
Genetic Programming of Prototypes

for Pattern Classification

Hugo Jair Escalante1, Karlo Mendoza2, Mario Graff3,
and Alicia Morales-Reyes1

1 Computational Sciences Department, INAOE,
Luis Enrique Erro 1, Puebla, 72840, Mexico

hugojair@inaoep.mx
2 Graduate Program on Systems Engineering, UANL,

San Nicólas de los Garza, N.L., 66451, Mexico
3 Facultad de Ingenieria Electrica

Universidad Michoacana de San Nicolas de Hidalgo, Mexico

Abstract. This paper introduces a genetic programming approach to
the generation of classification prototypes. Prototype-based classifica-
tion is a pattern recognition methodology in which the training set of a
classification problem is represented by a small subset of instances. The
assignment of labels to test instances is usually done by a 1NN rule.
We propose a new prototype generation method, based on genetic pro-
gramming, in which examples of each class are automatically combined
to generate highly effective classification prototypes. The genetic pro-
gram aims to maximize an estimate of the generalization performance
of a 1NN classifier using the prototypes. We report experimental results
on a benchmark for the evaluation of prototype generation methods.
Experimental results show the validity of our approach: the proposed
method outperforms most of the state of the art techniques when using
both small and large data sets. Better results are obtained for data sets
with numeric attributes only, although the performance of our method
on mixed data is very competitive as well.

1 Introduction

Among the most popular pattern classification methods are those based on sim-
ilarity estimation. This type of methods rely on similarity measures to assign
labels to new objects, a representative classifier of this methodology is KNN.
Similarity-based methods have reported outstanding results on classical pattern
classification tasks, including handwritten digit recognition and text categoriza-
tion. However, despite their acceptable performance, they require computing
similarity estimates with the whole objects when a new instance needs to be
classified, which can be computationally expensive. Besides, this type of methods
require large resources for storage and they can be sensitive to noisy instances.

Prototype-based classifiers aim at alleviating the computational cost by using
only a subset of representative instances for classification instead the whole train-
ing set of objects. In this way, only a small number of similarity estimations have to

J.M. Sanches, L. Micó, and J.S. Cardoso (Eds.): IbPRIA 2013, LNCS 7887, pp. 100–107, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



Genetic Programming of Prototypes for Pattern Classification 101

be computed. Thus, the main goal of prototype-based classifiers is to achieve com-
parable performance to methods that use the whole data set of instances, while
reducing the computational cost of classification. The key issue in prototype-based
classification is that of determining what are the prototypes to be used for clas-
sification. There are two main alternatives for solving this problem: selection and
generation of prototypes. In the former approach, a subset of the whole objects is
selected to form the set of prototypes [8]. The second approach, consists of gener-
ating a subset of representative instances by using information in the data set of
objects [9]. This paper focuses in the latter formulation.

A wide diversity of prototype generation methods have been proposed so far,
Triguero et al. have summarized recently the most representative techniques [9].
Representative methods generate prototypes iteratively, starting from a set of
points in the input space that are updated. Most of these methods start from ran-
domly generated prototypes, while others use a subset of the training instances as
initial prototypes. Initial prototypes are modified in different ways with the goal
of maximizing criteria related to the (training) classification accuracy [1,2,3,7,9].
Whereas acceptable results have been reported with such approaches we think
that prototype generation methods must better exploit the available labeled in-
stances from the training set, as current approaches only either use training in-
stances to evaluate the performance of prototypes or use (some) training instances
to initialize the generation process. Besides, in most prototype generation tech-
niques users must specify the number of prototypes they want to select. This
implies the user must have some knowledge regarding the classification problem
being addressed, limiting the applicability of these methods.

