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Abstract. It is well known that human error in the use of interactive devices can
have severe safety or business consequences. It is important therefore that aspects
of the design that compromise the usability of a device can be predicted before
deployment. A range of techniques have been developed for identifying poten-
tial usability problems including laboratory based experiments with prototypes
and paper based evaluation techniques. This paper proposes a framework that in-
tegrates experimental techniques with formal models of the device, along with
assumptions about how the device will be used. Abstract models of prototype de-
signs and use assumptions are analysed using model checking techniques. As a
result of the analysis hypotheses are formulated about how a design will fail in
terms of its usability. These hypotheses are then used in an experimental environ-
ment with potential users to test the predictions. Formal methods are therefore
integrated with laboratory based user evaluation to give increased confidence in
the results of the usability evaluation process. The approach is illustrated by ex-
ploring the design of an IV infusion pump designed for use in a hospital context.

1 Introduction

Experiments in usability laboratories play an important role in providing understand-
ing of the way people behave when using interactive devices in specific circumstances.
These experiments can be used to identify flaws in the design of devices before de-
ploying them in a wider context. Experiments, by their nature, are not exhaustive with
respect to behaviour and so some behaviour that would occur under the assumptions of
use made, may not be observed within the confines of the experiment. It is also difficult
to predict all possible interactions that may lead to a particular observed behaviour and
so ought to be dealt with in the interaction design. This is particularly difficult when
investigating human error. For example, Vicente et al [1] have estimated the rate of
errors related to number entry tasks, such as those arising from programming medical
infusion devices, to be in the range of 1 in 33,000 to 1 in 338,800 for an example de-
vice. In experiments error rates have to be increased artificially by, for example, adding
secondary tasks to increase working memory load to overcome such problems. This can
lead to those experiments not being ecologically valid: the errors seen may not actually
correspond to real situations.

This paper describes a framework that can be used to highlight error prone interac-
tion design given a set of cognitive assumptions. When evaluating an interactive system
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design it is necessary not only to describe assumptions about the device design but also
the assumptions that are being made about the user in terms of capabilities and context.
An approach to exploring the consequences of such assumptions is proposed that com-
bines formal verification techniques with laboratory-based experiment. We claim that
this approach gives increased analytical power to experimental results. The behavioural
assumptions and configuration of an experiment including the device are modelled at
a high level of abstraction. This allows model checking to be used to explore the con-
sequences of the behavioural assumptions exhaustively in a way that is not possible
using experimental or simulation techniques. Formal methods are therefore integrated
with laboratory based user evaluation to give increased confidence in the results of the
usability evaluation process.

The approach contrasts but also has some parallels with the use of cognitive mod-
elling to analyse user assumptions [2], in particular the use of cognitive architectures.
A base set of assumptions is used, similar to cognitive architectures, that are relatively
independent of the task. However cognitive architectures provide much more detailed
models of cognitive processes such as visual or auditory perception, memory and learn-
ing, whereas the approach described here takes a more abstract view of these processes
as discussed in more detail in Section 3.2.

Another important difference relates to the way the models are used to carry out anal-
ysis. In cognitive modelling approaches, the analysis of system properties is based on
individual simulation runs of a relatively small number of possible behavioural traces.
The idea is that each trace represents statistically ‘average’ or ‘likely’ behaviour. The re-
sult is that models which are effectively deterministic are used to predict likely properties
of an interactive system. In the approach described here the models are more abstract and
involve a high degree of non-determinism. This non-determinism generates a wide range
of behaviours. It allows exhaustive exploration of the consequences of the modelled as-
sumptions that lead to these behaviours using automatic tools such as model checkers.

In addition to testing predictions based on the models the analysis gives insight about
the design of the interactive device and helps the evaluator to consider the validity of
the experimental design. It therefore provides insight into the confidence with which
the results of the experiment and its interpretation can be considered. It can highlight
mismatches between the consequences of the assumptions and experimental results and
so lead to suggestions of further experiments as well as ruling out potential explanations
for those mismatches.

