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Abstract. The Vehicle Routing Problem with Time Windows relates to
frequently occuring real world problems in logistics. Much work has been
done on solving static routing problems but solving the dynamic variants
has not been given an equal amount of attention, while these are even
more relevant to most companies in logistics and transportation. In this
work an Ant Colony Optimization algorithm for solving the Dynamic
Vehicle Routing Problem with Time Windows is proposed. Customers
and time windows are inserted during the working day and need to be
integrated in partially committed solutions. Results are presented on a
benchmark that generalizes Solomon’s classical benchmark with vary-
ing degrees of dynamicity and different variants, including pheromone
preservation and the min-max ant system.

1 Introduction

With recent developments in mobile communication and positioning systems, it
is now possible for companies in transportation to view and change their plan-
ning during the day. This leads to a new group of dynamic routing problems for
which algorithms have to be designed. In this paper we will extend the ant algo-
rithm described in [7] for the standard vehicle routing problem with time windows
(VRPTW) to dynamic problems (DVRPTW). As described by Psaraftis [12], a
problem is dynamic when some part of the input is revealed to the solver during op-
timization.This means that we can not build a fixed solution and we have to adjust
the solution while the problem changes. In the DVRPTW, the task is to schedule
a fleet of vehicles in a working day and new orders (clients that need to be visited)
are introduced during the day. This specific problem has not been solved with ant
colony algorithms, yet, although it is very relevant in practice. Some features of the
bio-mimetic ant-colony optimization algorithm [3] seem to well support dynamic
adaptations of delivery routes, as results for the related TSP problem indicate [5].
To test our new approach a set of benchmark problems is introduced as a general-
ization of a common VRPTW benchmark. To make our results reproducible, the
benchmark as well as the C code of the developed algorithms will be made public
for other users.

In Section 2 of this paper we describe the static and dynamic VRPTW prob-
lem and existing solvers for both problems from literature. Section 3 provides a
detailed description of the novel Ant-based DVRPTW solver. Section 4 deals with
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the benchmark and performance studies for different variations of the algorithms.
Finally, Section 5 concludes the work with a summarizing discussion.

2 Problem Description and Related Work

An important part of the ant algorithm is the way in which a tour is represented.
Each tour should visit the depot more than once, which represents the start of
a new vehicle. To accomplish this the depot node is copied a number of times
and all copies can be visited individually. Hence we get n customer nodes with
a demand and time window and up to n depot nodes(duplicates). This is used
in the problem definition:

Problem 1. CapacitatedVehicleRoutingProblemwithTimeWindows(VRPTW).
Let V = {v1, . . . , v2n} define a set of n customer nodes and up to n depot nodes
(duplicates). Let Q denote the maximal capacity of each vehicle, and qi denote
the demand and [ei, li] the time window, and si the service time at node vi, if
any. A solution is a tuple (π1, ..., πx) with a maximal length of 2n and of which n
nodes refer to customers and up to n nodes are identical with the depot. Each cycle
that returns to the depot is a single tour (vehicle). In addition, di,j is the traveling
distance from node i to node j. The goal is to minimize the traveling distance

x−1∑

i=1

(dπi,πi+1) + dπx,π1 (1)

and minimize, with priority, the number of vehicles needed.

To be able to solve a dynamic problem we first have to simulate a form of
dynamicity. Kilby, Prosser and Shaw [10] have described a method to do this,
which is also used by Montemanni et al. [11]. The notion of a working day of Twd

seconds is introduced, which will be simulated by the algorithm. Not all nodes
are available to the algorithm at the beginning. A subset of all nodes are given an
available time at which they will become available. This percentage determines
the degree of dynamicity of the problem. At the beginning of the day a tentative
tour is created with a-priori available nodes. The working day is divided into
nts time slices of length Twd/nts, also notated with tts. At each time slice the
solution is updated. This allows us to split up the dynamic problem into nts

static problems, which can be solved consecutively. A different approach would
be to restart the algorithm every time a node becomes available. This could have
a very disruptive effect on the algorithm because it could be stopped before a
good solution is found. Note, that the goal is similar than stated in Problem 1,
except that some customers and their time windows are unknown a priori and
parts of solutions might already have been committed.

