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Abstract. Novel public-key cryptosystems beyond RSA and ECC are
urgently required to ensure long-term security in the era of quantum
computing. The most critical issue on the construction of such cryptosys-
tems is to achieve security and practicability at the same time. Recently,
lattice-based constructions were proposed that combine both properties,
such as the lattice-based digital signature scheme presented at CHES
2012. In this work, we present a first highly-optimized SIMD-based soft-
ware implementation of that signature scheme targeting Intel’s Sandy
Bridge and Ivy Bridge microarchitectures. This software computes a sig-
nature in only 634988 cycles on average on an Intel Core i5-3210M (Ivy
Bridge) processor. Signature verification takes only 45036 cycles. This
performance is achieved with full protection against timing attacks.

Keywords: Post-quantum cryptography, lattice-based cryptography, cryp-
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1 Introduction

Besides breakthroughs in classical cryptanalysis the potential advent of quan-
tum computers is a serious threat to the established discrete-logarithm problem
(DLP) and factoring-based public-key encryption and signature schemes, such
as RSA, DSA and elliptic-curve cryptography. Especially when long-term secu-
rity is required, all DLP or factoring-based schemes are somewhat risky to use.
The natural consequence is the need for more diversification and investigation
of potential alternative cryptographic systems that resist attacks by quantum
computers. Unfortunately, it is challenging to design secure post-quantum sig-
nature schemes that are efficient in terms of speed and key sizes. Those which
are known to be very efficient, such as the lattice-based NTRU-sign [15] have
been shown to be easily broken [19]. Multivariate quadratic (MQ) signatures,
e.g., Unbalanced Oil and Vinegar (UOV), are fast and compact, but their public
keys are huge with around 80 kB and thus less suitable on embedded systems –
even with optimizations the keys are still too large (around 8 Kb) [20].
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The introduction of special ring-based (ideal) lattices and their theoretical
analysis (see, e.g., [18]) provides a new class of signature and encryption schemes
with a good balance between key size, signature size, and speed. The speed ad-
vantage of ideal lattices over standard lattice constructions usually stems from
the applicability of the Number Theoretic Transform (NTT), which allows op-
erations in quasi-linear runtime of O(n logn) instead of quadratic complexity.
In particular, two implementations of promising lattice-based constructions for
encryption [12] and digital signatures [14] were recently presented and demon-
strate that such constructions can be efficient in reconfigurable hardware. How-
ever, as the proof-of-concept implementation in [12] is based on the generic NTL
library [22], it remains still somewhat unclear how these promising schemes per-
form on high-performance processors that include modern SIMD multimedia
extensions such as SSE and AVX.

Contribution. The main contribution of this work is the first optimized soft-
ware implementation of the lattice-based signature scheme proposed in [14].
It is an aggressively optimized variant of the scheme originally proposed by
Lyubashevsky [17] without Gaussian sampling. We use security parameters p =
8383489, n = 512, k = 214 that are assumed to provide an equivalent of about
80 bits of security against attacks by quantum computers and 100 bits of secu-
rity against classical computers. With these parameters, public keys need only
1536 bytes, private keys need 256 bytes and signatures need 1184 bytes. On one
core of an Intel Core i5-3210M processor (Ivy Bridge microarchitecture) running
at 2.5 GHz, our software can compute more than 3900 signatures per second or
verify more than 55000 signatures per second. To maximize reusability of our
results we put the software into the public domain1. We will additionally submit
our software to the eBACS benchmarking project [4] for public benchmarking.

Outline. In Section 2 we first provide background information on the imple-
mented signature scheme. Our implementation and optimization techniques are
described in Section 3 and evaluated and compared to previous work in Section 4.
We conclude with future work in Section 5.

2 Signature Scheme Background

In this section we briefly revisit the lattice-based signature scheme implemented
in this work. For more detailed information as well as security proofs, please
refer to [14,17].

2.1 Notation

In this section we briefly recall the notation from [14]. We use a similar notation
and denote by Rpn

the polynomial ring Z[x]p〈xn + 1〉 with integer coefficients in
the range [− p−1

2 , p−1
2 ] where n is a power of two. The prime p must satisfy the

1 The software is available at http://cryptojedi.org/crypto/#lattisigns

http://cryptojedi.org/crypto/#lattisigns
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congruence relation p ≡ 1 (mod 2n) to allow us to use the quasi-linear-runtime

NTT-based multiplication. For any positive integer k, we denote byRpn

k the set of

polynomials in Rpn

with coefficients in the range [−k, k]. The expression a $←− D
denotes the uniformly random sampling of a polynomial a from the set D.