We propose a genetic programming approach to the prototype generation prob-
lem. The proposedmethod combines instances from the original data set to gener-
ate prototypes. The combination strategy is automatically determined via
genetic programming, where the genetic program aims at generating prototypes
that maximize generalization performance (using a hold-out cross-validation esti-
mate) of an 1NN classification rule. The proposed strategy is able to automatically
select the number of prototypes per class, thus no requiring input from the user in
this aspect. We report experimental results obtained with the proposed strategy
in a suite of benchmark pattern classification problems [9]. The considered bench-
mark allows us to compare the performance of our approach to that of the most
representative prototype generation methods. In terms of accuracy and percent-
age of data set reduction, the method outperforms most alternative approaches
when using both small and large data sets. Despite its effectiveness, the intuitive
idea behind our method is very simple and there are many ways in which our ap-
proach can be extended in such a way that better prototypes can be obtained.

2 GP2: Genetic Programming of Classification
Prototypes

The proposed method, called GP2, automatically combines instances from a par-
ticular class to generate classification prototypes for that class. The combination



102 H.J. Escalante et al.

strategy is determined by a genetic program that aims at maximizing an estimate
of the generalization performance of an 1NN classifier. Although the prototypes of
a class are determined only by examples of its class, under the proposed approach
the prototypes for all of the classes associated to the classification problem are
dependent (the fitness function evaluates sets of prototypes). Hence making pro-
totypes suitable for discrimination.

Let T = {(x1, y1) . . . , (xN , yN)} be a training set of labeled instances, with
xi ∈ R

d and yi ∈ C = {1, . . . ,K}, where d is the dimensionality of the problem
and K is the number of classes in the considered problem. Our goal is to build
a set of prototypes P = {(w1, y1) . . . , (wL, yL)}}, such that L << N , where
wi ∈ R

d and there is at least one prototype associated to each class in C.
In order to determine the set of prototypes P , we propose a genetic pro-

gramming formulation where each individual j of the population is itself a set
of prototypes Pj , and where each prototype in Pj is build with combinations of
training examples of a single class. That is, we assume that if the label associated
to wi is yi = r, then wi is obtained by combining instances in T labeled with r.
Each prototype is represented by a tree structure, as depicted in Figure 1, thus
an individual is formed by a set of trees (each tree associated to a single proto-
type). The nodes of the tree can contain either operators (e.g., +,−,max, etc.)
by which instances are combined, or the instances themselves (xi ∈ T ). When a
tree is evaluated it generates a prototype, which is a point in the d−dimensional
space obtained by the combination of other points in R

d. We evolve a popula-
tion of such forest-like individuals using a standard evolutionary computation
approach and select the best individual after a number of generations.

Fig. 1. Representation for prototypes in GP2

The pseudocode of the proposed method is shown in Algorithm 1. A popula-
tion of individuals is randomly generated using a standardRamped-Half-and-Half
strategy [5]. Each individual is generated in such a way that the same number of
initial prototypes is considered for each of the classes, where the initial number
of prototypes is a parameter fixed by the user1. After initialization the evolu-
tionary process starts. We evaluate the fitness of individuals, and apply genetic
operators with certain probabilities until a maximum number of generations are
reached.

1 One should note that the considered operators allow the GP2 approach to automat-
ically determine the number of prototypes that will be considered per each class.



Genetic Programming of Prototypes for Pattern Classification 103

Algorithm 1. Genetic programming algorithm used by GP2.

Require: D : Development and V : validation data sets; g : number of iterations;
P ← Initialize population with s individuals;
i← 0; P ∗ = []; f∗ = −Inf ;
while i ≤ g do

i← i+ 1;
for j = 1→ s do

f(j)← fitness(Pj)
if f(j) ≥ f∗ then

f∗ ← f(j);
P ∗ ← Pj ;

end if
end for
Apply selection operator;
P ← Apply large cross-over operator with probability Pl;
P ← Apply cross-over operator with probability Ps;
P ← Apply Karyokinesis operator with probability Pk;
P ← Apply Mutation operator with probability Pk;

end while
return Individual P ∗, the one with lowest fitness value;

