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Abstract. In this paper, we consider extending state transition dia-
grams (SDs) by new features which add new events, states and transi-
tions. The main goal is to capture when the behavior of a state transition
diagram is preserved under such an extension, which we call behavioral
refinement. Our behavioral semantics is based on the observable traces
of input and output events. We use assume/guarantee specifications to
specify both the base SD and the extensions, where assumptions limit
the permitted input streams. Based on this, we formalize behavioral re-
finement and also determine suitable assumptions on the input for the
extended SD. We argue that existing techniques for behavioral refine-
ment are limited by only abstracting from newly added events. Instead,
we generalize this to new refinement concepts based on the elimination of
the added behavior on the trace level. We introduce new refinement rela-
tions and show that properties are preserved even when the new features
are added.

1 Introduction

State transition diagrams (in short: SD) are used in various forms to model
software, e.g. modeling a software component which interacts with the environ-
ment based on events. In this paper, we consider behavioral models represented
as state transition diagrams which are incrementally extended by new features.
The main goal is to reason about the behavior and definedness of such an ex-
tended state transition diagram in a modular way.

The idea of incremental development is to start with a base model and then
to add small features in succession, which add previously unspecified behavior.
Extending an SD by a feature means to add new states and transitions.

Assuming such a (syntactic) extension of an SD, the question addressed here
is whether the old behavior is preserved when incrementally extending an SD.
This we call behavioral refinement. We use a behavioral semantics based on the
observable traces of input and output events, respectively. Behavior preservation
means that the resulting output trace is unchanged for all input streams, possibly
under some abstraction.

As an example consider the lock extension in Figure 1, which adds a new
locked state and ignores any input in the lock state except for the unlock event.
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Fig. 1. Locking Feature

By convention, we show the added elements of the new feature in bold text and
thicker lines.

In this example, it is easy to see that the behavior of the original base SD is
preserved if no lock event occurs. While this is a basic compatibility property, we
aim to go beyond. As we can see, even after traversing the lock extension, the SD
behaves as before. However, during the traversal the externally visible behavior
is altered. Furthermore, it may be the case that the SD does not return from
the extension if no unlock event occurs. We aim to capture these observations
in a formal calculus. For this, we address the following two main issues.

The first issue is that the extension also uses the off and set events of the
base SD. Due to this, existing refinement and simulation techniques, e.g. [16, 17,
18, 19, 1, 14] , are not sufficient as they only abstract from newly added events,
by definition. This is important in many cases when events are reused in the
extension, as in this example above. For this purpose, we use a new concept which
eliminates behavior on the trace level. Such an elimination essentially removes
the added behavior on the level of observable input/output traces. Technically,
we will use entry and exit events to detect and eliminate those segments of the
trace that correspond to the newly added behavior.

The second, main point about this example is that we need assumptions
on the permitted inputs, both for the base SD as well as for the extension,
to reason about the behaviour. For instance, we may want that the extension
always terminates and returns to the old SD. In the above example, the ex-
tended SD may loop forever in state locked. This can be avoided by restric-
tions on the permitted input. In general, both the base SD and the extension
may have assumptions on the permitted input. From these two assumptions,
we aim to create a single, combined assumption on the permitted input for the
extended SD.

As in other assume/guarantee calculi, we use assumptions to specify what
inputs are permitted. These need to make sure that the SD is defined for the
permitted inputs, i.e. there is a defined transition for each event in an execution
for a given input stream. Our notion of SDs is similar to interface input/output
automata in [8], which use a separate state-based model to describe the input
assumptions. Here, we use basic predicates to specify the input, not models. Note
that our notion of automata is different from interface automata [1, 4], which
are intended to specify which input events are permitted for an interface.
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For instance, in the example above, we also want to ensure that the lock event
only occurs in state B, not in state A where it is not defined. Thus, we have to
reason about the permitted inputs, both in the extension and in the base SD.
This is the main motivation for the assume/guarantee specifications, which are
used to formalize this in a modular way.

