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Abstract. The automatic analysis of cancer cells has gained increas-
ing relevance given the amount of data that biology researchers have to
analyze. However, most biology researchers still analyze cells by visual
inspection alone, which is time consuming and prone to induce subjective
bias. This makes automatic cell image analysis essential for large scale,
objective studies of cells.

While the classic approach for automatic cell detection is to use image
segmentation, in the case of in vivo brightfield images, such approach is
not robust to image quality changes. To detect cells with robustness and
increased performance we propose the use of local interest point detec-
tors. We perform a comparison study between the use of the Laplacian
of Gaussian filter, a Bank of Ring Filters and local convergence filters.

Based on experimental results we found that the Laplacian of Gaus-
sian filter outperformed all other in cell detection obtaining an accuracy
of 78%. Additionally, through the analysis of shape fit, we found that
the Laplacian of Gaussian filter obtained a better approximation to the
shape of the cells having a Dice’s coefficient of 81%.

1 Introduction

The detection of cancer cells is fundamental for the understanding of complex
cellular responses which leads to the development of possible therapies for cell’s
regulation [1,2]. Usually, to study cancer cells dynamics, these are placed on top
of native surfaces or of extracellular matrix-coated surfaces and a time lapse
video is collected. A typical brightfield frame of an example video can be seen in
figure 1(a). While all cancer cells are similar at the beginning of the experiment,
their shape changes during the experiment as is visible in figure 1(b). These
morphological changes make the automatic cell detection process more difficult.

J.M. Sanches, L. Micó, and J.S. Cardoso (Eds.): IbPRIA 2013, LNCS 7887, pp. 624–631, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



Cancer Cell Detection and Morphology Analysis 625

(a) (b)

Fig. 1. Cells on top of an extracellular matrix surface. a) Example of a typical cancer
cell time-lapse movie frame; b) Cropped image detailing different cells morphology.

The classical approach to perform cell detection is based on image segmen-
tation, which is a fundamental problem in computer vision [3]. The specific
methods for segmentation range from image thresholding [4], in the case of high
contrast between cells and background to more advanced methods such as mean-
shift clustering. In the case of touching cells, as the spatial relations are not
embedded in image levels, watershed transform is widely used [4]. One of the
main issues with most automatic image segmentation approaches is that their
parameters are not robust to image quality or characteristics variations [3,4]. Ad-
ditionally, parameters are complex to someone unfamiliar with image processing,
requiring experts for readjustments, reducing usability.

Recently local image filters have been introduced to aid in cell detection based
on shape. Usaj et al. proposed the use of the Laplacian of Gaussian (LoG) for
cell detection in fluorescence images, leading to enhancement and subsequent
detection of cell’s due to their approximated circular shape [2]. The use of a
Bank of ring filter has also been used to perform cell detection in phase contrast
microscopy images [5]. Esteves et al. proposed the use of local convergence fil-
ters (LCF) for the detection and shape estimation of cell nuclei in fluorescence
images [4].

We propose the application of the aforementioned local filters for the task
of cancer cell detection in brightfield images in order to perform a comparative
study of their performance.

2 Methodology

We propose using local image filters for cell detection. Based on the response
of the filter we detect cells by searching for local maxima. For this task we
use the LoG filter [6], a ring filter matching approach [5] and LCF [4]. From
existing LCFs we selected the Coin filter [7], the Iris filter [7], the Adaptative
Ring filter [8] and the Sliding Band filter [4].

In the next subsections we start by introducing the LoG filter for the task of
cell detection then the ring filter matching approach is explained and finally the
LCF are presented.
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(a) (b) (c) (d)

Fig. 2. LoG based cell detection: a) Brightfield frame with cancer cells; b) LoG re-
sponse; c) Detections overlaid in the image; d) Cells detections shown as ellipses based
on Hessian estimated eccentricity

2.1 LoG Filter

The LoG filter is based on the image scale-space representation to enhance the
blob like structure as introduced by Lindeberg [6]. Given an input image I(x, y),
the gaussian scale space representation at a certain scale t is:

L(x, y, t) = g(x, y, t) ∗ I(x, y), where g(x, y, t) =
1

2πt
e

x2+y2

2t . (1)

The scale normalized LoG operator is then defined as:

�2L(x, y, t) = t2(Lxx(x, y, t) + Lyy(x, y, t)), (2)

where Lxx and Lyy are the second derivatives of the input image in x and y
respectively, and t2 is the scale normalization parameter.

