privacy is preserved by the use of
a semantically secure [19] additively homomorphic cryptosystem.
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Let PA1 , ..., PAn ⊆ P be the inputs of the parties and P ⊆ M be the set of
possible inputs, encoded as elements of the plaintext space M of some semanti-
cally secure and additively homomorphic cryptosystem. Assume the rank of each
input element p ∈ PAi is encoded by its multiplicity in the set SAi , i.e., p appears
rankAi(p) times in SAi . Every such set SAi with k distinct elements can now be
identified by a polynomial fi of degree

∑k
j=1 j = 1

2k(k+1) such that the distinct
roots of fi correspond to the distinct set elements and the multiplicity of the root
corresponds to the multiplicity of the element in SAi . When using such multiset
representations, the multiset intersection operation precisely coincides with the
definition of fMR. The MPROSMR protocol computes Rdt(SA1 ∩ ... ∩ SAn) for
t = k− 1, k− 2, ..., 0 until the resulting set is non-empty for the first time, where
Rdt(A) for some multiset A denotes the set which results from reducing the
multiplicity of each element in A by (up to) t. All elements in this non-empty
set then maximize the minimum of ranks. The emptiness check is done by a
threshold decryption of the result set and a computation of the roots of the
decrypted polynomial. Threshold decryption is possible in a threshold version
of an additively homomorphic cryptosystem. The private key is shared among
the n parties with each party Ai holding a private share si. Using si, a party
can now compute a partial decryption of a ciphertext. To successfully decrypt
a given ciphertext, a certain number of key shares are required to compute the
plaintext by combining the partial decryptions of the ciphertext.

The construction of [8,6] for the sum of ranks preference order composition
scheme fSR works as follows. At first glance, multiset union seems to coincide with
fSR because the multiplicity of an element in the union is defined as the sum of the
multiplicities of the element in the single sets. However, we have to rule out all el-
ements which are not in the intersection because there may be elements in the
union that are not shared by all parties. Neugebauer et al. describe a protocol for
MPROSSR which computes Rdt((SA1 ∪ ...∪SAn)∩ (S′

A1
∩ ...∩S′

An
)) where S′

Ai

contains the same elements as SAi but every element has multiplicity n · k. Like
before, the protocol continues for t = kn−1, kn−2, ..., n−1 until the resulting set
is non-empty for the first time. All elements in this non-empty set then maximize
the sum of ranks assigned by each party. The auxiliary sets S′

Ai
ensure that only

inputs that are common to all parties are contained in the resulting set.

2.4 Fully Homomorphic Encryption
In the following, we make use of an asymmetric fully homomorphic encryp-
tion scheme which operates on the binary plaintext space M = F2 = {0, 1}
and generates ciphertexts from some set C via a probabilistic polynomial-time
encryption algorithm Epk. There is a (deterministic) polynomial-time decryp-
tion algorithm Dsk such that D(E(m)) = m for all m ∈ M . Furthermore,
we have algorithms �pk and �pk which perform homomorphic operations, i.e.,
D(E(m1)� E(m2)) = m1 +m2 and D(E(m1)� E(m2)) = m1 · m2, where + and
· denote addition and multiplication in F2, i.e., binary XOR and AND. We also
use the notations E,D,� and � on tuples to denote component-wise application.

We use the notation T A
B (�) to denote the number of times algorithm A calls

algorithm B on inputs of bit-length �, for example T A
�(�), T

A
�(�), T

A
E (�), or T A

D (�)
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to denote the runtime of A in terms of number of homomorphic additions, ho-
momorphic multiplications, encryptions, or decryptions. We will write T A(�) to
denote the total number of homomorphic operations (both additions and mul-
tiplications). For a probabilistic algorithm, we write x ← A(x) to denote that x
is one possible output of algorithm A on input x.

Furthermore, we use a couple of common “tool” algorithms which operate on
Boolean inputs and only use XOR and AND operations and can therefore be
adapted to operate on encrypted data by using a fully homomorphic encryption
scheme. We omit the description of those algorithms due to lack of space, but
their implementation is straightforward and mimics the common circuit imple-
mentations of those gadgets, see e.g. [20]. In particular, for inputs c, d ∈ C� with
plaintext bit-length �, we use the following algorithms:

– Negation: Not(c) for � = 1 flips a bit, i.e., D(Not(c)) = D(c) + 1. O(1)
– Equality: Equal(c, d) returns an encryption of 1 if D(c) = D(d) and an en-

cryption of 0 otherwise. This can be generalized to m ≥ 2 inputs. O(m�)
– Greater than: GT(c, d) returns an encryption of 1 if D(c) > D(d) and an

encryption of 0 otherwise. Here, > denotes the order on M �, interpreted as
binary representations of natural numbers. O(�)

– If-Then-Else: IFE(b, c, d) for b ∈ C returns an encryption of D(c) if D(b) = 1
and an encryption of D(d) otherwise. O(�)

– Maximum and Minimum: Max(c, d) and Min(c, d) which return encryptions
of max(D(c),D(d)) and min(D(c),D(d)). This can be generalized to m ≥ 2
inputs. O(m�)

– Addition: Add(c, d) returns an encryption of D(c) + D(d), where + denotes
addition of binary numbers with carry. The output ciphertext tuple has
length  log2(m)!+ �. O(m(log(m) + �))

The asymptotic complexities are given in terms of homomorphic operations, i.e.,
homomorphic additions and multiplications. More details on the tool algorithms
are given in [21].

3 Our Contribution

3.1 FHE-Based Algorithm

We assume that PAi ⊆ {0, 1}� \ {0�}, so all parties agree on an �-bit binary
encoding of the possible inputs such that 0� is not a valid input encoding. Let
χi denote an “extended” rank function rankAi which assigns the rank 0 to all
elements which are not included in the input of party Ai at all:

χi : {0, 1}� → {0, ..., k}, x '→
{
rankAi(x) x ∈ PAi

0 x �∈ PAi

If k := |PA1 | = ... = |PAn | ≤ |P | < 2� is the number of inputs, we can assume
that every χi maps to {0, 1}K instead of {0, ..., k} where K =  log2(k + 1)!. In
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practice, the rank function χi of a party Ai could for example be described by
an ordered list of |P | bit-strings each of length K, i.e., a complete truth table
of all K output components. Let X1, ..., Xn be “encryptions” of the extended
rank functions such that we have Xi : {0, 1}� → CK with D(Xi(x)) = χi(x) for
all x ∈ {0, 1}�. For an input element x ∈ {0, 1}�, the value Xi(x) ∈ CK is an
encryption of the rank of x in the input of Ai.

Example. Let P = {a, b, c, d, e, f} be the possible inputs and PA1 = {a, b, e} the
input of A1 with ranking a <A1 e <A1 b. We need at least � = 3 bits for encoding
the possible inputs, for example a = 001, b = 010, c = 011, d = 100, e = 101,
and f = 110. Assume that the parties agreed to use k = 3 input elements in their
inputs, we therefore need K =  log2(3 + 1)! = 2 bits to encode each possible
rank (including 0). The extended rank function of A1 and an encryption of it
now look as follows:

Input x ∈ P ⊆ {0, 1}� χ1(x) ∈ {0, 1}K X1(x) ∈ CK

000 (invalid) − −
001 (a) 01 (1) E(01)
010 (b) 11 (3) E(11)
011 (c) 00 (-) E(00)
100 (d) 00 (-) E(00)
101 (e) 10 (2) E(10)
110 (f) 00 (-) E(00)

The ordered list of |P | = 6 ciphertext K-tuples of the third column of this table
is what A1 sends to the other participants.

First, we look at the case of fMR because this can be modeled as a multiset
intersection as in [6] and as described in Sect. 2.3. We will use the tool algorithms
from Sect. 2.4.

����������	��� 
�����	� ��� f��

������ ��������	 X1, ..., Xn 
� 	������	 ����� 
�	 ��� PAi
�� ��
�������

�� ��� S := ∅ 
�	 R := ∅�
�� ∀x ∈ PAi

� ������� y ← Min(X1(x), ..., Xn(x)) 
�	 
		 (x, y) �� S�
�� ��� maxy ← E(0) ∈ CK �
�� ��� �
�� (x, y) ∈ S� ������� maxy ← Max(y,maxy)�
�� ��� �
�� (x, y) ∈ S� ������� x′ ← E(x)� Equal(y,maxy) 
�	 
		 �� ��

��� ��� R�
�� ������ (maxy, R)�

������� ��������	 �
���
� �
� maxy 
�	 
 ��� R �� ��������	 ��������
!���� ������ �
"� �
���
� �
� maxy �� 	������ �� 0�� #� ����� ������ ��
�
���
� �
� $��
��� ��� ������ 
�� 	��%����&� maxy !��� 	������ �� 0 
�	

�� �������� �� R !��� 	������ �� 0��
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In Step 2, party Ai computes the value of fMR for all elements. Since PA1 ∩
... ∩ PAn ⊆ PAi , the set PAi is an upper bound for the intersection and party
Ai never needs to process more than k = |PAi | elements. For each element, the
minimum of ranks is computed and the result together with its encrypted rank
is added to the set S. In Step 4, we iterate over all the elements from Step 2 and
compute the maximum by comparing with the “largest” element known at this
point. In Step 5, we iterate again over all elements (of length �) and multiply
them with the result of Equal, thus effectively canceling out all elements which
have rank other than maxy. Elements which are not shared by all parties are
also implicitly canceled because they all have rank 0.

Computational Complexity. In Step 2, we loop |PAi | = k times and call Min each
time on n inputs of length K. In Step 4, we call Max on inputs of length K and
in Step 5, we call Equal on inputs of length K. The result is multiplied with �
bits. This gives a total of

=k︷ ︸︸ ︷
|PAi | ·T nMin(K)︸ ︷︷ ︸

Step 2

+

=k︷︸︸︷
|S| · TMax(K)︸ ︷︷ ︸

Step 4

+

=k︷︸︸︷
|S| ·� · T Equal(K)︸ ︷︷ ︸

Step 5

∈ k · (O(nK) +O(K) + O(�K)) ⊆ O(nk log(k)�)

homomorphic operations. As already mentioned in the example above, we use
K · |P | ciphertexts to encode every Xi. We want to point out that Step 5 can
easily be modified to only return one maximal element instead of all of them,
which would reduce the complexity to O(nk�). Also, we could emit the output
of the rank maxy, which would increase privacy. We chose this variant in order
to be compatible to Definition 2 and to be comparable to Neugebauer et al. [6].

We now have a look at the sum of ranks composition scheme fSR. The basic
idea is to compute a multiset union but omit all the elements which are not in
the intersection. This is achieved by adding the ranks using the Add algorithm in
combination with negated Equal calls to filter out elements which are not shared
by all parties. The basic idea is the same as before, only Step 2 differs. Here
we compute the value of fSR instead of fMR. We use Add to compute the sum
of ranks. Next, we check if any of the terms used in this sum was zero. If so,
the result will be multiplied by zero thus eliminating this entry from the set of
possible maximal elements. The algorithm is shown in detail on the next page.

Computational Complexity. In Step 2, we use Add to compute the sum of n
ciphertexts, each having length K. The result has length K +  log2(n)!. Next,
we compute Equal on inputs of length K and negate the result. This is done n
times and the product of those n bits is then multiplied with every bit of y. In
Step 4, we compute Max on inputs of length K +  log2(n)!. Summing up, we
have
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k · (T nAdd(K) + n · (T Equal(K) + TNot(1)))︸ ︷︷ ︸
Step 2

+ k · TMax(K +  log2(n)!)︸ ︷︷ ︸
Step 4

+ k · � · T Equal(K +  log2(n)!)︸ ︷︷ ︸
Step 5

∈ k · (O(n(log(n) +K)) + nO(K) + � · O(K + log(n)))

⊆ O(n log(n)k log(k)�)

homomorphic operations.
Like before, we can reduce the complexity to O(n log(n)k�) by only computing

one maximal element instead of all. Also, we do not have to return maxy.
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y ← Add(X1(x), ..., Xn(x)) ∈ CK+�log2(n)�

y′ ← y �
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�
i=1

Not(Equal(Xi(x),E(0)))


�	 
		 (x, y′) �� ��� ��� S�
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�� ��� �
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3.2 Reducing the Encoding Size

Our algorithm has runtime (almost) linear in the number of parties n but uses
 log2(k + 1)! · |P | ciphertexts to encode a k-element input where P is the input
domain with |P | < 2�. In certain situations, very large input domains P might
be necessary and such a large number of ciphertexts may not be acceptable due
to the communication overhead or bandwidth limitations.
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The factor |P | originates from the idea of using complete truth tables for
representing the rank functions χi : {0, 1}� → {0, 1}K. We now give a smaller
representation to allow our algorithm to use smaller encodings and therefore
fewer ciphertexts. The price for this is a slightly higher computational complexity
in terms of homomorphic operations. Let

Xi := {(rankAi(x)︸ ︷︷ ︸
∈{1,...,k}

,E(x)︸︷︷︸
∈C�

) | x ∈ PAi},

so for each rule, we save an encryption of the rule itself together with its (unen-
crypted) rank.

We will be able to reuse both variants of our algorithm (fSR and fMR), the
only thing we change is the way Xi(x), the encrypted rank of the element x in
the input of party Ai, is computed. Before, this was just a lookup from a table
we have received from party Ai, therefore, this can be done in constant time
and without using any homomorphic operations. We can get that same value by
computing

Xi(x) ← �
(r,c)∈Xi

⎛⎜⎝E(r)︸︷︷︸
∈CK

�Equal(c,E(x))︸ ︷︷ ︸
∈C1

⎞⎟⎠ .

This basically just compares x to all inputs in Xi. If one of the inputs in Xi

encrypts x, the rank of x is returned. This is correct since exactly one of the
terms in this sum will encrypt a non-zero value.

Computational Complexity. Computing Xi(x) this way takes |Xi| = k calls to
Equal on inputs of length �. The result will be multiplied by E(r) which has
length K :=  log2(k + 1)!. We then use k− 1 calls to � (in each component) for
adding the results. In total, we get:

T�(�) = k · T Equal
� (�) + (k − 1) · K ∈ O(k�)

T�(�) = k · (T Equal
� (�) +K) ∈ O(k�)

TE(�) = k · (K + �) ∈ O(k�)

Having a look at Step 2 again, we see that we need to compute Xi(x) for every
x ∈ PAi and every 1 ≤ i ≤ n. In total, we use nk computations of the above
kind, resulting in O(nk2�) additional homomorphic operations for Algorithm II
which will lead to a complexity of O(nk2�) for fMR and O(n log(n)k2�) for fSR.

Summarizing, we can change the number of ciphertexts we need for encoding
an input from |P | ·  log2(k + 1)! to log2(|P |) · k by increasing the asymptotic
number of homomorphic operations by a factor of k. Which method is preferable
will depend on the application parameters. For large values of k but small values
of �, we might still be better off with the original “truth table approach”.

3.3 Putting It All Together: FHE Reconciliation Protocols

Recall that our algorithms take encrypted encodings of the parties’ sets as inputs
and return an encryption of an element which is maximal with respect to some
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preference order composition scheme. Up until now, we did not clarify how to
use those algorithms in a secure and privacy-preserving way in order to solve
the reconciliation problem. Especially, how are ciphertexts exchanged and who
holds the secret decryption key?

We assume a fully homomorphic encryption scheme (G,E,D,�,�) with plain-
text space M = F2 which is semantically secure. One way to implement a proto-
col is to assume that we have a threshold fully homomorphic encryption scheme
such that the key generation algorithm G and the decryption algorithm D have
to be jointly performed by all parties together and that no single party or collab-
oration of less than n parties can decrypt any ciphertext on its own but everyone
can compute E, � and �. Recently, the authors of [22] published such a threshold
version of Gentry’s fully homomorphic encryption scheme.
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If a semantically secure homomorphic encryption scheme is used and no party
can decrypt any ciphertexts on its own, no information about the private inputs
will leak except what can be deduced from the maximal elements and their rank.

As an alternative, we present a protocol which is based on a non-threshold
fully homomorphic cryptosystem. However, we need the help of an additional
instance which is not one of the parties participating in the actual protocol.
This additional instance is used for key generation and certain decryptions and
is therefore called the keyholder K. We require that all parties trust K not to
collude with any of the other parties. If K plays by our rules, nobody will learn
any private inputs, not even K itself. However, K is not to be seen as a trusted
third party in the traditional sense. We do not have to trust K with the entire
computation or with our secret inputs. The protocol is shown on the next page.

Like before, Step 3 will be performed by every party on its own and requires
no interaction at all. Abusing K as a decryption oracle is not possible because K
will wait until it receives ciphertexts from all parties and only send the decrypted
results back if they are all equal. Even if K is compromised, not all private inputs
will necessarily leak. However, if K colludes with some other party, this might
be the case. Assuming the semi-honest model, this will not happen.
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A possible drawback of the above protocol might be that K learns the result of
the algorithm. If this is a problem, the parties can use a blinding technique first.
The results R of the algorithms have length k�. The parties agree on an k�-bit
one-time pad x ∈ {0, 1}k� to blind the results by computing c′ ← E(x)� c. If all
parties use the same x, all c′ will encrypt the same value as required in order
for K to send back the results in Step 4. Without knowing the value of x used
by the parties, the keyholder will not learn anything at all. The parties can just
exchange x over some arbitrary confidential channel. After the decrypted result
D(c′) is received, all parties can obtain D(c) ∈ {0, 1}k� by computing D(c′) + x.

4 Comparing Results

We now compare our results using fully homomorphic encryption (FHE) with
the results by Neugebauer et al. [6]. Table 1 summarizes the complexity results
of our algorithms. Algorithm II denotes Algorithm I with reduced encoding size
as described in Sect. 3.2. Recall that n is the number of parties, k is the number
of inputs in each party’s set, � is the bit-length of the input elements (i.e., the
logarithm of the size of the input domain).

Deriving the complexity for our reconciliation protocol with keyholder from
Sect. 3.3 is now straightforward. We are counting the total number of operations,
i.e., the sum of the number of operations each single party has to perform. We
do not count key generation and distribution from Step 1 and we assume the
parties already agreed on a fully homomorphic encryption scheme, its security
parameter λ and on the one-time pad used for blinding in Step 4.

Table 1. Number of homomorphic operations

Algorithm f Homomorphic operations Ciphertexts
I fMR O(nk log(k)�) 
log2(k + 1)� · |P | ∈ O(log(k)2�)
II fMR O(nk2�) k · log2(|P |) ∈ O(k�)

I fSR O(n log(n)k log(k)�)
II fSR O(n log(n)k2�)
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Beginning with Step 2, each party has to encrypt its own input. Each input
consists of k input elements and each input element has bit-length �. As Table 1
shows, with Algorithm I each party has to encrypt at most  log2(k + 1)!·|P | bits
and send those bits to all other parties. With Algorithm II, each party encrypts
k · � bits. In Step 3, every party runs the selected algorithm on the inputs it
received from the other n − 1 parties. This step requires no communication or
further encryption operations.

Finally, in Step 4, each party blinds its result with the agreed one-time pad
x ∈ {0, 1}k�. This requires a total of k� encryptions and homomorphic additions
for each party. Every party sends the blinded result c ∈ Ck� to the keyholder
K for decryption. This requires nk� calls to D. After verifying that all results
encrypt the same value, K sends the decrypted blinded result back to all n
parties.

Table 2. Complexities of reconciliation protocols

Protocol f �,�,� E D #Messages
Neugebauer et al. [6] fMR O(k6 + nk4) O(nk2) O(n2k3) O(n2k3)

FHE with Algo. I fMR O(n2k log(k)�) O(n log(k)2�) nk� O(n2 log(k)2�)
FHE with Algo. II fMR O(n2k2�) O(nk�) nk� O(n2k�)

Neugebauer et al. [6] fSR O(n4k6) O(nk2) O(n4k3) O(n4k3)
FHE with Algo. I fSR O(n2 log(n)k log(k)�) O(n log(k)2�) nk� O(n2 log(k)2�)
FHE with Algo. II fSR O(n2 log(n)k2�) O(nk�) nk� O(n2k�)

Table 2 shows the number of operations which have to be performed in the
different protocols as well as the number of messages which are exchanged. The
analysis shows total numbers for all parties combined rather than for each single
party. Recall that the new parameter � in our results stands for the length of
the input encodings (so 2� is the size of the input domain). In [6], the size of the
input domain is tightly coupled to the security parameter of the cryptosystem
whereas with our solution, � is chosen by the user and the protocol will run
faster if only small input domains are required (which we believe to be the case
in most practical applications).

Note that interpretation of those numbers themselves is complicated without
mentioning the specific cryptosystems which are used. The number of messages
are counted as number of ciphertexts. This is not the same as the actual amount
of data which has to be transmitted, which relies on the bit-length of the ci-
phertexts and will depend on the security parameter λ. Also, the number of
calls to �,�, or � does not reflect the actual computational complexity because
we cannot precisely state how expensive each of those calls is. We could try to
be more precise by comparing an instantiation of our scheme using the Gentry
scheme [23] with an instantiation of [6] using the Paillier scheme [24]. However,
since Gentry’s scheme is still under active research and little is known about
it’s practical efficiency, we do believe that such a comparison would not yield
reliable insights.
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However, we are confident in saying that given a fully homomorphic encryption
scheme with comparable efficiency to current homomorphic encryption schemes,
our protocols will outperform [6] by several orders of magnitude. Further details
on our protocols and results can be found in [21].

5 Conclusion

In this paper, we developed a privacy-preserving multi-party reconciliation pro-
tocol which utilizes fully homomorphic encryption. We showed how to use ideas
from circuit theory in order to compose algorithms which operate on encrypted
data by utilizing small tool algorithms. Our protocol consists of an initial setup
phase in which parties exchange encrypted data, followed by an offline compu-
tation phase, and a final phase for aggregating the result of the protocol.

We compare our approach to Neugebauer et al. [6] and we observe that our
protocol has several advantages. As already mentioned, our computation is per-
formed mainly offline and we only need a small and constant number of protocol
rounds. Furthermore, fewer messages have to be exchanged and we require con-
siderably fewer homomorphic operations, encryptions and decryptions. Although
the exact computational complexity (for a fixed security level) cannot be made
precise, we argued that our approach is likely to outperform Neugebauer et al. [6]
in practice, assuming our protocol is instantiated with a sufficiently practicable
fully homomorphic encryption scheme. In terms of privacy, our protocol allows
for a stricter definition than Neugebauer et al. [6], namely, we can easily adopt
our algorithms to output only one randomly chosen maximal element (instead
of all of them) and the maximal rank does not have to be part of the output.
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Abstract. Security and privacy are two important objectives in modern
communication environments. However, compared with security, privacy
issues have not been well addressed, especially in the password-only set-
ting, of which unique secret is the password. In this paper, we treat
privacy in the password-only setting as an independent notion, and pro-
pose the first provable privacy-preserving 3-party password-based au-
thenticated key exchange (PP-3PAKE) scheme under an unified security
and privacy model.
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1 Introduction

Motivation. With the increasing concern about erosion of electronic privacy,
the importance of privacy-preserving techniques has been treated as the same
as that of communication security ones in the security community. However,
communication security techniques have been studied extensively and a lot of
effective and efficient security schemes are available. Contrastingly, privacy con-
cerns have not been addressed to the same extent, even if in some common set-
tings. For instance, the privacy-preserving technique in password-based secure
communications has not been widely recognized.

Let us consider the following the scenario. Alice and Bob, twomembers of single
club, want to date at an internet cafe by using light-weight wireless devices such
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as mobile phones. Each member of the club has registered and authenticated their
identity information (i.e. names and qualifications) on the club server by a certain
physical way and stored their respective passwords in it previously. To keep the
conversations secure and anonymous, each of them expects to make sure that the
counterpart is a legitimate club member before establishing a shared session key,
to leak to the counterpart no identity information except his/her affiliation, and
to prevent the server from observing that their conversation ever happened.

The environments above are potentially hostile, where Alice and Bob succeed
in authenticating each other and building a session key only if both of them
are members of a group. Neither one can obtain any information on the other’s
identity except knowing that they belong to the same group. It is assumed that
the server is honest but curious, that is, it does not deviate the protocol but
attempt to obtain some information on participators such as the actions of the
parties on line.

However, for the above two scenarios, conventional 3-party password-based
authenticated key exchange (3PAKE or 3-party PAKE) schemes, which allow
two group members to authenticate each other and establish a shared session
key by the help of an on-line server, have no capability of protecting privacy of
members within the same group. On the other hand, since passwords are assumed
to be the only voucher for authenticating in the two aforementioned cases, more
exotic cryptographic tools like conventional secret handshake schemes, group
signatures and identity escrow are unsuited due to the absence of the public key
infrastructure (PKI). Hence, the above two situations motivate us to explore
privacy-preserving techniques in password-based setting. In this paper, we focus
on the privacy-preserving mutual authentication and the session key establish-
ment in the 3PAKE setting.

Related Work. In the last few years, password-based authenticated key ex-
change (PAKE) protocols have been received much attention due to their good
ubiquitousness. Since Bellovin and Merritt started the seminal work on En-
crypted Key Exchange (EKE) [7], different aspects of password-based protocols
have been considered [5,4,8,13,15,1,2,9,14,10], from two-party settings and simple
security analysis at the beginning to the multi-party ones and thorough prov-
able security proofs recently. According to the distribution of secrets, PAKE
protocols can be classified into two categories. The first kind is the shared
password-authentication (SPWA) scheme [10] which uses a password shared
among communication parties to implement authentication and session key es-
tablishment. The other kind is the different password-authentication (DPWA)
scheme [10] in which parties authenticate each other and build a common session
key by the help of a trusted server, with which each of them share a distinct
password. For the SPWA protocols, one need not consider the privacy issue due
to the same secret held by each user. For the DPWA schemes, since the secrets
each party holds are different, there are some fresh privacy1properties, which

1 Informally, privacy focus on protecting sensitive identity information, while security
consider preventing the leakage of passwords or session keys.
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until now have not been considered desirably. Abdalla et al. [1] firstly consid-
ered the key-privacy for the server in the DPWA PAKE (for simplicity, we refer
to it as PAKE directly) setting in a formal way. Yet this notion is essentially
an aspect of the security of session key. In fact, the seminal work on the PAKE
privacy was introduced by Viet et al. [19], who preliminarily considered the
anonymous authentication from client to server in the 2-party PAKE case and
proposed corresponding 2-party anonymous PAKE schemes. Recently Shin et
al. [16] and Yang et al. [22] continued to discuss on the threshold anonymous
scheme in the 2-party PAKE setting. These are all the works in the literature, to
the best of our knowledge, involving the privacy in the password-based settings.

Comparatively, privacy are more considered in the settings which is based on
public key systems such as PKI. Secret handshake (SH), as a full-fledged mecha-
nism, are being investigated to achieve a manner, by which users can authenticate
each other and reveal no information about its ownmembership (or credential) un-
less the peer’s legitimacy was already ensured of, even if there exists an active ad-
versary who may act as a handshake initiator or responder. Since Balfanz et al. [3]
presented the first secret handshake scheme, a large number of schemes involving
various aspects of the secret handshake has emerged. For instance, Castelluccia,
et al. [11] developed a scheme under standard assumption, Jarecki et al. [12] pro-
vided a multi-party protocol, Tsudik and Xu [17] introduced a group secret hand-
shake scheme supporting reusable certificates and Xu and Yung [21] proposed an
interesting 2-party scheme which enjoys reusable credentials.

Our Contribution. Different from most of the previous work on 3-party
password-based authenticated key exchange protocols, in the paper we consider
the privacy as an independent notion in the password-only setting, introduce a
novel concept: Privacy-Preserving 3-party PAKE (or Secret Handshake in the
Three-party Setting) and provide a complete resolution as follows.

In the first, to build an unified framework for the privacy-preserving 3-party
PAKE protocols, which can formally treats both the securities and the priva-
cies, we extend the security model [4,1] for 3PAKE schemes by from the Secret
Handshake introducing into the 3PAKE setting three main privacy notions: re-
sistance to detection, unlinkability and indistinguishability to eavesdroppers, and
redefining them with the indistinguishability ideology.

In the second, inspirited by the idea of Viet et al.’s [19] constructing the
anonymous 2-party PAKE protocol, we propose the first privacy-preserving 3-
party password-based authenticated key exchange (PP-3PAKE) scheme which
also implements the secret handshake in the password-only setting by embedding
an oblivious transfer (OT) scheme of Tzeng [18] in a 3-party PAKE protocol.

In the third, facing with the highly complicated structure of the PP-3PAKE
protocol, we do not deal with its securities directly but apply a novel proof tech-
nology which, essentially a target driven way, depends on seeking a modularized
general construction relative to the objective scheme. As a result, from simplic-
ity to intricacy, step by step, we prove both the securities and the above three
privacies of the PP-3PAKE scheme under the unified formal model.
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2 Model and Definitions

In this section, we put forward a new formal model for privacy-preserving 3-
party password-based authenticated key exchange protocols, which is based on
the prototypical one provided by Abdalla [1].

2.1 Communication Model

Protocol Participants. There are two classes of the participants in PP-3PAKE
protocols: client and server. For simplicity, we consider the case with only a single
semi-trusted (namely, honest but curious) server S . By regarding S as a group
manager, we define a group GS and say that a client user is a member of GS

only if he stores his real identity information on S and shares a password with
it. Since protocol executions are assumed to be in an anonymous setting, we
fix two nonempty sets: V , the set of the real identities of group members and
U , the set of the pseudonyms of group members. This means that a member of
group GS has two identities: the former V ∈ V is used for the registration in
the server S and the latter U ∈ U is used for anonymous communications in
the networks. Due to anonymous executions, only the pseudonyms occur in the
view of the adversary. Therefore, U ∈ U is directly used to refer to as a group
member (or a client user) in the following. For the convenience of the following
privacy definitions, we assume that each real identity V ∈ V corresponds to at
least two pseudonyms and define a transformation function F : U → V to obtain
its real identity from a pseudonym client.

Here we further divide the set U into two disjoint subsets: C, the set of honest
group members and E , the set of malicious group members. That is, the set of all
users U is the union C

⋃
E . The malicious set E corresponds to the set of inside

attackers in the 3-party setting.

Long-Lived Keys. Each anonymous client user U ∈ U (who is essentially a
member of group GS) holds a corresponding identity V = F(U) and a password
pwV . The server S holds a vector pwS = 〈pwS [V ]〉V ∈V with an entry for each
real name user in which pwS [V ] may be equal to pwV in symmetric model or a
transformation of pwV as defined in [4].

Protocol Execution. In our model, a protocol is treated as a probabilistic
algorithm which determines how instances of the protocol principals behave in
responds to messages from the communication environment. Similarly, adversary
A is probabilistic algorithm which has full control over the communication chan-
nels. During the execution of the protocol, the interaction between an adversary
and the protocol participants occurs only via oracle queries, which model the
adversary capabilities in a real attack. These queries are as follows, where U i

(Sj , respectively) denotes the i-th (j-th, respectively) instance of a anonymous
group member U (the server S, respectively):

1. SendClient(U i,m): This query sends a message m to the instance U i. In
fact, it models an active attack against a group member. The oracle com-
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putes what the protocol says to, and sends back the response. A query
SendClient(Start, U) initializes a unused instance of the group member
U , and next the adversary A can receive the initial flows sent out by the
instance.

2. SendServer(Sj ,m): This query sends a message to a server instance Sj ,
which models an active attack against the server. It outputs the message
which the server instance Sj would respond upon receipt of message m ac-
cording to the protocol.

3. Execute(U i1
1 , Sj , U i2

2 ): This query models passive attacks, where the adver-
sary A gets access to a honest execution of the protocol among the client
instances U i1

1 and U i2
2 and server instance Sj by only eavesdropping the tran-

script of that execution. The output of this query consists of the message
that was exchanged during the honest execution of the protocol.

2.2 Security

Following [1], which in turn builds on [6,4], we make a small modification and
present our definitions of the protocol security as below.

Notation. An instance U i is said to be opened if the query Reveal(U i) (see
definition below) has been made by the adversary. We say an instance U i is
unopened if it is not opened. An instance U i is said to be accepted if it goes into
an accept state after receiving the last expected protocol message.

Partnering. By using the notion of session identifications (sid) [4], we say two
instances U i

1 and U j
2 are partners if the following conditions are met: (1) Both

U i
1 and U j

2 accept; (2) Both U i
1 and U j

2 share the same sid; (3) The partner

identification for U i
1 is U j

2 and vice-versa; and (4) No instance other than U i
1 and

U j
2 accepts with a partner identification equal to U i

1 or U j
2 .

Freshness. If an instance U i has been accepted and both the instance and its
partner are unopened and neither of them belongs to the malicious set, we say
the instance U i is fresh.

Semantic Security. The security notion is defined in the context of executing
a PP-3PAKE protocol P in the presence of an adversaryA. To model the misuse
of session keys and capture the adversary’s ability to distinguish a real session
key from a random one, we define two queries Reveal and Test as follows:

– Reveal(U i): Only if the session key of the instance U i is defined, the query
is available and returns to the adversary the session key.

– Test(U i): If the instance U i is not fresh, it returns ⊥. Otherwise, it returns
either the session key held by the instance U i (if b = 0) or a random number
of the same size (if b = 1), where b is the hidden bit selected at random prior
to the first call.
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During executing the protocol, the adversary A is allowed to send multiple
queries to the Execute, SendClient, SendServer, and Test oracles and asks
at most one Test query to each fresh instance of each honest group member,
while it is no longer allowed to ask Reveal queries. Finally A outputs its guess b′

for the bit b hidden in the Test oracle. An adversary A is said to be successful if
b′ = b. We denote this event by Succ. Provided that passwords are drawn from
dictionary D, we define the advantage of A in violating the semantic security
of the protocol P and the advantage function of the protocol P , respectively, as
follows:

AdvakeP,D(A) = 2 · Pr[Succ]− 1,

AdvakeP,D(t, R) = max
A

{AdvakeP,D(A)},

where the maximum is taken over all A with time-complexity at most t and
using resources at most R (such as the number of oracle queries).

We say a PP-3PAKE protocol P is semantically secure if the advantage
AdvakeP,D(t, R) is only negligibly larger than λn/|D|, where n is the number of
active sessions and λ is a constant. Certainly, one can hope for the best scenario
in which λ = 1 and an adversary has an advantage of n/|D| since it simply
guesses a password in each of the active sessions.

ServerAuthentication Security.Tomeasure the capability of a 3PAKEproto-
col to resist undetectable on-line dictionary attacks, in this paper we consider the

authentication securities between clients and the server. Let Succ
auth(C→S)
P,D (A)

(or Succ
auth(S→C)
P,D (A)) denote the probability that an adversary A successfully

impersonates a client (or the server) instance during executing the protocol P

without being detected. Also let Succ
auth(C→S)
P,D (t, R) = max

A
{Succ

auth(C→S)
P,D (A)}

(or Succ
auth(S→C)
P,D (t, R) = max

A
{Succ

auth(S→C)
P,D (A)}) denote the maximum over

all A running in time at most t and using resources at most R. A 3-party PAKE
protocol P is said to be client-to-server (or server-to-client) authentication secure

if Succ
auth(C→S)
P,D (t, R) (or Succ

auth(S→C)
P,D (t, R)) is at most O(k/|D|).

2.3 Privacy

In the secret handshake schemes based on public key systems, one always con-
siders three privacy notions: resistance to detection, unlinkability and indistin-
guishability to eavesdroppers. In the paper, we focus on the privacy-preserving
3PAKE protocol which can also be treated as a SH scheme in the password-only
setting. Consequently, we formally redefine the above three privacy notions in
the 3PAKE setting as follows.

Resistance to Detection. Intuitively, the notion captures the idea that an
adversary, who does not belong to the group GS (in other words, does not share
a password with the server S), is not able to decide whether other participants
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are legal members of the group GS . Formally, to define this notion, we introduce
a new query Detect in the following.

1. Detect(U): The query initializes an instance of U and returns a TRUE mes-
sage by taking either the real password held by the group member U (if
b = 0) or a random number of the same size (if b = 1) as the instance pass-
word in response to the subsequent various queries, where b is a bit selected
randomly at the beginning of the experiment.

During the execution of the protocol, the adversary Ard is allowed to ask multi-
ple queries to Detect as well as Execute, SendClient and SendServer oracles.
Finally Ard outputs its guess b′ for the bit b hidden in the Detect oracle. An
adversary Ard is said to be successful if b′ = b. We denote this event by Succrd.
Provided that passwords are drawn from dictionary D, we define the advan-
tage of Ard in violating resistance to detection and the corresponding advantage
function of the protocol P , respectively, as follows:

AdvdetectP,D (Ard) = 2 · Pr[Succrd]− 1,

AdvdetectP,D (t, R) = max
Ard

{AdvdetectP,D (Ard)},

The protocol P is said to be resistance to detection if any polynomial bounded
Ard can not guess successfully with the probability which is non-negligibly higher
than 1/2.

Unlinkability. As a secret handshake scheme, it is important to guarantee the
privacy of the actions of each legal member with respect to the other legal
members and the server. The goal of the privacy notion in the 3PAKE setting
is to keep the pseudonyms used in the protocol communications and the cor-
responding real identities unlinkable. That is, even though the adversaries are
insider attackers or the server, they are not able to determine which member a
pseudonym belongs to. In defining this notion, we consider the worst case and
imagine that an adversary Aul who knows the passwords for all users accesses
to the Execute and SendClient oracles but not to a SendServer oracle. The
reason for not providing the adversary with a SendServer oracle is because this
oracle can be easily simulated by the adversary using the passwords. To measure
the adversary’s ability to tell apart the real owner from a random one from the
group, we introduce a new query Link as follows.

1. Link(U i
s): The oracle returns either F(Us) (if b = 0) or an legal identity

randomly chosen from the group (if b = 1), where b is a random bit as in
the previous definition.

Consider an execution of the protocol P by an adversary Aul who is given the
passwords of all users and is allowed to access to the Execute, SendClient and
Link oracles. The output of the adversary is b′. Let Succul denote the event in
which b′ = b. The advantage of Aul in violating unlinkable and the advantage
function of the protocol P are defined, respectively, as follows:
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AdvlinkP,D (Aul) = 2 · Pr[Succul]− 1,

AdvlinkP,D (t, R) = max
Aul

{AdvlinkP,D (Aul)},

We say that P is unlinkable if its corresponding advantage function is negligible.

Indistinguishability to Eavesdroppers. This notion shows that no adversary
who only eavesdrops on execution of the protocol is able to distinguish between
a successful execution and an unsuccessful one. To define the privacy notion, the
adversary is allowed to only access to its Execute oracle and a new one which
is described as follows.

1. Ind(U i
s, U

j
t ): If client instances U

i
s and U j

t are not parters in the same session,
then return the invalid symbol ⊥, otherwise return either a random message
if b = 1 or the real execution transcripts between them where b is still a
random bit as in the previous definition.

The adversary Aind drives the execution of the protocol P by asking multiple
queries to its Execute oracles. After asking the Ind query, the adversary out-
puts its guess b′ for the bit b. Let Succind be the event in which the adversary
guesses b correctly. We can then define the advantage of Aind in violating indis-
tinguishability of the protocol P and the corresponding advantage function of P
as follows.

AdvindP,D(Aind) = 2 · Pr[Succind]− 1,

AdvindP,D(t, R) = max
Aind

{AdvindP,D(Aind)},

The protocol P is said to be indistinguishability to eavesdroppers if its corre-
sponding advantage function is negligible.

3 Security Primitives

Let G be a cyclic group of prime order q and let g be an arbitrary generator of G.

Decisional Diffie-Hellman Assumption (DDH): Let us consider the follow-
ing two distributions:

Dddh−real
G

= {gx, gy, gxy|x, y ∈R Zq},
Dddh−rand

G
= {gx, gy, gz|x, y, z ∈R Zq}.

Let Γ be a probabilistic polynomial time (PPT) algorithm for these two cases: On
input a triple of G, outputting 0 or 1. And let the advantage function Advddh

G
(t)

be the maximum value, over all probabilistic polynomial algorithms Γ running
in time at most t, of:

|Pr[Γ (Dddh−real
G

) = 1]− Pr[Γ (Dddh−rand
G

) = 1)]|.
We say that the DDH assumption holds in G if Advddh

G
(t) is a negligible function

of t.
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4 The Protocol

Inspired by the prior works of Abdalla et al. [2] and Viet et al. [19], we introduce
a new protocol, privacy-preserving 3-party password-based authenticated key
exchange protocol (PP-3PAKE), which enjoys both security and privacy. The
basic idea of our PP-3PAKE scheme is embedding an oblivious transfer (OT)
scheme of Tzeng [18] in a 3-party PAKE protocol.

4.1 Description of the Protocol

Let G are cyclic group of prime order q, and g be a generator of G. Let l1 be a
security parameter, and G1,G2,H0,H1 be random hash functions from {0, 1}∗ to
{0, 1}l1.

It is assumed that GS are a group managed by a semi-trusted server S. Let
V := {V1, V2, ..., Vn} be the set of the real identities of the group members regis-
tered on the server S, and U := {U1, U2, ..., Um} be the set of the pseudonyms,
with which each of group members participates in the execution of the protocol
P . In the following, we directly denote by an anonymous group member Ui a
group member with a pseudonym. All pwi shared between anonymous group
members Ui and the server S are assumed to be uniformly drawn from the
dictionary D.

The description of the PP-3PAKE protocol is as follows (also see Figure 1).

Phase 0.(Initialization)

1. In the beginning, two anonymous group members Ui and Uj who are
going to perform the protocol, choose at random two nones ni,nj , re-
spectively and then exchange them.

Phase 1.

1. Ui chooses at random xi, ri ∈ Zp, computes Xi = gxi and Mi = gri ·
PWi,1, and then sends to S the message including Xi, Mi and the addi-
tional information Δi := Ui|ni|Uj|nj .

2. Similarly, Uj selects randomly xj and rj , calculates Xj and Mj, and send
Xj , Mj and Δj := Uj |nj |Ui|ni to S.

Phase 2.

1. The server S chooses a random numbers s ∈ Zp and two group random
numbers k0

1 , k
0
2 , ..., k

0
n ∈ Zp and k1

1 , k
1
2 , ..., k

1
n ∈ Zp, and in turn computes

A0
l , A

1
l , B

0
l and B1

l for 1 ≤ l ≤ n as follows:

A0
l = H0((Mi/PWl,1)

k0
l |gxjs|Δ0

s), A
1
l = H0((Mj/PWl,1)

k1
l |gxis|Δ1

s)

B0
l = gxjs ⊕ H1((Mi/PWl,1)

k0
l |Δ0

s), B
1
l = gxis ⊕ H1((Mj/PWl,1)

k1
l |Δ1

s)

where an additional message Δ0
s = S|Ui|Uj|ns|ni|nj |Xi, Δ1

s =
S|Uj |Ui|ns|nj |ni|Xj and ns is a nonce selected by S.
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2. S sets Wi = {gk0
1 ·PW1,2, ..., g

k0
n ·PWn,2, A

0
1, ..., A

0
n, B

0
1 , ..., B

0
n} and Wj =

{gk1
1 · PW1,2, ..., g

k1
n · PWn,2, A

1
1, ..., A

1
n, B

1
1 , ..., B

1
n}, and transfers them

to Ui and Uj , respectively.

Phase 3.

1. Upon receipt of Wi and Δ0
s, Ui computes Ni = B0

i ⊕ H1(g
k0
i ·ri |Δ0

s) by

using its password pwi . Next, it checks A
0
i

?
= H0(g

k0
i ·ri |Ni|Δ0

s). If true, it
generates the session key SKi = (Ni)

xi for later secure communications.

2. After getting Wj and Δ1
s, Uj does same as Ui. It in turn computes Nj

and checks A1
j . Finally it also computes the session key SKj = (Nj)

xj .

Public information: G,g,q,G1,G2,H0,H1
pwi ∈ D, PWi,1 = G1(pwi),PWi,2 = G2(pwi)

User Ui Server S User Uj

xi, ri ∈R Zp xj , rj ∈R Zp

Xi = gxi Xj = gxj

Mi = gri · PWi,1 Mi, Xi, Δi−−−−−−−→ Mj , Xj , Δj←−−−−−−−− Mj = grj · PWj,1

s ∈R Zp

k0
1, k0

2, ..., k0
n ∈R Zp

k1
1, k1

2, ..., k1
n ∈R Zp

For l = 1 to n, compute:

A0
l = H0((Mi/PWl,1)

k0
l |gxjs|Δ0

s)

A1
l = H0((Mj/PWl,1)

k1
l |gxis|Δ1

s)

B0
l = gxjs ⊕ H1((Mi/PWl,1)

k0
l |Δ0

s)

B1
l = gxis ⊕ H1((Mj/PWl,1)

k1
l |Δ1

s)
Let:

Wi = {gk0
1 · PW1,2, ..., gk0
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Fig. 1. The PP-3PAKE protocol

4.2 Security

In the following theorem, we show that the PP-3PAKE protocol enjoys both the
semantic security and the authentication one from server to clients.

Theorem 1. Let G be a cyclic group of prime order q and D be uniformly
distributed dictionary of size |D|. Let qexe and qtest denote the numbers of queries

to Execute and Test oracles, qUi

send and q
Uj

send denote the numbers of queries to
the SendClient oracle to Ui and Uj , and qake be the number of client oracle
instances motivated by querying SendClient(Start) oracles. Then,
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Advror−ake
PP−3PAKE,D(t, qexe, qtest, q

Ui

send, q
Uj

send, qake) ≤
4 · Advror−ake

mdhke,D(t, qexe, qexe + qUi

send, q
Ui

send)

+ 4 · Advror−ake
mdhke,D(t, qexe, qexe + q

Uj

send, q
Uj

send)

+ 2 · (qake
2 + qH

2

2q
+

qake
2l1

)

+ 4 · AdvddhG (t + 10(qexe + qake)τG)

and

Succ
auth(S→C)
PP−3PAKE,D(t, qexe, qtest, q

Ui

send, q
Uj

send, qake) ≤
2Advror−ake

mdhke,D(t, qexe, qexe + qUi

send, q
Ui

send)

+ 2Advror−ake
mdhke,D(t, qexe, qexe + q

Uj

send, q
Uj

send)

+
qake

2 + qH
2

2q
+

qake
2l1

,

where qH represents the total number of queries to the random oracles and τG
denotes the exponentiation computational time in G.

Proof Idea. Consider the complicated structure of PP-3PAKE, we use the
modular technique as in [20]: Firstly, we introduce a new general construction
for 3PAKE protocol and prove its securities; Next, we instantiate the general
construction to obtain a specific 3PAKE protocol, which is actually a simplified
version of the PP-3PAKE protocol without the OT components and fully inherits
the securities of the general construction. Finally, the only thing that remains to
be done is to reduce the securities of S-3PAKE to the ones of PP-3PAKE. The
proofs of the theorem above will be found in the full version of this paper.

4.3 Privacy

Resistance to Detection. As the following theorem states, the PP-3PAKE
shown in Figure 1 enjoys the privacy protection of resistance to detect as long
as it holds the semantic secure.

Theorem 2. Let PP-3PAKE be the privacy-preserving 3-party password-based
authenticated key exchange protocol depicted in Figure 1. Then,

Adv
detect
PP−3PAKE,D(t, qexe, qtest, q

Ui
send

, q
Uj
send

, qake) ≤ Adv
ror−ake
PP−3PAKE,D(t, qexe, qtest, q

Ui
send

, q
Uj
send

, qake)

where qdetect are the upper bounds of detect queries and the other parameters are
defined as in Theorem 1.

Proof Idea. The main idea of the proof for the semantic security of PP-3PAKE
is to randomize the involving passwords. Therefore, obviously, this protocol pri-
vacy can be reduced to its semantic security.

Unlinkability As the following theorem states, the PP-3PAKE shown in Figure
1 enjoys the privacy protection of unlinkability even if the adversary against the
privacy notion is the server.
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Theorem 3. Let PP-3PAKE be the privacy-preserving 3-party password-based
authenticated key exchange protocol depicted in Figure 1. Then, it is uncondi-
tionally unlinkable.

Proof Idea. For any PWt,1 in the password set and random number ri, there

is r′i that satisfies gri · PWi,1 = gr
′
i · PWt,1. Therefore, the adversary cannot

get any information about which password the instance uses in the execution of
the protocol even if it occupies all the user passwords and unlimited computing
power.

Indistinguishability to Eavesdroppers. As the following theorem states, the
PP-3PAKE shown in Figure 1 enjoys the privacy protection of indistinguishabil-
ity to eavesdroppers as long as the DDH assumption holds in G.

Theorem 4. Let PP-3PAKE be the privacy-preserving 3-party password-based
authenticated key exchange protocol depicted in Figure 1. Then,

AdvindPP−3PAKE,D(t, qexe, qind) ≤ AdvddhG (t+ 10qexeτG).

where qid are the upper bounds of Ind queries and the other parameters are
defined as in Theorem 1.

Proof Idea. The proof of the privacy notion uses the techniques similar to the
ones of the reduction proof for authenticator forgeries in [20]. The detail proofs
will appear in the full version of this paper.

Actually, it is obvious that many 3PAKE protocols also hold resistance to detec-
tion and indistinguishability to eavesdroppers. PP-3PAKE enjoying unlinkability
benefits from its OT components. Whether all normal 3PAKE with the semantic
security keep the above first or third privacy notion is another interesting thing.

5 Conclusion and Discussion

The client computation and communication cost of our scheme are almost equiv-
alent to those of generic 3PAKE protocols, but the corresponding complexity of
the server side in our scheme is much greater than those in a generic one, espe-
cially in the case that the group size is large. It is a natural strategy to divide
the user group into several sub-groups and let our protocol perform in a certain
sub-group, which would effectively reduce the communication and computation
complexity of the server. But this method will lead to the decrease of the privacy
of our scheme. So, to seek a better tradeoff between the level of privacy and the
size of sub-group will be our future work.

On the other hand, it is assume that the application of our scheme would be
in a wireless setting where all communication is done via broadcast which offers
receiver anonymity as a built-in feature. This means that the identity of a party
is not directly derivable from the routing address that must appear in the clear
in the protocol message, namely, there is no easy way to figure out the user who
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sent/received a certain message. Otherwise it is easy for an adversary to figure
out who is interacting with whom or to observe that the peers continue talking
with each other after finishing the protocol. This assumption is actually also
implied in previous privacy-preserving authentication mechanisms.
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Abstract. We present a lightweight network coding based key distribu-
tion scheme to secure communications in mobile ad hoc network. Our
scheme only needs simple XOR network coding operations and message
authentication codes to achieve data confidentiality and guarantee the
integrity of the distributed keys, respectively. Security analysis shows
the effectiveness of our scheme against eavesdropping and impersonation
attacks as well as brute force attacks. The proposed scheme employs
a cluster-based hierarchical network topology. Simulation analysis show
that for key exchange between two nodes in the same cluster, the scheme
achieves more than 95% key delivery ratio with an ignorable average de-
lay of 2 m.s.; for key exchange between nodes in different clusters, 58%
key delivery ratio is achieved with around 10 m.s. of average delay.

Keywords: network coding, key distribution scheme, message authen-
tication code (MAC), wireless ad hoc network, network simulator-2.

1 Introduction

A mobile ad-hoc network (MANET) is a system composed of wireless mobile
nodes. These nodes are equipped with computing, wireless communication and
networking capabilities. MANET has been proposed as an effective networking
system facilitating data exchange between mobile devices even without fixed
infrastructures. MANETs have found applications in various scenarios such as
battlefield or disaster rescue scenarios [21]. Since communication in wireless net-
works is via open channels, the risk of unsecured sensitive information being
intercepted by unintended recipients is a realistic concern [10]. Consequently,
efforts to secure communications in MANETs are essential.

Secure communications among ad-hoc nodes have attracts much attentions
in academia. These efforts fall into two approaches referred to as group key
agreement and key distribution systems. Group key agreement allows a group of
users to negotiate a common secret key via open insecure networks. In this way,
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a confidential intragroup broadcast channel can be established without relying
on a centralized key server to generate and distribute secret keys to the potential
members. The earlier efforts [2] focuses on efficient establishment of the initial
group key. Subsequent studies [24] enable efficient member joins but the cost
for a member leave is comparatively high. A tree key structure has been further
proposed to achieve better efficiency for member joins and leaves [17]. By using a
ring-based key structure, a recent proposal in [5] can cope with member changes
in a constant number of rounds. The state-of-the art in group key agreement
due to Wu et al. [29] allows fast transmission to remote cooperative nodes in
MANETs. This goal is achieved by exploiting their novel notion of asymmetric
group key agreement [30,28]. The great advantage of asymmetric group key
agreement lies in that it allows member changes with little extra communication
or computation costs, while the initial communication and computation overhead
is comparatively high.

In a key distribution system, a trusted and centralized key server presets and
allocates the secret keys to potential users, such that only the privileged users can
read the transmitted message. The dynamic network topology, multi-hop, decen-
tralized and self-organizing properties pose security challenges [27] in MANETs.
One of the most important problems is how to distribute and update secret keys
to ensure secure communication among all participating nodes. The early key
distribution protocol [11] does not support member addition/deletion after the
system is deployed. The up-to-date schemes [9] strengthen the security concept
in the key distribution scenario while keeping the same O(

√
N) complexity as

[4], where N is the maximum number of users. These schemes allow secure group
communications in MANETs while the computation and communication costs
are expensive.

Network coding is a recently proposed technique which can be used to improve
a network’s, especially, a MANET’s throughput, efficiency and scalability. The
core idea of network coding [1] is to allow and encourage mixing of data at
intermediate network nodes. A receiver sees these data packets and deduces from
them the messages that were originally intended for the data sink. With network
coding, instead of simply storing-and-relaying the packets of information the
nodes received, the nodes of a network take several packets and combine them
together for transmission. This can be used to attain the maximum possible
information flow in a network.

In addition to the above gains to improve network information flow, a few
works have noticed that network coding can improve a MANET’s resilience to
attacks and eavesdropping. Lima et al. discussed the attacks and countermea-
sures in wireless network coding [1]. Dong et al. identified some security threats
and challenges in several network coding-based systems proposed for unicast
in wireless network [6]. Gkantsidis and Roddriguez proposed a large scale con-
tents distribution scheme [8] in network scenarios. Vilela et al. proposed a low-
complexity cryptographic scheme [25] based on random linear network coding
[16]. Yu et al. proposed the algorithms to resist Byzantine attacks [12] in a
broadcast scenario. Recently, several secret key distribution protocols have been
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proposed for wireless networks based on network coding [19,20]. These propos-
als require considerable memory space on each participating nodes and rely on
a mobile privileged node to bootstrap the participating network nodes. A recent
network coding based key distribution [14] has less storage overhead but the
computation cost has not been evaluated. The efficient network coding-based
protocol [19] proposed for wireless sensor network assumes that there is a mo-
bile node and other nodes are static. This assumption is not consistent with our
MANET setting in which all nodes are mobile, and so-called neighbors of any
node are not fixed any more.

In this paper, we investigate key distribution for secure communications in
MANETs in which the nodes are clustered. We propose a network coding based
scheme consisting of an intra-cluster key distribution protocol and an inter-
cluster protocol. The scheme allows any pair of nodes to efficiently setup a shared
key through a multi-hop route. In the initialization stage, a trusted third party
(TTP) is employed to pre-install a secret key and all padded key materials of
the other nodes to each ad hoc node. Each node only knows its own secret key.
Besides, it also keeps an encrypted version of keys of all other nodes pre-installed
by TTP in the initialization stage. After the initialization stage, end-to-end key
distribution can be performed efficiently based on a network coding paradigm.

We realize our lightweight scheme by exploiting the inherent security property
of network coding. The scheme only needs simple XOR network coding opera-
tions and well-established message authentication codes (MACs) to achieve data
confidentiality and guarantee the integrity of the distributed keys, respectively.
With the help random ounces, our scheme allows secure session key updates in an
very efficient way. Security analysis shows the effectiveness of our scheme against
eavesdropping and impersonation attacks. Under reasonable assumptions, our
scheme can also withstand brute force attacks.

Analyses imply that our key distribution is lightweight and suitable for
MANETs. By consuming rational memory space, our scheme avoid complicated
online mechanism to distribute more secret key materials. Compared with the
network coding based key distribution protocols in [19,20], our scheme requires
less memory space on each participating nodes and does not expect a mobile
(super) node to bootstrap the participating network nodes. We distinguish our
scheme from the recent network coding based key distribution scheme [14] with
tighter design and extensive experiments. The experimental results show that,
for key exchange between nodes in the same cluster, our scheme achieves more
than 95% key delivery ratio with an ignorable average delay of 2 m.s., and for key
exchange between nodes in different clusters,58% key delivery ratio is achieved
at only a cost of about 10 m.s. average delay.

2 The System Model

2.1 A Cluster-Based Hierarchical Network Topology

To host and enable a large number of nodes in a MANET, we employ a cluster-
based hierarchical network topology in MANETs. In the clustering approach to
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topology control, a set of clusterheads is first selected; each node is associated
with a clusterhead, and clusterheads are connected with each other directly or
by means of gateways; the union of gateways and clusterheads constitute a con-
nected backbone. As illustrated in Fig. 1 and Fig. 2, a subset of the network
nodes is selected to serve as the network backbone. Once selected, the cluster-
heads and the gateways are exploited to reduce the complexity of maintaining
topology information, and simplify essential network management functions such
as routing, bandwidth allocation, channel access, power control or virtual-circuit
support. For clustering to be effective, the links and nodes that are part of the
backbone (i.e., clusterheads, gateways, and the links that connect them) must
be close to minimum and must also be connected [3]. The characteristics of
cluster-based topology of ad hoc network will be leveraged to distribute secret
keys based on network coding paradigm in our security design.

Fig. 1. Clustering nodes in MANET Fig. 2. A hierarchical network topology

2.2 Adversarial Threats and Design Goals

There are numerous security threats in MANETs. In this paper, we concentrate
on typical adversarial threats to the secrecy of communications in MANETs.
These typical security threats [27] are listed as follows.

– Eavesdropping Attack. The attacker can eavesdrop every traffic over the
wireless medium in the MANET and can perform analysis upon receiving
the traffic, given that the attacker knows all the cryptographic algorithms
used in the MANET, but has limited computing resources and thus unable
to break the underlying cryptographic primitives.

– Impersonation Attack. The attacker can intercept traffic on wireless link
and try to impersonate as a legitimate user by replaying (and modifying)
some traffics obtained during the previous sessions.

– Brute-force Attack. The attacker may try to exhaust the secret keys or
inputs of the target nodes. The attack may also launch this attack against
some cryptographic operations, e.g., to find a collision of hash operations.

The main goal our network coding-based scheme is to efficiently set up a secret
key between two communication nodes, or set up a conference key among a group
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of nodes, so that non-compromised nodes can securely communicate in a hostile
communication environment where there exist above adversarial threats. An-
other goal is that the proposed scheme should be efficient enough to be deployed
in MANETs with resource-limited nodes.

With key pre-distribution and clustering-based network topology, several mit-
igating features can be exploited to achieve the above goals. First, before the
nodes are deployed, some secret key materials can be preloaded. This can for-
malized in a scenario where, in the initialization stage, there exists an offline
trusted third party (TTP) in the network. Second, as a managing node, each
clusterhead knows all identifiers of nodes within its jurisdiction and can route
the traffic to other clusterhead, and the latter will deliver the data to the des-
ignated node in the other cluster. Third, in many MANETs, each ad hoc node
has minimum memory to store the encrypted keys of other nodes.

3 Proposed Network Coding Based Key Distribution
Scheme for MANETs

In this section, a new key distribution scheme is proposed based on network cod-
ing paradigm. As the XOR operations are used in the scheme, so it requires only
a few lightweight computations and provides a level of security of probabilistic
key sharing scheme [7].

3.1 A High-Level View of Our Key Distribution Scheme

We adopt a cluster-based hierarchical network topology. The clusterheads are
elected through a recommendation algorithm automatically [3], and every ad
hoc node is associated with a clusterhead. Once any pair of node wants to setup
a common secret key and communicate securely, they must first contact their
own clusterheads. The clusterheads with the help of gateways can compute and
deliver data between the two communication nodes. There are two cases here.
In the first case, both nodes are associated with one same clusterhead. In the
second case, both nodes are associated with two different clusterheads. Hence,
the proposed scheme is made up of an intra-cluster key distribution protocol and
an inter-cluster key distribution protocol.

Our key distribution protocols consists of the initialization phase, the key
distribution phase and the key updating phase. The three phases are as follows.

– Initialization Phase: In this phase, an offline trusted third party (TTP)
is employed to setup security parameter, such as generating secret key for
each node, and choose cryptographic hash functions and algorithms. The
TTP will initialize each ad hoc node and injects the security data into the
node’s memory. Once this phase is finished, all network nodes are ready for
deployment.

– Key Distribution Phase: Two kinds of protocols will be executed based
on whether two communication nodes belong to a same cluster or not. If the
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two nodes belong to the same cluster, then key distribution fulfilled with
the aid of the clusterhead. Whereas, if the two nodes belong to different
clusters, the key distribution will be realized with the help of two different
clusterheads playing the role of gateways.

– Key Updating Phase: When the network topology changes or new nodes
enter the network, new session keys should be securely and efficiently estab-
lished. When a node wants to update its current secret key, it needs to send
an update request to its clusterhead. Then key updating procedure will be
executed with the aid of clusterheads.

3.2 Proposed Intra-cluster Key Distribution Protocol

The data flow of our intra-cluster key distribution is illustrated in Fig. 3. The
protocol is detailed as follows.

– Initialization Phase: An offline TTP generates a secret key Ki ∈ P , where
P is the large key pool generated by TTP, and the corresponding identifiers
IDi, i ∈ {0, · · · , N−1} for each ad hoc node. TTP stores a list of an encrypted
version of the other node’s keysKj⊕aij , i = 0, · · · , i−1, i+1, · · · , N−1 (notice
that aij = aji) into node i alone with all corresponding identifiers of the
nodes. Then TTP chooses a secure hash function h(x). After the initialization
phase, each node only knows its own secret key and the encrypted version
of other nodes. This minimizes the risk of secret key leakage when one node
is compromised.

– Key distribution phase: This phase consist of the following procedures.

1. Node A sends a challenge random rA, a message authentication code
MACA = h(rA ‖ KA ⊕ (KB ⊕ aAB)) and IDA, IDB to its clusterhead
Hl, l ∈ {1, · · · , N}, where N is the current maximum number of cluster-
heads in ad hoc network.

2. When clusterhead Hl receive the message from node A, it first checks
if node A and node B are associated with it. If the two nodes belong
to the same cluster, then Hl recodes rA,MACA, IDA, IDB and delivers
IDA, IDB to node B.

Fig. 3. Intra-cluster key distribution Fig. 4. Inter-cluster key distribution
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3. When node B receives IDA, IDB, node B knows that A wants to com-
municate with it. Then it sends a challenge random rB and MACB =
h(rB ‖ KB ⊕ (KA ⊕ aAB)) to Hl.

4. Hl first performs a simple table look-up and then uses network coding
paradigm to broadcast the value of {rA ⊕ rB ‖ MACA ⊕MACB}.

5. Upon receiving the message, node A computes rA⊕{rA⊕ rB} = r′B and
MACA ⊕ {MACA ⊕MACB} = MACB and then computes MAC′

B =
h(r′B ‖ KA ⊕ (KB ⊕ aAB)); Node B computes rB ⊕{rA ⊕ rB} = r′A and
MACB ⊕ {MACA ⊕ MACB} = MACA and then computes MAC′

A =
h(r′A ‖ KB ⊕ (KA ⊕ aAB)).

6. Node A verifies to confirm if MAC′
B = MACB ; Node B verifies to con-

firm if MAC′
A = MACA. If they are equal, then both node A and node

B will compute a shared secret key SK = h(KA⊕KB ⊕aAB ‖ rA ‖ rB).
– Key Updating phase: Note that the new session key between arbitrary

two ad hoc nodes is SK = h(KA ⊕KB ⊕ aAB ‖ rA ‖ rB). The two random
numbers rA, rB guarantee that the session key is fresh for each execution.
When one node want to update its session key with the other nodes, it can
get the new session keys with the designated nodes by choosing two new
random numbers rA and rB .

3.3 Proposed Inter-cluster Key Distribution Protocol

The data flow of the proposed inter-cluster key distribution protocol is illustrated
in Fig. 4. The initial and key updating phases are similar to their counterparts of
the intra-cluster protocol. What follows only specifies the key distribution phase.

1. Node A initiates the protocol by sending a challenge random rA, a message
authentication code MACA = h(rA ‖ KA ⊕ (KB ⊕ aAB)) and IDA, IDB to
its cluserhead Hl, l ∈ {1, · · · , N}.

2. Upon receiving the message from node A, Hl first checks if node A and
node B are associated with it. If not, Hl records IDA, IDB, rA,MACA and
broadcasts a 6-tuple IDA, IDB, rA,MACA, rl, IDl to the other clusterheads,
where rl is the new random challenge generated by Hl.

3. Suppose clusterhead Hj receives the 6-tuple IDA, IDB, rA,MACA, rl, IDl

broadcasted from Hl, Hj knows that node A want to communicate with a
node B that is subscribed under its jurisdiction. Then Hj records the 6-tuple
IDA, IDB, rA,MACA, rl, IDl and broadcasts IDA, IDB to node B.

4. Upon receiving IDA, IDB, node B knows A sends a random challenge rB
and MACB = h(rB ‖ KB ⊕ (kA ⊕ aAB)) to Hj .

5. Upon receiving rB,MACB, Hj just performs a simple table look-up and
generates a new random challenge rj and sends a 5-tuple rB,MACB , IDj, rj ,
MACj to Hl.

6. Upon receiving the 5-tuple,Hl performs a simple table look-up and computes
MAC′

j = h(rl ‖ Kl ⊕ (Kj ⊕ aji)). Then Hl check if MACj = MAC′
j . If

the two values are equal, then Hl authenticates Hj . Hl performs a simple
table look-up and computes MACl = h(rl ‖ Kl ⊕ (Kj ⊕ aji)), then unicasts
IDl,MACl to Hj .
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7. At almost the same time,Hl computes the value {rA⊕rB ‖ MACa⊕MACB}
and uses network coding paradigm to broadcasts the value to node A.

8. Upon receiving IDl,MACl, Hj performs a simple table look-up and com-
putes MAC′

l = h(rj ‖ Kj⊕(Kl⊕aij)). Then Hj check if MACl = MAC′
l . If

the two values are equal, then Hj authenticates Hl. Hj computes the value
{rA ⊕ rB ‖ MACA ⊕MACB} and broadcasts the value to node B.

9. Upon receiving the message, node A computes rA ⊕ {rA ⊕ rB} = r′B and
MACA ⊕ {MACA ⊕ MACB} = MACB, and then computes MAC′

B =
h(r′B ‖ KA ⊕ (KB ⊕ aAB)); Node B computes rB ⊕ {rA ⊕ rB} = r′A and
MACB ⊕ {MACA ⊕ MACB} = MACA, and then computes MAC′

A =
h(r′A ‖ KB ⊕ (KA ⊕ aAB)).

10. Node A verifies to confirm if MAC′
B = MACB; Node B verifies to confirm

if MAC′
A = MACA. If they are equal, then both node A and node B will

compute a shared secret key SK = h(KA ⊕KB ⊕ aAB ‖ rA ‖ rB).

4 Evaluation of the Proposal

4.1 Security Analysis

In the following, we discuss the main attack types that emerge in MANETs [27].

– Eavesdropping attack: We first consider an attacker who can listen to
all the traffic over the wireless medium. If the TTP and the nodes are not
compromised, the eavesdropper can not get any keys from the key pool but
the users’ identifiers, message authentication codes and random challenges.
Note that these data except the identifiers will be changed during the next
protocol execution. The attacker can not obtain any useful secret information
by eavesdropping the traffic.

– Impersonation attack: We next consider an attacker who can intercept
traffic on wireless link and impersonate as a legitimate user by replaying
some intercepted private information. If the attacker could just intercept
the data traffic and simply replay them during the current session, it can
not obtain any benefit from the transaction. If the attacker wants to replay
the intercepted data from the last protocol execution, then it will be easily
detected by verifying the MAC values on both ad hoc nodes and clusterheads,
because the attacker can not get the correct keys.

– Brute-force attack: Finally, an adversary could launch an attack against
the XOR and hash operations used in the protocols. One may notice that
the keys stored in the ad hoc nodes are XOR-ed by a random number R,
which can be considered as an encryption operation using one-time padding
cipher. It has been proved that the one-time padding cipher can achieve
information-theoretic security. If the hash function used in the protocol is
collision-resistant, the adversary can not find collisions of the MACs. Thus,
the protocols proposed in paper are secure against brute-force attack.
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4.2 Performance Analysis

We evaluate the performance of our scheme with extensive experiments. We im-
plemented this scheme in network simulator-2 [18,22,23]. As mentioned above,
this scheme requires a cluster based formation, i.e., cluster based routing pro-
tocol. We implemented the Cluster Based Routing Protocol [13] and modified
this protocol to work with our key distribution scheme. OPENSSL [26] was in-
corporated into NS-2 to compute message authentication code. Table 1 shows
simulation parameter and below is the simulation performance metrics:

Table 1. Simulation Parameters

Parameters Values

Simulation Time 100, 300, 500, 700, 900, 1100, 1300 & 1500 Seconds
Space 1000x1000
Total Number of Nodes 50
Mobility Moderate Mobility
Transmit Range 250m
Connections 5 & 10 Pairs
Traffic Type Constant Key Packet
Node Speed 5 m//s
Key Distribution Packet Rate 1 packet//s
MAC Protocol 802.11
Mobility Model Random Waypoint

– Key Distribution Ratio (KDR): Ratio of total number of key distri-
bution packets sent to the number of successfully received key distribution
packets, for exchanging keys between nodes in the same or different cluster.

– Average Key Distribution Delay at Source (AKDDS): The average
delay that each key distribution packet faced till it finally received back at
source nodes, for exchanging keys between nodes in the same or different
cluster.

– Average Key Distribution Delay at Destination (AKDDD): It is the
average delay that each key distribution packet faced till it finally received
by the destination nodes, for exchanging keys between nodes in the same or
different cluster.

– Normalized Routing Overhead (NRO): It is the number of routing
discovery packets that were sent on an average for each key distribution
packet. During key distribution between nodes in the same cluster, we do not
require a route and only need clusterhead’s help to finish the key distribution.

– Average Number of Hops (ANH): It is the average number of hops that
each key distribution packet traversed to finally received by both ends, i.e.,
source and destination, only for exchanging keys between nodes in different
clusters because hop count would remain the same, i.e., 4 hops, while keys
are exchanged between nodes in the same cluster.
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Fig. 5. Intra-Cluster KDR Fig. 6. Inter-Cluster KDR

Varied amount of key distribution packets were sent between 5 and 10 pair of
nodes. The source node in each pair of nodes was configured to send one key
exchange request per second.

Figure 5 shows the ratio of total keys that were successfully distributed to
number of key distribution packets that were sent between nodes in the same
cluster. Key distribution ratio was increased as the simulation time increased
under both traffic scenarios. During low traffic i.e. 5 connections; the packet
delivery ratio was higher than during high traffic i.e. 10 connections. Traffic con-
gestion was noticed and key distribution packet dropped due to higher amount
of traffic.

Each pair of node was configured to constantly sending one key exchange
packet per second. Such configuration caused performance degradation as soon
as the number of pairs was increased to ten.

Unlike key distribution in the same cluster, a route to destination is required
to forward key distribution packet to another cluster. Results shown in figure 6
that key distribution ratio improved while low traffic but decreased under higher
amount of traffic. We can avoid this performance degradation by reducing the
sending rate of key distribution packets or disabling the constant key packet
traffic. A trade off mechanism could help to replace constant key packet traffic.

Average delay that each key distribution packet faced to be successfully re-
ceived back to source node in the same cluster is presented in figure 7. Key

Fig. 7. Intra-Cluster AKDDS Fig. 8. Inter-Cluster AKDDS



Light Weight Network Coding Based Key Distribution Scheme for MANETs 531

Fig. 9. Intra-Cluster AKDDD Fig. 10. Inter-Cluster AKDDD

distribution in the same cluster does not require any routing mechanism and
these requests are handled by local information that is kept in cluster head.