In summary, the goal is to extend SDs by additional features with new states
and transitions, and then to reason about the behavior of the extended SD. For
this, we develop a notion of assume/guarantee specifications for SDs. The main
idea is to make the permitted inputs and guarantees explicit on the trace level.
This follows typical assume/guarantee specifications. We introduce new concepts
for semantic refinement based on behavior elimination and present new results
when an extension preserves behavior with respect to the base SD.

Our work is similar, on a conceptual level, to aspect- and feature-based pro-
gramming languages. For these, there are results on so-called conservative ex-
tensions or observer aspects, which only add additional behavior but do not
modify behavior (see [12, 5]). In other words, we aim to apply these ideas also to
SDs, where we are reasoning only about input/output behavior, and not about
internal state as on the programming language level. There was recent work to
extend automata by aspects, as for instance [20], which includes a calculus for
reasoning about automata, but does not identify specific classes of refinement
and property preservation. There is earlier work on elimination based refinement
in [13], which also permits non-deterministic SDs and also does not require ex-
plicit exit events. While there are first results on behavior preservation, in [13] it
is not possible to reason about definedness and termination of such extensions.

The paper is organized as follows. In the next section, we introduce the syntax
and semantics of SDs. Then, we define syntactic extensions on SDs, followed
by behavior eliminations on the semantic level. In Section 3, we introduce new
refinement concepts based on these elimination concepts. In Section 4, we present
new results to show when a refinement relation can be established for an SD
extension. Finally, Section 5 discusses related work, followed by conclusions.

2 State Transition Diagrams

We model software systems by SDs that describe the behavior of a software
system. More precisely, an SD consists of

(i) States St, with an initial state s0 ∈ St
(ii) Input events I and disjoint output events O
(iii) A vector of internal variables vn, ranging over a vector of values V n with

initial values V initial.
(iv) A transition function tr : St× I × V �→ St× V ×O∗

A transition is triggered by an input event and produces a set of output events.
It may have an action that it initiates. This action describes the output events
triggered by the transition and the changes on the internal variables. We use the
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notation event / action for transitions. The vector of variables describes the
values of the variables and is also called variable valuation.

We focus on deterministic SDs as defined above. For the non-deterministic
case, there exist several other issues, as considered in [13].

2.1 Behavioral Semantics

Our semantic model employs an external black-box view of the system. It is
based on events from the outside that trigger transitions. Only the observed
input and output events are considered, not the internal states. A possible run
can be specified by a trace of the events and the resulting output of the SD.

Formally, we assume traces (i, o) over finite and infinite streams over I and O,
respectively, denoted as Iω = I∗ ∪ I∞ and Oω = O∗ ∪ O∞. Note that for each
input event, there is a set of output events if a transition is defined. Hence for
the n-th element in i, the n-th element of S(i) is the corresponding set of output
events.

For an SD S and a finite or infinite input stream i, we say S is defined for i,
if there is always a defined transition for each input event in i when executing S
with input i. This is written as Def(S(i)). For instance, in the above example,
the lock SD is undefined for the input unlock in the initial state. We write S(i)
to denote the output of S for i if S is defined for i.

For a state s and a variable valuation V , we write S(i, s, V ) = (o, s′, V ′) to
denote the state s′ and variable valuation V ′ after running S at state s with
input i and V . This assumes that S is defined for i at state s. We also write
S(i) = (o, s, V ) if S is run from the initial state. We write S(i) = s if o and V are
not of interest. Two SDs are considered equivalent if they behave equivalently
for all inputs.

We denote the empty trace as Nil and use the following notation on traces:

– s :: s′ concatenates two streams, where s is assumed to be finite.

– a : s creates a stream from an element a by appending the stream s.

When clear from the context, we often write just e instead of {e} for singleton
sets, and also a : a instead of a : a : Nil. Furthermore, first(s) is the first element
of a stream s. We denote by I\In the elimination of elements of In from I and
by O + I the union of disjoint sets.

