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Abstract. In this work, we propose a novel method for robust, scale and
rotation independent text/graphics separation for early maps. We apply
a connected component analysis with density, minimum and maximum
diameter as main features. In addition, we use a combined threshold
region for the density and the ratio of maximum and minimum diameter,
extended by an analysis of neighboring components to recognize text
with large variations in style, size and orientations. Our method reaches
an F1-score of 0.73 which is 0.19 higher than the 0.54 achieved by a
state-of-the-art approach from the literature on the same test data set.

Keywords: multi-oriented text detection, early maps, graphical docu-
ment analysis, connected component analysis.

1 Introduction

Early maps offer a unique insight into the past and are therefore of enormous
scientific value. Researchers, library staff and other potential user groups need
support from technology that goes beyond simple digitizing and makes finding
relevant maps or particular points of interest on these maps easier. Support from
technology can be, for example, computer-aided annotation or fully automated
extraction of knowledge from maps.

Maps contain different layers with different types of information, for example,
transportation, boundaries, hydrography and geographic names. For further au-
tomatic analysis, it is necessary to decompose a map into separate layers, which
need to be processed with different information extraction methods. For textual
information extraction (e.g. geographic names, place names), text recognition
methods can be applied.

In this paper we address the problem of finding text in early maps with large
variations in style, size and orientation. In contrast to text segmentation in
modern maps, the text layer extraction in early maps is of a higher complexity
through aging effects like, for instance, yellowed paper and bleached regions.
In addition, the text does not follow a line structure, it may have arbitrary
orientation or be curved. Moreover, early maps contain symbols for trees and
place markers which fall in the size range of the text. Further in this work we
refer to such symbols as non-textual symbols. Fig. 3(a) shows a typical fragment
of an early map containing these elements.
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This paper is organized as follows: in Section 2, we provide a brief overview of
existing algorithms for text detection and text/graphics separation in different
fields of application and their shortcomings. Further, in Section 3 we explain the
proposed method in detail. Subsequently, we present the results and compare
them to the current state-of-the-art in Section 4. Finally, in Section 5 we draw
conclusions and outline future work.

2 Related Work

A wide range of text detection and text/graphics separation methods have been
proposed for various types of images and applications. Most of them are based
on texture features [4,10,12,16] or connected component features [8,9,11,15,17].
Texture based methods calculate features, for example local intensity changes,
discrete cosine transform (DCT) and wavelet coefficients, for each point and
different resolutions in an image. Special characteristics of text can be observed
in these features, and therefore enable a separation of text. Methods based on
connected components filter non-textual components according to feature-based
heuristics and statistics over all connected components.

Methods for text detection in modern maps [3,5,6,14] use features like color
to separate text from other elements, which is not applicable to early maps since
they only use color in the background. If other elements of modern maps use the
same color as text, they fall back to generic text/graphics separation methods.

Text/graphics separation has been often applied to line drawings or architec-
tural floor plans [2,8,11,15]. These methods assume that the graphics are bigger
than the text components and use a size threshold to separate them. This cannot
be applied to early maps, since they contain non-textual symbols with a similar
size as the text. As a result of the degradation over time, they also contain many
broken fragments and drawing segments with widely varying sizes.

Similar to early maps, smaller text elements can be found in applications like,
for example, natural scenes and photographs [9,17]. However, most of the text
extraction methods usually applied for these types of data rely on a horizontal
or nearly horizontal text orientation. The ICDAR text locating competition [13]
with their well-known test set for this type of text location algorithms also
contains almost entirely horizontal text labels.

Our proposed method is aimed to overcome the limitations of the methods
described earlier in this section in the context of early maps.

3 Overview of Our Text Extraction Method

Most of the Latin fonts have several characteristics in common. To be easily
readable they need to have a certain balance between ink and blank space on
a page. This leads to similarities in the density of single or multiple touching
characters for different fonts. The alignment of the text to the typographic lines
implies that all characters usually fill the space between the baseline and the
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mean line, and do not exceed the descender and ascender line, see for exam-
ple Fig. 2. Thus, all characters have a minimum height of the x-height and a
maximum height of the distance between the ascender and descender line.

