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Abstract. It is well known that solving randomly chosen Multivariate
Quadratic equations over a finite field (MQ-Problem) is NP-hard, and the
security of Multivariate Public Key Cryptosystems (MPKCs) is based on
the MQ-Problem. However, this problem can be solved efficiently when
the number of unknowns n is sufficiently greater than that of equations
m (This is called “Underdefined”). Indeed, the algorithm by Kipnis et
al. (Eurocrypt’99) can solve the MQ-Problem over a finite field of even
characteristic in a polynomial-time of n when n ≥ m(m+ 1). Therefore,
it is important to estimate the hardness of the MQ-Problem to evaluate
the security of Multivariate Public Key Cryptosystems. We propose an
algorithm in this paper that can solve the MQ-Problem in a polynomial-
time of n when n ≥ m(m + 3)/2, which has a wider applicable range
than that by Kipnis et al. We will also compare our proposed algorithm
with other known algorithms. Moreover, we implemented this algorithm
with Magma and solved the MQ-Problem of m = 28 and n = 504, and
it takes 78.7 seconds on a common PC.

Keywords: Multivariate Public Key Cryptosystems (MPKCs), Multi-
variate Quadratic Equations, MQ-Problem.

1 Introduction

Multivariate Public Key Cryptosystems (MPKCs) are cryptosystems whose se-
curity depends on the hardness of solving Multivariate Quadratic equations over
a finite field (MQ-Problem). It is known that the MQ-Problem over a finite field
is NP-hard [13] when the coefficients are randomly chosen, and no quantum al-
gorithm efficiently solving the MQ-Problem has been presented. Therefore, MP-
KCs are one of candidates for post quantum cryptographies. For example, the
Matsumoto-Imai cryptosystem [16], Hidden Field Equation (HFE) [18], Unbal-
anced Oil and Vinegar (UOV) [15], and Rainbow [7] are MPKCs. However, the
MQ-Problem is efficiently solved under special n and m conditions. In particular,
the algorithm by Kipnis et al. [15] can solve the MQ-Problem over a finite field
of even characteristic in a polynomial-time of n when n ≥ m(m + 1). It is also
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known that the Gröbner basis algorithms [5,10,11] solve the MQ-Problem, and
these algorithms are more effective in the Overdefined (n � m) MQ-Problem
[1,2]. Thus, estimating the hardness of the MQ-Problem is important for the
security of MPKCs.

The approach by Kipnis et al. diagonalizes the upper left m × m part of
the coefficient matrices, solves linear equations, and reduces the MQ-Problem
to find square roots over a finite field. Courtois et al. [6] and Hashimoto [14]
modified this algorithm. Although the algorithm by Courtois et al. [6] has a
much smaller applicable range, it can solve MQ-Problems over all the finite
fields in polynomial-time. Hashimoto’s algorithm presented a polynomial-time
algorithm that solves those over all finite fields when n ≥ m2−2m3/2+2m, which
extended the applicable range of that of Kipnis et al. [15]. However, we point
out that Hashimoto’s algorithm doesn’t work efficiently due to some unsolved
multivariate equations arisen from the linear transformation (See Appendix A).
Recently, Thomae et al. [20] made n smaller than the algorithm by Kipnis et al.
by using the Gröbner basis. This algorithm can be used when n > m, but it is
an exponential-time algorithm.

We will present an algorithm in this paper solves the Underdefined (n � m)
MQ-Problem in a polynomial-time when n ≥ m(m + 3)/2, which is wider than
n ≥ m(m + 1). Moreover, we implemented this algorithm on Magma [4] and
solved an MQ-Problem with (n, m) which the algorithm by Kipnis et al. can’t
be used. We will compare these results with the algorithm by Kipnis et al. [15]
and that by Courtois et al. [6].

2 MQ-Problem and Its Known Solutions

In this section we introduce the MQ-Problem and explain some algorithms to
solve the Underdefined MQ-Problems.

2.1 MQ-Problem

Let q be a power of prime and k be a finite field of order q. For integers
n,m ≥ 1, denoted by f1(x), f2(x), . . . , fm(x) quadratic polynomials of x =
t(x1, x2, . . . , xn) over k.

f1(x1, ..., xn) =
∑

1≤i≤j≤n

a1,i,jxixj +
∑

1≤i≤n

b1,ixi + c1

f2(x1, ..., xn) =
∑

1≤i≤j≤n

a2,i,jxixj +
∑

1≤i≤n

b2,ixi + c2

...

