
Einar Broch Johnsen
Luigia Petre (Eds.)

 123

LN
CS

 7
94

0

10th International Conference, IFM 2013
Turku, Finland, June 2013
Proceedings

Integrated
Formal Methods

Lecture Notes in Computer Science 7940
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Einar Broch Johnsen Luigia Petre (Eds.)

Integrated
Formal Methods
10th International Conference, IFM 2013
Turku, Finland, June 10-14, 2013
Proceedings

13

Volume Editors

Einar Broch Johnsen
University of Oslo, Department of Informatics
P.O. Box 1080, 0316 Oslo, Norway
E-mail: einarj@ifi.uio.no

Luigia Petre
Åbo Akademi University, Department of Information Technologies
Joukahaisenkatu 3-5A, 20520 Turku, Finland
E-mail: lpetre@abo.fi

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-38612-1 e-ISBN 978-3-642-38613-8
DOI 10.1007/978-3-642-38613-8
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2013938948

CR Subject Classification (1998): D.2, F.3, D.3, F.4, F.1, F.2

LNCS Sublibrary: SL 2 – Programming and Software Engineering

© Springer-Verlag Berlin Heidelberg 2013

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

Formal methods allow the modeling and analysis of various aspects of a complex
system. Modeling languages differ in the system aspects they target, for which
models can be naturally and succinctly developed. Numerous techniques address
model analysis in these languages, specialized for different kinds of properties.
Applying formal methods to complex systems often involves combining several
models in different languages and exploiting the strengths of many analysis tech-
niques. The integrated Formal Methods (iFM) conference series seeks to further
research into hybrid approaches to formal modeling and analysis, and into the
combination of (formal and semi-formal) modeling and analysis methods in all
aspects of software development from language design through verification and
analysis techniques to tools and their integration into software engineering prac-
tice. This volume includes the articles presented at the 10th edition of iFM.

The 10th International Conference on integrated Formal Methods (iFM 2013)
was held during June 12-14, 2013, in Turku, Finland. The conference was orga-
nized by the Department of Information Technologies at Åbo Akademi Univer-
sity. Previous editions of iFM were held in York, UK (1999), Schloss Dagstuhl,
Germany (2000), Turku, Finland (2002), Kent, UK (2004), Eindhoven, The
Netherlands (2005), Oxford, UK (2007), Düsseldorf, Germany (2009), Nancy,
France (2010), and Pisa, Italy (2012).

The conference has grown tremendously in the past years. iFM 2013 received
106 abstracts and 84 full paper submissions. The Program Committee ensured
that each paper received three reviews and was carefully discussed, before se-
lecting 25 papers for presentation at the conference. This leads to an acceptance
rate of almost 30%. The scientific program of iFM 2013 was further strengthened
by four outstanding invited speakers:

– Jean-Raymond Abrial, Marseille, France: From Z to B and then Event-B:
Assigning Proofs to Meaningful Programs

– Susanne Graf, VERIMAG, France: Knowledge for the Distributed Implemen-
tation of Constrained Systems

– Kim Larsen, Aalborg University, Denmark: Priced Timed Automata and Sta-
tistical Model Checking

– Cosimo Laneve, University of Bologna, Italy: An Algebraic Theory for Web
Service Contracts

The invited speakers have contributed papers to the proceedings that survey
their work in these areas.

iFM 2013 attracted broad international interest. The authors of the submit-
ted papers were affiliated to 34 countries spread out on all five continents. The
authors of the accepted papers were affiliated to 14 countries, from Europe, Asia,
and South and North America. The Program Committee was also very interna-
tional, its members being affiliated to 16 countries, from Europe, North America,

VI Preface

Asia, and Australia. The biggest number of accepted authors came from France
and the biggest number of PC members came from the UK.

Associated with iFM 2013, the following workshops and tutorials were orga-
nized during June 10–11, 2013:

– The 4th International Workshop on Computational Models for Cell Processes
– Rodin User and Developer Workshop 2013
– BCS FACS 2013 Refinement Workshop 2013
– Tutorial on the Specification and Proof of Programs with Frama-C

These events significantly contributed to an exciting scientific program during
an entire week.

To our great sadness, Professor Kaisa Sere from Åbo Akademi University
passed away in December 2012. Kaisa was a renowned researcher in formal meth-
ods and one of the PC chairs of iFM 2002. She was happy that Åbo Akademi
University were planning was planning to host the conference again in 2013. We
are very grateful that one of her close scientific collaborators, Emil Sekerinski,
McMaster University, Canada, has accepted to give a short talk at iFM 2013 on
Kaisa’s achievements in computer science.

We warmly thank the Program Committee of iFM 2013 for their excellent
work, their high-quality reviews, their timeliness and enthusiasm, as well as
for their determination to only accept the best papers with respect to novelty,
innovation, and technical merit. It was an honor and a pleasure to work with you!
We would also like to acknowledge and thank the reviewers that supported the
Program Committee. The work of the Program Committee was supported from
the beginning by the EasyChair software: we thank Andrei Voronkov for making
this framework available. We are deeply indebted to the sponsors of iFM 2013:
their generous support enabled a pleasant environment and nice social events,
truly contributing to community building.

In the end, it is the authors of the contributed papers that made iFM 2013 a
reality and a success. Thank you very much for your dedication: it is your work
that makes up these proceedings!

April 2013 Einar Broch Johnsen
Luigia Petre

Organization

Program Committee

Erika Abraham RWTH Aachen University, Germany
Elvira Albert Complutense University of Madrid, Spain
Marcello Bonsangue Leiden University, The Netherlands
Phillip J. Brooke Teesside University, UK
Ana Cavalcanti University of York, UK
Dave Clarke Catholic University of Leuven, Belgium
John Derrick Unversity of Sheffield, UK
Jin Song Dong National University of Singapore, Singapore
Kerstin Eder University of Bristol, UK
John Fitzgerald Newcastle University, UK
Andy Galloway University of York, UK
Marieke Huisman University of Twente, The Netherlands
Reiner Hähnle Technical University of Darmstadt, Germany
Einar Broch Johnsen University of Oslo, Norway
Peter Gorm Larsen Aarhus University, Denmark
Diego Latella ISTI-CNR, Pisa, Italy
Michael Leuschel University of Düsseldorf, Germany
Shaoying Liu Hosei University, Japan
Michele Loreti Università degli Studi di Firenze, Italy
Dominique Mery Université de Lorraine, LORIA, France
Stephan Merz INRIA Lorraine, France
Richard Paige University of York, UK
Luigia Petre Åbo Akademi University, Finland
Kristin Yvonne Rozier NASA Ames Research Center, USA
Philipp Ruemmer Uppsala University, Sweden
Thomas Santen European Microsoft Innovation Center,

Germany
Ina Schaefer Technische Universität Braunschweig,

Germany
Steve Schneider University of Surrey, UK
Emil Sekerinski McMaster University, Canada
Graeme Smith University of Queensland, Australia
Colin Snook University of Southampton, UK
Kenji Taguchi AIST, Japan
Helen Treharne University of Surrey, UK
Heike Wehrheim University of Paderborn, Germany
Herbert Wiklicky Imperial College London, UK
Gianluigi Zavattaro University of Bologna, Italy

VIII Organization

Additional Reviewers

Ait Sadoune, Idir
Alonso-Blas, Diego

Esteban
Andre, Etiene
Andriamiarina, Manami-
ary Bruno
Bai, Guandong
Bendisposto, Jens
Bodeveix, Jean-Paul
Bruni, Roberto
Bubel, Richard
Carnevali, Laura
Ceska, Milan
Chechik, Marsha
Chen, Xin
Corzilius, Florian
de Gouw, Stijn
De Vink, Erik
Dobrikov, Ivaylo
Dongol, Brijesh
Dukaczewski, Michael
Dwyer, Matt
Edmunds, Andy
Ferrari, Alessio
Filali-Amine, Mamoun
Gibson, J. Paul
Griggio, Alberto
Gui, Lin
Gutiérrez, Raúl
Hallerstede, Stefan
Hankin, Chris
Isenberg, Tobias

Isobe, Yoshinao
Jakobs, Marie Christine
Jansen, Nils
Ji, Ran
Kitamura, Takashi
Kleijn, Jetty
Kong, Weiqiang
Laarman, Alfons
Lampka, Kai
Larmuseau, Adriaan
Lascu, Tudor Alexandru
Ledru, Yves
Li, Qin
Liu, Yan
Lochau, Malte
Loos, Sarah
Loup, Ulrich
Martin-Martin, Enrique
Masud, Abu Naser
Merro, Massimo
Miao, Weikai
Mihelčić, Matej
Miyazawa, Alvaro
Mostowski, Wojciech
Nakajima, Shin
Nellen, Johanna
Nesi, Monica
Patrignani, Marco
Plagge, Daniel
Poppleton, Michael
Proenca, Jose
Rojas, José Miguel

Román-Dı́ez, Guillermo
Rot, Jurriaan
Satpathy, Manoranjan
Schremmer, Alexander
Senni, Valerio
Singh, Neeraj
Soleimanifard, Siavash
Song, Songzheng
Stigge, Martin
Subotic, Pavle
Taylor, Ramsay
Ter Beek, Maurice
Tiezzi, Francesco
Timm, Nils
Traverso, Riccardo
Van Delft, Bart
Vandin, Andrea
Vanoverberghe, Dries
Walther, Sven
Wang, Xi
Winter, Kirsten
Wong, Peter
Yeganefard, Sanaz
Zaharieva-Stojanovski,
Marina
Zainuddin, Fauziah
Zeljić, Aleksandar
Zeyda, Frank
Zhao, Yongxin
Zheng, Manchun
Zhu, Shenghua
Ziegert, Steffen

Organization IX

Organization and Sponsors

The Organizing Committee of iFM 2013 consisted of Luigia Petre (chair), Maryam
Kamali, Yuliya Prokhorova, Magnus Dahlvik, Nina Rytkönen, Tove Österroos
and Susanne Ramstedt. The Workshops and Tutorials Chair was Pontus Boström.

We are very grateful to the financial and administrative support of the fol-
lowing institutions:

Department of Information Technologies at Åbo Akademi University, Springer,
the Foundation for Åbo Akademi University (Stiftelsen för Åbo Akademi), and
the Federation of Finnish Learned Societies (Tieteellisten seurain valtuuskunta,
TSV). Their logos are gratefully displayed below:

Table of Contents

Invited Paper 1

From Z to B and then Event-B: Assigning Proofs to Meaningful
Programs . 1

Jean-Raymond Abrial

Refinement, Integration, Translation

Systems Design Guided by Progress Concerns . 16
Simon Hudon and Thai Son Hoang

Assume-Guarantee Specifications of State Transition Diagrams for
Behavioral Refinement . 31

Christian Prehofer

Translating VDM to Alloy . 46
Kenneth Lausdahl

Verification of EB3 Specifications Using CADP . 61
Dimitris Vekris, Frédéric Lang, Catalin Dima, and Radu Mateescu

Invited Paper 2

Knowledge for the Distributed Implementation of Constrained Systems
(Extended Abstract) . 77

Susanne Graf and Sophie Quinton

Verification

Automated Anonymity Verification of the ThreeBallot Voting
System . 94

Murat Moran, James Heather, and Steve Schneider

Compositional Verification of Software Product Lines 109
Jean-Vivien Millo, S. Ramesh, Krishna Shankara Narayanan, and
Ganesh Khandu Narwane

Deductive Verification of State-Space Algorithms . 124
Frédéric Gava, Jean Fortin, and Michael Guedj

XII Table of Contents

Inductive Verification of Hybrid Automata with Strongest Postcondition
Calculus . 139

Daisuke Ishii, Guillaume Melquiond, and Shin Nakajima

Invited Paper 3

Priced Timed Automata and Statistical Model Checking 154
Kim Guldstrand Larsen

Reachability and Model Checking

Improved Reachability Analysis in DTMC via Divide and Conquer 162
Songzheng Song, Lin Gui, Jun Sun, Yang Liu, and Jin Song Dong

Solving Games Using Incremental Induction . 177
Andreas Morgenstern, Manuel Gesell, and Klaus Schneider

Model-Checking Software Library API Usage Rules 192
Fu Song and Tayssir Touili

Formal Modelling and Verification of Population Protocols 208
Dominique Méry and Michael Poppleton

Usability and Testing

Detecting Vulnerabilities in Java-Card Bytecode Verifiers Using
Model-Based Testing . 223

Aymerick Savary, Marc Frappier, and Jean-Louis Lanet

Integrating Formal Predictions of Interactive System Behaviour with
User Evaluation . 238

Rimvydas Rukšėnas, Paul Curzon, and Michael D. Harrison

Automatic Inference of Erlang Module Behaviour . 253
Ramsay Taylor, Kirill Bogdanov, and John Derrick

Distributed Systems

Integrating Proved State-Based Models for Constructing Correct
Distributed Algorithms . 268

Manamiary Bruno Andriamiarina, Dominique Méry, and
Neeraj Kumar Singh

Quantified Abstractions of Distributed Systems . 285
Elvira Albert, Jesús Correas, Germán Puebla, and
Guillermo Román-Dı́ez

Table of Contents XIII

Invited Paper 4

An Algebraic Theory for Web Service Contracts . 301
Cosimo Laneve and Luca Padovani

Semantics

A Compositional Automata-Based Semantics for Property Patterns 316
Kalou Cabrera Castillos, Frédéric Dadeau, Jacques Julliand,
Bilal Kanso, and Safouan Taha

A Formal Semantics for Complete UML State Machines with
Communications . 331

Shuang Liu, Yang Liu, Étienne André, Christine Choppy, Jun Sun,
Bimlesh Wadhwa, and Jin Song Dong

From Small-Step Semantics to Big-Step Semantics, Automatically 347
Ştefan Ciobâcă

Program Equivalence by Circular Reasoning . 362
Dorel Lucanu and Vlad Rusu

System-Level Analysis

Structural Transformations for Data-Enriched Real-Time Systems 378
Ernst-Rüdiger Olderog and Mani Swaminathan

Deadlock Analysis of Concurrent Objects: Theory and Practice 394
Elena Giachino, Carlo A. Grazia, Cosimo Laneve,
Michael Lienhardt, and Peter Y.H. Wong

Broadcast, Denial-of-Service, and Secure Communication 412
Roberto Vigo, Flemming Nielson, and Hanne Riis Nielson

Characterizing Fault-Tolerant Systems by Means of Simulation
Relations . 428

Ramiro Demasi, Pablo F. Castro, Thomas S.E. Maibaum, and
Nazareno Aguirre

Author Index . 443

From Z to B and then Event-B:
Assigning Proofs to Meaningful Programs

Jean-Raymond Abrial

Marseille, France
jrabrial@neuf.fr

The very first paper on Z [1] was published in 1980 (at the time, the name Z was
not “invented”), then the book on the B method [2] was published in 1996, and,
finally, the book on Event-B [3] was published in 2010. So, 30 years separate
Z from Event-B. It is thus clear that I spent a significant time of my scientific
professional life working with the same kind of subject in mind, roughly speaking
specification languages. I do not know whether this kind of addiction is good or
bad, but what I know is that I enjoyed it a lot.

So, I was very pleased when the organizers of iFM 2013, Luigia Petre and
Einar Broch Johnsen, invited me to give a talk at the conference and at the
same time suggested that I can give a presentation on “Z to Event-B”.

Since I am the main contributor (at least initially) of these three topics (Z,
B, and Event-B), there are certainly some common features that are interesting
to put forward in the three of them. But at the same time, during these thirty
years, it was also possible to gradually envisage some evolution from the first to
the last.

The main purpose of this presentation is thus to clarify this. This paper does
not contain a description of Z, B, or Event-B, as well as that of the corresponding
tools that have been developed over the years. Readers interested by this can
access the literature.

In the main part of the paper, I will rather present a historical account. The
idea is to explain how all this has slowly emerged as an intellectual evolution.
I will also try to make clear what are the external ideas and events (there are
many) that influenced this evolution. Then I will try to make a synthesis and
present what is common in these three topics and also what makes them differ-
ent from each other. This will take place in two Appendices.

The Way It All Started: Green

In the seventies, I was a member to the “Green” team developing the program-
ming language that later became ADA. During that time, I was probably one
of the first persons to write programs in “Green”: this is because I thought it
was necessary to try some proposed programming features in some significant
programs before incorporating them into a language. I must say that I was a bit
frustrated at the time, and this was for two reasons.

My first frustration came from my colleagues of the “Green” team: they did not
understand why I was so busy with this “programming” activity of mine. In fact,

E.B. Johnsen and L. Petre (Eds.): IFM 2013, LNCS 7940, pp. 1–15, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

2 J.-R. Abrial

they were more interested in discussing some fine points of the language in a way
that was, in my opinion, too far from the future job of working programmers.

My second, more important, frustration came from the programming examples
that I decided to use for these experiments. How could I discover that the written
programs were “correct”? More precisely, what does it means for a program to
be “correct”? So, before engaging in the writing of these experimental programs,
I decided to write little notes in English. Their purpose was precisely to clarify
this point about “correctness”.

These notes supposed to describe what each future program was intended to
achieve. In the case of a simple sequential programming experiment like a sorting
program, this was rather straightforward. However, in the case of more elaborate
experiments, I found it to be more difficult. In particular, this was the case on
examples dealing with embedded systems which were the main intended target
of the “Green” language.

About Assertions

Of course, I was aware of the effort made by Tony Hoare whose famous 1969
paper [8] was already well-known among researchers. But it seemed to me that
writing assertions within a program and eventually proving that these assertions
were indeed true was not enough, for the reason that the program and the
assertions are written simultaneously.

My view was that one should have something at one’s disposal before writing
a program, so that it would then be possible to compare fruitfully the program
with something else. The most important word used in the previous statement
is “compare”. This word raises some difficulties: how can I “compare” a program
written in a formal programming language with a note written in English and
how can I prove properties about such comparisons?

Looking for a Notation

Then emerged slowly the idea to write the mentioned “notes” describing the
properties of the future program achievements, not in English, but in a more
formal language so that the comparison between the program and the “notes”
could be made more effective. Clearly the formal language in question could
not be the programming language itself because this would then lead to some
vicious circle. It should be noted however that in some programming languages,
assertions are written using the programming language itself (with possible side
effects...): an obvious misinterpretation. So, the question was: which notation
shall we use to write such “notes”?

It happened that, at this time, I was very interested in reading the treatise
[12] called “Théorie des Ensembles” (Éléments de Mathématiques) by Nicolas
Bourbaki (this is the collective name of a group of French mathematicians). To
be honest, I must admit that it took me a long time to become familiar with
only the first 50 pages of this book. But I was an enthusiastic beginner and

From Z to B and then Event-B: Assigning Proofs to Meaningful Programs 3

I thought that the way first-order predicate calculus and set theory were used
in this book was quite useful to introduce the main initial working concepts of
mathematics (predicates, sets, binary relations, functions and their basic prop-
erties, etc.), although sometimes it was done in a complicated way in the book
(to my subjective taste).

Proving

Putting together these investigations for a formal notation and my interest in
this book was just a matter of time: it became clearer every day. What interested
me in the Bourbaki book was not only the notation itself but also the way it was
used to perform proofs (although such proofs are written in a rather informal
way in the book). It slowly became clear to me that a mathematical notation is
not only used to “write” mathematics but rather, and more importantly, as a way
to write down proofs that can be trusted by the community of mathematicians
(although this very difficult problem has a long history).

The usage of predicate calculus and that of a set-theoretic notation has thus
a dual advantage for writing these famous notes. First, it will allow us to write
them in a way that will be well understood by people with a normal scientific
background. Second, it will allow us to do some formal proofs in a rigorous
fashion. This second advantage helps us to give now more precision on how we
can “compare” the notes and the programs: namely by doing some mathematical
proofs.

All this was more or less perceived at the end of the seventies. But then it
took more than thirty years to be fully understood (by me) and practically im-
plemented on tools (by others and by me) ... and this is not even finished yet!

People Disliked It

When writing the first paper on Z and starting to spread the idea of using a set-
theoretic notation to write a specification before writing a program, I received
sometimes very negative answers. Some days at that time, I was invited to give
a series of lectures at a Summer School but when the organizers saw the subject
of my presentation, they canceled my visit, telling me that this subject was not
relevant to computer scientists.

I discovered then that set theory had a bad reputation among computer scien-
tists in Academia. I think the reason is that people are very afraid by the formal
definition of it in, say, Zermelo-Fraenkel axiomatization (I agree). Quite often,
computer science academic people confuses mathematics and computation, al-
though in many working programs recursive and inductive definitions are totally
absent.

On the one hand, computer scientists prefer to use predicate calculus only
in specifications. But in doing that they still quite often confuse predicates (a
logical concept) and boolean expressions (a programming concept). People think
that mathematics has a semantics. Programming languages have of course a

4 J.-R. Abrial

semantics, because programs can be executed. But mathematics has no semantics
because it is not executed, it is only used to support modeling and proofs in
various other disciplines (computer science is one of them).

On the other hand, I also noticed during this time, that professional mathe-
maticians are not good at logic. To figure that out, it is very instructive to see
how the “Intermediate Value Theorem” (a special case of it was proposed by
Bolzano in1817) is “proved” in textbooks. The apparent difficulty comes from
the fact that in this proof one needs to use the completeness axiom of real num-
bers and also the classical definition of the continuity of a real function. Both
this theorem and this definition are formally defined by some heavy predicates
involving both universal and existential quantifications. The proofs of the “In-
termediate Value Theorem” that can be seen in the literature clearly show that
their authors do not master predicate calculus: obscure wordings replace clear
treatments. However, it is not at all difficult to have a perfect and readable proof
provided it is made by someone who is “fluent” in first-order predicate calculus.

So, I was clearly in a bad situation: I wanted to reconcile computer scientists
and mathematicians but, apparently, these two communities do not understand
each other very well.

Oxford: Z

Fortunately not all people were against this approach: by the end of the seventies,
I was invited by Tony Hoare to come to Oxford at the Programming Research
Group, where I found a very open atmosphere and was able to develop further
the notation with comprehensive colleagues: Bernard Sufrin, Tim Clement, and
Ib Sorensen.

At the time, the emphasis was not put so much on proving. We were too busy
trying to extract from the classical Zermelo-Fraenkel set theory the minimal
notational constructs that could be used for writing program specifications.

However, we were very soon convinced that this notation should be an open
one, because we could not clearly imagine what could be the necessary math-
ematical concepts that might be useful in writing specifications. The result of
this initial work in Oxford was a very general open and powerful notation, Z,
that is still presently in use in various places (mainly in Universities).

More Investigations: B

At the beginning of the eighties, I decided to come back to France and depart a
bit from the Z community that was starting to grow. This community was quite
active. People added very interesting features to Z: the schema and its calculus,
and some techniques (using schemas) were developed to turn the notation into
one for developing sequential programs.

I was interested by what was done there but also found that we were lacking
an essential powerful proving system. I doubted that one could be developed out

From Z to B and then Event-B: Assigning Proofs to Meaningful Programs 5

of such a general language as Z was. I also found that the relationships between
different schemas was too weak. My new investigations went into four directions:

1. Could we simplify the mathematical notation of Z but nevertheless keep it
powerful enough so that it could be used to develop significant programs?

2. Could we structure the notation into building blocks being able to mimic
what happens in classical programming languages: modular languages and object
oriented languages?

3. Could we incorporate into the notation some techniques borrowed from the
refinement calculus of Ralph Back [6] and others (Tony Hoare [9], Cliff Jones
[10], and Carroll Morgan [11]), so that the construction of large programs could
be envisaged in a practical and gradual way?

4. Could we develop some powerful proving system that could be used in
practice?

What became clear at the time was that the relationship between the men-
tioned “notes” and the corresponding program makes the former more and more
important. Incorporating refinements into the pictures makes it possible now to
investigate the following:

5. Could it be possible to remove completely the human programming and
replace it by an automatic procedure performed on the last refinement
of the specification?

With all this in mind, B was launched. But, of course, it took many more years
for these ideas to be pushed enough until B could become a practical and indus-
trial technique. This was clearly not at all the case at the time.

First Contact with Parisian Metro: RER

In the eighties, RATP (the Parisian Metro authority) was modernizing one of
its RER lines (a special line from central Paris to and from some suburb). The
idea was to have the driver following the instruction of a computer rather than
looking at traffic lights. A huge embedded system was developed with computers
on board the trains and on the wayside either. But when all this was completed,
people in charge of the project were suddenly very afraid to sign the final autho-
rization. This was because they were having some doubts about the correctness
of the system. One could imagine the consequences of a sudden program crash.
I was very surprised to be asked by RATP to perform a technical audit of this
system. Among others, I had to answer the following question:

Are we sure that the technique used to validate this system makes us
confident that it will satisfy its specification?

For three weeks I met many people, essentially engineers in charge of developing
this system and also those (different) in charge of testing it. I met extremely
professional people who impressed me a lot. I had nothing against the verification

6 J.-R. Abrial

technique they were using, essentially some heavy testing. But I had nevertheless
a problem because I was not shown any clear specifications of this system. So,
something was not clear to me: against what were these people testing?

When I presented my report to RATP and others, I said that I was very
sorry but that I could not answer the question they asked me because I had not
seen the specification. There was some kind of a shock in the audience. People
were very nervous and said that I was not telling the truth. But the lack of
specification documents (and design documents as well) was clearly established,
so, at the end, they could not disagree.

As a result, and certainly for some other reasons, RATP was courageous
enough and decided to postpone the starting of the new RER semi-automatic
system for one year. Of course, they were not very happy to do so, because the
Parisian Metro is considered to be one of the safest in the world: they had to
recognize that this was not the case here.

More Contacts with Parisian Metro: Line 14

After the audit mentioned in the previous section, RATP asked me whether I
could give them a course on how to write formal specifications. Needless to say,
I was not at all at ease to give a positive answer, because B (this name even did
not existed yet) was in its infancy and Z was not, in my view, the right approach
to their problem. Nevertheless, I tried to do my best and I gave a course using
a formal notation that was “in between” Z and B, clearly something that was
not very satisfactory. Curiously enough, in spite of these approximations, the
course was well received by RATP and by some industry people also attending
the course, and, maybe more importantly, it helped me to clarify many things
in B. During the course, we studied some part of the RER system (the structure
and properties of a metro line) and tried to build a formal model of it.

After that, RATP was silent for a certain time: I thought that finally they
were not interested by this approach. During that time, I tried to develop B
further by stabilizing the retained notation and by starting to build a draft tool.
The final notation was not an open one as Z was. A simple typing system was
set up, and some structuring devices (probably too much) were developed as this
was missing in Z. All this was done as I was a consultant for BP in the UK.

During this time I figured out how important it was to have some solid indus-
trial contacts in order to develop some notation that could be used in practical
developments. After more than a year, RATP contacted me again. They ex-
plained that they intended to develop a new metro line within Paris (Line 14,
also called the Meteor Line) and that this line would be entirely automatic (with-
out drivers). So far so good. But then they asked me whether B could be used
to develop a part of the corresponding computerized system (the safety critical
part). What was my feeling about it?

It was very difficult to give a positive answer: the definition of B was in
principle stabilized but no experience was available yet about the usefulness of
all this, and moreover, the tool was in its infancy (in particular the proving tool).

From Z to B and then Event-B: Assigning Proofs to Meaningful Programs 7

They suggested that the usage of B and that of the corresponding “tool” could
be done in parallel with a more classical development. That seemed to me to
be very reasonable, but probably quite costly! The company Matra Transport
(now part of Siemens) was awarded the contract for developing this driverless
train system. Of course, people in charge of this company were heavily against
using B, but RATP convinced them (mainly financially) to go ahead with it (in
parallel with a classical development as said before).

After some difficulties, a French software house, Steria, was in charge of de-
veloping further the tool for B (also funded by RATP). It was given the name
“Atelier B”. To my astonishment, this organization made of RATP, Matra Trans-
port, and Steria worked well. At some point, RATP even decided to ask Matra
Transport to cancel completely unit tests and also integration tests (both of
them are very costly) because they felt confident enough in the proofs that were
done with the tool. This saved a lot of money which was then used instead to
perform more elaborate testing at a global system level.

In October 1998, Line 14 was launched. Since then, it has not suffered any
software bugs. It has later been extended on both ends very easily. I must ad-
mit that I am always very impressed (and a bit anxious) to embark in a metro
without driver running at full speed in the tunnels ... but the Parisians like it a
lot: Line 14 is always very crowded.

Some Figures

In the Line 14 metro system, the software is not entirely developed with B, only
those parts dealing with safety critical constraints are. On the whole, 86,000 lines
of ADA code had been produced entirely automatically from the B development.
Of course, it was totally forbidden to touch a single line of the code of this part.
This B development required 27,800 proofs to be performed. Among them, 8.1%
were interactive proofs. Such proofs are still done with the tool, but they require
a human intervention. This corresponded to a work load of 7.1 man/months.
The corresponding price is interesting as it can be compared with that of testing
that had been canceled: a clear advantage to proving over testing.

What is interesting to note here is that the Matra Transport engineers had no
difficulty to adapt to this technology that was entirely new for them. In partic-
ular, they were able to perform interactive proofs after a rather short updating.
Moreover, the integration of the proof effort within their modeling work was very
positive, difficulties in performing proofs became a sign that the modeling could
be restructured: improving the modeling has a positive effect on the automati-
zation of the proofs.

Ups and Downs

Since then, the usage of B has been expanded world wide in many other metro
systems: in New York City, in South America, in Europe, in China, etc. Here
are three projects developed with B in France:

8 J.-R. Abrial

1. Another Parisian metro line (Line 1) is now completely automatic and works
with B.

2. The shuttle in Charles de Gaulle airport is automatic and is also using
B. For that system, 158,000 lines of ADA were produced automatically.
This required 43,600 proofs among which 3.3% were interactive, that is 4.6
man/months (the difference with the figures for Line 14 project, as men-
tioned in the previous section, is due to some improvment in the tool).

3. A line of the Lyon metro has been renovated and uses B.

The Atelier B tool has been developed further by Clearsy, specially its prover.
Other tools have been developed by Siemens to partially automatize the refine-
ment process. Finally, two French software houses are making successful business
with B: Clearsy and Systerel. All this is the positive side.

But there is also a negative side that is quite important. Curiously enough,
to the best of my knowledge, the usage of B is totally absent in other advanced
industrial domains: automotive, aircraft, space, nuclear industries, etc. To my
opinion, B could have been used equally well in these domains. In fact, people
there strongly object to use it. They claimed to have many reasons to do so: in
particular, they said that their engineers could not perform interactive proofs.
They also claimed that B is too far from their engineers technical culture. They
took other options so that it is certainly the case that there will probably be no
progress in using a formal method such as B for the next 15 years in these areas.

On the negative part, it is also interesting to note that B was very much
disregarded initially by Siemens when this company purchased Matra Transport
(it became Siemens Transport). Also in RATP itself, some lobbies were strongly
against B. One of their arguments was that because of the automatization of
proofs and programming then the engineers would be less involved in their job.
I heard also the argument that because B was a success in the Line 14 project
then one has to think of a different approach! In both cases, after some years, B
was still being used fruitfully...

System Modeling

At the turn of the century, after the success of the Line 14 project of Paris
metro, I was worried about one question, which is the following. In this project
and in many similar ones, some initial studies are performed by, so-called, sys-
tem engineers. They determine the main structure of the system, mainly its
components and their relationship. They eventually deliver an analysis out of
which one defines the informal specifications of the various components of the
future system. The formal development undertaken with B (or with any other
similar approach) starts at this point only. This is then done on each of these
components independently.

Now, the question is: how about these system studies? I am not claiming that
the system engineers are doing a bad job, they are usually extremely good and

From Z to B and then Event-B: Assigning Proofs to Meaningful Programs 9

professional, but, clearly, if mistakes are made during this preliminary phase,
then the formal developments undertaken afterwards will probably not discover
them.

In the case of a train system, such studies are responsible for ensuring that
no two trains can hit each other when they both circulate on a complex rail net-
work containing many dynamic points (switches in US English) allowing train
to change rails. In other words, they guarantee that many trains can circulate
simultaneously on the rail network in a safe way. As can be seen, this is not
a simple task: the computer of each train has to communicate with the way-
side computers receiving information about various trains circulating in their
neighborhood and information about the points’ position in the rails under the
supervision of the wayside computers.

So the idea is to develop a formal approach for such system studies as well. We
would like these studies to be concluded by formal proofs, thus being possibly
safer than those done “manually”. Clearly the formalism to be used here had
to be different from that used for developing software as is done with B. We
have to model an entire system where some components will eventually turn
into software controllers whereas others are models of the physical components
pertaining to the, so-called, environment of the various software parts.

In other words, we have to model a situation where the “computation” is es-
sentially distributed. We also have to take into account the cases where one of
the components fails. Finally, we have to consider complex timing constraints.
All this make it necessary to start a new formalism that inherited a lot from B
but was nevertheless different from it: Event-B [3].

A European Effort: Event-B and the Rodin Platform

At that time, I was made aware by Michael Butler of the work done in the late
eighties by Ralph Back and Reino Kurki-Suonio on Action System [5]. I became
fascinated by the excellent ideas contained in their approach and figured out
that many of them could be borrowed and incorporated into B for making such
formal system modeling possible. It happened that B, as it what at the time,
was rich enough to be used for experimenting these ideas. This was done for
many years.

From 2002 until now, this new developmentt was funded by the European
Commission under four different successive European projects: Matisse, Rodin,
Deploy, and Advance. This effort of the European Commission is quite remak-
able. Some European Universities were involved: the University of Southamp-
ton and Newcastle University in the UK, Aabo Akademi in Finland, ETH-
Zuerich in Switzerland, and the University of Duesseldorf in Germany. Likewise,
some industrial companies were involved among which are Siemens, Bosch, SAP,
Alstom, Clearsy, and Systerel.

I also received some very important help and scientific support from
Dominique Cansell and Dominique Méry.

10 J.-R. Abrial

These European projects evolved in three directions: first the development
of Event-B itself, second the construction of a tool, the Rodin Platform [15],
and third, some industrial case studies (such case studies were not completely
satisfactory).

The Rodin tool is built on top of Eclipse. This allowed us to have a platform
that is extensible by means of, so-called, plug-ins. The development of the Rodin
Platform started at ETH Zuerich during the Rodin project. The technical leader
of the project was Laurent Voisin working with by Stefan Hallerstede, Thai Son
Hoang, Farhad Mehta, and François Terrier. It was extended during the Deploy
project at Systerel, still under the guidance of Laurent Voisin working this time
with Nicolas Beauger, Thomas Muller, and Christophe Métayer.

Many plug-ins for the Rodin Platform were developed at the University of
Southampton under the guidance of Michael Butler (among which are UML-B,
EventB-ADA,Theory), and at the University of Duesseldorf under the guidance
of Michael Leuschel (ProB, ProR).

The net result of all these efforts is that we now have a very rich software
tool [15] that can be made available for free to anyone. Courses on Event-B and
practical works with the Rodin Platform are taught in many parts of the world:
Australia, Japan, China, Malaysia, India, many places in Europe, South and
North America, North Africa.

Putting B and Event-B Together

The next step is now to try both Event-B and B in the same industrial project.
The former being used to perform the system studies followed by the latter used
to implement the software controller. This has not fully happen yet although I
am quite confident that it could be done.

There has been an attempt, but the industrial partner was not ready to fully
cope with this dual approach, although he was quite convinced and happy with
the usage of B, which was very successful.

The Last Evolution: Hybrid Systems

In recent years, several groups, mainly in Shanghai (East China Normal Univer-
sity) and in the UK (Manchester University) [14] are interested in studying how
Event-B and the Rodin platform could be able to cope with hybrid systems.

So far, B and Event-B were used to model discrete systems only. But hybrid
systems are becoming more and more important, especially in the development
of embedded systems where the problem is to control, with some discrete inter-
ventions, an external situation that is supposed to evolve continuously.

Here again, among a very important literature, the work of Ralph Back and
his colleagues Luigia Petre and Ivan Porres [7] is quite important. They extended
Action System to become Continuous Action system. This is done by generalizing
timeless variables to be time function variables recording their future evolution

From Z to B and then Event-B: Assigning Proofs to Meaningful Programs 11

as time goes. This generalization can be incorporated into models done with
Event-B without too much difficulties [4].

However, when such functions are not defined directly but rather indirectly
by means of unsolvable differential equations, things are becoming more com-
plicated. One has thus to prove some properties of the solution of a differential
equation without solving it. This topic is still presently a research subject.

Some Concluding Remarks

In this paper, I covered thirty years of history concerning Z, B, and Event-B.
The sociological adventure of all this is quite interesting. The first remark that
could be made is that more and more people and institutions were involved over
the years. On can also notice that people involvement was not so much “linear”
on the short term (it could stop temporarily) but it does increase regularly in
the long term.

The situation with Event-B and the Rodin Platform is quite different from
that of B and the Atelier B tool. Event-B and the Rodin Platform are largely
used in Academia and almost not used in Industry (with the exception of Hitachi
in Japan). On the contrary, B and the Atelier B tool are used in many industrial
projects but not so much in Academia. It could be interesting to investigate why.

I think that the main reason is due to the different kinds of funding that were
used. In the case of B and Atelier B, the main funding came from RATP together
with the development of a huge industrial project: Line 14.

Some lessons have to be learned from this. It seems to me that a practical
research could be partially funded by taking a very small percentage of the money
spent in large industrial projects. This is what has happened for the funding to
B and Atelier B. The same thing happens with some piece of art in France and
certainly in other countries as well. For instance, when the French government
decides to fund the construction of, say, a hospital, then a small amount of the
funding is devoted to pay an artist to erect a sculpture in front of the hospital.
I think that there is even a law enforcing this.

Why not to have the same kind of law for the funding of a practical research?
There will be many positive outcomes from doing this: the research project
will last as long as the industrial project does. In my opinion, it is important,
although sometimes difficult, to stop a research project, here it would be implicit
from the beginning. The outcome of the research project (if successful) can be
incorporated into the industrial project. People involved in the research project
are very committed because they are willing to see their results being used in
the industrial project and later elsewhere.

In the case of Event-B and the Rodin Platform, the funding came from the
European Commission. In these cases we observed, as mentioned earlier, that
the industrial case studies were not very successful. The reason, I think, for these
relative failures came from the fact that the involved parts of the industries were
R&D units, not business units. It is well known fact that in large corporations,
the relationship between these entities is rather delicate: usually, works done

12 J.-R. Abrial

in R&D departments have some difficulties to be eventually incorporated into
business units.

On the other hands, the academic results of these European projects is ex-
tremely successful (Event-B, the Rodin Platform). So, the European funding
was here very positive. As said earlier, many courses on this material are now
distributed in many places over the world and many PhD thesis were awarded.
The influence on industry can then take more time when these educated people
will eventually reach industry. This is a long-term human investment very much
in the spirit of the European Commission.

Acknowledgments. I would like to thank very much some people who read ini-
tial drafts of this paper providing encouragements and useful comments: Richard
Banach, Michael Butler, Thai Son Hoang, Luigia Petre, Ken Robinson, and
Bernard Sufrin.

References

1. Abrial, J.-R., Schuman, S.A., Meyer, B.: Specification Language. On the
Construction of Programs (1980)

2. Abrial, J.-R.: The B-book: assigning programs to meanings. Cambridge University
Press (1996)

3. Abrial, J.-R.: Modeling in Event-B: System and Software Engineering. Cambridge
University Press (2010)

4. Abrial, J.-R., Su, W., Zhu, H.: Formalizing Hybrid Systems with Event-B.
ABZ (2012)

5. Back, R.J., Kurki-Suonio, R.: Distributed Cooperation with Action Systems.
ACM Transaction on Programming Languages and Systems (1988)

6. Back, R.J.: A Calculus of Refinements for Program Derivations. Acta Informatica
(1988)

7. Back, R.-J., Petre, L., Porres, I.: Generalizing action systems to hybrid systems.
In: Joseph, M. (ed.) FTRTFT 2000. LNCS, vol. 1926, p. 202. Springer, Heidelberg
(2000)

8. Hoare, C.A.R.: An Axiomatic Basis for Computer Programming. CACM (1969)
9. Hoare, C.A.R.: Proof of Correctness of Data Representations. Acta Informatica

(1972)
10. Jones, C.B.: Software Development: A Rigorous Approach. Prentice Hall

International (1980)
11. Morgan, C.C.: Programming from specifications. Prentice Hall International (1990)
12. Bourbaki, N.: Théorie des Ensembles. Hermann (1970)
13. Maamria, I.: Towards a Practically Extensible Event-B Methodology. PhD Thesis.

The University of Southampton (2012)
14. Banach, R., Zhu, H., Su, W., Wu, X.: Continuous Behaviour in Event-B: A Sketch.

ABZ (2012)
15. http://www.event-b.org

http://www.event-b.org

From Z to B and then Event-B: Assigning Proofs to Meaningful Programs 13

Appendix A: What Is Common in Z, B, and Event-B: the Set
Notation

The mathematical notation used in Z, B and Event-B is that of set theory. It is
often said that Z is named after Zermelo-Fraenkel set theory. People could then
think that the Z (and B) notation was directly dictated by this set theory. In
my opinion, this is far from being true. In order to illustrate this, let me present
here a mail conversation I had some times ago with Prof. Freek Wiedijk. Here is
part of a mail I received from him:

I was talking to Josef Urban, and he claimed that someone told him
last week (at Dagstuhl) that B has the full strength of ZFC set theory.
Now I had the impression that although B is very much in the spirit of
ZFC set theory, it is logically slightly weaker. I don’t remember where
that impression came from, though. (Maybe it was related to the type
system?)
Can you tell us who’s right about this? I would very much like to know!

Here was my answer:

Let me explain what we have in Event-B1 (see chapter 9 of my book).

Set Theory
The set theory we use in Event-B is a TYPED (see below) set theory
made of the following axioms:
1. Extensionality: A = B ⇔ ∀x · x ∈ A⇔ x ∈ B
2. Power set: T ∈ P(S) ⇔ ∀x · x ∈ T ⇒ x ∈ S
3. Comprehension: x ∈ {y | y ∈ S ∧ P (y)} ⇔ x ∈ S ∧ P (x)
4. Cartesian product: x �→ y ∈ S × T ⇔ x ∈ S ∧ y ∈ T (see below for
the notation of the pair of x and y)
5. The axiom of choice can be added if necessary by defining in the lan-
guage a (polymorphic) choice function for each non-empty set.

Remarks
r1: It does not contain the foundation axiom. It is implicit from the
syntax.
r2: It does not contain the union axiom. It is forbidden by the typing.
r3: It does not contain the infinity axiom as the natural numbers and
the integers are axiomatized directly with the Peano axioms and the
extension to negative numbers.
r4: The Cartesian product axiom is necessary as the usual Kuratowski
construction of the pair ((x, y) = {{x}, {x, y}}) is forbidden by the typ-
ing.
r5: In fact, the pair is axiomatized OUTSIDE SET THEORY as it it
necessary in predicate calculus with equality: x �→ y = z �→ t ⇔ x =
z ∧ y = t (we denote the pair of x and y as x �→ y).

1 What follows is equally valid for Z and B.

14 J.-R. Abrial

About Typing
When defining a problem, we start with statements like this “Let S, T ,
... be given sets ...” Within such a statement, the BASIC TYPES are the
sets S, T , ... together with Z, the set of Integers. Type constructors are:
1. Cartesian product of types
2. Power of types.
Type checking (a procedural treatment) must ensure that all expressions
in a formal statement are WELL-TYPED. It means that each expression
belongs to a basic type or belong to a set defined (recursively) from basic
types and the type constructors. If it is not the case, then the statement
is rejected for future treatment.

Well-Definedness
Besides type checking, another initial treatment is performed on a
formal statement, namely checking that expressions and predicates are
WELL-DEFINED. This treatment may require some proofs (it is NOT
procedural as type checking is).
The most common well-definedness checking is that in an expression such
as f(x) (where f is a partial function) then x must belong to the domain
of f . Others are no division by 0, min and max are well-defined on some
numerical sets ...
In a proof, after well-definedness checking, one can assume that expres-
sions remain well defined unless one introduces new expressions as in a
cut treatment (in this case, well-definedness has to be performed in the
middle of a proof).

Answering Your Question
I agree with your wording: “B is very much in the spirit of ZFC set the-
ory”. Now the question is: can we do the same as in full ZFC? We have
tried many set theoretic theorems such as (see the end of the last chap-
ter of my book): Tarski’s fix point theorem, Cantor-Bernstein theorem,
Zermelo’s theorem, etc. We were able to prove them all within our set
theory. However ordinals cannot be defined explicitly because of typing.

Finally, here is the reply sent by Prof. Freek Wiedijk

Many thanks for clarifying to us how the set theory of Event-B relates
to ZFC!
What I find suprising is that you claim that the fact that it is a bit
weaker (no union axiom, no replacement, no way to define the ordinals)
is caused by the fact that everything is typed. However, in the Mizar
system one does have full ZFC (even a bit more), and there everything
is typed too.
But I guess that maybe you don’t like to have a more complicated type
system (like the one in Mizar, with its rather involved subtyping rules)
for good reasons?

From Z to B and then Event-B: Assigning Proofs to Meaningful Programs 15

Here is my final mail in reply to this one:

Yes, the typing we use is very simple (basic types + (recursively) carte-
sian product of types and power of types). This was decided on purpose
so that the typing procedure is also very simple (does not require any
proof) ... and, as we find it, sufficient for our purpose.

Appendix B: What Is Different in Z, B, and Event-B: Their Purpose

The initial purpose of Z was to identify a set-theoretic notation to be used as
a medium for writing formal specifications of programs. The result is a very
powerful generic notation.

The initial purpose of B was to develop a notation able to be used for the
specification and development of large software. The set notation used, although
in the same spirit as the one used in Z, is in fact less general and not generic. It
was felt however to be sufficient for the intended purpose. The main structure
is the so-called “machine” containing variables, invariant and operations defined
by pre- and post-conditions. A machine can be refined. It can also import an-
other machine for an implementation. The notation is thus close (although more
general) to that of a modular programming language. Refinement is defined by
weakening the pre-condition and strengthening the post-condition of operations.

The Atelier B tool (proprietary of Clearsy but freely distributed to Univer-
sities) allows one to define machines, refines them and prove the corresponding
proof obligations (invariant preservation and correct refinement).

The initial purpose of Event-B is to have a notation able to be used for
modeling distributed systems. As for B, the main structure is also a “machine”.
However a machine does not define a programming module as in B but rather
contains a set of events defined by a guard and an action (assignment, possibly
non-deterministic of variables). Refinement is defined by strengthening the guard
and the actions.

The Rodin Platform [15] is a free software, and, like Atelier B for B, allows one
to define machines, refines them and prove the corresponding proof obligations
(invariant preservation and correct refinement). This platform sits on top of
Eclipse. It can be extended by plug-ins.

The initial set-theoretic notation of Event-B is a little less general that
the one used in B. However, the usage of the “Theory” plug-in [13] under the
Rodin Platform allows one to freely extend the mathematical language in a
polymorphic way.

Systems Design Guided by Progress Concerns

Simon Hudon1 and Thai Son Hoang2

1 Department of Computer Science, York University, Toronto, Canada
simon@cse.yorku.ca

2 Institute of Information Security, ETH-Zurich, Switzerland
htson@inf.ethz.ch

Abstract. We present Unit-B, a formal method inspired by Event-B and
UNITY, for designing systems via step-wise refinement preserving both safety
and liveness properties. In particular, we introduce the notion of coarse- and fine-
schedules for events, a generalisation of weak- and strong-fairness assumptions.
We propose proof rules for reasoning about progress properties related to the
schedules. Furthermore, we develop techniques for refining systems by adapting
event schedules such that liveness properties are preserved. We illustrate our ap-
proach by an example to show that Unit-B developments can be guided by both
safety and liveness requirements.

Keywords: progress properties, refinement, fairness, scheduling, Unit-B.

1 Introduction

Developing systems satisfying their desirable properties is a non-trivial task. Formal
methods have been seen as a solution to the problem. Given the increasing complex-
ity of systems, many formal methods adopt refinement techniques, where systems are
developed step-by-step in a property-preserving manner. In this way, a system’s details
are gradually introduced into its design in a hierarchical development.

System properties are often put into two classes: safety and liveness [10]. A safety
property ensures that undesirable behaviours will never happen during the system exe-
cutions. A liveness property guarantees that eventually desirable behaviours will hap-
pen. Ideally, systems should be developed in such a way that they satisfy both their
safety and liveness properties. Although safety properties are often considered the most
important ones, we argue that having live systems is also important. A system that is
safe but not live is useless. For example, consider an elevator system that does not move.
Such an elevator system is safe (nobody could ever get hurt), yet useless. According to
a survey [6], liveness properties (in terms of existence and progress) amount to 45% of
the overall system properties.

In most refinement-based development methods such as (B, Event-B, VDM, Z) the
focus is on preserving safety properties. A possible problem for such safety-oriented
methods is that when applying them to design a system, we can make the design so
safe that it becomes unusable. It is hence our aim to design a refinement framework
preserving both safety and liveness properties.

E.B. Johnsen and L. Petre (Eds.): IFM 2013, LNCS 7940, pp. 16–30, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Systems Design Guided by Progress Concerns 17

Some modelling methods such as UNITY [3], include the capability of reasoning
about liveness properties. In UNITY, there is a clear distinction between specifica-
tions (temporal properties) and programs (transition systems). Refinement in UNITY
involves transforming specifications according to the UNITY logic. At the end of the
refinement process, one obtains several temporal properties which then can be imple-
mented by some program fragments according to well-defined rules. As a result, pro-
grams (transition systems) in UNITY are not part of the design, they are the output of
the refinement process. A disadvantage of this approach is that the transformation of
temporal properties can make the choice of refinements hard to understand. In order
to overcome this limitation, we unified the notion of specification and that of program,
making smoother the transition from one to the other.

In this paper, we present a formal method, namely Unit-B [8], inspired by UNITY [3]
and Event-B [1]. We borrow the ideas of system development from Event-B, in which
a series of models is constructed and linked by refinement relationships. The temporal
logic that we use to specify and to reason about progress properties is based on UNITY.

The main attraction of our method is that it incorporates the reasoning about safety
and liveness properties within a single refinement framework. Furthermore, our ap-
proach features the novel notions of coarse- and fine-schedules, a generalisation of the
standard weak- and strong-fairness assumptions. They allow us (1) to reason about the
satisfiability of progress properties by a given model, and (2) to refine a given model
while preserving liveness properties. This makes it possible in Unit-B to introduce live-
ness properties at any stage of the development process. Subsequently, not only does
it rule out any design that would be too conservative, but it also justifies design deci-
sions. As a result, liveness properties, in particular progress properties, act as a design
guideline for developing systems.

We give a semantics for Unit-B models and their properties using computation cal-
culus [5]. This enables us to formally prove the rules for reasoning about properties and
refinement relationship in Unit-B.

Structure. The rest of the paper is organised as follows. In Section 2, we review Dijk-
stra’s computation calculus [5] which we used to formulate our semantics and design
our proofs. We follow with a description of the Unit-B method (Section 3). The method
and its refinement rules are demonstrated by an example in Section 4. We summarise
our work in Section 5 including discussion about related work and future work.

2 Background: Computation Calculus

This section gives a brief introduction to computation calculus, based on [5]. Let S be
the state space: a non-empty set of “states”. Let C be the computation space: a set of non-
empty (finite or infinite) sequences of states (“computations”). The set of computation
predicates CPred is defined as follows.

Definition 1 (Computation Predicate). CPred = C → B, i.e. functions from
computations to Booleans.

18 S. Hudon and T.S. Hoang

The standard boolean operators of the predicate calculus are lifted, i.e. extended to
apply to CPred. For example, assuming s, t ∈ CPred and τ ∈ C, we have,1

(s⇒ t).τ ≡ (s.τ ⇒ t.τ) (1) 〈∀ i :: s.i〉.τ ≡ 〈∀ i :: s.i.τ〉 . (2)

The everywhere-operator quantifies universally over all computations, i.e.

[s] ≡ 〈∀ τ :: s.τ〉 (3)

Whenever there are no risks of ambiguity, we shall use s = t as a shorthand for [s ≡ t]
for computation predicates s, t.

Postulate 1. CPred is a predicate algebra.

A consequence of Postulate 1 is that CPred satisfies all postulates for the predicate
calculus as defined in [4]. In particular, true (maps all computations to TRUE) and
false (maps all computations to FALSE) are the “top” and the “bottom” elements of
the complete boolean lattice with the order [⇒] specifying by these postulates. The
lattice operations are denoted by various boolean operators including ∧,∨,¬,⇒, etc.

The predicate algebra is extended with sequential composition as follows.

Definition 2 (Sequential Composition)

(s; t).τ ≡ (#τ =∞∧ s.τ) ∨ 〈∃ n : n < #τ : s.(τ ↑ n+1) ∧ t.(τ ↓ n)〉 (4)

where #, ↑ and ↓ denote sequence operations ‘length’, ‘take’ and ‘drop’, respectively.

Intuitively, a computation τ satisfies s ; t if either it is an infinite computation satisfying
s, or there is a finite prefix of τ (i.e. τ ↑ n+1) satisfying s and the corresponding suffix
τ ↓ n (which overlaps with the prefix on one state) satisfying t.

In the course of reasoning using computation calculus, we make use of the distinction
between infinite (“eternal”) and finite computations. Two constants E,F ∈ CPred
have been defined for this purpose.

Definition 3 (Eternal and Finite Computations). For any predicate s,

E = true; false (5)

F = ¬E (6)

s is eternal ≡ [s⇒ E] (7)

s is finite ≡ [s⇒ F] (8)

Given F the temporal “eventually” operator (i.e., ♦) can be formulated as F; s. The
“always” operator G is defined as the dual of the “eventually” operator.

Definition 4 (Always Operator). G s = ¬(F;¬s), for any predicate s

Important properties of G are that it is strengthening and monotonic. For any predicates
s and t, we have:

[G s⇒ s] , (9)

[s⇒ t] ⇒ [G s⇒G t] , (10)

[G (s⇒ t) ⇒ (G s⇒G t)] . (11)

1 In this paper, we use f.x to denote the result of applying a function f to argument x. Function
application is left-associative, so f.x.y is the same as (f.x).y.

Systems Design Guided by Progress Concerns 19

A constant 1 is defined as the (left- and right-) neutral element for sequential
composition.