We set the scale of the filter, t, to the expected range of the cell radius (fig-
ure 2(a)). We perform detection of cells by detecting local maxima of LoG re-
sponse in the input image (figure 2(b)). The detected maxima enable us to
estimate the position and radius (r = 1.5× t) of cells (figure 2(c)).

By using the LoG filter for cell detection there is an underlying assumption of
a circular shape. However, this may not be the case, leading to inaccurate shape
adaptation. To further refine the cell’s shape we use the Hessian matrix:

H(x, y, t) =

[
Lxx Lxy

Lyx Lyy

]
. (3)

From the eigenvectors and eigenvalues of H we obtain the orientation and
eccentricity values for the respective cells’ ellipsoid shape approximation (fig-
ure 2(d)) [6].

2.2 Ring Filter Matching

The use of ring filters has also been proposed to detect cells in phase contrast
microscopy images which consists of a series of matched filters with multiple-
radius ring-shaped templates [5].

The cell detection scheme consists in filtering the input image with a multiple-
radius ring filter (figure 3(a)) and locate cell candidate locations through local
maxima response [5]. As illustrated in figure 3(b), the highest peak occurs when
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(a) (b) (c)

Fig. 3.Ring filter matching: a) Ring filter bank where rc is the radius and w is the width
of the ring; b) Ring filter response from the figure 2(a) input image; c) Detections
overlaid in the original image

the radius of the filter matches exactly that of the cell pattern, and lower peaks
are generated when the filter mismatches slightly. An example of detected cells
is shown in figure 3(c).

2.3 Local Convergence Filters

By assuming a convex shape and a limited range of sizes for cell areas we can use
LCF for cell detection and shape estimation. This is possible since LCF filters
detect local gradient convergence in the image which are usually an indication
of cell membrane locations [4].

LCF are based on the maximization of the convergence index (CI) at each
image point of spatial coordinates (x, y). The CI within the support region (SR),
which is the region that defines each specific filter, is defined using the cosine
between the polar direction θi and the image gradient for coordinate (x, y, θi,m):

CI(x, y, i,m) = cos(θi − α(x, y, θi,m)), (4)

where (θi,m) are polar coordinates within the filter’s SR. The overall conver-
gence is obtained by summing all the individual convergences within the specific
SR of each filter.

For cancer dell detection in brightfield images we tested several LCF:

COIN Filter: The COIN filter (CF) assumes a circle with variable radius as
SR. The value of the radius is varied in search for maximum convergency [7].
The CF formulation is given by the diagram and formulas in figure 4(a) where r
is the radius of the circle of the SR that varies from 0 to Rmax , N is the number
of radial directions for which convergence is evaluated.

The SR of this filter corresponds to N half-lines that radiate from the point
(x , y), where we calculate the filter’s response. The result of applying CF equa-
tion to the input image, is the filter’s response image (figure 4(b)). The maxima
of such response indicate the locations of interest. For each location we obtain the
radius of the SR at that location through the rshape(x, y) equation in figure 4(a),
shown in figure 4(c), overlayed on the input image.

Iris Filter: The Iris filter (IF) adapts the radius of its SR for each of the N
directions, maximizing convergence for each radial direction independently [7].
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Fig. 4. COIN filter: a) Schematics of the filter’s support region (grey) with N=8; b) CF
response from the figure 2(a) input image; c) Detections overlaid in the input image

Fig. 5. IRIS filter: a) Schematics of the filter’s support region (grey) with N=8; b) IF
response from the figure 2(a) input image; c) Detections overlaid in the input image

IF is not restricted to circular shapes. Figure 5(a) shows the filter’s SR and
formulation. While filter maxima still indicate possible object centers, the shape
estimation is defined by N independent radii (support points (SP)) equation
from figure 5(a). The sets of SP corresponding to the image maxima lead to the
shapes detected in the image (figure 5(c)).