fm(x1, ..., xn) =
∑

1≤i≤j≤n

am,i,jxixj +
∑

1≤i≤n

bm,ixi + cm,

where al,i,j , bl,i, cl ∈ k; l = 1, ...,m. We call it “the MQ-Problem of m equations
and n unknowns over finite field k”, that the problem tries to find one solution
(x1, . . . , xn) ∈ kn such that fi(x1, ..., xn) = 0 for all i = 1, . . . ,m among the
many ones that exist.
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2.2 Kipnis-Patarin-Goubin’s Algorithm

We explain Kipnis-Patarin-Goubin’s Algorithm [15].
Let n,m ≥ 1 be integers with n ≥ m(m + 1) and f1(x), f2(x), . . . , fm(x) be

the quadratic polynomials of x = t(x1, x2, . . . , xn) over k. Our goal is to find
a solution x1, x2, . . . , xn such that f1(x) = 0, f2(x) = 0, . . . , fm(x) = 0. For
i = 1, . . . , n the polynomials f1(x), f2(x), . . . , fm(x) are denoted by

fi(x1, x2, . . . , xn) =
txFix+ (linear.)

where F1, . . . , Fm are n× n matrices over k.
We also use an n× n matrix Tt over k to transform all the unknowns, and Tt

has the following form.

Tt =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 · · · 0 a1,t 0 · · · · · · 0

0 1
. . .

... a2,t
...

...
...

. . .
. . . 0

...
...

...
...

. . . 1 at−1,t

...
...

... 0 1 0
...

...
... at+1,t 1

. . .
...

...
...

... 0
. . .

. . .
...

...
...

...
...

. . .
. . . 0

0 · · · · · · 0 an,t 0 · · · 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(1)

where a1,t, . . . , at−1,t, at+1,t, . . . , an,t ∈ k.
We want to obtain quadratic equations of the following form.

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

m∑
i=1

β1,ix
2
i − λ1 = 0

...
m∑
i=1

βm,ix
2
i − λm = 0,

(2)

where βl,i and λl ∈ k (l = 1, . . . ,m).
Step 1. Transform x �→ T2x so that the coefficients of x1x2 in fj (j =

1, . . . ,m) are zero.

Fj �→
⎛
⎝

∗ 0
0 ∗ ∗

⎞
⎠ (j = 1, . . . ,m)
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Step 2. Transform x �→ T3x so that the coefficients of x1x3, x2x3 in fj (j =
1, . . . ,m) are zero.

⎛
⎝

∗ 0
0 ∗ ∗

⎞
⎠ �→

⎛
⎜⎜⎝

∗ 0 0
0 ∗ 0
0 0 ∗ ∗

⎞
⎟⎟⎠

...

(We continue similar operations to “Step m − 1.”.)
From “Step 1.” to “Step m − 1.”, we require the condition n−1 ≥ m(m−1),

i.e., n ≥ m2 −m+ 1.
Then we can obtain the coefficient matrices of the form⎛

⎜⎜⎜⎜⎜⎜⎜⎝

∗ 0
. . .

0 ∗

∗

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

for each i = 1, . . . ,m, and the following quadratic equations.
⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

m∑
i=1

β1,ix
2
i +

m∑
i=1

xiL1,i(xm+1, . . . , xn) +Q1(xm+1, . . . , xn) = 0

...
m∑
i=1

βm,ix
2
i +

m∑
i=1

xiLm,i(xm+1, . . . , xn) +Qm(xm+1, . . . , xn) = 0

(3)

where L’s are linear polynomials and Q’s are quadratic polynomials in these
variables.
Step m. Solve linear equations {Li,j(xm+1, . . . , xn) = 0} for i = 1, . . . ,m, and
j = 1, . . . ,m, and substitute the solutions xm+1, . . . , xn into (3). This system
of linear equations has n − m unknowns and m2 equations, so we can solve if
n and m satisfy n − m ≥ m2 i.e. n ≥ m(m + 1). Finally, we obtain quadratic
equations of the form (2). Then we can compute the x2

1, . . . , x
2
m values easily.

The complexity of this algorithm is
{
O(nwm(log q)2) (char k is 2)
O(2mnwm(log q)2) (char k is odd),

where 2 ≤ w ≤ 3 is the exponent of the Gaussian elimination. This is because this
algorithm computes n× n matrices over finite field k = GF(q) and solves linear
equations to obtain the x2

1, . . . , x
2
m values. The complexity of these operations is

O(nw(log q)2). When the characteristic of k is odd, the probability of existence
of square roots is approximately 1/2, and we can find a solution with probability
of 2−m. Therefore, when the characteristic of k is odd, the complexity of this
algorithm is O(2mnw(log q)2).
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2.3 Courtois et al.’s Algorithm

Courtois et al. proposed an algorithm [6] which extend Kipnis-Patarin-Goubin’s
algorithm when char k is odd, and this algorithm can be applied when the num-
ber of equations m and the number of unknowns n satisfy n ≥ 2

m
7 (m+1). This

algorithm and Kipnis-Patarin-Goubin’s algorithm are very similar until obtain
quadratic equations of the form (2). Main idea of this algorithm is to reduce the
number of equations and unknowns after they obtain the quadratic equations of
the form (2). This algorithm can solve the MQ-Problem of m equations and n
unknowns over k in time about 240(40 + 40/ log q)m/40.

