
Improved Reachability Analysis in DTMC
via Divide and Conquer

Songzheng Song1, Lin Gui1, Jun Sun2, Yang Liu3, and Jin Song Dong1

1 National University of Singapore
{songsongzheng,lin.gui}@nus.edu.sg, dongjs@comp.nus.edu.sg

2 Singapore University of Technology and Design
sunjun@sutd.edu.sg

3 Nanyang Technological University
yangliu@ntu.edu.sg

Abstract. Discrete Time Markov Chains (DTMCs) are widely used to model
probabilistic systems in many domains, such as biology, network and commu-
nication protocols. There are two main approaches for probability reachability
analysis of DTMCs, i.e., solving linear equations or using value iteration. How-
ever, both approaches have drawbacks. On one hand, solving linear equations
can generate accurate results, but it can be only applied to relatively small mod-
els. On the other hand, value iteration is more scalable, but often suffers from
slow convergence. Furthermore, it is unclear how to parallelize (i.e., taking ad-
vantage of multi-cores or distributed computers) these two approaches. In this
work, we propose a divide-and-conquer approach to eliminate loops in DTMC
and hereby speed up probabilistic reachability analysis. A DTMC is separated
into several partitions according to our proposed cutting criteria. Each partition
is then solved by Gauss-Jordan elimination effectively and the state space is re-
duced afterwards. This divide and conquer algorithm will continue until there is
no loop existing in the system. Experiments are conducted to demonstrate that
our approach can generate accurate results, avoid the slow convergence problems
and handle larger models.

1 Introduction

As an automatic verification technique, model checking [7] has been applied to a vari-
ety of domains from hardware to software, and from concurrent systems to probabilis-
tic systems. Different from traditional concurrent systems, probabilistic systems have
stochastic characteristics in their behaviors, which means some behaviors follow spe-
cific probabilistic distributions. This kind of systems widely exist in many domains,
from communication protocols to biology systems. For example, in the randomized
leader election protocol [9], multiple processes want to elect one leader. Each process
will first randomly choose a natural number from a specific range as its id. The process
with a unique highest id will be elected as a leader. If several processes have the same
highest id, the selection procedure will repeat. Therefore uniform distribution is neces-
sary in this system. As a result, model checking probabilistic systems is an important
topic in formal verification.

E.B. Johnsen and L. Petre (Eds.): IFM 2013, LNCS 7940, pp. 162–176, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



Improved Reachability Analysis in DTMC via Divide and Conquer 163

Discrete Time Markov Chain (DTMC) is a widely used formalism in probabilis-
tic model checking. The difference between DTMC and traditional Labeled Transition
System (LTS) is that non-determinism in LTS is replaced by probabilistic choices in
DTMC. In a DTMC, at each step the transition from one state to another must fol-
low specific probability distributions, and for each state there is exactly one proba-
bility distribution for the successor states. Reachability analysis plays a key role in
DTMC verification, e.g., it is used to decide the probability of reaching certain disas-
trous state. Verification of properties such as Probabilistic Computational Tree Logic
(PCTL) and Linear Temporal Logic (LTL) can be reduced to the reachability analy-
sis problem [5]. E.g., for LTL properties a product construction with a deterministic
Rabin/Muller-automaton is needed to obtain the target states. Therefore in this work we
focus on improving reachability analysis in DTMC verification.

Given the transition relation of a DTMC, the transition probability matrix from one
state to another can be built. After the target states are decided, each state in the matrix
can be represented by a variable, which means the probability of reaching the target
states from this state. Next, there are mainly two approaches to calculate the proba-
bility from initial states to the targets. One is solving linear equations directly. In this
method, variables representing intermediate states (which are not target or initial) are
eliminated gradually through equations operation, and finally variables representing the
initial states’ probability of reaching targets can be solved. The other approach is using
value iteration method, which works by finding a better approximation iteratively until
certain stopping criteria are satisfied. The approach based on solving linear equations
is straightforward to understand and it guarantees to deliver accurate result. However,
since we need one variable for each state in the system, a lot of variables are needed
for large systems whereas state-of-the-art linear solvers are limited to thousands of vari-
ables only. Therefore the applicability of this approach is limited to small-scale systems.
On the other hand, the value iteration method tries to find fix-points iteratively, and it
has relatively better performance in handling systems with a large number of states.
Therefore it is more popular in probabilistic model checkers such as PRISM [12] and
MRMC [10,11]. However, this approach also has its drawback: slow convergence, i.e.,
it may take a large number of iterations before the approximations converge to a cer-
tain value. The phenomenon exists when there are complicated loops existing in the
probabilistic systems, although the state space of such systems may not be very huge.
The number of iterations is related to the subdominant eigenvalue of the probability
transition matrix [18].

To tackle the above-mentioned problems, in this work we propose a new approach
to verify DTMC models, especially for the ones with loops using a divide-and-conquer
strategy. Instead of directly calculating the probability from initial states to targets, we
divide the whole state space into several partitions, and solve them individually to elimi-
nate loops. Afterwards, the remaining acyclic DTMC can be solved efficiently via value
iteration method.