Algorithm 1. Key generation algorithm GEN(p, n)

Input: Parameters p, n
Output: (t)pk, (s1, s2)sk

s1, s2
$←− Rpn

1 ;1

t← as1 + s2;2

2.2 Definition

According to the description in [14] we have chosen a to be a randomly generated
global constant. For the key generation described in Algorithm 1 we therefore
basically perform sampling of random values from the domainsRpn

1 followed by a
polynomial multiplication with the global constant and an addition. The private
key sk consists of the values s1, s2 while t is the public key pk. Algorithm 2 signs
a message m specified by the user. In step 1 two polynomials y1, y2 are chosen
uniformly at random with coefficients in the range [−k, k]. In step 2 a hash
function is applied on the higher-order bits of ay1+y2 which outputs a polynomial
c by interpreting the first 160-bit of the hash output as a sparse polynomial. In
step 3 and 4, y1 and y2 are used to mask the private key by computing z1 and
z2. The algorithm only continues if z1 and z2 are in the range [−(k− 32), k− 32]
and restarts otherwise. The polynomial z2 is then compressed into z

′
2 in step 7

by Compress. This compression is part of the aggressive size reduction of the
signature σ =(z1,z

′
2,c) since only some portions of z2 are necessary to maintain

the security of the scheme. For the implemented parameter set Compress has a
chance of failure of less than two percent which results in the restart of the whole
signing process.

The verification algorithm VER as described in Algorithm 3 first ensures that
all coefficients of z1, z

′
2 are in the range [−(k− 32), k− 32] and rejects the input

otherwise by returning b = 0 to indicate an invalid signature. In the next step,
az1+z

′
2−tc is computed, transformed into the higher-order bits and then hashed.

If the polynomial c from the signature and the output of the hash match, the
signature is valid and the algorithm outputs b = 1 to indicate its success.

In Algorithm 4 the transformation of a polynomial into a higher-order rep-
resentation is described. This algorithm exploits the fact that every polynomial
Y ∈ Rpn

can be written as

Y = Y (1)(2(k − 32) + 1) + Y (0)

where Y (0) ∈ Rpn

k−32 and thus every coefficient of Y (0) is in the range [−(k −
32), k− 32]. Due to this bijectional relationship, every polynomial Y can be also
written as the tuple (Y (1), Y (0)).
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Algorithm 2. Signing algorithm SIGN(s1, s2,m)

Input: s1, s2 ∈ Rpn

1 , message m ∈ {0, 1}∗
Output: z1, z

′
2 ∈ Rpn

k−32, c ∈ {0, 1}160
y1, y2

$←− Rpn

k ;1

c← H(Transform(ay1 + y2), m) ;2

z1 ← s1c+ y1;3

z2 ← s2c+ y2;4

if z1 or z2 �∈ Rpn

k−32 then5

go to step 1;6

z
′
2 ← Compress(ay1 + y2 − z2,z2,p,k − 32) ;7

if z
′
2 =⊥ then8

go to step 1;9

Algorithm 3. Verification algorithm VER(z1, z
′
2, c, t,m)

Input: z1, z
′
2 ∈ Rpn

k−32, t ∈ Rpn , c ∈ {0, 1}160, message m ∈ {0, 1}∗
Output: b
if z1 or z

′
2 �∈ Rpn

k−32 then1

b← 0;2

else3

if c =H(Transform(az1 + z
′
2 − tc), m) then4

b← 1 ;5

else6

b← 0 ;7

Algorithm 5 describes the compression algorithm Compress which takes a poly-
nomial y, a polynomial z with small coefficients and the security parameter k
as well as p as input. It is designed to return a polynomial z

′
that is compacted

but still maintains the equality between the higher-order bits of y+ z and y+ z
′

so that (y + z)(1) = (y + z
′
)(1). In particular, the parameters of the scheme are

chosen in a way that the if-condition specified in step 3 is true only for rare
cases. This is important since only values assigned to z

