
Integrating Proved State-Based Models
for Constructing Correct Distributed Algorithms

Manamiary Bruno Andriamiarina1, Dominique Méry1, and Neeraj Kumar Singh2

Université de Lorraine, LORIA, BP 239, 54506 Vandœuvre-lès-Nancy, France
{Manamiary.Andriamiarina,Dominique.Mery}@loria.fr

Department of Computer Science, University of York, United Kingdom
neeraj.singh@cs.york.ac.uk, Neerajkumar.Singh@loria.fr

Abstract. The verification of distributed algorithms is a challenge for formal
techniques supported by tools, such as model checkers and proof assistants. The
difficulties lie in the derivation of proofs of required properties, such as safety
and eventuality, for distributed algorithms. In this paper, we present a method-
ology based on the general concept of refinement that is used for developing
distributed algorithms satisfying a given list of safety and liveness properties. The
methodology is a recipe for reusing the old ingredients of the classical temporal
approaches, which are illustrated through standard example of routing protocols.
More precisely, we show how the state-based models can be developed for spe-
cific problems and how they can be simply reused by controlling the composition
of state-based models through the refinement relationship. The service-as-event
paradigm is introduced for helping users to describe algorithms as a composition
of simple services and/or to decompose them into simple steps. Consequently,
we obtain a framework to derive new distributed algorithms by developing
existing distributed algorithms using correct-by-construction approach. The
correct-by-construction approach ensures the correctness of developed
distributed algorithms.

Keywords: Distributed algorithms, state-based models, composition,
correct-by-construction, Event-B, liveness, eventuality.

1 Introduction

The formal modelling of distributed algorithms constitutes a challenge for methods and
tools: these algorithms can be used to evaluate strengths and weaknesses of formal tech-
niques supported by tools, such as model-checkers [12] and proof assistants [23, 27].
Formal techniques address properties, like safety, liveness and fairness. However, for-
mal design and study of distributed algorithms also introduce other constraints to take
into account, including time aspects [25], probabilistic features [17], fault-tolerance,
scalability, dependability, etc. The correct-by-construction paradigm [15] offers an alter-
native and a promising approach to prove and derive correct distributed algorithms us-
ing a progressive and validated methodological approach [7]. More precisely, refinement
is a key concept for organizing or structuring the (re-)development and (re-)discovery
of distributed algorithms [2, 20] by reusing or replaying the former developments.

E.B. Johnsen and L. Petre (Eds.): IFM 2013, LNCS 7940, pp. 268–284, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



Integrating Proved State-Based Models 269

In this paper, we present a way to organise incremental refinement-based designs of
distributed algorithms. Our methodology is based on structures coping with the mod-
elling of distributed algorithms and providing a semantical framework for expressing
both safety and liveness properties. We provide a list of recipes for reusing the old in-
gredients of the classical temporal approaches, by integrating refinement. Refinement-
based development necessitates guidelines for helping the user to develop systems;
these guidelines have to be able to incorporate refinement and make the composition
of different interacting systems as simple as possible. When dealing with composition
of interacting systems, there are more elements to prove, since we should demonstrate
that the interacting systems are without interference [21]. We propose to minimize the
complexity of proofs and formalisation, by reusing previous developments and proofs,
and by organizing them. We introduce here a component-driven development of an al-
gorithm: the service-as-event paradigm. A component actually represents a phase or a
step of the algorithm: for instance, there are initialisation, requesting critical sections
or stabilisation phases. It should be noted that we work on distributed algorithms ex-
hibiting the following properties: the algorithms can be divided into components that
describe phases local to nodes; and these phases are coordinated and synchronized ac-
cording to the local states of the nodes. The main goal is to reuse as much as possible
previous proofs of former refinement-based developments to model the phases.

The current approach extends the methodology described in [19] for developing
sequential programs and combining phases, that we have experienced on algorithmic
classical case studies related to the distributed protocols. We have noticed that graphi-
cal (sequence) diagrams can be used for expressing possible scenarios or phases of the
protocols/algorithms, as defined by Tanembaum in [26]. The initial objective was to in-
tegrate such graphical notations, for co-proving a sequential program characterised by
a pre/post specification. In a large number of cases, by using these diagrams and apply-
ing the correct-by-construction paradigm, we are able to derive algorithmic solutions
annotated with invariants that can be checked and verified. However, these diagrams are
not abstract enough to express properties on traces and fairness, and are also difficult to
refine, while preserving properties such as fairness or liveness. Therefore, we limit the
usage of these diagrams to the identification of algorithmic phases. The phases of an al-
gorithm are defined by an initial (PRE) and a final (POST) states; and these phases are
linked sequentially, by temporal operators, like leads to (�). The purpose of our work
is to link and coordinate phases to obtain targeted distributed algorithms, by integrat-
ing and composing formal models, using refinement diagrams and the service-as-event
paradigm.

Our paper is organised as follows. Section 2 introduces the modelling framework.
Section 3 depicts the temporal framework for refinement-based development, more
precisely state properties and refinement diagrams. Section 4 discusses structures for
refinement-based development: the temporal coordination and decomposition of mod-
els, using the service-as-event paradigm. Section 5 illustrates our methodology with the
study of the protocol ANYCAST RP. Finally, Section 6 concludes this paper along with
the future work.