As we mentioned above, the slow convergence problem in value iteration comes from
loops. Therefore, the first step of our approach is finding Strongly Connected Compo-
nents (SCCs). This SCC-based approach is similar to previous work such as [3,6,1,13].
However, instead of using SCC’s topology order [6,13], we solve each SCC indepen-
dently by calculating the new transition probability from input states to output states of



164 S. Song et al.

the SCC, which is similar to work [3,1]. These new transitions are denoted as abstract
transitions since SCCs are abstracted by transitions from input states to output states.
However, [1] focuses on counterexample generation and abstracts SCCs via iteratively
finding the smallest SCCs. On the contrary, we divide each SCC having a large number
of states to several smaller partitions. For each partition, abstract transitions from its
input to output are calculated via solving linear equations. Here we use Gauss-Jordan
elimination [2]. Further, the states in each partition which are not input states will be
removed, and thus the states in the SCC can be reduced. Afterwards, the new SCC
is ready for next iteration of divide and conquer. This procedure for each SCC will
be done iteratively until any of the following three criteria is satisfied. First, there is
no more loop in the reduced SCC. Then this part will be left alone since it is already
acyclic. Second, the number of remaining states in reduced SCC is small enough to be
solved via a linear solver. Third, the last iteration does not reduce any states. In the sec-
ond and third scenarios, the final SCC will be solved via linear equation again, and final
abstract transitions will be generated. After all loops in SCCs are resolved, the whole
DTMC becomes acyclic, and value iteration is used to calculate the probability from
initial states to targets. Since the abstract transitions from each partition’s input states to
output states are determined by the partition itself and independent to other partitions,
multi-cores or distributed computers can be straightforwardly used here to solve each
partition simultaneously, which makes the verification faster.

Contributions Compared with previous work, our contribution is threefold, as we sum-
marize below.

1. A new divide-and-conquer approach for DTMC reachability analysis is proposed,
which combines solving linear equations and value iteration methods together and
tackles the problem that huge loops make the DTMC verification inefficient.

2. Based on the fact that each SCC and even each group in one SCC is independent
from others, we use parallel computation to further speed up the verification.

3. The new approach has been implemented into our model checking framework PAT,
and several representative experiments are conducted to show the effectiveness of
our approach.

Organization The paper is structured as follows. Section 2 recalls relative background.
In Section 3, we introduce our algorithm in details. The evaluation is reported in Sec-
tion 4. Section 5 surveys related work and concludes the paper.

2 Preliminaries

In this section, we recall some background knowledge, which is relevant in the rest of
this paper.

2.1 Discrete Time Markov Chains

Discrete Time Markov Chains (DTMCs) are widely used in modeling stochastic sys-
tems. Meanwhile, time requirement in DTMC is discrete. Without loss of generality,



Improved Reachability Analysis in DTMC via Divide and Conquer 165

s0 s1 s2 s5

s3 s4

1

0.5

0.5

0.5

0.5 0.5

0.5

1

1

Fig. 1. An Example of SCC

we have the following two assumptions in this work. 1) There is only one initial state in
the whole system and 2) DTMC is deadlock free. It is known that a deadlock state in a
DTMC can add a self-loop having probability 1 without affecting the calculation result.
The formal definition of DTMC is as follows.

Definition 1. A Discrete Time Markov Chain is a tuple M = (S, sinit, Tr, AP, L) where
S is a set of states; sinit ∈ S is the initial state of the system; Tr : S×S → [0, 1] is the
probability transition relation between states, which satisfies ∀s ∈ S,Σs′∈STr(s, s

′) =
1; AP is a set of atomic propositions and L: S → 2AP is a labeling function.

An infinite or a finite path in M is defined as a sequence of states π = 〈s0, s1, · · · 〉 or
π = 〈s0, s1, · · · , sn〉 respectively, such that ∀i ≤ 0 (for finite paths, i ∈ [0, n − 1]),
Tr(si, si+1) > 0. The probability of exhibiting π in M is PM(π) = Tr(s0, s1) ×
Tr(s1, s2)×Tr(s2, s3)×· · · . Given a set of pathsΠ ofM, PM(Π) =

∑
π∈Π PM(π).

A set of states C ⊆ S is called connected in M iff ∀s, s′ ∈ C, there is a finite
path π = 〈s0, s1, · · · , sn〉 satisfying s0 = s ∧ sn = s′ ∧ ∀i ∈ [0, n], si ∈ C. Strongly
Connecte Components (SCCs) are those maximal sets of states which are mutually
connected. An SCC is called trivial if it just has one state without a self-loop. An SCC
is nontrivial iff it is not trivial. A DTMC is acyclic iff it only has trivial SCCs. Note
that one state can only be in one SCC. In other words, SCCs are disjoint. In addition, we
define an adjacent group (AG) D ⊆ S such that ∃s ∈ D, ∀s′ ∈ D ∧ s′ �= s, there is a
finite path π = 〈s0, s1, · · · , sn〉 satisfying s0 = s∧sn = s′∧∀i ∈ [0, n], si ∈ D, and s
is called root state in D. In the following, we refer to adjacent groups simply as groups.
The difference between these conceptions is illustrated by the example in Figure 1.

In Figure 1, {s1, s2}, {s1, s2, s3} are connected; {s0}, {s4}, {s5} and {s1, s2, s3}
are the SCCs in the model; AGs are more complex, for example, {s0, s1, s2} and
{s1, s2, s5} are AGs and there are other possible combinations. Note that a set of states
like {s0, s1, s4} is not a valid AG because there is no root state. Connected sub-
graphs are AGs but the reverse is not always true, e.g., {s0, s1, s2} is an AG but not
a connected subgraph.