′
[i] in step 6 to step 13

can be efficiently encoded.
The hash function Hmaps an arbitrary-length input {1, 0}∗ to a 512-coefficient

polynomial with 32 coefficients in {−1, 1} and all other coefficients zero. The
whole process of generating this string and its transformation into a polynomial
with the above described character is shown in Algorithm 6. In step 1 the mes-
sage is concatenated with a binary representation of the polynomial x generated
by the algorithm BinRep. It takes a polynomial x ∈ Rpn

as input and outputs a
(somehow standardized) binary representation of this polynomial. The 160-bit
hash value is processed by partitioning it into 32 blocks of 5 side-by-side bits (be-
ginning with the lowest ones) that each correspond to a particular region in the



Software Speed Records for Lattice-Based Signatures 71

Algorithm 4. Higher-order transformation algorithm

Transform(y, k)

Input: y ∈ Rpn , k
Output: y(1)

for i=0 to n− 1 do1

y(0)[i]← y[i] mod (2(k − 32) + 1);2

y(1)[i]← y[i]−y(0)[i]
2(k−32)+1

;3

return y(1);4

polynomial c. These bits are r4r3r2r1r0 where (r3r2r1r0)2 represents the position
in the region interpreted as a 4-bit unsigned integer and the bit r4 determines if
the value of the coefficient is −1 or 1.

2.3 Parameters and Security

Parameters that offer a reasonable security margin of approximately 100 bits
of comparable classical symmetric security are n = 512, p = 8383489, and k =
214This parameter set is the primary target of this work. For some intuition on
how these parameters were selected, how the security level has been computed,
for a second parameter set and a security proof in the random-oracle model we
refer again to [14].

In general, the security of the signature scheme is based on the Decisional
Compact Knapsack (DCKp,n) problem and the hardness of finding a preimage in
the hash function. For solving the DCK problem one has to distinguish between
uniform samples from Rpn ×Rpn

and samples from the distribution (a, as1+s2)
with a being chosen uniformly at random from Rpn

and s1, s2 being chosen
uniformly at random from Rpn

1 . In comparison to the Ring-LWE problem [18],
where s1, s2 are chosen from a Gaussian distribution of a certain range, this
just leads to s1, s2 with coefficients being either ±1 or zero. Therefore, the DCK
problem is an ”aggressive” variant of the LWE problem but is not affected by the
Arora-Ge algorithm as only one sample is given for the DCK problem and not the
required polynomially-many [1]. Note also that extraction of the private key from
the public key requires to solve the search variant of the DCK problem. In [14]
the hardness of breaking the signature scheme for the implemented parameter
set is computed based on the root Hermite factor of 1.0066 and stated to provide
roughly 100 bits of security. Finding a preimage in the hash function has classical
time complexity of 2l but is lowered to 2l/2 by Grover’s quantum algorithm [13].
As we use an output bit length of l = 160 from the hash function the implemented
scheme achieves a security level of roughly 80 bits of security against attacks by
a quantum computer.
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Algorithm 5. Compression Algorithm Compress(y, z, p, k)

Input: y ∈ Rpn

k , z ∈ Rpn

k−32, p, k

Output: z
′ ∈ Rpn

k

uncompressed← 0;1

for i=0 to n− 1 do2

if |y[i]| > p−1
2
− k then3

z
′
[i]← z[i] ;4

uncompressed← uncompressed+ 1;5

else6

write y[i] = y[i](1)(2k + 1) + y[i](0) where −k ≤ y[i](0) ≤ k7

if y[i](0) + z[i] > k then8

z[i]
′ ← k ;9

else if y[i](0) + z[i] < −k then10

z[i]
′ ← −k ;11

else12

z[i]
′ ← 0 ;13

if uncompressed ≤ 6kn
p

then14

return z
′
;15

else16

return ⊥;17

3 Software Optimization

In this section we show our approach to high-level optimization of algorithms
and low-level optimization to make best use of the target micro-architecture.

3.1 High-Level Optimization

In the following we present high-level ideas to speed-up the polynomial multi-
plication, runtime behavior as well as randomness generation.