To illustrate the proposed approach we explore a design that supports the access of
information within two tasks. The tasks can either be interleaved or carried out sequen-
tially. Our aim is to consider the effectiveness of the design given a set of cognitive
assumptions, in particular the soft constraints hypothesis [3]. Modelling predicted that
errors would be made that matched those observed in the experiment. However the
specific traces identified by the model checker that led to errors were different to the
sequence of actions followed by participants in the experiment. In particular the formal
analysis predicted a different form of interleaving from that assumed or seen in the ex-
periment. This suggests that the modelled assumptions are not sufficient to fully explain
the observed behaviour. Possible explanations for why the actual behaviour differs from
that derived from the assumptions could be explored both by further experiment and/or
by modelling them and model checking to derive the consequences.
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The contribution of this paper is therefore to:

– present a novel way of combining formal reasoning technology and laboratory-
based experiments to explore the consequences of the design of an interactive en-
vironment, and

– demonstrate on a specific example how the technique can be used to give insight
into experimental results and in particular make explicit the behavioural assump-
tions made and its design consequences.

2 Related Work

The use of formal modelling and analysis as a means of developing hypotheses for ex-
perimental evaluation of interactive systems appears to be a novel approach. There is
however a significant literature on combinations of user or use assumptions with models
of devices. These range from assumptions based on task models to assumptions based
on cognitive models. A recent example of the former approach is the work of Bolton
and others [4] which also contains a good review of related material. They use the En-
hanced Operator Function Model (EOFM) to describe operator tasks. This task model is
combined with a device model as a basis for a model checking analysis using SAL [5].
The analysis involves considering variants of the task by inserting automatically “phe-
notypes of erroneous human behaviour. These variant models are checked against cor-
rectness properties - that the combined model would reach specified goals. Observable
manifestations of erroneous behaviour are also explicitly modelled by Fields [6] who
also analysed error patterns using model checking. Both approaches, however, whilst
giving specific kinds of errors to explore in the form of the mistake model lack dis-
crimination between random and systematic errors. The also assume implicitly that
there is a correct plan, from which deviations are errors. Beckert and Beuster [7] on
the other hand take a step towards combining GOMS modelling and correctness veri-
fication. They present a verification environment with a structure similar to the models
described here — connecting a device specification, a user assumption module and a
user action module, the latter being based on CMN-GOMS. The selection rules of their
GOMS model are driven by the assumption model while the actions drive the device
model. This gives a way of exploring the effect of erroneous user behaviour in the form
of incorrect selection decisions as specified in the user assumption module. However,
the assumption module has no specific structure and, thus, does not provide systematic
guidance as to what kind of potential errors to explore. These decisions are left to the
analysts of the system.

Other relevant research concerns the use of more general assumptions about cog-
nition. A similar approach to the one that forms the basis for this paper is taken by
Bowman and Faconti [8]. They formalise one model of human information process-
ing (Interactive Cognitive Subsystems [9]) using the process calculus LOTOS, and then
apply a temporal interval logic to analyse constraints on the information flow and trans-
formation between the different cognitive subsystems. Their approach is more detailed
than the one described in this paper. It focuses on reasoning about multi-modal inter-
faces and analyses whether interfaces based on several simultaneous modes of inter-
action are compatible with the capabilities of human cognition. One source of of user
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error is cognitive mismatch between user beliefs about the system state or behaviour
and the reality. Rushby et al [10] focus on mode errors resulting from cognitive mis-
match and the ability of pilots to track mode changes. They formalise a mental model of
the system that is specific to the example being considered and then analyse it using the
Murφ verification tool. Their models make no explicit appeal to cognitive principles.

In our earlier work [12], a similar integration of formal verification and laboratory
based experiments is employed to provide cognitively grounded accounts of interactive
user behaviour. That work, however, does not attempt to evaluate device designs.

3 The Modelling Framework

The proposed analysis of an interactive system is based on a combination of a device
model and a user model that together capture assumptions about the design relevant
to the context of use. The level of abstraction used for the device specification is de-
termined by the issues under investigation. In the example described here the issue is
whether certain task steps are prone to omission given specific design assumptions, not
about precise details as to whether a particular task step is carried out. For this reason
the device specification is given a high level of abstraction. The specification of plausi-
ble user behaviours then follows the same abstraction level. The models are developed
using the SAL verification environment [5].