Similar to [3,1], in a DTMC M = (S, sinit, T r, AP, L), given a group of states D ⊆
S, the input states of D are defined as the states in D having incoming transitions from
states outside D; the output states of D are defined as states outside D which have
incoming transitions from states in D. Formal definitions are as follows.



166 S. Song et al.

s0 s1 s2 s5

s3 s4

1

0.5

0.5

0.5

0.5 0.5

0.5

1

1
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

p0 = p1
p1 = 0.5× p2 + 0.5× p3
p2 = 0.5× p1 + 0.5× p5
p3 = 0.5× p2 + 0.5× p4
p4 = 1
p5 = 0

Fig. 2. Reachability Analysis

Inp(D) = {s′ ∈ D | ∃s ∈ S\D.T r(s, s′) > 0}1

Out(D) = {s′ ∈ S\D | ∃s ∈ D.T r(s, s′) > 0}

2.2 Reachability Analysis

One critical question for quantitative analysis of DMTC models is to compute the prob-
ability of reaching a certain set of target states G from the initial state. Here ♦G is used
to denote the event of reaching G, and PM(sinit |= ♦G) represents the probability that
G can be reached from initial state in a DTMC M. Here PM can be written as P if M
is clear. Let π = 〈s0, s1, · · · , sn〉 represent any finite path in M. Then we have

P(sinit |= ♦G) = P({π | s0 = sinit ∧ ∃i ∈ [0..n], si ∈ G∧ ∀j ∈ [0..i− 1], sj /∈ G})
Given the transition relation Tr of M, there are two approaches to calculate P(sinit |=
♦G). One is solving linear equations, while the other is using value iteration. We use
pi to represent the probability from state si to the targets. In the following we use the
example in Figure 2 to show how these two approaches work. Note that state s4 is the
only target state, denoted by double cycles.

Solving Linear Equations From the model, the transition matrix between states can
be built. For example, p1 = 0.5 × p2 + 0.5 × p3 and p0 = p1. Since s4 is target, p4
= 1. s5 cannot reach target obviously, therefore p5 = 0. From these equations, each
pi can be solved through matrix operations. Although this approach can get accurate
result, it has drawbacks. Because each state is represented by a variable, there may be a
huge number of variables in large scale systems. The state-of-the-art linear solvers are
limited to handle thousands of variables, therefore linear equation approach may not be
scalable.

Using Value Iterations In this approach, pi is calculated iteratively. Assume pki is an
approximation of pi after the k-th iteration. Starting from the target state s4, in k-th
iteration we update the probability of states which could reach s4 in exactly k steps.
Obviously, ∀i ∈ [0, 3], p0i = 0. As pk4 = 1 and pk5 = 0 for any k, k is ignored in these two
states. In the first iteration, p3 can be updated, and p13 = {0.5× p02+0.5× p4} = 0.5; in

1 If sinit ∈ D, then sinit ∈ Inp(D).



Improved Reachability Analysis in DTMC via Divide and Conquer 167

the second iteration, p1 is updated since s1 reaches s3 in one step. It is trivial to show
p21 = {0.5×p13+0.5×p12} = 0.25. In the third iteration, both p0 and p2 can be updated
since they can reach s1 in one step. Afterwards, p3 is updated again because of the
update of p2. Iteratively, pi in the long run can be calculated. A user-defined threshold
is usually necessary to terminate the calculation, according to the desired precision. The
result of pi will be approximated gradually. This approach has better scalability than the
linear equations method, so it is more popular in existing model checkers. However, the
existence of loops may make the convergence slow. The probability of each state in
SCCs will be updated many times, which means a large number of iterations may be
needed before the results satisfy the terminating criteria.

2.3 States Abstraction and Gauss-Jordan Elimination

Here we follow the idea of [1]. Given a DTMC M = (S, sinit, T r, AP, L) and a group
of states D ⊆ S, D can be abstracted by calculating the transition probability from
Inp(D) to Out(D). According to the proof in [1], the abstraction of any arbitrary
set of states is independent from others, and the abstract transitions do not affect the
probability of reaching target states G.

One example of the abstraction is in Figure 3. Figure 3 (a) is the original DTMC,
which has one SCC D = {s1, s2, s3}. Inp(D) = {s1} and Out(D) = {s4, s5}.
In order to abstract D2, the probability from Inp(D) to each state sout ∈ Out(D)
should be calculated. Theoretically, the calculation from an SCC’s inputs to outputs
can be solved via linear equations or value iteration approaches3. However, for value
iteration approach, since there could be several output states in Out(D), we have to
separately calculate the probability from input states to each output state. If there are
many output states, this method could be inefficient. In addition, the existence of loops
still causes slow convergence issue. Furthermore, using value iteration, there will be
some errors because of the user-defined precision, but there is no way to know the error
bounds. Therefore, we use a specific linear equation solving technique: Gauss-Jordan
elimination [2] to do the abstraction.

Gauss-Jordan elimination is an algorithm for getting matrices in reduced row echelon
form that placing zeros above and below each pivot [2]. Here, we briefly introduce how
it works in our setting.

Assume there are m states in a set of states, say D, and |Out(D)| = n. Then two
matrices A and B, containing linear equations information of all transitions in D, are
first introduced as follows.