As an example, consider the alarm SD as shown in Figure 2, which is extended
by a flexible snooze function called Snooze. When the alarm rings, the user can
press the snooze button, which sets a new alarm (after a snooze period). In this
example, observe that the extension uses new events, like Snooze(), but also
existing ones like AskT ime().

For instance in Figure 2, a possible trace (with input events shown above the
corresponding output events) is T =
(SetAl : TimerEvent : Snooze : TimerEvent : AlOff,
setTimer : StartAlarm : {StopAlarm, setTimer} : StartAlarm : StopAlarm).
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Fig. 2. Alarm extended by Snooze

2.2 Syntactic Extensions of State Transition Diagrams

When adding new features to an SDs, we use the following notion of syntactic
extensions of SDs. While we permit any syntactic extensions in the definition
below, this will be restricted further below to establish refinement relation on
the semantical level.

For an SD S, we say S is extended by E to an SD S′, if:

(i) S′ results from adding both states and transitions on S,
(ii) S′ may extend the input and output events of S, and
(iii) S′ may add internal variables to S.

S′ is also called an extension of S by E. Examples of extensions are shown via
the bold states and transitions in Figures 1 and 2.

We can alternatively define extensions as a set of states and transitions to be
added, which corresponds to a partial or incomplete SD. This is howevermore sub-
tle, as we need to ensure that a composed SD is well defined, which is implicit here.

3 Assume-Guarantee Specifications and Refinement

In the following, we develop concepts to explicitly specify the assumptions on
the input and the resulting output guarantees as in typical assume-guarantee
specifications [1]. We will use predicates over finite and infinite streams. We
denote assumptions as a predicate A where A(i) is a Boolean value over a stream
i, and predicatesG as guarantees over a pair of input and output streams,G(i, o).

We use the following notation for assume guarantee specifications over SDs.
Assume an SD S, an assumption A and a guarantee G over streams. Then

A/S/G

states that for all input traces i where A holds, S is defined for i with S(i) = o,
and G(i, o) holds.

We also write just
A/S

which then denotes that S is defined for inputs i where A(i) holds.
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Assumptions can express two things, unwanted cases and unspecified cases,
which we do not distinguish here. Unspecified cases are cases which shall be
defined in a later phase by incremental refinement, while unwanted cases must
be avoided by the environment and are not allowed.

The typical purpose of assumptions in our treatment of extensions is to spec-
ify which inputs are allowed in what phase of a traversal. For instance, when
traversing an extension, we may only permit specific events.

The common notion of refinement on SDs is to allow more inputs and to
produce less outputs, see for instance [1]. We can formalize more inputs easily
by our notion of assumptions. We consider guarantees on the new output based
on assumptions for new inputs. Note that we do not allow one to drop individual
output events in the output stream.

Assuming a specification A/S/G, we can relax the assumptions if the guar-
antees hold. Also, the guarantees can be strengthened. Formally, A′/S/G′ is a
refinement of A/S/G if A(i) =⇒ A′(i) and G′(i, o) =⇒ G(i, o).

3.1 SD Extensions and Refinements

In the following, we aim to cover extensions an SD which add new features with
additional behavior. The problem is now that assumptions and guarantees need
to consider different input and output events over an extended interface.

For the purpose of refinement, we consider in the following equality on the
output traces as follows: Assuming a specification A/S, then A′/S′ is a refine-
ment of A/S, if A(i) =⇒ A′(i), and A(i) implies S(i) = S′(i).

This means that S and S′ must behave identically for the input permitted
for S′, i.e. when A holds. In other words, when S′ is restricted to the input
for A for S, they behave the same. Internally, the two SDs may differ in states
and transitions. Compared to the above assume/guarantee specifications the
following holds: If A′/S′ is a refinement of A/S and G and G′ coincide on the
inputs permitted for A, then A′/S/G′ is a refinement of A/S/G.