3.1 The Device Model

Our example involves the programming of infusion pumps. Infusion pumps are used
both in hospital settings and at home to provide intravenous infusions. They are safety-
critical devices, since infusing a drug at the wrong rate or volume may seriously harm
patients. As such they provide a realistic test of the viability of the approach.

Analysis is concerned with the task of programming a pump with the prescribed in-
fusion parameters and then commencing the infusion. However because simultaneous
programming of two infusion pumps is a common activity in operating theatres, the
focus is to consider this multitasking activity and designs where the setting of a pump
requires entry of two infusion parameters: the volume to be infused (VTBI) and the
duration (time) of infusion1. Different makes of infusion pump provide different mech-
anisms for entering these numeric values. The concern here is not with the details of
number entry. This level of abstraction of the pump model captures the generic char-
acteristics of a range of models of infusion pump. The general insights provided by
the analysis are therefore likely to be associated with the design characteristic of these
different pumps.

Pump operation. The first step in developing the device model is to describe the inter-
active aspects of pump operation. When the pump is switched on it goes through a setup
procedure. Since this step is not a concern of the example, the model simply assumes
that the initial state of the pump is on when the setup has finished. The programming

1 The model would be similar if the rate of infusion is required instead of duration.
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options available to the user are presented at a main menu on the pump display on com-
pletion of setup. Setting the VTBI and setting the duration are two options which, when
selected, move the pump into a mode where the relevant numerical value can be entered.
The entered value must be confirmed by pressing the confirmation key. If confirmation
occurs when both values have been entered the pump calculates the infusion rate auto-
matically. Pressing the confirmation key returns the pump to the mode where the main
menu is displayed. Infusion can then be started using the appropriate key. However,
before that, a roller clamp on the pump must be opened.

Pump model. The SAL model of the interactive behaviour for this pump is given in
Fig. 1. The variables vtbi, time and rate represent the values of the the infusion
parameters. The analysis is to be carried out at a level of abstraction where these nu-
meric values are irrelevant. For this reason the three variables have boolean type. The
value true indicates that a numeric value for the corresponding infusion parameter has
been entered, whereas false indicates the opposite. Depending on its mode, the pump
shows (some of) these infusion values on the display. The boolean variables vtbiDisp,
timeDisp and rateDisp indicate whether the corresponding value is displayed or not.
Finally, the boolean clamp specifies whether the roller clamp is closed (true) or open
(false).

The mode of the pump operation is specified by the variable mode. Three modes of
operation are assumed defined as an enumerated type, Mode:

Mode: type = { off, hold, infusing };

The modes off and infusing indicate that the pump is switched off and infusing,
respectively. The hold mode represents the remaining states of the pump, when it is
switched on but not infusing (for example, being programmed).

The mode of the pump display is specified by the variable dmode. The mode can take
values defined as the following type DispMode:

DispMode: type = { dblank, mainmenu, dvtbi, dtime, dinfusing };

The value mainmenu represents the main pump menu with the programming options
presented. The values dvtbi and dtime represent the numeric entry displays for VTBI
and time respectively. The value dinfusing represents the display shown during the
infusion process. Finally, dblank indicates that the display is blank.

The device model of the infusion pump is driven by a set of actions that are defined
by input events represented by the following enumerated type Event:

{ onoff, mvtbi, mtime, enter, confirm, open, close, infuse, tick }

At the level of abstraction relevant to the analysis, an input event may correspond to a
sequence of button presses. Thus the event onoff represents a key press that switches
the pump on or off. The events mvtbi and mtime model users choosing the VTBI and
time entry options in the main menu. The events enter and confirm represent the
entry and confirmation of a numeric value (depending on the display mode, this can
be either the VTBI or time). Opening and closing of the roller clamp is modelled as
the events open and close. Finally, the time ticking event tick represents cases when
there is no user action taken.
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pump: module =

begin

input event: Event

local mode: Mode

output dmode: DispMode, vtbi, rate, time, vtbiDisp, rateDisp, timeDisp, clamp: bool

initialization

mode = hold; dmode = dvtbi; vtbi = false; rate = false; time = false; clamp = true;

definition

vtbiDisp = dmode = mainmenu or dmode = dvtbi or dmode = dinfusing;

rateDisp = dmode = mainmenu or dmode = drate or dmode = dinfusing;

timeDisp = dmode = mainmenu or dmode = dtime or dmode = dinfusing;

transition

[ event = onoff and mode = hold --> mode’ = off; dmode’ = dblank;