A(i, j) =

{
1, if i = j;
−Tr(i, j), otherwise.

B(i, k) = −Tr(i, k).

Here,A is an m×m square matrix.A(i, j) is a negative value of probability of transition
from ith state to jth state in D if i �= j. The diagonal elements of A are filled by 1.

2 Here we take an SCC as an example. Actually this abstraction can be applied to arbitrary set
of states, according to [1].

3 Different from our previous discussion which focuses the calculation from the initial state to
targets, here we discuss the probability from input states to every output state of an SCC.



168 S. Song et al.

s0 s1 s2 s5

s3 s4

1

0.5

0.5

0.5

0.5 0.5

0.5

1

1

s0 s1 s5

s4

1

0.4

0.6

1

1

(a) Before Abstraction (b) After Abstraction

Fig. 3. States Abstraction via Gauss-Jordan Elimination

This records the transition relationship within D. B is an m × n matrix to record the
transition relationship from D to Out(D). k represents the kth state in Out(D).

Next, augmenting the square matrix A with matrix B, we will have [A | B]. Gauss-
Jordan elimination on [A | B] will then produces [I | C]. Here, I is the identity matrix
with 1s on the main diagonal and 0s elsewhere. The new transition probability e.g.,
Tr′(i, k), stores the transition probability from ith state in D and kth state in Out(D),
which is actually −C(i, k). Now take Figure 3 (a) as an example. Its [A | B] and result-
ing [I | C] are listed as follows. In this example, A(i, j) corresponds to Tr(si+1, sj+1)
and B(i, k) indicates Tr(si+1, sk+4).

[A|B] =

⎡

⎣
1 −0.5 −0, 5
0 1 −0.5
0 −0.5 1

∣
∣
∣
∣
∣
∣

0 0
0 −0.5

−0.5 0

⎤

⎦ ; [I|C] =

⎡

⎣
1 0 0
0 1 0
0 0 1

∣
∣
∣
∣
∣
∣

−0.4 −0.6
−0.2 −0.8
−0.6 −0.4

⎤

⎦

Here the transitions from all the states in D to Out(D) are obtained. Note that those
states which are not in Inp(D) will be removed. Therefore we are just interested in the
new transitions from Inp(D) to Out(D), which are

Tr′(s1, s4) = 0.4; Tr′(s1, s5) = 0.6;

We can obtain that p1 = 0.4× p4 + 0.6× p5 in the abstracted DTMC, which is shown
in Figure 3 (b). Given a group of states D, this abstraction procedure is defined as a
method Abs(D).

Note that in practice, most transition matrices in probabilistic model checking have a
very sparse structure that contains a large number of zeros. We adopt a compressed-row
representation [14] as a data structure for matrices in Gauss-Jordan elimination.

3 Divide and Conquer Approach

From the analysis in Section 2, for a large DTMC with complicated loop structure, both
linear equations and value iteration method are ineffective, even unworkable. In this
section, we propose a divide and conquer approach which tackles the above-mentioned
problem. Our main idea is similar to work [3,1], which transfers the original DTMC to
an acyclic one by abstracting SCCs recursively so as to reduce the number of state and
loops.



Improved Reachability Analysis in DTMC via Divide and Conquer 169

Algorithm 1. Divide and Conquer Approach
input : A DTMCM = (S, sinit, T r,AP,L), target states G ⊆ S and a Bound B
output: P(sinit |= ♦G)

1 Let C be the set of all nontrivial SCCs inM;
2 while |C| > 0 do
3 Let D ∈ C;
4 if |D ≤ B| ∨Out(D) ≤ 1 then
5 Abs(D) and C ← C\D
6 else
7 Divide D into a set of AGs denoted as A;
8 for each E ∈ A do Abs(E );
9 Let D′ be the set of remaining states in D;

10 if |D′| ≤ B ∨ |D′| = |D| then
11 Abs(D′) and C ← C\D
12 else
13 Let CD′ be the set of all nontrivial SCCs in D′;
14 C ← (C\D) ∪ CD′ ;

15 return VI(M,G);

Intuitively, our approach divides large SCCs into smaller partitions, each of which
will be solved via Gauss-Jordan elimination independently. Through this approach,
loops will be eliminated. Afterwards, value iteration method is used to decide the final
probability of reaching targets. In the following, we introduce our algorithm in details.

3.1 Overall Algorithm

Given a DTMC M(S, sinit, T r, AP, L) and target states G ⊆ S, the probability of
reaching G, denoted as P(sinit |= ♦G), can be solved by Algorithm 1. Note that B
is an input parameter, which indicates SCCs having more than B states should be di-
vided. Abs(K) is defined in Section 2.3. VI(M, G) indicates calculating the probabil-
ity of reaching G via value iteration. The procedure of the algorithm is explained in the
following.

– The first step is to find all SCCs C in M by Tarjan’s approach [17], and their input
and output states are recorded as well. This is captured by Line 1.

– For each SCC D ∈ C, we will first check whether |D| exceeds B or whether
|Out(D)| > 1. If not, Abs(D) will be executed directly. States in D but not in
Inp(D) will be removed. Afterwards D will be removed from C, as shown in Lines
4-5. The reason why we directly abstract cases |Out(D)| ≤ 1 is as follows.
• If |Out(D)| = 0, D has no outgoing transitions, then no matter whether D has

target states or not, we do not need to solve D. If D ∩G = φ, it is obvious that
all states in D has probability 0 to reach G; otherwise, it is trivial to show that
all states in D has probability 1 to reach G.



