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Abstract. Java Card security is based on different elements among
which the bytecode verifier is one of the most important. Finding vul-
nerabilities is a complex, tedious and error-prone task. In the case of the
Java bytecode verifier, vulnerability tests are typically derived by hand.
We propose a new approach to generate vulnerability test suites using
model-based testing. Each instruction of the Java bytecode language is
represented by an event of an Event-B machine, with a guard that de-
notes security conditions as defined in the virtual machine specification.
We generate vulnerability tests by negating guards of events and gen-
erating traces with these faulty events using the ProB model checker.
This approach has been applied to a subset of twelve instructions of
the bytecode language and tested on five Java Card bytecode verifiers.
Vulnerabilities have been found for each of them. We have developed
a complete tool chain to support the approach and provide a proof of
concept.

Keywords: Model Based Testing, Java Card bytecode Verifier,
Vulnerability Testing, Security, Event-B.

1 Introduction

The Java Card technology [18] is a subset of the Java platform [16] that enables
Java programs to run on resource constrained platforms like smart cards and
other small devices. Security is an important concern in this platform, and it
is ensured through various mechanisms i.e., the firewall, the bytecode Verifier
(BCV), the sharing mechanism... The firewall is in charge to provide segregation
between different application providers. The sharing mechanism implements a
security policy using an identity based protocol to allow information flows be-
tween different application providers. The BCV checks by static analysis that
a Java Card program satisfies security constraints defined in the Java Virtual
Machine specification (JVM). In the last version, 3.0.4 Connected Edition of
the Java Card technology, the BCV is mandatory and must be executed on the
smart card. This raises the issue of checking the correctness of the embedded
BCV. Since a smart card has limited resources, developers may be tempted
to optimize the BCV, possibly introducing subtle errors through complex opti-
mization techniques. Testing such devices is a delicate and time consuming task.
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Thus, special care must be taken to ensure good coverage while minimizing the
number of test cases, because testing such embedded systems is more laborious
than stand-alone software systems.

BCV test cases are typically derived by hand. In this paper, we propose an ap-
proach to automate the generation of BCV test cases. We distinguish two classes
of tests: i) conformance tests: they ensure that correct bytecode programs are in-
deed accepted by the BCV; ii) vulnerability tests: they ensure that incorrect Java
bytecode programs are indeed rejected by the BCV. Detecting vulnerabilities is
critical from a security point of view, because accepting incorrect programs may
lead to attacks. These two classes require different test generation strategies; in
this paper, we focus on the generation of vulnerability tests.

We adopt a model-based approach for the generation of vulnerability tests.
This is an alternative to the proof and code generation method used by [5]. The
idea is to model each function of the program (in this case each instruction of
the language) by an event of an Event-B model. The event’s guard represents
the precondition of the instruction as defined in the JVM specification, which
expresses the security constraints on an instruction. The event’s action represents
the result of executing the corresponding instruction. Since the JVM specification
essentially addresses type checking, the Event-B specification abstracts from the
actual value of bytecode variables and only models their types. To generate a
test, we use the execution traces of this Event-B model, since each event in
the trace denotes an instruction. To generate vulnerability tests, we modify the
specification of an event to negate its guard, thus representing a violation of
the JVM specification, in order to generate traces that denote invalid programs.
This approach is modular, easily extensible, and it can reuse existing tools like
ProB [15] to generate test cases.

The rest of this paper is structured as follows. Section 2 describes some se-
curity issues of Java-based smart cards. Section 3 describes our methodology
for generating vulnerability tests. Section 4 reports on the application of our
approach to five Java Card bytecode verifiers. Finally, we conclude with an ap-
praisal of our approach and future work in Section 5.

2 Java Card Security Issues

The Java Card platform is a multi-application environment where critical data
of an applet must be protected against malicious access from another applet.
To enforce protection between applets, classical Java technology uses type ver-
ification, class loader and security managers to create private name spaces for
applets. In a smart card, complying with the traditional enforcement process is
not possible. On the one hand, the type verification is executed outside the card
due to memory constraints. On the other hand, the class loader and security
managers are replaced by the Java Card firewall.

To allow code to be loaded into the card after post-issuance raises security is-
sues similar to those of web applets. An applet not built by a compiler (handmade
bytecode) or modified after the compilation step may break the Java sandbox
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model. Thus, the client must check that Java typing rules are preserved at the
bytecode level. However, an attacker may attempt to build a bytecode program
that confuses a return address with an object reference, thus allowing inspection
and modification of critical memory values. The absence of pointer operators
in the Java programming language reduces the number of programming errors.
But it does not stop attempts to break security protections with unfair uses of
pointers.