The feature selection for the approach presented in this work was motivated
by these observations for Latin fonts. We use a connected component analy-
sis combined with density, minimum diameter and maximum diameter as our
main features for the text/graphics separation. We define density dens(c) for a
connected component c as the ratio between the area of the convex hull and
the number of pixels in c. If dens(c) < 1 holds, we set it to 1. We combine the
minimum diameter �min(c) and maximum diameter �max(c) to the diameter ra-
tio dr(c) = �max(c)/�min(c). Density and diameter ratio are scale and rotation
independent and therefore not sensitive to text direction or image resolution.
Additionally we use the shortest distance between the pixels in two connected
components, written as dist(c1, c2). Due to vastly varying sizes of text and non-
textual symbols, we cannot specify separate thresholds for single features, as
previously used in the text/graphics separation context, to distinguish between
textual and non-textual symbols of similar size. Thus, we use a threshold re-
gion that takes into account both, density and diameter ratio, combined with an
analysis of neighboring components to filter out non-textual components.

The following subsections explain our method step-by-step, with a set of all
8-connected components (CC all) from the binarized image as our starting point.

3.1 Remove Dashed and Dotted Lines

For the x-height estimation we use information from neighboring text compo-
nent candidates. Dotted and dashed lines would interfere with this step and the
line thickness could be mistaken for the x-height, therefore we remove them in
a preprocessing phase. This step is only in case that a map contains more line
segments than text segments. As long as more line than text segments are re-
moved, the method improves the conditions for the x-height estimation and thus
is not very sensitive to the chosen parameters.

Dashes and dots are both convex and their minimum diameter should be
equal to the line thickness. However, this is influenced by printing, aging, and
digitizing. Therefore, a tolerance of 20% for the area difference of the segment
and its convex hull as well as for the line thickness was chosen by visual inspection
and confirmed in the test phase. All tested values in the range between 5% and
70% led in our experiments to exactly the same results for the estimated x-height.

To remove the dashed and dotted lines, the connected components in CC all are
filtered by their density. All components c with dens(c) < 1.2 are added to the set
of potential line components (PLC ). With this filter we only get near-to-convex
objects from which we create a set of similar sized and neighboring pairs. We
consider pairs as similar sized, if 1/1.2 ≤ �min(c1)/�min(c2) ≤ 1.2 holds, and as
neighboring, if they satisfy dist(c1, c2) ≤ 2 ·max(�max(c1),�max(c2)). If we iden-
tify three similar sized and neighboring PLC s, we finally label these components
as dashed/dotted lines CC dash and exclude them from the x-height estimation



Detecting Arbitrarily Oriented Text in Early Maps 427

process, but not from the following steps. Thus, mislabeling of characters in this
step does not mean that they cannot be detected as text subsequently.

3.2 Estimate the x-Height

We use the density and diameter ratio to find the text component candidates for
the x-height estimation. For each connected component we determine if the point
calculated from these two values lies within the thresholding area (see Fig. 1).
To get robust values for these thresholds we analyzed 1214 fonts. We collected
the fonts from “Google web fonts”1 and “Fraktur mon Amour”2, since many of
our maps use Fraktur or Blackletter hand. This collection also contains artistic
fonts, script fonts and fonts for different writing systems than Latin. We only
considered fonts which satisfied the allowed difference for the number of con-
nected components compared to the number of characters in the original strings
and contained all characters appearing in our training. The training strings con-
sisted of thousand randomly selected German place names and were rendered at
different font sizes. The allowed difference was set to a maximum of 20%. For
each component the size ratio and density were calculated. From these values
we built a two-dimensional histogram. In this histogram we selected the area
which is above 0.1% of the maximum histogram value and use it to discriminate
between text and non-text components.

The threshold of 0.1% was selected for the following reasons. The thresholding
area was constructed in the way that for each font at least 70% of the connected
components in our training strings the diameter ratio and density is covered
by the resulting thresholding area. This threshold was selected empirically by
controlling the number of fonts covered to a reasonable extent. With the thresh-
old of 0.1% of the maximum histogram value, we only found 10 fonts from the
training set of 1214 fonts which had a lower coverage than 70% of connected
components by the thresholding area.

After the thresholding area filter was applied to all components from CC all

without CC dash, we have a set CC ta of connected components which consist for
the most part of single text characters or a few connected text characters.