170 S. Song et al.

s0 s1

s2

s3

s4

1

1 1

1

1
s0 s1

s2

s3

s4

1 1

1

1

1

(a) Before Abstraction (b) After Abstraction

Fig. 4. Destruction of SCC during Abstraction

• If |Out(D)| = 1, assume sout is the output state. All paths entering D will
leave it eventually. Therefore, for every si ∈ Inp(D), the probability of paths
entering D via si, staying in D and exiting D to sout should be 1. So D can be
abstracted directly.

– Lines 7-14 describe the case when D needs to be divided, i.e., when the SCC has
more than B states. First we divide D into several groups based on some heuristics,
each of which has a reasonably small number of state, i.e., less than B. Therefore,
for each group E we use Abs(E) to get the abstraction. Here we choose AG as
the structure of each partition, because the existence of the root state, say sr, may
remove the most states after abstraction. In the extreme case where Inp(E) = {sr},
all states in E except sr can be removed.

– By removing the states which are not input states of any E , the number of states in
D is often (not always) reduced. Line 10 checks two situations. 1) the size of D′ is
smaller than or equal to B, and 2) there is no reduction for D in this iteration. If 1)
is true, then there is no need to divide D′ again, and Abs(D′) is executed directly. If
2) is true, i.e., no state is reduced after divide and conquer, the main reason should
be that each state in D has a lot of pre-states. Therefore every state in one group
is an input state and cannot be removed. In this case, D′ should also be abstracted.
Afterwards, D is removed from C. If 1) and 2) are both false, Lines 13-14 will be
executed.

– Because of the abstraction, D may not be an SCC now. An example is shown in
Figure 4. On the left hand side, D = {s1, s2, s3}; if we group s1 and s2 together,
then s3 is this group’s output. It is easy to get the abstract transitions between them,
as shown in right hand side. Because both s1 and s2 are input states, no state is
removed. However, it is obvious that D′ = {s1, s2, s3} is not an SCC anymore.
Tarjan’s algorithm is used again to find new SCCs in the D′, captured by Line 13.
New SCCs will be added to C for another iteration.

– When the iteration terminates, there is only trivial SCCs in M now; in other words,
M is acyclic. Value iteration approach can be used to calculate the probability from
the initial state to targets efficiently, and this is captured by Line 15.

As we mentioned in Section 2.3, the iterative abstraction will not affect the final result
of the probability calculation. The following theorem establishes that the algorithm is
always terminating.

Theorem 1. Given a finite state DTMC M, Algorithm 1 always terminates.



Improved Reachability Analysis in DTMC via Divide and Conquer 171

Proof. We assume Ŝ = ΣD∈C |D|, in other words, Ŝ is the total number of states in C.
Then the theorem can be proved by showing (1) Ŝ is finite at the beginning, and (2) Ŝ
monotonically decreases after each iteration.

(1) is obviously true because M has finite number of states, and Ŝ ≤ |S| where S is
the set of states of M.

Given an SCC D ∈ C, if it satisfies the condition in Line 4, then D will be removed
from C, thus Ŝ is reduced. Otherwise, from Line 6, there are two possible outputs. (i)
∃E ∈ A, Abs(E) reduces its number of states, or (ii) ∀E ∈ A, Abs(E) does not reduce
its number of states. If (i) is true, then Ŝ is also reduced. If (ii) is true, then |D′| = |D|.
According to Line 8, D will be abstracted directly and be removed from C. Thus Ŝ is
still reduced. Therefore (2) is true, and the theorem holds. �

3.2 Dividing Strategies

Although the divide-and-conquer approach is correct and terminating, its efficiency is
highly dependent on how an SCC is divided. Assume A is the set of partitions after
dividing an SCC, then a suitable partition, say E ∈ A, should satisfy the following
conditions.

1. E should not have too many states, since each partition is abstracted using Gauss-
Jordan elimination which is limited to a relatively small number of states;

2. E should not have too few states as well, otherwise there will be too many partitions
to be solved, and the states reduction for E is inefficient;

3. The smaller |Out(E)| is, the better reduction is achieved. Too many output states
will make the input states of E have too many abstract transitions, which makes
the remaining structure complicated, and affects the efficiency of the following
abstraction.

As a result, the remaining issue is that given an SCC D, is there any optimal strategy
to divide it into suitable AGs? In practice, the structure of D could be arbitrary. This
increases the difficulty of finding a general strategy for all cases.

The simplest division method is to try to set each AG to have the same number of
states. Assume each AG should have N states. Then starting from one input state of
D, depth first search (DFS) or breadth first search (BFS) can be used to group every
N states together. Afterwards, each AG can be abstracted, and the remaining states
are combined together to do the next iteration. The advantage of this strategy is that
the number of states in each partition is easily controlled. It can be very efficient in
cases where the states in D has few transitions. However, this method cannot control
the number of output states of each partition, and a predefined N may not be suitable
for D’s structure.