2.1 Logical Attacks in Smart Card

An attack can be carried using an ill–formed applet to obtain sensitive informa-
tion stored in the card; for obtaining it, the applet will try to execute some illegal
instructions to read and write in the smart card memory as explained in [11].
This can be accomplished by making a type confusion attack or by changing the
control flow graph. Type confusion blurs the Java Card Runtime Environment
to use reference to an object’s instance as a value. In Java Card, references are
mainly stored as 16 bit, i.e. the size of a short. This attack can be achieved by
pushing a value and manipulating it as a reference. There are four methods to
obtain a type confusion.

1. Input file manipulation. The goal is to modify the file after the compilation
step to bypass the BCV. An on-card BCV will mitigate these attacks. Other
BCVs are only partially embedded due to the smart card constraints.

2. Fault injection. This technique injects energy on the chip which is trans-
formed into electric signals, which in turn can change values in memory or
let the program behave differently by skipping instructions, inverting results
and so on.

3. Shareable interfaces mechanisms abuse. To perform this attack, one creates
two applets which communicate using the shareable interface mechanism. To
create a type confusion, each of the applets use a different type of array to
exchange data and are compiled separately. During the load phase, there is
no way for the BCV to detect such a problem.

4. Transaction mechanisms abuse. The purpose of a transaction is to bundle a
group of operations together. By definition, the rollback mechanism should
also deallocate any objects allocated during an aborted transaction, and
reset references to such objects to null. However, sometimes cards keep the
references of objects allocated during transaction even after a roll back. Then,
allocating a new object allows to point on the same memory segment with
two references having two different types.

The first approach is the easiest way to perform logical attack against smart
cards. The (3) and (4) are now correctly handled by recent smart cards. The
second approach requires specific equipment, but its effects are exactly the same
as the first attack and can be partially mitigated with dynamic run time type
verification.
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2.2 Java Card Byte Code Verifier

The BCV is a complex piece of software, and the algorithms to perform the veri-
fication were too expensive both in term of memory and computing requirements
to be embedded in a Java Card except in the 3.0.4 Connected Edition version.
In this version, the BCV is similar to the KVM verifier [17] where the idea is to
separate the verification process in two parts: an off-card part, that computes a
certificate, or “proof” that the code is correct with respect to the security policy,
and an on-card part, that uses the certificate to verify the correctness of down-
loaded code. The “proof” generated is similar to the StackMap attribute used by
the KVM, and contains the same kind of information. Due to the fact that no
products are available for this platform, we focused on the 3.0.4 Classic Edition
version, an evolution of the 2.2 version where the BCV is optional.

This section describes the Java byte code verification process that has to be
performed. This verification should be performed for each package loaded and
should reject the whole package if one of the tests fail. The full description
of the verification can be found in [16], and a more detailed description, with
appropriate discussions is given in [7]. This last description clarifies most of the
unclear or ambiguous parts in the official JVM specification. A difference between
Java and Java Card verification is that the verification has to be performed on
Converted APplet (CAP) files for Java Card instead of class files. A CAP file is
a tokenized and optimized version of a set of Java classes.

First, tests are performed on a CAP file when it is downloaded in order to
ensure that the CAP file is well formed. Those tests do not analyze the code,
but aim to check that the file is well structured. For example, it checks that no
method is empty, or that mandatory parts of the file exist. For example, it is
ensured that no final method is overridden, or that no class inherits from one of
its subclasses. Moreover, in the case of Java Card, if one of the loaded classes
already exists in the card, then the verification should fail.

Then, the type correctness of the program is verified. This verification is
performed on a method basis, and has to be done for each method present
in the package. When a method is invoked, a frame is created on top of the
Java virtual machine stack. A frame contains the method’s local variables and
an operand stack which is used to store intermediate results during method
execution. The size of the operand stack of a method is determined at compile
time. JBC instructions play with these variables and the operand stack. A frame
state denotes the value of the local variables and the operand stack.