Definition 5 (Constant 1). For any computation τ , 1.τ ≡ #τ = 1

State Predicates In fact, 1 is the characteristic predicate of the state space. Moreover,
we choose not to distinguish between a single state and the singleton computation con-
sisting of that state, which allows us to identify predicates of one state with the predi-
cates that hold only for singleton computations. Let us denote the set of state predicates
by SPred.

Definition 6 (State Predicate). For any predicate p, p ∈ SPred ≡ [p⇒ 1].

A consequence of this definition is that SPred is also a complete boolean lattice with
the order [⇒], with 1 and false being the “top” and “bottom” elements. It inherits
all the lattice operators that it is closed under: conjunction, disjunction, and existential
quantification. The other lattice operations, i.e. negation and universal quantification,
are defined by restricting the corresponding operators on CPred to state predicates.
We only use state predicate negation in this paper.

Definition 7 (State predicate negation∼). For any state predicate p, ∼p = ¬p ∧ 1 .

For a state predicate p, the set of computations with the initial state satisfying p is
captured by p ; true: the weakest such predicate. A special notation • : SPred →
CPred is introduced to denote this predicate.

Definition 8 (Initially Operator). For any state predicate p, •p = p ; true

This entails the validity of the following rule, which we will use anonymously in the
rest of the paper: for p, q two state predicates, p ; q = p ∧ q.

An important operator in LTL is the “next-time operator”. This is captured in com-
putation calculus by the notion of atomic computations: computations of length 2. A
constant X ∈ CPred is defined for this purpose.

Definition 9 (Atomic Actions). For any computation τ and predicate a,

X.τ ≡ #τ = 2 (12)

a is an atomic action ≡ [a⇒ X] (13)

Given the above definition, the “next” operator can be expressed as X ; s for arbitrary
computation s.

3 The Unit-B Method

This section presents our contribution: the Unit-B method which is inspired by Event-
B and UNITY. Similar to Event-B, Unit-B is aimed at the design of software systems
by stepwise refinement. It differs from Event-B by the capability of reasoning about
progress properties and its refinement-order which preserves liveness properties. It also
differs from UNITY by unifying the notions of programs and specifications, allowing
refinement of programs.

20 S. Hudon and T.S. Hoang

3.1 Syntax

Similar to Event-B, a Unit-B system is modelled by a transition system, where the state
space is captured by variables v and the transitions are modelled by guarded events.
Furthermore, Unit-B has additional assumptions on how the events should be scheduled.
Using an Event-B-similar syntax, a Unit-B event has the following form:

e =̂ any t where g.t.v during c.t.v upon f.t.v then s.t.v.v′ end , (14)

where t are the parameters, g is the guard, c is the coarse-schedule, f is the fine-
schedule, and s is the action changing state variables v. The action is usually made up of
several assignments, either deterministic (:=) or non-deterministic (:|). An event e with
parameters t stands for multiple events. Each corresponds to several non-parameterised
events e.t, one for each possible value of the parameter t. Here g, c, f are state predi-
cates. An event is said to be enabled when the guard g holds. The scheduling assump-
tion of the event is represented by c and f as follows: if c holds for infinitely long and f
holds infinitely often then the event is carried out infinitely often. An event without any
scheduling assumption will have its coarse-schedule c equal to false. An event having
only the coarse-schedule c will have the fine-schedule to be 1. Vice versa, an event
having only the fine-schedule f will have the coarse-schedule to be 1.

In addition to the variables and the events, a model has an initialisation state predicate
init constraining the initial value of the state variables. All computations of a model start
from a state satisfying the initialisation and are such that, at every step, either one of
its enabled events occurs or the state is unchanged, and each computation satisfies the
scheduling assumptions of all events.

Properties of Unit-B models are captured by two types of properties: safety and
progress (liveness).

3.2 Semantics

We are going to use computation calculus to give the semantics of Unit-B models. Let
M be a Unit-B model containing a set of events of the form (14) and an initialisation
predicate init. Since the action of the event can be described by a before-after predicate
s.t.v.v′, it corresponds to an atomic action S.t = 〈∀ e :: •(e = v) ⇒ X ; s.t.e.v〉.
Given that an event e.t can only be carried out when it is enabled, the effect of each
event execution can therefore be formulated as follows: act .(e.t) = g.t ; S.t. A special
constant SKIP is used to denote the atomic action that does not change the state.

Definition 10 (Constant SKIP). SKIP.τ ≡ #τ=2 ∧ τ.0=τ.1, for all traces τ (τ.0,
τ.1 denotes the first two elements of τ).

The semantics of M is given by a computation predicate ex .M which is a conjunction
of a “safety part” saf .M and a “liveness part” live.M, i.e.,

[ex .M ≡ saf .M ∧ live.M] . (15)

A property represented by a formula s is satisfied by M, if

[ex .M⇒ s] . (16)

Systems Design Guided by Progress Concerns 21

Safety Below, we define the general form of one step of execution of model M and the
safety constraints on its complete computations.

[step.M ≡ 〈∃ e, t : e.t ∈M : act .(e.t)〉 ∨ SKIP] (17)

[saf .M ≡ • init ∧G (step.M ; true)] (18)

Safety properties of the model are captured by invariance properties (also called invari-
ants) and by unless properties.

An invariant I.v is a state-properties that hold at every reachable state of the model.
In order to prove that I.v is an invariant of M, we prove that [ex .M ⇒ G •I]. In
particular, we rely solely on the safety part of the model to prove invariance properties,
i.e., we prove [saf .M ⇒ G •I]. This leads to the well-known invariance principle.

[init⇒ I] ∧ [〈∀ e, t : e.t ∈M : I ; act .(e.t) ⇒ X; I〉]
⇒

[saf .M⇒G •I]
(INV)

Invariance properties are important for reasoning about the correctness of the models
since they limit the set of reachable states. In particular, invariance properties can be
used as additional assumptions in proofs for progress properties.

The other important class of safety properties is defined by the unless operator un.

Definition 11 (un operator). For all state predicates p and q,

[(p un q) ≡ G (•p ⇒ (G •p) ; (1 ∨X) ; •q)] (19)

Informally, p un q is a safety property stating that if condition p holds then it will hold
continuously unless q becomes true. The formula (1 ∨X) is used in (19) to allow the
last state where p holds and the state where q first holds to either be the same state or
to immediately follow one another. The following theorem is used for proving that a
Unit-B model satisfies an unless property.

Theorem 1 (Proving an un-property). Consider a machine M and property p un q. If

〈∀ e, t : e.t ∈M : G((p∧∼q);act .(e.t);true ⇒ X;(p ∨ q);true)〉 (20)

then [ex .M ⇒ p un q]

Proof (Sketch). Condition (20) ensures that every event of M either maintains p or
establishes q. By induction, we can see that the only way for p to become false after a
state where it was true is that either q becomes true or that it was already true.

Liveness. For each event of the form (14), its schedule sched .(e.t) is formulated as
follows, where c and f are the event’s coarse- and fine-schedule, respectively.

[sched .(e.t) ≡ G (G •c ∧ GF ; •f ⇒ F ; f ; act .(e.t) ; true)] . (21)

To ensure that the event e.t only occurs when it is enabled, we require the following
feasibility condition:

[ex .M ⇒ G •(c ∧ f ⇒ g)] (SCH-FIS)

22 S. Hudon and T.S. Hoang

Our scheduling is a generalisation of the standard weak-fairness and strong-fairness as-
sumptions. The standard weak-fairness assumption for event e (stating that if the event
is enabled infinitely long then eventually it will be taken) can be formulated by using
c = g and f = 1. Similarly, the standard strong-fairness assumption for e (stating that
if the event is enabled infinitely often then eventually it will be taken) can be formulated
by using c = 1 and f = g.

[wf.(e.t) ≡ G (G • g ⇒ F; act .(e.t); true)] (22)

[sf.(e.t) ≡ G (GF; •g ⇒ F; act .(e.t); true)] (23)

The liveness part of the model is the conjunction of the schedules for its events, i.e.,

[live.M ≡ 〈∀ e, t : e.t ∈M : sched .(e.t)〉] (24)

3.3 Progress Properties

Progress properties are of the form p� q, where� is the leads-to operator.

Definition 12 (� operator). For all state predicates p and q,

[(p� q) ≡ G (•p ⇒ F •q)] (25)

In this paper, properties and theorems are often written without explicit quantifications:
these are universally quantified over all values of the free variables occurring in them.

Important properties of� are as follows. For state predicates p, q, and r, we have:

[(p⇒ q) ⇒ (p� q)] (Implication)

[(p� q) ∧ (q � r) ⇒ (p� r)] (Transitivity)

[(p� q) ≡ (p∧∼q � q)] (Split-Off-Skip)

The main tool for reasoning about progress properties in Unit-B is the transient
operator tr.

Definition 13 (tr operator). For all state predicate p, [tr p ≡ GF ; •∼p].

tr p states that state predicate p is infinitely often false. The relationship between tr and
� is as follows:

p � ∼p = 1 � ∼p = tr p . (26)

The attractiveness of properties such as tr p is that we can implement these using a
single event as follows.

Theorem 2 (Implementing tr). Consider a Unit-B model M and a transient property
tr p. We have [ex .M⇒ tr p], if there exists an event

e =̂ any twhere g.t.v during c.t.v upon f.t.v then s.t.v.v′ end ,

that is to say ex .M entails:

G (G •c ∧GF ; •f ⇒ F ; f ; act .(e.t)) , (LIVE)

Systems Design Guided by Progress Concerns 23

and parameter t such that e.t ∈M and ex .M entails each of the conditions below:

G •(p⇒ c) , (SCH)

c� f , (PRG)

G ((p ∧ c ∧ f) ; act .(e.t) ; true ⇒ X ; •∼p) . (NEG)

Proof. In this case, G acts as an everywhere operator which allows us to proveF; • ∼p
instead of GF;•∼p. Additionally, since [¬s⇒s ≡ s] for any computation predicate
s, we discharge our proof obligation by strengthening F ; •∼p to its negation, G •p.

F ; •∼p

⇐ { [F ;X⇒ F], aiming for (NEG) }
F ;X ; •∼p

⇐ { (NEG) }
F ; (p ∧ c ∧ f) ; act ; true

⇐ { computation calculus }
F;f ;act ;true ∧ G •c ∧ G •p

⇐ { (LIVE); G is conjunctive }
GF;•f ∧ G •c ∧ G •p

= { (PRG) }
G •c ∧ G •p

= {G is conjunctive; (SCH) }
G •p

(Due to space restriction, for the rest of this paper, we only present sketch of proofs of
theorems. Detailed proofs are available in [8]).

Condition (SCH) is an invariance property. Condition (PRG) is a progress property.
Condition (NEG) states that event e.t establish ∼ p in one step. In practice, often we
design c such that it is the same as p and f is 1 (i.e., omitting f); as a result, conditions
(SCH) and (PRG) are trivial. Condition (NEG) can take into account any invariance
property I and can be stated as [(I ∧ p ∧ c ∧ f) ; act .(e.t) ⇒ X;∼p].

In general, progress properties can be proved using the following ensure-rule. The
rule relies on proving an unless property and a transient property.

Theorem 3 (The ensure-rule). For all state predicates p and q,

[(p un q) ∧ (tr p∧ ∼q) ⇒ (p� q)] (27)

Proof (Sketch). p un q ensures that if p holds then it will hold for infinitely long or
eventually q holds. If q holds eventually then we have p � q. Otherwise, if p holds
for infinitely long and ∼ q also hold for infinitely long, we have a contradiction, since
tr p∧ ∼ q ensures that eventually p∧ ∼ q will be falsified. As a result, if p holds for
infinitely long then eventually q has to hold.

24 S. Hudon and T.S. Hoang

3.4 Refinement

In this section, we develop rules for refining Unit-B models such that safety and liveness
properties are preserved. Consider a machine M and a machine N, N refines M if

[ex .N⇒ ex .M] . (REF)

As a result of this definition, any property of M is also satisfied by N. Similarly to
Event-B, refinement is considered in Unit-B on a per event basis. Consider an abstract
event e.t belong to M and a concrete event f.t belong to N as follows.

e =̂ any t where g.t.v during c.t.v upon f.t.v then s.t.v.v′ end (28)

f =̂ any t where h.t.v during d.t.v upon e.t.v then r.t.v.v′ end (29)

We have f.t is a refinement of e.t if

[ex .N ⇒ (act .(f.t)⇒ act .(e.t))] , and (EVT-SAF)

[ex .N ⇒ (sched .(f.t)⇒ sched .(e.t))] (EVT-LIVE)

A similar rule is presented for the initialisation. The proof that N refines M (i.e., (REF))
given conditions such as (EVT-SAF) and (EVT-LIVE) is left out. A special case of event
refinement is when the concrete event f is a new event. In this case, f is proved to be
a refinement of a special SKIP event which is unscheduled and does not change any
abstract variables.

Condition (EVT-SAF) leads to similar proof obligations in Event-B such as guard
strengthening and simulation. We focus here on expanding the condition (EVT-LIVE).
The subsequent theorems are related to concrete event f (29) and abstract event e (28),
under the assumption that condition (EVT-SAF) has been proved. They illustrate dif-
ferent ways of refining event scheduling information: weakening the coarse-schedule,
replacing the coarse-schedule, strengthening the fine-schedule, and removing the fine-
schedule.

Theorem 4 (Weakening the coarse-schedule). Given e = f . If

[ex .N ⇒ G • (c⇒ d)] then [ex .N⇒ (sched .(f.t)⇒ sched .(e.t))] .

Proof (Sketch). The coarse-schedule is at an anti-monotonic position within the defini-
tion of sched .

Theorem 5 (Replacing the coarse-schedule). Given e = f . If

[ex .N ⇒ c � d] (30)

[ex .N ⇒ d un ∼c] , (31)

then [ex .N⇒ (sched .(f.t)⇒ sched .(e.t))]

Proof (Sketch). Conditions (30) and (31) ensures that if c holds then eventually d holds
and it will hold for at least as long as c As a result, if c holds for infinitely long, d also
holds for infinitely long. Hence the new schedule ensures that f occurs at least on those
cases where e has to occur.

Systems Design Guided by Progress Concerns 25

Theorem 6 (Strengthening the fine-schedule). Given d = c. If

[ex .N ⇒ G • (e⇒ f)] , and (32)

[ex .N ⇒ f � e] (33)

then [ex .N⇒ (sched .(f.t)⇒ sched .(e.t))].

Proof (Sketch). We can prove sched .(e.t) under the assumptions sched .(f.t) and ex .N
by calculating from F ; (c∧f) ; act .(e.t) ; true (the right hand side of sched .(e.t)) and
applying one assumption after the other (in this order (32), (EVT-SAF), sched .(f.t),
(33)) to strengthen it to G •c ∧GF ; •f (the right hand side of sched .(e.t)).

Theorem 7 (Removing the fine-schedule). Given d = c and e = 1. If

[ex .M ⇒ G • (c⇒ f)] (34)

then [ex .N⇒ (sched .(f.t)⇒ sched .(e.t))].

Proof (Sketch). Condition (34) ensures that when c holds for infinitely long, f holds
for infinitely long, hence we can remove the fine-schedule f , i.e., replaced it by 1.

4 Example: A Signal Control System

We illustrate our method by applying it to design a system controlling trains at a sta-
tion [9]. We first present some informal requirements of the system.

4.1 Requirements

entry block

platform blocks

exit block

entry signal

platform signals

=⇒

Fig. 1. A signal control system

The network at the station con-
tains an entry block, several plat-
form blocks and an exiting block, as
seen in Figure 1. Trains arrive on
the network at the entry block, then
can move into one of the platform
blocks before moving to the exit-
ing block and leaving the network.
In order to control the trains at the
station, signals are positioned at the
end of the entry block and each plat-
form block. The train drivers are as-
sumed to obey the signals. The sig-
nals are supposed to change from
green to red automatically when a
train passes by.

The most important properties of the system are that (1) there should be no collision
between trains (SAF 1), and (2) each train in the network eventually leaves (REQ 2).

SAF 1 There is at most one train on each block

REQ 2 Each train in the network eventually leaves

26 S. Hudon and T.S. Hoang

Refinement strategy. In the initial model, we abstractly model the trains in the network,
focusing on REQ 2. In the first refinement, we introduce the topology of the network.
We strengthen the model of the system, focusing on SAF 1 in the second refinement.
In the third refinement, we introduce the signals and derive a specification for the con-
troller that manages these signals.

4.2 Initial Model

In this initial model, we use a carrier set TRN to denote the set of trains and a variable
trns to denote the set of trains currently within the network. Initially trns is assigned
the empty set. At this abstract level, we have two events to model a train arriving at the
station and a train leaving the station as below.

arrive =̂ any t where t ∈ TRN then trns := trns ∪ {t} end
depart =̂ any t where t ∈ TRN then trns := trns \ {t} end

The requirement REQ 2 can be specified as a progress property prg0 1: t ∈ trns �
t /∈ trns. According to (26), prg0 1 is equivalent to prg0 2: tr t ∈ trns. In order to im-
plement this transient property, we rely on Theorem 2 and add scheduling information
for event depart as follows.

depart =̂ any t where t ∈ TRN during t ∈ trns then trns := trns \ {t} end

Here, we design our depart event to implement the transient property prg0 2 such that
conditions (SCH) and (PRG) are trivial. For condition (NEG), it is easy to prove that
depart establishes the fact t /∈ trns in one step.

Since event arrive will not affect our reasoning about progress properties (it is al-
ways unscheduled), we are going to omit the refinement of arrive in the subsequent
presentation.

4.3 First Refinement

In this refinement, we first introduce the topology of the network in terms of blocks. We
introduce a carrier set BLK and three constants Entry , PLF , Exit denoting the entry
block, platform blocks and exit block, respectively. A new variable loc is introduced
denoting the location of trains in the network, constrained by invariant inv1 1: loc ∈
trns→ BLK .

For event depart, we strengthen the guard to state that a train can only leave from
the exit block. Subsequently, in order to make sure that the schedule is stronger than the
guard (condition (SCH-FIS)), we need to strengthen the coarse-schedule accordingly
(see Figure 2). In order to prove the refinement of depart, we apply Theorem 5 (coarse-
schedule replacing). In particular we need to prove the following conditions:

t ∈ trns � t ∈ trns ∧ loc.t = Exit (prg1 1)

t ∈ trns ∧ loc.t = Exit un ∼(t ∈ trns) (un1 2)

From now on, we focus on reasoning about progress properties, e.g., prg1 1, omitting
the reasoning about unless properties, e.g., un1 2. The readers should be convinced

Systems Design Guided by Progress Concerns 27

depart
any t where
t ∈ trns ∧ loc.t = Exit
during
t ∈ trns ∧ loc.t = Exit
then
trns := trns \ {t}
loc := {t} �− loc
end

moveout
any t where
t ∈ trns ∧ loc.t ∈ PLF
during
t ∈ trns ∧ loc.t ∈ PLF
then
loc.t := Exit
end

movein
any t where
t ∈ trns ∧ loc.t = Entry
during
t ∈ trns ∧ loc.t = Entry
then
loc :| 〈∃ p : p ∈ PLF : loc′ = loc �− {t 	→ p}〉
end

Fig. 2. Events of the first refinement

that using Theorem 1, these unless properties are valid for our model. We first apply
(Split-Off-Skip) to obtain t ∈ trns ∧ loc.t �= Exit � t ∈ trns ∧ loc.t = Exit and
then apply the transitivity property (Transitivity) of the leads-to operator to establish
two progress properties prg1 3 and prg1 4 as follows.

t ∈ trns ∧ loc.t �= Exit � t ∈ trns ∧ loc.t ∈ PLF (prg1 3)

t ∈ trns ∧ loc.t ∈ PLF � t ∈ trns ∧ loc.t = Exit (prg1 4)

Consider prg1 4, we first apply the ensure-rule (Theorem 3) to establish two properties
(after simplification) as follows:

t ∈ trns ∧ loc.t ∈ PLF un t ∈ trns ∧ loc.t = Exit (un1 5)

tr t ∈ trns ∧ loc.t ∈ PLF (prg1 6)

We apply Theorem 2 to implement prg1 6 by the new event moveout which has a
weakly-fair scheduling (see Figure 2). The proof that moveout implements prg1 6 is
straightforward and therefore is omitted.

Similarly, for prg1 3, we apply the ensure-rule and implementing the resulting tran-
sient property, i.e., tr t ∈ trns ∧ loc.t = Entry , by event movein in Figure 2.

4.4 Second Refinement

In this refinement, we incorporate the safety requirement stating that there are no colli-
sions between trains within the network, i.e. SAF 1. This is captured by invariant inv2 1
about loc: 〈∀ t1, t2 : t1, t2 ∈ trns ∧ loc.t1 = loc.t2 : t1 = t2〉.

The guard of event moveout needs to be strengthened to maintain inv2 1. As a
result, we need to modify the schedule information to ensure the feasibility condi-
tion (SCH-FIS) for Unit-B events stating that the schedules are stronger than the guard.
In particular, we add (through strengthening) a fine-schedule to moveout (see Figure 3).
The scheduling information for moveout states that for any train t , if t stays in a plat-
form for infinitely long and the exit block becomes free infinitely often, then t can move
out of the platform.

We want to highlight the fact that moveout has both coarse- and fine-schedules. In
particular, using only either weak- or strong-fairness would be unsatisfactory. Weak-
fairness requires for the exit block to be remain free continuously in order for trains to
move out. This assumption is not met by the current system. Strong-fairness allows a
train to leave if the train is present on the platform intermittently. This assumption is

28 S. Hudon and T.S. Hoang

moveout
any t where
t ∈ trns ∧ loc.t ∈ PLF∧
Exit /∈ ran .loc
during
t ∈ trns ∧ loc.t ∈ PLF
upon
Exit /∈ ran .loc
then
loc.t := Exit
end

movein
any t where
t ∈ trns ∧ loc.t = Entry ∧ 〈∃ p : p ∈ PLF : p /∈ ran .loc〉
during
t ∈ trns ∧ loc.t = Entry ∧ 〈∃ p : p ∈ PLF : p /∈ ran .loc〉
then
loc :| 〈∃ p : p ∈ PLF \ ran .loc : loc′ = loc �− {t 	→ p}〉
end

Fig. 3. Events of the second refinement

more flexible than we need since it allows behaviours where a train hops on and off the
platform infinitely often. The price of that flexibility is to entangle properties of the exit
block with properties of trains: indeed, we would need not only to prove that the train
will be on its platform and that the exit block will become free but that both happen
simultaneously infinitely often.

We choose to relinquish this flexibility and are therefore capable of structuring our
proof better: on one hand, the train stays on its platform as long as necessary; indepen-
dently, the exit block becomes free infinitely many times.

In order to prove the refinement of moveout, we apply Theorem 6 (fine-schedule
strengthening), which requires to prove the following progress property (remember that
when an event has no fine schedules, it is assumed to be 1).

1� Exit /∈ ran .loc (prg2 3)

Property prg2 3 is equivalent to transient property prg2 4: trExit ∈ ran .loc. We sat-
isfy prg2 4 by applying the transient rule (Theorem 2) using event depart where the
value for the parameter t is given by loc−1.Exit , i.e., the train at the exit block. The
proofs of conditions (SCH), (PRG), and (NEG) are straight-forward.

Finally we strengthen the guard of movein and subsequently strengthen its coarse-
schedule (see Figure 3). We apply Theorem 5 (coarse-schedule replacing) movein. The
detailed proof is omitted here.

4.5 Third Refinement

In this refinement, we introduce the signals associated with different blocks within the
network. Variable sgn is introduced to denote the value of the signals associated with
different blocks. We focus on the controlling of the platform signals here. In particular,
invariants inv3 2 and inv3 3 state that if a platform signal is green (GR) then the exit
block is free and the other platform signals are red (RD).

inv3 1 : sgn ∈ {Entry} ∪ PLF → COLOR
inv3 2 : 〈∀ p : p ∈ PLF ∧ sgn.p = GR : Exit /∈ ran .loc〉
inv3 3 : 〈∀ p, q : p, q ∈ PLF ∧ sgn .p = sgn .q = GR : p = q〉

We refine the moveout event using the platform signal as shown in Figure 4. The re-
finement of moveout is justified by applying Theorem 5 (coarse-schedule replacing)

Systems Design Guided by Progress Concerns 29

moveout
any t where
t ∈ trns ∧ loc.t ∈ PLF∧
sgn.(loc.t) = GR
during
t ∈ trns ∧ loc.train ∈ PLF∧
sgn.(loc.t) = GR
then
loc.t := Exit
sgn.(loc.t) := RD
end

ctrl platform
any p where
p ∈ PLF ∧ p ∈ ran .loc ∧ Exit /∈ ran .loc∧
〈∀ q : q ∈ PLF : sgn.q = RD〉
during
p ∈ PLF ∧ p ∈ ran .loc ∧ sgn.p = RD
upon
Exit /∈ ran(loc) ∧ 〈∀ q : q ∈ PLF ∧ q = p : sgn.q = RD〉
then
sgn.p := GR
end

Fig. 4. Events of the third refinement

and Theorem 7 (fine-schedule removing). In particular, replacing the coarse-schedule
requires the following transient property

tr t ∈ trns ∧ loc.t ∈ PLF ∧ sgn.(loc.t) = RD . (prg3 5)

In order to satisfy prg3 5, we introduce a new event ctrl platform for the controller to
change a platform signal to green according to Theorem 2 (see Figure 4). This event
ctrl platform is a specification for the system to control the platform signals preserving
both safety and liveness properties of the system. In particular, the scheduling informa-
tion states that if (1) a platform is occupied and the platform signal is RD infinitely long
and (2) the exit block is unoccupied and the other platform signals are all RD infinitely
often, then the system should eventually set this platform signal to GR. The refinement
of event movein and how the entry signal is controlled is similar and omitted.

5 Conclusion

We presented in this paper Unit-B, a formal method inspired by Event-B and UNITY.
Our method allows systems to be developed gradually via refinement and support rea-
soning about both safety and liveness properties. An important feature of Unit-B is the
notion of coarse- and fine-schedules for events. Standard weak- and strong-fairness as-
sumptions can be expressed using these event schedules. We proposed refinement rules
to manipulate the coarse- and fine-schedules such that liveness properties are preserved.
We illustrated Unit-B by developing a signal control system.

A key observation in Unit-B is the role of event scheduling regarding liveness prop-
erties being similar to the role of guards regarding safety properties. Guards prevent
events from occurring in some unsafe state so that safety properties will not be vio-
lated; similarly, schedules ensure the occurrence of events in order to satisfy liveness
properties. Another key aspect of Unit-B is the role of progress properties during refine-
ment. Often, to ensure the validity of a refinement, one needs to prove some progress
properties which (eventually) can be implemented (satisfied) by some scheduled events.

Related work. Unit-B and Event-B differ mainly in the scheduling assumptions. In
Event-B, event executions are assumed to satisfy the minimal progress condition: as long
as there are some enabled events, one of them will be executed non-deterministically.
Given this assumption, certain liveness properties can be proved for Event-B models

30 S. Hudon and T.S. Hoang

such as progress and persistence [7]. However, this work does not discuss how the re-
finement notion can be adapted to preserve liveness properties. Moreover, the minimum
progress assumption is often either too weak to prove liveness properties or, when it is
not, make the proofs needlessly complicated.

TLA+[11] is another formal method based on refinement supporting liveness prop-
erties. The execution of a TLA+ model is also captured as a formula with safety and
liveness sub-formulae. However, refinement of the liveness part in TLA+ involves cal-
culating explicitly the fairness assumptions of the abstract and concrete models. In our
opinion, this is not practical for developing realistic systems. The lack of practical rules
for refining the liveness part in TLA+ might stem from the view of the author of TLA+
concerning the unimportance of liveness [11, Chapter 8]. In our opinion, liveness prop-
erties are as important as safety properties to design correct systems.

Future work. Currently, we only consider superposition refinement in Unit-B where
variables are retained during refinement. More generally, variables can be removed and
replaced by other variables during refinement (data refinement). We are working on
extending Unit-B to provide rules for data refinement.

Another important technique for coping with the difficulties in developing complex
systems is composition/decomposition and is already a part of methods such as Event-B
and UNITY. We intend to investigate on how this technique can be added to Unit-B, in
particular, the role of event scheduling during composition/decomposition.

Given the close relationship between Unit-B and Event-B, we are looking at extend-
ing the supporting Rodin platform [2] of Event-B to accomodate Unit-B. We expect
to generate the corresponding proof obligations according to different refinement rules
such that it can be verified using the existing provers of Rodin.

References

1. Abrial, J.-R.: Modeling in Event-B - System and Software Engineering. Cambridge
University Press (2010)

2. Abrial, J.-R., Butler, M., Hallerstede, S., Hoang, T.S., Mehta, F., Voisin, L.: Rodin: an open
toolset for modelling and reasoning in Event-B. STTT 12(6), 447–466 (2010)

3. Chandy, M., Misra, J.: Parallel program design - a foundation. Addison-Wesley (1989)
4. Dijkstra, E., Scholten, C.: Predicate Calculus and Program Semantics. Springer-Verlag

New York, Inc., New York (1990)
5. Dijkstra, R.: Computation calculus: Bridging a formalization gap. Mathematics of Program

Construction (January 1998)
6. Dwyer, M., Avrunin, G., Corbett, J.: Patterns in property specifications for finite-state

verification. In: ICSE, pp. 411–420 (1999)
7. Hoang, T.S., Abrial, J.-R.: Reasoning about liveness properties in event-B. In: Qin, S.,

Qiu, Z. (eds.) ICFEM 2011. LNCS, vol. 6991, pp. 456–471. Springer, Heidelberg (2011)
8. Hudon, S.: A progress preserving refinement. Master’s thesis, ETH Zurich (July 2011)
9. Hudon, S., Hoang, T.S.: Development of control systems guided by models of their

environment. ENTCS, vol. 280, pp. 57–68 (December 2011)
10. Lamport, L.: Proving the correctness of multiprocess programs. IEEE Trans. Software

Eng. 3(2), 125–143 (1977)
11. Lamport, L.: Specifying Systems, The TLA+ Language and Tools for Hardware and

Software Engineers. Addison-Wesley (2002)

Assume-Guarantee Specifications of State

Transition Diagrams for Behavioral Refinement

Christian Prehofer

LMU München and Fraunhofer ESK München,
prehofer@pst.ifi.lmu.de

Abstract. In this paper, we consider extending state transition dia-
grams (SDs) by new features which add new events, states and transi-
tions. The main goal is to capture when the behavior of a state transition
diagram is preserved under such an extension, which we call behavioral
refinement. Our behavioral semantics is based on the observable traces
of input and output events. We use assume/guarantee specifications to
specify both the base SD and the extensions, where assumptions limit
the permitted input streams. Based on this, we formalize behavioral re-
finement and also determine suitable assumptions on the input for the
extended SD. We argue that existing techniques for behavioral refine-
ment are limited by only abstracting from newly added events. Instead,
we generalize this to new refinement concepts based on the elimination of
the added behavior on the trace level. We introduce new refinement rela-
tions and show that properties are preserved even when the new features
are added.

1 Introduction

State transition diagrams (in short: SD) are used in various forms to model
software, e.g. modeling a software component which interacts with the environ-
ment based on events. In this paper, we consider behavioral models represented
as state transition diagrams which are incrementally extended by new features.
The main goal is to reason about the behavior and definedness of such an ex-
tended state transition diagram in a modular way.

The idea of incremental development is to start with a base model and then
to add small features in succession, which add previously unspecified behavior.
Extending an SD by a feature means to add new states and transitions.

Assuming such a (syntactic) extension of an SD, the question addressed here
is whether the old behavior is preserved when incrementally extending an SD.
This we call behavioral refinement. We use a behavioral semantics based on the
observable traces of input and output events, respectively. Behavior preservation
means that the resulting output trace is unchanged for all input streams, possibly
under some abstraction.

As an example consider the lock extension in Figure 1, which adds a new
locked state and ignores any input in the lock state except for the unlock event.

E.B. Johnsen and L. Petre (Eds.): IFM 2013, LNCS 7940, pp. 31–45, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

32 C. Prehofer

�� ���� �����

	
����	�

������

������������ ����

	
�����

�����

������

�����������
���

Fig. 1. Locking Feature

By convention, we show the added elements of the new feature in bold text and
thicker lines.

In this example, it is easy to see that the behavior of the original base SD is
preserved if no lock event occurs. While this is a basic compatibility property, we
aim to go beyond. As we can see, even after traversing the lock extension, the SD
behaves as before. However, during the traversal the externally visible behavior
is altered. Furthermore, it may be the case that the SD does not return from
the extension if no unlock event occurs. We aim to capture these observations
in a formal calculus. For this, we address the following two main issues.

The first issue is that the extension also uses the off and set events of the
base SD. Due to this, existing refinement and simulation techniques, e.g. [16, 17,
18, 19, 1, 14] , are not sufficient as they only abstract from newly added events,
by definition. This is important in many cases when events are reused in the
extension, as in this example above. For this purpose, we use a new concept which
eliminates behavior on the trace level. Such an elimination essentially removes
the added behavior on the level of observable input/output traces. Technically,
we will use entry and exit events to detect and eliminate those segments of the
trace that correspond to the newly added behavior.

The second, main point about this example is that we need assumptions
on the permitted inputs, both for the base SD as well as for the extension,
to reason about the behaviour. For instance, we may want that the extension
always terminates and returns to the old SD. In the above example, the ex-
tended SD may loop forever in state locked. This can be avoided by restric-
tions on the permitted input. In general, both the base SD and the extension
may have assumptions on the permitted input. From these two assumptions,
we aim to create a single, combined assumption on the permitted input for the
extended SD.

As in other assume/guarantee calculi, we use assumptions to specify what
inputs are permitted. These need to make sure that the SD is defined for the
permitted inputs, i.e. there is a defined transition for each event in an execution
for a given input stream. Our notion of SDs is similar to interface input/output
automata in [8], which use a separate state-based model to describe the input
assumptions. Here, we use basic predicates to specify the input, not models. Note
that our notion of automata is different from interface automata [1, 4], which
are intended to specify which input events are permitted for an interface.

Assume-Guarantee Specifications of SDs for Behavioral Refinement 33

For instance, in the example above, we also want to ensure that the lock event
only occurs in state B, not in state A where it is not defined. Thus, we have to
reason about the permitted inputs, both in the extension and in the base SD.
This is the main motivation for the assume/guarantee specifications, which are
used to formalize this in a modular way.

In summary, the goal is to extend SDs by additional features with new states
and transitions, and then to reason about the behavior of the extended SD. For
this, we develop a notion of assume/guarantee specifications for SDs. The main
idea is to make the permitted inputs and guarantees explicit on the trace level.
This follows typical assume/guarantee specifications. We introduce new concepts
for semantic refinement based on behavior elimination and present new results
when an extension preserves behavior with respect to the base SD.

Our work is similar, on a conceptual level, to aspect- and feature-based pro-
gramming languages. For these, there are results on so-called conservative ex-
tensions or observer aspects, which only add additional behavior but do not
modify behavior (see [12, 5]). In other words, we aim to apply these ideas also to
SDs, where we are reasoning only about input/output behavior, and not about
internal state as on the programming language level. There was recent work to
extend automata by aspects, as for instance [20], which includes a calculus for
reasoning about automata, but does not identify specific classes of refinement
and property preservation. There is earlier work on elimination based refinement
in [13], which also permits non-deterministic SDs and also does not require ex-
plicit exit events. While there are first results on behavior preservation, in [13] it
is not possible to reason about definedness and termination of such extensions.

The paper is organized as follows. In the next section, we introduce the syntax
and semantics of SDs. Then, we define syntactic extensions on SDs, followed
by behavior eliminations on the semantic level. In Section 3, we introduce new
refinement concepts based on these elimination concepts. In Section 4, we present
new results to show when a refinement relation can be established for an SD
extension. Finally, Section 5 discusses related work, followed by conclusions.

2 State Transition Diagrams

We model software systems by SDs that describe the behavior of a software
system. More precisely, an SD consists of

(i) States St, with an initial state s0 ∈ St
(ii) Input events I and disjoint output events O
(iii) A vector of internal variables vn, ranging over a vector of values V n with

initial values V initial.
(iv) A transition function tr : St× I × V �→ St× V ×O∗

A transition is triggered by an input event and produces a set of output events.
It may have an action that it initiates. This action describes the output events
triggered by the transition and the changes on the internal variables. We use the

34 C. Prehofer

notation event / action for transitions. The vector of variables describes the
values of the variables and is also called variable valuation.

We focus on deterministic SDs as defined above. For the non-deterministic
case, there exist several other issues, as considered in [13].

2.1 Behavioral Semantics

Our semantic model employs an external black-box view of the system. It is
based on events from the outside that trigger transitions. Only the observed
input and output events are considered, not the internal states. A possible run
can be specified by a trace of the events and the resulting output of the SD.

Formally, we assume traces (i, o) over finite and infinite streams over I and O,
respectively, denoted as Iω = I∗ ∪ I∞ and Oω = O∗ ∪ O∞. Note that for each
input event, there is a set of output events if a transition is defined. Hence for
the n-th element in i, the n-th element of S(i) is the corresponding set of output
events.

For an SD S and a finite or infinite input stream i, we say S is defined for i,
if there is always a defined transition for each input event in i when executing S
with input i. This is written as Def(S(i)). For instance, in the above example,
the lock SD is undefined for the input unlock in the initial state. We write S(i)
to denote the output of S for i if S is defined for i.

For a state s and a variable valuation V , we write S(i, s, V) = (o, s′, V ′) to
denote the state s′ and variable valuation V ′ after running S at state s with
input i and V . This assumes that S is defined for i at state s. We also write
S(i) = (o, s, V) if S is run from the initial state. We write S(i) = s if o and V are
not of interest. Two SDs are considered equivalent if they behave equivalently
for all inputs.

We denote the empty trace as Nil and use the following notation on traces:

– s :: s′ concatenates two streams, where s is assumed to be finite.

– a : s creates a stream from an element a by appending the stream s.

When clear from the context, we often write just e instead of {e} for singleton
sets, and also a : a instead of a : a : Nil. Furthermore, first(s) is the first element
of a stream s. We denote by I\In the elimination of elements of In from I and
by O + I the union of disjoint sets.

As an example, consider the alarm SD as shown in Figure 2, which is extended
by a flexible snooze function called Snooze. When the alarm rings, the user can
press the snooze button, which sets a new alarm (after a snooze period). In this
example, observe that the extension uses new events, like Snooze(), but also
existing ones like AskT ime().

For instance in Figure 2, a possible trace (with input events shown above the
corresponding output events) is T =
(SetAl : TimerEvent : Snooze : TimerEvent : AlOff,
setTimer : StartAlarm : {StopAlarm, setTimer} : StartAlarm : StopAlarm).

Assume-Guarantee Specifications of SDs for Behavioral Refinement 35

�������� ���������� �

������������	����

�	���
��������������������������

����

�������������

���

����������������	�
�������
������
����������
��	����	�
�

������������������

Fig. 2. Alarm extended by Snooze

2.2 Syntactic Extensions of State Transition Diagrams

When adding new features to an SDs, we use the following notion of syntactic
extensions of SDs. While we permit any syntactic extensions in the definition
below, this will be restricted further below to establish refinement relation on
the semantical level.

For an SD S, we say S is extended by E to an SD S′, if:

(i) S′ results from adding both states and transitions on S,
(ii) S′ may extend the input and output events of S, and
(iii) S′ may add internal variables to S.

S′ is also called an extension of S by E. Examples of extensions are shown via
the bold states and transitions in Figures 1 and 2.

We can alternatively define extensions as a set of states and transitions to be
added, which corresponds to a partial or incomplete SD. This is howevermore sub-
tle, as we need to ensure that a composed SD is well defined, which is implicit here.

3 Assume-Guarantee Specifications and Refinement

In the following, we develop concepts to explicitly specify the assumptions on
the input and the resulting output guarantees as in typical assume-guarantee
specifications [1]. We will use predicates over finite and infinite streams. We
denote assumptions as a predicate A where A(i) is a Boolean value over a stream
i, and predicatesG as guarantees over a pair of input and output streams,G(i, o).

We use the following notation for assume guarantee specifications over SDs.
Assume an SD S, an assumption A and a guarantee G over streams. Then

A/S/G

states that for all input traces i where A holds, S is defined for i with S(i) = o,
and G(i, o) holds.

We also write just
A/S

which then denotes that S is defined for inputs i where A(i) holds.

36 C. Prehofer

Assumptions can express two things, unwanted cases and unspecified cases,
which we do not distinguish here. Unspecified cases are cases which shall be
defined in a later phase by incremental refinement, while unwanted cases must
be avoided by the environment and are not allowed.

The typical purpose of assumptions in our treatment of extensions is to spec-
ify which inputs are allowed in what phase of a traversal. For instance, when
traversing an extension, we may only permit specific events.

The common notion of refinement on SDs is to allow more inputs and to
produce less outputs, see for instance [1]. We can formalize more inputs easily
by our notion of assumptions. We consider guarantees on the new output based
on assumptions for new inputs. Note that we do not allow one to drop individual
output events in the output stream.

Assuming a specification A/S/G, we can relax the assumptions if the guar-
antees hold. Also, the guarantees can be strengthened. Formally, A′/S/G′ is a
refinement of A/S/G if A(i) =⇒ A′(i) and G′(i, o) =⇒ G(i, o).

3.1 SD Extensions and Refinements

In the following, we aim to cover extensions an SD which add new features with
additional behavior. The problem is now that assumptions and guarantees need
to consider different input and output events over an extended interface.

For the purpose of refinement, we consider in the following equality on the
output traces as follows: Assuming a specification A/S, then A′/S′ is a refine-
ment of A/S, if A(i) =⇒ A′(i), and A(i) implies S(i) = S′(i).

This means that S and S′ must behave identically for the input permitted
for S′, i.e. when A holds. In other words, when S′ is restricted to the input
for A for S, they behave the same. Internally, the two SDs may differ in states
and transitions. Compared to the above assume/guarantee specifications the
following holds: If A′/S′ is a refinement of A/S and G and G′ coincide on the
inputs permitted for A, then A′/S/G′ is a refinement of A/S/G.

A typical example is an extension by a new event, after which the system may
behave in a completely different way. This notion of refinement is for instance
used in [1] when new events are added, but also in [7, 15], even though different
formalisms are used. The main limitation here is that no guarantees hold after a
new event occurs. In detail, an extension may add new events and the assump-
tions A do not apply for any input which contains new elements. In the lock
example, an assumption predicate over the base SD only considers set and off
as input events, not lock. Furthermore, this is only a notion of refinement and
does not give any statement when the extended SD is defined.

3.2 Trace Eliminations for Added Features

In the following, we detail our approach to eliminate the behavior of the newly
added features. This is used for our notion of behavioral refinement in the
following sections. We first discuss important restrictions on SD extensions to
determine suitable eliminations and to define the refinement relation. Then,

Assume-Guarantee Specifications of SDs for Behavioral Refinement 37

in the subsections below, we define the eliminations and refinement relations
precisely.

We determine eliminations of added features on the behavioral level, i.e. on
traces. For this, we assume that the new features are triggered by an entry event
from I and return to the original SD with an exit event. In the case of the
lock feature, the entry event is the lock event, and the exit event is the unlock
event. Then eliminations shall remove all sequences of the form entryEvent : · · · :
exitEvent. We call this trace-based eliminations.

For traces over such an extended SD S′ over S with extension E, we define
eliminations based on entry and exit events. We say that an extension E is
entry-exit triggered, if there are some entry events Een, which do not occur
in S. Furthermore, for each entry event e ∈ Een there is a set of exit events
Eex,e. This means that the states and transitions in E are only reached via some
entry transition with an event e ∈ Een. Furthermore, for each such entry point
with e, it must be ensured that the extension returns to the original SD S if and
only if an event from Eex,e occurs. Furthermore, we assume that it returns to
the same state in S where the entry event occurs. This state is also called join
state, similar to join points in aspect-oriented languages.

We define eliminations based on the entry and exit events as follows. Assuming
E, S, and S′ as above, an elimination el removes all trace segments of the form

(i1 : · · · : in, o1 : · · · : on),

where i1 ∈ Een, in ∈ Eex,i1 and ij /∈ Eex,i1 for 1 < j < n. Furthermore, an
infinite trace segment (i1 :: i, o) is eliminated if i1 ∈ Een and no element from
Eex,i1 occurs in (i, o).

In other words, if the extension does not return, we cut off the complete,
infinite part after the entry. Then, we define el(tr) for a trace tr, where the
elimination function el is applied from left to right over the full trace tr. This
results in a finite trace if there is an entry event without a corresponding exit
event.

Note that we use an elimination el in two forms. For input and output traces,
we write el(i, o) = (i′, o′). We also write el(i) = i′ which yields an input stream.

As an example, we continue with the above trace T for the alarm
SD in Figure 2. The goal is to eliminate the effect of the new
Snooze feature. The corresponding traversal through the old SD is
T ′ = (SetAl : TimerEvent : AlOff ,

setTimer : StartAlarm : StopAlarm).
In this example, we have eliminated the trace segment Snooze : TimerEvent

and {StopAlarm, setT imer} : StartAlarm which corresponds to the new behav-
ior which the new feature adds. Then, we can show that the original behavior of
the SD is preserved by the extended SD ”modulo” the elimination.

3.3 Weak Elimination-Based Refinement

We now consider extensions which add behavior temporarily, but then return to
existing, old behavior (unless they diverge). For such a case, we use eliminations

38 C. Prehofer

to define a refinement relation. Elimination is used to compare the input/output
traces of the original and the extended SDs. It is a generalization of the typical
notions of refinement which remove added behavior by removing the new events.
We first define the refinement notion and then discuss its utility.

Assume S over (I, O) is extended to S′ with some extension E over (IE , OE).
The extended system A′/S′ is aweak elimination-based refinement of A/S,
if the following hold:

(i) for any stream i over I, A(i) =⇒ A′(i) and S(i) = S′(i).
(ii) for any stream i over I ∪ IE , if A

′(i) holds, then el(i) is a stream over I,
A(el(i)) and further el(i, S′(i)) = (el(i), S(el(i))).

For this notion of refinement, we require that the extended SD, S′, behaves as
S under an elimination. We assume that for any permitted input i for S′ (i.e.
A′ holds), the elimination on i results in a syntactically correct input for S and
A holds. Otherwise, A may not be defined for el(i). In other words, A′ allows
more input, even over an extended input event set, but additional traces must
correspond to a trace of the original SD. This is enforced by the restriction that
el(i) is a stream over I. A possible case when an elimination may not remove all
new elements not in I is when an exit event occurs before an entry event.

The notion of weak refinement essentially says that an SD behaves as before
unless a new feature is traversed. It will behave as before after multiple use of a
new feature, if the new features return to the original SD. Regarding properties
of SDs, we can use this notion of refinement to establish safety properties as
follows. Safety properties usually state that some ”bad” events do not occur.
If an SD S does not produce a ”bad” output event b under some assumptions
A and an extension E also does not produce b (possible under assumptions),
then the combined system also does not produce the bad event b. A more basic,
but important question is when an extended SD is defined. To establish our
refinement we need to fix assumptions under which the extended SD S′ is defined,
considering both assumptions for the base SD S and the extension E. This will
be covered in Section 4.

Compared to the analysis of different kinds of aspects considered in [5], this
case is similar to observers with possible non-termination in the extension. In
[5], there is also the notion of observers with abortion, i.e. termination of the
program. This concept is not sufficient for our setting of SDs as traversals may
remain infinitely long in an extension. Instead, we consider possible divergence
and termination of the extension by assumptions, as covered in the next section.

3.4 Strong Elimination-Based Refinement

In the above notion of weak elimination-based refinement, we have assumed that
the extended SD behaves as the original one under the elimination. We did not
require that a traversal through the extension terminates. In case an extension
of an SD is entered but the SD does not return from the extension, we only
compare the finite parts of the execution. In the following, we define and discuss

Assume-Guarantee Specifications of SDs for Behavioral Refinement 39

a stronger notion of refinement, which requires termination for any traversal of
the extension.

Assume S over (I, O) is extended to S′ with some extension E over (IE , OE).
The extended system A′/S′ is a strong elimination-based refinement of
A/S if for a stream i over I ∪ IE A′(i) implies the following:

(i) for any stream i over I, A(i) =⇒ A′(i) and S(i) = S′(i).
(ii) for any stream i over I ∪ IE , if A

′(i) holds, then el(i) is a stream over
I, A(el(i)) and further el(i, S′(i)) = (el(i), S(el(i))). Furthermore, if i is
infinite, then el(i) is also infinite.

With the last clause in the definition, which is the only difference to the notion
of weak refinement, we ensure that a possible extension does not diverge when
entered. Clearly, this definition is only sensible if we consider infinite traces which
can express divergence.

As strong elimination-based refinement entails weak elimination-based refine-
ment, it can be used to show safety properties as above. As extensions terminate,
also many liveness properties are preserved. A typical liveness property is that
some (output) event o eventually occurs in all possible executions. In case this
holds for the base SD, this is preserved by strong refinement. In this case, an
extension may produce extra o events, but it will return to the original SD which
eventually produces the o event.

4 Establishing Elimination-Based Refinements

In the following, we aim to establish refinement relations for a given base SD S
with an extension E. Based on assumptions for S and E, we show that there
exist specific assumptions under which an extension E is an elimination-based
refinement. This also serves to reason modularly about extensions of SDs based
on properties and assumptions for the SD and the extension. As discussed above,
weak elimination-based refinement is suitable for safety properties, while strong
elimination-based refinement can also be used for liveness properties.

So far, we have defined assumptions for the inputs of a normal SD. Next
we define assumptions specifically for extensions of an SD, which only cover the
input events when traversing the added transitions and states in an extension. In
other words, we restrict the input while the SD is in the traversal of an extension.

For this purpose, we first generalise assumptions to specific states of an SD.
We write A(s, i) for A to hold at some state s with input i. Thus, the above A(i)
means that A(so, i) for A to hold in the initial state.

Assume S′ is an entry-exit triggered extension of S by E. Then for a predicate
AE on inputs streams, we denote the definedness of an extension E under
AE as AE/E, to specify that traversals of E in S′ are defined. Formally, for all
join states s of S′, i.e. where an entry event is defined, and some input stream i,
where the first element of i is an entry element, and either the last element is the
first exit event in i, or no exit event occurs in i, we have: If AE(i) holds, then
here is a defined traversal (s, i, o) for some output sequence o. As the extension

40 C. Prehofer

is entry-exit triggered, the definition entails that E returns to a state in S for
any exit event.

Assume S with input events I is extended to S′ with some extension E with
entry events Een and exit events Eex. For A/S and AE/E, we define the ex-
tension assumptions EA(A,E) as follows: EA(A,E)(i) holds if

(i) el(i) is a stream over I and A(el(i)) holds and
(ii) for any occurrence of an entry event en ∈ Een in i of the form i0 :: en : e ::

ex, where ex ∈ Eex and e has no exit event, then S′ is defined for i0 :: en
and AE holds for en : e :: ex.

Intuitively, EA(A,E) has to ensure the following. First, under elimination
EA(A,E) has to hold if A holds. Secondly, for the traversal of the new ex-
tension, the assumptions for AE have to hold. Note that the first condition, i.e.
that el(i) is a trace over I, ensures that new segments in the trace with events
not in I are properly started with an entry event and terminated by an exit
event. Otherwise, the elimination results in a trace which has events not in I.

We define E to be a conservative extension of S if it does not modify
variables of S. In other words, the newly added transitions do not modify the
variables in S. For conservative extensions, we can show that they do not modify
behavior of the extended SD. It may still happen that the control flow does not
return from the extension to the original SD.

The following theorem shows that an extended SD is defined for the traces in
the extension assumptions EA(A,E).

Theorem 1. Assume S is extended to S′ with some conservative, entry-exit
triggered extension E. If A/S and AE/E, then EA(A,E)/S′.

Proof. The proof proceeds by induction on input streams. Assume i is an input of
S′. The definedness of S′ underEA(A,E) follows from the cases as in the definition
of EA(A,E) as follows. In case the input only has elements from I, the case is
trivial. In case an entry event occurs in i with S being at a state s, we have to show
that S′ is defined, which follows from the definition ofEA(A,E). Then the traversal
in the extension is defined as AE holds for any state and any variable valuation.
In case the traversal returns by some exit event to s, we observe that the traversal
has not changed the variables of S as it is conservative. Hence the execution of S′

at state s continues as S would in this state. As A(el(i)) holds, we can infer that
also S′ is defined until the next occurrence of an entry event. In case the traversal
does not return, AE ensures definedness. ��

For a property A over streams we say A is input-consistent, if A(i) implies
A(i′) for all prefixes i′ of i, i.e. there exists an i′′ with i = i′ :: i′′. This assumption
is needed for weak refinements, as non-termination may occur in an SD in an
extension. Consider an input i which is permitted for the base SD. Then, in an
extension an entry event may occur at i′, which is a prefix of i. The elimination
on the trace of the extended SD will cut off the trace after i′ in case of divergence.
For the refinement to hold, i′ must then also be permitted in the assumptions
for the base SD.

Assume-Guarantee Specifications of SDs for Behavioral Refinement 41

Theorem 2. Assume S is extended to S′ with some conservative and entry-exit
triggered extension E and A is an input-consistent property. If A/S and AE/E,
then EA(A,E)/S′ is a weak refinement of S.

Proof. The proof proceeds by induction on the input stream i of S′ and follows
the proof of the above theorem. In case E has no entry events, the case is trivial.
We show el(i, S′(i)) = (el(i), S(el(i))) inductively over the stream of entry events
in i. Assuming it holds for a prefix of io of i and i = i0 : eentry : i′. As in the
above proof, we relate the execution in S′ with S under the elimination. In case a
traversal of the extension returns, S′ behaves as S as in the proof above after the
return, and we can show the equation easily. In case of divergence, there is no
exit event in i′ and we have el(i) = i0. Then also el(i, S′(i)) = (el(i), S(el(i))) =
(i0, S(i0)). Furthermore, we have to show A(el(i)) follows from A′(i). The critical
case here is when a trace diverges in an extension, as el will cut off after the last
entry event. Here, the assumption on input-consistency is needed to show that
A(el(i)) holds. ��

This theorem shows that there exist assumptions, i.e. EA(A,E), for which an
extension (with conditions as above) is a weak elimination-based refinement.
Based on this, we can transfer safety properties of an SD to an extended SD as
discussed above.