A typical example is an extension by a new event, after which the system may
behave in a completely different way. This notion of refinement is for instance
used in [1] when new events are added, but also in [7, 15], even though different
formalisms are used. The main limitation here is that no guarantees hold after a
new event occurs. In detail, an extension may add new events and the assump-
tions A do not apply for any input which contains new elements. In the lock
example, an assumption predicate over the base SD only considers set and off
as input events, not lock. Furthermore, this is only a notion of refinement and
does not give any statement when the extended SD is defined.

3.2 Trace Eliminations for Added Features

In the following, we detail our approach to eliminate the behavior of the newly
added features. This is used for our notion of behavioral refinement in the
following sections. We first discuss important restrictions on SD extensions to
determine suitable eliminations and to define the refinement relation. Then,
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in the subsections below, we define the eliminations and refinement relations
precisely.

We determine eliminations of added features on the behavioral level, i.e. on
traces. For this, we assume that the new features are triggered by an entry event
from I and return to the original SD with an exit event. In the case of the
lock feature, the entry event is the lock event, and the exit event is the unlock
event. Then eliminations shall remove all sequences of the form entryEvent : · · · :
exitEvent. We call this trace-based eliminations.

For traces over such an extended SD S′ over S with extension E, we define
eliminations based on entry and exit events. We say that an extension E is
entry-exit triggered, if there are some entry events Een, which do not occur
in S. Furthermore, for each entry event e ∈ Een there is a set of exit events
Eex,e. This means that the states and transitions in E are only reached via some
entry transition with an event e ∈ Een. Furthermore, for each such entry point
with e, it must be ensured that the extension returns to the original SD S if and
only if an event from Eex,e occurs. Furthermore, we assume that it returns to
the same state in S where the entry event occurs. This state is also called join
state, similar to join points in aspect-oriented languages.

We define eliminations based on the entry and exit events as follows. Assuming
E, S, and S′ as above, an elimination el removes all trace segments of the form

(i1 : · · · : in, o1 : · · · : on),
where i1 ∈ Een, in ∈ Eex,i1 and ij /∈ Eex,i1 for 1 < j < n. Furthermore, an
infinite trace segment (i1 :: i, o) is eliminated if i1 ∈ Een and no element from
Eex,i1 occurs in (i, o).

In other words, if the extension does not return, we cut off the complete,
infinite part after the entry. Then, we define el(tr) for a trace tr, where the
elimination function el is applied from left to right over the full trace tr. This
results in a finite trace if there is an entry event without a corresponding exit
event.

Note that we use an elimination el in two forms. For input and output traces,
we write el(i, o) = (i′, o′). We also write el(i) = i′ which yields an input stream.

As an example, we continue with the above trace T for the alarm
SD in Figure 2. The goal is to eliminate the effect of the new
Snooze feature. The corresponding traversal through the old SD is
T ′ = ( SetAl : TimerEvent : AlOff ,

setTimer : StartAlarm : StopAlarm).
In this example, we have eliminated the trace segment Snooze : TimerEvent

and {StopAlarm, setT imer} : StartAlarm which corresponds to the new behav-
ior which the new feature adds. Then, we can show that the original behavior of
the SD is preserved by the extended SD ”modulo” the elimination.

3.3 Weak Elimination-Based Refinement

We now consider extensions which add behavior temporarily, but then return to
existing, old behavior (unless they diverge). For such a case, we use eliminations
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to define a refinement relation. Elimination is used to compare the input/output
traces of the original and the extended SDs. It is a generalization of the typical
notions of refinement which remove added behavior by removing the new events.
We first define the refinement notion and then discuss its utility.

Assume S over (I, O) is extended to S′ with some extension E over (IE , OE).
The extended system A′/S′ is aweak elimination-based refinement of A/S,
if the following hold:

(i) for any stream i over I, A(i) =⇒ A′(i) and S(i) = S′(i).
(ii) for any stream i over I ∪ IE , if A

′(i) holds, then el(i) is a stream over I,
A(el(i)) and further el(i, S′(i)) = (el(i), S(el(i))).