[] event = mvtbi and dmode = mainmenu --> dmode’ = dvtbi

[] event = enter and dmode = dvtbi --> vtbi’ = true

[] event = confirm and dmode = dvtbi --> dmode’ = mainmenu; rate’ = rate or time;

[] event = mtime and dmode = mainmenu --> dmode’ = dtime

[] event = enter and dmode = dtime --> time’ = true

[] event = confirm and dmode = dtime --> dmode’ = mainmenu; rate’ = rate or vtbi;

[] event = open and clamp --> clamp’ = false

[] event = close and not(clamp) --> clamp’ = true

[] event = infuse and dmode = mainmenu and vtbi and rate and time -->

mode’ = infusing; dmode’ = dinfusing

[] event = infuse and dmode = dinfusing --> mode’ = hold; dmode’ = mainmenu

[] else -->

]

end

Fig. 1. Pump model in SAL

These events have behaviours (see transition section in Fig. 1) that depend on
the mode of the device (mode). For example, the event enter sets vtbi to true if the
display mode is dvtbi. This models the entry of the VTBI value when the pump display
is in the corresponding mode. In general, events may have the effect of changing two
modes: the mode of the device and the mode of the display. They may also change the
variables associated with the infusion parameters (vtbi, time and rate).

The example considers the simultaneous programming of two pumps. The model
for each pump is derived from pump by simple renaming of all variables. For example,
event is renamed to events[1] for the first pump and to events[2] for the second.
The full device model, Pumps, is then defined by composing the pump models.

3.2 The User Model

The purpose of the user model is, when combined with the device model, to restrict
the device behaviours to those that are consistent with user behaviour given the cog-
nitive assumptions. The particular user model that is relevant to the analysis of the
device is based on an instantiation of an abstract generic user model. These models are
generic because they provide the means to replace sets of cognitive assumptions and
also because they can be instantiated with the particular task assumptions relevant to
the analysis. The model makes it possible for the experimenter to make, and explore,
conjectures about use of the interactive system. In this way the approach is not locked
into a set of assumptions about how the device will be used.
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Flexibility of user models is achieved through three modelling layers. The base layer
in the generic model captures core assumptions that are unlikely to be modified by the
approach. The intermediate layer, also part of the generic model, specifies the current
set of cognitive assumptions. The third layer is an instantiation of the generic model
and captures specific assumptions that relate to the details of the device and the task to
be performed on it.

The Base Layer. This layer focuses on the mechanisms that relate to the users choice
of actions and forms a set of core assumptions. It postulates that actions are chosen
non-deterministically but some actions may be preferred to others for cognitive reasons
such as their salience. User preferences are modelled using a notion of action salience
that is informed by the ideas of activation theory [11]. The base layer describes actions
and their salience in generic terms. It also specifies termination behaviour, marking the
conditions that may lead to a person ending an interaction. More detail on this modelling
layer is provided in the earlier paper [12].

The Intermediate Layer. The second (intermediate) layer refines the underlying non-
determinism of action choice by introducing salience levels which it uses to partition
actions. The notion of salience is also refined by specifying how action salience is de-
rived from associated cues. At this level different assumptions about the salience levels
and the relation between salience and cues can be specified. One possible set of such
assumptions is described in more detail below and used in the analysis of the example.

The set of assumptions used in the example specify that actions may have two types
of cues: sensory (that is external) and internal. The sensory cues are provided by the
device and its environment. In the model, they are used to represent any kind (visual,
audio, etc.) of external stimulus. The internal cues originate from the user’s knowledge
of task and device.

