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Abstract. Recently, there have been many efforts to develop Brain Computer
Interface (BCI) systems, allowing to identify and discriminate brain activity. In
this work, a Motor Imagery (MI) discrimination framework is proposed, which
employs Common Spatial Patterns (CSP) as preprocessing stage, and a feature
relevance analysis approach based on an eigendecomposition method to identify
the main features that allow to discriminate the studied EEG signals. The CSP
is employed to reveal the dynamics of interest from EEG signals, and then we
select a set of features representing the best as possible the studied process. EEG
signals modeling is done by feature estimation of three frequency-based and one
time-based. Besides, a relevance analysis over the EEG channels is performed,
which gives to the user an idea about the channels that mainly contribute for the
MI discrimination. Our approach is tested over a well known MI dataset. Attained
results (95.21± 4.21 [%] mean accuracy) show that presented framework can be
used as a tool to support the discrimination of MI brain activity.

Keywords: Motor Imagery, Common Spatial Patterns, Feature Relevance
Analysis.

1 Introduction

The electroencephalography (EEG) is the most commonly employed method for mon-
itoring brain activity and it has been used for several applications, such as: epilepsy
detection, analysis of cognitive behaviors, game controlling, among others. Brain Com-
puter Interfaces (BCI) take advantage of the extracted information from EEG signals
to establish a direct communication channel between the human brain and the ma-
chine [1]. BCI is used to help people with disability by means of the analysis of the
human sensorimotor functions, which are based on the paradigm in cognitive neuro-
science named as Motor Imagery (MI). However, the analysis of the EEG signals re-
quires to develop suitable preprocessing, feature representation, feature selection, and
classification methodologies to improve the performance of real-world BCI applica-
tions. Regarding to the preprocessing stage, Common Spatial Pattern (CSP) is a popu-
lar algorithm for MI-based BCI systems [1]. CSP method constructs spatial filters that
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maximize the variance of one kind of task and simultaneously minimize the variance
of another. In order to achieve high classification accuracy, a pre-filtered broad band or
subject-specific frequency bands are fixed to highlight the dynamics of interest. To find
such optimal bands, several algorithms have been proposed, such as: Common Spatio-
Spectral Pattern, Sub-band CSP and Filter Bank Common Spatial [1, 2]. In [1] the CSP
preprocessing stage is matched with an Empirical Mode Decomposition (EMD) based
method to select informative frequency bands from EEG. However, a direct and an au-
tomatic framework that allows to find such bands of interest is still an open issue.

Now, with respect to feature representation methodologies for BCI systems, the at-
tributes are estimated by different methods such as Adaptive Autoregressive (AAR)
coefficients, Hjorth parameters, Power Spectral Density (PSD), and continuous and
discrete wavelet transforms (CWT and DWT) [3]. Although, many features may be
extracted from different methods, several features may not contain relevant informa-
tion introducing redundancy. Therefore, it is necessary to find a subset of attributes that
preserving, as well as possible, the input data variability, allows to identify the most
important information that helps to recognize different classes from EEG data. Several
approaches have been used to identify the relevance of the computed features in BCI
systems [3, 4]. Nevertheless, most of these feature selection methods are computation-
ally expensive and they are not able to find directly a measure that relates each feature
with its discriminative contribution.

In this work, an MI discrimination framework is proposed, which employs CSP as
preprocessing stage, and a feature relevance analysis approach based on an eigendecom-
position method to identify discriminative features. The CSP is matched with EMD to
reveal the dynamics of interest. Then, we select a set of features representing the best
as possible the studied process. For such purpose, a variability analysis is presented
to identify relevant features. EEG signals modeling is done by feature estimation of
three frequency-based and one time-based. Moreover, a relevance analysis over the
EEG channels is performed, which gives to the user an idea about the channels that
mainly contribute for the MI discrimination.

