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Abstract. Indoor navigation of an unmanned aerial vehicle is the topic
of this article. A dual feedforward/feedback architecture has been used
as the UAV s controller and the K-NN classifier using the gray level im-
age histogram as discriminant variables has been applied for landmarks
recognition. After a brief description of the aerial vehicle we identify the
two main components of its autonomous navigation, namely, the land-
mark recognition and the controller. Afterwards, the paper describes
the experimental setup and discusses the experimental results centered
mainly on the basic UAV “s behavior of landmark approximation which
in topological navigation is known as the beaconing or homing problem.

Keywords: Unmanned Aerial Vehicles, Vision-based dual anticipatory
reactive controllers, Nearest Neighbors Methods.

1 Introduction

For the autonomous navigation of the UAV we have used a visual topological
map in which the landmarks or relevant places are modeled as the vertices of a
labeled graph and the edges correspond to specific UAV “s maneuvers.

As the landmarks are visual references, a fundamental problem in visual topo-
logical navigation is landmark recognition, so that we devote a complete section
of the paper to this topic (see paragraph 2 below ” Automatic Recognition of
Visual Landmarks”).

For the UAV “s controller we have applied a vision-based dual feedforward
/ feedback control architecture. In the sequel we describe both components
of the UAV “s navigation: first, landmark recognition and afterwards, the dual
controller.

The paper ends with the experimental work in our laboratory and the final
conclusions.
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1.1 Unmanned Aerial Vehicles (UAV)

An UAV can be regarded as a autonomous robot and it has the capacity to fly
within an environment, in this paper through indoor environment. We are using
the quadrotor Parrot AR.Drone 2.0 [§] as robotics research platform, available
to the general public.

All commands and images are exchanged with controller via a WiFi ad-hoc
connection. The AR.Drone has a vision sensor implemented as a HD camera,
and has four motors to fly through the environment.

Fig. 1. Parrot AR.Drone 2.0

This UAV support four types of movement along its axes (roll, pitch, gaz, yaw)
allowing you to move on the three coordinates of the space 3D (x, y, z): sideways,
forward /back, vertical speed and rotation about its vertical axis.

The AR.Drone can be used for visual autonomous navigation in environ-
ments using machine learning approaches, and it’s used in many applications as
surveillance tasks, rescue tasks, and can perform human-machine interactions.

2 Automatic Recognition of Visual Landmarks

The UAV “s navigation system utilizes the onboard camera to capture the envi-
ronment images. These images are classified and used by the controller in order to
generate the control command s in real time. More specifically, as the navigation
system is based on a topological map it is vital to have an efficient classification
of the landmarks images to guarantee a correct guidance of the UAV.

For landmark recognition we have used the gray levels standard histogram
as the discriminant variables and the k-NN algorithm as the classifier. As it is
well-known, the k-NN algorithm is an efficient memory-based classifier based on
a stored data base of labeled exemplars and any new case to be recognized is
assigned the most frequent class among the k nearest neighbors in the training
data base.
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Fig. 2. Dataset of several visual landmarks

To evaluate the performance in landmark recognition we have generated a
training data set formed by four different landmarks [7] displayed in Fig. 2.
Notice that in the data set are actually stored the gray level histograms of the
corresponding landmark images.

In our experiments we have considered four landmarks: a picture, a TV set, a
sculpture and a door. For the classifier evaluation we have applied the leaving-
one-out crossvalidation technique.

During the experimental validation of the k-NN algorithm we have tried sev-
eral values of the design parameter: k = 1, 2 and 3. For all cases we have obtained
excellent results with a classification error close to 0%. Fig. 3 displays a typical
confusion matrix.

predicted class 1| predicted class 2| predicted class 3| predicted class 4
actual class =1 10 0 0 0
actual class =2 0 10 0 0
actual class =3 0 0 10 0
actual class =4 0 0 0 10

Fig. 3. Confusion matrix

Apart from the efficiency of the k-NN algorithm itself we believe that the ex-
cellent recognition results obtained are mainly due to the discriminant variables
provided by the graylevel histogram of the landmarks images.
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3 The Feedforward/Feedback Controller

Fig. 4 displays the block-diagram of the dual feedforward / feedback controller
[4][6]. Notice that both the feedforward or anticipatory controller and the feed-
back or reactive controller [2][3] receive as input the same image error, which is
the difference between the target or desired image (i.e. the image correspond-
ing to the current identified landmark) and the current image captured by the
UAV s on board camera.
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Fig. 4. The feedforward/feedback controller: Notice that the error signal of both con-
trollers is obtained as the difference between the histogram of the recognized landmark
or histogram of the goal image H[Ig] and the histogram of the current image H[I(k)]

More specifically, this vision-based error signal is obtained as the histogram
of the identified landmark or histogram of the goal image H[Ig] minus the his-
togram of the current UAV’s captured image H[I(k)] during the k iteration
of the controller. The feedback controller is implemented as a conventional PD
control [5] and the feedforward controller is based on a inverse model [I] using
a conventional neural network based algorithm.

4 Experimental Work: UAV “s Navigation through Doors

To test experimentally the proposed vision-based dual controller we have chosen
the basic UAV “s navigation skill of “door approaching and crossing”. The basic
idea to test this UAV “s navigation skill is to get the UAV to fly towards a door as
a target landmark in its visual topological map. Once the UAV is approaching
its target landmark and after its correct recognition it can activate its dual
vision-based controller in order to safely transverse the door by monitoring and
controlling the visual error.

Fig. 5 display a sequence of the images captured by the onboard UAV ‘s
camera while performing a door navigation maneuver. We have also displayed
in Fig. 6 the visual error signal that converges to zero as expected during this
door navigation maneuver.
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Fig. 5. Notice that the sequence (a)-(e) includes the successive images captured by the
UAV while performing the maneuver: (a) is the initial state and (e) is the goal image
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Fig. 6. The visual error signal during the door-landmark approximation and crossing
maneuver
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Notice also the control curves in Fig. 7 giving an idea of the UAV “s control
efforts applied during this maneuver. In both cases, k denotes the number of
iterations of the controller during the maneuver (sequence (a)-(e)): (a) and (b)
have been caught between k=1 and k=9, (c¢) and (d) between k=10 and k=39,
and finally (e) corresponds from k=40 to the end of the maneuver. At each
iteration, the controller sends a control signal to the UAV; the time between two
consecutive control signals is 30 ms.

During this approaching experiment, the UAV has used the pitch actuator
(forward / back) and yaw actuator (rotation on its axis z), which were obtained
by the controller based on the error signals received by the classifier k-NN.
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Fig. 7. The control signals during the door approximation and crossing maneuver

From the experimental results obtained in our laboratory and shown in Fig-
ures 6 and 7 we can conclude that the UAV is able to successfully perform in
real time the fundamental skill of landmark door approximation and crossing by
mean of the propossed vision-based dual feedforward/feedback controller.

5 Conclusions and Future Work

This paper has presented a vision-based dual anticipatory /reactive controller for
indoor navigation of an UAV that uses a visual topological map to autonomously
navigate in the environment. We have also described the basic problem of visual
landmark recognition for which we have implemented a k-NN classifier using the
standard graylevel histogram values as discriminant variables, giving excellent
recognition accuracy. The proposed navigation system has been experimentally
tested on the basic skill of door-landmark approximation and crossing maneuver.
Future work is planned towards the UAV “s autonomous navigation in a whole
building by means of a visual topological map of a complete building.
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