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Abstract. The problem of finding elliptical shapes in an image will
be considered. We discuss the new solution which uses cross-entropy
clustering, providing the theoretical background of this approach. The
proposed algorithm allows search for ellipses with predefined sizes and
position in the space. Moreover, it works well in higher dimensions.
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1 Introduction

Ellipse detection is one of the most important problems in image processing. It
has been researched using a good variety of methods, see i.e. Tsuji and Mat-
sumoto [16], Davies [3]. Most of the existing techniques use either the Hough
Transform [8] or least-squares methods [4]. In this paper a new approach will be
presented and its advantages and disadvantages will be discussed. We show the
results of the algorithm on the pictures from Fig. 1. The algorithm discussed in
this paper:

– is easily adaptable, ie. if we know the expected shape of the elliptical object
sought and its position (orientation) in space, by calculation we can prepare
a proper configuration for its detection;

– can detect simultaneously multiple type of objects, ex. we can look for
matches and coins at the same time;

– is rather insensitive to the disturbance of the picture (such as bluring, con-
trast and illumination modification, etc);

– can be used for classification (we can detect specified shapes) and for clus-
tering (we can use it for exploring the data structure).
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(a) (b) (c)

Fig. 1. The result of our algorithm: Fig 1a – original image, Fig 1b – binarized image,
the input for our algorithm, Fig 1a – outcome of the algorithm, clusters marked in
different shades of gray

The acceptable disadvantage of the presented method is that to work well we
need the beforehand knowledge that on the picture we study there are no other
objects than ellipse-like shapes. Consequently, our approach is well-adapted for
example to the following tasks:

– count the number of ellipses on the picture;
– divide the shapes into circles of different radiuses;
– count the number of vertical and horizontal ellipses.

Our idea uses a cross-entropy clustering [15] (CEC), which from the practical
point of view can be seen as joining of the k-means method with the model
approach used in expectation maximization (EM). EM [10,1,11] is one of the
basic and most important applications of maximal likelihood in the density es-
timations [9]. EM, or its variations like classification EM [13] are often applied
in clustering. Although EM approach is quite general, and gives good results, to
apply it we usually need to first perform complicated computations. Moreover, to
accomplish the M step one commonly needs numerically consuming minimiza-
tion techniques, and consequently EM is relatively slow and cannot deal well
with large data.

Our aim in this paper is to show that CEC is well-adapted to classification and
detection of ellipses and ellipsoids. The advantage of CEC over EM is simplicity
and speed – in the case of typical Gaussian families we do not need the M-
step, which enables us in particular to use fast and efficient Hartigans approach.
Moreover, as the use of every cluster in CEC has its cost, contrary to classification
EM, CEC reduces on-line clusters which carry no information, which in practice
implies that our algorithm can find the “right” number of ellipses on the picture.

Let us discuss the contents of the paper. In the first part of our work we briefly
describe the CEC algorithm. In the next section we present the basic models we
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use (compare with [5]). We also present results of numerical experiments. Then
we describe the procedure for finding toothpicks in the image (see Fig. 1).

In Appendix we provide the proof of the only cross-entropy formula from
section which is essentially new. In our opinion its proof is worth including as
in fact it given a method which can be easily used in search for cross-entropy in
other Gaussian subfamilies.

2 Theoretical Background of CEC

In this section we give a short introduction to CEC, for more detailed explanation
we refer the reader to [15]. To explain CEC we need to introduce the ”energy
function” we want to minimize. By the cross-entropy of the probability measure μ
(which represent the data-set we study) with respect to density f we understand

H×(μ‖f) = −
∫

IRN

ln f(y) dμ(y).

The above cross-entropy corresponds to the theoretical code-length of compres-
sion of μ-randomly chosen element of IRN with the code optimized for density
f [2]. In a more general case when one is interested in (best) coding for μ by
densities chosen from family F , we arrive at the cross-entropy of μ with respect
to a family of coding densities F

H×(μ‖F)
:= inf

f∈F
H×(μ‖f).

In the case of splitting of IRN into pairwise disjoint sets U1, . . . , UN such that
elements of Ui we ”code” by optimal density from family Fi, the mean code-
length of randomly chosen element x equals

Eμ(U1,F1; . . . ;Un,Fn) :=
k∑

i=1

μ(Ui) · (− ln(μ(Ui)) +H×(μUi‖Fi

)
), (1)

where μU denotes the normalized restriction of μ to the set U and is given by
μU (A) :=

1
μ(U)μ(A ∩ U).