2 Materials and Methods

2.1 Preprocessing

Let Yr ∈ R
C×TY represents the raw EEG signal of the r-th single trial; being r =

1, . . . , n; C the number of channels, and TY the length of the samples. The CSP method
is employed to analyze multi-channel EEG data based on recordings from two classes
[5], producing spatial filters W ∈ R

C×C , which project the original signal to a space
where the differences in variances of two kinds of tasks can be maximized [1]. The
projected signal Zr ∈ R

C×TY is given by Zr = WYr. Given the projected signal
Zr by CSP, an EMD is performed to find out the main components of each Zr. Thus,
EMD decomposes Zr into a residual and intrinsic modes as Y r =

∑N
i=1 ci + εn,

where ci ∈ R
C×TY : i = 1, . . . , N stands for Intrinsic Mode Functions (IMFs) and

εn ∈ R
C×TY indicates a residual. The zero-mean amplitude IMFs are obtained by a

sifting process according to the characterizing conditions of the IMFs. The process can
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be finished when residual becomes a monotonic component or a constant [1]. In this
regard, the main bands Ŷr ∈ R

C×TY of Zr can be highlighted by considering Nc IMFs
as Ŷ r =

∑Nc

i=1 ci.

2.2 Feature Representation

From the preprocessed EEG signal matrix Ŷ r, the Power Spectral Density (PSD), the
Continuous and Discrete Wavelet Transforms (CWT)-(DWT), and the Hjorth param-
eters are computed for each row vector ŷr ∈ R

1×TY as follows. Let p = {pf :
f = 0, . . . , Fs/2} the PSD of input signal ŷr that, in the concrete case, is computed
by means of the nonparametric Welch’s method, being Fs the sample frequency [4].
Particularly, the fast Fourier transform algorithm is employed to estimate the PSD,
by dividing the time-series into M overlapped segments of length L, and applying a
smooth time weighting window w = {wi : i = 1, . . . , L}, obtaining the windowed

segments v(m) = {v(m)
i : i = 1, . . . , L}, with m = 1, . . . ,M . The main goal is

to deal with the non-stationary nature of the EEG, assuming a piece-wise stationarity
into each overlapped segment. So, inspired by singular spectrum analysis-based ap-
proaches for analyzing one-dimensional time-series, the length of the segments is fixed
as L > Fs/Fr, with Fr the minimum frequency to be considered within the analysis [6].
Thus, the modified periodogram vector u = {uf : f = 0, . . . , Fs/2} is calculated by

the Discrete Fourier Transform as uf =
∑M

m=1 |
∑L

i=1 v
(m)
i exp (−j2πif)|2. After-

wards, each element of PSD vector p can be computed as pf = uf/(M LU), with
U = E{|wi|2 : ∀i ∈ L}, where notation E{·} stands for expectation operator. The mo-
tor imagery discrimination analysis is mostly provided for μ (8−13 Hz) and β (13−30
Hz) bands. Therefore, their PSD bands (noted as Sμ and Sβ , respectively) are calculated
from p, for which the PSD magnitude is parameterized based on the first and second
statistical moments.

Now, regarding to CWT, noted that this inner-product-based transformation quanti-
fies the similarity between a given signal (ŷr) and the considered base function (termed
mothers wavelets). Therefore, the wavelet transform of a EEG signal, at time t and fre-
quency f , is provided by their convolution with the scaled and shifted wavelet [4]. The
short-time instantaneous amplitude of the CWT of EEG data is accomplished, where
two Morlet wavelets centered at the bands of interest (10 Hz and 22 Hz) to highlight
the μ and β bands, respectively. After that, the first and second statistical moments, as
well as the maximum value of the coefficients magnitude are estimated; those values
are considered as the CWT based features. With respect to DWT, this transformation is
assumed to provide a multi-resolution decomposition and non-redundant representation
of the input signal ŷr. DWT has a wide application in biomedical signal processing, es-
pecially, for non-stationary signals such as EEG [7]. A seventh order Symlet mother
wavelet is used, for which the detail coefficients of the third and fourth level are ob-
tained (DWT4 and DWT3) to compute the required frequency bands α and β. Namely,
the estimated frequency bands for each wavelet level are 62.5−125Hz; 31.3−62.5Hz;
15.7−31.3Hz (including the β rhythm); and 7.9−15.7Hz; 0.5−7.9 Hz (including the
α rhythm) [4]. From the detail coefficient sets, DWT4 and DWT3, the first and second
statistical moments, and the maximum value are estimated.
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Lastly, a time-domain based characterization is also employed to describe the EEG
data. Particularly, from the input signal ŷr, the following short-time Hjorth parameters
are estimated: activity, mobility, and complexity [3]. The activity is directly described
by the variance that is related to the signal power, σ2(ŷr). The mobility is a measure of
the signal mean frequency, defined as φ(ŷr) =

√
σ2(ŷ′

r)/σ
2(ŷr), being ŷ′

r the deriva-
tive of ŷr. Finally, the complexity measures the deviation of the signal from the sine
shape, that is, the change in frequency and it can be computed as ϑ(ŷr) = φ(ŷ′

r)/φ(ŷr).
From the estimated short-time Hjorth parameter sets, the first and second statistical mo-
ments, and the maximum value are obtained as features.