Task-knowledge cues can be thought of as a mental representation of the task, and
what is necessary to achieve the main task goal. This knowledge is assumed to derive
from general training as well as previous experience. The form that task-knowledge
cues take in the model is as follows: ‘action A � action B’. This corresponds to learned
behaviour where each action in a sequence provides longer term activation for the next
action. Namely, if ‘action A � action B’ and another action C (or series of actions S)
are taken instead of B, then the latter still gets activation after execution of C (or S). The
second form of task-knowledge cue in the model deals with the first step in a learned
series of actions. In this case, there is no preceding action to provide activation and it is
assumed that activation may also come from task goals.

The set of device-knowledge cues can be thought of as a mental representation of
how the device works, and what is necessary to achieve the task using the device. It is
assumed that this knowledge derives from repeatedly doing the task on the same device.
Thus, the device-knowledge cues as a whole capture learnt sequences of actions. These
sequences may also include device-specific actions. This is not the case with the task-
knowledge cues. The device-knowledge cues take the following form in the model:
‘action A → action B’. They represent more procedural aspects of learned behaviour
and, consequently, are assumed to provide shorter term activation for the next action in a
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sequence. Namely, if ‘action A → action B’ and another action C is taken immediately
after A, then action B ceases to get activation from A.

Action salience and activation levels. The overall salience of an action is determined by
the activation provided by its sensory, task-knowledge and device-knowledge cues. The
effect of different kinds of cue is assumed to be equal and additive in nature. Here the
equality means that each kind of cue, if present, is assigned a unit (say 1) of activation,
while the additivity means that the overall salience of an action is calculated as the sum
of these units. Thus, if an action gets activation from all three kinds of cues, then its
overall salience will be 3, whereas if it does not have any cues, then the overall salience
will be 0. In this set of assumptions, four discrete levels of activation are assumed, each
corresponding to one of the possible values (from 0 to 3) of overall salience, so that
all the actions are partitioned into these levels. Only actions with the highest level of
salience are assumed to be candidates for execution.

Not all user actions that are possible at some point are equally relevant to achieving
task goals. For example, the action of starting an infusion is irrelevant when the pre-
scribed infusion parameters have not yet been provided. In the model, the concept of
specificity refers to the dynamic aspect of cue relevance for such actions. It is assumed
that an action being non-specific acts as an inhibitor reducing the activation due to the
sensory and task-knowledge cues from 1 to 0. On the other hand, the activation due
to the device-knowledge cues is not linked to the specificity of actions in this set of
assumptions.

A set of cognitive assumptions like this is chosen on the basis that it is believed to
be sufficient to explain behaviour for the given task. If discrepancies with experiments
arise then one possibility is that this understanding is incomplete, which in itself is a
useful result.

The Concrete Layer. The third (concrete) layer instantiates the generic user model
specified by the other two layers to a specific interactive system and its associated
tasks. It does this by defining the state space of the user model, the main task goal
and the actions and their associated cues specific to the device. In this case the task is
programming two infusion pumps.

State space. The state of the user model is specified by the following components:
inp:Inp giving things the user can perceive in the world, mem:Memory giving their
beliefs about the state of the system, and out:Out giving the actions they can take. The
type Inp represents assumptions about what the pump users can perceive:

Inp: type =

[# dmode:array [1..2] of DispMode, vtbi:array [1..2] of bool,

time:..., rate:..., clamp:..., prescription:... #];

Here dmode[i] . . .clamp[i] indicate how the user perceives the corresponding at-
tributes on the pump i, while prescription[i] indicates the perception of the pre-
scription values for the same pump. The type Memory represents assumptions about the
user’s beliefs about the system state:
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Memory: type =

[# pump:[1..2], vtbiSet:array [1..2] of bool,

timeSet:..., prescription:..., interleave:bool #];

Here pump indicates which pump is the focus of user attention, vtbiSet[i] and
timeSet[i] represent beliefs as to whether the corresponding infusion parameter
has been set, prescription[i] represents the memorised prescription values, and
interleave indicates whether the user has chosen to interleave programming the two
pumps or not. Finally, the type Out specifies assumptions about which user action
(action), and on which pump (pump), has been chosen by the model:

Out: type = [# action: Event, pump: [1..2] #];

Task goal. We assume that, from the users point of view, the main goal, task for
the task of programming the two pumps is to reach a state such that their perception
indicates that both pumps are infusing:

inp.dmode[1] = dinfusing and inp.dmode[2] = dinfusing;

User actions. Programming a pump involves entering the prescribed VTBI first, then
confirming it. After that the time option must be selected from the available menu
which, as in the case of VTBI, allows entry of the prescribed infusion time (duration)
followed by confirmation. The required VTBI and time values can be read from the
prescription form. In the experiment the form could have been positioned either nearby
or further away from the pump so that the user had two plausible options: to read and
memorise both values (VTBI and time) for one infusion, or to consult the prescription
form at the time when each of these values had to be entered. When both values have
been entered the user is required to open the roller clamp and start the infusion process.

