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Abstract. In this paper, we combine two concepts. The first is the Evidence Ac-
cumulation Clustering framework, which uses a voting scheme to combine clus-
tering ensembles and produce a co-association matrix. The second concept are
Dissimilarity Increments, which are a high order dissimilarity measure which
can identify sparse clusters, since it uses three data points at a time instead of
two points, as in Euclidean distance. These two concepts are combined to form
a new family of clustering algorithms, where the co-association matrix is used to
form a distance which is then used to compute dissimilarity increments. These
clustering algorithms are shown to improve the clustering results when compared
to the usual Evidence Accumulation Clustering framework.

Keywords: dissimilarity increments distribution, hierarchical clustering, cluster-
ing ensembles, co-association matrix.

1 Introduction

Clustering consists of grouping objects into clusters, such that objects within a cluster
are similar, and objects in different clusters are dissimilar. This process leads to a data
partition, assuming that clusters are disjoint. Clustering algorithms have several appli-
cations, such as exploratory data analysis and data mining [9], and there are hundreds of
them in the literature, handling different issues such as cluster shape, density and noise.

Clustering algorithms can be classified as partitional or hierarchical. Partitional meth-
ods assign each data object to exactly one cluster, and the number of clusters, k, is
typically small and set by the user as a parameter. k-means is the most widespread par-
titional algorithm [12]; algorithms which estimate probability density functions from
the data, such as Gaussian mixture decomposition algorithms [4,13,2], can also be used
as partitional clustering techniques. Hierarchical methods yield a set of nested parti-
tions which is graphically shown as a dendrogram [8] and a data partition is obtained
by cutting the dendrogram at an appropriate level. Single-link and average-link are the
most used hierarchical clustering algorithms [9,12].

Most clustering algorithms, e.g. k-means, have a diversity of solutions over the same
dataset due to different initializations or parameters values. Recently, taking advantage
of that diversity, an approach called Clustering Ensemble methods, has been proposed
[5,11,10,3]. These methods propose a consensus partition, given a set of data partitions,
based on a combination strategy. Clustering ensembles can be generated based on the
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choice of data representation or on the choice of clustering algorithms or algorithmic
parameters.

Fred and Jain [6] proposed the Evidence Accumulation method, which is a cluster-
ing ensemble approach based on the combination of information provided by a set of
different partitions of a given dataset. To combine all the different partitions, Fred and
Jain [6] proposed a voting scheme, which leads to a pairwise relationships matrix (sim-
ilarity matrix between pairs of patterns), called co-association matrix. The final data
partition is obtained by applying a clustering algorithm over the co-association matrix.
One main advantage of this voting scheme is that it can deal with partitions having
different number of clusters and different data representations.

Usually, clustering algorithms use the Euclidean distance between two points as a
dissimilarity measure, but many other measures can be used [12]. However, it is difficult
to choose a (dis)similarity measure since one has no prior knowledge about cluster
shapes in the data. Recently, a new high order dissimilarity measure, called dissimilarity
increments, has been proposed [7]. It is a high order dissimilarity measure which can
identify sparse clusters, because it is computed over triplets of nearest neighbor points.
Furthermore, it can give more information about patterns belonging to the same cluster,
since dissimilarity increments change smoothly if the patterns are in the same cluster
and high values of increments correspond to points lying in different clusters.

Moreover, the probability density function for dissimilarity increments was derived
analytically under mild approximations [2]. That distribution was used to create a parti-
tional clustering algorithm [2] and an hierarchical algorithm [1]. However, in both cases
the Euclidean distance was considered to find the triplets of nearest neighbors.

In this paper, we propose to use the co-association matrix, which can be interpreted
as a similarity matrix, to compute the dissimilarity increments; we then use hierarchical
methods based on this measure to extract the consensus partition. We compare this
approach with the Evidence Accumulation method proposed by Fred and Jain [6], and
show that there is some improvement in the final partition. This happens due to the fact
that the dissimilarity increments measure is more robust to sparse clusters.

This paper is organized as follows: Section 2.1 gives a background for the Evidence
Accumulation Clustering and Section 2.2 presents the definition of dissimilarity incre-
ments and its distribution, among the hierarchical clustering algorithms based on this
distribution. Section 2.3 presents the proposed method (EAC-DID) and experimental
results and discussion are in Section 3. Conclusions are drawn in Section 4.

2 Proposed Methodology

We denote as X = {x1, . . . , xn} a set of n objects represented in some feature space.