Another issue is to compute EA(A,E) efficiently from the definition of
EA(A,E) in practice. The main problem for this is to determine all the in-
put sequences for which a join state can be reached. If this is possible in an
SD, we may also compute an effective representation of EA(A,E) by composing
input sequences. We illustrate this by the following example.

Consider the lock extension in Figure 1, which adds a new locked state and
permits any input in the lock state. Let Set be the base SD, Lock the extension
and SetLock be the full SD with the extension as in Figure 1. Then we use regular
expressions to define assumption predicates, where the set of input sequences
defined by the regular expression defines when the predicate holds.

We define ASet =(set : off)∗ and ALock = lock : (set,off,lock) ∗ :: unlock. For
the extended SD with the lock, we define ASetLock = (set : (off :set)∗ :: (lock
: (set,off,lock) ∗ :: unlock)∗ :: off)∗ . We use these sets to denote assumptions
predicates which hold for all streams in the corresponding set.

In this example, ASetLock is the extension assumption EA(ASet, ALock) for
ASet/Set and ALock based on the above definition. Applying the elimination
to ASetLock yields ASet and set : (off :set)∗ specifies the inputs leading to the
join points (here state B). Based on this, we have ASetLock/SetLock is a weak
refinement of ASet/Set.

Notice that we permit that a traversal remains infinitely long in the extension,
which we consider as divergence when viewed from a refinement perspective of
the base SD. Thus, for A′

Lock = ALock∪(lockω), where lockω denotes the infinite
stream of lock events, we still have weak elimination-based refinement assuming
A′

Lock/Lock (instead of ALock/Lock).
If an extension terminates under specific assumptions, then we can show the

stronger property of simulations. For an entry-exit triggered extension E, we say

42 C. Prehofer

AE/E terminates if there is not infinite traversal through E which is permitted
by AE. For instance, in the lock example, there are possible traversals which
stay infinitely long in the extension if no unlock event occurs. This can however
be disallowed by the assumption AE.

Theorem 3. Assume S is extended to S′ with some conservative and entry-exit
triggered extension E. If A/S and AE/E, and further AE/E terminates, then
EA(A,E)/S′ is a strong refinement of S.

The proof proceeds as the above result on weak refinement. Here, the proof is
easier as all traversals permitted for the extension terminate.

Following the example above, we have ASetLock/SetLock is also a strong
elimination-based refinement of ASet/Set with extension ALock/Lock, as all per-
mitted input sequences in ALock are finite and return to state B.

Recall that strong elimination-based refinement preserves liveness properties.
Here, an example is the property that o occurs eventually. This holds, based on
strong refinement for ALock/Lock. It does not hold assuming A′

Lock/Lock, as the
traversals may remain infinitely long at the lock state.

5 Related Work

In the following, we discuss related work on statechart refinement and related
concepts like UML state machines and other automata models.

Recently, the concept of eliminations was introduced with a focus on com-
patibility [13], in a setting of non-deterministic SDs with chaos semantics. The
approach was also defining eliminations based on traversals of the feature ex-
tension, not purely on the trace level as done here. Based on an analysis of
the traversals and SD internal states, it was shown when such extensions are a
refinement in the sense presented here. Here, we are able to show results on de-
finedness and strong refinement, where the assumptions assure the termination
of the extension. This is not possible in prior approaches.

Earlier work on statechart refinement [16][7][15], which is using similar seman-
tic models of statecharts, has developed several rules for refinement. The work in
[14] develops a refinement calculus for statecharts as in [16] based on a mapping
to the Z language. The basic mechanism for these is also the elimination of new
input and output events, as discussed before. Refinement with the focus on step-
wise development and composition of services is covered in [3]. Other work on
UML in [19], which builds on concepts for object lifecycle modeling [17], consid-
ers the problem of consistent inheritance and observation consistency, which are
similar to our notion of compatibility. In all of the above, refinement relations
are defined by simply removing the new events or ignoring behavior after new
events.

For related work on UML modeling, the concepts developed in [18] essentially
cover basic cases of refining a state into several ones, which is different and
not covered here. The work in [11] focuses on modeling the added features as
independent and modular entities, modeled as statechart fragments.

Assume-Guarantee Specifications of SDs for Behavioral Refinement 43

Other work on modularity for model checking [2][10] also considers the prob-
lem of extending automata models by new states and transitions. In these works,
composition of statecharts leads to proof obligations for specific properties to
maintain. These are in turn to be validated by a model checker. Hence, these
approaches are quite different from the work presented here. Specifically, they
require the specification and establishment of each individual property after the
extension. Similar goals have been pursed in the context of aspect-modeling for
state machines, as shown in [20].

There is also recent work on compatibility for interface automata [1, 4]. In
contrast to interface automata, we model the assumptions of an SD separately.
This is conceptually similar to the work on interface input/output automata in
[8], which also uses a separate model to describe the input assumptions. The
assumptions are modeled as interface automata, which is just a more specific
way to denote the input assumptions. However [8] does not focus on refinement
and modular reasoning about definedness. More recent work on modal interface
automata [9, 6] considers refinement more explicitly by modalities transitions
which describe the possible, later refinements. This is different from our work,
as we aim at adding behavior without requiring limitations on the SD to be
extended.

Compared to our approach of using simply predicates, the work in [8] is using
interfaces automata in a more specific way to denote the input assumptions.
Unlike [8], we focus more on semantic refinement and modular reasoning about
definedness.

6 Conclusions

In this paper, we have presented a new approach to reason about extensions
of state transition diagrams based on assume/guarantee specifications. We have
focused on extensions which only add new behavior, similar to observer aspects or
conservative extensions on a programming language level. A particular problem
is that new features may have additional input and output events, but may
also reuse existing events. This makes it difficult to reason for what input an
extended SD is defined and when it preserves the original behavior. Due to this,
existing notions of refinement do not apply. Here, we have developed a new
approach towards refinement which allows one to reason about such extended
state transition diagrams in a modular way.

In particular, we have developed new refinement concepts for weak and strong
refinements, based on an elimination of the newly added behavior on the trace
level. These eliminations can be seen as a generalization of typical abstractions,
which only remove new input/output events of an extension. Secondly, we have
presented an approach for compositional reasoning of such extended SDs using a
assume-guarantee calculus. Based on assumptions for the base SD and the exten-
sion, we can show when an SD is defined and property preserving after adding
the extension. In detail, we show when adding a new feature adds only addi-
tional behavior, possibly with divergence. Similar to the considerable work on

44 C. Prehofer

property preserving aspects and features on the programming language level, we
have captured typical extensions like observers also for state transition diagrams
in our new approach.

Our approach based on assumptions and guarantees can express various prop-
erties of such SDs. We have illustrated that our results can be used to preserve
safety and liveness properties when extending an SD. Further work is needed to
study in detail how to model and validate typical safety of liveness properties
in this form. Also, further work will address how to compute the assumptions
needed for an extended SD in an effective way.

Acknowledgements. The author would like to thank Peter Scholz, Martin
Wirsing, Sebastian Bauer and Rolf Hennicker for discussion and feedback on
this work.

References

[1] Alfaro, L., Henzinger, T.: Interface-based design. In: Broy, M., Grünbauer, J.,
Harel, D., Hoare, T. (eds.) Engineering Theories of Software Intensive Systems.
NATO Science Series, vol. 195, pp. 83–104. Springer, Netherlands (2005)

[2] Blundell, C., Fisler, K., Krishnamurthi, S., Van Hentenrvck, P.: Parameterized
interfaces for open system verification of product lines. In: Proceedings of the
19th International Conference on Automated Software Engineering, pp. 258–267
(September 2004)

[3] Broy, M.: Multifunctional software systems: Structured modeling and specification
of functional requirements. Sci. Comput. Program. 75, 1193–1214 (2010)

[4] David, A., Larsen, K.G., Legay, A., Nyman, U., Wasowski, A.: Timed I/O
automata: a complete specification theory for real-time systems. In: Proceedings
of the 13th ACM International Conference on Hybrid Systems: Computation and
Control, HSCC 2010, pp. 91–100. ACM, New York (2010)

[5] Djoko, S.D., Douence, R., Fradet, P.: Aspects preserving properties. In:
Proceedings of the 2008 ACM SIGPLAN Symposium on Partial Evalua-
tion and Semantics-Based Program Manipulation, PEPM 2008, pp. 135–145.
ACM, New York (2008)

[6] Fischbein, D., Uchitel, S., Braberman, V.: A foundation for behavioural confor-
mance in software product line architectures. In: Proceedings of the ISSTA 2006
Workshop on Role of Software Architecture for Testing and Analysis, ROSATEA
2006, pp. 39–48. ACM, New York (2006)

[7] Klein, C., Prehofer, C., Rumpe, B.: Feature specification and refinement with
state transition diagrams. In: Fourth IEEE Workshop on Feature Interactions in
Telecommunications Networks and Distributed, pp. 284–297. IOS Press (1997)

[8] Larsen, K.G., Nyman, U., W ¸asowski, A.: Interface input/output automata. In:
Misra, J., Nipkow, T., Sekerinski, E. (eds.) FM 2006. LNCS, vol. 4085, pp. 82–97.
Springer, Heidelberg (2006)

[9] Larsen, K.G., Nyman, U., W ¸asowski, A.: Modal I/O automata for interface and
product line theories. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421,
pp. 64–79. Springer, Heidelberg (2007)

[10] Liu, J., Basu, S., Lutz, R.: Compositional model checking of software prod-
uct lines using variation point obligations. Automated Software Engineering 18,
39–76 (2011)

Assume-Guarantee Specifications of SDs for Behavioral Refinement 45

[11] Prehofer, C.: Plug-and-play composition of features and feature interactions with
statechart diagrams. Software and Systems Modeling 3, 221–234 (2004)

[12] Prehofer, C.: Semantic reasoning about feature composition via multiple
aspect-weavings. In: Proceedings of the 5th International Conference on Genera-
tive Programming and Component Engineering, GPCE 2006, pp. 237–242. ACM,
New York (2006)

[13] Prehofer, C.: Behavioral refinement and compatibility of statechart extensions.
In: Workshop on Formal Engineering approaches to Software Components and
Architectures. I Electronic Notes in Theoretical Computer Science (ENTCS)
(2012)

[14] Reeve, G., Reeves, S.: Logic and refinement for charts. In: Proceedings of the
29th Australasian Computer Science Conference, ACSC 2006, vol. 48, pp. 13–23.
Australian Computer Society, Inc., Darlinghurst (2006)

[15] Rumpe, B., Klein, C.: Automata describing object behavior. In: Specification
of Behavioral Semantics in Object-Oriented Information Modeling, pp. 265–286.
Kluwer Academic Publishers (1996)

[16] Scholz, P.: Incremental design of statechart specifications. Science of Computer
Programming 40(1), 119–145 (2001)

[17] Schrefl, M., Stumptner, M.: Behavior-consistent specialization of object life cycles.
ACM Trans. Softw. Eng. Methodol. 11, 92–148 (2002)

[18] Simons, A.J.H., Stannett, M.P., Bogdanov, K.E., Holcombe, W.M.L.: W.M.l.: Plug
and play safely: Rules for behavioural compatibility. In: IProc. 6th IASTED Int.
Conf. Software Engineering and Applications, pp. 263–268 (2002)

[19] Stumptner, M., Schrefl, M.: Behavior consistent inheritance in UML. In: Laender,
A.H.F., Liddle, S.W., Storey, V.C. (eds.) ER 2000. LNCS, vol. 1920, pp. 527–542.
Springer, Heidelberg (2000)

[20] Zhang, G., Hölzl, M.: Hila: High-level aspects for uml state machines. In: Ghosh, S.
(ed.) MODELS 2009. LNCS, vol. 6002, pp. 104–118. Springer, Heidelberg (2010)

Translating VDM to Alloy

Kenneth Lausdahl

Department of Engineering, Aarhus University
Finlandsgade 24, DK-8200 Aarhus N, Denmark

lausdahl@cs.au.dk

Abstract. The Vienna Development Method is one of the longest established for-
mal methods. Initial software design is often best described using implicit speci-
fications but limited tool support exists to help with the difficult task of validating
that such specifications capture their intended meaning. Traditionally, theorem
provers are used to prove that specifications are correct but this process is highly
dependent on expert users. Alternatively, model finding has proved to be useful
for validation of specifications. The Alloy Analyzer is an automated model finder
for checking and visualising Alloy specifications. However, to take advantage of
the automated analysis of Alloy, the model-oriented VDM specifications must be
translated into a constraint-based Alloy specifications. We describe how a sub-
set of VDM can be translated into Alloy and how assertions can be expressed in
VDM and checked by the Alloy Analyzer.

1 Introduction

The Vienna Development Method (VDM) [1,2,3] supports modelling and analysis at
various levels of abstraction, using a combination of implicit and explicit definitions
of functionality, and has a strong record of industrial application [4] for design and
specification of software systems. However, one of the limitations of the implicit VDM
specifications is the lack of tool support. Existing VDM tools, Overture [5] and VDM-
Tools [6], only provide limited help with the difficult task of validating that an implicit
VDM specification captures the intended meaning. The existing tools include standard
features like parsers and type checkers, but this only ensures that specifications are cor-
rect with regards to syntax and type constraints. The only tool support for semantic
validation is a proof obligation generator but this still leaves the difficult task of dis-
charging the proof obligations. Theorem provers such as [7] can be used to discharge
the generated proof obligations through an automates translation of VDM to HOL [8,9],
but using a theorem prover is usually complicated and requires an expert.

A different approach is to validate the specification through testing by running an in-
terpreter [10]. This is possible for explicit VDM specifications which can be interpreted
with actual values. The same approach can be used for implicit specifications through
the use of a tool that is able to automatically create explicit definitions of all functions
and operations based on their post-conditions, for a subset of the language, and then
validate the generated specification through the standard interpreter. This approach has
been taken for a subset of VDM that required post-conditions to follow a particular
template using conjunctions to separate constraints on the return value [11,12]. While

E.B. Johnsen and L. Petre (Eds.): IFM 2013, LNCS 7940, pp. 46–60, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Translating VDM to Alloy 47

this enables interpretation, it still requires user input, like test cases, whereas an alter-
native based on model checking requires less or no user input and still provides a larger
coverage than testing. Furthermore, such an approach enables easy detection of contra-
dictions in pre- and post-conditions when functions and operations are combined at a
system level.

The Alloy Analyzer is a bounded model finder that has proved to be useful for val-
idating specifications in the Alloy language [13]. The analyzer can find instances of
Alloy specifications, as well as checking user defined assertions. The analyzer can pro-
vide immediate visual feedback when an instance is found or present a core containing
the top level formulas if no instance could be found.

In this paper, we present a translation of VDM to Alloy [13] thereby enabling VDM
specifications to be checked by the Alloy Analyzer. This enables users to get imme-
diate feedback both in the form of generated alloy instances, that can be visually dis-
played and from user-specified properties. We identify a subset of VDM that can be
automatically translated and checked in the Alloy Analyzer and give a preserving se-
mantics for the translation, thus identifying where a translation becomes infeasible.
Others have already shown that languages like Z, B, Event-B and UML can be trans-
lated [14,15,16,17] to Alloy and benefit from the automated analysis the Alloy Analyzer
provides. The VDM language does not contain any direct way to capture system proper-
ties, also called validation conjectures [18, p. 191], which is equivalent to the assertions
used in model checking but we show a new way of using existing VDM expressions to
express such properties.

The structure of this paper is as follows. Section 2 describes the languages VDM and
Alloy and how they relate. Section 3 formally defines a subset of VDM and defines the
translation rules and the limitations of the translation. Section 4 describes how VDM
specifications can be checked using this translation. Section 5 describes the findings
discovered by applying the translation to a number of VDM specifications. Finally,
Section 7 discusses the contribution of this paper.

2 VDM Models and Alloy Instances

The Vienna Development Method is one of the longest established model-oriented for-
mal methods, and was originally developed at the IBM laboratories in Vienna in the
1970’s. The VDM Specification Language is a higher-order language which is standard-
ised by the International Organization for Standardization (ISO), and has a formally
defined syntax, and both static and dynamic semantics [19,20]. The VDM language
employs a three valued logic; values may be true, false or bottom (undefined), using
Logic of Partial Functions (LPF) where the order of the operands is unimportant[21]1.
Models in VDM are based on data type definitions built from simple abstract types
using booleans, natural numbers, characters and type constructors for record, product,
union, map, (finite) set and sequences. Type membership may be restricted by predicate
invariants. Persistent state is defined by means of typed variables, again restricted by in-
variants. Operations that may modify the state can be defined implicitly, using standard

1 The existing VDM interpreter is, however, depended on the operand order.

48 K. Lausdahl

pre- and post-condition predicates, or explicitly, using imperative statements. Such op-
erations denote relations between inputs, outputs and states before and after execution.
Functions are defined in a similar way to operations, but may not refer to state variables.

The traditional approach is to start at a high abstraction level using implicit VDM
definitions [2] and then refine the model into an explicit executable model. This ap-
proach enables validation of the abstract design before a lot of detail is added. How-
ever, there is only limited tool support for validating such implicit VDM specifications
in contrast to explicit specifications which can be interpreted. The only semantic vali-
dation supported is generation of proof obligations that have to be proven manually or
with the help of a theorem prover.

The following is a subset of a VDM specification of a telephone system [22] later
published as both a Z and B specification [23,24]:

module telephone

Subscriber = token

Initiator = AI | WI | SI

Recipient = WR | SR

Status = FR | UN | Initiator | Recipient

state Exchange :: status : Subscriber
m−→ Status

calls : Subscriber
m←→ Subscriber

inv (mk -Exchange(s , c))	∀i ∈ dom c ·
(s(i) = WI ∧ s(c(i)) = WR) ∨
(s(i) = SI ∧ s(c(i)) = SR)

Lift (s : Subscriber)

ext wr status

pre s ∈ dom (status � {FR})
post status =

↼−−−
status † {s → AI}

ClearSpeak (i : Subscriber)

ext wr status
wr calls

pre s ∈ dom (status � {SI})

post status =
↼−−−
status † {i → FR, calls(i) → UN} ∧ calls = {i} −�↼−−

calls

end telephone

The specification describes a telephone system in terms of communication between
Subscribers and controlled by a mapping from Subscriber to Status . The statuses are
free (FR), Unavailable (UN), Attempting- (AI), Waiting- (WI) and Speaking-initiator
(SI) and Waiting- (WR) and Speaking-recipient (SR). The Lift function only accepts

Translating VDM to Alloy 49

subscribers that have the FR status and requires the state after to overwrite the status to
AI for the given subscriber, it gives a frame condition stating that the only part of the
state that may be changed or read is status . The ClearSpeak operation only accepts a
subscriber with the status SI and requires the status of that subscriber to be set to FR
and the subscriber it was in a conversation with, represented by calls(i), to have the
status UN. It also requires that no call exists in the calls map for the given subscriber.

Alloy [13] is a declarative formal specification language for describing software ab-
stractions. Alloy enables fully automatic analysis that gives immediate feedback but,
unlike theorem proving, the analysis is not complete, and it only examines a finite space
of cases, which, due to recent advances in constraint-solving technology, usually is of-
ten vast and therefore offers a degree of coverage unattainable by testing. At the core,
Alloy is based on relations over atoms with a logic that is small, simple and expressive.
It is based on a relational logic that combines the quantifiers of first-order logic with
operators of relational calculus and easy to learn and understand if one already is famil-
iar with basic set theory. The Alloy language is more than just logic; it provides ways to
organise a model, build larger models based on smaller ones and a way to factor out com-
ponents for reuse. The language also provides a number of shorthand and declarations
needed to communicate with the Alloy Analyzer. And, finally, the language includes
modules, polymorphism, parametrized functions etc. but some features are unique to
Alloy including signatures and the notion of scope. Alloy modules consists of:

– Module header: Header identifying the module, enabling them to be opened and
reused by other modules.

– Signature definitions: Each signature, labelled sig, represents a set of atoms and
may introduce fields that each represents a relation that relates atoms.

– Constraint paragraphs: Various forms of constraints and expressions, labelled fact,
fun and pred.

– Assertions: Records properties that are expected to hold and labelled assert.
– Commands: Instructions to the analyzer to perform a particular analysis and

labelled run or check.

The following example illustrates an Alloy specification of the Telephone example. It
starts by defining a number of signatures TOKEN , Subscriber , · · · . Then two predi-
cates are specified including a run command. Predicates are just normal formulas, and
run commands are used to ask the Alloy Analyzer to find a satisfying assignment with
a given scope. The run command given in this example asks the Alloy Analyzer to find
a satisfying assigment with the default number of instances set to 3 and with two ad-
ditional constraints restricting the number of instances of Exchange to at most 2 and
Subscriber to at most 1 instance. The result can then be graphically represented as
shown in figure 1.

module telephone
open util/relation
sig TOKEN{}
sig Subscriber extends TOKEN{}
one sig AI, SI, WI,SR, WR,FR, UN{}
sig Initiator in AI + SI + WI{}

50 K. Lausdahl

sig Recipient in SR + WR{}
sig Status in FR + UN + Initiator + Recipient{}
sig Exchange{

status: Subscriber →lone Status,
calls: Subscriber lone →lone Subscriber

}{ functional[status,Exchange] and
injective[calls,Exchange] and functional[calls,Exchange] and

all i : dom[calls] | (status[i] = WI and status[calls[i]]= WR) or
(status[i] = SI and status[calls[i]] = SR)

}

pred Lift(e : Exchange, e’ : Exchange, s: Subscriber)
{ e’·calls = e·calls

s in dom[e·status :>FR]
e’·status = e·status ++ s →AI

}
run Lift for 3 but 2 Exchange, 1 Subscriber

pred ClearSpeak(e : Exchange, e’ : Exchange, i: Subscriber)
{ i in dom[e·status :>SI]

e’·status = e·status ++ (i →FR + e·calls[i] →UN)
e’·calls = univ -i <:e·calls
i in dom[e·calls]

}

The instance presented in figure 1 shows two Exchange objects with a 0 and 1 index
and a label indicating which argument ofLift they represent. There are no indexes given
for the Subscriber , AI and FR since only a single object of each exists. The arrows
represent the relation Status , and the brackets indicate how respectively AI and FR
are related to the two exchange objects. It is important to notice that Alloy does not
differentiate between pre- and post-state like VDM; instead it is up to the modeller to
construct e.g. a predicate such that the pre- and post-state is represented which in this
case is done by two additional arguments e and e ′.

�������	

������	��

��
�����������������������������

����������������	�

�������	!
������	�

"#
�������������

����������������	�

��������	�
��������

Fig. 1. An instance found by running the Alloy Analyzer on the Telephone with the lift predicate

Translating VDM to Alloy 51

3 Semantics Preserving Translation

Software abstractions are expressible in both VDM and Alloy while their foundation
is fundamentally different, with VDM being a higher-order, model-oriented language
and Alloy a first-order constraint bases language built on relations of atoms which are
primitive entities that are indivisible, immutable and uninterpreted. The basic building
blocks of VDM are type constructs that are used to capture system entities, and can be
arbitrary complex using cyclic dependencies and nesting through e.g. sets, sequences,
maps or records. Types can furthermore be annotated with invariants to record proper-
ties that must always hold between entities or entity fields. An Alloy signature is similar
to a VDM type but limited to only expressing relations between atoms and thus not able
to directly express e.g. sets of sets often used in VDM. However, by introducing extra
atoms and relations most VDM types can be translated including constraints defined by
invariants.

A translation from VDM to Alloy cannot always be done faithfully because VDM is
more expressive then Alloy. However, despite the large proportion of VDM specifica-
tions that are written with higher-order constructs most of them are not fundamentally
higher-order and can be expressed in a first-order way. If a VDM specification only uses
the definitions and types shown below, and the expressions presented in detail later, then
it can be translated into a semantically equivalent Alloy specification. The translation
is specified for a subset of VDM that excludes recursive functions and is restricted to
a two-value semantics of VDM. The subset shown below ensures that a VDM specifi-
cation can be directly represented in Alloy. The language consists of Modules which
are directly translatable to an Alloy module and thus not shown here. A module is a
container that contains a number of Definitions.

Definition = TypeDef | StateDef | OpDef | FunDef | ValueDef

TypeDef = Id × Type

Type = BasicType | ConstructiveType

ConstructiveType = InMapType | MapType | NamedInvType | ProductType |
SeqType | SetType | UnionType

NamedInvType :: type : NamedType | RecordType
invpattern : Pattern

inv : Exp

TypeDef is a name type pair with a Type that either is a BasicType (Token ,Quote,
Int), or a ConstructiveType. Basic types translates easily to Alloy, shown here with
the abstract VDM representation on the left and the Alloy syntax on the right where [[]]
denotes the meaning of the VDM component:

[[TokenType]] = sig Token{}
[[QuoteType(tag)]] = one sig tag{}

52 K. Lausdahl

Tokens translate directly to signatures with no fields where a quote type translates to a
one signature indicating that only a single instance can ever exist in the universe during
analysis. Signatures in Alloy can be used to express sub-typing relations. This enables
translation of named types in VDM, which are either record types or a named composite
type; the translation of NamedType is based on the enclosing type:

[[NamedType(name, t)]] = (t ∈ BasicType − IntType ∨
t ∈ ConstructedType −UnionType
⇒ sig name extends [[t]]{})
∧(t = IntType
⇒ sig name in Int{})
∧(t = UnionType(t1, t2)
⇒ sig name in [[T1]] + [[T2]]{})

If the enclosing type of the NamedType is integer or union then a new signature is
created using the Alloy in notation to indicate that the signature is a sub-signature of
another signature of a union of signatures. The symbol − is used for set difference
restricting the types and + for set union creating a union of types in Alloy. The VDM
invariant type adds an invariant to a NamedType in the form of a boolean expression
that must hold for all instances of that type. This is representable by an Alloy fact using
a for-all expression quantifying over all objects that belong to the type:

[[NamedInvType

(
NamedType(name, type),

pattern, exp

)
]]=

[[NamedType(name, type)]]
fact nameInv{
all [[pattern]]:name | [[exp]]}

The behaviour is modelled around state in VDM, through operations and functions.
Functions frequently use recursion to manipulate sets, sequences or other data struc-
tures. Common to operations and functions is that they both declare pre- and post-
conditions which are essentially predicates. However, Alloy does not include any notion
of state and therefore additional arguments must be added to enable operations to refer
to pre- and post-states. The VDM state is easily representable by an Alloy signature:

[[StateDefinition

⎛⎝name,
fields ,
inv

⎞⎠)]]=
let relations = {f : [[fields(f)]] t | f ∈ domfields}
in sig name{relations}
{getInvs(fields) and [[inv]]}

note that unlike VDM, multiple instances can exist of this signature, multiple instances
are needed to present the pre- and post-state used for each operation invocation as op-
posed to VDM, where the pre-, post-states are implicitly handled and accessed through

the state field identifiers or old identifiers (
↼−
id) as used in post-conditions. The function

getInvs is a utility function that adds the necessary constraints to a signature when any
of the fields represents a mapping in the VDM specification.

Translating VDM to Alloy 53

getInvs : (Id
m−→ Type)→ AlloyExp-set

getInvs(fields)invs ==
let f ∈ domfields in
cases fields(f) of
Map→ ({functional[f])} ∪ getInvs({f } < -:fields)

InMap→ ({functional[f]} ∪ injective[f]) ∧ getInvs({f } < -:fields)
others { }
end

Functions: Implicit functions, only consisting of pre- and post-conditions, can be rep-
resented by Alloy predicates. Unless the return type is boolean, an additional argument
must be added to the predicate with the type and pattern. Explicit functions that ad-
ditionally declare a body resemble functions in Alloy. However, a direct translation
only preserves the semantics if the VDM function does not use or return any con-
structive expressions (mk -). The VDM semantics creates a new fresh object based
on the arguments of a mk -expression; whereas Alloy search the universe to find a
match. This can be illustrated by a VDM function returning a record Person with
two fields firstname and lastname with a body defined as mk -Person(first , last)
which always returns a person record. In Alloy, the function body could be written
like {p:Person | p.firstname = first and p.lastname = last}. This, however,
may return either a person or an empty set in the case where the universe does not in-
clude a person that matches the one requested. There are two solutions in these kind of
cases: a) create a generator fact that pre-populates the universe with all instances that
may ever be needed in the specification, or b) use a predicate with an additional argu-
ment representing the return value. The advantage with the latter solution is that it does
not create instances that may not be needed and thus slowing down the analysis; it also
avoids the difficult task of calculating exactly which instance is needed. An example of
the latter is illustrated below, showing how a VDM function returning a record, can be
expressed with a predicate in Alloy; note the extra argument p representing the return
value:

getPerson: Id × Id → Person
getPerson(first , last)p ==
mk -Person(first , last)

pred getPerson[first,last : Id, p : Person]{
p·firstname = first and
p·lastname = last}

Operations: Implicit operations are like implicit functions with the exception that pre-
and post-condition expressions are allowed to refer to state fields. Pre-conditions are
only allowed to refer pre-state by state field names. Post-conditions are allowed to refer

to pre-state by old state field names (
↼−
id and to post-state by state field names. Like

implicit functions, a predicate is used to represent the operation but two additional ar-
guments are required to encode the notion of pre- and post-state. This is done by adding
arguments e.g. e, e ′:Exchange where we define the first e to be the pre-state and e ′

the post-state. The pre-condition expression may have free variable references, that, in
VDM, will be bound to the state fields, but instead they must be joined with the pre-
state instance e in this case. The same applies for post-conditions with the exception

54 K. Lausdahl

that names without the old symbol must be joined to the post-state (e ′) and old names
(e) to the pre-state as illustrated:

[[ImplOpDef (name, args , retId × type, pre, post , frame)]] =
let StateDef (stateName, fields , -) = getGlobalState(),

args ′ = addPrePostArgs(getArguments(args), stateName),
pre ′ = updateStateIds(pre, fields , getPreName()),
post ′ = updateStateIds(post , fields , getPostName()),
post ′′ = updateOldStateIds(post ′, fields , getPreName()),
frame ′ = getExtConstraints(frame)
in
(type ∈ B ⇒ pred name(args ′){[[pre ′]] ∧ [[post ′′]] ∧ frame ′})
∧(type �∈ B ⇒ let args ′′ = appendArg(args ′, retId , type) in

pred name(args ′′){[[pre ′]] ∧ [[post ′′]] ∧ frame ′})
Operations have implicit assumptions about when state is changed which is connected
to frame-conditions. If no frame-condition is given for a state identifier or a read clause
is specified then that identifier must remain constant and requires the addition of an
equality of post-state and pre-identifier identifier e.g. e ′.calls = e.calls .

Expressions: Semantically most the VDM expressions included in this work have
equivalent expressions in Alloy but use a different concrete syntax. A subset of VDM
expressions has been chosen based on the case studies made and is only a subset of the
expressions which can be translated to Alloy:

Exp =
ApplyExp | BinExp | ExistsExp | FieldExp | ForallExp | IfExp | LetExp |
MapEnumExp | MapExp | MkExp | MkType | QuoteExp | SeqCompExp |
SetCompExp | SetEnumExp | TupleExp | UnaryExp | VarExp

where unary expressions includes the operators: dom, dunion, inverse, not , rng and
the binary operators are: ∧,∨,=, �=, ⇒ ,∈, †,∪,�,−�,∩. The variable expression has
a special case where the variable identifier refers to a set of sets that is encoded as a
set of a signature with a field representing the second set. Thus, the inner set must be
returned if such an implicit signature is referred:

[[VarExp(id , type)]] var = type = SetType(SetType(-)) ⇒ id .x
type �= SetType(SetType(-)) ⇒ id

The semantics of relational join in Alloy differs from that of map application in VDM.
The difference is how application of keys outside the domain of a map is handled: in
VDM this results in an error whereas, in Alloy, it evaluates to an empty set because of
the join. The solution is to add a constraint to the join requiring the key to exist in the
domain of the map.

[[ApplyExp(root , i)]] = [[i]] in ([[root]]).univ and [[root]][[[i]]]

[[ForallExp(bind , exp)]] =
getFreeVars(bind) = { } ⇒ all [[bind]] bind | [[exp]]
getFreeVars(bind) �= { } ⇒

all getTypeBinds(bind) | [[bind]] in implies [[exp]]

Translating VDM to Alloy 55

[[UnaryExp(exp,dunion)]] = let t = typeof (exp) in
t = SetType(RecordType(-)) ⇒ toSet[[[exp]]]
t = NamedInvType(NamedType(name,

SetType(-)
), -, -) ⇒ [[name]].x

3.1 Limitations

The semantics preserving translation given here does not cover undefindeness in VDM
or lambda functions and there are a few limitations to how VDM specifications may be
written and how the scope needs to be given while using the Alloy Analyzer.

Identifiers. The Alloy language treats identifiers differently from VDM, and as a result
of this the translation requires all argument identifiers for functions and predicates to be
disjoint from any field names used in signatures. If this is violated, the type checker in
Alloy cannot detect the correct type when the join operator is used, and this results in
type errors.

Scope — sequences. Sequences are an essential part of VDM, but sequences are not di-
rectly representable in Alloy. However, the Alloy Analyzer includes a standard library
that represents a sequence as a relation int - > univ mapping a number to an instance
and posing an ordering on the integers used. This solutions works well for VDM se-
quences but is hard to use since the scope used for the integers used in the domain
decides the maximal length of any sequence, and if exceeded, the sequence is silently
truncated. Moreover the only way the scope can be changed for the integers used as
index in sequences is by changing the default scope used by a command.

Values. The VDM values are a constant representation of an object of any type that
is used in specifications to compare calculated results against. While this works well
for all types in VDM it quickly makes analysis in Alloy unnecessary slow due to the
increased scope required. The values can be split into two categories: basic typed values
and values using constructive types. Basic typed values can be represented in Alloy as
one signatures and has only a small impact on the performance while the constructed
types requires a generator fact to populate the complex structure, essentially forcing all
required instances to exist. A cleaner and more abstract way to represent these values
are VDM functions, which can be represented by Alloy predicates.

The translation does not include recursion or statements used in operation bodies
because of limitations of the Alloy Analyzer. Both recursion and a subset of the VDM
statements are expressible in Alloy but the analyzer will only check recursive functions
for a depth of three which rarely is enough for most VDM specifications; thus the benefit
of a translation is limited. A similar problem exists if e.g. a for-statement loops over a
sequence and calculating whether or not a certain condition is reached for termination.
In this case the loop can be unfolded in Alloy to a predefined number of loops. However,
this dramatically slows down the analysis to hours instead of seconds.

56 K. Lausdahl

4 Checking Implicit VDM Specifications

The translation from VDM into Alloy extends the existing syntax and type checking
with the features of the Alloy Analyzer, which, unlike the VDM proof obligation gen-
erator, is fully automated and do not require any human intervention. The two main
features are:

1. Simulation: Finding instances of state or execution that satisfies certain properties.
2. Checking: Finding counterexamples — instances that violates a given property.

Simulation is similar to interpretation of explicit specifications, but instead of actual
values, symbolic values are used, which are limited to the size of the scope. The re-
sult of a simulation is any instance that respects the constraints (predicates, facts) of
the specification and thus non-deterministicly decided. If an instance is found, then its
structure can be graphically visualized, and examined through an evaluator; however,
if no instance is found, a core is given. A core is a collection of possibly contradict-
ing formulas that describe what prevents an instance from being found. If the core is
consistent, then there may just not exist any instance within the specified scope and
thus a larger scope may be needed. Enabling simulation of implicit specifications is a
simple way to verify that a desired instance can be obtained, which turned out not to be
the case for two of the specifications translated during this work. Both specifications,
Hotel [25,13] and Telephone [22], had problems with the use of pre- and post-state ref-
erences and thus used a post-state where a pre-state should have been used resulting in
a core instead of an instance. Example of a post-condition in the Telephone example:

status =
↼−−−
status † {calls(i)→ FR} ∧

calls = {i} −�↼−−
calls

where i is applies to the map calls while the second line states that the domain of calls
are restricted by i and this i cannot be in the domain.

While simulation searches for an instance that satisfies given properties it does not
guarantee that only instances that respect the properties exist. Checking is another tech-
nique where a model finder tries to find an instance which respects the specification but
violates a given property defined as an assertion. Model finding is more efficient than
testing, since the user only has to specify an assertion that has to always hold and the
model finder will search for an instance which violates this. The VDM language does
not contain any official way to capture assertions; however, the notion of validation
conjectures [18, p. 191] is mentioned in relation with proof techniques but suggested
to be written as part of the model documentation. Thus a high level informal assertion
for the telephone example may look like this:

Lift → Connect → ClearWait

One way to interpret this informal assertion is that there is some relation between the
states and that the state before Lift and after ClearWait are equal. A conservative
translation of this can be expressed as follows as an Alloy assertion:

Translating VDM to Alloy 57

1 assert liftConnectClearWait{
2 all e,e’,e’’,e’’’ : Exchange, s1,s2 : Subscriber |
3 (free[e,s1] and Lift[e,e’,s1] and
4 Connect[e’,e’’,s1,s2] and
5 ClearWait[e’’,e’’’,s1]) implies eq[e,e’’’]}

where free and eq are utility functions that respectively sets up the initial state and
compare the final and first state. If an counterexample is found then the Alloy Analyzer
is able to visually display it like for any simulation.

Alternatively to expressing assertions over VDM specifications in different notations,
we propose to use the operation quotation [2] in VDM to express such assertions in the
VDM language. For each function or operation in VDM, two implicit boolean functions
pre- and post - representing the pre- and post-condition, exist. By utilizing this, the
above assertion can be written in the VDM notation as follows:

∀e, e ′, e ′′, e ′′′:Exchange, s1, s2: Subscriber ·
(free(e, s1) ∧
pre-Lift(s1, e) ∧ post -Lift(s1, e, e ′) ∧
pre-Connect(s1, s2, e ′) ∧ post -Connect(s1, s2, e ′′) ∧
pre-ClearWait(s1, e ′′) ∧ post -ClearWait(s1, e ′′, e ′′′)) ⇒ eq(e, e ′′′)

the free and eq functions are equal to the one used in Alloy and just represented as
simple boolean functions in VDM. The pre- functions take the same arguments as the
function they are guarding with the addition of the pre-state. The same applies for the
post -functions with the addition of the pre- and post-state. The assertion is conservative
in the sense that it only has to hold in the case, where all functions denoted by pre- and
post- are true, which does not allow cases where a post-condition is false but still implies
a valid pre-condition.

5 Case Studies

The translation has been applied to a number of implicit VDM specifications. The
intended outcome was to validate if the specifications could be represented in Al-
loy, and to check if any errors could be found in the specifications. The translation
rules have been incorporated in a prototype tool that outputs an Alloy specification for
the supported subset of VDM. The four most interesting specifications that have been
analysed are:

Telephone. The Telephone example [22] shown in Section 2 was originally written in
VDM [26,21] and later translated into Z [23] and B [24]. The analysis revealed that
two post-conditions contained contradictions, and thus resulted in a core instead of an
instance. The original post-condition of the ClearSpeak operation is defined as:

ClearSpeak (i : Subscriber)

post status =
↼−−−
status † {i → FR, calls(i) → UN} ∧ calls = {i} −�

↼−−
calls

58 K. Lausdahl

This is represented in Alloy as shown below where lines 2 and 3 represent the VDM
post-condition shown above, and line 4 the extra constrains required by VDM map
application:

1 pred ClearSpeak(e : Exchange, e’ : Exchange, i: Subscriber){
2 e’·status = e·status ++ (i→ FR + e’·calls[i] →UN)
3 e’·calls = (univ-i) <:e·calls
4 i in dom[e’·calls]}

The Alloy Analyzer cannot find an instance for the this predicate, and thus returns a core
consisting of lines 3 and 4. The source of the error is in line 2 where e ′.calls [i] refers to
the post-state, which is restricted to not include i by line 3. The core does not contain
the source of the error (line 2), because the Alloy language allows such joint operations
resulting in an empty set. Therefore, the constraint i in dom [e ′.calls] must be added
during the translation of e ′.calls [i], and therefore, it is easy to identify the source of the
error.

Hotel. The Hotel example included in the Software Abstractions book about Alloy [13]
did reveal a similar error in one of the post-conditions, preventing the Analyser from
finding an instance. The original Alloy assertions could be used on the specification
translated from VDM with only minor adjustments.

Tic Tac Toe. This example is a simple specification of the Tic tac toe game and is based
on values and includes a for-statement to control the user turns. To enable analysis
the complex values were converted to predicated removing the need for generators.
However, for a traditional 3x3 game analysis could not complete withing 5 hours but
for a board size of 2x2 analysis was possible.

Traffic. The Traffic light example was originally written as a Z specification [27] and
later translated to VDM. The specification included values but they only served as test
input and could thus be left out of the translation. No errors were found but the visual-
ization of the specification made exploration of different instances easy.

6 Related Work

Various previous works have used the Alloy Analyzer to visualize or check properties
of specifications expressed in different languages. However, to the author’s knowledge
no such attempt has been made for VDM. The translations from both B and Event-B
to Alloy [15,16] both combined theorem proving with model checking and thus us-
ing Alloy to check properties. It is noted that Alloy does not have standard operations
for manipulating ordinary sets that result in unnecessary long specifications: however,
the current edition of Alloy includes a number of utility modules providing such fea-
tures which are utilized in this work. The translation of UML with OCL to Alloy [17]
identifies differences related to e.g. inheritance, collections and namespace. The latter
was also encountered in our work as mentioned in in Section 3.1 under Identifiers. The
translate of Z to Alloy [14] defines a semantics preserving translation for a subset of
the Z language that enables automatic syntactical translation to Alloy because of the
language similarities.

Translating VDM to Alloy 59

7 Conclusion Remarks

A key factor in applying formal methods in the software design process is automa-
tion. Automated analysis reduces errors introduced by humans and generally provides
much quicker results. In this paper we have presented one approach for checking im-
plicit VDM specifications with the Alloy Analyzer. The approach differs from earlier
attempts to validate such specifications through interpretation [11]. Translating a for-
mal language to Alloy to benefit from its analysis has been done before, but not for a
higher-order model-oriented language like VDM. We have described under which cir-
cumstances a translation becomes infeasible and described how this approach has been
applied to a number of specifications, and how basic errors in the specifications had
remained undiscovered for years. An observation made during this work suggests that
well formulated specifications at a high abstraction level tends to be easier to translate
to Alloy than specifications that use unnecessary complexity or a low level of abstrac-
tion. Finally, we described a way to write assertions in the VDM notation based on
expressions enabling VDM specifications to record system properties. We believe that
the same principles can be adapted for other languages that share the same properties
as VDM.

Acknowledgements. The author wishes to thank Daniel Jackson, Andrea Mocci, Eu-
nsuk Kang, Peter Gorm Larsen, Nick Battle and the Software Design Group at the
Computer Science and Artificial Intelligence Laboratory at Massachusetts Institute of
Technology for their valuable comments and support while carrying out this work. We
would also like to thank Aarhus University Forskningsfond and FondationIdella for
providing the funding that made this work possible.

References

1. Bjorner, D., Jones, C.B. (eds.): The Vienna Development Method: The Meta-Language.
LNCS, vol. 61. Springer, Heidelberg (1978)

2. Jones, C.B.: Systematic Software Development Using VDM, 2nd edn. Prentice-Hall
International, Englewood Cliffs (1990) ISBN 0-13-880733-7

3. Fitzgerald, J.S., Larsen, P.G., Verhoef, M.: Vienna Development Method. In: Wah, B. (ed.)
Wiley Encyclopedia of Computer Science and Engineering. John Wiley & Sons, Inc. (2008)

4. Larsen, P.G., Fitzgerald, J.: Recent Industrial Applications of VDM in Japan. In: Paul Boca,
J.B., Larsen, P.G. (eds.) FACS 2007 Christmas Workshop: Formal Methods in Industry.
Electronic Workshops in Computing, British Computer Society (December 2007)

5. Larsen, P.G., Battle, N., Ferreira, M., Fitzgerald, J., Lausdahl, K., Verhoef, M.: The Over-
ture Initiative – Integrating Tools for VDM. ACM Software Engineering Notes 35(1)
(January 2010)

6. Fitzgerald, J., Larsen, P.G., Sahara, S.: VDMTools: Advances in Support for Formal
Modeling in VDM. ACM Sigplan Notices 43(2), 3–11 (2008)

7. Group, C.H.: The HOL System: Description (For HOL Kananaskis-4). University of
Cambridge (January 2007), http://hol.sourceforge.net/

8. Vermolen, S.: Automatically Discharging VDM Proof Obligations using HOL. Master’s
thesis, Radboud University Nijmegen, Computer Science Department (August 2007)

http://hol.sourceforge.net/

60 K. Lausdahl

9. Agerholm, S., Sunesen, K.: Reasoning about VDM-SL Proof Obligations in HOL. Technical
report, IFAD (1999)

10. Larsen, P.G., Lassen, P.B.: An Executable Subset of Meta-IV with Loose Specification. In:
Prehn, S., Toetenel, H. (eds.) VDM 1991. LNCS, vol. 552, Springer, Heidelberg (1991)

11. Fröhlich, B.: Program Generation based on Postconditions. In: Hmaza, M. (ed.) Software
Enginerring, SE 1997. IASTED, ACTA Press (November 1997)

12. Fröhlich, B.: Towards Executability of Implicit Definitions. PhD thesis, TU Graz, Institute
of Software Technology (September 1998)

13. Jackson, D.: Software Abstractions: Logic, Language, and Analysis, 2nd edn. MIT Press,
Heyward Street (2012) ISBN-10: 0262017156

14. Malik, P., Groves, L., Lenihan, C.: Translating Z to Alloy. In: Frappier, M., Glässer, U.,
Khurshid, S., Laleau, R., Reeves, S. (eds.) ABZ 2010. LNCS, vol. 5977, pp. 377–390.
Springer, Heidelberg (2010)

15. Mikhailov, L., Butler, M.: An approach to combining B and alloy. In: Bert, D., Bowen, J.P.,
Henson, M.C., Robinson, K. (eds.) B 2002 and ZB 2002. LNCS, vol. 2272, pp. 140–161.
Springer, Heidelberg (2002)

16. Matos, P.J., Marques-Silva, J.: Model Checking Event-B by Encoding into Alloy. In: Börger,
E., Butler, M., Bowen, J.P., Boca, P. (eds.) ABZ 2008. LNCS, vol. 5238, pp. 346–346.
Springer, Heidelberg (2008)

17. Anastasakis, K., Bordbar, B., Georg, G., et al.: On challenges of Model Transformation from
UML to Alloy. Software & Systems Modeling 9(1), 69–86 (2010)

18. Fitzgerald, J., Larsen, P.G.: Modelling Systems – Practical Tools and Techniques in
Software Development. Cambridge University Press, The Edinburgh Building (1998)
ISBN 0-521-62348-0

19. Plat, N., Larsen, P.G.: An Overview of the ISO/VDM-SL Standard. Sigplan Notices 27(8),
76–82 (1992)

20. Larsen, P.G., Pawłowski, W.: The Formal Semantics of ISO VDM-SL. Computer Standards
and Interfaces 17(5-6), 585–602 (1995)

21. Jones, C., Shaw, R.: Case Studies in Systematic Software Development. Prentice Hall
International (1990)

22. Aichernig, B.K.: A telephone exchange specification in VDM-SL. Technical Report
IST-TEC-98-04, Technical University Graz, Austria (1998)

23. Woodcock, J., Loomes, M.: Software engineering mathematics. SEI series in software
engineering. Pitman (1988) ISBN-13 9780201504248

24. Abrial, J.R.: The B Book – Assigning Programs to Meanings. Cambridge University Press
(August 1996)

25. Jackson, D.: Software Abstractions: Logic, Language, and Analysis. MIT Press, Heyward
Street (2006) ISBN-10: 0-262-10114-9

26. Fitzgerald, J., Jones, C.: Proof in the Validation of a Formal Model of a Tracking System for
a Nuclear Plant. In: Bicarregui, J. (ed.) Proof in VDM: Case Studies. FACIT Series. Springer
(1998)

27. Ammann, P.: A safety kernel for traffic light control. In: Haveraaen, M., Dahl, O.-J., Owe,
O. (eds.) Abstract Data Types 1995 and COMPASS 1995. LNCS, vol. 1130, pp. 71–81.
Springer, Heidelberg (1996)

Verification of EB3 Specifications Using CADP

Dimitris Vekris1,�, Frédéric Lang2, Catalin Dima1, and Radu Mateescu2

1 LACL, Université Paris-Est
61, av. du Général de Gaulle, F-94010 Créteil, France

{Dimitrios.Vekris,Catalin.Dima}@u-pec.fr
2 Inria Grenoble Rhône-Alpes and LIG – CONVECS Team

655, av. de l’Europe, Montbonnot, F-38334 Saint Ismier, France
{Frederic.Lang,Radu.Mateescu}@inria.fr

Abstract. eb3 is a specification language for information systems. The
core of the eb3 language consists of process algebraic specifications de-
scribing the behaviour of the entities in a system, and attribute function
definitions describing the entity attributes. The verification of eb3 spec-
ifications against temporal properties is of great interest to users of eb3.
In this paper, we propose a translation from eb3 to LOTOS NT (LNT for
short), a value-passing concurrent language with classical process algebra
features. Our translation ensures the one-to-one correspondence between
states and transitions of the labelled transition systems corresponding to
the eb3 and LNT specifications. We automated this translation with the
eb32lnt tool, thus equipping the eb3 method with the functional verifi-
cation features available in the CADP toolbox.

1 Introduction

The eb3 method [10] is an event-based paradigm tailored for information systems
(ISs). eb3 has been used in the research projects selkis [19] and eb3sec [17],
whose primary aim is the formal specification of ISs with security policies. In the
eb3sec project, real banking industry case studies have been studied, describing
interaction with brokers, customers and external financial systems. The selkis
project deals with two case studies from the medical domain. The first one
draws data records from medical imaging devices. The access to these records
is done via web-based applications. The second one deals with availability and
confidentiality issues for medical emergency units evolving in a great mountain
range, like the Alps in that case.

A typical eb3 specification defines entities, associations, and their respective
attributes. The process algebraic nature of eb3 enables the explicit definition
of intra-entity constraints, making them easy for the IS designer to review and
understand. Yet, its particular feature compared to classical process algebras,

� Partially supported by selkis ANR Project. The LACL group is grateful to
CONVECS for its warm welcome to INRIA Grenoble in 2012 and wishes to thank
all its members for useful advice and discussions.

E.B. Johnsen and L. Petre (Eds.): IFM 2013, LNCS 7940, pp. 61–76, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

62 D. Vekris et al.

such as CSP [15], lies in the use of attribute functions, a special kind of recur-
sive functions evaluated on the system execution trace. Combined with guards,
attribute functions facilitate the definition of complex inter-entity constraints
involving the history of events. The use of attribute functions simplifies sys-
tem understanding, enhances code modularity, and streamlines maintenance.
However, given that ISs are complex systems involving data management and
concurrency, a rigorous design process based on formal specification using eb3

must be completed with effective formal verification features.
Existing attempts for verifying eb3 specifications are based on translations

from eb3 to other formal methods equipped with verification capabilities. A
first line of work [13,14] focused on devising translations from eb3 attribute
functions and processes to the B method [2], which opened the way for proving
invariant properties of eb3 specifications using tools like Atelier B [6]. Another
line of work concerned the verification of temporal logic properties of eb3 spec-
ifications by means of model checking techniques. For this purpose, the formal
description and verification of an IS case-study using six model checkers was
undertaken in [9,5]. This study revealed the necessity of branching-time logics
for accurately characterizing properties of ISs, and also the fact that process al-
gebraic languages are suitable for describing the behaviour and synchronization
of IS entities. However, no attempt of providing a systematic translation from
eb3 to a target language accepted as input by a model checker was made so far.

In this paper, we aim at filling this gap by proposing a translation from eb3

to LNT [7], a new generation process algebraic specification language inspired
from E-LOTOS [16]. As far as we know, this is the first attempt to provide a
general translation from eb3 to a classical value-passing process algebra. It is
worth noticing that CSP and LNT were already considered in [9] for describing
ISs, and identified as candidate target languages for translating eb3. Since our
primary objective was to provide temporal property verification features for eb3,
we focused our attention on LNT, which is one of the input languages accepted
by the CADP verification toolbox [11], and hence is equipped with on-the-fly
model checking for action-based, branching-time logics involving data.

At first sight, given that eb3 has structured operational semantics based on
a labelled transition system (LTS) model, its translation to a process algebra
may seem straightforward. However, this exercise proved to be rather complex,
the main difficulty being to translate a history-based language to a process al-
gebra with standard LTS semantics. To overcome this difficulty, we considered
alternative memory-based semantics of eb3 [20], which were shown to be equiva-
lent to the original trace-based semantics defined for finite-state systems in [10].
Another important ingredient of the translation was the multiway value-passing
rendezvous of LNT, which enabled to obtain a one-to-one correspondence be-
tween the transitions of the two LTSs underlying the eb3 and LNT descriptions,
and hence to preserve strong bisimulation. The presence of array types and of
usual programming language constructs (e.g., loops and conditionals) in LNT
was also helpful for specifying the memory, the Kleene star-closure operators,
and the eb3 guarded expressions containing attribute function calls. At last,

Verification of EB3 Specifications Using CADP 63

EB3 ::= A1; . . . ;An;S1; . . . ;Sm

A ::= f (T : T , y : T) : T = match last (T) with
⊥ : v0 | α1 (x1) : v1 | . . . | αq (xq) : vq [| : vq+1]

S ::= P (x) = E
E ::= λ | α (v) | E1.E2 | E1 |E2 | E0

∗ | E1 |[Δ]|E2 | |x :V :E0 |
|[Δ]|x :V :E0 | C ⇒ E | P (v)

Fig. 1. eb3 syntax

the constructed data types and pattern-matching mechanisms of LNT enabled
a natural description of eb3 data types and attribute functions.

We implemented our translation in the eb32lnt tool, thus making possible
the analysis of eb3 specifications using all the state-of-the-art features of the
CADP toolbox, in particular the verification of data-based temporal properties
expressed in MCL [18] using the on-the-fly model checker EVALUATOR 4.0.

