
Experimental Platform for Accelerate the

Training of ANNs with Genetic Algorithm
and Embedded System on FPGA

Jorge Fe, R.J. Aliaga, and R. Gadea

Universidad Politécnica de Valencia, Spain
jorfe@posgrado.upv.es

http:www.upv.es

Abstract. When implementing an artificial neural networks (ANNs)
will need to know the topology and initial weights of each synaptic con-
nection. The calculation of both variables is much more expensive com-
putationally. This paper presents a scalable experimental platform to
accelerate the training of ANN, using genetic algorithms and embedded
systems with hardware accelerators implemented in FPGA (Field Pro-
grammable Gate Array). Getting a 3x-4x acceleration compared with
Intel Xeon Quad-Core 2.83 Ghz and 6x-7x compared to AMD Optetron
Quad-Core 2354 2.2Ghz.

1 Introduction

The structure most known and used in artificial neural networks ANN[1] is
the multilayer perceptron (MLP) and backPropagation algorithm (BP) is used
for training, then, one of the problems when implementing an ANN training
with MP structure and BP as training algorithm is to determine the optimal
topology. For the determination of the optimal topology requires a long time
of experimentation. In [2] different methods are detailed topology optencion as,
trial and error, empirical or statistical methods, hybrid methods, constructive
and or pruning algorithms y evolutionary strategie. Another problem that has
a high computational cost is the optimal determination of the initial weights of
ANN training, in [3] shown that a proper selection of the initial weights reduces
training times.

Available literature known developments in ANN applied to specific problems
in FPGA devices as [4] where it develops a coprocessor for convolutional neural
networks, made a comparison of CPU acceleration. Of [5]provides a training plat-
form for reconfigurable topology. The drawback to this application is that it has
to synthesize each time you change the topology and then implement it in FPGA.
Another application implements a fixed-topology ANN and Backpropagation al-
gorithm for training [6]. In [7] where proposed BP algorithm implementation
in FPGA, this is reconfigurable by software. In [8] have implemented in FPGA
accelerator for online training.

J.M. Ferrández Vicente et al. (Eds.): IWINAC 2013, Part II, LNCS 7931, pp. 413–420, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http:www.upv.es

414 J. Fe, R.J. Aliaga, and R. Gadea

According to the previous review proposes a systematic search of hidden neu-
rons number and value of initial weights in ANN. The search for both variables,
initial weights and number of neurons, is done with genetic algorithms (GA)
[9]. The platform consists of eight embedded systems (IS) development boards
implemented. The board has a Cyclone IV EP4CE115F29CN FPGA Altera [10].
Each of the ES using the coprocessor [11] called Neural Network Processor (NNP)
having a training system in FPGA based algorithm Resilient Backpropagation
(RBP). ES each communicates with a host PC via Ethernet, this PC with Matlab
[12], Global Optimization Toolbox and Parallel Computing Toolbox, manages
training with GA and parallel tasks executed in each of the ES. Getting a 6x-7x
acceleration compared with Quad-Core AMD Optetron 2354 and 3x-4x Porce-
sador Intel Xeon Quad-Core E5540. The paper is organized as follows: Section
2, describes the platform. Section 3, the implemented software. Section 4, de-
tails the embedded system. Section 5, presents experimental results. Section 6,
conclusions

2 Platform Training

The experimental platform is presented in Figure 1, composed of a host PC
multi-core, and eight ES, connected to the network via Ethernet. Use this mode
of communication as it allows the scalability, and transfer data effectively, and
allows to quickly add ES. As the number of variables for the determination of the

Fig. 1. ANN Platform training

topology or the initial weights vary, when used GA to the systematic search for
both variables, generate an initial population of individuals n, the calculation
of each individual is performed in each ES, allowing the calculation of eight
individuals simultaneously.

Experimental Platform for Accelerate the Training of ANNs 415

3 Software

This section presents the execution flow of the software to achieve optimal topol-
ogy and determination of the initial weights of an ANN. The software responsible
for managing the training tasks are Matlab with Parallel Computing Toolbox
(PCT), this allows you to manage the tasks running on each processor core and
the execution of the tasks of higher computational cost run on SE. Besides using
Global Optimization (GO), this provides different methods for finding solutions
to different problems, one of them is with genetic algorithms are algorithms that
are based on natural selection and the laws of genetics.