Therefore, another improved strategy is used to automatically decide the number of
states in each AG. Instead of picking a constant N in the beginning, we set a lower
bound BL and an upper bound BU for each partition. Thus the number of states in
each partition should be between BL and BU . At first, BL states will be grouped into
E , and |Out(E)| is recorded. Afterwards, some states in Out(E) are added into E , and
|Out(E)| is updated. If |Out(E)| keeps unchanged or even becomes smaller after the
update, we will try to add more states into E again. If |Out(E)| is increased but the



172 S. Song et al.

increase is not significant, a few states will be added into E but the number should be
small. Otherwise E is confirmed and ready for Abs(E). Note the number of states in E
should be always below BU . This strategy guarantees
1. the number of states in E is under control. BL and BU guarantee that the size of E

should not be too large or too small.
2. the outputs of E are also manageable. This guarantees the states structure after

abstraction is not too complicated, and is suitable for next iteration.
Parameters B, N , BL and BU can be adjusted according to the specific DTMC to get
the optimal efficiency.

3.3 Parallel Computation

Previous work such as [6,13] depends on the topological order between different SCCs.
Therefore, parallel computation is not so easy to use in their setting. On the contrary,
our algorithm eliminates loops via abstracting every SCC one by one, without consider-
ing their order. The independence between different SCCs can be proved following the
proof in [1]. What is more, even each AG in one SCC is also independent from others,
and the proof actually follows the same idea of SCC’s independence. Thus, paralleliza-
tion is suitable in our setting in order to solve different AGs simultaneously.

In details, after finding all SCCs, they are stored with their input and output states.
For each SCC, a spare thread can be used to solve it. Therefore, Lines 2-14 in Al-
gorithm 1 can be solved via parallel computation. In addition, whenever an AG is
grouped, another spare thread, if there is any, can be used to abstract it. Thus Line 8
in Algorithm 1 can also be handled in parallel.

4 Implementation and Evaluation

We have implemented the algorithm into our model checking framework PAT [15],
which supports explicit probabilistic model checking [16] and can be freely downloaded
at http://www.patroot.com.

In the following, several experiments are conducted to show the efficiency of our
new approach. Note that we show the improvement via comparing to PAT itself, which
was based on value iteration method previously. Since the only difference between these
two versions is the algorithm of reachability analysis, it is fair to check the effectiveness
of the new method. Besides, several cases used in our experiment have dynamically
updated probabilistic distributions, and the modeling of them by other model checkers
is highly nontrivial.

In these experiments, we use the improved dividing strategy, and B, BL, BU are
set to be 300, 100, 150 respectively. In other words, an SCC with more than 300 states
should be divided; each group has states between 100 and 150. These parameters are
manually selected based on our experimental experience, i.e., generally these param-
eters have better performance compared with others. The testbed is a server running
Windows Server 2008 64 Bit with Intel Xeon 4-Core CPU×2 and 32 GB memory.

First, we use a simple example to show that our approach gets accurate results, re-
solves the slow convergence problem and results in huge speedup. Assume there are



Improved Reachability Analysis in DTMC via Divide and Conquer 173

s0

start

s1

s2su sf

susf
0.99

0.005

0.005

0.99

0.005

0.005

0.99

0.005 0.005

Fig. 5. A Simple Example: N = 3. su and sf are copied for better demonstration.

Table 1. Experiments: A Simple Example

System
PAT (w) PAT (w/o)

Prob Time (s) Memory (MB) Prob Time (s) Memory (MB)
N = 500 0.5 0.03 71 0.49987 0.5 24

N = 5000 0.5 0.3 83 0.49987 5.5 63
N = 50000 0.5 2.6 151 0.49987 125.2 111
N = 500000 0.5 29.7 885 0.49987 1612.8 838

N + 2 states {s0, s1, ..., sN−1, su, sf} existing in this example. Each state si, i ∈
[0..N − 1], has probability 0.99 to reach s(i+1)%n, and also has probability 0.005 to
reach su and sf separately. The case N = 3 is shown in Figure 5. Obviously, all states
si, i ∈ [0..N − 1] compose an SCC, and su and sf are this SCC’s outputs. We check
the probability from s0 to su, and several experiments are executed based on different
value of N as listed in Table 1.

In Table 1, columns Prob represents the probability returned by the model checking
algorithms. Columns PAT (w) (PAT (w/o)) show the experimental information taken
with (without) the new approach. Columns T ime represent the total time cost in the
verification. For these cases, our new approach outperforms value iteration approach
dramatically by reducing the verification time to less than 10%. On the other hand, the
memory used in new approach is higher than that used in the previous method, which is
reasonable since solving linear equations consumes more memory than value iteration
approach. Through the manual analysis, we know that 0.5 is the accurate result while
0.4998 is only an approximation.

Next, we apply our approach to several more meaningful systems and demonstrate
that our approach can still improve the efficiency significantly.

In multi-agent systems, dispersion games [8] represent an important scenario, i.e.,
dispersion games are the generalization of anti-coordination games to an arbitrary num-
ber of players and actions. Here we use two strategies designed for dispersion games:
bisic simple strategy (BSS) and extend simple strategy (ESS). BSS assumes the number
of players and the number of actions are the same, while ESS does not have this as-
sumption. In each round of the game, every player chooses one action following specific
probabilistic distribution, which is updated roundly according to the output of last round.
There is a desired outcome in this game called Maximal Dispersion Outcome (MDO),
and one property is to calculate the probability that MDO can be achieved.