The paper is organized as follows. Sections 2 and 3 give an overview of the eb3

and LNT languages, respectively. Section 4 presents our translation from eb3 to
LNT, implemented by the eb32lnt translator. Section 5 shows how eb32lnt and
CADP can be used for verifying the correctness requirements of an IS. Finally,
Section 6 summarizes the results and draws up lines for future work.

2 The Language EB3

The eb3 method has been specially designed to specify the functional behaviour
of ISs. A standard eb3 specification comprises (1) a class diagram representing
entity types and associations for the IS being specified, (2) a process algebra
specification, denoted by main , describing the IS, i.e., the valid traces of execu-
tion describing its behaviour, (3) a set of attribute function definitions, which
are recursive functions on the system execution trace, and (4) input/output rules
to specify outputs for input traces, or SQL expressions used to specify queries
on the class diagram. We limit the presentation to the process algebra and the
set of attribute functions. The eb3 syntax is presented in Figure 1 and the eb3

trace semantics SemT [10] are given in Figure 2 as a set of rules named T1 to
T11. Both figures are commented below.

Process expressions. We write x, y, x1, x2, . . . for variables and v, w, v1, v2, . . .
for data expressions over user-defined domains, such as integers, Booleans and
more complex domains that we do not give formally, for conciseness. Expressions
are built over variables, constants, and standard operations. We also use the
overlined notation as a shorthand notation for lists, e.g., x denotes a list of
variables x1, . . . , xn of arbitrary length. An eb3 specification consists of a set of
attribute function definitions A1, . . . , An, and of a set of process definitions of
the form “P (x) = E”, where P is a process name and E is a process expression.

Let Act be a set of actions written ρ, ρ1, ρ2, . . . and Lab be a set of labels
written α, α1, α2, . . . Each action ρ is either the internal action written λ, or a

64 D. Vekris et al.

(T1)
ρ

ρ−→ √ (T7)
E1

ρ−→ E′
1 E2

ρ−→ E′
2

E1 |[Δ]|E2
ρ−→ E′

1 |[Δ]|E′
2

in (ρ,Δ)

(T2)
E1

ρ−→ E′
1

E1.E2
ρ−→ E′

1.E2

(T8)
E1

ρ−→ E′
1

E1 |[Δ]|E2
ρ−→ E′

1 |[Δ]|E2

¬in (ρ,Δ)

(T3)
E2

ρ−→ E′
2√

.E2
ρ−→ E′

2

(T9) √
|[Δ]|

√ λ−→ √

(T4)
E1

ρ−→ E′
1

E1 |E2
ρ−→ E′

1

(T10)
E0

ρ−→ E′
0

C ⇒ E0
ρ−→ E′

0

‖C‖

(T5)
E0

∗ λ−→ √ (T11)
E[x := v]

ρ−→ E′

P (v)
ρ−→ E′

P (x) = E

(T6)
E0

ρ−→ E′
0

E0
∗ ρ−→ E′

0.E0
∗

Fig. 2. eb3 trace semantics SemT

visible action of the form “α (v)”, where α ∈ Lab. An action ρ is the simplest
process expression, whose semantics are given by rule T1. The symbol

√
(which

is not part of the user syntax) denotes successful execution. The trace T (implicit
in the presentation) of an eb3 specification at a given moment consists of the
sequence of visible actions executed since the start of the system. (Note therefore
that λ does not appear in the trace.) At system start, the trace is empty. If T
denotes the current trace and action ρ can be executed, then T.ρ denotes the
trace just after executing ρ.

eb3 processes can be combined with classical process algebra operators such
as the sequence “E1.E2” (T2,T3), the choice “E1 |E2” (T4) and the Kleene clo-
sure “E0

∗” (T5,T6). Rules (T7 to T9) define parallel composition “E1 |[Δ]|E2”
of E1, E2 with synchronization on Δ ⊆ Lab. The condition “in (ρ,Δ)” is true iff
the label of ρ belongs to Δ. The symmetric rules for choice and parallel com-
position have been omitted for brevity. Expressions “E1 |||E2” and “E1 ||E2”
are equivalent respectively to “E1 |[∅]|E2” and “E1 |[Lab]|E2”.

The guarded expression process “C ⇒ E0” (T10) can execute E0 if the Boolean
condition C holds, which is denoted by the side condition “‖C‖”. Since C may
contain calls to attribute functions, its evaluation depends on the trace obtained
up to the moment when the condition is evaluated. Note that the evaluation of
the guard C and the execution of the first action ρ in E0 are simultaneous, i.e., no
action is allowed in concurrent processes in the meantime. We call this property
the guard-action atomicity. This property is essential for consistency as, by side
effects, the occurrence of actions in concurrent processes could implicitly change
the value of C before the guarded action has been executed.

Verification of EB3 Specifications Using CADP 65

Quantification is permitted for choice and parallel composition. If V is a set of
expressions {v1, . . . , vn}, “|x :V :E0” and “|[Δ]|x :V :E0” stand respectively for
“E0[x := v1] | . . . |E0[x := vn]” and “E0[x := v1] |[Δ]| . . . |[Δ]|E0[x := vn]”,
where “E[x := v]” denotes the replacement of all occurrences of x by v in E. For
instance, “||x :{1, 2, 3} :a (x)” stands for “a (1) ||a (2) || a (3)”. At last, named
processes can be instantiated as usual (T11). Given an eb3 process expression
E, we write vars (E) for the set of variables occurring free in E.

Attribute functions. Attribute function definitions are denoted by the symbol
A in the grammar of Figure 1. Attribute functions are defined recursively on
the current trace T representing the history of actions executed, with the aid
of functions last (T) which denotes the last action of the trace, and front (T)
which denotes the trace without its last action. The symbol ⊥ represents the
undefined value. In particular, both last (T) and front (T) match ⊥ when the
trace is empty. The symbol (wildcard) matches all actions not matched by
any of the preceding action patterns α1 (x1), . . . , αq (xq). Each vi (i ∈ 0..n)
is an expression of the same type as f ’s return type built over the variables
y ∪ xi.

For defining formal semantics for attribute functions, the rule system of Fig-
ure 2 has to be expanded with trace and memory contexts for each process,
representing the sequence of actions executed since the process was initiated,
and the value of attribute functions for the current trace and any value for the
rest of their arguments, stored into process memoryM. Due to space limitations,
we do not present the formal semantics here, but show how attribute functions
are evaluated on a concrete example. The formal trace-memory semantics for
attribute functions can be found in the companion paper [20].

Example. We give an example of how the trace-memory semantics work for a sim-
plified library management system, whose specification (processes and attribute
functions) in eb3 is given in Figure 3. Process main is the parallel interleaving
between m instances of process book and p instances of process member . Process
book stands for a book acquisition followed by its eventual discard. The attribute
function “borrower (T, bId)” looks for actions of the form “Lend (mId , bId)” or
“Return (bId)” in the trace and returns the current borrower of book bId or ⊥
if the book is not lent. In process book, action “Discard (bId)” is thus guarded
to guarantee that book bId cannot be discarded if it is currently lent. How the
use of attribute functions enhances expressiveness in the eb3 specification of
Figure 3 is discussed in [20].

We illustrate how the eb3 specification describing the library management
system is evaluated. The idea lies in the observation that attribute functions can
be turned into state variables (the memory M) carrying the effect of the system
trace on their corresponding values. This avoids keeping the (ever-growing) trace
leading to a finite state model. If f (T, x1 :T1, . . . , xl :Tl) is an attribute function,
we construct |T1| × . . .× |Tl| state variables, where |Ti| (i ∈ 1..l) stands for Ti’s
cardinality.

66 D. Vekris et al.

BID = {b1, . . . , bm},MID = {m1, . . . ,mp}
book (bId : BID) =

Acquire (bId) . (borrower (T, bId) = ⊥) ⇒ Discard (bId)

loan (mId : MID, bId : BID) =
(borrower (T, bId) = ⊥) ∧ (nbLoans (T,mId) < NbLoans) ⇒

Lend (bId , mId) . Return (bId)

member (mId : MID) =
Register (mId) . (|||bId : BID : loan (mId , bId)∗) . Unregister (mId)

main =
(|||bId : BID : book (bId)∗) ||| (|||mId : MID : member (mId)∗)

nbLoans (T : T ,mId : MID) : Nat⊥ = borrower (T : T , bId : BID) : MID⊥ =
match last (T) with match last (T) with
⊥ : ⊥ ⊥ : ⊥

| Lend (bId ,mId) : | Lend (bId ,mId) : mId
nbLoans (front (T),mId) + 1 | Return (bId) : ⊥

| Register (mId) : 0 | : borrower (front (T), bId)
| Unregister (mId) : ⊥ end match
| Return (bId) :

if mId = borrower (T, bId) then
nbLoans (front (T),mId)− 1

else nbLoans (front (T),mId) end if
| : nbLoans (front (T),mId)
end match

Fig. 3. eb3 specification of a library management system

As an example, we set m = p = NbLoans = 2, i.e. we consider two books
b1 and b2, and two members m1 and m2. The memory has four cells: M =
(borrower[b1], borrower[b2], nbLoans[m1], nbLoans[m2]). The first two cells
keep the two values of the attribute function borrower (T, •) for a given trace
T, and the last two keep the values of nbLoans (T, •). After every step, the new
value of each cell can be calculated from the previous memory and the action
that has just been executed. The memory is initially set to (⊥,⊥,⊥,⊥). Af-
ter the trace “Acquire (b1).Acquire (b2).Register (m1).Register (m2)” the mem-
ory contains (⊥,⊥, 0, 0). If action “Lend (b1,m1)” is then executed, the new
memory is (m1,⊥, 1, 0). For instance, the new value m1 for borrower[b1] is ob-
tained from the rule “Lend (bId ,mId) : mId” in the definition of the attribute
function borrower (see Fig. 3), and the new value 1 for nbLoans[m1] by the
rule “Lend (bId ,mId) : nbLoans (front (T),mId) + 1” of the attribute function
nbLoans , where the value of nbLoans (front (T),m1) corresponds to the value of
nbLoans[m1] in the previous memory state (value 0).

Verification of EB3 Specifications Using CADP 67

3 The Language LNT

LNT aims at providing the best features of imperative and functional program-
ming languages and value-passing process algebras. It has a user friendly syntax
and formal operational semantics defined in terms of labeled transition systems
(LTSs). LNT is supported by the LNT.OPEN tool of CADP, which allows the
on-the-fly exploration of the LTS corresponding to an LNT specification.

We present the fragment of LNT that serves as the target of our transla-
tion. Its syntax is given in Figure 4. LNT terms denoted by B are built from
actions, choice (select), conditional (if), sequential composition (;), breakable
loop (loop and break) and parallel composition (par). Communication is car-
ried out by rendezvous on gates, written G, G1, . . . , Gn, and may be guarded
using Boolean conditions on the received values (where clause). LNT allows
multiway rendezvous with bidirectional (send/receive) value exchange on the
same gate occurrence, each offer O being either a send offer (!) or a receive offer
(?), independently of the other offers. Expressions E are built from variables,
type constructors, function applications and constants. Labels L identify loops,
which can be escaped using “break L” from inside the loop body. Processes are
parameterized by gates and data variables. LNT semantics are formally defined
in SOS style in [7].

B ::= stop | null | G (O1, . . . , On) where E | B1;B2

| if E then B1 else B2 end if | var x :T in B end var | x := E |
| loop L in B end loop | break L | select B1 [] . . . [] Bn end select
| par G1, . . . , Gn in B1 || . . . ||Bn end par | P[G1, . . . , Gn] (E1, . . . , En)

O ::= !E | ?x

Fig. 4. LNT syntax (limited to the fragment used in this paper)

4 Translation from EB3 to LNT

Principles. Our translation of eb3 relies on the trace-memory semantics. Thus,
we explicitly model in LNT a memory, which stores the state variables corre-
sponding to attribute functions (we call these variables attribute variables) and
is modified each time an action is executed.

Assuming n attribute functions f1, . . . , fn, we model the memory as a pro-
cess M placed in parallel with the rest of the system (a common approach for
modeling global variables in process algebras), which manages for each attribute
function fi an attribute variable (also named fi) that encodes the function. To
read the values of these attribute variables (i.e., to evaluate the attribute func-
tions), processes need to communicate with the memory M , and every action
must have an immediate effect on the memory (so as to reflect the immediate
effect on the execution trace). To achieve this, the memory process synchronizes
with the rest of the system on every possible action of the system (including λ,

68 D. Vekris et al.

to which we associate an LNT gate also written λ in abstract syntax for con-
venience), and updates its attribute variables accordingly. The list of attribute
variables f = (f1, . . . , fn) is added as a supplementary offer on each eb3 action
α (v), so that attribute variables can be directly accessed to evaluate the guard
associated to the action, wherever needed, while guaranteeing the guard-action
atomicity. Therefore, every action α (v) will be encoded in LNT as α (!v, ?f),
and synchronized with an action of the form α (?x, !f) in the memory process
M , thus taking benefit of bidirectional value exchange during the rendezvous.

Translation of attribute functions. To formalize the translation, we assume Lab =
{α1, . . . , αq} (not including λ), each αj has formal parameters xj , {f1, . . . , fn}
is the set of attribute functions, and each fi is uniquely defined by the set of
formal parameters yi and the set of data expressions w0

i , . . . , w
q
i , such that:

fi (T, yi) = match last (T) with ⊥ : w0
i |α1 (x1) : w

1
i | . . . |αq (xq) : w

q
i

We also assume that the attribute functions are ordered, so that for all h ∈
1..n, i ∈ 1..n, j ∈ 1..q, every function call of the form fh (T, . . .) occurring in wj

i

satisfies h < i and every call of the form fh (front (T), . . .) satisfies h ≥ i. Such
an ordering can be constructed if the eb3 specification does not contain circular
dependencies between function calls, which would potentially lead to infinite at-
tribute function evaluation. In particular, the definition of an attribute function
fi cannot contain recursive calls of the form “fi (T, . . .)”, but only recursive calls
of the form “fi (front (T), . . .)”. Note that this does not limit the expressiveness
of eb3 attribute functions, because every recursive computation on data expres-
sions only (which keeps the trace unchanged) can be described using standard
functions and not attribute functions.

Ordering attribute functions in this way allows the memory to be updated
consistently, from f1 to fn in turn. At every instant, already-updated values
correspond to calls of the form fh (T, . . .) (the value of fh on the current trace),
whereas calls of the form fh (front (T), . . .) are replaced by accesses to a copy
f ′ of the memory f , which was made before starting the update. This encoding
thus enables the trace parameter to be discharged from function calls, ensuring
that while updating fi, accesses to fh with h < i necessarily correspond to calls
with parameter T.

Process M is defined in Figure 5. It runs an infinite loop, which “listens” to
all possible actions αj of the system. Each attribute variable fi is an array with
li dimensions, where li is the arity of the attribute function fi minus 1 (because
the trace parameter is now discharged). Each dimension of the array fi thus
corresponds to one formal parameter in yi, so that fi[ord (v1)] . . .[ord (vli)]
encodes the current value of fi (T, v1, . . . , vli), where ord (v) is a predefined LNT
function that denotes the ordinate of value v, i.e., a unique number between
1 and the cardinal of v’s type. For each type T we assume the existence of
functions firstT that returns the first element of type T , lastT that returns the
last element of type T , and nextT (x) that returns the successor of x in type T
(following the total order induced by ord). Such functions are available in LNT

Verification of EB3 Specifications Using CADP 69

process M [α1, . . . , αq , λ : any] is

var f, f ′ : type (f),
y1 : type (y1), . . . , yn : type (yn), x1 : type (x1), . . . , xq : type (xq) in

upd0
1; . . . ; upd0

n;
loop

f ′ := f (* f ′
i[ord (v)] will encode fi (front (T), v) during memory update *)

select

α1 (?x1, !f); upd1
1; . . . ; upd1

n

[] . . . []

αq (?xq, !f); upd q
1; . . . ; updq

n

[] λ (!f)
end select

end loop
end var

end process

upd j
i

.
= enum (yi, fi[ord (yi)] := mod (wj

i))
enum ([], B)

.
= B

enum (x :: y,B)
.
= x := firstT ;

loop Lx in
enum (y, B)
if x �= lastT then x := nextT (x) else break Lx end if

end loop where T = type (x)
v[ord (y)]

.
= v[ord (y1)] . . . [ord (yl)], ?y = (?y1, . . . , ?yl), where y = (y1, . . . , yl)

mod (E)
.
= E [fi (T, vi) := fi[ord (vi)], fi (front (T), vi) := f ′

i[ord (vi)] | i ∈ 1..n]

Fig. 5. LNT code for the memory process implementing attribute functions

for all finite types. Function mod transforms an expression E by syntactically
replacing function calls by array accesses, while discharging the trace parameter
as explained above.

Upon synchronisation on action αj (?xj , !f) with the LNT process corre-
sponding to eb3’s main process (see translation of processes below), the values
of all attribute variables fi (i ∈ 1..n) are updated using function updj

i .

Translation of processes. We define a translation function t from an eb3 process
expression to an LNT process. Most eb3 constructs are process algebra con-
structs with a direct correspondence in LNT. The main difficulty arises in the
translation of guarded process expressions of the form “C ⇒ E0” in a way that
guarantees the guard-action atomicity. This led us to consider a second param-
eter for the translation function t, namely the condition C, whose evaluation is
delayed until the first action occurring in the process expression E0. The defini-
tion of t (E,C) is given in Figure 6. An eb3 specification E0 will then be trans-
lated into “par α1, . . . , αq, λ in t (E0, true) || M [α1, . . . , αq, λ] end par” and
every process definition of the form “P (x) = E” will be translated into the pro-
cess “process P [α1, . . . , αq, λ : any] (x : type (x)) is t (E, true) end process”,
where {α1, . . . , αq} = Lab. The rules of Figure 6 can be commented as follows:

70 D. Vekris et al.

t (λ,C) = λ (?f) where mod (C) (1)

t (α (v), C) = α (v, ?f) where mod (C) (2)

t (E1.E2, C) = t (E1, C); t (E2, true) (3)

t (C′ ⇒ E0, C) = t (E0, C andthen C′) (4)

t (E1 |E2, C) = select t (E1, C) [] t (E2, C) end select (5)

t (|x : V :E0, C) = var x := any V ; t (E0, C) end var (6)

t (E0
∗, true) = loop LE0 in

select

λ (?f); break LE0 [] t (E0, true)
end select

end loop (7)

t (E1 |[Δ]|E2, true) = par Δ in t (E1, true) || t (E2, true) end par (8)

t (|[Δ]|x :V :E0, true) = par Δ in E0[x := v1] || . . . ||E0[x := vn] end par
where V = {v1, . . . , vn} (9)

t (P (v), true) = P [α1, . . . , αq, λ] (v) (10)

In all other cases:

t (E0, C) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

if mod (C) then t (E0, true) else stop end if
if C does not use attribute functions

par α1, . . . , αq , λ in
t (E0, true)

|| prC [α1, . . . , αq , λ] (vars (C))
end par otherwise

(11)

Fig. 6. Translation from eb3 process to LNT process

– Rule (1) translates the λ action. Note that λ cannot be translated to the
empty LNT statement null, because execution of λ may depend on a guard
C, whose evaluation requires the memory to be read, so as to get attribute
variable values. This is done by the LNT communication action λ (?f). The
guard C is evaluated after replacing calls to attribute functions (all of which
have the form fi (T, vi)) by the appropriate attribute variables, using func-
tion mod defined in Figure 5. Rule (2) is similar but handles visible actions.

– Rule (3) translates eb3 sequential composition into LNT sequential compo-
sition, passing the evaluation of C to the first process expression.

– Rule (4) makes a conjunction between the guard of the current process ex-
pression with the guard already accumulated from the context.

– Rules (5) and (6) translate the choice and quantified choice operators of eb3

into their direct LNT counterpart.

– Rule (7) translates the Kleene closure into a combination of LNT loop and
select, following the identity E0

∗ = λ |E0.E0
∗.

– Rule (8) translates eb3 parallel composition into LNT parallel composition.

Verification of EB3 Specifications Using CADP 71

– Rule (9) translates eb3 quantified parallel composition into LNT parallel
composition by expanding the type V of the quantification variable, since
LNT does not have a quantified parallel composition operator.

– Rule (10) translates an eb3 process call into the corresponding LNT process
call, which requires gates to be passed as parameters.

– Rules (7) to (10) only apply when the guard C is trivially true. In the other
cases, we must apply rule (11), which generates code implementing the guard.
If C does not use attribute functions, i.e., does not depend on the trace, then
it can be evaluated immediately without communicating with the memory
process (first case). Otherwise, the guard evaluation must be delayed until
the first action of the process expression E0. When E0 is either a Kleene
closure, a parallel composition, or a process call, identifying its first action
syntactically is not obvious. One solution would consist in expanding E0

into a choice in which every branch has a fixed initial action1, to which the
guard would be added. We preferred an alternative solution that avoids the
potential combinatorial explosion of code due to static expansion. A process
prC (defined in Fig. 7) is placed in parallel to t (E0, true) and both processes
synchronize on all actions. Process prC imposes on t (E0, true) the constraint
that the first executed action must satisfy the condition C (then branch).
For subsequent actions, the condition is relaxed (else branch).

The following example illustrates and justifies the use of process prC as a
means to solve the guard-action atomicity problem. Consider the eb3 system
“C ⇒ Lend (b1, m1) ||| Return (b2)”, where C denotes the Boolean condition
“borrower (T, b1)=⊥∧nbLoans (T, m1) < NbLoans” and Lab= {Lend ,Return}.
The LNT code corresponding to this system is the following:

par Lend ,Return, λ in
par Lend ,Return, λ in

par Lend (b1, m1, ?f) || Return (b2, ?f) end par
|| prC [Lend ,Return, λ] (b1, m1)
end par

|| M [Lend ,Return, λ]
end par

The first action executed by this system may be either Lend or Return. We
consider the case where Lend is executed first. According to the LNT semantics,
it results from the multiway synchronization of the following three actions:

– “Lend (b1, m1, ?f)” in the above expression,
– “Lend (?b, ?m, ?f) where borrower [ord(b1)] = ⊥ ∧ nbLoans [ord(m1)] <

NbLoans” in process prC (at this moment, start is true, see Fig. 7), and
– “Lend (?b, ?m, !f)” in process M (see Fig. 5).

Thus, in prC at synchronization time, f is an up-to-date copy of the memory
stored in M , b = b1, and m = m1. The only condition for the synchronization to

1 Such a form, commonly called head normal form [3], is used principally in the context
of the process algebra ACP [4] to analyse the behaviour of recursive processes.

72 D. Vekris et al.

process prC [α1, . . . , αq , λ : any] (vars (C) : type (vars (C))) is
var start : bool, x1 : type (x1), . . . , xq : type (xq) in

start := true;
loop L in select

if start then
start := false;
select

α1 (?x1, ?f) where mod (C)
[] . . . []

αq (?xq, ?f) where mod (C)
[]

λ (?f) where mod (C)
end select

else
select

α1 (?x1, ?f)
[] . . . []

αq (?xq, ?f)
[]

λ (?f)
end select

end if
[] break L end select end loop

end var
end process

Fig. 7. Process prC

occur is the guardmod (C), whose value is computed using the up-to-date copy f
of the memory. In case mod (C) evaluates to true, no other action (susceptible to
modifying f) can occur between the evaluation of mod (C) and the occurrence of
Lend as both happen synchronously, thus achieving the guard-action atomicity.
Once Lend has occurred, Return can occur without any condition, as the value
of start has now become false.

Theorem 1. Let E,E′ be eb3 process expressions, T be the current trace, f be

the set of attribute functions, and ρ ∈ Act. Then E
ρ (x)−−−→ E′ if and only if:

t (E, true)
ρ (x,f)−−−−→ t (E′, true) ∧ (∀fi ∈ f) (∀v) fi (T, v) = fi[ord(v)].

The proof strategy for Theorem 1 relies on the existence of a bisimulation be-
tween each eb3 specification and its corresponding LNT translation. It works by
providing a match between the reduction rules of eb3 [20] and the corresponding
LNT rules [7].

We developed an automatic translator tool from eb3 specifications to LNT,
named eb32lnt, implemented using the Ocaml Lex/Yacc compiler construction
technology. It consists of about 900 lines of OCaml code. We applied eb32lnt

Verification of EB3 Specifications Using CADP 73

on a benchmark of eb3 specifications, which includes variations of the library
management system (examined in its simplest version in Section 2) and a bank
account management system.

We noticed that, for each eb3 specification, the code size of the equivalent
LNT specification is twice as big. Part of this expansion is caused by the fact
that LNT is more structured than eb3: LNT requires more keywords and gates
have to be declared and passed as parameters to each process call. By looking
at the rules of Figure 6, we can see that the other causes of expansion are
rule (5), which duplicates the condition C, and rule (9), which duplicates the
body E0 of the quantified parallel composition operator “|[Δ]|x : V : E0” as
many times as there are elements in the set V . Both expansions are linear in the
size of the source eb3 code. However, in the case of a nested parallel composition
“|[Δ1]|x1 : V1 : . . .|[Δn]|xn : Vn : E0”, the expansion factor is as high as the
product of the number of elements in the respective sets V1, . . . , Vn, which may
be large. If E0 is a big process expression, the expansion can be limited by
encapsulating E0 in a parameterized process “PE0 (x1, . . . , xn)” and replacing
duplicated occurrences of E0 by appropriate instances of PE0 .

5 Case Study

We illustrate below the application of the eb32lnt translator in conjunction
with CADP for analyzing an extended version of the IS library management
system, whose description in eb3 can be found in Annex C of [12]. With respect
to the simplified version presented in Section 2, the IS enables e.g., members to
renew their loans and to reserve books, and their reservations to be cancelled or
transferred to other members on demand. The desired behaviour of this IS was
characterized in [9] as a set of 15 requirements expressed informally as follows:

R1. A book can always be acquired by the library when it is not currently acquired.
R2. A book cannot be acquired by the library if it is already acquired.
R3. An acquired book can be discarded only if it is neither borrowed nor reserved.
R4. A person must be a member of the library in order to borrow a book.
R5. A book can be reserved only if it has been borrowed or already reserved by some

member.
R6. A book cannot be reserved by the member who is borrowing it.
R7. A book cannot be reserved by a member who is reserving it.
R8. A book cannot be lent to a member if it is reserved.
R9. A member cannot renew a loan or give the book to another member if the book

is reserved.
R10. A member is allowed to take a reserved book only if he owns the oldest reserva-

tion.
R11. A book can be taken only if it is not borrowed.
R12. A member who has reserved a book can cancel the reservation at anytime before

he takes it.
R13. A member can relinquish library membership only when all his loans have been

returned and all his reservations have either been used or cancelled.
R14. Ultimately, there is always a procedure that enables a member to leave the

library.

74 D. Vekris et al.

R15. A member cannot borrow more than the loan limit defined at the system level
for all users.

We expressed all the above requirements using the property specification lan-
guage MCL [18]. MCL is an extension of the alternation-free modal μ-calculus [8]
with action predicates enabling value extraction, modalities containing extended
regular expressions on transition sequences, quantified variables and parame-
terized fixed point operators, programming language constructs, and fairness
operators encoding generalized Büchi automata. These features make possible
a concise and intuitive description of safety, liveness, and fairness properties
involving data, without sacrificing the efficiency of on-the-fly model checking,
which has a linear-time complexity for the dataless MCL formulas [18].

We show below the MCL formulation of two requirements from the list above,
which denote typical safety and liveness properties. Requirement R2 is expressed
in MCL as follows:

[true∗.{ACQUIRE ?B : string}.(not {DISCARD !B})∗.{ACQUIRE !B}] false

This formula uses the standard safety pattern “[β] false”, which forbids the
existence of transition sequences matching the regular formula β. Here the un-
desirable sequences are those containing two Acquire operations for the same
book B without a Discard operation for B in the meantime. The regular formula
true∗ matches a subsequence of (zero or more) transitions labeled by arbitrary
actions. Note the use of the construct “?B : string”, which matches any string
and extracts its value in the variable B used later in the formula. Therefore, the
above formula captures all occurrences of books carried by Acquire operations
in the model. Requirement R12 is formulated in MCL as follows:

[true∗.{RESERVE ?M : string ?B : string}.
(not ({TAKE !M !B} or {TRANSFER !M !B}))∗]
〈 (not ({TAKE !M !B} or {TRANSFER !M !B}))∗. {CANCEL !M !B} 〉 true

This formula denotes a liveness property of the form “[β1] 〈β2〉 true”, which
states that every transition sequence matching the regular formula β1 (in this
case, book B has been reserved by member M and subsequently neither taken
nor transferred) ends in a state from which there exists a transition sequence
matching the regular formula β2 (in this case, the reservation can be cancelled
before being taken or transferred).

Using eb32lnt, we translated the eb3 specification of the library manage-
ment system to LNT. The resulting specification was checked against all the 15
requirements, formulated in MCL, using the EVALUATOR 4.0 model checker
of CADP. The experiments were performed on an Intel(R) Core(TM) i7 CPU
880 at 3.07GHz. Table 1 shows the results for several configurations of the IS,
obtained by instantiating the number of books (m) and members (p) in the IS.
All requirements were shown to be valid on the IS specification. The second and
third line of the table indicate the number of states and transitions of the LTS
corresponding to the LNT specification. The fourth line gives the time needed to

Verification of EB3 Specifications Using CADP 75

Table 1. Model checking results for the library management system

(m, p) (3,2) (3,3) (3,4) (4,3)

states 1,002 182,266 8,269,754 27,204,016

trans. 5,732 1,782,348 105,481,364 330,988,232

time 1.9s 14.4s 31’39s 140’22s

R1 0.3s 1.8s 5’19s 20’13s

R2 0.2s 2.9s 9’26s 36’7s

R3 0.2s 9.4s 97’46s 26’47s

R4 0.2s 1.7s 5’15s 18’40s

R5 0.2s 2.2s 6’46s 21’52s

R6 0.2s 4.1s 38’30s 10’19s

R7 0.2s 7.4s 65’22s 24’33s

R8 0.2s 2.2s 6’52s 22’27s

R9 0.2s 2.3s 6’38s 22’29s

R10 0.3s 13.3s 43’59s 62’07s

R11 0.3s 2.5s 6’36s 22’14s

R12 0.3s 4.0s 10’47s 45’09s

R13 0.4s 4.3s 11’46s 1’07s

R14 0.3s 3.6s 10’41s 37’33s

R15 0.2s 2.8s 7’53s 28’56s

generate the LTS and the other lines give the verification time for each require-
ment. Note that the number of states generated increases with the size of m and
p as EVALUATOR 4.0 applies explicit techniques for state space generation.

6 Conclusion

We proposed an approach for equipping the eb3 method with formal verifi-
cation capabilities by reusing already available model checking technology. Our
approach relies upon a new translation from eb3 to LNT, which provides a direct
connection to all the state-of-the-art verification features of the CADP toolbox.
The translation, based on alternative memory semantics of eb3 [20] instead of
the original trace semantics [10], was automated by the eb32lnt translator and
validated on several examples of typical ISs. So far, we experimented only the
model checking of MCL data-based temporal properties on eb3 specifications.
However, CADP also provides extensive support for equivalence checking and
compositional LTS construction, which can be of interest to IS designers.

As future work, we plan to provide a formal proof of the translation from
eb3 to LNT, which could serve as reference for translating eb3 to other pro-
cess algebras as well. We also plan to study abstraction techniques for verifying
properties regardless of the number of entity instances that participate in the
IS, following the approaches for parameterized model checking [1]. In particular,
we will observe how the insertion of new functionalities into an IS affects this
issue, and we will formalize this in the context of eb3 specifications.

76 D. Vekris et al.

References

1. Abdulla, P.A., Bouajjani, A., Jonsson, B., Nilsson, M.: Handling Global Condi-
tions in Parameterized System Verification. In: Halbwachs, N., Peled, D.A. (eds.)
CAV 1999. LNCS, vol. 1633, pp. 134–145. Springer, Heidelberg (1999)

2. Abrial, J.-R.: The B-Book - Assigning programs to meanings. Cambridge
University Press (2005)

3. Bergstra, J.A., Ponse, A., Smolka, S.A.: Handbook of Process Algebra. Elsevier
(2001)

4. Bergstra, J.A., Klop, J.W.: Algebra of Communicating Processes with Abstraction.
TCS 37, 77–121 (1985)

5. Chossart, R.: Évaluation d’outils de vérification pour les spécifications de systèmes
d’information. Master’s thesis, Université de Sherbrooke (2010)

6. ClearSy. Atelier B, http://www.atelierb.societe.com
7. Champelovier, D., Clerc, X., Garavel, H., Guerte, Y., McKinty, C., Powazny, V.,

Lang, F., Serwe, W., Smeding, G.: Reference Manual of the LOTOS NT to LOTOS
Translator - Version 5.4. In: INRIA/VASY (2011)

8. Allen Emerson, E., Lei, C.-L.: Efficient Model Checking in Fragments of the
Propositional Mu-Calculus. In: Proc. of LICS, pp. 267–278 (1986)

9. Frappier, M., Fraikin, B., Chossart, R., Chane-Yack-Fa, R., Ouenzar, M.:
Comparison of model checking tools for information systems. In: Dong, J.S., Zhu,
H. (eds.) ICFEM 2010. LNCS, vol. 6447, pp. 581–596. Springer, Heidelberg (2010)

10. Frappier, M., St.-Denis, R.: EB3: an entity-based black-box specification method
for information systems. Software and System Modeling 2(2), 134–149 (2003)

11. Garavel, H., Lang, F., Mateescu, R., Serwe, W.: CADP 2010: A toolbox for the
construction and analysis of distributed processes. In: Abdulla, P.A., Leino, K.R.M.
(eds.) TACAS 2011. LNCS, vol. 6605, pp. 372–387. Springer, Heidelberg (2011)

12. Gervais, F.: Combinaison de spécifications formelles pour la modélisation des
systèmes d’information. PhD thesis, Université de Sherbrooke (2006)

13. Gervais, F., Frappier, M., Laleau, R.: Synthesizing B Specifications from EB3

Attribute Definitions. In: Romijn, J.M.T., Smith, G.P., van de Pol, J. (eds.)
IFM 2005. LNCS, vol. 3771, pp. 207–226. Springer, Heidelberg (2005)

14. Gervais, F., Frappier, M., Laleau, R.: Refinement of EB3 Process Patterns into B
Specifications. In: Julliand, J., Kouchnarenko, O. (eds.) B 2007. LNCS, vol. 4355,
pp. 201–215. Springer, Heidelberg (2006)

15. Hoare, C.A.R.: Communicating Sequential Processes. Commun. ACM 21(8),
666–677 (1978)

16. ISO/IEC. Enhancements to LOTOS (E-LOTOS). International Standard num-
ber 15437:2001, International Organization for Standardization — Information
Technology, Genève (2001)

17. Jiague, M.E., Frappier, M., Gervais, F., Konopacki, P., Laleau, R., Milhau, J.,
St-Denis, R.: Model-Driven Engineering of Functional Security Policies. In: Proc.
of ICEIS, pp. 374–379 (2010)

18. Mateescu, R., Thivolle, D.: A model checking language for concurrent value-passing
systems. In: Cuellar, J., Sere, K. (eds.) FM 2008. LNCS, vol. 5014, pp. 148–164.
Springer, Heidelberg (2008)

19. Milhau, J., Idani, A., Laleau, R., Labiadh, M.A., Ledru, Y., Frappier, M.:
Combining UML, ASTD and B for the formal specification of an access control fil-
ter. Journal of Innovations in Systems and Software Engineering 7, 303–313 (2011)

20. Vekris, D., Dima, C.: Efficient Operational Semantics for eb3 for Verification of
Temporal Properties. In: Proc. of FSEN. Springer (to appear, 2013)

http://www.atelierb.societe.com

Knowledge for the Distributed Implementation
of Constrained Systems

(Extended Abstract)

Susanne Graf1 and Sophie Quinton2

1 Université Joseph Fourier, VERIMAG
2 Institute of Computer and Network Engineering, TU Braunschweig

Abstract. Deriving distributed implementations from global specifications has
been extensively studied for different application domains, under different as-
sumptions and constraints. We explore here the knowledge perspective: a pro-
cess decides to take a local action when it has the knowledge to do so. We discuss
typical knowledge atoms that are useful for expressing local enabling conditions
with respect to different notions of correctness, as well as different means for
obtaining knowledge and for representing it locally in an efficient manner. Our
goal is to use such a knowledge-based representation of the distribution problem
for either deriving distributed implementations automatically from global spec-
ifications on which some constraint is enforced, or for improving the efficiency
of existing protocols by exploiting local knowledge. We also argue that such a
knowledge-based presentation helps achieving the necessary correctness proofs.

1 Introduction

Building correct distributed systems is a challenging issue where the complexity of
global verification is bound to be unmanageable. An interesting solution to this consists
in starting from a centralized specification of the system under construction, verifying
all properties of interest on this centralized specification — which has a much lower
complexity than the verification on a distributed implementation — and finally derive a
distributed implementation using some correct-by-construction approach. Note that this
topic is related to distributed control, where the objective is to enforce in a distributed
manner some global constraint on a plant. Deriving such a distributed controller directly
is difficult, and the correctness of the resulting controller is difficult to prove. A more
feasible approach in this context is to first construct a global controller, which then is
transformed into distributed one, again using some correct-by-construction approach.
In this paper, we consider a similar design methodology:

1. We suppose given a global (centralized) specification S of the system to be im-
plemented and a global constraint Ψ that has to be enforced. Our first issue is to
construct a global controller that enforces a controlled specification SΨ .

2. As a second step, we may perform analysis on our global controlled specification
SΨ and make sure that it satisfies the required safety properties.

E.B. Johnsen and L. Petre (Eds.): IFM 2013, LNCS 7940, pp. 77–93, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

78 S. Graf and S. Quinton

3. Finally, we have to execute SΨ in a distributed way. That is, we must decompose
the specification into k independent processes S1, . . . , Sk executing on a distributed
platform, either totally agnostic of each other or communicating — in a limited
way — through the communication system provided by this platform. The system
obtained as the composition of the local specifications S1, . . . , Sk is denoted Sdis .
This distributed implementation must behave according to the global controlled
specification SΨ . Note that here, the notion of correctness defining what it means
to behave according to a specification depends on the type of properties that we
verify in the second phase.

We use the concept of knowledge [7] to express how a process can decide which of its
feasible transitions it should execute (if any) to satisfy the correctness criterion. In a se-
ries of recent papers [2,9,3,10,15,4] it has been proposed to construct such knowledge
by means of a global analysis in order to distribute the controller enforcing constraint
Ψ , while relying for the distribution of the specification on some standard protocol such
as α-core [17]. In particular, global constraints defined by a priority order amongst
global transitions were considered. On the other hand, [11] proposed a protocol that is
similar to α-core but can handle global priorities directly, yet not exploiting knowledge
explicitly. This allows obtaining a distributed implementation of priority systems with-
out a prior global analysis. We argue here that the two approaches may be conveniently
combined by:

– applying a global static analysis in order to compute knowledge that is useful either
for the distributed implementation of S or for achieving the control constraint Ψ
(respectively directly for the distributed implementation of SΨ);

– relying on a communication-based distribution strategy (i.e. a protocol) and then
using the knowledge obtained through static analysis in order to reduce the need
for communication.

Such an approach may facilitate the construction of distributed controllers achieving
reasonable performance at the implementation level (e.g., in terms of progress, or num-
ber of messages exchanged), and this for a larger class of systems.

The paper is structured as follows. In Section 2, we give an overview of approaches
proposed for various application domains to achieve distributed control or distributed
implementations based on global specifications. In Section 3, we formalize the cen-
tralized control problem using (constrained) Petri nets. In Section 4, we express the
problems related to the distribution of constrained Petri nets. We discuss the use of
static knowledge from the centralized specification and of communication for achiev-
ing distributed knowledge. In Section 5, we sketch a knowledge-based representation
of the distributed algorithm presented in [11] and discuss the potential of optimization.

2 Related Work

The problem of deriving distributed implementations from global specifications and
that of distributed control to enforce a global invariant have been studied intensively
since the eighties. We provide here an overview of some important results in these do-
mains, organized around three topics: The distributed implementation of synchronous

Knowledge for the Distributed Implementation of Constrained Systems 79

languages, the derivation of protocols from specifications, and distributed control, with
an emphasis on knowledge-based approaches. Other closely related areas are test and
analysis of distributed implementations which we do not discuss here.

Distributed Implementation of Synchronous Languages. In synchronous languages
[5], global specifications are given as a set of concurrent interacting components with
local data, similar to what is done in hardware description languages. However, in
the synchronous context, classical compilers do not generate a parallel implementation
but a unique sequential program which may be executed on simple hardware platforms
without any middleware. The need to distribute such a specification stems from the
fact that the physical hardware is actually distributed, and different components (as
defined at the specification level) run on different hardware units. The specification
generally represents some real-time control system with rather tight synchronization
constraints.

To derive distributed implementations in this context, the control flow is driven by
(local) clocks, and the data exchanged between locations are continuous flows. Most
synchronous languages define Kahn networks [13], that is, deterministic specifications
where each variable is written at most once in each computation step, and no circu-
lar dependencies exist amongst them. Therefore, according to [13], achieving a cor-
rect distributed execution is straightforward on a platform with communication through
unbounded FIFO buffers. Such implementations are reliable, but uninteresting in the
context of real-time systems. Interesting applications require communication and com-
putation time to be bounded, such that bounded buffers are sufficient and real-time
constraints can be guaranteed [6].

Protocol Derivation. In the domain of telecommunications, automatic protocol gener-
ation from a global service specification was a hot topic in the eighties. Actions in the
global service specifications may represent (oriented) data transfer or genuine synchro-
nizations belonging to more than one physical location. Besides, specifications often
feature some non-determinism which represents detail abstraction of how decisions are
taken as well as some degree of openness of the design to be resolved later. However, a
closer look reveals that-non determinism is often used to mimic concurrency.

There has been a huge amount of work in the eighties on communicating finite state
machines [24,18] or formal specification languages such as LOTOS [21,14] to mention
just a few. Some works propose methods for Petri nets with data transfer (through
registers). For example, [23] presents an algorithm for generating, starting from a Petri
net, a message passing protocol by means of a set of message synthesis rules. This
line of work supposes that the control over interactions (that is, who is the initiator of
an interaction) is solved a priori based on the direction of data flow, and that conflicts
can always be solved locally. A more general method dealing also with conflicts and
multi-party synchronizations has been proposed by Bagrodia [1], taken up in [17] for
defining the α-core protocol — but note that it is not automatically derived.

Almost all the above-mentioned approaches aim at maximal progress, which is
only one among many possible refinement relations. Besides, only few papers pro-
vide correctness proofs. When these are given, they are written in an ad hoc man-
ner to establish the existence of a (bi-)simulation relation based on the introduced

80 S. Graf and S. Quinton

concepts. Knowledge-based reasoning offers exactly the right formalism to perform
such proofs and therefore revisiting protocol derivation using knowledge seems a
promising idea.

Distributed Control and its Knowledge-Based Formulations. The problem of
achieving distributed control of a plant with respect to a global specification is closely
related to the distribution problem. Here, for a given set of possible next actions sup-
ported by the plant, the aim is to allow in a distributed fashion one or more of them
to be executed, using a set of controllers with some partial vision on the present sit-
uation. This requires – as before – to find some enabled actions, and when there are
more than one, to detect whether there is conflict, making a choice amongst enabled
actions if needed. In this specific context, instead of initiating the local part of a global
action, local controllers provide a judgment on whether or not they propose the action
for execution (see e.g. [16,22]).

We are here particularly interested in the methods presented in [12,20,19] where a
knowledge-based presentation of the distributed control problem is proposed for sys-
tems, even if without the possibility of actual conflict situations. In [20] only negative
knowledge is used: a local controller knows locally when a cannot be executed if this
is due to its local protocol, and in order to forbid a at least one local protocol must
do so. In [12] the notion of knowledge-based protocol is proposed as a means for rep-
resenting protocol specifications abstractly: the local action ai of Pi is enabled if Pi

knows this fact in its present state. Obviously, knowledge depends on the global system
and not just on the local state. Constructing a distributed protocol consists therefore in
transforming this external knowledge into an acquired knowledge which can be locally
exploited.

This knowledge-based approach has been taken up and generalized in [2,9,3,10,15,4]
by suggesting the use of model checking for calculating knowledge properties in local
states. This is done for global service specifications given in terms of Petri net like
formalisms. The objective there is not maximal progress but deadlock preservation and
minimization of communication. A problem is that there may not exist enough knowl-
edge to take local decisions. In [9,3] it is therefore proposed to enrich the specification
with some additional transitions representing temporary synchronizations. This work
relies on some distributed protocol such as α-core for achieving a real distributed im-
plementation, and for resolving conflicts. One limitation so far is that it is based on a
somewhat unrealistic notion of locality, which makes the basic fireability condition of
joint transitions local, but is not consistent with the underlying protocol. In [4] such
a priori knowledge computation is used to avoid actual conflicts by eliminating some
alternatives statically.

Our goal here is to integrate these approaches with the underlying protocol. In par-
ticular, we aim at simplifying the α-core protocol that was extended in [11] to handle
global priorities. We would like to propose a knowledge-based formulation of this al-
gorithm, in order to make it easier to verify and adapt to different notions of correctness
and to different platforms.

Knowledge for the Distributed Implementation of Constrained Systems 81

3 Centralized Controlled Specifications

In order to build a distributed implementation of a constrained system, we proceed
step by step, starting with a global (centralized) system specification, a constraint to
be enforced and some properties of interest, until an executable implementation for
a given distributed platform has been obtained. Our approach is particularly useful
when the global (possibly constrained) specification can be checked — with reasonable
complexity — for satisfaction of global properties whereas this is much more difficult
or even infeasible to obtain on the distributed implementation.

3.1 Petri Nets

We use one-safe Petri nets as a convenient generic formalism to represent global speci-
fications as well as distributed implementations. To simplify presentation, we suppose
here that global specifications contain no data. We rather focus on potentially complex
control structures: we consider symmetric multi-party synchronizations, allow arbitrary
conflict situations, and specify global constraints such as priorities between transitions.

Definition 1. A Petri net N is a tuple (P, T,E, s0) where:

– P is a finite set of places. The set of states (markings) is defined as S = 2P .
– T is a finite set of transitions.
– E ⊆ (P × T) ∪ (T × P) is a bipartite relation between places and transitions.
– s0 ⊆ 2P is an initial state (initial marking).

For a transition t ∈ T , we define the set of input places •t as {p ∈ P |(p, t) ∈ E}, and
the set of output places t•as {p ∈ P |(t, p) ∈ E}.

Definition 2. A transition t is called enabled in a state s if •t ⊆ s and (t•\•t)∩ s = ∅.
We denote the fact that t is enabled from s by s[t〉. An event, corresponding to the firing
t, leads from state s to state s′, which is denoted by s[t〉s′, when t is enabled in s and
s′ = (s\•t) ∪ t•.

A state s is in deadlock if there is no enabled transition from it.

Definition 3. Two transitions t1 and t2 are independent if (•t1 ∪ t1•)∩ (•t2 ∪ t2•) = ∅.

That is, transitions are independent or concurrent if they do not influence each other.
We use the Petri net of Figure 1 as a running example. As usually, transitions are

represented as segments, places as circles, and the relation E as a set of arrows from
transitions to places and from places to transitions. The Petri net has places named pi
and transitions named a, b, . . . , g. We represent a state s by putting tokens inside the
places of s. In the example, the depicted initial state s0 is {p1, p2, p5}. The transitions
enabled in s0 are a and b. Note that in our case there cannot be more than one token
in any place. Indeed, according to Definition 2, a transition t is enabled in a state s
only if (after removing the tokens from the input places of t) there is no token in any of
the output places of t. That is, using usual vocabulary for Petri nets, our Petri nets are
one-safe by construction.

82 S. Graf and S. Quinton

� �

�

p1

p3

p6

p9

p7

p4

p10

p5

p8

p2

p11

a

c d

e f

b

g

Fig. 1. A Petri net with initial state {p1, p2, p5}

Definition 4. An event trace is a maximal sequence of events s0[t1〉s1 · s1[t2〉s2 · . . .
with s0 the initial state of the Petri net, and any two consecutive events share their final,
respectively initial state in the obvious manner.

We denote the set of event traces of a Petri net N by exec(N). The set of prefixes
of the event traces in a set X is denoted by pref (X). A state is reachable in N if it
appears in at least one event trace of N . Our running example has 16 reachable states,
for instance {p3, p7, p11}. We denote the set of reachable states of N by reach(N).

3.2 Centralized Control

On top of the Petri net specification, we want to enforce some global (safety) constraint.

Definition 5. Given a Petri net N = (P, T,E, s0) with set of states S, a control safety
constraint Ψ ⊆ S × T defines for each state s the set of transitions allowed in s.

Such a constraint Ψ has the potential effect of forbidding some transitions allowed in
N . We use this type of safety constraints as (1) they are trivially enforceable, and (2)
any enforceable safety constraint can be transformed into a constraint of this form.

Definition 6. An event trace of N constrained by Ψ , called constrained event trace, is
a maximal prefix s0[t1〉s1 · s1[t2〉s2 · . . . of an event trace of N such that for each event
s[t〉s′ in the sequence, (s, t) is in Ψ .

We denote the set of constrained event traces of N with respect to Ψ by exec(N,Ψ)
and the set of reachable states under constraint Ψ (that is, states that appear in at least
constrained event trace) as reach(N,Ψ). Note that these constrained event traces ex-
press the set of allowed behaviors of the constrained system but do not describe how to
enforce such behaviors.

As a running example of a constraint, we choose priority orders, similar
to [2,9,3,10,15], used to discriminate between simultaneously enabled transitions in
N . Note that these transitions may be concurrent or not.

Knowledge for the Distributed Implementation of Constrained Systems 83

Definition 7. A priority order is a partial order relation on the transitions T of N .
In a state s, transition t is said to be maximally enabled if it is enabled, and in s there
is no enabled transition t′ with higher priority, that is, such that t t′.

A priority order can easily be encoded as a safety constraint Ψ� defined as the set
of pairs (s, t) ∈ S × T such that t is maximally enabled in s.

Example 1. Consider Petri net N of Figure 1 constrained by the priority order de-
fined by {a b, e f, f g}. The state {p2, p3, p5} is in reach(N) but not in
reach(N,Ψ�), because in the initial state a may not be fired before b.

We formally represent the control imposed on N to enforce Ψ , by extending N with
variables, additional enabling conditions on transitions, and data transformations asso-
ciated with transitions so as to obtain an extended Petri net [8] N ′ whose event traces
are exactly exec(N,Ψ).

Definition 8. An extended Petri net N ′ consists of

– a Petri net N = (P, T,E, s0) called the underlying Petri net of N ′;
– a finite set of variables V with given initial values V0;
– for each transition t ∈ T ,
• an enabling condition ent, i.e., a predicate on the variables in V
• some transformation predicate ft on variables in V

Definition 9. An execution of an extended Petri net is a maximal sequence of the form
(s0,V0) · t1 · (s1,V1) · t2 · (s2,V2) . . . such that for all i ≥ 0 we have: si[ti+1〉si+1,
Vi |= enti and Vi+1 = fti(Vi). The corresponding event trace is obtained by projecting
out the variables of the execution and representing the sequence as a sequence of events.

As previously for non extended Petri nets, we denote the set of event traces of N ′ by
exec(N ′). Note that an event trace of N ′ is a prefix of an event trace of the underlying
Petri net as N ′ can only restrict the event traces of its underlying Petri net N , not
generate new ones. It may however introduce deadlocks, and more generally, affect the
progress properties of N . Formally, this means that exec(N ′) ⊆ pref (exec(N)).

Coming back to our control problem, we now define one possible criterion for defin-
ing the notion of correctness of an implementation of a constrained Petri net. We then
show how a Petri net N can be extended to enforce a constraintΨ . One of the challenges
in the remainder of this paper is to distribute this controller.

Definition 10. An extended Petri net N ′ implements a Petri net N constrained by Ψ if
exec(N ′) ⊆ exec(N,Ψ).

Note that this is a quite restricted definition of correct implementation as it forces the
use of the same state structure, but it is sufficient for the illustrative purpose of this pa-
per. More importantly, this definition forbids N ′ to introduce new deadlocks compared
to N constrained by Ψ . It does not require any stronger progress, meaning that the
only properties which are preserved by this definition are safety and deadlock-freedom.
Quite clearly, other definitions are possible here.

84 S. Graf and S. Quinton

Proposition 1. Given a Petri net N and a constraint Ψ on N , the extended Petri net
N ′ = (P, T,E, s0, V, {ent}t∈T , {ft}t∈T) where

– the underlying Petri net is N = (P, T,E, s0)
– V = {v} where v encodes the state of N
– for each transition t ∈ T , ent holds if and only if (v, t) ∈ Ψ
– for each transition t ∈, ft updates v to the new state

is such that N ′ implements N constrained by Ψ .

We say that {V, {ent}t∈T , {ft}t∈T} defines a controller for N enforcing Ψ and we call
the event traces of N ′ controlled event traces of N .

Proof. Any event trace of N ′ is clearly also a constrained event trace with respect to Ψ .
In fact, in this centralized context we even have the stronger property that exec(N ′) =
exec(N,Ψ). Indeed, our controller allows all transitions permitted by Ψ .

We already mentioned the need to verify global properties of interest at a high level
of abstraction whenever possible so as to avoid the state-space explosion problem —
remember that our goal is to provide a distributed implementation of the constrained
Petri net. As the event traces of (N,Ψ) are also event traces of N , all the safety prop-
erties proven on N hold on (N,Ψ). For progress however, the situation is different,
as Ψ may block some transitions allowed by the original Petri net. This means that
one must either prove progress directly on the constrained system, or use a correct-by-
construction approach. This issue will reappear for the relation between the event traces
of the distributed implementation and those in exec(N,Ψ).

4 Distributed Implementations and Control

We want to use Petri nets to specify and analyze the global behavior of a distributed sys-
tem. In practice, the system consists of a set of concurrently executing and temporarily
synchronizing processes. Such a distributed implementation supposes a platform in
which each process has access only to its local view of the system execution but may
communicate with other processes using some mechanisms provided by the platform.

In this section, we proceed as follows: we first focus on the definitions related to
the implementation of distributed systems with constraints. Then, we formalize our
solution for controlling such systems using knowledge and communication.

4.1 Distributed Petri Nets

First, we define a Petri net as a distributed system of processes. There are sev-
eral options for defining the notion of process in Petri nets: we choose to consider
place sets.