2.4 Thomae et al.’s Algorithm

Thomae et al. proposed an algorithm [20] which extend Kipnis-Patarin-Goubin’s
algorithm, and this algorithm can be applied when the number of equationsm and
the number of unknowns n satisfy n > m. Main idea of this algorithm is to make
more zero part by usingmore linear transformations thanKipnis-Patarin-Goubin’s
algorithm in order to reduce the number of equations and unknowns. This algo-
rithm reduces the MQ-Problem ofm equations and n unknowns over finite field k
into the MQ-Problem of (m−
n/m�) equations and (m−
n/m�) unknowns over
finite field k. Then this algorithmusesGröbner basis algorithm, so the complexty of
this algorithm exponential-time. Thomae et al. [20] claimed that theMQ-Problem
of 28 equations and 84 unknowns over GF(28) has 80-bit security.

3 Proposed Algorithm

We propose an algorithm in this section that solves the MQ-Problem with n ≥
m(m+ 3)/2, and explain the analysis of this algorithm.

3.1 Proposed Algorithm

Let n,m ≥ 1 be integers with n ≥ m(m + 3)/2 and f1(x), f2(x), . . . , fm(x) be
the quadratic polynomials of x = t(x1, x2, . . . , xn) over k. Our goal is to find
a solution x1, x2, . . . , xn such that f1(x) = 0, f2(x) = 0, . . . , fm(x) = 0. For
i = 1, . . . , n the polynomials f1(x), f2(x), . . . , fm(x) are denoted by

fi(x1, x2, . . . , xn) =
txFix+ (linear.)

where F1, . . . , Fm are n×n matrices over kD We also use an n×n matrix Tt over
k of the form (1) to transform all the unknowns in “Step t.” (t = 2, . . . ,m).

Step 1. Choose c
(1)
i ∈ k (i = 1, . . . ,m − 1) so that the (1, 1)-elements of Fi −

c
(1)
i Fm are zero, and replace Fi with Fi − c

(1)
i Fm. If the (1, 1)-element of Fm is

zero, exchange Fm for one of F1, . . . , Fm−1 that satisfies the (1, 1)-element is not
zero.
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F1, F2, . . . , Fm �→
(
0∗

)
, . . . ,

(
0∗

)

︸ ︷︷ ︸
m−1

,

(∗ ∗
)

Step 2. (i) Transform x to T2x so that the coefficients of x1x2 in f1, f2, . . . , fm
are zero.

(
0∗

)
, . . . ,

(
0∗

)

︸ ︷︷ ︸
m−1

,

(∗ ∗
)

�→
⎛

⎝
0 0

0 ∗ ∗
⎞

⎠ , . . . ,

⎛

⎝
0 0

0 ∗ ∗
⎞

⎠

︸ ︷︷ ︸
m−1

,

⎛

⎝
∗ 0

0 ∗ ∗
⎞

⎠

After the linear transformation x �→ T2x, the coefficient matrices are denoted as

tT2FiT2 (i = 1, 2, . . . ,m).

We determine the a1,2, a3,2, . . . , an,2 values in T2 by solving the linear equations
of coefficients we want to make zero. Note that (1,2)-elements and (2,1)-elements
of Fi are not always equal to zero. The picture means that sum of (1,2)-element
and (2,1)-element of Fi is equal to zero for each i = 1, . . . ,m.

(ii) Choose c
(2)
i ∈ k (i = 1, . . . ,m−2) so that the (2, 2)-elements of Fi−c

(2)
i Fm−1

are zero, and replace Fi with Fi−c
(2)
i Fm−1. If the (2, 2)-element of Fm−1 is zero,

exchange Fm−1 for one of F1, . . . , Fm−2 that satisfies the (2, 2)-element is not
zero.

⎛
⎝

0 0
0 ∗ ∗

⎞
⎠ , . . . ,

⎛
⎝

0 0
0 ∗ ∗

⎞
⎠

︸ ︷︷ ︸
m−1

,

⎛
⎝

∗ 0
0 ∗ ∗

⎞
⎠

�→
⎛
⎝

0 0
0 0 ∗

⎞
⎠ , . . . ,

⎛
⎝

0 0
0 0 ∗

⎞
⎠

︸ ︷︷ ︸
m−2

,

⎛
⎝

0 0
0 ∗ ∗

⎞
⎠ ,

⎛
⎝

∗ 0
0 ∗ ∗

⎞
⎠

Step 3. (i) Transform x to T3x so that the coefficients of x1x3 and x2x3 in
f1, f2, . . . , fm−1 and the coefficient of x1x3 in fm are zero.