For this notion of refinement, we require that the extended SD, S′, behaves as
S under an elimination. We assume that for any permitted input i for S′ (i.e.
A′ holds), the elimination on i results in a syntactically correct input for S and
A holds. Otherwise, A may not be defined for el(i). In other words, A′ allows
more input, even over an extended input event set, but additional traces must
correspond to a trace of the original SD. This is enforced by the restriction that
el(i) is a stream over I. A possible case when an elimination may not remove all
new elements not in I is when an exit event occurs before an entry event.

The notion of weak refinement essentially says that an SD behaves as before
unless a new feature is traversed. It will behave as before after multiple use of a
new feature, if the new features return to the original SD. Regarding properties
of SDs, we can use this notion of refinement to establish safety properties as
follows. Safety properties usually state that some ”bad” events do not occur.
If an SD S does not produce a ”bad” output event b under some assumptions
A and an extension E also does not produce b (possible under assumptions),
then the combined system also does not produce the bad event b. A more basic,
but important question is when an extended SD is defined. To establish our
refinement we need to fix assumptions under which the extended SD S′ is defined,
considering both assumptions for the base SD S and the extension E. This will
be covered in Section 4.

Compared to the analysis of different kinds of aspects considered in [5], this
case is similar to observers with possible non-termination in the extension. In
[5], there is also the notion of observers with abortion, i.e. termination of the
program. This concept is not sufficient for our setting of SDs as traversals may
remain infinitely long in an extension. Instead, we consider possible divergence
and termination of the extension by assumptions, as covered in the next section.

3.4 Strong Elimination-Based Refinement

In the above notion of weak elimination-based refinement, we have assumed that
the extended SD behaves as the original one under the elimination. We did not
require that a traversal through the extension terminates. In case an extension
of an SD is entered but the SD does not return from the extension, we only
compare the finite parts of the execution. In the following, we define and discuss
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a stronger notion of refinement, which requires termination for any traversal of
the extension.

Assume S over (I, O) is extended to S′ with some extension E over (IE , OE).
The extended system A′/S′ is a strong elimination-based refinement of
A/S if for a stream i over I ∪ IE A′(i) implies the following:

(i) for any stream i over I, A(i) =⇒ A′(i) and S(i) = S′(i).
(ii) for any stream i over I ∪ IE , if A

′(i) holds, then el(i) is a stream over
I, A(el(i)) and further el(i, S′(i)) = (el(i), S(el(i))). Furthermore, if i is
infinite, then el(i) is also infinite.

With the last clause in the definition, which is the only difference to the notion
of weak refinement, we ensure that a possible extension does not diverge when
entered. Clearly, this definition is only sensible if we consider infinite traces which
can express divergence.

As strong elimination-based refinement entails weak elimination-based refine-
ment, it can be used to show safety properties as above. As extensions terminate,
also many liveness properties are preserved. A typical liveness property is that
some (output) event o eventually occurs in all possible executions. In case this
holds for the base SD, this is preserved by strong refinement. In this case, an
extension may produce extra o events, but it will return to the original SD which
eventually produces the o event.

4 Establishing Elimination-Based Refinements

In the following, we aim to establish refinement relations for a given base SD S
with an extension E. Based on assumptions for S and E, we show that there
exist specific assumptions under which an extension E is an elimination-based
refinement. This also serves to reason modularly about extensions of SDs based
on properties and assumptions for the SD and the extension. As discussed above,
weak elimination-based refinement is suitable for safety properties, while strong
elimination-based refinement can also be used for liveness properties.

So far, we have defined assumptions for the inputs of a normal SD. Next
we define assumptions specifically for extensions of an SD, which only cover the
input events when traversing the added transitions and states in an extension. In
other words, we restrict the input while the SD is in the traversal of an extension.