The aim of CEC is to find splitting of IRN into pairwise disjoint sets Ui which
minimize the function given in (1). In this paper we restrict for the sake of
simplicity to clusters generated by Gaussian densities (although one can easily
use any density family for which MLE can be performed).

Now we proceed with discussion of the Gaussian models we will use in CEC.
We consider following density families:

1. GΣ – Gaussian densities with covariance Σ. The clustering will have the
tendency to divide the data into clusters resembling the unit circles in the
Mahalanobis distance given by ‖x− y‖2Σ := (x− y)TΣ(x− y). Its particular
important subfamily is given by GrI, where r > 0 is fixed (in this case we
will have tendency to divide the data into ”circles” with approximate radius
of

√
r).
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2. G(·I) – spherical Gaussian densities, which covariance is proportional to iden-
tity. The clustering will try to divide the data into circles of arbitrary sizes.

3. Gdiag – Gaussians with diagonal covariance. The clustering will try to divide
the data into ellipsoid with radiuses parallel to coordinate axes.

4. G – all Gaussian densities. In this case we divide dataset into ellipsoid-like
clusters without any preferences concerning the size or shape or position in
space of the ellipsoid.

We need a result which says what is the cross-entropy of the probability measure
μ with respect to coding adapted for the respective Gaussian subfamilies. A basic
role is played by the following observation.

Observation 21. Let μ be a discrete or continuous probability measure in IRN

with well-defined mean mμ :=
∫
xdμ(x) and covariance matrix Σμ :=

∫
(x −

mμ)(x −mμ)
T dμ(x). Let a fixed positive-definite symmetric matrix Σ be given.

Then H×(μ‖GΣ

)
= H×(μG‖N (mμ, Σ)

)
, where μG denotes the probability

measure with Gaussian density of the same mean and covariance as μ. Con-
sequently

H×(μ‖GΣ

)
=

N

2
ln(2π) +

1

2
tr(Σ−1Σμ) +

1

2
ln det(Σ). (2)

By applying the above proposition one can easily deduce1 the formulas for cross-
entropy given the Table 1.

Table 1. Table of cross-entropy formulas with respect to Gaussian subfamilies

F cov. matrix H×(μ‖F)

GΣ Σ N
2

ln(2π) + 1
2
tr(Σ−1Σμ) + 1

2
ln det(Σ)

GrI rI N
2

ln(2π) + 1
2r

tr(Σμ) + N
2

ln r

G(·I)
tr(Σμ)

N
I N

2
ln(2πe/N) + N

2
ln(trΣμ)

Gdiag diag(Σ) N
2

ln(2πe) + 1
2

ln(det(diag(Σμ)))

G Σμ
N
2

ln(2πe) + 1
2

ln det(Σμ)

In the second column we give the formula for the covariance matrix of the
Gaussian density which realizes the desired minimum of cross-entropy (obviously
the mean is always the mean of the measure). Simple applications of the formulas
given above can be found on the Figure 2.

Remark 1. As is well-known Gaussian MLE is not robust to outliers. For this
reason our method may in some cases, especially when the threshold is not well
chosen and there is a big presence of noise, give not optimal results (effective
method of segmentation can be found in [14]). Therefore, we plan in future to
modify our approach to cope well with possible outliers.

1 In practice all the formulas given in the are known, see for example [15].
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(a) (b) (c) (d)

Fig. 2. The simplest case: input and outcome for our algorithm applied to GrI (Fig. 2a
and 2b) and Gdiag (Fig. 2c and 2d)

3 Case Study

Let us explain the method on the following simple problem: assume that we want
to count the toothpicks on the Fig. 3. To do so we take a particular object and
compute its covariance matrix. We have obtained a covariance with eigenvalues

λ1 = 4938.5 and λ2 = 5.7.

Since we want to allow the toothpick to have any position in space, we introduce
the set Gλ1,λ2 to consist of all Gaussian densities on the plane with covariance
matrix having eigenvalues λ1 and λ2 (observe that this set is rotation and trans-
lation invariant, but not scale invariant).

Consider now a probability measure μ, representing our data, with covariance
Σμ, with eigenvalues λμ

1 > λμ
2 > 0. By applying Proposition 1 (see Appendix)

jointly with Observation 21 we easily conclude that the best approximation
(understood in the maximal likelihood or equivalently cross-entropy, sense) of μ
in Gλ1,λ2 is given by the Gaussian density with covariance matrix with the same
eigenvectors as Σμ and eigenvalues λ1 and λ2. Consequently, the cross-entropy,
which plays the role of energy, H×(μ‖Gλ1,λ2

)
thanks to (2) is given by

H×(μ‖Gλ1,λ2

)
=

N

2
ln(2π) +

1

2
(λμ

1/λ1 + λμ
2/λ2) +

1

2
(ln(λ1) + ln(λ2)).