In general VRP and VRPTW are considered to be intractable problems, be-
cause they generalize the NP complete traveling salesperson problem. Heuristic
algorithms for static VRP problems include deterministic [2] and bio-inspired
ant-based methods [1,3].



Ant Colony Algorithms for the Dynamic Vehicle Routing Problem 3

Ant-based methods were first proposed with the Ant System method [3] and
simulate a population of ants which use pheromones to communicate with each
other and collectively are able to solve complex path-finding problems – a phe-
nomenon called stigmergy. For the VRPTW, an ant-based method was proposed
by [7]. The paradigm of ant algorithms fits well to dynamic problems [9] includ-
ing TSP [5] and special types of VRP, where vehicles do not have to return to
the depot [11]. However, they have not been applied yet to DVRPTW. Existing
work is restricted to tabu search [8], where, as opposed to MACS-VRPTW soft
time windows are used.

3 Dynamic Ant Algorithm

The plan is to extend the state-of-the-art ant algorithm for VRPTW to the
dynamical case. To our best knowledge, [7] is the only ant algorithm for the
VRPTW with a description that allows to reproduce results, and it shows a good
performance on standard benchmark problems by Solomon http://web.cba.

neu.edu/ msolomon/heuristi.htm Due to space limitations, we will directly
describe the new dynamic version of this algorithm and indicate changes.

The controller is the central part that reads the benchmark data, initializes
data structures, builds an initial solution and starts the colonies. The nearest
neighbor heuristic [6] is used to find initial solutions for the entire algorithm
and the ACS-VEI colony, but it was adjusted in two ways. First the constraints
on time windows and capacity are checked to make sure no infeasible tours
are created. Besides that a limit on the number of vehicles is passed to the
function. Because of these limitations it is not always possible to return a tour
that incorporates all nodes. In that case a tour with less nodes is returned.Only
nodes that are available at t = 0 are considered. After initialization, a timer
is started that keeps track of t, the used CPU time in seconds. At the start of
each time slice the controller checks if any nodes became available during the
last time slice. If so, these nodes are inserted using the InsertMissingNodes
method to make T ∗ feasible again. Then all necessary nodes are committed. If
vi is the last committed node of a vehicle in the tentative solution, vj is the
next node and tij is travel time from node vi to node vj , the vj is committed
if ej − tij < t+ tts. When the necessary commitments have been made two ant
colony systems (ACS) are started. If a new time slice starts, the colonies are
stopped and the controller repeats its loop. A pseudo-code of the controller can
be seen in Algorithm 1.

ACS contains two colonies, each one of the which tries to improve on a different
objective of the problem. The ACS-VEI colony searches for a solution that uses
less vehicles than T ∗. The ACS-TIME colony searches for a solution with a
smaller traveling distance than T ∗ while using at most as many vehicles. The two
objectives have a fixed priority: a solution with less vehicles is always preferred
over a solution with a smaller distance.

There are a few differences between the two colonies. ACS-VEI keeps track
of the best solution found by the colony (TVEI), which does not necessarily

http://web.cba.neu.edu/~msolomon/heuristi.htm
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Algorithm 1. Controller

1: Set time t = 0; Set available nodes n
2: T ∗ ← NearestNeighbor(n); τ0 ← 1/(n · length of T ∗);
3: Start measuring CPU time t
4: Start ACS-TIME(vehicles in T ∗) in new thread
5: Start ACS-VEI(vehicles in T ∗ − 1) in new thread
6: repeat
7: while colonies are active and time step is not over do
8: Wait until a solution T is found
9: if vehicles in T < vehicles in T ∗ then
10: Stop threads

11: T ∗ ← T
12: if time-step is over then
13: if new nodes are available or new part of T ∗ will be defined then
14: Stop threads
15: Update available nodes n
16: Insert new nodes into T ∗

17: Commit to nodes in T ∗

18: if colonies have been stopped then
19: Start ACS-TIME(vehicles in T ∗) in new thread
20: Start ACS-VEI(vehicles in T ∗ − 1) in new thread