Polynomial Multiplication. In order to achieve quasi-linear speed inO(n logn)
when performing the essential polynomial-multiplication operation we use the
Fast Fourier Transform (FFT) or more specifically the Number Theoretic Trans-
form (NTT) [21]. The advantages offered by the NTT have recently been shown
by a hard- and software implementation of an ideal lattice-based public key
cryptosystem [12]. The NTT is defined in a finite field or ring for a given
primitive n-th root of unity ω. The generic forward NTTω(a) of a sequence
{a0, .., an−1} to {A0, . . . , An−1} with elements in Zp and length n is defined as

Ai =
∑n−1

j=0 ajω
ij mod p, i = 0, 1, . . . , n − 1 with the inverse NTT−1

ω (A) just

using ω−1 instead of ω.
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Algorithm 6. Hash Function Invocation H(x,m)

Input: Polynomial x ∈ Rpn , message m ∈ {0, 1}∗, hash function
H̃({0, 1}∗)→ {0, 1}160

Output: c ∈ Rpn

1 with at most 32 coefficients being -1 or 1
r ← H̃(m||BinRep(x));1

for i=0 to n− 1 do2

c[i] = 0;3

for i=0 to 31 do4

pos← 8 · r5i+3 + 4 · r5i+2 + 2 · r5i+1 + r5i;5

if r5i+4 = 0 then6

c[i · 16 + pos]← −1;7

else8

c[i · 16 + pos]← 1;9

For lattice-based cryptography it is also convenient that most schemes are
defined in Zp[x]/〈xn + 1〉 and require reduction modulo xn + 1. As a conse-
quence, let ω be a primitive n-th root of unity in Zp and ψ2 = ω. Then when
a = (a0, . . . an−1) and b = (b0, . . . bn−1) are vectors of length n with elements in
Zp let d = (d0, . . . dn−1) be the negative wrapped convolution of a and b (thus
d = a ∗ b mod xn + 1). Let ā, b̄ and d̄ be defined as (a0, ψa1, . . . , ψ

n−1an−1),
(b0, ψb1, . . . , ψ

n−1bn−1), and (d0, ψd1, . . . , ψ
n−1dn−1). It then holds that d̄ =

NTT−1
w (NTTw(ā)◦NTTw(b̄)) [24], where ◦ means componentwise multiplica-

tion. This avoids the doubling of the input length of the NTT and also gives us
a modular reduction by xn+1 for free. If parameters are chosen such that n is a
power of two and that p ≡ 1 mod 2n, the NTT exists and the negative wrapped
convolution can be implemented efficiently.

In order to achieve high NTT performance, we precompute all constants
ωi, ω−i, ψi as well as n−1 · ψi for i ∈ 0 . . . n − 1. The multiplication by n−1,
which is necessary in the NTT−1 step, is directly performed as we just multiply
by n−1 · ψ−i.

Storing Parameters in NTT Representation. The polynomial a is used as
input to the key-generation algorithm and can be chosen as a global constant. By
setting ã = NTT(a) and storing ã we just need to perform NTT−1(ã ◦ NTT(y1)),
which consists of one forward transform, one point multiplication and one back-
ward transform. This is implemented in the poly mul a function and is superior
to the general-purpose NTT multiplication, which requires three transforms.

Random Polynomials. During signature generation we need to generate two
polynomials with random coefficients uniformly distributed in [−k, k]. To obtain
these polynomials, we first generate 4 · (n + 16) = 2112 random bytes using
the Salsa20 stream cipher [2] and a seed from the Linux kernel random-number
generator /dev/urandom.We interprete these bytes as an array of n+16 unsigned
32-bit integers. To convert one such a 32-bit integer r to a polynomial coefficient
c in [−k, k] we first check whether r ≥ (2k+1) · 
232/(2k+1)�. If it is, we discard
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this integer and move to the next integer in the array. Otherwise we compute
c = (r mod (2k + 1))− k.

The probability that an integer is discarded is (232 mod (2k + 1))/232. For
our parameters we have (232 mod (2k + 1)) = 4. The probability to discard a
randomly chosen 32-bit integer is thus 4/232 = 2−30. The 16 additional elements
in our array (corresponding to one block of Salsa20) make it extremely unlikely
that we do not sample enough random elements to set all coefficients of the
polynomial. In this highly unlikely case we simply sample another 2112 bytes of
randomness.

During key generation we use the same approach to generate polynomials
with coefficients in {−1, 0, 1}. The difference is that we sample bytes instead of
32-bit integers. We again sample one additional block of Salsa20 output, now
corresponding to 64 additional elements. A byte is discarded only if its value is
255, the chance to discard a random byte is thus 2−8.

3.2 Low-Level Optimization

The performance of the signature scheme is largely determined by a small set
of operations on polynomials with n = 512 coefficients over Zp where p is a 23-
bit prime. This section first describes how we represent polynomials and what
implementation techniques we use to accelerate operations on these polynomials.