Another case used in our experiments is coin flipping protocol for polynomial ran-
domized consensus [4] (CS). This case focuses on modeling and verifying the shared



174 S. Song et al.

Table 2. Experiments: Benchmark Systems

System States Prob
PAT (w) PAT (w/o)

Time (s) BMR Memory (MB) Time (s) BMR Memory (MB)
BSS (4) 4196 1 1.3 92.3% 39 0.2 50% 35
BSS (5) 49572 1 3.5 94.3% 297 4.4 11.4% 142
BSS (6) 605890 1 41.4 72.7% 1297 105.3 6.7% 417
BSS (7) 7462639 1 1671 30.1% 6350 2073.1 4.1% 5039

ESS (6, 4) 32662 1 1.4 92.8% 16.3 2.7 14.8% 5.6
ESS (6, 5) 162945 1 6.7 91.1% 48.5 11.4 16.7% 13.9
ESS (7, 5) 463460 1 27.9 84.9% 310 75.8 7.1% 292
ESS (8, 5) 1114480 1 70.5 74.7% 619 278.5 6.1% 643
ESS (8, 6) 6476524 1 438.0 68.5% 4209 1168.1 7.5% 3904
CS (4, 3) 4966 0.023 0.8 87.5% 45 2.4 8.3% 35
CS (6, 3) 34529 0.023 15.7 81.5% 214 124.1 0.9% 108
CS (6, 4) 45281 0.015 24.8 86.7% 324 243.8 0.6% 81
CS (6, 5) 56033 0.012 38.6 91.2% 312 432.1 0.4% 104
CS (7, 4) 99265 0.014 102.3 87.6% 1062 983.1 0.4% 97
CS (7, 5) 122785 0.011 161.7 92.1% 1145 1384.8 0.3% 97
CS (7, 6) 146305 0.01 245.5 94.9% 1404 2409.5 0.2% 156
CS (8, 4) 200083 0.013 585.1 93.4% 1974 - - -

coin protocol of the randomized consensus algorithm. CS is used as a benchmark sys-
tem in the state-of-the-art probabilistic model checker PRISM [12]. Here we use a safety
property in the system as our target.

The experiments based on these three models are listed in Table 2. BSS(N) indi-
cates there are N players (also N actions) in the game; ESS(N,K) means there are
N players and K actions; CS(N,K) indicates there are N processes and K is a con-
stant used in the model. Here we are interested in the ratio of model building (BM) time
to the total time, which is denoted as BMR in the table. In PAT (w), BM means the
time for building acyclic DTMC, i.e., the overall time consumed by eliminating loops
in DTMC; in PAT (w/o), it indicates the time for building the whole system. In both
PAT versions, value iteration is used to get the final result after building the model.
‘-’ indicates the verification takes more than 1 hour thus the result is not taken into
consideration. From the table, we have several observations.

1. For some small examples such as BSS(4), our new approach is slower. This is due
to the overhead taken by the SCC searching algorithm, and value iteration approach
is efficient when loops are small.

2. As the examples become larger, the verification speed is increased by our proposed
approach. This improvement is obvious especially in large-scale systems such as
ESS(8, 5), ESS(8, 6) and CS(8, 4).

3. CS consumes more resource than BSS and ESS when they have similar size of
state space, such as CS(7, 6) and ESS(6, 5). The reason is that CS has more com-
plicated SCCs, and both our new approach and traditional value iteration method
have to use more time and memory to solve it. As a result, the SCCs’ structure
affects the verification efficiency to a large extent.



Improved Reachability Analysis in DTMC via Divide and Conquer 175

4. According to BMR, we can see that in the previous version of PAT, building the
model costs small portion of the overall verification time compared with the value
iteration procedure. The average value of BMR is less than 10%, which means slow
convergence indeed exists in systems having large SCCs. CS has very small BMR
and this is consistent with the fact that CS has complicated SCCs. In the new
approach, time is mainly used by abstractions, as average BMR is more than 80%.
It indicates that the efficiency of the divide and conquer strategy is critical in the
whole verification now, and optimal dividing strategy is worthy to explore.

On the other hand, we want to share some limitations of our approach according to the
experimental information. The efficiency of this approach is dependent on whether large
SCCs exist in the system. During our experiment, the new approach performs slower
than value iteration method in several cases. The main two reasons include 1) there is
no loops in the system, thus the SCC searching algorithm makes the whole verification
slow; 2) the system just has small SCCs while the whole state space is large, thus the
gain of the abstraction is limited.

5 Related Work and Conclusion

SCCs are an important structure in both concurrent and probabilistic verification. For
probability calculation, those loops in SCCs are one of the key factors affecting the
efficiency. Some previous work has been done based on SCC decomposition for prob-
abilistic systems, including DTMCs and Markov Decision Processes (MDPs) [5], and
we are mainly inspired by this work.

To speed up the verification of MDP, the authors of [6] have proposed to decide the
topological order of all SCCs in the MDP, and value iteration method is used to solve the
SCCs from the bottom upwards. Based on this work, the authors of [13] have used SCC
decomposition to handle the incremental quantitative verification of MDP. The topolog-
ical order between SCCs guarantees that some changes in one SCC will not affect those
SCCs after it. Compared to their work, ours does not consider the orders of SCCs via
treating each SCC independently. This makes parallel computation approach feasible.
In addition, Gaussian-Jordan elimination is used to remove loops. Different from value
iteration, which needs a user defined precision, our approach generates accurate result.