Delay remained identical even the simulation time was increased from 100 to
1500 seconds. Key exchange packets during lower traffic i.e. 5 connections faced
less delay as compared to higher traffic i.e. 10 connections.

Average delay that each key distribution packet faced to be successfully re-
ceived back to source node in different cluster is presented in figure 8. Route
acquisition is needed to reach destination node and thus each key packet need to
face the delay caused by route discovery mechanism. A huge decline was noticed
while low traffic but the delay increased and became higher after 900 seconds
simulation and so on under high traffic scenario.

Higher amount of route discovery caused network congestion as well as the
routing packet drop. Rate of unsuccessful route discoveries increased with in-
creased duration of simulation.

Average delay that each key distribution packet faced to be successfully re-
ceived at destination node in the same cluster is presented in figure 9. Average
delay was slightly lower as compared to it was observed at source node (figure
7). Higher amount of traffic caused more delay during higher amount of traffic.

Fig. 10 illustrates the average delay that each key distribution packet faced
to be successfully received at destination node in different cluster. An additional
delay was observed due to route acquisition to reach destination that were in
another cluster. At lower traffic load, the delay was higher in the beginning but
it reduced tremendously when the simulation time approached 700 seconds and
onward.

While higher traffic load, lower delay was faced by each packet till the sim-
ulation time was less than 700 seconds but it became huge as the simulation
approached 900 seconds and onward.

Routing overhead was there only when both source and destination were in
different clusters. Figure 11 shows this overhead in context of successful key
distribution attempts. Lower traffic load generated comparatively less amount of
routing overhead and this overhead declined as the simulation time was increased
to 1500 seconds. On the contrary, higher amount of traffic load suffered enormous
routing overhead in context of successful key distribution attempts.
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Fig. 11. Normalized Routing Overhead Fig. 12. Average Number of Hops

Higher rate of key distribution packets that were sent caused more routing
overhead to discover destination nodes. A back off mechanism could improve this
overhead. Limited amount of route discoveries should be generated and a new
route discovery should be avoided until a previous route discovery is successful
or timeout.

Number of hops that the key distribution packets traversed on an average is
shown in figure 12. Results reveal that the key distribution packets traversed
longer during higher traffic loads and number of hops was fewer on average
during low traffic load.

5 Concluding Remarks

Wireless ad hoc network are vulnerable to various attacks, such as eavesdrop-
ping, impersonation and brute-force attacks. In this paper, we propose two light-
weight key distribution protocols based on network coding paradigm. The secu-
rity, memory requirements and computation overhead of the protocols are thor-
oughly analyzed. Analysis shows that the new protocols provide a lightweight
solution for distributing keys while ensure communication confidentiality and
authentication of nodes against typical attacks.
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Abstract. A novel identity-based authenticated group key agreement
(ID-AGKA) protocol is proposed to implement secure group communica-
tion in space information network. Cluster-based hierarchical mechanism
is applied to generate group session key through the intra-cluster phase,
inter-cluster phase and key distribution phase. Not only is the cost of es-
tablishment and management in public key infrastructure reduced, but
also the dynamic situations that satellite node joins or exits the group
are supported in the proposed protocol. Authentication, forward and
backward secrecy and semantic security are proved under difficult math-
ematical problem assumptions. Compared with the previous ID-AGKA
protocols, the proposed protocol has lower computation complexity and
communication cost, and achieves optimal overall performance for space
information network.

Keywords: space information network, group key agreement, forward
and backward secrecy, semantic security.

1 Introduction

Group key agreement (GKA) protocol, as an important technique of establish-
ing the group session key, can be used to guarantee the confidentiality in the
group communication. In the secure GKA protocols only when all of the group
members cooperate together, can the group session key be established while any
unauthorized sets of the group members cannot conspire to induce the group
session key in advance. With the speedy growth of the wireless network, GKA
protocols have become more and more important and many useful GKA schemes
have been proposed in recent years. The classic GKA protocols proposed in Refs.
[1-3] are only robust against the passive attack strategy. To overcome this draw-
back, the authenticated group key agreement (AGKA) protocols were proposed
subsequently [4-10]. However, all above-mentioned GKA schemes can only work
well under the certain wireless network circumstance where the numbers of the
network nodes are invariant. Consequently, the dynamic AGKA protocols were
put forward [11-14], in which the dynamic member joining or leaving scenarios
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are investigated adequately. Unfortunately, those dynamic AGKA protocols are
only suitable for the traditional wireless network requirements.

Space information network (SIN), composed of varieties of satellites constel-
lations, aircrafts and ground equipments, is a very complex interconnection net-
work. Most of GKA protocols which are suitable for traditional wireless network
cannot work well due to the high speed and the variable number of the satellite
network nodes in SIN. In 2007, Wang and Zhao et al. [15] introduced a general
framework for SIN, but failed to present a feasible AGKA scheme. Then, in 2012,
Zhong and Ma et al. [16] further proposed an applicable AGKA scheme for SIN
framework. Nevertheless, their AGKA scheme is based on a strong assumption
that there is a secure and efficient signature scheme in advance, and the corre-
sponding solutions are not given when a satellite node joins or leaves the SIN
dynamically. Thereafter, the universally composable (UC) bidirectional AGKA
protocol was designed for SIN without needing the strong signature assumptions
[17], but it is unfeasible for n-party (n ≥ 3). Moreover, the mechanism based
on the public key certificates introduces higher calculation and storage cost, es-
pecially for SIN. Hence, the additional communication cost is also brought in
along with the certificates’ transmission, which significantly increases the dif-
ficulty of the key management. Afterwards, in 2011, the improved ID-AGKA
scheme was proposed [18], in which the key management mechanism is relative
simpler and the cost of public key infrastructure (PKI) in establishment and
management is reduced. Although this scheme also has the dynamic authentica-
tion synchronously, it is vulnerable to the replay attack strategies. Additionally,
the ID-AGKA schemes proposed in Refs. [19-27] also need improving in efficiency
and performance, which are analyzed and compared in detail in later sections.
In this study, utilizing the traditional cluster-based hierarchical mechanism we
propose a novel ID-AGKA scheme which can work well when the satellite node
joins or leaves the SIN. Furthermore, the security of the proposed scheme is ana-
lyzed and proved, and the performance in communication cost and computation
complex is compared with many existing competitive schemes.

2 Preliminaries

2.1 Bilinear Pairing

Let G1 be a cyclic additive group, G2 be a cyclic multiplicative group of same
prime order q. Let P be a generator of G1, and ê be a bilinear map such that ê:
G1 ×G2 → G2 with the following properties [28, 29]:

– Bilinearity. For any P,Q ∈ G1 and a, b ∈ Z∗
q , ê(aP, bQ) = ê(P,Q)ab.

– Non-degeneracy. There exists P ∈ G1, such that ê(P, P ) �= 1.
– Computability. For anyP,Q ∈ G1, it is efficient to compute ê(P,Q).

2.2 Computational Problems

Two mathematically hard problems on which the proposed scheme is based are
described, namely discrete logarithm problem (DLP) and computational Diffie-
Hellmen problem (CDHP) [28, 29]:
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– DLP. Given P,Q ∈ G1, to find the integer a whenever such an integer a ∈ Z∗
q

exists, such that Q = aP .
– CDHP. Given aP and bP , to compute abP , where P ∈ G1 and a, b ∈ Z∗

q .

2.3 Cluster-Based Hierarchical Model

The satellite network, composed of the geostationary earth orbit (GEO), medium
earth orbit (MEO) and low earth orbit (LEO) satellites networks, can be gen-
erally regarded as the three-layer network architecture according to the SIN
longitudinal hierarchical network model. Each satellite orbit network can be
simply taken as a cluster such as GEO cluster, MEO cluster and LEO cluster,
respectively. The most powerful satellite node acts as the cluster head in the
same cluster, such as the satellite nodes IDG

0 , ID
M
0 and IDL

0 , while other satel-
lite nodes are the ordinary intra-cluster nodes, which are described in Fig.1. To
describe the proposed scheme clearly the following notations are defined.

– IDG
i (ID

M
i , IDL

i ): each satellite node’s ID in GEO (MEO, LEO) cluster,
where IDG

0 (ID
M
0 , IDL

0 ) is the cluster head and IDG
i (ID

M
i , IDL

i )(i �= 0) is
the ordinary node in GEO(MEO, LEO) cluster.

– C1(C2, C3): intra-cluster (inter-cluster, key distribution) phase.

– (uG
i , v

G
i ): the long-term public/private keys pair of the satellite node IDG

i (0 ≤
i ≤ n) generated by KGC.

– KG(KM ,KL): the intra-cluster temporary key in GEO (MEO, LEO) cluster.

– K: the final group session key.
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Fig. 1. The sketch of ID-AGKA protocol based on SIN longitudinal hierarchical net-
work model
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3 The Proposed Scheme

In this section, the proposed scheme for SIN is depicted in detail. Each satellite
node generates a key contribution value and sends the contribution information
to the key generation center (KGC) on the ground. When all the contribution
values are received, KGC generates a group session key and distributes the key
to all the satellite nodes in a secure manner. Moreover, the dynamic group key
agreement is supported when the satellite node joins or exits the group. The
proposed protocol consists of the following steps.

3.1 System Setup

Given a security parameter k ∈ Z, the credible KGC generates a set of sys-
tem parameter denoted with SP = {G1, G2, ê, P, q,H} by running a probably
algorithm for polynomial time as follows.

– Run the parameter generator on input k to generate a prime q, a cyclic addi-
tive group G1 and a cyclic multiplicative group G2 of the same prime order
q, a generator P of G1 and an admissible pairing ê: G1 ×G2 → G2.

– Randomly select a system master key s ∈ Z∗
q , and compute Ps = sP as the

corresponding system public key.

– Choose cryptographic one-way hash functions with collision-resistance as-
sumption H1: {0, 1}∗ → G1 and H2: {0, 1}∗ → Z∗

q .

Finally, the KGC’s master key s is kept secret and the system parameters Ps and
SP = {G1, G2, ê, P, q,H} are published. For each satellite node, KGC computes
ui = H2(IDi) as the long-term public key and vi = sui as the long-term private
key, where IDi is the identity of each satellite node. Then, KGC sends each
public/private keys pair to the corresponding satellite node by a secure manner.

3.2 Key Agreement

The process of key agreement is carried out through intra-cluster (C1), inter-
cluster (C2) and key distribution (C3) three phases, which are depicted in Fig.1
and presented as follows.

Phase 1: Intra-Cluster Phase. Within intra-cluster phase, the intra-cluster
temporary key, such as KG,KM and KL, are established for GEO, MEO and
LEO cluster, respectively. Meanwhile, the two-way authentication between each
ordinary satellite node and cluster head is implemented in the same cluster.
Taking GEO cluster as an example, the following three steps are conducted.

– The ordinary node IDG
i (1 ≤ i ≤ n) chooses a random number ri ∈ Z∗

q

and computes r−1
i , vGi

−1
and Ri = riP , Si = vGi Ri. Then IDG

i (1 ≤ i ≤
n) sends the message (IDG

i , Ri, Si) to the cluster head IDG
0 while keeping

(r−1
i , vGi

−1
, Ri, Si) in the local memory.
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– Once the message (IDG
i , Ri, Si) is received, IDG

0 verifies the identity of
IDG

i (1 ≤ i ≤ n). That is, if ê(Si, P ) �= ê(uiRi, Ps), ID
G
i is illegal. Otherwise,

IDG
i is legal. Then IDG

0 chooses a random number r0 ∈ Z∗
q and computes

R0 = r0P, Ti = r0v
G
0 Si(1 ≤ i ≤ n),W = H1(ID

G
0 , T1, T2, ..., Tn, t0) and

S0 = vG0 W . Where, t0, used for a timestamp, is the system time of the
cluster head IDG

0 . Then, ID
G
0 can compute the intra-cluster temporary key

KG = ê(r0v
G
0 P,

n∑
i=1

Ti) and further obtains h0 = H2(ID
G
0 ,K

G, t0). Subse-

quently, IDG
0 broadcasts the message (IDG

0 , S0, T1, T2, ..., Tn, t0, h0) to IDG
i .

– When the message (IDG
0 , S0, T1, T2, ..., Tn, t0, h0) is received, IDG

i (1 ≤ i ≤
n) verifies the cluster head IDG

0 by computing the equation that W =
H1(ID

G
0 , T1, T2, ..., Tn, t0), ê(S0, P ) = ê(u0W,Ps). If the verification succeeds,

IDG
i calculates the intra-cluster temporary key KG = ê(Tir

−1
i vGi

−1
,

n∑
i=1

Ti)

and h
′
0 = H2(ID

G
0 ,K

G, t0). If the equation that h
′
0 = h0 holds, the intra-

cluster temporary key is established successfully. Otherwise, the intra-cluster
phase should be restarted. Meanwhile, the timestamp information t0 is both
contained in h0 and h

′
0, so the method can be used for avoiding the replay

attacks. Finally, the intra-cluster temporary key KG is established among
all the satellite nodes in GEO cluster.
Similarly, the intra-cluster temporary key KM and KL also can be estab-
lished in MEO cluster and LEO cluster.

Phase 2: Inter-Cluster Phase. Each cluster head IDG
0 (ID

M
0 , IDL

0 ) sends
the corresponding KG(KM ,KL) to KGC in this phase. Then these datas used
for generating the final group session key are returned back to each cluster
head after KGC’s calculation as the following three steps. Meanwhile, the two-
way authentication between each cluster head and KGC is accomplished in the
similar way utilized in intra-cluster phase.

– IDG
0 (ID

M
0 , IDL

0 ) computes KG
P = KGP (KM

P = KMP , KL
P = KLP ) and

sends KG
P (KM

P , KL
P ) to KGC, respectively.

– Once the message from each cluster head is received, KGC implements the
identity authentication. If the cluster head is legal, KGC chooses a rand num-
berKr ∈ Z∗

q and computesKrP = KrP andKKGC = H1(K
G
P ,KM

P ,KL
P ,Kr).

Then, KGC can further obtain that KG
KGC = KKGC ⊕ KrK

G
P , KM

KGC =
KKGC ⊕ KrK

M
P and KL

KGC = KKGC ⊕ KrK
L
P , and send the message

(KrP ,K
G
KGC), (KrP ,K

M
KGC) and (KrP ,K

L
KGC) to the corresponding cluster

heads IDG
0 , ID

M
0 and IDL

0 , respectively.
– After the message from KGC is arrived, each cluster head authenticates

KGC’s identity and computesKKGC, respectively. That is,KKGC = KG
KGC⊕

KrPK
G,KKGC = KM

KGC ⊕KrPK
M ,KKGC = KL

KGC ⊕KrPK
L.

Phase 3: Key Distribution Phase. GEO (MEO, LEO) cluster performs the
following steps independently and obtains the final group session key K success-
fully. Let’s take GEO cluster as an example.
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– For each IDG
i (1 ≤ i ≤ n), IDG

0 computers the corresponding KG
i =

RiKKGC , and broadcasts the message (KG
1 ,KG

2 , ...,KG
n ) to IDG

i .

– After the message is received, each IDG
i carries out the identity authentica-

tion. If the cluster head is legal, each IDG
i computes the final group session

key K = KG
i r−1

i successfully. Similarly, each satellite node IDM
i (IDL

i ) in
MEO cluster (LEO cluster) also can obtain the final group session key K.

3.3 Dynamic Member Joining/Leaving

The proposed scheme can work well when the satellite node joins or leavings the
group, which is depicted detailedly in the following two scenarios.

Scenario 1: Satellite Node’s Joining Scenario. Suppose that the new satel-
lite node, denoted with IDG

n+1, will join the GEO cluster, and its long-term pub-
lic key and long-term private keys pair is (uG

n+1, v
G
n+1) where u

G
n+1 = H2(ID

G
n+1)

and vGn+1 = suG
n+1.

(1) IDG
n+1 chooses a random number rn+1 ∈ Z∗

q , computes Rn+1 = rn+1P and

Sn+1 = vGn+1Rn+1 and saves the set of (r−1
n+1, v

G
n+1

−1
, Rn+1, Sn+1) in the lo-

cal memory. Then, IDG
n+1 broadcasts a request message (IDG

n+1, Rn+1, Sn+1)
to join the GEO cluster.

(2) After the request message is received, IDG
0 verifies IDG

n+1’s identity. If it suc-

ceeds, IDG
0 further computes that Tn+1 = r0v

G
0 Sn+1,W

′
= H1(ID

G
0 , T1, T2,

..., Tn, Tn+1, t0), S
′
0 = vG0 W

′
. Therefore, the intra-cluster temporary key up-

dates to KG
′
= ê(r0v

G
0 P,

n+1∑
i=1

Ti) = ê(P, P )
(r0v

G
0 )

2
(r1v

G
1 +...+rnv

G
n +rn+1v

G
n+1),

and thus IDG
0 gets a new h0 = H2(ID

G
0 ,K

G
′
, t0). Then, ID

G
0 broadcasts

the message (IDG
0 , S

′
0, T1, T2, ..., Tn, Tn+1, t0, h0) to ordinary satellite node

IDG
i (1 ≤ i ≤ n+ 1).

(3) The original satellite node IDG
i (1 ≤ i ≤ n) can obtain the new intra-cluster

temporary key by either of the following two ways.

– According to the received broadcast message, IDG
i (1 ≤ i ≤ n) calculates

KG
′
= ê(Tir

−1
i vGi

−1
,
n+1∑
i=1

Ti) = ê(P, P )
(r0v

G
0 )

2
(r1v

G
1 +...+rnv

G
n +rn+1v

G
n+1).

– IDG
0 encryptsKG

′
with the original intra-cluster temporary keyKG and

multicasts the secret message to IDG
i (1 ≤ i ≤ n). Then, IDG

i (1 ≤ i ≤ n)

can decrypt the secret message to obtain KG
′
.

Specially, the new satellite node IDG
n+1 can obtain the new intra-cluster

temporary key KG
′
as follows. According to the received broadcast message

(IDG
0 , S

′
0, T1, T2, ..., Tn, Tn+1, t0, h0), ID

G
n+1 computesW

′
= H1(ID

G
0 , T1, T2,

..., Tn, Tn+1, t0) and verifies its legitimacy according to the equation that

ê(S
′
0, P ) = ê(uG

0 W
′
, Ps). If it is legal, IDG

n+1 can obtain KG
′
, and further
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compute h
′
0, that is,

KG
′
= ê(Tn+1r

−1
n+1v

G
n+1

−1
,
n+1∑
i=1

Ti) = ê(P, P )
(r0v

G
0 )

2
(r1v

G
1 +...+rnv

G
n +rn+1v

G
n+1),

h
′
0 = H2(ID

G
0 ,K

G
′
, t0). Therefore, the new intra-cluster temporary key is es-

tablished if h
′
0 = h0 holds. Otherwise, the communication should be aborted.

(4) The new K
′
KGC used for generating the new group session key can be ob-

tained through inter-cluster phase mentioned in subsection 3.2. Finally, the
new group session key is established among all the satellite nodes in GEO
cluster through key distribution phase as introduced in subsection 3.2, that

is, K
′
= KG

i

′
r−1
i (1 ≤ i ≤ n + 1). Similarly, all the satellite nodes in MEO

cluster (LEO cluster) also can compute the new group session key K
′
.

Scenario 2: Satellite Node’s Leaving Scenario. Two cases should be dis-
cussed when satellite node leaves the group, that is, the ordinary node’s leaving
and the cluster head’s leaving.

– Ordinary node’s leaving. The ordinary node IDG
j sends a request for leaving

the group to IDG
0 . When the message is received, IDG

0 reselects a random
number r

′
0 ∈ Z∗

q with r
′
0 �= r0, and computes that T

′
i = r

′
0v

G
0 Sn+1(1 ≤

i ≤ n, i �= j), W
′
= H1(ID

G
0 , T

′
1, T

′
2, ..., T

′
j−1, T

′
j+1, ..., T

′
n), S

′
0 = vG0 W

′
.

Therefore, IDG
0 can compute the new intra-cluster temporary key KG

′
=

ê(r
′
0v

G
0 P,

n+1∑
i=1
i
=j

T
′
i ). Then, ID

G
0 broadcasts the message (IDG

0 , S
′
0, T

′
1, T

′
2, ...,

T
′
j−1, T

′
j+1, ..., T

′
n) to other nodes in the same cluster. After the message is

received, each node verifies its legitimacy according to the equation that
ê(S

′
0, P ) = ê(uG

0 W
′
, Ps), where W

′
= H1(ID

G
0 , T

′
1, T

′
2, ..., T

′
j−1, T

′
j+1, ..., T

′
n).

If the verification succeeds, then the new intra-cluster temporary key KG
′
is

KG
′
= ê(T

′
i r

−1
i vGi

−1
,

n∑
i=1
i
=j

T
′
i )

= ê(P, P )
(r0v

G
0 )

2
(r1v

G
1 +r2v

G
2 +...+rj−1v

G
j−1+rj+1v

G
j+1+...+rnv

G
n )

– Cluster head’s leaving. After cluster head sends the request for leaving the
group, other satellite nodes IDG

i (1 ≤ i ≤ n) reselect a powerful satellite

node as the new cluster head denoted with IDG
0

′
. Then, each satellite node

reselects a random number r
′
i ∈ Z∗

q and performs the intra-cluster phase
mentioned in section 3.2 in order to update the intra-cluster temporary key

to the new KG
′
.

Finally, according to the new intra-cluster temporary key KG
′
obtained from

case 1 or case 2, the new K
′
KGC can be generated after the inter-cluster phase
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is performed as introduced in subsection 3.2. Then, after the key distribution

phase, the new group session key is established, that is, K
′
= KG

i

′
r−1
i .

Similarly, the new group session key K
′
also can be established among all the

satellite nodes in MEO cluster (LEO cluster).

4 Protocol Analysis

In 2000, Joux proposed a tripartite key agreement protocol based on parings
over the elliptic curves [25]. However, it cannot resist the man-in-the-middle
attack because of lacking of the authentication between the communicating par-
ties. Barua et al. attempted to extend Joux’s tripartite scheme to an ID-AGKA
scheme [24], but their scheme requires (logn3 ) rounds which lowers the efficiency
seriously. Subsequently, Choi et al. [19] and Du et al. [20] proposed two ID-
AGKA protocols from bilinear and BD schemes [1]. Unfortunately, Zhang and
Chen [26] demonstrated an impersonation attack on these two schemes and sug-
gested adding a time parameter to prevent from replaying transcripts of the
past session. Then, SHIM [27] showed that the protocol is still vulnerable to
the participation attack. In 2006 and 2008, Lin et al. [21] and Tang et al. [22]
put forward two GKA protocols with authentication respectively, but their pro-
tocols have shortcomings in number of rounds, pairing-computation and com-
munication bandwidth. Although Li et al. [23] proposed an ID-AGKA protocol
providing authentication with less rounds and pairing-computations, the larger
required bandwidth brings out the bigger larger propagation delay which is a
relatively important indicator in SIN.

In this section, we show that our ID-AGKA protocol is strong secure and has
the powerful applicability and communication efficiency owing to considering the
characteristic of SIN.

4.1 Correctness Analysis

Correctness Analysis of Intra-cluster Temporary Key. Within intra-
cluster phase, the cluster head IDG

0 generates the intra-cluster temporary key
KG by virtue of the received message from the ordinary node IDG

i , that is,

KG = ê(r0v
G
0 P,

n∑
i=1

Ti). Meanwhile, the ordinary node IDG
i computes the intra-

cluster temporary keyKG according to the broadcast message sent by the cluster

head IDG
0 , that is, KG = ê(Tir

−1
i vGi

−1
,

n∑
i=1

Ti). The following equation can be

established by the properties of the bilinear pairing, that is

KG = ê(Tir
−1
i vGi

−1
,

n∑
i=1

Ti) = ê(r0v
G
0 P,

n∑
i=1

Ti) = ê(P, P )
(r0v

G
0 )

2
(r1v

G
1 +...+rnv

G
n )
.

Therefore, the correctness of the intra-cluster temporary key is guaranteed.

Correctness Analysis of Group Session Key.Within key distribution phase,
each cluster head IDG

0 (ID
M
0 ,IDL

0 ) can compute the corresponding KKGC , re-
spectively, owing to the equation that KrK

G
P = KrKGP = KrPKG. That is,
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KKGC = KG
KGC ⊕ KrPK

G, KKGC = KM
KGC ⊕ KrPK

M , KKGC = KL
KGC ⊕

KrPK
L. Therefore, all the satellite nodes can compute the group session key K

and its correctness is guaranteed by the following equation:
K = KG

i r−1
i = RiKKGCr

−1
i = KKGCP (0 ≤ i ≤ n).

Similarly, for the situations that the satellite node joins or leaves the group, the
same conclusion also can be deduced.

4.2 Security Analysis

In this section we show that our ID-AGKA protocol is strong secure and the
security of the proposed protocol is proved under the DLP, CDHP and one-way
hash functions with collision-resistance assumptions.

Two-Way Authentication. Cluster head and intra-cluster satellite nodes can
authenticate each other.

Lemma 1. Cluster head can authenticate intra-cluster satellite nodes.

Proof. During intra-cluster phase, the cluster head can authenticate the intra-
cluster satellite nodes by judging whether the equation that ê(Si, P ) = ê(uiRi, Ps)
holds or not. Assume that an adversary, namely Mallory, acting as an ordinary
satellite node, wants to be authenticated successfully without being detected in
the phase. Mallory would have to first derive ri and vGi and further forge a reason-
able Ri and Si from the eavesdropping message (IDG

i , Ri, Si). Hence, it is equiv-
alent to solving the discrete logarithm problem, which is computationally unfea-
sible. Therefore, without the knowledge of Ri and Si, the adversary cannot pass
the authentication.

Lemma 2. Intra-cluster satellite nodes can authenticate cluster head.

Proof. During intra-cluster phase, intra-cluster satellite node can authenticate
the cluster head by computing the equation that ê(S0, P ) = ê(uG

0 W,Ps). The
adversary Mallory, as a forge cluster head, would have to first compute the cor-
rect vG0 and further obtain S0 to pass the authentication. However, it is very
hard to compute the cluster head’s private key vG0 under the discrete logarithm
problem assumption.
Therefore, the proposed schemes can provide the two-way authentication be-
tween the cluster head and intra-cluster satellite nodes.

Semantic Security. We prove that the proposed protocol is designed with
semantic security as follows.

Theorem 1. Under the DLP and CDHP assumptions, the proposed schemes
can satisfy the semantic security of GKA.

Proof. The semantic security of GKA requires that the key value and the random
value in key space are indistinguishable to outside adversary even though the
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adversary can eavesdrop on all of the communicated messages throughout the
protocol.

For intra-cluster phase, outside adversary can eavesdrop on the transmit-
ted messages (IDG

i , Ri, Si) and (IDG
0 , S0, T1, T2, ..., Tn, t0, h0). As mentioned

above, the intra-cluster temporary key KG is that KG = ê(Tir
−1
i vGi

−1
,

n∑
i=1

Ti) =

ê(r0v
G
0 P,

n∑
i=1

Ti).

Obviously, KG is decided by the random numbers r0, ri and the generated
long-term private keys vG0 and vGi . However, it is a fact that solving vG0 and vGi is
equivalent to solving the DLP and CDHP assumptions, which has been proved in
Lemma 1 and Lemma 2. Consequently, KG can keep the same randomness with
r0 and ri that are never public and unable to be calculated to outside adversary.
Therefore, outside adversary cannot distinguish KG from r0 and ri randomly
distributed in the intra-cluster temporary key space.

For inter-cluster phase, the transmitted messages obtained by outside adver-
sary are (KG

P ,KM
P ,KL

P ) and (KrP ,K
G
KGC,K

M
KGC ,K

L
KGC). For the KGC side,

the equation that KKGC = H1(K
G
P ,KM

P ,KL
P ,Kr) is established. The generated

variable KKGC is closely related with the intra-cluster temporary key KG and
the random numberKr. Additionally, the chose random numberKr is never pub-
lic and the hash function is defined with collision-resistance assumption. Hence,
the outside adversary cannot distinguish the variable KKGC from the random
value Kr distributed in the corresponding key space. For each cluster head side,
the equations that KKGC = KG

KGC ⊕KrPK
G, KKGC = KM

KGC ⊕KrPK
M and

KKGC = KL
KGC ⊕ KrPK

L are established. Since that the outside adversary
cannot distinguish the intra-cluster temporary key KG from the chose random
number, which has been proved, and the random number Kr is never public, the
variable KKGC and the random number Kr in the corresponding key space are
undistinguishable to outside adversary.

For key distribution phase, the messages intercepted by outside adversary
are (KG

1 ,KG
2 , ...,KG

n ) and Ri = riP . The adversary would have to induce ri to
obtain group session key K owing to the equation that K = KG

i r−1
i . Therefore,

it is also impossible to distinguish ri from K, which is equivalent to solving the
DLP assumption.

Forward and Backward Secrecy. In the following, we demonstrate that the
proposed protocol provides forward and backward secrecy for dynamic member
joining or leaving.

Theorem 2. Under the hash function with collision-resistance assumption, the
new member cannot compute the previous group key when he or she joins the
group, and the leaving member also cannot compute the future group key when
he or she leaves the group.

Proof. Forward secrecy is that when a new member joins the group, he cannot
compute the previous group keys and decrypt past-encrypted messages. Without
loss of generality, suppose that a new satellite node IDG

n+1 joins the group. He
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might have intercepted the transmitted message (IDG
0 , S0, T1, T2, ..., Tn, t0, h0)

before joining the group. Therefore, he can elicit the hash value which contains
the useful information of the intra-cluster temporary key KG. However, the hash
function involved in the proposed scheme is one-way with collision-resistance, so
it is too hard to compute KG from the hash value. Furthermore, since the final
group session key K = KG

i r−1
i is based on the intra-cluster temporary key KG,

that is, KG = ê(Tir
−1
i vGi

−1
,

n∑
i=1

Ti) = ê(P, P )(r0v
G
0 )

2
(r1v

G
1 +r2v

G
2 +...+rnv

G
n ).

Obviously, KG consists of the contribution information of each intra-cluster
node’s long-term private key. For the new member IDG

n+1, he would have to
calculate the random numbers ri and the long-term private key vGi to obtain the
previous group key, which is unfeasible according to Theorem 1. Likewise, the
new member IDG

n+1 is unable to induce KG by means of the following equation

KG
′
= ê(Tir

−1
i vGi

−1
,
n+1∑
i=1

Ti) = ê(P, P )
(r0v

G
0 )

2
(r1v

G
1 +r2v

G
2 +...+rnv

G
n +rn+1v

G
n+1).

Therefore, the proposed protocol can provide the forward secrecy.
Backward secrecy is that when a group member leaves the group, he cannot

compute future group keys and decrypt future encrypted messages. Assume that
an old node IDG

j leaves the group. Similar to the proof of dynamic member

joining case, he also cannot calculate the future group session key K
′
after his

leaving. Therefore, the proposed protocol can provide the backward secrecy.

4.3 Performance Analysis and Comparisons

In this section, we compare the performance and efficiency of the proposed proto-
col and existing competitive protocols. Here we assume that there are n satellite
nodes including one powerful cluster head node and n−1 ordinary satellite nodes
would like to establish a group session key only within the intra-cluster phase.
Suppose that all the existing schemes compared with each other are carried out
in the SIN scenario with the character of dynamic topology, high speed and large
time-delay. The computation complexity, communication cost and other impor-
tant performances are compared with six other competitive protocols, which is
summarized in Table 1. For convenience, the following notations are used to
analyze the performance.

– Round(R): The total number of rounds.
– Bandwidth(B): The total number of messages sent by each node.
– Authentication(A): Whether the protocol provides the authentication or not

(Y/N).
– Dynamic(D): Whether the protocol satisfies dynamic member joining or

leaving(Y/N).
– Pairings(P ): The total number of pairing computations.
– ScalMulti(SM): The total number of scalar multiplications (i.e., computing

kP , where P ∈ G1 ).

Specially,the total amount of the computations does not include the computation

complexity of the hash functions and the preliminary operations (r−1
i , vGi

−1
,
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Table 1. Comparisons between the previously protocols and our proposed protocol

Protocol R B A D P SM

Choi’s[19] 2 2n N N 2n n2

Du’s[20] 2 3(n− 1) Y N 4n n(n+ 5)

Lin’s[21] 2 2n Y N 2n n

Tang’s[22] 2 2n Y N 3n 2n(n− 1)

Li’s[23] 1 n(n− 1) Y N n n2

Barua’s[24] �logn3  < 5n(n− 1) N N ≤ 5n �logn3 + 3 ≤ 9(n− 1)

Ours 2 n Y Y 3(n− 1) 3(n− 1)

Ri, Si) by the satellite nodes, as the former complexity is relatively lower and
the latter operations are offline.

From Table 1, we can observe that the proposed protocol not only has the
lowest computation complexity and communication cost compared with Choi’s
protocol [19], Du’s protocol [20] , Tang’s protocol [22] and Barua’s protocol [24],
but also provides the two-way authentication and dynamic member joining or
leaving situations. In addition, although the computation cost such as pairing
computations and scalar multiplications of Lin’s protocol [21] is slightly better,
the communication cost is two times higher than the our proposed protocol.
Considering that the big propagation delay (even up to a few milliseconds) is
an intrinsic characteristic, the higher communication cost gives rise to the fur-
ther larger propagation delay, a much more important indicator in SIN, which
completely covers the computational advantage of Lin’s protocol [21]. Moreover,
Lin’s protocol [21] is not suitable for dynamic member joining or leaving sce-
nario. Li’s protocol [23] can execute only one round communication to implement
mutual authentication and has the lower computation cost in pairing computa-
tions, but the computation complexity and communication cost are increased
quickly with n2 (n usually is a very large number in SIN), which will decrease
the communication efficiency seriously. Additionally, the preliminary operations

(r−1
i , vGi

−1
, Ri, Si) of the satellite nodes saved in local memory are offline, which

further reduces the scalar multiplications. Therefore, compared with the previous
competitive protocols the proposed protocol is optimal in overall performance
and has the most powerful applicability for the practical applications in space
information network.

5 Conclusions

We have presented a new cluster-based ID-AGKA scheme according to the lon-
gitudinal hierarchical network model of the space information network. The pro-
posed protocol not only reduces the cost of establishment and management in
public-key infrastructure, but also satisfies the dynamic satellite nodes joining
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or leaving situation. Security analysis shows that the proposed protocol has two-
way authentication, forward and backward secrecy and semantic security, and
is also secure against common attack strategies. Compared with the previous
ID-AGKA protocols, the proposed protocol has lower computation complexity
and communication cost, and thus its overall performance is optimal in the space
information network.
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Abstract. A new geometry-based authentication and key agreement
scheme, without invoking traditional strong symmetric and/or asym-
metric encryption functions, is constructed by taking advantage of the
geometric property that (n+1) generic points in an n-dimensional space
can determine a unique hyper-sphere under certain conditions. The secu-
rity and performance of the scheme are analyzed. Experiments are also
conducted to show that the scheme is efficient and is easy to implement.
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1 Introduction

Authentication and key agreement plays an important role in information se-
curity. Authentication ensures that the communicating entity is the one that
it claims to be. Key agreement can let two communication parties negotiate a
common session key.

Password authentication is one of the widely adopted authentication ap-
proaches. But usually the server side needs to keep some secret information
related to users’ passwords, which brings a lot of potential security vulnera-
bilities [7,10,11]. In order to solve these problems, smart card-based password
authentication schemes [14,17] were proposed.

A smartcard-oriented remote login authentication approach based upon geo-
metric properties was proposed by Wu [15]. Different from previous authentica-
tion methods, the principle of Wu’s scheme [15] is based upon some geometric
properties, which adopts the axiom that two points can uniquely determine a
straight line. If a user and an authentication server can reconstruct the same
straight line, then user authentication is successful. But Hwang [5] found that an
illegitimate user can easily launch an attack via eavesdropping the login message
in Wu’s scheme. Chien-Jan-Tseng’s scheme [3] was proposed to amend faults of
Wu’s scheme. Another more complex authentication system to enhance the secu-
rity of remote login system based on geometric approach was proposed by Wang
[13], which adopts the geometric properties of hyper-sphere in n-dimensional
space, and its theoretical foundation is that (n + 1) points can uniquely deter-
mine a hyper-sphere in n-dimensional space under certain conditions. However,
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there are still some effective attacks [4] against Wang’s scheme, for example,
replay and off-line password guessing attacks. Besides, some other attacks [16],
such as dictionary attacks, and user/central authority impersonation attacks,
and user/central authority impersonation attacks, can also be launched against
Wang’s scheme.

Recently, some smartcard-based authenticated key agreement methods us-
ing chaotic maps [2] were proposed, and some using elliptic curve cryptography
[6,12,8]. Some smartcard-based schemes are for some specific application areas,
for example, wireless communications [1], VOIP SIP [18], and multi-server envi-
ronments [9].

Our Contributions. An authentication system based on geometric properties
of hyper-sphere is proposed in this paper, which can not only let the server
efficiently authenticate the users using geometrical approach, but also let two
communication parties agree on a common session key.

Organization. The remainder of this paper is organized as follows. Section 2
describes the preliminaries required in this paper. Our newly designed authenti-
cation and key agreement scheme based on geometric properties is described in
Section 3. Section 4 discusses the security by analyzing some possible attacks.
The experiment is presented in Section 5. Finally, Section 6 concludes the paper.

2 Preliminaries

2.1 Notation

Some notations that are used by this paper are given as follows.
p is a large prime number;
GF (p) is a Galois field determined by p;
f(x, y) is a cryptographic hash function taking x and y as input parameters.

2.2 Hyper-sphere

Hyper-sphere in Euclidean Space. A hyper-sphere is a generalization of
the surface of an ordinary sphere to arbitrary dimension. In particular, a hyper-
sphere in a 2-dimensional space is called circle. The formula for a hyper-sphere
in n-dimensional Euclidean space can be expressed as:

(x1 − c1)
2 + (x2 − c2)

2 + · · ·+ (xn − cn)
2 = r2, (1)

where (c1, c2, . . . , cn) is the center of the hyper-sphere, r is the radius, and
(x1, x2, . . . , xn) is an arbitrary point on the hyper-sphere.

Hyper-sphere over Finite Fields. The concept of hyper-sphere and (1) can
be extended to finite fields. For simplicity, the Galois field GF (p) is adopted
as the ground field in our scheme, where p is a large prime number. Then the
equation for the hyper-sphere over GF (p) can be expressed as:

(x1 − c1)
2 + (x2 − c2)

2 + · · ·+ (xn − cn)
2 ≡ r2 (mod p), (2)
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where xi ∈ GF (p) and ci ∈ GF (p), for i = 1, 2, . . . , n.
Notice that only r2 is needed in our scheme, and r is never required throughout

this paper. We remind that square-root may not always be a valid operation over
GF (p).

Determining a Hyper-sphere by Given Points. As we know, three dif-
ferent points in a 2-dimensional space that are not in the same straight line can
determine a circle uniquely. The situation is similar in n-dimensional space. By
taking (n+ 1) points as input parameters, we can determine the center and r2

of a hyper-sphere via Algorithm 1 shown in Fig. 1 if certain conditions are met.
As long as the center of the hyper-sphere and r2 are fixed, then the formula

for the hyper-sphere can be determined uniquely.

Finding Different Points on a Hyper-sphere. By given the center of a
hyper-sphere and r2, we can find n different points on the hyper-sphere [13]. We
present the basic idea of [13] in the form of pseudo-code in Algorithm 2 shown
in Fig. 2.

Verifying Whether a Given Point is on a Given Line. Our proposed au-
thentication and key agreement scheme adopts not only the principles of hyper-
spheres, but also properties of straight lines. It is a basic mathematical theorem
to verify whether or not a given point is on a given line, and we formalize it in
pseudo-code described in Algorithm 3 shown in Fig. 3.

3 The Proposed Scheme

3.1 Overview

Suppose that there are a lot of users and an authentication server ( “AS” for short
hereafter) in the system. The AS and a user should share a secret hyper-sphere
firstly. If the user can prove to the AS that it can reconstruct the shared secret
hyper-sphere, then the identity of the user is authenticated to be valid. In order
to prevent eavesdropping attacks, however, the user will not directly present the
parameters of the secret hyper-sphere, but to present the transformed parameters
related to the secret hyper-sphere, instead. The basic idea is that after user Ui

owning the center C of the hyper-sphere, Ui can determine another point W
related to C and the current time stamp t. Then Ui can have a line L across
points C and W . After that, Ui randomly selects a point G on L, and the login
message is related to G. Obviously, point G is varied from each login session
since the time stamp t is changed each time.

The authentication scheme can be divided into five stages: the initial stage,
the user registration stage, the user login stage, the verification stage, and the
session key computation stage. The initial stage is for the AS to select some
initial parameters used during the whole authentication process. At the stage of
user registration, the AS assigns a unique identifier for each user. The user takes
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Algorithm 1: To determine a hyper-sphere by given (n+ 1) points

Input: (ai1, ai2, . . . , ain), which are the coordinates of (n+ 1) points Ai, where
i = 0, 1, . . . , n;

Output: (C , R), where C = (c1, c2, . . . , cn) is the center of a hyper-sphere, and
R = r2 is the square of the radius, respectively;

Procedure:
1 begin
2 Apply the coordinates of Ai, i = 0, 1, . . . , n, to Eqn (1) and obtain:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(a01 − c1)
2 + (a02 − c2)

2 + · · ·+ (a0n − cn)
2 ≡ r2 (mod p)

(a11 − c1)
2 + (a12 − c2)

2 + · · ·+ (a1n − cn)
2 ≡ r2 (mod p)

· · · · · ·
(an1 − c1)

2 + (an2 − c2)
2 + · · ·+ (ann − cn)

2 ≡ r2 (mod p)

3 Subtract the above j-th equation from the (j + 1)-th equation,
j = 1, 2, . . . , n, and obtain:

⎧
⎪⎨

⎪⎩

2(a11 − a01)c1 + · · ·+ 2(a1n − a0n)cn ≡ ∑n
j=1 (a

2
1j − a2

0j) (mod p)

· · · · · ·
2(an1 − an−1,1)c1 + · · ·+ 2(ann − an−1,n)cn ≡ ∑n

j=1 (a
2
nj − a2

n−1,j) (mod p)

which is a system of linear equations with n unknowns c1, c2, . . . , cn.
4 Let B be the coefficient matrix and D be the vector of constants of the

above system of linear equations respectively,

B =

⎡

⎣
2(a11 − a01) . . . 2(a1n − a0n)

. . . . . . . . .
2(an1 − an−1,1) . . . 2(ann − an−1,n)

⎤

⎦ ,

DT = (
n∑

j=1

(a2
1j − a2

0j), . . . ,
n∑

j=1

(a2
nj − a2

n−1,j)),

where DT stands for the transpose of vector D . Now, the system of linear
equations in the above step can be re-written as

B ×CT = D ;

5 Let � = |B | (mod p); /* Calculate the determinant of matrix B . */
6 if (� �= 0) then
7 CT = B−1 ×D ; /* Solve the unknowns c1, c2, . . . , cn. */
8 end
9 else

10 return (NULL,NULL);
11 end
12 Apply the values of c1, c2, . . . , cn to the first equation in Step 2, and obtain:

R 	 r2 = (a01 − c1)
2 + (a02 − c2)

2 + · · ·+ (a0n − cn)
2 (mod p);

13 return (C , R);

14 end

Fig. 1. Algorithm To Determine a Hyper-sphere by Given (n+ 1) Points

advantage of its smart card to generate an authentication message at the user
login stage and delivers the authentication message to the AS via an open chan-
nel. At the verification stage, the AS verifies the received message to determine
whether the user’s identity is valid or not. After that, both the AS and the user
can compute a shared session key at the session key computation stage.
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Algorithm 2: To find n different points on a hyper-sphere

Input: (C , R), where C = (c1, c2, . . . , cn) is the center of a hyper-sphere and R
is the square of the radius;

Output: B1,B2, . . . ,Bn, which are different points on the hyper-sphere;
Procedure:

1 begin
2 for (i = 1; i ≤ n; i++) do
3 repeat
4 for (j = 1; j ≤ n− 2; j ++) do
5 Find integers eij and dij that satisfy eij ≡ d2ij (mod p);
6 Let xij = (dij + cj) (mod p);

7 end
8 Find integers ei,n−1, di,n−1, ein, and din that satisfy

ei,n−1 ≡ d2i,n−1 (mod p),

ei,n ≡ d2i,n (mod p),

and

ei,n−1 + ein ≡ (R−
n−2∑

j=1

eij) (mod p);

9 Let xi,n−1 = (di,n−1 + ci,n−1) (mod p),
10 and xin = (din + cin) (mod p);
11 Let B i = (xi1, xi2, . . . , xin);

12 until Bi /∈ {B1, . . . ,Bi−1};
13 end
14 return B1,B2, . . . ,Bn;

15 end

Fig. 2. Algorithm To Find n Different Points on a Hyper-sphere

Algorithm 3: To verify whether a given point G is on a given line crossing
given points C and W

Input: G = (g1, g2, . . . , gn), C = (c1, c2, . . . , cn) and W = (w1, w2, . . . , wn),
which are three points in n-dimensional space over GF (p);

Output: true/false; if the point G is on the line across C and W , ture;
otherwise, false;

Procedure:
1 begin
2 for (i = 1; i ≤ n; i++) do
3 if ((ci − wi) ≡ 0 (mod p)) then
4 return false;
5 end
6 else
7 Let λi = (gi − wi)× (ci − wi)

−1 (mod p);
8 end
9 if (λi �= λ1) then

10 return false;
11 end

12 end
13 return true;

14 end

Fig. 3. Algorithm To Verify Whether a Given Point G Is on a Given Line
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3.2 The Initial Stage

The AS chooses some initial parameters for the whole authentication system at
this stage.

The AS selects a large prime p with the form p = 8m+3, wherem is an integer.
All computations hereafter are over the Galois field GF (p). The AS chooses a
positive integer n, a cryptographic hash function f(x, y). The parameters p and
n, and the hash function f(·, ·) are known to the public. Note that it will be
more convenient to resolve the quadratic congruence to let p take the form of
p = 8m+ 3.

The AS randomly selects n linearly independent n-dimensional secret vectors
S1 = (s11, s12, . . . , s1n)

T , . . . ,Sn = (sn1, sn2, . . . , snn)
T , where sij ∈ GF (p). The

vectors S1,S2, . . . ,Sn should be kept secret by the AS. Notice that the vectors
can be regarded as points in n-dimensional space.

3.3 The User Registration Stage

The AS assigns a unique identifier for each user at this stage. A smart card
containing some information dedicated to a user is also issued by the AS.

The protocol executed between a user and the AS is described as follows.

Step 1. User Ui selects a password PWi, and calculates a point

A0 	 (a01, a02, . . . , a0n) = (f(PWi, 1) (mod p), . . . , f(PWi, n) (mod p)).

The point A0 is sent to the AS in a secure way.
Step 2. The AS assigns Ui a unique identifier IDi representing the identity of

Ui, then calculates points A1, . . . ,An by invoking the secret vectors
S1, . . . ,Sn:

A1 	 (a11, a12, . . . , a1n) = (f(IDi, s11) (mod p), . . . , f(IDi, s1n) (mod p)),

· · · · · ·

An 	 (an1, an2, . . . , ann) = (f(IDi, sn1) (mod p), . . . , f(IDi, snn) (mod p)).

The AS calls Algorithm 1 by usingA0,A1, . . . ,An as input parameters,
and obtains returned values (C , R).
If (C == NULL) or (R == NULL)
then
the AS repeats Step 2 to select a new IDi and re-compute points

A1,A2, . . . ,An until Algorithm 1 returns non-NULL values;
else
(C , R) identifies a hyper-sphere determined by points A0,A1,

. . . ,An, we denote it by UCi and the formula of which can be expressed
as:

UCi : (x1 − c1)
2 + (x2 − c2)

2 + · · ·+ (xn − cn)
2 ≡ R (mod p).
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Step 3. The AS, by calling Algorithm 2, randomly chooses n points B1,B2,
. . . ,Bn on the hyper-sphere UCi except points A1,A2, . . . ,An, i.e.,

{B1,B2, . . . ,Bn} ∩ {A1,A2, . . . ,An} = ∅.
Step 4. The AS writes p, IDi, and f(·, ·) to the firmware of a smart card, and

writes B1,B2, . . . ,Bn to the secure storage area of the smart card.
The access to B1,B2, . . . ,Bn is protected by Ui’s password PWi.
After that, the AS delivers the smart card to user Ui via a safe way.

Remark. User Ui’s password PWi is always kept by Ui itself, and is never
required to be known by the AS. Therefore, the AS is not necessary to store Ui’s
password.

3.4 The User Login Stage

A user generates a login message by using its smart card, and presents the login
message to the AS at this stage. The protocol among a user, its smart card, and
the AS are described as follows:

Step 1. User Ui inserts its smart card into a card reader attached to a login
terminal. Then parameters p, IDi,B1,B2, . . . ,Bn are loaded.

Step 2. User Ui inputs its password PWi, and then the smart card computes

B0 = (f(PWi, 1) (mod p), . . . , f(PWi, n) (mod p))

Step 3. The smart card, by calling Algorithm 1, reconstructs the secret hyper-
sphere UCi by taking points B0,B1, . . . ,Bn as input parameters, and
obtains returned values (C , R), whereC = (c1, c2, . . . , cn) is the center
of UCi.

Step 4. The smart card fetches the current time stamp t, and computes

w1 = f(c1, t) (mod p),

w2 = f(c2, t) (mod p),

. . . . . .

wn = f(cn, t) (mod p).

Let point W = (w1, w2, . . . , wn).
If (W == C )
then the smart card repeats Step 4 to get a new time stamp t and

calculate a new point W , until W �= C .
Step 5. The smart card randomly selects λ ∈ GF (p)� {0, 1}, and computes⎧⎪⎪⎪⎨⎪⎪⎪⎩

g1 ≡ w1 + (c1 − w1)× λ (mod p)

g2 ≡ w2 + (c2 − w2)× λ (mod p)

· · · · · ·
gn ≡ wn + (cn − wm)× λ (mod p)

(3)

Let G = (g1, g2, . . . , gn), which is a point on a line L across points W
and C , with G �= W and G �= C .

Step 6. User Ui sends the login message M = {t, IDi,B1,G} to the AS.
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Algorithm 4: To verify whether a user’s login message M is valid or not

Input: M = {t, IDi,B1,G}, where t is the time stamp, IDi is user Ui’s
identity, B1 and G are points in n-dimensional space;

Output: true/false; if the login message M is valid, true; otherwise, false;
Procedure:

1 begin
2 if ( t is expired ) or ( t is invalid ) then
3 return false;
4 end
5 for (j = 1; i ≤ n; i++) do
6 Let Aj = (f(IDi, sj1) (mod p), . . . , f(IDi, sjn) (mod p));
7 /* sj1, . . . , sjn are the AS’s secret parameters; */

8 end
9 (C , R)=Algorithm 1(B1,A1, . . . ,An);

10 /* Call Algorithm 1 by using B1,A1, . . . ,An as input parameters; */
11 if (C == NULL) or (R == NULL) then
12 return false;
13 end
14 else

15 Let C 	 (c1, c2, . . . , cn); /*c1, c2, . . . , cn are components of C ; */
16 for (j = 1; j ≤ n; j ++) do
17 Let wj = f(cj , t) (mod p);
18 end
19 Let W = (w1, w2, . . . , wn);
20 result = Algorithm 3(G, C, W );
21 /* Call Algorithm 3 by using G, C, W as inputs to judge if G is on a

line L across C and W ; */
22 if ( result == NULL ) then
23 return false;
24 end
25 else
26 return true;
27 end

28 end

29 end

Fig. 4. Algorithm To Verify Whether a User’s Login Message M Is Valid or Not

3.5 The Verification Stage

At this stage, by calling Algorithm 4, the AS judges whether user Ui’s login
message is valid or not. The returned value true or false indicates “valid” or
“invalid” about user Ui’s identity.

3.6 The Session Key Computation Stage

Both user Ui and the AS can compute a shared common session key at this
stage. Since user Ui generates a point W at its login stage, and the AS will
re-construct the same point W at the verification stage if Ui’s authentication
message is valid. Thus,W = (w1, w2, . . . , wn) can be used to compute a common
secret between Ui and the AS.

Let k′ = w1||w2|| . . . ||wn, where “||” stands for concatenation operation, then
k′ is a common secret. We can fetch desired length of bits from k′ by some
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pre-defined specifications to become a session key, for example, we define k to
be the leading 128 odd bits of k′:

k = leading 128 odd bits of(k′);

As a result, k is a 128-bit session key shared between user Ui and the AS.
Notice that the computation of W invokes time stamp t, therefore, k is also

a function of t, which means that k is varied from each session and will be
statistically independent from its previous instance.

4 Security and Performance Analysis

4.1 Security Analysis

We analyze the security issues against some existing typical attacks.

1) Replay attack

The login message M contains time stamp and the AS will check the validity
of the time stamp. Therefore, replay attacks can be prevented by our scheme.

2) Forging login message

If the attacker intercepts the authentication messageM , what he can get is a
point on the hyper-sphere. The attacker cannot reconstruct the hyper-sphere
UCi, and has no knowledge about the coordinates of the hyper-sphere’s cen-
tral point. If the attacker modifies the time stamp, he cannot construct a
legal point G corresponding to the modified time stamp, and cannot con-
struct a legal login message, either. Even though the attacker can intercept
multiple authentication messages, he still cannot get enough information to
reconstruct the hyper-sphere. Therefore, an attacker cannot forge a legal
login message.

3) Off-line dictionary attack

The dictionary attack has no effect to our approach. On the one hand, since
f(PWi, j) is not exposed to the open network, the dictionary attack is hard to
launch against our approach. On the other hand, even though the password
PWi was guessed and the login messageM was intercepted, only B0,B1,and
G were got by the attacker, but it is still lack of enough information to
reconstruct the hyper-sphere.

4) Impersonating the AS

Since the secret information of the AS might be exposed to the legal user
in the approach described in [13], there is a security leak that a legal user
might be able to forge the AS. A legal user can reconstruct other user’s
ID and secret shared with the AS, and then it can forge the AS to generate
other legal user’s login message. This problem is considered to be the biggest
leak in [13]. But this problem doesn’t exist in our approach. The legal user
can know only (n+ 1) points on the reconstructed secret hyper-sphere, but
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the AS will use other different n points plus the points B0 to calculate the
secret hyper-sphere. Thus the user has no knowledge on the AS’s n points,
let alone n secret vectors to generate the points. Therefore, it is unable for
a legal user to forge the AS.

5) Impersonating user

Suppose that a legal user Ui might modify its user identifier IDi in the login
message and try to forge another user Uj . However, user Ui will not know
the secret shared between the AS and Uj, then it is unable to generate a
legal point G corresponding to Uj ’s information. Therefore, it is unable to
forge another user to generate the legal login message.

6) Breaking cryptographic hash function

The cryptographic hash function is usually considered to be secure. Even if
the hash function was broken, the approach proposed in this paper is still
secure. During all the procedures of computations, a user’s f(PWi, j) or the
AS’s f(IDi, sij) will never be exposed to the open channel. Therefore, it is
unable for the attacker to get a user’s PWi or the AS’s secret sij via breaking
the hash function.

7) Brute force attacks

The attackers might try to guess the center C = (c1, . . . , cn) of the hyper-
sphere shared between a user and the AS. Since each cj ∈ GF (p), j =
1, 2, . . . , n, then the complexity to guess C is O(2n×|p|), where |p| is the
length of p in bits. For an ordinary application, we can choose a small pos-
itive integer for n, for example, let n = 3, and let |p| = 128 bits, then the
attacking complexity is O(2384). A cryptosystem is usually considered to be
practically secure if the complexity of the best attacking method against it
is higher than O(280).

4.2 Performance Analysis

We summarize the computation complexity, storage, and communication over-
head required by each user and the AS respectively in this subsection.

Computation. Firstly, the computation complexity of Algorithms 1, 2, 3, and
4 are given in Table 1. Notice that all computations in Table 1, 2, and 3 are over
GF (p), and n denotes the dimension of the hyper-sphere.

The major computation of Algorithm 1 is to solve a system of linear equa-
tions (2), the complexity of which is less than O(n3) by invoking a standard
Gaussian elimination method. The major computation of Algorithm 4 needs to
call Algorithm 1. Therefore, both Algorithm 1 and 4 require O(n3) complexity of
computation, but other algorithms require only O(n2), or O(n), or 0 complexity.

Secondly, the computation complexity required by user Ui at each stage is
summarized in Table 2. The user registration stage is executed only once during
the lifetime of a password, but both the user login stage and the session key
computation stage are implemented at each authentication session. From the
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Table 1. Computation Complexity of Algorithms

Multiplicative Inversion Multiplication Addition Hash Function

Algorithm 1 O(n3) O(n3) O(n3) 0

Algorithm 2 0 O(n2) O(n2) 0

Algorithm 3 O(n) O(n) O(n) 0

Algorithm 4 O(n3) O(n3) O(n3) O(n2)

performance analysis in Table 2, we observe that the most time consuming com-
putation required by a user is only O(n3) multiplicative inversions. For an usual
application, as analyzed in the previous subsection, a small positive integer n,
for example, n = 3 or n = 5 can lead to a practical security level. Therefore, it
is fast for a smart card to execute a login procedure, and our scheme is suitable
for smartcard-oriented applications.

Table 2. Computation Complexity of a User at each Stage

Stage Multiplicative Multiplication Addition Hash Concatenation
Inversion Function

User Registration 0 0 0 O(n) 0

User Login O(n3) O(n3) O(n3) O(n2) 0

Session Key Computation 0 0 0 0 O(n)

Thirdly, the computation complexity required by the AS at each stage is sum-
marized in Table 3. Similarly, the most time consuming computation required
by the AS is only O(n) multiplicative inversions, which means that our scheme
is also efficient for the AS to verify a user’s identity.

Table 3. Computation Complexity of the AS at each Stage

Stage Multiplicative Multiplication Addition Hash Concatenation
Inversion Function

User Registration O(n3) O(n3) O(n3) O(n2) 0

Verification O(n3) O(n3) O(n3) O(n2) 0

Session Key Computation 0 0 0 0 O(n)

Storage. In the user side, the data needed to be kept by each user is stored in
its smart card, which is p, IDi, f(·, ·),B1,B2, . . . ,Bn. Then the storage requires
((n2+1)|p|+ |IDi|+ sizeof(f)) bits, where |p| stands for the length of p in bits,
|IDi| for the length of IDi, sizeof(f) for the size of executable code of the hash
function f in bits.

In the AS side, it is not necessary for the AS to store each user’s password nor
other private information. What the AS needs to store are n set of secret vectors
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S1 = (s11, s12, . . . , s1n), ..., Sn = (sn1, sn2, . . . , snn) for the whole authentication
system, and the length of which are n2|p| bits. For a practical instance, if we
choose n = 3 and |p| = 128, then the AS needs to store n2|p| = 32 × 128 = 1152
bits, or 144 bytes of secret information for the whole system. Hence, the AS
needs to store only small amount of data.

Communication Overhead. The login message sent from a user to the AS is
M = {t, IDi,B1,G}, the length of which is (|t| + |IDi|+ 2n|p|) bits, where |t|
stands for the length of time stamp in bits.

5 Experiment

We implement the authentication system in Java language. All the computations
are over the Galois field GF (p). The AS side program runs on a PC whose
CPU is Pentium IV 2.5GHz processor, the memory is 512MB, and the operating
system is Window XP. The user side program runs on Pocket PC to simulate
the smart card. We use Asus A620BT Pocket PC, with InterPXA255 processor,
and Window CE operating system. For different values of p and n, the time
consumptions for the stages of authentication are shown in Table 4, 5 and 6
respectively, where p is the order of GF (p), |p| stands for the length of p in bits,
and n is the dimension of the hyper-sphere. The time consumed by the AS side
program is presented in Table 4 and 5, and the time taken by the user side
program running on Pocket PC is shown in Table 6.

Table 4. Time Consumed by the AS side Program at the User Registration Stage (in
second)

|p| = 64 |p| = 128 |p| = 256 |p| = 512 |p| = 768 |p| = 1024

n = 3 0.019 0.025 0.041 0.069 0.172 0.434

n = 5 0.031 0.038 0.053 0.113 0.259 0.694

n = 7 0.031 0.040 0.063 0.178 0.328 0.690

n = 10 0.047 0.053 0.091 0.219 0.597 1.278

n = 12 0.066 0.062 0.097 0.278 0.622 1.534

n = 15 0.084 0.084 0.128 0.372 0.953 1.931

Table 5. Time consumed by the AS Side Program at the Verification Stage (in second)

|p| = 64 |p| = 128 |p| = 256 |p| = 512 |p| = 768 |p| = 1024

n = 3 0.006 0.006 0.006 0.006 0.009 0.013

n = 5 0.006 0.009 0.009 0.017 0.019 0.028

n = 7 0.009 0.009 0.013 0.022 0.031 0.050

n = 10 0.012 0.016 0.022 0.041 0.066 0.097

n = 12 0.022 0.025 0.031 0.059 0.097 0.159

n = 15 0.028 0.031 0.050 0.094 0.153 0.241
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Table 6. Time consumed by the User Side Program running on Pocket PC at the User
Login Stage (in second)

|p| = 64 |p| = 128 |p| = 256 |p| = 512 |p| = 768 |p| = 1024

n = 3 0.556 0.594 0.835 1.464 2.166 3.557

n = 5 0.809 1.013 1.669 3.028 4.76 8.111

n = 7 1.479 1.828 2.847 5.463 8.335 12.425

n = 10 2.459 3.242 5.208 9.923 15.966 23.496

n = 12 3.245 4.305 7.735 14.158 22.757 32.552

n = 15 5.251 6.811 10.897 20.503 34.025 48.643

6 Conclusion

An authentication and key agreement system based on the properties of n-
dimensional hyper-sphere, without invoking traditional strong encryption func-
tions, is proposed in this paper. It’s essentially based on system of linear equa-
tions, which can only be solved by n set of linear equations that their coefficients
are linearly independent. By analyzing some typical attacks, it’s shown that our
approach can resist these attacks. Compared with other geometry-based au-
thentication approaches, our approach owns better security by overcoming their
disadvantages. Theoretical analysis and experiment results confirm that the com-
putation of our approach is relatively simple and requiring only small amount of
overhead. The storage for both a user and the AS is reasonable. Therefore, it’s
suitable for smartcard-oriented application.
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Abstract. We present an authenticated ID-based Group Key Agreement (GKA)
protocol which requires only one round for its execution. The protocol is contrib-
utory, energy-balanced and does not require an online TTP. All these properties
and in particular the minimum round requirement, makes the protocol especially
suited for ad hoc networks. In the paper, we will demonstrate the security prop-
erties of the new GKA protocol and present its communication/computation ef-
ficiency. Finally, we will compare the new protocol with all the one-round GKA
protocols proposed so far in the literature and show that it outperforms all the
ID-based protocols of this category.

Keywords: Group key agreement, Constant round, ID-based cryptography, Ad
hoc networks.

1 Introduction

Group key agreement (GKA) protocols have been designed for the establishment of
a secret, session group key between three or more participants who exchange for this
purpose ephemeral messages over an open network. This secret key is used afterwards
for the secure communication between the participants providing the basic security at-
tributes, such as confidentiality, data and entity authentication, key confirmation etc. In
such protocols, it is clear that the open network can be controlled by adversaries who
aim to infiltrate the protocol. Therefore, a GKA protocol should be secure not only
against passive attacks but also against active attacks.

The necessary authentication mechanisms are usually provided via asymmetric tech-
niques, such as Public Key Infrastructures (PKI). However, the management of public
key certificates requires a large amount of computation, storage and communication.
For the elimination of these costs, ID-based cryptography was introduced by Shamir
in 1984 [18]. In ID-based cryptography, each entity’s public key is derived from its
identity. This property eliminates the need for certificates and solves the public key
management issues that arise in conventional public key cryptosystems.

In real world applications, the round efficiency of a GKA protocol is critical (the
basic advantages are referred for example in [13,23]). The most important and obvious
advantage is that all participants should not be necessarily online in the same time.
This advantage is especially important in wireless ad hoc networks where the network
topology changes frequently. Clearly, group key establishment is more suitable than
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pairwise key establishment for these networks as devices do not waste energy every
time they wish to communicate with another device by establishing a new shared secret
key. In group key agreement protocols, all the nodes of the group collaborate and finally
form a shared secret key. Key distribution techniques require a central authority or an
on-line trusted third party (TTP) to distribute the session keys which is not usually a
realistic scenario in wireless ad hoc networks.

Our Contribution. We here present a new authenticated ID-based group key agreement
protocol which requires only one round for its execution. The group key is the result of
all participants’ contributions and it is energy balanced since all participants play the
same role in the protocol. Also there is no need for an online TTP or a particular network
topology. These attributes make the proposed GKA protocol ideal for application in ad
hoc networks.

The protocol is secure against passive and active attacks. The secrecy of the group
key is based on the difficulty of Bilinear Diffie-Hellman (BDH) problem, while the se-
curity against active attackers is achieved with a batch verification technique. A batch
verification algorithm for a digital signature scheme verifies a list of n (message, sig-
nature) pairs as a group [25]. It outputs 1 if all n signatures are valid and it outputs 0
if at least one signature is invalid. This property improves considerably the efficiency,
since one verification for n signatures is significantly faster than n different verifica-
tions. Finally, we will compare the proposed protocol with all one round GKA proto-
cols reported so far in the literature and we will see that it outperforms all the ID-based
protocols.

The remainder of the paper is organized as follows. In Section 2 we elaborate on the
proposed protocol. In Section 3 we discuss the security properties of the protocol and
mention its communication and computation efficiency. In Section 4 we compare the
proposed protocol with other one round GKA protocols and we give our conclusions in
Section 5.

2 One Round Group Key Agreement Protocol

The proposed protocol is based on elliptic curve cryptography and bilinear maps. Recall
that a bilinear map is a mapping e : G1 × G1 → G2 which satisfies the following
properties:

– Bilinearity: e(aP, bQ) = e(P,Q)ab for all P,Q ∈ G1 and a, b ∈ Z∗
q .

– Non-degeracy: If P is a generator of G1, then e(P, P ) �= 1 is a generator of G2.
– Computability: There exists an efficient algorithm to compute e(P,Q) for all P,Q ∈
G1.

G1 is an additive group, G2 is a multiplicative group and both groups have prime order
q. In order to use bilinear maps for cryptographic purposes we assume that the dis-
crete logarithm problem (DLP) is hard in both G1 and G2. Examples of cryptographic
bilinear maps are Weil pairing [2] and Tate pairing [1].

Before the execution of the group key agreement protocol, all nodes should agree
upon the use of the same elliptic curve parameters, the same base point P ∈ G1 and
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the same hash functions H : {0, 1}∗ → G1 and H1 : G1 → Z∗
q . Every new member

who wishes to join the group can acquire these parameters from its neighbors. We will
suppose that the number of members in the group are n and we will denote them by Mi

for 1 ≤ i ≤ n. The protocol completes in the following stages:

Setup Stage: In order to provide authentication, we will need a Key Generation Centre
(KGC). The public key of the KGC is equal to Ppub = sP where s is a secret value
and P is the base point. Every user Mi sends her public key Qi = H(IDi) to the KGC
which computes her secret key Si = sQi.

First Stage: Every member Mi randomly generates a value ri ∈ Z∗
q and computes

Ri = riP , hi = H1(Ri) and Ai,j = hiSi + riQj for i �= j. Then, she broadcasts the
values (Ri, Ai,1, ..., Ai,n). The only value that is not sent is Ai,i. We suppose that every
user Mj can recognize her corresponding value Ai,j .

Second Stage: Every member Mj computes the value

K =
e(
∑i=n

i=1 Ai,j , Ppub)

e(Sj ,
∑i=n

i=1 Ri)
= e(

i=n∑
i=1

hiSi, Ppub) (1)

which will be the secret group key. Indeed, for every value j we have that

K =
e(
∑i=n

i=1 Ai,j , Ppub)

e(Sj,
∑i=n

i=1 Ri)
=

e(
∑i=n

i=1 (hiSi + riQj), Ppub)

e(sQj ,
∑i=n

i=1 riP )

=
e(
∑i=n

i=1 hiSi, Ppub)e(
∑i=n

i=1 riQj , sP )

e(sQj ,
∑i=n

i=1 riP )
= e(

i=n∑
i=1

hiSi, Ppub).

Verification Stage: In order to secure the protocol against active attacks, we will add to
it a batch verification process. Therefore, every member Mj will accept K as the group
key only if the following equation holds:

e(
∑i=n

i=1 Ai,j , P )

e(Qj ,
∑i=n

i=1 Ri)
= e(

i=n∑
i=1

hiQi, Ppub). (2)

Notice that the batch verification process is correct since

e(
∑i=n

i=1 Ai,j , P )

e(Qj ,
∑i=n

i=1 Ri)
=

e(
∑i=n

i=1 (hiSi + riQj), P )

e(Qj,
∑i=n

i=1 riP )
=

e(
∑i=n

i=1 hisQi, P )e(
∑i=n

i=1 riQj, P )

e(Qj,
∑i=n

i=1 riP )
= e(

i=n∑
i=1

hiQi, Ppub).

Another property of our protocol is that it gives the opportunity to every group member
Mj to authenticate any other group member Mi by using the equation:

e(Ai,j , P )

e(Ri, Qj)
= e(hiQi, Ppub). (3)

If the above equation holds, then the group member Mi is authenticated by Mj . The
value Ai,j is actually the signature of user Mi over the message Qj .
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3 Efficiency and Security Considerations

In this section, we will examine the security properties of the new GKA protocol, discuss
the handling of membership events and compute its computational/communicational ef-
ficiency.

3.1 Security Properties

In the following we summarize the basic security properties that a GKA protocol must
satisfy. For a more detailed description, the interested reader is referred to [17].

– Key privacy/ Key confidentiality/ Key secrecy: It must be computationally infea-
sible for a passive adversary to compute the group key.

– Known-key security: An adversary who knows group keys of past sessions (e.g.
former members of the group) must not be able to compute new group keys.

– Key freshness: Every session key must be fresh, e.g. new group keys should not
have been used in the past.

– Key independence: Previously used group keys should not be discovered by joined
new group members and former group members should not be able to compute
subsequent group keys.

– (Implicit) key authentication: Only legitimate group members can learn the es-
tablished group key. In our case, legitimate members are those that have a valid pair
of long-term private and public keys.

– Resistance against impersonation attacks: The knowledge of past session keys
can not lead to the impersonation of any of the group members.

– Resistance against key replication attacks: An adversary should not be able to
enforce the same value of the group key in two different sessions.

– Forward secrecy: The disclosure of long-term keys does not compromise the se-
crecy of previous session keys.

The first property concerns the security of the protocol against passive attackers. Our
protocol is secure against such attacks since the values Sj and

∑i=n
i=1 Ai,j in Equation 1

are secret. The sum
∑i=n

i=1 Ai,j is secret since the value Ai,i is unknown. Also notice
that from the equation Ai,j = hiSi + riQj , even though the attacker knows the values
Ai,j , hi and Qj , he can not find either Si or ri because this would mean that he can
solve the ECDLP (elliptic curve dicrete logarithm problem). Being more specific, we
notice that the security of our protocol is based on the Bilinear Diffie-Hellman-BDH
problem in < G1, G2, e >:

Definition 1. (BDH Problem): Given (P, aP, bP, cP ) for P ∈ G1 and a, b, c ∈ Z∗
q ,

find the value r = e(P, P )abc.

BDH Assumption: We assume that the BDH problem is hard. This means that there is
no polynomial time algorithm to solve BDH problem with non-negligible probability.

Let examine first the value e(
∑i=n

i=1 Ai,j , Ppub) from Equation 1. The sum is ana-
lyzed as

e(

i=n∑
i=1

Ai,j , Ppub) = e(Ai,i, Ppub)e(
∑
i
=j

Ai,j , Ppub).
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The value e(
∑

i
=j Ai,j , Ppub) can be computed by any adversary, so we must guarantee
the security of e(Ai,i, Ppub). We have that

e(Ai,i, Ppub) = e(hiSi+riQi, Ppub) = e(hiSi, sP )e(riQi, sP ) = e(hiQi, sP )se(Qi, sP )ri .