Definition 11. A process π of a Petri net N is a subset of the places of N (i.e., π ⊆ P)
such that there is always exactly one token in π.

Definition 12. A distributed Petri net is a pair (N,Π) where N is a Petri net as in
Definition 1 and Π a set of processes of N defining a partition of the set of places of N .

Knowledge for the Distributed Implementation of Constrained Systems 85

From now on, we assume a distributed Petri net (N,Π). Figure 2 illustrates as an
example a possible distribution of the Petri net of Figure 1. In the sequel, we keep
the priority order of Example 1. For each transition t, we denote proc(t) the set of
processes which have at least one place in •t. Note that, because we consider only
sequential processes here, this set is exactly the set of processes which have at least one
place in t•, and furthermore, the processes in proc(t) have exactly one place in •t and t•,
denoted respectively •tπ and t•π (we reuse this notation for corresponding singletons).

� �

�

p1

p3

p6

p9

p7

p4

p2

p10

p5

p8

a

c d

e f

b

g

c d

π1 π2 π3

Fig. 2. A distributed Petri net with priority order {a � b, e � f, f � g}

Definition 13. The local state of a process π in a (global) state s ∈ S is defined as
s|π = s∩ π. A local state sπ of π is part of a global state s ∈ S if and only if s|π = sπ.

That is, the local state of a process π in a global state s is the projection of s onto the
places of π. It describes what π can see based on its limited view of the system.

We now define the notations related to the local execution of π which we define as
the execution depending only the local view of π. E.g., a transition t may not be enabled
in a state s but still be enabled in a local s|π.

Definition 14. A local event for π, corresponding to the firing of a transition t such that
π ∈ proc(t), leads from local state sπ to local state s′π, which is denoted by sπ[t〉s′π,
when t is locally enabled in sπ — that is, sπ has one token in •tπ (and therefore no token
in t•π) — and s′π = (sπ\•tπ) ∪ t•π. A local event trace of π is a maximal sequence of
local events sπ0 [t1〉sπ1 · sπ1 [t2〉sπ2 · . . . as before.

We denote local enabledness of t in sπ by [tπ〉. Now we define a distributed event trace
as an arbitrary interleaving of local event traces which we represent here simply as the
set of local traces.

Definition 15. A distributed event trace is a tuple (σπ1 . . . σπn) of local event traces
which contains one local event trace per process in Π, and possibly a precedence rela-
tion ≺ relating events of different processes. ≺ restricts the allowed interleaved event
traces σ1.

1 Here, we say in the implementation relations defined in the next section how ≺ is defined.

86 S. Graf and S. Quinton

Clearly, even for a very relaxed notion of correct distributed implementation, the dis-
tributed Petri net obtained by duplicating transitions shared by several processes does in
general not behave according to the (centralized) Petri net N , even without considering
the constraint Ψ . We need to control the system, in order to enforce a correct imple-
mentation of both N and Ψ . Again, this is represented by an extended Petri net, where
each process has a disjoint set of local variables.

Definition 16. A distributed controller for a distributed Petri net (N,Π) is defined by a
set of triples {V π, {enπ

t }t∈T , {fπ
t }t∈T }, one for each process π in Π.

Definition 17. A controlled distributed event trace of (N,Π) by a controller is a tuple
(σπ1 . . . σπn) of controlled local event traces and a precedence relation ≺′ such that
(σπ1 . . . σπn) corresponds to a prefix of a local trace as in the centralized controlled
case and ≺′ restricts ≺.

Note that (N,Π) may be controlled by either a centralized or a distributed controller,
but our goal is of course to find a distributed one. The challenge is then to find the
right enabling conditions to control the distributed execution in order to ensure that
the distributed system implements its global specification — according to the chosen
criterion — while satisfying also the control invariant Ψ . This will be addressed in
Section 4.3. But before that, let us discuss possible options to define what it means for
a distributed Petri net to implement a (centralized) Petri net.

4.2 Correctness Criteria for Distributed Implementation of Petri Nets

Let us consider first a very weak implementation relation which guarantees only se-
quential consistency, that is, no relation ≺ relating events of different processes:

(1) transition correctness which ensures that the local order of transitions is preserved.
(2) atomicity which requires, in case of a conflict situation, that all involved processes

take the same decision.

All the upcoming definitions apply not only to distributed Petri nets but also to con-
trolled distributed Petri nets (traces in the definitions are then controlled).

Definition 18. Given a distributed Petri net (N,Π), the projection of a trace σ of
exec(N) (or exec(N,Ψ) if the system is constrained) on a process π ∈ Π is a local trace
obtained from σ by keeping only events which involve transitions t such π ∈ proc(t)
and projecting all states s onto the corresponding local state s|π. That is, we through
away all non local ordering constraints.

Definition 19. A distributed Petri net (N,Π) implements N constrained by Ψ with re-
spect to"noSync , if for every distributed event trace (σ1, . . . σn), there exists a (central-
ized) controlled event trace σ ∈ exec(N,Ψ) such that for all processes πi the projection
of σ on πi matches the corresponding local trace σi.

This relation is not necessarily implementable, as it may require unbounded buffering.
But usually, an implementation includes also two other types of constraints:

Knowledge for the Distributed Implementation of Constrained Systems 87

(3) synchronization constraints, which restrict the allowed interleavings of local events.
For example, when synchronizations represent an asymmetric situation, like a write
and corresponding reads, on may restrict the order amongst local events corre-
sponding to the same (global) event. But we do not necessarily want to impose
such causality constraints a priori, in order to be able to model out of order execu-
tions, prefetches, which “apparently violate causality”.

(4) progress constraints, which range from absence of global or local deadlock to max-
imal progress, meaning that for each event trace of N there must exist a distributed
event trace of (N,Π).

We now present the implementation relation for the fully synchronized case.

Definition 20. A distributed Petri net (N,Π) implements a Petri net N constrained by
Ψ according to "fullSync , if (1) the condition of Definition 19 is satisfied, and (2) all
interleaved event traces σ of (N,Π) satisfy the following synchronization condition:
whenever for two non-independent events a, b, a occurs before b in the global trace σN

for σ, then all events aπ in σ occur before all events bπ′ .

This is a very strong correctness criterion, which in practice is rarely necessary, and
rarely implemented this way. We consider instead another implementation relation "
that is widely used in protocols, e.g. for α-core and [11]. This relation requires pro-
cesses to synchronize before the execution of a transition, but not on termination.

Definition 21. " is defined as "fullSync except that condition (2) only requires that all
events aπ in σ occur before all events bπ′ for the processes π, π′ contributing to b.

It is essential to note here that for each of these relations, a correct implementation may
reach states which are not in reach(N,Ψ). For example, in the fully synchronized case,
such states correspond to intermediate states during the firing of a transition. Note that,
e.g. in pipelined executions, the distributed implementation may never reach any state
of the centralized execution, but all implementation relations require that by executing
the transitions “lagging behind” a state of the original Petri net is reached. A fact that
is used in the domain of hardware verification.

4.3 Using Knowledge and Communication for Distributed Control

We now focus on the question of how to build a correct distributed implementation of
the constrained Petri net. Remember that we need, for each process, a set of variables,
and for each transition an enabling condition and an update function. Consider first the
relation"fullSync , which is the closest to the centralized Petri net. To simplify notation,
we suppose that the Petri net has no loop (if needed it can be unfolded to an infinite state
Petri net) so that each transition may be fired at most once. This allows us to define a
property doneπt that holds exactly when a process π has already fired transition t.

We can define a centralized controller for (N,Π) enforcing Ψ by
– V = {vπ}v∈Π where vπ encodes the local state of process π;
– for each transition t, enπ

t is as defined below;
– for each transition t, fπ

t updates vπ to the new local state.

88 S. Graf and S. Quinton

A process π may locally fire a transition t in a (global) state s if and only if s satisfies
the enabling condition enπ

t defined as the conjunction of the following properties:

1. t is either globally enabled or already partially executed, that is

ready t = ∀π′ ∈ proc(t) . ([tπ
′
〉 ∨ doneπ

′
t)

2. the transitions t′ executed previously in π are all terminated (in all processes)

∀t′.(doneπt′ =⇒ donet′) where donet′ = ∀π′ ∈ t′ . doneπ
′

t′

3. t has maximal priority2 — denoted maxt
4. t has no unresolved conflict, meaning that all processes involved in t — i.e. π �∈

proc(t) — will indeed fire t if they have not already done so. We express that
there is no unresolved conflict by a property selected t which expresses this conflict
resolution by guaranteeing that for any transition t′ potentially in conflict with t,
¬selected t′ holds.

These conditions guarantee the properties required by "fullSync . The first and the sec-
ond one guarantee transition correctness (only legal transitions can be executed), the
third one guarantees atomicity, and the synchronization constraint is guaranteed by
the first (which guarantees the rendezvous on the input state) and the second (which
guarantees the rendezvous on the output state).

The enabling condition enπ
t for the loosely synchronized relation " is the same,

except that the second condition may be dropped, as " does precisely not require a
synchronization on the termination of a transition.

Notice, that these enabling conditions for local transitions depend all on the global
state and therefore this controller is not distributed. It requires visibility on the entire
state for deciding whether t can be executed. We want to use the notion of knowledge
[7] to solve this issue. The knowledge of a process π in a local state sπ is the set of
reachable states s which project onto sπ, i.e., such that s|π = sπ.

Definition 22. A process knows a property ϕ is a local state sπ, denoted sπ |= Kπϕ if
and only if ϕ holds in all the reachable (global) states s such that s|π = sπ.

For example, in p6 of Figure 2, process π1 knows that π3 is in local state p5 as c and d
may not both have been fired. We sometimes denote this by p6 knows p5.

Regarding our local enabling conditions, this means that processes must know that
the global enabling condition holds, i.e., that it must hold in all global states the local
state sπ cannot distinguish. In other words, by replacing enπ

t by Kπen
π
t we obtain a

distributed controller.
A second important point is, that calculating knowledge at the level of the centralized

Petri net is a priori not sufficient. The enabling conditions enπ
t defined earlier must

be known at the level of the distributed system. That is, in Definition 22, the set of
reachable states is that of the distributed system and must include interleavings. As it
is obviously much more interesting to calculate the knowledge of N , we study next the
preservation of knowledge properties for N in the distributed implementation.

2 In the general case, t is enabled with respect to Ψ .

Knowledge for the Distributed Implementation of Constrained Systems 89

Exploiting the Knowledge of the Centralized Petri Net. We address here the fol-
lowing question: which of the knowledge properties that we have computed on the
centralized Petri net N can be exploited in the enabling conditions of local processes?
To answer this question, we can use an obvious closure property of knowledge sets.

Proposition 2. If a state s is in the knowledge set of a local state sπ, then so are all
states reachable via the execution of transitions t in which π is not involved.

In a centralized execution, the partners of a transition t move jointly, and therefore the
states before and after t in processes π′ in proc(t) are in disjoint knowledge sets. On
the other hand, in a decentralized computation, the participants in t execute their local
t independently. This means that the knowledge set of •tπ (and t•π) contains •tπ′ and
t•π′ of such processes. Thus, the looser the implementation relation (that is, the more
desynchronized local processes may be), the weaker the knowledge that a process has
in a given local state. Note however that looser implementation relations require weaker
enabling conditions on local transitions.

Let us have a look at the example of Figure 2, to see whether there is some useful
knowledge that is preserved, for example when the implementation relation is ". In
the centralized execution p3 knows p4 (b has higher priority than a). Thus, it knows
enc as c is not dominated by any transition of higher priority. In a distributed execution
according to ", p3 only knows p4 ∨ p7 ∨ p10 which — together with the information
selectedc — still implies en1

c . As we have already stated, selectedc is not a knowledge
that can be present in N in a conflict situation, the decentralized implementation needs
some additional decision mechanism. Besides, as f g, in N , p7 knows ¬p8 which is
sufficient to execute f . This holds also in an implementation according to ".

Indeed, we can characterize the transformation of knowledge of the centralized sys-
tem into knowledge of the distributed system as follows.

Proposition 3. Whenever a local state sπ knows a local predicate pπ′ concerning pro-
cess π′ in the Petri netN , then it knows in (any of) the distributed semantics the property
past[¬sync(π, π′)](pπ′)∨AF [¬sync(π, π′)](pπ′), which is a CTL formula expressing
the fact that pπ′ has been true in a past after the last synchronization with π, now, or in
the future before the next synchronization with π.

The last and next synchronizations mentioned above depend on the synchronization
points defined by the preorder3. But, one can rely on the synchronization points im-
posed by the preorder only for synchronization points that lie strictly in the past or
strictly in the future, not for realizing a rendezvous now. Only a property that is closed
in this sense with respect to past and future is preserved. These are in particular prop-
erties stating that a neighbor cannot be, or must be, before or beyond a certain point.
The enabledness condition for implementation relations", and"fullSync are not of this
nature, and therefore not preserved by construction.

The obvious conclusion is that, although useful, knowledge is in general not suffi-
cient to achieve a distributed implementation without additional communication. In the
next section we study how knowledge can be used jointly with communication.

3 They obviously also depend on the additional synchronization points actually achieved in the
distributed implementation under study.

90 S. Graf and S. Quinton

Increasing Knowledge by Communication. Let us first note that communication is
in principle only required for achieving progress. Otherwise, eliminating transitions for
which we do not have sufficient knowledge is a safe way of proceeding, and moreover
this increases knowledge. Of course, in most cases this is not an acceptable option. Our
goal here is not to determine a particular, optimal communication strategy but rather
to provide some insight into how knowledge can be used to analyze and optimize for
example a given distribution protocol such as α-core or the one in [11].

Remember that a process π needs in a local state sπ the knowledge of the following
enabling conditions to execute transition t: (1) ready t, i.e. global readiness (2) maxt,
i.e. maximal priority (3) selected t, i.e. absence of unresolved conflict.

A local state sπ does in general not know the conjunction of these properties, and
communication via the distributed platform can be used towards it. Semantically, the
information conveyed by the communication reduces the set of global states consistent
with sπ (meaning that s|π = sπ). And fewer states means stronger knowledge.

Knowledge concerning readiness and maximal priority can be obtained by collect-
ing information on local enabledness in other processes. The platform will (asyn-
chronously) interact with processes π and π′ to inform π′ that in π “t was locally
enabled” or t′ guaranteed to be not enabled before t′′ in a previous global state that
is consistent with the local state of π′. Now, local enabledness is not a stable prop-
erty. It may be the case that when π′ synchronizes with the platform to obtain that
information, π is no longer enabled. This, however, is taken care for in the knowledge
property. In other words, such communication delivers additional information, which
allows eliminating “states of the past” from the knowledge set of sπ. As already stated
earlier, knowledge properties are stable with respect to invisible evolution, and mean π′

is already beyond that point. On the other hand, the protocol may force π′ to wait in
certain situations, which provides knowledge of the form π′ is not yet beyond that other
point. This allows synchronization.

Example 2. In local state {p1} of our running example of Figure 2, π1 cannot fire a
because its local state is consistent with {p1, p2, p3} in which b is enabled and therefore
a may not have maximal priority. On the other hand, if π1 knows that c has been locally
enabled in the past of π2, then {p1, p2, p3} is no longer a possible current state and
therefore π1 knows that it may fire a.

Note however, that the third part of the enabling condition enπ
t , the condition selected t

is satisfied in the original Petri net only if there is a unique enabled transition in s, which
is then the selected one. The choice between conflicting transitions requires additional
information which may be of static nature, that is, consist in modifying N or dynamic,
that is, the protocol needs to include a distributed arbitration protocol. The algorithms
of [17,11] include such arbitration protocols. Most other solutions from the literature
simply forbid conflicts.

5 Discussion Based on the Protocol of [11]

Let us now discuss the added value of the reasoning presented in the previous sections
on an example. In [11], an algorithm is presented which builds a distributed imple-
mentation of a prioritized specification for systems with binary synchronizations. It

Knowledge for the Distributed Implementation of Constrained Systems 91

is inspired by α-core but differs from it by the fact that it handles specifications with
(global) priorities and implements a less static conflict resolution. In both algorithms,
the platform is assumed to ensure reliable and order-preserving transmission of mes-
sages. The precise organization of the protocol of [11] is beyond the scope of this paper,
but an abstract general view of the main steps of the communication phase is shown in
Figure 3. This protocol takes place in each local state of each process, that is, all the
states represented in the diagram correspond to the same place in the centralized Petri
net. The transition in the diagram labeled 7 corresponds to the start of the execution
of a local transition (which takes place in the Busy state). Other transitions represent
sending and receiving of messages expressing information about local enabledness of
transitions, as well as commitment of a process to a given transition t — the last step
before achieving selected t, unless the other process rejects t.

3

7

10 9

5

8

11

1

6
12

2
4

Negotiating

READY

Committing(a)

BUSY

Active Waiting

Fig. 3. State diagram of the algorithm presented in [11]

We can use the results of Section 4 in two ways here. First, we now have a generic
formal support for proving the correctness of the algorithm under consideration. In-
deed, transition correctness, atomicity and synchronization as defined in Section 4.3
are satisfied if and only if a process π may take transition 7, that is, fire locally a tran-
sition t of the original Petri net, only when it has the required knowledge for it. For
example, selected t holds in that case because both processes π and π′ have committed
to it. The protocol obliges π′ to wait for the consent of π, and π therefore knows that π′

cannot fire any other transition than t. In other words, in all the global states consistent
with the local view of π in this local state, selected t holds.

Second, once formalized the knowledge properties associated with each local
state, we can use them in combination with the properties obtained by static analy-
sis of the centralized Petri net. That is, for a local state sπ of π, all states of the
associated communication protocol are enriched with (preserved) local knowledge of
π in sπ. Based on this, π may not have to wait for all messages to arrive before pro-
gressing, as it now has enough knowledge to fire a transition without them. In addition,
if messages are clearly identified as questions and answers — as is often the case in

92 S. Graf and S. Quinton

such protocols — then π may in such case omit some questions messages as it does
not require them. However, this forbids the analysis of progress properties to rely on
question messages.

Such a clear separation between the generic protocol and its implementation for a
given centralized Petri net seems promising, as it is scalable (the distributed system as
a whole is never analyzed) and still understandable: centralized Petri net and protocol
are analyzed separately, then used together in a correct-by-construction manner.

6 Conclusion

In this paper, we have discussed a knowledge-based representation of the distribution
problem which then can be used for either deriving distributed implementations auto-
matically from global specifications on which a given constraint is to be enforced, or
for the optimization of existing protocols by exploiting pre-calculated knowledge. Our
intention was not to provide an exhaustive treatment of this topic — which has been
already studied quite extensively in the past, for various needs and from different per-
spectives. We hope however, to have illustrated that such a knowledge-based approach
provides the right level of abstraction for solving the distribution problem depending on
the notion of refinement required and the distributed platform at hand.

We have discussed different types of knowledge properties that may be required to
take a decision globally or locally and how such knowledge can be obtained statically,
or dynamically, or by mixing both approaches. In particular, we have illustrated that
expressing refinement and local enabledness as a conjunction of smaller properties has
several advantages, namely that of breaking down the verification of correctness.

What we did not consider at all in this paper, is dataflow, which introduces addi-
tional ordering, and how this may fit into the proposed framework. Similarly, we have
not mentioned timed specifications, although it happens frequently that the distributed
a system must satisfy time constraints under some timing assumptions — where the
first add additional order constraints and the second may be useful for achieving them
locally.

References

1. Bagrodia, R.: Process synchronization: Design and performance evaluation of distributed
algorithms. IEEE Trans. Software Eng. 15(9), 1053–1065 (1989)

2. Basu, A., Bensalem, S., Peled, D., Sifakis, J.: Priority scheduling of distributed systems
based on model checking. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643,
pp. 79–93. Springer, Heidelberg (2009)

3. Bensalem, S., Bozga, M., Graf, S., Peled, D., Quinton, S.: Methods for knowledge based
controlling of distributed systems. In: Bouajjani, A., Chin, W.-N. (eds.) ATVA 2010. LNCS,
vol. 6252, pp. 52–66. Springer, Heidelberg (2010)

4. Bensalem, S., Bozga, M., Quilbeuf, J., Sifakis, J.: Knowledge-based distributed conflict
resolution for multiparty interactions and priorities. In: Giese, H., Rosu, G. (eds.) FORTE
2012 and FMOODS 2012. LNCS, vol. 7273, pp. 118–134. Springer, Heidelberg (2012)

5. Benveniste, A., Caspi, P., Edwards, S., Halbwachs, N., Le Guernic, P., de Simone, R.:
The synchronous languages twelve years later. Proceedings of the IEEE 91(1) (January 2003)

Knowledge for the Distributed Implementation of Constrained Systems 93

6. Caspi, P., Girault, A.: Execution of distributed reactive systems. In: Haridi, S., Ali, K.,
Magnusson, P. (eds.) Euro-Par 1995. LNCS, vol. 966, pp. 15–26. Springer, Heidelberg (1995)

7. Fagin, R., Halpern, J.Y., Vardi, M.Y., Moses, Y.: Reasoning about knowledge. MIT Press,
Cambridge (1995)

8. Genrich, H.J., Lautenbach, K.: System modelling with high-level petri nets. Theor. Comput.
Sci. 13, 109–136 (1981)

9. Graf, S., Peled, D., Quinton, S.: Achieving distributed control through model checking. In:
Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 396–409. Springer,
Heidelberg (2010)

10. Graf, S., Peled, D., Quinton, S.: Monitoring distributed systems using knowledge. In:
Bruni, R., Dingel, J. (eds.) FORTE 2011 and FMOODS 2011. LNCS, vol. 6722,
pp. 183–197. Springer, Heidelberg (2011)

11. Ben Hafaiedh, I., Graf, S., Quinton, S.: Building distributed controllers for systems with
priorities. J. Log. Algebr. Program. 80(3-5), 194–218 (2011)

12. Halpern, J.Y., Fagin, R.: Modelling knowledge and action in distributed systems. Distributed
Computing 3(4), 159–177 (1989)

13. Kahn, G.: The semantics of simple language for parallel programming. In: IFIP Congress,
pp. 471–475 (1974)

14. Kant, C., Higashino, T., von Bochmann, G.: Deriving protocol specifications from service
specifications written in LOTOS. Distributed Computing 10(1), 29–47 (1996)

15. Katz, G., Peled, D., Schewe, S.: Synthesis of distributed control through knowledge accumu-
lation. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 510–525.
Springer, Heidelberg (2011)

16. Lin, F., Wonham, W.M.: Decentralized supervisory control of discrete-event systems. Inf.
Sci. 44(3), 199–224 (1988)

17. Pérez, J.A., Corchuelo, R., Toro, M.: An order-based algorithm for implementing multiparty
synchronization. Concurrency — Practice and Experience 16(12), 1173–1206 (2004)

18. Probert, R.L., Saleh, K.: Synthesis of communication protocols: Survey and assessment.
IEEE Trans. Computers 40(4), 468–476 (1991)

19. Ricker, S.L., Rudie, K.: Knowledge is a terrible thing to waste: Using inference in discrete-
event control problems. IEEE Trans. Automat. Contr. 52(3), 428–441 (2007)

20. Rudie, K., Ricker, S.L.: Know means no: Incorporating knowledge into discrete-event
control systems. IEEE Transactions on Automatic Control 45(9), 1656–1668 (2000)

21. von Bochmann, G., Gotzhein, R.: Deriving protocol specifications from service specifica-
tions. In: Proceedings of SIGCOMM 1986, pp. 148–156. ACM (1986)

22. Wong, K.C., Wonham, W.M.: Modular control and coordination of discrete-event systems.
Discrete Event Dynamic Systems 8(3), 247–297 (1998)

23. Yamaguchi, H., El-Fakih, K., von Bochmann, G., Higashino, T.: Deriving protocol
specifications from service specifications written as predicate/transition-nets. Computer
Networks 51(1), 258–284 (2007)

24. Zafiropulo, P., West, C.H., Rudin, H., Cowan, D.D., Brand, D.: Towards analyzing and
synthesizingprotocols. IEEE Transactions on Communications 28(4), 651–661 (1980)

Automated Anonymity Verification

of the ThreeBallot Voting System

Murat Moran�, James Heather, and Steve Schneider

University of Surrey, Guildford, UK
m.moran@surrey.ac.uk

Abstract. In recent years, a large number of secure voting protocols have
been proposed in the literature. Often these protocols contain flaws, but
because they are complex protocols, rigorous formal analysis has proven
hard to come by.

Rivest’s ThreeBallot voting system is important because it aims to pro-
vide security (voter anonymity and voter verifiability) without requiring
cryptography. In this paper, we construct a CSP model of ThreeBallot,
and use it to produce the first automated formal analysis of its anonymity
property.

Along the way, we discover that one of the crucial assumptions under
which ThreeBallot (and many other voting systems) operates—the Short
Ballot Assumption—is highly ambiguous in the literature.We give various
plausible precise interpretations, and discover that in each case, the inter-
pretation either is unrealistically strong, or else fails to ensure anonymity.
Therefore, we give a version of the Short Ballot Assumption for ThreeBal-
lot that is realistic but still provides a guarantee of anonymity.

Keywords: Formal Methods, Voting Systems, FDR2, CSP, Anonymity,
Automatic Verification, ThreeBallot.

1 Introduction

Recent years have seen a large number of end-to-end voting systems proposed
in the literature [1, 2, 3, 4, 5]. Typically these systems aim to provide a proof of
correctness of the election tally, but also some guarantee of privacy for the voter;
and cryptography is usually employed to achieve these goals. Rivest’s ThreeBal-
lot voting system [5] is particularly interesting because it uses no cryptogra-
phy, but nevertheless still aims to provide anonymity, integrity of the election,
verifiability and incoercibility.

One of the most critical properties of voting systems is anonymity, which
essentially requires that the link between voters and votes be broken. Anonymity
is important for voter privacy as well as it is essential for preventing coercion
and vote buying. This paper considers the anonymity property as it relates to
the ThreeBallot voting system.

� Corresponding author. His work is sponsored by The Ministry of Education Republic
of Turkey.

E.B. Johnsen and L. Petre (Eds.): IFM 2013, LNCS 7940, pp. 94–108, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Automated Anonymity Verification of ThreeBallot Voting System 95

ThreeBallot relies heavily on the short ballot assumption (SBA) to assist in
providing its anonymity guarantee. Roughly speaking, this assumption states
that the information content of a ballot should be low. However, the phrasing
of this assumption in the description of ThreeBallot is vague, and open to a
number of radically different interpretations.We consider the various possibilities
here. Some turn out to be unrealistically strong; some seem to be too weak to
guarantee anonymity.

In the process, we construct a formal model of ThreeBallot in Communi-
cating Sequential Processes (CSP) [6], and use the Failures-Divergences Re-
finement (FDR2) model checker [7] to produce an automated analysis of the
model. Some other voting systems have been at least partially verified auto-
matically against privacy-related properties (for example, Civitas [3] in [8] with
hand-proofs, FOO [2] in [9] with a compiler, and Prêt à Voter [10] in [11]); but
the ThreeBallot voting system has not yet been subjected to automated formal
verification.

The paper is constructed as follows. In the remainder of this section, we give
an outline of ThreeBallot, and discuss related work. In Section 2, we model
ThreeBallot as a parallel composition of agents: voters, an authority, and a bul-
letin board. Then, using an anonymity definition given in [11], in Section 3.1
we analyse our model against an adversary who can observe all public channels.
Initially, our model drops the SBA entirely, and we discover that FDR leads us
to several attacks on vote anonymity. Section 3.2 then discusses the Short Ballot
Assumption in its various guises, and shows that in each case the assumption is
either too strong to be realistic or too weak to be secure; we then propose a dif-
ferent short ballot assumption that is both reasonable and demonstrably strong
enough to provide anonymity. In the Section 3.3 we analyse the other versions
of ThreeBallot, and demonstrate that with the modifications, ThreeBallot pro-
vides guaranteed anonymity. Finally, the Section 4 concludes this paper with a
summary of findings and present limitations.

1.1 Voting with ThreeBallot

In this section, we briefly introduce the original ThreeBallot voting system and
the short ballot assumption given by Rivest and Smith [12].

Voting in ThreeBallot proceeds as follows. Initially, the (authenticated) voter
receives a multi-ballot form from a pollworker, which consists of three mini-ballot
forms (see Table 1). The mini-ballots are all identical except for the IDs or serial
numbers, located at the bottom of the mini-ballots. These serial numbers are all
unique, and are not meaningful. In particular, there is no way of determining
what mini-ballot serial numbers go together to make up a multi-ballot.

The voter fills two bubbles in total for the chosen candidate, and only one
bubble for each other candidate. The completed multi-ballot is inserted into a
checker, which confirms that it has been correctly completed.

Finally, the voter chooses one of the mini-ballots, and receives a duplicate of
that mini-ballot as her receipt. She then separates the three mini-ballots, and
casts them all individually into a ballot box.

96 M. Moran, J. Heather, and S. Schneider

Table 1. A ThreeBallot multi-ballot, filled as a vote for Alice

Alice � Alice � Alice �
Bob � Bob � Bob �

56248 04578 31489

After the election, all mini-ballots are published on a web bulletin board,
along with a list of everyone who voted. The voter may then verify that the
mini-ballot for which she has a receipt appears unaltered on the bulletin board
(BB); if it does not, she can produce the receipt as evidence of foul play. The
number of votes for each candidate is counted as usual. However, as each voter
fills in exactly two bubbles for the chosen candidate and one bubble for the other
candidates, the number of voters is subtracted from each candidate’s final tally
to find the correct number of votes for each candidate. Since all the mini-ballots
are posted on the bulletin board, the final tally can be verified by anyone.

ThreeBallot is claimed in [12] to be secure under the short ballot assumption
(SBA). Rivest and Smith in [12] define the SBA as the assumption that

the ballot is short—there are many more voters in an election than ways
to fill out an individual ballot [...] It is reasonable to assume under the
SBA that each possible ballot is likely to be cast by several voters.

The ambiguities arise from the terms “possible ballots” (mini-ballots or multi-
ballots?) and “several voters” (how many?).

Looking elsewhere for clarification bears little fruit. According to [13] the
SBA assumes that “the list of candidates on a ballot is short enough in order to
guarantee security”; we read in [14] that “the length of the ballots must be kept
small (possibly by splitting them into several parts)”.

Because ThreeBallot is claimed to guarantee voter anonymity under the SBA,
analysis of ThreeBallot is not possible without a clear and unambiguous reading
of the assumption. We give here three possible interpretations; we will analyse
ThreeBallot under each of these readings in Section 3.2.

In each case, the intention is that the assumption will be guaranteed proba-
bilistically; that is, that the number of voters, candidates, etc., will be sufficient
to ensure that the assumption is broken with only negligible probability. In what
follows, serial numbers will be ignored; that is, two mini-ballots will be consid-
ered the same if they contain the same marks apart from the serial numbers.

Assumption 1 (SBA-multi). Every possible multi-ballot will be cast at least
once.

The formulation of the SBA given in Assumption 1 requires that every possible
way of completing a multi-ballot should be adopted by at least one voter. For
small numbers of candidates, this is not implausible. For even moderate numbers,
though, the assumption quickly becomes hard to stomach.

Note that once one has chosen a candidate, there are then exactly three ways
of completing each row: for the chosen candidate’s row, one must choose a bubble
to leave empty, and for each other row, one must choose a bubble to fill. There

Automated Anonymity Verification of ThreeBallot Voting System 97

are thus c·3c distinct multi-ballots, where c is the number of candidates standing
in the election.

It is not feasible to calculate the number of voters required to make this
reasonable, because it depends on the probability distribution of multi-ballots:
voters do not cast multi-ballots randomly (one hopes). A full calculation would
require a realistic model of how voters cast their ballots. However, the best
case scenario is when voters cast their multi-ballots randomly; so by assuming a
uniform distribution, we can determine a lower bound on the number of voters
required.

With a uniform distribution, the expected number of voters needed to cover all
possible multi-ballots is n ·

∑n
i=1

1
i where n = c ·3c, the number of possible multi-

ballots. For five candidates, this comes out at 9331 voters; for ten candidates,
we need 8.1 million voters; for fifteen candidates, the number exceeds 4 billion.

For n possible multi-ballots, and a uniform distribution, we can calculate the
number of voters required to ensure that the probability of covering every multi-
ballot at least once exceeds a given threshold. Since the security of ThreeBallot
relies on the SBA, we would need confidence that (the correct interpretation of)
the SBA is satisfied; we can, therefore, for a given probability level, ask how
many voters are required to give this level of confidence that the SBA will be
satisfied.

For n multi-ballots, and v voters, the probability that the v voters will cover
all of the n possibilities is

1−
n−1∑
j=1

(−1)j+1

(
n

j

)(
n− j

n

)v

This sum is difficult to calculate precisely but easy to calculate approximately
because the first few terms dominate for large v.

For five candidates, to reach 95% probability of full coverage, we need around
12,250 voters. Six candidates need around 50,000 voters; by the time we reach
ten candidates, 9.6 million voters are required to give 95% confidence that every
multi-ballot turns up at least once. Note that these figures are rather conservative
lower bounds: the distribution will not in fact be uniform, which will lower the
probability; and in any case 95% confidence is perhaps insufficient for a critical
security assumption.

These numbers are very high, and we consider them to be unrealistic. This
version of the short ballot assumption is suitable only for a very small number
of candidates or extremely large numbers of voters; it will not be considered
further in this paper.

Assumption 2 (SBA-mini). Every possible mini-ballot will be cast at least
once.

Under Assumption 2, we require only that each mini-ballot, rather than each
multi-ballot, be cast. Clearly this is more likely to be satisfied than Assumption 1.
For c candidates, there are only 2c distinct mini-ballots, against c · 3c distinct

98 M. Moran, J. Heather, and S. Schneider

multi-ballots. For ten candidates, we therefore need coverage of only 1024 mini-
ballots, rather than nearly 600,000 multi-ballots.

We will show later that this interpretation of the SBA is insufficient to pre-
vent attacks on ThreeBallot. Since it is not a worthwhile formulation of the
assumption, we need not calculate the likelihood that it will be satisfied.

Assumption 3 (SBA-mini-n). Every possible mini-ballot will be cast at least
n times (for some suitably chosen n).

A slightly stronger interpretation in Assumption 3 requires each mini-ballot to
turn up at least a certain number of times. This, of course, requires more voters
than Assumption 2.

However, we will show later that this formulation is also insecure, regardless
of the value of n.

1.2 Related Work

The ThreeBallot voting system has been subjected to analysis of one sort or
another many times since its publication [15, 16, 17, 18, 14, 19, 13, 20, 21].
Perhaps the earliest analysis was conducted by Strauss [15, 16], who established
the success probabilities of attacks for various numbers of candidates and vot-
ers with multiple races. Various attacks against the system, and in particular,
reconstruction and pattern request attacks, were considered. The experiments
were coded in Python, and modelled elections with a number of races on a single
multi-ballot form. Clark et al. [17] also investigated ThreeBallot, and pointed
out that the multi-ballot reveals information that can compromise voter privacy.
A simulation-based analysis of the system was made by de Marneffe et al. [14]
using the universally composable security framework [22]. Additionally, a mod-
ified system protocol in which a voter chooses her receipt before expressing her
preference was proposed in [14]. This protocol was shown to guarantee election
fairness, at the cost of some noise in the final tally, with the SBA assumption,
and an additional assumption that most of the receipts are not known to the
adversary. One drawback, however, is that the voter cannot express her prefer-
ence on the mini-ballot that she has chosen as her receipt, which makes voting
more complicated. Statistical results about the relation between the number of
candidates in an election and the privacy level of the system were provided by
Cichoń et al. [13] as well as a critique on the effectiveness of Strauss’ attacks.
Cichoń et al. claim that it is impossible to reconstruct voters’ preferences in a
single election run with two candidates with a ‘reasonable number of voters’.
However, the definition of weak anonymity used in [13] is much different from
ours given in [11]. Considering that an individual mini-ballot can be used to
construct two different multi-ballots cast for the same candidate, their definition
seems necessary, but not sufficient. Hence, the observer would notice that one of
the voters is not able to vote for that candidate.

A more theoretical work was carried out by Henry et al. [20], who
focused on a two-candidates race, and determined secure ballot sizes against

Automated Anonymity Verification of ThreeBallot Voting System 99

reconstruction and pattern requesting attacks. Finally, Küsters et al. [21] compu-
tationally analysed the level of privacy offered by the ThreeBallot voting system
and the proposed system by de Marneffe et al. [14], and concluded that the latter
provides better privacy than the original.

2 Modelling the ThreeBallot Voting System

In this section, we model the ThreeBallot voting system using CSP. We assume
that the reader is familiar with CSP notation; for details see Roscoe’s book [23].

2.1 Data-Types, Functions and Sets

We treat the multi-ballot of the ThreeBallot voting system as a board with co-
ordinates. Here, a co-ordinate (i, j) defines a bubble on a mini-ballot, which is to
be filled in. Thus, we have exactly three columns representing three mini-ballots,
and a number of rows, which is one more than the number of candidates (the last
row is allocated just for serial numbers). The size of the board is determined by
these parameters: the number of voters, VTRS, and the number of candidates,
CNDS. These parameters define the sets of voters, candidates and serial numbers.
The data-types for voters, candidates and serial numbers are defined as v.i, c.j
and s.k respectively.

We need several functions, which return a specific part of the board. For in-
stance, Row(i) returns the ith row of a multi-ballot form and Col(j) is the set of
bubbles on the jth column of a multi-ballot. Likewise, some functions call back the
neighbouring bubbles of a given coordinate. For example, the function adjR(i, j)
returns the coordinates adjacent to (i, j) in the same row, similarly adjC(i, j) re-
turns the coordinates adjacent to (i, j) in the same column, and nhdAll(i, j) re-
turns all the neighbours of (i, j) in the current multi-ballot coordinates.

2.2 Processes and Channels

In this section, we define how the ThreeBallot voting system model works, and
explain what information is carried on each channel. The overall system model
is a parallel composition of the processes detailed below. Fig 1 illustrates the
network for the ThreeBallot CSP model.

VOTERAUTHORITY B.BOARD

receipt.id.serial.*

place.id.*

alloc.id.serial.*

auth.id

Fig. 1. ThreeBallot CSP Model Communication Channels ((���)private channel)

100 M. Moran, J. Heather, and S. Schneider

Voter Process. The voter chooses the candidate that she wants to vote for
before the election is open. She then authorises herself with the election author-
ity, and collects her multi-ballot with the alloc events. In the booth, the voter
fills out two bubbles for the chosen candidate with the place events and one for
the other candidates. Afterwards, she gets her receipt by choosing one of the
mini-ballots allocated to her on the channel receipt, and leaves the booth before
the election is closed.

The VOTER() process does place events in an efficient way; first a bubble
from the first or second column is chosen for the candidate the voter wants to
vote for then the second bubble is chosen from the other columns in a right to left
fashion. Afterwards the process does one place event from top to bottom manner
for the other candidates. The set nhdAll(i, j) � (Row(i)∪Row(CNDS)) is the set
of bubbles left that can be filled in, and CNDS is the number of candidates,
which also identifies the number of rows.

VOTER(id) =̂�
c.x∈candidates

choose!id.c.x → openElection → auth!id →
alloc.id?s1?(i1, j1) → alloc.id?s2?(i2, j2) → alloc.id?s3?(i3, j3) →

enterBooth!id →�
(i,j)∈Row(x−1) �Col(2)

place!id.(i, j) →

�
(i1,j1)∈adjR(i,j)

place!id.(i1, j1) →
VOTER′(id, nhdAll(i, j) � (Row(i) ∪Row(CNDS)), {s1, s2, s3},CNDS− 1)

VOTER′(id, aSet, setsers, 0) =̂�
rcp∈setsers

receipt.id.rcp?(i, j) → leaveBooth!id →
closeElection → STOP

VOTER′(id, aSet, setsers, cntr) =̂ place.id?(k, l) →
VOTER′(id, aSet �Row(k), setsers, cntr − 1)

Thus the process representing all voters is described by the parallel composition
of the voters as:

VOTERS =̂ ‖idVOTER(id)

Election Authority Process. The election official in the polling station is
responsible for authenticating voters with the events auth and assigning the
pre-printed multi-ballots (three unique serial numbers for each voter) to the
voters with an alloc event. The authority process is defined as follows:

AUTHORITY =̂ openElection → AUTHORITY′(serials)

AUTHORITY′(setSrls) =̂ auth?id →�
srl∈setSrls

alloc.id.srl.(CNDS, 0) →
AUTHORITY′′(id, (CNDS, 0), setSrls � {srl})

AUTHORITY′′(id, coord, ∅) =̂ closeElection → STOP
AUTHORITY′′(id, (CNDS, 2), setSerials) =̂ AUTHORITY′(setSerials)
AUTHORITY′′(id, (CNDS, i), setSerials) =̂

�
srl∈setSerials

alloc.id.srl.(CNDS, i+ 1) →
AUTHORITY′′(id, (CNDS, i+ 1), setSerials � {srl})

Automated Anonymity Verification of ThreeBallot Voting System 101

The authority opens the election, authorizes the voters, and assigns serial num-
bers to each mini-ballot with the alloc events. After the election, the authority
performs closeElection, after which no more ballots can be allocated.

The Bulletin Board Process. The process B BOARD operates as a bulletin
board where the cast mini-ballots are published. The votes are collected while
the voters cast their mini-ballots. Thus, the process keeps a record of the serial
numbers and the bubbles that are filled in the set Bag. The mini-ballots are
published with the pub event after the election is closed.

BOARD(srl) =̂ alloc?id!srl?(i, j) → BOARD′(∅, srl, (i, j))

BOARD′(Bag, srl, (i, j))=̂ place.id?(m,n) : Col(j) → BOARD′(Bag ∪ {m}, srl, (i, j))� receipt?id!srl.Bag → BOARD′′(srl, Bag)� BOARD′′(srl, Bag)

BOARD′′(srl, Bag) =̂ closeElection → pub.srl.Bag → bagempty → STOP

B BOARD =̂ openElection → ‖serialsBOARD(serials)

Counter Process. The other important system process is COUNTERS. This
works as an election authority, which counts the votes that are published on
the bulletin board. The process keeps record of place events for each candidate.
When all of the place events have occurred, it performs a bagempty event on
which all COUNTERS processes synchronise. With the total event the number
of total votes for each candidate is published.

COUNTER(cand, r)=̂ place?id?(i, j) → COUNTER(cand, r + 1)� bagempty → total!cand!r → STOP

COUNTERS =̂ ‖candidatesCOUNTER(cand, 0)

System Process. The ThreeBallot voting system model is the parallel compo-
sition of the processes defined previously. Hence, the composition is defined as
follows:

SYSTEM =̂ VOTERS ‖ AUTHORITY ‖ BOOTH ‖ B BOARD ‖ COUNTERS

3 Automated Anonymity Verification

Our analysis of ThreeBallot uses the formal anonymity definition given in [11].
The definition of anonymity for the voting systems, also called weak anonymity,
is based on observational equivalence and expressed as follows:

Definition 1. The process P is weakly anonymous on a set of channels C of
type T if:

P [[c.x, d.x/d.x, c.x | x ∈ T]] ≡T P (1)

for any c, d ∈ C

102 M. Moran, J. Heather, and S. Schneider

That is, when the two channels c.x and d.x are swapped over for all values of
x, if the resulting process is indistinguishable from the original process, P , from
an observer’s point of view, then the process provides anonymity.

It is over channel choose that the voter determines a choice of candidate;
consequently, the channels that need to be swapped over are: choose.v.1.c.x and
choose.v.2.c.x for c.x ∈ candidates. Therefore, the anonymity specification for
ThreeBallot CSP model (SYSTEM) is checked by the trace equivalence:

SYSTEM[[choose.v.1.c.x, choose.v.2.c.x/choose.v.2.c.x, choose.v.1.c.x]] ≡T SYSTEM

As the anonymity property of the system is checked from an observer’s point of
view, the observer’s inability to see sensitive information is extremely important.
He is able to see all the public channels, but not the private channels: alloc and
place. Therefore, these private channels need to be hidden.

ABS SYS =̂ SYSTEM \ {| alloc, place |}

As can be seen above, the normal system is ABS SYS, and the system where
we swap two votes is SPEC. Therefore, if the two systems are observationally
equivalent then the system provides anonymity.

SPEC =̂ ABS SYS[[choose.v.1.c.x, choose.v.2.c.x/choose.v.2.c.x, choose.v.1.c.x]]

We assume that the adversary in our model is able to see all receipt events; i.e.,
he can see all the receipts taken in an election. (This is a strong assumption;
however, if the system is secure under this assumption, it will also be secure with
an adversary who sees only some receipts.)

3.1 Results for the ThreeBallot Model with No SBA

Unsurprisingly, the refinement SPEC ≡T ABS SYS does not hold for our Three-
Ballot voting system model. This is because there are situations in which a re-
construction attack is possible: that is, a coercer who has seen receipts for v1
and v2 can infer that they voted respectively for c1 and c2 because there is no
way of constructing a complete set of valid multi-ballots in which v1 and v2 vote
for c2 and c1 respectively. Whether the election run provides anonymity entirely
depends on how the voters fill their multi-ballots, and also on which mini-ballots
they choose as receipts.

The following counter-examples from different voting scenarios give useful
intuition about in what situations anonymity is not satisfied.

Examples of Privacy Violations of ThreeBallot

Example 1. The first counter-example is taken from a protocol run with two
voters, v1 and v2, and two candidates, c1 and c2. The FDR2 model checker
returns several counter-examples which violate anonymity. We examine one of
these traces here, illustrating the receipts taken by the voters and the mini-
ballots displayed on the bulletin board. The following illustrated examples are
the election runs from the observer’s point of view.

Automated Anonymity Verification of ThreeBallot Voting System 103

The counter-example trace shows that in a voting scenario as in Table 2,
where v1 chooses to vote for c1, and v2 votes for c2, if the voters take s2 and
s3 respectively as their receipts, the observer is able to reconstruct the multi-
ballots from the public mini-ballots on the bulletin board. There is no possible
reconstruction where the votes were cast the other way round. Therefore, the
observer is able to say who voted for whom in this ThreeBallot election run.

Table 2. Voting scenario 1

Receipts Mini-ballots on BB

��
s2

��
s3

��
s0

��
s1

��
s4

��
s5

Table 3. Reconstruction attack 1

choose.v.1.c.1 choose.v.2.c.2

��
s2

��
s1

��
s5

��
s3

��
s0

��
s4

With the public information shown on the bulletin board and the receipts that
the voters share with the coercer, the only way of reconstructing these votes is
illustrated in Table 3. The mini-ballots s0 and s5 can be swapped. However, it
does not affect the way the voters have voted.

Example 2. In an election with three voters and two candidates, as depicted in
Table 4, when voter v1 votes for c1, voter v2 votes for c2, and voter v3 votes for
c1, with the receipts s1, s2 and s0 respectively, voter v1 can be seen not to have
voted for c2. Table 5 shows the only possible reconstruction.

Table 4. Example 2. voting scenario

Receipts

��
s1

��
s2

��
s0

Mini-ballots on the BB

��
s3

��
s4

��
s5

��
s6

��
s7

��
s8

Table 5. Example 2. reconstruction attack

choose.v.1.c.1

��
s1

��
s3

��
s4

choose.v.2.c.2

��
s2

��
s5

��
s6

choose.v.3.c.1

��
s0

��
s7

��
s8

104 M. Moran, J. Heather, and S. Schneider

3.2 Short Ballot Assumption

We now analyse the ThreeBallot voting system under two of the three possi-
ble interpretations of the SBA that were given earlier: Assumptions 2 and 3.
(Recall that Assumption 1 seemed implausible unless there were only very few
candidates.)

Analysis Under the SBA-Mini. Suppose we adopt Assumption 2, under all
possible mini-ballots are assumed to appear on the bulletin board at least once
at the end of the election. We give here a simple counter-example to show that
ThreeBallot does not provide anonymity. In the example in Table 6, receipt s0
has two possible completions: it could be combined with s2 and s4 or s8 (as
depicted in Table 7), or with s5 and s7. But in either case, it represents a vote
for the third candidate.

Table 6. An example voting scenario: all possible mini-ballots appear on the bulletin
board

Receipts

���
s0

���
s3

���
s1

Mini-ballots on the BB

���
s2

���
s4

���
s5

���
s6

���
s7

���
s8

Table 7. Reconstruction attack

choose.v.1.c.3

���
s0

���
s2

���
s4

choose.v.2.c.2

���
s3

���
s5

���
s6

choose.v.3.c.1

���
s1

���
s7

���
s8

Analysis Under SBA-Mini-n. Suppose now that we adopt Assumption 3,
which ensures that every possible mini-ballot will appear on the bulletin board
at least n times for some suitable value of n. We show here that this is insufficient
regardless of the value of n.

We start by observing that a fully filled mini-ballot can be combined only with
an empty mini-ballot and a singleton. Additionally, any possible mini-ballot m
that is not empty, fully filled or a singleton can be turned into a completed
multi-ballot that does not contain a fully filled mini-ballot or a singleton. This
can be done by combining it with another mini-ballot that is the complement
of m but with one extra bubble, and an empty mini-ballot.

We can reach a bulletin board that displays at least n copies of every possible
mini-ballot in the following way. For each possible mini-ballot that is not empty,

Automated Anonymity Verification of ThreeBallot Voting System 105

fully filled or a singleton, we turn it into a multi-ballot as described above, and
add it to the board. This gives us at least n copies of everything except singletons
and fully filled mini-ballots.

Now each possible singleton should be combined with a fully filled mini-ballot
and an empty mini-ballot. We add n copies of each such multi-ballot to the
board. This means that every possible mini-ballot now appears at least n times.

However, any voter taking a singleton as a receipt will have no anonymity.
The number of fully filled mini-ballots is the same as the number of singletons;
and since each fully filled ballot must be combined with a singleton and a blank,
it follows that the voter’s receipt must have been part of such a multi-ballot.
But in that case the mini-ballot reveals the candidate that the voter selected.

Hence no value of n is sufficient to guarantee anonymity in ThreeBallot.

SBA-Pro: A Better Formulation. We have seen that the interpretations of
the SBA given so far are either not enough or unrealistic. We now give a much
more plausible short ballot assumption that is demonstrably strong enough for
ThreeBallot.

Assumption 4 (SBA-pro). Let M be the set of all mini-ballots cast during
the election; R ⊂ M is the set of all receipts that are known to the adversary.
We introduce a partial function vote such that vote(m1,m2,m3) = c whenever
the three mini-ballots m1, m2 and m3 together form a valid multi-ballot that
represents a vote for c. Additionally, for any two mini-ballots m1 and m2, we
say that m1 ∼ m2 if and only if they contain the same sequence of vote marks
(that is, m1 = m2 except possibly for the serial numbers).

For every r ∈ R and every candidate c, there was a vote cast consisting of
three (unordered) mini-ballots m1,m2,m3 such that

1. r ∼ m1;
2. vote(m1,m2,m3) = c;
3. m2,m3 ∈M \ R.

Informally, this interpretation says that for every receipt known to the adversary,
there was an equivalent one used in a multi-ballot for each of the candidates in
the election.

Theorem 1. Assumption 4 is strong enough to prevent reconstruction attacks
in ThreeBallot.

Proof. The key to the proof is the observation that if m ∼ m′ then we must
have vote(m,m2,m3) = vote(m′,m2,m3). This is clear from the fact that m
and m′ can differ only in serial number, and the serial numbers are not relevant
for determining which candidate received the vote cast by a multi-ballot.

Suppose that r ∈ R, and the adversary wishes to determine which candidate
received the vote cast that included r. We can see that any candidate is possible.
Suppose that r did in fact occur in a multi-ballot along with m1 and m2, as a
vote for c. For any other candidate c′, there was a multi-ballot cast containing

106 M. Moran, J. Heather, and S. Schneider

m3,m4,m5 such that vote(m3,m4,m5) = c′ and r ∼ m3, and with m4 and m5

not known to the adversary.
But this means that the adversary cannot distinguish the following two pos-

sibilities:

1. a ballot of (r,m1,m2) for c, and a ballot of (m3,m4,m5) for c
′;

2. a ballot of (m3,m1,m2) for c, and a ballot of (r,m4,m5) for c
′.

In each case, the set of mini-ballots used by this partial reconstruction is the
same, so it cannot affect further reconstruction of the remaining mini-ballots. In
one case, r was used to vote for c, and in another case, for c′; and since c′ was
arbitrarily chosen, we conclude that r could equally have been used to vote for
any candidate.

To see the improved plausibility of this interpretation, suppose the adversary
has knowledge of r receipts in an election run with n candidates. The SBA-pro
requires at least n · r multi-ballots of the right type to have been cast to protect
anonymity. By contrast, the SBA-multi requires at least n ·3n other appropriate
multi-ballots. As long as r is small, the SBA-pro is much less demanding com-
pared with the SBA-multi. For instance, in an election with 10 candidates, the
SBA-multi needs at least 590,490 multi-ballots. Unless the adversary has seen
somewhere in the order of 59,000 receipts, the SBA-pro is much more likely to
be satisfied.

This efficiency argument is not absolute: to formalise it would require a full
voter model; that is, it would need a probability distribution over multi-ballots
cast in the election. Producing such a model is probably unrealistic, since it would
be affected by the prevailing political landscape at the time of the election; it is
in any case outside the scope of this paper.

3.3 Verified Privacy Cases

Apart from the short-ballot assumption, several slight modifications of Three-
Ballot have been proposed to help the system provide absolute anonymity. Using
FDR we were able to verify these modified systems against reconstruction at-
tacks. We have automatically verified a ThreeBallot model that allows voters to
exchange their receipts; and we analyse the system with an additional constraint
that voters must fill in at least one bubble in every column.

Floating/Exchanging Receipts. Rivest [5] suggests a possible improvement
to the original ThreeBallot scheme with the idea of exchanging receipts in the
polling station. Each voter puts her receipt in a box, and takes someone else’s
receipt. Indeed, this idea can be used in any paper-based election system. If we
let voters take a random receipt from the box in the polling station, then this
eliminates reconstruction attacks as well as pattern-matching (Italian) attacks
because the adversary does not have any knowledge of any part of the voter’s
ballot. Although the adversary may be able to reconstruct valid multi-ballots,
he cannot link them to voters. We have verified using FDR that the modified
scheme, where the voters are allowed to exchange their receipts.