The task description prompts the specification of a set of user actions (as opposed to
device actions) in the concrete model layer. The type ActionNames defines the names
of these user actions:

ActionNames: type =

{ memorise, enterVtbi, confirmVtbi, chooseTime,
enterTime, confirmTime, openClamp, startInfusion };

Some of these actions such as enterVtbi or chooseTime represent groups of key
presses. However, these details are deemed to be irrelevant for the analysis of interleav-
ing behaviour and so abstracted away without loss of generality.

These user actions are associated with the action cues as specified in Table 1 (the
actual SAL specification is given by defining the relevant parameters for the generic
user model). Each cell in this table indicates an action (given by its name) and/or a
state condition (written in italic) that is necessary to activate the corresponding cue
(given by the column title) for the action given by the row title. For example, the action
enterTime is cued by the action enterVtbi on the task-knowledge level and by the
action chooseTime on the device-knowledge level. It also has sensory cueing, whereas
its specificity (relevance) is defined by the conjunction of the following boolean condi-
tions: “m.pump = this one OR m.interleave” (user is involved in programming this
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Table 1. Specification of action cues

Action Task cues Device cues Sensory cues Specific, if

memorise task goal to start infusion NONE NONE
costs = true AND
NOT(m.prescription[pump])

enterVtbi
memorise OR
costs = false

memorise YES

(m.pump = this one OR
m.interleave) AND
NOT(inp.vtbi[pump]) AND
inp.dmode[pump] = dvtbi

confirmVtbi NONE enterVtbi YES

(m.pump = this one OR
m.interleave) AND
inp.vtbi[pump] AND
inp.dmode[pump] = dvtbi

chooseTime NONE confirmVtbi YES

(m.pump = this one OR
m.interleave) AND

(NOT(inp.time[pump]) OR
NOT(m.timeSet[pump]))

enterTime enterVtbi chooseTime YES

(m.pump = this one OR
m.interleave) AND
NOT(inp.time[pump]) AND
inp.dmode[pump] = dtime

confirmTime NONE enterTime YES

(m.pump = this one OR
m.interleave) AND
inp.time[pump] AND
inp.dmode[pump] = dtime

openClamp enterTime confirmTime NONE

(m.pump = this one OR
m.interleave) AND

(inp.vtbi[pump] OR
m.vtbiSet[pump]) AND

(inp.time[pump] OR
m.timeSet[pump])

startInfusion

(openClamp AND
m.pump = this one) OR
startInfusion on
the other pump

openClamp YES

inp.dmode[pump] /= dinfusing

AND for both pumps:
(inp.vtbi[pump] OR
m.vtbiSet[pump]) AND

(inp.time[pump] OR
m.timeSet[pump])

particular pump or has chosen to interleave programming), “NOT(inp.time[pump])”
(the user perceives that the time value currently displayed is different from the prescrip-
tion value), and “inp.dmode[pump] = dtime” (the user perceives that the pump is
in the time entry mode). Table 1 specifies action cues for programming one pump. In
the two pump scenario considered, the specifications for both pumps simply duplicate
that given in the table. This model layer also has a boolean parameter, costs. It is true,
when the costs of accessing information (prescription form) are assumed to be high,
and false otherwise.

These assumptions focus on the distinction between the task-orientated and device-
orientated steps [13]. The device-orientated steps are potentially more problematic be-
cause they have lower activation levels than their task-orientated counterparts. These
lower activation levels are assumed to be the result of the different ways in which
device- and task-orientated steps are represented in a mental model. It is assumed that
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device-orientated steps are associated only with the device-knowledge cues, while task-
orientated steps are associated with both task- and device-knowledge cues. Table 1
shows that the actions confirmVtbi , chooseTime and confirmTime are assumed
to be device-orientated; they do not have task-knowledge cues. All other actions are
cued on the task-knowledge level. The action memorise, if taken, is the first in a series.
Therefore, it is assumed to be cued by the task goal.