2.1 Evidence Accumulation Approach

A clustering algorithm takes X as input and groups the n points into k clusters, forming
a partition P . A clustering ensemble, P, is a set of N different partitions of the data X :

P = {P 1, P 2, . . . , PN} (1)
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One can use several different clustering algorithms, or one algorithm with different
initializations or parameters, to obtain multiple partitions of the same data, thus obtain-
ing a clustering ensemble. The evidence accumulation approach [6] takes this ensemble
and produces a co-association matrix by taking the co-occurrences of pairs of patterns
in the same cluster as votes for their association. The idea is that patterns which should
be grouped together are probably going to be assigned to the same cluster in different
data partitions.

Formally, the N data partitions of n patterns yield a n× n co-association matrix:

C(i, j) = nij

N
, (2)

where nij is the number of times the pattern pair (i, j) is assigned to the same cluster
among the N partitions.

The standard Evidence Accumulation Clustering (EAC) paradigm finds a consensus
solution by applying some clustering algorithm over the co-association matrix.

2.2 Clustering Algorithms Based on Dissimilarity Increments

Dissimilarity Increments Distribution. Let xi be a point from X . The dissimilarity
increment (DI) [7] associated with that point is computed as

dinc(xi,xj ,xk) = |d(xi,xj)− d(xj ,xk)| . (3)

where xj is the nearest neighbor of xi and xk is the nearest neighbor of xj , different
from xi.

Here, d(·, ·) is a pairwise (dis)similarity measure or distance. The quantity dinc mea-
sures higher-order information about the data, since it is a measure for a triplet of points,
whereas typical distance measures use only two points.

The DIs distribution (DID) was derived in [2], using the Euclidean distance as the
dissimilarity measure d(·, ·), under the hypothesis of Gaussian distribution of the data.
This distribution was written as a function of the mean value of the DIs, which is de-
noted as λ. The mathematical expression of the DID is given by
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where erfc(·) is the complementary error function, and β = 2−√
2.
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Hierarchical Clustering Algorithms. In [1] an agglomerative hierarchical algorithm
was proposed, called SLDID, which was a variant of single-link (SL) using the DID to
change the way that clusters are merged to form bigger clusters. That algorithm has two
main features: it can adequately identify well separated clusters with arbitrary shapes
and densities, and it offers a deeper insight into the structure of touching clusters. It can
often find a set of clusters such that each class is the union of a few clusters, i.e., SLDID
is able to find classes that are the union of smaller models, each of which is governed
by the DID with some parameter λ.

In this paper, we also consider two other clustering algorithms based on dissimilarity
increments: ALDID and CLDID. They are variants of average-link (AL) and complete-
link (CL) in the same sense that SLDID is a variant of SL. Below, we briefly explain
how SLDID differs from SL; ALDID and CLDID are constructed in a similar way. The
reader is referred to [1] for further details regarding, e.g., the choice of parameters.

All three algorithms are agglomerative ones; this means that we start by having each
data point in a separate cluster, and iteratively make decisions on which pair of clusters
to join. In SL, AL and CL, this procedure continues until all points belong to a single
cluster; in SLDID, ALDID and CLDID, the final situation may have more than one
cluster.

The similarity between two clusters in SLDID is computed exactly in the same way
as in SL and, just like in SL, the most similar pair of clusters is selected. The difference
is that in SL, the most similar pair of clusters at each iteration is always merged; in
SLDID, some tests are made, using the dissimilarity increments distribution, and the
results of these tests determine whether that pair of clusters is merged or not. If that pair
of clusters is not merged, the second most similar pair is then tested, and so on [1].

These tests essentially check whether the DID of the two clusters combined is better
than the DIDs of the two clusters separated. Here, “better” is rigorously defined as a
minimum description length (MDL) criterion which selects between the two possibilities.

2.3 The Method: EAC-DID

Having described clustering ensembles and hierarchical clustering algorithms based on
dissimilarity increments, we now tie the two concepts together. SL uses the minimum
Euclidean distance between points of two clusters to determine the distance between
those clusters. Similarly, AL and CL use the average and maximum Euclidean distances,
respectively. SLDID, ALDID and CLDID also use these distances (recall that the dif-
ference is in whether two clusters are merged or not). In this paper, we propose that this
Euclidean distance is replaced by the dissimilarity as measured by the co-association
matrix, a procedure we called EAC-SLDID, EAC-ALDID and EAC-CLDID.