We considered the following operators: {+,−, ∗,÷, cosine, sin, tan,x2,x3,
minT , Abs}. For the evolutionary process we considered traditional genetic op-
erators2 and also we propose a new operator specifically designed for prototype
generation called mitosis. The considered genetic operators are the following (re-
call an individual is composed by a set of trees, one per prototype, and that each
tree is associated to a single class):

– Large crossover [1]. Two individuals of the current generation are selected via
tournament. From both selected individuals we randomly select one of the proto-
types composing the individuals. Next, all of the prototypes at the right of the se-
lected prototype in the first individual are moved to the left side (from the selected
prototype) of the second individual, and viceversa. Trees within and individual are
sorted in lexicographical order.

– Crossover. Two individuals are selected with tournament and a class is randomly
selected. A subset of trees (i.e., prototypes) associated with the selected class are
interchanged between the selected individuals.

– Mutation. We implement the point-mutation, where an individual is randomly
selected, and then a node of the selected individual is also randomly selected. The
value of the selected node is modified (if the node has an operator it is replaced by
another operator, if the node is associated to an instance, the instance is replaced
by another instance).

– Mitosis. We proposed this operator to correct prototypes that are very close to
instances from multiple classes. The underlying idea is to split a prototype into
two other prototypes associated to two different classes, when the initial prototype

2 We preliminary evaluated several genetic operators and combinations of them, here
we report the combination with which we obtained the best results.



104 H.J. Escalante et al.

is making too many mistakes. We select an individual with a tournament process.
Next we estimate the false-positives rate per each prototype in the selected indi-
vidual, the prototype with the highest error rate is selected to apply the mitosis
operator. Next, we identify the training instances that are associated to the se-
lected prototype (according to the 1NN rule) for each of the classes. The instances
labeled with the two classes with more hits by the prototype are used to generate
two new prototypes. The new prototypes are generated by adding the centroid of
instances of each class plus the difference vector between the centroids, see [6].

We use as fitness function to the accuracy obtained by a 1NN classifier using the
set of prototypes (i.e., trees) associated to an individual. Clearly, if we attempt
to maximize accuracy in the training set we would end up with an overfitted set
of prototypes in a certain number of iterations. Instead, we split the available
data into development and validation subsets. The development subset will be
used to find generate prototypes and the validation data set will be used to
estimate the performance of prototypes. Since data may be limited we would like
to use all of the available training data to generate the prototypes. Therefore,
we propose to run the genetic programming approach several times in order
to generate multiple sets of prototypes. Each run we use a different partition
of development and validation data, which makes the prototypes effective for
classifying different partitions of the training set. The proposed approach for the
generation of prototypes is described in Algorithm 2. All of the parameters of
the proposed approach were fixed empirically using a hold-out approach, see [6].

Algorithm 2. Overview of the (GP2) algorithm.

Require: Training data set T = {(x1, y1) . . . , (xN , yN)};
Set S = {};
for i = 1→ k do

Split training data (T ) into development (D) and validation (V ) sets;
{where T = D ∪ V , D ∩ V = ∅;}
U ← GPGP (D,V );
S = S ∪ U

end for
return S

3 Experiments and Results

We report experimental results obtained by the GP2 method using a suite of
benchmark data sets for the evaluation of prototype generation techniques. In [9],
Triguero et al. proposed a taxonomy of the most representative methods for
prototype generation proposed so far and presented a comparative study of these
techniques, a total of 24 prototype generation methods were considered. For
the comparative study, Trigero et al. used a 59 data sets associated to different
classification problems. The number of classes was between 2 and 28, the number
of instances between 101 and 12, 960, and the number of features ranged between



Genetic Programming of Prototypes for Pattern Classification 105

5 and 180. The considered data sets were split into small (40 data sets, data sets
with less than 2000 instances) and large data sets (19 data sets). The data sets
comprised both numeric-valued and nominal attributes. The benchmark allows
us to evaluate the performance of our method under different settings and to
compare its performance to state of the art approaches for prototype generation.

