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Abstract. Integrating medical knowledge on a Computer Aided-
Diagnosis systems for the detection of melanomas is an essential factor
for the acceptance of the system by the medical community. Bag-of-
Features, a popular classification method based on a local description of
an image, can be used as a means to integrate medical knowledge while
developing an automatic melanoma classification system. An important
step of this algorithm is the correct identification of discriminative re-
gions, due to the great impact that it has on the algorithm’s performance.
This paper aims at comparing different strategies for the extraction of
interest regions. The achieved results show that texture-based detectors
perform better than a dense sampling strategy, achieving Sensitivity=
98% and Specificity= 86%.
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1 Introduction

Melanoma is the deadliest form of skin cancer. Its great potential to rapidly
metastasize and growing incidence rates make melanoma one of the 21st century
diseases. Nowadays, the goal of dermatologist is to diagnose melanomas in their
early stage, since it is less probable that it has already spread to other organs or
tissues. One of the most popular techniques used by dermatologist to diagnose
skin lesions is Dermoscopy. This is a microscopy technique that allows the vi-
sualization of different dermoscopic structures and pigmentations that would be
otherwise invisible to the naked eye [1]. These dermoscopic features are, in most
cases, discriminative of the type of skin lesion that is being analyzed and are the
backbone of the medical algorithms proposed for the diagnose of dermoscopy
images (e.g., ABCD rule [2] and 7-point checklist [3]).

A Computer Aided-Diagnosis (CAD) system for the detection of melanomas
can benefit from using the medical knowledge associated with the dermoscopic
features and their relative importance. There are two ways in which the medical
knowledge can be incorporated in the diagnosis system. The first is based on
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detecting the dermoscopic features, such as pigment network [4], blue-whitish
veil [5] and globular pattern [6], and try to analyze them as a dermatologist
do (assess their shape, color and distribution throughout the lesion). Then this
information can be used to perform one of the medical algorithms cited above.
However, detecting all the important dermoscopic features, classify them, com-
bine all the information and finally apply the medical algorithm might not be
easy to perform. The alternative approach follows a different direction and uses
a popular image retrieval and object recognition method called Bag-of-Features
(BoF) [7][8]. This method represents the lesion by a set of local descriptors, each
of them associated to an interest region inside the lesion. Each interest regions
can be interpreted as one of the dermoscopic cues used by dermatologist and will
be separately characterized from the others. Assuming the former, it is then pos-
sible to consider that medical knowledge is being integrated in the CAD system.
The benefit of using BoF against the previous strategy is that it is a classification
algorithm whose parameters can be learned from the data. Therefore, it reduces
the effort of developing a diagnose system.

One of the main steps of BoF is finding the interest regions. A simple way
to detect these regions is to search for interest points (called sampling) and
extract the regions around them. This strategy converts the previous problem
into a keypoint finding one. Different strategies can be used to detect keypoints
in an image. These strategies might influence the performance of BoF and its
discriminative power, since it is desirable that the sampling strategy used is able
to detect dermoscopic cues that characterize a lesion. The focus of this paper
is to address the two common sampling strategies (sparse and dense sampling
[9]) and determine which one performs better in the melanoma classification
problem. The paper is organized as follows. Section 2 describes the BoF approach
used and Section 3 explains the sampling approaches. The results and respective
discussion are shown in Section 4 and Section 5 concludes the paper.

2 Bag-of-Features

Fig. 1. BoF system overview

Fig.2 shows the block diagram of a BoF classification system [7]. The ”Image
Sampling” block of BoF is divided in two sequential tasks. The first task consists
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in detecting the keypoints. The comparison of possible sampling strategies is the
focus of this paper and the ones used are described in the next section. After
the detection of the keypoints, the next step is to extract the interest regions.
These regions are square patches of size δ×δ centered on the detected keypoints.
Patches which area is more than 50% outside the lesion are discarded.