Note that C(i, j), as defined in (2), is 0 for pairs of points which are never clustered
together and 1 for pairs of points which are always clustered together. It makes sense,
then, to define a distance according to the following expression:

d(xi,xj) = 1− C(i, j). (5)

The overall procedure is schematically described in figure 1.
The clustering ensembles are constructed using a split and merge strategy. We run the

k-means algorithm to produce a total of N = 200 data partitions. For each partition, we
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Fig. 1. Outline of the proposed method (EAC-DID)

start by determining the number of clusters k randomly, by sampling it from a uniform
distribution between kmin = max{√n/2, n/50} and kmax = kmin + 20, where n
is the number of samples of the dataset. A random initial position is chosen for each
centroid, ensuring that even if repeated values of k are encountered, different partitions
can be obtained. Each clustering combination was applied 30 times for each dataset.

3 Experimental Results and Discussion

In the experiments we used 14 datasets: six synthetic datasets and eight real-world
datasets from the UCI Machine Learning Repository1. The synthetic datasets are shown
in figure 2 and the real datasets are in table 1.
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Fig. 2. Synthetic datasets

We used single-link (SL), average-link (AL) and complete-link (CL) to compare with
our dissimilarity increments based clustering algorithms: SLDID, ALDID and CLDID.
In all the algorithms we set the number of clusters to the true number (i.e., we cut the

1 http://archive.ics.uci.edu/ml

http://archive.ics.uci.edu/ml
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Table 1. Real-world datasets with the corresponding number of samples (Ns), number of features
(Nf) and number of clusters (Nc)

Data Ns Nf Nc Data Ns Nf Nc
breast 683 9 2 iris 150 4 3
crabs 200 5 2 optdigits 1000 64 10
house-votes 232 16 2 pima 768 8 2
ionosphere 351 34 2 wine 178 13 3

dendrogram at the true number of clusters). However, since the DID algorithms have
other criteria, most of the times those algorithms stop before they reach that true number
of clusters; when that happens, we use the final situation as the result.

To measure the performance of each algorithm we used two measures: consistency
index and adjusted consistency index. The consistency index (CI) is the percentage of
points that are well clustered compared to true labeling [5]; the adjusted consistency
index, denoted as CI*, is a variant of CI which considers each cluster as the union
of several subclusters [1]. This is consistent with our consideration mentioned above,
regarding the characterization of a class as possibly being composed of more than one
cluster, each of which follows a DI distribution. Tables 2 and 3 shows the results of
these two measures.

Table 2. Consistency index values of the partitions found by the algorithms

Euclidean EAC
Data SL SLDID AL ALDID CL CLDID SL SLDID AL ALDID CL CLDID

bars 0,50 0,91 0,99 0,87 0,99 0,56 0,55 0,52 0,99 0,22 0,54 0,36
circs 1,00 0,99 0,62 0,48 0,71 0,54 1,00 0,67 1,00 0,26 0,59 0,41
d2 1,00 0,92 0,62 0,57 0,62 0,57 1,00 0,81 0,61 0,56 0,39 0,59
mixed image 2 0,47 0,77 0,52 0,68 0,51 0,48 0,82 0,77 0,54 0,44 0,39 0,38
r-2-new 0,59 0,62 0,34 0,43 0,37 0,37 0,76 0,48 0,74 0,28 0,57 0,39
semicircles 1,00 0,87 0,79 0,60 0,82 0,36 1,00 0,41 1,00 0,26 0,60 0,25
breast 0,65 0,45 0,94 0,34 0,85 0,52 0,65 0,54 0,85 0,11 0,58 0,36
crabs 0,51 0,48 0,56 0,35 0,51 0,25 0,51 0,50 0,51 0,35 0,54 0,50
house-votes 0,53 0,54 0,91 0,44 0,91 0,52 0,66 0,58 0,87 0,48 0,55 0,57
ionosphere 0,64 0,64 0,64 0,76 0,69 0,42 0,65 0,57 0,72 0,30 0,65 0,31
iris 0,68 0,67 0,91 0,63 0,84 0,75 0,77 0,53 0,91 0,64 0,74 0,45
optdigits 0,11 0,67 0,76 0,52 0,52 0,49 0,46 0,59 0,80 0,37 0,47 0,38
pima 0,65 0,27 0,65 0,18 0,65 0,18 0,65 0,49 0,52 0,10 0,63 0,34
wine 0,43 0,37 0,61 0,37 0,67 0,39 0,69 0,51 0,71 0,48 0,52 0,47

Average 0,63 0,65 0,70 0,52 0,69 0,46 0,73 0,57 0,77 0,35 0,55 0,41
Std 0,25 0,22 0,19 0,18 0,18 0,14 0,18 0,11 0,18 0,16 0,10 0,09