We search for neighboring connected components within CCta. For this pur-
pose, we calculate an interval from the smallest to the biggest x-height value for
which the components at least fill the space between baseline and mean line and
stay between the descender and ascender line, and also have a distance smaller
than the x-height. The maximum values for the ascender armax and descender
drmax are given relative to the x-height to stay independent of the absolute size
of the characters. For our experiments we set armax = drmax = 1.2, which were
the maximum values observed in our font training set. This results in a new set
of neighboring connected components.

We build a histogram from the identified neighboring connected components
for all their x-height intervals and determine the x-height with the maximum
voting’s. This is our estimated x-height hest.

1 http://www.google.com/webfonts
2 http://www.fraktur-mon-amour.de/de/

http://www.google.com/webfonts
http://www.fraktur-mon-amour.de/de/
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Fig. 1. Thresholding area
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Fig. 2. Typographic lines

3.3 Filter Text Components

This step filters CC all to obtain a set of components compatible with the calcu-
lated x-height and the maximum line height lhmax = (1+armax+drmax) ·hest. A
component c is considered compatible if �min(c) ≤ lhmax holds and one of the fol-
lowing conditions is satisfied: either �min(c) ≥ hest or hest ≤ �max(c) ≤ lhmax ·α
must hold. Italic and touching characters may have a maximum diameter that
exceeds lhmax, but still fit into the line. To compensate for this, we use the fac-
tor α which is set to

√
2 in our calculation, because the slant for italic fonts is

usually lower than 45◦. The result set of this step is referred to as FTC .

3.4 Cluster Text Components

In this step we group the connected components to text lines. For all ordered
pairs of components from FTC we test if the distance between them is lower
than hest/2 and can form a line. Two or more components can form a line with an
x-height of hest if they are big enough to fill the space between the baseline and
mean line and are small enough to fit between the descender and ascender line.
We build initial clusters for all pairs of components, which are ordered tuples
that hold these constraints.

From all tuples which have a component c at the first position we keep the
tuples that contain the two neighbors of c with the lowest distance and their
inverse tuples. We further refer to this set of neighboring text components as
NTC . Nevertheless, a connected component can have more than two neighbors
after this step.

We iteratively form lines from the components with the tuples from NTC
as starting point. In each iteration, we extend the ends of the tuples from the
previous iteration with their neighboring components. If they can still form a
line according to the constraints described for a pair, they are added to the set of
result tuples for the iteration step. This way, in each step we obtain lines which
have one additional component. The results of all iteration steps are combined to
a set of possible lines in the image. These lines can overlap or even be completely



Detecting Arbitrarily Oriented Text in Early Maps 429

contained in another line. Since we use the component count of lines in our final
character selection, we further combine lines which have an overlap of at least
three components to new lines without checking our line constraints. This allows
for the detection of slightly bent lines.

3.5 Final Component Selection

Finally we sort the detected lines by their component count. Starting from the
longest line, all components of the selected line are added to the set of final
character components, referred to as CC final. All subsequent lines containing
one of these components are removed. This step is repeated until there are no
more lines left. All components in the resulting set CC final are labeled as text
components by our method.

4 Evaluation

Evaluation of text segmentation results can be done on different levels of abstrac-
tion, for instance, pixels, connected components, regions and recognized text.
Each of these evaluation levels has its own drawbacks. Pixel-based evaluation
cannot be done independently from the used binarization method. Furthermore,
the classification of particular pixels as text or non-text is problematic for touch-
ing and overlapping textual and non-textual elements. OCR-based evaluation of
the performance of a text segmentation method is strongly related to the per-
formance of the OCR method, which is influenced among other factors by the
language and used font. For an evaluation based on connected components or
regions, a matching between the ground-truth and the automatically found text
is challenging due to broken, merged and overlapping components.

A comprehensive study regarding the evaluation of text extraction on complex
color images has been done in [7], where handling of merged or broken text com-
ponents is addressed, but text touching non-textual elements is not considered.
The authors introduce the notion of atoms as an identifiable part of the text. For
instance, the symbol “i” consists of two identifiable parts, but several touching
characters build one identifiable part and thus one atom. The evaluation is based
on a matching of the extracted text with the atoms.