2.3 Feature Relevance Analysis

From the above mentioned EEG representations, a feature space matrix X ∈ R
n×D is

obtained, assuming that a set of preprocessed EEG signals {Ŷr : r = 1, . . . , n} is pro-
vided, being n the number of training trails of a given subject in a BCI system, and D
the number of estimated features. Particularly, each row, ŷr of Ŷr holds the c-th studied
EEG channel, with c = 1, . . . , nc and being nc the number of analyzed channels. To
carry out a low-dimensional representation of the original feature representation space,
this work uses Principal Component Analysis (PCA) as a statistical eigendecomposi-
tion, searching for directions with greater variance to project the data. Although, PCA
is commonly used as a feature extraction method, it can be useful to properly select
a relevant subset of original features that better represent the studied process [8]. In
this sense, given a set of features Ξ = {ξξξd : d = 1, . . . , D}, where ξξξd corresponds
to each column of the input data matrix X , the relevance of each feature can be an-
alyzed by the PCA mapping. More precisely, the relevance of ξξξd can be identified by
computing the corresponding weighting term ρρρ = {ρd : d = 1, . . . , D}, where ρρρ is
defined as ρρρ = E{|λdαd| : ∀d ∈ D′}, being λd and αd the eigenvalues and eigen-
vectors of the covariance matrix Σ ∈ R

p×p, which is estimated as Σ = X�X . The
main assumption is that the largest values of ρd point out to the best input attributes,
since they exhibit higher overall correlations with principal components. The D′ value
is fixed as the number of dimensions needed to conserve a percentage of the input data
variability.

3 Experiments and Results

In order to test the proposed framework, experimental tests were done over the a well
known Motor Imagery (MI) dataset. The EEG data collection is provided by the Berlin
Brain-Computer Interface (BCI competition IV 2008 - Data sets 1)1. This database
is based on the paradigm in cognitive neuroscience of MI, e.g. imagination of hand
movements, whole body activities, relaxation, etc. For each subject the first two classes
of motor imagery were selected from the three classes left hand, right hand, and foot
(side chosen by the subject). The EEG signals were obtained from seven subjects. For
each subject, the signals from 59 EEG positions were measured, being the sensorimotor

1 http://bbci.de/competition/iv/desc_1.html

http://bbci.de/competition/iv/desc_1.html
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area the most densely covered area by the electrodes. Signals were band-pass filtered
between 0.05 and 200 Hz and then digitized at 1000 Hz. Moreover, the database was
downsampled at Fs = 100 Hz, but previously a low.-pass Chevyshev II filter (order
10) was employed with stopband ripple 50dB down and stopband edge frequency 49
Hz. The whole motor imagery session was performed without feedback. The data base
contains 100 repetitions of each MI class per person. Particulary, the EEG segments
were extracted while a cue (indicating a side) is presented, i.e. an arrow pointing left or
right were presented on a screen, the duration of each extracted segment is 4 s during
which the subject was instructed to perform the cued motor imagery task. These periods
were interleaved with 2 s of blank screen and 2 s with a fixation cross shown in the
center of the screen. All EEG channels per subject of the above mentioned MI dataset
were used. We test four frameworks mainly changing the preprocessing stage, in order
to validate the performance of the proposed approach (see Fig. 1). The first one does not
uses any kind of preprocessing method of the data before the characterization stage, the
next two frameworks are conceived to use either CSP or EMD techniques (Framework
2 (FW2) and Framework 3 (FW3) respectively) as part of the preprocessing stage of the
EEG recordings. The last framework (FW4 - proposed approach) uses together EMD
and CSP techniques as a preprocess of the data.