For this purpose, we first generalise assumptions to specific states of an SD.
We write A(s, i) for A to hold at some state s with input i. Thus, the above A(i)
means that A(so, i) for A to hold in the initial state.

Assume S′ is an entry-exit triggered extension of S by E. Then for a predicate
AE on inputs streams, we denote the definedness of an extension E under
AE as AE/E, to specify that traversals of E in S′ are defined. Formally, for all
join states s of S′, i.e. where an entry event is defined, and some input stream i,
where the first element of i is an entry element, and either the last element is the
first exit event in i, or no exit event occurs in i, we have: If AE(i) holds, then
here is a defined traversal (s, i, o) for some output sequence o. As the extension
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is entry-exit triggered, the definition entails that E returns to a state in S for
any exit event.

Assume S with input events I is extended to S′ with some extension E with
entry events Een and exit events Eex. For A/S and AE/E, we define the ex-
tension assumptions EA(A,E) as follows: EA(A,E)(i) holds if

(i) el(i) is a stream over I and A(el(i)) holds and
(ii) for any occurrence of an entry event en ∈ Een in i of the form i0 :: en : e ::

ex, where ex ∈ Eex and e has no exit event, then S′ is defined for i0 :: en
and AE holds for en : e :: ex.

Intuitively, EA(A,E) has to ensure the following. First, under elimination
EA(A,E) has to hold if A holds. Secondly, for the traversal of the new ex-
tension, the assumptions for AE have to hold. Note that the first condition, i.e.
that el(i) is a trace over I, ensures that new segments in the trace with events
not in I are properly started with an entry event and terminated by an exit
event. Otherwise, the elimination results in a trace which has events not in I.

We define E to be a conservative extension of S if it does not modify
variables of S. In other words, the newly added transitions do not modify the
variables in S. For conservative extensions, we can show that they do not modify
behavior of the extended SD. It may still happen that the control flow does not
return from the extension to the original SD.

The following theorem shows that an extended SD is defined for the traces in
the extension assumptions EA(A,E).

Theorem 1. Assume S is extended to S′ with some conservative, entry-exit
triggered extension E. If A/S and AE/E, then EA(A,E)/S′.

Proof. The proof proceeds by induction on input streams. Assume i is an input of
S′. The definedness of S′ underEA(A,E) follows from the cases as in the definition
of EA(A,E) as follows. In case the input only has elements from I, the case is
trivial. In case an entry event occurs in i with S being at a state s, we have to show
that S′ is defined, which follows from the definition ofEA(A,E). Then the traversal
in the extension is defined as AE holds for any state and any variable valuation.
In case the traversal returns by some exit event to s, we observe that the traversal
has not changed the variables of S as it is conservative. Hence the execution of S′

at state s continues as S would in this state. As A(el(i)) holds, we can infer that
also S′ is defined until the next occurrence of an entry event. In case the traversal
does not return, AE ensures definedness. ��
For a property A over streams we say A is input-consistent, if A(i) implies
A(i′) for all prefixes i′ of i, i.e. there exists an i′′ with i = i′ :: i′′. This assumption
is needed for weak refinements, as non-termination may occur in an SD in an
extension. Consider an input i which is permitted for the base SD. Then, in an
extension an entry event may occur at i′, which is a prefix of i. The elimination
on the trace of the extended SD will cut off the trace after i′ in case of divergence.
For the refinement to hold, i′ must then also be permitted in the assumptions
for the base SD.
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Theorem 2. Assume S is extended to S′ with some conservative and entry-exit
triggered extension E and A is an input-consistent property. If A/S and AE/E,
then EA(A,E)/S′ is a weak refinement of S.