Automated Anonymity Verification of ThreeBallot Voting System 107

No Single Mini-Ballot Left Blank. We here add a condition that voters
must fill out at least one bubble on each mini-ballot. For the two candidate case,
there are only two ways of filling a mini-ballot, and thus only two different receipt
that can be taken by voters. We have modified our model to provide automatic
verification that this condition is sufficient to guarantee anonymity with two
candidates. However, in an election where there are more candidates than two,
although intuitively the system provides better probabilistic anonymity than the
original, it cannot guarantee voter anonymity.

4 Conclusion

In this paper, we have demonstrated that the ThreeBallot voting system is vul-
nerable to privacy-related attacks, especially reconstruction attacks, even under
some plausible interpretations of the short ballot assumption.

In our analysis, we have used an abstracted CSP model of ThreeBallot, which
is defined as the parallel composition of agents in the system. We model the
adversary in the analysis as an outsider/observer, who can see all the public
channels, including what each voter takes as a receipt. We have given a number
of examples for different voting scenarios, demonstrating that ThreeBallot does
not provide anonymity under various formulations of the short ballot assumption.
We have in addition given a reasonable and plausible interpretation of the short
ballot assumption that does in fact prevent reconstruction attacks.

Finally, we have considered two different versions of ThreeBallot that we were
able to analyse automatically using FDR; namely, exchanging receipts and no
single mini-ballot left blank.

Because of the state space limitation that all model checking tools suffer from,
we were able to analyse the models with a limited number of agents. In most
cases, the restriction did not affect the analysis of the systems and assumptions;
however, as the short-ballot assumptions require a large number of mini-ballots,
we were not able to demonstrate automatic verification in such cases; however, we
have supplied hand proofs where appropriate. Table 8 illustrates the ThreeBallot
verification times (“−” means no result is produced in a reasonable time).

Table 8. FDR verification times for ThreeBallot versions

Original No mini-ballot empty All mini-ballots appear

States Time States Time States Time

2 vtrs 2 cnds 239, 905 7.8′ 56, 841 5.3′ 240, 055 7.0′

2 vtrs 3 cnds 4, 139, 347 1′′41.8′ 1, 435, 926 38.3′ 4, 165, 428 1′′40.1′

3 vtrs 2 cnds − − 67, 409, 391 22′′49.3′ − −

References

[1] Chaum, D.: Untraceable electronic mail, return addresses, and digital
pseu-donyms. Communications of the ACM 24, 84–90 (1981)

108 M. Moran, J. Heather, and S. Schneider

[2] Fujioka, A., Okamoto, T., Ohta, K.: A practical secret voting scheme for large
scale elections. In: Zheng, Y., Seberry, J. (eds.) AUSCRYPT 1992. LNCS, vol. 718,
pp. 244–251. Springer, Heidelberg (1993)

[3] Juels, A., Catalano, D., Jakobsson, M.: Coercion-resistant electronic elections.
IACR Cryptology ePrint Archive 2002, 165 (2002)

[4] Chaum, D., Ryan, P.Y.A., Schneider, S.: A practical voter-verifiable election
scheme. In: De Capitani di Vimercati, S., Syverson, P.F., Gollmann, D. (eds.)
ESORICS 2005. LNCS, vol. 3679, pp. 118–139. Springer, Heidelberg (2005)

[5] Rivest, R.L.: The ThreeBallot voting system (2006)
[6] Hoare, C.A.R.: Communicating Sequential Processes. Communications of the

ACM 21, 666–677 (1978)
[7] Gardiner, P., Goldsmith, M., Hulance, J., Jackson, D., Roscoe, B., Scattergood,

B., Armstrong, B.: FDR2 user manual
[8] Backes, M., Hritcu, C., Maffei, M.: Automated verification of remote electronic

voting protocols in the applied pi-calculus. In: CSF, pp. 195–209 (2008)
[9] Smyth, B.: Formal verification of cryptographic protocols with automated reason-

ing. PhD thesis, School of Computer Science, University of Birmingham (2011)
[10] Ryan, P.Y.A., Schneider, S.A.: Prêt à Voter with re-encryption mixes. In:

Gollmann, D., Meier, J., Sabelfeld, A. (eds.) ESORICS 2006. LNCS, vol. 4189,
pp. 313–326. Springer, Heidelberg (2006)

[11] Moran, M., Heather, J., Schneider, S.: Verifying anonymity in voting systems using
CSP. Formal Aspects of Computing, 1–36 (2012)

[12] Rivest, R.L., Smith,W.D.: Three voting protocols: ThreeBallot, VAV, andTwin. In:
Proceedings of USENIX/ACCURATEElectronic Voting Technology (EVT). Press
(2007)

[13] Cichoń, J., Kuty�lowski, M., Wȩglorz, B.: Short ballot assumption and threeballot
voting protocol. In: Geffert, V., Karhumäki, J., Bertoni, A., Preneel, B., Návrat,
P., Bieliková, M. (eds.) SOFSEM 2008. LNCS, vol. 4910, pp. 585–598. Springer,
Heidelberg (2008)

[14] de Marneffe, O., Pereira, O., Quisquater, J.-J.: Simulation-based analysis of E2E
voting systems. In: Alkassar, A., Volkamer, M. (eds.) VOTE-ID 2007. LNCS,
vol. 4896, pp. 137–149. Springer, Heidelberg (2007)

[15] Strauss, C.: The trouble with triples: A critical review of the triple ballot (3ballot)
scheme part1 (2006)

[16] Strauss, C.: A critical review of the triple ballot voting system, part2: Crack- ing
the triple ballot encryption (2006)

[17] Clark, J., Essex, A., Adams, C.: On the security of ballot receipts in E2E voting
systems. In: IAVoSS Workshop On Trustworthy Elections (WOTE) (July 2007)

[18] Appel, A.W.: How to defeat Rivest’s ThreeBallot voting system (2007)
[19] Tjøstheim, T., Peacock, T., Ryan, P.Y.A.: A case study in system-based analysis:

The ThreeBallot voting system and Prêt à Voter. In: VoComp (2007)
[20] Henry, K., Stinson, D.R., Sui, J.: The effectiveness of receipt-based attacks on

ThreeBallot. Trans. Info. For. Sec. 4(4), 699–707 (2009)
[21] Küsters, R., Truderung, T., Vogt, A.: Verifiability, privacy, and coercion-resistance:

New insights from a case study. In: 2011 IEEE Symposium on Security and Privacy
(SP), pp. 538–553 (May 2011)

[22] Canetti, R.: Universally composable security: a new paradigm for crypto-
graphic protocols. In: Proc. 42nd IEEE Symp. Foundations of Computer Science,
pp. 136–145 (2001)

[23] Roscoe, A.W.: Understanding Concurrent Systems, 1st edn. Springer-Verlag
New York, Inc., New York (2010)

Compositional Verification

of Software Product Lines

Jean-Vivien Millo1,2, S. Ramesh2, Shankara Narayanan Krishna3,
and Ganesh Khandu Narwane4

1 EPI AOSTE, INRIA Sophia-Antipolis, France
2 Global General Motors R&D, TCI Bangalore, India
3 Department of CSE, IIT Bombay, Mumbai, India
4 Homi Bhabha National Institute, Mumbai, India

Abstract. This paper presents a novel approach to the design verifica-
tion of Software Product Lines (SPL). The proposed approach assumes
that the requirements and designs at the feature level are modeled as
finite state machines with variability information. The variability infor-
mation at the requirement and design levels are expressed differently
and at different levels of abstraction. Also the proposed approach sup-
ports verification of SPL in which new features and variability may be
added incrementally. Given the design and requirements of an SPL, the
proposed design verification method ensures that every product at the
design level behaviourally conforms to a product at the requirement level.
The conformance procedure is compositional in the sense that the ver-
ification of an entire SPL consisting of multiple features is reduced to
the verification of the individual features. The method has been imple-
mented and demonstrated in a prototype tool SPLEnD (SPL Engine for
Design Verification) on a couple of fairly large case studies.

1 Introduction

Large industrial software systems are often developed as Software Product Line
(SPL) with a common core set of features which are developed once and reused
across all the products. The products in an SPL differ on a small set of fea-
tures which are specified using variation points. The focus of this paper is on
modeling and analysis of SPLs which have drawn the attention of researchers
recently [1,2,3]. Many approaches have been proposed to describe SPLs, the
most prominent one being feature diagrams. These approaches seem to assume a
global view of SPL as they start with a complete list of features and the variation
points using a single vocabulary. All the subsequent SPL assets, like requirement
documents, design models, source codes, test cases, documentations, share the
same definition and vocabulary [4,5]. However, the assumption of a single ho-
mogeneous and global view of variability description is inapplicable in many
practical settings, where there is no top level complete description of features
and variabilities. They often evolve during the long lifetime of an SPL as new
features and variabilities are added during the evolution. Further, SPL develop-
ers tend to use different representations and vocabulary of variability at different

E.B. Johnsen and L. Petre (Eds.): IFM 2013, LNCS 7940, pp. 109–123, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

110 J.-V. Millo et al.

stages of development: at the requirement level, a more abstract and intuitive
description of variation points are used, while at the design level, the efficiency of
implementation of variation points is of primary concern. For example, consider
the case of an automotive SPL, where one variation point is the region of sales
(eg. Asia Pacific, Europe, North America etc). At the requirement level, this
variation point is expressed directly as an enumeration variable assuming one
value for every region. Whereas, at the design level, the variation point is ex-
pressed using two or three boolean variables; by setting the values of the boolean
variable appropriately, the behaviour specific to a region is selected at the time
of deployment.

We present a design verification approach that is more suited to the above
kind of evolving SPLs in which different representation of variabilities would
be used at the requirement and design level. One natural and unique problem
that arises in this context is to relate formally the variation points expressed
at different levels of abstractions. Another challenge is the analysis complexity:
the number of products is exponential in the number of variation points and
hence product centric analyses are not scalable. We propose a compositional
approach in which every feature of the SPL is first analyzed independently;
the per-feature analysis results are then combined to get the analysis result for
the whole SPL. For capturing variability in the behaviour of an SPL, we have
extended the standard finite state machine model, which we call Finite State
Machines with Variability, in short, FSMv. The behaviour and variability of a
feature at the requirement and design level can be modeled using FSMv. We
define a conformance relation between FSMvs to relate the requirement and
design models. This relation is based upon the standard language containment
of state machines. One unique feature of FSMv is that it provides a compositional
operator for composing the feature state machines to obtain a model for an SPL.
This operator thus enables incremental addition of features and variabilities. The
proposed verification approach exploits the compositional structure of the SPL
models to contain the analysis complexity.

Figure 1 summarizes the proposed approach. It shows an SPL composed of
features f1 to fn. Each feature has an FSMv model of its requirements (called

SPL Design level

f1 f… fn

FSMr FSMr FSMr

FSMd FSMd FSMd

Extrac�on Extrac�on Extrac�on

Abstrac�on Abstrac�on Abstrac�on

SPL Requirement level

… …

… …

Fig. 1. The proposed verification approach

Compositional Verification of Software Product Lines 111

FSMr) and an FSMv model derived from its design (called FSMd). The pro-
posed analysis method checks whether the FSMd of every feature conforms to
its FSMr (1st check). The output of this first step is a conformance relation Φi

between each pair of FSMri and FSMdi. The obtained conformance relations
Φ1, . . . , Φn are then used to check whether the actual behaviour of the entire SPL
conforms to the expected one (2nd check). The 2nd check is done by synthesizing
a Quantified Boolean Formula (QBF) and answering its satisfiability. There is
no need to build the entire behavioural model of the SPL in the second step.
We have built a prototype tool SPLEnD based upon this approach. This tool
performs the first check using SPIN [6] while the well-known QBF SAT solver
CirQit [7] is used for the second step. We have experimented with the tool using
modest industrial size examples with very encouraging results.

1.1 Related Work

In this section, we survey related work in five broad themes : Feature Based
Analysis, Behavioural Conformance, Compositional Verification, SAT Solving
and SPL Tools.

Feature Based Analysis: [8] explores feature-aware verification to automatically
detect feature interactions in a software product line. For this, a language is de-
veloped to specify individual features in separate and composable units; based on
these feature-local specifications, feature interactions are detected in a product
line by either (i) generating all the products and checking them one by one, or
(ii) by generating one product that contains all the features. The email product
line with 10 features and 40 products, with 27 feature interactions was checked.
A programming language oriented approach is presented in [9], where, a core
calculus for feature composition is developed. The features may contain various
kinds of software artefacts, like source code in various languages, models and
documents. The composition is done uniformly across features with different ar-
tifacts in a type-safe way. In a third approach, Fisler et al [10] view features
as state machines, and CTL model checking is used to verify properties of in-
dividual features. Compositional verification of features is done by checking the
consistency of interface labels assigned by the CTL model checking algorithm at
the feature level.

Behavioural Conformance: [11] proposes the use of modal transition systems
(MTS) over labelled transition systems for modelling and analysis of product
line architectural behaviour. MTS can model optional and required behaviour
via may and must transitions. A conformance algorithm for MTS is then pre-
sented: a fixed point algorithm that computes cartesian product of states, and
eliminates pairs that are invalid according to the relation. A second line of work
is FTS+, proposed in [2] that has some similarities with FSMv, but has a mo-
tivational difference. The aim of FTS+ is to model the entire SPL and hence
there is a single global machine with a single global vocabulary for expressing
variabilities; the variability information represents the presence/absence of fea-
tures in the SPL. In contrast, our approach is based upon a different view of

112 J.-V. Millo et al.

SPL: a feature with variability is an increment in functionality and an SPL is
a collection of features. We use a single FSMv to model a feature and a whole
SPL is modeled as a parallel composition of FSMv machines. The difference in
viewpoint has another consequence: FTS+ models, since they model the entire
SPL, tend to be large and hence has high analysis complexity; some abstrac-
tion techniques are hence used [3]. Whereas, each FSMv models a fraction of
functionality and hence can be analysed easily. Further, the entire SPL can be
modeled as composition of FSMvs and can be efficiently analysed using com-
position techniques. In a third approach, [12] uses MTS for modelling product
behaviour and use the logic MHML for model checking. The approaches in [12]
as well as [2] use transition systems for expressing system behaviour; feature
variability constraints are expressed using feature diagrams in [2], while in [12],
MHML is used to do this. [2] needs an extra component, a logic for checking
properties, while in the case of [12], the MTS+MHML framework is sufficient.

Compositional Verification: [13] proposes compositional verification for hierachi-
cal SPLs. Here, Simple Hierarchical Variability Models (SHVM) are used to
specify the variability of product artifacts. However, in an SHVM, the number
of derivable products is restricted by the fact that there is no means of defining
constraints between variation points. On an experimetal setup, [14] uses Event-B
composition techniques for feature based product line development. A feature is
considered as a basic modular unit in the Rodin tool, and two case studies have
been evaluated.

SAT Solving: [15] was the first to propose the use of propositional logic for ex-
pressing relationships between requirements in a product line model. Using this,
a product line model can be represented as a logical expression; this can be in-
stantiated by the selected requirements. Further, it can be chcked if the selected
set is valid or not. Further, [16] explores the fundamental connection between
feature diagrams, grammars and propositional logic formulae. This connection
paved the way for the use of SAT solvers that provide automated support to
debug feature models.

Other Approaches and SPL Tools: Many other behavioural models have also been
proposed [17,18,19,20] which are usually coupled with a variability model such
as OVM [5], the Czarnecki feature model [4], or VPM [21] to attain a fair level of
variability expressibility. Unlike all these approaches, FSMv capture the variabil-
ity in an explicit way which we find more intuitive. The Variation Point Model
(VPM) of Hassan Gomaa [21] distinguishes between variability at the require-
ment and design levels but no design verification approach has been presented.
In a recent paper, Jorges et al. [22] present a constraint based approach for
variability modeling. Here, architectural as well as behavioural constraints are
captured by using temporal logics; synthesis algorithms are then used to com-
pute solutions. Kathrin Berg et al. [23] proposes a model for variability handling
throughout the life cycle of the SPL. Andreas Metzger et al [24] and Riebisch M.
et al [25] provide a similar approach but they do not consider the behavioural as-
pect. In our proposed approach, we extract the relation between requirement and

Compositional Verification of Software Product Lines 113

design level variability from a behavioural analysis. [26] present a tool VMC, for
the modeling and analysis of product lines. The product family is represented as
an MTS, along with extra variability constraints, and all the valid products are
automatically generated. The tool implements the algorithm presented in [12].
A demonstration of the main features of VMC can be seen in [27]. Kathi Fisler
et al [28] have developed an analysis based on three-valued model checking of
automata defined using step-wise refinement. Later on, Jing Liu et al. [29] have
revisited Fisler’s approach to provide a much more efficient method. Recently,
Maxime Cordy et al. have extended Fisler’s approach to LTL formula [30]. Kim
Lauenroth et al. [31] as well as Andreas Classen et al. [2,3], and Gruler et al.
[32] have developed model checking methods for SPL behaviour. These methods
are based on the verification of LTL/CTL/modal μ calculus formula.

All these verification methods assume a global view of variability and hence the
representation of variability information is identical in both specification and the
design. By contrast, in our work the specification and design involve variability
information at different levels of abstraction and hence one needs mapping infor-
mation between the two levels. Furthermore, our formalism allows incremental
addition of functionality and variability and enables compositional verification.

2 Design Verification of a Single Feature

An SPL, in general consists ofmultiple features, each feature having different func-
tionality and variability. A typical body control software of an automotive system
is an SPL that has several features such as door lock, lighting, seat control etc.
Each of these features has a distinct function and variability. For example, the
locking behaviour of a door lock function has a variation point called transmission
type. If the transmission type is manual then the door is locked after the speed of
the vehicle exceeds a certain threshold value; for automatic transmission, the door
is locked when the gear position is shifted out of park. In this section we will focus
on modeling and relating the design of a single feature to its requirement.

2.1 FSMv and Language Refinement

Finite State Machines with Variability (FSMv) is an extension of finite state
machines, to represent all possible behaviours of a feature. Let V ar be a finite set
of variables, each taking a value ranging over a finite set of values. Let x ∈ V ar,
and letDom(x) denote the set of values x can assume. The set of atomic formulae
we consider are x = a, x �= a, for a ∈ Dom(x), and x = y, x �= y for x, y ∈ V ar.
Let AV ar denote the set of atomic formulae over V ar. Let α represent a typical
element of AV ar. Define Δ ::= α | ¬Δ | Δ ∧Δ | Δ ∨Δ |Δ⇒ Δ to be the set of
all well formed predicates over V ar.

Definition 1 (FSMv). An FSMv is a tuple A = 〈Q, q0, Σ, V ar, E, ρ〉 where:
(1) Q is a finite set of states; q0 is the initial state; (2) Σ is a finite set of
events; (3) V ar is a finite set of variables; (4) E ⊆ Q × Δ × Σ × Q gives the

114 J.-V. Millo et al.

set of transitions. A transition t = (s, g, a, s′) represents a transition from state
s to state s′ on event a; the predicate g is called a guard of the transition t; g
is consistent and defines the variability domain of the transition; (5) ρ ∈ Δ is a
consistent predicate called the global predicate.

The variables in V ar determine the variability allowed in the feature with each
possible valuation of the variables corresponding to a variant. The allowed values
of the variables are constrained by the global predicate ρ. For example, if ρ is
((x = 1) ∨ (x = 2)) ∧ (x = y − 1), then the allowed variants are those for which
the values for the pairs (x, y) are (1, 2), (2, 3). The predicate in a transition
determines the variants to which the transition is applicable. While drawing a
transition t = (s, g, a, s′), the edge connecting s to s′ is decorated with g : a.
When g is true, we simply write a on the edge.

Definition 2 (Configuration). A configuration, denoted by π, is an assign-
ment of values to the variables in V ar. The set of all configurations is denoted
by ΠV ar, or Π, when V ar is clear from the context. Define Π(ρ) = {π | π |= ρ}
to be the set of all those configurations that satisfy ρ. The elements of Π(ρ)
are called valid configurations. Given a valid configuration π and a transition
t = (s, g, a, s′), we say that t is enabled by π if π |= g.

DL_Enable: {Enable,Disable}
Transmissiondl: {Auto,Manual}
DL_User_Pref: {Speed, Park}

Manual�Speed

Disable: *

Unlock
Lock

Fig. 2. The FSMv of the feature Door lock

As a concrete example of an FSMv, consider the feature Door lock in automotive
SPL which controls the locking of the doors when the vehicle starts. The expected
behaviour of this feature is modeled using the FSMv Reqdl described pictorially
in Figure 2. In the initial state, this feature becomes active when all the doors
are closed. The doors are locked when either the speed of the vehicle exceeds a
predefined value or the gear is shifted out of park. An unlock event reactivates the
feature. There are four configurations for this feature all of which are described
using the three variables:DL Enable, Transmissiondl andDL User Pref . The
top box denotes the values that these variables can assume, and the bottom box
gives the global predicate (ρ) associated with the machine. ρ ensures that in
every valid configuration, the variable Transmissiondl having the value Manual
implies that DL User Pref takes the value Speed. This captures the fact that in
manual transmission, there is no park position on the gearbox. To avoid clutter,
we have replaced guards of the form x = i with i in the figure. So, the self loop
Disable : ∗ stands for DL Enable = Disable : ∗. It means that when DL Enable
assumes the value Disable, it stalls on any event.

Compositional Verification of Software Product Lines 115

Requirement against Design. In the requirement of a product line, the vari-
ability is usually discussed in terms of variation points, which are at a high
level of abstraction and focused on clarity and expressibility. The restriction of
the possible configurations is expressed as general constraints on these variation
points, e.g., the global predicate Manual =⇒ Speed in the Door lock example.
In contrast, in a design, the variability description is constrained by efficiency,
implementability, ease of reconfiguration and deployment considerations. For in-
stance, in the automotive applications, one often finds calibration parameters
ranging over a set of boolean values. Further, the constraint on the calibration
parameters (ρ) takes the special form of the list of the possible configurations of
the calibration parameters in order to easily configure the design.

FSMv can capture both the design as well as the requirements of a feature.
We distinguish the requirement and design models by denoting them FSMr and
FSMd respectively. Figure 2 presents the FSMr, Reqdl, of the feature Door lock.
The FSMd,Desdl, of the feature Door lock is presented in Figure 3. The structure
of Desdl is similar to Reqdl except that the top elliptical shaped state in Figure
2 is split into two states (the top and the bottom elliptical shaped states) in
Figure 3. The top state is for auto-transmission whereas the bottom one is for
manual transmission as can be seen from the configuration label of the two
transitions going from the initial state. Two variables Cp1 and Cp2 encode the
possible configurations in the FSMd. The box in Figure 3 depicts the set of
possible values of these. Cp1 = Auto corresponds to the configuration in which
the transmission is Auto whereas Cp1 = Moff corresponds to either the manual
transmission or the case when Cp1 is disabled; similarly, Cp2 = Speed means
that the user preference is set on Speed, while Cp2 = Poff means either Park
or the case when Cp2 is disabled.

Cp1:{Moff, Auto}
Cp2:{Poff, Speed}

MoffΛPoff:*

Lock

Lock

Sp
ee

d>
n

M
of

f:U
nl

oc
k

Poff:
ShiftOutOfPark

Fig. 3. Desdl: the FSMd abstracted from the design of the feature Door lock

2.2 Variants of FSMv and Conformance

Having described the design and requirement behaviour of a feature f using
FSMd and FSMr respectively, we now define the notions of variants and con-
formance. A variant of an FSMv corresponds to one of the several possible be-
haviours of the feature (at the design, requirement level respectively). Given a

116 J.-V. Millo et al.

feature f , and a (FSMd, FSMr) pair corresponding to f , we say that the design
of f conforms to the requirements of f , iff every variant of the FSMd has a
corresponding FSMr variant.

Definition 3 (Variant of an FSMv). Let A = 〈Q, q0, Σ, V ar, E, ρ〉 be an
FSMv and π ∈ Π(ρ) be a valid configuration of A. A variant of A is an FSM
obtained by retaining only transitions t = (s, g, a, s′), and states s, s′ such that
π |= g. Once the relevant states and transitions are identified, we remove the
guards g from all the transitions; ρ is also removed. The resultant FSM is
denoted A ↓ π.

In the example of FSMr for the feature Door lock, the variant Reqdl ↓ 〈Enable,
Auto, Park〉 does not contain the transitions with the event Speed > n and ∗.
We compare the FSMd and FSMr of a feature f using their variants. Given an
FSMv A, we associate with each configuration π of A the language of the FSM
A ↓ π, denoted by L(A ↓ π). We say that an FSMd Ad conforms to an FSMr Ar

if and only if the behaviour of every variant of Ad is contained in the behaviour
of some variant of Ar.

Definition 4 (The conformance mapping Φ). Let Ar and Ad be a pair of
FSMr and FSMd respectively with global predicates ρr and ρd. Let Πd, Πr be
the set of all design, requirement configurations. Then Ad conforms to Ar if
there exists a mapping Φ : Πd(ρ

d) → 2Πr(ρ
r) as follows: For any πd ∈ Πd(ρ

d),
Φ(πd) = {πr ∈ Πr(ρ

r) | L(Ad ↓ πd) ⊆ L(Ar ↓ πr)}. Φ is called the conformance
mapping, and the conformance via Φ is denoted Ad ≤Φ Ar.

In the feature Door lock, Φ(〈Moff, Speed〉) contains 〈Enable,Manual, Speed〉
and 〈Enable, Auto, Speed〉.

2.3 Checking the Conformance

Let f be a feature with FSMr Reqf and FSMd Desf . Then the conformance
checking problem is to compute a mapping Φ such that Desf ≤Φ Reqf .

The conformance mapping is computed by comparing every variant of Desf
with every variant of Reqf . Algorithm 1, given below, presents a possible im-
plementation using the standard automata containment algorithm [33], as im-
plemented in the SPIN model checker [6]. Algorithm 1 runs the full verification
algorithm of SPIN for every pair (πd, πr) of design and requirement configura-
tions. SPIN(i.e. pan(.exe)) returns the list of pairs for which the conformance
condition is violated. Every other pair is added to the conformance mapping Φ.

It must be noted that even though we are exhaustively checking whether every
variant of the design conforms to some variant of the requirement, we are doing
it only at the feature level, and not at the product level. Typically, the number of
variants per feature is much smaller than the number of variants in the products.
Our experimental results (see Section 4) shows that our approach scales well.

Compositional Verification of Software Product Lines 117

Algorithm 1. implements the conformance checking using SPIN.

Input : Desf , Reqf .
Output : The mapping Φ when Desf ≤Φ Reqf
1. Generate a Promela file which contains Reqf , Desf , the environment, the confor-
mance condition expressed as a never claim, and the initialization sequence.
2. Launch the full verification algorithm of SPIN
3. Build the mapping Φ from the output of SPIN.
4. Conclude whether the design conforms to the requirement
if ∀πd ∈ Π(ρd), Φ(πd) �= ∅ then

return true along with (Φ)
else

return false along with (πd) {where πd has no correspondence through Φ}
end if

3 Design Verification of SPL

In the previous section, we looked at individual features in an SPL and provided a
method for comparing the design and requirements of a feature, both containing
variabilities. In this section, we extend this method to verify a whole SPL design
against its requirements. An SPL is essentially a composition of multiple features
satisfying certain constraints. We define a parallel composition operator over
FSMv to model an SPL. The features in an SPL can interact and we follow
one of the standard methods of allowing the composed FSMv models to share
some common events, which correspond to two-party handshake communication
events. A distinguishing aspect of the proposed parallel operator is that it takes
into account the constraints across the composed machines.

Definition 5 (Parallel composition of FSMv)
Let Ax = 〈Qx, q

x
0 , Σx, V arx, Ex, ρx〉, x ∈ {1, 2} be two FSMv’s with V ar1 ∩

V ar2 = ∅. Let H = Σ1 ∩ Σ2 be the set of handshaking events. Let ρ12 be a
predicate over V ar1 ∪ V ar2, such that ρ12 ∧ ρ1 ∧ ρ2 is consistent. ρ12 is the
composition predicate capturing the possible constraints between the variabilities
of the two composed features. Let ρ = ρ12 ∧ ρ1 ∧ ρ2.

The parallel composition of A1 and A2 denoted by A = A1 ‖ A2 is a tuple
〈Q1×Q2, (q

1
0 , q

2
0), Σ1∪Σ2, V ar1∪V ar2, E, ρ〉 with transitions defined as follows:

Consider a state (s1, s2) ∈ Q1 × Q2, and transitions (s1, g1, a1, s
′
1) ∈ E1 and

(s2, g2, a2, s
′
2) ∈ E2.

(1) If a1 = a2 = a ∈ H, define ((s1, s2), g1 ∧ g2, a, (s
′
1, s

′
2)) ∈ E, if g1 ∧ g2 is

consistent. This transition is enabled under a valid configuration π ∈ Π(ρ), such
that π |= g1 ∧ g2.
(2) If a1 ∈ Σ1\H, define ((s1, s2), g1, a1, (s

′
1, s2)) ∈ E. This transition is enabled

under valid configurations π such that π |= g1.
(3) If a2 ∈ Σ2\H, define ((s1, s2), g2, a2, (s1, s

′
2)) ∈ E. This transition is enabled

under valid configurations π such that π |= g2.

For illustration, consider the feature Door unlock which automates the unlocking
of the doors in a vehicle. Figure 4-a gives the FSMr of the feature extracted from

118 J.-V. Millo et al.

the requirements. From the initial state, the feature becomes active when the
event Lock happens. As soon as either the key is removed from ignition or the
gear is shifted to park position, the doors get unlocked and the feature Door
unlock becomes inactive. Figure 4-b presents the FSMd of the feature Door
unlock. It is quite similar to the requirement except that the active state is split
in two: the feature reacts to the ignition Off event in one state, and to the
Shift Into Park event in another state. Let us consider the composition of the
two FSMr’s of the features Door lock and Door unlock. The handshake events
between the two features are Lock and Unlock. In the composition, we introduce
the following composition predicate: (DU Enable = Enable ⇔ DL Enable =
Enable) ∧ Transmissiondl = Transmissiondu, which brings out the natural
constraints that Door lock feature is enabled if and only if Door unlock is also
enabled and the transmission status has to be the same. The valid configurations
after composition are restricted by the composition predicate. We provide a few
definitions to define composite valid configurations.

DU_Enable:{Enable, Disable}
Transmissiondu:{Auto, Manual}
DU_User_Pref:{Key, Park}

Disable:*

Unlock

Lock

Manual�Key

Cp3:{Moff,Auto}
Cp4:{Poff,Key}

MoffΛPoff:*

Poff:Lock Ke
y:

Lo
ck

Unlock

a) b)

Fig. 4. a) Reqdu: Door unlock FSMr and b) Desdu: Door unlock FSMd

Definition 6 (Composing Configurations). Let Ai=(Qi, q
i
0, Σi, V ari, Ei, ρi)

be two FSMv’s, i = 1, 2, and let A = A1 ‖ A2 be as given by Definition 5. Let
ρ = ρ12 ∧ ρ1 ∧ ρ2 be the global predicate of A. Consider two valid configurations
π1 ∈ Π(ρ1) and π2 ∈ Π(ρ2) of A1 and A2. The compostion of π1, π2 denoted
π1 + π2 is a configuration over V ar1 ∪ V ar2 such that (i) π1 + π2 agrees with π1

over V ar1, agrees with π2 over V ar2, and (ii) π1 + π2 |= ρ.

Lemma 7. Let A1 and A2 be two FSMv’s. For each valid configuration π
of A1 ‖ A2, there are valid configurations π1 of A1 and π2 of A2 such that
π = π1 + π2.

Due to lack of space, proofs have been omitted. Proofs of all the results can be
found in [34].

In the example of feature Door Lock, the configuration 〈Enable, Auto, Speed〉
from Reqdl can be composed with 〈Enable, Auto,Key〉 from Reqdu because

Compositional Verification of Software Product Lines 119

the transmission is Auto in both (which is specified in the composition pred-
icate (DU Enable = Enable ⇔ DL Enable = Enable) ∧ Transmissiondl =
Transmissiondu). 〈Enable, Auto, Speed,Enable, Auto,Key〉 is a configuration
of the parallel composition of Reqdl with Reqdu. The parallel composition of
FSMv’s is such that each variant of the composition of two FSMv’s is equal to
the composition of variants of the individual FSMv’s.

Lemma 8 (Variants of a composed FSMv). Let A1 and A2 be two FSMv’s.
Let π be a valid configuration of A1 ‖ A2. Then L([A1 ‖ A2] ↓ π) = L(A1 ↓ π) ‖
L(A2 ↓ π). 1

Refinement and Parallel Composition. The definition of parallel compo-
sition naturally lends itself to a notion of addition of conformance mappings
between design and requirement pairs. Consider FSMr’s R1, R2 corresponding
to two features f1, f2. Let D1, D2 be the corresponding FSMd’s. Let ρr1, ρ

r
2 be

the global predicates of R1, R2, and let ρd1, ρ
d
2 be the global predicates of D1, D2

respectively. Assume that D1 ≤Φ1 R1 and D2 ≤Φ2 R2. Let ρr = ρr12 ∧ ρr1 ∧ ρr2
be the global predicate of R1 ‖ R2; likewise, let ρ

d = ρd12 ∧ ρd1 ∧ ρd2 be the global
predicate of D1 ‖ D2. We now want to ask if D1 ‖ D2 conforms to R1 ‖ R2. This
amounts to computing a conformance mapping between D1 ‖ D2 and R1 ‖ R2

given Φ1, Φ2. Consider any valid configuration πd of D1 ‖ D2. By Lemma 7,
we can write πd as πd

1 + πd
2 , where πd

1 , π
d
2 are valid configurations of D1, D2 re-

spectively. Since D1 ≤Φ1 R1 and D2 ≤Φ2 R2, there exists valid configurations
πr
1 ∈ Φ1(π

d
1) and πr

2 ∈ Φ2(π
d
2) in R1, R2 respectively. Given this, the addition of

Φ1, Φ2 is defined as follows:

Definition 9 (Addition of conformance mappings). The addition of con-
formance mappings Φ1, Φ2 is defined to be a mapping Φ = Φ1 + Φ2 as follows.
For every valid configuration πd = πd

1 + πd
2 of D1 ‖ D2,

Φ(πd) = {πr | πr is a valid configuration of R1 ‖ R2, π
r = πr

1 + πr
2

for valid configurations πr
1 ∈ Φ1(π

d
1), π

r
2 ∈ Φ2(π

d
2)}

Note that by Definition 9, Φ could be empty: Consider a valid configuration
πd = πd

1 + πd
2 of D1 ‖ D2. If there is no valid configuration πr of R1 ‖ R2 which

is a composition of valid configurations πr
1 ∈ Φ1(π

d
1), π

r
2 ∈ Φ2(π

d
2), then Φ is

empty (or there is no conformance mapping Φ between D1 ‖ D2 and R1 ‖ R2).
If Φ exists, then we can say the following:

Lemma 10 (Conformance of composition). Let R1 and R2 be two FSMrs
corresponding to features f1, f2, and let D1 and D2 be the corresponding FSMds.
Let D1 ≤Φ1 R1 and D2 ≤Φ2 R2. Let Φ = Φ1+Φ2 and πd be a valid configuration
of D1 ‖ D2. Then, ∀πr ∈ Φ(πd), L([(D1 ‖ D2) ↓ πd]) ⊆ L([(R1 ‖ R2) ↓ πr]).

1 The right hand side ‖ refers to the standard communicating finite state machine
composition.

120 J.-V. Millo et al.

Considering the example, in the FSMr Reqdl ‖ Reqdu with ρr : DL Enable =
DU Enable ∧ Transmissiondl = Transmissiondu, any configuration having
DL Enable=Enable and DU Enable = Disable is invalid. However, Φ(〈Auto,
Speed〉) contains only configurations where DL Enable = Enable, Φ′(〈Moff,
Poff〉) contains only configurations where DU Enable = Disable and 〈Auto,
Speed〉+ 〈Moff, Poff〉 is a valid configuration of Desdl ‖ Desdu. So the design
does not conform to the requirement. However, if we consider the composition
predicate ρd : Cp1 = Moff∧Cp2 = Poff ⇔ Cp3 = Moff∧Cp4 = Poff , then
〈Auto, Speed〉 and 〈Moff, Poff〉 are not compatible anymore and as a result
the design conforms to the requirement.

3.1 Conformance Checking

Consider the case when we have n features f1, . . . , fn, with FSMds D1, . . . , Dn

and FSMrs R1, . . . Rn, such that Di ≤Φi Ri for 1 ≤ i ≤ n. When can we say that
D1 ‖ · · · ‖ Dn conforms to R1 ‖ · · · ‖ Rn? For all valid design configurations
πD1‖···‖Dn

of D1 ‖ · · · ‖ Dn, we check the existence of a configuration πR1‖···‖Rn

of R1 ‖ · · · ‖ Rn such that πR1‖···‖Rn
is a composition of valid requirement con-

figurations computed via Φ1, . . . , Φn. We then say D1 ‖ · · · ‖ Dn conforms to
R1 ‖ · · · ‖ Rn via a conformance mapping Φ. It can be observed that Φ is nothing
but Φ1 + · · ·+Φn. We now formulate the existence of a conformance mapping Φ
using a QBF.

QBF Formulation. Given FSMd’s D1, . . . , Dn and FSMr’s R1, . . . , Rn,
(1) Let V ar(Di) = {xi1, . . . , xidi} be the set of variables of design Di, and
V ar(Ri) = {yi1, . . . , yiri}, the set of variables of requirement Ri. Let π

d
i : (xi1 =

a1, . . . , xidi = adi) be a configuration of Di. We denote this by πd
i (xi1, . . . , xidi),

which is the conjunction
∧di

l=1(xil = al);
(2) Given n FSMd’s and n FSMr’s check if Di conforms to Ri for all 1 ≤ i ≤ n
using Algorithm 1. This gives the map Φi. Assume Di has m distinct configu-
rations πd

i1, . . . , π
d
im. For 1 ≤ j ≤ m, let Φi(π

d
ij) = {πr

ij1
, . . . , πr

ijk
}, where each

of πr
ij1 , . . . , π

r
ijk

are configurations of Ri, that have been mapped by Φi to some

configuration πd
ij of Di. Φi(π

d
ij) can be written as the formula πr

ij1
∨ · · · ∨ πr

ijk
.

(3) The conformance mapping Φi between Di and Ri then has the form∧m
j=1 Φi(π

d
ij). (4) Let ϕd

i,j = ρd ∧ ρdi ∧ ρdj and ϕr
i,j = ρr ∧ ρri ∧ ρrj represent re-

spectively the propositional formulae which ensure the consistency of the global
predicates of Di, Dj and Ri, Rj along with the compositional predicates ρd and
ρr. Given a set S ⊆ {1, 2, . . . , n}, ϕd

S and ϕr
S can be appropriately written.

The QBF for conformance checking is given by

Ψ = ∀x11 . . . x1d1x21 . . . x2d2 . . . xn1 . . . xndn [ϕ
d
1,2,...,n ⇒

∃y11 . . . y1r1y21 . . . y2r2 . . . yn1 . . . ynrn(Φ1 ∧ · · · ∧ Φn ∧ ϕr
1,2,...,n)]

The theorem below asserts that the QBF Ψ is true iff a conformance mapping
Φ exists such that D1 ‖ · · · ‖ Dn ≤Φ R1 ‖ · · · ‖ Rn.

Compositional Verification of Software Product Lines 121

Theorem 1. Given an SPL, let {f1, . . . , fn} be the set of features in a chosen
product. Let Di, Ri be the FSMd and FSMr for feature fi. Then D1 ‖ · · · ‖ Dn

conforms to R1 ‖ · · · ‖ Rn iff Ψ , as defined above, holds.

4 Implementation and Case Studies

Our prototype tool SPLEnD, takes as input pairs of XML files corresponding to
FSMd, FSMr and outputs a PROMELA file. The latter is fed to SPIN, which
returns the conformance mappings, or declares non-conformance. On the given
conformance mapping, the tool computes a QBF Ψ which is fed to CirQit. The
experiments were run on a 2.24 GHz i3 processor machine with 3GB RAM.

Features PL & LDCL PCU DL DU AL TSL

Design Variants 8 3 4 7 3 8

SPIN Time (Sec) 0.436 0.031 0.046 0.109 0.015 0.218

Fig. 5. Execution time of FSMv-Verifier on Algorithm 1 for ECPL

Features(Design Variants) Time(ms) Features(Design Variants) Time(ms)

UserInterface(6) 2 CheckingBalance(3) 3

WithdrawMoney(8) 27 DepositMoney(2) 2

PrintingStatement(3) 2 Login(1) 1

ATMLogin(1) 1 ChangeAccountPassword(2) 3

PayBills(2) 3 PrintingBalanceAfterWithdraw(2) 3

CheckingMoneyExchangeRate(2) 3 MoneyExchange(2) 4

InternationalTransfer(2) 6 LocalTransferToOtherBank(1) 4

LanguageSelection(2) 1 MobileTopUp(2) 2

ChangeMaxLimitForWithdrawal(1) 3 LocalTransferToSameBank(3) 3

AddBeneficiary(1) 2 RemoveBeneficiary(1) 2

CreateDemandDraft(2) 3 ChequeClearance(1) 3

FastWithdrawal(1) 2 CreditCardPayment(2) 2

UpdateContactDetails(2) 4 RegisterMobileNoForBanking(2) 2

OpenAccount(8) 30 CloseAccount(2) 5

ActivateAccount(2) 4 ReactivateAccount(2) 4

Fig. 6. Execution time of SPLEnD on Algorithm 1 for BSPL

We considered two real case studies for our experimentation: Entry Control
Product Line, ECPL having 7 features and Banking Software Product Line,
BSPL, composed of 30 features. In an earlier study [34], we considered BSPL
with 25 features; in this paper, we consider an enhanced version of BSPL by
adding 5 more features. The FSMr, FSMd models of each feature contain less
than 15 states. The analysis results for the two case studies are summarized in
Figures 5 and 6 which gives the times taken by Algorithm 1. The number of

122 J.-V. Millo et al.

variants per feature is at most 8 in both cases. In the case of ECPL, a non-
conformance was found in the feature Door Lock 2. For BSPL, the second step
using the QBF approach and CirQit took just 0.022 seconds. Encouraged by this
result, we are currently looking at some large industrial case studies.

References

1. Benavides, D., Segura, S., Cortés, A.R.: Automated analysis of feature models
20 years later: A literature review. Inf. Syst. 35(6), 615–636 (2010)

2. Classen, A., Heymans, P., Schobbens, P.Y., Legay, A.: Symbolic model checking
of software product lines. In: ICSE, pp. 321–330 (2011)

3. Cordy, M., Classen, A., Perrouin, G., Schobbens, P.Y., Heymans, P., Legay, A.:
Simulation-based abstractions for software product-line model checking. In: ICSE,
pp. 672–682 (2012)

4. Czarnecki, K., Eisenecker, U.W.: Generative programming - methods, tools and
applications. Addison-Wesley (2000)

5. Metzger, A., Pohl, K.: Variability management in software product line engineer-
ing. In: ICSE Companion, pp. 186–187 (2007)

6. Holzmann, G.J.: The SPIN Model Checker: Primer and Reference Manual.
Addison-Wesley Professional (2003)

7. Goultiaeva, A., Bacchus, F.: Exploiting qbf duality on a circuit representation.
In: AAAI (2010)

8. Apel, S., Speidel, H., Wendler, P., Rhein, A., Beyer, D.: Detection of feature
interactions using feature-aware verification. In: ASE, pp. 372–375 (2011)

9. Apel, S., Hutchins, D.: A calculus for uniform feature composition. ACM Trans.
Program. Lang. Syst. 32(5) (2010)

10. Harry, C., Li, S.K., Fisler, K.: Verifying cross-cutting features as open systems. In:
Daemen, J., Rijmen, V. (eds.) FSE 2002. LNCS, vol. 2365, pp. 89–98. Springer,
Heidelberg (2002)

11. Fischbein, D., Uchitel, S., Braberman, V.: A foundation for behavioural confor-
mance in software product line architectures. In: ROSATEA, pp. 39–48 (2006)

12. Asirelli, P., Maurice, H., terBeek, S.G., Fantechi, A.: Formal description of
variability in product line families. In: SPLC, pp. 130–139 (2011)

13. Schaefer, I., Gurov, D., Soleimanifard, S.: Compositional algorithmic verification
of software product lines. In: Aichernig, B.K., de Boer, F.S., Bonsangue, M.M.
(eds.) FMCO 2010. LNCS, vol. 6957, pp. 184–203. Springer, Heidelberg (2011)

14. Gondal, A., Poppleton, M., Butler, M.: Composing event-b specifications - case
study experience. In: Apel, S., Jackson, E. (eds.) SC 2011. LNCS, vol. 6708,
pp. 100–115. Springer, Heidelberg (2011)

15. Mannion, M.: Using first-order logic for product line model validation. In:
Chastek, G.J. (ed.) SPLC 2002. LNCS, vol. 2379, pp. 176–187. Springer,
Heidelberg (2002)

16. Batory, D.: Feature models, grammars, and propositional formulas. In: Obbink,
H., Pohl, K. (eds.) SPLC 2005. LNCS, vol. 3714, pp. 7–20. Springer, Heidelberg
(2005)

2 In Desdl, the transition from the middle elliptical state to the round state labeled
with Poff : ShiftOutOfPark is incorrect; Φ(〈Auto,Poff〉) = ∅. Removing this
transition fixes the bug.

Compositional Verification of Software Product Lines 123

17. Larsen, K.G., Nyman, U., W ¸asowski, A.: Modal I/O automata for interface and
product line theories. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421,
pp. 64–79. Springer, Heidelberg (2007)

18. Raclet, J.B., Badouel, E., Benveniste, A., Caillaud, B., Legay, A., Passerone,
R.: Modal interfaces: unifying interface automata and modal specifications. In:
EMSOFT, pp. 87–96 (2009)

19. Fantechi, A., Gnesi, S.: Formal modeling for product families engineering. In:
SPLC 2008, pp. 193–202. IEEE Computer Society (2008)

20. Gruler, A., Leucker, M., Scheidemann, K.: Calculating and modeling common
parts of software product lines. In: SPLC, pp. 203–212 (2008)

21. Gomaa, H., Olimpiew, E.M.: Managing variability in reusable requirement mod-
els for software product lines. In: Mei, H. (ed.) ICSR 2008. LNCS, vol. 5030,
pp. 182–185. Springer, Heidelberg (2008)

22. Jörges, S., Lamprecht, A.L., Margaria, T., Schaefer, I., Steffen, B.: A constraint-
based variability modeling framework. In: STTT, vol. 14(5), pp. 511–530 (2012)

23. Berg, K., Bishop, J., Muthig, D.: Tracing software product line variability: from
problem to solution space. In: Proceedings of the 2005 Annual Research Confer-
ence on IT Research in Developing Countries, SAICSIT 2005, pp. 182–191 (2005)

24. Metzger, A., Heymans, P., Pohl, K., Schobbens, P.Y., Saval, G.: Disambiguat-
ing the documentation of variability in software product lines: A separation of
concerns, formalization and automated analysis. In: RE, pp. 243–253 (2007)

25. Riebisch, M., Brcina, R.: Optimizing design for variability using traceability links.
In: ECBS, pp. 235–244 (2008)

26. ter Beek, M.H., Mazzanti, F., Sulova, A.: VMC: A Tool for product variability
analysis. In: Giannakopoulou, D., Méry, D. (eds.) FM 2012. LNCS, vol. 7436,
pp. 450–454. Springer, Heidelberg (2012)

27. ter Beek, M.H., Gnesi, S., Mazzanti, F.: Demonstration of a model checker for
the analysis of product variability. In: SPLC, pp. 242–245 (2012)

28. Krishnamurthi, S., Fisler, K.: Foundations of incremental aspect model-checking.
ACM Trans. Softw. Eng. Methodol. 16(2) (2007)

29. Liu, J., Basu, S., Lutz, R.R.: Compositional model checking of software product
lines using variation point obligations. Autom. Softw. Eng. 18(1), 39–76 (2011)

30. Cordy, M., Schobbens, P.Y., Heymans, P., Legay, A.: Behavioural modelling and
verification of real-time software product lines. In: SPLC, vol. 1, pp. 66–75 (2012)

31. Lauenroth, K., Metzger, A., Pohl, K.: Quality assurance in the presence of vari-
ability. Technical report, SSE, Institut fur Informatik und Wirtschaftsinformatik,
univertitat Duisburg Essen (2011)

32. Gruler, A., Leucker, M., Scheidemann, K.: Modeling and model checking software
product lines. In: Proceedings of the 10th IFIP WG 6.1 International Conference
on Formal Methods for Open Object-Based Distributed Systems (2008)

33. Vardi, M.Y., Wolper, P.: An automata-theoretic approach to automatic program
verification. In: Proceedings of LICS 1986, pp. 322–331 (1986)

34. Millo, J.V., Ramesh, S., Krishna, S.N., Narwane, G.K.: Compositional verification
of evolving software product lines. CoRR abs/1212.4258 (2012)

Deductive Verification of State-Space Algorithms

Frédéric Gava, Jean Fortin, and Michael Guedj

Laboratory of Algorithms, Complexity and Logic (LACL), University of Paris-East
{frederic.gava,jean.fortin,michael.guedj}@univ-paris-est.fr

Abstract. As any software, model-checkers are subject to bugs. They
can thus report false negatives or validate a model that they should
not. Different methods, such as theorem provers or Proof-Carrying Code,
have been used to gain more confidence in the results of model-checkers.
In this paper, we focus on using a verification condition generator that
takes annotated algorithms and ensures their termination and correct-
ness. We study four algorithms (three sequential and one distributed)
of state-space construction as a first step towards mechanically-assisted
deductive verification of model-checkers.

Keywords: BSP, Model-checking, Deductive verification, State-space.

1 Introduction

Motivation. Model-checkers (MCs for short) are often used to verify safety-
critical systems. The correctness of their answers is thus vital: many MCs pro-
duce the answer “yes” or generate a counterexample computation (if a property
of the model fails), which forces, in the two cases, to assume that the algorithm
and its implementation are both correct.

But MCs, like any software are subject to bugs and there exist surprisingly
few attempts to prove them correct. Three main reasons can explain this fact
[13]: (1) MCs involve complicated logics, algorithms and sophisticated state re-
duction techniques; (2) because efficiency is essential, MCs are often highly op-
timised, which implies that they may not be designed to be proved correct;
(3) MCs are often updated. But there is a more and more pressing need from
the industrial community, as well as from national authorities, to get not just
a boolean answer, but also a formal proof — which could be checked by an
established tool such as the theorem prover Coq. This is required in Com-
mon Criteria certification of computer products at the highest assurance level
EAL 7 — http://www.commoncriteriaportal.org/. And hand proofs are not suf-
ficient for EAL 7, mechanical proofs are needed. The author of [18] resumes
the problem: Quis custodiet ipsos custodes ? (Who will watch the watchmen?
that is, who will verify the verifier?). We want to be able to trust the results of
model-checkers with a high degree of confidence.

Different Solutions for Verifying Model-Checkers. For verifying model-
checkers, different solutions have been proposed. The first one is to prove MCs

E.B. Johnsen and L. Petre (Eds.): IFM 2013, LNCS 7940, pp. 124–138, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://www.commoncriteriaportal.org/

Deductive Verification of State-Space Algorithms 125

inside theorem provers and use the extraction facilities to get pure functional
machine-checked programs such as in the works of [20] and [6]. The second and
more common approach, in the spirit of Proof-Carrying Code [14] (PCC for
short), is to generate a “certificate” during the execution of the MC that can
be checked later or on-the-fly by a dedicated tool or a theorem prover. This is
the so-called “certifying model-checking” [13]. In this way, users can re-execute
the certificate/trace and have some safety guarantees because even if the MC is
buggy, its results can be checked by a trustworthy tool.

But, any explicit MC may enumerate a very large state-spaces (the famous
state-space explosion problem), and mimicking this enumeration with proof rules
inside any theorem prover (or with PCCs) would be foolish even if specific tech-
niques and optimisations of the abstract machine of theorem provers [1] are used.
Note that this problem does not arise when finding a refutation of the logical
formula (the trace is generally short) but when the answer is “yes” since the
entire explicit state-space (or at least a symbolic representation) needs to verify
the checked properties. In this way, certificate generation could also hamstring
both the functionality and the efficiency of the automation that can be built
from theorem provers (functional programs can be too memory consuming) and
PCC tools (too big certificates) [18]. Only efficient, imperative and distributed
programs can override the state-space explosion problem.

Another solution, proposed in [22] for a MC call PAT, is to use coding as-
sumptions directly in the source code. They indeed use Spec# and a check
of the object invariants (the contracts) is generated. Nevertheless, they cannot
completely verify the correctness of PAT and they thus focus on some safety
properties (as no overflows, no deadlocks) of the underlying data structures of
PAT (which can run on a multi-core architecture) and check if some options may
conflict with each other.

The Proposed Solution and Outline. Our contribution follows the approach
of [22] but by using the “verification condition generator” (VCG for short) WHY
[7] and by extending the verification to the correctness of the final result: has
the full state-space been well computed without adding unknown states?

Since the language of WHY is not immediately executable but a higher-level
algorithmic language, we only focus on algorithms. We can thus focus on which
formal properties need to be preserved and not be obstructed by problems spe-
cific to a particular programming language. Even if most of the bugs in MCs
will not be due to wrong algorithms but rather due to subtle errors in the imple-
mentation of some complex data structures and bad interactions between these
structures and compression aspects, we must first check the algorithms to get
an idea of the amount of work necessary to verify a true model-checker.

Our goal is then a mechanically-assisted proof that these annotated algorithms
terminate and indeed compute the expected finite state-space. This is an inter-
esting first step before verifying MCs themselves: it allows to test if this approach
is doable or not. This is also challenging due to the nature of model-checking
(critical system) and to the algorithmic complexity. The main contribution of

126 F. Gava, J. Fortin, and M. Guedj

this paper is to demonstrate the ability of a VCG such as WHY to tackle the
wide range of verification issues involved in the proof of correctness of imperative
codes of MCs.