Adaptive Ring Filter: The Adaptive Ring Filter (ARF) defines a ring shaped
convergence region [8]. The size of the ring used as SR is varied searching for
the radius of maximum convergence as given by ARF equation from figure 6(a)
where d is the ring width.

Similarly to the process performed when dealing with the CF the shape esti-
mation is performed by searching for the radius of the ring SR for the location
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Fig. 6. ARF filter: a) Schematics of the filter’s support region (grey) with N=8; b) ARF
response from the figure 2(a) input image; c) Detections overlaid in the input image

in the image given by equation from figure 6(a). In figure 6(c) we can observe
that this filter provides a tighter fit than the CF while having the same final
estimated shape (circle).

Sliding Band Filter: The Sliding Band Filter (SBF) combines the ideas of IF
and ARF by defining a SR formed by a band of fixed width, with varying radius
in each direction to allow for the maximization of the convergence index at each
point [4]. The SBF formulation derives from ARF and IF convergence estimation
and is given by the SBF equation from figure 7(a) where d corresponds to
the width of the band, which is moved between Rmin and Rmax. The shape
estimation of the SBF filter is similar to that of the IF. This filter combines
both the shape flexibility of the IF with the limited band search of the ARF
(figure 7(c)).

3 Results and Discussion

To evaluate the performance of the proposed approaches applied for cell detection
we tested them on 90 brightfield images from one time lapse video. Each image
has in average 70 visible cells and the automatic detection is compared with
the respective expert manually labeled ground-truth detection, using several
performance measures.

Based on the known scale of the cells in the images we set the parameters for
each of the proposed approaches. For the scale normalized LoG filter we set the
scale of the filter, t, to the expected range of the cell radius between 4 and 16
pixels. For all LCF analyzed the respective parameters were set based on visual
inspection of the cell’s shape: Rn

min = 4; Rn
max = 16; q = 4; N = 8 (where

applicable).
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Fig. 7. SBF filter: a) Schematics of the filter’s support region (grey) with N=8; b) SBF
response from the figure 2(a) input image; c) Detections overlaid in the input image

Based on the detections and the annotated ground-truth we identify the
true positives (TP), false positives (FP) and false negatives (FN) and through
the overlap between cell detections and ground-truth areas we measured the
Dice’s coefficient.

In Table 1 we present the performance results for all methods. From the
obtained results we can observe that by using the LoG filter for cell detection
we obtained an higher number of TP (58). The Dice’s coefficient was also higher
using this filter associated with the Hessian based cell shape estimation (0.81)
indicating a better estimation of the cell shape using this approach. The use of
the ring filter matching approach obtained the worst performance.

Table 1. Cancer cell detection and shape fit performance evaluation. TP - true posi-
tives; FP - false positives; FN - false negatives.

Cell detection and Shape fit

Technique LoG LoGHessian SBF RFTM IF CF ARF

TP 58 58 55 53 54 55 55
FP 7 7 8 8 8 9 9
FN 9 9 12 14 13 12 12

Accuracy 0.78 0.78 0.73 0.71 0.73 0.72 0.72
Dice’s coefficient 0.80 0.81 0.78 0.79 0.78 0.78 0.78

4 Conclusion

We proposed the use of local interest point detector filter for the detection of
cancer cells in brightfield time-lapse images. The overall performance of the
proposed approaches showed that the LoG filter associated with the ellipse shape
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estimation was the one with better performance in cell detection. It was also
possible to conclude through the analysis of the shape fit that this approach was
able to better estimate the cell shape.

The use of the LoG filter gives us promising results for the automatic detection
and shape estimation of cancer cells. In the future work, we plan to perform cell
tracking based on this cell detection approach.
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