Table 2 presents results of the six clustering algorithms discussed in this paper in two
scenarios: using the Euclidean distance on the original data space (marked ”Euclidean”
on the table) and using the distance obtained from the co-association matrix (marked
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Table 3. Adjusted consistency index values of the partitions found by the algorithms

Euclidean EAC
Data SL SLDID AL ALDID CL CLDID SL SLDID AL ALDID CL CLDID

bars 0,50 1,00 0,99 0,99 0,99 0,97 0,55 0,92 0,99 0,98 0,54 0,80
circs 1,00 0,99 0,62 0,99 0,71 0,99 1,00 0,83 1,00 0,99 0,59 0,84
d2 1,00 1,00 0,74 1,00 0,73 1,00 1,00 0,88 0,78 0,72 0,61 0,68
mixed image 2 0,48 0,96 0,52 0,97 0,52 0,98 0,82 0,96 0,72 0,95 0,53 0,93
r-2-new 0,65 0,81 0,53 0,85 0,52 0,92 0,83 0,89 0,89 0,95 0,66 0,87
semicircles 1,00 1,00 0,79 0,98 0,82 1,00 1,00 1,00 1,00 0,99 0,60 0,98
breast 0,65 0,67 0,94 0,87 0,85 0,94 0,65 0,90 0,85 0,97 0,66 0,82
crabs 0,51 0,62 0,56 0,59 0,51 0,59 0,51 0,54 0,51 0,57 0,54 0,55
house-votes 0,53 0,54 0,91 0,67 0,91 0,72 0,66 0,61 0,87 0,91 0,55 0,60
ionosphere 0,64 0,64 0,64 0,82 0,69 0,75 0,65 0,91 0,72 0,87 0,68 0,86
iris 0,68 0,67 0,91 0,79 0,84 0,75 0,77 0,53 0,91 0,77 0,75 0,48
optdigits 0,11 0,80 0,78 0,75 0,59 0,78 0,47 0,65 0,81 0,91 0,51 0,72
pima 0,65 0,71 0,65 0,72 0,65 0,71 0,65 0,68 0,65 0,73 0,66 0,69
wine 0,43 0,67 0,65 0,53 0,67 0,57 0,71 0,58 0,71 0,71 0,53 0,58

Average 0,63 0,79 0,73 0,82 0,71 0,83 0,73 0,78 0,81 0,86 0,60 0,74
Std 0,25 0,17 0,16 0,16 0,15 0,15 0,18 0,17 0,14 0,13 0,07 0,15

”EAC”). The table suggests that SL performs better than other algorithms in synthetic
data, but overall AL is the best one in terms of consistency index. This is true whether
one uses the clustering algorithms on the original data or using the EAC framework.
While there are advantages and disadvantages when comparing the Euclidean and the
EAC parts of the table, the best overall algorithm in terms of average CI is EAC-AL.

It seems from this table that DID algorithms performed poorly. This happens because
those algorithms stop merging clusters before the true number of clusters is reached,
which means that they may have found several clusters for each class. In other words,
the DID algorithms did not benefit from knowing the true number of clusters, whereas
SL, AL and CL do. This implies that the comparisons in Table 2 are somewhat bi-
ased in favor of the non-DID algorithms. This is the reason why we chose to use the
adjusted CI.

Table 3 shows that all DID family of clustering algorithms have higher adjusted
consistency index compared to the homologous clustering algorithm, i.e., SLDID com-
pared to SL, and so on. In general, the DID algorithms are better than their non-DID
counterparts; this is true for both the Euclidean and the EAC frameworks. Furthermore,
EAC-ALDID turns out to be the best method, both in terms of average adjusted CI and
in how often it is the best algorithm for a given dataset.

The adjusted consistency index is a fairer way to compare algorithms in this situa-
tion, since the family of DID algorithms often stops merging clusters before the true
number of clusters is attained. However, ideally, some post-processing step should be
used where clusters belonging to a class would be merged together to form a single
cluster, allowing the original consistency index to be used for a fair comparison.
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4 Conclusions

This paper has proposed to join two distinct concepts: the evidence accumulation clus-
tering (EAC) framework and the dissimilarity increments (DI) distribution. Whereas
DIs are normally computed using the Euclidean distance, we propose that the co-
association matrix, which results from EAC, can be plugged-in to replace that distance.

The conjunction of these two concepts results in a new family of clustering algo-
rithms; those algorithms have obtained promising results when compared to classic hi-
erarchical clustering algorithms using an adjusted consistency index which allows fair
comparison between them.
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