Proof. The proof proceeds by induction on the input stream i of S′ and follows
the proof of the above theorem. In case E has no entry events, the case is trivial.
We show el(i, S′(i)) = (el(i), S(el(i))) inductively over the stream of entry events
in i. Assuming it holds for a prefix of io of i and i = i0 : eentry : i′. As in the
above proof, we relate the execution in S′ with S under the elimination. In case a
traversal of the extension returns, S′ behaves as S as in the proof above after the
return, and we can show the equation easily. In case of divergence, there is no
exit event in i′ and we have el(i) = i0. Then also el(i, S′(i)) = (el(i), S(el(i))) =
(i0, S(i0)). Furthermore, we have to show A(el(i)) follows from A′(i). The critical
case here is when a trace diverges in an extension, as el will cut off after the last
entry event. Here, the assumption on input-consistency is needed to show that
A(el(i)) holds. ��
This theorem shows that there exist assumptions, i.e. EA(A,E), for which an
extension (with conditions as above) is a weak elimination-based refinement.
Based on this, we can transfer safety properties of an SD to an extended SD as
discussed above.

Another issue is to compute EA(A,E) efficiently from the definition of
EA(A,E) in practice. The main problem for this is to determine all the in-
put sequences for which a join state can be reached. If this is possible in an
SD, we may also compute an effective representation of EA(A,E) by composing
input sequences. We illustrate this by the following example.

Consider the lock extension in Figure 1, which adds a new locked state and
permits any input in the lock state. Let Set be the base SD, Lock the extension
and SetLock be the full SD with the extension as in Figure 1. Then we use regular
expressions to define assumption predicates, where the set of input sequences
defined by the regular expression defines when the predicate holds.

We define ASet =(set : off)∗ and ALock = lock : ( set,off,lock) ∗ :: unlock. For
the extended SD with the lock, we define ASetLock = ( set : (off :set)∗ :: ( lock
: ( set,off,lock) ∗ :: unlock )∗ :: off)∗ . We use these sets to denote assumptions
predicates which hold for all streams in the corresponding set.

In this example, ASetLock is the extension assumption EA(ASet, ALock) for
ASet/Set and ALock based on the above definition. Applying the elimination
to ASetLock yields ASet and set : (off :set)∗ specifies the inputs leading to the
join points (here state B). Based on this, we have ASetLock/SetLock is a weak
refinement of ASet/Set.

Notice that we permit that a traversal remains infinitely long in the extension,
which we consider as divergence when viewed from a refinement perspective of
the base SD. Thus, for A′

Lock = ALock∪(lockω), where lockω denotes the infinite
stream of lock events, we still have weak elimination-based refinement assuming
A′

Lock/Lock (instead of ALock/Lock).
If an extension terminates under specific assumptions, then we can show the

stronger property of simulations. For an entry-exit triggered extension E, we say
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AE/E terminates if there is not infinite traversal through E which is permitted
by AE. For instance, in the lock example, there are possible traversals which
stay infinitely long in the extension if no unlock event occurs. This can however
be disallowed by the assumption AE.

Theorem 3. Assume S is extended to S′ with some conservative and entry-exit
triggered extension E. If A/S and AE/E, and further AE/E terminates, then
EA(A,E)/S′ is a strong refinement of S.

The proof proceeds as the above result on weak refinement. Here, the proof is
easier as all traversals permitted for the extension terminate.

Following the example above, we have ASetLock/SetLock is also a strong
elimination-based refinement of ASet/Set with extension ALock/Lock, as all per-
mitted input sequences in ALock are finite and return to state B.

Recall that strong elimination-based refinement preserves liveness properties.
Here, an example is the property that o occurs eventually. This holds, based on
strong refinement for ALock/Lock. It does not hold assuming A′

Lock/Lock, as the
traversals may remain infinitely long at the lock state.

5 Related Work

In the following, we discuss related work on statechart refinement and related
concepts like UML state machines and other automata models.

