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Abstract. Route learning and reproduction in tour-guide robots is usu-
ally performed with the help of an expert in robotics. In this paper we
describe a novel approach to these tasks, which reduces the intervention
of an expert to a minimum. First, the robot is able to learn routes while
following a human acting as a route instructor. Then, anyone can eas-
ily ask the robot to reproduce a route using various hand gestures. In
order to achieve an accurate route learning and reproduction we use a
novel localization algorithm, which is able to combine various sources of
information to obtain the robot’s pose. Moreover, the path planning and
obstacle avoidance used to navigate while reproducing routes are also
described in this article. Finally, we show through several trajectories
how the robot is able to learn and reproduce routes.

Keywords: tour-guide robot, route learning, route reproduction,
human following.

1 Introduction

In the coming years, personal service robots are expected to become a common
element in most homes or offices, playing an important role as appliances, ser-
vants and assistants; they will be our helpers and elder-care companions. These
robots will need to be capable of acquiring a sufficient understanding of the envi-
ronment, being aware of different situations, as well as establishing a successful
communication with humans in order to be able to cooperate with them.

We are currently building a general purpose tour-guide robot, which learns
routes from an instructor, and then shows these routes to the visitors of the event
where the robot operates. The development of the control software for this robot
involves many open challenges such as robot localization, human identification,
and robot navigation in crowded and challenging environments.

In this work, we describe the route learning and reproduction processes in our
robot. The route learning takes place while following an instructor, who only needs
to move in the environment showing the route to the robot. The reproduction of
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a route by the robot is performed on user’s demand. During the reproduction,
the robot travels to the origin of the route, and starts to mimic the route learnt
from the instructor in the past. We want to remark that other service robots like
a robotic wheelchair will also benefit from this ability: the wheelchair could learn
a route in a hospital while following a nurse, and then be able to travel back to a
patient’s room.

2 Related Work

In the late nineties, the first well-known tour-guide robots (Rhino [1] and Min-
erva [2]) had no online route learning abilities. In fact, points of interest and the
rest of information which make up a route were introduced in the robot by an
expert. In these robots, the users could select the exhibit that they wanted to
visit using a touch-screen located at the robot. This strategy for route recording
and route learning, with minor variations, became a common element in the
tour-guide robots that were developed afterwards. One of them was RoboX [3],
which was designed for long time operation in a public exposition where the
routes were also precoded in the robot by experts. These routes were shown to
visitors as soon as anyone approached the robot. Other tour-guide robots [4]
randomly choose a visitor and guide him to an exhibit, which was selected based
on information from RFID tags, which are used to detect which exhibit has not
been visited yet by the human. Urbano [5] is another tour-guide robot, which
requires a manual creation of a navigation graph, and a database of objects
and locations. This, allows the robot to dynamically generate routes that will
be shown to a visitor depending on which category is the user classified on.
Robotinho [6] was one of the first humanoid tour-guide robots, and it could give
tours to people who show interest in the robot. These tours were also manually
introduced in a pre-operational stage of the robot.

A recent tour-guide robot [7] allows the user to select which exhibit he wants to
visit using speech recognition. It can also identify which part of the exhibit needs
further explanation by recognizing pointing gestures. Despite of these improve-
ments in route management, this tour-guide robot still requires a pre-operational
stage in which an expert introduces location and other information about the
exhibits available. Another recent tour-guide robot [8] states that new routes can
be created on the fly, although no details about the process are given. Finally,
one of the latest tour-guide robots that has been developed [9] explores different
ways of reproducing routes: it can keep track of the human which is following
him and wait for him while reproducing the route. However, the definition of
the routes is still done by an expert, and the same ahppens with the selection
of which route should be reproduced.

3 System Overview

The latest version of the robot that we use as prototype for our tour-guide robot
can be seen in Fig 1 (left). It consists of a Pioneer P3DX robot base, a laser
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Fig. 1. Left: picture of our prototype of tour-guide robot interacting with a human.
Right: captures of the robot’s user interface with augmented reality.

range finder, and a range camera which is located at the top of the robot. Its
main processing unit is a laptop.