Since Qi is a random element in G1, we can write it as Qi = aiP , where P is the base
point. This immediately means that finding the values e(hiQi, sP )s and e(Qi, sP )ri

requires the solution of the BDH problem. In addition, since we can not find the value
e(Qi, sP )ri = e(Si, riP ), we can neither find the value e(Sj ,

∑i=n
i=1 Ri) from Equa-

tion 1. Similarly, the security of e(hiQi, sP )s = e(hiSi, Ppub) which is a component
of the secret group key K , guarantees the security of the whole key.

The properties of key freshness and known-key security are satisfied since every
session’s group key is not related in any way with previous group keys. The new key
is fresh since the hash values hi = H1(Ri) are different in every session. In order to
see if the property of key independence is satisfied, we must discuss the handling of
membership events. We distinguish the following four basic membership events:

– A Join Event occurs when a single member wants to join the existing group. The
group key is updated to include the new member and all participants are informed
about the new key.

– A Leave Event occurs when a member wishes to leave the group, or is forced to
leave it. The group key must be properly modified so that the departing partici-
pant can no longer use the old group key in order to encrypt/decrypt the group’s
communications.

– A Group Merge Event occurs when multiple potential members want to join an
existing group. The keys of the two groups are merged so that all participates can
communicate with each other using a common shared key.

– A Group Partition Event occurs when multiple members leave the group with or
without forming their own subgroup. A new key must be established for each par-
titioned subgroup to guarantee secrecy.

We will discuss only the single leave/join event because group leave/join events can
be treated similarly. Suppose first that member Mn wishes to leave the group. Then
the new group key could be equal to e(

∑j=n−1
j=1 hjSj , Ppub) =

K
e(hnSn,Ppub)

, where K

is the previous session group key. The value e(hnSn, Ppub) can be computed by any
legitimate participant Mj from equation:

e(hnSn, Ppub) =
e(An,j , Ppub)

e(Sj , Rn)
=

e(hnSn + rnQj , Ppub)

e(sQj , rnP )
.

Similarly, if member Mn+1 wishes to join the group, then the new key could be easily
transformed to e(

∑j=n+1
j=1 hjSj , Ppub) adding the contribution hn+1Sn+1 of the new

member. This means that the new member Mn+1 would have to broadcast the values
(Rn+1, An+1,1, ..., An+1,n) to all previous members.

However, the following property of our protocol, implies that for any membership
event, the protocol should be re-executed from the first step. In particular, notice that
every legitimate (e.g. has a valid long-term key pair and has also participated in the
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particular session) group member Mj can compute all values e(hiSi, Ppub) for i �= j
using the following equation:

e(hiSi, Ppub) =
e(Ai,j , Ppub)

e(Sj , Ri)
. (4)

Based on this property, we see that if we follow the previously mentioned approach
for leave/join members, previously used group keys will be discovered by joined new
group members and former group members would be able to compute subsequent group
keys. Thus, the property of key independence is satisfied only if a join or leave event is
handled by re-executing the key agreement protocol.

The (implicit) key authentication property should hold in every GKA protocol in or-
der to ensure legitimate users that only them can compute the key. This property is satis-
fied in the proposed protocol due to the batch verification process. For example, suppose
that an attacker E takes part in the protocol by sending her values (RE , AE,1, ..., AE,n)
to the legitimate users by using a pair of keys (SE , QE). Then, Equation 2 will not
hold since the pair (SE , QE) is not connected with the relation SE = sQE . Moreover,
using Equation 3, the attacker can be found easily. More details on active attacks and
the security of the batch verification process follow in the next Section.

The resistance against impersonation attacks is guaranteed because the knowledge
of keys K = e(

∑i=n
i=1 hiSi, Ppub) can not lead to the long-term secret keys Si or to

the secret master key s due to the intractability of the BDH problem (as explained in
previous paragraphs). Notice also that two different sessions keys K and K ′ are not
related in any way since the values hi change in every session. The new protocol is
also resistant to key replication attacks and this is due to its contributory nature. Since
the key is composed by the contributions of all participants, no attacker can enforce the
same value of the group key in two different sessions.

The protocol provides forward secrecy compromising at most one user. If two or
more participants are compromised, then the property of forward secrecy is not satis-
fied in our protocol. The reason is the protocol’s property mentioned in Equation 4.
For example, suppose that an adversary has acquired two different long-term secret
keys Sk and Sm of users Mk and Ms correspondingly. If she has gathered all pub-
lic information exchanged between the group members during the past sessions, then
she can find all values e(hiSi, Ppub) using Equation 4 and consequently all group keys
K = e(

∑i=n
i=1 hiSi, Ppub). However, notice that according to [11], constructing a one

round group key exchange protocol that provides forward security is still an open prob-
lem. The authors of [11] have proposed as a solution a key evolving approach that al-
lows the users to keep their long-term public keys but update their private keys. This key
evolving approach does not increase the number of rounds and thus the round efficiency
can remain optimal. Possibly, the lack of forward secrecy can be handled in other ways.
One simple idea will be to compute the group key as K = e(

∑i=n
i=1 hiSi, Ppub) · K∗

where K∗ is the group key of the previous session. Another solution will be the encryp-
tion of only one value Ri, e.g. R0 with the previous session key. Then, every adversary
will not be able to compute the value e(h0S0, Ppub) and the group key as well. This
solution will add only a symmetric encryption operation in one group member and one
symmetric decryption to the rest of the group members.
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3.2 Security against Active Attacks

In order to guarantee security against active attacks, we have adopted in our protocol a
batch verification technique. The idea behind batch verification techniques is that they
use multiple signatures generated by a single user. The main advantage of this technique
is that only one verification is needed for the authentication of the whole group, while in
conventional signature schemes n verifications will be needed. As mentioned also in the
previous Section, the proposed protocol is secure against active attacks since everyone
who participates in it must have a valid secret key Si. In any other case Equation 2 will
not hold and this will indicate that at least one group member has an invalid key Si. In
particular, using Equation 3 this user can be easily found.

However, our batch verification scheme can be also proved secure in the random or-
acle model against adaptively chosen message attacks. The proof can be easily deduced
from [28], since the batch verification algorithm we use in our protocol is a modified
version of the scheme presented in this paper. In what follows, in order to show the
similarity of the two schemes, we summarize the scheme in [28] using as group G1 in
the bilinear map, an elliptic curve group with base point P :

– Batch Signature: To sign t messages m1, ...,mt a signer with identity IDi and
private key Si performs the following steps:

1. Choose a random ri ∈ Z∗
q and compute Ri = riP .

2. For 1 ≤ j ≤ t compute fj = H(mj).
3. For 1 ≤ j ≤ t compute zi,j = Si + rifj .
4. Output the batch signature σi = (Ri, zi,1, ...zi,t).

– Batch Verification: Each user Mj verifies that
e(
∑i=n

i=1 zi,j , P ) = e(fj,
∑i=n

i=1 Ri)e(
∑i=n

i=1 Qi, Ppub).

Notice that the values zi,j are very close to the values Ai,j in Equation 2, with the
difference that in our case the message mj is equal to IDj (since Qj = H(IDj)) and
the secret key Si is replaced with hiSi. The key hiSi is secret and can be considered
the participant’s session secret key. The batch verification step is also almost identical
to Equation 2. It is clear that since the protocol in [28] is provable secure in the random
oracle model, the same is true for our scheme.

Finally, another active attack could be achieved by malicious nodes simply by im-
personating an entity Mi and repeating the broadcast of the values (Ri, Ai,1, ..., Ai,n)
to the group. As suggested by Zhang et al. in [26], this problem can be easily solved by
adding a time parameter.

3.3 Efficiency of the Protocol

The complexity of a GKA protocol is estimated by the total number of calculations
and the total number of exchanged messages required for the generation of the final
key. The addition of the computation and communication cost of a protocol gives us
its total energy cost which should be small enough, especially in the case that we wish
to apply the protocol in wireless ad hoc networks. The computation cost is highly de-
pendent on heavy calculations like the public key calculations and much less on other
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calculations like hash functions, symmetric encryption-decryption algorithms and sym-
metric signing-verifying schemes. We will therefore, take into consideration only the
number of public key calculations like modular exponentiations, scalar multiplications
and pairing computations.

Concerning first the communication cost, we see that every user should broadcast a
single message with size equal to n elliptic curve points. To guarantee the minimum
required security, the elliptic curve parameters should have size at least 160 bits. The
protocol also requires from each participant a number of elliptic curve scalar multipli-
cation and pairing computations. In particular, each user Mi has to compute in the first
stage one scalar multiplication for the computation of Ri, one for hiSi and n − 1 for
the values riQj . In total, n+1 scalar multiplications in the first stage. The second stage
requires from every user to compute only 2 pairing computations. Finally, the batch
verification process needs 3 pairing computations and n scalar multiplications for each
participant. Therefore, the final computation cost for each group member is 5 pairing
operations and 2n+ 1 scalar multiplications.

We would like to note here, that an important advantage of our protocol is that it
nicely distributes energy consumption among the participants as each node has the same
role in terms of required computations and communication exchanges (energy-wise, the
two most demanding events). Balancing the energy dissipation among the nodes in an
ad hoc network is very important since early energy depletion of certain nodes can
be avoided and this increases the lifetime of the system by preventing early network
disconnection [20]. Finally, the new protocol does not require an online TTP or central
authorities and the storage memory needed in every node is not large.

4 Related Work and Comparison

The first constant-round GKA protocol proposed in the literature was presented in [5]
by Burmester and Desmedt. This is a very efficient, unauthenticated scheme which re-
quires only two rounds. Two ID-based variants of Burmester-Desmedt (BD) scheme
were presented in [6,9]. However, both schemes were shown to fail to achieve authen-
tication by Zhang and Chen [26,27]. In order to resist the attacks a new scheme was
proposed in [10] which has the disadvantage of using a synchronized counter. More
recently, Desmedt and Lange (DL) [8] presented two variants of the BD protocol [5]
based on pairings. Their variants make use of some specific structure of the nodes and
their authenticated versions come from the application of the same authors’ efficient
compiler [7].

The first attempt for the construction of a single round GKA protocol was made
by Tzeng and Tzeng in 2000 [22]. However, the two proposed protocols in the paper
require a session identifier to be known by all participants and clearly if this is not
agreed in a setup phase then the protocols are completed in two rounds. Moreover, the
protocols include some proofs of knowledge that each user acquires the same inputs.
As it was mentioned in [4], these proofs are useful only in the case that the broadcast
channel provides integrity of all messages and for this reason we won’t consider these
proofs in the computation cost of the protocols. Boyd and Nieto [4] also proved that the
second protocol in [22] does not provide authentication and they proposed the use of a
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new GKA protocol proven secure in the random oracle model. However, their protocol
(as [22]) fails to provide forward secrecy and is not energy-balanced since a ”group
leader” is required who performs n public key encryptions.

The first one round ID-based protocol proposed in the literature was [14]. The pro-
tocol requires O(n2) scalar multiplications and O(n2) pairings. Another ID-based one
round group key agreement protocol was proposed in [19]. However, the authors of [29]
showed that this protocol is flawed and that is not actually an ID-based scheme since
one’s public key is no longer the identity. In [29] a single round authenticated GKA
protocol was proposed which according to the authors was the first provably secure
ID-based protocol in the literature that requires only one round.

Another ID-based GKA protocol was presented in [16]. The authors consider their
protocol ID-based but it is not. Like the protocol in [19], the public keys of the users
are not their identities. Even though the authors claim that their protocol requires one
round only, an extra round is necessary. This extra round involves a pair-wise key agree-
ment phase between all group members. Moreover, the authors mention that their pro-
tocol requires only n pairings in total, but this is not true since for the computation of
the group key, pairwise-keys are needed requiring for their construction 3n2 pairings.
What’s more, every user has to performn polynomial interpolations for the computation
of n polynomials with degree n− 1.

In [12], a new one-round authenticated GKA protocol is presented, which is based
on a modification of the ID-PKI proposed in [19]. This modification provides security
against impersonation attacks. Although both protocols are based on the same modified
ID-PKI and on the same attributes of bilinear pairings, the protocol in [12] requires
much more computations to be executed, since it involves verification procedures. The
protocol is provably secure against insider attacks, such as impersonation attacks. An-
other ID-based GKA protocol, which is executed in network level, is introduced in [24].
The novelty of this protocol lies in the fact that different members, from different do-
mains can agree upon a common secret key. The IP addresses, as well as the MAC
addresses of the protocol participants, serve as their public keys.

In Table 1 we summarize the communication and computation cost of all one-round
group key agreement protocols presented in the literature so far. We have named the
protocols after the initials of the authors’ last names and the year of publication. For the
computation cost we only take into consideration the number of modular exponentia-
tions, scalar multiplications and the pairings performed by all group members in each
protocol. However, there are several other actions taking place during the execution of a
protocol, such as hash functions, symmetric encryption and signature algorithms, which
are much less energy consuming tasks compared to heavy public key calculations and
we consider their cost negligible. In the case that the GKA protocol assumes the ex-
ecution of a public key encryption scheme, but the authors do not mention the exact
scheme (e.g. in [4]), we assume in our analysis that RSA is used. When a public key
signature scheme is referred in the GKA protocol but the authors give no information
about it, we assume that the DSA is used.

The communication cost refers to the number of messages transmitted and received
by all entities of the group. For example, in our protocol each participant sends a broad-
cast message which has size equal to n elliptic curve points. Thus the total number
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Table 1. Communication and Computation Cost of All One-Round Protocols

Protocol Sent Msg Received Msg Scalar Mult. Pairings Expon.

TT00 [22]
(flawed)

2n2 + 3n 2n3+n2−3n - - 5n2 + 2n

SCL05 [19]
(flawed)

n(n− 1) n(n− 1) n2 n -

BN03 [4] 2n− 1 2n(n− 1) - - 4n− 3

KKHY04 [14] 3n 3n(n− 1) n2 + 4n 4n2 − 3n -
ZSM06 [29] n(n+ 1) n3 − n - n(n− 1) -
HH07 [12] 3n(n− 1) 3n(n− 1) 3n2 3n -
XHX09 [24] 2n(n− 1) 2n(n− 1) 3n2 − 2n n2 + n -
Our protocol n2 n2 2n2 + n 5n -

of sent messages in the network is n2. With a similar way, we can calculate the total
number of received messages in the network.

According to Table 1, the most efficient protocol is BN03, both in communication
and computation cost. Our protocol follows together with SCL05. Taking into consid-
eration that a pairing operation is approximately equal to three scalar multiplications,
our new GKA protocol is the most efficient computationally after BN03 and SCL05.
However, SCL05 protocol is not ID-based and more importantly is flawed. On the other
hand, neither BN03 is ID-based and is not energy balanced since the initiator takes al-
most all the computational burden. Moreover, if an entity achieves to impersonate the
initiator, the session keys are revealed.

A very recent one round protocol is presented in [21]. The authors do not report
exactly the efficiency of their protocol which requires from all participants some matrix
multiplications. Comparing this protocol with ours, we notice that the pairing operations
are the same, but our protocol requires less scalar multiplications and less memory
storage. Thus, concerning all the one round ID-based GKA protocols, our protocol is
the most efficient in the literature so far (to the best of our knowledge).

Finally, we would like to note that Boneh and Silverberg proposed the use of multi-
linear forms for the construction of one round group key agreement protocols [3] and
some ID-based variants of this idea were presented in [15]. However, these solutions
are far from practical implementations and finding a multilinear form for large n is a
very difficult task. Moreover, in Eurocrypt 2009 an asymmetric one round group key
agreement scheme was proposed based on pairings [23]. After its execution, all users
in the group share the same encryption key but they have different decryption keys. The
performance of this protocol is more efficient than ours, since every user computes n
scalar multiplications and only one pairing. However, the advantage of our protocol is
that once the secret group key has been established, it can be used in symmetric en-
cryption and decryption, while the scheme in [23] requires public key operations which
means 3 exponentiations for encryption and 2 pairings for decryption per user.
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5 Conclusions

We have presented an authenticated ID-based GKA protocol which requires only one
broadcast for each participant in order to establish a common, secret group key. In
addition to its round efficiency, the protocol does not need for its execution an online
TTP, it is energy balanced and it does not require any specific network topology. All
these reasons make it ideal for employment in wireless ad hoc networks.

Acknowledgments. I would like to thank Prof. Kenny Paterson (Royal Holloway, Uni-
versity of London) for his guidance during my visit to Royal Holloway few years back,
where the idea for this work emerged.
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Abstract. Human identification becomes huge demand in particular for the 
security related areas, in particular for the network security. EEG signals are 
confidential and hard to imitate, since EEG signals are a reflection of 
individual-dependent inner mental tasks. Generally speaking, it has several 
advantages, such as (i) it is confidential as it corresponds to a mental task, (ii) it 
is very difficult to mimic and (iii) it is almost impossible to steal as the brain 
activity is sensitive to the stress and the mood of the person, an aggressor 
cannot force the person to reproduce his/her mental pass-phrase. In this paper 
we first proposed a novel algorithm to create a spatial pattern of EEG signals 
obtained from the open public database. In our EEG signal processing, we have 
analyzed 64-electrode EEG samples for two databases, one is for 45 people and 
calculate the equivalent root mean square (rms) values for each electrode signal 
over 1 second period, by which created a 64-value input for each subject. With 
this neural network (NN) model, our analysis clearly showed that our designed 
classifier is able to identify all the 45 people correctly (successful rate of 100%) 
with a mean square error of 2.0334×10-7 and the same algorithm applying to the 
2nd database with 116 out of 122 people can be fully identified (successful rate 
of 95.1%) with a mean square error value of 0.00186. We deeply believe that a 
low complexity, high resolution, effective and efficient is very attractive for the 
real life applications especially for network security in the foreseeable future.    

Keywords: biometric nature, security system, neural network, EEG, signal 
processing. 

1 Introduction  

Recently, it is noted that non-invasive brain-computer interface (BCI) becomes very 
attractive area as it uses a variety of brain signals as input, for example, 
electroencephalography (EEG), magnetoencephalography (MEG), functional 
magnetic resonance imaging (fMRI), and near infrared spectroscopy (NIRS).  MEG, 
fMRI, and NIRS are expensive or bulky, and fMRI and NIRS present long time 
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constants in that they do not measure neural activity cannot be deployed as 
ambulatory BCI systems. 

EEG signals are the signatures of neural activities. They are captured by multiple-
electrode EEG machines either from inside the brain, over the cortex under the skull, 
or certain locations over the scalp, and can be recorded in different formats.  

Up to the present, EEG signals have been successfully applied to the research and 
development of brain-computer interfaces whose main goal is to enhance the 
communication and control abilities of motor-disabled people [1-5]. Comparing with 
other biometric features, EEG has several advantages as follows: (a) it is confidential 
(as it corresponds to a mental task), (b) it is very difficult to mimic (as similar mental 
tasks are person dependent), (c) it is almost impossible to steal (as the brain activity is 
sensitive to the stress and the mood of the person, an aggressor cannot force the 
person to reproduce his/her mental pass-phrase). 

In this paper we are building a concept of brain print and assuming that EEG signal 
alone is able to create a unique pattern for each subject. In other words we are not 
going to combine any other human feature with EEG signal to identify people. We are 
considering working on large number of peoples with two public databases and using 
simple feature extraction and simple classification methods to provide strong 
evidence that our novel algorithm with EEG signal processing can provide unique 
patterns to identify people with other human features.  

2 Related Works 

With a data set of four subjects and 255 EEG trials (subjects were at first with eyes 
closed) Poulos et al. adopted two classification algorithms and obtained the 
accuracies of around 80% and 95% respectively [1-2]. Paranjape et al. analysed a data 
set of 40 subjects and 349 EEG trials (subjects were resting with eyes open and 
closed) and got a classification accuracy of about 80% [3].   

Palaniappan and Mandic carried out a personal identification experiment with 102 
subjects based on visual evoked potentials and the accuracies were around 95-98% [4]. 
Marcel and Mill´an got a highest accuracy rate for personal verification of 93.4% [5]. 

The above early work has played an important role in studying the feasibility of 
EEG signals for usage in biometrics. However, when learning a classifier, they all 
adopted only one kind of brain activity.  

Recent research on multitask learning indicates that the performance of a main task 
can be improved by learning related tasks together [6, 7, 14]. 

An authentication (or verification) system involves confirming or denying the 
identity claimed by a person (one-to-one matching).  

In contrast, an identification system attempts to establish the identity of a given 
person out of a closed pool of N people (one-to-N matching).  

Shedeed in [6] used voting scheme for different features extraction methods which 
are Discrete Fourier Transform and Wavelet Packet Decomposition both with 
different measures, and used neural network back propagation classifier and it was 
claimed that it reached an accuracy of 100%, but the number of classes was only three 
subjects only. Yazdani et al. in [7] works on a partial set of the same dataset we 
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worked for visual evoked potentials. They used different features extraction methods 
which are autoregressive model (AR) model parameters and the peak of power 
spectrum density (PSD). They also claimed that it reached 100% accuracy over 20 
subjects when AR model equal to or greater than 14. They used LDA to reduce 
features and the K-nearest neighbour (KNN) classifier. However, the proposed 
method is more complex and the number of subjects is less than what we are 
considering in this work. Riera et al. in [8] select the best five features set among 
multifeatures preliminary work. They believe that the best five features are AR 
model, Fourier Transform, Mutual Information, Coherence and Cross Correlation. 
These features were selected on different channel configuration. The number of the 
sample was 51 peoples and 36 intruders. They used Fisher's Discriminant Analysis 
classifier with four different discriminant functions. They reached a performance 
between 87.5% to 98.1%. Their proposed method is depending on high computation, 
and the number of subjects considered in this work approximately doubled. Poulus 
have many contributions in this field all with small number of subjects. The latest one 
was Poulus et al. [9] where they reach a classification rate around 99.5%. Palaniappan 
[10] used a total of 61 channels to record Visual Evoked potential (VEP) EEG signals 
from 20 subjects. He used the spectral power for the gamma band (30 − 50) Hz as a 
feature. The reached average accuracy was 99.06 with a 10 fold cross validation. Also 
Palaniappan et al. in their work in [11] to update the used methods in [3] and test the 
used methods against larger sample, the result drops to less than 95% when reaching 
40 peoples. 

3 Proposed Algorithm   

In order to make human identification system more effective and efficient, we 
particularly focus on the simplest algorithm for decreasing the calculations and 
shorten latency.  

In this work we are trying to test the EEG uniqueness over a large number of 
subjects, and also try to use simpler method for feature extraction to make EEG 
identification more applicable.  

So in this work we shall: 

1. use EEG identification method on a large number of subjects to emphasize EEG 
uniqueness among peoples. This will enhance the opportunity to use EEG 
identification on large scale, or even to use it as a universal human identity. 

2. use relatively low complexity and low computation cost methods in pre-
processing and feature extraction, to enhance considering EEG as an online solution 
for human identification. In this work we tackled the above concerns by using large 
public database that contains EEG data for (i) 45 people and (ii) 122 people. Also all 
the processing are only considering rms spatial pattern only to create feature vector 
which is used for the first time in EEG. 

There are many debates about EEG bandwidth and it is noted that significant signals 
are distributed within lower than 100 Hz, for example Howard et al. [2] where they 
suggest upper limit to gamma in EEG bandwidth to 60Hz. A typical set of EEG signal 
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during a few seconds for an adult brain activity are as shown in Figure 1 [12]. 
Therefore, in the pre-processing step, all the EEG signals were filtered to get 
frequencies between 0 and 60 Hz. All frequency components above 60 Hz were 
disregarded. There shows an example of the effect of the filtration on of the EEG 
signals. For the extraction of the human feature, the whole processing will only take 
EEG low pass signals and mapping them into the rms value for each special position 
or each electrode and the rms value represents active potential of the signal where 
power of the signal p(x) is directly proportional to the rms value. 
We have designed the EEG sample from each electrode is divided into one second 
time period length signals including 256 values, and the rms values for all the 256 
values are calculated with equation (1) then sending them to feature vector. For this 
case we obtained feature vectors of length 64 rms values that taken from the related 
electrodes as shown by Figure 1.  
 

 
 

Fig. 1. 64 vectors transformed from corresponding 64 electrodes 

A neural network (NN) classifier is designed to classify the obtained data. The NN 
classifier is feed forward error back propagation network. Training starts from a 
random weight set. The NN is designed with 64 nodes in the input layer, which is the 
same number of electrodes. The number of outputs depends on the number of subjects 
which is 45 for the first experiment and 122 for the second experiment. The network 
has 45 neurons hidden layer in the first experiment, and 70 neurons hidden layer in 
the second experiment. In the second experiment which was operated on 122 subjects. 
We used the MATLAB built in nntraintool tool to run the tests. The rms feature 
vector input was pre-processed by this tool by normalizing the data between [1, −1]. 

As mentioned in above that the dataset was taken from the public data repository 
for machine learning [1]. This dataset was collected through a study was performed at 
the Neurodynamics Laboratory of the State University of the New York Health 
Centre at Brooklyn. This study EEG correlates of genetic predisposition to 
alcoholism. The dataset contains multiple measurements from 64 electrodes placed on 
subject's scalps which were sampled at 256 Hz (3.9 ms epoch) for 1 second.  

4 Experiments, Results and Discussion 

The original data contains 77 alcoholic subjects and 45 control subjects. In the first 
experiment we consider half the samples available for all 45 control subjects. 
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The samples were selected randomly. The input layer size is 64 inputs which is the 
number of rms value for each electrode. The NN back propagation with one hidden 
layer with a number of neurons equal to the number of outputs (45), and the output 
layer which represent the number of subjects (45 control peoples). The NN engine by 
default normalizes the data between 1 and -1 for the input and output. The training 
stopped when the classifier reached below the minimum gradient which is set to 10-6. 
Obviously, the results were so promising, and the classifier was able to identify all the 
45 peoples correctly, with a mean square error value of 1.98842 ×10-7. The similar 
design was used to the second dataset. The target is trying to check if this algorithm 
has generalization for dealing with other EEG signal. The second database is about 
122 people in comparison the first database the size is almost three times as the 
previous one, which is obvious a good challenge to the designed algorithm. Also this 
will verify if the rms spatial pattern can be considered as a brain signature or brain 
print. In the second experiment the input size remain the same which 64 rms inputs 
for the EEG electrodes. The hidden layer size was increased to be 70 neurons 
arbitrarily. And the output size is 122 which is the number of peoples. As in the first 
experiment the NN engine by default normalizes the data between 1 and -1, and the 
continuous tan sigmoid activation function was used.    

Although we consider bigger number of peoples, the results was also promising. 
The classifier was able to identify 113 peoples correctly out of 122, with a mean 
square error value of 0.00271. The other nine subjects were clarified the case that the 
classifier was not able to identify: four of nine were highly confused with other 
subject in the sample, and five were not identified totally. Figure 2 shows the mean 
square error and Figure 3 shows the gradient during the training. 

 

Fig. 2. Mean square errors for the second database, 122 people (subjects) during the training 

To enhance the efficiency of the classifier in the second experiment, we add a 
weighted connection between the input layer and the output layer. The efficiency 
increases after this enhancement, and the classifier was able to identify 116 peoples 
correctly out of 122, in other words 95.1% successful rate. 

 

Fig. 3. Gradient for the second database for 122 people (subjects) during the training 
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The mean square error value was 0.00186. The other six subject that the classifier 
were not able to identify, four of them were highly confused with other subject in the 
sample, these four are different than the four in the first part of this experiment. The 
other two were not identified totally. This last experiment shows that by enhancing 
the classifier the result might enhance and a better classification rate might be 
achieved through using the rms spatial pattern as a feature vector. Figure 4 shows the 
mean square error and Figure 5 shows the gradient during the training of this 
experiment. 

 

Fig. 4. mean square error for the second database for 122 people (subjects) during the training 
with enhanced classifier 

 

Fig. 5. Gradient for the second database for 122 people (subjects) during the training with 
enhanced classifier 

5 Conclusion 

In this paper we have been focusing on one of non-invasive brain computer interface 
(BCI) signal, a typical variety of brain signals, electroencephalography (EEG) as input 
to analysis its characteristics. Those characteristics are used to identify the people as 
other biometrics to recognize and distinguish people based on their physical or 
behavioral features. As using EEG signals to identify people has some advantages such 
as it is confidential, it is very difficult to mimic and it is almost impossible to steal, etc. 
EEG signal processing has drawn great attentions as this paper does. A novel algorithm 
is presented in this paper.  Our designed classifier is able to identify all the 45 people 
correctly with a mean square error of 2.0334×10-7 for the first public open database and 
the same algorithm applying to the 2nd database with 116 out of 122 people can be fully 
identified (successful rate of 95.1%) with a mean square error value of 0.00186.  

We deeply believe that a low complexity, high resolution, effective and efficient is 
very attractive for the real life applications become true in the foreseeable future. 
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Abstract. Unsupervised anomaly detection is most widely applicable
due to capabilities of detecting known and novel anomalies without prior
knowledge. In this paper, we propose an unsupervised anomaly detection
method based on time-frequency analysis. We firstly use S-Transform to
reveal the frequency characteristics of a network signal. Secondly, heuris-
tics are used for anomaly detection. We evaluate performance of our
method on MAWI and DARPA datasets. Furthermore, we compare the
results with an unsupervised Wavelet Transform-based anomaly detec-
tion method. The results indicate that our method achieves better detec-
tion performance compared with the Wavelet Transform-based method.

Keywords: Unsupervised anomaly detection, time-frequency analysis,
signal processing, multi-resolution analysis, S-Transform.

1 Introduction

Several unsupervised anomaly detection techniques have been proposed due to
limitations of signature-based or learning-based methods, which rely on labeled
training data and can not detect unseen anomalies. Unsupervised anomaly de-
tection detects anomalies without labeled data but by assuming that most
traffic is normal and the remaining traffic is anomalous [2]. Clustering-based
techniques [5, 6] group similar instances and use a distance measurement al-
gorithm to detect outliers. The performance of these techniques depends on
the clustering and distance measurement algorithms. [7, 8] use Principle Com-
ponent Analysis (PCA) to decompose traffic feature distribution into normal
and anomalous components. Gaining good results from PCA-based techniques
requires proper parameter tuning [11]. [3, 4] apply time-frequency analysis by
using Discrete Wavelet Transform (DWT) to reveal anomalies hidden in a net-
work signal. A benefit of the DWT-based techniques is Multi-Resolution Analysis
(MRA) which is able to detect various behaviors of anomalies. However, choosing
a proper mother wavelet and decomposition level are considerable tasks.

In this paper, we developed an unsupervised anomaly detector based on time-
frequency analysis called STAD, which consists of 3 stages: 1) Conversion of
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traffic to signal; 2) S-Transform; and 3) Detection of intense and hidden anoma-
lies. Firstly, a packet stream is converted into network signals. Next, the STAD
extracts frequency information of the signals by using S-Transform [1] which is
less complex than DWT while preserving benefits of MRA. Finally, anomalies
are detected by analysis of the previous outputs using heuristics. We evaluated
our STAD with MAWI [12] and DARPA [13] datasets and compared the results
with a DWT-based Anomaly detection method [3]. The evaluation results shown
that the STAD could detect more anomalies than the DWT-based method in
both datasets, especially hidden anomalies.

The rest of this paper is organized as follows. Section 2 describes our proposed
anomaly detector. Section 3 describes the evaluation results and discussion. Con-
clusion and future work are described in Section 4.

2 S-Transform-Based Anomaly Detector (STAD)

In this section, we describe our developed S-Transform-based Anomaly Detector
called STAD, which consists of 3 major stages described below.

Conversion of Traffic to Signal. In this stage, STAD converts a packet
stream to 6 network signals which are typical used for traffic analysis, namely
packet rate, bit rate, srcIP rate, dstIP rate, flow rate, and average flow size rate.
The average flow size rate is computed by dividing the number of packets by
the number of flows seen in 1-second timeslot. Next, the 6 network signals are
individually normalized by using its mean value.

S-Transform. In this stage, the frequency characteristics of each network signal
is revealed by using the original S-Transform (ST) [1]. The ST analyzes the
network signal and stores results in a ST matrix of size m×n, where m is the
signal’s timeslots, n is analyzed frequencies from 0 to (m/2) (Nyquist), and each
element is an amplitude. For example, if the duration of the packet stream is 1
minute, thus the ST matrix has dimension of 60×30.

Detection of Intense and Hidden Anomalies. The aim of this stage is
to detect anomalous timeslots by analysis the ST matrices. The pseudocode of
this stage is shown in Algorithm 1. Firstly, STAD focuses on detecting intense
anomalies by relying on Time Maximum Amplitude (TMA), Time Amplitude
(TA), and Time Variance Amplitude (TVA). The TMA, TA, and TVA are vectors
of the maximum value, the sum of all values, and the variance of all values in
each ST matrix column, respectively. In order to detect suspicious timeslots, a
threshold α is applied to the TMA, TA, and TVA. A timeslot’s value that exceeds
the α will be labeled as suspicious. Secondly, STAD detects hidden anomalies by
using Frequency Amplitude (FA) computed by adding all values of each row of
the ST matrix. Next, the FA is divided into equally 3 parts, and then each slope
angle of each pair of maximum points among the 3 parts is computed. If the angle
exceeds a threshold β, the ST matrix row vector at number which is equal to the
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Data: 6 ST matrices Result: anomalous timeslots carrying intense and hidden anomalies
set all elements of lableCount to be 0
foreach STmatrix do

for STmatrix column t ← 1 to m do /* initial to detect intense anomalies */
TMA[t] = max(STmatrix, t); TA[t] = sum(STmatrix, t);
TVA[t] = variance(ST matrix, t);

end
labelSuspiciousTime(TMA); labelSuspiciousTime(TA); labelSuspiciousTime(TVA);
for STmatrix row f ← 1 to n do /* initial to detect hidden anomalies */

FA[f] = sum(STmatrix, f);
end
split FA into equally FAL, FAM, and FAH ;
degreeLM = slope(max(FAL), max(FAM)); degreeMH = slope(max(FAM), max(FAH));
if (degreeLM≥ β) and (max(FAL>FAM)) then

labelSuspiciousTime(STmatrix at row vector max(FAL));
end
if (degreeLM≥ β) and (max(FAL<FAM)) then

labelSuspiciousTime(STmatrix at row vector max(FAM));
end
if (degreeMH≥ β) and (max(FAM>FAH)) then

labelSuspiciousTime(STmatrix at row vector max(FAM));
end
if (degreeMH≥ β) and (max(FAM<FAH)) then

labelSuspiciousTime(STmatrix at row vector max(FAH));
end

end
for i ← 1 to m do /* determine anomalous timeslots */

if (labelCount[i]≥2 then timeslot t is a anomalous timeslot;
end
funtion labelSuspiciousTime(vector) ( /* function for labelling suspicious timeslots */)
for t ← 1 to m do

if (vector[t]≥ α) then labelCount[t]++
end

Algorithm 1: Intense and hidden anomaly detection algorithm

higher maximum value will be selected for suspicious timeslot detection. Finally,
the timeslots which have been labeled as suspicious at least twice are anomalous
timeslots. There are 2 parameters in this stage: α for detecting intense anomalies
and β for detecting hidden anomalies. In this work, the α is empirically set to
1.8×mean of analyzing vector, and the β is 30.

3 Results and Discussion

We verified the performance of our STAD by testing on MAWI and DARPA’99
datasets and compared the results with an unsupervised Wavelet Transform-
based anomaly detection method [3] called WTAD. In this section, we describe
the parameter setting in the WTAD including evaluation results and discussion.

Based on the algorithm in [3], the parameters in the WTAD are set as follows.
The mother wavelet is Daubechies-4, and the V-part is constructed by combin-
ing Wavelet coefficients of decomposition level 1 and 3. The anomaly detection
threshold is set to 1.8×mean of the V-part.

3.1 Real Network Traffic

4 backbone traffic traces from MAWI dataset [12] are used to evaluate perfor-
mance among the STAD and the WTAD, namely traffic data collected on August
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Fig. 1. Graph models presenting communication behavior of malicious activities

Table 1. Total alerts and alerts overlapped with graph-based classifiers on MAWI

STAD WTAD
Date #alert #alert overlapped DARPA #alert #alert overlapped graph-based

1/Aug/04 119 116 200 195

6/Feb/09 449 443 90 87

6/Apr/09 431 174 180 65

2/Jan/10 425 160 100 41

1, 2004, February 6 and April 6 of 2009, and January 2, 2010. Unfortunately, the
MAWI dataset lacks anomaly labels, thus manual analysis and 2 graph-based
traffic classifiers [9,10] with 7 graph models (Fig. 1) are used for validation. The
graph model needs a certain detection threshold, we thus empirically set the
threshold for Fig. 1(a-d) is 20% of average number of flows per host per second.
For Fig. 1(e-g) is 20% of average number of packets per host per second.

Table 1 shows the total number of anomalous timeslots detected by the
STAD and the WTAD, and the number of overlapping results between the
STAD/WTAD with graph-based classifiers. Mostly, the STAD generates much
more alerts than the WTAD except on August 1, 2004 which shows similar re-
sults. [14] reports that the August 1 trace contains Sasser worm traffic and the
graph-based classifiers classify 772 timeslots (from 900 timeslots) as malicious.
On the other hand, the STAD and the WTAD similarly report small numbers of
alerts, this is due to both detectors considering the large Sasser traffic as normal
behavior. This is a weakness of unsupervised anomaly detection. For the results
on February 6, 2009, our STAD gives more alerts than the WTAD. Manual
analysis found that from the beginning of the trace until about 14:08, a host in-
termittently opened many connections to VNC port of many hosts. Fig. 2 shows
that the STAD can detect those malicious activities similar to the graph-based
classifiers, while the WTAD misses them. The spikes shown in Fig. 2 caused
by a Dasher worm. Both the STAD and the WTAD can precisely detect that
significant changes occurred. Fig. 2 also shows that the graph-based classifiers
reports almost all timeslots as anomalous. This is because there are 2 anoma-
lies (Fig. 1(a) and (e)) happened continuously throughout the trace and the
graph-based classifiers determine anomalies based on pre-defined models with-
out analysis of behavioral change like unsupervised anomaly detection. Fig. 3
shows the results on April 6, 2009, which consists of several anomalies such as
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Fig. 2. Detection results of STAD, WTAD, and graph-based traffic classifiers on Febru-
ary 6, 2009 MAWI dataset
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Fig. 3. Detection results of STAD, WTAD, and graph-based traffic classifiers on April
6, 2009, MAWI dataset
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Fig. 4. Actual simulated attack times, detection results of STAD, and WTAD on
DARPA’99 attack-present Monday of the 4th week

Table 2. Total alerts and alerts overlapped with DARPA report on DARPA’99

STAD WTAD
Date #alert #alert overlapped DARPA #alert #alert overlapped DARPA

Monday 13,490 2,525 18,950 4,382

Wednesday 14,610 2,518 18,500 2,221

Thursday 14,350 3,580 20,110 1,721

Friday 12,860 1,600 15,460 1,338

heavy ICMP floods at around 14:01 and a long-lived anomaly displaying behav-
ior like Fig. 1(a) from about 14:08. The results show that the WTAD missed
some anomalous instances. By contrast, the STAD misses only some instances
at the beginning and the end of the long-lived anomaly. Fig. 3 also shows that
the graph-based classifiers do not report that all timeslots from 14:08 are anoma-
lous. It is because that the connection numbers associated with the long-lived
anomaly are lower than the threshold in some timeslots. This is a graph-based’s
drawback that if a host communication is matched against a graph model but
the monitoring value (i.e., number of ports) does not exceed the threshold, those
hosts will be ignored. The results on January 2, 2012 are similar to the results
on April 6, 2009. The better detection performance of the STAD comes from the
ability to detect hidden brute force SSH attacks occurred on January 2, 2012.

3.2 Simulated Attack-Present Network Traffic

In order to measure the effectiveness of our STAD, we also test the STAD on
the 4th week data of DARPA’99 dataset [13] consisting simulated attacks.

Table 2 shows the total number of anomalous timeslots detected by the
STAD and the WTAD, and the number of overlapping results between the
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STAD/WTAD with DARPA report. The results show that the STAD mostly
can detect more attack timeslots than the WTAD. By looking at the results,
we found that the STAD can detect simulated DoS and probe attacks occurred
in the traffic traces more precisely than the WTAD. Table 2 also shows that
both detectors report significantly more timeslots as anomalous. The reasonable
causes are shown in Fig. 4. The first subfigure is a flow rate signal of Monday
traffic highlighted simulated attack timeslots. The second and third subfigures
are anomalous timeslots reported by the STAD and the WTAD, respectively.
Both of them labeled timeslots during 11:00 to 15:00 as anomalous. By using
manual inspection, we found that there was a flash crowd anomaly which causes
a lot number of connections between internal hosts with external web servers.
The second and third subfigures also show that from about 16:00, both detectors
labeled few timeslots which do not carry simulated attacks as anomalous at ev-
ery constant interval. Manual analysis confirms that there was a communication
between 2 hosts at constant interval in the traffic trace. One of the hosts use
DNS port to create a large number of connections compared with the typical
behavior which occurred during 22 hours. Furthermore, both the STAD and the
WTAD report a heavy ICMP packet stream originated from external network
at around 21:30 (a significant spike) as an anomaly. Traffic data from Monday,
Thursday, and Friday also contain flash crowd events and anomalous DNS traffic
caused both detectors to report many alerts as shown in Table 2. From These
results, we can conclude that the STAD and the WTAD can both detect flash
crowd events and some traffic that has deviant behavior, and the STAD is bet-
ter at detecting more attacks simulated (especially DoS and probe attacks) on
DARPA’99 dataset than the WTAD.

4 Conclusion and Future Work

This paper proposed an unsupervised S-Transform-based Anomaly Detector
called STAD which is able to detect anomalies by using 2 threshold parameters.
We verified the effectiveness of the STAD by testing it on real and simulated
traffic from MAWI and DARPA datasets, and by comparing the results with an
unsupervised Wavelet Transform-based Anomaly Detector (WTAD). The results
indicated that our STAD outperforms the WTAD in terms of detection ability
on both datasets. In the future work, we plan to evaluate our STAD in term of
false positive. We also plan to investigate the ST-based method’s performance
by comparing to different anomaly detection techniques and traffic datasets.

References

1. Stockwell, R.G., Mansinha, L., Lowe, R.P.: Localization of the Complex Spectrum:
The S-Transform. IEEE Trans. on Sig. Proc. 44(4), 998–1001 (1996)

2. Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: A Survey. In: ACM
Computing Surveys (2009)

3. Barford, P., Kline, J., Plonka, D., Ron, A.: A Signal Analysis of Network Traffic
Anomalies. In: IMW (2002)



Building Better Unsupervised Anomaly Detector with S-Transform 589

4. Salagean, M., Firoiu, I.: Anomaly Detection of Network Traffic Based on Analytical
Discrete Wavelet Transform. In: COMM (2010)

5. Münz, G., Li, S., Carle, G.: Traffic Anomaly Detection using K-means Clustering.
In: GI/ITG-Workshop MMBnet (2007)

6. Portnoy, L., Eskin, E., Stolfo, S.: Intrusion Detection with Unlabeled Data using
Clustering. In: CSS Workshop DMSA (2001)

7. Lakhina, A., Crovella, M., Diot, C.: Mining Anomalies using Traffic Feature Dis-
tributions. In: SIGCOMM (2005)

8. Callegari, C., Gazzarrini, L., Giordano, S., Pagano, M., Pepe, T.: A Novel PCA-
based Network Anomaly Detection. In: ICC (2011)

9. Karagiannis, T., Papagiannaki, K., Faloutsos, M.: BLINC: Multilevel Traffic Clas-
sification in the Dark. In: SIGCOMM (2005)

10. Pukkawanna, S., Pongpaibool, P., Visoottiviseth, V.: LD2: A System for
Lightweight Detection of Denial-Of-Service Attacks. In: MILCOM (2008)

11. Ringberg, H., Soule, A., Rexford, J., Diot, C.: Sensitivity of PCA for traffic anomaly
detection. In: SIGMETRICS (2007)

12. MAWI Working Group Traffic Archive, http://mawi.wide.ad.jp/mawi/
13. Lippmann, R., Haines, J., Fried, D., Korba, J., Das, K.: The 1999 DARPA Off-Line

Intrusion Detection. Computer Networks 34(4), 579–595 (2000)
14. MAWILab, http://www.fukuda-lab.org/mawilab/

http://mawi.wide.ad.jp/mawi/
http://www.fukuda-lab.org/mawilab/


J. Lopez, X. Huang, and R. Sandhu (Eds.): NSS 2013, LNCS 7873, pp. 590–598, 2013. 
© Springer-Verlag Berlin Heidelberg 2013 

Fault-Tolerant Topology Control  
Based on Artificial Immune Theory in WMNs  

Jing Chen1, Ruiying Du1, Li Zhao1, Chiheng Wang1,  
Minghui Zheng2, and Yang Xiang3 

1 School of Computer Wuhan University, 430072 
Hubei, China 

2 Department of Computer Science, Hubei University for Nationalities, 445000 
Enshi, China 

3 School of Information Technology, Deakin University 
Burwood, VIC 3125, Australia 

Abstract. With more and more wireless city are constructed completely, the 
wireless mesh network is widely applied. However, the more applications are 
serviced in Wireless Mesh Network(WMN), the bigger influence when there is 
a failure in wireless mesh network. In order to enhance the reliability of WMN, 
we proposed a Fault-Tolerant topology control algorithm based on Artificial 
Immune(FTAI). FTAI controls network topology to ensure that the client nodes 
can maintain k-connectivity to the mesh router nodes, as a result, the network 
can tolerate k-1 nodes failure. For optimizing the process, FTAI designs a sec-
ondary immunization clonal selection algorithm to accelerate the computing 
speed. Through the analysis of experimental results, the WMN achieved opti-
mum performance of many aspects in the premise of network fault-tolerant. 

Keywords: Index Terms - Artificial Immune Theory, Topology Control, Wire-
less Mesh Network, Fault Tolerant. 

1 Introduction 

Wireless Mesh Network (WMN) is a promising network technology. It's able to provide 
economic and effective network coverage in a great distance scale[1]. The generation of 
WMNs comes from the development of mobile self-organizing network technology. In 
order to apply ad hoc wireless multi-hop technology in civilian domains, keep the con-
nection with the Internet, and realize the ubiquitous communication, WMNs emerge as 
the times require[2]. Now there're numerous researches focused on WMNs, where the 
main purpose is to cover the shortage of some existing networks including wireless 
personal area networks (WPANs), wireless local area networks (WLANs) and wireless 
metropolitan area networks (WMANs) in some aspects[3]. With wide practicability, 
WMNs are well-suited for home, enterprise, public and any other networks[4]. 

As WMNs carry an increasing number of applications and services, once some-
thing is wrong, the impacts will be large, which indicates the fault-tolerance capacity 
of a network is really important[5]. Now the study of fault-tolerance is gradually  
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becoming a hot spot due to WMN's unlimited potential application value[6]. Thus, 
topology control is generally needed to keep all the WMN nodes in certain connection 
even if some nodes break down. 

In recent years, in those fields where Modern informatics and biology permeate 
each other alternately, Artificial Immune System (AIS) inspired by biological immune 
theory is receiving significant attention of more and more specialists and scholars[7]. 
The research areas cover optimization technique, data mining, pattern recognition, 
network security, virus detection, fault diagnosis and control engineering[8]. In this 
paper we will take the advantage of artificial immune computing optimization, and 
apply Artificial Immune Theory to topology control in WMNs. In order to realize 
fault-tolerance and optimize the performance of the whole network, we make a rea-
sonable power distribution to the Mesh client nodes, which will result in a self-
organized network being established, and k-connectivity to router nodes being 
achieved. 

The remainder of this paper is organized as follows. In Section 2, relative work at 
home and abroad on topology control for wireless network is introduced. In Section 3, 
we present a fault-tolerant topology control model and algorithm based on artificial 
immune in WMNs. In Section 4, some simulation experiments are done to measure 
the proposed scheme by the analysis of network performance in all aspects. The paper 
is concluded in Section 5. 

2 Relative Work 

S.A.Borbash et al proposed Distributed algorithm based on the Relative Neighbour-
hood Graph (Dist_RNG)[9]. It defines the vertex set as the input and the topology 
structure of the neighbourhood graph as the output. To get the final outcome, we just 
need some local information about adjacent nodes. If a node can't reach its nearest 
neighbour node, its power should be increased. But the main drawback is that the 
lengths of some sides might have achieved the maximum communication range, 
which will lead to power consumed quickly. In this way, energy will exhaust too early 
to remain the topology structure of the whole network. 

Xingjia Lu et al proposed Topology Control based on Artificial Immune Algorithm 
(TCAIA)[10] to solve Minimum Energy Network Connectivity (MENC) issue. In this 
algorithm, topology control on network nodes is implemented by using Clonal Selec-
tion Algorithm (CSA). No matter which node breaks down, the network can keep 
connected. 

K-connected cluster topology control(KCCTC)[11] is composed of generating 
clusters which includes the selection of clustering nodes, gateway nodes and distri-
buted gateway nodes, adjusting clusters which includes dealing with isolated clusters 
and adding redundancy to ordinary nodes, and finally scheduling sleeping nodes 
which includes four states, namely monitoring, cluster-head node sleeping, ordinary 
node sleeping, and being active. 
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3 Fault-Tolerant Topology Control Model and Algorithm 
Based on Artificial Immune 

3.1 Network Model Design 

Network topology is a weighted graph with direction G = (V, E, c) in the two-
dimensional plane, where V is the set of vertices {n1, n2…, nN, nN+1, …, nN+M } and E 
is the set of edges. When 1 ≤ i ≤ N, ni  refers to Mesh client node, while when N +1 ≤ 
i ≤ N + M, ni  refers to Mesh Router node. We define the edge set E = {(ni, nj) | dist 
(ni, nj)  ≤  Rmax}, where dist() denotes the Euclidean distance function. The cost 
function c(u,v) represents the power requirement of establishing a directional link 
between Node u and Node v, and it can also be expressed by c (u, v) = (dist (u, v))α. 
We define Г(ni) as a collection of nodes that can be accessible by Node ni according 
to the maximal transmission range Rmax, namely Г(ni) = {nj ∈  V | (ni, nj) ∈  E}. 

We care about whether Mesh client nodes can reach mesh router nodes instead of 
how many mesh router nodes can be accessible, so we can merge all the mesh router 
nodes into  only one entity. Provided with a WMN structure model graph G(V, E, c) , 
accordingly we can build a simplified diagram of Gr (Vr, Er, cr ). Concrete steps are as 
follows, first replacing all the Mesh router nodes with a single node labeled n*, which 
results in Vr =｛n1, n2…, nN, n*}; The edges between any two mesh client nodes still 
stay the same, but the edges between mesh client nodes and mesh router nodes have 
changed into the edges between Mesh client nodes and Node n*. Figure 1 is the sim-
plified diagram Gr which is converted from Graph G (four mesh client nodes and two 
Mesh router nodes). 

 

Fig. 1. The simplified structure diagram 

3.2 Artificial Immune Model Design 

Artificial immune system is an organization of various information processing tech-
nology and High-tech technology which develop relying on the principles and me-
chanism of biological immune system, as well as all kinds of intelligent system in 
engineering and scientific applications. It is designed for dealing with information and 
solving problems. In this paper we build an artificial immune model on the basis of 
WMN structural characteristics, to realize fault-tolerant topology control. 
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According to biological immune theory, the immune cells that should be selected, 
cloned, mutated, and then generate antibodies. To simplify the immune model and 
algorithm, immune cells and antibodies roll into a unique model, in other words, the 
same element in artificial immune model. The model we present is composed of anti-
gens, antibodies and some operations such as antibody initialization, selection, clon-
ing, mutation, and memory cells generating, etc. Select some antibodies that have a 
high affinity with antigens, clone, mutate, and then product new antibody population. 
After several cycles, we will get some solutions satisfying fault-tolerant topology 
control. In artificial immune model, these are some definitions. 

Antigen: The problem is a simplified directional diagram Gr (Vr, Er, cr) where Er is the 
set of edges within the maximum transmission range. 

Antibody: all the answers to the immune model problem, namely to allocate power 
for each node in Gr. It can be expressed as Ab = (p1, p2…pn). According to the power 
allocated to each node, we can get the final network topology. Antibody (solution 
vector) Abi = (pi,1, pi,2…pi,n), stands for the ith solution vector in the solution space; 
pi,j, j ∈  1, 2…n stands for the power allocated to the jth  node in the ith solution vec-
tor. And it is required that pj

min ≤ pj ≤ pj
max , where pj

min  stands for the transmission 
power for the jth  node nj  to reach its nearest node, pj

max  stands for the transmission 
power for the jth node nj  to reach its farthest node. 

Population: the collection of solution vectors popt = {Ab1, Ab2…Abμ} in the immune 
model, or the antibody set in the immune clonal algorithm. popt suggests the tth gener-
ation of population, and μ indicates every generation involves u solution vector. 

The Degree of Affinity: the affinity between antibody and antigen in the immune 
model. Antibodies with high affinity should be selected, either to be cloned and mu-
tated, or to be retained as members of the next generation. Accordingly, it stands for 
the number of mesh client nodes that have k disjoint paths to Node n*, and we set the 
proportion in all the nodes as a criterion of computing affinity degree; in a solution 

vector, we should refer to 
1

n

i
i

p p
=

= to judge whether the total power of all Mesh 

client nodes is the smallest. Then the affinity degree function is: 

 max

max

(*) (1 )
p

f
n p p

λθ θ= ⋅ + − ⋅
+

 (1) 

Where * indicates antibody, 0<θ<1, λ indicates the number of nodes that keep k-
connected, n is the number of all nodes, p indicates the total power of all the nodes, 
and pmax denotes the sum of maximum power.  

Clonal Selection: in immune model, select those antibodies with high affinity. And 
half the population are retained, namely 2 1m μ= +   . 
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 popt : = f(popt) = {f(Ab1)，f(Ab2)…f(Abμ)} (2) 

Clonal Propagation: in immunity model, antibodies with high affinity realize self-
replication at a certain rate. The representation is : 

 2( ) 10 [ (*)]Ab f Abϕ  = ⋅ ⋅   (3) 

Where φ is the clonal propagation function, m is the number of antibodies reproduced. 
Defining cluster as temporary population, it can be expressed: 

 cluster : = φ(popt) = {φ(Ab1)，φ(Ab2)…} (4) 

Mutation Operation: in immune model, antibodies mutate after clonal propagation 
at a certain probability θ which is related to the affinity degree and produce new anti-
bodies. Antibody Ab = (p1, p2…pi…pn) mutates into Ab’ = (p1, p2…pi’…pn), which 
can be described as Ab’ = η(Ab), where η is the mutation function. At every turn, 
mutation just occurs to a single node which is randomly decided. On the one hand, 
mutation is good to population variety and evolution, on the other hand, it may con-
tribute to degeneration. Since the variation range can't exceed Rmax in conventional 
clonal selection algorithms, we make some improvements. After altered, the minim-
al power need to keep the node k-connected, and the maximum one can be the mini-
mum that can maintain connectivity with the farthest node. In this way can power 
varies in a small range, which promotes a faster convergence in power allocation. 
Thus, we can get better antibodies more quickly. The mutation function is : 

 cluster’ : = η(cluster) = {η(Ab1) ，η(Ab2)…} (5) 

Immune Selection: After antibodies clone, propagate and mutate, we can select those 
qualified antibodies by immune selection function ψ. cluster’ is the temporary popula-
tion. A formal definition of this function is as follows: 

 popt : = ψ(cluster’) = {ψ(Ab1)， ψ(Ab2)…} (6) 

3.3 Fault-Tolerant Topology Control Algorithm Design Based on Artificial 
Immune 

This paper plans to improve immune clonal selection algorithm, and takes advantage 
of the fact that memory cells respond quickly to antigen in the secondary immuniza-
tion. Thus, the algorithm can not only assign power to the initial WMN nodes and 
maintain the connectivity, but also recover the connectivity and keep fault-tolerant as 
it was before, when network topology structure changes as a result of some nodes 
wrong or token. 

Immune clonal selection algorithm is mainly used for the first antigen intrusion. 
But it ignores the response the immune system makes during the re-invasion of the 
same antigen or similar antigen. 

Supposing something is wrong with Node ni, the paths that go through Node ni 

won't exist any more. Fig.2 shows the change of some network links. 



 Fault-Tolerant Topology Control Based on Artificial Immune Theory in WMNs 595 

        

Fig. 2. The graphic of Fault.             Fig. 3. The graphic of fault recovery 

 

Algorithm 1. The pseudo-code improved immune clonal selection algorithm 
Input:  
directed graph of network structure, Ag 
Output:  
power allocated for all the nodes in the graph, Ab 
 
1:      flag : = 0, count : = 0; 
2:      IF (antigen's secondary invasion) THEN flag : = 1; 

//whether antigen invades for the second time 
3:      END IF 
4:      IF (flag = 0) THEN pop0 = {Ab1, Ab2…Abμ}; 

//antibody initialization (allocate power randomly) 
5:      ELSE IF (flag=1) THEN pop0 = {memory cells…Abμ} 
6:      END IF 
7:      WHILE (no existence of  optimal antibody) DO 
8:               popcount : = f(popcount) = {f(Ab1) , f(Ab2)…f(Abμ)}; 

//Clonal selection (to select the optimum power allocation) 
9:             cluster : = φ(popcount) = {φ(Ab1), φ(Ab2)…φ(Abm)}; 

//Clonal propagation (power allocation of cloned nodes) 
10:           cluster’ : = η(cluster) = {η(Ab1) , η(Ab2)…}; 

//Mutation operation (power allocation of mutated nodes) 
11:            popcount:={ popcount, ψ(cluster’) = {ψ(Ab1), ψ(Ab2)…}}; 

//Immune selection (select satisfactory power allocation)  
12:            IF popcount < μ THEN popcount : = { popcount…Abμ}; 

//complement random antibodies (power) 
13:            END IF 
14:            count : = count + 1; 
15:      END WHILE 

 

In the situation above, we just need to re-allocate larger power to the nodes men-
tioned above, which will help them rebuild a connection with other nearby nodes and 
return to the state of being k-connected, as well as keep the character of allowing errors 
on k-1 nodes. Of course, it only goes for the nodes that have lost k-connectivity, other 
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than each one impacted. If the node still keeps k-connectivity, there is no need in alter-
ing its power. In Fig.3, a fault recovery after increasing power is depicted. 

In this paper the algorithm is designed to redistribute power to all vertexes in the 
graph Gr, not only make them  to maintain K connectivity to n*, but also make the total 
node power relatively small. Then it is required for the output of power distribution 
vector solution. This paper proposes an improved immune clone selection algorithm, 
and the core idea is that in the secondary immunization, due to memory cells with high 
affinity, a rapid reaction to another invasion of the antigens can be made, and in a short 
period of time better antibodies  can be achieved by immune procedure, so that each 
Mesh client node's connectivity to Mesh router nodes  can be quickly recovered. The 
pseudo-code of improved immune clonal selection algorithm is as follows: 

4 The Experimental Results and Analysis 

In order to evaluate the performance of FTAI in network topology control, this paper 
uses C++ programming to simulate the power distribution of the Mesh client nodes, 
and then make a comparative analysis of the experimental results. 

4.1 Parameter Setting 

If the communication range between Mesh router nodes is large enough, reliable con-
nection can be ensured between them, however, the maximum transmission range of 
Mesh client nodes will be subject to certain restrictions. In this paper we assume that 
each node remains stationary, not moved once deployed. Particular parameter settings 
in the simulation process are as shown in table 1. 

Table 1. Algorithm parameters 

Parameter value 
Power dissipation coefficient α 2 

K-connectivity degree 2 
Mesh client node number N 20～40 
Mesh router node number M 4 

The maximum transmission range Rmax 25m 
Antibody population size μ 100～200 

Selected clonal population size 0.33μ，0.5μ，0.66μ 
Mutation probability θ 0.1 

4.2 Performance Analysis 

This chapter aims at simulating FTAI, and comparing it with the TCAIA[12] in all 
aspects of performance. Mainly due to the following several aspects the algorithms 
are verified: 

1. When the Mesh client node number changes, the change of total power; 
2. When the Mesh client node number changes, the change of the maximum power; 
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3. When the population size changes, the change of cloning, mutation, selection cycle 
numbers. 

In order to observe how the total power changes when the Mesh client node number 
changes, we set up five circumstances in which the number is set 20, 25, 30, 35, 40 
respectively, the population size 150, the retaining population size during clonal selec-
tion 0.5 μ. After repeated simulation and the average value is as shown as in Figure 4：  

 

Fig. 4. The total power with different number of mesh client nodes 

 

Fig. 5. The maximum power with different number of mesh client nodes 
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And when the Mesh client node number changes, how about the change of the 
maximum power? The circumstances we set up before also apply here. As well, the 
average value is as shown as in Figure 5. 

5 Conclusion 

WMN has a wide range of applications in households, enterprises and public places, once 
it goes wrong, communication will be seriously affected. Thus, fault-tolerant issue should 
be taken into consideration in network topology control. This paper takes advantage of 
artificial immune algorithm on solving the optimization problem, use an improved im-
mune clonal selection algorithm to accomplish an optimal power allocation for each 
network nodes, and realize network topology control through changing the power level 
of WMN client nodes. In this way, better capabilities can be achieved. Mesh client nodes 
can maintain a certain connectivity to mesh router nodes, which achieves the purpose of 
being fault-tolerant. In the future work, we will focus on further improving the artificial 
immune model and algorithm, to make them more efficient and practical. 
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Abstract. Secure multicast in a wireless network is possible only if sub-
sets of nodes share different sets of encryption keys. In this paper we pro-
pose a key protection and release mechanism based on broadcast tokens,
where each node is equipped with protected shares of several encryption
keys (node-share) which can be unlocked only when the broadcast tokens
arrive. If the node-shares are different for different nodes, each broadcast
token could unlock a different set of keys in each node. This makes the
network reconfigurable as the information shared between various nodes
will change with the accumulation of each new token. A non-perfect
secret sharing scheme has been used construct the node-shares and to-
kens based on a carefully designed codebook which must satisfy certain
rules to ensure that the un-encrypted broadcast tokens and the node-
shares do not leak the encryption keys. Construction for a three node
re-configurable network is discussed under collusion-free conditions.

Keywords: Reconfigurable, Wireless networks, Broadcast, Key protec-
tion, Tokens, MIX-SPLIT, Non-perfect secret sharing.

1 Introduction

In any wireless sensor network, there arises a need to create secure virtual multi-
cast connections either between subsets of nodes and/or dedicated unicast links
between each of the nodes and the centre C. These secure connections are re-
quired to preserve confidentiality of the messages exchanged between the nodes.
Any secure connection, requires the sharing of an encryption key, which can be
pre-distributed by the centre at the time of forming the network and registering
new nodes. Alternatively the centre may facilitate the generation of keys in a dis-
tributed fashion between several clusters of nodes. Key distribution mechanisms
can be broadly classified into the following types:

Static direct key pre-distribution: In this framework the centre selects several
subsets of keys from a large pool and embeds them in each of the nodes. As-
signment of keys to the nodes can be done through random selection [1] [2] or
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deterministically based on combinatorial designs [3]. The main problem with
static key pre-distribution is that the associations between nodes are static.

Dynamic and distributed key pre-distribution: By shifting the computation and
key establishment between the nodes, the associations can be made dynamic.
Key exhanges between pairs (or even clusters) of nodes are possible through
public/private-key matrix constructions and protocols [4] [5]. Shared key com-
putation is also possible through polynomial based key-sharing approaches [6][7].
Although these approaches are distributed and can be made network adaptive,
the computational complexity associated with the generation of shares of the
keys or public/private key fragments is expected to be large and may also re-
quire several exchanges of messages between the nodes.

Broadcast encryption and key management: The main idea here is to communi-
cate a secret to a privileged group of nodes over a broadcast channel, without
using any asymmetric key protocols. In Fiat et al. [8], k-resilient schemes were
proposed, such that, k (or smaller) subset of nodes cannot reconstruct the com-
mon group key of a non-intersecting subset of nodes. The exchange is not possible
unless each node is provided with private information such as a set of key en-
cryption keys (KEKs) from a hierarchy of KEKs [9] [10]. There are two problems
with this framework: (i) Group associations must be confined to a hierarchical
structure to ensure efficient communication of the encrypted group keys, (ii)
Multiple group keys can be delivered only at an increased communication cost.

Proposed model for key protection and release based on broadcast tokens: Each
wireless node in this model is equipped with a protected share (node-share) of an
encryption key set. However this stand alone node-share is of no use to the node,
since the keys remain locked. When the centre releases a specific broadcast token,
the combination (token + node-share) helps release some of the encryption keys.
If the shares stored in different nodes are different, different sets of keys will
be released in each node when the broadcast token is fused. Thus, the creation
of a virtual multicast/unicast connection would depend on which set of keys
are exclusively shared amongst the nodes. Several such inter-connections will
be created upon fusion with the broadcast token in a distributed fashion. The
evolution of this centre driven re-configurable network will depend on the design
of the node-shares and the broadcast tokens. There are thus two reasons for
introducing this form of key-protection: (i) To confine and control the virtual re-
configurability of the network with the help of centre driven broadcast tokens, (ii)
To restrict the damage incurred due to key information leakage when selective
nodes are compromised.

In Section. 2 we discuss the framework for the proposed model. A construction
methodology using a non-perfect secret sharing scheme called MIX-SPLIT is
presented in Section. 3. Finally the codebook design for a 3-node system along
with some analysis is presented in Section. 4.
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2 Proposed Model Setting for Distributed Key Release

Consider a centre C and set of n wireless nodes Node− 1, Node− 2, ..., each of
which, is in the listening range of C. Any message transmitted by any one of the
nodes Node− i (or the centre), can be tapped by all other nodes. Simultaneous
broadcasts initiated by multiple nodes, is possible through orthogonal frequency
division multiplexing. The mode of communication is always broadcast. The
concern however in a broadcast channel, is the possibility that there could be
several eavesdropping nodes who are not a part of the original space and could be
tuning into the messages broadcasted. The centre generates a block of keys K =
{K̄1, K̄2, ..., K̄v} and produces a set of shares SH1, SH2, ..., SHn corresponding
to each node. Each share SHi meant for Node − i is self-contained i.e. has
necessary information regarding all v keys, however this information is designed
to be extracted only on a need to know basis. This information extraction can
be triggered by the release of some carefully designed broadcast messages by the
centre, which we may call as, broadcast tokens T̄ . Each broadcast token when
fused with the share stored in a certain node Node − i, could help release a
subset of keys which we represent by the set SECi ⊆ K. This set SECi is defined
as the secret in the possession of Node− i (some subset of K), which is unlocked
when a particular broadcast token T̄ is fused with SHi. All broadcast tokens
sent by the centre are transmitted in the un-encrypted form.

Since different sets of keys SECi are released at different nodes, the fusion
of the broadcast token may lead to the creation of several shared secrets (keys)
amongst different clusters of nodes, which can be used for secure multicast. When
the broadcast token is changed, the key configuration in each node also changes.
Since the key configuration influences the virtual connectivity of the nodes, this
will also influence the topology of the network.

3 Joint Construction of the Shares and Broadcast Tokens

The shares and broadcast tokens are created using non-perfect secret sharing
scheme called MIX-SPLIT [11], [12] as follows:

Partitioning and Forming the Homogenous Block

Let K̄1, K̄2, .., K̄v be v Lp-bit key strings. These strings are first concatenated
and then shuffled to form a homogeneous block X̄ = [x1, x2, .., xL] of length L =
Lp × v bits. Let P = {1, 2, 3, ..., L} be the set of all possible bit-positions within
the block X̄. When the key-strings disperse, they occupy a certain group of
positions within the homogeneous block, which, we define as a hidden Partition.
There will be exactly v disjoint and equal length partitions P1, P2, ..., Pv of length
Lp such that P = P1 ∪ P2 ∪ ..Pv. From X̄ another sequence Ȳ is derived as
Ȳ = BIT CMP [X̄], where, BIT CMP [ ] is the complement of a binary string.
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Mixing and Splitting (X̄, Ȳ ) into Node-Shares and Broadcast Tokens

A macro-mixing of the fragments of (X̄, Ȳ ) is done to produce m preliminary
shares of the key block S = {S̄1, S̄2, ..., S̄m}, a subset of which form the node-
shares SHi, i = 1, 2, ..., n with SHi ⊆ S and the others form broadcast tokens
T̄i, i = 1, 2, 3, ..., t. Each of the preliminary shares can be written as,

S̄i = (S̄i1||S̄i2||...||S̄iv) (1)

where, the sub-sequence S̄ij is chosen according to a pre-designed codebook. The
share inheritance is represented by the relation,

S̄ij = X̄(Pj) if ci,j = 1

S̄ij = Ȳ (Pj) if ci,j = 0 (2)

The binary value ci,j ∈ {0, 1} is a part of the codebook,

C =

⎛
⎝ c1,1 c1,2 · · · c1,v

· · · · · · · · · · · ·
cm,1 cm,2 · · · cm,v

⎞
⎠ =

(
N

T

)
(3)

with m representing the number of shares and v the number of partitions (or
number of keys). Thus each preliminary share S̄i can be labeled as a v-bit code-
word. The design of the node-shares and the tokens heavily relies on the structure
of the codebook, which is partitioned into two parts, where, the t× v matrix T
represents the t broadcast tokens and the (m− t)× v matrix N is used to form
the node-shares SHi, i = 1, 2, .., n.

Design Rules for Retrieval of Fragments of X̄

All the v keys are contained in each of the shares defined by the codebook C.
An extraction of a subset of these keys, contained in the partitions of X̄ is pos-
sible, by stacking selective shares one above the other [12]. Rules for conditional
visibility and invisibility of the partitions (and subsequently the unlocking of
the keys) are discussed in detail in [12] and have been re-stated here for com-
pleteness. If A is an r × v codebook containing a stack of r preliminary shares
designed using the previous two steps, the following rules apply:
Rule 1 : Complementary and repetitive columns lead to inseparable partitions
Rule 2 : Rowsampling of a complementary pattern is complementary
Rule 3 : Single share is always mixed (no partitions visible)
Rule 4 : Atleast one partition becomes visible if a column is distinct

4 Codebook Design for a 3-Node System

Consider the design of the codebook for a reconfigurable 3-node system. Let the
node share matrix be given by,

N =

⎛
⎝ 1 0 1 0 0 1

1 0 0 1 1 0
0 1 1 0 1 0

⎞
⎠ (4)
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Observe that every column in this codebook has a bit-complementary counter-
part. Hence this node share matrix satisfies Rule-1. This implies that none of
the partitions will be visible, even if all these preliminary shares are stacked
one above the other. Using this node matrix N we generate the respective node
shares SH1, SH2 and SH3 as follows:

SH1 =

(
1 0 1 0 0 1
1 0 0 1 1 0

)
; SH2 =

(
1 0 1 0 0 1
0 1 1 0 1 0

)
; SH3 =

(
1 0 0 1 1 0
0 1 1 0 1 0

)
(5)

Since the broadcast tokens T̄i, i = 1, 2, ..., t must not leak any of the keys to
the eavesdropper, the token matrix T must satisfy Rule-1. Since complementary
columns were chosen for the node matrix N, we shall choose repetitive columns
for the token matrix as this will help unlock some of the partitions and release
some of the keys. Each token is encoded in the following format:

T̄ = [z1 z2 z3 z2 z3 z1] (6)

Observe here that bit-1 repeats as bit-6, bit-2 as bit-4 and bit-3 as bit-5 and
z1, z2, z3 ∈ {0, 1}. Since z1, z2, z3 can be independently chosen the total num-
ber of unique tokens which satisfy Rule-1 are 23 = 8. However, since bit-
complementary tokens do not alter the stack relation, they are redundant and
will not add to the topological change in the network. Thus bit-complementary
versions of the tokens need not be used. The number of useful tokens which will
contribute to the topological change are t = 22 = 4. The token matrix is,

T =

⎛
⎜⎜⎝

T̄1

T̄2

T̄3

T̄4

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

1 1 0 1 0 1
1 0 1 0 1 1
1 1 1 1 1 1
1 0 0 0 0 1

⎞
⎟⎟⎠ (7)

We will assume a collusion free environment where the nodes do not combine
their shares with other nodes. Under these circumstances the only information
that is available to all the nodes are the transmitted broadcast tokens T̄i. When
the token T̄1 is received, each Node − i stacks this on top of the share set
already present inside i.e. SHi, i = 1, 2, 3. The results are shown in Fig. 1. Upon
the fusion of SH1 and T̄1, there are four distinct stack equations:⎡

⎣ b
b
b

⎤
⎦

⎡
⎣ b
b̄
b̄

⎤
⎦

⎡
⎣ b̄
b
b̄

⎤
⎦

⎡
⎣ b
b
b̄

⎤
⎦ (8)

The third stack equation is shared by columns 3 and 4 while the fourth stack
equation is shared by columns 5 and 6, as a result of which the partitions
P3, P4, P5, P6 remain in the mixed form as P3 ∪ P4 and P5 ∪ P6 respectively.
Hence the keys K̄3, K̄4, K̄5, K̄6 cannot be unlocked even after stacking T̄1. How-
ever, the first and second stack equations are distinct, revealing the partitions P1

and P2 and subsequently the keys K̄1 and K̄2. Thus, Node−1 acquires access to
keys [K̄1, K̄2] after receiving the broadcast token T̄1 (Fig. 1(a)). Continuing the
analysis in a similar fashion one can show that nodes 2 and 3 acquire access to
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key K̄2 only (Fig. 1(b,c)). Since the shares stored at different nodes are different,
the same broadcast token may release different sets of keys in different nodes.
With every successive broadcast token there will be an addition to the stack and
hence more keys will be released at the nodes. The keys available at the nodes
at each stage (time slot) are shown in Table. 1.