The remainder of this paper is structured as follows. The VCG WHY is pre-
sented in Section 2.1, then the full state-space if formally defined in Section 2.2;
we consider also verifying different algorithms formally: three sequential ones
(which correspond to those mainly used in explicit MCs; described in Section 2.3;
verified in Section 2.4) and one distributed — mainly used in explicit distributed
MCs; described in Section 3.3; verified in Section 3.4. The first three are rela-
tively simple to prove correct: it is thus a good basis for correctness of MCs.
For the last, we use our own extension of WHY called BSP-WHY [9], which
is presented in Section 3.2. Section 4 discusses some related work and finally,
Section 5 concludes the paper and gives a brief outlook to future work.

2 Verification of Sequential State-Space Algorithms

We now introduce the VCG WHY, describe how we model the state space, and
present the verification of 3 well-known algorithms. The annotated source codes
are available at http://lacl.fr/gava/cert-mc.tar.gz.

2.1 Deductive Verification of Algorithms Using WHY

WHY [7] is a framework for the verification of algorithms. Basically, it is com-
posed of two parts: a logical language with an infrastructure to translate it
to existing theorem provers; and an intermediate verification programming lan-
guage called WhyML with a VCG for deductive verification. The logic of WHY is
a polymorphic first-order logic with logical declarations: definitions and axioms.
The examples of the standard library propose finite sets of data and several op-
erations with their axiomatisation (which can be proved using Coq): a constant
empty set; functions add, remove, union, inter, diff, cardinal; a predicate for
emptiness, equality, subset, extensionality, etc. In the logical formula, x@ is the
notation for the value of x in the pre-state, i.e. at the precondition point and
x@label for the value of x at a certain point (marked by a label) of the algorithm.

WhyML is a first-order language with an ML flavored syntax and it provides
the usual constructs of imperative programming. All symbols from the logic can
be used in the algorithms. Mutable data types can be introduced, by means
of polymorphic references: a reference r to a value of type σ has type ref σ,
is created with the function ref, is accessed with !r, and assigned with r ←e.
Algorithms are annotated using pre- and post-conditions, loop invariants, and
variants to ensure termination. Verification conditions are computed using a
weakest precondition (wp) calculus and then passed to the back-end of Why
to be sent to provers. Notice that in WHY, sets are immutable (manipulated
only with purely functional routines) and thus only a reference on a set can be
modified and assigned to another set.

http://lacl.fr/gava/cert-mc.tar.gz

Deductive Verification of State-Space Algorithms 127

1 let normal () =
2 let known = ref ∅ in
3 let todo = ref {s0} in
4 while todo = ∅ do
5 let s = pick todo in
6 known←!known ⊕ s;
7 todo←!todo ∪ (succ(s) \ !known)
8 done;
9 !known

1 let main dfs () =
2 let known = ref ∅ in
3 let rec dfs (s:state) : unit =
4 known←!known ⊕ s;
5 let current = ref (succ(s) \ !known) in
6 while current = ∅ do
7 let new s = pick current in
8 if (new s ∈ known) then dfs(new s)
9 done;

10 in dfs(s0); !known

Fig. 1. Sequential WhyML algorithms

2.2 Definition of the Finite State-Space

Let us recall that the finite state-space construction problem is computing the
explicit graph representation (also known as Kripke structure) of a given model
from the implicit one. This graph is constructed by exploring all the states reach-
able through a successor function succ (which returns a set of states) from an
initial state s0. Generally, during this operation, all the explored states must be
kept in memory in order to avoid multiple explorations of a same state.

In this paper, all algorithms only compute the state-space, noted StSpace.
This is done without loss of generality and it is a trivial extension to compute
the full Kripke structure — usually preferred for checking temporal logic for-
mulas. To represent StSpace in the logic of WHY, we used the following axiom
contain state space (for consistency, it has been proved in Coq using an inductive
definition of the state-space, also available in the source code):

1 logic s0: state logic succ: state → state set logic StSpace: state set
2 axiom contain state space: ∀ss:state set. StSpace ⊆ ss ↔
3 (s0 ∈ ss and (∀ s:state. s ∈ ss → s ∈ StSpace → succ(s) ⊆ ss))

i.e. defines which sets can contain the state-space. Now ss is the state-space
(ss=StSpace) if and only if, the two following properties holds: (A) ss ⊆ StSpace
and (B) StSpace ⊆ ss; that is equality of sets using extensionality. Note that us-
ing this first-order definition makes the automatic (mainly SMT) solvers prove
more proof obligations than using an inductive definition for the state-space.

2.3 Sequential Algorithms for State-Space Construction

Fig. 1 gives two common algorithms in WhyML using an appropriate syntax
for set operations — a “Breadth-first” algorithm is also fully available in the
source code but not presented here due to lack of space. All computations in
these programs are set operations where a set call known contains all the states
that have been processed and would finally contain StSpace.

The first one, called “Normal”, corresponds to the usual sequential construc-
tion of a state-space —random walk. It involves a set of states todo that is used
to hold all the states whose successors have not been constructed yet; each state
s from todo is processed in turn (lines 4− 5) and added to known (line 6) while
its successors are added to todo unless they are known already — line 7.

The second one is the standard recursive algorithm “Dfs”. At each call of
dfs(s), the state s is added (side-effect) to known (line 3) and dfs is then

128 F. Gava, J. Fortin, and M. Guedj

recursively called (lines 5 − 8) for all the successors of s unless they are al-
ready known — which is an optimization since these states would anyway be
filtered out later on. Note the use of a conditional (line 8) within this loop: this
is due to the fact that during the exploration of the successors of s, known can
be increased and thus this prevents the re-exploration of these states

Note that the “Normal” algorithm can be made strictly depth-first by choosing
the most-recently discovered state (i.e. todo as a stack), and breadth-first by
choosing the least-recently discovered state. This has not been studied here.

2.4 Verification of These Algorithms

For correctness, the previously presented codes need three properties: (1) they
do not fail (no rule of reduction); (2) they indeed compute the state-space; (3)
and they terminate. The first property is immediate since the only operation
that could fail is pick (where the precondition is “not take any element from an
empty set”) and this is assured by the guard of the while loop. Let us now focus
on the specification of the above algorithms.

Annotations. Fig. 2 gives the full annotated code of the “Dfs” algorithm
and “Normal” needs only adding the following invariants in the loop (and final
post-condition {result=StSpace}):
1 invariant (1) (known ∪ todo) ⊆ StSpace
2 and (2) (known ∩ todo)=∅
3 and (3) s0 ∈(known ∪ todo)
4 and (4) (∀ e:state. e ∈known → succ(e) ⊆ (known ∪ todo))
5 variant |StSpace \ known|

These four invariants are: (1) known and todo are subsets of StSpace; at the end,
(3) and (4) known is a subset of StSpace and has the “same” inductive property;
and when todo will be empty, then known contains StSpace — property (B).

“Dfs” is more subtle. We need to introduce ghost codes1, notably a set nofinish
(line 3) which has the following rule: each state s in nofinish has been processed
by the dfs function but not completely that is, s is in known and not all its
direct successors have been processed by dfs — in the loop. It is used in the
pre-condition (lines 8-9) and post-condition (lines 31-34) of dfs since not all the
direct successors have been processed since it is a depth-first algorithm.

Also nofinish is a subset of known since all the time, each state s will be finally
completely processed. That also forces us to add this fact in pre- and post-
conditions. The post-conditions (1) and (2) are used for (A) and (B). Note the
use of nofinish since some states can not be fully processed but nofinish is empty
at the end of the computation, ensuring (B). The two post-conditions (5) and
(7) say that nofinish is the same before and after dfs (thus empty when s0 is fully
processed) but known was able to increase.

Now the invariants (lines 18−22) of the loop are the following: (1) and (2) as in
“Normal”, the set known is a subset of StSpace (current is the set succ(s)−known
1 Additional codes not participating in the computation but accessing the program
data and allowing the verification of the original code.

Deductive Verification of State-Space Algorithms 129

1 let main dfs () =
2 let known = ref ∅ in
3 let nofinish = ref ∅ in (∗ ghost ∗)
4 let rec dfs (s:state) : unit
5 variant |Stspace \ known|
6 =
7 {
8 (1) s ∈StSpace and (2) known ⊆ StSpace and (3) s ∈ known and (4) s ∈ nofinish
9 and (5) (∀ e:state. e ∈known→ ¬(e ∈nofinish)→ succ(e) ⊆ known) and (6) nofinish ⊆ known

10 }
11 known←!known ⊕ s;
12 nofinish←!nofinish ⊕ s;
13 let current = ref (succ(s) \ !known) in
14 let ghost diff=ref ∅ in
15 L:while current = ∅ do
16 {
17 invariant
18 (1) (known ∪ current) ⊆ StSpace
19 and (2) (∀ e:state. e ∈known→ ¬(e ∈nofinish)→ succ(e) ⊆ known)
20 and (3) succ(s) ⊆ (known ∪ current) and (4) known@L ⊆ known
21 and (5) current@L= (ghost diff ∪ current) and (6) (ghost diff ∩ current)=∅
22 and (7) nofinish=nofinish@L and (8) nofinish ⊆ known
23 variant |current|
24 }
25 let new s = pick current in
26 ghost diff←!ghost diff ⊕ new s;
27 if (new s ∈ known) then dfs(new s)
28 done;
29 nofinish←!nofinish � s
30 {
31 (1) known ⊆ StSpace
32 and (2) (∀ e:state. e ∈known → ¬(e ∈nofinish) → succ(e) ⊆ known)
33 and (3) s ∈known and (4) s ∈ nofinish and (5) nofinish=nofinish@
34 and (6) known@ ⊆ known and (7) nofinish ⊆ known
35 }
36 in dfs(s0); !known {result=StSpace}

Fig. 2. “Dfs” sequential annoted algorithm

used in the foreach statement) and known works as StSpace; (3) all the direct
successors of s are in known or are currently processed; (4) known can increase;
(5−6) current works well as an iteration over a set using a ghost set which ensures
that no elements are lost during the iteration; (7) nofinish is not modified by the
loop but before the loop (and the post-condition ensures that it returns as in
the beginning of dfs); (8) nofinish remains a subset of known.

Termination. For all the algorithms, termination is ensured by the following
variants: |StSpace \ known| and by |current| when an iteration on each state of
a set is performed. Each algorithm ensures this first variant at every step using
the following properties:

– “Normal” only adds a new state s since (known ∩ todo)=∅;
– “Dfs” only recursively adds a new state (line 29) since the pre-condition of

the function is s �∈ known (line 8) and the boolean condition of the conditional
is new s �∈ known in the loop for the successors;

130 F. Gava, J. Fortin, and M. Guedj

Mechanical Proof. All the obligations produced by the VCG of WHY are
automatically discharged by a combination of automatic provers: CVC3, Z3,
Simplify, Alt-Ergo, Yices and Vampire. For each prover, we give a timeout of
10 seconds — otherwise some obligations are not proved. In the following table,
for each algorithm, we give the number of generated obligations (column Total)
and then how many are discharged by the provers:

algo/Solvers Total Alt-Ergo Simplify Z3 CVC3 Yices Vampire

Normal 11 2 10 11 7 3 3
Breadth 31 9 31 28 21 10 10
Dfs 49 22 48 47 40 23 26

One could notice that the SMT solvers Simplify and Z3 give the best results. In
practice, we mostly used them. Simplify is the faster and Z3 sometime verified
some obligations that had not be discharged by Simplify. We also have worked
with the provers as black-boxes and we have thus no explanation for this fact.
It also took few days for the first author to annotate all the algorithms. Proof
obligations are as usual when working with a VCG such as WHY.

3 Verification of a Distributed State-Space Algorithm

Parallelize the construction of the state-space on several machines is a standard
method [2,11]. In this section, we give an example of how to verify a parallel
algorithm and show that it is more challenging but feasible. We first present our
model of parallel computation called BSP then our own extension of WHY for
BSP algorithms and finally the verification of a BSP state-space algorithm.

3.1 The Bulk-Synchronous Parallel (BSP) Model

In the BSP model, a computer is a set of uniform processor-memory pairs and a
communication network allowing the inter-processor delivery of messages [19,4].

A BSP program is executed as a sequence of super-steps, each one divided
into three successive disjoint phases: each processor only uses its local data to
perform sequential computations and to request data transfers to other nodes;
the network delivers the requested data; a global synchronisation barrier oc-
curs, making the transferred data available for the next super-step. The BSP
model considers communications en masse — as MPI’s collective operations,
Message Passing Interface http://www.mpi-forum.org/. This is less flexible than
asynchronous messages, but easier to debug and prove since interactions of si-
multaneous communication actions are typically complex.

3.2 Deductive Verification of BSP Algorithms

Our tool BSP-WHY extends the syntax of WhyML with BSP primitives (mes-
sage passing and synchronisation) and definitions of collective operations. BSP-
WhyML codes are written in a Single Program Multiple Data (SPMD) fashion.
We used the WhyML language as a back-end of our own BSP-WhyML language.

http://www.mpi-forum.org/

Deductive Verification of State-Space Algorithms 131

Fig. 3. Example of the BSP-WHY’s block decomposition of a BSP code

In this way, BSP-WhyML programs are transformed into WhyML ones and then
the VCG of WHY is used to generated the appropriate conditions for the de-
ductive verification of the BSP algorithm.

A special constant nprocs (equal to p the number of processors) and a special
variable bsp pid (with range 0, . . . ,p−1) were also added toWhyML expressions.
A special syntax for BSP annotations is also provided which is simple to use and
seems sufficient to express conditions in most practical programs: we add the
construct t < i> which denotes the value of a term t at processor id i, and
<x> denotes a p-value x (represented by fparray, purely applicative arrays
of constant size p) that is a value on each processor as opposed to the simple
notation x which means the value of x on the current processor.

The transformation of BSP-WhyML codes into WhyML ones is based on the
fact that, for each super-step, if we execute sequentially the code for each pro-
cessor and then perform the simulation of the communications by copying the
data, we have the same results as in really truly doing it in parallel.

The first step of the transformation is a decomposition of the program into
blocks of sequential instructions — Fig. 3. Once that is done for each code block,
we create a “for” loop to execute sequentially the block. That is the block is ex-
ecuted p times, once for each processor. Finally, we generate invariants to keep
track of which variables are modified: since we are using arrays to represent the
variables local to every processor and programs are run in a SPMD fashion,
it is necessary to say that we only modify a variable on the current processor
and that the rest of the array stays unchanged. Also, when transforming a if

or while structure, there is a risk that a global synchronous instruction (a col-
lective operation) might be executed on a processor and not on the other. We
generate an assertion to forbid this case, ensuring that the condition associated
with the instruction will always be true on every processor at the same time —
thus forbidding deadlocks. The details and some examples are available in [9].
The trustworthiness of this tool is discussed in the conclusion.

3.3 BSP State-Space Construction

Algorithm “Normal” can be easily parallelised using a partition function cpu
that returns for each state a processor id, i.e., the processor numbered cpu(s) is
the owner of s: logic cpu: state → int axiom cpu range: ∀s:state. 0≤ cpu(s)<nprocs

132 F. Gava, J. Fortin, and M. Guedj

1 let naive state space () =

2 let total = ref 1 in

3 let known = ref ∅ in

4 let todo = ref ∅ in

5 let pastsend = ref ∅ in

6 if cpu(s0) = bsp pid then

7 todo←!todo ⊕ s0;

8 while total>0 do

9 let tosend = (local successors

10 known todo pastsend) in

11 exchange todo total !known

12 pastsend !tosend

13 done;

14 !known

1 let local successors (...) =

2 let tosend = ref (init send ∅) in

3 while todo 	= ∅ do

4 let s = pick todo in

5 known←!known ⊕ s;

6 let new states = ref ((succ s) \ !known \ !pastsend) in

7 while new states 	= ∅ do

8 let new s = pick new states in

9 let tgt=cpu(new s) in

10 if tgt=bsp pid

11 then todo←!todo ⊕ new s

12 else tosend<tgt>←tosend<tgt> ⊕ new s

13 done

14 done;

15 !tosend

Fig. 4. Parallel (distributed) BSP-WhyML algorithm for state-space construction

The idea is that each process computes the successors for only the states it
owns. This is rendered as the BSP algorithm of Fig. 4. Sets known and todo are
still used but become local to each processor and thus provide only a partial
view on the ongoing computation.

Function local successors computes the successors of the states in todo where
each computed state that is not owned by the local processor is recorded in a
set tosend together with its owner number. The set pastsend contains all the
states that have been sent during the past super-steps — the past exchanges.
This prevents returning a state already sent by the processor: this feature is not
necessary for correctness and consumes more memory but it is generally more
efficient mostly when the state-space contains many cycles.

Function exchange is responsible for performing the actual communications:
it returns the set of received states that are not yet known locally together with
the new value of total — it is essentially the MPI’s alltoall primitive.

To ensure termination of the algorithm, we use the additional variable total
in which we count the total number of sent states. We have thus not used any
complicated methods as the ones presented in [2]. It can be noted that the value
of total may be greater than the intended count of states in todo sets. Indeed,
it may happen that two processors compute a same state owned by a third
processor, in which case two states are exchanged but then only one is kept
upon reception. In the worst case, the termination requires one more super-step
during which all the processors will process an empty todo, resulting in an empty
exchange and thus total = 0 on every processor, yielding the termination.

3.4 Verification of the Parallel Algorithm

For lack of space, we only present the verification of the parallel part of this
algorithm and not the sequential local successors (similar to “Normal” but with
many additional invariants on states to send) nor exchange — which is more
technical and without really interesting properties and still available in the source
code: the exchange procedure is only a permutation of the states that is, from
a global point of view, only states in arrays have moved and there is no loss of

Deductive Verification of State-Space Algorithms 133

states and a state has not magically appeared during the communications. Fig. 5
gives the annotated parallel algorithm. We also use the following predicates:

– isproc(i) is defined what is a valid processor’s id that is 0≤ i<nprocs;
–

⋃
(<p set>) is the union of the sets of the p-value p set that is

⋃p
i=0p set<i>;

– GoodPart(<p set>) is used to indicate that each processor only contains the
states it owns that is ∀i:int. isproc(i) → ∀s:state. s ∈p set<i> → cpu(s)=i;

– comm send i(s,j) is the set of sent states from processor i to processor j.

As before, we need to prove that (1) the code does not fail; (2) indeed computes
the entire state-space and (3) terminates. The first property follows immediately
since only the routine pick is used as before; and to also prove that the code is
deadlock free (the loop contains exchange which implies a global synchronisation
of all the processors), we can easily maintain that total (which gives the condi-
tion for termination) has the same value on all the processors during the entire
execution of the algorithm. Let us now focus on the two other properties.

Correctness of the Parallel Loop (Fig. 5). The invariants (lines 9− 18) of
the main parallel loop work as follows: (1) as in “Normal”, we need to maintain
that known (even distributed) is a subset of StSpace which finally ensures (A)
when todo is empty; (2) as usual, the states to be treated are not already known;
(3) our sets are well distributed (there is no duplicate state that is, each state
is only kept in a unique processor); (4) total is a global variable, we thus ensure
that it has the same value on each processor; (5) ensures that no state remains
in todo (to be treated) when leaving the loop since total is at least as big as the
cardinality of todo, total is an over-approximation of the number of sent states;
(6–8), as usual, ensure property (B); (9) past sending states are in the state-
space; (10) pastsend only contains states that are not owned by the processor and
(11) all these states, that were sent, are finally received and stored by a processor.

In the post-condition (line 26), we can also ensures that the result is well
distributed: the state-space is complete and each processor only contains the
states it owns according to the function “cpu”.

Termination (Fig. 5). For the local computations, the termination is ensured
as in the “Normal” algorithm since known can only grow when entering the loop.

The main loop is more subtle: total is an over-approximation and thus could
be greater to 0 whereas todo is empty. This happens when all the received states
are already in known. The termination has thus two cases: (a) in general the set
known globally (that is, from a global point of view, of all processors) grows and
we have thus the cardinality of StSpace minus known which is strictly decreasing;
(b) if there is no state in any todo of a processor (case of the last super-step),
no new states would be computed and thus total would be equal to 0 in the last
stage of the main loop.

We thus used a lexicographic order (this is well-founded ensuring termination)
on the two values: sum of known across all processors; and total (which is the
same on all processors) when no new states are computed and thus when no state

134 F. Gava, J. Fortin, and M. Guedj

1 let naive state space () =
2 let known = ref ∅ in let todo = ref ∅ in
3 let pastsend = ref ∅ in let total = ref 1 in
4 if cpu(s0) = bsp pid then
5 todo ←s0 ⊕ !todo;
6 while total>0 do
7 {
8 invariant
9 (1)

⋃
(<known>) ∪

⋃
(<todo>) ⊆ StSpace

10 and (2) (
⋃
(<known>) ∩

⋃
(<todo>))=∅

11 and (3) GoodPart(<known>) and GoodPartt(<todo>)
12 and (4) (∀ i,j:int. isproc(i) → isproc(j) → total<i> = total<j>)
13 and (5) total<0> ≥ |

⋃
(<todo>)|

14 and (6) s0 ∈(
⋃
(<known>) ∪

⋃
(<todo>))

15 and (7) (∀ e:state. e ∈
⋃
(<known>) → succ(e) ⊆ (

⋃
(<known>) ∪

⋃
(<todo>)))

16 and (8) (∀ e:state. ∀i:int. isproc(i) → e ∈known<i> → succ(e) ⊆ (known<i> ∪ pastsend<i>))
17 and (9)

⋃
(<pastsend>) ⊆ StSpace

18 and (10) (∀ i:int. isproc(i) → ∀e:state. e ∈pastsend<i> → cpu(e) = i)
19 and (11)

⋃
(<pastsend>) ⊆ (

⋃
(<known>) ∪

⋃
(<todo>))

20 variant pair(total<0>,| S \
⋃
(known) |) for lexico order

21 }
22 let tosend=(local successors known todo pastsend) in
23 exchange todo total !known !tosend
24 done;
25 !known
26 {StSpace=

⋃
(<result>) and GoodPart(<result>)}

Fig. 5. Parallel annotated algorithm

would be sent during the next super-step. At least, one processor cannot received
any state during a super-step. We thus need an invariant in the local successors
for maintaining the fact that the set known potentially grows with at least the
states of todo. We also maintain that if todo is empty then no state would be
sent (in local successors) and received, making total equal to 0 — in exchange.

Mechanical Proof. With some obvious axioms on the above predicates (such
as

⋃
<∅,...,∅>=∅) so that solvers can handle the predicates, all the produced

obligations are automatically discharged by a combination of the solvers. In the
following table, for each part of the parallel algorithm, we give the number of
obligations and how many are discharged by the provers (some proof obligations
require long timeouts e.g. 10 mins):

part/Solvers Total Alt-Ergo Simplify Z3 CVC3 Yices Vampire

main 106 74 98 101 0 54 78
successor 46 16 42 41 24 14 32
exchange 24 20 22 23 0 16 15

Now the combination of all provers is needed since none of them is able to prove
all the obligations. This is certainly due to their different heuristics. We also
note that Simplify and Z3 remain the most efficient. Some obligations are hard
to follow due to the parallel computations. But reading them carefully, we can
find the good annotations. An interesting point is that the first author with
the help of an undergraduate student was able to perform the job (annotate this
parallel algorithm) in three months. Based on this fact, it seems conceivable that

Deductive Verification of State-Space Algorithms 135

Theorem provers

Model Checkers

VCG SMT solvers

annotations

treat with a

[20,6] [13,15,23]

[?] [3]

[12] [?]
[21] [5]

[22] and our work

PCC

Proof of correctness

[?] = Work we do not know

Fig. 6. Different ways for proving model-checking algorithms

a more seasoned team in formal methods can tackle more substantial algorithms
(of model-checking) in a real programming language.

4 Related Work

Other Methods for Proving the Correctness of Model-Checkers. Fig. 6
summarises different methods that have been used for verifying MCs where each
arrow corresponds to a proof of correctness (using a theorem prover or a PCC
approach) and the papers related to the work.

The state-space explosion can be a problem for MCs extracted from theorem
provers. They are pure functional programs such as the ones of [20,6]. They
certainly would be too slow for big models even if there work on obtaining
imperative programs from extracted (pure) functional programs.

The “certifying model-checking” is an established research field [15,23]. But,
the performance issue of PCC is discussed in [26] and [16] where the authors
present developments (and model-checking benchmarks) of BDDs and tree au-
tomata using theorem provers: BDDs are common data-structures used by MCs
and tree automata is an approach for having a formal successor function. PCC
only focuses on the generation of independently-checkable evidences as the com-
piled code satisfies a simple behavioural specification such as memory safety;
the evidence can then be checked efficiently. Using PCC for state-space is the
same as computing it a “second time”. In fact, the drawback of proof certificates
is that verification tools have to be instrumented to generate them, and the
size of fully expanded proofs may be too large. Authors of [26,16] conclude that
PCCs are here inadequate and we can conclude that MCs themselves need to be
proved. It is also the conclusion of [8] where the authors note that “to avoid the
inefficiency of fully expansive proof generations, a number of researchers have
advocated the verification of decision procedures”.

Using annotations in source codes (programs or algorithms) and a VCG has
the advantage that realistic and efficient codes (mainly imperative ones) may be
verified which could be difficult using theorem provers. And it will not be worth
checking all the execution results of the MCs (which can take time) as in the
PCC approach because the results will be guaranteed.

136 F. Gava, J. Fortin, and M. Guedj

In our work, we also only use automatic solvers for proving the generated
goals of the VCG WHY and thus we do not use any “elaborate” theorem prover
such as Coq. The correctness of our results depends on the correctness of (1)
the WHY tool (correct generation of goals) and (2) the results of the solvers.
Relying on modules like SMT solvers has the advantage that these tools would
certainly be verified in a close future. The work of [12] is a first approach for (1)
and the work of [5] is a PCC approach for (2). Moreover, a SMT solver has been
proved using a theorem prover [21]. In a close future, we can hope to achieve
the same confidence in our codes as the MCs extracted from [20,6], as well as
better performances since our codes are realistic imperative codes — and not
functional ones from theorem provers. Finally, we think that using annotations
(and a VCG tool) has the advantage of being “easy”. And we can prove the
correctness of programs or limit the work to some safety properties if the full
correctness is too difficult to obtain. And it extends to parallel programs which
is not easy using PCCs or theorem provers.

Other Various Works. There are also interesting examples of verified algo-
rithms on WHY’s web page: Dijkstra shortest path, sorting, Knuth-Morris-Pratt
string searching, etc. A mechanically assisted proof using Isabelle of how LTL
formulae can be transformed into Büchi automata is presented in [17]. CTL*
temporal logic is also available in Coq [24]. All these works are interesting since
logical theories may be axiomatised in WHY.

Model compilation is one of the numerous techniques to speedup model-
checking: it relies on generating source code (then compiled into machine code) to
produce a high-performance implementation of the state-space exploration prim-
itives, mainly the successor function. In [10], authors propose a way to prove the
correctness of such an approach. More precisely, they focus on generated Low-
Level Virtual Machine (LLVM) code from high-level Petri nets and manually
prove that the object computed by its execution is a representation of the com-
piled model. If such a work can be redone using a theorem prover, we will have
a machine-checked successor function which is currently axiomatised in WHY.

5 Conclusion

Model checkers are specialised software, using sophisticated algorithms, whose
correctness is vital. In this work, we focus on correctness of well-known sequential
algorithms for finite state-space construction (which is the basis for explicit
model-checking) and on a distributed one designed by the authors. We annotated
the algorithms for finite sets operations (available in Coq) and used the VCG
WHY (certifying in Coq [12]) to obtain goals that were entirely checked by
automatic solvers. These goals ensure the termination of the algorithms as well
as their correctness for any successor function — assumed correct and generating
a finite state-space. We thus gained more confidence in the code. We also hope to
have convinced the reader that this approach is humanly feasible and applicable
to real (parallel or sequential) model-checking algorithms.

Deductive Verification of State-Space Algorithms 137

Future goals are clear. First, adapt this work for true MC algorithms — as
those for LTL/CTL* mostly Tarjan/NDFS like algorithms. This is challenging in
general but using an appropriate VCG, we believe that a team can “quickly” do
it. Second, we are currently proving algorithms and not real codes. Regarding the
code structure, this is not really an issue and translating the resulting proof into a
verification tool for true programs should be straightforward, mostly if high level
data-structures are used: the WHY framework allows a user to generate �WhyML
code from Java using a tool call Krakatoa. Third, the successor function (compu-
tation of the transitions of the state-space) is currently an abstract function. We
think to prove (mechanically) the work of [10] to compensate for this deficiency.
Fourth, compressions aspects (symmetry, partial order, etc.) must be studied.
The work of [25] which uses the B method could be a good basis. And to finish,
the transformation of BSP-WhyML into WhyML is potentially not correct. The
second author is working on this. The effort for all these works and thus verifying
the whole stack of Fig. 6 is not at all within the reach of a single team. But our
guess is that each of these stages is largely feasible. Also, machine-checked MCs
would certainly be less efficient than traditional ones. But they could be used
in addition when it comes to giving greater confidence in the results. We also
believe that another interesting application of a verified tool (such as we are envi-
sioning) would be to serve as a reference implementation that is used to compare
the results of an efficient implementation over a set of benchmark problems.

References

1. Armand, M., Grégoire, B., Spiwack, A., Théry, L.: Extending Coq with imperative
features and its application to SAT verification. In: Kaufmann, M., Paulson, L.C.
(eds.) ITP 2010. LNCS, vol. 6172, pp. 83–98. Springer, Heidelberg (2010)

2. Barnat, J.: Distributed Memory LTL Model Checking. PhD thesis, Faculty of
Informatics Masaryk University Brno (2004)

3. Barras, B., Werner, B.: Coq in Coq. Technical report, INRIA (1997)
4. Bisseling, R.H.: Parallel scientific computation. A structured approach using

BSP and MPI. Oxford University Press (2004)
5. Böhme, S., Weber, T.: Fast LCF-style proof reconstruction for Z3. In:

Kaufmann, M., Paulson, L.C. (eds.) ITP 2010. LNCS, vol. 6172, pp. 179–194.
Springer,
Heidelberg (2010)

6. Esparza, J., Lammich, P., Neumann, R., Nipkow, T., Schimpf, A., Smaus, J.-G.:
A fully verified executable LTL model checker. In: Computer Aided Verification,
CAV (to appear, 2013)

7. Filliâtre, J.-C.: Verifying two lines of C with why3: An exercise in program verifi-
cation. In: Joshi, R., Müller, P., Podelski, A. (eds.) VSTTE 2012. LNCS, vol. 7152,
pp. 83–97. Springer, Heidelberg (2012)

8. Ford, J., Shankar, N.: Formal verification of a combination decision procedure. In:
Voronkov, A. (ed.) CADE 2002. LNCS (LNAI), vol. 2392, pp. 347–362. Springer,
Heidelberg (2002)

9. Fortin, J., Gava, F.: BSP-WHY: an intermediate language for deductive verification
of BSP programs. In: High-Level Parallel Programming and Applications (HLPP),
pp. 35–44. ACM (2010)

138 F. Gava, J. Fortin, and M. Guedj

10. Fronc, L., Pommereau, F.: Towards a certified Petri net model-checker. In:
Yang, H. (ed.) APLAS 2011. LNCS, vol. 7078, pp. 322–336. Springer, Heidelberg
(2011)

11. Garavel, H., Mateescu, R., Smarandache, I.M.: Parallel state space construction for
model-checking. In: Dwyer, M.B. (ed.) SPIN 2001. LNCS, vol. 2057, pp. 217–234.
Springer, Heidelberg (2001)

12. Herms, P.: Certification of a chain for deductive program verification. In:
Bertot, Y. (ed.) 2nd Coq Workshop, Satellite of ITP 2010 (2010)

13. Namjoshi, K.S.: Certifying model checkers. In: Berry, G., Comon, H., Finkel, A.
(eds.) CAV 2001. LNCS, vol. 2102, pp. 2–13. Springer, Heidelberg (2001)

14. Necula, G.C.: Proof-carrying code. In: Principles of Programming Languages
(POPL), pp. 106–119. ACM (1997)

15. Peled, D., Pnueli, A., Zuck, L.D.: From falsification to verification. In: Hariharan,
R., Mukund, M., Vinay, V. (eds.) FSTTCS 2001. LNCS, vol. 2245, pp. 292–304.
Springer, Heidelberg (2001)

16. Rival, X., Goubault-Larrecq, J.: Experiments with finite tree automata in Coq. In:
Boulton, R.J., Jackson, P.B. (eds.) TPHOLs 2001. LNCS, vol. 2152, pp. 362–377.
Springer, Heidelberg (2001)

17. Schimpf, A., Merz, S., Smaus, J.-G.: Construction of Büchi Automata for LTL
Model Checking Verified in Isabelle/HOL. In: Berghofer, S., Nipkow, T., Urban,
C., Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol. 5674, pp. 424–439. Springer,
Heidelberg (2009)

18. Shankar, N.: Trust and automation in verification tools. In: Cha, S(S.), Choi, J.-Y.,
Kim, M., Lee, I., Viswanathan, M. (eds.) ATVA 2008. LNCS, vol. 5311, pp. 4–17.
Springer, Heidelberg (2008)

19. Skillicorn, D.B., Hill, J.M.D., McColl, W.F.: Questions and answers about BSP.
Scientific Programming 6(3), 249–274 (1997)

20. Sprenger, C.: A verified model checker for the modal μ-calculus in coq. In: Steffen,
B. (ed.) TACAS 1998. LNCS, vol. 1384, pp. 167–183. Springer, Heidelberg (1998)

21. Stump, A., Oe, D., Reynolds, A., Hadarean, L., Tinelli, C.: SMT proof checking
using a logical framework. Formal Methods in System Design 42(1), 91–118 (2013)

22. Sun, J., Liu, Y., Cheng, B.: Model checking a model checker: A code contract
combined approach. In: Dong, J.S., Zhu, H. (eds.) ICFEM 2010. LNCS, vol. 6447,
pp. 518–533. Springer, Heidelberg (2010)

23. Tan, L., Cleaveland, W.R.: Evidence-based model checking. In: Brinksma,
E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 455–470. Springer,
Heidelberg (2002)

24. Tsai, M.-H., Wang, B.-Y.: Formalization of cTL∗ in calculus of inductive construc-
tions. In: Okada, M., Satoh, I. (eds.) ASIAN 2006. LNCS, vol. 4435, pp. 316–330.
Springer, Heidelberg (2008)

25. Turner, E., Butler, M., Leuschel, M.: A refinement-based correctness proof of
symmetry reduced model checking. In: Frappier, M., Glässer, U., Khurshid, S.,
Laleau, R., Reeves, S. (eds.) ABZ 2010. LNCS, vol. 5977, pp. 231–244. Springer,
Heidelberg (2010)

26. Verma, K.N., Goubault-Larrecq, J., Prasad, S., Arun-Kumar, S.: Reflecting BDDs
in Coq. In: Kleinberg, R.D., Sato, M. (eds.) ASIAN 2000. LNCS, vol. 1961,
pp. 162–181. Springer, Heidelberg (2000)

Inductive Verification of Hybrid Automata

with Strongest Postcondition Calculus

Daisuke Ishii1, Guillaume Melquiond2, and Shin Nakajima1

1 National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo, Japan
dsksh@acm.org, nkjm@nii.ac.jp

2 INRIA Saclay–Île-de-France, LRI, bât 650, Université Paris Sud 11, Orsay, France
guillaume.melquiond@inria.fr

Abstract. Safety verification of hybrid systems is a key technique in de-
veloping embedded systems that have a strong coupling with the physical
environment. We propose an automated logical analytic method for ver-
ifying a class of hybrid automata. The problems are more general than
those solved by the existing model checkers: our method can verify mod-
els with symbolic parameters and nonlinear equations as well. First, we
encode the execution trace of a hybrid automaton as an imperative pro-
gram. Its safety property is then translated into proof obligations by
strongest postcondition calculus. Finally, these logic formulas are dis-
charged by state-of-the-art arithmetic solvers (e.g., Mathematica). Our
proposed algorithm efficiently performs inductive reasoning by unrolling
the execution for some steps and generating loop invariants from verifi-
cation failures. Our experimental results along with examples taken from
the literature show that the proposed approach is feasible.

1 Introduction

Hybrid systems, transition systems with continuous dynamics, are a good model
for embedded systems that have a strong coupling with the physical environment.
Achieving the desired reliability levels of such systems has brought a challenging
and important problem in formal methods research.

To date, verification of hybrid systems has been extensively studied with two
prominent approaches: model checking and logical analysis. The model-checking
approach has been successfully applied to practical examples with tools such
as HyTech [12], PHAVer [8], and HybridSAL [22]. The approach is said algo-
rithmic: tools numerically over-approximate a certain class of hybrid automata
(HA) to have piecewise-linear systems, and apply model-checking methods [4].
The second approach is based on logical analysis [16]. While the theory of logical
analysis has been studied extensively, there are few practical tools. A notable
and successful exception is KeYmaera [18]. The logical analytic approach can be
applied to the class of hybrid programs which generalize the automata handled
by model checking. Indeed, this class includes systems with symbolic parame-
ters and nonlinear dynamics. There is, however, a major drawback: the larger the
class of systems is, the less automatic its verification becomes. Engineers thus

E.B. Johnsen and L. Petre (Eds.): IFM 2013, LNCS 7940, pp. 139–153, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

140 D. Ishii, G. Melquiond, and S. Nakajima

have to apply some proof strategies during the interactive verification process,
which requires understanding the target model.

In this paper, we propose a partly automated tool for the logical analysis of HA
that makes heavy use of state-of-the-art arithmetic solvers. Our goal is to prove
safety properties. First, our method encodes executions of HA into straight-line
imperative programs. This formalism allows us to construct a lasso-shaped struc-
ture based on induction: after exhibiting at mostm steps of continuous evolution
and discrete transition, any execution of the system forms a loop with a length
of at most n steps between some specific regions of the state space. Then, the
imperative program is transformed into a conjunction of verification conditions
as a result of strongest postcondition (SP) calculus. The resulting logic formula
involves real-arithmetic predicates and ordinary differential equations (ODEs).
The generated conditions can be discharged using solvers such as Mathematica
for some nonlinear HA.

The contribution of this work is as follows. The use of an imperative language
and SP calculus gives a straightforward justification of the soundness of our
method for generating the finite-length verification conditions from HA. The
algorithm we propose realizes an automated verification process, although some
user interactions are needed to determine efficiently (a) correct numbers m and
n of steps to unroll the execution and (b) the loop invariant that represents the
initial region of the loop. Computer algebra techniques, however, are employed
to automate most of the work in generating loop invariants.

This paper is organized as follows. Section 2 introduces the class of hybrid au-
tomata. Section 3 describes a simple imperative language for simulating HA and
the corresponding SP calculus. In Section 4, we present the concept of induction
and loop unrolling, and describe an algorithm for automated verification. Sec-
tion 5 describes an implementation using Mathematica. Section 6 reports how
our implementation behaves on several examples and provides a comparison of
the results with existing tools. Section 7 describes some related studies.

2 Hybrid Automata

In this paper, we model hybrid systems as hybrid automata (HA) [11].

Definition 1. A hybrid automaton is a tuple HA = 〈L,V , Init ,G,R,F , I〉 that
consists of the following components:

– A finite set L = {l1, . . . , lp} of locations.
– A finite set V = {x1, . . . , xq} of real-valued variables. RV is the set of all of

the valuations of the system.
– An initial condition Init in L×RV that specifies the initial states.
– A family G = {Gl,l′}l∈L,l′∈L of guard conditions Gl,l′ in RV .
– A family R = {Rl,l′}l∈L,l′∈L of reset functions Rl,l′ : RV → RV .
– A family F = {Fl}l∈L of vector fields Fl : RV → RV .

– A family I = {Il}l∈L of location invariants Il in RV .

Inductive Verification of HA with Strongest Postcondition Calculus 141

t > 0 φ(0) = ν ∀t̃∈ [0, t] dφ
dt

= Fl ∧ Il[φ(t̃)]

〈l, ν〉 t−→ 〈l, φ(t)〉
Gl1,l2 [ν1] ν2 = Rl1,l2(ν1) Il2 [ν2]

〈l1, ν1〉 0−→ 〈l2, ν2〉

Fig. 1. Operational semantics of HA

A (finite or infinite) execution of HA is a sequence σ0
t1−→ σ1

t2−→ · · · , for which

σi ∈ L×RV and Init [σ0] holds, and
∗−→ is either a continuous evolution phase

t−→
where t > 0 or a discrete transition phase

0−→ and is given by the rules in Figure 1.

In the first rule, dφ
dt = Fl is an abbreviation of dφ(t̃)

dt = Fl(φ(t̃)). We say that an

execution is length-k canonical when of the form σ0
t1−→ σ1

0−→ σ2
t3−→ · · · 0−→ σ2k

that alternates continuous and discrete phases.

In this paper, we assume that multiple discrete transitions do not occur in an
instant. We also assume that no discrete transition occurs initially. Thus, any ex-
ecution can be expressed as a canonical execution. Verification of non-canonical
executions can be considered as future work. Infinite-length canonical executions
are supported; yet in presence of Zeno points (infinite number of transitions in
finite time), HA executions are handled only up to the first point.

Example 1. Water-level monitor (WLM) [3,15]. A controlled water tank is mod-
eled as a four-location constant-rate HA, as illustrated in Figure 2. It supplies
water at a constant rate rateout , whereby, in location off (and sw-on), the water

level y decreases as
dφy

dt = rateout . In location on (and sw-off), the system pumps

water to refill the tank, which results in the water level changing as
dφy

dt = ratein .
A sensor observes y and switches between the locations on and off when the
level reaches the thresholds low or high . However, it takes delay seconds for
switching, hence the locations sw-on and sw-off. In this paper, we constrain the
values for the constant parameters as follows:

min ≤ low ∧ high ≤ max ∧ low < high ∧ delay > 0∧
max ≥ high + ratein · delay ∧ min ≤ low + rateout · delay . (1)

Because the discrete transition edges in the automaton form a single cycle, the
trace of locations that were reached is the same for all of the executions.

Definition 2. A safety property (or an inductive invariance) is expressed by
a formula �P , where P is a predicate on L×RV . HA |= �P denotes that HA
satisfies �P , that is, predicate P holds initially and is preserved by every discrete
transition and continuous evolution.

Example 2. In the following sections, we will prove that the level stays between
a lower and an upper limit, which is expressed by the following safety property:

�(min ≤ y ≤ max).

142 D. Ishii, G. Melquiond, and S. Nakajima

on

ẏ = ratein

y ≤ high

y=low

sw-off

ẋ = 1, ẏ = rate in

0 ≤ x ≤ delay

off

ẏ = rateout

y ≥ low

sw-on

ẋ = 1, ẏ = rateout

0 ≤ x ≤ delay

y = high , x
′
= 0

x = delay

y = low , x
′
= 0

x = delay

Fig. 2. Water-level monitor

3 Modeling HA Executions with Programs

In this section, we introduce the theoretical foundation of our method. It analyzes
finite and infinite executions of a HA by reusing traditional tools in program veri-
fication. We first introduce a simple imperative language in which the statements
simply sketch the executions of the HA (Section 3.1). Then, we provide a notion
of strongest postcondition for each program statement given a precondition, and
we prove that this calculus derives the safety of the HA (Section 3.2).

3.1 Imperative Language

Given a HA, we define an untyped imperative language ImpHA. This language
is basic, since it does not even provide loops. For the purpose of this work, it has
only sequences and the commands evolve and trans. The command evolve

expresses a continuous evolution of the HA for a given duration, while trans

expresses a discrete transition.

Definition 3. The language ImpHA is given by the following syntax:

s ::= skip | s; s | evolve t | trans

Definition 4. A program state (denoted S or Si) is a map from variable names
to program values. A special variable xs is associated to the “current” state
(∈ L × RV) of the HA execution. For the sake of readability, pseudo-variables
are introduced to access part of the HA state as follows: xs = 〈xl, ·〉 = 〈·, xv〉 =
〈·, (x1, . . . , xi, . . . , xq)〉. We assume this equivalence is always maintained auto-
matically when a new value is assigned to a pseudo-variable.

Figure 3 describes the operational semantics of the language. [[e]]S denotes the
term obtained by replacing each free variable of an expression e by its associated
value in the program state S. S{x �→ v} denotes the program state obtained by
adding to S that variable x is associated to the value v. The rules for skip and
sequence are the usual ones. The rules for evolve and trans are derived from
the operational semantics of a HA execution. Note that we allow the statement
evolve 0, so that the theorems presented in this paper have a simple way to
check the safety property for the initial state or after a discrete transition.

Inductive Verification of HA with Strongest Postcondition Calculus 143

S, (skip; s)� S, s

S1, s1 � S2, s2
S1, (s1; s3)� S2, (s2; s3) S, evolve 0� S, skip

[[xs]]S
t−→ σ

S, evolve t� S{xs �→ σ}, skip
[[xs]]S

0−→ σ

S, trans� S{xs �→ σ}, skip

Fig. 3. Operational semantics of ImpHA

Lemma 1. For any execution σ0
t1−→ σ1

0−→ · · · tk−→ σ2k−1 of the HA, assuming
that σ = σ0 holds for the initial program state, there is an execution of the
following ImpHA program that does not block (that is, it reduces to skip) and
such that the final program state satisfies xs = σ2k−1.

evolve t1; trans; · · · ; evolve tk

Note that this program might also have either blocking executions or executions
that end on a different HA state; the former are made irrelevant by our SP-based
approach, while the latter are expected due to the non-deterministic nature of
HA. For the programs above, the execution is canonical only for the first k − 1
continuous steps; the last duration tk can be arbitrarily short. It can also be
arbitrarily large, if the HA stays infinitely long in that continuous evolution.

Since we can now express any partial execution of a HA as a program, we
can state the safety property of the HA as a property that every non-blocking
program must satisfy in its final state.

Lemma 2. If, for all non-blocking programs of ImpHA of the above form start-
ing from an initial program state σ ∈ Init, property P holds in the final program
state, then P is a safety property for the HA (up to the first Zeno point, if any).

3.2 Strongest Postconditions

In this section, we instantiate the principles of program verification [13,7] with
ImpHA. We are not interested in manual verification, so we will skip over the
definition of Hoare triples and directly go to the topic of verification conditions
(VCs). Moreover, since we are not dealing with reachability but only safety, we
do not have to prove that programs are non-blocking, we can just assume they
are. Therefore, weakest preconditions (WPs) and strongest postconditions (SPs)
are dual from each other for our purpose. Should we have to perform backward
reachability analysis, WP computation would be better suited. This is not the
case though, so we choose SP, so as to follow the direction of time.

Lemma 3 (Soundness of SP). For any program s in ImpHA, if the initial
state satisfies a given property P , the final state satisfies SP(P, s) (assuming s
terminates) with SP inductively defined as follows.1

1 P [x ← e] denotes the substitution of all the occurrences of variable x in P with e.

144 D. Ishii, G. Melquiond, and S. Nakajima

SP(P, skip) := P SP(P, s1; s2) := SP(SP(P, s1), s2)

SP(P, evolve t) := ∃φ P [xv←φ(0)] ∧ φ(t)=xv ∧ (∀t̃∈ [0, t] dφ
dt =Fxl

∧ Ixl
[φ(t̃)])

SP(P, trans) := ∃〈l′, x′v〉 P [xs←〈l′, x′v〉] ∧Gl′,xl
[x′v] ∧ xv=Rl′,xl

(x′v) ∧ Ixl
[xv]

Proof. Let us assume that there are S and S′ such that [[P]]S holds and S, s�∗

S′, skip. We just have to prove that [[SP(P, s)]]S′ holds. The proof is performed
inductively on the structure of the statement s by checking that every case of
SP is implied by the operational semantics of ImpHA. This is a consequence of
the operational semantics of HA given on Figure 1. ��

Example 3. Let us prove that, if the HA of Figure 2 is in a state satisfying
xl = on ∧ y = low , then any continuous evolution of duration t leads to a
state satisfying y ≤ max . By Lemmas 2 and 3, it is sufficient to prove that the
following implication holds in any program state:

SP((xl = on ∧ y = low), evolve t)⇒ y ≤ max .

Let us assume that we are in program state such the left-hand side holds, and
we prove that y ≤ max holds. From the definition of SP , we know that there
exists a function φ such that

(xl = on ∧ φy(0) = low) ∧ φ(t) = (x, y) ∧ (∀t̃∈ [0, t] dφ
dt = Fxl

∧ Ixl
[φ(t̃)])

As a consequence, we have y = low+ratein ·t (by solving the ODE) and y ≤ high
(by unfolding the location invariant Ixl

). The latter property, in conjunction with
Constraint (1) of Example 1, proves the goal y ≤ max by linear arithmetic.

Remark 1. As we will later pass the verification conditions to automated tools,
it is important to eliminate as many quantifiers as possible beforehand. For in-
stance, SP(P, trans) has the form ∃l′ Q[l′]. This is equivalent to the disjunction
Q[l1]∨ . . .∨Q[lp] with l1, . . . , lp all the locations. In the case of SP(P, evolve t),
Example 3 shows how one can get rid of ∃φ if the ODE admits a closed form.

4 Inductive Verification Method

4.1 Induction Strategy

We now present an algorithm derived from Lemma 2 that performs safety verifi-
cation of a HA. The statement of Lemma 2 is unpractical, as it requires verifying
infinitely-many programs. This section describes how we can build weaker yet
more practical variants of it, by only considering a bounded number of programs.
The approach is as follows. Let us assume that there is a predicate P+ such that
P+ ⇒ P and

– from an initial state, any execution of HA reaches a state satisfying P+ after
alternating at most m continuous evolutions and m discrete transitions,

Inductive Verification of HA with Strongest Postcondition Calculus 145

– from any state satisfying P+, any execution of HA reaches a state satis-
fying P+ after alternating at most n continuous evolutions and n discrete
transitions.

Verifying the safety property is therefore simple:

– For the initial m-step execution, we check that every intermediate state is
safe and that the execution finally reaches the region represented by predicate
P+ (base case).

– For the n-step execution from the region P+, we check that every interme-
diate state is safe and that the execution finally reaches the region P+.

The success of our approach depends on whether we can exhibit some lengths
m and n and some predicate P+ for a given HA.

We first show the simplest case (m = 0 and n = 1): the base case is the
verification of the initial states, and the induction is performed on a continuous
phase followed by a discrete phase.

Theorem 1 (Simplest case). Given a predicate P+ such that P+ ⇒ P holds
in any state, the following inference rule is correct:

VC 0 : Init ⇒ P+

VC 1 : ∀t ≥ 0 SP(P+, evolve t)⇒ P

VC−1 : ∀t ≥ 0 SP(P+, evolve t; trans)⇒ P+

HA |= �P

Proof. VC 0 checks that the initial states satisfy the property P+. VC−1 induc-
tively verifies that all of the possible two consecutive continuous and discrete

phases σi
ti+1−−→ σi+1

0−→ σi+2 evolve for the arbitrary duration ti+1 from a state
σi that satisfies P+ to a state σi+2 that again satisfies P+. VC 1 ensures that
the safety property was not broken during the continuous phase. ��

We now extend the above induction to a more generic case.

Theorem 2 (Unrolled case).

SP1 ≡ SP(Init ∧ ¬P+, evolve t1) VC 1 : ∀t1 ≥ 0 SP1 ⇒ P

SP2 ≡ SP(SP(SP1, trans) ∧ ¬P+, evolve t2)
VC 2 : ∀t1, t2 ≥ 0 SP2 ⇒ P

...
SPm ≡ SP(SP(SPm−1, trans) ∧ ¬P+, evolve tm)

VCm : ∀t1 . . . tm ≥ 0 SPm ⇒ P

SP0 ≡ SP(SPm, trans) VC 0 : ∀t1 . . . tm ≥ 0 SP0 ⇒ P+

SPm+1 ≡ SP(P+, evolve t1) VCm+1 : ∀t1 ≥ 0 SPm+1 ⇒ P
...

SPm+n ≡ SP(SP(SPm+n−1, trans) ∧ ¬P+, evolve tn)
VCm+n : ∀t1 . . . tn ≥ 0 SPm+n ⇒ P

SP−1 ≡ SP(SPm+n, trans) VC−1 : ∀t1 . . . tn ≥ 0 SP−1 ⇒ P+

HA |= �P

146 D. Ishii, G. Melquiond, and S. Nakajima

Proof. This theorem is an extension of Theorem 1. It verifies that a state satis-
fying P+ can be reached in at most m steps initially (from VC 1 to VC 0), and
then inductively that P+ can always be reached again in at most n steps (from
VCm+1 to VC−1). ��

Remark 2. Only VC 0 and VC−1 check that P+ holds after an execution; all
the other VCs check the safety property P only. Moreover, except for VCm+1,
all these other conditions compute the SP by assuming that P+ does not hold.
Indeed, there might be less than n transitions before reaching again a state
satisfying P+ (or m transitions initially).

4.2 Verification Algorithm

Given a HA, a safety property �P , and the maximal numbers mmax and nmax

of steps to unroll, the algorithm in Figure 4 tries to check that all the hy-
potheses of Theorem 2 hold, and thus that HA |= �P holds too.2 The algo-
rithm performs the inductive verification with every m ≤ mmax and n ≤ nmax

(line 1). It iteratively computes the base case (line 4) and then the induction step
(line 7). Procedure Validate returns true if the given logic formula holds, false if
it cannot conclude. The verification succeeds if all the verification conditions are
successfully validated (line 10).

When the verification fails during the induction step, we strengthen the loop
invariant (line 8) so that the failing condition holds, and we perform the verifi-
cation anew. Possibly, procedure Learn strengthened the invariant so much that
we detect it is now useless (line 3). In this case, we leave from the inner recursion
and try the verification with another m and n, or otherwise return false.

Note that the algorithm does not specify how to enumerate m and n. Typi-
cally, we enumerate from m = 0 and n = 1, but for certain models, we can guess
the values, e.g., from the size of a lasso-shaped automaton. In the algorithm,
the verification of the base case (lines 4-6, named BaseCase) and the induction
step (lines 7-11, named Induction) are independent, thus we can also reverse the
order of the two verification processes.