21: until t ≥ Twd

22: return T ∗

incorporate all nodes. As TVEI also contributes to the pheromone trails it helps
ACS-VEI to find a solution that covers all nodes with less vehicles. ACS-TIME
does not work with infeasible solutions and does not have a colony-best solution.
Unlike ACS-VEI, it performs a local search method called Cross Exchange
[15] shown in Figure 1. The maximum number of vehicles that may be used
is given as an argument to each colony. During the construction of a tour this
number may not be exceeded. This may lead to infeasible solutions that do not
incorporate all nodes. If a solution is not feasible it can never be send to the
controller. Both colonies work on separate pheromone matrices and send their
best solutions to the controller. Pseudo-codes for ACS-VEI and ACS-TIME can
be found in Algorithm 2 and 3 respectively.

Algorithm 4 describes the construction of a tour by means of artificial ants.
A tour starts at a randomly chosen depot copy and is then iteratively extended
with available nodes. The set N k

i contains all available nodes which have not
been committed for ant k situated at node i. Committed parts of T ∗ have to be
incorporated in every tour. Inaccessible nodes due to capacity or time window
constraints are excluded from N k

i . In order to decide which node to chose, the
probabilistic transition rules by Dorigo and Gambardella [4] are applied. For ant
k positioned at node vi, the probability pkj (vi) of choosing vj as its next node is
given by the following transition rule:
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Algorithm 2. ACS-VEI(v)

1: Input: v is the maximum number of vehicles to be used
2: Given: τ0 is the initial pheromone level
3:
4: Initialize pheromones to τ0
5: Initialize IN to 0
6: TVEI ← NearestNeighbor(v)
7:
8: repeat
9: for each ant k do
10: T k ← ConstructTour(k, IN)
11: for each nodes i /∈ T k do
12: INi = INi + 1

13: Local pheromone update on edges of T k using Equation 3
14: T k ← InsertMissingNodes(k)

15:
16: Find ant l with most visited nodes
17: if nodes in T l > nodes in TVEI then
18: TVEI ← T l

19: Reset IN to 0
20: if TVEI is feasible then
21: return TVEI to controller
22:
23: Global pheromone update with T ∗ and Equation 4

24: Global pheromone update with TVEI and Equation 4
25: until controller sends stop signal

Algorithm 3. ACS-TIME(v)

1: Input: v is the maximum number of vehicles to be used
2: Given: τ0 is the initial pheromone level
3:
4: Initialize pheromones to τ0
5:
6: repeat
7: for each ant k do
8: T k ← ConstructTour(k, 0)
9: Local pheromone update on edges of T k using Equation 3
10: T k ← InsertMissingNodes(k)
11: if T k is a feasible tour then
12: T k ← LocalSearch(k)

13:
14: Find feasible ant l with smallest tour length
15: if length of T l < length of T ∗ then
16: return T l to controller
17:
18: Global pheromone update with T ∗ and Equation 4
19: until controller sends stop signal
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(a) (b) (c)

Fig. 1. Examples of 2-opt edge replacements. Squares represent depots, circles repre-
sent nodes. (a) demonstrates a move with edges from different tours. (b) is an example
of a move within a single tour.(c) shows the process of cross exchange.

pkj (vi) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

argmax
j∈Ni

{[τij ]α · [ηij ]β} if q ≤ q0 and j ∈ Nk
i

[τij ]
α · [ηij ]β∑

m∈Nk
i
[τim]α · [ηim]β

if q > q0 and j ∈ Nk
i

0 if j �∈ Nk
i

(2)

with τij being the pheromone level on edge (i, j), ηij the heuristic desirability
of edge (i, j), α the influence of τ on the probabilistic value, β the influence
of η on the probabilistic value, Nk

i the set of nodes that can be visited by ant
k positioned at node vi, and τij , ηij , α, β ≥ 0. Moreover q denotes a random
number between 0 and 1 and q0 ∈ [0, 1] a threshold.