⎛
⎝

0 0
0 0 ∗

⎞
⎠ , . . . ,

⎛
⎝

0 0
0 0 ∗

⎞
⎠

︸ ︷︷ ︸
m−2

,

⎛
⎝

0 0
0 ∗ ∗

⎞
⎠ ,

⎛
⎝

∗ 0
0 ∗ ∗

⎞
⎠

�→

⎛

⎜⎜⎝

0 0 0

0 0 0

0 0 ∗ ∗
⎞

⎟⎟⎠ , . . . ,

⎛

⎜⎜⎝

0 0 0

0 0 0

0 0 ∗ ∗
⎞

⎟⎟⎠

︸ ︷︷ ︸
m−2

,

⎛

⎜⎜⎝

0 0 0

0 ∗ 0

0 0 ∗ ∗
⎞

⎟⎟⎠ ,

⎛

⎜⎜⎝

∗ 0 0

0 ∗ ∗
0 ∗ ∗ ∗

⎞

⎟⎟⎠
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(ii) Choose c
(3)
i ∈ k (i = 1, . . . ,m−3) so that the (3, 3)-elements of Fi−c

(3)
i Fm−2

are zero, and replace Fi with Fi−c
(3)
i Fm−2. If the (3, 3)-element of Fm−2 is zero,

exchange Fm−2 for one of F1, . . . , Fm−3 that satisfies the (3, 3)-element is not
zero.

⎛

⎜⎜⎝

0 0 0

0 0 0

0 0 ∗ ∗
⎞

⎟⎟⎠ , . . . ,

⎛

⎜⎜⎝

0 0 0

0 0 0

0 0 ∗ ∗
⎞

⎟⎟⎠

︸ ︷︷ ︸
m−2

,

⎛

⎜⎜⎝

0 0 0

0 ∗ 0

0 0 ∗ ∗
⎞

⎟⎟⎠ ,

⎛

⎜⎜⎝

∗ 0 0

0 ∗ ∗
0 ∗ ∗ ∗

⎞

⎟⎟⎠ �→

⎛
⎜⎜⎝

0 0 0
0 0 0
0 0 0 ∗

⎞
⎟⎟⎠ , . . . ,

⎛
⎜⎜⎝

0 0 0
0 0 0
0 0 0 ∗

⎞
⎟⎟⎠

︸ ︷︷ ︸
m−3

,

⎛
⎜⎜⎝

0 0 0
0 0 0
0 0 ∗ ∗

⎞
⎟⎟⎠,

⎛
⎜⎜⎝

0 0 0
0 ∗ 0
0 0 ∗ ∗

⎞
⎟⎟⎠,

⎛
⎜⎜⎝

∗ 0 0
0 ∗ ∗
0 ∗ ∗ ∗

⎞
⎟⎟⎠

...

(We continue similar operations to “Step m.”.)

Then we can obtain the coefficient matrices of the form

⎛
⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎠

, · · · ,

⎛
⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎠

for each i = 1, . . . ,m, and the following quadratic equations.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x2
m +

∑
1≤i≤m

xiL1,i(xm+1, . . . , xn) +Q1,2(xm+1, . . . , xn) = 0

x2
m−1 + x2

m +
∑

1≤i≤m

xiL2,i(xm+1, . . . , xn) +Q2,2(xm+1, . . . , xn) = 0

x2
m−2 +Q3,1(xm−1, xm) +

∑
1≤i≤m

xiL3,i(xm+1, . . . , xn) +Q3,2(xm+1, . . . , xn) = 0

...
x2
1 +Qm,1(x2, . . . , xm) +

∑
1≤i≤m

xiLm,i(xm+1, . . . , xn) +Qm,2(xm+1, . . . , xn) = 0

(4)

where L’s are linear polynomials and Q’s are quadratic polynomials in these
variables.
Step m + 1. Solve linear equations {Li,j(xm+1, . . . , xn) = 0} of xm+1, . . . , xn

for i = 1, . . . ,m and j = 1, . . . ,m−i+1, and substitute the solutions xm+1, . . . , xn

into (4). If there exists t = 1, . . . ,m such that the (t, t)-elements of F1, . . . , Fm−t+1

are zero, removeLm−t+1,t = 0 from the linear systems and choose the xm+1, . . . , xn

that satisfies Lm−t+1,t �= 0.
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Finally, we obtain the following quadratic equations.