270 M.B. Andriamiarina, D. Méry, and N.K. Singh

2 Choice of a State-Based Modelling Language

We choose EVENT B [1] as a state-based modelling language, mainly because of the
effective refinement of models: an abstract model expressing the requirements of a given
system can be verified and validated easily; a concrete model corresponding to the ac-
tual system is constructed incrementally and progressively by refining the abstraction.
Event-B is also supported by a complete toolset RODIN [24] providing features like re-
finement, proof obligations generation, proof assistants and model-checking facilities.

The EVENT B modelling language can express safety properties, which are either
invariants or theorems in a model corresponding to the system. Two main structures are
available in EVENT B : (1) Contexts express static informations about the model; (2)
Machines express dynamic informations about the model, safety properties, and events.
An EVENT B model is defined either as a context or as a machine. A machine organises
events (or actions) modifying state variables and uses static informations defined in a
context. These basic structures are extended by the refinement of models which relates
an abstract model and a concrete model.

Modelling Actions Over States. An EVENT B model is characterised by a (finite) list
x of state variables possibly modified by a (finite) list of events. An invariant I(x) states
properties that must always be satisfied by the variables x and maintained by the activa-
tion of the events. The general form of an event e is as follows: ANY t WHERE G(t,x)
THEN x : |P(t,x,x′) END and corresponds to the transformation of the state of the vari-
able x, which is described by a before-after predicate BA(e)(x,x′): the predicate is se-
mantically equivalent to ∃t ·G(t,x)∧P(t,x,x′) and expresses the relationship linking the
values of the state variables before (x) and just after (x′) the execution of the event e.
Proof obligations are produced by RODIN, from events: INV1 and INV2 state that an
invariant condition I(x) is preserved; their general form follows immediately from the
definition of the before-after predicate BA(e)(x,x′) of each event e; FIS expresses the fea-
sibility of an event e, with respect to the invariant I. By proving feasibility, we achieve
that BA(e)(x,z) provides a next state whenever the guard grd(e)(x) holds: the guard is the
enabling condition of the event.

Model Refinement. The refinement of models extends the structures described previ-
ously, and relates an abstract model and a concrete model. This feature allows users
to develop EVENT B models gradually and validate each decision step using the proof
tool. The refinement relationship is expressed as follows: a model AM is refined by a
model CM, when CM simulates AM (i.e. when a concrete event ce occurs in CM, there
must be a corresponding enabling abstract event ae in AM). The final concrete model is
closer to the behaviour of a real system that observes events using real source code. The
relationships between contexts, machines and events are illustrated by the following
diagrams (Fig.1) , which consider refinements of events and machines.



Integrating Proved State-Based Models 271

Fig. 1. Machines and Contexts relationships

The refinement of a formal model allows us to enrich the model via a step-by-step ap-
proach and is the foundation of our correct-by-construction approach [15]. Refinement
provides a way to strengthen invariants and to add details to a model. It is also used to
transform an abstract model to a more concrete version by modifying the state descrip-
tion. This is done by extending the list of state variables (possibly suppressing some
of them), by refining each abstract event to a set of possible concrete versions, and by
adding new events.

We suppose (see Fig.1) that an abstract model AM with variables x and an invariant
I(x) is refined by a concrete model CM with variables y. The abstract state variables, x,
and the concrete ones, y, are linked together by means of a, so-called, gluing invariant
J(x,y). Event ae is in abstract model AM and event ce is in concrete model CM. Event ce
refines event ae. BA(ae)(x,x′) and BA(ce)(y,y′) are predicates of events ae and ce respec-
tively; we have to discharge the following proof obligation:

I(x) ∧ J(x,y) ∧ BA(ce)(y,y′) ⇒ ∃x′ · (BA(ae)(x,x′) ∧ J(x′,y′))

We have briefly introduced the EVENT B modelling language and the structures pro-
posed for organising the development of state-based models. In fact, the refinement-
based development of EVENT B requires a very careful derivation process, integrating
possible tough interactive proofs for discharging generated proof obligations, at each
step of development.

3 State Properties and Refinement Diagrams

This section extends semantically EVENT B and introduces a way to deal with liveness
properties using especially the refinement diagrams and the leads to (�) operator. Re-
finement diagrams have been introduced in a previous work [19], in order to help to
develop sequential programs using refinement. The notation using the leads to operator
A� B is defined by the temporal assertion “�(A⇒♦B)”. This formula means that every
A will eventually be followed by B.

Extending the Scope of EVENT B Properties. EVENT B allows users to express safety
properties on models considered as reactive systems. An EVENT B model is valid
with respect to a set of discharged proof obligations. However, since we have a list
of events for each model, we can simulate reactions to events by extending the semanti-
cal scope of EVENT B properties. This extension of the properties taken into account by
EVENT B to liveness ones, requires the definition of traces for an EVENT B model in an
operational style. Therefore, we propose the use of the TLA [14] framework to support
our proofs, as the framework provides simple temporal modalities, such as liveness and
fairness.



272 M.B. Andriamiarina, D. Méry, and N.K. Singh

We first define the temporal framework of an EVENT B machine M, using the fol-
lowing TLA notations: Init is the predicate specifying initial states; �[Next]y means that
each pair of consecutive states either satisfies Next or leaves the values of y unchanged;
WFy(Next) expresses a weak fairness condition over Next.