After the sampling process, each one of the detected regions is described by a
set of features. In this paper two different types of color descriptors (color his-
tograms [10] and color moments [11]) and six color spaces (RGB, HSV/I, La*b*,
L*uv and Opponent [10]) are used. The color histograms (hc) are a combination
of three 1-D color histograms with a dimension Bc, one for each color compo-
nent. Bc was optimized and searched in the intervals Bc ∈ {15, 25, 35, 45} for
dense sampling and Bc ∈ {5, 15, 25} for sparse sampling. The color moments
used (Mc) are the traditional first three order color moments (mean, standard
deviation and skewness). These moments are computed for each of the three
color components, leading to 9 moments per color space. All the descriptors are
normalized to be in the range [0, 1].

The number of detected interest regions depends on the image. Therefore, an
intermediary step to standardize the features within the images is required. This
task is performed in the three next blocks. In the ”Clustering” block, K-means
algorithm is used to find clusters between patches and compute a set of centroids
(visual words) called visual dictionary. This dictionary is constructed using all
the patches of the training images. The size of the dictionary influences the
performance of BoF. Therefore, different sizes are tested K ∈ {100, 200, 300}.

In the ”Features quantization” block each image is separately analyzed and
its corresponding patches are compared with the dictionary, thus it is possible
to associate a visual word to each of the patches. The occurrence of each visual
word in a lesion can be counted and a histogram of visual words frequency is
computed for that lesion. This histogram will be a descriptor of the lesion, i.e.
a feature vector, and will be fed to the classifier in the ”Classification” block.
Different classification algorithms can be used in the final block. In this paper,
the classification rule is obtained using the k-Nearest Neighbor (kNN) algorithm.
The parameters for this classifier (number of neighbors k and comparative dis-
tance) are optimized. Three different distances are used {Euclidean, Kolmogorov,
Kullback-Leibler} and k is searched in the interval {5, 7, ..., 25}.

3 Sampling Methods

Skin lesions have different forms and aspects. Therefore, finding informative
points and support regions that correctly describe a lesion is not a trivial task.
A simple way of detecting the informative key points is assuming that each
keypoint is a node of a regular grid placed on the lesion [9]. The interval between
points is fixed and the patches extracted around each one of them have a size
δd×δd, δd ∈ {20, 40, ..., 80}. In this work it is assumed that the interval between
two consecutive nodes is δd to prevent patch overlapping. Fig.2(b) shows an
example of the dense sampling method using δd=40.
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a) b)δd=40

c)δs=6 d)δs=6 e)δs=6

Fig. 2. Examples of sampling strategies: a) Original Image; b) Dense Sampling; c), d)
and e) Sparse Sampling: c) DoG Detector, d) Harris Laplace Detector and e) Hessian
Laplace Detector

Dense sampling saves most of the information regarding the appearance of a
lesion, hence has a great discriminative power. However, if a lesion is more or
less homogeneous regarding color and texture, computational time will be lost
on processing similar patches, which might be undesirable and redundant [9].
An alternative to this method is sparse sampling that extracts only the most
informative regions. This strategy consist in using a salient point detector that
searches for specific texture patterns like edges or blobs at different scales. Using
different scales is a key characteristic of sparse sampling, since it makes the
detected patches scale-invariant [9]. This is particularly relevant in dermoscopy
since the same dermoscopic feature might appear in two different lesions at
different scales. Although it is also possible to use different scales in the dense
sampling method, this is both memory and time consuming.

A sparse sample method works as follows. First, a scale-space representation is
constructed by convolving the image I(x, y) with the Gaussian kernelG(x, y, σD)
at different scales σD. The second step is to detect the salient points and their
characteristic scales. Several detectors that focus on different texture properties
can be used to this aim. These detectors use the information of the scale-space
and alter its representation using a specific function. Due to the different prop-
erties of the state-of-the-art descriptors, this work compares three of the most
popular.
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Difference of Gaussian (DoG): This detector was proposed by Lowe [12]. It
computes the absolute diference between consecutive levels of the scale-space
representation using the following function

D(x, y, σD) = |I(x, y) ∗G(x, y, σD+1)− I(x, y) ∗G(x, y, σD)| , (1)

where σD+1 and σD are two consecutive scales. The focus of the DoG detector
are blob like structures. Therefore, this detector can be used to identify
saliency points associated with circular dermoscopic features like dots and
globules. A point is classified as saliency point if it is larger than its eight
neighbor pixels in the correspondingD(x, y, σD) and than the nine neighbors
in the scales above and below. Fig.2(c) shows the keypoints detected using
DoF and their characteristic scales.