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

x2
m − λ1 = 0

x2
m−1 + Q̃2(xm)− λ2 = 0

x2
m−2 + Q̃3(xm−1, xm)− λ3 = 0

...

x2
2 + Q̃m−1(x3, . . . , xm)− λm−1 = 0

x2
1 + Q̃m(x2, . . . , xm)− λm = 0

where λ1, . . . , λm ∈ k and Q̃’s are quadratic polynomials in these variables.
We can find a solution for the quadratic equations in the following way. First,

we solve the first equation and substitute the solution xm into the others. Next,
we solve the second equation and substitute the solution xm−1 into the re-
maining equations · · · . If there exists t = 1, . . . ,m such that (t, t)-elements
of F1, . . . , Fm−t+1 are zero, the (m − t + 1)-th equation takes the form of xt +
Q(xt+1, . . . , xm)− λm−t+1 = 0.

3.2 Analysis of Proposed Algorithm

We will explain the required conditions and complexity of the proposed algorithm
in this section.

Theorem 3.1. The proposed algorithm works when n ≥ m(m+ 3)/2.

Proof. Our algorithm works if we can solve the linear equations.
In “Step t.” (t = 2, . . . ,m), the number of linear equations to be solved is

(m− t+ 1)(t− 1) +

t−1∑
i=1

i = −1

2

{
t−

(
m+

3

2

)}2

+
1

2
m2 +

1

2
m+

1

8
,

and the number of unknowns is n − 1. Thus, we require n ≥ m(m + 1)/2 until
“Step m.”.

In “Step m + 1.”, the number of linear equations to be solved is

m∑
t=1

(m− t+ 1) =
1

2
m(m+ 1),

and the number of unknowns is n−m. Thus, we require n ≥ m(m+ 3)/2.
For these reasons, we found that the proposed algorithm can be applied when

n ≥ m(m+ 3)/2. 
�

Lemma 3.2. For n = m(m+ 3)/2, the proposed algorithm succeeds in finding
a solution of the MQ-Problem of m equations, n unknowns with probability of
approximately {

1− q−1 (char k is 2)
2−m(1− q−1) (char k is odd).
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Proof. When n = m(m + 3)/2, we must solve the linear equations that are
not underdefined in “Step m + 1.”. Then, we fail to solve linear equations
with probability of q−1. When the characteristic of k is odd, the probability of
existence of square roots over k is approximately 1/2. Therefore, the success
probability of this algorithm is approximately 2−m(1 − q−1) when the charac-
teristic of k is odd. 
�
Moreover, the proposed algorithm uses only n × n matrix operations and the
calculation of square roots over finite field k, so we obtain the following result
concerning the complexity of the proposed algorithm.

Theorem 3.3. The complexity of the proposed algorithm is

{
O(nwm(log q)2) (char k is 2)
O(2mnwm(log q)2) (char k is odd),

where 2 ≤ w ≤ 3 is the exponent of the Gaussian elimination.

Proof. In this algorithm, we calculate n×n matrices over finite field k = GF(q)
for about m times. The complexity of this operation is O(nw(log q)2). When
the characteristic of k is odd, the probability of existence of square roots is
approximately 1/2, and we can find a solution with probability of 2−m. There-
fore, when the characteristic of k is odd, the complexity of this algorithm is
O(2mnwm(log q)2). 
�

4 Implementations

We implemented the proposed algorithm using Magma [4], and compare the pro-
posed algorithm and other known algorithms in this section. The results depend
on the characteristic of k, and we will explain two cases, when the characteristic
of k is 2 and an odd prime.

4.1 Parameters and Computational Environments

We chose the n andm parameters in which other algorithms can’t be applied, and
used homogeneous quadratic polynomials to experiment. We also chose m = 28
the same as Thomae et al. [20], and n so that the proposed algorithm can apply.
The computer specification and software are listed in Table 1.

Table 1. Computer specifications

OS CPU RAM Software

Windows 7 (64bit) Intel Core i3 (1.33GHz) 4.00 GB Magma V2.17-9
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4.2 When char k Is 2

These algorithms have the same complexity O(nwm(log q)2), but the proposed
algorithm has a wider applicable range than the others. The applicable ranges
of the algorithms are drawn in Fig. 1.

Table 2. Applicable ranges of the proposed algorithm and other known algorithms
(char k is 2)

Applicable range Complexity

Proposed n ≥ m(m+ 3)/2 (poly.)

Kipnis et al. [15] n ≥ m(m+ 1) (poly.)

Courtois et al. [6] n ≥ m(m+ 1) (poly.)

Fig. 1. Applicable range of proposed algorithm and other known algorithms

When m = 28, we can reduce the number of unknowns n from 812 to 434.
The experimental results in our implementation are in Table. 3.