Fig. 1. Keys released when the broadcast token T̄1 is received and stacked on top of
SH1, SH2 and SH3 respectively at the three nodes

Table 1. Keys released at the nodes when broadcast tokens T̄1, T̄2, T̄3, T̄4 are received

Time-slot Tokens SEC1 SEC2 SEC3

Slot-1 T̄1 {K̄1, K̄2} {K̄2} {K̄2}
Slot-2 {T̄1, T̄2} {K̄1, K̄2, K̄5} {K̄2, K̄5} {K̄2, K̄5, K̄6}
Slot-3 {T̄1, T̄2, T̄3} {K̄1, K̄2, K̄5} {K̄2, K̄5, K̄3, K̄4} {K̄2, K̄5, K̄6}
Slot-4 {T̄1, T̄2, T̄3, T̄4} {K̄1, K̄2, K̄5, K̄3, K̄6} {K̄2, K̄5, K̄3, K̄4} {K̄2, K̄5, K̄6, K̄1, K̄4}

4.1 Re-configurability

The impact of the broadcast tokens on the reconfigurability of the virtual net-
work is seen in Fig. 2. With the arrival of each broadcast token a new set of
keys could be available at each node, which could be utilized for selective uni-
cast/multicast or broadcast (in case some of the keys are shared with all other
nodes). When token T̄1 is broadcast, Node−1 extracts keys [K̄1, K̄2 while nodes
2 and 3 extract key K̄2. Since the key K̄2 is common to all three nodes, it can be
used for secure broadcast (shown by the circle around the centre in Fig. 2(a)).
On the other hand since key K̄1 is available only with Node− 1, it can establish
a secure virtual unicast link with the centre.

This cumulative process as a result of the reception of all four tokens is shown
in Fig. 2(a-d) and is constructed based on the overlapping keys sets determined
from Table. 1. Observe that for the first three token transmissions, the number
of virtual connections increases linearly (Figs. 2(a,b,c)) and after the reception
of T̄3, each node can now have a unique virtual link with the centre (Fig. 2(c)).
However, upon the reception of token T̄4 these virtual unicast links are broken
and are transformed into node-pair interconnections as seen in Fig. 2(d). This is
the byproduct of an increase in the number of shared keys in each of the nodes.
In a larger network, this change in the distribution of shared keys, initiated by
token accumulation, results in the creation of larger multicast groups.
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Fig. 2. Change in the virtual state of the network after receiving tokens T̄1 to T̄4

5 Conclusions

The paper proposes an architecture for dynamic virtual reconfiguration of a
wireless network with the enforcement of key-protection at each node and by
allowing the topological changes to be triggered by carefully designed broadcast
tokens sent by the centre. With each broadcast token the changes in the virtual
topology are enforced in a distributed fashion. The principal idea behind this
architecture has been illustrated through the analysis of a 3-node network which
uses a non-perfect secret sharing scheme called MIX-SPLIT to synthesize the
node-shares and the broadcast tokens.
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On the Use of Key Assignment Schemes

in Authentication Protocols

James Alderman� and Jason Crampton
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Abstract. In this paper, we explore the use of Key Assignment Schemes
in entity authentication protocols where authentication requires the clai-
ment to demonstrate knowledge of a derivable key. By controlling the
distribution of such keys, restrictions may be efficiently placed upon the
circumstances under which an entity may be authenticated and the ser-
vices to which they may gain access. We explore how standardized pro-
tocols may be extended to authenticate entities as members of a group
associated to a particular security label, whilst protecting the long-term
secrets in the system. We also see that such constructions may allow for
authentication whilst preserving anonymity.

Keywords: Key assignment scheme, entity authentication, membership
authentication, authentication policy.

1 Introduction

Key Assignment Schemes (KASs) have been studied since the work of Akl and
Taylor [1] and permit an entity to derive many cryptographic keys by combining
a small number of keys in its possession with some publicly available informa-
tion. Traditionally, such schemes are used to support cryptographically-enforced
access control, particularly for information flow policies; in this setting, derived
keys are used to decrypt protected resources. However, we believe that KASs can
also play a role in entity authentication protocols by using the derived keys as
encryption keys instead. In this paper, we investigate methods by which KASs
may be integrated into existing, standardized authentication protocols in order
to authenticate an entity as a member of a specified group. Associating groups
with specific services can allow for more control to be exerted over the conditions
under which an entity may be authenticated, such as allowing authentication
only during certain time periods or if assigned a specific security clearance. We
shall also see that a KAS can help protect the long-term secret key, and allow a
form of authentication to occur whilst preserving the anonymity of entities.

This paper focuses on two-party symmetric-key authentication protocols where
we replace the usual long-term, shared key with one derived from a KAS con-
struction. Authentication is achieved by constructing a fresh message using this
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shared secret. Keys in a KAS are associated with particular security labels which
could represent security classifications, time periods or geo-spatial locations for
example. Thus, by making appropriate choices of labels and KAS constructions,
we can require the claimant to demonstrate knowledge of keys which satisfy an
authentication policy for the system.

The full version of this paper [2] provides a more detailed discussion of the
ideas presented in this short paper, as well as giving novel constructions that
enable one-round authentication protocols without synchronised clocks and allow
for individual authentication using a trusted third party.

2 Background

Notation: The statement A → B : {m}κ is to be interpreted as: entity A sends
the message m encrypted under the key κ to entity B. We write κA,B to denote
a symmetric key shared by entities A and B, while ηA denotes a nonce (number
used only once) created by entity A.

Graph-based Access Control Policies: A partially ordered set (poset) is a set L
equipped with a binary relation� such that for all x, y, z ∈ L: x � x (reflexivity);
if x � y and y � x then x = y (anti-symmetry); and if x � y and y � z, then
x � z (transitivity). We may write x < y if x � y and x �= y, and write y 
 x if
x � y. We say that x covers y, written y� x, if y < x and no z exists in L such
that y < z < x. The Hasse Diagram of a poset (L,�) is the directed acyclic
graph (L,�) with vertices labelled by elements of L and an edge connecting
vertex v to w if and only if w � v.

Let U be a set of entities, O be a set of resources to which access should be
restricted, and (L,�) be a poset of security labels. Also, let λ : U ∪O → L be a
labelling function assigning security labels. The tuple (L,�, U,O, λ) then denotes
an information flow policy which can be represented by the Hasse Diagram
of (L,�). The policy requires that information flow from objects to entities
preserves the partial ordering relation; for instance an entity u ∈ U may read an
object o ∈ O if and only if λ(u) 
 λ(o) 1.

Key Assignment Schemes: A Key Assignment Scheme (KAS) provides a generic,
cryptographic enforcement mechanism for graph-based access control policies
in which a unique cryptographic key, κ(x), is associated to each node x ∈ L.
Akl and Taylor [1] introduced the idea of a KAS to manage the problem of key
distribution by allowing a trusted center to distribute a single cryptographic key,
κ(x), to each entity with security label x, who may then combine this knowledge
with some publicly available information in order to derive κ(y) for all y < x.

Henceforth, we write κx to represent the cryptographic key κ(x). A well-known
KAS construction, an iterative key encrypting (IKE) KAS [7], publishes {κy}κx

for each directed edge (x, y) in the Hasse diagram. Then for any x > y, there

1 Note that this statement is the simple security property of the Bell-LaPadula security
model [4].
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is a directed path from x to y and the key associated with each node on that
path can be iteratively derived by an entity that knows κx. A survey of generic
schemes is given in [7].

A fundamental security property of a KAS is that it should be secure against
key recovery [3]: that is, the derivation of κy from a set of keys κx1 , . . . , κxn

should be possible if and only if there exists i such that κxi > y. Thus, a set of
users cannot recover a key for which no one of them isn’t already authorized. An
IKE KAS is known to be secure against key recovery provided the encryption
function is chosen appropriately [3].

3 Using KASs for Authentication

KASs have previously been used to enforce graph-based access control policies,
where a protected object is encrypted with the key associated with the object’s
security label and authorized entities may derive the key for decryption. How-
ever, we could also use derived keys for encrypting messages. Given that many
authentication protocols use symmetric encryption to respond to challenges, we
now explore how we can use KASs to build novel authentication protocols.

Traditional Entity Authentication. Consider, for example, Protocol 1 [10, Mech-
anism 2] – a unilateral, challenge-response authentication protocol – in which
the verifier B sends a nonce ηB to the claimant A2. By encrypting a response
that includes the nonce, the claimant demonstrates knowledge of the shared
secret key κA,B and the verifier knows that the message cannot be a replay.
Mutual authentication is achieved by requiring both parties to encrypt a nonce
(Protocol 2 [10, Mechanism 4]). Protocols in which the claimant encrypts a
timestamp [10, Mechanism 1, Mechanism 3] requires fewer messages, however
require the claimant and verifier to have (loosely) synchronized clocks and for
there to be some “window of acceptability” for timestamps. Finally, a proto-
col may provide authenticated key exchange by including a session key in the
verifier’s response. Note that the protocols presented here use an authenticated
encryption scheme to protect certain messages but could be modified to use a
MAC, or other suitable cryptographic primitives if desired.

Authentication using KASs. We now consider how these protocols can be modi-
fied to use keys derived from a KAS. We assume the existence of a KAS associ-
ated with a graph-based authentication policy (L,�, U, S, λ) which we define in
an analogous manner to graph-based access control policies: U is a set of enti-
ties, S is a set of services (the claimants’ intended interactions) and L is a set of
distinct security labels that forms a poset under the relation �; λ : U ∪ S → L
is a function that assigns a security label to each entity and service. We write
Ux to denote {u ∈ U : λ(u) = x}.
2 Protocols 1 and 2 are taken from the ISO standard [10]. Some textual fields have
been omitted from protocol descriptions in the interests of clarity and brevity.
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Protocol 1
A → B: Hi
B → A: ηB
A → B: {ηB , B}κA,B

Protocol 2
A → B: ηA
B → A: {ηA, ηB , A}κA,B

A → B: {ηB , ηA}κA,B

Fig. 1. Entity authentication protocols

Protocol 3
A → B: v
B → A: ηB
A → B: {ηB , B}κv

Protocol 4
A → B: Hi
B → A: v, ηB
A → B: {ηB , B}κv

Protocol 5
A → B: v, ηA
B → A: {ηA, ηB , A}κv

, w

A → B: {ηA, ηB}κw

Fig. 2. Challenge-response authentication protocols using a KAS

In the following protocols, we replace the symmetric key κA,B used in the
protocols in Figure 1 with a key derived from a KAS. We assume that a trusted
center initiates the setup of the system: defining a poset of security labels and
a graph-based authentication policy, and instantiating the KAS construction.
When an entity, u, joins the system, it is assigned a security label λ(u) and
given the associated cryptographic key κλ(u). Henceforth, the entity may com-
bine knowledge of this key with the public information from the KAS to derive
all keys κx such that x � λ(u) – that is, all keys that u is permitted to learn in
accordance with the authentication policy. Thus, entities are assigned to groups,
each associated with a particular security label and therefore permitted to in-
teract with a specific service.

Protocol 3 illustrates one method for incorporating a KAS into a unilateral,
challenge-response authentication protocol (this can easily be modified to acco-
modate time-variant parameters). The overall structure of the protocol is very
similar to the traditional case in Protocol 1, however the claimant now presents
the verifier with a security label, v, for which she wishes to be authenticated
– for example, representing credentials that A claims to have, or a description
of the desired service. Instead of using a symmetric key shared by the claimant
and the verifier, the claimant now derives and uses the key κv. Given that the
claimant is provided with the cryptographic key κλ(A) by the trusted center, it
is possible to prove knowledge of κv if and only if they can derive κv from κλ(A).

Note that correctly encrypting the challenge demonstrates knowledge of κv,
which means any entity with security label w 
 v could compute this response.
This authentication protocol is weaker in some sense than conventional authen-
tication protocols in that it only proves that the claimant belongs to a group
Uw, for some w 
 v. However, this form of authentication will suffice for many
applications, in particular those for which no subsequent auditing or attribution
of actions to individuals is required. Note also that conventional authentication
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may be thought of as a degenerate case of KAS-based authentication, in which
the graph is an unordered set of labels, one label per entity.

The verifier must ensure that the chosen label satisfies the authentication
policy for the requested service and that he himself has security clearance at
least that of the chosen label: λ(B) 
 v. If not, a negotiation protocol could
be run to determine the greatest common descendent of v and λ(B) which is
then acceptable to both parties. In some situations, it may be preferable to have
the verifier choose the security label before issuing the challenge, as shown in
Protocol 4. For example, in an environment where the required security label for
all protocol runs is equal it may be more efficient for a verification server to issue
the challenge than to check that labels chosen by claimants are sufficient. On
the other hand, the first method may be more suitable in environments where
peer-to-peer interactions are common, or the choice of services is greater. Mutual
authentication can be achieved in a similar fashion, as shown in Protocol 5.

Protecting keys. In traditional entity authentication protocols, the claimant
demonstrates knowledge of a long-term shared secret key. In the KAS authenti-
cation protocols above, however, the long-term secret key is the key issued to the
entity upon joining the system, and the protocols use derived keys instead. Thus,
if we restrict the challenge security labels to relate only to derived keys, the long-
term secret is never used for encryption and is protected from known-plaintext
attacks. In addition, it may be advantageous to ensure that all entities are issued
with keys associated with non-root nodes of G so that if a entity is compromised,
it may only reveal the subset of keys derived from those in its possession, while
preserving the security of other keys in the KAS. We also note that the protocols
above could encrypt the nonce from the verifier using the KAS derived key and
require the claimaint to decrypt and use the nonce in order to prove knowledge
of the key, thus protecting the derived key from known-plaintext attacks also.

Authenticated key exchange. Protocol 5 may be extended in the obvious way
to distribute a session key, security label or a key relating to a specific group
(or interval) from which many session keys may be derived. Compromising one
session key should not reveal information about any other session keys [5]. Thus,
if session keys are chosen to be from a KAS construction, they should be leaf
nodes or the derived children of the given node must be distinct from session
keys used elsewhere in the system. Also it is important to note that, if the session
key is protected by the key κv, any member of a group associated with a label
w 
 v could learn the key. However, by definition, all members of the group
associated with label v are authorized for services at that level and so session
keys may be required only to protect the service from non-members.

Alternatively, by protecting the nonces as in Protocol 5, the participants have
shared secrets that can be used to derive additional session keys using a pseudo-
random function, in much the same way as the pre-master secret is used in the
SSL/TLS protocol.
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4 Related Work

Anonymous and membership authentication protocols [6, 8, 11, 13], wherein enti-
ties are authenticated as members of a group but the verifier does not learn the
individual identities, largely use public-key cryptography to demonstrate knowl-
edge of a shared secret. Whilst anonymity was not the prime focus of our work,
we note that the protocols in this paper provide for some degree of anonymity;
users within Ux are indistinguishable to the verifier (and so anonymous relative to
the size of Ux). Previous work [12,13] used the Akl-Taylor KAS [1] as a building
block for anonymous authentication schemes but required additional public-key
mechanisms, presumably because the security of the Akl-Taylor scheme is based
on the RSA problem. Our work is the first, to our knowledge, to use purely
symmetric constructions.

Some membership authentication schemes use group signatures [6, 8] or ring
signatures [11] to prove knowledge of a secret known only to a group of enti-
ties in a public-key analogue of our (symmetric-key) protocols. In relation to
group signatures, our proposal shares the requirement of a trusted authority for
initialization of the system. However, that authority can reveal the identity of
the signer, unlike our scheme(s) and ring signatures. Moreover, ring signatures
do not require a trusted authority, but the ease with which ring signatures can
be created and the inability to trace the source of a signature makes them un-
suitable for authentication in many scenarios [9]. In short, we obtain the control
provided by group signatures with the anonymity guaranteed by ring signatures.

5 Summary

In this paper, we have presented a novel use of Key Assignment Schemes to
construct entity authentication protocols. Such protocols can be used to protect
long-term secrets and to efficiently verify that a claimant satisfies an authen-
tication policy. Example applications of such protocols include [2]: enforcing
user clearance (for example, when accessing a secured database); authentication
within a large, or rapidly changing, population where it is infeasible to maintain
a list of active entities, but it is possible to issue keys valid for given time periods;
ticket-based authentication or subscription services, where an entity is provided
with a KAS key for a time interval representing a ticket lifetime – future in-
teractions with services require that the entity authenticate using a derived key
for the current time period3; authentication wherein entities prove authorization
but wish to retain anonymity.

In future work, we hope to explore novel applications of our protocols, such as
mitigating denial of service attacks on authentication servers by employing KASs
in a proof of work scheme. In such a deployment, it is envisaged that a KAS
be devised in which it is ‘moderately hard’ to derive keys and thus knowledge

3 Similarly, a geo-spatial KAS construction where a mobile entity is provided with a
KAS key representing locations (for example, attempting to authenticate using a
smart card to a secure lock within an office building)
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of a key proves that significant work has been done and that the server should
dedicate resources to the authentication process. The difficulty of deriving keys
may be adjusted according to demand by releasing additional public information.

We also intend to consider security definitions for KAS-based authentication
and in particular whether security properties that hold separately for KASs and
authentication protocols are preserved by our protocols.
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Abstract. In Participatory Sensing (PS) systems people agree to utilize their cel-
lular phone resources to sense and transmit the data of interest. Although PS sys-
tems have the potential to collect enormous amounts of data to discover and solve
new collective problems, they have not been very successful in practice, mainly
because of lack of incentives for participation and privacy concerns. Therefore,
several incentive and privacy-preserving mechanisms have been proposed. How-
ever, these mechanisms have been traditionally studied in isolation overseeing the
interaction between them. In this paper we include a model and implement sev-
eral of these mechanisms to study the interactions and effects that they may have
on one another and, more importantly, on the quality of the information that the
system provides to the final user. Our experiments show that privacy-preserving
mechanisms and incentive mechanisms may in fact affect each other’s perfor-
mance and, more importantly, the quality of the information to the final user.

Keywords: Participatory sensing, privacy-preserving, incentive mechanisms, in-
ference mechanisms, P-sense.

1 Introduction

Participatory Sensing (PS) is a new data collection paradigm based on the availability
of millions of cellular users equipped with smart applications, a large diversity of sen-
sors, and Internet connectivity at all times. The availability of such a large number of
mobile nodes opens the possibility to collect very large amounts of data and from places
not possible or economically feasible before. For example, P-Sense [8] is an applica-
tion that requires users to sense the level of pollution as they travel to build accurate
pollution maps that can be used by the community and governmental organizations for
many different purposes. However, users might no be willing to participate in this sys-
tem if they also have to spend their data plans and batteries without any direct benefit in
return. Therefore, for some PS systems, incentive mechanisms need to be included to
guarantee a minimum level of participation for the system to be able to actually work.
Similarly, most users will not be willing to participate if as a result of their data report-
ing, their privacy is not guaranteed. Therefore, privacy-preserving mechanisms need to
be in place for these PS systems. Finally, inference and data analysis mechanisms are
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also usually included as part of a PS system to make estimations of the variables of
interest in places where no data have been collected from, to make predictions, or to
make any other type of analysis that will bring additional information to the final users.

However, one important problem is that these mechanisms have been devised and
studied in an isolated or independent manner, as if they were the only mechanisms
working in the system. Therefore, this paper presents a model to study the interactions
between privacy-preserving, incentive, and inference mechanisms that have not studied
before. In particular, this paper answers to the following questions:

– What effect do privacy-preserving mechanisms have in the quality of the informa-
tion that the system provides to the final user?

– What effect do incentive mechanisms have in the quality of the information that the
system provides to the final user?

– What effect do privacy-preserving and incentive mechanisms working together
have in the quality of the information that the system provides to the final user?

The rest of the paper is organized as follows. Section 2 includes a brief description of the
privacy-preserving, incentive, and inference mechanisms available in the literature and
the ones used in this paper. Section 3 describes the model and performance metrics uti-
lized in this work to study the effects produced by these mechanisms. Section 4 presents
the performance evaluation of available privacy-preserving and incentive mechanisms.
Finally, Section 5 presents the most important conclusions and provides directions for
additional research.

2 Related Work

This section provides a brief literature review on privacy-preserving, incentive, and
inference mechanisms, as they related to the work in this paper.

Privacy-Preserving Mechanisms: The main idea of anonimization is to generalize
the users’ data to a group of users in such a way that the user cannot be distinguish-
able from the group [2]. On the other hand, obfuscation techniques assume that the
identity of the participant is or could be known [10]. Differently from anonymization
techniques, the key idea is to modify the real location of the participants without consid-
ering the location of other participants. Finally, encryption-based techniques rely on
cryptographic methods to guarantee the privacy of the participants with no modification
of the actual data [4].

Incentive Mechanisms: Most of these mechanisms are based on reverse auction tech-
niques. For instance, in the Reverse auction based dynamic price scheme (RADP-VPC-
RC) presented in [6], each user makes a bid offering her sensed data and the system buys
the k cheapest ones. Further, RADP-VPC-RC tackles the problem of cost explosion and
avoids users from dropping out of the system. The work presented in [5] extends this
approach with the Greedy Incentive Algorithm (GIA), which uses not only the price
but also the locations of the users. The key idea is to buy the k cheapest samples that
maximize the covered area avoiding to buy samples that are closely located.

Inference Mechanisms: They aim to estimate the variables of interest in those places
where data are not available. In this area, Kriging is one of the most widely used



616 I.J. Vergara-Laurens, D. Mendez-Chaves, and M.A. Labrador

techniques in geostatistics (a branch of statistics that focuses on spatio-temporal
datasets) [7]. All the different variations of the kriging estimator are modified versions
of the best linear regression estimator [3, 9].

3 System Model and Performance Metrics

The system model consists of four components: Sensed Data, Privacy Mechanism, In-
centive Mechanism and Inference Engine (Figure 1). The sense data component corre-
sponds to the data reported by the participants of the PS application and is used as the
input to the other components of the system. The privacy mechanism, receives sensed
data and produces modified data according to the selected privacy mechanism. The in-
centive mechanism, selects a subset of the input data according to the incentive mech-
anism implemented in the system. The last component, the inference engine, is used to
produce estimations of the selected variables in the areas of interest.

Fig. 1. System model and performance metrics

In addition, the proposed model includes several data paths. The first data path ap-
plies to those systems that implement neither privacy-preserving nor incentive mecha-
nisms. The second data path considers a system that implements a privacy-preserving
mechanism but it does not consider an incentive mechanism. The third path considers a
system that does not implement a privacy-preserving mechanism but it does include an
incentive mechanism. The fourth path considers a system that implements all compo-
nents. Finally, the performance metrics for the model are: 1-The quality of the estima-
tion R2 measures how different the real data and the estimations are. 2-The average
displacement as a result of changing the original location of the participant by privacy-
preserving mechanisms. 3-The coverage of the area of interest C after the incentive
mechanism is applied.

4 Performance Evaluation

In order to collect real environmental, we utilized the P-Sense system for measuring
CO (ppm), CO2 (ppm), combustible gases (ppm), air quality (4 discrete levels), tem-
perature (F), and relative humidity (%) on the air [8]. Moreover, during three months
data were collected 3 times a day for one hour, 3 to 4 days a week at the campus
of the University of South Florida, in Tampa, Florida. The campus area is approxi-
mately 3.9 km2, which is represented using a grid of 105x105 units in this project,
i.e. each unit is equivalent to 20 meters. On the other hand, the implemented privacy-
preserving mechanisms are: 1-Tessellation [2] (anonimization technique) varying the
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k parameter from 3 to 9; 2-Points of Interests [10] (obfuscation technique) using
a grid from 4x4 up to 11x11 cells; and 3-Random Perturbation [1] (obfuscation
technique) using uniform distribution {[1,5],[5,15] and [10,20]}, normal distribution
{[μ = 5, 10, 10, 15, 15, 15, 20, 20, 20, σ = 1, 1, 3, 1, 3, 5, 1, 3, 5}, and exponential dis-
tribution, {λ = 5, 10, 15, 20}. Finally, the incentive mechanism utilized in the exper-
iments is the GIA mechanism proposed in [5], as this is the only one in the literature
that studies coverage considering the location of the users. The parameters used in the
evaluation are the ones included in the GIA paper [5]: coverage radius=5, true valua-
tion=uniform [0,10], and budget=[20,260].

4.1 Experiments and Results for Each Data Path

First Data Path: Neither Privacy nor Incentive Mechanisms. Table 1 presents the
obtained R2

S and CS when we apply the inference mechanism to the original data, i.e.,
without privacy nor incentive mechanism. Note the good quality of the estimations (R2

S

is very close to 1), i.e., the estimated values are very close to the real values collected
by the P-Sense system, and the coverage (33%) achieved by the system.

Table 1. The quality of the estimations (R2
S) and coverage (CS) for the first data path

Variable Temperature Relative humidity Air Quality CO2 CO Combustion gases Coverage
R2

S 0.92 0.89 0.91 0.92 0.88 0.96 33.14%

Second Data Path: Privacy but Not Incentive Mechanism. Figure 2 shows the qual-
ity of the estimations (R2

P ) produced by several privacy-preserving mechanisms for
three of the environmental variables measured by the P-Sense system according to the
average displacement. As it can be seen from the figure, all variables present a simi-
lar behavior regardless of the privacy-preserving mechanism: different privacy mecha-
nisms with similar average displacement produce similar quality of estimation. This is
an important conclusion because it means that none of the privacy-preserving schemes
studied here is actually a good scheme in systems that do not tolerate low quality esti-
mations. Moreover, Table 2 presents the relationship between the quality of the estima-
tion (R2

P ), coverage (CP ), and average displacement for the temperature variable using
the implemented privacy-preserving mechanisms. For example, Points of Interest 6x6
and Random Perturbation (all cases) have similar average displacement and different
coverage but very similar R2

P . In conclusion, the impact of the average displacement
over the quality is significantly greater than the impact of the coverage on the quality of
estimation.

Third Data Path: Incentive but not Privacy Mechanism. Figure 3 shows the quality
of the estimation (R2

I ) when the GIA mechanism is applied with different radii as a
function of the budget. As the figure shows, the quality of estimation and number of
selected participants decrease when the coverage radius increases. However, a very low
radius implies the possibility of selecting participants that are very close to each other,
which spend the budget but provide similar (redundant) information [5]. In conclusion,
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Fig. 2. R2
P as a function of the average displacement for several privacy-preserving mechanisms

applied to each environmental variable

Table 2. Relationship between quality of estimation (R2
P ), coverage (CP ) and average displace-

ment for the temperature

Tessellation Points of Interest Random Perturbation
– k = 3 k = 5 k = 7 4x4 6x6 8x8 10x10 Uniform Normal Exponential

[1; 10] (μ = 5, σ = 1) (1/λ = 5)

R2
P 0.47 0.31 0.16 0.76 0.86 0.88 0.89 0.82 0.86 0.82

CP (%) 12.57 8.166 5.67 11.11 20.73 28.21 30.76 33.65 33.67 33.83
Avg Disp 20.66 23.66 24.45 10.45 6.8 5.25 4.21 8.42 7.18 8.12

Fig. 3. R2
I as a function of the budget available to the GIA algorithm using different radii

selecting the appropriate radius should be function of the needed quality of estimation
as well as the variability of the data being measured.

Figure 4-a shows the coverage (CI ) achieved by the GIA incentive mechanism. Note
that, as expected, the coverage increases with the budget since a higher budget means
more selected participants. However, although the effect of budget increments on the
coverage is constant (figure 4-a), the effect of budget increments on quality of esti-
mation is not significant after some value (figure 3-a). Therefore, the optimal budget
depends mostly on the desired quality of estimation instead of the coverage.

Fourth Path: Privacy and Incentive Mechanisms. Figure 4 shows the coverage
(CP+I ) achieved by the system as a function of the budget when the GIA mecha-
nism is used along with the different privacy-preserving mechanism (three graphs on
the right). Basically, the coverage increases with the budget. However, it can be seen
how some privacy-preserving mechanisms limit the area of coverage of the GIA al-
gorithm, providing a flat coverage value regardless of the budget available (Tessel-
lation and Points of Interest). This is due to the number of selected points since a
larger k as well as a smaller number of points of interest means fewer reporting points.
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Fig. 4. Coverage achieved by the GIA mechanism as a function of the budget without privacy
protection (CI ) (left) and when privacy-preserving mechanisms are present (CP+I)

Additionally, Figure 5 shows the quality of estimation (R2
P+I ) achieved by the system

for different budgets and privacy-preserving mechanisms. In the case of Tessellation,
the budget has no major effect on the quality of estimation because the incentive mech-
anism buys the anonymized locations and, when it buys one of the k users, the others
are discarded. In the case of Points of Interest, the situation is similar: the budget affects
the coverage but it does not affect the quality of estimation much because the number
of point of interest defines the number of reporting locations. In conclusion, when pri-
vacy and incentive mechanisms work together, the most affecting factor is the average
displacement produced by the privacy mechanisms.

Fig. 5. Quality of estimation achieved by each privacy-preserving mechanism as a function of the
budget used in the GIA mechanism (R2

P+I ) for temperature

5 Conclusions and Research Directions

This paper presents a model to study the interactions between privacy-preserving, in-
centive, and inference mechanisms in participatory sensing systems. A performance
evaluation is carried out to evaluate the impact of these mechanisms on the quality of
estimation (R2), as provided by the inference system to the final user, as well as the area
of coverage (C) achieved by the incentive mechanism. In the case where no incentive
mechanism is included in the system, the impact of privacy-preserving mechanisms on
the quality of the information to the final user depends on the average displacement
that the privacy mechanism introduces to the real locations of the participants. There-
fore, a system needing a high quality of information should avoid the use of privacy
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mechanisms that introduce large displacements, such as Tessellation, and rather utilize a
privacy-preserving mechanism with low displacements, such as Points of Interest with a
high number of points or Random Perturbation. In the case where the incentive mecha-
nism is used, the information provided to the final user depends on the available budget,
with the quality increasing with the budget. However, there is a point in which the ef-
fect of the budget decreases the quality of the estimation. Finally, when privacy and
incentive mechanisms work together, the budget available to the incentive mechanism
and the average displacements introduced by the privacy mechanism are the factors that
affect the quality of the information to the user the most: for systems needing a high
quality of estimation, a high budget should be used as well as a privacy mechanism with
a low average displacement.
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Abstract. Mobile ad hoc networks are a collection of two or more devices 
equipped with wireless communication and networking capability and they 
move in dynamic and topology way. The nodes should deploy an intermediate 
node to be the router to route the packet from the source node to destination 
node. The wireless links in this network are prone to errors and can go down 
frequently due to mobility of nodes, interference and lack of infrastructure. 
Therefore, routing in MANET is a critical task due to highly dynamic 
environment. In recent years several routing protocols have been proposed for 
mobile ad hoc networks to increase the secure path between the nodes. We 
focus on our scheme on the authentication between the nodes and we choose Ad 
Hoc On-Demand Distance Vector (AODV) protocol to apply this scheme, 
which it depends on hash function, secret value and random number generation. 
This scheme is used to produce secure and authentic environment between the 
nodes In Mobile Ad Hoc Network. 

Keywords: Black hole, hash function, Random hash function, AODV, MetaID. 

1 Introduction 

A mobile ad hoc network (MANET) is a self-organized wireless network where 
mobile nodes can communicate with each other without the assistance of a centralized 
authority. Each node is able to communicate with other nodes within its transmission 
range and relays on other nodes to communicate with nodes outside its transmission 
range [1]. The absence of centralized administration and the infrastructure less nature 
make MANETs good for military and fast deployment communications. For these 
reasons securing MANETs is hard to achieve. Current security technology brings a 
certain level of trust in obtaining communication. The trust relationships established 
between networks nodes could be used for the provision of higher level security 
solutions, such as key management. In [2], and [3], threshold cryptography has been 
proposed to provide a reliable, distributive key management for MANET by 
exploiting some nodes as a trust anchor for the rest of the network. 

Some aspects of ad hoc networks have interesting security problems, routing is one 
such aspect. Several routing protocols for ad hoc networks have been developed to 
produce a secure environment between the nodes in ad hoc networks. We can apply 
this in our scheme and we choose the Ad Hoc on-demand Distance Vector (AODV) 
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because it is the most popular routing protocol and it is used widely [4]. We focus in 
this paper on the authentication between the nodes, to make sure that the networks are 
accessible with authorization. Mobile ad hoc networks, for short MANET, have 
become a very important research area over the last past years. The structure of a 
MANET consists from mobile nodes which can act as a sender, and a forwarder 
which is used for messages. Our accent will be putted on the unique feature of these 
protocols, feature which is represented by the ability to trace routes in spite of 
dynamic topology. The attacks which can exist on ad-hoc network can be passive 
attacks and active attacks. 

The paper has been organized in sections. Section 1 is the introduction; section 2 
we make a security analysis of the most attacks of routing protocols and the main 
challenges in mobile ad hoc networks (MANETs); section 3 contains a review of 
AODV; section 4 speaks about our scheme:  the main idea of this scheme is to use the 
hash function, secret value and time stamp to increase the authentication between the 
nodes when they start communicating in the ad hoc network. 

2 Security Analysis 

The structure of ad-hoc networks make them very vulnerable to many types of attacks 
such as passive eavesdropping, active interfering, impersonate, black hole, data 
tampering and one of the most important attack on which is very difficult to create a 
security solution, denial of service.  

The idea of making AODV secure, represent a real challenge, because first of all 
we need to understand security attributes and mechanisms. Security is viewed as a 
structure composed from mixture of processes, procedures and systems. All this 
components ensure confidentiality, authentication, availability, integrity, access 
control and non-repudiation [5]. The triad CIA (confidentiality, integrity, and 
authentication) which can be applied in our solution means: 

- Confidentiality is obtained by preventing the unauthorized nodes to access data. 
- Authentication is used to ensure the identity of source as well as neighbor nodes to 
prevent a node from having an unauthorized access to resources and confidential 
information as well as to stop it from having interfering operations of the rest of the 
nodes. 
- Integrity is very important, because it helps to prevent malicious nodes from altering 
data and resending it (sometimes called as replay attacks or wormhole attack). 

In the following, we will go through different types of attacks and illustrating how 
they act. We mention that, some of the attacks they have been presented in real life, 
and we were able to see the experiments and how the components react at those 
attacks.  

1. Impersonation – the attacker is able to spoof as an innocent node and join the 
network. In this situation, several such nodes join the network; they obtain control of 
the network and conduct malicious behavior. In this situation, they propagate  
fake routing information and they also gain access to confidential information’s.  
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The network is very vulnerable to such attacks if it does not using a proper 
authentication mechanism. 

2. Wormhole attack – the attacker connect two parts (which can be found at a 
specified distance) of the network and after this he tunnels the messages received in 
one part of the network to the other. In this case a low latency is used to pass the 
messages. Regarding the protection against the wormhole attack, our point of view is 
to have a “Packet Leash” mechanism in which all nodes in the MANET can obtain 
authenticated symmetric key of every other node [7]. The receiver can authenticate 
the information such as time and location from the received packet [8]. 

3. Black hole attack – the striker lures the traffic of the network in such a way that 
it compromises the node and forms a black hole, putting the opponent at the centre 
[8]. In this attack, malicious nodes trick all their neighboring nodes to attract all 
routing packets to them.  

4. Sybil attack – a node tries to have multiple identities. In this situation the 
malicious node gains more information about the network [8]. There is a notable 
decrease of fault tolerant schemes like distributed storage, multi-path routing etc. 

3 On-Demand or Reactive Routing Protocols 

On-Demand protocols, routes are created as and when required. When a transmission 
occurs from source to destination, it initiates route discovery process within the 
network. Once a route is discovered and established, it is maintained by route 
maintenance procedure until either destination becomes inaccessible along every path 
from source or route is no longer desired. Some of examples on demand routing 
protocols are: DSR [9], AODV [4]. 

• Dynamic Source Routing (DSR)   
     Dynamic Source Routing (DSR) is an on-demand routing protocol, which is 

based on the theory of source-based routing rather than table-based. This protocol is 
source-initiated rather than hop-by-hop. Mobile nodes are required to maintain route 
caches that contain the source routes of which the mobile is aware. This is particularly 
designed for use in multi hop wireless ad hoc networks of mobile nodes. Basically, 
DSR protocol, like in other On-Demand routing, does not need any existing network 
infrastructure or administration and this allows the network to be completely self-
organizing and self-configuring. The protocol consists of two major phases: route 
discovery and route maintenance.  Every node maintains a cache to store recently 
discovered paths. When a node wants to send a packet to some destination, it first 
checks its route cache to determine whether it already has a path to the destination.  

• Ad hoc on-demand distance vector (AODV)  
AODV is an improvement of Destination-Sequenced Distance-Vector (DSDV) 

routing protocol which is collectively based on DSDV and DSR. The AODV have two 
main phases; first phase is route discovery: when a source node S wants to send a data 
packet to a destination node D, the source node initiates route discovery by broadcasting 
a route request (RREQ) to its neighbours. Second phase is route maintenance: a 
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discovery routing between a source node and destination node is maintained as long as 
needed by the source node. Whenever there is a broken link between two nodes the 
route maintenance phase is carried out. The node that discovers the broken link initiates 
Route Error (RERR) message to the source node by the predecessor intermediate nodes. 
This process is repeated until the source node is reached.  

4 Using Random Number with Secret Value and Timestamp  
to Protect the Privacy 

This scheme proposes the use of random numbers with timestamp in the nodes to 
protect the privacy of the nodes. Random numbers are protected with secret values, 
and the use of hash functions to prevent forgery and copying. Also we use the time 
frame to provide a solution to prevent the replay attacks, and the protection of 
variable values makes it possible to solve synchronization problems. 

The proposed scheme consists of four stages and provides security through random 
numbers and timestamp. Also providing anonymity can protect the privacy of nodes. 
We use also the secret value (SV), which is the exchange of messages in a secure way 
between any source and destination node in a network. This exchange can be made in 
two ways, first way: Secret Value (SV) Distribution with Confidentiality and 
Authentication: We can use the public key to exchange the secret value to provide 
protection against both active and passive attacks. Second way: Diffie-Hellman Key 
Exchange: The Diffie-Hellman algorithm efficiency depends on the hardness of 
computing discrete logarithms.  

The proposed scheme gives an improvement for the authentication between the 
nodes on the insecure channel in the network. We can explain this stage as can be 
seen in figure 1. 

Step1: When a node in Ad Hoc Network wants to communicate with other node in 
the same network or in another one as shown in figure 1, which explains the 
authentication process between the source (S) and the destination (D) node before 
they start send and receive the important data. The source node generates a random 
number r and timestamp Ts and conducts XoR calculating using secret value SV, 
which the component shares to produce r ⊕ SV and Ts ⊕ SV, the two values are 
combined to form a hash value h (r \\ Ts). The source node sends the r ⊕ SV and Ts ⊕ 
SV which it is introduces to the destination node. 

 

 

Fig. 1. Random number with secret value and timestamp authentication 

 
 

Node 
S 

 
Node 
D 

 

r ⊕ SV, Ts ⊕ SV, h (r \\ Ts) 

    H (ID \\ SV \\ Ts)

   λ⊕ α \\ H (r\\ α)
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Step2: This step is to authenticate the value transferred from the source. The 
destination conducts XoR calculating by inputting SV into r ⊕ SV and Ts ⊕ SV to 
acquire r and Ts. To authenticate r and Ts the destination hashes the two values to 
produce H (r\\Ts)’ and compares it with H (r\\Ts) the hashed value transferred  
from the source node, when the two values are identical, r and Ts are authenticated. 
When the destination authenticate from the source values, it start to producesλ, where 
λ is the deference between r and Ts, and conducts a XoR calculation metaID, where 
metaID = α, to produce λ ⊕ α. The hash value H (r\\ α) is produces and combined 
with λ ⊕ α to form λ ⊕ α \\ H (r\\ α), which is to be sent to the source node for 
authentication. 

Step 3: When the source receives λ ⊕ α \\ H (r\\ α) value from the destination it 
computes λ again by subtraction r from Ts (λ = r – Ts). Afterward the metaID value is 
acquired by conducting XoR calculation on the λ ⊕ α. To authenticate the acquired 
metaID (α), the transferred r is combined to form hash value    H (r \\ α)’. If the 
transferred value H (r \\ α) is identical with produced H (r \\ α)’, the metaID (α) is 
authenticated along with destination with the metaID. Also the source node computes 
metaID = H (ID)’to insure the ID belong to the destination. To acknowledge the 
authentication of the destination, the source combines the SV and the variable Ts to 
form a hash value of H (ID \\ SV \\ Ts) and send it to the destination node. 

Step4: When the destination received the last value from the source node, it starts 
the verification process by authenticating the hash value H (ID \\ SV \\ Ts) that was 
transferred from the source node. The destination combines SV and Ts to produce 
hash value H (ID \\ SV \\ Ts). The source and destination mutually authenticate each 
other. Also after the hash value is authenticated, the destination ID that is included as 
a component of the hash value is authenticated. 

Hash chain is used to verify the integrity of the hop count field of RREQ and 
RREP messages by allowing each node that receives the message to verify that the 
hop count has not been modified by malicious nodes. Hash chain consists of applying 
repeatedly a one-way hash function for a number of seeds.  

Here we still use Destination Sequence Number (DSN) as in AODV to ensure that 
all routes are loop free and routing information is proper and valid. During the process 
of forwarding, the RREQ packets, the intermediate nodes record the address of the 
neighbor from whom the first copy of broadcast message is received in their routing 
tables. This helps to establish a reverse path [8][9]. 

AODV uses the hop count parameter to determine the shortest path between two 
nodes. A malicious node can set false hop counts and wrong values of the sequence 
number. This leads to redirection of network traffic or to a DoS attack.  

When a path is not available for the destination, a route request packet is flooded 
along the network. The RREQ contains the following fields: sources address, request 
ID, source sequence number, destination address, destination sequence number,  
hop- count. The request ID is increased every time the source node sends new RREQ, 
so the pair (ID request, source address) defines a unique RREQ. On receiving RREQ 
message each node checks the request ID and the source address. If the node has 
already received a RREQ with the same pair of parameters the new RREQ packet will 
be ignored. Otherwise the RREQ will be forwarded (broadcast) or replied (unicast) 
with a RREP message: 
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- If the node doesn’t have a route to the destination or it has one that is not updated, 
the RREQ will be re-broadcasted with increased hop-count; 
- If the node has a path with a sequence number greater than or equal to that of 
RREQ, RREP message will be generated and sent back to the source. The number of 
RREQ messages that a node can send per second is limited. 

AODV has an optimization using an expanding ring (ESR) technique for the flooding 
RREQ messages. Every RREQ has a time to live (TTL) value that specifies the 
number of times it should return this broadcasted message. 

4.1 Comparison between Our Proposed Scheme and the Secure AODV (SAODV) 

In MANET, the internal attacks are typically more severe, since malicious node 
already belongs to the network. To prevent internal attacks, we need to authenticate 
the unique identity of each node. Our proposed scheme provides an efficient way to 
verify the message authentication and message integrity. The receiver node can 
authenticate the sender of message as well as intermediate nodes using the shared 
secret key. 

We compared our proposed scheme with secure AODV (SAODV) protocol in the 
presence of black hole attack [8]. A black hole attack is a kind of denial of service 
attack in which a malicious node assigns small hop count and high sequence number 
to the route reply message (RREP) and absorbs all packets by simply dropping it 
without forwarding them to the destination node. SAODV [10] is implemented as an 
extension to original AODV protocol. Although SAODV has proposed two 
alternatives to send RREP message, we used first alternative for implementation: only 
destination node can send RREP message. We also used hash function to secure hop 
count and RSA algorithm for digital signature and also the secret values and time 
stamp to increase the authentication process between the nodes.  

In SAODV protocol, source node and intermediate node both verify signature 
before updating their routing table. A malicious node can impersonate a destination 
node but cannot generate signature of destination node. Similarly in proposed method, 
malicious node does not know the secret value shared between destination node and 
others node. The source node or intermediate node discards RREP packets coming 
from malicious node and hence does not establish route through malicious node. 

Time delay of data packet means the difference between the time when the first 
data packet is received by the destination node and the time when the source node 
broadcasts a RREQ message. Time delay depends on both mobility and position of 
nodes. In case of the SAODV protocol and the proposed method, the time delay is 
more due to delay in establishing particular route as only destination node can send 
route reply message. Moreover the SAODV protocol has larger time delay compared 
to our scheme because SAODV uses asymmetric key cryptography so it requires 
significant processing time to compute or verify signatures and hashes at each node. 

In proposed method, routing use extra bytes to store hashes and intermediate node 
addresses. Similarly in SAODV protocol, routing contain extra bytes to store digital 
signatures and hashes for providing security therefore both methods are the same 
from this point of view. 
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As shown our proposed protocol provides more security and authentication 
between nodes, improving also the security of the network. 

5 Conclusion 

In this paper, we describe the most and important attacks on the routing protocols and 
how the network can resist to these attacks in secure way, also we proposed a scheme 
used to increase the security between the nodes by enhancing and improving the 
authentication and confidentiality between the nodes. The proposed idea uses hash 
functions, time stamp and secret value, which it is shared between two nodes in a 
secure manner. Our solution expands the security scope and provides more 
authentication service between the nodes in MANET. 
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Abstract. Voice over IP systems are more and more replacing
Public Switched Telephone Network infrastructures. The number of voice
telephony installations and the number of Session Initiation Protocol
users is constantly increasing. Attacks against Voice over IP systems are
becoming more imaginative and many attacks can cause financial dam-
age, e.g., attackers gain money or create costs for the victim. Therefore,
the dependency on available and secure Voice over IP systems to con-
duct secure business is given. We provide an environment to uncover
real-world toll fraud attacks by collecting data using a Voice over IP
honeynet solution.

1 Introduction

Today, Voice over IP (VoIP) systems are widely used in organizations, compa-
nies and also private households. Such systems represent a possible and valuable
target for attackers. Although many attacks on VoIP systems are already known
(see, e.g., Butcher et al. [3], Endler and Collier [5] and Blake [2]), there is not
enough reliable information on the probability and nature of fraudulent calls
on VoIP systems in the Internet. To establish countermeasures against attacks
of VoIP systems the aim and methodology of attacks has to be known. Such
information is not available for toll fraud attacks in current research work. To
gain more understanding of existing real-world VoIP security attacks, in partic-
ular toll fraud, a VoIP honeynet with an Public Switched Telephone Network
(PSTN) gateway was established. With this approach it is possible to collect
data of attacks against the VoIP server as well as data of the abuse of our VoIP
server for calls to the PSTN. The introduced approach allows to capture toll
fraud attacks over a long period of time. Additionally, third party sources will
be used for a detailed analysis. The implemented analyzing engine as part of the
honeynet assists manual mining of the captured data.

The remainder of this paper is structured as follows. An overview of related
work is given in Section 2. Section 3 introduces an architecture of a VoIP hon-
eynet to gain information on toll fraud attacks via a PSTN uplink interface. In
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Section 4 an approach for detecting and analyzing toll fraud attacks was pre-
sented. The paper finishes with a conclusion and an outlook for possible further
work in Section 5.

2 Related Work

Many attacks on VoIP systems are well described, e.g., malformed messages
by Al-Allouni et al. [1], fraudulent calls by Nassar et al. [10] or registration
hijacking by the authors of VOIPSA [15]. However, there is only a small amount
of literature on the status of toll fraud attacks. An example of a lightweight
VoIP security method to prevent toll fraud attacks via analyzing communication
records with the focus on privacy was described in [8] by Hofbauer et al. The
communication records contain personal information of the call participants,
e.g., phone number or user names, with the focus on privacy. In [9] Hoffstadt et
al. published an excerpt of toll fraud attacks. However, this analysis is only a
short overview of fraudulent calls and not a detailed representation of fraudulent
calls.

Our VoIP honeynet is based on the architecture and the ideas of Spitzner as
described in [13], which can be used to gather information about attacks to pro-
tect IT systems. Our honeynet is focused on the collection of VoIP attacks with
concentration on toll fraud attacks. One possibility to design a VoIP honeypot
to detect attacks is described in [14] by Valli and Al-Lawati. This approach uses
an Intrusion Detection System (IDS) and simple emulated honeypots to detect
attacks. Our solution uses high interaction honeypots, i.e., vulnerable VoIP sys-
tems with an uplink interface to PSTN, which provides a realistic behavior to
the attacker instead of emulated services. In [11] Ruiz-Agundez et al. present a
fraud detection approach for next generation networks but not for Session Initia-
tion Protocol (SIP) systems. A description of the scanning behavior of botnets is
covered in [4] by Dainotti et al. Numerous websites feature information on VoIP
attacks, e.g., SANS [12] shows the number of connections to port 5060 (which is
the default port for SIP services), and Gauci’s website on Sipviscious [6] gives
details about sporadically recognized attacks. However, reliable data for custom
analyses or automatic generated reports are not available.

3 Honeynet Architecture for Fraudulent Call Detection

Fraudulent calls are cost intensive for the operators of the VoIP system. This
requires an architecture which supports capturing of the attacks with cost control
for the honeynet operators.

3.1 Definition of Fraudulent Call Attacks

The term “toll fraud” is used if a person or a group of people uses paid services
using another person’s account without permission, described by Hoffstadt et al.
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in [9]. In terms of SIP messages, the attacker first sends a REGISTER message
containing the correct credentials to the SIP server. After the 200 OK response
message from the server, the attacker can initiate calls by using INVITE mes-
sages.

Using a fraudulent VoIP call, an attacker calls a victim with fraudulent inten-
tions. The aim of the attack varies, e.g., cause costs for the victim, advertising
using voice calls without costs for the attacker, or the attackers use the hacked
infrastructure to hide their own identity to call the potential victim.

The fraudulent call attack is a two-stage process. After the identification of
a VoIP system an attacker starts the first phase and tries to gain access to the
system, e.g., by brute force or social engineering attacks. In the second phase
the attacker connects to the compromised system and attempts to make calls to
endpoints in the PSTN.

3.2 Components and Processes of the VoIP/PSTN Honeynet
Architecture

The main components of the proposed honeynet architecture are the honeywall,
the VoIP honeypots, the VoIP Attack Analyzing Engine (VAAE) and the PSTN
gateway, as shown in Figure 1. The architecture from our previous work [7]
was extended with an uplink interface to a PSTN gateway and a voice pattern
extraction functionality to be able to perform calls to PSTN endpoints and to
analyze those calls.

Figure 1 also shows the processing steps for collecting toll fraud attacks with
our proposed honeynet approach. First, the attacker tries to get access to a
VoIP account on the honeypot for later abuse. As next step the caller (does
not need to be the attacker) tries to call a phone number in the PSTN. The

Fig. 1. Architecture of the VoIP honeynet with a PSTN uplink
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honeywall captures all the VoIP packets, including the packets from the attacker,
with Data Capture functionality, sends an alert and forwards the packets to the
honeypot (step 3). The honeypot itself has a route to a PSTN gateway via the
honeywall to support calls outside our infrastructure. The honeywall also controls
the PSTN gateway to mitigate further risks, e.g., unintended calls, with the
Data Control functionality. The honeywall allows configurations of predefined
blacklists to block such calls, e.g., calls to law enforcement or a hospital. As
fourth the honeywall sends the call to the VAAE to receive voice patterns of
media data and forwards the call to the gateway afterwards. This architecture
should help us to confirm the assumption that toll fraud attacks still exist and
it is a business case for the attackers.

For the attackers the VoIP system of the honeypot seems to be a real VoIP
gateway to perform calls to PSTN endpoints. For the analyses of the calls, the
attackers and the attackers’ behavior, our designed and implemented VAAE
is used. The VAAE is able to perform various analyses of signaling data and
media data of toll fraud attacks. The honeynet is extended with a feature to
analyze media data via voice pattern extraction to be able to classify the calls,
based on the assumed content. The VAAE can use all of the captured data
from the VoIP honeynet. These are the timestamp of the data collection, the
properties of the Internet Protocol (IP) stack, e.g., source and destination IP
address, the properties of the SIP, e.g., SIP User Agent or SIP To Address
and the properties of the Realtime Transport Protocol (RTP), e.g., media type,
as well as the extracted voice patterns. The VAAE is connected via an own
management network with the honeywall to avoid management data in the raw
data. The VAAE can define various reports in templates to be able to reuse it
and to be able to customize and automate the analyses.

As VoIP honeypot we use an Asterisk SIP server with four accounts with weak
passwords to increase the probability of toll fraud attacks. Asterisk is a widely
used VoIP system and very popular for attackers. If a caller tries to call a callee
outside the local VoIP domain of the honeypot the call will be forwarded to our
VoIP provider via the uplink interface, who will route the call to the specific
PSTN endpoint.

3.3 Uplink Interface Setup – Connection to PSTN Endpoints

The uplink interface enables our VoIP system to call numbers in PSTN. The
uplink interface can be, e.g., an Integrated Services Digital Network (ISDN)
modem, a data modem or a third party provider. We decided to use a third
party provider with a support for prepaid solutions to have better cost control.
To activate the uplink interface and to allow calls to PSTN endpoints, credit
must be bought first. The integrated VoIP provider sends a notification if a
customized limit is reached to be able to top up the credit in time.
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4 Capturing and Mining Honeynet Data – Approach for
Detecting and Analyzing Toll Fraud Attacks

We implemented the approach and operated the honeynet to capture toll fraud
attacks. Finally, one part of the approach is an analyzing engine which assists
manual analysis.

4.1 Capturing Real-World VoIP/PSTN Attacks

While running our honeynet solution we found valuable insights into toll fraud
attacks. The VoIP honeynet with PSTN gateway has been in operation since
August 2011. The honeynet collected 98,447,971 incoming IP packets, including
30,025,621 VoIP packets up to and including December 2012.

In our honeynet we have different periods with an activated uplink interface,
because we activated the uplink only for research purposes. We have an uplink
period in October 2011, March, April and December 2012. Figure 2 shows the
number of captured SIP packets in the honeynet from 2011-08-01 until 2012-
12-31. The peak in March 2012 can be explained with the high number of SIP
call attempts after the uplink interface has been activated. In comparison to the
other uplink periods, in March 2012 the number of calls is much higher but the
length of the calls is shorter as e.g., in December 2012. Between 2012-09-04 and
2012-12-06, maintenance was performed on our infrastructure which explains the
low point in the chart during that time.

All captured calls in the evaluation period try to call an external number
in a PSTN, in most cases an international number or a premium number. No
calls and no tries to another VoIP user in the local domain were detected. The
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number of calls increases after the first successful call to PSTN. We guess the
attackers are probing VoIP systems with PSTN gateways. If they find a system
with a PSTN gateway they will perform further attacks, as we see in the peak
in March 2012 in Figure 2. Thus, our assumption is supported that the attacker
behaviour changes after a successful call to PSTN was performed.

4.2 Concept of a VoIP Attack Analyzing Engine for Toll Fraud
Attacks

With the VAAE all data from the honeywall and the honeypot can be semi-
automated analyzed to gain information about the attacks and the attackers. In
addition to the collected data from the honeynet, the VAAE uses third party
sources, e.g., the whois directory service, phone books, price tables of various
VoIP services or User Agent (UA) databases, to gain even more information
about the attacks and the attackers. Especially for fraudulent calls and the
detection of the attacker intention, the VAAE uses a voice pattern analysis
feature to identify similar noises, to identify unidirectional communication and
to identify human conversations based on keywords for many languages.

With the use of templates the VAAE can be customized to perform various
analyses, e.g., about the country of the callee’s phone number, to show details
of the signaling data or the possibility to classify the voice patterns of the con-
tent of the calls. These features help to identify the intention of the attackers,
e.g., regular calls, Spam over IP Telephony (SPIT) messages or unidirectional
communications.

5 Conclusion and Further Work

The number of VoIP users will likely increase in the future and, therefore, VoIP
systems will get even more interesting for attackers. Our work presents a solu-
tion to capture toll fraud attacks for further analyzing with a VoIP honeynet
approach. Our solution can be easily extended to gain information on attacks on
other VoIP systems or to show attacks on the same system. This helps to learn
more about VoIP toll fraud attacks.

The operation of the honeynet showed that toll fraud is one important aspect
of VoIP system security. The costs of a misused system can be very expensive
for the owner. Ongoing research on toll fraud attacks and, more generally, on the
security status of VoIP systems is needed to better protect existing solutions.
The introduced VoIP honeynet solution supports detailed analysis by collecting
data on toll fraud attacks and by semi-automating analysis steps.

Further work include the analyzing of the collected data of toll fraud attacks
with the presented VoIP honeynet approach and the derivation of countermea-
sures of the attacks based on the analyzed data.
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Abstract. In this short paper, we describe a solution to protect users’ privacy in
online social networks (OSNs). The solution achieves the following functionali-
ties: (1) it enables users to store their private data securely; (2) it enables users,
from the same or different OSNs, to compute their similarity through a secure
protocol; (3) it enables similar users to establish a session key for secure commu-
nication. Different from existing solutions in the literature, which often rely on
a global public key infrastructure or/and traditional key distribution techniques,
the proposed solution leverages on the trust between friends and the entropy of
users’ private attributes.

1 Introduction

Online social networks (OSNs) provide the service that connects classmates, friends,
and other people who share similar interests and activities across political, economic,
and geographic borders. As surveyed in [1], a large number of OSNs exist, among which
Facebook, MySpace, Google +, and Twitter are the most popular ones.

Due to their nature, OSNs can easily collect a huge amount of user data. Among
all kinds of OSN data, a particularly important one is profile attributes. In most OSNs,
profile attributes consist of a lot of information, ranging from name, address, education
background to political views, hobbies, and daily activities. All attributes are available
in plaintext to the OSN service providers and, depending on the configurations, some
of them are available to third parties. It is not surprising that a subset of the profile
attributes can already identify a user, even after anonymization [4,6]. Therefore, it is
an interesting task to design a solution for users to: (1) protect their private profile at-
tributes; (2) establish friendship with strangers based on their profile similarities (this is
the main reason why users want to publish their profiles). This implies that the solution
should partially resolve the privacy-functionality tension [8], by simultaneously provid-
ing privacy protection for profile attributes and allowing users to conveniently compute
their profile similarities.

In reality, it is reasonable to assume that most users are involved in multiple OSNs.
Now, suppose that both Alice and Bob are enrolled in Facebook and Myspace, and
they have the same location attribute in Facebook and the same music taste attribute in
Myspace. Due to the different focuses of the OSNs, Alice and Bob may not disclose
their location information in Myspace, at the same time they may not disclose their
music taste information in Facebook. It will not be a surprise that Alice and Bob are not
friends in Facebook and Myspace, because they do not share much in common in either
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of the OSNs. If they realize their common attributes in both OSNs, Alice and Bob may
like to consider each other as a friend and attend some music event together in the city.
This indicates that it is desirable to have a solution which works across multiple OSNs.

1.1 Our Contribution

The contribution of this paper is threefold. Firstly, we describe some new cryptographic
building blocks and briefly analyze their security properties, including a unilateral set
intersection cardinality protocol and a unilateral comparison protocol. Secondly, we
propose a solution for protecting users’ private profile attributes in OSNs. In the so-
lution, a transitive and uni-directional proxy re-encryption scheme [5] allows users to
encrypt their private profile attributes with their own public keys. Based on the unilat-
eral set intersection cardinality protocol, we design an Online-Offline profile matching
protocol, which allows two users to compute their profile similarity and one of them can
stay offline. Based on the unilateral comparison protocol and a fuzzy extractor scheme
[3], we design an Online-Online profile matching protocol, which allows two online
users to compute their profile similarity. Thirdly, we observe that users’ communica-
tions are under surveillance by the OSN service providers. So, we propose a secure
channel establishment protocol which allows two users to exchange a session key if
they share a certain number of common private profile attributes.

1.2 Organization

The rest of this paper is organized as follows. In Section 2, we describe the new build-
ing blocks which will be used later on. In Section 3, we briefly describe the proposed
solution. In Section 4, we provide the details of the profile matching protocols and a
secure channel establishment protocol, employed in the proposed solution. In Section
5, we conclude the paper.

2 New Cryptographic Building Blocks

The proposed solution employs transitive and uni-directional proxy re-encryption cryp-
tosystem , namely (KeyGen,Enc,Dec,Pextract,Preenc) [5], and the following two
new protocols.

2.1 Unilateral Set Intersection Cardinality Protocol

Let � be the security parameter, n > 1 be an integer and F = Zq where q is a prime
number (i.e. F is a finite field). We assume that the bit-length of q is a polynomial of the
security parameter � and n < q. Consider the following client-server setting: the server
possesses a polynomial R(x) ∈ F[x]; the client possesses a polynomial Q(x) ∈ F[x]
and ci (1 ≤ i ≤ n) ∈ F. Suppose that R(x) and Q(x) are of degree n, and the roots of
F (x) = R(x) + Q(x) are denoted as di(1 ≤ i ≤ n) ∈ F. Based on Paillier scheme [7],
the following protocol allows the client to learn the cardinality of the set intersection
between ci (1 ≤ i ≤ n) and di (1 ≤ i ≤ n), while the server learns nothing.
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1. The server generates a paillier key pair (PKs, SKs), where the public key is PKs =
(Ns, gs). The client generates a paillier key pair (PKc, SKc), where the public key
is PKc = (Nc, gc). then, they exchange and validate their public keys. Here, we
assume that q5 < Ns and q < Nc, so that the polynomial coefficients and roots can
be directly encrypted by both public keys.

2. The server encrypts its polynomial R(x) and sends the ciphertext [R(x)]PKs to the
client. Note that [R(x)]PKs is a vector, consisting of the ciphertexts of R(x)’s coeffi-
cients under PKs.

3. For every attribute ci (1 ≤ i ≤ n), the client does the following: (1) compute
[R(ci)]PKs based on [R(x)]PKs and ci; (2) computeQ(ci) and its ciphertext [Q(ci)]PKs;
(3) compute [F (ci)]PKs based on [R(ci)]PKs and [Q(ci)]PKs; (4) select yi ∈R Zq4 and
compute the randomized value [F (ci) + yi]PKs; (5) compute y′i = yi mod q and
[Nc − y′i ]PKc . After all the computations, the client sends F (ci) + yi]PKs , [Nc −
y′i ]PKc (1 ≤ i ≤ n) to the server.

4. After receiving the values from the client, for every i (1 ≤ i ≤ n), the server
does the following: (1) decrypt [F (ci) + yi]PKs to obtain F (ci) + yi; (2) compute
Ti = F (ci) + yi mod q which is equal to F (ci) + y′i mod q; (3) select y′′i ∈R Nc

and compute Ri = ([Ti]PKc · [Nc − y′i ]PKc)
y′′i mod N2

c . After all the computations,
the server sends a randomly permuted version of {Ri (1 ≤ i ≤ n)} to the client.

5. The client decrypts Ri (1 ≤ i ≤ n), and count the number of 0s as the intersection
size.

2.2 Unilateral Comparison Protocol

Let G be a group of prime order p, and H2 : {0, 1}∗ → G and H3 : {0, 1}∗ → {0, 1}� be
two hash functions. If a client wants to test whether his value S is equal to the value S′
of the server, then the client initiates the protocol shown in Fig. 1.

Client (S) Server (S′)
x ∈R Zp y ∈R Zp

H2(S)x−−−−→
H3(H2(S′)y), H2(S)xy←−−−−−−−−−−−−−−

H3(H2(S′)y) ?
= H3(H2(S)xyx−1 )

Fig. 1. Unilateral Comparison Protocol

3 The Proposed Solution for OSNs

We generally assume that there is a semi-trust relationship among friends in OSNs. By
”semi-trust”, we mean that if Alice semi-trusts Bob then she can assume that Bob will
not collude with a third-party or reveal her private information. Moreover, we assume
that the semi-trust relationship is unilateral, which means that ”Alice semi-trusts Bob”
does not immediately imply ”Bob semi-trusts Alice”. Furthermore, we assume that the
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semi-trust relationship is transitive: if Alice semi-trusts Bob, Bob semi-trusts Charlie,
then Alice will semi-trust Charlie.

There is a PPCP server, which is semi-trusted to every user in the system. Therefore,
users do not need to fully trust the PPCP server to store their plaintext attributes. Com-
pared with any current OSN, where users need to fully trust the service providers, this
is an improvement. Every user can communicate with the PPCP server through a secure
channel. Moreover, the PPCP server is trusted to publish the following parameters, used
by all users.

– Security parameter: �.
– ElGamal parameter: a multiplicative group G of degree p, a generator g, and three

cryptographic hash functions H0 : G → Zp, H1 : {0, 1}∗ → {0, 1}L, H2 : {0, 1}∗ →
G, and H3 : {0, 1}∗ → {0, 1}� where L is a polynomial of the security parameter.

– Profile encapsulation parameter: a finite field F = Zq where q is a prime number.
We assume that the attributes fall into F.

Let all the users be denoted as Ui (1 ≤ i ≤ N), where N is an integer, and Ui’s attributes
be denoted asAi = {hi, j (1 ≤ j ≤ n)}. The proposed solution is composed of three ser-
vices, including the secure profile storage service, the secure profile matching service,
and the secure communication service. They are described in detail below.

3.1 Secure Profile Storage Service

Ui registers at the PPCP server and obtains an identifier IDi. Moreover, Ui generates
an ElGamal public/private key pair (PKi, SKi), where (SKi = xi,PKi = gxi), following
the specification in [5] based on the ElGamal parameter. Ui sends the public parameters
(IDi,PKi) to its friends.

1. Ui chooses a subset of his friends that he semi-trusts, denoted as Uix (1 ≤ x ≤ Ni).
2. Ui performs the following operations.

(a) Generate re-encryption keys RKi→ix for every (1 ≤ x ≤ Ni), which is identified
by (IDi, IDix).

(b) Based on his attributes hi, j (1 ≤ j ≤ n), generate Fi(x),Qi(x),Ri(x) ∈ F[x] of
degree n as follows: Fi(x) =

∏n
j=1(x − hi, j), Fi(x) = Qi(x) + Ri(x), where the

coefficients of Ri(x) are randomly chosen from F.
(c) Based on the ElGamal encryption algorithm Enc specified in [5], encryptQi(x)

using PKi to obtain [Qi(x)]PKi = (gri , gri·xi · ti,H1(ti) ⊕ Qi(x)), where ri ∈R Zp,
ti ∈R G, Qi(x) represents the coefficients of Qi(x).

3. Ui stores (PKi, RKi→ix (1 ≤ x ≤ Ni), Ri(x), [Qi(x)]PKi) at the PPCP server, and
associates the data to his identifier IDi. He keeps SKi private locally.

With users’ data, the PPCP server can construct a social graph G of the semi-trust
relationships among users. In this graph, there is a directed edge from Ui to Uj if Ui

semi-trusts Uj (i.e. Ui has generated a re-encryption key RKi→ j).
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3.2 Secure Profile Matching Service (i.e. Friendship Establishment)

Suppose that Uj has obtained some public information about Ui and consider him as a
potential friend. For example, Ui may have publish his identifier IDi and some hobby
information at Facebook, and Uj surfed to Ui’s page and obtained the information.
Then, Uj can send IDi to the PPCP server and request to match with Ui. When the
PPCP server receives a request, it first checks whether Ui is online. If so, it check Ui’s
policy, which can have two possibilities.

1. If Ui prefers to run the Online-Online protocol described in Section 4.2 when he is
online, then Uj and Ui run the protocol.

2. If Ui prefers not to be involved in the matching, the PPCP server tries to find the
shortest semi-trust link from Ui to Uj. If the length of the link is within a threshold
agreed by Ui, then the PPCP server represents Ui to run the Online-Offline protocol
described in Section 4.1 with Uj. Otherwise, Uj’s request is rejected.

If Ui is offline, the PPCP server checks Ui’s policy to see whether he wants his pro-
file to be matched when he is offline. If so, the PPCP server does the same as in the
aforementioned possibility 2. Otherwise, Uj’s request is rejected.

3.3 Secure Communication Service

Suppose that there is a semi-trust link from Uj to Ui, and these two users want to
protect their communications. Then, then they can run the secure channel establishment
protocol described in Section 4.3. Note that the existence of semi-trust link implies that
Uj and Ui share a certain number of common profile attributes, therefore, the protocol
will generate a common session key for them.

4 The Employed Protocols

In this section, we describe two profile matching protocols and a secure channel estab-
lishment protocol, that are refereed to in the previous section.

4.1 Online-Offline Matching Protocol

Suppose that a user Uj wants to match his profile with Ui and there is a semi-
trust link from Ui to Uj, namely there is a chain of proxy re-encryption keys
(RKi→i1 ,RKi1→i2 , · · · ,RKit→ j) from Ui to Uj. In this case, the following protocol is
carried out between Uj and the PPCP server.

1. In the first stage, the polynomialQi(x) is transferred to Uj. In more detail, the PPCP
server performs a series of re-encryptions to transform [Qi(x)]PKi into [Qi(x)]PKj

using the chain of re-encryption keys. From [Qi(x)]PKj , Uj can recover Qi(x) using
his own private key SKj. At the end of this stage, Uj hasQi(x) and his own attributes
A j = {hj,t (1 ≤ t ≤ n)}, and the PPCP server possess Ri(x).

2. In the second stage, Uj and the PPCP server run the unilateral set intersection car-
dinality protocol, specified in Section 2.1, where Uj and the PPCP server play the
roles of the client and the server respectively. At the end of the protocol execution,
Uj learns her profile simplicity with Ui.



640 Q. Tang

4.2 Online-Online Matching Protocol

The proposed protocol makes use of a (U, �1, �2, t, ε)-fuzzy extractor [3], where U
is the domain of profile attribute set. When Uj is the initiator, the proposed protocol
proceeds in two stages.

1. In the first stage, Uj and Ui engage in a protocol, shown in Fig. 2, where H1 is
defined in Section 3.

Uj Ui

(A j = {hj,t (1 ≤ t ≤ n)}) (Ai = {hi,t (1 ≤ t ≤ n)})
(rj, hj) = Gen((hj,1, · · · , hj,n))

hj−→
(ri, hi) = Gen((hi,1, · · · , hi,n))

hi←−
r′i = Rep(A j, hi) r′j = Rep(Ai, hj)
ckj = H1(IDi||IDj||hi||r′i ||hj||rj) cki = H1(IDi||IDj||hi||ri||hj||r′j)

Fig. 2. Online Matching Protocol (Stage 1)

2. In the second stage, Uj initiates the unilateral comparison protocol, specified in
Section 2.2, to test whether ckj = cki.

4.3 Secure Channel Establishment Protocol

As in Section 4.2, the proposed protocol combines a (U, �1, �2, t, ε)-fuzzy extractor
scheme [3] and a secure password-based authenticated key exchange (PAKE) scheme.
Note that a lot of PAKE schemes exist in the literature, Boyd and Mathuria [2] provided
a survey for those proposed before 2004. In more detail, when Uj initiates the protocol
with Ui, then they perform as follows.