Harris-Laplace: The Harris Laplace detector [13] identifies corner-like regions,
thus it can be used to detected keypoints related with the presence of pigment
network or streaks both of them dark linear structures. As in the previous
detector, the search for the keypoints is performed by determining the 3D
extrema. However, in this method a point and a scale are only selected if
they verify the extrema condition for both Harris function and Laplacian
operator. The Harris measure, responsible for detecting points in the scale-
space, is the following

C(x, y, σs) = det(M(x, y, σD))− αtrace2(M(x, y, σD)) , (2)

where α is a constant set to 0.06, as suggested in [13], and

M(x, y, σD) = σ2
DG(x, y, σI) ∗

[
L2
x(x, y, σD) LxLy(x, y, σD)

LxLy(x, y, σD) L2
y(x, y, σD)

]
. (3)

Li denotes the first order i derivative of I(x, y) ∗ G(x, y, σD) and σI is the
integration scale used to average the derivatives in the neighborhood of the
pixel (x, y). The Laplacian operator,

Lap(x, y, σD) = |σ2
D(Lxx(x, y, σD) + Lyy(x, y, σD))| , (4)

is used for selecting the characteristic scale for each point. An example of
the detected keypoints and their best scales is shown on Fig.2(d).

Hessian-Laplace: This detector follows an idea similar to the previous one.
However, instead of using the Harris measure, the detection is performed
using the scale normalized determinant of the Hessian matrix

H(x, y, σD) =

[
Lxx(x, y, σD) Lxy(x, y, σD)
Lxy(x, y, σD) Lyy(x, y, σD)

]
, (5)

that responds to blobs and ridges and penalizes elongated structures [14].
Therefore, this detector can be used to detect dots and other circular-shape
dermoscopic structures. As before, the Laplacian operator is used for scale
selection [14]. Fig.2(e) shows an example of the Hessian-Laplace detector.
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The number of detected keypoints can influence the performance of BoF. Al-
though a large number of keypoints allows a good description of a lesion, the
computational time required for processing them will be great. Moreover, having
a large amount of keypoints per image might not lead to the the creation of a
generalized dictionary and a discriminative classification rule. Therefore, it is
necessary to control the number of keypoints per image. This can be done by
discarding the keypoints (x̄, ȳ) that do not fulfill the following condition

S(x̄, ȳ, σD) > Th.Smax(x, y, σD)) (6)

where S is one of the detector functions and Th is a threshold found experimen-
tally to be searched in the interval Th ∈ {0.01, 0.05, 0.1, 0.2}.

After detecting the keypoints it is necessary to extract their support regions.
It is desirable that these patches are related with the characteristic scales of the
keypoints. Therefore, for each keypoint it is extracted a patch of size σDδs ×
σDδs, where δs ∈ {4, 6, 8, 10} in the case of color moments descriptors and δs ∈
{8, 10} for color histograms. The support regions for each type of detector are
exemplified in Fig.2 using δs=6.

4 Results and Discussion

The detectors were tested on a dataset of 176 dermoscopy images of melanocytic
lesions of which 25 were melanomas. These images were acquired during routine
clinical exams in Hospital Pedro Hispano, Matosinhos, using a digital acquisition
system with a magnification of 20×. The images were manually segmented and
pre-processed using the algorithms described in [4]. An experienced dermatolo-
gist corrected the segmentations and classified the lesions as melanoma or not
for a ground truth label.

The metrics used to determine the performance of the descriptors are Sensitiv-
ity (SE) and the Specificity (SP). A cost function (C) that takes into account the
trade-off between SE and SP is used to select the best results for each detector.