Definition 1. Let M be an EVENT B machine and C a context seen by M. Let y be the
list of variables of M, let E be the set of events of M, and let Init(y) be the predicate
defining the initial values of y in M. The temporal framework of M is defined by the TLA
specification S pec(M): Init(y)∧�[Next]y ∧WFy(Next), where Next ≡ ∃e ∈ E.BA(e)(y,y′).

Following Lamport [14], S pec(M) is valid for the set of infinite traces simulating M,
with respect to the events of M and to fairness constraints. The set of traces for M is a
subset of Valuesω, which is the set of infinite words over the set of possible values of y
in M, namely Values.

Liveness properties for M are, de facto, defined in TLA as follows. M satisfies P� Q
when Γ(M) 	 S pec(M) ⇒ (P� Q). Γ(M) is the proof context of M. Obviously, safety
properties can be reformulated in the same framework. As for liveness properties, we
can also use the wp-based approach for defining these properties under weak fairness.
We can apply as well the works of Abrial et al [9, 18] on mathematical semantics in a
wp framework, and on specific constructs [4] to state liveness properties as events.

Refinement Diagrams and Leads To (�) Operator. Refinement diagrams are used to
develop the machine M and to add control in the EVENT B models. These diagrams
are close to predicate diagrams [8] and to proof lattices introduced by Owicki and
Lamport in [22] for representing (proofs of) liveness properties under fairness assump-
tions. We do not use these diagrams for proving but for supporting refinement. We con-
struct the refinement lattices by applying the inference rules for the temporal operator
leads to (�).

Definition 2. Let M be an EVENT B machine and C a context seen by M. A is a set
of assertions; I(M) is the invariant of M; c are (control) variables of M, with values
identifying the control points of M (e.g. start, end, etc.); G is a finite set of assertions
for M called conditions of the form g(x), where x are variables of M. Let E be the set of
events for M.

A refinement diagram for M, over A, is a labeled directed graph over A, with labels
from G or E, satisfying the following rules:

– If R is related to S by a unique arrow labeled e ∈ E, then
• It satisfies the property R� S
• ∀c,x,c′,x′.R(c,x)∧ I(M)(c,x)∧BA(e)(c,x,c′,x′)⇒ S(c′,x′)
• ∀c,x.R(c,x)∧ I(M)(c,x)⇒∃c′,x′.BA(e)(c,x,c′,x′)

– If R is related to S1, . . . , Sp, then
• Each arrow R to Si is labeled by a guard gi ∈ G.
• For any i in 1..p the following conditions hold.(

R∧ I(M)∧gi(x)⇒ Si

∀ j. j ∈ 1..p∧ j �= i∧R∧ I(M)∧gi(x)⇒¬g j(x)
• R∧ I(M)⇒∃i ∈ 1..p.gi.



Integrating Proved State-Based Models 273

– For each e ∈ E, there is only one instance of e in the diagram.

A refinement diagram D for M, over A, is denoted by PD(M) = (A,M,G,E).

Fig. 2. A refinement diagram

A refinement diagram, as illustrated by the fig-
ure 2, relates a pair of assertions (T,W). We
assume that T is a precondition, that can be
decomposed into p assertions S1, · · · ,Sp, and W
is a postcondition.

Refinement diagrams can be used to infer the total correctness of an algorithm con-
structed step-by-step using refinement. The operator leads to (�) is transitive and con-
fluent. Therefore, if a refinement diagram is built for a given problem, it is sound with
respect to the requirements of the problem. Refinement diagrams possess proved prop-
erties [19], that we enumerate here.

Property 1. Let M be a machine and D = (A,M,G,E) be a refinement diagram for M.

1. If M satisfies P� Q and Q� R, it satisfies P� R.
2. If M satisfies P� Q and R� Q, it satisfies (P∨R)� Q.
3. If I is invariant for M and if M satisfies P∧ I� Q, then M satisfies P� Q.
4. If I is invariant for M and if M satisfies P∧ I ⇒ Q, then M satisfies P� Q.
5. If P

e−→ Q is a link of D for the machine M, then M satisfies P� Q.
6. If P and Q are two nodes of D such that there is a path in D from P to Q and any

path from P can be extended in a path containing Q, then M satisfies P� Q.
7. If I, U , V , P, and Q are assertions such that I is the invariant of M; P∧ I ⇒U ; V ⇒ Q;

and there is a path from U to V and each path from U leads to V ;
then M satisfies P� Q.

These properties are derived from TLA definitions [14]. Refinement diagrams are a
generalised version of diagrams proposed for developing sequential algorithms [19]
and these are based on the call-as-event paradigm. Moreover, refinement diagrams are
attached to EVENT B models and can be used for deriving liveness properties. The justi-
fication of such diagrams is based on the analysis of leads to properties and on liveness
properties. The proof system of TLA contains proof rules for deriving the correctness
of those properties. In the next section, we detail a paradigm for aiding the proof-based
development of distributed algorithms.