Type checking ensures that no disallowed type conversions are performed.
For example, an integer cannot be converted into an object reference, down-
casting can only be performed using the checkcast instruction, and arguments
provided to methods have to be of compatible types. Since the types of the local
variables is not explicitly stored in the bytecode, they are derived by analysing
the bytecode. This part of the verification is the most complicated one, and is
both time and memory expensive. It requires computing the type of each variable
and stack element for each instruction and each execution path. In order to make
such verification possible, the verification is quite conservative on the programs
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that are accepted. The standard bytecode verification algorithm only accepts
programs where the type of each element in the stack and local variable is the
same, whatever the path taken to reach an instruction. This also requires that
the size of the stack is the same for each instruction for each path that can reach
this instruction. Additionally, as every method defines the maximum size that
the stack can take during execution, it is checked so that neither overflow or
underflow can occur.

Here is an excerpt of the JVM specification for instruction sload x, which
loads a short from the local variable identified by index x in the frame of a
method invocation.

Stack
. . .→
. . . , value

Description
The index is an unsigned byte that must be a valid index into the local vari-
ables of the current frame [...]. The local variable at index must contain a
short. The value in the local variable at index is pushed onto the operand
stack.

The description section provides the precondition and the postcondition of the
instruction, while the stack section describes how the operand stack is modi-
fied by the instruction and the element required on the top of the stack before
execution.

2.3 Verifying the Verifier

Cohen [2] has done a preliminary work on verifying the correctness and proposed
a complete formalization for defensive JVM using ACL2. Each instruction in this
model consists of operational semantics that describes its behaviors and also the
static constraints that express the conditions needed to execute the instruction.
Stata et Abadi [21] were the first to use typing rules to model the BCV. These
rules precise the behavior of the instructions, describing the inputs, the execution
context and all the postconditions of each instruction on the context. Freund et
Mitchell [9] used the same framework to evaluate the object initialization con-
sidering only a minimum set of instructions. They added other Java features like
classes, interfaces, arrays and exception in [10] and they proved the correctness
of their type system.

Considering a set of important Java instructions, Qian [20] achieved one of
the most complete works which proved the correct execution of a program by
verifying its type system. He also proposed a proof for the verifier which is
extracted from its formal model. In [6], a correct implementation of a BCV was
explained by considering the verification problem as a data flow analysis and the
executable was extracted using the Specware tool. Push et al [19] in the project
named Bali used the Isabelle/HOL prover to define and verify the properties
on subset of Java called µ-java. They formalized Qian’s type system and its
semantics. Nipkow in [13] has modeled a complete Java BCV using Isabelle.
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His idea was to provide a generic proof for the verification algorithm and to
instantiate it for a particular VM. The specific verification algorithm exploiting
the StackMap attribute has been proved correct using its complete formalization
and its proof in Isabelle [12].

In 1998 Gemplus demonstrated the correctness of Java Card optimizations
availing B method [14]. Deutsche Telekom [3] employed a model checker (SMV)
to demonstrate the Java Card verification algorithm which was realized using
Linear Temporal Logic. A similar approach by applying the SMV model checker
was used by Gemplus [4] to ensure whether the confidentiality of a shared data
was preserved for a given applet using a causal dependency model. The first
smart card using synthesized code from formal specifications was exhibited at
Java One by Gemplus in 2002.

From all these studies, it is obvious that such a piece of standardized code
and its implementation should be correct. However, Thales ITSEF [8] reported
at the Common Criteria conference in 2010 a bug that allows a type confusion in
a Java Card. The specification of a verifier changes very rarely, but Java Card is
an exception with on-card verifiers. As high-level optimization is required, some
differences may be expected.

There are very few implementations of verifiers that are publicly used. We
assume that Oracle’s verifier is the most commonly used, even if each smart
card manufacturer has developed its own optimized version. Testing a BCV is a
hard task. Static code analysis tool are used, but they are not easy to use due
to the level of abstraction required. So there still exists an issue with both Java
Card editions. The correctness of a particular implementation of the bytecode
verifier needs at least a test suite or a methodology to check its correctness.

3 Methodology for Generating Vulnerability Tests

Our goal is to generate vulnerability tests for the BCV. We proceed as follows.
A BCV vulnerability test is a faulty bytecode program. A bytecode program is
a sequence of bytecode instructions. To generate a bytecode program, one can
build a formal model of the bytecode language where each operation denotes a
bytecode instruction. An execution trace of such a model then denotes a byte-
code program. A faulty bytecode program contains an instruction which can
be executed when its precondition is false. Thus, to generate a faulty bytecode
program, one simply has to negate the precondition of an instruction and try to
execute it in an execution trace. We use the Event-B notation to represent our
formal model. In Event-B, operations are called “event”, so we will use that term
in the sequel.