Table 3. Experimental results (char k is 2)

Field n m Time / a try Success probability

16 4 8.76 (msec.) 99.99 %
GF(28) 84 11 506.83 (msec.) 100.0 %

504 28 78.71 (sec.) 100.0 %
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4.3 When char k Is Odd

We consider the algorithms by Courtois et al. [6]. Although the former one
is polynomial-time of n, but it is not practical because the applicable range
is too small. Thus, we compare the proposed algorithm and the latter one by
Courtois et al. These algorithms are exponential-time. The applicable ranges of
the algorithms are drawn in Fig. 2.

Table 4. Applicable ranges of the proposed algorithm and other known algorithms
(char k is odd)

Applicable range Complexity

Proposed n ≥ m(m+ 3)/2 (exp.)

Courtois et al. [6]
n ≥ 2

m
7 m(m+ 1)

n ≥ 2
m
7 (m+ 1)

(poly.)
(exp.)

Fig. 2. Applicable range of proposed algorithm and algorithm by Courtois et al.

If m ≥ 27, we can reduce the number of unknowns n to smaller than that of
the algorithm by Courtois et al. The experimental results in our implementation
are in Table. 5.

Table 5. Experimental results (char k is odd)

Field n m Time / a try Success probability

16 4 3.99 (msec.) 11.83 %
GF(7) 84 11 259.28 (msec.) 0.22 %

434 28 39.99 (sec.) 0.00 %
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The proposed algorithm succeeds in solving the MQ-Problem with probability
of 11.83% when n = 16 and m = 4, and 0.22% when n = 84 and m = 11. These
results follow our success probability estimation, and we can get a similar result
when n = 434 and m = 28 which can’t use the algorithm by Courtois et al., and
then, the success probability is (4/7)28× (6/7) ≈ 10−6.87 ≈ 2−22.83. We estimate
that it takes 1-core PC 9.44 years to solve the MQ-Problem of n = 434 and
m = 28.

5 Conclusion

We presented an algorithm in this paper that can solve the MQ-Problem when
n ≥ m(m + 3)/2, where n is the number of unknowns and m is the number of
equations. This algorithm makes the range of solvable MQ-Problems wider than
that by Kipnis et al. Moreover, we compared this algorithm and other known
algorithms, and found that the proposed algorithm is easier to use than the
others. In order to demonstrate the effectiveness of the proposed algorithm we
implemented it using Magma on a PC. We were able to solve the MQ-Problem
of m = 28 and n = 504 in 78.7 seconds.

Two open problems remain. The first is to make the applicable range wider
and the second is to apply the proposed algorithm to the algorithm developed
by Thomae et al. [20].
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Appendix A: Hashimoto’s Algorithm

In this appendix we explain Hashimoto’s algorithm [14], which claimed that
the MQ-Problem of n ≥ m2 − 2m3/2 + 2m over all finite fields can be solved
in a polynomial-time. The applicable range of Hashimoto’s algorithm is wider
than that of the algorithm by Kipnis et al. [15]. However, we point out that
Hashimoto’s algorithm doesn’t work efficiently due to some unsolved multivariate
equations arisen from the linear transformation.

A.1 Outline

In the following we describe Hashimoto’s algorithm which consists of Algorithm
A and Algorithm B.

Algorithm A
Let g(x) be a quadratic form of unknowns x = t(x1, . . . , xn) over finite field k.
We transform x by a linear matrix U ∈ kn×n. For a2,1, a3,1, a3,2, . . . , an,n−1 ∈ k
we define U as follows :

U =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 · · · · · · 0

a2,1 1 0
...

a3,1 a3,2 1
. . .

...

0 0 a4,3
. . .

. . .
...

...
...

. . .
. . . 1 0

0 0 · · · 0 an,n−1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

We determine the linear transformation U such that the coefficients of x2
1, x1x2,

x1x3, . . . , x1xn−1 in g(Ux) are all zero in the following way.
Step 1. Calculate a2,1, a3,1 such that the coefficient of x2

1 in g(Ux) is zero.
Step 2. Calculate a3,2 such that the coefficient of x1x2 in g(Ux) is zero.
Step 3. Calculate a4,3 such that the coefficient of x1x3 in g(Ux) is zero.

...

Step n − 1. Calculate an,n−1 such that the coefficient of x1xn−1 in g(Ux) is
zero.