As can be seen in Table 1, it is also assumed that all actions that involve the buttons
on the front panel of an infusion pump are sensorily cued. On the other hand, the roller
clamp (positioned at the side of the pump) provides no sensory cues for the action
openClamp . It is also assumed that there is no sensory cueing for the action memorise .

3.3 The System Model

The specification of the interactive system as a whole involves combining and connect-
ing the device model and the user model. This requires two additional models: firstly
that of user interpretation of the device interfaces (Interpretation) and the environ-
ment, and secondly a model giving the effect of user actions on the pumps (Effect).
These additional models connect the state spaces of the device and user models. These
connectors are in fact simple. The Interpretationmodel renames appropriate vari-
ables as in the following case:

inp.dmode = dmodes

For the values of the infusion parameters (e.g., VTBI) such renaming takes into account
whether the relevant value is displayed by the pump:

inp.vtbi[pump] = (vtbis[pump] and vtbisDisp[pump])

Finally, the perception of a prescription form is assumed to depend on the costs of
consulting it. If these costs are considered to be low, a prescription form can always be
perceived (consulted):

inp.prescription[pump] = (costs = FALSE)

The effect of user actions is specified in Effect by stating that the input event on pump
(events[pump]) is either a “do nothing step (tick) or whatever action (out.action)
the user model produced.

The SAL module System of the interactive system is then specified as the following
composition of all these separate models:

(User || Effect) [] (Pumps || Interpretation)

The structure of this composition also applies to other interactive systems involving
different devices.

4 Verification-Based Analysis

Given the model as specified in the previous section, the aim is to explore potential
usability problems that might arise through the use of this interactive device under the
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cognitive assumptions made. The impact of the costs of accessing information are of
particular interest. The aim is to generate predictions about use that can be compared
with the results of an experimental study.

SAL model checking tools were used to analyse the properties of the interactive
system model. The cognitive assumptions about user behaviour (a ‘surrogate’ user)
help to identify unforeseen interaction issues by asking general questions: for example,
does the user model always achieve the task goal? In the example, such a question is
formulated as the following LTL property goal (F means ‘eventually’):

F (task)

The property states that, in any interactive system behaviour, the task goal is eventually
achieved (i. e., user perception indicates that both pumps are infusing). However, start-
ing infusion before a roller clamp is opened is unsafe. Thus the following LTL property,
safe, is formulated to check if that holds (G means ‘always):

G ((dmodes[1] = dinfusing => not(clamps[1])) and

(dmodes[2] = dinfusing => not(clamps[2])))

This property checks, for each pump, whether its roller clamp is open whenever the
pump is infusing.

The analysis starts with the assumption that the costs of consulting a prescription
form are low (costs was set to false in System). Indeed, before programming a
pump, it makes sense for a nurse to position a prescription form nearer to the device
so as to minimize the cost of looking back and forth between each. In this case, model
checking the property safe produces a trace that describes a roller clamp error on
the first pump. It is not obvious how to change the design of the infusion pump itself
to prevent this error of forgetting to open the roller clamp. However, this error can
be explained by the interleaving behaviour in programming two pumps, while such
behaviour may be encouraged by easy access to a prescription form. Therefore, it is
plausible to hypothesise that increasing the costs of accessing prescription may help to
avoid the omission error on the roller clamp step.

The next step in the analysis is to verify this hypothesis by setting costs to true
in the model. In this case, model checking both properties safe and goal succeeds.
The successful verification can be interpreted as a prediction that any design change
in the interactive environment, that increases the costs of accessing the prescription
values, helps to prevent the omission error. In practice, such a change can be achieved
in several ways: for example, by positioning a prescription form further away from the
pumps, or by chunking prescription values (VTBI and time) for each pump on the form.
The impact of such changes on the safety of pump programming can be further explored
in experimental studies.