An instructor can teach routes to the robot by commanding the robot to
follow him. The instructor can be anyone from the staff of the event where the
robot will operate, and this person will not need to be an expert in robotic. The
instructor can also inform the robot about the points of interest along the route.
Thus, every time that the instructor reaches one of those points of interest he
will be able to record an explanatory voice messages.

On the other hand, the visitors of an event can ask the robot to show them
those routes. The robot will search and travel to the first point of the route, and
start to mimic the full route. When the robot arrives at any point of interest,
it will reproduce the corresponding voice message, which has been previously
recorded by the instructor.

We have developed an interface which provides visual feedback to the users
so that they know whether they are being properly detected by the robot. On
the other hand, this interface also uses augmented reality (virtual buttons) so
that either the instructor or the visitor will be able to use hand gestures to start
recording a route or voice messages along it (instructor), or select and reproduce
a route (visitor).
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In order to successfully accomplish the tasks of route recording and route
reproduction, we need a robust robot localization that we have developed. As
we will see in the next section, the use of this localization strategy makes us
consider two different stages: the deployment stage and the operational stage.

4 The Deployment Stage

In the location system that we use in our robot [12] we combine information from
different sources, which have to be previously set up when the robot arrives to
a new environment. This process is performed by an expert in a short period
of time.

Therefore, the goal of this stage is to generate what we call the model of
each sensor. By model we understand a function that is able to determine the
probability of a sensor reading provided a robot position. These models will be
used to localize the robot in the environment considering the sensor readings at
each instant (section 5.1). For this reason, we need to move the robot around
the environment collecting data: odometry, laser signatures and signal strength
of each Wi-Fi access point (AP).

Firstly, we use this data to build a laser-based map of the environment. Using
this map, we can pre-compute the expected laser signature le (with NL readings)
from each possible pose s in this map and compare it with the actual laser
signature lt. This allows us to approximate the laser sensor model by Eq. 1:
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The first term of the previous equation calculates the Hellinger distance which
estimates shape similarity. To take scale into account, the second term computes
the average difference among each pair of range measurements (lit, l

i
e(s)). The

parameter maxLD (maximum laser difference) indicates the maximum allowed
difference among each pair of laser ranges.

Secondly, we use [12] the signal strength of theWi-Fi AP and the ε-Support Vec-
tor Regression technique with Radial Basis Function kernels (ε-SVR-RBF [16]) to
provide an estimate zw = (xw, yw) of the robot position from the signal strength
of the audible Wi-Fi APs. The prediction error of the ε-SVR-RBF can be approx-
imated by a zero mean Laplace distribution [16], and therefore the sensor model
of our Wi-Fi location system can be approximated by Eq. 2:
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where the xw and yw are the coordinates corresponding to the position of the
robot that has been estimated using the signal strength of the Wi-Fi APs.
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5 The Operational Stage

Using the information recorded during the deployment stage, we will be able
to localize the robot at any instant, because of this, during the operational
stage any instructor can teach routes to the robot, or any visitor can demand
the reproduction of these routes. Both route learning and reproduction involve
several critical tasks which need to be properly addressed: robot location in
the environment, the detection, identification and tracking of the instructor, the
path planning of the routes and a safe navigation of the robot in a crowded
environment. In the next sections, we will describe the most relevant asoects of
each of these tasks.

5.1 Robot Localization

As we have already introduced in section 4, our localization algorithm [12] is
able to combine information from different sources: a laser scanner, a compass,
and a Wi-Fi positioning system.