By applying Hartigan approach we can now find the splitting of the data into
pairwise disjoint sets U1, . . . , Uk which minimizes the value of (1). Results of
our method can be seen on Figure 3 (we omit here the natural preliminary
binarization procedure).

To visualize the found clusters, we draw the boundary of an ellipse with the
same mean and covariance as a given density estimator2.

2 We recall that covariance matrix of a uniform density of an ellipse with radiuses
r1, r2 is given by [r21/4, 0; 0, r22/4], that is we draw the ellipse with radiuses 2

√
λi.
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(a) (b)

(c) (d)

Fig. 3. The result of our algorithm: Fig 3a – original image, Fig 3b – binarized image,
the input for our algorithm, Fig 3c – outcome of the algorithm, clusters marked in
shades of gray, Fig 3d – outcome of the algorithm, ellipses with the same mean and
covariance as calculated by algorithm densities

4 Conclusion

We have proposed a new method, which uses cross-entropy clustering approach,
to classification and detection of ellipse-like shapes. The main advantage of the
method lies in the fact that it can be easily adapted to finding ellipses of desired
shape and position in space. The basic disadvantage is that in current algorithm
configuration (basic approach) we can deal only with pictures which contain
only ellipse-like shapes (for example we cannot discover ellipses in a picture with
ellipses and rectangles). Our further work will consist on elimination of this
inconvenience.

5 Appendix: How to Compute MLE for Gaussian
Families

The situation is very simple if we search for the MLE, or in other words for
the minimum in (2) in the class of diagonal matrices (subclass consisting of
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Gaussians with independent variables). A more requiring and difficult question
is to find the desired minimum in the class of all Gaussians. Below we present
an approach which allows to do this.

We will use the well-known von Neumann trace inequality [7,12]:

Theorem [von Neumann trace inequality]. Let E,F be complex N × N
matrices. Then

|tr(EF )| ≤
N∑

i=1

si(E) · si(F ), (3)

where si(D) denote the ordered (decreasingly) singular values of matrix D.
Let us recall that for the symmetric positive matrix its eigenvalues coincide

with singular values.
Given λ1, . . . , λN ∈ IR by Sλ1,...,λN we denote the set of all symmetric matrices

with eigenvalues λ1, . . . , λN . The following proposition plays the basic role in the
search for optimal Gaussian densities, as it reduces the search from all symmetric
matrices to search in the set of eigenvalues. Since its proof is short, we provide
it for the sake of completeness.

Proposition 1. Let B be a symmetric nonnegative matrix with eigenvalues
β1 ≥ . . . ≥ βN ≥ 0 . Let 0 ≤ λ1 ≤ . . . ≤ λN be fixed. Then

min
A∈Sλ1,...,λN

tr(AB) =
∑

i

λiβi.

Proof. Let ei denote the orthogonal basis build from the eigenvectors of B, and
let operator Ā be defined in this base by Ā(ei) = λiei. Then trivially

min
A∈Sλ1,...,λN

tr(AB) ≤ tr(ĀB) =
∑

i

λiβi.

To prove the inverse inequality we will use the von Neumann trace inequality.
Let A ∈ Sλ1,...,λN be arbitrary. We apply the inequality (3) for E = λN I − A,
F = B. Since E and F are symmetric nonnegatively defined matrices, their
eigenvalues λN − λi and βi coincide with singular values, and therefore by (3)

tr((λN I−A)B) ≤
∑

i

(λN − λi)βi = λN

∑

i

βi −
∑

i

λiβi. (4)

Since tr((λN I−A)B) = λN

∑
i βi − tr(AB), from inequality (4) we obtain that

tr(AB) ≥ ∑
i λiβi.

Corollary 1. Assume that we want to find the best fit of μ with covariance Σμ

in the class Gλ1,...,λn , where λ1 ≥ . . . ≥ λn > 0.
To do so we take the eigenvalues λμ

1 ≥ . . . ≥ λμ
n corresponding to orthonormal

eigenvectors eμ1 , . . . , e
μ
n, and then Σ is given in the base as a diagonal matrix

with λ1, . . . , λn on the diagonal.
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