Algorithm B
Let n, L,M ≥ 1 be integers that satisfy the following condition :

n ≥
⎧⎨
⎩

2L (M = 1)
ML−M + L (1 < M < L)
L2 + 1 (M = L)

. (5)

Let g1(x), . . . , gM (x) be quadratic forms of x over k such that the coefficients
of xixj (1 ≤ i, j ≤ L) in g1(x), . . . , gM−1(x) are all zero. Then we can find an
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invertible linear transformation U such that the coefficients of xixj (1 ≤ i, j ≤ L)
in g1(Ux), . . . , gM (Ux) are all zero.

tx

(
OL ∗
∗ ∗

)
x, . . . , tx

(
OL ∗
∗ ∗

)
x

︸ ︷︷ ︸
M−1

, tx

( ∗ ∗
∗ ∗

)
x �→ tx

(
OL ∗
∗ ∗

)
x, . . . , tx

(
OL ∗
∗ ∗

)
x

︸ ︷︷ ︸
M

where OL is L×L zero matrix. Step 1. (i) Using Algorithm A, find a transfor-
mation T1,1 such that the coefficients of x1xj (j = 1, . . . , L − 1) in gM (x) are
zero, and transform x �→ T1,1x.
(ii) Transform x �→ T2,1x such that the coefficients of x1xL in gM (x) and
xixL (i = 1, . . . , L) in g1(x), . . . , gM−1(x) are all zero.
Step 2. (i) Using Algorithm A, find a transformation T1,2 such that the coeffi-
cients of x2xj (j = 2, . . . , L−1) in gM (x) are all zero, and transform x �→ T1,2x.
(ii) Transform x �→ T2,2x such that the coefficients of x2xL in gM (x) and
xixL (i = 2, . . . , L) in g1(x), . . . , gM−1(x) are all zero.

...

(We continue similar operations to “Step L − 1.”.)
In “Step t.-(i), (ii)” (t = 1, . . . , L− 1), we use n× n matrices T1,t, T2,t which

have the following form :

T1,t =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 · · · · · · · · · 0

a
(t)
2,1 1

. . .
...

a
(t)
3,1 a

(t)
3,2 1

. . .
...

0 0 a
(t)
4,3

. . .
. . .

...
...

...
. . .

. . . 1 0

0 0 · · · 0 a
(t)
n,n−1 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, T2,t =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 · · · 0 b
(t)
1,L 0 · · · · · · 0

0
. . .

. . .
... b

(t)
2,L

...
...

...
. . .

. . . 0
...

...
...

...
. . . 1 b

(t)
L−1,L

...
...

... 0 1 0
...

...
... b

(t)
L+1,L 1

. . .
...

...
...

... 0
. . .

. . .
...

...
...

...
...

. . .
. . . 0

0 · · · · · · 0 b
(t)
n,L 0 · · · 0 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Step L. Transform x �→ TLx such that the coefficients of xixL (i = 1, . . . , L) in
g1(x), . . . , gM (x) are all zero, where
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TL =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 · · · 0 a
(L)
1,L 0 · · · · · · 0

0
. . .

. . .
... a

(L)
2,L

...
...

...
. . .

. . . 0
...

...
...

...
. . . 1 a

(L)
L−1,L

...
...

... 0 aL,L 0
...

...
... a

(L)
L+1,L 1

. . .
...

...
...

... 0
. . .

. . .
...

...
...

...
...

. . .
. . . 0

0 · · · · · · 0 a
(L)
n,L 0 · · · 0 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

If there is no such transformation, then go back to “Step L − 1.”.
Step L + 1. Return U = TLT2,L−1T1,L−1 · · ·T2,1T1,1.

A.2 Analysis of Algorithm B

We find the following facts about Algorithm B.

Lemma A.1. Suppose L ≥ 3. In “Step t.” t = 1, . . . , L− 2) of Algorithm B,

tT1,t

(
OL,L ∗
∗ ∗

)
T1,t =

(
OL,L ∗
∗ ∗

)
.

This lemma shows that the L×L upper left part of g1(x), . . . , gM−1(x) remains
zero by linear transformation T1,t.

Lemma A.2. In “Step t.-(ii)” (t = 1, . . . , L − 1), the coefficient of x2
L in

gi(x) (i = 1, . . . ,M − 1) is
∑

1≤j≤L−1

aj,LLi,j(a
(t)
L+1,L, . . . , a

(t)
n,L) +Qi(a

(t)
L+1,L, . . . , a

(t)
n,L).

Theorem A.3. In “Step t.-(ii)” (t = 1, . . . , L − 1), the coefficient of xjxL in

gi(x) is equal to Li,j(a
(t)
L+1,L, . . . , a

(t)
n,L) (i = 1, . . . ,M − 1; j = 1, . . . , L− 1).

Observation A.4. In “Step t.-(ii)” (t = 1, . . . , L−1), we must solve equations
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(The coefficient of x1xL in g1(x)) = 0
...