1. In the first stage, they run the protocol shown in Fig. 2 to establish some ephemeral
secrets. Uj generates ckj = H1(IDi||IDj||hi||r′i ||hj||rj) and Ui generates cki =
H1(IDi||IDj||hi||ri||hj||r′j). Note that if the distance between Ai and A j is smaller
than t, then ckj = cki.

2. In the second stage, they run a secure PAKE scheme to establish a session key. The
key materials of ckj and cki are used as the passwords.

5 Conclusion

In this short paper, we have briefly outlined a privacy-preserving solution for OSNs. The
solution provides three services, including the secure profile storage service, the secure
profile matching service, and the secure communication service. More details about the
proposed solution and the associated protocols can be found in the full version of this
paper, which is available at: http://tonyrhul.wordpress.com.
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Abstract. Host compromise is a serious computer security problem. It is
necessary to understand the protection quality provided by various access
control subsystems, which includes the likelihood of potential multi-step
attacks and the damage effect. In this paper, we propose an approach to
quantify the protection quality of access control subsystems. We compute
a host attack graph to describe the protection quality of an access control
subsystem from the point of threats it faces. By assessing attack actions
with the help of CVSS, we make a quantitative risk evaluation for the
system based on the attack graph.

Keywords: Operating System, Access Control, Quantitative Evalua-
tion, Attack Graph, Protection Quality.

1 Introduction

Most Commercial-Off-The-Shelf (COTS) operating systems provide both Discre-
tionary Access Control (DAC) and Mandatory Access Control (MAC) to protect
our systems, such as Mandatory Integrity Control (MIC) for Windows Vista and
7, Security Enhanced Linux (SELinux) and AppArmor for Linux.

Given the existence of these access control subsystems, it is a natural desire to
understand and compare the protection quality provided by them. In this paper,
we present a tool called Access Control Quantitative Evaluation (ACQE) tool to
quantify the protection quality. Our tool focuses on the privilege-escalation at-
tack and can automatically discover all the privilege-escalation attack paths. An
attack path consists of one or several actions performed by an attacker. Based
on the Common Vulnerability Score System (CVSS) [6], we compute the proba-
bility and security impact of every action, and then the probability and security
impact of every attack path. With the help of analytic hierarchy process(AHP)
[1] and fault tree analysis(FTA) [2], we quantify the protection quality, which
includes the probability of system compromised, and the impact on system con-
fidentiality, integrity, and availability.

Our contributions are as follows:

1. We propose an approach to quantitatively analyze the security of a protection
system. By introducing the evaluation of actions, we use FTA and AHP to
quantitatively evaluate the security of a protection system.

J. Lopez, X. Huang, and R. Sandhu (Eds.): NSS 2013, LNCS 7873, pp. 642–648, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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2. We implement a tool called ACQE based on our approach, which can help
administrators to understand and harden their system security.

3. We use our tool ACQE to study the security of Windows 7, Ubuntu 10.04
with SELinux and AppArmor respectively.

The rest of this paper is organized as follows: Section 2 describes the overview
of our approach. Section 3 discusses the experiments and results of comparing
Windows 7 with Linux and some discussions. Section 4 discusses related work.
Section 5 concludes the paper.

2 Design of Our Approach

To measure and compare the protection quality of access control subsystem, we
first collect some security-related system information, and encode these informa-
tion as logic predicates. Then, an attack graph [11] is generated. Next, we specify
the attack surface of a protection system as the set of all the paths extracted
from the attack graph. The attack surface intuitively reflects the security risk of
a protection system. Finally, by assessing attack actions, we quantitatively eval-
uate the attack surface and output the result, where the result is the quantitative
evaluation of protection quality. Fig.1 shows the overview of our approach.

Fig. 1. Overview of our Approach

2.1 Logical Specifications of System Facts and Vulnerability

We first collect some security related system facts including system state and
security policies. System facts related to our analysis include users, file system,
network state and system process snapshot. We then encode the collected data
to Prolog predicates, such as File(file, attrList), which shows a file and its
security attributes.

The specifications of vulnerability are the major component of interaction
rules and the kernel part of logic engine.Since privilege escalation is the precon-
dition for most of attacks, we focus on privilege escalation vulnerabilities and
encode some escalation vulnerabilities to Prolog Horn clauses, one of which is
listed below.

ControlProcess(p):- CriticalFile(p, file), ControlFileData(file).
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This is the Wait-Execute vulnerability. The vulnerability enables an attacker to
modify the critical file of the running process and hope the process will be run
in the future by the same user, if the user is a privileged user, the new-running
process can give the attacker some elevated privileges.

2.2 Attack Graph

An attack graph is used to demonstrate all possible attacks scenarios. With the
input of security policies, system states and interaction rules, the logic engine
can check which privileges an attacker can obtain from the initial abilities. By
recording the inference trace, we can easily get the adjacent matrix of a host
attack graph. There are two kinds of graph nodes in an attack graph: ability nodes
and action nodes. An ability node represents an attacker’s abilities and an action
node indicates an action that an attacker may perform. Nodes representing initial
abilities are called initial nodes. Nodes representing goals are called goal nodes.
We specify the attack surface of an access control subsystem as the set of all the
paths from initial nodes to goal nodes.

An attacker’s goal is to get control of a process with administrator or system
account in Windows or root user in Linux. An attack path is a sequence of
abilities and actions, which shows the process that an attacker performs some
actions to gain new abilities. We use a depth-first-search (DFS) to enumerate
all the attack paths from initial nodes to goal nodes in the attack graph. In the
DFS, we make following restrict to avoid unnecessary actions: if an enumerated
path contains nodes: v1, ..., vi, ..., vn, where v1 is the initial node and vn is the
goal node, vi(1 < i < n) is not any goal node.

The number of attack paths extracted from attack graph could be very large,
so we categorize attack paths into attack patterns by pruning the parameters.

2.3 Action Evaluation Approach

As basic events of attacks, attack actions should be assessed first, which is the
foundation of Evaluation Engine in Fig. 1. Since the attack actions contained in
attack paths correspond to vulnerability exploitations, we borrow CVSS [6] to
assess these actions quantitatively.

We use exploitability metrics of CVSS to assess the level of exploitability
needed for an attacker to exploit the vulnerabilities, which include three met-
rics: access vector AV, access complexity AC, authentication AU. We also use
impact metrics of CVSS to assess the damage impact induced by exploiting the
vulnerability on three classical security properties: confidentiality impact ConfI,
integrity impact IntegI, availability impact AvailI. The possible values and quan-
titative number for every metric we adopt are the same with those defined in
CVSS.

We convert the base score given by CVSS to probability by adopting normal-
ization method, and derive following equations to evaluate an attack action:

Pr = AV ∗ AC ∗ AU (1)

Impact = 1− (1− ConfI) ∗ (1− IntegI) ∗ (1−AvailI) (2)
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Where, Pr represents the likelihood of a successful attack action, and Impact
represents the direct impact on the system if an attack action succeeds. And we
use the quintuple (ConfI, IntegI, AvailI, Impact, Pr) to presents the evaluation
result.

2.4 System Evaluation Approach

In this section, we will introduce a group of equations to evaluate the threat
and cost to compromise the whole system. We use the quintuples (Path ConfI,
Path IntegI, Path AvailI, Path Impact, Path Pr) and (System ConfI, System -
IntegI, System AvailI, System Impact, System Pr) to evaluate attack paths and
the whole system respectively. We first use FTA [2] to compute the probability to
represent the likelihood of system compromised, then adopt AHP [1] to evaluate
the damage impact to reflect the average damage to the system caused by all
the attack paths.

Fig. 2. The Fault Tree of Our Problem Fig. 3. The Hierarchy of Our Problem

A Fault Tree Analysis (FTA) is a systematic top-down method of analyzing
system performance. In the OS to analyze, the top event is the system failure, the
basic events are the attack actions and the middle events are the attack paths.
An attack path succeeds if all of the actions contained in the path succeed. The
access control subsystem fails if any attack path succeeds. We assume that an
attack path consists of n actions (AC ) and there are N attack paths (AP) in
total. The fault tree of our problem is represented by Fig.2, and the symbolic
representations are listed as follows:

AP = AC1 ∧ AC2 ∧ · · · ∧ACn (3)

SF = AP1 ∨AP2 ∨ · · · ∨APN (4)

We first compute a quintuple (ConfI, IntegI, AvailI, Impact, Pr) for every action.
Then with the assumption that attack paths have independent probabilities, we
compute the probability of attack paths and finally the probability of system
failure with equations listed below:

Path Pr =
∏

1≤i≤n

Pri (5)

System Pr = 1−
N∏
i=1

(1− Path Pri) (6)
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The analytic hierarchy process (AHP) is a structured technique for analyzing
complex decisions. The hierarchy of our problem is shown in Fig.3. We first
evaluate confidentiality, integrity and availability respectively, and then compre-
hend them to get the whole evaluation quintuple (System ConfI, System IntegI,
System AvailI, System Impact, System Pr) to describes the system protection
quality with the following equations, where variable X indicates ConfI, IntegI,
AvailI and Impact respectively.

Path X =
∑

1≤i≤n

Pri ∗Xi (7)

System X =
1

N

∑
1≤i≤N

Path Xi (8)

3 Experiments and Results

We implement a tool called ACQE to evaluate our approach both on Windows
7 and Ubuntu 10.04 with SELinux and AppArmor. The ACQE consists of four
components: Fact Scanner, Attack Graph Generator, Path analyzer and Evalua-
tion Engine. The Fact Scanner scans the system to analyze, and retrieves system
information, which is implemented using C++, consisting of about 3400 lines of
code. Attack Graph Generator takes system state, security policies and vulnera-
bility specifications as input, and generated the host attack graph. By initiating
attacker’s initial abilities, we use Prolog implementation XSB [12] to make an
inference and generate the host attack graph. Path Analyzer is implemented to
extract all the attack paths from initial nodes to goal nodes from the host attack
graph. Through checking how an attack action to be performed and which new
abilities gained after the action succeeds, we assess every action manually, and
then evaluate the attack patterns.

During the experiments, some common software products are installed for
evaluation, such as openssh-server, apache-server, mysql-server, bind, filezilla,
firefox, and adobe reader. All the applications are running when the system
security configuration information is being collected.

There are 11 attack patterns generated in our experiment. The number of
instances of attack patterns and the quintuples for each access control subsystem
are shown in table 1.

Table 1. The Result of Experiment

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11

SELinux 4 116 0 352 0 7692 510356 6856 0 0 0

AppArmor 4 25 0 484 0 858 71523 19234 0 0 62436

Windows 6 30 15 41400 135 54 2064 27 74520 37260 0

SELinx quintuple is (0.117514, 0.224315, 0.117514, 0.320426, 1.00)
AppArmor quintuple is (0.140228, 0.219470, 0.140228, 0.343991, 1.00)
Windows quintuple is (0.167775, 0.222714, 0.167775, 0.381691, 1.00)
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Comparing the two systems with their quintuples, we can see that an attacker
makes less damage impact on confidentiality for the system with SELinux, and
SELinux provides better protection for confidentiality. However, AppArmor gets
a high score in protecting integrity because the additional pattern has a less
IntegI, which conforms to the existing works [5] achieved by different approaches.
Overall, SELinux provides higher and better security protection.

Similar comparison can be made between SELinux and Windows 7, AppAr-
mor and Windows 7. Under our experiment settings, i.e., the default access
control policies and the applications installed, we can see that SELinux provides
the best confidentiality and availability protection, and AppArmor offers the
best integrity protection. Unfortunately, Windows’s performance in the overall
security protection is the worst.

In our experiment, the success of some attacks depends on the success of
identifying and exploiting software vulnerabilities. The actions defined to exploit
the vulnerabilities are CompromiseRead and CompromiseNetwork. We could call
these two actions malicious actions, and the attack patterns can be divided into
to two groups: patterns in one group contain malicious actions and another
not. Intuitively, malicious actions makes more damage impact on the security of
system, which conforms to our compute results. Our computed results for every
attack patterns illustrate that the attack patterns containing malicious actions
make more security damage. Our experiment shows that it is very important to
patch softwares regularly to eliminate known bugs.

4 Related Work

Windows access control has been studied in many research [10,4,7]. Govindava-
jhala and Appel construct a logical model to study Windows XP [7]. Host Mul-
VAL [13] is a vulnerability analysis framework. NETRA [10] is a tool for sys-
tematically analyzing and detecting explicit information-flow vulnerabilities in
access control configurations. WACCA [4] is an automatically tool to systemati-
cally analyze the Windows configurations. WACCA generates host attack graph
and extracts attack patterns from the host attack graph to describe the protec-
tion quality.

The Access control of Unix-like systems can be dated back to the Kuang
security analyzer for Unix [3]. Susan Hinrichs et al. [8] propose an attack-based
model to analyze the transitive domain transitions of SELinux. SEAL [9] is logic-
programming language and tool to model and analyze dynamic access control
systems. VulSAN [5] is a tool to analyze and compare the quality of protection
offered by different MAC systems.

Our approach differs from existed work is: (1) Our approach automatically
constructs an attack graph and make a quantitative security evaluation by in-
troducing probability to evaluate attack actions; (2) Our approach can be ap-
plied both to Windows and Linux; (3) Our approach analysis the comprehensive
protection quality offered by MAC and DAC.
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5 Conclusion and Future Work

In this paper, we propose a method to measure how secure a system is. Given the
attacker’s initial abilities and the vulnerability specifications, we can compute
the host attack graph to automatically discover attack paths. By applying CVSS
to our approach, we can first quantitatively assess attack actions related to our
analysis and then evaluate the attack paths. Then we adopt AHP and FTA to
compute a quintuple to quantize the protection quality. We have implemented a
prototype of our approach called ACQE and applied it to analyze the protection
quality of Windows 7 and Linux.
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Abstract. At ISC 2012, Bender et al. introduced the notion of domain-
specific pseudonymous signatures for ID documents. With this primitive,
a user can sign with domain-specific pseudonyms, that cannot be linked
across domains but that are linkable in a given domain. However, their
security model assumes non-collusion of malicious users, which is a strong
assumption. We therefore propose improvements to their construction.
Our main contribution is a new pseudonymous signature scheme based
on group signatures that is collusion-resistant.

1 Introduction

Several security mechanisms [1] are sequentially used when a machine readable
travel document (MRTD) connects, via a reader, to a service provider. Using
Password Authenticated Connection Establishment (PACE), the MRTD and the
reader establish a secure channel, once the MRTD user has entered his password;
Using Extended Acces Control (EAC), the MRTD and the service provider au-
thenticate to each other and establish another secure channel; Optionally, using
Restricted Identification (RI), the MRTD derives a pseudonym for the service
such that the service provider can link the sessions when this particular user
accessed the service, but such that it is impossible for two providers to link
interactions of one user in their respective domains.

The original Restricted Identification of [1] is close to a Diffie-Hellman key
exchange, with static keys, as can be seen in Figure 1a. The authenticity of
the pseudonym sent by the card is not guaranteed. Furthermore, the domain-
specific pseudonym of a user has limited applications, which motivates the work
of Bender et al. [3], who suggest to use this pseudonym for digital signatures.

To augment security guarantees and provide the possibility of using the domain-
specific pseudonyms as signature keys, Bender et al. [3] introduced the notion of
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Inputs: • User U : Secret key x
• Service Provider SP : Domain
Identifier R
Protocol: 1. SP sends R to U .
2. U computes nym =
Hash(Rx), the domain-specific
pseudonym of U for SP .
3. U sends nym to SP .
4. SP optionally checks if nym
belongs to a black list and/or a
white list.

(a)The Original RI Protocol

Inputs: • User U : Pseudonymous signature
key x
• Service Provider SP : Domain Identifier R
Protocol: 1. SP sends R and a message m to
U .
2. U derives a pseudonym nym from x and R.
3. U signs the message m using x and nym
4. U sends the signature σ and nym to SP .
5. SP checks σ, using public parameters and
nym.

(b)The RI Protocol with Pseudonymous
Signatures

Fig. 1. The Restricted Identification Protocol

domain-specific pseudonymous signatures. This can be seen as a relaxation of the
notion of group signatures [7,2]. Group signatures enable users to anonymously
sign on behalf of a group. Anonymity guarantees are very strong: two signatures
of the same user can only be linked by the group manager, who also issues keys.
However, pseudonyms produced by the RI protocol for a given user and a given ser-
vice should enable linkability, since pseudonyms serve as identifiers for the users.

Domain-specific pseudonymous signatures, as defined in [3], satisfy 3 proper-
ties: unforgeability, cross-domain anonymity and seclusiveness. The second prop-
erty states that pseudonymous signatures cannot be linked across domains while
seclusiveness is a relaxation of the notion of traceability [2] for group signatures.

Bender et al. [3] suggest a modification to the original Restricted Identification
protocol [1] using pseudonymous signatures, as summed up in Figure 1b. In
addition to his domain identifier, the service provider sends a message to be
signed. This message is signed by the user using a pseudonymous signature.
This pseudonymous signature at the same time guarantees that the user owns
a valid unrevoked signature key and that the pseudonym is legitimate, i.e. that
the same user key has been used to sign and to derive the pseudonym.

The pseudonymous signature scheme of Bender et al. [3] fulfills the security
requirements exposed above (unforgeability, cross-domain anonymity and seclu-
siveness). However, the security model relies on a very strong assumption: they
assume that no two malicious users can retrieve their keys and collude. Indeed,
the relation between signature keys and issuing key being linear, with two signa-
ture keys, one is able to retrieve the issuing key and thus to issue as many new
valid keys as they want. To justify their assumption, the authors invoke the fact
that these keys are supposed to be stored on smartcards on ID documents, and
that smartcards are supposed to be tamper-proof. It is however likely that, on a
national scale, two users will be able to retrieve keys stored on their smartcards.

This is themotivation for ourwork.We propose a new construction of pseudony-
mous signatures, where we allow the users to access their keys and where collu-
sion of malicious users does not break the security guarantees. To do so, we use
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(collusion-resistant) group signatures and combine them with Schnorr proofs of
knowledge to guarantee validity of pseudonyms.

An extended version of this paper is available in [5].

2 Pseudonymous Signatures

2.1 Setting

Three entities are involved: the Issuing Authority (IA), users Mi, and service
providers SPj with specific domains Dj . The issuing authority issues secret keys
to the users and domain parameters to the service providers. The users can gen-
erate, from their secret keys and the domain parameters, one pseudonym per do-
main. Using domain-specific pseudonymous signatures, users can sign messages
linked to their pseudonyms. The pseudonym being attached to the signatures,
the signatures of one user in one domain are obviously linkable. The construction
guarantees that signatures of the same user for different domains are not linkable
by (even colluding) service providers. However, the issuing authority can retrieve
these links. There are six algorithms in the scheme:

PSKeyGen(k). The Issuing Authority generates a master secret key msk and
a master public key gpk.
The IA and the SPj ’s generate domain-specific public keys dpkj .

PSJoin(msk, gpk). The Issuing Authority and the user Mi interact to generate
a secret key ski for user Mi.

PSSign(gpk,ski,dpkj,m). The user Mi outputs his pseudonym nymij for do-
main Dj and a signature σ on m for domain Dj

PSVerify(gpk,nymij,dpkj,m,σ,RLj). The Service Provider for domainDj che-
cks the signature σ on message m and the link between σ and nymij . SPj

also performs a revocation check, using RLj, the list of revoked pseudonyms
for domain Dj

PSDomainRevoke(RLj,nymij). SPj runs this algorithm to prevent a me-
mber Mi from making valid signatures in Dj . It outputs an updated revo-
cation list RLj, where nymij has been added.

PSRevoke(gpk,xi). IA runs this algorithm to prevent a member Mi from mak-
ing valid signatures in all domains. He sends an information xi about the
key of Mi that the SPj ’s use to revoke Mi from their domains. Every service
provider SPj outputs an updated RLj.

2.2 Security

The security properties of pseudonymous signatures are close to the properties
of group signatures. We require a pseudonymous signature scheme to satisfy
Correctness, Cross-Domain Anonymity, Unforgeability and Seclusiveness. We
here sumarize these properties, formal definitions appear in [5].
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Correctness. The scheme is correct if every signature-pseudonym couple cre-
ated by an unrevoked member is verified as valid.

Cross-Domain Anonymity. Cross-Domain Anonymity guarantees that signa-
tures are anonymous and that linkability is possible within a given domain
only, even with colluding service providers.

Seclusiveness. The scheme achieves Seclusiveness if an adversary A is unable
to forge a valid signature that cannot be opened properly.

Unforgeability. The aim of the Unforgeability property is to prevent anyone,
including the Group Manager, from making signatures on behalf of a given
user. Notice that, contrary to the security definitions of [3], we do not require
the group manager to delete information about the users’ keys after the
PSJoin algorithm.

2.3 Overview of the Scheme of Bender et al.

We sum up the components of the pseudonymous signature scheme of [3] and
the reasons why it does not resist to collusions.

Let G = 〈g〉 be a cyclic group of prime order q. The secret key of the IA is
made of two randomly chosen integers x, z ∈R Zq. The public parameters of the
system are g, gx and gz.

The key of a user Mi is a couple (x1i, x2i), chosen by the IA, such that
x1i = x− z · x2i.

The domain parameters for every domain Dj are chosen by the IA, by picking
a random rj ∈R Z∗

q and setting dpkj = grj . SPj learns dpkj , but not rj .
The pseudonym of a user Mi for domain Dj is dpkx1i

j .
To sign, user Mi uses two intertwined proofs of knowledge, a Schnorr proof of

knowledge [10] that he knows the discrete logarithm of the pseudonym and an
Okamoto proof [9] that he owns a valid (x1, x2) key pair. The proofs are non-
interactive and rely on the random oracle. The message to be signed is included
in the entries of the hash function used to generate the challenge.

Limitations. First, it is noticeable, that when one finds two (x1, x2) couples,
one easily retrieves the secret keys x and z of the IA and can thus generate as
many valid key couples as one wants. The authors of [3] justify that, since these
keys are supposed to be stored on smartcards, assumed to be tamper-proof,
security will be guaranteed. We estimate that this assumption is optimistic,
especially for the sensitive application of ID documents.

Second, the IA generates all the keys and, thus, is able to sign on behalf of
the users. It is specified in [3] that these keys are supposed to be deleted by the
IA, once delivered to the users, which is impossible to verify. This might raise
some security issues, we also solve this problem in our proposal thanks to the
Exculpability property of group signatures.
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3 Our Proposal for a Collusion-Resistant Pseudonymous
Signature Scheme

3.1 The Proposal

One of the main properties of group signatures is that they prevent from linking
signatures. However, pseudonymous signatures are supposed to enable linkability
of signatures if they are accompanied by the same pseudonym, but unlinkability
otherwise. By combining the construction of [3] with the CL-BP group signa-
ture [8,6]1, we build pseudonymous signatures that are resistant to collusions.
This construction requires more computation from the user to sign messages. It
requires elliptic curve cryptography but the smartcard does not need to be able
to compute pairings.

The PSKeyGen algorithm, described in Algorithm 1 is mostly an execution
of the GSKeyGen algorithm of the CL-BP scheme by the Issuing Authority.
IA also has to pick randomly chosen domain parameters dpkj = g

rj
1 that he

sends to the service providers. It is essential, in order to preserve unlinkability,
that the service providers do not learn rj . The PSJoin algorithm, described in
Algorithm 22 consists in an execution of the GSJoin algorithm. The PSSign
algorithm, described in Algorithm 3 consists in a CL-BP signature, a domain-
specific pseudonym derivation, and a proof of knowledge that the same key has
been used in both operations. The PSVerify algorithm, described in Algorithm 4
is a verification of the proof of knowledge, followed by a revocation check, where
the verifier checks if the pseudonym is on the revocation list or not. Notice that
the verifier only performs a list membership test and not a linear number of
arithmetic operations, as in the Revocation Check of the GSVerify algorithm.
The revocation algorithms, PSDomainRevoke, described in Algorithm 5, and
PSRevoke, described in Algorithm 6, consist in adding the pseudonym of the
revoked user in the revocation list RLj of the domain RLj.

Algorithm 1. PSKeyGen(k)

1: Run the GSKeyGen algorithm of the CL-BP scheme, as Group Manager.
2: Thus obtain gpk = (G1, G2, GT , e, p, g1, g2, g̃1, ĝ1, w, H , T1, T2, T3, T4) and

msk = γ.
G1 = 〈g1〉,G2 = 〈g2〉,GT are bilinear groups of prime order p and e : G1×G2 → GT
is a pairing. g1 and g̃1 are elements of G1. γ is an element of Z

∗
p and w = gγ2 .

T1 = e(g1, g2), T2 = e(g̃1, g2), T3 = e(ĝ1, g2), T4 = e(ĝ1, w).

3: For every service provider SPj , pick a random rj ∈R Zp and issue the domain

parameters dpkj = g
rj
1 to SPj .

1 A full description of the CL-BP group signatures is available in the extended version
of this paper [5].

2 Optionally, during the execution of this algorithm, Mi also gets e(Ai, g2) to avoid
pairing computations by the smartcard
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Algorithm 2. PSJoin(msk, gpk)

1: IA runs a CL-BP GSJoin algorithm with the user Mi.
2: Mi gets a key gski = (xi, Ai, fi), such that e(Ai, wgxi

2 ) = e(g1g̃
fi
1 , g2).

3: IA gets xi and Ai.

Algorithm 3. PSSign(gpk,ski,dpkj ,m)

1: Choose B ∈R G1 and compute J = Bfi , K = Bxi .
2: Choose a ∈R Zp, compute b = axi and T = Aiĝ

a
1 .

3: Choose rf , rx, ra, rb ∈R Zp.
4: Compute R1 = Brf , R2 = Brx , R4 = KraB−rb , R3 = e(T, g2)

−rxT
rf
2 T

rb
3 T ra

4 and
R5 = dpkrx

j .
5: Compute c=H(gpk||B||J ||K||T ||R1 ||R2||R3||R4||R5||m).
6: Compute sf = rf + cfi, sx = rx + cxi, sa = ra + ca and sb = rb + cb.

7: Output: σ = (B, J,K, T, c, sf , sx, sa, sb) and nymij = dpkxi
j

Algorithm 4. PSVerify(gpk,nymij,dpkj,m,σ,RLj)

1: Signature Check:
2: Check that B, J,K, T ∈ G1 and sf , sx, sa, sb ∈ Zp.
3: Compute R′

2 = BsxK−c, R′
3 = e(T, g2)

−sxT
sf
2 T sb

3 T sa
4 T c

1 e(T,w)−c, R′
4 =

KsaB−sb , R′
1 = BsfJ−c and R′

5 = dpksx
j nym−c.

4: Check that c=H(gpk||B||J ||K||T ||R′
1||R′

2||R′
3||R′

4||R′
5||m).

5: Revocation Check:
6: Check that nymij /∈ RLj .

7: Output valid if all checks succeed. Otherwise output invalid.

Algorithm 5. PSDomainRevoke(RLj,nymij)

1: Add nymij to RLj

2: Output RLj

Algorithm 6. PSRevoke(gpk,xi)

1: IA sends rti = xi to all SP ′
js

2: Every SPj adds nymij = dpkrti
j to RLj and outputs RLj .

3.2 Security

Our pseudonymous signature scheme achieves the security properties described
in Section 2.2, under the same security conditions as the CL-BP scheme. Security
is guaranteed is in the random oracle model.

Theorem 1 (Correctness). The pseudonymous signature scheme described in
Section 3.1 achieves Correctness.

Theorem 2 (Cross-Domain Anonymity). Under the Decisional Diffie-Hell-
man assumption, the pseudonymous signature scheme described in Section 3.1
achieves Cross-Domain Anonymity.
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Theorem 3 (Seclusiveness).Under the q-StrongDiffie-Hellmanassumption [4],
thepseudonymous signature schemedescribed inSection3.1 achievesSeclusiveness.

Theorem 4 (Unforgeability). Under the Discrete Logarithm assumption, the
pseudonymous signature scheme described in Section 3.1 achieves Unforgeability.

Implementation. In [6], parameters for the CL-BP scheme are suggested and
a computation time analysis is performed. The computation required by our
PSSign algorithm is the cost of the GSSign algorithm of the CL-BP scheme and
an exponentiations necessary to compute R5 and nymij. As noticed in [6], all the
computation of GSSign but the hash function can be computed offline, before
the knowledge of the message to be signed. This offline work consists in 6 multi-
exponentiations in G1 and 1 multi-exponentiation in GT . The remaining online
work for our pseudonymous signature is then 1 hash function computation and
2 exponentiations in G1. With the parameters of [6], this online computation
requires less than 100 ms on a personal computer. The corresponding compu-
tation for PSVerify is 5 multi-exponentiations in G1, 1 multi-exponentiation in
GT and 1 pairing. Contrary to the one of GSVerify, the cost of the Revocation
Check of PSVerify is negligible. With the parameters of [6], the computation of
PSVerify requires around 500 ms on a personal computer.
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Abstract. Cache attacks are known to be sophisticated attacks against crypto-
graphic implementations on desktop computers. Recently, investigations of such
attacks on specific testbeds with processors that are employed in mobile devices
have been done. In this work we investigate the applicability of Bernstein’s [2]
timing attack and the cache-collision attack by Bogdanov et al. [4] in real envi-
ronments on three state-of-the-art mobile devices: an Acer Iconia A510, a Google
Nexus S, and a Samsung Galaxy SIII. We show that T-table based implementations
of the Advanced Encryption Standard (AES) leak enough timing information on
these devices in order to recover parts of the used secret key using Bernstein’s
timing attack. We also show that systems with a cache-line size larger than 32
bytes exacerbate the cache-collision attack of Bogdanov et al. [4].

Keywords: AES, ARM Cortex-A series processors, time-driven cache attacks,
cache-collision attacks.

1 Introduction

Cache attacks are a specific form of implementation attacks that focus on the exploita-
tion of variations within the execution time of a cryptographic algorithm due to dif-
ferent access times within the memory hierarchy. For instance, the central-processing
unit (CPU) is able to access data within the CPU cache an order of magnitude faster
than data within the main memory. Cache attacks can be separated into three cate-
gories: (1) time-driven attacks, (2) access-driven attacks, and (3) trace-driven attacks.
Time-driven attacks [2] exploit the overall encryption time and, thus, require many mea-
surement samples. In contrast, access-driven attacks [6, 12] and trace-driven attacks [3]
focus on more fine-grained information leakage and require far less measurement sam-
ples than time-driven attacks. However, access-driven attacks and trace-driven attacks
require sophisticated knowledge about the hardware and the software under attack.

Today’s mobile devices also employ CPU caches and investigations of implemen-
tation attacks—and cache attacks in particular—are necessary in order to ensure the
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user’s privacy and security on these devices. Especially due to the wide-spread usage
of mobile devices, e.g., smartphones and tablet computers, and their manifold applica-
tion scenarios, security and privacy issues on these devices are of utmost importance.
Additional applications and widgets allow for further enhancements of capabilities on
these devices and potentially contain security-relevant algorithms. Since these algo-
rithms might be vulnerable to implementation attacks, the investigation of such attacks
shall raise the awareness of implementation attacks among developers, leading to more
secure systems in general. However, until recently these attacks mainly focused on
desktop machines [2, 6, 8, 12]. Only minor efforts have been made towards the in-
vestigation of these attacks on mobile devices [10], where mainly testbeds simulating
specific mobile-device configurations [4, 5, 13] have been used.

In 2010, Bogdanov et al. [4] proposed a cache-collision attack by exploiting colli-
sions between consecutive encryptions of pairs of chosen plaintexts. The attack environ-
ment was an ARM9 board running the AES implementation of OpenSSL [9] which was
queried via an Ethernet interface. Gallais and Kizhvatov [5] investigated trace-driven
cache attacks on an ARM7 microcontroller. In 2012, Weiß et al. [13] investigated the
applicability of Bernstein’s [2] time-driven cache attack on a Beagleboard employing
an ARM Cortex-A8 processor, running the Fiasco.OC microkernel and the L4Re run-
time environment on top. Nevertheless, they claim that further research regarding the
impact of real noise is necessary.

In this work, we focus on the investigation of time-driven cache attacks in more
realistic environments by analyzing the applicability of the attack by Bernstein [2] and
the attack by Bogdanov et al. [4] on three Android-based mobile devices. We aim at
analyzing whether T-table based implementations of the Advanced Encryption Standard
(AES) on state-of-the-art Android-based mobile devices, i.e., featuring a full-blown
operating system, leak enough timing information to deduce the used secret key.

The presented paper is organized as follows. Section 2 outlines the required pre-
liminaries and illustrates the basic concepts of the two investigated cache attacks. We
state the main findings regarding the analysis of these two attacks on mobile devices in
Section 3. Finally, we conclude this work in Section 4.

2 Background Knowledge

In this section we introduce the necessary preliminaries and outline the basic concepts
of the conducted attacks.

Advanced Encryption Standard. The Advanced Encryption Standard (AES) [7] is a
block cipher operating on a 128-bit state denoted as a series of bytes S = {s0, . . . , s15}.
The AES consists of four round transformations: SubBytes, ShiftRows, MixColumns,
and AddRoundKey. Since SubBytes and MixColumns perform complex mathematical
operations, software implementations usually operate on look-up tables T which hold
precomputed values for these two round transformations. The fact that these look-up
tables—each consisting of 256 4-byte values—are partially cached during the encryp-
tion and the fact that the look-up indices are key dependent, i.e., si = pi ⊕ki within the
first round, leads to AES implementations which are susceptible to cache attacks.
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Table 1. Detailed device specifications for the three mobile devices under attack

Acer Iconia A510 Google Nexus S Samsung Galaxy SIII

Processor Cortex-A9 Cortex-A8 Cortex-A9
Processor implementation Nvidia Tegra 3 Quad 1.4 GHz Exynos 3 Single 1 GHz Exynos 4 Quad 1.4 GHz
L1 cache size 32 KB 32 KB 32 KB
L1 cache associativity 4 way 4 way 4 way
L1 cache-line size 32 byte 64 byte 32 byte
L1 cache sets 256 128 256
Operating system Android 4.0.4 Android 2.3.4 Android 4.0.4

ARM Architecture. The ARM Cortex-A series processors [1] are employed in many
modern mobile devices, e.g., smartphones and tablet computers. Processors of this se-
ries typically employ a 4-way set-associative data cache with a cache-line size of either
32 or 64 bytes and a total size of 32 KB. The crucial difference between most desk-
top CPU caches and ARM CPU caches is the mechanism to evict a cache line from
a cache set. While desktop CPU caches usually employ a deterministic replacement
policy, ARM processors usually evict a cache line randomly. Since time-driven cache
attacks rely on statistical analysis of measurement samples, the random replacement
policy might have a negative impact on the number of required measurement samples.

Time-Driven Cache Attacks. The basic idea of these attacks is to exploit the overall
execution time of cryptographic primitives employing precomputed look-up tables.

Timing Attack. In 2005, Bernstein [2] suggested a time-driven cache attack against the
AES T-table implementation of OpenSSL [9]. The attack is based on the assumption
that the overall encryption time correlates with the timing leakage of specific look-up
operations. By correlating measurement samples of encryptions under a known key K
with measurement samples under an unknown key K̃ one tries to deduce the used secret
key. For further details about this attack we refer to [2, 8].

Collision Attack. Cache-collision attacks exploit collisions between look-up indices
of intermediate state bytes. Given information about such collisions an attacker tries
to infer relations between key bytes. Bogdanov et al. [4] suggested to choose pairs of
plaintexts (P1,P2) such that five S-Box or T-table look-ups within the encryption of P2

collide with S-Box or T-table look-ups of P1. This is what they call a wide collision.
The encryption time of the plaintext P2 is used as an indicator to determine whether
such a wide collision occurred.

3 Analysis and Practical Results

We launch the above outlined attacks on state-of-the-art Android-based mobile devices:
(1) an Acer Iconia A510 tablet computer, (2) a Google Nexus S, and (3) a Samsung
Galaxy SIII. Table 1 provides a detailed specification of these devices. The attack runs
in unprivileged mode, though we need root access once after powering up the device to
grant unprivileged applications access to the cycle-count register. As already suggested
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Table 2. Sample output of Bernstein’s time-driven cache attack on a Samsung Galaxy SIII

# of key candidates Key byte Possible values

3 0 b5 b4 b8
125 1 00 a2 be c2 b8 1d f6 ... 93 ...
165 2 87 03 51 17 1b 1f c7 ... 11 ...

...
...

...
2 13 4a 4b
40 14 6a 7a 7b 74 61 7c 64 6b 78 ...
2 15 9c 9d

by Neve [8] we perform the attacks within a single application, i.e., the attack appli-
cation performs the AES encryption (standard C implementation of OpenSSL [9]) and
computes the relevant information. In this section we briefly state the main findings of
the conducted attacks on the three mobile devices.

3.1 Timing Attack

The timing attack by Bernstein [2] requires measurement samples under a known key
K and an unknown key K̃. Gathering 230 measurement samples under the known key K
and the unknown key K̃ takes about 6 hours on the Google Nexus S and about 4 hours
on the Acer Iconia A510 and the Samsung Galaxy SIII. Table 2 illustrates an excerpt of
a sample output on the Samsung Galaxy SIII after correlating the measurement results.
The columns state the number of remaining key candidates, the index of the correspond-
ing key byte and all possible key bytes with the correct key marked in bold. A series
of dots illustrates omitted key bytes. The possible key candidates are sorted according
to the computed correlation and, thus, the position also indicates the probability of the
corresponding key candidate being the correct key byte. One clearly observes that tim-
ing information is leaking, though the number of remaining key bits is still too large for
an exhaustive key search. In order to retrieve more key bits one might apply the second-
round attack as suggested by Neve [8]. From Table 2 we also observe that for some key
bytes the number of possible key candidates has been reduced significantly, e.g., to only
2 key candidates. However, some key bytes have not been reduced significantly.

Table 3 lists two runs with the lowest number of remaining key bits for each of the
three mobile devices. The number of generated measurement samples seems to be a
crucial part. For the same number of measurement samples we observed runs where
the key space was not reduced significantly and runs where the key space was reduced
too much, i.e., the correct key byte was not present among the possible key candidates
anymore in which case the attack would fail. Thus, more measurement samples do not
necessarily yield better results in terms of remaining key bits.

Timing variations within the encryption time only occur if cache evictions happen
frequently. Bernstein [2] generated the required cache evictions by sending data of dif-
ferent length to the server and the server in turn performed memory accesses on the
transmitted data. We also launched this attack in a more realistic scenario where we
mounted the attack while watching videos or while watching an image slideshow on
the mobile devices. Nevertheless, running external applications on purpose did not leak
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Table 3. Results of Bernstein’s time-driven attack on the three mobile devices

Device
Samples in

Remaining key space
study phase attack phase

Acer Iconia A510
230 227 73 bits
230 229 78 bits

Google Nexus S
230 229 65 bits
229 228 69 bits

Samsung Galaxy SIII
230 229 58 bits
230 230 61 bits

more information and, hence, did not reduce the key space further. We conclude that
these external applications either affected the wrong cache sets or lead to uncontrollable
noise that corrupted the timing measurements. Furthermore, on multi-core devices, e.g.,
the Acer Iconia A510 and the Samsung Galaxy SIII, the two applications might be exe-
cuted on different cores. Thus, a fairly realistic approach would be to wrap the attack in
a fine-grained application and to control the memory accesses and potentially also the
number of active cores within this application.

3.2 Collision Attack

Bogdanov et al. [4] aim at recovering 4-byte key chunks at once. After recovering all
four potential 4-byte key chunks these are enumerated exhaustively in order to recover
the whole key. Recovering 4-byte key chunks at once requires at least four real wide col-
lisions between chosen pairs of plaintexts (P1, P2). However, given the overall encryp-
tion time of multiple plaintexts the critical part of this attack is to distinguish encryp-
tions that lead to wide collisions from encryptions that do not lead to wide collisions.
This in turn means that a high expectation rate of false positives1 must be overcome by
taking more plaintexts—that possibly lead to wide collisions—into consideration.

Figure 1 illustrates two histograms of encryption times of five plaintexts that lead
to wide collisions in light gray and five plaintexts that do not lead to wide collisions in
dark gray. The presented histograms are based on measurement samples gathered on the
ARM Cortex-A8 processor. Due to reasons of noise each of the five chosen plaintexts
is encrypted multiple times. In case of the 3-round AES implementation we clearly
observe easily separable encryption times for plaintexts which lead to wide collisions
and plaintexts which do not lead to wide collisions. Thus, by taking n = 4 plaintexts
with the lowest encryption times we might indeed detect 4 real wide collisions with a
high probability. In contrast, in case of the 7-round AES implementation we observe
that the encryption times of these two categories of plaintexts cannot be distinguished
anymore. Obviously, the number of false positives increases drastically and, hence, we
need to consider a higher number n of plaintexts that possibly lead to wide collisions.
The n plaintexts are used to find possible candidates of 4-byte subkeys by iterating
over all possible 4-byte keys (232). Bogdanov et al. [4] state the number of expected

1 False positives are diagonal pairs which are supposed to lead to wide collisions due to their
encryption time, but in fact do not lead to wide collisions.
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Fig. 1. Histogram of encryption times for a 3-round AES (left) and a 7-round AES (right)

4-byte subkey candidates per attacked 4-byte subkey as (
(
n
4

)
· 256) and since these

subkeys must be enumerated exhaustively for all four 4-byte subkeys this yields an
overall complexity of (

(
n
4

)
· 256)4 AES encryptions to recover the whole key.

We blame the larger cache-line size of 64 bytes on the ARM Cortex-A8 for the chal-
lenging detection of wide collisions. In contrast, Bogdanov et al. [4] launched the attack
on an ARM9 board with a cache-line size of 32 bytes. Since each T-table is composed
of 256 4-byte elements, a 32-byte cache line holds δ = 8 T-table elements, whereas a
64-byte cache line holds δ = 16 T-table elements. In case of a cache miss the Cortex-A8
loads 16 consecutive T-table elements into the cache, whereas the ARM9 board loads
only 8 elements into the cache at once. If we take probability theory into consideration
the problem becomes clear. Since the last round of the AES T-table implementation usu-
ally employs a different T-table, there are 4 · 9 look-up operations into the same T-table
within the rounds 1–9. The probability for δ consecutive T-table elements—mapping to
the same cache line—still not being cached after one encryption is (1− δ

256 )
4·9. In case

of δ = 16 this yields a probability of 0.098 that a specific block of T-table elements is
still not being cached after one encryption. In case of δ = 8 this yields a probability of
0.319. Hence, the probability for a specific T-table element already being cached after
the first encryption is 1 − 0.098 = 0.902 and 1 − 0.319 = 0.681. This in turn means
that the probability for additional cache collisions, besides the required wide collisions,
is far greater on systems with a cache-line size of 64 bytes. The overall encryption time
of P2 decreases and makes wide collisions nearly indistinguishable from non wide col-
lisions. We conclude that the larger cache-line size on the ARM Cortex-A8 exacerbates
the detection of wide collisions and, thus, the applicability of this attack in general.

Even on the Cortex-A9 the detection of at least four wide collisions among a small
number of chosen plaintexts, e.g., n ≤ 6, is a challenging task and a larger number of
n drastically increases the remaining brute-force complexity. Our observations showed
that we are able to detect enough wide collisions among n = 7 chosen plaintexts, but in
this case the complexity of the exhaustive key search is impractical.
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4 Conclusion

Recent investigations of cache attacks on mobile devices focused on specific testbeds
and stressed the importance of analyzing these attacks in more realistic environments.
Thus, we investigated the applicability of two time-driven cache attacks on state-of-
the-art Android-based mobile devices. We observed that timing information also leaks
on these devices and can be used to reduce the key space of cryptographic algorithms
significantly. Though time-driven cache attacks usually require an enormous number of
measurement samples we consider the attack of Bernstein [2] a threat for cryptographic
implementations on mobile devices. In addition, we analyzed the attack of Bogdanov et
al. [4] according to its applicability on mobile devices. We showed that a cache-line
size of 64 bytes exacerbates this attack and even on systems with a cache-line size of
32 bytes the detection of wide collisions seems to be a challenging task. Our observa-
tions revealed that, in practice, encryptions where wide collisions occur and encryptions
where no wide collisions occur are hardly distinguishable. Even though a high number
of false positives might be overcome by taking more diagonal pairs into consideration,
this drastically increases the complexity of the following key-search phase.
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Abstract. A hierarchical ID-based encryption (HIBE) allows a root Pri-
vate Key Generator (PKG) to delegate private key generation and iden-
tity authentication to lower-level PKGs. However, any ancestor in the
path can generate a private key for any descendant node and thus decrypt
the ciphertext. In an ancestor-excludable HIBE (AE-HIBE) scheme, an-
cestors with a level less than the designated one can be excluded from
a set of privileged ancestors who have the right to decrypt a ciphertext
to a target node. We find that the functional definition and the concrete
scheme proposed by Miyaji are flawed. To fix the problem, we introduce
a new functional definition of AE-HIBE and present a new AE-HIBE
scheme. The new scheme is proved to be ID-CPA secure in the random
oracle and can be converted to ID-CCA security by applying a conver-
sional method.

Keywords: Identity-based Cryptography, Ancestor Excludable Hierar-
chical Identity-based Encryption, Provable Security.

1 Introduction

The advantage of identity-based encryption (IBE) [1, 2] lies in public key han-
dling. In an identity-based encryption, a user’s identity can serve as a public key
without the need of a traditional public key infrastructure, and the correspond-
ing private key is created by binding the identity string with a master secret of a
trusted authority called Private Key Generator (PKG). However a single PKG
is undesirable for a large network because the PKG could become a bottleneck
in communication.

To overcome this problem, hierarchical identity-based encryption (HIBE) [3, 4]
was introduced in 2002. After thet, many efficient HIBE schemes are proposed
in the recent years [5–8]. HIBE allows a root PKG to distribute the workload
by delegating private key generation and identity authentication to lower-level
PKGs. An important feature of HIBE is that any ancestor in the path from the
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root PKG to a target node can decrypt the ciphertext to the target node even
if the ancestor does not have the same private key as that of the target node,
since an ancestor can generate a private key for any descendant node. This
is reasonable for some strict hierarchical structures, in which the upper-level
members may fully control the lower-level member and even disclose ciphertexts
sent to the lower-level member in the case of necessarily. However, this feature
is undesirable in some hierarchical structures, for example, in a consortium of
corporations that engage in governmental projects or joint ventures [9]. In such
a consortium, one company would be a leader and other companies would work
in a part of the business as its sections, branches, or subsidiaries. Thus, such
a consortium forms a hierarchical structure, but at the same time, each of the
consortium companies is rather independent, and all upper-level members do
not necessarily have to control the lower-level members.

Miyaji introduced the concept of ancestor-excludable HIBE (AE-HIBE) [9],
where an AE-HIBE scheme should satisfy the ancestor excludable feature, i.e.,
ancestors with a level less than the designated one can be excluded from a set
of privileged ancestors who have the right to decrypt a ciphertext to a target
node. She also gave the functional definition together with the security defini-
tions. Moreover, a concrete example of AE-HIBE is presented and proved to be
selective-ID-CPA secure in the standard model. Unfortunately, we found that
the functional definition and the concrete scheme are flawed.

In this paper, we analyze Miyaji’s functional definition of AE-HIBE and the
concrete AE-HIBE scheme. We then introduce a new functional definition of
AE-HIBE and present a new AE-HIBE scheme. The new scheme is ID-CPA
secure in the random oracle and can be converted to having ID-CCA security
by applying a conversional method.

2 Preliminary

This section introduces the background knowledge, i.e., the “admissible bilinear
map” [2], the Bilinear Diffie-Hellman problem, and the security model.

Definition 1. (Bilinear Map) Let G be an additive group of prime order q and
GT a multiplicative group of the same order. Let P denote a generator of G. An
admissible pairing is a bilinear map ê : G × G → GT which has the following
properties: (1) Bilinear: given Q, R ∈ G and a, b ∈ Z∗

q , we have ê(aQ, bR) =

ê(Q,R)ab, (2) Non-degenerate: ê(P, P ) �= 1GT , (3) Computable: ê is efficiently
computable.

Definition 2. (Bilinear Diffie-Hellman Assumption) For a, b, c ∈R Z
∗
q , aP , bP

and cP are computed. Given (aP, bP, cP ), compute ê(P, P )abc is hard.

A HIBE scheme is semantically secure against adaptive chosen ciphertext and
adaptive chosen target attack (IND-HID-CCA) if no polynomially bounded ad-
versary A has a non-negligible advantage against the challenger in the following
game [4].
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– Setup: The challenger takes a security parameter K and runs the Root Setup
algorithm. It gives the adversary the resulting system parameters params.
It keeps the root key to itself.

– Phase 1: The adversary issues queries q1, · · · , qm where qi is one of:

1. Public-key query (ID-tuplei): The challenger runs a hash algorithm on
ID-tuplei to obtain the public key H(ID-tuplei).

2. Extraction query (ID-tuplei): The challenger runs the Extraction algo-
rithm to generate the private key di, and sends it to the adversary.

3. Decryption query (ID-tuplei, Ci): The challenger runs the Extraction
algorithm to generate the private key di, runs the Decryption algorithm
to decrypt Ci using di, and sends the resulting plaintext to the adversary.

These queries may be asked adaptively. Note also that the queried ID-tuplei
may correspond to a position at any level in the hierarchy.

– Challenge: Once the adversary decides that Phase 1 is over, it outputs two
equal length plaintexts M0,M1 ∈ M and an ID-tuple on which it wishes
to be challenged. The only constraints are that neither this ID-tuple nor its
ancestors appear in any private key extraction query in Phase 1. Again, this
ID-tuple may correspond to a position at any level in the hierarchy. The
challenger picks a random bit b ∈ {0, 1} and sets C = Encryption(params,
ID-tuple,Mb). It sends C as a challenge to the adversary.

– Phase 2: The adversary issues more queries qm+1, · · · , qn where qi is one of:
1. Public-key query (ID-tuplei): Challenger responds as in Phase 1.
2. Extraction query (ID-tuplei �= ID-tuple or ancestor): Challenger re-

sponds as in Phase 1.
3. Decryption query ((ID-tuplei, Ci) �= (ID-tuple or ancestor, C)): Chal-

lenger responds as in Phase 1.
– Guess: The adversary outputs a guess b′ ∈ {0, 1}.

The adversary wins the game if b = b′. We define its advantage in attacking the
scheme to be |Pr[b = b′]− 1

2 |.

3 Analysis of Miyaji’s AE-HIBE Scheme

In this section, we analyze Miyaji’s functional definition and the concrete scheme.
Due to limited space, the details are omitted here. More details on the functional
definition and the concrete scheme can be find in [9]. For readability, we firstly
analyze the concrete scheme and then explain the reason from the functional
definition.

The problem about the concrete encryption scheme is the algorithms of KDerp.
Now we compute the private key of the first three levels step by step.

– Level 0: SKε = {SKε,1, · · · , SKε,t};
– Level 1: Let v = v1. Select αv ∈ Zq. Compute

Av,1 = SKε,1 + αvid(v1)Q1 + αvP1 = αR1 + αvid(v1)Q1 + αvP1,
Bv = αvP,Cv,2 = αvQ2, · · · , Cv,t = αvQt.
The secret key is SKv = {skv,1}, where skv,1 = {Av,1, Bv, Cv,2, · · · , Cv,t}
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– Level 2: Firstly we use KDer to compute the private key as following:
(1) Let v = v1v2 (l = 2);
(2) Select αv ∈ Zq , and compute Av,1 = αR1 + αv(id(v1)Q1 + id(v1v2)Q2 +
P1), Av,2 = αR2 + αv(id(v1v2)Q2 + P1).
Theprivate key is{skv1v2,1, skv1v2,2},where skv1v2,1 = {Av1v2,1, Bv1v2 , Cv1v2,3,
· · · , Cv1v2,t}, skv1v2,2 = {Av1v2,2}.
Now we use KDerp to compute the private key as following:

1. v = v1;
2. Purse SKv = {SKv,1};
3. Select a random secret value rv1v2 ∈ Zq, compute Av1v2,1 = αR1+(αv1 +

rv1v2)(id(v1)Q1 + id(v1v2)Q2) + (αv1 + rv1v2)P1, Bv1v2 = (αv1 + rv1v2)P ,
Cv1v2,3 = (αv1 + rv1v2)Q3, · · · , Cv1v2,t = (αv1 + rv1v2)Qt.

Theprivate key is{skv1v2,1},where skv1v2,1 = {Av1v2,1, Bv1v2 , Cv1v2,3, · · · ,Cv1v2,t}.
Note that Av1v2,2 = Av1,2 + id(v1v2)Cv1,2 + rv1v2(id(v1v2)Q2 + P1) is unknown
since Av1,2 does not exit.

According to the definition of KDerp, the node v1 can derive only {skv1v2,1} but
not {skv1v2,2}. Only the root center can compute both {skv1v2,1} and {skv1v2,2}.
Here is the problem: without {skv1v2,2}, the node of the second level v1v2 can not
generate the second part of the private key for his child node v1v2v3. For the same
reason, a node in level l (l ≥ h, where h is the designated level) can only generate
the first part of his child node’s private keys. However, decrypting a ciphertext
needs skv,h, which leads the decryption unsuccessful. To obtain the valid decryp-
tion key skv,h, the only way is that a node in level l (l ≥ h) asks the root PKG
to generate his private key, and then uses this private key to derive other private
keys for his descendent. However, this is not realistic since it is against the orig-
inal motivation of the HIBE, i.e., Hierarchical ID-based encryption allows a root
PKG to distribute the workload by delegating private key generation and identity
authentication to lower-level PKGs.

4 A New Ancestor-Excludable HIBE Scheme

In this section, we introduce a new functional definition of AE-HIBE and present
a new scheme. The new functional definition is defined as follows.

Definition 3. AE-HIBE consists of a 5-tuple of PPT algorithms, where

– Root Setup: The root PKG takes a security parameter k and the level t of
m-ary tree, and returns params (system parameters) and a root secret. The
system parameters will be publicly available, while only the root PKG will
know the root secret.

– Lower-Level Setup: Lower-level users obtain the system parameters of the
root PKG. Moreover, Lower-level users generate local secrets and the corre-
sponding local public parameters.

– Extraction: A PKG with ID-tuple (ID1, · · · , IDt) may compute a private
key for any of its children by using the system parameters and its private
key (and any other secret information).
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– Encryption: A sender inputs params, M ∈ M, the ID-tuple of the intended
message recipient, and level h of a designated ancestor, outputs a ciphertext
C together with the ID-tuple of the recipient and the level h.

– Decryption: A user inputs params, C ∈ C, level h of a designated ancestor,
and its private key d, and returns the message M ∈ M.

Now we are ready to propose the new AE-HIBE scheme.

– Root Setup: (1) Runs IG on input K to generate groups G1, G2 of prime
order q and an admissible pairing ê : G1×G1 → G2; (2) chooses an arbitrary
generator P0 ∈ G1; (3) picks a random s0 ∈ Z/qZ and sets Q0 = s0P0; (4)
chooses hash functions H1 : {0, 1}∗ → G1 and H2 : {0, 1}∗ → G1.
The message space is M = {0, 1}n. The ciphertext space is C = Gt

1×{0, 1}n
where t is the level of the recipient. The system parameters are params =
(G1,G2, ê, P0, Q0, H1, H2). The root PKG’s secret is s0 ∈ Z/qZ.

– Lower-Level Setup. Entity Et ∈ Levelt picks a random st ∈ Z/qZ, which
it keeps secret. Et computes stP0 and releases stP0 as the public parameters.

– Extraction. Let Et be an entity in Levelt with ID-tuple (ID1, · · · , IDt),
where (ID1, · · · , IDi) for 1 ≤ i ≤ t is the ID-tuple of Et’s ancestor at
Leveli. Set S0 to be the identity element of G1. Then Et’s parent computes
Pt = H1(ID1, · · · , IDt) ∈ G1, and sets Et’s secret point St to be St−1 +
st−1Pt =

∑t
i=1 si−1Pi;

– Encryption. To encrypt M ∈ M with the ID-tuple (ID1, · · · , IDt), the
encrypter firstly chooses k as the designated level, then does the following:
• Computes Pi = H1(ID1, · · · , IDi) ∈ G1 for 1 ≤ i ≤ t.
• Chooses a random r ∈ Z/qZ.
• Sets the ciphertext to be: C = [(rP0, rP1, · · · , rPk−1, rPk+1, · · · , rPt,M⊕
H2(g

r)),Et, k] where g = ê(sk−1P0, Pk) ∈ G2.
– Decryption. Let C1 = [U0, U1, · · · , Uk−1, Uk+1, · · · , Ut, V ] ∈ C be the ci-

phertext encrypted using the ID-tuple (ID1, · · · , IDt). To decrypt C, Et

computes:

V ⊕H2(
ê(U0, St)∏k−1

i=1 ê(si−1P0, Ui) ·
∏t

i=k+1 ê(si+1P0, Ui)
) = M.

This concludes the description of our AD-HIBE scheme.

5 Security Analysis

The security of Basic-AE-HIBE is based on the difficulty of the BDH problem,
as stated in the following theorems (which are analogous to Theorem 2 in [4]):

Theorem 1. Suppose there is an HIB-OWE adversary A that makes at most
qH2 > 0 hash queries to the hash function H2 and at most qE > 0 private key
extraction queries and has advantage εt of successfully targeting a Basic AE-
HIBE node in Levelt. If the hash functions H1, H2 are random oracles, then
there is an algorithm B that solves the BDH in groups generated by IG with
advantage at least (εt(

t
e(qE+t) )

t − 1
2n )q

−1
H2

and running time O(time(A)).
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Proof: Similarly to the proof of the IBE scheme in [2] and the HIBE scheme in
[4], we first define a related public-key encryption scheme called BasicPub, and
then use two lemmas to show that the security of Basic AE-HIBE is based on
the difficulty of the BDH problem. One lemma proves that breaking Basic AE-
HIBE is as hard as breaking BasicPub, and the other one proves that breaking
BasicPub is as hard as solving an instance of the BDH problem.

We begin our proof with defining BasicPub. BasicPub is a public-key encryp-
tion scheme specified by three algorithms.

– Key Generation: (1) Run IG on input K to generate two groups G1, G2

and a bilinear map ê. Choose an arbitrary generator P0 ∈ G1. (2) Pick a
random s0 ∈ Z/qZ and set Q0 = s0P0. (3) Pick random values si ∈ Z/qZ
and random points Pi ∈ G1 (1 ≤ i ≤ t), and set Qi = siP0 and Si = si−1Pi

(1 ≤ i ≤ t). (4) Choose a cryptographic hash function H2 : G2 → {0, 1}n.
The ciphertext space is C = G1×{0, 1}n×N. The public key is (G1,G2, ê, P0,
Q0, Q1, · · · , Qt, H2). The private key is Si (1 ≤ i ≤ t).

– Encryption: To encrypt M ∈ M, choose a random r ∈ Z/qZ and k ∈
{1, · · · , t}, set the ciphertext to be C = ([rP0,M ⊕ H2(g

r)], Pk, k), where
g = ê(Qk−1, Pk) ∈ G2.

– Decryption: Let C1 = [U, V ] ∈ C be the part of the ciphertext. To decrypt
C, compute V ⊕H2(ê(U, Sk)) = M.

Lemma 1. Suppose that A is an HIB-OWE adversary that makes at most qE >
0 private key extraction queries and has advantage εt of successfully targeting
a Basic AE-HIBE node in Levelt, and suppose that the hash function H1 is a
random oracle. Then there is an OWE adversary B that has advantage at least
εt(t/e(qE + t))t against BasicPub and running time O(time(A)).

The proof of Lemma 1 is similar to the proof of Lemma 2 in [4]. The only dif-
ference lies in the Challenge stage. In this stage, algorithm B sets Th = bhPh and
Tk = bkP0(1 ≤ k ≤ t, k �= h) where h is the designated level. LetC = [U, V ] be the
challenge ciphertext given to algorithm B. Algorithm B sets the Basic AE-HIDE
ciphertext C′ to be [b−1

h U, b−1
h b1U, · · · , b−1

h bh−1U, b
−1
h bh+1U, · · · , b−1

h btU, V ]. Al-
gorithm B responds to A with the challenge C′.

Observe that a valid private key for ID-tuplei has the form S′
t = s′h−1Th +∑t−1

k=1,k 
=h−1 s
′
kTk+1, It is easy to check that

ê(b−1
h U, S′

t)∏h−1
k=1 ê(b

−1
h bkU, s′k−1P0) ·

∏t
k=h+1 ê(b

−1
h bkU, s′k−1P0)

= ê(U, s′h−1Ph).

With the additional information {s′kP0 : 1 ≤ k ≤ t} for some (s′1, · · · , s′t−1) ∈
(Z/qZ)t−1 where s′h is unknown to the simulator, we can find that the correct
decryption of C′ is M .

Similar to the proof of Lemma 2 in [4], the probability that B does not abort
is at least (ti/e(qE + t))t.
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Lemma 2. Suppose that A is an OWE adversary with advantage ε against
BasicPub that makes a total of qH2 queries to the hash function H2, and suppose
that H2 is a random oracle. Then there is an algorithm B that solves the BDH
problem for IG with advantage at least ε− 1

2n /qH2 and running time O(time(A)).

Proof: The proof is exactly the same as the proof for Boneh’s IBE scheme in [2].
Combining Lemma 1 and 2, Theorem 1 for BasicHIDE can be proved.

6 Conclusion

Miyaji introduced the concept of ancestor-excludable hierarchical ID-based en-
cryption (AE-HIBE) to prevent the ancestors with a level less than the desig-
nated one from decrypting a ciphertext to a target descendant node. Unfortu-
nately, we found the functional definition and the concrete scheme she proposed
are flawed. In this paper, we introduced a new functional definition of AE-HIBE,
then presented a new AE-HIBE scheme, and proved that the new scheme is ID-
CPA secure in the random oracle. The security can be converted to ID-CCA
security by applying a general conversion method.
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Abstract. Online Social Networks (OSNs) have become one of the major plat-
forms for social interactions. Privacy control is deployed in popular OSNs to
protect user’s data. However, user’s sensitive information could still be leaked
even when privacy rules are properly configured. We investigate the effectiveness
of privacy control against privacy leakage from the perspective of information
flow. Our analysis reveals that the existing privacy control mechanisms do not
protect the flow of personal information effectively. By examining typical OSNs
including Facebook, Google+, and Twitter, we discover a series of privacy ex-
ploits which are caused by the conflicts between privacy control and OSN func-
tionalities. Our analysis reveals that the effectiveness of privacy control may not
be guaranteed as most OSN users expect.

Keywords: Online Social Network, Privacy Control, Attacks, Information Flow.

1 Introduction

Online Social Network services (OSNs) have become an essential element in modern
life where massive amount of personal data is published. Prior research [9,3,1] shows
that it is possible to infer undisclosed personal data from publicly shared information.
But the availability and quality of the public data causing privacy leakage are decreasing
due to the following two factors: 1) privacy control mechanisms have become the stan-
dard feature of OSNs and keep evolving [4,2]. 2) the percentage of users who choose
not to publicly share information is also increasing [3]. In this tendency, it seems that
privacy leakage may be perfectly prevented as the increasingly comprehensive privacy
control mechanism is available to the users. However, this may not be achievable ac-
cording to our findings.

In this paper, we investigate privacy protection from a new perspective, referred to as
privacy leakage under privacy control (PLPC). PLPC examines whether a user’s private
personal information is leaked even if the user properly configures privacy rules. The
problem of PLPC in OSNs involves distributor and receiver. An adversary is a receiver
who intends to learn private information published by a victim who is a distributor. An
adversary’s capabilities can be characterized according to two factors. The first factor is
the distance between adversary and victim. Considering a social network as a directed
graph, an n-hop adversary can be defined such that the length of the shortest connected

J. Lopez, X. Huang, and R. Sandhu (Eds.): NSS 2013, LNCS 7873, pp. 671–677, 2013.
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path from victim to adversary is n hops. In our discussion, we consider 1-hop adver-
sary (i.e. friend), 2-hop adversary (i.e. friend of friend), and k-hop adversary where
k > 2 (i.e. stranger). The second factor is prior knowledge about a victim required by
corresponding attacks.

We examine the underlying reasons that make privacy control vulnerable using infor-
mation flow based analysis. We start with categorizing the personal information of an
OSN user into three attribute sets according to who the user is, whom the user knows,
and what the user does, respectively. We model the information flow between these at-
tribute sets and examine the functionalities which control the flow. We inspect typical
real-world OSNs including Facebook, Google+, and Twitter, where privacy exploits and
corresponding attacks are identified.

Our analysis reveals that most of the privacy exploits are inherent due to the un-
derlying conflicts between privacy control and essential OSN functionalities. There-
fore, the effectiveness of privacy control may not be guaranteed even if it is technically
achievable.

We summarize the contributions of this paper as follows:

– We investigate the interaction between privacy control and information flow in
OSNs. We identify privacy exploits for current privacy control mechanisms in typ-
ical OSNs. Based on these privacy exploits, we introduce a series of attacks for
adversaries with different capabilities to obtain private personal information.

– We analyze the discovered exploits caused by the conflicts between privacy con-
trol and the functionalities. These conflicts reveal that the effectiveness of privacy
control may not be guaranteed as most OSN users expect.

2 Attribute Sets, Functionalities, and Information Flows in OSNs

In a typical OSN, Alice owns a profile page for publishing her personal information.
The personal information can be categorized into three attribute sets: a) personal par-
ticular set (PP set), b) social relationship set (SR set), and c) social activity set (SA
set), according to who the user is, whom the user interact with, and what the user does,
respectively. We show corresponding personal information and attribute sets on Face-
book, Google+, and Twitter in Table 1.

Table 1. Types of personal information on Facebook, Google+, and Twitter

Acronym Attribute set Facebook Google+ Twitter

PP Personal Particulars Current city, hometown, sex,
birthday, employer, university,
religion, political views, music,
emails, city, about me

Introduction, occu-
pation, employment,
education, places lived,
phone, gender

Name,
location, bio,
website

SR Social Relationship (incoming list,
outgoing list)

Friends, friends Have you in circles,
your circles

Following,
follower

SA Social Activities Status message, photo, link,
video, comments, like

Post, photo, comments,
link, video, plus 1’s

Tweets
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Alice’s PP set describes persistent facts about Alice, such as gender and race. Alice’s
SR set stores her social relationships as connections. A connection represents informa-
tion flow from a distributor to her 1-hop receiver. Alice’s SR set consists of an incoming
list and an outgoing list. For each user ui in Alice’s incoming list, there is a connec-
tion from ui to Alice. For each user uo in Alice’s outgoing list, there is a connection
from Alice to uo. Alice can receive information from the users in her incoming list, and
distribute her information to the users in her outgoing list. The social relationships in
certain OSNs such as Facebook are mutual. Such mutual relationship can be considered
as a pair of connections linking two users with opposite directions. The incoming list
and outgoing list in SR set and their corresponding names on FaceBook, Google+, and
Twitter are shown in Table 1. Lastly, Alice’s SA set describes her social activities, such
as status messages and photos.

Most OSNs provide two basic functionalities including REC and TAG. REC func-
tionality recommends to Alice a list of users that Alice may include in her SR set. The
list of recommended users is composed based on the social relationships of the users in
Alice’s SR set. TAG functionality allows Alice to mention another user’s name in her
social activities, which provides a link to the user’s profile page.

The attribute sets (illustrated as circles in Figure 1) of multiple users are connected
within an OSN, where personal information may explicitly flow from a profile page to
another profile page via REC and TAG, as represented by solid arrows and rectangles
in Figure 1. It is also possible to access a user’s personal information in PP set and
SR set via implicit information flows marked by dashed arrows. The details about these
information flows are described below.

Attribute Set X

Functionality Y

Profile Page Z

Fig. 1. Information flows between attribute sets

The first explicit flow is caused by REC, as shown in arrow (1) in Figure 1. REC
recommends to Bob a list of users based on the social relationships of the users in
Bob’s SR set. Thus the undisclosed users in Alice’s SR may be recommended to Bob
via REC, if Bob is connected with Alice.

The second explicit flow is caused by TAG is shown in arrow (2) in Figure 1. An
OSN user may mention other users’ names in a social activity in his/her SA set via
TAG, which creates explicit links connecting SA sets within different profile pages.

The third flow is an implicit flow caused by the design of information storage for SR
sets, as shown in arrow (3) in Figure 1. Given a connection from Alice to Bob, Bob is
included in Alice’s outgoing list while Alice is included in Bob’s incoming list.
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The fourth flow is an implicit flow related to PP set, which is shown as the arrow (4)
in Figure 1. Due to the homophily effect [6], a user is willing to connect with the users
with similar personal particulars. This tendency can be used to link PP sets of multiple
users.

It is difficult to prevent privacy leakage from all these information flows. A user
may be able to prevent privacy leakage caused by explicit information flows by care-
fully using corresponding functionalities, as these flows are materialized only when the
functionalities are used. However, it is difficult to avoid privacy leakage due to implicit
information flows, as they are caused by inherent correlations among the information
shared in OSNs. In fact, all these four information flows illustrated in Figure 1 corre-
spond to inherent exploits, which will be analyzed in Section 3.

3 Exploits and Attacks

In this section, we analyze the exploits and attacks to a victim’s PP set, SR set, and SA
set. All of our findings have been verified on Facebook, Google+, and Twitter.

3.1 PP Set

The undisclosed information in PP set can be inferred by the following exploit, namely
inferable personal particular.

Inferable Personal Particular. Human beings are more likely to interact with oth-
ers who have the same or similar personal particulars [6]. The phenomenon is called
homophily. This causes an exploit named inferable personal particulars, which corre-
sponds to the information flow shown as dashed arrow (4) in Figure 1.

Exploit 1: If most of a victim’s friends have similar personal particulars, it could be
inferred that the victim may have the same or similar personal particulars.

An adversary may use Exploit 1 to obtain undisclosed information in a victim’s PP
set. The following is a typical attack on Facebook.

Attack 1: Considering a scenario on Facebook shown in Figure 2, Bob, Carl, Derek,
and some other users are Alice’s friends, and Bob is a friend of Carl, Derek, and most
of Alice’s friends. Alice shares her employer information “XXX Agency” with Carl and

Fig. 2. Alice and most of her friends have common employer information
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Derek. Most of Alice’s friends may share their employer information with their friends
due to different perceptions in privacy protection. Bob can collect the employer infor-
mation of Alice’s friends and infer that Alice’s employer may be “XXX Agency”.

The above attack works on Facebook, Google+, and Twitter. An adversary should have
two types of knowledge. The first type of knowledge includes a large portion of users
stored in the victim’s SR set. The second type of knowledge includes the personal par-
ticulars of these users.

3.2 SR Set

The information in SR set can be leaked by two exploits, namely inferable social rela-
tionship and unregulated relationship recommendation.

Inferable Social Relationship. A user’s SR set consists of incoming list and outgoing
list. Given a connection from Alice to Carl, Carl is recorded in Alice’s outgoing list
while Alice is recorded in Carl’s incoming list. This causes an exploit named inferable
social relationship, which corresponds to the information flow shown as dashed arrow
(3) in Figure 1.

Exploit 2: Each social relationship in a victim’s SR set indicates a connection between
the victim and another user u. User u’s SR set also stores a copy of this relationship
for the same connection, which can be used to infer the relationship in the victim’s SR
set.

An adversary may use Exploit 2 to obtain undisclosed social relationships in a victim’s
SR set, which is shown as the following exemplary attack on Facebook.

Attack 2: Considering a scenario on Facebook, where Bob is a stranger to Alice, and
Carl is Alice’s friend. Alice shares her SR set with a user group including Carl. Bob
guesses Carl may be connected with Alice, but cannot confirm this by viewing Alice’s
SR set as it is protected against him. However, Carl shares his SR set publicly due to
different concerns in privacy protection. Seeing Alice in Carl’s SR set, Bob infers that
Carl is Alice’s friend.

Any adversary can use Exploit 2 as long as he has two types of knowledge: 1) a list
of users in the victim’s SR set; 2) social relationships in these users’ SR sets. This attack
could be a stepping stone for an adversary to infiltrate a victim’s social network. Once
the adversary discovers a victim’s friends and becomes a friend of the victim’s friends.
After that, he is more likely to be accepted as the victim’s friend [7].