Recently, the concept of eliminations was introduced with a focus on com-
patibility [13], in a setting of non-deterministic SDs with chaos semantics. The
approach was also defining eliminations based on traversals of the feature ex-
tension, not purely on the trace level as done here. Based on an analysis of
the traversals and SD internal states, it was shown when such extensions are a
refinement in the sense presented here. Here, we are able to show results on de-
finedness and strong refinement, where the assumptions assure the termination
of the extension. This is not possible in prior approaches.

Earlier work on statechart refinement [16][7][15], which is using similar seman-
tic models of statecharts, has developed several rules for refinement. The work in
[14] develops a refinement calculus for statecharts as in [16] based on a mapping
to the Z language. The basic mechanism for these is also the elimination of new
input and output events, as discussed before. Refinement with the focus on step-
wise development and composition of services is covered in [3]. Other work on
UML in [19], which builds on concepts for object lifecycle modeling [17], consid-
ers the problem of consistent inheritance and observation consistency, which are
similar to our notion of compatibility. In all of the above, refinement relations
are defined by simply removing the new events or ignoring behavior after new
events.

For related work on UML modeling, the concepts developed in [18] essentially
cover basic cases of refining a state into several ones, which is different and
not covered here. The work in [11] focuses on modeling the added features as
independent and modular entities, modeled as statechart fragments.
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Other work on modularity for model checking [2][10] also considers the prob-
lem of extending automata models by new states and transitions. In these works,
composition of statecharts leads to proof obligations for specific properties to
maintain. These are in turn to be validated by a model checker. Hence, these
approaches are quite different from the work presented here. Specifically, they
require the specification and establishment of each individual property after the
extension. Similar goals have been pursed in the context of aspect-modeling for
state machines, as shown in [20].

There is also recent work on compatibility for interface automata [1, 4]. In
contrast to interface automata, we model the assumptions of an SD separately.
This is conceptually similar to the work on interface input/output automata in
[8], which also uses a separate model to describe the input assumptions. The
assumptions are modeled as interface automata, which is just a more specific
way to denote the input assumptions. However [8] does not focus on refinement
and modular reasoning about definedness. More recent work on modal interface
automata [9, 6] considers refinement more explicitly by modalities transitions
which describe the possible, later refinements. This is different from our work,
as we aim at adding behavior without requiring limitations on the SD to be
extended.

Compared to our approach of using simply predicates, the work in [8] is using
interfaces automata in a more specific way to denote the input assumptions.
Unlike [8], we focus more on semantic refinement and modular reasoning about
definedness.

6 Conclusions

In this paper, we have presented a new approach to reason about extensions
of state transition diagrams based on assume/guarantee specifications. We have
focused on extensions which only add new behavior, similar to observer aspects or
conservative extensions on a programming language level. A particular problem
is that new features may have additional input and output events, but may
also reuse existing events. This makes it difficult to reason for what input an
extended SD is defined and when it preserves the original behavior. Due to this,
existing notions of refinement do not apply. Here, we have developed a new
approach towards refinement which allows one to reason about such extended
state transition diagrams in a modular way.

In particular, we have developed new refinement concepts for weak and strong
refinements, based on an elimination of the newly added behavior on the trace
level. These eliminations can be seen as a generalization of typical abstractions,
which only remove new input/output events of an extension. Secondly, we have
presented an approach for compositional reasoning of such extended SDs using a
assume-guarantee calculus. Based on assumptions for the base SD and the exten-
sion, we can show when an SD is defined and property preserving after adding
the extension. In detail, we show when adding a new feature adds only addi-
tional behavior, possibly with divergence. Similar to the considerable work on
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property preserving aspects and features on the programming language level, we
have captured typical extensions like observers also for state transition diagrams
in our new approach.

Our approach based on assumptions and guarantees can express various prop-
erties of such SDs. We have illustrated that our results can be used to preserve
safety and liveness properties when extending an SD. Further work is needed to
study in detail how to model and validate typical safety of liveness properties
in this form. Also, further work will address how to compute the assumptions
needed for an extended SD in an effective way.
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