During the ConstructTour process of ACS-VEI, the IN array is used to give
greater priority to nodes that are not included in previously generated tours. The
array counts the successive number of times that node vj was not incorporated
in constructed solutions. This count is then used to increase the attractiveness
ηij . The IN array is only available to ACS-VEI and is reset when the colony is

restarted or when it finds a solution that improves TVEI. ACS-TIME does not
use the IN array, which is equal to setting all values in the array to zero.

The local pheromone update rule from [4] is used to decrease pheromone levels
on edges that are traversed by ants. Each time an ant has traversed an edge (i, j), it
applies Equation 3. By decreasing pheromones on edges that are already traveled
on, there is a bigger chance that other ants will use different edges. This increases
exploration and should avoid too early stagnation of the search.

τij = (1− ρ) · τij + ρ · τ0 (3)

The global pheromone update rule is given inEquations 4. To increase exploitation,
pheromones are only evaporated and deposited on edges that belong to the best
solution found so far andΔτij is multiplied by the pheromone decay parameter ρ.

τij = (1 − ρ) · τij + ρ ·
m∑

k=1

Δτkij , ∀(i, j) ∈ T ∗ and Δτkij = 1/L∗ (4)

where T ∗ is the best tour found so far and L∗ is the length of T ∗.
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Algorithm 4. ConstructTour(k, IN)

1: Input: k is the ant we construct a tour for
2: Input: IN is an array containing the number of times nodes have not been incor-

porated in tours
3: Given: N k

i is a set of nodes and depot duplicates that are reachable by ant k in
node i

4:
5: Current vehicle x← 0
6: Select a random depot duplicate i
7: T k ← 〈i〉 � Add vehicle i to tour k
8: current timek ← 0
9: loadk ← 0
10: for each committed node vi of the xth vehicle of T ∗ do
11: T k ← 〈i〉
12: current timek ← delivery timei + service timei
13: loadk ← loadk + qi

14:
15: repeat
16: for each j ∈ N k

i do � The part below is taken from [4]
17: delivery timej ← max(current timek + tij , ej)
18: delta timeij ← delivery timej− current timek
19: distanceij ← delta timeij × (lj− current timek)
20: distanceij ← max(1.0, (distanceij− INj))
21: ηij ← 1.0/ distanceij

22:
23: Pick node j using Equation 2
24: T k ← T k + 〈j〉
25: current timek ← delivery timej+ service timej
26: loadk ← loadk + qj
27: if j is a depot copy then
28: current timek ← 0
29: loadk ← 0
30: x← x+ 1
31: for each committed node vi of the xth vehicle of T ∗ do
32: T k ← 〈i〉
33: current timek ← delivery timei + service timei
34: loadk ← loadk + qi

35: i← j
36: until N k

i = {}
37:
38: return T k
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4 Benchmark and Results

MACS-VRPTW and its extension MACS-DVRPTWwas tested on the 56 bench-
mark problems by Solomon [13]. These problems are divided into six categories:
C1, C2, R1, R2, RC1 and RC2. The C stands for problems with clustered nodes,
the R problems have randomly placed nodes and RC problems have both. Prob-
lems of type 1 have a short scheduling horizon, only a few nodes can be serviced
by a single vehicle. Problems of type 2 have a long scheduling horizon.

To simulate dynamics we modified the VRPTW problems by Solomon. A cer-
tain percentage of nodes is only revealed during the working day. A dynamicity of
X%means that each node has a probability ofX% to get a non-zero available time.
Time intervals are assigned randomly within the available times using a method
by Gendreau et al. [8]. Available time are generated on the interval [0, ei], where
ei = min(ei, ti−1). Here, ti−1 is the departure time from vi’s predecessor in the
best known solution. These best solutions are taken from the results of our MACS-
VRPTW implementation (see table 1) – for the solutions we refer to the support
material available on http://natcomp.liacs.nl/index.php?page=code. By
generating available times on this interval, optimal solution can still be attained,
enabling comparisons with MACS-VRPTW. For DVRPTW the Solomon prob-

Table 1. Comparison of results reported for the original MACS-VRPTW [7] and our
implementation for the Solomon benchmark