Unregulated Relationship Recommendation. Most OSNs provide REC functionality
to recommend a list of other users whom this user may know. The recommendation list
is usually calculated based on the relationships in SR set but not regulated by the privacy
rules chosen by the users in the recommendation list. This causes an exploit named
unregulated relationship recommendation, which corresponds to the information flow
shown as solid arrow (1) in Figure 1.
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Exploit 3: All social relationships in a victim’s SR set could be automatically recom-
mended by REC to all users in the victim’s SR set, irrespective of whether or not the
victim uses any privacy rules to protect her SR set.

An adversary may use Exploit 3 to obtain undisclosed relationships in a victim’s SR
set, which is shown in the following attack on Facebook.

Attack 3: On Facebook, Bob is a friend of Alice, but not in a user group named
Close Friends. Alice shares her SR set with Close Friends only. Although
Bob is not allowed to view Alice’s social relationships in her SR set, such information
is automatically recommended by REC to Bob. If Bob is connected with Alice only, the
recommendation list consists of the social relationships in Alice’s SR set only.

Any adversary who is a friend of a victim can perform the attack on both Facebook and
Google+. No prior knowledge is required for this attack.

3.3 SA Set

The undisclosed information in SA set protected by existing privacy control mecha-
nisms can be inferred due to the following exploit, inferable social activity.

Inferable Social Activity. A user’s name can be mentioned by the other in a social
activity via TAG such that this social activity provides a link to the profile page of the
mentioned user. Such links create correlations among all the users involved in the same
activity. This causes an exploit named inferable social activity, which corresponds to
the information flow shown as solid arrow (2) in Figure 1.

Exploit 4: If a victim’s friend uses TAG to mention the victim in a social activity pub-
lished by the victim’s friend, it implies that the victim may also attend the activity.
Although this activity may involve the victim, the visibility of this activity is solely de-
termined by the privacy rules specified by the victim’s friend who publishes the activity,
which is out of the control of the victim.

An adversary may use Exploit 4 to obtain undisclosed social activities in a victim’s SA
set, which is shown in the following attack on Facebook.

Attack 4: Considering a scenario on Facebook, where Bob and Carl are Alice’s friends,
and Bob is Carl’s friend. Alice publishes a social activity in her SA set regarding a party
which Carl and she attended together and she allows Carl only to view this social activ-
ity. However, Carl publishes the same social activity in his SA set and mentions Alice
via TAG. Due to different concerns in privacy protection, Carl allows all his friends
to view this social activity. By viewing Carl’s social activity, Bob can infer that Alice
attended this party.

This attack may work on Facebook, Google+, and Twitter. Any adversary can perform
this attack if he knows the social activities published by the victim’s friends pointing to
the victim via TAG.

To mitigate the threat, the privacy control should enforce privacy rules to an activity
no matter who publishes it. To resolve privacy conflicts in collaborative data sharing,
policy negotiation mechanisms have been proposed [5,8]. However, these policy nego-
tiation mechanisms may significantly restrict the sharing nature of OSNs and frustrate
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users who intend to share that activity, as the consents of all involved users are required
for each joint activity.

4 Conclusion

In this paper, we investigated privacy leakage under privacy control in online social
networks. Our analysis showed that privacy leakage could still happen even when users
correctly configure their privacy rules. We examined real-world OSNs including Face-
book, Google+, and Twitter, and discovered the exploits which lead to privacy leakage.
The detailed attacks were demonstrated by utilizing these exploits to learn undisclosed
personal information that is supposed to be protected by the corresponding privacy
rules. Our analysis further revealed that these exploits are associated with the underline
conflicts between privacy control and functionalities, which are difficult to resolve.
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Abstract. Multi-hop wireless networks have shown significant benefits in 
wireless communication, but they also face the internal multi-layer security 
threats. Since most security mechanisms require the cooperation of nodes, cha-
racterizing and learning the neighboring nodes’ actions and the evolution of these 
actions over time is vital. This paper proposes a new dynamic and multi-layer 
reputation computation model named CRM that couples conventional layered 
reputation computation model with multi-layer design and multi-level security 
technology to identify malicious nodes and preserve security against internal 
multi-layer threats. Simulation results and performance analyses demonstrate 
that CRM can provide rapid and accurate malicious node identification and 
management, and implement the security preserving against the internal mul-
ti-layer and bad mouthing attacks more effectively. 

Keywords: multi-hop networks, network security, reputation computation 
model. 

1 Introduction 

Security protection in MWNs [1, 2] is closely related to trust. In MWNs, trust can help 
characterize and learn the nodes’ actions and the evolution of these actions over time, 
which facilitates secure cooperation and is vital to construct an efficient and robust 
solution for security-sensitive applications. As a key technique for managing trust, 
reputation computation models have been introduced as effective approaches to cha-
racterize and quantify a node’s behavior. Luo et al. [6] proposed RFSTrust, a trust 
model based on fuzzy recommendation similarity to quantify and to evaluate the 
trustworthiness of nodes. Laniepce et al. [7] proposed a reputation cross-layer system 
which runs on the AP side and makes use of the TCP control mechanisms to evaluate 
node cooperation. Liu et al. [8] proposed a novel reputation computation model to 
recognize selfish nodes much earlier and decrease the convergence time for isolating 
selfish nodes. Although quite a few reputation computation models for MWNs have 
been proposed, all existing reputation computation models are based on the direct 
observation of layer-specifics to evaluate the node’s reputation, thus ignoring many key 
factors of reputation in another layer. Meanwhile, they do not take the bad mouthing 
attack into account. However, multi-layer security mechanisms need to be imple-
mented and enforced for MWNs to resist multi-layer and bad mouthing attacks. 
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This paper designs a dynamic and multi-layer reputation computation model (CRM) 
for the MWNs. To the best of our knowledge, the proposed model is the first dynamic 
reputation computation model with consideration of the multi-layer design [3][4] and 
multi-level security [5] to identify and manage internal malicious nodes. To further 
enhance the reliability and validity of the dynamic reputation computation model, the 
proposed CRM model also adopts a unique combination of node role level relevancy 
and node security level relevancy to evaluate the reliability and credibility of the 
recommendation reputations that can further defense bad mouthing attack. 

2 Multi-layer Dynamic Reputation Computation Model 

This paper considers multi-hop 802.11s WMNs composed of mesh routers (or mesh 
nodes) and mesh clients [12]. For the multi-layer attacks, we consider the jamming 
attack in physical layer, selfish MAC attack in MAC layer, blackhole/grayhole attack in 
network layer. Moreover, the bad mouthing attack is considered.  

This section proposes a novel dynamic multi-layer reputation computation model 
extended from our previous work [11-12]. CRM couples uncertainty based reputation 
computation models [8] [13-15] with multi-layer design [3-4] and multi-level security 
technology [5]. The multi-layer design combines network-layer node forwarding be-
havior observations with MAC-layer channel collision detections and physical-layer 
channel quality measures. Furthermore, CRM also adopts a unique combination of 
node role level relevancy and node security level relevancy to evaluate the reliability 
and the credibility of the recommendation reputations which will further defense bad 
mouthing attack. In CRM, we use a 4-tuple : : : : :( , , , )x y x y x y x y x yb d u aω =  to represent 

node x’s reputation toward y [11] and the final reputation of x toward y at time t0,
0 , :
final

t x yω , 

includes two components: the direct reputation
0 , :
dir
t x yω and the recommendation reputa-

tion
0 , :
rec
t x yω .  

2.1 Direct Reputation Computation 

The direct reputation computation operates independently at every node and each node 
stores it in local reputation database. For neighbor nodes x and y, the direct reputation 

0 , :
dir
t x yω can be denoted as (1). 
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where 1 2 3 1α α α+ + = .
0 , :
Net dir
t x yu − ,

0 , :
MAC dir
t x yu − ,

0 , :
Phy dir
t x yu −  denote x’s uncertainty on y at the 

network, MAC and physical layer respectively, and fP is the node successful for-

warding probability. They can be computed as (2).  

0
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                                                (2) 

where sI is the number of successful interactions between nodes and tI is the total 

number of interactions between nodes. sN is the number of packets node has success-

fully forwarded and tN is the total number of packets needs to be forwarded.  
MAC

colP is the packet collusion probability at MAC layer and can be computed as (3).  
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where link bussyr − is the link busyness ratio. idleλ , sucλ and colλ denote the idle slot length, 

the durations of a successful transmission and a collision, respectively [16, 17].  
Phy

lossP is the packet loss probability caused by the bad channel quality. Phy
lossP  is esti-

mated by modeling the underlying time varying channel as a GE model [3][16] and can 
be computed as (4). 
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                              (4) 

where 0m is the number of the delivered packets and im is the number of loss bursts 

having length i. l gP− and l bP− are the loss occur probability in good and bad states, 

respectively. How to estimate the parameters l gP− and l bP− can be referred to [16] [18]. 
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2.2 Recommendation Reputation Computation 

When there is not enough history interaction data for x to evaluate the direct reputation 
toward y or the direct reputation is not enough for x to make a decision on y, x will start 
a recommendation reputation query by broadcasting a Reputation Query message to the 
neighbors to ask for the reputation opinion on y. Whenever an x’s neighbor receives the 
Query message, it will check its local reputation table whether there is a direct reputa-
tion on y with the uncertainty value of less than 1.0. If there is, the node sends a Reply 
message to x which contains its id, (sl, sc) (sl represents the security level of x’s role and 
sc represents the security class of x’s role)，valid time period and its direct reputation 
on y, else it simply ignores the query.  

Let R represent the set of recommenders ( , 1R n n= > ). After receiving the replies, 

x will execute the recommendation reputation evaluation phase as follows.  
(1) If n=2 and the two recommendation reputations from y and k are conflict, x will 

evaluate the reliability of two recommenders as (5), and then select the recommenda-
tion opinion from the more trustworthy one. 

: 1 1 2 2

/

1

/
/

2

/

/

1 2

1 , [1, ]

,

, [1, ]

1 ,

1

x y

y k x

sc
sc

y k x
y k x

sl

sl

y k x

y k x
sl

sc sc
sc N

N

sl sl
sl sl

N
sl N

sl sl
sl sl

N

ξ β θ β θ

θ

θ

β β

= ∗ + ∗


−
= − ∈


 − ≥ 
 = ∈ − − < 

+ =

               (5) 

where 1θ  and 2θ are the sl and sc relevancy between x and y/k. And, we say y is more 

trustworthy than k, if any of the conditions in (6) hold. 
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(2) If n>2, let 'R ( 'R τ= ) defined as (7) be the new set of the recommenders. Then, 

we allocate an appropriate weight if to each recommendation reputation and calculate 

the 
0 , :
rec
t x yω  by (8). 

{ }:' x iR i THξξ= ≥                                        (7) 
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After obtaining the direct reputation and the recommendation reputation, the dynamic 
final reputation can be calculated following the computations presented in [12]. 

3 Simulation Results and Analysis 

The simulated network consists of 100 nodes located in a rectangular space of size 
1000m x 1000m. Hybrid Wireless Mesh Protocol (HWMP) is used as the underlying 
routing protocol. Traffic source are constant bit-rate (CBR) and each source sends data 
packets of 1024 bytes. A practical scenario is considered where channel loss may be 
caused by attacks, or normal loss events such as medium access collisions or bad 
channel quality. We compare the proposed CRM against the models in [8] and [12], 
denoted by FSLR, and SLCRM, respectively. The performance is evaluated using the 
following metrics: the False Positive Rate (FPR) and the Packet Delivery Rate (PDR). 

We build the experimental environment with bad link/channel quality and dishonest 
recommendations present. As shown in Fig. 1, we can see that the false positive rates of 
all the three models increase when the percentage of the malicious recommendation 
nodes increases and the fastest-growing and the slowest-growing model is the FSLR 
and the CRM, respectively. Because of the effective detection and defending me-
chanism against both bad mouthing and multi-layer attacks proposed in the CRM, its 
superiority is more obvious than FSLR and SLCRM. 

We compare the PDR of the CRM to those of the SLCRM and FSLR. We consider 
the scenario with the honest recommendations and bad link/channel quality. As shown 
in Fig. 2, we can find that: (1) the average PDR of all the three models decreases when 
the percentage of the bad link/channel increases. (2) For FSLR, since it cannot detect 
the attacks launched in other layers in addition to the network layer, it cannot distin-
guish the reason of the packet loss, which will result in more normal nodes being 
classified as misbehaving nodes and then be isolated. Consequently, the average PDR 
of the FSLR falls at the highest pace. (3) The average PDR of the CRM drops slower 
than that of the SLCRM. The SLCRM can only detect the attacks launched in the 
network and MAC layer but ignoring the channel interrupt and packet loss caused by 
the attacks launched in the physical layer, which produces large impacts on the detec-
tion of malicious nodes and makes the average PDR of the SLCRM falls faster than that 
of the CRM . 
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Fig. 1. Average FPR with multi-layer and 
bad mouthing attacks present 

Fig. 2. Average PDR with multi-layer attacks 
present 

4 Conclusions  

This paper have investigated the problems of the internal multi-layer attack and bad 
mouthing attack in MWNs and have proposed a dynamic and multi-layer reputation 
computation model named CRM. Based on the innovative combination of the uncer-
tainty based layered reputation computation model, multi-layer design, multi-level 
security technology and the proposed recommendation reputation reliability evalua-
tion, CRM can effectively defend against the internal multi-layer security attacks and 
bad mouthing attack. Elaborate theoretical analyses have demonstrated that the CRM is 
secure and efficient. Furthermore, extensive simulation results have verified that the 
false positive rate and packet delivery ratio of the proposed CRM reputation computa-
tion model are better than those of the SLCRM and FSLR models. 
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Abstract. Publish-subscribe is a scheme for distributing information
based on interests. While security mechanisms have been added to publish-
subscribe, privacy, in particular anonymous communication is hardly
considered. We summarize security and privacy requirements for such
systems, including an adversary model for privacy. We introduce a con-
struction for publish-subscribe overlays that fulfills the requirements.
Contrary to previous approaches, it does neither presume an online
trusted third party, nor expensive cryptographic operations performed
by brokers. Further, we informally discuss how our requirements are met.

Keywords: privacy, pub-sub, overlay.

1 Introduction

Publish-subscribe decouples producers (publishers) and consumers (subscribers)
of information by introducing super nodes, the brokers. Subscribers announce
their interests to the broker (subscription), while publishers send information
(notification) to the broker. Brokers match and distribute notifications. Privacy
is desirable, e.g., in private car sharing, dating services, or citizen journalism.
In the latter, participants publish and consume news, and might be subject to
repression, e.g., whistleblowers and politically prosecuted people. As a result,
a publish-subscribe (pub-sub) system intended for a deployment in such a sce-
nario has to fulfill several requirements to protect its users. We require a pub-sub
system to comply with anonymity, confidentiality, scalability, integrity, authen-
ticity, and availability: participants are anonymous w.r.t. an adversary if they are
unidentifiable for the adversary within a set of participants, the anonymity set
[9]. Information must be transmitted secretly between sender and receiver. The
system must remain scalable in terms of number of supported nodes. Alteration
of a message must be detectable by the receiver (integrity). Only authorized par-
ticipants can send authentic notifications and can read notifications. The system
must maintain availability in the presence of node failures and attacks.

We define privacy in pub-sub as the combination of participant anonymity
and confidentiality. Both requirements are closely related, as the lack of one can
lead to a violation of the other one [11]. Privacy adversaries can be structured
w.r.t. their capabilities: a passive adversary only observes messages, while an

J. Lopez, X. Huang, and R. Sandhu (Eds.): NSS 2013, LNCS 7873, pp. 685–691, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



686 J. Daubert et al.

active one can alter. An adversary with knowledge about pseudonyms or keys is
an insider. Furthermore, it can have either global or local topology knowledge.
Finally, the internal adversary can collude with other internal adversaries. We
focus on an active insider with full topology information on the communication
network, but it can only observe its own communication channels. It is strong
as it can act adaptively, exploit the topology information, and force the system
to react by sending valid messages.

A pub-sub system complies with subscriber anonymity, or publisher ano-
nymity respectively, w.r.t. an adversary and an attribute, if the subscriber can-
not be identified within the anonymity set. A pub-sub system complies with
notification confidentiality, or subscription confidentiality respectively, w.r.t. an
adversary, if the adversary does not learn the attribute, the notification, or the
subscription content.

Several approaches for realizing privacy-preserving pub-sub schemes exist
[1–3, 7, 8, 10, 12–15]. Most approaches focus on confidentiality [1–3, 7, 8, 10,
12, 14], but do not consider anonymity [16]. To ensure confidentiality, many
contributions encrypt information [2, 3, 7, 8, 10, 12, 15], leverage a private
matching scheme [1–3, 7, 8, 10, 12], and describe key management [12, 14, 15].
However, approaches [2, 8] assume an out-of-band key exchange. Moreover, ap-
proaches [2, 3, 8, 13] even require the knowledge of the cryptographic keys of
participants. This violates anonymity as well as space decoupling, a functional
pub-sub requirements that decouples publishers from subscribers. Approaches
[10, 14] provide space decoupling, but depend on a central, online Trusted Third
Party (TTP), which is a Single Point of Failure (SPoF) that violates availabil-
ity and scalability. The key exchange protocols in [2, 3, 13] do not scale with
the number of participants. Approaches [3, 12] only consider honest but curi-
ous brokers, but not malicious publishers and subscribers. Further, [15] is fully
distributed, and therefore scalable as well as free of SPoFs, but does not suffi-
ciently describe the membership management. Finally, multicast protocols, e.g.,
PIM-SM [4], can be used to establish distribution trees and scale well, but do
not provide anonymity and confidentiality.

Summarizing the related work, none of the articles provides anonymity to
both—publisher and subscriber—and scalability. Therefore, none of those sys-
tems achieves the listed requirements—most dominantly not anonymity, confi-
dentiality and scalability at once.

In this paper, we bridge the gap between privacy by means of anonymity and
confidentiality, as well as scalability for pub-sub systems. The main contribution
of our article is a scalable, anonymous and confidential method for pub-sub
overlay construction, which is described in the following Section. Moreover, we
discuss our solution along these requirements and the attacker model in Section
3. Finally, Section 4 concludes the article.

2 Privacy-Preserving and Scalable pub-sub Overlay

We create pub-sub overlay topologies that enable efficient privacy-preserving
notification distribution from publishers to subscribers. We assume a connected
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basic overlay network G (lowest layer of Fig. 1), e.g., established via SCAMP [6].
This basic overlay provides each node with a neighborhood set, as well as confi-
dential links between neighbors. On top, we construct a mesh network Ma per
attribute a. Each mesh spans a subset of overlay members (middle layer of Fig.
1). The pub-sub overlay is a union of all meshes. The top layer in Fig. 1 de-
picts the desired notification flow. To establish mesh Ma, we use advertisements
and subscriptions prior to sending notifications. Though, we present the overlay
construction with a single attribute, it is generalizable to multiple attributes.

We use the following notations: the set of publishers P , subscribers S, for-
warders F , and Sa ⊆ S for the set of subscribers interested in an attribute a ∈ A.
Respectively, Pa ⊆ P denotes the set of publishers publishing attribute a. The
graph G := (V,E) as basic overlay with participants V := P ∪ S ∪ F and edges
E. Further, meshes Ma := (VM ⊆ V,EM ⊆ E) as subgraphs in overlay T for
an attribute a and a subset of edges EM ⊆ E.

2.1 Overlay Construction

The overlay construction is split in an advertisement phase and a subscription
phase. We use an offline TTP for the initial distribution of key material, which
is used for confidentiality and authenticity. Confidentiality is achieved by using
symmetric keys. Authenticity and message integrity are achieved using signa-
tures and certificates issued by the TTP. Each participant initially connects to
the TTP and presents its desired attributes. If the TTP grants access to the
participant, the TTP releases the corresponding key material.

Cryptographic Primitives. The TTP owns a secret key skTTP and a public key
pkTTP . Furthermore, we use the following functions: keyGen(a) '→(ska, pka,Ka)
generates a key triple: the signature key ska for attribute a, the signature verifica-
tion key pka, and the symmetric keyKa. enc(m,K) '→ {m}K encrypts messagem
with key K to cipher text {m}K . sign(m, sk) '→ msk

sig signs a message m using a

cryptographic hash function and the private key sk and creates the signaturemsk
sig .

cert(pk, t, skTTP ) '→ certpk returns certpk = (pk, t, sign(pk||t, skTTP )), a certifi-
cate for public key pk and an associated token t. Here, pk||t denotes the concatena-
tion of pk and t. Function verify(m,msk

sig , pk) '→ true or false uses pk to verify that

signature msk
sig is a valid signature of m that was created with the secret key sk.
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The TTP prepares keys and certificates: for each attribute a ∈ A, it executes
keyGenA and stores the output triple. For certificates, the TTP obtains ta =
enc(a,Ka), creates certa by executing cert(pka, ta, skTTP), and stores it together
with the triple.

Advertisement Phase. We spread the information about attributes and where
to obtain them in the basic overlay G. Further, we have to ensure that only
legitimate subscribers for a are able to link a to the message due to notification
confidentiality. For that, every new publisher need to contact the TTP to retrieve
the keys for a: (ska, pka,Ka, certa). Every new subscriber just obtains (Ka).

Each advertisement for attribute a contains a token ta, so that subscribers can
match their interest against it. Thus, only legitimate subscribers in possession of
the respectiveKa can link ta to a. To spread the information about a, a publisher
floods G by sending advertisements to its neighbors in G. As ta is identical for all
publishers in possession of the same a, every forwarder can suppress duplicates.

To prevent overlay partitioning, forwarders must be able to distinguish dupli-
cates from the same publisher and two different publishers p1, p2 ∈ Pa. However,
publisher IDs contradict anonymity. Random time-to-live counters would allow
adversaries to lie. This would enable them to capture more messages and to
partition the overlay.

To overcome this problem, we use hash chains. They serve as transaction
pseudonyms per advertisement. Hash chains allow the selection of the shortest
path, while preventing adversaries from lying. Given a cryptographic hash func-
tion H(h) = h′ that takes h as input and outputs h′, a hash chain is defined
by all values hi derived by repeatedly applying H to its output. The function
isChain tests if two hash values h1 and h2 belong to the same hash chain and
have a maximum distance dmax :

isChain : (h1, h2) '→ {true, false} :

∀i∈{0..dmax} : ifH(i)(h)
?
= h′ ∨H(i)(h′)

?
= h '→ true, otherwise false

The parameter dmax is equivalent to a time-to-live and has to be set according
to the expected maximum diameter of G. The publisher generates a random
h from the output domain of H and attaches it together with token ta to an
advertisement message (ta, h). Forwarders keep routing tables, containing triples
(ta, h, v), where v is the neighbor from which the advertisement has been received
from. If a forwarder f has not received token ta before, f stores it in the routing
table as (ta, h, v) and forwards (ta, h

′) with h′ := H(h) to all other neighbors.
Otherwise, f already has a triple (ta, h2, v2). Then it checks if the output of
isChain(h, h2) returns true: hence, both advertisements belong to the same hash
chain. Further, in case h is a predecessor of h2 in the hash chain, a shorter path
has been discovered and f replaces (ta, h2, v2) by (ta, h, v). If isChain(h, h2)
returns false , h and h2 belong to different hash chains. Thus, another publisher
for the same ta has been found, and f stores (ta, h, v) in the routing table.

Tokens must be signed, so that an adversary cannot create arbitrary advertise-
ments and floodG. For that, the publisher executes sign(ta, ska) and obtains ta

ska
sig .
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The advertisement is then extended to message (ta, ta
ska
sig , certa, h). Every partic-

ipant verifies advertisements by checking certa and ta
ska
sig . Hence, participants can

detect non-authentic advertisements as well as duplicates.

Subscription Phase. Subscribers identify advertisements of interest, and estab-
lish distribution paths for notifications via subscription messages. The result is
an overlay mesh Ma.

For that, subscribers compare the token tx from an advertisement triple
(tx, h

′, v) to their attributes of interests. A subscriber encrypts each own a with
the corresponding key Ka and compares the result ta with tx. Once the tx from
the triple is confirmed to match ta, the subscriber s joins the mesh Ma via a
subscription.

Subscriptions are sent back the reverse path of the advertisements. A sub-
scriber adds tuple (ta, s) to the subscription table, where s is the subscribing
node itself. Moreover, it sends a subscription message (ta) towards the origin
of the advertisement. Whenever a forwarder f receives a subscription (ta) from
neighbor v, f updates its subscription table with the tuple (ta, v). If there is no
subscription entry (ta, vx) for any neighbor vx, f forwards the subscription. For
that, f retrieves all records (ta, hm, vm) matching ta from the routing table and
sends subscription (ta) to each neighbor vm.

In case there are multiple publishers for the same attribute, additional mea-
sures are required to ensure mesh Ma is connected. Let us assume two publishers
p1 and p2, and p2 joins after p1. Then p2 receives an advertisement from p1 via
a neighbor v. Now p2 subscribes towards p1 via v, and therefore establishes
a directed connection between p1 and p2 in Ma. In case a node leaves the sys-
tem, the remaining nodes repair the mesh Ma with unsubscribe and unadvertise
messages.

2.2 Content Distribution

After securely establishing the distribution overlays Ma per attribute a, noti-
fications need to be transported. A notification for attribute a originated by
a publisher p contains token ta as routing identifier and some content m. The
notification is flooded in the pre-established mesh Ma. For that, p, and every
subsequent forwarder, looks up all records matching ta in its subscription and
routing tables, and sends the notification to each vx, except the one the notifi-
cation was received from.

While ta does not leak any plaintext information, m is accessible by every
traversed node. Hence,mmust be protected to ensure notification confidentiality.
Both roles, Pa and Sa, share a symmetric key Ka. Publisher p encrypts m using
Ka and obtains {m}Ka. Hence, a notification (ta, {m}Ka) does not leak any
more information than an advertisement. Finally, the same signature scheme as
for advertisements is applied to obtain an authentic notification (ta, {m}Ka, sig),
with sig = sign(ta||{m}Ka, ska).
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3 Discussion

A privacy-preserving pub-sub system has to comply with the requirements de-
fined in Section 1 to be applicable to the citizen journalism scenario. We analyze
our pub-sub overlay with respect to these requirements. We assume the TTP to
be honest w.r.t. not disclosing information.

Anonymity. Our system provides publisher and subscriber anonymity. The ad-
versary has full topology information on G. For subscriber anonymity, we assume
a single adversarial publisher that publishes one attribute. Hence, the distribu-
tion mesh is a tree and the adversary is the root. As subscriptions are merged
by branch nodes, at most one subscription per branch reaches the adversary.
Thus, the adversary cannot distinguish subscribers from other nodes within each
branch. Hence, the anonymity set size of a subscriber in a branch is the size of
this branch. For publisher anonymity, we assume a single adversarial subscriber
that subscribes only to one attribute. Further, the advertisement is received via
the shortest path first. With G, the adversary can construct a tree from all
shortest paths starting on its own node to all nodes. Hence, the anonymity set
size of a publisher in a branch is the size of this branch.

Confidentiality. Nodes that are neither publisher nor subscriber cannot decipher
messages. We use a symmetric crypto-system, which provides security to known
plaintext attacks for end-to-end encryption. Still, due to decoupling in pub-sub
[5], if a notification, or advertisement respectively, matches a subscription or not
can be always learned [10] by observation.

Integrity and Authenticity. Our system provides message integrity and authen-
ticity for advertisement and notifications by using digital signatures. However,
subscriptions are not authentic. Moreover, an adversary in possession of a cor-
responding key may alter foreign advertisements and notifications.

Scalability A scalable system grows at most proportionally with the number of
participants in terms of resources per participant. The required node memory for
the basic overlay depends on the size of its neighborhood and remains constant
[6]. Hence, the required memory for the overlay grows proportionally with the
number of attributes.

Resilience. A robust system can compensate node failure or provide at least
graceful degradation. The presented pub-sub construction method represents a
Peer-to-Peer (P2P) network without online SPoFs and bottlenecks, as each peer
can take over the role of the other ones.

4 Conclusion

We presented the citizen journalism scenario, stated security requirements for
pub-sub systems in such a scenario, and categorized privacy adversaries. Further,
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we analyzed related approaches, and introduced our complementary construction
to privacy-preserving pub-sub overlays. Finally, we discussed our construction
w.r.t. the requirements. The construction protects participant anonymity, keeps
information confidential, scales, and does not depend on central structures except
the offline TTPs. Therefore, our work is applicable to citizen journalism. Future
work will reduce the dependency on the offline TTPs and study the anonymity
of different overlay types.
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9. Pfitzmann, A., Köhntopp, M.: Anonymity, Unobservability, and Pseudonymity
- A Proposal for Terminology. In: Federrath, H. (ed.) Anonymity 2000. LNCS,
vol. 2009, pp. 1–9. Springer, Heidelberg (2001)

10. Raiciu, C., Rosenblum, D.S.: Enabling Confidentiality in Content-Based Pub-
lish/Subscribe Infrastructures. In: SecureComm, pp. 1–11. IEEE (August 2006)

11. Schiffner, S., Clauß, S.: Using linkability information to attack mix-based
anonymity services. In: Goldberg, I., Atallah, M.J. (eds.) PETS 2009. LNCS,
vol. 5672, pp. 94–107. Springer, Heidelberg (2009)
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Abstract. In this work, we provide an evaluation of the fitness of a ci-
pher implementation for automated, low overhead, Side Channel Attack
(SCA) countermeasure insertion through instruction re-scheduling. This
evaluation is automated by means of an extension to the Clang/LLVM
compiler framework and is thus amenable to be performed on a generic
cipher implementation in C.
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1 Introduction

As electronic devices become increasingly interconnected and pervasive in con-
sumer commodities, security, trustworthy computing, and privacy protection
have emerged as worthy challenges for research and industrial activities. In par-
ticular, an effort towards designing of mathematically secure cryptographic prim-
itives and engineering their effective implementations is currently in force.

Cryptographic designs are based on strong mathematical problems and tra-
ditionally it is assumed that the secret values (i.e., cryptographic keys or confi-
dential configuration parameters) are manipulated in such a way not to expose
any information except clearly designated inputs and outputs. By contrast, the
secret parameters are securely held in a portion of the device memory without
direct read access. However, even if the security margin warranted by the math-
ematical properties of the cipher is adequate, the security of the system can
be undermined by information leakage via environmental parameters (i.e., by
side-channel leakage). It is effectively proven that gaining physical access to an
embedded device enables an attacker to recover sensitive information exploiting
both implementation weaknesses of the cryptographic operations and specific
features provided by the underlying hardware platform [7].

For instance, on-line measurements of the power supplied-to or EM radiations
emitted-from an embedded device contain pieces of information about the op-
erations being performed and the data being processed [4]. Attack techniques,
commonly known as passive side-channel attacks, are able to retrieve the key
from a secure device [3, 7, 9] exploiting this information. The key observation is
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that the operations combining the key material with the known input usually act
bitwise: it is thus possible to regard them as independent one from the other and
model their behavior separately. Thus, the attacker selects an operation combin-
ing a portion of the key, kpart, with a the input and computes all the possible
results of this operation for a large set of input values, In, and all the possible
values taken by kpart. Subsequently, the input values in In are fed to the actual
circuit (the key of which is unknown), and the side-channel information (power
consumption, EM emissions) is measured. Finally, the attacker obtains predic-
tions for the value of the side-channel parameter during the computation for all
the fixed value of kpart, employing the previously computed results, comparing
these predictions with the actual measurements through an appropriate statisti-
cal tool (e.g., Pearson’s linear correlation coefficient). The prediction which turns
out to be the best fit to the actual side-channel measurement is the one relying
on the correct hypothesis on the value of the selected key portion kpart. One
crucial aspect of the aforementioned work-flow is the implicit assumption that
the operations executed by each run of the algorithm are the same and computed
in the same sequence. In such a way, the profiling obtained through measuring
the device will yield a correlation with the a-priori predicted consumption as
accurate as possible.

In this paper, we tackle the security of software implementations of crypto-
graphic primitives, devoting our attention to their protection. It is common to
employ software implementations either as a complement to hardware ones or as
a safety fallback, in case the security of the hardware one is breached. In particu-
lar, we examine the possibility of exploiting the features of the data dependency
graph of a cipher implementation to derive different, semantically equivalent,
schedules for it. This in turn implies the possibility of employing different valid
schedules for the cipher at runtime, effectively increasing the difficulty of mod-
eling the execution flow of the cipher.

This paper proposes the first security evaluation of block cipher algorithms in
terms of their schedulability properties formally analyzing their data dependency
graph structures and individuating the maximal set of instructions amenable to
rescheduling. This provides an effective improvement with respect to the state-
of-the-art, which only contemplates some examples of ad-hoc rescheduling of the
AES cipher, performed by hand by the developer [9], and the insertion of random
length delays through dummy instructions [6]. Exploiting these reschedulability
properties, we propose a new way to raise the resistance against side-channel
attacks with a lower overhead than the current state-of-the-art techniques. To
provide practical figures supporting our approach, we analyzed different imple-
mentations of the AES cipher, characterizing them in terms of reschedulability.
The schedulability analysis is performed in an automated fashion by means of
an extension to the Clang/LLVM compiler framework, following a live trend in
current research which employs compilers to provide a sound security margin for
secure cipher implementations [1,2,5]. To the end of evaluating the actual perfor-
mance hit on a real world architecture, we report the distribution of the timings
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achieved by different (and thus possibly not performance-optimal) schedules of
the AES cipher on an ARM architecture platform.

The work is organized as follows: in Section 2 we describe our compiler ex-
tension to the end of performing the analysis, and in Section 3 we provide the
experimental evaluation for our case study (the AES cipher) through comparing
different implementations and target architectures. Finally, Section 4 summa-
rizes the contribution of the paper.

2 A Compiler Extension for SCA Resilience

The Clang/LLVM compiler framework [8] is a modular compiler toolchain de-
veloped as an open source project, providing a well-structured and extensible
infrastructure to developers. Clang/LLVM is rapidly reaching an industry stan-
dard status, as it is widely employed and supported by significant players in
innovation. We chose to integrate our schedulability analysis in this framework,
so that the resulting code can be translated into actual executable code by a pro-
duction grade compiler framework, yielding reliable results. The Clang/LLVM
compiler is structured following the canonical structure of a compiler pipeline:
the first stage is a front-end processor (Clang), which translates C/C++ code
into a source-language-agnostic Intermediate Representation (IR). The IR is
processed by the middle-end stage, which performs architecture-agnostic opti-
mizations on it, (e.g., dead code elimination), obtaining a refined version of it.
The last stage, known as the back-end, tackles the architecture dependent steps
of the code emission up to the emission of the assembly code for the desired
target architecture.
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Fig. 1. LLVM Backend Pipeline

Figure 1 provides an overview of the LLVM backend stage, highlighting the
pass we add to the pipeline thanks to the modular structure of LLVM. The first
portion of the backend takes care of performing target dependent optimizations
(e.g., strength reduction) and the instruction selection phase, which maps the IR
instructions into actual machine instructions exposed by the ISA of the target
architecture. We chose to perform our schedulability analysis and rescheduling
pass right after the instruction selection pass, as it is the last point in the
compiler backend where there are no physical resource-bound dependencies,
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Algorithm 1. ComputeDepth
Input: G – basic block DAG; N – node
Output: G – nodes of the input DAG are updated w/ depth values

1 maxDepth ← 0
2 foreach pred ∈ Predecessors(G,N) do
3 curDepth ← Depth(G,N) + Latency(G,N)
4 if IsAntidependence(G, pred,N) then curDepth ← curDepth+ 1
5 if curDepth > maxDepth then maxDepth ← predDepth

6 SetDepth(G,N,maxDepth)
7 foreach succ ∈ Successors(G,N) do
8 ready ← true
9 foreach pred ∈ Predecessors(G, succ) do

10 if not HasValidDepth(G, pred) then ready ← false
11 if ready then ComputeDepth(G, succ)

(i.e., the input instruction flow has not yet been constrained by both register
and functional unit association). The instructions composing the program flow
at this stage have the maximum mobility as they are described employing
an infinite number of registers, allowing us to explore fully the rescheduling
possibilities (Mobility Evaluation Pass). Subsequently, our modified compiler
pipeline should perform the Pre-register Allocation Scheduling pass. This pass
can reduce the amount of randomness introduced by our rescheduling pass: we
explore this performance-to-security tradeoff in our experimental evaluation.
After running the two aforementioned new passes, the compiler computes the
register allocation (RA) binding virtual registers to the actual target architec-
ture registers, minimizing the register spill and fill actions. Since the RA does
not necessarily enforce a single possible execution order for the instructions (as
some of them can be run in a mutually interchangeable order even after RA),
the pipeline pass following the RA performs a post-RA scheduling, effectively
producing a linear sequence of instructions, trying to minimize pipeline stalls.
The final pass of the compiler backend stage is the actual assembly code emission.

Instruction Mobility Evaluation

The compiler pass added to perform the schedulability analysis (see Figure 1)
takes as input the CFG of the program routine to be analyzed and acts over
each basic block. For each basic block our pass builds a directed acyclic graph
(DAG) with data dependency information to compute the sets of independent
instructions. Each incoming arc is labelled with the latency needed to produce an
operand value for the destination node, and the outgoing arcs are labelled with
the instruction latency of the node. Starting from a virtual root node of the DAG
(to have a single entry point), for each node we compute its depth as the longest
path from the entry point. Let Id be the set of instructions at depth d: it follows that
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|Id|gives us themobility of each element in Id and

⎛⎝ ∞∏
j=1

|Ij |!

⎞⎠ is thenumber ofpossi-

ble reschedules of the basic block instructions.Algorithm1reports the pseudo-code
of the procedure employed to compute the depth of a given node w.r.t. the entry
point. A valid schedule for the considered basic block is then computed through
randomly selecting a possible permutation among each set Id. In the subsequent
compiler passes, the virtual registers will be mapped to physical ones and two or
more instructions with the same depth in a basic block will be concurrently exe-
cuted in case the underlying architecture is equipped with enough resources. The
pre-register allocation pass (see Figure 1) re-arranges the code trying to limit the
register pressure within the maximum number of registers available in the target
architecture respecting the constraints on the functional units. The register alloca-
tion pass then will map virtual registers to physical ones, moving physical register
values to memory when needed. The post-register allocation pass refines the exe-
cution performance of each basic block taking into account the pipeline structure
of the target processor thus, swapping some instructions to reduce the number of
stalls.

3 Experimental Results

As case study we employ two AES-128 implementations: the single S-Box NIST
reference implementation and the 4 T-Tables OpenSSL one. We evaluated the
reshuffled algorithms on two different ARM architectures. The first platform is
a Pandaboard ES: a high end embedded development platform equipped with
a Dual-core ARM 1.2 GHz Cortex-A9 MPCore and 1 GB of DDR2 RAM. The
board runs Linaro Linux 12.11 compiled with the armv7l ABI. The second plat-
form is the Pogoplug v2: a plug computer-type system equipped with a Marvell
Feroceon 88FR131 based on an ARM 926 CPU clocked at 1.2 GHz and 256 MB
of RAM. The board runs ArchLinux compiled with the armv5tel ABI.

The first step was to analyze the schedulability of both implementations of
the AES: we considered the canonical loop based implementation and two vari-
ants where the first and second iterations of the loop were peeled (i.e., removed
from the loop body and inserted as a straight-line code block in front of it). The
structure of block ciphers makes them vulnerable mostly in the first two itera-
tions (round) of the main loop. We refer to the aforementioned variants of the
AES implementations as no-lp, 1-lp and 2-lp. The reschedulability analyses were
performed before the RA pass took place (preRA) and after it did (postRA). In
the postRA analysis, we considered instruction shuffling to be performed also
before the preRA phase, and the preRA rescheduler acting to rearrange the in-
structions to mitigate performance penalties. Fig. 2 reports the results of the
schedulability analysis. The preRA analysis shows that the instruction mobility
of the S-Box version is higher than that of T-Table one. This is reasonable as the
former operates independently on the 16 AES state bytes. The latter behaviour
forces tighter data dependencies among the instructions, thus reducing the num-
ber of viable schedules. A key observation is the fact that, analyzing the mobility
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Fig. 2. Histograms of instruction mobility for the two AES implementations: pre RA
colours are employed to point out their correspondent postRA analysis (blue=no peel,
green=1 round peeled, red=2 rounds peeled). postRA analyses are performed without
preRA shuffling (light), with preRA shuffling only (middle), and with preRA shuffling
and the preRA scheduler from LLVM (dark).

of the instructions postRA, they do not exceed mobility 5. This decrease in the
amount of viable schedules is to be ascribed to the constraints imposed by the
use of a finite register set. We note that the postRA rescheduling may also be
done at runtime at a low cost, as the actual hardware resource allocation has
already been performed.

We also evaluate the performance overhead caused by rescheduling, by en-
crypting one million plaintexts for each variant to be tested, and computing the
average execution times over 30 runs with different schedules. Table 1 reports
the encryption throughput obtained on each platform. Except for the no-lp case,
where the performance overhead is non negligible, protecting one or two rounds
of the cipher through rescheduling still yields more than satisfactory through-
put. Moreover, performing preRA and postRA shuffling yields a more efficient
solution on our target platforms. We ascribe this, albeit minimal, speedup to
the fact that the shuffled versions of the ciphers allow the values involved in the
computation to be kept hot in the CPU caches, thus yielding a small speedup.
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Table 1. Average throughput (MB/s) of the shuffled AES binaries

Transformation ARM 926 Cortex-A9
S-Box T-Table S-Box T-Table

Baseline 5.59/5.62/5.66 14.34/14.46/14.72 7.62/8.13/8.64 22.34/20.60/21.75
Post-RA Shuffle 5.54/5.59/5.65 14.26/14.47/14.65 7.65/8.11/8.61 20.62/20.45/21.20

Full Shuffle 3.74/5.21/5.20 12.59/13.49/14.04 5.88/7.61/7.71 22.21/18.68/24.72
Full Shuffle 3.79/4.18/4.29 16.66/16.14/16.03 6.69/6.53/6.62 25.12/21.13/23.10and Pre-RA resched

4 Conclusions

We presented a compiler-based framework to provide SCA countermeasures
based on the hiding-in-time principle exploiting the instruction re-scheduling
of an encryption primitive. The approach has been implemented in the
Clang/LLVM compiler framework, and the experimental evaluation has high-
lighted how the proposed analysis allows to exploit the instruction mobility to
realize effective SCA countermeasures with a negligible performance impact.
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Abstract. We propose a detection mechanism that takes the advan-
tage of virtualized environment and combines both passive and active
detection approaches for detecting bot malware. Our proposed passive
detection agent lies in the virtual machine monitor to profile the bot
behavior and check against it with other hosts. The proposed active de-
tection agent that performs active bot fingerprinting can send specific
stimulus to a host and examine if there exists expected triggered behav-
ior. In our experiments, our system can distinguish bots and the benign
process with low false alarm. The active fingerprinting technique can
detect a bot even when a bot does not do its malicious jobs.

Keywords: botnet, fingerprinting, virtual machine, intrusion detection.

1 Introduction

Generally, bot behavior can be divided into two categories: network activity
and host activity. Correspondingly, there are two types of intrusion detection
systems (IDS): network-based and host-based IDS. The former one targets on
bot’s network activities observed from the network; while the latter one focuses
on the information collected directly from the host. They target on the following
entities to detect malware: files, Windows registries, DLLs and networks.

One limitation of both detectors is their passivity. We can only detect bots
after observing particular bot activities. Another issue is that bot may change it
behavior if it detects a detector. In order to overcome the above issues, we pro-
pose a detection mechanism that takes the advantage of virtualized environment
with combining both passive and active approaches.

The proposed Passive Detection Agent lies in the virtual machine monitor
to examine and track the tainted data used by a suspicious host and check
it against the bot behavior profile. It provides a transparency to the monitored
host. Moreover, it can monitor multiple guest hosts simultaneously. The proposed
Active Detection Agent that performs active bot fingerprinting can send specific
stimulus (derived from the bot behavior profile) to a host and examine if it is a
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bot by observing whether certain expected behavior is triggered by the stimulus.
Our experiment shows it can diminish the problem of passivity and is a good
tool to evaluate a host without installing additional detection agents.

2 Related Work

Botnet Detection. BotHunter [2] constructs a botnet infection dialog model
and uses it to detect the intrusion activities. BotSniffer [3] detects bots within the
same botnet based on their spatial-temporal correlation and similarity. BotMiner
[4] performs cross cluster correlation to identify the host that shares similar
behavior patterns. Panorama [6] traces the information flow of predefined taint
data in the host, and observes how and when a malware process leverages them.
While BotTracer [5] detects malicious behavior by observing the process with the
help of virtual machine technique, API hooking and network monitoring tool.

Virtual Machine Introspection. Garnkel [10] proposed a detection archi-
tecture using VM introspection (VMI). They provide six security policies and
monitor them with a modified VMware Workstation. ReVirt [11] targets on mov-
ing security logging mechanism into a VM. Chen et al. [12] stated that secure
logging and intrusion detection could benefit from the virtualized environment.
A formal model [13] of VMI is even proposed for describing VMI techniques.

Fingerprinting. OS fingerprinting was developed by using the different config-
urations of each OS’s TCP protocol implementation to detect the OS version of
a remote host. Today, fingerprinting technology has been widely used in OS Fin-
gerprinting, application fingerprinting and vulnerability fingerprinting. In this
paper, we adopt the concept of fingerprinting and introduce a profiling system
in the virtualized layer for bot fingerprinting.

3 Monitor and Detection Approach

3.1 Monitor the Guest OS in a Virtualized Environment

We implement the detection agents in the visualization layer to monitor the guest
behavior through the VMM so that we can monitor it without modifying the
guest OS or installing additional software, and reduce the risk of being detected
by the malware. In addition, the detection agents can monitor all above guest
OSes at the same time without affecting the guest OS performance. However,
such virtual machine introspection (VMI) approach must consider the semantic
gap between the OS-level semantics and low-level virtual machine observations.

3.2 Learning-Based Bot Behavior Profile

The initial bot process may create other processes to performmalicious activities.
Our goal is to trace all these bot processes’ behavior and generate a bot behavior
profile. We adopt a learning approach to generate the profile from real world bot
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samples. In our observation, usually a bot needs to access or modify specific files
or Windows registries to run the bot. Hence, we build the bot’s behavior profile
by using the file/registry access activities of the bot processes.

We define an activity as a system API call related to a file/registry access. The
proposed PDA will generate a bot process activity log that contains the activities
of the processes of a bot variant. Based on a set of collected activity logs of a
bot family, we then generate a bot behavior profile that contains the common
activities from each activity logs. Then, we collect the bot behavior profile of
different bot families to build a bot (malware) behavior database.

3.3 Passive Bot Detection

Based on the database, we identify a set of files/registries subject to monitor
and mark them tainted, and then the PDA checks unknown processes against
the tainted objects in the runtime. If any process accesses the tainted objects, it
is marked suspicious. Then immediately, the PDA starts to trace the activities
of this process and generates the corresponding activity log.

The PDA then analyzes the collected activity log against the bot behavior
profile database to determine the abnormality. We calculate the Jaccard similar-
ity coefficient between a bot behavior profile and the activity log to measure the
similarity of them. The Jaccard value for file, αJ (i, k), and for registry, βJ(i, k)
are computed for a possible bot k in guest host i based on the process activity
log Li and the bot behavior profile Lk.

α(i, k) =
# of tainted file access activity in Li ∩ Lk

# of tainted file access activity in Li ∪ Lk
(1)

β(i, k) =
# of tainted registry access activity in Li ∩ Lk

# of tainted registry access activity in Li ∪ Lk
(2)

If both values are 1.0, it implies the guest i has exactly the same behavior with
bot k. Proper thresholds αk and βk should be set for effective detection. Hence,
if α(i, k) ≥ αk and β(i, k) ≥ βk, we say the host i is infected by bot k.

3.4 Active Bot Fingerprinting

We observe a bot has certain hidden behavior only when it is properly triggered
[7]. We derive such active fingerprinting from the bot behavior profile as follows.

1. We list the I/O-related activities invoked by the bot process in terms of API
calls with the input parameters and output results.

2. Construct the bot dataflow digraph where a vertex is an API call and a
directed edge from vertex u to vertex v indicates the relationship that an
output value of u is passed to v as an input parameter.

3. From 2), generate a fingerprint that contains stimulus and response in pair.
The stimulus is set to the API call u and the response is set to the API call
v. If we change the value, theoretically it will be passed to v.
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4. From 3), we perform the active bot fingerprinting through the stimulus (i.e.,
u), and then observe if v is triggered. In our experiments, a stimulus is most
likely a file change, a registry change or network packet received.

4 System Design and Implementation

Our system (Fig. 1) consists of Passive Detection Agent (PDA) and Active De-
tection Agent (ADA) that are implemented as VMM plugins.

PDA Process Tracing Module. Before tracing a process, PDA acquires the
process information of the guest OS sent by the PDA driver. It includes process
name, PID, CR3 value and the loaded modules. In Fig. 2, the module gets the
current CR3 value (step 1) of the current process. If the target process (specified
by CR3, PID or process name) is executing (step 2), the current status of CPU
(step 3) and memory (step 4) are retrieved for further inspection. Further, we
call the API hooking module (step 5) to record the process behavior.

PDA API Hooking Module. API hooking [1] modifies the API address in
the DLL file to a self-defined function for call interception. Our API hooking
is stealthier by obtaining the call information through the virtual hardware.
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Table 1. The number of API calls of collected bot families and the benign IE

File Registry Others
Create Copy Delete QueryValue CreateKey SetValue LoadLibrary Others

Korgo 8.6 1.0 0.0 131.3 12.0 10.7 24.0 5.9
Pinfi 16.5 1.2 0.1 189.6 19.5 20.2 25.9 6.5
Sality 12.3 0.8 2.3 466.3 18.1 388.0 23.0 13.6
Virut 7.0 1.0 0.0 119.1 16.7 14.4 23.8 5.2
IE 163.0 0.0 8.0 905.0 34.0 39.0 40.0 3.0

We monitor the EIP register to check if target API is called (step 6) and in-
voke the callback function (step 7). We obtain the inputs and outputs of the
API from memory (step 8–9) and the EAX register (step 10–11). Three types of
API are hooked: (1) File: CreateFile, ReadFile, WriteFile, CopyFile; (2) Reg-
istry: RegOpenKeyEx, RegQueryValueEx, RegSetValueEx, RegCreateKeyEx,
RegDeleteKeyEx, RegDeleteValue; (3) Other: LoadLibrary, OpenProcess, Cre-
ateProcess, CreateProcessInternal, WinExec, ExitProcess.

Active Detection Agent (ADA). ADA contains a fingerprint generator and
an examiner. Generator generates bot fingerprinting, and the examiner instructs
the ADA driver to initiate the stimulus of a fingerprint and checks if the expected
response is triggered. It can be performed periodically to check the bot infection
situation, even when a bot is in its incubation period.

The PDA and ADA implementation (Fig. 1) is based on TEMU [8], a dynamic
taint tracing platform built upon QEMU [9]. Xerces-c is used to generate and
parse XML-based behavior profile. The host OS is Ubuntu 10.10, TEMU 1.0 is
used with kqemu 1.3.0pre11, and the guest OS is Windows XP SP3. We also
implement new features in TEMU including a multi-process tracing mechanism,
parameters retrieval function for Windows API, and an event logging subsystem.

5 Experiment

The bot samples are provided the National Center for High-Performance Com-
puting, Taiwan. We choose four families of botnet: Virut, Sality, Korgo and
Pinfi. For each family, we have 10 variants that are the largest in the database.
We also use Windows Internet Explorer (IE) as an example of benign process.

5.1 Learning-Based Bot Behavior Profiling

We infect vulnerable guest OS with bot samples and instruct the PDA to record
the bot-related activities for 2 minutes. For generating the behavior profile for a
bot family, we extract the common entries form the activity logs of the variants
of this family. We expect that different bot families should have certain distinct
behavior. Table 1 shows the number of file/registry accessed in our samples.
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Table 2. The similarity coefficient of bot variants using file/registry related API

Korgo Pinif Sality Virut

Family Member (File) (.1879, .0666) (.0131, .0466) (.1107, .0627) (.2269, .0657)
Family Member (Registry) (.2629, .0690) (.2050, .0916) (.3979, .1910) (.2320, .0654)
with IE (File) (.0323, .0132) (.0394, .0154) (.0251, .0138) (.0365, .0119)
with IE (Registry) (.0949, .0090) (.0854, .0177) (.0392, .0193) (.0774, .0228)

LoadLibrary. LoadLibrary loads specified module into the address space of the
calling process. There are total 22 common libraries for all bot families. Pinfi
loads a library (cja1.tmp) from a temporary folder, which is abnormal.

Process-Related APIs. It is quite common to spawn new processes. How-
ever, IE only duplicates itself IEXPLORER.EXE. Korgo uses WinExec to exe-
cute %system32%\zaegr.exe. Alternatively, Virut uses OpenProcess to invoke
rundll32.exe.

CopyFile and DeleteFile. All bots use CopyFile to make a copy of the bot
binary to system or temporary folder. The filename looks like zaegr.exe or
vwjop.exe. Sality deletes several temporary files that are created by itself,
when IE only deletes HTTP cookies and HTML files in IE’s temporary folder.

CreateFile. This API has a parameter creationDisposition, and it could be
CREATE NEW, CREATE ALWAYS or OPEN EXISTING. The bot samples use the first
two values to create files in the system folder and use the last one to read/execute
file, when IE uses OPEN EXISTING for reading cookies, HTML and font files.

RegCreateKey andRegSetValue.Botmaymodify registry to change the host
behavior, such as adding services (all bots), change hostname/domain (Korgo),
change firewall settings (Sality), or disable User Account (Sality).

Files and Registries. Table 2 shows the average Jaccard similarity coefficient
and its standard deviation between every bot variants within its family, as well
as the coefficient comparing with IE. As expected, the similarity within the bot
family is higher than IE. From the viewpoint of registry, Sality variants have
common behavior (.3979), but the variance (.1910) is large as well.

We observe (1) the number of file is small, which suggests detecting file is
important but may have high false positive; (2) variants may use random file-
names; (3) variants usually do not use random registry name; (4) bot variants in
the same family have common activities which indicates using known bots may
detect new variants; (5) IE is very different from others.

5.2 Passive Bot Detection

We randomly selection four of variants (out of ten) to generate the bot behavior
profile, and use it to test the rest variants. Each test runs 20 times with different
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random selections. Take Sality for example; on the average, the behavior profile
has 1.5 files and 447.65 registries; while Virut’s profile has 5 files and 129.55
registries. We then calculate the Jaccard value for each testing variants and IE.

Due to the page limit, we only use k = Virut as an example, the average
αJ(Vi, k) = 0.2981 and αJ (IE, k) = 0.0378, so that the α difference is 0.2603.
The average βJ(Vi, k) = 0.3307 and βJ (IE, k) = 0.0925, hence the β difference
is 0.2382. The larger difference means we can more easily to distinguish a benign
process and a bot process. For all bot families, the minimal difference for αJ is
0.0498 and for βJ is 0.1127. They are used as thresholds in our experiment.

5.3 Active Bot Detection

We generated an active fingerprinting for Virut for example. The stimulus is to
set the value of registry Domain and Hostname in HKEY LOCAL MACHINE\System\
CurrentControlSet\Services\Tcpip\Parameters. The former one is usually
NULL, while the latter one is the host name. The response is a DNS query with a
domain name combining the value of two registries. We test this fingerprinting
on all the Virut variants and all variants access these two registries and send the
DNS packet out, except one accesses them but does not send the DNS packet.

6 Conclusion

We propose a passive process activity analysis and active fingerprinting methods
for bot detection in virtualized environments. Our system has the following ben-
efits. (1) These methods are less intrusive than traditional host-based approach.
(2) It can closely and more precisely monitor the behavior of bots. (3) The agents
are in the hypervisor for monitoring the bots’ API call without being detected
by the bot. (4) The passive and active detection methods provide proactive and
effective malware detection. The experiment results show that with bot behavior
profiles, PDA can distinguish bot host and ADA can actively detect bot.

References

1. Willems, C., Holz, T., Freiling, F.: Toward Automated Dynamic Malware Analysis
Using CWSandbox. In: IEEE Security & Privacy (2007)

2. Gu, G., Porras, P., Yegneswaran, V., Fong, M., Lee, W.: BotHunter: detecting mal-
ware infection through IDS-driven dialog correlation. In: USENIX Security (2007)

3. Gu, G., Zhang, J., Lee, W.: BotSniffer: Detecting Botnet Command and Control
Channels in Network Traffic. In: NDSS (2008)

4. Gu, G., Perdisci, R., Zhang, J., Lee, W.: BotMiner: clustering analysis of network
traffic for protocol- and structure-independent botnet detection. In: SECURITY
(2008)

5. Liu, L., Chen, S., Yan, G., Zhang, Z.: BotTracer: Execution-Based Bot-Like Mal-
ware Detection. In: Wu, T.-C., Lei, C.-L., Rijmen, V., Lee, D.-T. (eds.) ISC 2008.
LNCS, vol. 5222, pp. 97–113. Springer, Heidelberg (2008)



706 S.-W. Hsiao et al.

6. Yin, H., Song, D., Egele, M., Kruegel, C., Kirda, E.: Panorama: Capturing System-
wide Information Flow for Malware Detection and Analysis. In: ACM CCS (2007)

7. Brumley, D., Hartwig, C., Liang, Z., Newsome, J., Song, D., Yin, H.: Automatically
Identifying Trigger-Based Behavior in Malware. In: Botnet Analysis and Defense
(2007)

8. Song, D., Brumley, D., Yin, H., Caballero, J., Jager, I., Kang, M.G., Liang, Z.,
Newsome, J., Poosankam, P., Saxena, P.: BitBlaze: A New Approach to Computer
Security via Binary Analysis. In: Sekar, R., Pujari, A.K. (eds.) ICISS 2008. LNCS,
vol. 5352, pp. 1–25. Springer, Heidelberg (2008)

9. QEMU, http://wiki.qemu.org
10. Garnkel, T., Rosenblum, M.: A Virtual Machine Introspection Based Architecture

for Intrusion Detection. In: NDSS (2003)
11. Dunlap, G.W., King, S.T., Cinar, S., Basrai, M., Chen, P.M.: Revirt: Enabling

intrusion analysis through virtual-machine logging and replay. In: OSDI (2002)
12. Chen, P.M., Noble, B.D.: When virtual is better than real. In: USENIX HotOS

(May 2001)
13. Pfoh, J., Schneider, C., Eckert, C.: A Formal Model for Virtual Machine Introspec-

tion. In: ACM VMSec (2009)

http://wiki.qemu.org


Filtering Trolling Comments

through Collective Classification

Jorge de-la-Peña-Sordo, Igor Santos, Iker Pastor-López, and Pablo G. Bringas
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Abstract. Nowadays, users are increasing their participation in the In-
ternet and, particularly, in social news websites. In these webs, users can
comment diverse stories or other users’ comments. In this paper we pro-
pose a new method based for filtering trolling comments. To this end, we
extract several features from the text of the comments, specifically, we
use a combination of statistical, syntactic and opinion features. These
features are used to train several machine learning techniques. Since the
number of comments is very high and the process of labelling tedious,
we use a collective learning approach to reduce the labelling efforts of
classic supervised approaches. We validate our approach with data from
‘Menéame’, a popular Spanish social news site.

Keywords: information filtering, spam detection, web categorisation,
content filtering, machine-learning.

1 Introduction

With the appearance of web 2.0 [1], the Internet Community became more sensi-
tive about the primordial users’ needs when surfing the net. Since then, the users’
dynamic interaction and collaboration was drastically enhanced, and the devel-
opment of the social networking sites, wikis or blogs, amongst others, started.
Social news websites such as Digg1 or ‘Menéame’2 are very popular among users.
These sites work in a very simple and intuitive way: users submit their links to
stories online, and other users of these systems rate them by voting. The most
voted stories appear, finally, in the front-page [2].

In our previous work [3], we proposed an approach able to automatically
categorise comments in these social news sites using supervised machine-learning
algorithms. Nevertheless, supervised learning requires a high number of labelled
data for each of the classes (i.e., trolling or normal comment). It is quite difficult
to label this amount of data for a real-world problem such as the web mining.
To generate this information, a time-consuming process of analysis is mandatory
and, in the process, some comments may avoid filtering.

Collective classification [4] is a semi-supervised approach that employs the re-
lational structure of labelled and unlabelled datasets combination to increase the
1 http://digg.com/
2 http://meneame.net/

J. Lopez, X. Huang, and R. Sandhu (Eds.): NSS 2013, LNCS 7873, pp. 707–713, 2013.
© Springer-Verlag Berlin Heidelberg 2013
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accuracy of the classification. With these relational models, the predicted label
will be influenced by the labels of related samples. The techniques of collec-
tive and semi-supervised learning have been implemented satisfactorily in fields
of computer science like text classification [4], malware detection [5] or spam
filtering [6].

Considering this background, we present a novel text categorisation approach
based on collective classification techniques to optimise classification perfor-
mance when filtering controversial comments. This method employs a combina-
tion of statistical, syntactic and opinion features of the comments to represent
them. Our main contributions are: (i) a new method to represent comments
in social news websites, (ii) an adaptation of the collective learning approach to
comment filtering, and (iii) an empirical validation which shows that our method
can maintain high accuracy rates, minimising the effort of labelling.

The remainder of this paper is structured as follows. Section 2 describes the
extracted features of the comments. Section 3 describes the experimental proce-
dure and discussed the obtained results. Finally, Section 4 concludes and outlines
the avenues of the future work.

2 Description of the Method

‘Menéame’ is a Spanish social news website, in which news and stories are pro-
moted. It was developed in later 2005 by Ricardo Galli and Benjamı́n Villoslada
and it is currently licensed as free software. We extracted several features from
the comments that can be divided into 3 different categories: opinion, statistical
and syntactic features.

– Statistical Features

• Comment body: We used the information contained in the body of
the comment. To represent the comments we have used the Vector Space
Model (VSM) [7]. We used the Term Frequency – Inverse Document Fre-
quency (TF–IDF) [8] weighting schema and the inverse term frequency
idfi. As the terming schema we have employed two different alternatives:
using the word as the term to weigh and n-grams as terms to weigh. An
n-gram is the overlapping subsequence of n words from a given comment.

• Number of references to the comment (in-degree): It indicates
the number of times the comment has been referenced in other comments
of the same news story.

• Number of references from the comment (out-degree): It mea-
sures the number of references of the comment to other comments of the
same news story.

• Number of the comment: It indicates the oldness of the comment.
• Similarity of the comment with the snippet of the news story:
We used the similarity of the VSM of the comment with the model of the
snippet of the news story. In particular, we employ the cosine similarity
[9].
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• Number of coincidences between words in the comment and tags of
the news story.

• Number of URLs in the comment body.
– Syntactic Features In this category we count the number of words in the

different syntactic categories. To this end, we performed a Part-of-Speech
tagging using FreeLing3. The following features were used, all of them ex-
pressed in numerical values extracted from the comment body: adjectives,
numbers, dates, adverbs, conjunctions, pronouns, punctuation marks, inter-
jections, determinants, abbreviations and verbs.

– Opinion Features
• Number of positive and negative words: We employed an ex-
ternal opinion lexicon4. Since the lexicon contains English words and
‘Menéame’ is written in Spanish, we translated them to Spanish.

• Number of votes: The number of positive votes of the comment.
• Karma: The karma is computed by the website based on the users’
votes.

3 Empirical Validation

We gathered comments from ‘Menéame’ from 5th of April, 2011 to 12th of
April, 2011. This dataset of comments comprises one week of stories filled by
9,044 comment instances. We labelled each of the comments in one category into
Normal and Controversial. Normal means that the comment is not hurtful or
hurting, using ia restrained tone. Controversial, on the other hand, refers to a
comment seeking to create polemic. Our data was finally formed by 6,857 normal
comments and 2,187 controversial comments.

We performed two different procedures to generate the VSM of the comment
body: (i) VSM with words and terms and (ii) n-grams with different values of
n (n=1, n=2, n=3). Furthermore, we removed every word devoid of meaning in
the text, called stop words, (e.g., ‘a’,‘the’,‘is’) [8]. In both cases, we employed an
external stop-word list of Spanish words5.

To evaluate our approach, we applied k-cross validation with k = 10. Next,
for each training set, we extracted the most important features for each of the
classification types using Information Gain (IG) [10], an algorithm that evaluates
the relevance of an attribute by measuring the information gain with respect
to the class and We removed every feature with an IG value of zero. Since
the dataset is not balanced for the different classes, we also applied Synthetic
Minority Over-sampling TEchnique (SMOTE) [11] to address unbalanced data.

We then accomplished the learning step using different learning algorithms
depending on the specific model, for each fold. We employed the implementations
of the collective classification provided by the Semi-Supervised Learning and

3 Available in: http://www.lsi.upc.edu/~nlp/freeling
4 Available in: http://www.cs.uic.edu/~liub/FBS/opinion-lexicon-English.rar
5 The list of stop words can be downloaded at
http://paginaspersonales.deusto.es/isantos/resources/stopwords.txt

http://www.lsi.upc.edu/~nlp/freeling
http://www.cs.uic.edu/~liub/FBS/opinion-lexicon-English.rar
http://paginaspersonales.deusto.es/isantos/resources/stopwords.txt
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Table 1. Results in terms of accuracy, TPR, FPR and AUC of the Controversy Level
for Word VSM

Dataset Accuracy (%) TPR FPR AUC

KNN K = 10 67.14 ± 1.92 0.50 ± 0.04 0.27 ± 0.02 0.66 ± 0.02
Bayes K2 75.93 ± 0.65 0.04 ± 0.01 0.01 ± 0.01 0.64 ± 0.03
Bayes TAN 76.64 ± 0.36 0.05 ± 0.01 0.01 ± 0.01 0.64 ± 0.03
Näıve Bayes 74.13 ± 3.74 0.20 ± 0.11 0.09 ± 0.08 0.62 ± 0.03
SVM: PolyKernel 68.35 ± 2.06 0.59 ± 0.05 0.29 ± 0.03 0.65 ± 0.03
SVM: Norm. PolyKernel 69.53 ± 1.55 0.53 ± 0.03 0.25 ± 0.02 0.64 ± 0.02
SVM: PUK 69.54 ± 1.33 0.52 ± 0.04 0.25 ± 0.02 0.63 ± 0.02
SVM: RBFK 68.34 ± 3.33 0.44 ± 0.03 0.24 ± 0.05 0.60 ± 0.02
J48 71.72 ± 2.06 0.31 ± 0.04 0.15 ± 0.02 0.60 ± 0.04
Random Forest N = 100 77.08 ± 0.94 0.18 ± 0.04 0.04 ± 0.01 0.67 ± 0.03

Table 2. Results in terms of accuracy, TPR, FPR and AUC of the Controversy Level
for N-gram VSM

Dataset Accuracy (%) TPR FPR AUC

KNN K = 10 57.32 ± 2.13 0.61 ± 0.05 0.44 ± 0.03 0.63 ± 0.03
Bayes K2 75.60 ± 0.74 0.06 ± 0.02 0.02 ± 0.01 0.65 ± 0.02
Bayes TAN 76.34 ± 0.43 0.06 ± 0.02 0.01 ± 0.00 0.65 ± 0.02
Näıve Bayes 53.81 ± 1.78 0.62 ± 0.02 0.49 ± 0.02 0.59 ± 0.02
SVM: PolyKernel 60.84 ± 1.38 0.74 ± 0.04 0.43 ± 0.01 0.65 ± 0.02
SVM: Norm. PolyKernel 70.72 ± 1.56 0.54 ± 0.05 0.24 ± 0.02 0.65 ± 0.02
SVM: PUK 70.83 ± 1.86 0.49 ± 0.05 0.22 ± 0.02 0.63 ± 0.03
SVM: RBFK 53.42 ± 2.98 0.74 ± 0.03 0.53 ± 0.04 0.60 ± 0.03
J48 71.04 ± 1.54 0.35 ± 0.04 0.17 ± 0.02 0.61 ± 0.02
Random Forest N = 100 76.88 ± 1.30 0.19 ± 0.04 0.05 ± 0.01 0.68 ± 0.03

Collective Classification6 package for machine-learning tool WEKA [12]. In our
experiment approaches, we used the following models: (i) Collective IBK, with
k = 10; (ii) CollectiveForest, where the value of the trees to experiment is 100;
(iii) CollectiveWoods, with 100 trees; and (iv) RandomWoods, with 100 trees. In
our collective experiments, we examined various configurations of the collective
algorithms with different sizes of the X set of known instances; the latter varied
from 10% to 90% of the instances utilised for training (i.e., instances known
during the test).

In order to evaluate the contribution of Collective Classification to categorisa-
tion comments, we compared the filtering capabilities of our method with some of
the most used supervised machine-learning algorithms. Specifically, we used the
following models: (i) Bayesian networks (BN), with different structural learning
algorithms: K2 and Tree Augmented Näıve (TAN) and a Näıve Bayes Classifier;
(ii)Support Vector Machines (SVM), with a polynomial kernel, a normalised
polynomial Kernel, a Pearson VII function-based universal kernel (PUK) and
a radial basis function (RBF) based kernel; (iii) K-nearest neighbour (KNN),
with k = 10; and (iv) Decision Trees (DT), trained with J48 (the Weka [12]
implementation of the C4.5 algorithm) and Random Forest [13], an ensemble

6 Available at: http://www.scms.waikato.ac.nz/~fracpete/projects/
collective-classification

http://www.scms.waikato.ac.nz/~fracpete/projects/collective-classification.
http://www.scms.waikato.ac.nz/~fracpete/projects/collective-classification.
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(a) Accuracy results. (b) TPR results.

(c) FPR results. (d) AUC results.

Fig. 1. Results performed with Word VSM features

of randomly constructed decision trees. In particular, we employed N = 100 for
Random Forest.

Finally, in order to measure the effectiveness of the method, we measured
the True Positive Rate (TPR) to test our procedure; i.e., the number of the
controversial comments correctly detected divided by the total number of con-
troversial comments. We also took in account the False Positive Rate (FPR);
i.e., the number of normal comments misclassified as controversial divided by
the total number of normal comments. In addition, we obtained the Accuracy;
i.e., the total number of hits of the classifiers divided by the number of instances
in the whole dataset. Finally, we recovered the Area Under the ROC Curve
(AUC), that is computed by plotting the TPR against the FPR under different
thresholds and computing the area formed under the generated curve.

Table 1 shows the results with words as tokens using classic supervised learn-
ing algorithms, and Table 2 shows the results with n-grams as tokens using classic
supervised learning algorithms. Figure 1 shows the results with VSM generated
with words, when collective learning algorithm are used, and Figure 2 shows the
results with VSM generated with n-grams using collective learning approaches.

Regarding the supervised learning algorithms, Random Forest with N = 100
with words VSM, achieved significant results: 77.08% accuracy, 0.18 TPR, 0.04
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(a) Accuracy results. (b) TPR results.

(c) FPR results. (d) AUC results.

Fig. 2. Results performed with N-gram VSM

FPR and 0.67 AUC. For collective classification, CollectiveForest, using words
as terms for the VSM, obtained a accuracy of 76.94% by only labelling the 75%
of the dataset, a TPR of 0.16, a FPR of 0.04 and a AUC of 0.67. The results for
collective classification are close to the supervised approaches, and the labelling
effort has been reduced to 76.94% of the whole data.

4 Conclusions

The problem with supervised learning is that a previous work of comment la-
belling is required. This process in the field of web filtering can introduce a high
performance overhead due to the number of new comments that appear everyday.
In this paper, we proposed the first collective-learning-based trolling comment
filtering method system that based upon statistical, syntactic and opinion fea-
tures, is capable of determining when a comment is controversial. We empirically
validated our method using a dataset from ‘Menéame’, showing that our tech-
nique, despite having much less labelling requirements, obtains nearly the same
accuracy than the best supervised learning approaches.
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The avenues of future work are oriented in three main ways. Firstly, we would
like to apply additional algorithms to extend the study of filtering trolling com-
ments in social news websites. Secondly, we will incorporate new and different
features from the comment dataset to train the models. And finally, we will
focus on executing an extended analysis of the effects of the labelled dataset
dimension.
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Abstract. In this paper, we present a security analysis of a few touch inputted 
authentication methods (Android´s PIN and pattern unlock, and iconographic 
password), based mainly on the resistance against brute force attacks. In order 
to support our study, we developed a set of specific tools for performing the 
tests against each method. Recommendations for improving the security of the 
aforementioned mechanisms are given based on the experimental results. 