5 The Experiment

As already discussed one of the aims of the experiment was to investigate how the
design of an interactive environment impacts on safety when programming two infusion
pumps simultaneously. The experiment demonstrates that the seemingly sensible action
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to position a prescription form nearer to the device increases the likelihood of the error
of forgetting to open the roller clamp when programming two pumps.

Method. Back et al [14] describe an experiment that investigates how the physical lay-
out of the environment impacts on participants’ interleaving behaviour when program-
ming two infusion pumps. Participants were invited to program the pumps using infor-
mation from a prescription form. The physical and mental effort involved in accessing
information was manipulated by varying the physical distance between the prescription
form and the devices.

The soft constraints hypothesis [3] maintains that when selecting between low-level
memorisable procedures, those that tend to minimise performance cost while achiev-
ing expected benefits will be selected. Performance cost can be measured in terms of
time for example. Depending on the situation, a perceptual strategy (where the prescrip-
tion form is consulted when the relevant value is needed) may be more efficient than a
memory-intensive one of memorising both prescription values at once. In the low in-
formation access cost condition, the soft constraints hypothesis suggests that people are
more likely to use a perceptual strategy, when retrieving information needed to program
a device, over a memory-intensive one.
Results. Participants were only able to use a low-level strategy when the prescription
form was located alongside the devices being programmed. Critically when adopting a
perceptual strategy, value entry may be driven by prompts from the devices, rather than
what values are held in memory. A user may continue to enter values, consulting the pre-
scription form and interleaving between devices as necessary, until all requested values
are entered. Experimental data showed that adopting a perceptual strategy encouraged
interleaving during device programming, which resulted in an increased omission er-
ror rate. Such errors were rare when people chose not to interleave until they finished
programming one device.

Generally, these results corresponds to the predictions based on the verification of
the interactive system model. However, the specific example of erroneous behaviour
generated by the model suggests a different interleaving behaviour than the ones ob-
served in the experiment. This discrepancy could be a behaviour that could plausibly
happen in reality but was just not seen in the (limited) experiment. It may alternatively
suggest that the cognitive assumptions believed to apply (so modelled in the intermedi-
ate layer) in this situation are actually insufficient. In particular it may be that there is
something more that matters than is captured by the specified distinction between task-
and device-oriented interaction steps. Alternatively, it could be that the set of concrete
modelling assumptions about action salience and cueing (Section 3.2) is not sufficiently
precise. In either case, the modelling has drawn attention to something that needs fur-
ther investigation if the experimental results and so the usability of the design are to be
fully understood. On the other hand, systematic experimentation can be used to validate
the generic user model [12].

6 Conclusion

This paper has described a novel approach to evaluating the usability of an interactive
device design using a formal method that focuses on the experimentation associated
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with user evaluation. The technique helps the experimenter to interpret results forma-
tively to improve a potential design. It also makes more general predictions (e.g., about
the impact of the costs of accessing information) as opposed to specific conditions and
scenarios that are investigated in experiments. In the example an abstract description of
a design of the interactive system was produced that not only described the device but
also provided information about other resources, such as prescription forms, that could
be used in the interaction. The results of the evaluation indicate potential changes to the
larger system — the context in which the interactive device is to be used.

It is typically difficult both to interpret the results of usability evaluation, and to make
appropriate changes to the design of an interactive system as a result of the evaluation.
The approach presented in this paper uses formal methods in a novel way, integrat-
ing it with laboratory studies to improve an iterative design process in relation to the
development of interactive systems.

There are several issues that require further study. Firstly, if these techniques are to
be used effectively in bridging the gap between a formal specification of the interactive
system design and its empirical evaluation then the assumptions that are captured by the
interaction model must be developed in a format that is comprehensible and disputable
by the evaluator who will come from a human factors tradition.

Secondly, the behaviours that are being investigated using this approach are intended
to be error behaviours. These are behaviours that may be business or safety critical.
Typically (and hopefully) these behaviours are rare. Experiment cannot always provide
access to such errors and therefore other techniques intended to increase their likelihood
must be chosen, for example by using secondary tasks. Aspects of experiments such as
these are not explored using the modelling approach described in the paper.

These two issues are the basis for further study.
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