4 Service-As-Event Paradigm

The EVENT B methodology requires skills in understanding the notion of refinement.
Expertise is also required in the use of proof assistants and management of the mod-
elling process, in order to ensure the discharging of proofs. In the EVENT B modelling
method, the most important step is the expression of a very abstract definition of the
problem to solve. The first abstract model usually gives a list of events corresponding
to the pre/post specification with respect to the different cases. Each refinement step
details progressively the abstract specifications (e.g. by decomposing them into phases,



274 M.B. Andriamiarina, D. Méry, and N.K. Singh

in the case of algorithmic systems, etc.). Each new step is checked by discharging proof
obligations. Hence, the objective is clearly to simplify the effort of proof and explore
simple ways to express a problem as a combination of (possibly reusable) components.
We are interested in distributed algorithms; therefore, a component is equivalent to a
phase/step of an algorithm. Components can be viewed as “sub”-distributed algorithms
composing the actual algorithm.

In this paper, we present the service-as-event paradigm, inspired by the call-as-
event [19] paradigm and based on refinement diagrams. The service-as-event paradigm
helps us to state problems, using liveness properties, as for instance P� Q. An event e
models the effective service leading from P to Q.

Primary Usage: Service Description. The service-as-event paradigm can help to state
a problem in an abstract manner. The abstraction of a problem in EVENT B is as follows:
An abstract event e expresses a pre/post specification. The pre-condition P is stated by
the guard of the event e, whereas the post-condition Q is defined by the action of e. Using
the properties of refinement diagrams, we can depict this statement with the property:
(P

e−→ Q)⇒ (P� Q). The event e expresses, in an abstract way, the service linking P
and Q: every time P holds, e will be triggered and consequently, P will (eventually) be
followed by Q.

Example 1. For instance, the leader election problem [2] is expressed using the follow-
ing property: acyclic(gr)� ∃rt, ts.spanning(rt, ts,gr), where acyclic(gr) states that gr is an
acyclic connected graph and spanning(rt, tr,gr) states that tr is a directed spanning tree
of gr and its root rt is the leader. The property is illustrated by the refinement diagram
3 and simply stated in EVENT B , as follows:

Fig. 3. A refinement diagram for leader election

EVENT election =̂
WHEN

acyclic(gr)
THEN

rt, ts : |spanning(rt ′, ts′,gr)
END

The refinement diagram Fig.3 expresses that a process election is characterized by
an abstract event election stating what is computed, but not how it is computed. The
computation process is depicted in the refinement model, which will be defined later.

Extended Usage: Phase Identification from Service Decomposition. Another way to
use the service-as-event paradigm is to decompose liveness properties, using the infer-
ence rules of the leads to (�) operator, such as the transitivity rule. In fact, we use the
rules related to� to break up a global service into multiple and simpler “sub”-services,
analogous to steps or phases. As an illustration, one can decompose an EVENT B
specification of a problem, represented by the property P� Q, as follows:

The initial property P� Q is separated into several simpler properties (representing
phases of the algorithm), until a satisfactory decomposition into independent phases,



Integrating Proved State-Based Models 275

linked by services is obtained. Therefore, allowing the phases to be developed sepa-
rately.

This process is similar to refinement, as shown by the following figure (see Fig.4):
The first property P� Q is associated with an abstract model, describing the service
offered by the algorithm with an abstract event; the use of the transitivity rule to simplify

Fig. 4. Refinement and Decomposition

P� Q is interpreted as identifying the vari-
ous steps from P to Q: it corresponds to the
fact that new events, modelling intermedi-
ate transitions between P and Q, are added
to the model, using refinement. A level in
the proof tree is associated with a level of re-
finement. One may continue to decompose
services, until each phase of the concrete al-
gorithm is matched with a property.

Example 2. For instance, a routing algorithm can be decomposed into two phases: (1)
a route discovery step, (2) a route maintenance/reconstruction, if the route is broken.
Another point is to decompose the routing process into steps which are simpler, safer
and more stable. In the next section, we give an example in which three phases for a
routing algorithm are identified, to ensure that the routing service is satisfied.

First, the development methodology consists in decomposing a complex algorithm into
simple fragments (services) using the service-as-event paradigm and refinement dia-
grams. The following step is to detail the developed services/phases and coordinate
them by adding control. Hence, we can guide our refinement-base process by using
refinement diagrams related to the EVENT B models.

5 Case Study: ANYCAST RP

We present in this section an example illustrating our modelling methodology (refine-
ment diagrams and service-as-event paradigm), with the ANYCAST RP routing proto-
col [10, 11]. However, due to space requirements, we do not provide the whole devel-
opment1, we only give relevant details allowing us to explain clearly the methodology
and the integration of models.

Fig. 5. ANYCAST RP

Introduction. ANYCAST RP is
a protocol for multicast (one-to-
many) communications (see Fig.5).
In this protocol, a set of routers,
called Designated Routers (DR),
are used by directly connected
sources to transmit data (msg) to
another set of distant routers, the

1 Available at: http://www.loria.fr/~andriami/ifm/index.html

http://www.loria.fr/~andriami/ifm/index.html


276 M.B. Andriamiarina, D. Méry, and N.K. Singh

Rendezvous Points (RP). These Rendezvous Points (RP) are in charge of load sharing,
redundancy and message delivery to connected destinations. ANYCAST RP is a non-
toy protocol recommended by Cisco Systems, Inc as a reliable solution for multicasting
[10]. Moreover, the protocol is cited as robust, scalable, having satisfactory bandwidth
efficiency and good QoS [10,13]. We use this protocol as an illustration, because it can
be divided easily into independent and sequential phases/steps: the routing of messages
(msg) (1) from sources (s) to Designated Routers (DR), (2) from Designated Routers (DR)
to Rendezvous Points (RP) and (3) from Rendezvous Points (RP) to connected destina-
tions. The following sections demonstrate the formal modelling of the ANYCAST RP
protocol.