In order to verify our approach, we have selected a subset of twelve instructions
of the Java bytecode language (aconst_null, pop, return, sadd, sconst_n1,
sconst_0, sconst_1, sconst_2, sconst_3, sconst_4, sconst_5, sload). These
instructions manage the operand stack and the local variables. Our model can
be used for testing stack overflows and underflows, type confusion on primitive
types, for both local variables and stack elements.
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For example, an accepted test could be the following sequence (where local
variable at index 4 is a short): [sload_4; sconst_2; sadd; return].
A rejected test could be: [sconst_2; aconst_null; sadd; return].

3.1 The Formal Model

Figure 1 represents the variables and the invariants of the Event-B model. Vari-
able pc denotes the index of the next instruction to be generated. The frame
state of an instruction is represented by variables s and v, which respectively
denote the operand stack and the local variables associated to each instruction
of the bytecode program to be generated, whose length is given by constant
maxpc. Thus, we store a copy of the “before” frame state for each instruction.
It allows us to generate test cases for branching instructions. Branching instruc-
tions entails that an instruction can be reach from several execution paths. In
a valid bytecode program, all frame states resulting from an execution path to
an instruction must be type compatible, so that whatever path is taken, an in-
struction is always executed with valid types. Constant maxstack denotes the
maximum size of the operand stack, which is determined during compile time.
The size of the stack s(i) is given by z(i); this variable is necessary to generate
faulty instructions for stack underflows. Variable halt is set to true when the
program has reached a valid frame state for completing a method.

INVARIANTS
inv1 : pc ∈ 1 .. maxpc
inv2 : s ∈ 1 .. maxpc �→ (0 .. maxstack − 1 �→ TYPE)
inv3 : v ∈ 1 .. maxpc �→ (1 .. maxlocalvar �→ TYPE)
inv4 : z ∈ 1 .. maxpc �→ 0 .. maxstack
inv5 : halt ∈ BOOL

inv7 : dom(s) = dom(v) ∧ dom(s) = dom(z) ∧ dom(v) = dom(z)

Fig. 1. Invariants

Figure 2 represents the Initialisation event. The initial state of the machine
contains, for instruction 1, an empty stack and some local variables defined by
constant initlocalvar; the frame states of the other instructions are undefined.

The model of instruction sload is given in Figure3. Guards grd1_t, grd2_t and
grd3_t represent the security conditions defined in the Java Specification [16].
Guards grd1 and grd2 have been added to control the test generation process.
Guards with suffix “_t” will be negated to generate test cases; guards without
suffix “_t” are never negated. Guard grd1 ensures that no event can be exe-
cuted after variable halt has been set to TRUE; variable halt is set to TRUE by
instruction return, which ends each bytecode execution for a method. Guard
grd2 ensures that the length of execution traces does not exceed maxpc. Stack
overflow is controlled by guard grd1_t. Guard grd2_t checks that the index is
a valid index of the array of local variables. Guard grd3_t checks that the type
of the local variable at the given index is a short. The event actions modify the
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EVENTS
Initialisation

begin
act1 : pc := 1

act2 : s := {1 �→ ∅}
act3 : v := {1 �→ initlocalvar}
act4 : z := {1 �→ 0}
act6 : halt := FALSE

end

Fig. 2. Initialisation

frame state of the next instruction. Thus, a short is pushed onto the stack (act2
and act3) and the local variables are left unchanged (act4).

EVENTS
Event sload =̂

any
index

where
grd1 : halt = FALSE

grd2 : pc < maxpc

grd1_t : z(pc) ≤ maxstack − 1

grd2_t : index ∈ 1 .. maxlocalvar
grd3_t : v(pc)(index) = short

then
act1 : pc := pc+ 1

act2 : s := s�− {pc+ 1 �→ s(pc) �− {z(pc) �→ short}}
act3 : z := z�− {pc+ 1 �→ z(pc) + 1}
act4 : v := v�− {pc+ 1 �→ v(pc)}

end

Fig. 3. sload event

3.2 The Test Generation Process

To obtain the test suite using MBT, the process is split into 3 steps as illustrated
in Figure 4: test generation, concretization and execution. We have developed
a tool for each step. Abstract test generation is performed by the Vulnerability
Tests Generator (VTG). Then the XML2CAP tool translates these abstract
tests to CAP files. Each CAP file is a concrete test. Finally TestOnPC and
TestOnCard execute the tests on the off-card part and on-card part, respectively.