For a given subject, a set of signals {Yr : r = 1, . . . , 200} was obtained, with
Yr ∈ R

C×TY , C = 59 and TY = 400. For FW3 and FW4 the number of IMFs in
EMD is fixed as Nc = 3 [1]. Thereby, for each framework the following analysis is
performed. According to the described features in section 2.2, three frequency-based
(PSD, CWT, and DWT) and one time-based (Hjorth parameters) kind of features are
estimated for each channel of a given trial ŷr. Hence, a feature space representation
matrix X ∈ R

400×1593 is calculated. It is important to note that for the segment length
value L in PSD and Hjorth parameters based features, the minimum frequency to be
analyzed is fixed as Fr = 8 Hz, taking into account that the band of interest for the
analyzed BCI application is 8− 30Hz (containing the α and β rhythms).
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Fig. 1. Tested Frameworks. FW4-proposal.
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Regarding to the eigendecomposition-based feature relevance analysis presented in
section 2.3, the number of dimensions D′ in PCA is calculated looking for a 95% of the
input data variability. Therefore, the inferred relevance vector ρ ∈ R

1593×1 is employed
to sort the original features. In addition, a soft-margin Support Vector Machine (SVM)
classifier is trained using a regularization parameter C ∈ R

+, and a Gaussian kernel
k(xa,xb) = exp(−||xa − xb||/2δ2), with band-width δ ∈ R

+; and being xa,xb ∈
R

1×D two given samples of the feature representation space. We generate a curve of
performance adding one by one the characteristics obtained in each subspace represen-
tation based on the order given by the relevance vector ρρρ. For a given subset, the opti-
mum working point has been searched using a 10-fold cross validation scheme to fix the
C and δ values. The C value is selected from the set {1, 10, 100, 1000}; and the δ value
from {δs, 10δs, 100δs, 1000δs}; being δs = 0.9min(E{σ(Ξ)}, (1/1.34)E{iqr(Ξ)})
the Sylverman rule based Gaussian kernel band-width estimation. Note that σ(·) com-
putes the standard deviation and iqr(·) the interquartile range of a provided set of fea-
tures, respectively. Table 1 shows the best BCI system performance for each subject
according to each training framework. Fig. 2 presents the system performance for the
four tested frameworks, thus is, these figures show the accuracy as a function of the
number of chosen features according to proposed relevance analysis. Finally Fig. 4
presents the distribution relevance information per channel extracted to each method.

Table 1. Classification results (average accuracy ± standard deviation, 10-fold cross validation)

Subject
Framework 1 Framework 2 Framework 3 Framework 4

Acc. (%) Acc. (%) Acc. (%) Acc. (%)
S1 74.50±09.26 89.50±07.62 82.66±11.36 98.50±03.37
S2 67.00±15.49 86.50±04.74 67.74±09.41 95.97±03.95
S3 71.50±12.03 96.50±05.29 60.50±08.32 98.50±03.37
S4 59.00±13.70 93.00±06.75 63.37±08.48 91.84±04.84
S5 65.00±08.16 96.50±04.74 65.55±07.18 91.76±05.98
S6 73.50±12.03 93.50±04.74 75.29±05.38 93.42±06.28
S7 75.50±08.96 92.00±05.37 74.53±09.19 96.50±4.11

Mean 69.43±11.38 92.50±5.61 69.95±08.47 95.21±04.42

4 Discussion

According to Table 1, it is possible to notice that carry out a preprocessing stage im-
proves both the performance and the BCI system stability. The best mean discrimination
performances are obtained by FW4 and FW2, respectively. The above statement can be
explained by the fact that FW4 and FW2 use signal decomposition methods (CSP, CSP-
EMD) working as filters, which remove information that can decrease the classification
performance. Although some subjects (S4 and S5) present lower classification perfor-
mance in FW4 than FW2, it is explained by the fact that each subject presents different
cognitive characteristics, not mentioning the non-stationary nature of the signals. Ad-
ditionally, the quality of the EEG trials is perturbed by the artifacts, and by the brain
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(b) FW2: CSP preprocessing
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(c) FW3: EMD preprocessing
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(d) FW4: EMD - CSP preprocessing

Fig. 2. Performance curves

response capability of each subject. Even though FW1 and FW3 present a similar ac-
curacy, the performance computed by FW3 is more stable than FW1, because FW3
is calculated only using the first three IMFs which are mainly related to the optimal
informative frequency bands of interest (α and β rhythms) for MI classification [1].

Moreover, from the attained performance of each framework (Fig. 2), note that for
FW1 (Fig.2(a)) and FW3 (Fig. 2(c)), overall, the first 10 relevant features achieved the
maximum system performance without a notable gain by increasing the number of fea-
tures. For FW2 (Fig. 2(b)) and FW4 (Fig. 2(d)) the performance notedly increases by
adding features. Also, in some cases, the BCI performance curves present local min-
imums when adding new relevant features, and then the classification accuracy grows
up again. This behavior is explained by the fact that some features may represent highly
relevant attributes, but they involve redundant information, i.e. needling phenomenon.