Abstract Model. We start with an abstract model ANYCAST_M0, describing the ser-
vice offered by the protocol: that is, the routing and delivery of a message (msg),
from a source (s) to a set of destinations (g_t). Sets of messages (MESSAGES), nodes
(NODES), sources and destinations of each message (m) (indicated by functions source
and group_target) are defined. Variables are also defined: sent contains messages sent
by sources, got depicts messages received by destinations, lost contains lost messages.
These variables are initialised with an empty set (∅). Simple invariants constrain
these variables: got ∪ lost ⊆ sent; got ∩ lost = ∅. Events define the behaviour of the
system:

– We have events related to the protocol:
• SENDING0 models the sending of a message (msg) by a source (s).
• RECEIVING0 demonstrates the receiving of a message (msg) by a group of des-

tinations (g_t): the message (msg) has been sent by a source, has not yet been
lost nor received, therefore all the destinations (g_t) can receive the message
(msg).

• RESENDING0 depicts the re-sending of a message (msg): if the message (msg)
has been lost, it is recovered.

– And events related to environment: LOSING0 presents the loss of a sent but not yet
received message (msg).

This model is associated to the following refinement diagram:



Integrating Proved State-Based Models 277

Fig. 6. Diagram D0 for ANYCAST_M0

The diagram D0 (see Fig.6) gives us
the possibility to express the goal
of ANYCAST RP as follows: (s =

source(msg)∧msg /∈ got)� (msg ∈ got).
The routing service allows a non-
received message (msg), whose source
is (s), to be eventually received by
all of its destinations. This routing
service can be decomposed into sub-
services: a sending one (SENDING0),
a re-sending one (RESENDING0) and
a receiving one (RECEIVING0).

The service RECEIVING0 can be considered as the main service that allows users to
verify the property P� Q (with P =̂ (s = source(msg)∧msg /∈ got) and Q =̂ (msg ∈ got)),
because it actually models the receiving of a message (msg) by the destinations (got :=
got ∪ {msg}). The diagram D0 and the property P� Q describe the normal behaviour
of the algorithm, without errors. However, we also consider message losing in P� F ,
with F =̂ (msg ∈ lost), because messages can be lost (event LOSING0). But, since lost
messages are sent again to the destinations (RESENDING0), and since we assume that
the messages are not stuck in the lost state forever (to ensure progress of the algorithm),
we have F � Q. Therefore, P� Q is verified.

First Refinement. This refinement2 (ANYCAST_M1) adds the Designated Routers (DR)
between the sources (s) and the destinations (g_t). New variables are defined: dr_rcvd
contains the messages received by some selected (not yet identified at this level of
abstraction) Designated Routers (DR) from sources and dr_sent depicts the messages
sent by selected Designated Routers (DR) to destinations; simple invariants are given:
(1) dr_rcvd ⊆ sent, (2) dr_sent ⊆ dr_rcvd, (3) got ∪ lost ⊆ dr_sent. Previous events are
refined and new ones are added: DR_RECEIVING1 models the receiving of a message
(msg) by a selected Designated Router (dr), from a source (s); DR_SENDING1 demon-
strates the transmission of a message (msg) by a selected Designated Router (dr), to
the destinations; DR_RESENDING1 is a refinement of RESENDING0. In fact, the sources
are not in charge of the re-sending procedure, but the Designated Routers; RECEIVING1

presents the receiving of a message (msg) by destinations, from a Designated Router
(dr); LOSING1 models losses of message (msg) between only Designated Routers and
destinations, since losses between sources and Designated Routers are highly improb-
able. Let us denote by X the events DR_RESENDING1, RECEIVING1, LOSING1; and by Y

their corresponding abstract versions: RESENDING0, RECEIVING0, LOSING0.

2 ⊕: to add an element to a model, �: to remove an element from a model, ...: unchanged parts.



278 M.B. Andriamiarina, D. Méry, and N.K. Singh

This model expresses an abstraction of ANYCAST RP, as follows: P′ � Q, with
P′ =̂ (s = source(msg)∧msg /∈ sent) and Q =̂ (msg ∈ got). We can see here that the initial
predicate P =̂ (s= source(msg)∧msg /∈ got) is transformed into P′, which is more detailed
and more precise, saying that the message msg is not received because it has not yet been
sent. An additional step related to the Designated Routers is added: P′� R∧R�Q, with
an intermediate step R being msg ∈ dr_rcvd.

Decomposing ANYCAST RP into Phases. The model ANYCAST_M2 introduces
another intermediate routing: messages must be redirected to their destinations by
routers called Rendezvous Points (RP). New variables are added in this refinement:
rp_rcvd represents the messages received by some selected (not yet identified at
this level of abstraction) Rendezvous Points (RP) from Designated Routers (DR)
and rp_sent depicts the messages sent by selected Rendezvous Points (RP) to desti-
nations; simple invariants on these variables are defined: (1) rp_rcvd ⊆ dr_sent, (2)
rp_sent ⊆ rp_rcvd, (3) got ⊆ rp_sent, (4) got ⊆ rp_rcvd, (5) rp_rcvd ∩ lost =∅. The last
invariant describes an assumption on the system: messages can only be lost between
selected Designated Routers (DR) and Rendezvous Points (RP). Events are refined
or added: RP_RECEIVING2 models the receiving of a message (msg) by a selected
Rendezvous Point, from a Designated Router; RP_SENDING2 presents the sending of
a message (msg) by selected Rendezvous Point to destinations; RECEIVING2 depicts
the receiving of a message (msg) by all the destinations of the message; LOSING2

models the losses of messages between Designated Routers (DR) and Rendezvous
Points (RP).