To this extent, we fuse the information from all the data sources by means
of a particle filter [17]. The most relevant contribution of this filter lays on the
weighting of the particles pi using the N sensors available. Each particle pi
consists of a estimated position of the robot si, and a weight ω̂i. The weight
of each particle is re-computed taking into account the meassurements of the
available sensors:

ω̂i =

N∏
k=1

p(zk|si) ∀ i ∈ P (3)

It is important to notice that in order to compute the weight of the particles, we
need to use the models p(z|s) of each sensor obtained in the deployment stage
(Eq. 1 and Eq. 2).

This solution [12] is a indoor localization robust to sensor failures or sensor
with different data acquisition rates, because it allows us to keep updating the
particle filter even if not all the sensors are available.

5.2 Route Learning

Route learning in our tour-guide robot is performed under the command of an
instructor who moves along the desired route while being followed by the robot.
That instructor does not have to be an expert in robotics, thus, anyone can teach
new routes to our robot by simply letting the robot follow him.

Therefore, the robot will follow the instructor, logging its pose every metre
(way-points from now on). Every time that the robot logs a new way-point, it will
make a sound to let the user know that the route is being recorded. In addition,
during the route teaching, the instructor can stop at any point of interest and
record a voice message.
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It is obvious that the performance of the person following behaviour is critical
for this task, that is why in the past [11] we have presented a study of several
colour and texture features, which are used to distinguish the instructor from the
rest of the people which moving around the robot. In order to select which ones
would perform best, we evaluated 27 visual characteristics, and selected eight of
them based on which features shared the lowest mutual information. The features
that we have selected are: the HSV colour space, the second derivatives in both
image axis, the Canny edge image, the Centre-symmetric LBP, and the MPEG-7
edge histogram. In addition, we use an online feature weighting procedure [11],
which is able to increase the weight of those features which are more discriminant
at each moment. The weight of each feature f is dynamically updated based on
the feature’s discrimination power calculated with the Hellinger distance df :

df =

√√√√1−
B∑
i=1

√
h1(i)h2(i) (4)

where h1 is the normalized distribution of the feature in the instructor, and h2

the normalized distribution of the same feature in the rest of the people present
in the scene where the robot operates, and B the number of bins in which we
have discretised the distributions. This allows us to obtain a visual distance
between humans detected in the image and a visual model of the instructor, this
visual distance combined with the physical distance (predicted position vs actual
position) can be used to obtain a probability of a human to be the instructor
that the robot is actually following.

Moreover, we have developed our own human detector [10] which is able to
perform pixel-level segmentation of humans from the background. This point is
quite important because it has significantly improved the feature extraction, and
thus, the accuracy of the visual distance between humans and the instructor.

We have evaluated the person following ability in many real world scenarios
with people of all ages. One of those scenarios was the Domus museum (A
Coruña, Spain), which presents many challenges: strong illumination changes,
an uneven floor and a crowded environment.

The advantage of this route learning procedure is that it is not performed on
the deployment stage, which would increase the robot’s deployment time, and
also that anyone can be followed regardless of his knowledge about the robot.

5.3 Route Reproduction

Route reproduction is a critical behaviour of the robot.
When the robot is about to reproduce a route, it picks the first point from

the route and tries to reach it. For this task, we use a global planner based on
Dijkstra’s algorithm [13] in order to find the shortest path between the current
robot’s pose and the first point of the route. Once the robot has calculated its
global path towards the goal, the local planner is responsible for safely moving
the robot towards the environment. Thus, local navigation is performed using the
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Dynamic Window Approach (DWA) [14], which consists in forward-simulating
various trajectories which were generated by sampling the linear and angular
velocities of the robot. Then, each simulated trajectory is scored based on some
parameters, such as distance to the goal and proximity to obstacles. The trajec-
tory with the highest score is chosen, and the velocities which generated that
trajectory are executed in the robot’s base. This algorithm, allows us to contin-
uously evaluate the trajectory, and thus avoid obstacles such as persons walking
in the robot’s path.