VTG, depicted in Figure 5, is the test generator. Compared to a traditional
MBT approach, VTG includes a new step, faulty model derivation, between the
model and the test generation. This new step generates a set of faulty models
from the original model.
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Tests can be split in 3 parts. The preamble leads the system under test (SUT)
from the initial state to a state where it is possible to execute the body. The
body is the execution of the tested behavior. Finally the postamble leads the
SUT to a desired state.
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Fig. 4. Our MBT process
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Fig. 5. VTG process

3.3 Faulty Model Derivation

Algorithm 1 describes the faulty model derivation process. Each generated faulty
model contains only one faulty instruction, in order to ease the location of faults
in the BCV. A faulty instruction is a negation of the JVM specification pre-
conditions. Since there are several ways of negating a condition, several models
are produced for a single faulty instruction. The faulty model contains a new
state variable, eut (event under test) which ensures that a faulty instruction in
executed only once in a test. Variable eut is initialized to FALSE and set to TRUE
by the execution of the faulty instruction; a guard “eut = FALSE” is added to
the faulty instruction so that it is executed only once.

To negate a guard g, the algorithm uses function neg(g), which returns the set
of negations of guard g. It is computed by recursively applying derivation rules. A
negation g′ of a guard g satisfies the following property: g′ ⇒ ¬g. Thus, there are
several possible negations g′ for a guard g. The negations we consider are defined
by derivation rules. The derivation rules necessary to rewrite the instructions of
our subset of the Java bytecode language are presented in Figure 6. A rule has
the following form: neg(f) � {f1, . . . , fn}. Each fi is a negation of f , and it may
include a call to neg as a subformula. Thus, these rules are applied recursively
until no more neg appear. Termination is ensured by (manually) checking that
the rules decrease the height of the formula’s abstract syntax tree. Completeness
is manually checked by ensuring that ¬f ⇔ f1∨ . . .∨fn. These are proved using
the prover of the Rodin toolkit, which supports the Event-B method.
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Input: m : Event-B model
Output: M ′ : set of Event-B model
for each event e of m do

rewrite the guard of e into two guards:
grd, the conjunction of all guards of e without suffix "_t";
grd_t, the conjunction of all guards of e with suffix "_t";

end
for each event e of m do

e.RW := neg(grd_t);
end
for each event e of m do

for each rw in e.RW do
add a new model m′ to M ′ such that

m′ := m;
m′.events := m′.events ∪ {e′}, where e′ is defined as follows:

e′ := e;
replace e′.grd_t by rw;
add guard “eut = FALSE” to e′;
add action “eut := TRUE” to e′;

end
end

Algorithm 1. Faulty model derivation algorithm

Using derivation rules provides flexibility for controlling the faulty model gen-
eration process. For instance, rule 1 describes that a conjunction can be negated
in three different ways: exactly one of the conjunct is false or both conjuncts are
false. Some rules are also specific to a problem domain. For instance, to negate
a formula h(a) = b, one may want to test two cases, instead of using rule 4 of
Figure 6: i) the case where h(a) is undefined (i.e., a �∈ dom(h)) and the case
where h(a) is defined. This would be represented by the following rule:

4′. neg(h(a) = b) � {a �∈ dom(h), a ∈ dom(h) ∧ a 	→ y �∈ h}

The application of derivation rules to a guard may generate a predicate which is
unsatisfiable, or there may not exist a state reachable from the initial state that
satisfies the generated predicate. These cases are detected during the abstract
test generation step, which involves a model checker. In our tool, the user can
check the list of generated predicates and delete those which are obviously not
satisfiable, in order to speed up the test generation step.