This model defines the entire dataflow that occurs during ANYCAST RP: (1)
from sources to Designated Routers (DR), (2) from Designated Routers (DR) to Ren-
dezvous Points (RP) and (3) from Rendezvous Points (RP) to destinations. This de-
scription of the complete dataflow is emphasized by the refinement diagram of the
model:



Integrating Proved State-Based Models 279

Fig. 7. Diagram D2 for ANYCAST_M2

The diagram D2 (see Fig.7) allows us
to express ANYCAST RP using the
following property: P′ � R∧R� S∧
S � Q, with P′ =̂ (s = source(msg) ∧
msg /∈ sent), R =̂ (msg ∈ dr_rcvd), S =̂

(msg ∈ rp_rcvd), and Q =̂ (msg ∈ got).
We have decomposed R� Q, by tran-
sitivity, to add a new step related
to the additional routing (Rendezvous
Points). Moreover, the diagram allows
us to identify phases of the proto-
col: (Phase 1) Routing from sources
to Designated Routers, (Phase 2)
Routing from Designated Routers
to Rendezvous Points, (Phase 3)
Routing from Rendezvous Points to
Destinations.

The three identified phases are independent and can be developed separately: we have
(1) P′� R, (2) R� S and (3) S�Q. The development in phases is driven by the location
of a message/packet in the network and by the type of nodes.

Combining and Coordinating Phases. We have divided ANYCAST RP into three com-
ponents, described by the diagram D2 (see Fig.7), in the previous section. Since we
develop the components independently, we relax the conditions msg ∈ dr_rcvd, msg ∈
rp_rcvd. We replace them by msg ∈ MESSAGES. The goal is to reintroduce these condi-
tions (or their refined forms) in the events to add control and coordination during the
combination of phases. Abstract models of each phase are composed of the events of
ANYCAST_M2 related to (1) P′ � R, (2) R� S and (3) S� Q and modified as said pre-
viously (relaxing some conditions). The next paragraphs give the development of each
phase.

Phase 1: From sources to Designated Routers. We introduce the identity of a se-
lected Designated Router (dr), which receives a message (msg) sent by a source (s).
We notice that the variables sent, dr_rcvd have been replaced by msg_sent_by_src and
msg_rcvd_by_dr. These variables associate sent/received messages with the identities of
senders (sources) and receivers (Designated Routers).



280 M.B. Andriamiarina, D. Méry, and N.K. Singh

SENDING models the sending of a message (msg) by a source (s) to a Designated Router
(dr). A variable dest_grp indicates the Designated Router (dr) target of a message (msg).
RECEIVING presents the receiving of a message (msg) by a Designated Router (dr).

Phase 2: From Designated Routers to Rendezvous Points. This model identifies the
selected Designated Router (dr), sender of a message (msg) and the chosen Rendezvous
Point (rp), target of the message.

We use the same techniques as in phase 1 to identify the senders and receivers of a mes-
sage, namely Designated Routers and Rendezvous Points: the variables dr_sent, rp_rcvd
are replaced with msg_sent_by_dr and msg_rcvd_by_rp, which associate sent/received
messages with the identities of senders and receivers; rp_dest indicates the selected
Rendezvous Points destinations of sent messages.

Phase 3: From Rendezvous Points to Destinations. The identities of selected Ren-
dezvous Points (rp) sending messages (msg) to destinations are introduced by this model.

This model is simple to understand: a Rendezvous Points (rp) sends (RP_SENDING) a
message (msg) to a group of destinations (g_t), which receive the message (RECEIVING).

We show how the uses of refinement diagrams and the service-as-event paradigm
help in the models (components) combination and coordination. First, we draw the re-
finement diagrams for each phase, and then, we add/combine predicates to link the
diagrams and models. The diagram D (see Fig.8) shows three sub-diagrams for each
phase, and demonstrates how the phases can be coordinated to obtain a formal model
of ANYCAST RP: to link two consecutive phases, we form a conjunction with the post-
condition of the first phase and the pre-condition of the other one; for example, to
combine phases 1 and 2, we use a property resulting of the conjunction of the pre/post:



Integrating Proved State-Based Models 281

dr ∈ DR∧ dest_grp = {rp}∧ dr �→ msg ∈ msg_rcvd_by_dr, meaning that only a message
(msg), received by a Designated Router (dr), can be sent to a Rendezvous Point (rp).

The same applies for the combination of phases 2 and 3, as we also use the result
of the conjunction of the pre/post: rp �→ msg ∈ msg_rcvd_by_rp. We notice that in fact,
the combination is equivalent here to the fact of linking and ordering sending and
receiving services, e.g. sending1 � receiving1 ∧ receiving1 � sending2 ∧ ... These oper-
ations on refinement diagrams are reflected in the resulting model after integrating
phases.