Keywords: authentication, brute force, iconographic, touch inputted password. 

1 Introduction 

This paper presents a set of recommendations based on a security analysis of Android 
authentication mechanisms, using a set of tools specifically developed for brute 
forcing touch inputted authentication methods, such as those used on mobile devices. 
Our solution targets two different mechanisms used in Android, the PIN (Fig. 1a) [1] 
and the pattern unlock (Fig. 1b) [1], and the iconographic authentication adopted by 
the mobile application shown in Fig. 1c. 

The security analysis also takes into consideration, besides the image-based brute 
force attacks, other exploitation methods, such as dictionary attacks, shoulder surfing, 
password guessing, and attacks against the authentication system itself.  

In turn, the set of recommendations considers the possible countermeasures against 
the aforementioned attacks and other important aspects in mobile devices, in special, 
the usability issues that must be balanced with the security aspects. 

This paper is structured as follows: Section 2 discusses touch inputted passwords, 
while Section 3 presents the implementation aspects of image-based brute force tools. 
In Section 4 we show the experimental results of the tests, and Sections 5 and 6 
present, respectivly, recommendations and final considerations. 

2 Touch Inputted Passwords 

The advent of touchscreen devices evolved the interaction between the user and the 
mobile devices. This evolution has had direct impact on security. One of the impacts 
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has been to replace physical keyboards with virtual ones in order to enter PINs. 
Another one is the use of new security mechanisms that take advantage of a touch-
screen, such as the pattern unlock and the iconographic authentication.  

These authentication mechanisms are based on touch inputted passwords and can 
be used for protecting both the access to the device (unlocking) as well as the access 
to applications (in-app authentication) and data (service – multi-channel or not – au-
thentication). The three touch inputted authentication mechanisms analyzed in this 
paper are briefly described in the following paragraphs. 

 

PIN. Android’s PIN mechanism consists in a screen containing a 4x3 grid of buttons. 
The disposition of the keys does not vary along the attempts, which makes an attack 
easier to perform. A delay of a 30 seconds is added after a user consecutively types a 
wrong PIN five times. 

Pattern Unlock. This mechanism allows the user to define a path with 4 to 9 dots, in 
a 3x3 grid, and to use it to unlock the device. As a rule one cannot use a point more 
than once, since it is virtually removed after selection. Also, it is not possible to con-
nect the extremities of a line with three circles, without selecting the middle one, un-
less the latter has been previously visited. As in the previous mechanism, there is a 30 
seconds delay after five wrong and consecutive attempts. 

Iconographic Passwords. This mechanism uses images and icons instead of the cha-
racters represented on virtual keyboards. This can be translated into combination of 
security with usability, with a greater facility to memorize passwords [4], more usa-
bility [5] and less correlation with passwords that can be guessed or be listed in dic-
tionaries. In the analyzed system, the default configuration presents twenty icons in a 
5x4 grid and the user should select, no matter the order, the four elements of a pre-
viously chosen set. Repetition of icons in the password is not allowed. 

  
(a) (b) (c) 

Fig. 1. Authentication methods. (a) PIN. (b) Pattern unlock. (c) Iconographic password. 
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3 Image-Based Brute Force Tools 

The image-based brute force tools simulate the user interaction on the mobile device 
to enter the touch inputted passwords. In every type of authentication (PIN, pattern 
unlock, and iconographic password) the tool simulates the user touch on the areas of 
the screen that represent the current element of the password. For this reason, an ini-
tial mapping of all images to be used is required:  numeric keyboard for PIN, circles 
for pattern unlock, and icons for iconographic password. 

The tools used in each authentication method must perform these macro functions: 

1. Recognition of the password input screen: checks the authentication screen by dis-
tinguishing specific static items such as the OK, Cancel, and Clear buttons. 

2. Mapping and segmentation of the screen distinguishing unique elements (numbers, 
circles, or icons, depending on each method): knows the coordinates of each button 
on the display in order to let the tool send the touches to the correct positions. 

3. Selection and testing of a candidate password: from the set of all possible pass-
words in each method, selects and submits the current one to be tested. Different 
strategies can be employed to minimize the total duration of the brute force attack. 
For instance, PINs representing dates can be tested before the other ones. 

In order to interact with the device, by sending touches and taking screenshots, we 
employ the MonkeyRunner tool [6] connected to the equipment’s USB port. This 
communication requires the Android Debug Bridge daemon to be running on the 
device, which restricts the scenarios where the attack can be directly executed [7].  

The paraghaphs below complement what was discussed in [7] regarding the 
implementation of the tools and the challenges we had to overcome. 

PIN. Based on the disposition of the keys in the 4x3 grid, that does not vary along the 
attempts, the tool maps each element’s position in the virtual keyboard, storing them 
on a static table, before performing the exhaustive PIN search. A thirty second delay 
must be added after five attempts, in order to cope with the countermeasure 
implemented by the device. We chose to sequentially select the PINs, starting from 
the minimum value, 0000, and ending with the maximum value, 9999. 

Pattern Unlock. The mapping is accomplished via a static table with coordinates 
(x,y) from the center of each circle on the display, which are obtained from an initial 
screenshot. In order to simulate the drag gesture on the device’s screen, one can use 
the method MonkeyDevice.drag(). However, since it only allows dragging along 
two points of the grid, we had to patch the method drag() from the Chimp-
Chat.AdbChimpDevice class. Finally, instead of calculating all the possible patterns 
each time the tool is executed, we chose to generate them once and create a dictionary 
with the paths. This can be accomplished by a simple recursive algorithm that tra-
verses the grid dots, which we illustrate by the following pseudocode: 
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function traverse(currentLen,desiredPathLen,path, 

                  visitedNodes) 

   if (currentLen == desiredPathLen) 

      printPath(path, currentLen)else 

      for each node n in neighborhood(lastNode(path))  

         if (notVisited(n)) addNodeToPath(n, path) 

            addToVisitedNodes(n, visitedNodes) 

            if (isCenterNode(n) OR isMiddleNode(n))  

               addNeighborsDueToRemovalOf(n) 

               traverse(currentLen + 1, desiredPathLen, 

                        path, visitedNodes) 

               removeNeighborsDueToReinsertionOf(n)else 

               traverse(currentLen + 1, desiredPathLen, 

                        path, visitedNodes) 

            removeFromVisitedNodes(n, visitedNodes) 

Iconographic Password. The tool requires, initially, that one takes a screenshot, in 
order to obtain the set of icons used by the application. Those are processed, having 
their background colored with pink, and set as the baseline for icon classification. The 
objective of this step is to avoid mistakes in the matching process by removing all the 
pixels that do not belong to the icon, but result from the applications’ wallpaper, due 
to the background transparency. For each authentication attempt, a screenshot needs 
to be taken, since the icon grid changes every time. The image is divided into twenty 
rectangles of same size and each one of them is compared to the icons in the baseline 
set. This step is performed by calculating a similarity score according to the 
pseudocode depicted in [7]. The candidate icon is considered to be the same as the 
one in the baseline set for which the smaller score is obtained, in the comparison 
process. This way, one can classify each icon in the grid and be able to test the current 
password. Due to the slowness of the MonkeyImage.getPixel() method, we had 
to get a raster representation of each icon, before invoking the getPixel() method. 

4 Experimental Results 

The tests were performed on a Samsung Galaxy SII running Android 2.3, connected 
to an Intel® CoreTM i7@2934.00 MHz with 8 GBytes of RAM, running Linux 
Ubuntu 10.04. For each method, we randomly asked twenty people to choose a 
password of length 4 to be brute forced by the tools we developed for this experiment.  

The tools were configured with the default values for each parameter, meaning we 
did not use any specific knowledge about the volunteers in order to try to accelerate 
the brute force attack. In other words, we started the PIN search with 0000, the pattern 
unlock by the top left circle, and the iconographic password by the icons 
corresponding to number 0123, no matter who chose the password. 

Based on the amount of time for finding the correct value in each run, we 
calculated the following average times per attempt, already considering the delay 
added by the brute force countermeasure (30 seconds after 5 consecutive wrong 
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attempts): PIN, 8 sec; pattern, 9 sec; iconographic password, 10 sec. These results 
indicate that the attack against iconographic password is more time consuming per 
attempt than the others mainly because of the time required for icon recognition. 

Table 1 presents the minimum, maximum, and average times to crack the pass-
words defined by the volunteers. The PIN search takes the longer maximum and aver-
age times, which is related to the bigger number of possibilities [7]. On the other 
hand, PIN’s minimum time is the second smaller, indicating that the password selec-
tion process depends on the user’s memorization and information retrieval capabili-
ties. For instance, users may choose the password based on the position of the keys or 
on dates, which tend to have a leading 0 or 1. Clearly, one can use such information to 
improve the search process, as previously stated. 

Table 1. Minimum, maximum, and average times to break each type of password 

Time to crack PIN (hh:mm) Pattern (hh:mm) Iconographic (hh:mm) 
Minimum 00:37 00:34 03:06 
Maximum 21:18 03:51 12:19 
Average 11:00 01:41 07:58 

It is interesting to note that the average times resulting from the practical tests were 
lower than the mathematical estimates for all methods but the iconographic. Mathe-
matically, the time for half the password space to be tested for the PIN, the pattern 
unlock, and the iconographic password is 11:06, 2:01, and 6:43, respectively. This 
fact, together with the bigger minimum time, makes iconographic passwords favora-
ble in terms of security against brute force, if a larger password space could be used. 

5 Recommendations 

The most common strategy against brute force techniques consists in locking the 
device for a few seconds, after an arbitrary number of consecutive unsuccessful 
authentication attempts. However, a fixed delay facilitates the implementation of a 
tool, because one can stop the test for that specific amount of time. Hence, a better 
strategy to encumber an attack like this consists in locking the user a random amount 
of time after a random number of incorrect attempts.  

Aditionally to the temporary locking countermeasure, one could demand the user 
to authenticate with a pre-configured secondary account in a remote server, once the 
number of consecutive and incorrect attempts reaches a predetermined threshold. This 
technique is implemented by newer versions of the Android operating system. 

Another possibility is the use of biometrics, such as face recognition, which is  
already included in the latest versions of Android. Other options include voice authen-
tication, which also does not require additional biometric sensors, as opposed to fin-
gerprinting, for example. However, the adoption of biometric systems requires proper 
implementation of liveness detection techniques, in order to counter spoofing attacks.  
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For more critical accesses, multi-factor authentication, such as the use of biometric 
authentication together with PIN or iconographic password, is recommended. In some 
cases, even multimodal biometric authentication may be used with another factor. For 
instance, one can combine voice and face recognition with a password.  

The iconographic authentication can also be improved by adopting parameters such 
as repeated icons and in which their order matters, as well as the expansion of the 
collection of icons. Nevertheless, with these new parameters, the usability of icono-
graphic passwords must be reevaluated in order to balance security and usability, as 
this is directly linked with the facility to memorize and use the password.  

If the same parameters are used for all the authentication methods covered in this 
paper, one obtains for each case the total number of passwords illustrated in Table 2.  

Table 2. Passwords space of each authentication method with the same security parameters 

Length PIN Pattern Iconographic 
4 10,000 6,561 160,000 
5 100,000 59,049 3,200,000 
6 1,000,000 531,441 64,000,000 
7 10,000,000 4,782,969 1,280,000,000 
8 100,000,000 43,046,721 25,600,000,000 
9 1,000,000,000 387,420,489 512,000,000,000 

Regarding other types of attacks against authentication, shoulder surfing, dictio-
nary attacks, password guessing, and direct attacks against the authentication system 
itself should be considered. In shoulder surfing, where the attacker observes the user 
entering information, the attack on mobile devices is critical. Considering that the PIN 
and the pattern unlock are performed through a fixed keypad, the attacker can easily 
see and identify the position of circles/digits. In this case, the iconographic password 
system we analyzed is more secure than the other methods because the icons change 
position for each interaction. Here, the attacker must identify the icon itself and not its 
position on the display. In addition, for the pattern unlock, the user can leave marks 
while moving the fingers to swipe across the display to unlock the device. 

Dictionary attacks in turn focus on alphanumeric passwords. Regarding PINs, the 
attack tools can be configured so that dates, which consists of days (from 01 to 31) 
and months (from 01 to 12), are tested before any other alternative. It is important to 
note that dictionary attack does not apply to iconographic authentication. 

For password guessing attacks on PINs, all dates and phone numbers can be tested. 
For the other methods, this attack is less likely to happen due to the lack of connec-
tions between something concrete and the pattern unlock path or the iconographic 
password, although some icons can be linked to a given style or day-to-day routine. 

Finally, direct attacks can be aimed at any type of authentication method and 
should be avoided by secure development, leaving no room for vulnerabilities that can 
be exploited by attackers. Furthermore, the infrastructure itself where the password 
database is stored must be secured. Note that, for short password, it is not effective to 
protect them by storing only their hashes, even with the use of salts, since an attacker 
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can easily build a dictionary of all possible passwords. In this case, a probabilistic 
encryption method must be used together with a proper key management. 

6 Final Considerations 

We presented in this paper a security analysis of different authentication methods 
used by mobile devices. The experimental tests involved image-based brute force 
attacks performed by a set of tools we specially developed. In the present version we 
just intended to create a proof of concept, considering the basic countermeasures 
adopted by the target applications. Future implementations should consider ways to 
bypass additional protection mechanisms, such as the authentication with a secondary 
account or a random delay after a few number of authentication failure attempts. 

These tools can also be used for testing the security of other methods, such as the 
face recognition authentication. Although the touchscreen is not used in this method, 
the tests can take advantage of some techniques developed for the image-based brute 
force tools. In this scope, a method to compose a database with several types of hu-
man faces, which can be used in an attack, is currently being studied. 

Considering the size of the passwords space in each authentication method eva-
luated in this work, as well as the time to obtain access by using the developed tools, 
we can assert that iconographic passwords may be advantageous in terms of security, 
when compared to PIN and pattern unlock. However, usability tests must be per-
formed in order to balance usability and security, as a secure method can still be dis-
carded or avoided by the user if it is hard to use. 
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Abstract. Cloud Computing facilitates convenient on-demand access
to networks, servers, storage, applications and services to the user with
minimal management from user side. It is a client-server model in which
user accesses a remote server to utilize resource or service cheaply and
easily without owning. However, a user uses public network during access
of cloud services while an adversary can get full control over the pub-
lic network. Therefore, a user should adopt a mechanism in which user
and server can authenticate each other and establish a secure session.
Recently, Kang and Zhang proposed an Identity-Based mutual authen-
tication in Cloud Storage Sharing using elliptic curve cryptography and
claimed that their scheme can resist various attacks. However, we analyze
the security aspects of the Kang and Zhang’s scheme and identify some
security flaws in their scheme. In this paper, we propose an enhanced
identity based mutual authentication scheme for client-server cloud ar-
chitecture. Further, we present security analysis of the scheme which
shows that the proposed scheme supports flawless anonymous mutual
authentication such that client-server can establish secure session.

Keywords: Cloud Computing, pairing-free identity based cryptosys-
tem, anonymity, mutual authentication.

1 Introduction

Cloud Computing is an on-demand technology which employs computing re-
sources to present convenient on-demand access to networks, servers, storage,
services and application. A user can access or control over the Cloud infrastruc-
ture without knowledge, expertise and big investment [1]. However, there are
many issues that need to be addressed to achieve flexible and secure infrastruc-
ture. Zhang et al. [7] presented a brief study of the research challenges which
are occurring in Cloud. Takabi et al. [4] discussed the emerging security chal-
lenges in it. One of the challenge is to control the data breaching in cloud storage
services. Since, user stores/access his/her data over the remote server, an ad-
versary can get the opportunity to makes this mechanism vulnerable for attack
as an adversary can achieve full control over the public network. Therefore, to
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achieve secure and authorized communication, a powerful mutual authentication
and session key establishment protocol is necessary. Moreover, an adversary can
link the communication and the login session of a user and can extract useful
information. However, anonymous communication ensures that there is no way
to link individual information to an identifiable natural person. Anonymity of
user and server identity also enhances the security as an adversary is not able to
relate previously gained information. Therefore, secure and anonymous mutual
authentication mechanism is paramount requirement in cloud.

In recent years, many identity-based authentication protocols have been pro-
posed for cloud [6,2,3]. In 2009, Yang and Chang [6] proposed an identity-based
remote user authentication protocol for mobile users based on elliptic curve cryp-
tography (ECC). Their scheme inherits the merits of both identity based cryp-
tosystem and elliptic curve. Chen et al. [2] identified two security flaws, namely,
insider attack and impersonation attack in Yang-Chang’s scheme. To remove
these security flaws, they presented an advanced password based authentication
scheme. The authors claimed that their protocol is secured to provide mutual
authentication and is appropriate for Cloud Computing environment. However,
in 2012, Wang et al. [5] showed that Chen et al. protocol is not secure and is vul-
nerable to offline password guessing attack, and key compromise impersonation
attack and also suffers from clock synchronization problem. Kang and Zhang [3]
presented short key size identity based authentication scheme, which requires
the computation of bilinear pairing on super singular elliptic curve group with
large element size where the computation cost of the pairing is approximately
three times higher than that of elliptic curve point multiplication. We also found
that their scheme suffers some serious security flaws.

In this paper, we firstly review the Kang-Zhang’s identity-based authentication
protocol and show that their protocol is not secured to maintain authorized com-
munication between remote user and the server. Further, we present a new pair-
ing free identity basedmutual authentication for cloud computing. In this scheme,
cloud user and servermutually authenticate each other and establish a session key.

2 Review of Kang-Zhang’s Scheme

In this section, we briefly review the Kang and Zhang [3] mutual authentication
mechanism for Cloud Computing. We use the same notations as in [3]. For more
details of Kang and Zhangs scheme one can refer to [3].

Let IDA and IDB are the identities of A and B respectively. (QA, SKA) and
(QB, SKB) are the public-private key pair of A and B respectively where Q =
H(c||ID||IDi) and SK = (s||si)Q = (s||si)H(c||ID||IDi) for random s, si, c ∈
Z∗
q . Then, the mechanism of mutual authentication is summarized below:

– B computes KBA = e(SKB, QA).
– B sends < IDB, QB,M, f(KBA,M) > to A, where M is information of data

requested above and f(.) is a one-way hash function.
– Upon receiving the message, A evaluates KAB = e(SKA, QB).
– A computes value f(KAB,M), then verifies that f(KAB,M) =?f(KBA,M).

If verification success, then Alice will believe Bob is valid user.
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– Then, A sends the message tuple < n,N ′, N, f(KAB, N) >, where n is the
consentaneous identifier and N is a token which contains the information of
data shared, token’s period of validity, Bob’s public key and identification
string, etc., and N ′ is the token’s signature.

– Upon receiving the the message tuple < n,N ′, N, f(KAB, N) >, Bob exer-
cises the similar authentication mechanism.

2.1 Cryptanalysis of Kang-Zhang’s Scheme

In Kang and Zhang scheme, user and server mutually authenticate each other.
However, the scheme does not maintain the key security attributes such as key
freshness, known session key and forward secrecy as:

Key Freshness: In Kang and Zhang’s scheme, common keyKAB = e(SKA, QB)
does not include any session parameters such as random number or time-stamp.
Once the key is established, user can use it for any number of session and any
number of time, i.e., user and server do not create different session keys for
different sessions. Therefore, scheme looses key freshness attribute.

Known Session Keys: Since, the entities use same key for different session
rather than different key for different session. Therefore, scheme does not tolerate
known session key attack.

Forward Secrecy: If the private key of Alice SKA or Bob SKB compromise,
then an adversary can compute session key KAB and KBA, since KAB = KBA,
QA and QB are public, and KAB = e(SKA, QB) and KBA = e(SKB, QA).

3 Proposed Scheme

In this section, we propose a mutual authentication protocol between Cloud user
U and server S. In which, if authentication succeeds, user and server establish a
session key. The protocol is composed of main three algorithms:

– Set Up.
– Extract.
– Mutual authentication and session key computation.

3.1 Set Up:

Private key generator (PKG) takes a security parameter k, return security pa-
rameter and master key. For given k, PKG takes the following steps:

– Choose an arbitrary generator P ∈ G
– Select a master key m ∈ Z∗

q and set public key PK = mP
– Choose collusion free one way hash functions H1 : {0, 1}∗ × G → Z∗

q , H2 :

{0, 1}∗ × {0, 1}∗ × {0, 1}k × {0, 1}∗ × {0, 1}∗ → {0, 1}k & H : {0, 1}∗ ×
{0, 1}∗ ×G×G× {0, 1}∗ × {0, 1}∗ → {0, 1}k.

– Publish system parameters 〈E/Fq, G, k, P,PK, H1, H2, H〉 and keep master
key m secret.
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3.2 Extract

Server’s Private Key Extraction: Server S submits its public identities IDS

to PKG. Then, PKG verifies the proof of the identity. If verification succeeds,
then generates the partial private key as:

– Generate xS ∈ Z∗
q .

– Compute XS = xSP and hS = H1(IDS ||XS), and generate private key
YS = xS +mhS mod q. Then, PKG delivers (XS , YS) to S through a secure
channel.

On receiving private key, S verifies YSP = XS +H1(IDS ||XS)PK. If verification
succeeds, S sets its public key PKS = YSP . Then, It make its parameter <
IDS , PKS, P,H1, H2, H > public.

Users’ Private Key Extraction: User U submits its identities IDU to PKG.
Then, PKG verifies the proof of identities. If verification succeeds, then PKG
generates the partial private keys as:

– Generate xU ∈ Z∗
q .

– Compute XU = xUP and hU = H1(IDU ||XU ).
– By using its master key m, PKG generates the U ’s private key YU = xU +

mhU mod q. Then, PKG delivers the key < XU , YU > to U through a secure
channel.

On receiving private key, U verifies YUP = XU+H1(IDU ||XU )PK. If verification
succeeds, U sets its public key PKU = YUP and keeps < XU , YU > secret.

3.3 Mutual Authentication and Session Key Computation

The Cloud user U knows servers public parameters, then U initiates and estab-
lishes a secure session with server S as follows:

• U sends “HELLO” message to S.
• S replies to U with a “HELLO” message.
• On receiving the S message, U performs the following steps:

− Choose a random value u ∈ Z∗
q .

− Compute uYU , TU = uP, T ′
U = uYUP, uYUPKS = uYUYSP and W =

H1(t1||uYUYSP ).
− Send 〈IDU ⊕W,TU , T

′
U , PKU , t1〉 to S where t1 is the timestamp.

• On receiving the user message, S computes t2 − t1 ≤ &t, where t2 is the
message receiving time of server and &t is the valid time delay in message
transmission. If time delay in message transmission is valid, then S performs
the following steps:

− Compute YST
′
U = YSuYUP and W ∗ = H1(t1||YSuYUP ) then extract

user’s identity IDU = IDU ⊕ W ⊕ W ∗ as uYUYSP = YSuYUP , i.e.,
W = W ∗.
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− Verify IDU ’s registration details and authenticity. If U is authorized and
non-register user, S registers U . If U is unauthorized user then deny the
request. Otherwise, it proceeds.

− Select a random value s ∈ Z∗
q and compute TS = sP and T ′

S = sYSP .

− Compute sYSPKU = sYSYUP,KSU = sYSYUP + YSuYUP and sTU =
suP .

Then, finally compute the session key sk and message authentication
code mac as:

sk = H(IDU ||IDS ||suP ||KSU ||t1||t3)

mac = H2(IDU ||IDS ||sk||t1||t3)

− Send the message 〈IDS ⊕W ∗, TS, T
′
S , mac, t3〉 to U at time t3.

• On receiving the message, U computes t4− t3 ≤ &t, where t4 is the message
receiving time of user’s system. If time delay in message transaction is valid,
then U achieves IDS = IDS ⊕W ∗ ⊕W. Then, U computes uTS = usP and
KUS = YUT

′
S + uYUYSP .

• Finally, U computes the session key sk∗ and message authentication code
mac∗ as:

sk∗ = H(IDU ||IDS ||usP ||KUS||t1||t3)

mac∗ = H2(IDU ||IDS ||sk||t1||t3).

Then, U verifies the condition mac∗ =?mac. If the condition holds, U ensures
the validity of message. Then, U sends 〈IDU ,mac∗〉 to S.

• On receiving the message, S verifies mac =? mac∗. If verification succeeds, a
user and server agree upon the common session key sk. And, once the session
establishes user can store/access his/her data securely over the public channel.

4 Security and Performance Analysis

4.1 Security Analysis

In this section, we will justify that proposed mutual authentication mechanism
is secure against following attacks:

Anonymity: During communication, user send dynamic identity IDU ⊕ H1

(IDU || uYUYSP ) instead of real identity IDU . The identity IDU is XOR with
the hashed value of the secret uYUYSP where to compute uYUYSP for given
< p, uYY P, YSP > is equivalent to CDH problem on ECC.

Known-Key Secrecy: If a session key between user and server is compromised,
which does not mean to compromise of other session keys because every session
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key evolves random values u and s, where u and s are selected arbitrary inde-
pendently for each session by U and S respectively. In addition, every session
key involves time stamps, which are different for each session.

Replay Attack: Replay Attack is most common attack in authentication pro-
cess. However, the common countermeasures are time-stamp and random num-
ber mechanism. In our scheme, we adopt the time-stamp as a counter-measure.
The messages, in phase U → S and S → U are with time-stamps, therefore,
replay attack could not work in any phase.

Perfect forward Secrecy: If the long term private keys of two parties, U and
S compromise, one can compute YUYSP . However, an adversary can not com-
pute session key because to compute session key sk = H(IDU ||IDS ||suP ||KSU

||t1||t3), one has to compute usP . And, to compute usP for given < P, uP, sP >
is equivalent to CDH problem in ECC.

PKG forward Secrecy: If the PKG’s master key m compromise. Then adver-
sary can not even compute the user or server private keys YU or YS respectively.
As, private keys of user and server are YU = xU +mhU and YS = xS +mhS re-
spectively, which includes random values xU , xS ∈ Zq∗. In addition, to compute
session key sk, computation of usP is required. However, to compute usP for
given < P, uP, sP > is equivalent to CDH problem on ECC.

Man in the Middle Attack: User and server authenticate each other without
knowing. An adversary or malicious PKG can try man in the middle attack by
sending the forge message. However, to authenticate each other user and server
exchange message authentication code (mac). To compute mac, knowledge of
session keys sk is required, although, session key sk is assumed secret and can
con not be achieved with publicly known values as discussed above.

Known Session-Specific Temporary Information Attack: If short term
secret values u and s compromise, then adversary can compute usP . However,
to achieve KUS = uYUYSP + sYSYUP or KSU = sYSYUP + uYUYSP , one has
to compute YSYUP or YUYSP for given 〈P, YUP, YSP 〉, which is equivalent to
CDH problem on ECC.

Impersonation Attack: The adversary E can try to mount impersonation
attack on the proposed protocol as follows:

• U initiates the session with S.
• U chooses a random number u ∈ Z∗

q and computes uP , uYUP and W =
H1(t1||uYUYSP ). Then, U sends the message 〈IDU ⊕W,uP, uYUP, t1〉 to S.

• E does not intercept the U ’s message.
• On receiving, S chooses a random number s ∈ Z∗

q and computes TS = sP ,
sYSP and mac. Then, S responds with the message 〈IDS ⊕ W ∗, sP, sYSP,
mac, t3〉 to U .

• E intercepts the S’s message and try to replace it, E chooses e ∈ Z∗
q and

computes eP and euP . However, E can not replace mac, as to compute
mac, E has to compute sk as mac = H2(IDU ||IDS ||sk||t1||t3), where to
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compute sk, E has to compute KEU = uYUYSP +eYSYUP . Although E can
not compute neither eYSYUP nor uYUYSP with e, YUP, uP, YSP, P , as to
compute uYUYSP for given 〈uYUP, YSP, P 〉 is equivalent to CDH problem
on ECC and to compute eYSYUP value YSYUP is needed where for given
< YUP, YSP, P > computation of YSYUP is equivalent to CDH problem
on ECC . Since, CDH problem is assumed to be a hard problem on ECC,
therefore, impersonation attacks are not possible in proposed protocol.

5 Conclusion

In this paper, we have analyzed Kang and Zhang’s scheme and showed some
security flaws in their scheme. Furthermore, we have proposed a mutual authen-
tication mechanism between cloud user and server, which is based on pairing-free
identity based mechanism. In proposed protocol, user and server authenticate
each other and establish a session key without disclosing their identities over
the public channel. By using the session key, user and server can communicate
securely over the public network. Moreover, this scheme does not require the
computation of bilinear pairing which makes this scheme more efficient and us-
able for cloud infrastructure. Lastly, we have analyzed the security attributes
of the scheme which prove that proposed scheme is secure to establish secure
communication channel over the insecure channel.
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Abstract. As the number of security-critical, online applications grows, the pro-
tection of the digital identities of the users is becoming a growing concern. Strong
authentication protocols provide additional security by requiring the user to pro-
vide at least two independent proofs of identity for the authentication to succeed.
In this paper we provide a formal model and mechanical security analysis of
two protocols for two-factor and two-channel authentication for web applications
that relies on the user’s mobile phone as a second authentication factor and the
GSM/3G communication infrastructure as the second communication channel.
By using a model checker we detected vulnerabilities in the protocols that allow
an attacker to carry out a security-sensitive operation by using only one of the two
authentication factors. We also present a fix that allows to patch the protocols.

1 Introduction

Strong authentication protocols supplement traditional authentication mechanisms
based on user’s credentials (namely, username and passwords) with other proofs of
identity (e.g., a one-time password generated by a special purpose hardware token)
possibly transmitted over an additional communication channel (e.g., GSM). When this
is the case, the protocol is said to offer two-factor (and possibly also two-channel) au-
thentication. Secure Call Authorization (hereafter SCA) is a commercial solution for
two-factor and two-channel authentication developed by AliasLab S.p.A. that relies on
the user’s mobile phone as a second authentication factor and the GSM/3G communi-
cation infrastructure as the second authentication channel. Indeed a key feature of SCA
is the tight integration with the GSM/3G TelCo operator that ensures the authenticity
of the caller ID. Unlike traditional one-time password generators which are bound to a
specific service provider, by using SCA the mobile phone can play the role of a uni-
versal token, meaning that it can be used to support the authentication to a variety of
service providers. In order to secure access to a web application, SCA offers a number
of functionalities through a sophisticated API [1], supporting a variety of authentica-
tion protocols which are exemplified in the available documentation through use case
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scenarios. In this paper we provide a formal model and mechanical security analysis of
the protocols corresponding to the SecureCall Authentication with Drop Call and the
SecureCall Authentication with Personal PIN DTMF use case scenarios, hereafter the
SCA-basic and the SCA-PIN protocols, resp. The formal modeling activity allowed us
to spell out precisely the details of the protocols, the necessary assumptions for their
proper functioning, and the expected security goals. For the mechanical analysis we
used the model checker SATMC [2], detecting vulnerabilities in both protocols. Both
vulnerabilities can be exploited by an attacker in possession of the user’s credentials
and capable to induce her (through social engineering techniques) to place a call with
her mobile phone to the authentication server. In both cases, the attacker succeeds in
carrying out a security-sensitive operation by using only one of the two authentication
factors, i.e. the user’s credentials on the service provider, thereby witnessing the vio-
lation of the strong authentication property that the protocols aim to achieve. We also
discuss a fix that allows to patch both of them, using the SCA API in a different way.

It must be noted that the protocols in SCA API references are not prescriptive.
Developers are thus free (and also encouraged) to use the API as they deem appro-
priate, possibly defining custom authentication protocols meeting the application re-
quirements and assessing their security. As a matter of fact our proposed fix can be
readily implemented by using the functionalities available in the SCA API. Moreover,
AliasLab upon request provides assistance to their customers to assess the security of
their solutions. However developers tend to use the scenarios provided as examples in
the documentation as a blueprint for their implementations. Indeed, by analyzing two
strong authentication solutions based on SCA and deployed in two different real-world,
security-critical applications, namely CloudPlus and LegalPro, we found that they im-
plement the SCA-basic and SCA-PIN resp. and hence suffer from the aforementioned
attacks as described in the sequel.1

2 Two-Factor and Two-Channel Authentication Protocols

Fig. 1. The SCA-basic protocol

The SCA-basic protocol enables web-
based, two-factor authentication by ask-
ing the user to prove possession of a
(registered) mobile phone in addition to
the user’s credentials by placing a call
to a toll-free number. Four roles take
part in the SCA-basic protocol: a mo-
bile phone (M) and a web Browser (B)
both controlled by the user, a Service
Provider (SP), and an authentication
server (TAS) controlled by the TelCo op-
erator. The objective of the user, using

1 Because of the sensitivity of the information contained in this paper the names of the real-
world applications implementing the protocols and suffering from the attacks described in the
paper (namely CloudPlus and LegalPro) are fictitious. We have promptly reported our findings
to the developers of CloudPlus and LegalPro suggesting a better way to use the SCA API.
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the web browser B, is to get access to a resource provided by SP. The SCA-basic proto-
col terminates when SP authenticates the user and grants access to the resource. Fig. 1
shows an excerpt of the messages exchanged during a typical execution of the SCA-
basic protocol. In the first step the user using B provides her credentials (Username
and Password) on the SP login web page. If the credentials are correct, in the second
step, SP generates an identifier Id and sends it to TAS, making a request for a token
(req_tok) and a nonce (req_nonce). In step 3, TAS replies with a four-digit NONCE
and a new Token and stores their association locally in a database, say TAS_DB. SP uses
Id to associate Token and NONCE to the corresponding browser session. In step 4, SP
sends B the request to place a call to the toll-free number of TAS and to digit NONCE after
the tone. The flow of this information from B to M is represented by step 5. In step 6, the
user calls TAS using her mobile phone M and enters the number NONCE received from
SP. The phone call has also the implicit effect of sending the Calling Line Identification
(CLI) of M to TAS. TAS looks TAS_DB for the Token corresponding to NONCE and then
forwards CLI and Token to SP (step 7). In step 8, B asks SP for Resource. Finally SP

checks in SP_DB if CLI corresponds to Username and sends Resource to B (step 9).
Communications between the parties are subject to the following assumptions: (A1)

communications between B and SP are carried over a unilateral SSL 3.0 or TLS 1.0
channel (henceforth SSL/TLS), established through the exchange of a valid certificate
(from SP to B); (A2) communications between M and TAS are carried over a PSTN/GSM
line, through the user’s mobile phone. This ensures confidentiality and gives TAS the
ability to authenticate the phone number of the phone placing the incoming call; (A3)
communications between SP and TAS are carried over a secure channel, e.g. VPN.

The protocol is expected to meet the following security property: the user must be
strongly authenticated on SP. The difference between the standard authentication prop-
erty and the two-factor authentication one lies in the fact that the latter still must hold
even if a malicious agent either (i) knows the credentials of the user or (ii) possesses the
user’s mobile phone.

3 Formal Modeling

We focus on the problem of determining whether the concurrent execution of a finite
number of sessions of the protocol enjoys the expected security properties in spite of
the interference of a malicious intruder. This problem can be recast into a model check-
ing problem of the form M |= (C ⇒G), where M is a transition system modeling
the initial state of the system and the behaviours of the principals, C is a conjunction
of Linear Temporal Logic (LTL) formulae constraining the allowed behaviours of the
intruder, and G is an LTL formula stating the expected security property.

We represent the states of M as sets of facts. In particular, the state of an honest
agent a is represented by the state fact stater(j, a, es). The informal meaning is that
the agent a, playing role r, is ready to execute the protocol step j, and es is a list of
expressions representing the internal state of a. Similarly, we use other facts to represent
the reception and the sending of a message, the knowledge of the intruder, and to model
sets (e.g. the database SP_DB). Here and in the sequel we use typewriter font to denote
facts with the additional convention that variables are capitalized (e.g. TAS, NONCE),
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1start

2

3

4

CBS!Username.Password

CSB?NONCE.TAS;
CBM!NONCE.TAS;
CBS!req_res

CSB?Resource

(a) B

1start

2

3

4

CBS?Username.Password;
check (Username, Password) in SP_DB;
CST!req_tok.req_nonce.Id

CTS?Token.NONCE.Id;
add (Username, Token) to SP_DB;
CSB!NONCE.TAS

CBS?req_res; CTS?Token.CLI;
check (Token, CLI) in SP_DB;
CSB!Resource

(b) SP

1start

CBM?NONCE.TAS;
CMT!cli(M).NONCE

(c) M

1start

2

3

CST?req_tok.req_nonce.Id;
add (Token, NONCE) to TAS_DB;
CTS!Token.NONCE.Id

CMT?cli(M).NONCE;
check (Token, NONCE) in TAS_DB;
CTS!Token.cli(M)

(d) TAS
Legend:
- CBS, CSB, CBM, CTS, CST, CMT: channels supporting the communication between B, SP; SP, B; B, M; TAS, SP; M, TAS resp.
- c!m: message m is sent over channel c. - c?x: a message, say m, is read from channel c and variable x is set to m.
- add (x,y) to DB: pair (x,y) added to DB. - check (x,y) in DB: if pair (x,y) is not in DB, the protocol stops.
- m1.m2: concatenation of messages m1 and m2.

Fig. 2. Process view of the SCA-basic protocol

while constants and function symbols begin with a lower-case letter (e.g. tas, nonce).
The constant i denotes the intruder. While the initial state of the system defines the
initial knowledge of the intruder and the initial state of all the honest principals involved
in the protocol sessions considered, rewriting rules specify the evolution of the system.
For the sake of simplicity, we present here the evolution of M using the process view
of the protocol (which can be easily converted to rewriting rules). More details about
the actual formalism can be found in [2]. The process view of the SCA-basic protocol
is depicted in Fig. 2. Each state in the figure corresponds to the state fact of the agent
playing that role. (See [3] for more details.) Notice that, we model the behaviour of
the user defining two distinct processes (Fig. 2(a) and (c)), according to the specific
device she uses (B and M). Moreover, in order to formalize the communication between
these two processes, we consider a generic channel CBM, modeling the user who reads
the nonce on the web page and digits it on the phone. It is important to underline that
a user u—in the expected execution of the protocol—plays both the roles B and M, but,
as we show in Sect. 4, this is not true in general, and can lead to serious issues. For the
sake of brevity, we omit the rules modeling the abilities of the Dolev-Yao [6] intruder.

The security-relevant properties of communication channels can be specified by
adding suitable LTL formulae to C. We say that a channel c provides confidential-
ity if its output is exclusively accessible to a given receiver p. Thus, the condition
confidential(c, p) can be formalized by an LTL formula stating that globally (for all
the states of the system) only p can receive messages sent on channel c. An authentic
channel c provides authenticity if its input is exclusively accessible to a specified sender
p, the condition authentic(c, p) can be formalized by another LTL formula stating that
globally only p can send messages on channel c. Similarly for the other channels, in-
cluding the unil_conf _auth(x, y, cxy, cyx) channel relation that models a run of SS-
L/TLS in which agent y has a valid certificate but agent x has not. More details can
be found in [2]. The assumptions on channels in Sect. 2 can be modeled including the
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following formulae in C: (i) unil_conf _auth(b, sp, cbs, csb), (ii) authentic(cmt,m),
confidential(cmt, tas), (iii) authentic(cst, sp), confidential (cst, tas), authentic(cts,
tas), confidential(cts, sp), where b, sp, tas, and m are the agents playing the roles
B, SP, TAS, and M resp., and cbs, csb, cmt, cst, and cts are the corresponding channels
among them. (Clearly, formulae (i), (ii), and (iii) capture assumptions (A1), (A2), and
(A3) resp.) We assume confidential to m the channel cbm between the agents playing
the roles B and M, including the formula confidential(cbm,m) as well.

The use of LTL also allows for the specification of the security goals of the protocol.
The language of LTL we consider here uses facts as atomic formulae, the usual propo-
sitional connectives (namely, ∨, ∧, ⇒), and the temporal operators G (globally) and
O (once). To define the security goal we rely on the definition given in [9]: whenever
sp (playing role SP) completes a run of the protocol apparently with user u (playing
role B), then u has previously been running the protocol apparently with sp. This can
be formally expressed by the following formula:

authentication(sp, u) := G(stateSP(4, sp, [u, . . .])⇒O stateB(2, u, [sp, . . .])) (1)

stating that, if sp reaches the last protocol step 4 (cf. Fig. 2(b)) believing to talk with
u, then sometime in the past u, using the browser B, must have been in the state 2
(cf. Fig. 2(a)), in which she started the protocol speaking with sp. When this is the
case, then we say that sp authenticates u. Of course, formula (1) must hold even if
the attacker knows the credentials of the user or possesses the user’s mobile phone.
We focused on the first case: a compromised password should not enable an attacker to
break in if a two-factor authentication is in place. Thus, we change the initial state of the
intruder, assuming that he knows the credentials of the victim. Moreover, we make the
assumption that the attacker knows a way to contact the victim user (e.g. email address).

4 Security Analysis

Fig. 3. Attack on the SCA-basic protocol

We have mechanically analyzed the
formal model of the SCA-basic pro-
tocol using SATMC [2], a state-of-
the-art model checker for security pro-
tocols. SATMC determined that the se-
curity property of Sect. 3 is violated
and returned the attack depicted in
Fig. 3. In the attack, the intruder i initi-
ates a session of the protocol to access
a resource provided by sp pretending
to be the honest user u. (Indeed, we as-
sume that i knows the credentials of u). At this point sp checks the credentials of u
and sends nonce and tas phone number to i (step 4). Then i forwards nonce and
tas phone number to u and induces her with social engineering techniques to call tas
(e.g. in order to win a prize). The attack completes with the delivery of resource to
i. The analysis reveals that u has no information about the SP she is currently placing
the call for. The call is used by i to authenticate (or issue a request), on behalf of u, on
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a service provider (sp) different from the one expected by u. The SCA-basic protocol
could be improved by making the TAS issue a welcome message during the phone call,
stating the purpose of the call (e.g. “Please enter the nonce to authenticate to sp.”). An
alternative solution is given by the SCA-PIN protocol. It extends the SCA-basic proto-
col by asking the user to additionally enter a PIN when placing the call to TAS. Then, in
step 7, TAS forwards it to SP (together with CLI and Token). Since the PIN is assigned
by SP to the user upon registration, the user knows which SP a given PIN corresponds
to and therefore she can easily identify fake requests. When the user calls TAS (step 6),
she enters the PIN. Notice that the welcome message—including the identity of SP—is
not necessary anymore. To perform the attack, the attacker can provide the NONCE to the
user, but he cannot provide the PIN. For the attack to work, he should also ask the user
to enter the PIN associated with SP. By doing so, the user becomes aware of the SP the
phone call is meant for, and this thwarts the attack. The positive aspect of this solution
is that no customization of the welcome message is required for TAS. Yet, the usability
is reduced and the user is asked to remember and provide the right PIN for each SP.

The two solutions proposed above allow to mitigate the issue. However, SATMC
discovered another, subtler attack on the improved versions of the protocol whereby
the call placed by the user to authorize an operation on a given SP is used by the
attacker to authenticate (or issue a request) on the same SP on behalf of the user.
The problem lies in the fact that she cannot ascertain (nor specify) for which oper-
ation she places the call with her mobile phone on the given SP. For instance, the
attacker could send the following message: “Please, provide the pin to tas in or-
der to unlock your access to sp”, while his real purpose is to complete the protocol
in order to authenticate himself. This shows that the user must be aware not only of
the SP the PIN is meant for, but the operation she is performing as well. In Fig. 4
we propose a patched variant of the protocol. It is refined in such a way to provide
the expected information to the user during the phone call, using the existing API.

Fig. 4. The SCA-PIN protocol fixed

We indicate with Op the relevant in-
formation about the operation to be
executed. This is not only provided
to the user as a web page (steps 1
and 4), but it is also communicated
during the phone call (step 7). Ac-
cording to the content of the vocal
message, the user can choose either
to provide the PIN or to abort the
process. As expected, SATMC con-
firms that this variant does not suf-
fer from the attacks reported above
in the protocol sessions considered.

5 Related Work

The importance of two factor authentication is witnessed by the existence of various sur-
veys. [4] performs an high-level analysis of a number of strong authentication protocols
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by providing concepts, implementation approaches, and challenges/additional concerns
at the architectural level. Moreover it classifies strong authentication protocol in four
categories: knowledge-based authentication, server-generated otp, client-generated otp
and out-of-band authentication. The SCA-basic and SCA-PIN protocols are variants of
out-of-band authentication that, as said by the author, should work to impede common
phishing attacks. [5] gives an overview on strong authentication of mobile two-factor
authentication. [11] proposes a study of the various ways the mobile phone can be used
as an authentication token towards service providers on the Internet. RSA provides
some guidelines, e.g. [10]. But all of them do not provide a formal analysis of strong
authentication protocols. This is provided in [7], where some phishing attacks are found
using the PROSA tool, a simulator implemented in Maude, based on rewriting logic. [7]
uses an inference construction approach that attempts to use inference in modal logics
to establish required beliefs at the protocol participants. Performing reachability analy-
sis in PROSA [8], as the author remarks, is quite limited. Differently from him, we use
an attack construction approach that uses model-checking techniques to search attacks.

6 Conclusions

We have presented the formal modeling and the mechanical analysis of two protocols
for strong authentication. We reported vulnerabilities in both protocols and proposed
a possible fix. Our finding confirms the difficulty of getting authentication protocols
right and provides further evidence of the effectiveness of formal method techniques to
support their security analysis.
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Abstract. Apache Hadoop and the Hadoop Distributed File System (HDFS) 
have become important tools for organizations dealing with “Big Data” storage 
and analytics. Hadoop has the potential to offer powerful and cost effective so-
lutions to Big Data analytics; however, sensitive data stored within an HDFS 
infrastructure has equal potential to be an attractive target for exfiltration, cor-
ruption, unauthorized access, and modification. As a follow-up to the authors’ 
previous work in the area of improving security of HDFS via the use of Trusted 
Computing technology, this paper will describe the threat against Hadoop in a 
sensitive environment, describe how and why an Advanced Persistent Threat 
(APT) could target Hadoop, and how standards-based trusted computing could 
be an effective approach to a layered threat mitigation.  

Keywords: Hadoop, HDFS, APT, Trusted Computing, Security. 

1 Introduction and Motivation 

Why talk about Advanced Persistent Threats (APT) in the context of Apache Ha-
doop? “Big Data” has become a hot topic in the enterprise space within recent years, 
perhaps even rivaling the popularity of “cloud” in the buzzword count within popular 
trade literature. But what does “Big Data” mean, and what are the implications to an 
organization’s security posture when using popular platforms to store and process this 
data? “Big Data” is a singular term to describe an array of possible scenarios, mean-
ing different things to different organizations. In the general case, it is being able to 
store and reason about large quantities of both structured and unstructured data. For 
instance, in the world of a search giant like Google, this means generating near instant 
responses to search queries from an enormous amount of raw data from an enormous 
quantity of web pages. What projects like Apache Hadoop have done is to bring this 
capability to the masses through non-proprietary, open-source software that can scale 
to fit practically any organization’s needs in any business space. Advanced Persistent 
Threats (APTs) has become another popular buzzword emerging from the realm of 
information security into the vernacular, but what does this mean and how is it any 
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different from any other threat? Typical defenses techniques are generally good 
enough to block the casual attack coming from script kiddies and known 
worms/viruses. Unfortunately, unknown vulnerabilities, insider threats, end user care-
lessness, and a persistent attacker represent difficult problems in network defense. 
APTs methodically attempt to exploit possible entry points in a patient manner with 
advanced techniques. The RSA SecurID breach of 2011 and Stuxnet (2010) are recent 
examples. Most literature associates APTs with Nation State or organized crime how-
ever, so called ‘hacktivist’ groups and other determined entities or individuals have 
the potential to become APTs.  

For some organizations, the HDFS infrastructure becomes a catch-all for data that 
has an indeterminate purpose. Given the wide range of applications, it is not particu-
larly hard to imagine that sensitive data could be contained within a HDFS infrastruc-
ture, making it a ripe place for an APT to target for long term exploitation. Depending 
on the business of the organization, this could have the potential to be a treasure trove 
of information that a potential adversary could become acutely interested in. A recent 
Forbes article estimates that the Big Data Industry is at about $5 billion in factory 
revenue, with projections to increase to $55 billion by 2017. The old adage of “follow 
the money” applies to cyber targeting. If the organization can gain financial benefit 
from the data stored within HDFS, someone else may be able to as well.  

Trusted Computing, in the context of the Trusted Computing Group (TCG) stan-
dards, refers to a set of technology standards aimed at increasing the trustworthiness 
of computer systems through the use of hardware rooted trust. At the core of the TCG 
solution stack lays the Trusted Platform Module (TPM), an inexpensive cryptographic 
chip that is present in a number of commodity class PCs, servers, and other devices 
[1]. It is a cryptographic component which can enable a level of trust in the state of a 
system, as well as provide mechanisms to verify this state and enable higher-level 
functions such as key generation and secure storage. By applying this technology to 
an application specific problem, we can demonstrate some possible mitigations 
against APTs directed at an Apache Hadoop environment.  

2 Anatomy of an APT against HDFS 

The Security model of Hadoop makes assumptions assumptions made about the state 
of the networks that may not be realistic: “The security features in CDH4 meet the 
needs of most Hadoop customers because typically the cluster is accessible only to 
trusted personnel. In particular, Hadoop's current threat model assumes that users 
cannot: 1. Have root access to cluster machines. 2. Have root access to shared client 
machines. 3. Read or modify packets on the network of the cluster. “ [2] In addition, 
there is no support for data at rest encryption. Until the most recent releases, encryp-
tion of data on the wire was not supported [2]. These limitations leave Hadoop vul-
nerable to a number of attack scenarios, even in a situation where the assumptions of 
the threat model are applied.  
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Fig. 1. An example of a Security Conscious Enterprise Architecture for Hadoop 

The diagram above illustrates example Hadoop enterprise architecture in an organ-
ization that has taken reasonable security precautions to protect the sensitive elements 
of the infrastructure. The core idea in this design is to isolate the HDFS data sources 
in a layered approach. In this way, Hadoop users and applications utilizing Hadoop 
are connected to the data through firewalls and an HDFS proxy server. Along with 
other security best practices (OS patching, intrusion detection, malware scanners, etc) 
and proper configuration, this would be considered a reasonably secure implementa-
tion, and the data can be considered safe under most scenarios. This is the type of 
environment which Hadoop, even with security settings enabled, is designed to oper-
ate. Owen O’Malley, one of the chief contributors of the Hadoop security design and 
Hadoop in general stated “the motivation for adding security to Apache Hadoop ac-
tually had little to do with traditional notions of security in defending against hackers 
since all large Hadoop clusters are behind corporate firewalls that only allow em-
ployees access” [3] . However, an attacker specifically targeting this environment, 
given the right opportunities, could gain unauthorized access to HDFS.  

APTs can be thought of as a seven step exploitation life cycle that includes recon-
naissance, initial intrusion, establishment of a backdoor, credential acquisition, utility 
installation, privilege escalation/lateral movement/data exfiltration, and persistence 
maintenance [4]. An outside attacker looking to access HDFS data in our example 
needs to make initial inroads into the corporate network. First, he can look for a tradi-
tional entry point in front-facing services. The web portal application shown would be 
a first target, where he would use a traditional vulnerability scanner to find any open 
ports (management interfaces such as RDP/SSH) or exploitable services, or attempt to 
exploit known issues (or a zero- day exploit) that could be used to get a remote shell. 
If he is able to gain access to the web server with a remote shell, he can use this as a 
starting point into the network. From the portal, he could manipulate the application 
code to pull data from HDFS, or he will move on to compromise the HDFS proxy 
server. If there is no exploit available to do this, he will target user credentials, per-
haps from an admin that accesses the web server. If he failed to gain access through 
the front facing services, he will move on to a social engineering attack. The attacker 
will target a particular individual (preferably someone with potential administrative 
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access) with a spear-phishing attack where they will either disclose credentials or are 
directed to a website that installs malware providing a backdoor. He may be able to 
use a zero-day exploit to avoid detection by anti-virus software and network filters. In 
our diagram, we show Hadoop Administrators that have direct access to the protected 
HDFS infrastructure. An ideal scenario may be to infect this administrator’s computer 
with malware, and use it as a bridge directly into the HDFS infrastructure via their 
administrative channel. Once in, APTs are known to set up easy-to-find back doors 
along with hidden, giving security administrators a false sense that they have solved a 
problem [4].  

At this point, the APT has several options to gain access to the HDFS data. A 
straightforward approach would be to gain the Kerberos credentials for a service ac-
count or individual with access to the data. The issue with this approach is that, unless 
the attacker finds an account with super-user access to all files, he will be limited by 
the HDFS security to the set of files that they have access. Compromising the various 
Hadoop applications shown would have a similar effect. The attacker could monitor 
and exfiltration data which the applications have access to. If HDFS traffic is in the 
clear, the attacker could do this by simply monitoring the network traffic. Compro-
mising the HDFS proxy would be a more ideal target, and could give the attacker a 
better access to the full contents of HDFS. Using open channels through the firewalls 
protecting the core HDFS services by either exploiting the network applications or via 
an administrative channel would allow the attacker to directly manipulate the HDFS 
environment. The symmetric encryption key used in token protection is distributed to 
each node and stored on the file system [5]. Accessing this key would allow further 
compromise by creating of delegation tokens to access restricted files. Likewise, with 
physical access to the DataNodes, the unencrypted blocks could be exfiltrated or mod-
ified. For long term persistence, without requiring continued physical presence, an 
attacker could craft a replacement HDFS software package that relayed data streams 
to another location as they are created or accessed. An attack like this would more fit 
the profile of an APT rather than a get the data and run effort.  

3 Mitigations Based on Trusted Computing and Limitations 

In our previously published work, we described various ways that Trusted Computing 
concepts could be used to enhance the confidentiality and integrity of data within a 
Hadoop HDFS infrastructure [6]. In the following, we will discuss how these integra-
tions could help defend against the APT which we described. In addition, we describe 
our current efforts into integrating data block level encryption utilizing the TPM into 
the Hadoop source.  

With the goal of establishing trustworthiness of the base operating system, we 
created a Hadoop environment where each node of the Hadoop Cluster creates a chain 
of trust using the TPM and Open Source components to take measurements of key 
components of the operating system and associated sensitive files. Specifically, each 
node will implement TrustedGrub to verify key files and extend platform control 
registers with platform integrity information. Each node implements file level  
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integrity measurements protected by hardware trust, specifically, implementation of 
the Linux Integrity Subsystem (IMA) and Extended Validation Module (EVM), also 
augmenting the post-boot measurements of TrustedGrub. The idea of these boiler-
plate TCG approaches is to give insight into the integrity of the system at boot time. 
By using a boot loader which measures key operating system files and extends the 
platform control registers, a decision can be made whether to unlock critical files 
(such as configuration files, key files, etc.) that are needed for Hadoop. Also, measur-
ing the Hadoop software can be one of these measurements, indicating whether this 
software was altered. In addition, IMA/EVM provides an access log and PCR value 
for all files that are part of the Trusted Computing Base (which is essentially all files 
opened by root) [7]. Under normal operational circumstances, this PCR value should 
be consistent, and checking this value would give insight into possible compromise. 
In the APT scenario where an attacker gained access to a Hadoop node directly, he 
could eventually be detected if the IMA PCR value is checked. Should the attacker 
modify OS files, Hadoop configuration files, or Hadoop software, this would be de-
tected as well, either through IMA or during the next boot. After the node boots, a 
remote validation server will confirm the state of each node in the Hadoop cluster via 
a remote attestation protocol. Specifically, this will be an implementation of an Open 
Platform Trust Services Collector on each node and a central Verifier. Each node will 
attest to its status using a secure protocol. In our APT scenario, this protection meas-
ure will give insight into the state of the platform, and hence aid in detection of com-
promise. If the TCB IMA PCR is checked as part of this, then a runtime compromise 
can be detected, otherwise, the checked values are only valid when they are created at 
system boot. The trusted computing components can also aid in protecting the block 
and metadata of HDFS, although carte blanche block encryption in software will like-
ly slow down performance beyond the 3% overhead that the Hadoop Security Design 
specifies [3].  Unfortunately, if we are relying on known PCR values and a TPM pro-
tected key to unlock a loop-back encrypted partition containing HDFS checksums or 
data block files, these files would be accessible to the attacker who compromised the 
system after the encrypted partition was opened.  

Taking the use of trusted computing concepts into the software layer can offer 
some additional interesting options in limiting the attack surface. Although there are 
several ways in which the cryptographic engine could potentially be used, we will 
focus on an obvious use case of implementing block encryption on DataNodes, utiliz-
ing jTSS to provide a Java based interface to the TPM. Ultimately, this encryption 
concept would be user defined, such that a decision could be made on a case-by-case 
basis of security versus performance. For our initial implementation, we wanted to 
keep the integration as simple as possible, as there are a number of optimizations, 
error correction, and redundancy operation’s going on within HDFS that we left out 
of the encryption picture. The diagram below shows a simplified HDFS dataflow, 
where a Client accesses the NameNode for metadata operations for the virtual file 
system (such as file location within the DataNodes) and the DataNodes handle storage 
and retrieval of the blocks from the actual file system on the node. The HDFS code is 
abstracted such that higher level operations involving blocks are abstracted from code 
that actually reads or writes the bytes from disk.  
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Fig. 2. Simplified HDFS Dataflow/Simplified TPM Based Block Encryption 

To implement an encryption layer that would not require modification of the high-
er-level code logic, we implemented a solution where each data block would be indi-
vidually encrypted and decrypted as the request comes in to store or read the block. In 
this scenario, each DataNode has an RSA key stored within the TPM which we are 
calling the HDFS key. This could be a migratable key that is shared between the 
nodes (a solution that would be more efficient for block replication), or, as in our 
initial solution, a different key in each node. This solution has the potential to limit a 
cascade compromise should the key be compromised. The core of this concept is the 
generation of a random AES key. The TPM’s random number generator is used to 
enhance the randomness of this key over the Java based generator. This random AES 
key is then used to encrypt the block (typically configured to be 64-128MB in size) 
and the checksum file. The AES key is then encrypted using the TPM stored key and 
stored in a block key file associated with the block id. If the block is requested, the 
key is unwrapped and the file decrypted into the output stream. In this way, the block 
is only encrypted while on the disk. In our attack scenario, encrypting the blocks in 
this fashion present an attacker with physical access to the system the inability to 
directly access block files. In order to access the blocks, he would need to manipulate 
the HDFS software to extract the files for him. He would also be able to see the 
blocks as they are decrypted if he is able to monitor memory buffers. The other issue 
is protection of the TPM key. Although the RSA key itself is protected, an attacker 
with root access could simply ask the TPM to decode the block key file, giving access 
to the AES key. The TPM can be configured with a user password, otherwise it uses 
the “well known secret”. If a user password is used, it needs to come from some-
where. We simply built this hash into the code for now, but ideally, the password 
would come via a remote server once the platform passes an attestation procedure. It 
would be delivered over an encrypted tunnel as a hash and only stored in memory. In 
this case, the attacker would have to find the password in memory, again adding to the 
skill and time needed to compromise the files.  
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4 Conclusions and Future Work 

Future work will consist of further examination of the performance consequences of 
using Trusted Computing within a Hadoop architecture and further examination of 
software integration. Our current implementation is a proof of concept, and requires 
refinement, and integration into the client application, allowing for the goal of select-
able encryption. Also, a purposeful attestation environment which would integrate 
into an overall portal to determine the state of the cluster would be desirable. Further, 
protection of the TPM authorization data needs to be explored in a more holistic  
fashion.  

The prevalence of the Advanced Persistent Threat should give security organiza-
tions pause, and reason to evaluate solutions to make this style of attack more difficult 
to conduct. Along with providing sufficient boundaries, layers of security, and proac-
tive monitoring and actions, implementing trusted computing concepts and utilizing 
these proven technologies can be an additional step to help protect sensitive resources. 
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Abstract. Future mobile networking will involve the convergence of dif-
ferent wireless networks such as 2G, 3G, WiMax and Long Term Evo-
lution. The wide scale deployment of such heterogeneous networks will
precipitate a radical change in the network infrastructure, where cur-
rently closed systems such as 3G will have to operate in an open envi-
ronment. This brings to the fore certain security issues which must be
addressed, the most important of which is the initial Authentication and
Key Agreement to identify and authorize mobile nodes on these various
networks. This paper proposes a new security protocol to authenticate
the mobile terminal in heterogeneous networks.

Keywords: Authentication and Key Agreement Protocols,
Casper/FDR, Heterogeneous Networks.

1 Introduction

Unlike current communication systems such as 2G and 3G [1] which introduce
closed environments where the core network is controlled and owned by sole
network operators and thus its security is mainly based on the assumption that,
the core network is physically secure,the above discussion highlights the fact
that we are moving towards an open, heterogeneous environment where the core
network is not controlled by a single operator, so multiple operators will have
to cooperate. This new open architecture, will bring about new security threats
such as initially authenticating the mobile nodes in this open environment. This
paper proposes a novel Authentication and Key Agreement (AKA) protocol that
considers the open nature of heterogeneous networks.

The rest of this paper is organized as follows: Section 2 describes the open
architecture of the future, heterogeneous networks as introduced in [2]. Section
3 presents the new proposed protocol. The paper concludes in Section 4.

2 Overview of Future Networks

In Next Generation Networks, multiple operators have to cooperate in order to
provide continuous connectivity. However, since each network operator uses a
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different network architecture, interoperability might be a key challenge. One
proposed solution for this problem is having a central management entity, called
Core-End Point (CEP) to control the resource of the different networks and co-
ordinate the multiple operators [3] [2] [4]. As shown in Fig 1, this future Internet

Fig. 1. The Future Internet Architecture

could be viewed as composed of several Core End-Points, interconnected over the
super fast backbone of the Internet. Each CEP is responsible for managing mul-
tiple, wireless peripheral networks such as Wimax, WiFi or mobile technologies
in a local context. A detailed view of the the Core End-Point’s structure along
with the attached networks is shown in Fig 2. The figure shows a hierarchi-
cal architecture, where the bottom level is represented by several Access Points
(APs) and Access Routers (ARs), that communicate with the wireless interfaces
in the mobile terminals. The middle level comprises a number of technology-
specific domains, where each domain represents a certain network operator and
technology such as 2G, 3G and Wi-Fi. For these domains to interoperate, the
Core End-Point, which is residing at the top level acts as a central administrative
domain to control the inter-domain functions and provide overall management.
In order to deal with the QoS and security tasks in this architecture, a number
of operational entities have been proposed as follows: The Central A3C server
(CA3C), the Central QoS Broker (CQoSB), the Domain A3C Server (DA3C),
the Domain QoS Broker (DQoSB), the Access Router (AR). These entities co-
operate to provide security and QoS-related tasks as described in [2].

2.1 Verifying Security Protocols Using Formal Methods and
Casper/FDR Tool

Previously, analysing security protocols used to go through two stages. Firstly,
modelling the protocol using a theoretical notation or language such as Commu-
nication Sequential Processes (CSP) [6]. Secondly, verifying the protocol using
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Fig. 2. The Network Structure

a model checker such as Failures-Divergence Refinement (FDR) [7]. However,
describing a system or a protocol using CSP is a quite difficult and error-prone
task; therefore, Gavin Lowe [5] has developed the CASPER/FDR tool to model
security protocols, it accepts a simple and human-friendly input file that de-
scribes the system and compiles it into CSP code which is then checked using
the FDR model checker. The proposed protocol in this paper has been verified
using the Casper/FDR tool.

3 The Proposed Solution

In order to address the security threats in NGNs and to provide a better security
in the core network, our proposed solution presumes the existence of secure
connection between all the network entities (Auth, DA3C, CA3C) in the core
network.

3.1 The Key Hierarchy

As shown in Fig 3, the security materials comprise a top level Unique Key
uk(MT), which is pre-shared between the MT and the CA3C server. Similar
to the (Ki) key in GSM [1] , the uk(MT) is stored into the MT’s SIM card
and is never used for encryption purposes rather, it is only used for deriving
further security keys. The second level key is the Domain Specific Master Key
(DSMS), as the name implies, this key is unique at the domain level and is
derived using an irreversible function F1 as follows: DSMS=F1(uk(MT), seq1,
Auth Domain Name), where seq1 is a fresh sequence number, the Auth Domain
Name is the corresponding domain name. Since each domain might have more
than one Authenticator, the MT could join the domain via any of its Auths,
thus, a different Secret Key (SK) has to be used for each Authenticator. One
Authentication Key (AK) is used for mutual authentication between the MT
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and the network. Similar to F1, two irreversible function F2 and F3 are used to
derive AK and SK as follows: AK = F2 (seq1, DSMS), SK = F3(seq1, AuthID,
DSMS). Where AuthID is the ID of the Auth and is broadcasted by the Auth
in the form of AuthID@DomainName. Defining the Key Derivation Function
(KDF) used by F1-F3 functions is beyond the scope of this paper.

Fig. 3. The Key Hierarchy

Table 1. Notation

The Notation Description

MT The Mobile Terminal
Auth Is the Access Router in the peripheral network
AuthID The Authenticator unique ID has the format Au-

thID@domainname
CA3C Core-endpoint entity, which has QoS and Security related

responsibilities
se1(DA3C) Pre-shared secret key between the CA3C and the DA3C
se2(Auth) Pre-shared secret key between the DA3C and the Authenti-

cator (Auth)
uk(MT) Unique secret key shared between the CA3C and the MT
DSMS Domain specific- Master Key DSMS= F1 (uk(MT), seq1,

Auth-domain name)
AK Authentication key AK= F2 (seq1, DSMS)
SK Secret Key SK = F3 (Seq1, AuthID, DSMS), used to encrypt

all the messages between the MT and the network
F1, F2, F3 Irreversible Key Derivation Functions
InitAuth flag A flag set only in the initial authentication. In case of han-

dover, this flag will not be set
HoAckm Joining/Handover Acknowledgement message used by the

DA3C server to inform the CA3C in the CEP about a suc-
cessful authentication

seq1, seq2 Sequence numbers
{m}{K} Encrypting the message (m) using the key (K)
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3.2 The Security Protocol

To secure the core network, we propose the presence of a certain trust relation-
ship between the network’s entities and thus secure channels have already been
established between the CA3C, the DA3Cs and between the DA3Cs, the Auths.
Such secure channels could be guaranteed by using different mechanisms such as
IP security (IPSec)or any other Virtual Private Network (VPN) protocols. Al-
ternatively, this could be achieved using out-of-band approach such as agreeing
on security materials among the multiple operators.

By considering the notation in Table 1, the AKA protocol is explained as
follows:

After starting the mobile device, the MT picks the access routers’ adver-
tisements (Adv) which contain information about the access network such the
AuthID and the domain name. The MT uses this information to generate a
Domain-Specific Master Key (DSMS).

Phase 1
Msg 1: Auth → MT: Adv
Generate the DSMS= F1(uk(MT), seq1, AuthID)

The protocol starts when the MT sends a joining message Msg 2 to the Auth.
The Auth responds by sending authentication request AuthReq as Msg 3.

Phase 2
Msg 2. MT → Auth: AccReq
Msg 3. Auth → MT: AuthReq

By using the DSMS, the MT derives the Authentication Key (AK) and com-
poses Msg 4, this message consists of a fresh sequence number seq1 used as a
challenge, Authentication ID (AuthID); the Mobile terminal identity (MT) , and
a set Initauth flag (InitAuth=1). The Auth passes this message to the DA3C
and from there to the CA3C as Msg 5 and Msg 6. Using the included mobile ID,
the CA3C looks up the corresponding uk(MT) and uses it to generate a fresh
Domain Specific Master key DSMS.

Phase 3
Generate the AK = F2(seq1, DSMS)
Msg 4. MT → Auth: MT, seq1, AuthID, Initauth
Msg 5. Auth → DA3C: {MT, seq1, AuthID, Initauth}{se2(Auth)}
Msg 6. DA3C → CA3C: {MT, seq1, AuthID, Initauth}{se1(DA3C)}
Generate the DSMS= F1(uk(MT), seq1, AuthID)

The DSMS key is included in Msg 7. Using the information in this message,
the DA3C generates the Authentication Key (AK) and returns the previously
sent sequence Seq1 and a new sequence number Seq2 all the way to the MT as
Msg 8 and Msg 9. These messages are encrypted using the derived AK. Since
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the MT has the required information to derive all the keys (DSMS, SK, AK),
the MT verifies the contents of Msg 9 and derives the Secret Key SK.

Phase 4
Msg 7. CA3C → DA3C: {DSMS, seq1, AuthID, MT, Initauth}{se1(DA3C)}
Generate the AK = F2(seq1, DSMS)
Msg 8. DA3C → Auth: {{seq1, seq2}{AK}}{se2(Auth)}
Msg 9. Auth → MT:{seq1,seq2}{AK}
Verify the message contents, then derive the SK:= F3(seq1, DSMS, AuthID)
The MT returns Seq2 all the way to the DA3C as Msg 10 and Msg 11. The
DA3C verifies the contents of Msg 11 and derives the Secret Key SK.

Phase 5
Msg 10 . MT → Auth:{seq2}{AK}
Msg 11. Auth → DA3C :{{seq2}{AK}}{se2(Auth)}
Verify the message contents, then derive the SK:= F3(seq1, DSMS, AuthID)
Upon verifying the Msg 11, the DA3C authenticates the MT and acknowledges
this to the CA3C, and then generates the Secret Key (SK) and passes it to the
Auth in Msgs12, 13. Using the SK, the Auth sends an encrypted access response
message to the MT as Msg 14.
Phase 6
Msg 12. DA3C → CA3C:{HoAckm}{se1(DA3C)}
Msg 13. DA3C → Auth:{SK}{se2(Auth)}
Msg 14. Auth → MT:{AccRes}{SK}

Formal Verification: A Casper input file describing the protocol was prepared.
For conciseness, only the #Specification and the #Intruder Information headings
are mentioned here. The security requirements of the system are defined under
the # Specification heading. The lines starting with the keyword Secret define
the secrecy properties of the protocol. The lines starting with Agreement and
WeakAgreement define the protocol’s authenticity properties.

# Specification
Secret(MT,AK,[DA3C])

Secret(DA3C,AK,[MT])

Secret(MT,SK,[DA3C, Auth])

Agreement( MT, DA3C, [seq2])

Agreement(DA3C, MT, [AK])

WeakAgreement(MT, Auth)

WeakAgreement(Auth,MT)

WeakAgreement(Auth, DA3C)

WeakAgreement(DA3C, Auth)

The # Intruder Information heading specifies the Intruder identity, knowledge
and capability. The first line identifies the Intruder as Mallory, the Intruder
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knowledge defines the Intruder’s initial knowledge, i.e., we assume the Intruder
knows the identity of the participants and can intercept and replay all the ex-
changed messages.

# Intruder Information
Intruder = Mallory

IntruderKnowledge = {mt, da3c, Mallory, ca3c, Authid, auth,

uk(Mallory)}
After simulating the protocol, Casper/FDR found no attacks

4 Conclusion

This paper investigates the security issue in heterogeneous networks. In par-
ticular, it tries to address the issue of authenticating mobile nodes when ini-
tially joining the network. Therefore, a new AKA protocol has been proposed,
the protocol is formally verified using formal methods approach based on the
Casper/FDR tool.
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Abstract. Web based scientific applications have provided a means to
share scientific data across diverse groups and disciplines extending be-
yond the local computing environment. But the organization and sharing
of large and heterogeneous data pose challenges due to their sensitive
nature. In this paper we analyze the security requirements of scientific
applications and present an authorization model that facilitates the or-
ganization and sharing of data without compromising the security of
data.

Keywords: Access Control, Scientific Applications.

1 Introduction

Web based scientific applications provide an infrastructure that allows scientists
and researchers to run scientific computations, data analysis and visualization
through their web browsers. Moreover, such applications also provide a collab-
orative environment in which scientists and researchers can work together by
sharing their tools and datasets. But the organization and sharing of large and
heterogeneous data pose challenges due to their sensitive nature where data
needs to be protected from unauthorized usage. An inadequate or unreliable
authorization mechanism can significantly increase the risk of unauthorized use
of scientific data. For this purpose, we present an access control system for sci-
entific applications. We formulate a methodology that incorporates principles
from security management and software engineering. From a security manage-
ment perspective, the goal is to meet the requirements for access management
in scientific applications. From a software engineering perspective, the goal is
to incorporate the well-known principles of software engineering in the access
control model design to yield a specification that allows authorizations to be
developed and managed in a standardized manner.