Representation of Polynomials. We represent each 512-coefficient polyno-
mial as an array of 512 double-precision floating-point values. Each such array
is aligned on a 32-byte boundary, meaning that the address in memory is divis-
ible by 32. This representation has the advantage that we can use the single-
instruction multiple-data (SIMD) instructions of the AVX instruction-set exten-
sion in modern Intel and AMD CPUs. These instructions operate on vectors of
4 double-precision floats in 256-bit-wide, so called ymm vector registers. These
registers and the corresponding AVX instructions can be found, for example, in
the Intel Sandy Bridge, Intel Ivy Bridge, and AMD Bulldozer processors. The
following performance analysis focuses on Ivy Bridge processors; Section 4 also
reports benchmarks from a Sandy Bridge processor.

Both Sandy Bridge and Ivy Bridge processors can perform one AVX double-
precision-vector multiplication and one addition every cycle. This corresponds
to 4 multiplications (vmulpd instruction) and 4 additions (vaddpd instruction)
of polynomial coefficients each cycle. However, arithmetic cost is not the main
bottleneck in our software as loads and stores are often necessary because only
64 polynomial coefficients fit into the 16 available ymm registers. The performance
of loads and stores is more complex to determine than arithmetic throughput.
In principle, the processor can perform two loads and one store every two cycles.
However, this maximal throughput can be reduced by bank conflicts. For details
see [10, Section 8.13].

Modular Reduction of Coefficients. To perform a modular reduction of a
coefficient x, we first compute c = x · p−1, then round c, then multiply c by p
and then subtract c from x. The first step uses a precomputed double-precision
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approximation p−1 of the inverse of p. When reducing all coefficients of a polyno-
mial, the multiplications and the subtraction are performed on four coefficients in
parallel with the vmulpd and vsubpd AVX instructions, respectively. The round-
ing is also done on four coefficients in parallel using the vroundpd instruction.
Note that depending on the rounding mode we can obtain the reduced value of
x in different intervals. If we perform a truncation we obtain x in [0, p− 1], if we
round to the nearest integer we obtain x in [−((p − 1)/2), (p − 1)/2]. We only
need rounding to the nearest integer (vroundpd with rounding-mode constant
0x08). Both representations are required at different stages of the computation;
vroundpd supports choosing the rounding mode.

Lazy Reduction. The prime p has 23 bits. A double-precision floating-point
value has a 53-bit mantissa and one sign bit. Even the product of two coefficients
does not use the whole available precision, so we do not have to perform modular
reduction after each addition, subtraction or even multiplication. We can thus
make use of the technique known as lazy reduction, i.e., of performing reduction
modulo p only when necessary.

Optimizing the NTT. The most speed-critical operation for signing is poly-
nomial multiplication and we can thus use the NTT transformation as described
above. We start from a standard fast iterative algorithm (see, e.g., [9]) for
computing the FFT/NTT and adapt it to the target architecture. The transfor-
mation of a polynomial f with coefficients f0, . . . , f511 to or from NTT represen-
tation consist of an initial permutation of the coefficients followed by log2 n = 9
levels of operations on coefficients. On level 0, pick up f0 and f1, multiply f1
with a constant (a power of ω), add the result to f0 to obtain the new value of
f0 and subtract the result from f0 to obtain the new value of f1. Then pick up
f2 and f3 and perform the same operations to find the new values for f2 and f3
and so on. The following levels work in a similar way except that the distance
of pairs of elements that are processed together is different: on level i process
elements that are 2i positions apart. For example, on level 2 pick up and trans-
form f0 and f4, then f1 and f5 etc. On level 0 we can omit the multiplication
by a constant, because the constant is 1.

The obvious bottleneck in this computation are additions (and subtractions):
Each level performs 256 additions and 256 subtractions accounting for a total of
9 ·512 = 4608 additions requiring at least 1152 cycles. In fact the lower bound of
cycles is much higher, because after each multiplication by a constant we need to
reduce the coefficients modulo p. This takes one vroundpd instruction and one
subtraction. The vroundpd instruction is processed in the same port as additions
and subtractions, we thus get a lower bound of (9 ·512+8 ·512)/4 = 2176 cycles.
To get close to this lower bound, we need to make sure that all the additions
can be efficiently processed in AVX instructions by minimizing overhead from
memory access, multiplications or vector-shuffle instructions.