Fig. 8. Diagram D for Phases Combination

A set of invariants related
to ordering and coordinating
for sending and receiving
services is added to the model:
msg_sent_by_dr ⊆ msg_rcvd_by_dr

and msg_sent_by_rp ⊆
msg_rcvd_by_rp express that
only received messages are
sent by respectively selected
Designated Routers and
Rendezvous Points. Accord-
ing to the diagram 8, the
pre-conditions of the send-
ing services DR_SENDING,

RP_SENDING must also be
modified. Therefore, we pro-
pose to modify these events as
follows, by strengthening their
guards: We add new

guards that state that receiving services have to occur before following sending
ones.

The model expresses the follow-
ing property (see Fig.8), which
describes ANYCAST RP:
P� R ∧ R� S ∧ S� Q,

with P =̂ (s = source(msg) ∧ dest_grp = {dr} ∧ s �→ msg /∈ msg_sent_by_src∧ dr �→ msg /∈
dr_dest), R =̂ (dr ∈ DR∧dest_grp= {rp}∧dr �→msg ∈msg_rcvd_by_dr), S =̂ (rp �→ msg∈
msg_rcvd_by_rp), Q =̂ (msg ∈ got). We refine this model, until we obtain a local model
(where events are local to nodes of the network), from which an algorithmic form of
the protocol can be derived. An interesting property of these kinds of combination is
that one can develop the phases separately and choose at which level of refinement
the combination will occur. Moreover, the splitting of ANYCAST RP into small pieces
helped us to concentrate our main efforts on finding correct ways of composing and



282 M.B. Andriamiarina, D. Méry, and N.K. Singh

coordinating the models of the phases, understanding and discharging the proof
obligations generated by the integration of models.

6 Discussion, Conclusion and Future Work

We have introduced the service-as-event paradigm, as an integration of the EVENT

B language with temporal notations and diagrams to cope with liveness properties,
system decomposition and components integration, and as an extension of the call-as-
event paradigm [19]. The diagrammatic notation describing services, namely
the refinement diagrams, provides a graphical mean to support the intuition. These dia-
grams are particularly suited for guiding refinement-based development, because their
refinement is possible [8]. The underlying semantical framework behind them is based
on trace semantics and temporal structures, derived from TLA. In the literature, Manna
and Pnueli [16] developed a collection of verification techniques based on verification
diagrams, which are related to proving various temporal properties (invariance, safety,
fairness, liveness, etc.) of reactive systems. They introduced different diagrams (WAIT-
FOR and INVARIANCE diagrams, CHAIN diagrams, etc.), which are related to proof rules
for deriving these properties. Our refinement diagrams are similar but we use them for
refinement and they are integrated to the EVENT B models; the objectives are clearly
to help in the refinement of complex systems and to decompose systems into subsys-
tems in a correct-by-construction process. UNITY [9, 18] proposes also a combination
of temporal logic and actions systems using the superposition technique, and a mod-
elling of distributed and parallel programs under weak fairness, which is a limitation for
expressing general fairness assumptions.

Our case study (ANYCAST RP) is simple to understand, because the protocol
contains three identifiable, consecutive and independent routing phases, expressed as
follows: msg /∈ sent � msg ∈ sent ∧ msg ∈ sent � msg ∈ received. This simplicity hides
technical details of the Event B models of the phases. In fact, the decomposition of
the (complex) problem into smaller sub-problems allows us to discharge easy proof
obligations related to parts of the algorithm and helps us to focus our efforts on the inte-
gration of models. However, decompositions of systems may present more difficulties
and require a clever analysis. The application of the service-as-event paradigm and re-
finement diagrams is effective for modelling distributed algorithms with behaviours that
can be decomposed into strict, sequential and/or non-interfering (or with little interfer-
ences) phases local to nodes: we have solved other case studies, related to Network-on-
Chips [5], especially the XY routing and network dynamic reconfiguration
services.

Our future works involve the connection of our approach to a platform integrating
real concurrency concepts related to effective programming languages based on the
service-as-event paradigm. Moreover, we plan to delve into the topic of feature inter-
actions and how interferences can be taken into account. Another point is the relation
between the complexity of proofs and models reuse for the description of the routing
phases. The reuse and the adaptation of formal models are related to formal design pat-
terns [3]. Finally, we intend to develop few more case studies related to distributed
networks, and our goal is to develop a toolbox that can be used to implement dis-
tributed protocols using a programming language, where the toolbox will transform



Integrating Proved State-Based Models 283

the verified formal specifications of EVENT B models [5, 6] into a given programming
language.

References

1. Abrial, J.-R.: Modeling in Event-B: System and Software Engineering (2010)
2. Abrial, J.-R., Cansell, D., Méry, D.: A mechanically proved and incremental development of

ieee 1394 tree identify protocol. Formal Asp. Comput. 14(3), 215–227 (2003)
3. Abrial, J.-R., Hoang, T.S.: Using design patterns in formal methods: An event-B approach.