We use precision/recall as a measure for the recognition accuracy, which is
usually taken as a quality measure in the literature. However, the description
of the method for character classification is often omitted, see for instance [15]
and may be unnecessary for data, where text does not touch the graphics and
all characters are clearly separated and not broken. In early maps, we have to
deal with broken, merged, touching and overlapping elements.

In order to make the evaluation objective and to ensure comparability of the
method, we classified the elements as follows: all connected components, which
contain also non-text parts or only consist of non-text parts, are annotated as
non-text, even if the non-text part of the connected component is considerably
smaller than the text part. The component does not have to be recognizable as
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(a) Original image (b) Binarized image with ground truth
(black) and non-textual elements (gray)

(c) Result with proposed algorithm (d) Result with Tombre’s algorithm

Fig. 3. An extract of an early map, Circulus Franconicus from Matthias Seutter (1731)4

text itself, thus the point of an “i” or broken parts of characters are annotated
as characters. In this way we omit ambiguous classification of touching and
overlapping text and non-text described earlier in this section. In addition, we
use a single binarized picture for the ground-truth annotation and for the tests.
We compare the performance of our algorithm to a state-of-the-art algorithm
introduced by Tombre et al. [15].

Fig. 3 illustrates the performance of the method proposed in this article com-
pared to the method introduced by Tombre et al. [15] on an early map fragment.
Fig. 3(a) depicts a raw unprocessed data fragment. Fig. 3(b) shows the ground
truth annotation of the fragment. Fig. 3(c) presents the result produced by the

4 Circulus Franconicus : in quo continentur Episcopat(us) Würtzburgens(is), Bam-
bergensis, et Aichstadiensis. Status Equitum Teutonicorum, Ducat(us) Coburgen-
sis, Marchionat(us) Culmbac. Baruth. Et Onoldinus, Principatus Schwarzenberg,
Comitat(us) Henneberg, Wertheim, Holach, Reineck, Pappenheim, Erpach, Hanau,
Castell, Baronatus Sensheim, Territor(ium) Noribergense /accurate delineatus per
Matthaeum Seutter. - Augsburg, (1731) - coloured etching, 55,3 x 47,4 cm - scale
approximately 1:450 000.
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Table 1. Results

Correct Unexpected Missing Precision Recall F1

Initial CC all 6915 13692 0 0.34 1.00 0.50

CC ta 5918 3362 997 0.64 0.86 0.73
Our method FTC 5846 3586 1069 0.62 0.85 0.72

CC final 4880 1541 2035 0.76 0.71 0.73

Tombre et al. 6460 10618 455 0.38 0.93 0.54

proposed method. In Fig. 3(d) the result of Tombre’s method applied to the
same data set is shown. As the reader may see, Fig. 3(d) contains considerably
more non-textual components than Fig. 3(c), only large connected components
like river systems were removed.

We summarize the results of the evaluation in Table 1. Our method outper-
forms the one proposed by Tombre et al. on the given test data set with an
improvement of 0.19 in F1-score. Due to many small non-textual components
and only few big connected components, Tombre’s approach reaches results sim-
ilar to the unprocessed connected components CC all of the binarized image.
Our preprocessing steps, CC ta and FTC , which take place before comparing
neighboring connected components, deliver higher F1 and precision scores than
Tombre’s method. However, in contrast to Tombre’s approach, our method does
not cover detection of isolated text symbols.

5 Conclusions and Future Work

A novel method for scale and rotation independent detection and extraction of
text components from early maps has been presented in this article. The pro-
posed method combines connected component analysis with consistency checks
of neighboring connected components. The evaluation results show that the
presented method improves the percentage of correctly detected text by 19%.
However, the detection for isolated characters requires further elaboration. In
addition, methods for recognition and separation of text touching graphics will
allow to cover and evaluate the recognition more precisely. To achieve better
results in these areas we plan to integrate key point matching as proposed in [1].
Different thresholding areas and their automatic, dynamic selection for different
fonts can be applied to improve recognition of, for example, bold and regular
fonts which differ in their blackness. Multiple thresholding areas would reflect
these differences. Moreover, the detected text components can be used to identify
common place name prefixes and suffixes (for example, “-hausen” and “-dorf” for
Germany) and their spatial relations and match this with a geographic database
to find the area depicted in a map.
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