As an example of applying derivation rules, consider instruction sload. Its
guard to negate (i.e., the conjunction of guards with suffix “_t” in Figure 3 ) is
the following:

(z(pc) ≤ maxstack − 1) ∧ (index ∈ 1 .. maxlocalvar) ∧ (v(pc)(index) = short)

Applying the rules of Figure 6, we obtain the following negations; elements iden-
tified in red highlight the modified part of the original guard.
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1. neg(p1 ∧ p2) � {neg(p1) ∧ p2, p1 ∧ neg(p2), neg(p1) ∧ neg(p2)}
2. neg(i1 ≤ i2) � {i1 > i2}
3. neg(i1 ≥ i2) � {i1 < i2}
4. neg(i1 = i2) � {i1 	= i2}
5. neg(a ∈ B) � {a /∈ B}

Fig. 6. Relevant derivation rules

1. z(pc)>maxstack − 1 ∧ index ∈ 1 .. maxlocalvar ∧ v(pc)(index) = short
2. z(pc) ≤ maxstack − 1 ∧ index�∈1 .. maxlocalvar ∧ v(pc)(index) = short
3. z(pc)>maxstack − 1 ∧ index�∈1 .. maxlocalvar ∧ v(pc)(index) = short
4. z(pc) ≤ maxstack − 1 ∧ index ∈ 1 .. maxlocalvar ∧ v(pc)(index)�=short
5. z(pc)>maxstack − 1 ∧ index ∈ 1 .. maxlocalvar ∧ v(pc)(index)�=short
6. z(pc) ≤ maxstack − 1 ∧ index�∈1 .. maxlocalvar ∧ v(pc)(index)�=short
7. z(pc)>maxstack − 1 ∧ index�∈1 .. maxlocalvar ∧ v(pc)(index)�=short

Negations 2, 3, 6 and 7 are unsatisfiable, because of the conjunction index �∈
1 .. maxlocalvar ∧ v(pc)(index) = short. When index �∈ 1 .. maxlocalvar holds,
expression v(pc)(index) is undefined. Figure 7 illustrates a faulty instruction
obtained with negation 5.

EVENTS
Event evt_sload_11_24_EUT =̂

any
...

where
grd : halt = FALSE ∧ pc < maxpc

grd_t : z(pc) > maxstack − 1 ∧ index ∈ 1 .. maxlocalvar ∧
¬v(pc)(index) = short

grd_EUT : eut = FALSE
then

...
act_EUT : eut := TRUE

end

Fig. 7. evt_sload_11_24_EUT event

3.4 Abstract Tests Generation

With these new models, we generate tests. We use ProB [15] to find traces
containing the preamble, the body and the postamble. This search is driven
by two parameters. First we specify the depth. This parameter represents the
maximum length of the traces i.e., the maximum number of events for a test. The
second parameter is a predicate that each trace must satisfy. Presence of the EUT
and final state are represented by the predicate eut = TRUE ∧ halt = TRUE.
Other parameters must be specified; the reader is referred to the ProB website [1]
for more details.
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For each model, we only generate a subset of possible traces containing the
EUT. For each transition, when several solutions can satisfy the guard of an
event, only one solution is used. The first solution found for the model of Figure 7
is :

– preamble: INITIALISATION; aconst_null; aconst_null; aconst_null;
– body: evt_sload_11_24_EUT;
– postamble: return .

At the initialization, the local variables contain two references and the maximum
size of stack is equal to 3. The execution of three events aconst_null fills the
stack. In this state, the faulty event can be executed. Finally the return event
leads the machine to the end of the test.

3.5 Concrete Tests

A concrete test is a CAP file which contains a class with one method. This
method contains the instruction trace generated with ProB. The XML2CAP
tool generates one CAP file for each trace. It computes, among other things,
the maximum stack size. Because several other informations are required for
composing a CAP file, we use a predetermined CAP file which is completed
with the generated method. The local variables are fixed in the predetermined
CAP file and in the abstract model.

4 Evaluation

Tests Computation. Our experiments have been performed on a MacBook
Pro with a 2,3 GHz Core i5 dual-core processor, 8GB of RAM and a 5400 t.m−1

hard disk with 8MB of cache. Each measure has been made three times and we
provide the average.

The first step is the negation of guards. It processes four distinct guards. It
generates sixteen negations in less than one second. Eight of the negations are
unreachable and we only keep the eight reachable models. The second step is
the model derivation. We produce eighteen new models in twenty seconds. The
last step is the abstract test generation. The results obtained vary depending on
the search depth.