C =
c10(1− SE) + c01(1− SP )

c10 + c01
, (7)

c10 and c01 are the costs of an incorrectly classified melanoma and non-melanoma,
respectively. An incorrectly classified melanoma is a worse error. Therefore, it
was defined that c10 should be more penalizing than c01. It was found that set-
ting c10 = 1.5c01 and c01 = 1 led to a good trade-off between SE and SP, i.e.,
achieving a high SE without significantly reducing the value of SP .

A 10-fold stratified cross validation method was used to compute the evalu-
ation metrics. The set of images was divided in ten subsets, each with approx-
imately the same size and number of positive examples. From these ten folds,
nine were used for training and the remaining one for testing. This was repeated
ten times each time with a different combination of sets for training and test-
ing. The final results are the average of the ten training-testing processes. To
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a) b)

Fig. 3. Classification results for a) Individual detectors and b) Detector fusion. The Y
axis is the cost value C computed using (7).

deal with the problem of class unbalance, the number of positive local feature
vectors was repeated until there was the same number of positive and negative
examples. To avoid having several equal feature vectors in the training set, to
each of the repetitions was added Gaussian Noise N(0, σ2

n), σn = 0.0001. This
repetition was necessary since the smaller number of melanoma patches led to
the construction of a poorly discriminative visual dictionary.

Fig.3(a) shows the results for the tested sampling strategies and detectors us-
ing different color descriptors. These results show that globally sparse sampling
achieves better performances than dense sampling. This might be explained by
the fact that dense sampling provides both relevant and irrelevant information
for the dictionary construction and posterior training of the classifier, which
lead to an incorrect classification. On the other hand, sparse sampling provides
only regions of interest. The sparse detectors tested in this work use texture
information to find the keypoints. Therefore, achieving better results with these
detectors suggest that texture information, i.e. dermoscopic structures, plays a
role on the characterization of melanomas. Regarding sparse detectors, Harris
Laplace that looks for long structures performs better than DoG and Hessian
Laplace. This suggests that linear dermoscopic structures might be more infor-
mative alone than circular structures. Table 1 shows the best results achieved
with each of the sampling methods.

Table 1. Best classification results and descriptors for each sampling strategy

Sampling Keypoint Detector Descriptor SE SP C
Dense Sampling Regular Grid hLa∗b∗ 93% 85% 0.104

Sparse Sampling
Harris Laplace hOpp 98% 86% 0.066
Hessian Laplace MOpp 96% 81% 0.099

Difference of Gaussian hOpp 98% 78% 0.104

To determine if the results could be further improved the best overall pairs of
detectors/descriptors (hRGB, hOpp, MHSV and MOpp) are combined. This com-
bination is done by late fusion [15], i.e., the final classification is a fusion of the
output of different classifiers. In this work, the sum-rule is used to combine the
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outputs of the different classifiers using their respective posterior-probabilities
[15]. The posterior probabilities for kNN are computed as follows

P (w|x) = kw
k

, (8)

where w represents the class that can be either 0 or 1, x is a pattern to be clas-
sified and kw is the number of patterns amongst the total number of neighbors
k that belongs to class w. Fig3(b) shows the results for the combinations.These
results suggest that the final classification improves if more than one type of
keypoints detector is used. The best results were achieved with the fusion of the
blobs detector DoG and the lines detector Harris-Laplace using hOpp: SE=98%,
SP=86%. In future works this combination of detectors and descriptor should
be considered, since it allows the usage of both texture and color information in
the classification of dermoscopy images.

5 Conclusions

BoF is a pattern recognition tool that can be used with success in the classifica-
tion of dermoscopy images and that can provide relevant medical information.
Understanding the role of the different keypoints detection methods was the aim
of this paper. The achieved results suggest that a sparse sampling strategy per-
forms better than a dense sampling strategy, achieving SE=98% and SP=86%
with both the Harris Laplace detector and the combination of Harris Laplace
and DoG detectors.

Future work should rely on studying the other steps of BoF and trying to
retrieve relevant medical information from the results and dictionary.
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