3.1 GA Tasks

In GA the Most Important parameters to configure are the number of individ-
uals, generation number and the fitness function. These parameters determine
the execution time of the GA in this aplication. The computation time depends
of the individuals quantity to be computed in parallel, this parameter is con-
figurable in the algorithm implemented by combining the PCT with GO, can
be run from 1 to 8 individuals in parallel. Figure 2 shows a flowchart of the
algorithm. Here is a brief description of each:

– Initialize the number of cores used in the host PC for ANN training.
– Transmission set of training vectors to SDRAM memory in ES.
– Configure the genetic algorithm (number of generations, numbers of individ-

uals, use PCT, etc).
– Called the fitness function.
– The fitness function determines if there is a free core, then, generates an

identifier and this identifier is assigned an IP address.
– The fitness function communicates with each of the SE through the IP ad-

dress.
– So on until the end of the number of individuals and generations set in the

GA is completed.
– The stopping method is by the number of generations.

Fig. 2. Software flow diagram

416 J. Fe, R.J. Aliaga, and R. Gadea

4 Embedded System

Using Terasic development board DE2-115 to implement the embedded system,
the ES is mainly composed of a real-time operating system RTOS MicroC/OS-
II, processor NIOS II/f and NNP coprocessor, The NNP is a soft-core Single
Instruction, Multiple Data Path (SIMD) in Figure 3 shows the hardware imple-
mented.

Fig. 3. Embedded System

4.1 Description

The Nios embedded processor is the master and controls the other system com-
ponents, running from the program memory from External 2MB SSRAM to
FPGA. The training vectors are stored in the external SDRAM. The remaining
components are internal to the FPGA, besides the coprocessor are two DMAs
that control the training vector transfer and instruction to the coprocessor, a
memory of 16 KB which stores coprocessor instructions, and a memory of 4 KB
(double the size of the memories of weight or gradients) for the variables needed
for the algorithm RBP, these correspond to local increases and gradients of pre-
vious epoch. Figure 4 shows the connection diagram and internal architecture of
the NNP. The processor NIOS II / f receives instructions through the Ethernet
connection to the generation of a training. These instructions to configure the
topology, if the generation of the initial weights is undertaken by the NIOS II,
or should start with weights sent to memory via the Ethernet connection, the
number of epoch, next, with all data received NIOS is responsible for generating
the instructions for each new topology received, then, known [11] that the co-
processor is capable of processing a certain number n of parallel training vectors

Experimental Platform for Accelerate the Training of ANNs 417

Fig. 4. Neural Network Coprocessor

and the gradients generated automatically accumulate, ultimately appearing in
the memory of gradients at the end of the epoch. The reading and processing of
each group of n vectors are getting by means of a set of instructions NNP.

5 Experimental Results

To show the validity of the platform as an accelerator expermiental to determine
the initial weights of an ANN, has set a topology 6/5/3/1 with a sample set of
243,000 training vectors. Executed tests from one (ES) to eight (ES), also for
each test also varied the number of epoch from 5 to 160 epoch. The result are
show from figure 5 to figure 8.

0 1 2 3 4 5 6 7 8
0

2000

4000

6000

8000

10000

12000

Nº ES

T
im

e
(s

eg
.)

ES & AMD Optetron

Epoch
5
10
20
40
80
160

Fig. 5. Training, used from 1 ES to 8 ES, from 5 epoch to 160 epoch

418 J. Fe, R.J. Aliaga, and R. Gadea

0 1 2 3 4 5 6 7 8
0

2000

4000

6000

8000

10000

12000

Nº ES

T
im

e
(s

eg
.)

ES & AMD Optetron

Epoch
5
10
20
40
80
160

Fig. 6. Training, used from 1 ES to 8 ES, from 5 epoch to 160 epoch

0 1 2 3 4 5 6 7 8
0

0.5

1

1.5

2

2.5

3
x 10

4

Nº ES

T
im

e
(s

eg
.)