For our experiments we used all of the data sets as provided by Triguero et al.
as well as the evaluation methodology they proposed. Specifically, we performed
10-fold cross validation (using exactly the same partitions used in [9]). In each
experiment we ran Algorithm 2 using the training partition (9−folds) and the
selected prototypes were evaluated in the test partition, we repeated this process
10 times, changing the test partition. We report the average accuracy (obtained
in the test partitions) per data set and the percentage of data reduction in the
training set.

Table 1 presents a summary of the obtained results in terms of test accuracy
and data set reduction. For comparison, we show the average performance of the
best methods in terms of accuracy (GENN3) and data set reduction (PSCSA4),
as reported in [9], as well as the performance of 1NN. We can see from this
table that GP2 offers the best tradeoff between accuracy and data set reduction.
GENN obtained the best performance over all, although it was the worse in
terms of data set reduction. On the other hand, PSCSA achieved the highest
data set reduction rates, but its performance was the worst among the considered
methods. Our approach on the other hand, obtained acceptable performance in
terms of both accuracy and data set reduction. In terms of accuracy, our method
obtained better results in the large data sets, see Figure 2. This is a positive
result, since for the prototype generation methods target large data sets mainly,
because we want to make more efficient the classification process.

Figure 3 shows a plot comparing the accuracy and reduction effectiveness of
our method and that obtained with the 24 methods considered in the study of
Triguero et al. [9]. We can clearly see that our method achieved the best tradeoff
in large data sets and still obtained decent performance in small data sets.

Table 1. Average performance and percentage of reduction obtained by GP2 for all
of the data sets, also we show the performance obtained in small and large sets. For
reference we show the performance obtained by GENN [4], PSCSA [2] and 1NN.

Test accuracy Training set reduction

Measure All Small Large All Small Large

GP2 75.07%±5.02 72.13%±6.73 81.23%±1.41 83.29% 76.69% 97.17%

GENN 78.48%±18.57 75.64%±15.45 81.33%±21.70 17.19% 18.62% 15.76%

PSCSA 66.94%±20.39 66.82%±18.74 67.07%±22.05 99.23% 98.58% 99.88%

1NN 77.04%±19.44 73.48%±16.64 80.60%±22.24 0% 0% 0%

3 GENN is an editing method that analyzes the label associated to neighboring in-
stances in order to eliminate or edit the label of instances [4].

4 PSCSA implements an artificial-immune-system heuristic which starts selecting a
single instance per class as prototype[2].



106 H.J. Escalante et al.

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Data sets

P
er

fo
rm

an
ce

 

 

A
ba

lo
ne

B
an

an
a

C
he

ss

C
oi

l2
00

0

M
ag

ic

M
ar

ke
tin

g

N
ur

se
ry

P
ag

e−
bl

oc
ks

P
en

ba
se

d

P
ho

ne
m

e

R
in

g

S
at

im
ag

e

S
eg

m
en

t

S
pa

m
ba

se

S
pl

ic
e

T
ex

tu
re

T
hy

ro
id

T
ita

ni
c

T
w

on
or

m

GP2

1−NN
GENN
PSCSA 

Fig. 2. Accuracy obtained by the proposed method in the large data sets

0.64 0.66 0.68 0.7 0.72 0.74 0.76
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

GENN

Depur

PNNBTS3

MCA

GMCA

ICPL

MixtGaussSGPLVQ3 MSEDSM LVQTCVQ
AVQ

HYB

LVQPRUChen

RSP3

POC

ENPC

PSOAMPSO
PSCSA

1NN

GPPC

Accuracy

R
ed

uc
tio

n

0.6 0.65 0.7 0.75 0.8 0.85
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

GENN

Depur

BTS3
MixtGaussSGP LVQ3

MSE

DSM

LVQTC

VQ

AVQ

HYB

LVQPRU

Chen

RSP3 ENPC

PSO
AMPSO

PSCSA

1−NN

GPPC

Accuracy 

R
ed

uc
tio

n 

Fig. 3. Percentage of training set reduction (y−axis) vs test set accuracy, we report
averages for the 24 methods considered in [9] for the small (left) and large (right) data
sets.