The remainder of this paper is organized as follows: Section 2 describes the
data model while Section 3 discusses the authorization requirements for scientific
applications. In Section 4, we present the authorization model based on the
requirements in Section 3. Section 5 discusses the key components of the access
control system of Computational Research Infrastructure for Science (CRIS), a
web-based scientific application. The related work is presented in Section 6 and
Section 7 concludes the paper.
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2 Data Model

A model of authorization must be designed to be consistent with the objects
being supported in a scientific application. This section describes the key con-
cepts that characterize the various objects in the scientific domain and their
impact on the design of an authorization model. Object Hierarchy: Data ob-
ject hierarchies are a common approach to organize large amounts of data by
exploiting relationships among the various data objects. An object hierarchy
is represented as a tree structure. From access control perspective, the hierar-
chical organization of data objects should effectively reduce the total number
of permission assignments, thus reducing the cost of permission administration.
Datasets and Versions: Most of the large scientific datasets are assembled
from samples collected over time and are versioned for the purpose of long-term
preservation and re-use of primary research data. From access control perspec-
tive, authorizations must be specified on a versioned dataset and on individual
versions of the dataset. Scientific Workflows: A key impediment for scien-
tists is how to automate their manual repetitive scientific tasks. Workflows have
emerged as an alternative to ad hoc approaches for constructing computational
scientific experiments . From access control perspective, authorizations on work-
flows can be specified at two different granularities: (1) access is granted/denied
on an individual workflow (2) access is denied/granted on an individual task
within a workflow. We have adopted the latter as the default and support the
first as user option. Computational Tools: Most of the research activities in
Web based scientific applications have focused on the development of new com-
putational tools to support scientific discovery. Since computational tools access
large amounts of data, an important implication from access control perspec-
tive is to prevent unauthorized access to a dataset when invoked as part of the
execution of the tool.

3 Authorization Requirements

This section highlights the security management issues that impact the design
of an authorization model for scientific applications. In what follows, we assume
a general notion of authorization by which an authorization is defined in terms
of a subject, a permission, an object, an object owner and an object class.

Implicit Authorization. An inefficient way to implement an authorization
mechanism is to explicitly store all authorizations for all system subjects desir-
ing access and all system objects whose access has been requested. In contrast,
the concept of implicit authorizations makes it unnecessary to store all autho-
rizations explicitly.The idea behind implicit authorization is that a permission of
certain type defined for a subject on a certain object implies other authorizations
i.e. authorizations can be automatically propagated. Hence the authorization
mechanism can compute authorizations from a minimal set of explicitly stored
authorizations in order to prevent unauthorized access. Furthermore, in order to
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allow exceptions to an authorization, an authorization is distinguished as positive
or negative authorization. A positive authorization is a granting authorization
and a negative authorization is an explicit denial of an authorization.

Dataset Security. Scientific applications allow a user to develop a computa-
tional tool and then grant the run authorization on this tool to other users. An
important question is whether the authorization to directly access a dataset d
must be checked when d is invoked as part of the execution of the tool. There
can be two approaches: In the case of first approach, all accesses made during
the execution of the tool are further checked as necessary against the same user
who invoked the tool. Thus a user must possess all authorizations on datasets
accessed by the tool and therefore authorization controls embedded in the tool
would be easily by-passed. While this can be fine in some situations, the second
approach is exactly the opposite of what should be done as a means to protect
data. In this case, a user having the authorization to execute a tool should not
have any authorization to directly read or modify the dataset accessed by the
tool. When the tool is executed, all datasets which are not granted to the tool,
their permission will be checked against the user executing the tool. Note that
only an owner may grant execution authorizations on a dataset.

Sandbox Search. Sandbox Search functionality allows a user to search whether
certain data exists but this does not imply the right to see the actual data. The
user must have permission to access data in order to retrieve the actual data. A
question can be why forbid a user from searching when data cannot be accessed
if the user does not have the permission on the data. This is due to two reasons:
(1) users performing these queries will consume a lot of resources (2) in some
cases one may not want to allow a browsing query to report the existence of
their data as it may reveal information intended to be hidden.

Temporal Constraints. In many situations, permissions have a temporal di-
mension in that they are usually limited in time or may hold for specific periods
of time. Therefore temporal constraints surrounding an access request must be
evaluated to grant/deny access to objects. Each authorization has a time in-
terval associated with it, representing the set of time instants for which the
authorization is granted.

Conflict Resolution. Authorization rules must be specified correctly to ensure
that authorized access is allowed while unauthorized access is denied. Identifying
and resolving a conflict before it results in the denial of a legitimate access request
is essential to improving the usability of any access control system.

4 Authorization Model Design

In this section, we present a general authorization model for scientific applica-
tions by formalizing the authorization requirements mentioned in Section 3. The
authorization model is extension of the earlier work by Rabitti et al. [4].
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Basic Definition An authorization is defined as (s, o, p, s
′
, c) where: s ∈ S,

the set of subjects; o ∈ O, the set of objects; p ∈ P , the set of permission; s
′ ∈

owner(o) ⊆ S; c ∈ C, the set of class of objects. A function f is defined to
determine if an authorization (s, o, p, s

′
, c) is True or False;

f : S ×O × P × S × C → (True,False)

Definition 1. A positive authorization is a tuple (s, o, p, s
′
, c) with s ∈ S, o ∈ O,

p ∈ P , s
′ ∈ S and c ∈ C. A negative authorization is a tuple (s, o,¬p, s′

, c) with
s ∈ S, o ∈ O, p ∈ P , s

′ ∈ S and c ∈ C.

Definition 2. An authorization base (AB) is a set of explicit authorizations
(s, o, p, s

′
, c) with s ∈ S, o ∈ O, p ∈ P , s

′ ∈ S and c ∈ C where p positive or
negative; that is,

AB ⊆ S ×O × P × S × C

The model in [4] is extended to include the owner of the object and class of
the object as part of the authorization tuple. It is imperative for the purpose of
Dataset Security mentioned in Section 3 to determine that the privilege being
granted to a subject s on an object o is by the owner of o. The inclusion of
object class is essentially to differentiate between the type of objects since all
authorizations are being stored in one base, namely AB.

Implicit Authorization. An explicitly specified authorization may imply au-
thorizations along any combination of two dimensions in authorization defini-
tions, namely, the subject, and object. The function ı(s, o, p, s

′
, c) computes True

or False of an authorization (s, o, p, s
′
, c) from the explicit authorization in AB

if either the authorization (s, o, p, s
′
, c) or (s, o,¬p, s′

, c) can be deduced from
some (s1, o1, p1, s

′
1, c1).

Definition 3. Function ı(s, o, p, s
′
, c) is defined as

ı;S ×O × P × S × C → (True,False)

If (s, o, p, s
′
, c) ∈ AB, then ı(s, o, p, s

′
, c) = True; else, if (s1, o1, p1, s

′
1, c1) ∈ AB

such that (s1, o1, p1, s
′
1, c1) → (s, o, p, s

′
, c), then ı(s, o, p, s

′
, c) = True; else, if

(s1, o1,¬p1, s
′
1, c1) ∈ AB such that (s1, o1,¬p1, s

′
1, c1) → (s, o,¬p, s′

, c), then
ı(s, o, p, s

′
, c) = False.

We now formally define the three domains S,O and P and the rules used for
deducing implicit authorizations from explicitly defined authorizations. Sub-
jects are organized as a means of a group and authorizations are associated to
groups thus reducing the number of explicit authorizations. The idea of groups
is similar to user-role assignment in Role Based Access Control (RBAC). The
groups form a hierarchy called a Group Hierarchy (GH) where a node on the
hierarchy represents a group and a directed arc from group A to group B indi-
cates that an authorization for group A subsume the authorizations for group B.
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A user has permission p on object o if there exists a group s such that f(s, o, p, s
′
, c)

= True and the user belongs to s. Permissions in our model take the value
{read, write, create, delete, execute} and implication between two authorizations
does NOT occur along the domain P . A permission in our model is stored as a
cumulative permission represented by an integer bit mask where each bit rep-
resents a permission. Hence only one entry is needed to store an authorization
for a particular object which reduces the need for implicit authorization along
the domain P . Objects are organized in a Hierarchical Object Lattice (HOL) in
the form of a rooted acyclic graph in which each node is a Project, Experiment,
Job or Workflow. An arc from node A to node B in the HOL indicates that
object A implies object B. Note that authorizations can only propagate in the
O domain when objects are hierarchical and not in the case of tools. In the case
of tools, each tool directly references the dataset(s) being utilized by the tool
and each dataset directly references its versions. An authorization to a dataset
must be explicitly defined and cannot imply authorization from a tool accessing
the dataset.

Dataset Security. Whenever an authorization request for tool t ∈ O is evalu-
ated by function f to be true, the function check performs an additional check
and returns False if the tool can be invoked by user but does not have au-
thorization to execute this tool on the given dataset and True if the current
user can execute the tool. Two other functions that we describe are: grant and
revoke which respectively grant and revoke authorizations. They return True if
authorization grant and revocation have been done correctly and return False
otherwise. The function grant is organized as follows: First a check is done to
verify that the user is the owner of the dataset since only owner can grant au-
thorization. In this case, an error is returned since the owner already has all
the authorizations and therefore the authorization is not needed. Otherwise, an
authorization rule is added to the authorization base. The function revoke is
organized in a similar way as the grant function by recalling that only an owner
of the dataset may revoke authorizations on the dataset. The main difference is
that a check is done to verify whether the authorization to be revoked exists in
the authorization base.

Sandbox Search. A user is allowed to only execute a browsing query on the
existence of data. If the function f return False then the user does not have
the authorization to search and no search results are returned. If function f
returns true, then the function match is called to check whether the object
being searched exists.

TemporalConstraints. Weconsider a temporal constraint to be associatedwith
each authorization and refer to an authorization together with a temporal con-
straint as a temporal authorization. Temporal authorization ([t1,t2],(s, o, p, s

′
, c))

states that user s has permission p on object o between period t1 and t2. Note that
an authorization without any temporal constraint can be represented as a tempo-
ral authorization whose validity spans from the time at which the authorization is
granted to infinity.
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Conflict Resolution. To prevent conflicts, we ensure that any operation on AB
leaves AB in a state satisfying the resolution, consistency, and redundancy in-
variant. The resolution invariant adopts the negative takes precedence approach
where if we have one reason to authorize an access, and another to deny it, then
we deny it. The consistency invariant ensures false authorizations are not added
to AB and the redundancy invariant ensures that an authorization is not in AB
if it is implied by another authorization.

5 CRIS Access Control System

In this section, we discuss the key components and implementation of the CRIS
access control system. We adopt the access control framework of Spring Secu-
rity as it provides comprehensive authorization services and has been used quite
widely in enterprise applications. This system illustrates the use of the autho-
rization requirements in Section 3 and the authorization model in Section 4 for
the design and enforcement of access control for scientific applications.

Authorization Base (AB). The AB reflects the authorization base mentioned
in our model and consists of four tables provided by the default implementation
of Spring Security as discussed below:

– acl sid uniquely identifies any principal or authority in the system. A prin-
cipal is a user and an authority is a group of users. Spring Security also
provides support for group hierarchies and allows you to configure which
groups should include others.

– acl class uniquely identifies any domain object class in the system.
– acl object identity stores information for each unique domain object along

with its parent, owner and whether authorization entries inherit from any
parent.

– acl entry stores the individual permissions assigned to each principal or
authority and whether the permission is positive or negative.

Authorization Module (AM). The AM provides a CRIS user the ability to
create and store authorizations in the authorization base for the various objects
in the users workspace and consequently allow access to authorized objects. If
the authorization specified by the user is not already stored in AB or implied
by an existing authorization in AB, the authorization is inserted into AB. Note
that after any operation on AB, the state of AB is checked to ensure AB satisfies
the resolution, redundancy and consistency invariants mentioned in Section 3. To
check whether a user has authorization on the requested object means to evaluate
the function f which is defined in terms of function ı. Then if ı returns True,
user gets access to the desired object. In the case of tools, an additional check
is done by invoking the check method in order to get access to the dataset(s)
associated with the tool.
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6 Related Work

Our work is related to many areas of access control, specifically access control
specification in scientific applications. Andre et al. [3] propose a number of as-
pects or areas of security relevant to eScience projects and Ivan et al. [2] examine
the steps that can be taken to ensure that security requirements are correctly
identified and security measures are usable by the intended research commu-
nity. The various authorization requirements addressed in our paper have also
been discussed in different domains. Rabitti et al. [4] developed a comprehen-
sive authorization model centered around implicit authorizations designed for
next-generation database systems. Bertino [1] proposes a model to provide data
hiding and security where authorizations specify privileges for users to execute
methods on objects. In summary, we provide a comprehensive access control
system for scientific applications. While some of the authorization requirements
have been studied in detail, a comprehensive access control system in the domain
of scientific applications has not been addressed in literature.

7 Conclusion

In this paper we present an access control system suited for Web based scientific
applications. Given the scale and depth of modern-day scientific applications,
it is imperative that the methodology to formulate an authorization model be
based on standardized constructs. We formulated an authorization model based
on authorization requirements and well known principles of software engineering
to yield a specification that can be readily integrated into existing systems.
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Abstract. Almost all existing attempts on partial fingerprints focus on
one-to-one fingerprint matching using level 2 or level 3 features obtain-
able in the partial segment. Recently a model-based partial fingerprint
reconstruction algorithm is introduced, which aims to extend the finger-
print ridge flows smoothly into the missing part from a different perspec-
tive. This novel idea has shown promising results for narrowing down the
candidate lists before matching. On this basis we propose to improve the
scheme of smooth extensions and take into account the boundary effect
while retrieving the initial raw orientation field. The experiment results
show that the orientation field reconstructed by our algorithm is more
faithful to the ground truth.

Keywords: partial fingerprint, orientation field, smooth extension, im-
age forensic, biometrics.

1 Introduction

Biometrics especially face and fingerprint have found many applications in mod-
ern security systems, ranging from access control [1][2], to the emerging bio-
cryptography [3][4][5][6]. Fingerprint recognition has been the most practical
and widely used biometric technique since 1980s. One of the most important
areas in fingerprint biometrics is matching partial fingerprints to full (relatively
larger or rolled) pre-enrolled fingerprints in the database. Although tremendous
progress has been made in plain and rolled fingerprint matching, partial finger-
print matching continues to be a difficult problem. The major challenges are the
absence of sufficient level 2 features (minutiae) and other structures such as core
and delta due to the restricted usable parts in partial fingerprint images.

Previous attempts have been made to solve the partial fingerprint problem
by application of various core-based alignment techniques and maximum feature
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extraction methods on the partial image before matching. Jea and Govindaraju
[7] addressed the problem by using localized secondary features derived from
minutiae points and obtaining one-to-one correspondence of these features. Chen
and Jain [8] proposed an algorithm to extract two major level 3 features (dots
and incipient) based on local phase symmetry to improve the efficiency of partial
fingerprint matching.

Considering the huge size of fingerprint databases maintained by law enforce-
ment agencies, these exhaustive one-to-one matching approaches are impracti-
cal. Therefore, the automatic generation of a narrowed down candidate list for
a partial fingerprint is very important. Recently, Feng and Jain [9][10] proposed
a multi-staged filtering system to reduce the search space while retrieving the
potential candidates for large-scale latent fingerprint matching. However, the
filtering scheme depends on the singular points which are found in the partial
fingerprint segment. This approach fails if the partial fingerprint does not include
the singular points.

Most recently, Y. Wang and J. Hu [11] applied their prior work, namely the
FOMFE model [12] to address the partial fingerprint problem from another an-
gle. Instead of extracting level 2 or level 3 features from the partial segment, [11]
proposed an analytical approach for reconstructing the global Orientation Field
(OF) by exploiting the global topological features. Specifically, they have devel-
oped algorithms to extend the partial ridge flows smoothly into the unknown
segment while preserving the fidelity. This approach has shown very promising
results in reducing the size of the candidate lists for matching, and what is more,
the information of singular points is not a necessity.

Based on Y. Wang and J. Hu’s work, we propose to improve the algorithm of
smooth extensions by training the existing topological features using FOMFE
model each time the extension is applied. Besides, we optimize the extraction
approach of topological features on the boundary of the coarse orientation field,
which is a decisive factor to the correctness of the initial FOMFE training result.
We have tested our algorithm on certain partial fingerprints. The results show
that the orientation field reconstructed by our method is more faithful to the
one retrieved from corresponding full fingerprint.

2 Smooth Extension with FOMFE Training

2.1 Improved Algorithm

In the previous smooth extension model [11], the phase portrait in the known
segment will not change with iteration, so the coefficient update will be heavily
affected by the expanded area which can lead to large cumulated error. We
improve the partial fingerprint reconstruction model by training the phase data
using FOMFE model [12] every time the coefficient β is updated, as a result, the
whole phase portrait is normalized (see Algorithm 1).
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Algorithm 1: Smooth extension with FOMFE training

Initialize k ← 0;
Ω(0) ← Ω, β

(0)
l ← Ψ̃T

ΩdΩ,l (l = cos, sin);
while S −Ω(k) �= 0 do

Let Ω(k+1) ← Ω(k) +Δ;
Let Δ ← Ω(k+1) −Ω(k);
Evaluate d̂Δ,l = ΨΔβ

(k)
l (l = cos, sin);

/* enforce the squared sum of cosine and sine components equals

to one */

Normalize d̂Δ,l;

Update β
(k+1)
l ← β

(k)
l + Ψ̃T

Δd̂Δ,l;

Evaluate d̂Ω(k+1),l = ΨΩ(k+1)β
(k+1)
l (l = cos, sin);

Let Ω(k) ← Ω(k+1) and k ← k + 1;
end

Normalize d̂S,l (l = cos, sin);
Output d̂S,l (l = cos, sin);

2.2 Experiment Evaluation

We have done a series of comparison experiments to demonstrate the advantage
of our algorithm.

Figure 1 is the orientation field estimated on a full fingerprint, wherein Subfig-
ure (a) is the coarse OF evaluated by an improved gradient-based method [13].
The gray-scale image is first divided into blocks with equal size of 8 × 8 pixels,
then the dominant orientation angle θ in each block is computed by a weighted
averaging scheme from four neighboring blocks [13]. This scheme is more robust
against noise compared with other gradient-based methods, except certain dis-
tortion on the boundary of the partial fingerprint. The FOMFE model takes the
coarse OF as input and refines it, as shown in Subfigure (b), the OF trained by
FOMFE is normalized over the whole fingerprint region.

Figure 2 shows the OF estimation on the corresponding partial fingerprint.
The partial fingerprint is obtained by erasing certain parts of the full fingerprint.
Subfigure (a) is the coarse OF and (b) is the refined OF trained by FOMFE.

Figure 3 provides a ground truth OF estimation as reference for the following
experiments. The OF is trained by the FOMFE model on the full fingerprint,
but plotted on the partial fingerprint image.

Figure 4 illustrates the final reconstruction results by Smooth Extension and
our improve method. It is obvious that the OF reconstructed by the improved
algorithm is more normalized and can better approximate the ground truth
orientation field shown in Figure 3.

3 Discussion

Since the FOMFE model takes the coarse OF as input, the original OF esti-
mation based on the gradient method will affect the subsequent reconstruction
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(a) Coarse OF estimated by the
weighted averaging gradient-based
method

(b) OF trained by the FOMFE model

Fig. 1. Estimated Orientation Field on the full fingerprint

process, more specifically, the orientation angles on the boundary of the partial
fingerprint will decide the extending trend of the fingerprint ridge flow. As stated
before, the coarse OF on the boundary of the partial fingerprint is fuzzy to some
extent, so the initial boundary OF trained by FOMFE is not accurate, and these
errors will be amplified step by step during the reconstruction process. As shown
in Figure 4(b), the overall estimated OF in the middle hole is flatter than that
of the ground truth, and part of the estimated OF in the lowermost hole on the
right side is not smoothly connected with the OF in the existing partial segment.

To overcome this problem, we propose to improve the coarse OF estimation
on the boundary of the partial fingerprint. In practice, we locate the boundary
blocks and replace their coarse angles with the one of their nearest neighbors.
As shown in Figure 5(a), the initial coarse OF on the partial segment including
the boundary is more smoother than that in Figure 2(a). Figure 5(b) is the final
reconstruction result using the improved OF estimation method, which shows
the reconstructed OF is nearly the same as that estimated on the full fingerprint.
In principal, the proposed does not require registration. However, in practice it
is hard to determine the symmetric peripheral area for the algorithm if rotation
is not dealt with properly. It is well known that rotation can cause many other
problems apart from this [14]. Also latent partial fingerprints are often of poor
quality where OF retrieval could be difficult as well. Noise resistance methods
such as [15] should be deployed before applying the proposed smooth extension
method.
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(a) Coarse OF estimated by the
weighted averaging gradient-based
method

(b) OF trained by the FOMFE model

Fig. 2. Estimated Orientation Field on the partial fingerprint

Fig. 3. Estimated OF by FOMFE on full fingerprint and shown on partial fingerprint
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(a) Smooth Extension (b) Smooth Extension with FOMFE
training

Fig. 4. Estimated OF after reconstruction on partial fingerprint

(a) Improved coarse OF estimation (b) Final reconstruction result

Fig. 5. Improved coarse OF and the subsequent reconstruction result

4 Conclusion

Previous works on partial fingerprints focus on extracting maximum features
from the partial image and matching the partial image with the suitable sub-
image from the full image. This one-to-one matching method is impractical when
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the size of the fingerprint database is huge. Another perspective is to reconstruct
the partial fingerprint and utilize the reconstructed full image to narrow down the
candidate list for matching. This opens up a novel direction for solving the partial
fingerprint problem. We replayed this smooth extension based reconstruction
method and improved it by considering the phase portrait in the expanded region
and the known region as a whole. Besides, we tried to eliminate the errors of the
coarse OF estimation on the boundary of the partial fingerprint. The experiment
results show that the orientation field reconstructed by our algorithm is more
close to the one estimated from the corresponding full fingerprint.
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Abstract. Email worm has long been a critical but intractable threat to
Internet users. In this paper, we propose an analytical model to present
the propagation dynamics of email worms using difference equations.
Based on this model, we further investigate the quarantine conditions
for the number of infected users decreasing as soon as possible. In this
field, previous works have found that a static threshold for worms fast
dying out does not exist. In our work, we extend the modeling with
dynamical quarantine processes to see if the previous viewpoint is still
supported or not. By contrast, the results suggest that it is possible
to have a sharp decline in the number of infected users within a short
period of time. In the experiments, we implement both the empirical and
theoretical methods to support our analysis. The work of this paper can
provide practical values on protecting email networks.

Keywords: network security, email worms, quarantine.

1 Introduction

For over a decade, emails are chosen as primary carriers for transmission of
worms. A typical email worm arrives on a computer as an attachment to an
email message, which, when activated by the user, will infect this user and send
further copies of itself to other recipients. The success of recent email worms,
such as W32.Ismolk [1], indicates that email worms are still one of the major
threats in current Internet.

In the real world, the entire email network has almost infinite users, and the
topology exhibits scale-free and small world properties [2]. It has been proved
that a constant threshold for email worms fast dying out does not exist in the
entire email network [3,4,5]. Therefore, we try to find out dynamic quarantine
conditions for email networks; in particular, we choose the recovery functions
that change with time to measure the quarantine conditions. So the problems
are: when an outbreak of email worms has been detected, will it be possible to
thwart the propagation of the worms? If so, what quarantine conditions are to
be satisfied to make the number of infected users decay as soon as possible?

In this paper, we show our recent work on managing security issues in email
networks. Firstly, in order to understand the spreading of email worms, we model
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Fig. 1. State transition graph of a node. ‘0.1’: healthy but susceptible; ‘1.1’: a user is
infectious and will send out malware email copies; ‘1.2’: a user is infected but not yet
infectious; ‘0.2’: healthy and will never be infected again.

their propagation dynamics using difference equations. To the best of our knowl-
edge, we are the first to propose an analytical model on the propagation of email
worms. Validation based on simulation studies indicates our analytical model is
accurate. Secondly, we investigate the quarantine conditions, under which the
number of infected users will decrease as soon as possible (i.e. exponentially or
linearly). The results of our investigation suggest that the condition for email
worms fast dying out do exist in the email network and security staffs can elim-
inate infection incidents fast, but it is hard to eradicate all of them.

The rest of this paper is organized as follows: Section 2 presents the related
work. Section 3 presents the analytical modeling method, followed by the val-
idation of the modeling in Section 4. In Section 5, we discuss the dynamical
quarantine strategies on the basis of the proposed model. Finally in Section 6 ,
we conclude this paper and discuss the future work.

2 Representation of Worm Propagation

To investigate the quarantine conditions for thwarting the propagation of email
worms, we propose a model to present their spreading dynamics. Firstly, nodes
and topology information are basic elements for the propagation of email worms.
A node in the topology represents a user in email networks. Let the random
variable Xi(t) denote the status of an arbitrary node i at time t:

Xi(t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
0 healthy

{
0.1 susceptible

0.2 immunized

1 infected

{
1.1 active

1.2 dormant

(1)

The ”0.1” is not one tenth but a symbol of the susceptible state. The same ap-
plies to the symbols of ”0.2”, ”1.1” and ”1.2”. As shown in Fig.1, node i transits
to the infected state if it is at the susceptible state. The infection probability is
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presented by v(i, t). Besides, no matter what state the node is at, it may tran-
sit to the immunized state. The recovery probability is presented by r(t). Since
the immunized state is an absorbing state, it can be predicted that the spread
of worms will finally end. We have the probability of node i being infected or
immunized at time t as in

P (Xi(t) = 1) = (1− r(t)) · P (Xi(t− 1) = 1) + v(i, t) · P (Xi(t− 1) = 0.1) (2)

P (Xi(t) = 0.2) = P (Xi(t− 1) = 0.2) + r(t) · [1− P (Xi(t− 1) = 0.2)] (3)

Because email worms depend on email users checking the mailbox and opening
malicious attachments to spread, we introduce a variable openi(t) to indicate
the event of user i checking newly arrived emails at time t. In the real world,
some users use outlook to receive emails almost instantly, some others may use
email web services, like Gmail. Therefore, the email checking periods Ti for each
user are different, and we have

P (openi(t) = 1) =

{
0, otherwise

1, t mod Ti = 0
(4)

Then, we derive the infection probability v(i, t) as in

v(i, t) = s(i, t) · P (openi(t) = 1) · [1− r(t)] (5)

wherein s(i, t) is a conditional probability, which denotes the infection probabil-
ity under the conditions of 1) user i opening the mailbox at time t and 2) user
i having not been immunized at time t.

Secondly, we use an m by m square matrix T with element pij to indicate a
network consisting of M nodes. If node i is susceptible, it can be compromised
by any of its infected neighbors. The element pij in matrix T denotes the prop-
agation probability from node i to node j. Thus, the probability that node i is
infected at time t by any of its neighbors who send out worm emails at time
t− 1, Θ(t), is

Θ(t) = 1−
M∏
j=1

[1− pji · P (Xj(t− 1) = 1.1)] (6)

Since different users have different email checking periods, the worm emails will
arrive at the mailboxes of their neighbors at different time. We assume the worm
emails are neglected if users do not open the attachment in current checking
period, therefore, a user can only be infected by worm emails which arrived at
his or her mailbox within one email checking period. Then, we can iterate the
computation of s(i, t) as in

s(i, t) = 1− [1− s(i, t− 1) · (1− P (openi(t− 1) = 1))]

·
M∏
j=1

[1− pji · P (Xj(t− 1) = 1.1)]
(7)

P (Xj(t− 1) = 1.1) = v(j, t− 1) · P (Xj(t− 2) = 0.1) (8)
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Fig. 2. Comparison of the simulation model and our analytical model. Setting 1: Ti ∼
N(20, 10), pij ∼ N(0.5, 0.2); Setting 2: Ti ∼ N(40, 20), pij ∼ N(0.25, 0.1); Setting 3:
d = 80, D = 40; Setting 4: d = 40, D = 80.

Finally, the expected number of infected nodes at time t, n(t), can be computed
from P (Xi(t) = 1), as in

n(t) = E

(
M∑
j=1

Xi(t)

)
=

M∑
j=1

E (Xi(t)) =

M∑
j=1

P (Xi(t) = 1) (9)

In equation (9), we can see that n(t) is ascribed to the sum of the probabilities
of each node being infected at time t.

3 Validation of Propagation Model

Before using the proposed analytical model, we validate its correctness by com-
paring it with simulation results. Firstly, we evaluate the correctness of our model
without recovery (r(t) = 0). As shown in Fig.2(a), the simulation model and our
analytical model are close to each other. Secondly, we validate the correctness
of our proposed model with recovery effect. When a type of new email worm is
born, email users have no knowledge about it. Irrespective of their vigilance, we
assume 100 percent of the users are susceptible. Then, this type of worms can
spread without any defense during a certain time period. We introduce a variable
d to represent the length of this period. Besides, according to the statistics of
Qualys Inc. [6], the number of vulnerabilities decreases by 50% of the remaining
every 30 days in 2003 and 21 days in 2004. Therefore, we introduce another
variable D to present the time interval for 50% decreasing. Then, we have the

recovery probability r(t) as: r(t) = 0, if t < d; r(t) = 1 − 0.5
(t−d)

D , if t ≥ d. As
shown in Fig.2(b), the results of the simulation model and our proposed analyti-
cal model are also close to each other. Thus, the following analysis based on our
analytical model is convincible.
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4 Analysis of Quarantine Strategy

Based on our analytical model, we introduce a variable Δ(t) to denote the re-
duction in the number of infected nodes in an email network, and we have

Δ(t) = n(t)− n(t− 1)

=
M∑
i=1

[(1− r(t)) · s(i, t) · P (openi(t) = 1)P (Xi(t− 1) = 0.1)]

− r(t)
M∑
i=1

P (Xi(t− 1) = 1)

(10)

We also introduce a variable ςi(t) to represent the infection probability when
there is no defense applied, as in

ςi(t) = s(i, t) · P (openi(t) = 1) (11)

Supposing Δ(t) is known, we then deduce the required recovery probability as

r(t) =

∑M
i=1 [ςi(t) · P (Xi(t− 1) = 0.1)] −Δ(t)∑M

i=1 [ςi(t) · P (Xi(t− 1) = 0.1)] + n(t− 1)
(12)

The value of r(t) indicates the probability of email users (either infected or not)
to be immunized to email worms. We therefore choose the required recovery
probability r(t) as the quarantine condition for email worms fast dying out in
email networks.

In the following, we investigate the dynamical quarantine conditions for email
worms fast dying out in two trends as follows:

Scenario 1: the number of infected email users, n(t), decays exponentially fast.
Given a free spreading period d, if the number of infected users, n(t), decays

exponentially fast after this period, we have

n(t) = a−(t−d) · n(d) when t > d (13)

We then obtain the value of Δ(t) as

Δ(t) = n(d) · ad−t · (1− a) when t > d (14)

We divide the whole spreading procedure of email worms into four phases: slow
start, fast spread, slow finish and quarantine. Firstly, we assume email worms
have already widely spread and security staffs begin to protect email users at the
quarantine phase. As shown in Fig.3(a), the number of infected users declines
sharply, and in Fig.3(b), the value of r(t) stays steady (nearly a trapezoid zone)
before the number of infected users has greatly decreased. Secondly, we further
assume email users are protected at the fast spread phase. As shown in Fig.3(c),
the value of n(t) also declines sharply. However, the speed for email worms dying
out exponentially fast leads to a long lag (logarithmic decline at the later stage).
We can increase the base number a to reduce the negative effect of the long lag.
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Fig. 3. The number of infected nodes n(t) and the recovery probability for email worms
dying out exponentially fast when d = 100 for (a) and (b), d = 50 for (c) and (d).

Fig. 4. The number of infected nodes n(t) and the recovery probability for email worms
dying out exponentially fast when d = 100 for (a) and (b), d = 50 for (c) and (d)

In Fig.3(d), we see that the value of r(t) stays high for a shorter period (nearly
a triangle zone) when a = 2.

Scenario 2: the number of infected email users, n(t), decays linearly fast.
Given a free spreading period d, if the number of infected users, n(t), decays

linearly fast, we have

Δ(t) = − n(t)

Ex− t
t > d (15)

In this case, we introduce a presumed time point Ex for email worms fast dying
out. So we have n(t) = 0 if t = Ex. Then, we let the quarantine process start at
the slow finish phase. Firstly, as shown in Fig.4(a), the number of infected email
users declines linearly and reaches zero at Ex. In Fig.4(b), we can see that the
value of r(t) stays small for eliminating email worms on infected users. However,
if security staffs want to eradicate all email worms from the email network,
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the value of r(t) becomes close to one. In practical terms, this means security
staffs have to quarantine all email users and make sure none of them would be
infected any more. In Fig.4(b), we call the points with red circles as the ideal
quarantine points and the points with blue circles as the practical quarantine
points. Secondly, we let the quarantine process start at the fast spread phase.
As shown in Fig.4(c), the number of infected user reaches zero at the Ex time
point. Since there are many new infection incidents in the fast spread phase, we
see in Fig.4(d) that email users should be more vigilant against email worms
at the early quarantine stage. We highlight the peak value of r(t) during this
period with a green circle.

From the above analysis, we derive certain practical inspirations. Firstly, when
an outbreak of email worms has been detected in an email network, it is possi-
ble to eliminate infected users as quickly as possible, for example, as shown in
Fig.3(b), when the recovery probability keeps 6%, the number of infected users
will decrease greatly in 50 time ticks. If we increase the recovery probability, less
time will be needed. In the real world, if averagely 6 users out of 100 can be
immunized in certain periods, it is possible to thwart the propagation of email
worms. Secondly, as shown in Fig.3(c), it is difficult to eradicate all the worms
in an email network, which is in accordance with the discussion in paper [7].

5 Conclusion

This paper presents an investigation on quarantine conditions of email worms in
an email network. Our work can help model the propagation dynamics of email
worms and analyze quarantine conditions for email worms dying out as quickly
as possible in email networks. The discussion may also be applicable to other
social networks that are exploitable by computer viruses and worms.
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Abstract. A Wireless Body Area Networks (WBAN) has emerged as
a promising technology for pervasive healthcare systems. It allows the
seamless integration of small and intelligent invasive or non-invasive sen-
sor nodes in, on or around a human body for continuous health monitor-
ing. This paper presents a secure RFID-based protocol for WBAN. This
protocol introduces a separate wakeup process that is used for secure
communication on the main channel. The performance of the proposed
protocol is analyzed and compared with that of IEEE 802.15.6-based
CSMA/CA and preamble-based TDMA protocols using extensive sim-
ulations. It is shown that the proposed protocol is power-efficient and
is less vulnerable to different attacks compared to the other protocols.
For a low traffic load and a single alkaline battery of capacity 2.6Ah, the
proposed protocol could extend the WBAN lifetime to approximately
five years.

Keywords: IEEE 802.15.6, WBAN, RFID, Security.

1 Introduction

Wireless Body Area Networks (WBANs) are becoming increasingly important
for future health care systems. They have enough capabilities to collect biologi-
cal information from the users in order to maintain their optimal health status.
WBANs are able to detect and possibly predict the deteriorating conditions of
patients and are also able to monitor chronic diseases including cardiovascular
and asthma diseases [1]. This kind of unobtrusive health monitoring not only
improves the quality of life but also provides computer-assisted rehabilitation
to the patients. WBANs are generally comprised of in-body and on-body area
networks. The in-body networks allow communication between invasive nodes
and the coordinator using Medical Implant Communications Service (MICS)
band, while the on-body networks use unlicensed Industrial, Scientific, and Med-
ical (ISM) and Ultra-wideband (UWB) bands for communication between non-
invasive nodes and the coordinator. Because both invasive and non-invasive
sensor WBAN nodes are miniaturized and have limited power capacity, they re-
quire novel power-efficient solutions at network, Medium Access Control (MAC),
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and physical layers. This paper proposes a secure Radio Frequency IDentifica-
tion (RFID)-based protocol for low-power communication in WBAN. Extensive
simulations are conducted to analyze performance of the proposed protocol with
that of IEEE 802.15.6-based CSMA/CA [2] and preamble-based TDMA proto-
cols [3] in terms of network lifetime, bandwidth utilization and security. The
proposed protocol extends the WBAN network lifetime from months to years. It
also supports a secure wakeup process that prevents adversaries from attacking
the network.

The rest of the paper is organized as follows. Section 2 presents the related
work on MAC protocols for WBAN. Section 3 presents the secure RFID-based
protocol for WBAN and the simulation results. The final section concludes our
work.

2 Related Work

Many researchers have directly adapted the contention-based or Carrier Sensor
Multiple Access with Collision Avoidance (CSMA/CA) protocol defined in IEEE
802.15.4 [4] due to the fact that this standard supports low data rate applications
with low-power consumption. The authors of [5] considered the contention-based
IEEE 802.15.4 MAC for periodic and asymmetric WBAN traffic, however they
have not considered the real-WBAN scenario where many nodes may generate
aperiodic traffic. Similarly, Li et al. has proved that the performance of unslotted
CSMA/CA IEEE 802.15.4 mode is better than that of the beacon mode in terms
of throughput and latency [6]. Another study presented in [7] has discouraged
the use of IEEE 802.15.4-based CSMA/CA because of unreliable Clear Channel
Assessment (CCA) and heavy collision problems. The authors of [8] investigated
the contention-based slotted ALOHA protocol for WBAN in terms of through-
put and energy consumption. A random contention-based protocol is presented
in [9], which enhances quality of service for multiple WBAN users by considering
inter-WBAN interference. The schedule-based or Time Division Multiple Access
(TDMA) protocols have also attracted the attention of manyWBAN researchers.
In [10], the authors proposed a novel TDMA protocol that solves overhearing
and protocol overhead problems by exploiting the fixed WBAN topology. In
order to prolong the WBAN network lifetime, the authors of [11] proposed a
TDMA protocol that uses an out-of-band wakeup channel for low-power con-
sumption. Another TDMA-based protocol is presented in [12] where the authors
considered directional MAC with multi-beam antennas for enabling simultane-
ous communication in all directions. We proposed a dual-channel TDMA-based
protocol in [13] and [14] where communication between nodes and the coordi-
nator is based on traffic patterns. Another study presented in [15] proposed a
battery-aware TDMA protocol that utilizes battery discharge dynamics, wireless
channel models, and packet queuing characteristics.

Most of the above MAC protocols do not address the security and network
lifetime issues in WBANs. For example, they consume significant power due
to collision overhead and frequent synchronization, thus reducing the overall
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Fig. 1. Resource allocation process of the proposed protocol

network lifetime. The secure RFID-based protocol is able to solve these problems
by providing a secure wakeup process that must be able to prevent adversaries
from attacking the network and must also be able to extend the network lifetime
from months to years.

3 RFID-Based Power Saving Mechanism

RFID systems have already played a significant role in a wide range of appli-
cations including manufacturing, object tracking, inventory control, smart en-
vironments, and healthcare systems. One of the main reasons of RFID success
is its cheap and quick implementation without any additional cost. In a typical
RFID systems, the RFID tags are attached to the objects for different applica-
tions. These tags store information that is further read by the RFID reader. The
RFID tags are categorized into active, passive, and semi-passive tags. The active
tags have enough power sources and have the ability to initiate communication.
The passive tags can only receive data and can be powered up by the reader. The
semi-passive tags have limited power source only for internal processing. Because
these tags are inexpensive and power-efficient, they can be easily integrated into
WBAN. They can be attached to WBAN nodes and can be used for wakeup
purpose only (and not for storing information as done in traditional RFID sys-
tems). Our RFID-based protocol considers a secure RFID wakeup method that
triggers the data channel for communication. The proposed protocol uses a sepa-
rate control channel for wakeup and synchronization packets and a data channel
for original data transmission.During the wakeup process, the nodes send an
RFID security code (the security codes are randomly distributed by the coordi-
nator) in the RFID wakeup packet, which is compared by the coordinator with
the code already stored in its circuitry. When the two RFID security codes are
same, the data channel is triggered for transmission. However, when the codes
are different, the RFID wakeup circuitry aborts the wakeup process. The secure
RFID wakeup process prevents adversaries from penetrating into network and
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from using different attacking methods including backoff manipulation, collision,
and reply attacks [16]-[17]. One of the reasons is that the adversaries are unable
to grab the beacon and the resource allocation information until they follow the
secure wakeup process. Once the wakeup process is successfully done, the coor-
dinator sends beacon on the data channel to the nodes for synchronization as
given in Fig. 1. The beacon contains information about the superframe structure
and data slot boundaries (the beacon and data frame formats are not included
here to space limitation problems).

Fig. 2. WBAN network lifetime for an average packet generation period of 50 seconds

We conduct a preliminary study on analyzing the performance of the pro-
posed protocol with that of IEEE 802.15.6-basedCSMA/CA and preamble-based
TDMA protocols in terms of network lifetime, bandwidth utilization and secu-
rity. We develop a discrete event custom simulator in C++ that implements the
basic operation of all the protocols including the secure RFID-based protocol.
Because we are interested in MAC layer performance, the physical layer pa-
rameters are not considered in the simulations. We consider a single WBAN star
topology where the communication flow is in upward direction towards the coor-
dinator. The nodes are triggered to generate Poisson traffic. For the CSMA/CA,
the minimum and maximum Contention Windows (CWs) are taken the same
for all nodes. The CW is doubled for even number of failures and is unchanged
for odd number of failures. The simulation parameters are listed in Table 1.

Fig. 2 shows the WBAN lifetime for a packet generation period of 50 seconds.
The figure considers an alkaline battery of capacity 2.6Ah. The average lifetime
of a node is around three months for IEEE 802.15.6-based CSMA/CA, one year
for preamble-based TDMA, and five years for the secure RFID -based protocol.
Since the proposed protocol adjusts the wakeup and sleep schedules of the nodes,



774 S. Ullah and W. Alsalih

Fig. 3. Bandwidth utilization of the protocols

Fig. 4. Decrease in bandwidth utilization using random and weak attackers

the overall power consumption decreases as a function of larger wakeup or packet
generation periods. This result is obvious as larger packet generation periods
allow nodes to remain in sleep mood for enough duration. The results presented
in Fig. 2 are valid for low traffic load with an error free channel. Fig. 3 shows the
bandwidth efficiency for all protocols, where the data and control represent the
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Table 1. Simulation parameters

CCA 63/Symbol rate CW 16

pSIFS 50μs Wakeup/Beacon packet 80 bits

CSMA slot length CCA+ 20μs MAC header 56 bits

MACFooter 16 bits Propagation delay 1μs

Idle power 5μW Transmitting power 27mW

Receiving power 1.8mW Switching time 1.2ms

time spent in transmitting data and control packets, respectively. The bandwidth
utilization is almost the same for all protocols, however the overhead of control
packets is different, for example, control packets transmitted by the preamble-
based TDMA are overheard by all other nodes. In the proposed protocol, the
overhead of control packets is almost negligible because it sends RFID wakeup
signal whenever required, thus reducing overhearing and idle listening problems.
In order to analyze different attacks on all the protocols, we consider two types
of attackers: a random attacker, which has smart attacking capabilities and can
use backoff manipulation, collision, and relay attacks, simultaneously, and a weak
attacker, which has limited capabilities to attack the network. As illustrated in
Fig. 4, random attackers decrease the bandwidth utilization of preamble-based
TDMA, IEEE 802.15.6-based CSMA/CA, and secure RFID-based protocols by
60%, 70%, and 20%, respectively. The IEEE 802.15.6-based CSMA/CA is mostly
affected by backoff manipulation and collisions attacks where the attackers tried
to select a small CW in order to keep the channel busy all the time. The proposed
protocol, however, is less vulnerable to attacks due to its strong and secured
wakeup process.

4 Conclusion

This paper proposed a secure RFID-based protocol for WBAN. The proposed
protocol used RFID for wakeup purpose only. The preliminary simulation study
showed that the proposed protocol is power-efficient and is less vulnerable to dif-
ferent attacks compared to that of IEEE802.15.6-basedCSMA/CAand preamble-
basedTDMAprotocols. In future, we will extend the secure RFID-based protocols
for heterogeneous WBAN applications including heart activity monitoring.
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Abstract. In many application domains, objects are transferred, shared, and used
across organizational and trust boundaries, which poses serious security concerns.
Given the ubiquitous use of objects, it is important to assure at program run-time
that the objects received and used have not been modified by any unauthorized
program or entity, and are from the authorized programs. In this paper, we pro-
pose an authenticated model of objects that facilitates verification of authenticity
of objects at program run-time and its possible Java-based implementations.

1 Introduction

With the advent of web services and mobile software, the security of distributed soft-
ware and the data it manages has become a crucial requirement. Consider the following
example of a communication between two remote applications: a smartphone appli-
cation (app, for short) receives a serialized object from a server or another device; the
object is then used for a computation by the smartphone app which then sends the result
back to the server/device. This is a traditional remote method invocation model – via
RPC and RMI, web services or based on web-based computing. Comprehensive secu-
rity solutions require addressing several requirements: (1) How the receiver app verifies
the authenticity of the object it receives. This means checking that the object has been
sent by the authorized sender as claimed, and that the object has not been modified in
an unauthorized manner. (2) How the receiver app validates the identity of the sender
app. (3) How to guarantee that no sensitive data is disclosed to the receiver during the
object transmission process. (4) How to guarantee that the object is not an attack vector
that exploits vulnerabilities in the receiver system.

An object may be tampered with when it is on the network being transferred from
the client to the service, or at the service-side before the object is processed and after
the object is received. Similarly, an object may be tampered with at the client side after
it was sent by the client process and before being transmitted on the network. Existing
security solutions such as transport layer security protocols treat objects as bitstreams
dis-regarding the semantics objects have, and thus cannot be used to verify authenticity
of objects in a programming context – between remote processes or processes executing
on one processor as part of one program. In order to prevent such attacks at the level
of programming language objects, it is essential for the service to carry out authenticity
verification of the received objects before processing them.
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In this paper, we focus on approaches addressing the security requirements (1) in-
tegrity – objects have not been modified in an unauthorized manner and (2) origin –
objects are owned/authored by an authorized entity. Together, they are referred to as
“authenticity of objects”. Cryptographic protection of integrity and origin is referred to
as “authenticity protection”, and the process is called object authentication (different
from user authentication that refers to schemes such as password-based verification) –
known as object signing.

In this paper we propose an approach to sign and verify programming language ob-
jects for the Java language. We discuss several alternatives for integrating the signature
and verification functions into Java programs. Using the proposed schemes and pro-
gramming models, authentication of objects can be incorporated into programs during
development, compilation or runtime.

2 Authenticated Objects in Java

The integration of the authentication scheme with the programming language is critical
as the adopted integration approach affects the use of the authentication scheme and
the efficiency of the code. In what follows we first describe a low level core application
programming interface (API), followed by a description of four integration approaches.

2.1 Core API

Even if from the point of view of the programmer all approaches differ with respect to
how the security is integrated in the code, they share the same core functions. In par-
ticular, the signature and verification functions, as well as the signature schemes them-
selves, provide the low-level layer of API on top of which all the approaches have been
built. The current implementation includes two different signature schemes, based on
the Merkle Hash Tree technique [5], and on the Redactable Set Signature technique [3]
respectively.

Both signature schemes use the hashing and cryptographic functions provided by
the standard Java 7 APIs. For the Merkle hash technique, we use the RSA signature
algorithm. We chose to implement public-key schemes instead of private-key schemes
primarily because public-key schemes simplify key distribution among programs and
processes, and cover the use cases of private-key schemes also. For evaluation purposes,
the public and private key pairs are dynamically generated using the built-in Java func-
tions whenever the code execution starts. However, our core API provides an interface,
called IKeyProvider, for which the developer can provide an implementation in order to
support other approaches for provisioning the encryption keys to code, e.g. from a local
file or a remote centralized repository. One such key provider can be implemented on
top of Trusted Platform Module (TPM1). It may use a keypair derived from the RSA
keys of TPM towards signing the objects. Key distribution is carried out by including
the public key certificate along with the object that includes the signature – an instance
of the class ObjectAuthenticationSignature.

1 http://www.trustedcomputinggroup.org/resources/tpm main
specification

http://www.trustedcomputinggroup.org/resources/tpm_main_specification
http://www.trustedcomputinggroup.org/resources/tpm_main_specification
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In order to be processed by the Merkle Hash Tree-based signature function, the ob-
jects are transformed into a tree representation, using a conventional format that easily
allows one to represent any object member, it being a primitive type, an array or another
object. For the second scheme, the objects are treated as sets of members and thus do
not include any edges as in trees.

2.2 Example programs

We will use the following two classes to demonstrate object authentication. Class A (in
Listing 1.1) is annotated with signing and re-signing details. The annotation @Sign in-
cludes the principal whose keys are used for signing and verification and the method
chosen for signing. The example shows that the annotation @IncludeInSignature is used
to specify all the member fields that are to be included in the computation of the sig-
nature of the object. The annotation @Resign for method setA() requires the object to be
re-signed every time the value of a is set through this method.

@Sign(identity="signer", method="Merkle")
public class A {

public A (String a) { this.a = a; }
@IncludeInSignature
private String a;
public String getA() { return a; }
@Resign
public void setA(String a) { this.a = a; }

}

Listing 1.1. Example class A with authentication behavior described via annotations

In Listing 1.2, the example class B demonstrates how the parameters passed to a
method are verified for authenticity. The first implementation of f() uses programmer-
driven verification of object a of class A passed as a parameter; it requires the signature of
a too to be passed as a parameter to the method. In another definition of f(), the authen-
ticity of a is verified automatically with no programmer input through the annotation
@VerifyAllParams. If the signature of the parameter finds the object to be non-authentic,
then it throws an exception SignatureMismatchException.

public class B {
public void f(A obj, ObjectAuthenticationSignature signature) {

try {
if(!ObjectAuthentication.verify(obj, signature))

throw new SignatureMismatchException();
} catch (ObjectAuthenticationException | UnsupportedSignignMethodException e) {

e.printStackTrace();
}

}
@VerifyAllParams
public void f(A obj) { }

}

Listing 1.2. Example class B demonstrating how parameters are verified via annotations

2.3 The Library Approach

The library approach (see Listing 1.3 for an example) exposes the internal core API
through a simple interface. The programmer can therefore leverage the signature and
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Fig. 1. Annotations used in signing Java objects and their semantics

verification functions, as well as choose the preferred signature scheme to use. Under
this approach, the object signing and verification processes only happen on demand,
that is, when the appropriate method is invoked by the code.

try {
KeyManager.setKeyProvider(new StaticKeyProvider());
A a = new A("John");
B b = new B();
ObjectAuthenticationSignature signature =

ObjectAuthentication.sign(a, "Merkle",
KeyManager.getPrivateKey("signer"),
KeyManager.getPublicKey("signer"));

b.f(a, signature);
} catch (ObjectAuthenticationException | UnsupportedSignignMethodException e) {

e.printStackTrace();
}

Listing 1.3. How library method is used to sign an object and verify its signature when passed as
a parameter to a method.

2.4 Automatic Integration Approaches and Annotations

The Library approach has the drawback that the programmer must make sure to include
all the proper method calls for signing and verifying objects. To reduce the program-
ming costs, the other approaches support automatic signature and verification processes.
They are based on the use of Java annotations that the developer can use to annotate
classes, variables and methods to specify the expected behavior. These annotations are
used by our integration approaches to take the appropriate actions to maintain the de-
sired security level. The signature process is carried out as a post-condition for the
object constructor and for all the methods that require an automatic object re-signing;
the verification is executed as a pre-condition for the methods that require authenticated
objects. Table in Figure 1 summarizes the main annotations that we have introduced.

2.4.1 The Proxy Approach
This approach leverages the notion of dynamic proxy (see Listing 1.4 for an example).
When a developer wants to enhance a class with automatic authentication, instead of
directly creating an instance of the class through the new keyword, they can request the
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generation of an authentication-enabled dynamic proxy. This proxy will have the exact
same type of the original class, so that it can be used wherever the original object was
used. However, it will automatically sign the object upon creation (if needed) and inter-
cept calls to specific methods in order to update its signature and/or verify the authen-
ticity of the parameters, according to the annotations specified by the developer. Even
though the Java standard API already provides mechanisms to create dynamic proxies,
some of their limitations made them unsuitable for our purposes. For this reason, we
leveraged the open source library called CGlib, a high performance Code Generation
Library, used to extend Java classes and implement interfaces at runtime.

KeyManager.setKeyProvider(new StaticKeyProvider());
A a = AuthProxy.create(A.class, new Object[]{ "John" });
B b = AuthProxy.create(B.class);
b.f(a);

Listing 1.4. How proxy method is used to sign an object a and verify the signature when a is
passed as a parameter to b.f()

2.4.2 The Runtime Approach
This approach manipulates the Java classes at run-time (see Listing 1.5 for an exam-

ple) to add the authentication capabilities. Unlike in the Proxy integration approach,
the developer does not have to use particular methods to instantiate the object. At the
very beginning of the program, just one instruction requires to authentication-enable all
the classes needing to have that behavior (i.e. the classes previously decorated with the
appropriate annotations). Our run-time support system manipulates the class definitions
by injecting all the required features before the classes loaded by the standard Java class
loader. From that moment on, the program can create instances of those classes by using
the normal new operator. More in detail, this integration approach adds a protected mem-
ber that will hold the current updated signature for the object and a protected method
able to self-sign the object whenever needed, following the specifications provided by
the annotations. The scheme automatically inspects the class hierarchy and takes care
of the possible inheritances.

KeyManager.setKeyProvider(new StaticKeyProvider());
try {

AuthRuntime.makeAuthenticated("edu.purdue.ObjectAuthentication.test.A");
AuthRuntime.makeAuthenticated("edu.purdue.ObjectAuthentication.test.B");

} catch (RuntimeTransformationException e) { e.printStackTrace(); }
A a = new A("John");
B b = new B();
b.f(a);

Listing 1.5. How runtime method is used to sign an object a and verify the signature when a is
passed as a parameter to b.f()

2.4.3 The Post-Compilation Approach
To avoid the startup runtime overhead incurred by the Proxy and Runtime approaches,
we have developed a Post-compilation tool able to alter the compiled classes in order
to make the object authentication features persistent (see Listing 1.6 for an example).
We provide a self-contained runnable JAR file that can be simply run inside the folder
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containing the compiled .class Java files. It automatically discovers all the classes inside
the current folder and its subfolders, analyzes the annotations and alters the compiled
bytecode to inject the requested authentication-enabled behavior wherever needed. The
changes made are saved on the original files, thus making them persistent. As the post-
compilation tool depends on the core API, this JAR file contains all the references
needed for the object authentication features. Through this post-compilation tool, the
programmer can use the favorite development environment and tool chain and in the
end, after the Java compilation, introduce the authentication mechanisms in the com-
piled classes. At that point, it is even possible to distribute those classes as a library for
other projects, thus enabling a large variety of development scenarios, such as injecting
the authentication mechanisms into the classes shared between the client and the server
components in a Java RMI application.

KeyManager.setKeyProvider(new StaticKeyProvider());
A a = new A("John");
B b = new B();
b.f(a);

Listing 1.6. How postcompilation method is used to sign an object a and verify the signature
when a is passed as a parameter to b.f(). All the authentication code is automatically injected

2.5 Comparison of the Integration Approaches

All four approaches have advantages and disadvantages, thus the developer has to
choose the most appropriate one. The Library approach gives the programmer freedom
about when in the code to require the signature and verification of objects, tailoring
the frequency of these activities based on the specific code optimization requirements.
However, the developer needs to make sure that the method calls for the object sig-
nature and verification are included in the code as well as always keep the signature
up-to-date whenever the object’s members are modified. On the other hand, the auto-
matic approaches always guarantee that the signature is up-to-date and that no method
that requires authenticated objects is executed with an invalidly signed object. More-
over, the developer does not need to worry about the implementation details of the
object authentication layer. The last and maybe most significant advantage of the au-
tomatic approaches is the possibility of seamlessly adding the object authentication
mechanisms to legacy applications. Of course, the automatic integration approaches do
not allow the developer to fine-tune the object signature and verification activities and
may thus result in lower execution performance.

We evaluated the performance overhead of our object authentication techniques by
varying different parameters – such as the number of components to be signed and num-
ber of signings and verifications – and measuring the time taken for different operations
in the program lifecycle – such as object instantiation, authentication-enabling and first
signing and actual program body execution. Our results show that when the program
body consists of very few instructions, the most costly operations are the authentication-
enabling of objects and the initial signature. When the program body is more complex,
though, the workload for this start-up becomes negligible with respect to the rest of
the program. The Library approach proved faster in all the scenarios, as the developer
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can fine-tune the authentication operations, but the Post-compilation approach has com-
parable performance, as all the bytecode manipulation is already complete before the
execution. The Proxy and Runtime approaches have similar performance. However, the
Runtime approach is faster during the actual program execution (including the verifica-
tion processes), while requiring a longer initialization phase in all the scenarios.

3 Related Work

Relevant approaches that are close to our work include proof-carrying code techniques
[6], software attestation, and trusted system boot. Abadi et al. [1] have proposed tech-
niques for verifying control flow integrity in software execution. Secure information
flow control [2,7] has focused on analysis and control of flow of sensitive and tainted
data. However, none of these approaches address the problem of integrity of data struc-
tures such as objects. Integration of security capabilities in programming languages has
been investigated in contexts other than digital signatures. Authenticity of trees and
graphs have been addressed by Kundu, Atallah and Bertino [4]. Sumii and Pierce et
al [8] developed dynamic notions of sealed objects. Yip et al. [9] proposed notions of
policy objects for program security.

4 Future Work

We plan to further investigate performance issues in authenticated object models. There
are three dimensions to the performance problem that we need to address: development
of more efficient cryptographic digital signature schemes and protocols suitable for pro-
gramming language contexts, language runtime design keeping authentication in mind,
and design of language constructs that can be used by programmers for better efficiency.

Acknowledgements. The work reported in this paper has been partially supported by
NSF under grant CNS-1111512.
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Abstract. Irrevocability is one major issue in existing bio-cryptosystems. In 
this paper, we proposed a cancellable bio-cryptosystem by taking the full 
advantage of cancellable and non-invertible properties of bio-hashing 
biometrics. Specifically, two transformed templates are generated by using the 
bio-hashing algorithm and applied into two different secure sketches, fuzzy 
commitment sketch and fuzzy vault sketch, respectively. These two secure 
sketches can be fused in two different ways: AND fusion and OR fusion, so as 
to emphasis either on the recognition accuracy or the security level of the 
system. Experimental results and security analysis show the validity of the 
proposed scheme.  

Keywords: Cancellable biometrics, bio-cryptosystem, finger-vein, fuzzy 
commitment, fuzzy vault. 

1 Introduction 

Finger-vein pattern is unique to a specific individual, contact-less, difficult to forge, 
not affected by skin discolorations or race, and does not change with people’s age [1]. 
Because of these good properties of finger-vein features, finger-vein recognition 
attracts more and more research attentions and becomes a hot research topic in recent  
years. In a standard biometric recognition system, templates are stored in the 
databases or smartcards at the enrollment stage and compared with queries at the 
authentication stage. However, the raw template in use will bring serious secure 
consequences. For example, finger-vein feature is permanently associated with a 
particular individual. Once it is compromised, it will be lost permanently. Moreover, 
one finger-vein template is usually used for different applications which can be 
compromised by the cross-match. If an individual’s finger-vein template is 
compromised in one application, substantially all of the applications, in which the 
finger-vein template is used, are compromised. To reduce the security threats brought 
by the possible information leakage of finger-vein template, two possible techniques, 
named bio-cryptosystem and cancellable biometrics are proposed to achieve the 
template protection in this paper. 
                                                           
*Corresponding author. 
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Bio-cryptosystem provides security by two ways, either by binding the 
cryptographic key using biometric features or generating the cryptographic key 
directly from biometric features [2]. These biometric features are not stored explicitly 
but in the encrypted domain protected by some secure techniques, e.g. fuzzy vault, 
fuzzy extractor [2-6]. However, one drawback of bio-cryptosystems is that the 
encrypted template is probable to be restored by the adversary if the encryption 
algorithm and the helper data are public. Once the template is restored, it will be lost 
forever, if it is not revocable. Cancellable biometrics, which is first introduced by 
Ratha et al [7], achieves authentication by using the transformed or distorted 
biometric data instead of the original biometric data. The templates can be cancelled 
and are unique in different applications [8]. Even if the adversary compromises the 
transformed templates, the original templates are still secure and cannot be recovered 
because the transformation is non-invertible [6, 8, 9]. 

Motivated by the above concerns, in this paper, we proposed a finger-vein based 
cancellable bio-cryptosystem which combines the changeable and non-invertible 
properties of cancellable biometrics into bio-cryptosystem to achieve irreversibility of 
the template, at the same time, enhance the security level of the system. The rest of 
the paper is organized as follows. The proposed finger-vein based cancellable bio-
cryptosystem is presented in Section 2. In Section 3, experimental results and security 
analysis are demonstrated and discussed. The conclusion and future work are given in 
Section 4. 

2 Proposed Method 

In order to enhance the security level of the finger-vein template, we equip the finger-
vein based bio-cryptosystem with the cancellable property by using bio-hashing 
technique [10]. To be more specific, firstly, the original template feature set T 
extracted by two mature techniques named Gabor filter and linear discriminate 
analysis (LDA) is bio-hashed into two non-invertible variants, T1 and T2 by using the 
bio-hashing algorithm in [10]. Secondly, these two template variants are secured by 
two different secure sketches, fuzzy commitment and fuzzy vault, respectively. 
Finally, to enhance the recognition accuracy or security level of the system comparing 
with single secure sketch based system, these two sketches can be fused in two 
different ways, AND fusion and OR fusion. 

2.1 Generation of Finger-Vein Feature Set and Its Variants 

Before feature extraction, the finger-vein impression should be processed like 
impression alignment and region of interest (ROI) chop. Since Gabor filter and linear 
discriminate analysis (LDA) have shown to be powerful in image-based face 
recognition in the spatial domain [11], we employ the scheme in [11] to extract the 
finger-vein feature set and a real-valued vector, which contains N real values, is 
generated. In order to make the extracted features to be revocable, we transform the 
finger-vein feature set (e.g. template, T) into two different variants (e.g. T1 and T2) by 
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the bio-hashing algorithm [10], each of them in the form of a fixed-length binary 
string of r bits. These two binary strings are non-invertible, because through inversion 
of bio-hashing to recover original biometric data is impossible due to that factoring 
the inner products of biometric feature and the user specified random number is 
intractable [10]. 

2.2 Encoding Stage 

In the encoding stage, the two variants, T1 and T2 of the original template T generated 
by bio-hashing are secured by two different secure sketches, fuzzy commitment and 
fuzzy vault, respectively. 
 
1) Fuzzy commitment encoding: The template T1 is encrypted by fuzzy commitment 
sketch and the BCH code is used for error correction in our application. Given a 
secret s1, it is encoded by BCH code into a codeword C T 1 in the length of r which is 
the same as the length of the binary template feature T1. Then the template T1 is bound 
with the codeword C T 1 to generate the secure sketch ST1, as ST1=T1 ⊕ C T 1. Here, ⊕
denotes the XOR operation. Assuming that fuzzy commitment is information 
theoretically secure, the secure sketch ST1 provides no information about the template 
T1, the adversary can only carry out a brute force attack to compromise T1 which is 
expected to be uniformly distributed [7]. The secure sketch ST1 acts as helper data and 
is stored in the database. 
 
2) Fuzzy vault encoding: The template T2 is encrypted by fuzzy vault sketch. Since the 
elements secured by fuzzy vault are in the form of points, we divide the template T2 
into Q segments {T21, T22, …, T2Q} and each segment is rs bits. Correspondingly, Q 
random binary strings {S1, S2, …, SQ} are generated and encoded by BCH code into Q 
codewords {CS1, CS2, …, CSQ}, each of them is also rs bits. After that, each template 
segment from {T21, T22, …, T2Q} is bound with the corresponding codeword from 
{CS1, CS2, …, CSQ} sequentially to generate the transformed template segments 
{ST21, ST22, …, ST2Q}, as ST2i = T2i ⊕ CSi, where i∈ [1,Q]. Given a secret s2, we 
divided it into num fragments and encoded them into a (num-1) order polynomial P(x) 
with num coefficients. Each elements of {S1, S2, …, SQ} is evaluated on polynomial 
P(x) to gain {P(S1), P(S2), …, P(SQ)}. The combination set {(S1, P(S1)), (S2, P(S2)), …, 
(SQ, P(SQ))} can be considered as the genuine point set GT2. At the same time, a chaff 
point set CT2 is generated to secure the genuine point set GT2. The final vault sketch 
VT2, obtained by the union of GT2 and CT2, is defined as VT2= GT2CT2. Both VT2 

and {ST21, ST22, …, ST2Q} act as helper data and are stored in the database. 

2.3 Decoding Stage 

Given a query feature set Q extracted from the query impression, its two variants, Q1 
and Q2 are generated by the same procedure described in section 2.1. Then Q1 and Q2 
are applied to the decode model of fuzzy commitment and vault sketches, 
respectively, to retrieve the secret s1 and s2. 
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1) Fuzzy commitment decoding: During the decoding procedure of commitment 
sketch, the variant query feature set Q1 and the secure sketch ST1 are XORed and 

output a corrupted codeword,
1

'
TC  as 

1

'
1 1TC Q ST= ⊕ . If the number of errors 

happening in 
1

'
TC (comparing to 

1TC ) is within the error correcting capability of the 

BCH code, the secret s1 can be correctly retrieved, vice verse. 
 
2) Fuzzy vault decoding: During the decoding procedure of vault sketch, the inverse 
operation is applied to the transformed template segments {ST21, ST22, …, ST2Q}. To 
be specifically, the query feature set Q2 are divided into Q segments,{Q21, Q22, …, 
Q2Q} and an XOR operation is performed between the corresponding elements from 
{ST21, ST22, …, ST2Q} and {Q21, Q22, …, Q2Q}, so as to get the reversed codewords, 

{ }' ' '

1 2,  , ,  QCS CS CS… . If the hamming distance between an element '

iCS from reversed 

codewords, { }' ' '

1 2,  , ,  QCS CS CS… and its corresponding element iCS from the original 

codewords, {CS1, CS2,…, CSQ} is smaller than the error correcting ability of the BCH 

code, the element '

iCS could be correctly decoded to obtain the string Si. The decoded 

string set is expressed by{ } 1

D

i

Q

i
S

=
, where DQ is the number of the correctly decoded 

strings. If DQ is larger num, the vault sketch VT2 can be successfully decoded and the 
polynomial P(x) can be reconstructed. The secret s2 can be retrieved by sequentially 
concatenating the num coefficients of polynomial P(x). 

2.4 Fusion of Commitment Sketch and Vault Sketch 

In order to achieve better recognition accuracy or higher security level of the system, 
two secure sketches, commitment sketch and vault sketch could be fused in two 
different ways, AND fusion and OR fusion. If higher security level of the system is 
required, AND fusion can be executed. Specifically, the secret, s of the system is 
generated by concatenating secrets, s1 and s2, as s = s1 || s2. If and only if both secure 
sketches are decoded, the secret, s could be retrieved. So the security level of the 
system will be the entropy of commitment sketch plus the entropy of vault sketch. 
However, under the AND fusion, the recognition accuracy of the system will be 
brought down, because the similarity between query feature set and template feature 
set have to satisfy both hamming distance threshold and set difference threshold. If 
high recognition accuracy of the system is required, the OR fusion can be adopted. To 
be specific, the secret, s of the system could be set to be the same as s1 and s2, as s = s1 
= s2. Even if one secure sketch is decoded, the secret, s could still be retrieved. The 
recognition accuracy would be the better one of the single commitment sketch or 
vault sketch based system. However, the security level of the system would be the 
worse of them, because the adversary could compromise the secret, s by decoding any 
one sketch. 
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3 Experimental Results and Security Analysis 

The performance of the proposed system is evaluated on the public available finger-
vein database from the Homologous Multi-modal Traits Database [12] setup by the 
Group of Machine Learning and Applications, Shandong University (SDUMLA). The 
finger-vein database contains images from 106 individuals. Each individual was asked 
to provide images of his/her index finger, middle finger and ring finger of both hands 
and the collection for each of the 6 fingers are repeated for 6 times to obtain 36 
finger-vein images. Therefore, there are 3,816 images composed in the database and 
each image is 320×240 pixels in size. We chose the 1st, 2nd impressions as the training 
samples, and the 3rd, 4th, 5th, 6th impressions from the first 100 fingers from the finger-
vein database as testing samples. For genuine test, the 3rd is considered as the template 
and 4th, 5th and 6th impressions from the same finger are considered as query, so 300 
(=100×3) genuine matching attempts are made. For imposter test, the 3rd is considered 
as the template and 3rd, 4th, 5th and 6th impressions from other fingers are considered 
as query, so 39600 (=100×99×4) imposter matching attempts will be made. The 
performance of the proposed system is evaluated by the false accept rate (FAR), 
genuine accept rate (GAR) and false reject rate (FRR). 

In our application, the length of the variants generated from the original feature set by 
bio-hashing is r=288 bits. For the single fuzzy commitment scheme, we use the BCH(n, k, 
t) code for error correcting where we set n=r=255 bits, and k is the length of the secret s1. 
We evaluate the recognition accuracy of the single commitment sketch based bio-
cryptosystem on different length of k, where t is the error correction capability of BCH 
code. By sphere-packing bound [13], the security of single commitment sketch based 
system is equal to the entropy of T1 by given ST1 which can be expressed as 

( )1 1 /| 2r r
H T ST log

t∞

  
=      

                             (1) 

For the single vault sketch based scheme, we set the number of segment Q=17, so 
NGT2, the number of the genuine point set GT2 is also 17. Accordingly, we set NCT2, 
the number of chaff point set CT2 to be 400. We evaluate the performance of  
the single vault sketch based bio-cryptosystem based on different num which is the 
number of fragments from s2. For the security of single vault sketch based system, the 
entropy of GT2 by given VT2 is expressed as 

2

2 2

2 2( | ) log

GT

GT CT

N

num
H GT VT

N N

num

∞

  
     = −  +       

                    (2) 

The recognition accuracy and security level of single commitment sketch and single 
vault based bio-cryptosystem are shown in table 1 and table 2, respectively. The 
recognition accuracy and security level of AND fusion or OR fusion based bio-
cryptosystem are adjustable according to different parameters which we will not 
discuss in this paper. 
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Table 1. Performance of single fuzzy commitment sketch based bio-cryptosystem 

k, length of secret s1(bits) FRR(%) FAR(%) Security (bits) 

9 20.33 0 53 

21 22.33 0 65 

45 30.67 0 87 

91 56.77 0 140 

107 61.33 0 150 

Table 2.  Performance of single fuzzy vault sketch based bio-cryptosystem 

num, number of fragments from secret s2  FRR(%) FAR(%) Security (bits) 

7 6.33 7.33 34 

8 9.67 2.41 40 

9 12.33 0.64 45 

10 15.67 0.14 51 

11 18.67 0.03 57 

12 22.33 0.01 63 

13 24.67 0 69 

4 Conclusion and Future Work 

The proposed finger-vein based cancellable bio-cryptosystem takes the full advantage 
of cancellable and non-invertible properties of bio-hashing technique to solve the 
problem of irrevocability in existing bio-cryptosystems. It uses two variants of the 
original biometric template and applies them into two different secure sketches, fuzzy 
commitment sketch and fuzzy vault sketch. Different fusion ways, AND fusion and 
OR fusion of these two secure sketches improve either the recognition accuracy or the 
security level of the cancellable bio-cryptosystem depending on the requirement of 
the real application. Because different similarity measures are used in fuzzy 
commitment and fuzzy vault, hamming distance for fuzzy commitment and set 
difference for fuzzy vault, it is difficult to calculate the best points that achieve the 
best recognition accuracy and security level of AND fusion based system and OR 
fusion based system. To find these points will be the future research topic. 
Multimodal bio-cryptosystems incorporating fingerprint [14, 15] and face [16] will 
also be an interesting research topic. 
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