(The coefficient of xL−1xL in g1(x)) = 0
(The coefficient of x2

L in g1(x)) = 0
(The coefficient of x1xL in g2(x)) = 0

...
(The coefficient of x2

L in gM−1(x)) = 0
(The coefficient of xtxL in gM (x)) = 0,
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i.e.,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

L1,1(a
(t)
L+1,L, . . . , a

(t)
n,L) = 0
...

L1,L−1(a
(t)
L+1,L, . . . , a

(t)
n,L) = 0∑

1≤j≤L−1

aj,LLi,j(a
(t)
L+1,L, . . . , a

(t)
n,L) +Qi(a

(t)
L+1,L, . . . , a

(t)
n,L) = 0

L2,1(a
(t)
L+1,L, . . . , a

(t)
n,L) = 0
...

LM−1,L−1(a
(t)
L+1,L, . . . , a

(t)
n,L) = 0

(The coefficient of xtxL in gM (x)) = 0

Note that we can solve linear equations without the L-th equation

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

L1,1(a
(t)
L+1,L, . . . , a

(t)
n,L) = 0
...

L1,L−1(a
(t)
L+1,L, . . . , a

(t)
n,L) = 0

L2,1(a
(t)
L+1,L, . . . , a

(t)
n,L) = 0
...

LM−1,L−1(a
(t)
L+1,L, . . . , a

(t)
n,L) = 0

(The coefficient of xtxL in gM (x)) = 0

(6)

under the condition (5). However, Qi(a
(t)
L+1,L, . . . , a

(t)
n,L) is not equal to zero in

general for the solution of equations (6). It means that Step t.-(ii) fails in the

case of Qi(a
(t)
L+1,L, . . . , a

(t)
n,L) �= 0.

A.3 Example of Algorithm B

Let k = GF(7), n = 7,M = 2, L = 3. We consider quadratic forms represented
by the following matrices.

G1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 5 2 5 1
0 0 0 2 3 1 2
0 0 0 4 1 6 2
6 5 5 4 1 6 1
1 5 6 5 2 1 3
2 3 5 1 5 3 1
1 4 4 1 4 1 5

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, G2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 3 4 1 5 2 3
6 5 2 1 4 3 0
4 6 4 1 5 0 2
6 1 0 0 3 2 4
4 2 6 6 0 1 3
1 5 4 6 6 3 4
2 5 2 4 6 3 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Step 1.-(i) Using Algorithm A, we solve the equations

{
(The coefficient of x2

1 in g2(x)) = 0
(The coefficient of x1x2 in g2(x)) = 0,
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i.e., {
1 + 2a

(1)
2,1 + a

(1)
3,1 + 5a

(1)
2,1

2
+ a

(1)
2,1a

(1)
3,1 + 4a

(1)
3,1

2
= 0

6 + a
(1)
3,2 = 0

From these equations, we obtain (a
(1)
2,1, a

(1)
3,1, a

(1)
3,2) = (2, 5, 1). Then,

G1 �→

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 1 6 2 1
0 0 0 6 4 0 4
0 0 0 4 1 6 2
6 3 5 4 1 6 1
6 4 6 5 2 1 3
5 1 5 1 5 3 1
1 1 4 1 4 1 5

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, G2 �→

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 1 3 1 6
6 3 6 2 2 3 2
1 3 4 1 5 0 2
1 1 0 0 3 2 4
3 1 6 6 0 1 3
3 2 4 6 6 3 4
1 0 2 4 6 3 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Step 1.-(ii) ⎧⎪⎪⎨
⎪⎪⎩

(The coefficient of x1x3 in g1(x)) = 0
(The coefficient of x2x3 in g1(x)) = 0
(The coefficient of x1x3 in g2(x)) = 0
(The coefficient of x2

3 in g1(x)) = 0,

i.e.,

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

5b
(1)
5,3 + 2b

(1)
7,3 = 0

2b
(1)
4,3 + b

(1)
5,3 + b

(1)
6,3 + 5b

(1)
7,3 = 0

1 + 2b
(1)
4,3 + 6b

(1)
5,3 + 4b

(1)
6,3 = 0

b
(1)
1,3(5b

(1)
5,3 + 2b

(1)
7,3) + b

(1)
2,3(2b

(1)
4,3 + b

(1)
5,3 + b

(1)
6,3 + 5b

(1)
7,3) + 4b

(1)
4,3

2

+6b
(1)
4,3b

(1)
5,3 + 2b

(1)
4,3b

(1)
7,3 + 2b

(1)
5,3

2
+ 6b

(1)
5,3b

(1)
6,3 + 3b

(1)
6,3

2
+ 2b

(1)
6,3b

(1)
7,3 + 5b

(1)
7,3

2
= 0

These multivariate equations are hard to solve.
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