Starting from level 2, the structure of the algorithm is very friendly for 4-way
vector processing: For example, we can load (f0, f1, f2, f3) into one vector reg-
ister, load (f4, f5, f6, f7) in another vector register, load the required constants
(c0, c1, c2, c3) into a third vector register and then use one vector multiplication,
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one vector addition and one vector subtraction to obtain (f0+c0f4, f1+c1f5, f2+
c2f6, f3 + c3f7) and (f0 − c0f4, f1 − c1f5, f2 − c2f6, f3 − c3f7). However, on lev-
els 0 and 1 the transformations are not that straightforwardly done in vector
registers. On level 0 we do the following: Load f0, f1, f2, f3 into one register;
perform vector multiplication of this register with (1,−1, 1,−1) and store the
result in another register; perform a vhaddpd instruction of these two registers
which results exactly in (f0 + v1, f0 − f1, f2 + f3, f2 − f3). On level 1 we do
the following: Load f0, f1, f2, f3; multiply with a vector of constants, reduce the
result modulo p; use the vperm2f128 instruction with constant argument 0x01
to obtain c2f2, c3f3, c0f0, c1f1 in another register and perform vector register
multiplication of this register by (1, 1,−1,−1); add the result to (f0, f1, f2, f3)
to obtain the desired (f0 + c2f2, f1 + c1f1, f0 − c2f2, f1 − c3f3).

A remaining bottleneck is memory access. To minimize loads and stores, we
merge levels 0,1,2, levels 3,4,5 and levels 6,7,8. The idea is that on one level two
pairs of coefficients are interacting; through two levels it is 4-tuples of coefficients
that interact and through 3 levels it is 8-tuples of coefficients that interact. On
levels 0,1 and 2 we load these 8 coefficients; perform all transformations through
the 3 levels and store them again, then proceed to the next 8 coefficients. On
higher levels we load 32 coefficients, perform all transformations through 3 levels
on them, store them and then proceed to the next 32 coefficients.

In total, one NTT transformation takes 4484 cycles on the Ivy Bridge pro-
cessor. This includes about 500 cycles for the initial coefficient permutation. We
are continuing to investigate the difference between the lower bound on cycles
dictated by vector additions and the cycles actually taken by our software.

Addition and Subtraction. Addition and subtraction of polynomials simply
means loading coefficients, performing double-precision floating-point addition
or subtraction, and storing the result coefficient. This is completely parallel, so
we do this in 256 vector loads, 128 vector additions or subtractions, and 128
vector stores.

Higher-Order Transformation. The higher-order transformation described in
Algorithm 4 is a nice example of the power of representing polynomial coefficients
as double-precision floats: The only operation required is the multiplication by
the precomputed value (2(k − 32) + 1)−1 (a double-precision approximation of
(2(k−32)+1)−1) and a subsequent rounding towards the nearest integer. As for
the coefficient reduction we perform these computations using the vmulpd and
vroundpd instructions.

4 Performance Analysis and Benchmarks

In this section we analyze the performance of our software and report bench-
marks for key generation (crypto keypair), as well as the signing (crypto sign)
and verification (crypt sign open) algorithm. Our software implements the
eBATS API [4] for signature software, but we did not use SUPERCOP for bench-
marking. The reason is that SUPERCOP reports the median of multiple runs
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to filter out benchmarks that are polluted by, for example, an interrupt that
occurred during some of the computations. Considering the median of timings
when signing would be overly optimistic and cut off legitimate benchmarks of
signature generations that took very long because they required many attempts.
Therefore, for signing we report the average of 100000 signature generations; for
key-pair generation, verification and lower-level functions we report the median
of 1000 benchmarks. However, we will submit our software to eBACS for public
benchmarking and discuss the issue with the editors of eBACS. Note that our
software for signing is obviously not running in constant time but the timing
variation is independent of secret data; our software is fully protected against
timing attacks.

We performed benchmarks on two different machines:

– a machine called h9ivy at the University of Illinois at Chicago with an Intel
Core i5-3210M CPU (Ivy Bridge) at 2500 MHz and 4 GB of RAM; and

– a machine called h6sandy at the University of Illinois at Chicago with an
Intel Core i3-2310M CPU (Sandy Bridge) at 2100 MHz and 4 GB of RAM.