Once the robot has reached the first point in the route, the robot will pick
the next way-point and navigate towards it. This is done until there last point
is reached or the visitor stops the robot. Moreover, the points of interest are
treated in the same way, with the difference that the robot stops in that point
for a while, until the voice message is played back.

In order to speed up route reproduction, we are flexible when it comes to
decide whether the robot has reached a way-point or not. Therefore, we have set
a distance of 0.3m as acceptable, as well as a difference in the yaw goal of 0.4
radians. Moreover, whenever there is a point within the route that is unreachable
the robot can skip it and travel to the next one. The robot will be making bell
sounds every time it reaches a point and a error sound if it skips a point.

Fig. 2. 100m2 robotics laboratory where the experiments were conducted. We prepared
an environment with 5 rooms, and recorded and reproduced several routes.

In order to test the route learning and reproduction of our robot, we have
recorded two routes in our robotics laboratory (Fig. 2), where we have settled an
indoor environment with five rooms. We have chosen this laboratory as the first
test-bed for route-management in our robot because it is similar in size (100m2)
and space arrangement (five rooms) with most home or offices nowadays. The
routes that we used for testing are illustrated in Fig. 3 where we can see the
robot’s trajectory during route recording (drawn in a dark-grey and dotted line),
and the trajectory (drawn in a light-grey and continuous line) that the robot
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Fig. 3. Trajectories for recording and reproduction of two routes. The dotted trajectory
represents the robot’s trajectory while recording the route, and the circles are the
recorded way-points. The light-grey lines are the robot’s trajectories while reproducing
these routes. The points marked with the letter A are the first points recorded in the
routes, the points marked with the letter B are the end point of the routes, the points
marked with the letter C are the location of the robot when it was asked to reproduce
the route, and the points marked with the letter D are the locations of points of interest
specified by the instructor while recording the route.
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performed when it reproduced the route. In these examples we can see how the
robot has to find a valid path and to travel from its initial pose (C in Fig. 3)
to the initial point of the route (A in Fig. 3). This is not a trivial issue since
the distance between both points can be several dozens of metres, and the path
between those points might cross several rooms and corridors. Once the robot
has travelled to the first point within the route, it moves from one way-point
to the next one in the route (illustrated with dark-grey circles in Fig. 3). When
the robot reaches a point of interest, it plays the voice message recorded by the
instructor. Finally, when the robot finishes the reproduction of the route, it plays
a bell sound and waited for new commands from its nearby users.

The first route (Fig. 3, top) was recorded in 56 seconds, and it is 15.3m long.
In this route no points of interest were recorded by the instructor, but it is
interesting in order to notice how fast can anyone teach a route path to the
robot in a home-like environment with narrow corridors. In this experiment, the
robot had to travel 29.2m in order to find the first point of the route and mimic
the complete route path.

The second route (Fig. 3, bottom) was recorded in 155 seconds, and it is 40.8m
long. When reproducing this route the robot travelled 52.8metres. In this route,
the instructor recorded three voice messages at the points of interest. These
messages were very short: around 5 seconds each one. In this way we can isolate
the time used for route management (path teaching and gesture interaction)
from that of the message itself: with our tour-guide robot a complex route can
be recorded in few time by non experts.

6 Conclusions and Future Work

In this work we have described the route learning and reproduction behaviours
in our tour-guide robot. Moreover, we have presented a critical element for those
behaviours: a multi-sensor fusion algorithm for robot localization. Moreover, we
have successfully tested the route management through two routes that were
successfully recorded and played back in a real world environment.

Like we did in the past [11] [10], we plan to test the route management
and robot localization in challenging scenarios such as the Domus museum (A
Coruña, Spain), with which we have been collaborating during the development
of this tour-guide robot. In those tests, we will adhere to the ISO/IEC-9126 for
evaluating the quality of the route management with real users. In addition, we
also plan to improve the human-robot interaction that takes place while repro-
ducing a route by including a pan camera which can rotate and monitor the user
to whom the robot is showing the route.
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