C1 C2 R1 R2 RC1 RC2

Dist Vei Dist Vei Dist Vei Dist Vei Dist Vei Dist Vei

Original 828.40 10.00 593.19 3.00 1214.80 12.55 971.97 3.05 1395.47 12.46 1191.87 3.38

Avg 828.67 10.00 591.00 3.00 1226.05 12.52 992.49 3.00 1381.20 12.25 1165.51 3.35

Best 828.37 10.00 589.85 3.00 1216.70 12.33 949.69 3.00 1362.58 12.00 1146.89 3.25

Table 2. Average results and Standard Deviations (Stdev) for 10 runs and 56 Problems
of different MACS-DVRPTW variants and dynamicity levels (Dyn).

Normal IIS WPP MMAS

Dyn Vei Dist Stdev Vei Dist Stdev Vei Dist Stdev Vei Dist Stdev

0% 7.39 1046.06 21.72 7.35 1035.86 20.14 7.35 1043.13 20.22 7.40 1050.06 22.29

10% 7.91 1095.10 28.95 7.93 1087.06 28.39 7.93 1087.98 26.11 7.95 1093.66 31.66

20% 8.37 1131.47 29.59 8.38 1131.41 31.13 8.39 1127.67 26.52 8.43 1133.99 36.00

30% 8.79 1180.36 34.84 8.78 1177.96 34.37 8.79 1175.14 35.32 8.88 1183.02 34.59

40% 9.03 1216.72 36.73 9.02 1212.11 37.12 9.04 1210.38 37.80 9.08 1212.48 39.64

50% 9.32 1241.32 38.09 9.36 1236.36 39.64 9.34 1235.90 38.52 9.34 1235.90 39.06

lems in Table 1 were computed 10 runs of MACS-DVRPTW. Our implementa-
tion was executed on a Intel Core i5, 3.2GHz CPU with 4GB of RAM memory.
The controller stops after 100 seconds of CPU time. We set the following default
parameters according to literature: m = 10, α = 1, β = 1, q0 = 0.9, ρ = 0.1 (cf.
[7]), Twd = 100, and nts = 50 (cf. [11]). Four variants of the algorithms were

http://natcomp.liacs.nl/index.php?page=code
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tested: (1) default settings as described above, (2) spending 20 CPU seconds
before the starting of the working day to construct an improved initial solution
(IIS), (3) with pheromone preservation (WPP)[11] (τij = τoldij (1−ρ) + ρτ0), ρ =
0.3, and (4) min-max pheromone update [14]. For MMAS, we set ρ = 0.8. The
values used are: τmax = 1/(ρT ∗),τmin = τmax/(2 ·#AvailableNodes), τ0 = τmax.
These are updated every time a new improvement of T ∗ is found.

Average results for IIS and MMAS are almost identical to the original results.
The reason for this seems to be that although the initial solution is greatly im-
proved, it is more difficult to insert new nodes into the current best solution.
Figure 2 shows results for different types of problems in more detail. WPP im-
proves distance results for 10% dynamicity and MMAS for 50% dynamicity, both
for the price of slightly more vehicles. Another finding is that for 10% dynamicity
solution quality declines by up to 20% and for 50% by up to 50%.

Fig. 2. Averaged results of 6 Solomon categories using different variants in 10% and
50% dynamicity. The yellow mark is for the best for each problem. Also the decline of
solution quality for the dynamic problem as compared to the static problem is reported
based on the best DVRP result.

5 Conclusion and Outlook

The MACS-DVRPTW is proposed as a first ant-based solver for the DVRPTW
problem. Our results show that results with smaller than 20% of the original
solution quality can be achieved for small dynamicity and 50% decline for 50%
dynamic insertions. Different variants were tested and pheromone preservation
and min-max improved distances, for the price of using on average slightly more
vehicles. Future work will have to deepen the study of the conflict between these
two objectives, and extend the algorithm with deletion of nodes and dynamically
changing travelling times.

Supportmaterial (C-implementationofMACS-DVRPTW,benchmark, andbest
solutions) is available at http://natcomp.liacs.nl/index.php?page=code
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