All software was compiled with gcc-4.7.2 and compiler flags -O3 -msse2avx

-march=corei7-avx -fomit-frame-pointer. During the benchmarks Turbo-
Boost and hyperthreading were switched off. The performance results for the
most important operations are given in Table 1. The message length was 59
bytes for the benchmarking of crypto sign and crypto sign open.

Table 1. Cycle counts of our software; n = 512 and p = 8383489

Operation Sandy Bridge cycles Ivy Bridge cycles

crypto sign keypair 33894 31140
crypto sign 681500 634988
crypto sign open 47636 45036

ntt 4480 4484
poly mul 16052 16096
poly mul a 11100 11044
poly setrandom maxk 12788 10824
poly setrandom max1 6072 5464

Polynomial-Multiplication Performance. The multiplication of two poly-
nomials (poly mul) takes 16096 cycles on the Ivy Bridge. Out of those, 3 ·4484 =
13452 cycles are for 3 NTT transformations (ntt).

Key-Generation Performance. Generating a key pair takes 31140 cycles on
the Ivy Bridge. Out of those, 2 · 5464 = 10928 cycles are required to generate
two random polynomials (poly setrandom max1); 11044 cycles are required for a
multiplication by the constant system parameter a (poly mul a); the remaining
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9168 cycles are required for one polynomial addition, compression of the two
private-key polynomials and packing of the public-key polynomial into a byte
array.

Signing Performance. Signing takes 634988 cycles on average on the Ivy
Bridge. Each signing attempt takes 85384 cycles. We need 7 attempts on average,
so those attempts account for about 7 · 85384 = 597688 cycles; the remaining
cycles are required for constant overhead for extracting the private key from the
byte array, copying the message to the signed message etc. Some of the remain-
ing cycles may also be due to some measurements being polluted as explained
above.

Out of the 85384 cycles for each signing attempt, 2 · 10824 = 21648 cy-
cles are required to generate two random polynomials (poly setrandom maxk);
2 · 16096 = 32192 cycles are required for two polynomial multiplications; 11084
cycles are required for a multiplication with the system parameter a; the re-
maining 20460 cycles are required for hashing, the higher order transformation,
four polynomial additions, one polynomial subtraction and testing whether the
polynomial can be compressed.

Verification Performance. Verifying a signature takes 45036 cycles on the Ivy
Bridge. Out of those, 16096 cycles are required for a polynomial multiplication;
11084 cycles are required for a multiplication with a; the remaining 17856 cycles
are required for hashing, the high-order transformation, a polynomial addition
and a polynomial subtraction, decompression of the signature, and unpacking of
the public key from a byte array.

Comparison. As we provide the first software implementation of the signa-
ture scheme we cannot compare our result to other software implementations.
In [14] only a hardware implementation is given which is naturally hard to com-
pare to. For different types of FPGAs and parallelism, an implementation of
sign/verify of 931/998 (Spartan-6 LX16) up to 12627/14580 (Virtex-6 LX130)
messages/signatures per second is reported. However, the architecture is quite
different; in particular it uses a configurable number of high-clock-frequency
schoolbook multipliers instead of an NTT multiplier. The explanation for the
low verification performance on the FPGA, compared with the software imple-
mentation, is that only one such multiplier is used in the verification engine.

Another target for comparison is a recently reported implementation of an
ideal lattice-based encryption system in soft- and hardware [12]. In software,
the necessary polynomial arithmetic relies on Shoup’s NTL library [22]. Mea-
surements confirmed that our basic arithmetic is faster than their prototype
implementation (although their parameters are smaller) as we can rely on AVX,
a hand-crafted NTT implementation and optimized modular reduction.

Various other implementations of post-quantum signature schemes have been
described in the literature and many of them have been submitted to eBACS [4].
In Table 2 we compare our software in terms of security, speed, key sizes and
signature size to the Rainbow, TTS, and C∗ (pFLASH) software presented in [8],
and the MQQ-Sig software presented in [11]. The cycle counts of these imple-
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mentations are obtained from the eBACS website and have been measured on
the same Intel Ivy Bridge machine that we used for benchmarking (h9ivy). We
reference these implementations by their names in eBACS (in typewriter font)
and their corresponding paper. For most of these multivariate schemes, the sign-
ing performance is much better, verification performance is somewhat better,
but they suffer from excessive public-key sizes.