Besides, there are several work based on SCC focusing on probabilistic counter-
example generation, such as [3,1]. Their idea of abstracting each SCC from its input to
output is the biggest inspiration of our work. Compared with these work, ours is more
focusing on improving reachability analysis in DTMC. Therefore, we divide SCCs into
smaller partitions and solve them directly.

Conclusion. In this work, we proposed a divide-and-conquer approach to speed up
reachability analysis of DTMCs. Because SCCs are one of main reasons that the prob-
ability calculation is slow, we focus on abstracting SCCs via calculating the transition
probability from their inputs to outputs. We divide every SCC, whose states exceed
some specific bound, into several AGs having reasonable number of states, and can be
solved efficiently via Gauss-Jordan elimination. We have implemented our approach in
PAT, and some benchmark systems are used to show its effectiveness and efficiency.



176 S. Song et al.

For future work, there are two possible directions. Currently, the parameters used in
the algorithm such as B, BL and BU are mainly decided via experience, and are man-
ually defined before the experiments. Therefore, one topic is to find the more efficient
division strategies, which are automatic and suitable for general cases. Another direc-
tion is extending our approach to MDP. Concurrency also exists in many probabilistic
systems, so nondeterminism is unavoidable in some cases. SCCs in MDP can also be
eliminated via calculating the probability distributions from inputs to outputs. Due to
the nondeterminism in MDP, one challenge is that the number of resulting distributions
may be exponential, thus a suitable divide and conquer approach for MDP is needed.

References

1. Ábrahám, E., Jansen, N., Wimmer, R., Katoen, J.-P., Becker, B.: DTMC Model Checking by
SCC Reduction. In: QEST, pp. 37–46 (2010)

2. Althoen, S.C., McLaughlin, R.: Gauss - Jordan reduction: a brief history. The American
Mathematical Monthly 94(2), 130–142 (1987)

3. Andrés, M.E., D’Argenio, P., van Rossum, P.: Significant Diagnostic Counterexamples in
Probabilistic Model Checking. In: Chockler, H., Hu, A.J. (eds.) HVC 2008. LNCS, vol. 5394,
pp. 129–148. Springer, Heidelberg (2009)

4. Aspnes, J., Herlihy, M.: Fast Randomized Consensus Using Shared Memory. Journal of
Algorithms 15(1), 441–460 (1990)

5. Baier, C., Katoen, J.: Principles of Model Checking. The MIT Press (2008)
6. Ciesinski, F., Baier, C., Größer, M., Klein, J.: Reduction Techniques for Model Checking

Markov Decision Processes. In: QEST, pp. 45–54 (2008)
7. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. The MIT Press (1999)
8. Grenager, T., Powers, R., Shoham, Y.: Dispersion Games: General Definitions and Some

Specific Learning Results. In: AAAI, pp. 398–403 (2002)
9. Itai, A., Rodeh, M.: Symmetry Breaking in Distributed Networks. Information and

Computation 88, 150–158 (1981)
10. Katoen, J.-P., Khattri, M., Zapreev, I.S.: A Markov Reward Model Checker. In: QEST,

pp. 243–244 (2005)
11. Katoen, J.-P., Zapreev, I.S., Hahn, E.M., Hermanns, H., Jansen, D.N.: The Ins and Outs of

The Probabilistic Model Checker MRMC. In: QEST, pp. 167–176 (2009)
12. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: Verification of Probabilistic Real-

Time Systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp.
585–591. Springer, Heidelberg (2011)

13. Kwiatkowska, M.Z., Parker, D., Qu, H.: Incremental Quantitative Verification for Markov
Decision Processes. In: DSN, pp. 359–370 (2011)

14. Stoer, J., Bulirsch, R.: Introduction to Numerical Analysis. Springer, Berlin (2002)
15. Sun, J., Liu, Y., Dong, J.S., Pang, J.: PAT: Towards Flexible Verification under Fairness.

In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 709–714. Springer,
Heidelberg (2009)

16. Sun, J., Song, S., Liu, Y.: Model Checking Hierarchical Probabilistic Systems. In: Dong, J.S.,
Zhu, H. (eds.) ICFEM 2010. LNCS, vol. 6447, pp. 388–403. Springer, Heidelberg (2010)

17. Tarjan, R.E.: Depth-First Search and Linear Graph Algorithms. SIAM J. Comput. 1(2),
146–160 (1972)

18. Younes, H.L.S., Clarke, E.M., Zuliani, P.: Statistical Verification of Probabilistic Properties
with Unbounded Until. In: Davies, J. (ed.) SBMF 2010. LNCS, vol. 6527, pp. 144–160.
Springer, Heidelberg (2011)


	Improved Reachability Analysis in DTMCvia Divide and Conquer
	1 Introduction
	2 Preliminaries
	2.1 Discrete Time Markov Chains
	2.2 Reachability Analysis
	2.3 States Abstraction and Gauss-Jordan Elimination

	3 Divide and Conquer Approach
	3.1 Overall Algorithm
	3.2 Dividing Strategies
	3.3 Parallel Computation

	4 Implementation and Evaluation
	5 Related Work and Conclusion
	References