Table 2. Average and standard deviation of accuracy obtained by the GP2 when using
different attirbutes

Measure All Small Large

Nominal 69.73%±5.36 68.53%±4.19 74.02%±1.19
Numerical 78.48%±4.80 79.63%±8.80 83.80%±0.36

Table 2 shows the performance, in terms of accuracy, obtained by GP2 sep-
arating data sets with numeric-only and mixed (numeric+nominal) valued at-
tributes. Again, the best performance of our method was obtained in large data
sets. Better results were obtained in data sets including only numeric attributes.
This is a somewhat expected result as the optimization process of GP2 generates
attributes combining training instances, which makes sense in Euclidean spaces
but not in spaces having nominal attributes.



Genetic Programming of Prototypes for Pattern Classification 107

4 Conclusions

We introduced GP2 a method for the generation of classification prototypes. GP2

uses genetic programming to find a set of prototypes by combining instances
labeled with the same class. The goal of GP2 is to maximize accuracy estimates
obtained with a hold-out strategy. We report experimental results obtained with
our method in benchmark data. Experimental results reveal that the proposed
method offers beeeter tradeoff between accuracy and reduction than 24 other
methods for prototype generation. Better results were obtained in large data sets
with numeric-valued attributes. Although the performance of our method was
also competitive in small data sets with mixed attributes. Future work includes
a complete study on the performance of GP2 under different parameter settings.
Also we would like to devise strategies to make the GP2 approach more efficient.

Acknowledgements. This work was supported by PROMEP under grant
103.5/07/2523 and by PAICYT-UANL program grant number 172-2010. Karlo
M. Mendoza was supported by CONACyT.

References

1. Cordella, L.P., De Stefano, C., Fontanella, F., Marcelli, A.: Looking for prototypes
by genetic programming. In: Zheng, N., Jiang, X., Lan, X. (eds.) IWICPAS 2006.
LNCS, vol. 4153, pp. 152–159. Springer, Heidelberg (2006)

2. Garain, U.: Prototype reduction using an artificial immune system. Pattern Analysis
and Applications 11(3-4), 353–363 (2008)

3. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning.
Springer Series in Statistics. Springer New York Inc., New York (2001)

4. Koplowitz, J., Brown, T.: On the relation of performance to editing in nearest
neighbor rules. Pattern Recognition 13(3), 251–255 (1981)

5. Langdon, W.B., Poli, R.: Foundations of Genetic Programming. Springer (2001)
6. Mendoza, K.M.: Programación genética para la generación automática de prototi-

pos. Master’s thesis, UANL, San Nicolas de los Garza, N. L., Mexico (2012)
7. Nanni, L., Lumini, A.: Particle swarm optimization for prototype reduction. Neu-

rocomputing 72(4-6), 1092–1097 (2008)
8. Olvera, A., Carrasco-Ochoa, J.A., Martinez-Trinidad, J.F., Kittler, J.: A review of

instance selection methods. Artificial Intelligence Reviews 34, 133–143 (2010)
9. Triguero, I., Derrac, J., Garćıa, S., Herrera, F.: A taxonomy and experimental study

on prototype generation for nearest neighbor classification. IEEE Transactions on
Systems, Man, and Cybernetics–Part C 42(1), 86–100 (2012)


	Genetic Programming of Prototypesfor Pattern Classification
	1 Introduction
	2 GP2: Genetic Programming of Classification Prototypes
	3 Experiments and Results
	4 Conclusions
	References