We furthermore compare to software described in the literature that has not
been submitted to eBACS, specifically the implementation of the parallel-CFS
code-based signature scheme presented in [16], the implementation of the tree-
less signature scheme TSS12 presented in [23], and the implementation of the
hash-based signature scheme XMSS [6]. For those implementations we give the
performance numbers from the respective paper and indicate the CPU used for
benchmarking. Parallel-CFS not only has much larger keys, signing is also sev-
eral orders of magnitude slower than with the lattice-based signature software
presented in this paper. However, we expect that verification with parallel-CFS
is very fast, but [16] does not give performance numbers for verification. The TSS
software is using the scheme originally proposed in [17]. It makes an interesting
target for comparison as it is similar to our scheme but relies on weaker assump-
tions. However, the software is much slower for both signing and verification.
Hash-based signature schemes are also an interesting post-quantum signature
alternative due to their well understood security properties and relatively small
keys. However, the XMSS software presented in [6] is still an order of magnitude
slower than our implementation and produces considerably larger signatures.

Finally we include two non-post-quantum signature schemes in the compar-
ison in Table 2. First, the Ed25519 elliptic-curve signature scheme [3] and sec-
ond, RSA-2048 signatures based on the OpenSSL implementation (ronald2048).
Comparing to those schemes shows that our implementation and also most of
the multivariate-signature software can even be faster or at least quite com-
parable to established schemes in terms of performance. However, the key and
signature sizes of those two non-post-quantum signature are not beaten by any
post-quantum proposal, yet.

Other lattice-based signature schemes that have a security reduction in the
standard model are given in [7] and [5]. However, those papers do not give
concrete parameters, security estimates or describe an implementation.

5 Future Work

As the initial implementation work has been carried out it is now necessary in
future work to evaluate the security claims of the scheme by careful cryptanalysis
and development of potential attacks. Especially, as the implemented scheme
relaxes some assumptions that are required for connection to worst-case lattice
problems more confidence is needed for real world usage. Other future work is
the investigation of efficiency on more constrained devices like ARM (which, in
some versions, also feature a SIMD unit) or even low-cost 8-bit processors.
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Table 2. Comparison of different post-quantum signature software; pk stands for
public key; sk stands for private key. The sizes are given in bytes. All software was
benchmarked on h9ivy if not indicated otherwise.

Software Security Cycles Sizes
This work 100 bits sign: 634988 pk: 1536

verify: 45036 sk: 256
sig: 1184

mqqsig160 [12] 80 bits sign: 1996 pk: 206112
verify: 33220 sk: 401

sig: 20
mqqsig192 [12] 96 bits sign: 3596 pk: 333540

verify: 63488 sk: 465
sig: 24

mqqsig224 [12] 112 bits sign: 3836 pk: 529242
verify: 65988 sk: 529

sig: 28
mqqsig256 [12] 128 bits sign: 4560 pk: 789552

verify: 87904 sk: 593
sig: 32

rainbow5640 [9] 80 bits sign: 53872 pk: 44160
verify: 34808 sk: 86240

sig: 37
rainbowbinary16242020 [9] 80 bits sign: 29364 pk: 102912

verify: 17900 sk: 94384
sig: 40

rainbowbinary256181212 [9] 80 bits sign: 33396 pk: 30240
verify: 27456 sk: 23408

sig: 42
pflash1 [9] 80 bits sign: 1473364 pk: 72124

verify: 286168 sk: 5550
sig: 37

tts6440 [9] 80 bits sign: 33728 pk: 57600
verify: 49248 sk: 16608

sig: 43
Parallel-CFS [17] 80 bits sign: 4200000000a pk: 20968300
(20, 8, 10, 3) verify: - sk: 4194300

sig: 75
TSS12 [24] 80 bits sign: 93633000b pk: 13087
(n = 512) verify: 13064000b sk: 13240

sig: 8294
XMSS [7] 82 bits sign: 7261100c pk: 912
(H = 20, w = 4,AES-128) verify: 556600c sk: 19

sig: 2451
ed25519 [4] 128 bits sign: 67564 pk: 32

verify: 209328 sk: 64
sig: 64

ronald2048 112 bits sign: 5768360 pk: 256
(RSA-2048 based on verify: 77032 sk: 2048
OpenSSL) sig: 256
a Benchmarked on an Intel Xeon W3670 (3.20 GHz)
b Benchmarked on an AMD Opteron 8356 (2.3 GHz)
c Benchmarked on an Intel i5-M540 (2.53 GHz)
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