ES vs Intel Xeon 160 Epoch

ES
Intel Xeon

Fig. 7. ES vs CPU to 160 Epoch

Experimental Platform for Accelerate the Training of ANNs 419

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

x 10
4

Nº ES

T
im

e
(s

eg
.)

ES vs AMD Optetron 160 Epoch

ES
Intel Xeon

Fig. 8. ES vs CPU to 160 Epoch

6 Conclusions and Future Implementations

A scalable and reconfigurable platform for neural network training was proposed
in this paper. It is scalable because it gives the possibility to connect different
amounts of hardware accelerators (ES) and software reconfigurable topology.
The method has been demostrated using the coprocessor for the computing task
that have a high computational cost on ANN. achieving an acceleration of 3x-
4x compared to Intel Xeon Quad-Core 2.83 Ghz and 6x-7x compared to AMD
Optetron Quad-Core 2354 2.2Ghz.

In future applications will be implemented partial and dynamic reconfigu-
ration. That is, several systems have loaded in Flash memory and to perform
hardware reconfiguration. This will allow you to add multiple training algorithms
and have more versatility on the platform. Also using the Distributed Comput-
ing Server Toolbox will not have the limitation of a PC, this Toolbox lets be
scalable to several PC Host.

References

1. Haykin, S.: Neural Networks and Learning Machines, 3rd edn. Prentice Hall
(November 2008)

2. Curteanu, S., Cartwright, H.: Neural networks applied in chemistry. i. determina-
tion of the optimal topology of multilayer perceptron neural networks. Journal of
Chemometrics 25(10), 527–549 (2011)

3. Nguyen, D., Widrow, B.: Improving the learning speed of 2-layer neural networks
by choosing initial values of the adaptive weights

420 J. Fe, R.J. Aliaga, and R. Gadea

4. Sankaradas, M., Jakkula, V., Cadambi, S., Chakradhar, S., Durdanovic, I., Cosatto,
E., Graf, H.: A massively parallel coprocessor for convolutional neural networks. In:
20th IEEE International Conference on Application-specific Systems, Architectures
and Processors, ASAP 2009, pp. 53–60 (July 2009)

5. Prado, R., Melo, J., Oliveira, J., Neto, A.: Fpga based implementation of a fuzzy
neural network modular architecture for embedded systems. In: The 2012 Interna-
tional Joint Conference on Neural Networks, IJCNN, pp. 1–7 (June 2012)

6. Çavuşlu, M., Karakuzu, C., Şahin, S., Yakut, M.: Neural network training based on
fpga with floating point number format and it’s performance. Neural Computing
and Applications 20, 195–202 (2011)

7. Wu, G.D., Zhu, Z.W., Lin, B.W.: Reconfigurable back propagation based neural
network architecture. In: 2011 13th International Symposium on Integrated Cir-
cuits, ISIC, pp. 67–70 (December 2011)

8. Pinjare, S.L., Arun Kumar, M.: Article: Implementation of neural network back
propagation training algorithm on fpga. International Journal of Computer Appli-
cations 52(6), 1–7 (2012)

9. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learn-
ing, 1st edn. Addison-Wesley Longman Publishing Co., Inc., Boston (1989)

10. http://www.altera.com

11. Aliaga, R., Gadea, R., Colom, R., Cerda, J., Ferrando, N., Herrero, V.: A mixed
hardware-software approach to flexible artificial neural network training on fpga.
In: International Symposium on Systems, Architectures, Modeling, and Simulation,
SAMOS 2009, pp. 1–8 (July 2009)

12. http://www.matlab.com

http://www.altera.com
http://www.matlab.com

	Experimental Platform for Accelerate the Training of ANNs with Genetic Algorithma nd Embedded System on FPGA
	1 Introduction
	2 Platform Training
	3 Software
	3.1 GA Tasks

	4 Embedded System
	4.1 Description

	5 Experimental Results
	6 Conclusions and Future Implementations
	References