In: Fitzgerald, J.S., Haxthausen, A.E., Yenigun, H. (eds.) ICTAC 2008. LNCS, vol. 5160, pp.
1–2. Springer, Heidelberg (2008)

4. Abrial, J.-R., Mussat, L.: Introducing Dynamic Constraints in B. In: B98, pp. 83–128 (1998)
5. Andriamiarina, M.B., Daoud, H., Belarbi, M., Méry, D., Tanougast, C.: Formal Verification

of Fault Tolerant NoC-based Architecture. In: First International Workshop on Mathematics
and Computer Science (IWMCS 2012), Tiaret, Algérie (December 2012)

6. Andriamiarina, M.B., Méry, D., Singh, N.K.: Revisiting Snapshot Algorithms by Refinement-
based Techniques. In: PDCAT, IEEE Computer Society (2012)

7. Back, R.-J., Sere, K.: Stepwise refinement of action systems. Structured Programming 12(1),
17–30 (1991)

8. Cansell, D., Méry, D., Merz, S.: Diagram refinements for the design of reactive systems. J.
UCS 7(2), 159–174 (2001)

9. Chandy, K.M., Misra, J.: Parallel Program Design A Foundation. Addison-Wesley Publishing
Company (1988) ISBN 0-201-05866-9

10. Cisco Systems. Anycast RP, http://www.cisco.com/en/US/docs/ios/solutions_
docs/ip_multicast/White_papers

11. Cisco Systems. Anycast RP using PIM,
http://tools.ietf.org/html/draft-ietf-pim-anycast-rp-07

12. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press (2000)
13. Kang, J., Sucec, J., Kaul, V., Samtani, S., Fecko, M.A.: Robust pim-sm multicasting using

anycast rp in wireless ad hoc networks. In: Proceedings of the 2009 IEEE International Con-
ference on Communications, ICC 2009, pp. 5139–5144. IEEE Press, Piscataway (2009)

14. Lamport, L.: A temporal logic of actions. ACM Trans. Prog. Lang. Syst. 16(3), 872–923
(1994)

15. Leavens, G.T., Abrial, J.-R., Batory, D.S., Butler, M.J., Coglio, A., Fisler, K., Hehner, E.C.R.,
Jones, C.B., Miller, D., Jones, S.L.P., Sitaraman, M., Smith, D.R., Stump, A.: Roadmap for
enhanced languages and methods to aid verification. In: Jarzabek, S., Schmidt, D.C., Veld-
huizen, T.L. (eds.) GPCE, pp. 221–236. ACM (2006)

16. Manna, Z., Pnueli, A.: Temporal verification diagrams. In: Hagiya, M., Mitchell, J.C. (eds.)
TACS 1994. LNCS, vol. 789, pp. 726–765. Springer, Heidelberg (1994)

17. McIver, A., Morgan, C.: Abstraction, Refinement And Proof For Probabilistic Systems
(Monographs in Computer Science). Springer (2004)

18. Méry, D.: Requirements for a temporal B: Assigning Temporal Meaning to Abstract Ma-
chines. and to Abstract Systems. In: Galloway, A., Taguchi, K. (eds.) IFM 1999 Integrated
Formal Methods 1999, YORK (June 1999)

19. Méry, D.: Refinement-based guidelines for algorithmic systems. Int. J. Software and Infor-
matics 3(2-3), 197–239 (2009)

20. Méry, D., Singh, N.K.: Analysis of DSR protocol in event-B. In: Proceedings of the 13th
International Conference on Stabilization, Safety, and Security of Distributed Systems, SSS
2011, pp. 401–415. Springer-Verlag, Heidelberg (2011)

http://www.cisco.com/en/US/docs/ios/solutions_docs/ip_multicast/White_papers
http://www.cisco.com/en/US/docs/ios/solutions_docs/ip_multicast/White_papers
http://tools.ietf.org/html/draft-ietf-pim-anycast-rp-07


284 M.B. Andriamiarina, D. Méry, and N.K. Singh

21. Owicki, S., Gries, D.: An axiomatic proof technique for parallel programs I. Acta Informat-
ica 6, 319–340 (1976)

22. Owicki, S., Lamport, L.: Proving liveness properties of concurrent programs. ACM Trans.
Program. Lang. Syst. 4(3), 455–495 (1982)

23. Owre, S., Shankar, N.: A brief overview of PVS. In: Mohamed, O.A., Muñoz, C., Tahar, S.
(eds.) TPHOLs 2008. LNCS, vol. 5170, pp. 22–27. Springer, Heidelberg (2008)

24. Project RODIN. Rigorous open development environment for complex systems (2004-2010),
http://www.eventb.org/

25. Rehm, J., Cansell, D.: Proved Development of the Real-Time Properties of the IEEE 1394
Root Contention Protocol with the Event B Method. In: ISoLA, pp. 179–190 (2007)

26. Tanenbaum, A.S.: Computer networks (4. ed.). Prentice-Hall (2002)
27. Wenzel, M., Paulson, L.C., Nipkow, T.: The Isabelle Framework. In: Mohamed, O.A., Muñoz,

C., Tahar, S. (eds.) TPHOLs 2008. LNCS, vol. 5170, pp. 33–38. Springer, Heidelberg (2008)

http://www.eventb.org/

	Integrating Proved State-Based Models
for Constructing Correct Distributed Algorithms
	1 Introduction
	2 Choice of a State-Based Modelling Language
	3 State Properties and Refinement Diagrams
	4 Services-As-Event
Paradigm
	5 Case Study: ANYCAST RP
	6 Discussion, Conclusion and Future Work
	References