Table 1 represents the results we obtain for the generation of abstract tests.
The first column represent the depth parameter. The penultimate line of this
table represents the results we obtain if we do not remove the unreachable nega-
tions. In the last line we take the shortest depth for each model. The second and
third columns represent respectively the time and the number of tests extracted.
The next column represent the time taken in average to generate one test. The
penultimate column provides the percentage of models which can produce at
least one test for the given depth (the depth may not be large enough to gener-
ate a test). The last column represents the test coverage with respect to a test
plan manually derived by an expert. In this manual test plan, the expert has
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identified for each instruction a number of test cases. The test cases considered
by our approach depend on the derivation rules. We have computed the number
of manual test cases that our approach can reproduce using the derivation rules.
Because we only work on a subset of the Java Card instruction set, the manual
test cases which involve other instructions could not be reproduced; thus the
last column is never equal to 100%.

Table 1. Abstract test generation evaluation

Depth Time Nb of tests Speed
(sec/test)

Model
coverage

Manual plan
coverage

3 1min30 30 3,0 13% 12%
4 12min30 432 1,7 33% 31%
5 1h30 10133 0,5 100% 93%

5 Full 2h30 10133 0,9 65% 93%
* 1h05 7318 0,5 100% 93%

Smart Card Execution. After the execution of the vulnerability test suites, we
classify the results as: i) accepted and correctly executed CAP file, ii) rejected
CAP file, and iii) accepted CAP but rejected executions. An accepted CAP
means that the embedded load phase verifications do not detect the ill formed
file. An accepted CAP but rejected during execution detects the presence of a
run time check. The test suites have been evaluated on five different smart cards
from two different smart card manufacturers ({a, e}, {b, c, d}). Cards a, b, c are
Java Card 2.1 while d and e are Java Card 2.2 standard.

Card d allows the execution of all tests. Thus, it is possible to generate stack
over and under flow. It does not mean that the vulnerabilities can be exploited.
To obtain an executable attack, one often needs several vulnerabilities. For ex-
ample, if the card does not check the local variable it offers the possibility to
change the return address. But the return address can be protected by an in-
tegrity check. With our test results, one may be able to characterize a given
implementation and then provide information to set up an attack.

For the other cards, some tests fail (the card become mute) during the ex-
ecution or during the load. On card a, we have been able to find a chain of
vulnerabilities that allows us to execute a shell code on the card.

Overall Effort for the Complete Process. We estimate that it would take
a fresh person about 25 hours to build the formal model of the subset of twelve
instructions. We could not precisely measure this effort, because our model is
the result of several iterations on different subsets of similar bytecode languages
(for instance, our first experiments were conducted on the language of Freund
and Mitchell [10]). The manual removal of unreachable guards takes about 1.5
hour. The model derivation step does not require any human intervention. We
then must choose appropriate parameters for the abstract test generator step.
This will only take a few minutes. Then we launch the abstract test generator.
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For a full coverage, this step takes 1.5 hour. Finally we concretize the tests in
a few minutes. Overall, the full process for the twelve instruction subset takes
about a week.

It took eight person-months to develop the complete toolchain. Many parts
of this toolchain are re-usable. Only the concretization and the execution tools
must be adapted for a new problem.

Manually writing a test suite for the BCV is tedious. It took us one week
to manually derive a test suite for our subset of twelve instructions. Moreover,
this test suite contains only one test per test case. Our solution can produce
all possible tests in roughly the same time; we have controlled the number of
tests using a timeout. Our vulnerability coverage is slightly less, but our tests
are more complex and they test vulnerabilities in many contexts. When the full
bytecode instruction set will be tackled, we expect increased productivity gains,
because automation will easily generate a greater variety of contexts for testing
an instruction.

5 Conclusion and Future Work

We have proposed a new methodology to generate vulnerability tests and devel-
oped several tools supporting it. Our method is based on using a formal model
of the system under test which represents security constraints. A standard MBT
approach is applied and we obtain a set of vulnerability tests. We applied our
methodology to the testing of five Java smart card BCV. We have discovered
vulnerabilities in all of them. Our approach can be used by a certification au-
thority or an evaluation center in order to set up vulnerability analysis. This
would ease the characterization of the embedded software.

The Java Card byte code verifier is a key component in the security of Java-
based smart cards and finding weaknesses is of prime importance. Our exper-
iment with a subset of the Java Card instruction set constitutes a proof of
concept. We plan to apply our methodology to the complete Java Card instruc-
tion set, including the type lattice, the subroutine mechanism and the exception
mechanism.

Our methodology is generic and can be applied to other security components.
We have started to model the payment protocol EMV, which includes crypto-
graphic primitives, in other to generate vulnerability tests.
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