Figure 3 shows the relevance of features to each one of the frameworks. In FW1 (Fig.
3(a)), FW2 (Fig. 3(b)), and FW4 (Fig. 3(d), both PSD and DWT methods provides a
better relevance value than the other analyzed features. This is because the PSD features
are estimated into a restricted frequency band-width (α and β bands), in order to take
advantage of the prior knowledge about the studied phenomenon [4], besides, the signal
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Fig. 3. Feature relevance values

windowing procedure allows to deal with the non-stationary nature of the EEG. Regard-
ing to DWT, they also bring relevant information, since, this method allows to extract
features of interest from μ and β rhythms. As expected, the DWT transformation pro-
vides a multi-resolution decomposition, which is able to deal with non-stationary sig-
nals. In this sense, the Hjorth features, generally, can not captured the non-stationarity
behavior of the signals, because the just analyze second-order statistical moments.

From figures 4(a), 4(b), and 4(c) (FW1, FW2, and FW3, respectively) it is possible to
see how most of the channels are considered as high relevance channels. In these frame-
works the frontal cortex (i.e. the AF ,F ,FC electrodes) seems to present discriminant
information. However, the Primary Motor Cortex – PMC (FC electrodes) is related to
movement mode but not to imagery mode. On the other hand, the FW4 (Fig. 4(d)) ex-
hibits low relevance on the frontal cortex (AF, F, and FC electrodes). A human lesion
study suggests that PMC does not play a fundamental role in motor imagery process,
although individual subjects may show PMC activity during motor imagery, depending
on their thinking strategy. Besides the activity associated to the task performance for
the imagery mode was localized in the precentral sulcus, indicating the significance of
this region in motor imagery [9].

FW1, FW2, and FW3 show high relevance for the parietal cortex, however, activ-
ity in the anterior parts of the parietal cortex (i.e. CP electrodes), most likely reflects
somatosensory-motor association and sensory feedback from movement mode, but not
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Fig. 4. Channels relevance

the imagery mode, which implies a decrease of the performance of the classification
stage in these frameworks. Moreover, detailed neuropsychological examination sup-
ports the role of the parietal cortex in generating mental movement representations. The
posterior part of the parietal cortex, including the precuneus (P and PO electrodes), has
been reported to be active during tasks involving motor imagery [9], which corresponds
with the relevance configuration found by FW4 (Fig. 4(d)). The imagery-predominant
activity showing the overactivity of the posterior parietal cortex during motor imagery
of finger movement. Thus, the channels relevance analysis, computed by FW4, resem-
ble to the clinic findings of the state of the art.

5 Conclusions and Future Work

In this paper we develop a BCI based motor imagery classification framework using
CSP and feature relevance analysis. The CSP is matched with EMD to reveal the dy-
namics of interest. We select a set of features representing the best as possible the stud-
ied process. For such purpose, a variability analysis is presented to identify relevant
features. Four frameworks of training for MI classification were compared. Experimen-
tal results showed that the precision of the MI system significantly increases when a
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preprocessing stage is done, gaining accuracy and reducing the variance among exper-
iments, achieving a major system reliability and stability. In order to model the stud-
ied phenomenon, three frequency-based (PSD, DWT, and CWT) and one time-based
(Hjorth parameters) features were used. Moreover, a soft-margin SVM based classi-
fier was employed, and the BCI-system was validated by a 10-fold cross validation
methodology. Achieved results showed that in general the PSD based features provided
a better relevance value than the other analyzed features. Furthermore, DWT attributes
also brought relevant information to the BCI-system. Also, the relevance per EEG chan-
nel was computed, which found that the proposed framework (FW4) presents a great
similarity with the clinical findings about the brain function pointed in the state of the
art, that is, the frontal cortex shows low relevance, and high relevance in the central
cortex, and an average relevance in the parietal hemisphere, highlighting the motor im-
agery functions of the brain. As future work, it would be interesting to identify other
movements and to analyze other decomposition methodologies. Besides, it would be
interesting to test our methodology in other kind of EEG applications as Epilepsy de-
tection and monitoring.
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