4.3 Loop Invariant Generation

In the following, we present the loop invariant generation method implemented
in procedure Learn. Let us assume that the verification of a condition VC i ≡
∀t1 . . . ti ≥ 0 SP(P+, s)⇒ P has failed in the induction step. Then, Learn(VC i)
generates a lemma Q from the failed verification. Specifically, Learn generates a
formula Q such that VC i becomes valid after we update the loop invariant as
P+ := P+ ∧Q. Basically, Learn searches for Q such that SP(Q, s)⇒ VC i holds
by applying algebraic transformations to VC i. Note that all the occurrences of
variable xs (the current state) in Q refer to the time P+ holds, while the ones in
VC i refer to the state at the end of the execution of s. To fix this discrepancy,

2 A failure of the algorithm does not imply that the safety property is invalid.

Inductive Verification of HA with Strongest Postcondition Calculus 147

Input: HA; P ; mmax ∈ N≥0; nmax ∈ N>0

Output: true: HA |= �P ; false: cannot decide �P within mmax + nmax steps
1: for m ∈ {0, . . . ,mmax}; n ∈ {1, · · · , nmax} do
2: P+ := P
3: while P+ �≡ false do
4: if ¬∀i ∈ {0, . . . ,m} Validate(VC i) then
5: break
6: end if
7: if ∃j ∈ {m+ 1, . . . ,m+ n,−1} ¬Validate(VC j) then
8: P+ := P+ ∧ Learn(VC j)
9: else

10: return true
11: end if
12: end while
13: end for
14: return false

Fig. 4. Algorithm for inductive verification

Learn computes Q by using a quantifier elimination (QE) method, such as the
Resolve procedure of Mathematica:

Q := QE(∀xs∀t1 . . . ti (SP((P+ ∧ x0 = xs), s) ⇒ P))[x0 ← xs].

To simplify the loop invariant, the other local variables in VC i, i.e., φ, t̃, l
′, x′v

introduced in the SP calculus in Lemma 3 and ti introduced in Theorem 2,
should also be removed. Unfortunately, QE with mixed quantifiers and function
quantifiers is a hard problem in general. See Remark 1 and the next section for
details on how we perform this simplification.

The formula computed for Q is often a large disjunctive formula that is un-
usable as a loop invariant. For instance, some sub-formulas of Q describe states
that are never accepted by the HA. Such sub-formulas are not only useless but
make the verification process expensive. So we strengthen Q according to the
following strategies:

– Lemma separation. We split Q at the (top-most) disjunction operators and
employ one (or several) of the resulting sub-formulas.

– Location disabling. When we remove a sub-formula of Q that is related to
some location l, we insert the constraint xl �= l. The resulting loop invariant
might be effective when combined with loop unrolling.

5 Implementation

We have implemented the method presented in the previous sections using Math-
ematica 8.0.43, which can perform the computations in a fully symbolic manner.

3 http://www.wolfram.com/mathematica/

http://www.wolfram.com/mathematica/

148 D. Ishii, G. Melquiond, and S. Nakajima

Note that the loop invariant generation by Learn (line 8) is not automatic but
guided by the user so as to apply the strategies described in Section 4.3. Validate
is implemented in three different ways by using the built-in procedures of Math-
ematica, FullSimplify, Reduce, and FindInstance. We also rely on Mathematica’s
DSolve to find closed form of ODEs whenever possible.

In the implementation of BaseCase and Induction, we optimize the computa-
tion in two ways. First, we do not validate each VC i separately but try to reuse
the common assumptions. When validating VC i, the algorithm computes SP i

which axiomatizes the state after executing the corresponding program si, and
then validates SP i ⇒ P/P+. If we perform the validation of VCs in ascending
order, we can compute SP i from SP i−1 efficiently. Second, we perform location-
wise validation of VCs to avoid the inefficiency that occurs when the execution
of program s spans multiple locations. So we replicate the SP and instantiate
each copy with a different location (cf. Remark 1). Throughout the computation,
we manage the set of the copies instead of the original SP. Although it causes
Validate to be called more often, the computation is more efficient in general.

Example 4. We verify the safety property of Example 2 for the HA in Example 1
with this implementation. Following the main algorithm, we first compute with
m = 0 and n = 1. We run BaseCase to check that Init entails P+ ≡ P , and
it returns true. Next, we simulate a continuous and discrete change by running
Induction. It computes the SP separately for each of the locations, on , sw-off, off ,
and sw-on, and validates VCs. For VC 1, the validation for locations on and off
succeeds but the validation for sw-off and sw-on fails. Procedure Learn generates
the following lemmas for these two locations.

Qsw-off ≡ min + x · ratein ≤ y + delay · ratein ≤ max + x · ratein ∨
x = delay ∨ y + delay · ratein < low + x · ratein ,

Qsw-on ≡ min + x · rateout ≤ y + delay · rateout ≤ max + x · rateout ∨
x = delay ∨ high + x · rateout < y + delay · rateout .

Here, we can use either of the two presented strategies for improving the loop
invariant. For instance, location disabling appends

Q1 := xl �= sw-off ∧ xl �= sw-on

to P+. The VCs are then successfully validated with m = 0 and n = 2.
The lemma-separation strategy makes use of the additional lemmas generated

by Learn. Here, we divide each lemma into three parts at the top-most disjunction
operator. Then, the first part of each lemma (denoted Qsw-off,1 and Qsw-on,1)
makes the verification successful. More precisely, if we append

Q2 := (xl = sw-off ⇒ Qsw-off,1) ∧ (xl = sw-on ⇒ Qsw-on,1)

to P+, the validation succeeds with m = 0 and n = 1.

6 Experiments

To confirm the feasibility of our method and to compare it with existing tools,
we applied it to several examples taken from the literature. We also verified the

Inductive Verification of HA with Strongest Postcondition Calculus 149

Table 1. Experimental results.

example locs vars unroll lemmas Mathematica MC tool KeYmaera

WLM (Ex. 1) 4 2 0/1 2 0.85s – 1.8s
LGB 2 3 4/2 3 2.22s 0.004s (H) –
temp. control 4 3 1/1 4 2.82s 0.012s (H) –
bouncing ball 1 2 0/1 1 0.49s – 0.9s
ETCS 2 3 0/1 1 4.48s – 3.1s
highway 9 10 9 0/2 1 0.22s 0.22s (P) –
highway 19 20 19 0/2 1 3.64s – –

examples using the existing tools, HyTech, PHAVer, and KeYmaera, for compar-
ison. The encoded models for the implementation is available at http://www.
ueda.info.waseda.ac.jp/∼ishii/pub/mathybrid/. Table 1 reports the results
of verifying the examples using our implementations. The columns are: the num-
ber of locations; the number of variables; the way loops are unrolled (i.e., m/n);
how many times P+ had to be improved by the main algorithm; the computa-
tional time taken by the BaseCase and Induction procedures implemented inMath-
ematica; the time taken by HyTech (version 1.04f, indicated by “H”) or PHAVer
(version 0.38, indicated by “P”); and the time taken by KeYmaera (version 3.0).
The notation “–” means that the verification failed. The experiments were run on
a 3.4GHz Intel Xeon processor with 4GB of RAM. Note that the computational
time for our method only measures the process after we found the loop invariants,
since their generation requires some human interaction.

6.1 Considered Examples

WLM. Example 1 could be verified with our proposed method in a reasonable
time, as explained in Example 4. In [15], the same instance was handled by
using a mathematical solver manually, whereas our Mathematica implementation
verified the instance by simply following the algorithm. The model-checking
(MC) tools could not handle this instance because of the nonlinear terms caused
by the parameterized flow rate. KeYmaera verified this example but the model
had to be given a loop invariant beforehand [17].

Leaking gas burner (LGB) [3]. Our implementation verified this rectangular
HA consisting of two locations L = {leaking, non-leaking} as follows: Induction
failed in the verification of the first continuous evolution in the two locations.
The lemma generated for leaking was successful. For non-leaking though, we had
to resort to our location-disabling strategy. Then, the verification succeeded with
m = 4 and n = 2. This model was verified efficiently by the MC tools. KeYmaera
could not verify the model, even with the loop invariant.

Temperature control [3]. Our implementation verified this problem after some
preliminary transformations. First, we verified that location shutdown of the
HA is never reached. In order to get a loop invariant, we strengthened the safety
property by appending the negation of the guard condition of the transition edge

http://www.ueda.info.waseda.ac.jp/~ishii/pub/mathybrid/
http://www.ueda.info.waseda.ac.jp/~ishii/pub/mathybrid/

150 D. Ishii, G. Melquiond, and S. Nakajima

to shutdown. The failure of Induction led to a lemma of the form Q1 ∨Q2 ∨Q3,
but setting each sub-lemma as a loop invariant did not make the verification
successful. After some trials, we found that the lemma Q1 ∧ (Q2 ∨ Q3) was a
necessary loop invariant. Finally, the verification succeeded for m = 1 and n = 1.
This model was also verified efficiently by the MC tools. KeYmaera could not
verify the model, even with the loop invariant we had found.

Bouncing ball. This simple nonlinear HA describes a ball with a constant
acceleration. As exemplified in [16], we verified that the height of the ball never
exceeds the initial energy level of the ball, assuming that the reflection coefficient
is smaller than 1. We first attempted the verification under a simple constraint
that specified only the sign of each parameter and generated a lemma equivalent
to the energy consumption constraint in [16]. We succeeded by setting this lemma
as the initial condition and the loop invariant. KeYmaera verified the model given
the energy consumption constraint as the initial condition.

European train control system (ETCS) [16,10,2]. The simple model borrowed
from [16] is about a train at a position z that should not exceed a limit m.
The original model does not have guard conditions so we set them manually
based on the analysis in [2]. We attempted to verify the safety property �z <
m by running the algorithm with m = 0 and n = 1. Verification succeeded
after we obtained a loop invariant from the failure in the validation of VC 1.
This model was also verified in [16,10] by using several strategies for the model
transformation and loop invariant generation. MC tools could not verify the
model because of the nonlinear constraints. KeYmaera verified the model by
setting a specific parameter constraint as described in [16].

Highway [14]. This model concerns an autonomous highway with n vehicles.
We solved instances for n = 9 and n = 19, which were also computed by the
specific method in [14]. PHAVer verified the instance of n = 9 but the compu-
tation for n = 19 failed after consuming the available memory. KeYmaera could
not verify this example.

6.2 Discussions

The MC tools verified three examples quite efficiently. However, our method was
better for the other examples. First, it can handle uncertain parameters. Exam-
ple 1 involves such parameters, as described in Equation (1). In the bouncing ball
example, the initial height, velocity, and reflection coefficient are parameterized.
Although HyTech and PHAVer verify the same problems with constant values
given to the parameters, they cannot verify the instances that involve uncertain
parameters. Second, our method scales better: for the highway example, PHAVer
can handle only the instances up to n = 15 [14].

Although KeYmaera handles various hybrid programs automatically, it did
not succeed on most hybrid programs that were translated from hybrid au-
tomata. Users often need to annotate models with a loop invariant that might
be difficult to extract from the original problem [17]. Otherwise, users need to
interact with the underlying theorem prover to investigate the correct deriva-
tion tree with various deduction rules. Our approach is limited in verification

Inductive Verification of HA with Strongest Postcondition Calculus 151

strategies, i.e., induction and loop unrolling, but the results show that the
approach is effective for various examples in practice.

Although our method requires that the executions are lasso shaped (from
the point of view of the loop invariant P+), many examples in the literature
can be handled. It, however, requires other verification strategies for the case of
compositional and distributed hybrid automata.

7 Related Work

Various tools for the logical analysis of hybrid systems have been proposed.
These methods translate hybrid systems into an underlying verification frame-
work, such as STeP [15], PVS [1], SAL [9], Fluctuat [5], and Event-B [2,21].
However, neither the translation nor the verification is fully automated, because
some invariants must be added manually, and the theorem provers require some
interactions.

Another tool, KeYmaera [18,16], developed by Platzer et al., has been success-
ful in recent years. This tool supports hybrid programs that are annotated using
differential (algebraic) dynamic logic. A dedicated theorem prover verifies the
programs by using a set of proof strategies [16]. With its imperative language,
which is more expressive than HA, and its corresponding logic (which depends
on 141 inference rules [18]), KeYmaera is able to perform various logical analysis
through a variety of strategies, including induction, and can serve as a basis for
a complete verification framework [16]. In contrast, our framework consists of a
light imperative language that is sufficiently expressive to encode HA executions
and a logical framework that is introduced to pursue automated verification with
the induction strategy.

Recently, a logical analysis tool based on the framework of Hoare logic and
relying on infinitesimal variables was proposed [10]. Although its verification
scheme comes with several strategies and an invariant generation technique, its
practical uses are still unclear.

There are techniques for hybrid systems that generate polynomial invariants
by analyzing the executions of a HA via Gröbner basis manipulations [20,19].
These methods could be integrated in the Learn procedure of our framework.

The proposed method also relates to BMC methods. BMC of infinite exe-
cutions based on induction has been proposed (e.g., [6]), but this approach is
applied to discrete systems with continuous states. Most of the BMC tools for
hybrid systems handle only finite executions. This is not the case for Hybrid SAL
Relational Abstracter [22]. This tool is a translator from hybrid systems to dis-
crete systems with a specific abstraction method. Our method directly handles
HA without the abstraction.

8 Conclusions

This paper presents a tool for logical analysis of safety properties of HA, which
is able to deal with a large class of linear and nonlinear HA, in contrast with the
model-checking approach found in major existing tools.

152 D. Ishii, G. Melquiond, and S. Nakajima

Rather than introducing various derivation rules to automatically verify HA,
we are using a simple process inspired from deductive program verification:
strongest postcondition calculus. It allows us to compute logical formulas that,
once proved, guarantee the safety of the HA. Our experiments show that our
method succeeds in a reasonable time on some example HA from literature,
including some that were not solvable with existing tools. The verification pro-
cess amounts to finding loop invariants, as is the case for program verification.
This search for sufficient invariants is guided by the responses from the decision
procedures assisted by Mathematica.

A limitation of our approach is that the invariant generation process still
requires some human interaction. Efficient automated search of invariant gener-
ations is the next challenge for us to tackle. Another direction for further research
would be to explore the relation between our approach and some methods from
model checking, e.g., verification of an over-approximated model [4].

Acknowledgments. The authors are indebted to the anonymous referees for
their helpful comments. This work was partially funded by JSPS (KAKENHI
23-3810).

References

1. Ábrahám-Mumm, E., Steffen, M., Hannemann, U.: Verification of hybrid systems:
Formalization and proof rules in PVS. In: ICECCS, pp. 48–57 (2001)

2. Abrial, J.-R., Su, W., Zhu, H.: Formalizing hybrid systems with Event-B. In:
Derrick, J., Fitzgerald, J., Gnesi, S., Khurshid, S., Leuschel, M., Reeves, S.,
Riccobene, E. (eds.) ABZ 2012. LNCS, vol. 7316, pp. 178–193. Springer, Heidelberg
(2012)

3. Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger, T.A., Ho, P.H., Nicollin,
X., Olivero, A., Sifakis, J., Yovine, S.: The algorithmic analysis of hybrid systems.
Theoretical Computer Science 138(1), 3–34 (1995)

4. Alur, R., Henzinger, T.A., Lafferriere, G., Pappas, G.J.: Discrete abstractions of
hybrid systems. Proc. of the IEEE 88, 971–984 (2000)

5. Bouissou, O., Goubault, E., Putot, S., Tekkal, K., Vedrine, F.: HybridFluctuat:
A static analyzer of numerical programs within a continuous environment. In:
Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 620–626. Springer,
Heidelberg (2009)

6. de Moura, L., Rueß, H., Sorea, M.: Bounded model checking and induction: From
refutation to verification. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS,
vol. 2725, pp. 14–26. Springer, Heidelberg (2003)

7. Dijkstra, E.W.: Guarded commands, nondeterminacy and formal derivation of
programs. Communications of the ACM 18(8), 453–457 (1975)

8. Frehse, G.: PHAVer: Algorithmic verification of hybrid systems past HyTech.
International Journal on Software Tools for Technology Transfer (STTT) 10(3),
263–279 (2008)

9. Ghosh, R., Tiwari, A., Tomlin, C.J.: Automated symbolic reachability analysis;
with application to delta-notch signaling automata. In: Maler, O., Pnueli, A. (eds.)
HSCC 2003. LNCS, vol. 2623, pp. 233–248. Springer, Heidelberg (2003)

Inductive Verification of HA with Strongest Postcondition Calculus 153

10. Hasuo, I., Suenaga, K.: Exercises in nonstandard static analysis of hybrid systems.
In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 462–478.
Springer, Heidelberg (2012)

11. Henzinger, T.A.: The theory of hybrid automata. Verification of Digital and
Hybrid Systems (NATO ASI Series F: Computer and Systems Sciences) 170,
265–292 (2000)

12. Henzinger, T.A., Ho, P.H., Wong-Toi, H.: HyTech: A model checker for hybrid
systems. STTT 1, 110–122 (1997)

13. Hoare, C.A.R.: An axiomatic basis for computer programming. Communications
of the ACM 12(10), 576–580, 583 (1969)

14. Jha, S.K., Krogh, B.H., Weimer, J.E., Clarke, E.M.: Reachability for linear hy-
brid automata using iterative relaxation abstraction. In: Bemporad, A., Bicchi, A.,
Buttazzo, G. (eds.) HSCC 2007. LNCS, vol. 4416, pp. 287–300. Springer,
Heidelberg (2007)

15. Manna, Z., Sipma, H.: Deductive verification of hybrid systems using STeP. In:
Henzinger, T.A., Sastry, S.S. (eds.) HSCC 1998. LNCS, vol. 1386, pp. 305–318.
Springer, Heidelberg (1998)

16. Platzer, A.: Logical Analysis of Hybrid Systems. Springer (2010)
17. Platzer, A.: Guide for KeYmaera hybrid systems verification tool (2012),

http://symbolaris.com/info/KeYmaera-guide.html (accessed January 1, 2013)
18. Platzer, A., Quesel, J.-D.: KeYmaera: A hybrid theorem prover for hybrid systems

(System description). In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR
2008. LNCS (LNAI), vol. 5195, pp. 171–178. Springer, Heidelberg (2008)

19. Rodŕıguez-Carbonell, E., Tiwari, A.: Generating polynomial invariants for
hybrid systems. In: Morari, M., Thiele, L. (eds.) HSCC 2005. LNCS, vol. 3414,
pp. 590–605. Springer, Heidelberg (2005)

20. Sankaranarayanan, S., Sipma, H.B., Manna, Z.: Constructing invariants for
hybrid systems. In: Alur, R., Pappas, G.J. (eds.) HSCC 2004. LNCS, vol. 2993,
pp. 539–554. Springer, Heidelberg (2004)

21. Su, W., Abrial, J.-R., Zhu, H.: Complementary methodologies for developing
hybrid systems with event-B. In: Aoki, T., Taguchi, K. (eds.) ICFEM 2012. LNCS,
vol. 7635, pp. 230–248. Springer, Heidelberg (2012)

22. Tiwari, A.: HybridSAL relational abstracter. In: Madhusudan, P., Seshia, S.A.
(eds.) CAV 2012. LNCS, vol. 7358, pp. 725–731. Springer, Heidelberg (2012)

http://symbolaris.com/info/KeYmaera-guide.html

Priced Timed Automata

and Statistical Model Checking�

Kim Guldstrand Larsen

Computer Science, Aalborg University, Denmark

Abstract. The notions of priced timed automata (PTA) and energy
games (EG) provide useful modeling formalisms for energy-aware and
energy-harvesting embedded systems. We review these formalisms and
a range of associated decision problems covering cost-optimal reachabil-
ity, model-checking and cost-bounded infinite strategies. Decidability of
several of these problems require tight bounds on the number of clocks
and cost variables. Thus, we turn to statistical model checking (SMC),
which has emerged as a highly scalable simulation-based “approximate”
validation technique. In a series of recent work we have developed a nat-
ural stochastic semantics for PTAs allowing for statistical model check-
ing to be performed. The resulting techniques have been implemented
in Uppaal-smc, and applied to the performance analysis of a number
of systems ranging from real-time scheduling, mixed criticality systems,
sensor networks, energy aware systems and systems biology.

1 Introduction

The model of timed automata, introduced by Alur and Dill [2,3], has by now
established itself as a classical formalism for describing the behaviour of real-time
systems. A number of important properties has been shown decidable, including
reachability, model checking and several behavioural equivalences and preorders.

By now, real-time model checking tools such as Uppaal [9,50] and
Kronos [30] are based on the timed automata formalism and on the substantial
body of research on this model that has been targeted towards transforming the
early results into practically efficient algorithms — e.g. [8,14,7,12] — and data
structures — e.g.[49,48,13,13].

More recently, model-checking tools in general and Uppaal in particular have
been applied to solve realistic scheduling problems by a reformulation as reach-
ability problems — e.g. [42,43,1,54]. Aiming at optimal scheduling, priced timed
automata [10,6] have emerged as a useful formalism for formulating and solving a
broad range of resource allocation problems of importance in applications areas
such as, e.g., embedded systems.

� Work partially supported by the VKR Centre of Excellence MT-LAB, the
Sino-Danish Basic Research Center IDEA4CPS.

E.B. Johnsen and L. Petre (Eds.): IFM 2013, LNCS 7940, pp. 154–161, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Priced Timed Automata and Statistical Model Checking 155

2 Priced Timed Automata

Within the model of priced timed automata, the cost variables serve purely as
evaluation functions or observers, i.e., the behaviour of the underlying timed au-
tomatoa may in no way depend on the cost variables. As a consequence of this
restriction – and in contrast to the related models of constant slope and linear
hybrid automata – a number of optimization problems have been shown de-
cidable for priced timed automata including minimun-cost reachability [10,5,20],
optimal (minimum and maximum cost) reachability in multi-priced settings [52].

Dually, computability of cost-optimal infinite schedules have been established
covering optimal infinite schedules in terms of minimal (or maximal) cost per
time ratio in the limit have been obtained in [21,22] and optimal infinite schedules
in terms of minimal (or maximal) discounted total cost [41].

In terms of tool support Uppaal Cora [46,15,16,57] provides an efficient
method for computing cost-optimal or near-optimal solutions to reachability
questions, implementing a symbolic A∗ algorithm based on a new data strucutre
(so-called priced zones) allowing for efficient symbolic state-representation with
additional cost-information.

Cost-extended versions of temporal logics such as CTL (branching-time) and
LTL (linear-time) appear as a natural “generalizations” of the above optimiza-
tion problems. Just as TCTL and MTL provide extensions of CTL and LTL
with time-constrained modalities, WCTL and WMTL are extensions with cost-
constrained modalities interpreted with respect to priced timed automata. Un-
fortunately, the addition of cost now turns out to come with a price: whereas
the model-checking problems for timed automata with respect to TCTL and
MTL are decidable, it has been shown in [31] that model-checking with respect
to WCTL is undecidable for priced timed automata with three clocks or more.
In contrast [26,27] shows that model checking with respect to WCTL is decid-
able under the single clock assumption. Decidability of WCTL for priced timed
automata with two clocks is still an open (and hard) problem.

3 Energy Games

In [25] we began the study of a new class of resource scheduling problems,
namely that of constructing infinite schedules or strategies subject to bound-
ary constraints on the accumulation of resources, so-called energy-games or
energy-schedules.

More specifically, we consider priced timed automata with positive as well as
negative price-rates. This extension allows for the modelling of systems where
resources are not only consumed but also occasionally produced or regained.
In [25] three infinite scheduling problems was considered: lower-bound where the
energy level never must go below zero, interval-bound where energy level must
be maintained within a given interval, and weak upper bound, which does not
prevent energy-increasing behaviour from proceeding once the upper bound is
reached but merely maintains the energy level at the upper bound.

156 K. Guldstrand Larsen

For one-clock priced timed automata both the lower-bound and the lower-
weak-upper-bound problems are shown decidable (in polynomial time) [25],
whereas the interval-bound problem is proved to be undecidable in a game set-
ting. Decidability of the interval-bound problem for one-clock priced timed au-
tomata as well as decidability of all of the considered scheduling problems for
priced timed automata with two or more clocks are still unsettled.

More recently in [24] the decidability of [25] for the lower-bound problem has
been extended to the setting of “1 1

2” priced timed automata and with prices
growing either linearly (i.e. ṗ = k) or exponentially (i.e. ṗ = kp) [23]. By “1 1

2 -
clock” priced timed automata we refer to one-clock priced timed automata aug-
mented with discontinuous (discrete) updates (i.e., p := p + c) of the price on
edges: discrete updates can easily be encoded using a second clock but do not
provide the full expressive power of two clocks. Surprisingly, the presence of
discrete updates makes the lower-bound problem significantly more intricate.
In particular, whereas region-stable strategies suffice in the search for infinite
lower-bound schedules for one-clock priced timed automata, this is no longer the
case when discrete updates are permitted. Not being able to rely on the classical
region construction, the key to our decidability result is the notion of an energy
function providing an abstraction of a path in the priced timed automaton.

In contrast, the existence of interval-constrained infinite runs – where a simple
energy-maximizing strategy does not suffice – have recently been proven unde-
cidable for weighted timed automata with varying numbers of clocks and weight
variables: e.g. two clocks and two weight variables [56] one clock and two weight
variables [40], and two clocks and one weight variable [55]. Also, the interval-
constrained problem is undecidable for weighted timed automata with one clock
and one weight variable in the game setting [25].

Still, the general problem of existence of infinite lowerbound runs for weighted
timed automata has remained unsettled since [25] until the recent paper [28],
which close the problem by proving undecidability undecidable for weighted
timed automata with four or more clocks. The same paper also considers
the variant where only the existence of time-bounded runs are required. In
particular it is shown that this restriction makes the problem decidable and
NEXPTIME-complete

4 Statistical Model Checking

Statistical Model Checking (SMC) [53,45,58,59,44] is an approach that has
recently been proposed as new validation technique for large-scale, complex
systems. The core idea of SMC is to conduct some simulations of the system,
monitor them, and then use statistical methods (including sequential
hypothesis testing or Monte Carlo simulation) in order to decide with some de-
gree of confidence whether the system satisfies the property or not. By nature,
SMC is a compromise between testing and classical formal method techniques.
Simulation-based methods are known to be far less memory and time intensive
than exhaustive ones, and are some times the only option.

Priced Timed Automata and Statistical Model Checking 157

In a series of recent works [39,38], we have investigated the problem of
Statistical Model Checking for networks of Priced Timed Automata (PTAs),
being timed automata, whose clocks can evolve with different rates, while 1 be-
ing used with no restrictions in guards and invariants. In [38], we have proposed a
natural stochastic semantics for such automata, which allows to perform statisti-
cal model checking. Our work has been implemented in Uppaal-smc, providing
a new statistical model checking engine for the tool Uppaal. Uppaal-smc relies
on a series of extensions of the statistical model checking approach generalized
to handle real-time systems and estimate undecidable problems. Uppaal-smc
comes together with a rich modeling and specification language [33,32], as well
as a friendly user interface that allows a user to specify complex problems in an
efficient manner as well as to get feedback in the form of probability distribu-
tions and compare probabilities to analyze performance aspects of systems. Also,
distributed implementations of the various statistical model checking algorithms
has been given with demonstrated linear speed-up [34].

Most recently, we have extendedUppaal-smc to networks of stochastic hybrid
automata, allowing clock rates to depend not only on values of discrete variables
but also on the value of other clocks, effectively amounting to ordinary differental
equations. In particular our original race-based stochastic semantics extends to
this setting with the use of Dirac’s delta-functions, to allow for the co-existence of
(time-wise) stochastic and determinstic components. This extension of Uppaal-
smc has already been applied to a wide range of hybrid systems example from
real-time scheduling and mixed criticality systems [36], energy aware systems [35]
and systems biology [37].

Based on the real-time scheduling problem of [36], we have shown how statis-
tical model checking may serve as an indispensable tool for exhibiting concrete
(rare) counter examples witnessing non-schedulability in the setting of stop-
watch automata, where the Uppaal verification engine is over-approximate.

The Uppaal-Cora branch [47,17,57] offers an efficient, agent-based and sym-
bolic engine for solving a large range of optimization problems given their model
as priced timed automata [11]. However, the tool is restricted to models with a
single cost-variable (though extensions have been proposed [51]), with – for de-
cidability – crucial assumption that the cost-variable is only used as an observer
(thus cannot be used in guards or invariants). This assumption is lifted slightly
in the a sequence of recent work on energy timed automata [25,24,29], where the
cost-variable is required to be within given bounds. However, in order to achieve
decidability strong restrictions on the number of clocks and cost variables are
required. We demonstrate how he new SMC engine may provide a competitive
and scalable method opening the possibility for optimization to a wider range
of models.

1 In contrast to the usual restriction of priced timed automata [11,4].

158 K. Guldstrand Larsen

References

1. Abdeddäım, Y., Kerbaa, A., Maler, O.: Task graph scheduling using timed
automata. In: IPDPS, p. 237. IEEE Computer Society (2003)

2. Alur, R., Dill, D.L.: Automata for modeling real-time systems. In: Paterson, M.
(ed.) ICALP 1990. LNCS, vol. 443, pp. 322–335. Springer, Heidelberg (1990)

3. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2),
183–235 (1994)

4. Alur, R., La Torre, S., Pappas, G.: Optimal paths in weighted timed automata.
In: Di Benedetto, M.D., Sangiovanni-Vincentelli, A.L. (eds.) HSCC 2001. LNCS,
vol. 2034, pp. 49–62. Springer, Heidelberg (2001)

5. Alur, R., La Torre, S., Pappas, G.J.: Optimal paths in weighted timed automata.
In: Di Benedetto, M.D., Sangiovanni-Vincentelli, A.L. (eds.) HSCC 2001. LNCS,
vol. 2034, pp. 49–62. Springer, Heidelberg (2001)

6. Alur, R., Torre, S.L., Pappas, G.J.: Optimal paths in weighted timed automata.
In: Benedetto, Sangiovanni-Vincentelli [18], pp. 49–62.

7. Behrmann, G., Bengtsson, J., David, A., Larsen, K.G., Pettersson, P., Yi, W.:
Uppaal implementation secrets. In: Damm, W., Olderog, E.-R. (eds.) FTRTFT
2002. LNCS, vol. 2469, pp. 3–22. Springer, Heidelberg (2002)

8. Behrmann, G., Bouyer, P., Larsen, K.G., Pelánek, R.: Lower and upper bounds
in zone based abstractions of timed automata. In: Jensen, K., Podelski, A. (eds.)
TACAS 2004. LNCS, vol. 2988, pp. 312–326. Springer, Heidelberg (2004)

9. Behrmann, G., David, A., Larsen, K.G.: A tutorial on UPPAAL. In: Bernardo,
M., Corradini, F. (eds.) SFM-RT 2004. LNCS, vol. 3185, pp. 200–236. Springer,
Heidelberg (2004)

10. Behrmann, G., Fehnker, A., Hune, T., Larsen, K.G., Pettersson, P., Romijn,
J., Vaandrager, F.W.: Minimum-cost reachability for priced timed automata. In:
Benedetto, Sangiovanni-Vincentelli [18], pp. 147–161.

11. Behrmann, G., Fehnker, A., Hune, T., Larsen, K.G., Pettersson, P., Romijn,
J., Vaandrager, F.: Minimum-cost reachability for priced timed automata. In:
Di Benedetto, M.D., Sangiovanni-Vincentelli, A.L. (eds.) HSCC 2001. LNCS,
vol. 2034, pp. 147–161. Springer, Heidelberg (2001)

12. Behrmann, G., Hune, T., Vaandrager, F.W.: Distributing timed model checking
- how the search order matters. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000.
LNCS, vol. 1855, pp. 216–231. Springer, Heidelberg (2000)

13. Behrmann, G., Larsen, K.G., Pearson, J., Weise, C., Yi, W.: Efficient timed reach-
ability analysis using clock difference diagrams. In: Halbwachs, N., Peled, D.A.
(eds.) CAV 1999. LNCS, vol. 1633, pp. 341–353. Springer, Heidelberg (1999)

14. Behrmann, G., Larsen, K.G., Pelánek, R.: To store or not to store. In: Hunt Jr.,
W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 433–445. Springer,
Heidelberg (2003)

15. Behrmann, G., Larsen, K.G., Rasmussen, J.I.: Priced timed automata: Algorithms
and applications. In: de Boer, F.S., Bonsangue, M.M., Graf, S., de Roever, W.-P.
(eds.) FMCO 2004. LNCS, vol. 3657, pp. 162–182. Springer, Heidelberg (2005)

16. Behrmann, G., Larsen, K.G., Rasmussen, J.I.: Optimal scheduling using priced
timed automata. SIGMETRICS Performance Evaluation Review 32(4), 34–40
(2005)

17. Behrmann, G., Larsen, K.G., Rasmussen, J.I.: Optimal scheduling using priced
timed automata. SIGMETRICS Performance Evaluation Review 32(4), 34–40
(2005)

Priced Timed Automata and Statistical Model Checking 159

18. Di Benedetto, M.D., Sangiovanni-Vincentelli, A.L. (eds.): 4th International Work-
shop on Hybrid Systems: Computation and Control, HSCC 2001. LNCS, vol. 2034.
Springer, Heidelberg (2001)

19. Berry, G., Comon, H., Finkel, A. (eds.): 13th International Conference on Computer
Aided Verification, CAV 2001. LNCS, vol. 2102. Springer, Heidelberg (2001)

20. Bouyer, P., Brihaye, T., Bruyère, V., Raskin, J.-F.: On the optimal reachability
problem on weighted timed automata. Formal Methods in System Design 31(2),
135–175 (2007)

21. Bouyer, P., Brinksma, E., Larsen, K.G.: Staying alive as cheaply as possible. In:
Alur, R., Pappas, G.J. (eds.) HSCC 2004. LNCS, vol. 2993, pp. 203–218. Springer,
Heidelberg (2004)

22. Bouyer, P., Brinksma, E., Larsen, K.G.: Optimal infinite scheduling for multi-priced
timed automata. Formal Methods in System Design 32(1), 2–23 (2008)

23. Bouyer, P., Fahrenberg, U., Larsen, K.G., Markey, N.: Timed automata with
observers under energy constraints (2009) (under submission)

24. Bouyer, P., Fahrenberg, U., Larsen, K.G., Markey, N.: Timed automata with
observers under energy constraints. In: Johansson, K.H., Yi, W. (eds.) HSCC,
pp. 61–70. ACM (2010)

25. Bouyer, P., Fahrenberg, U., Larsen, K.G., Markey, N., Srba, J.: Infinite runs in
weighted timed automata with energy constraints. In: Cassez, F., Jard, C. (eds.)
FORMATS 2008. LNCS, vol. 5215, pp. 33–47. Springer, Heidelberg (2008)

26. Bouyer, P., Larsen, K.G., Markey, N.: Model-checking one-clock priced timed
automata. In: Seidl, H. (ed.) FOSSACS 2007. LNCS, vol. 4423, pp. 108–122.
Springer, Heidelberg (2007)

27. Bouyer, P., Larsen, K.G., Markey, N.: Model checking one-clock priced timed au-
tomata. Logical Methods in Computer Science 4(2:9) (June 2008)

28. Bouyer, P., Larsen, K.G., Markey, N.: Lower-bound constrained runs in weighted
timed automata. In: QEST, pp. 128–137. IEEE Computer Society (2012)

29. Bouyer, P., Larsen, K.G., Markey, N.: Lower-bound constrained runs in weighted
timed automata. In: Proceedings of the 9th International Conference on Quanti-
tative Evaluation of Systems, QEST 2012. IEEE Computer Society Press, London
(September 2012) (to appear)

30. Bozga, M., Daws, C., Maler, O., Olivero, A., Tripakis, S., Yovine, S.: Kronos: A
model-checking tool for real-time systems. In: Vardi, M.Y. (ed.) CAV 1998. LNCS,
vol. 1427, pp. 546–550. Springer, Heidelberg (1998)

31. Brihaye, T., Bruyère, V., Raskin, J.-F.: Model-checking for weighted timed au-
tomata. In: Lakhnech, Y., Yovine, S. (eds.) FORMATS 2004/FTRTFT 2004.
LNCS, vol. 3253, pp. 277–292. Springer, Heidelberg (2004)

32. Bulychev, P., David, A., Larsen, K., Legay, A., Li, G., Poulsen, D.: Rewrite-based
statistical model checking of wmtl (under submission)

33. Bulychev, P., David, A., Guldstrand Larsen, K., Legay, A., Li, G., Bøgsted Poulsen,
D., Stainer, A.: Monitor-based statistical model checking for weighted metric tem-
poral logic. In: Bjørner, N., Voronkov, A. (eds.) LPAR-18 2012. LNCS, vol. 7180,
pp. 168–182. Springer, Heidelberg (2012)

34. Bulychev, P.E., David, A., Larsen, K.G., Mikucionis, M., Legay, A.: Distributed
parametric and statistical model checking. In: Barnat, J., Heljanko, K. (eds.)
PDMC. EPTCS, vol. 72, pp. 30–42 (2011)

35. David, A., Du, D., Larsen, K.G., Mikučionis, M., Skou, A.: An evaluation frame-
work for energy aware buildings using statistical model checking. Science China,
Information Sciences (2012) (submitted)

160 K. Guldstrand Larsen

36. David, A., Larsen, K.G., Legay, A., Mikučionis, M.: Schedulability of herschel-
planck revisited using statistical model checking. In: Margaria, T., Steffen, B. (eds.)
ISoLA 2012, Part II. LNCS, vol. 7610, pp. 293–307. Springer, Heidelberg (2012)

37. David, A., Larsen, K.G., Legay, A., Mikučionis, M., Poulsen, D.B., Sedwards,
S.: Runtime verification of biological systems. In: Margaria, T., Steffen, B. (eds.)
ISoLA 2012, Part I. LNCS, vol. 7609, pp. 388–404. Springer, Heidelberg (2012)

38. David, A., Larsen, K.G., Legay, A., Mikučionis, M., Poulsen, D.B., van Vliet, J.,
Wang, Z.: Statistical model checking for networks of priced timed automata. In:
Fahrenberg, U., Tripakis, S. (eds.) FORMATS 2011. LNCS, vol. 6919, pp. 80–96.
Springer, Heidelberg (2011)

39. David, A., Larsen, K.G., Legay, A., Mikučionis, M., Wang, Z.: Time for statistical
model checking of real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.)
CAV 2011. LNCS, vol. 6806, pp. 349–355. Springer, Heidelberg (2011)

40. Fahrenberg, U., Juhl, L., Larsen, K.G., Srba, J.: Energy games in multiweighted
automata. In: Cerone, A., Pihlajasaari, P. (eds.) ICTAC 2011. LNCS, vol. 6916,
pp. 95–115. Springer, Heidelberg (2011)

41. Fahrenberg, U., Larsen, K.G.: Discount-optimal infinite runs in priced timed au-
tomata. Electr. Notes Theor. Comput. Sci. (2008) (to be published)

42. Fehnker, A.: Scheduling a steel plant with timed automata. In: RTCSA,
pp. 280–286. IEEE Computer Society (1999)

43. Hune, T., Larsen, K.G., Pettersson, P.: Guided synthesis of control programs using
uppaal. Nord. J. Comput. 8(1), 43–64 (2001)

44. Katoen, J.-P., Zapreev, I.S., Hahn, E.M., Hermanns, H., Jansen, D.N.: The ins and
outs of the probabilistic model checker mrmc. Perform. Eval. 68(2), 90–104 (2011)

45. Laplante, S., Lassaigne, R., Magniez, F., Peyronnet, S., de Rougemont, M.:
Probabilistic abstraction for model checking: An approach based on property
testing. ACM TCS 8(4) (2007)

46. Larsen, K.G., Behrmann, G., Brinksma, E., Fehnker, A., Hune, T., Pettersson,
P., Romijn, J.: As cheap as possible: Efficient cost-optimal reachability for priced
timed automata. In: Berry, et al. (eds.) [19], pp. 493–505.

47. Larsen, K.G., Behrmann, G., Brinksma, E., Fehnker, A., Hune, T., Pettersson,
P., Romijn, J.: As cheap as possible: Efficient cost-optimal reachability for priced
timed automata. In: Berry, et al. (eds.) [19], pp. 493–505.

48. Larsen, K.G., Larsson, F., Pettersson, P., Yi, W.: Efficient verification of real-time
systems: compact data structure and state-space reduction. In: IEEE Real-Time
Systems Symposium, pp. 14–24. IEEE Computer Society (1997)

49. Larsen, K.G., Pearson, J., Weise, C., Yi, W.: Clock difference diagrams. Nord. J.
Comput. 6(3), 271–298 (1999)

50. Larsen, K.G., Pettersson, P., Yi, W.: Uppaal in a nutshell. STTT 1(1–2), 134–152
(1997)

51. Larsen, K.G., Rasmussen, J.I.: Optimal conditional reachability for multi-priced
timed automata. In: Sassone, V. (ed.) FOSSACS 2005. LNCS, vol. 3441,
pp. 234–249. Springer, Heidelberg (2005)

52. Larsen, K.G., Rasmussen, J.I.: Optimal reachability for multi-priced timed au-
tomata. Theor. Comput. Sci. 390(2-3), 197–213 (2008)

53. Legay, A., Delahaye, B., Bensalem, S.: Statistical model checking: An overview.
In: Barringer, H., et al. (eds.) RV 2010. LNCS, vol. 6418, pp. 122–135. Springer,
Heidelberg (2010)

54. Maler, O.: Timed automata as an underlying model for planning and scheduling.
In: Fox, M., Coddington, A.M. (eds.) AIPS Workshop on Planning for Temporal
Domains, pp. 67–70 (2002)

Priced Timed Automata and Statistical Model Checking 161

55. Markey, N.: Verification of Embedded Systems – Algorithms and Complexity. PhD
thesis, Ecole Normale Superieure de Chachan (2011)

56. Quaas, K.: On the interval-bound problem for weighted timed automata. In:
Dediu, A.-H., Inenaga, S., Mart́ın-Vide, C. (eds.) LATA 2011. LNCS, vol. 6638,
pp. 452–464. Springer, Heidelberg (2011)

57. Rasmussen, J.I., Behrmann, G., Larsen, K.G.: Complexity in simplicity:
Flexible agent-based state space exploration. In: Grumberg, O., Huth, M. (eds.)
TACAS 2007. LNCS, vol. 4424, pp. 231–245. Springer, Heidelberg (2007)

58. Sen, K., Viswanathan, M., Agha, G.: Statistical model checking of black-box prob-
abilistic systems. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114,
pp. 202–215. Springer, Heidelberg (2004)

59. Younes, H.L.S., Simmons, R.G.: Probabilistic verification of discrete event systems
using acceptance sampling. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS,
vol. 2404, pp. 223–235. Springer, Heidelberg (2002)

Improved Reachability Analysis in DTMC
via Divide and Conquer

Songzheng Song1, Lin Gui1, Jun Sun2, Yang Liu3, and Jin Song Dong1

1 National University of Singapore
{songsongzheng,lin.gui}@nus.edu.sg, dongjs@comp.nus.edu.sg

2 Singapore University of Technology and Design
sunjun@sutd.edu.sg

3 Nanyang Technological University
yangliu@ntu.edu.sg

Abstract. Discrete Time Markov Chains (DTMCs) are widely used to model
probabilistic systems in many domains, such as biology, network and commu-
nication protocols. There are two main approaches for probability reachability
analysis of DTMCs, i.e., solving linear equations or using value iteration. How-
ever, both approaches have drawbacks. On one hand, solving linear equations
can generate accurate results, but it can be only applied to relatively small mod-
els. On the other hand, value iteration is more scalable, but often suffers from
slow convergence. Furthermore, it is unclear how to parallelize (i.e., taking ad-
vantage of multi-cores or distributed computers) these two approaches. In this
work, we propose a divide-and-conquer approach to eliminate loops in DTMC
and hereby speed up probabilistic reachability analysis. A DTMC is separated
into several partitions according to our proposed cutting criteria. Each partition
is then solved by Gauss-Jordan elimination effectively and the state space is re-
duced afterwards. This divide and conquer algorithm will continue until there is
no loop existing in the system. Experiments are conducted to demonstrate that
our approach can generate accurate results, avoid the slow convergence problems
and handle larger models.

1 Introduction

As an automatic verification technique, model checking [7] has been applied to a vari-
ety of domains from hardware to software, and from concurrent systems to probabilis-
tic systems. Different from traditional concurrent systems, probabilistic systems have
stochastic characteristics in their behaviors, which means some behaviors follow spe-
cific probabilistic distributions. This kind of systems widely exist in many domains,
from communication protocols to biology systems. For example, in the randomized
leader election protocol [9], multiple processes want to elect one leader. Each process
will first randomly choose a natural number from a specific range as its id. The process
with a unique highest id will be elected as a leader. If several processes have the same
highest id, the selection procedure will repeat. Therefore uniform distribution is neces-
sary in this system. As a result, model checking probabilistic systems is an important
topic in formal verification.

E.B. Johnsen and L. Petre (Eds.): IFM 2013, LNCS 7940, pp. 162–176, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Improved Reachability Analysis in DTMC via Divide and Conquer 163

Discrete Time Markov Chain (DTMC) is a widely used formalism in probabilis-
tic model checking. The difference between DTMC and traditional Labeled Transition
System (LTS) is that non-determinism in LTS is replaced by probabilistic choices in
DTMC. In a DTMC, at each step the transition from one state to another must fol-
low specific probability distributions, and for each state there is exactly one proba-
bility distribution for the successor states. Reachability analysis plays a key role in
DTMC verification, e.g., it is used to decide the probability of reaching certain disas-
trous state. Verification of properties such as Probabilistic Computational Tree Logic
(PCTL) and Linear Temporal Logic (LTL) can be reduced to the reachability analy-
sis problem [5]. E.g., for LTL properties a product construction with a deterministic
Rabin/Muller-automaton is needed to obtain the target states. Therefore in this work we
focus on improving reachability analysis in DTMC verification.

Given the transition relation of a DTMC, the transition probability matrix from one
state to another can be built. After the target states are decided, each state in the matrix
can be represented by a variable, which means the probability of reaching the target
states from this state. Next, there are mainly two approaches to calculate the proba-
bility from initial states to the targets. One is solving linear equations directly. In this
method, variables representing intermediate states (which are not target or initial) are
eliminated gradually through equations operation, and finally variables representing the
initial states’ probability of reaching targets can be solved. The other approach is using
value iteration method, which works by finding a better approximation iteratively until
certain stopping criteria are satisfied. The approach based on solving linear equations
is straightforward to understand and it guarantees to deliver accurate result. However,
since we need one variable for each state in the system, a lot of variables are needed
for large systems whereas state-of-the-art linear solvers are limited to thousands of vari-
ables only. Therefore the applicability of this approach is limited to small-scale systems.
On the other hand, the value iteration method tries to find fix-points iteratively, and it
has relatively better performance in handling systems with a large number of states.
Therefore it is more popular in probabilistic model checkers such as PRISM [12] and
MRMC [10,11]. However, this approach also has its drawback: slow convergence, i.e.,
it may take a large number of iterations before the approximations converge to a cer-
tain value. The phenomenon exists when there are complicated loops existing in the
probabilistic systems, although the state space of such systems may not be very huge.
The number of iterations is related to the subdominant eigenvalue of the probability
transition matrix [18].

To tackle the above-mentioned problems, in this work we propose a new approach
to verify DTMC models, especially for the ones with loops using a divide-and-conquer
strategy. Instead of directly calculating the probability from initial states to targets, we
divide the whole state space into several partitions, and solve them individually to elimi-
nate loops. Afterwards, the remaining acyclic DTMC can be solved efficiently via value
iteration method.

As we mentioned above, the slow convergence problem in value iteration comes from
loops. Therefore, the first step of our approach is finding Strongly Connected Compo-
nents (SCCs). This SCC-based approach is similar to previous work such as [3,6,1,13].
However, instead of using SCC’s topology order [6,13], we solve each SCC indepen-
dently by calculating the new transition probability from input states to output states of

164 S. Song et al.

the SCC, which is similar to work [3,1]. These new transitions are denoted as abstract
transitions since SCCs are abstracted by transitions from input states to output states.
However, [1] focuses on counterexample generation and abstracts SCCs via iteratively
finding the smallest SCCs. On the contrary, we divide each SCC having a large number
of states to several smaller partitions. For each partition, abstract transitions from its
input to output are calculated via solving linear equations. Here we use Gauss-Jordan
elimination [2]. Further, the states in each partition which are not input states will be
removed, and thus the states in the SCC can be reduced. Afterwards, the new SCC
is ready for next iteration of divide and conquer. This procedure for each SCC will
be done iteratively until any of the following three criteria is satisfied. First, there is
no more loop in the reduced SCC. Then this part will be left alone since it is already
acyclic. Second, the number of remaining states in reduced SCC is small enough to be
solved via a linear solver. Third, the last iteration does not reduce any states. In the sec-
ond and third scenarios, the final SCC will be solved via linear equation again, and final
abstract transitions will be generated. After all loops in SCCs are resolved, the whole
DTMC becomes acyclic, and value iteration is used to calculate the probability from
initial states to targets. Since the abstract transitions from each partition’s input states to
output states are determined by the partition itself and independent to other partitions,
multi-cores or distributed computers can be straightforwardly used here to solve each
partition simultaneously, which makes the verification faster.

Contributions Compared with previous work, our contribution is threefold, as we sum-
marize below.

1. A new divide-and-conquer approach for DTMC reachability analysis is proposed,
which combines solving linear equations and value iteration methods together and
tackles the problem that huge loops make the DTMC verification inefficient.

2. Based on the fact that each SCC and even each group in one SCC is independent
from others, we use parallel computation to further speed up the verification.

3. The new approach has been implemented into our model checking framework PAT,
and several representative experiments are conducted to show the effectiveness of
our approach.

Organization The paper is structured as follows. Section 2 recalls relative background.
In Section 3, we introduce our algorithm in details. The evaluation is reported in Sec-
tion 4. Section 5 surveys related work and concludes the paper.

2 Preliminaries

In this section, we recall some background knowledge, which is relevant in the rest of
this paper.

2.1 Discrete Time Markov Chains

Discrete Time Markov Chains (DTMCs) are widely used in modeling stochastic sys-
tems. Meanwhile, time requirement in DTMC is discrete. Without loss of generality,

Improved Reachability Analysis in DTMC via Divide and Conquer 165

s0 s1 s2 s5

s3 s4

1

0.5

0.5

0.5

0.5 0.5

0.5

1

1

Fig. 1. An Example of SCC

we have the following two assumptions in this work. 1) There is only one initial state in
the whole system and 2) DTMC is deadlock free. It is known that a deadlock state in a
DTMC can add a self-loop having probability 1 without affecting the calculation result.
The formal definition of DTMC is as follows.

Definition 1. A Discrete Time Markov Chain is a tupleM = (S, sinit, Tr, AP, L) where
S is a set of states; sinit ∈ S is the initial state of the system; Tr : S×S → [0, 1] is the
probability transition relation between states, which satisfies ∀s ∈ S,Σs′∈STr(s, s

′) =
1; AP is a set of atomic propositions and L: S → 2AP is a labeling function.

An infinite or a finite path inM is defined as a sequence of states π = 〈s0, s1, · · · 〉 or
π = 〈s0, s1, · · · , sn〉 respectively, such that ∀i ≤ 0 (for finite paths, i ∈ [0, n − 1]),
Tr(si, si+1) > 0. The probability of exhibiting π in M is PM(π) = Tr(s0, s1) ×
Tr(s1, s2)×Tr(s2, s3)×· · · . Given a set of pathsΠ ofM,PM(Π) =

∑
π∈Π PM(π).

A set of states C ⊆ S is called connected in M iff ∀s, s′ ∈ C, there is a finite
path π = 〈s0, s1, · · · , sn〉 satisfying s0 = s ∧ sn = s′ ∧ ∀i ∈ [0, n], si ∈ C. Strongly
Connecte Components (SCCs) are those maximal sets of states which are mutually
connected. An SCC is called trivial if it just has one state without a self-loop. An SCC
is nontrivial iff it is not trivial. A DTMC is acyclic iff it only has trivial SCCs. Note
that one state can only be in one SCC. In other words, SCCs are disjoint. In addition, we
define an adjacent group (AG) D ⊆ S such that ∃s ∈ D, ∀s′ ∈ D ∧ s′ �= s, there is a
finite path π = 〈s0, s1, · · · , sn〉 satisfying s0 = s∧sn = s′∧∀i ∈ [0, n], si ∈ D, and s
is called root state in D. In the following, we refer to adjacent groups simply as groups.
The difference between these conceptions is illustrated by the example in Figure 1.

In Figure 1, {s1, s2}, {s1, s2, s3} are connected; {s0}, {s4}, {s5} and {s1, s2, s3}
are the SCCs in the model; AGs are more complex, for example, {s0, s1, s2} and
{s1, s2, s5} are AGs and there are other possible combinations. Note that a set of states
like {s0, s1, s4} is not a valid AG because there is no root state. Connected sub-
graphs are AGs but the reverse is not always true, e.g., {s0, s1, s2} is an AG but not
a connected subgraph.

Similar to [3,1], in a DTMCM = (S, sinit, T r, AP, L), given a group of states D ⊆
S, the input states of D are defined as the states in D having incoming transitions from
states outside D; the output states of D are defined as states outside D which have
incoming transitions from states in D. Formal definitions are as follows.

166 S. Song et al.

s0 s1 s2 s5

s3 s4

1

0.5

0.5

0.5

0.5 0.5

0.5

1

1 ⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

p0 = p1
p1 = 0.5× p2 + 0.5× p3
p2 = 0.5× p1 + 0.5× p5
p3 = 0.5× p2 + 0.5× p4
p4 = 1
p5 = 0

Fig. 2. Reachability Analysis

Inp(D) = {s′ ∈ D | ∃s ∈ S\D.T r(s, s′) > 0}1

Out(D) = {s′ ∈ S\D | ∃s ∈ D.T r(s, s′) > 0}

2.2 Reachability Analysis

One critical question for quantitative analysis of DMTC models is to compute the prob-
ability of reaching a certain set of target states G from the initial state. Here ♦G is used
to denote the event of reaching G, and PM(sinit |= ♦G) represents the probability that
G can be reached from initial state in a DTMCM. Here PM can be written as P ifM
is clear. Let π = 〈s0, s1, · · · , sn〉 represent any finite path inM. Then we have

P(sinit |= ♦G) = P({π | s0 = sinit ∧ ∃i ∈ [0..n], si ∈ G∧ ∀j ∈ [0..i− 1], sj /∈ G})

Given the transition relation Tr ofM, there are two approaches to calculate P(sinit |=
♦G). One is solving linear equations, while the other is using value iteration. We use
pi to represent the probability from state si to the targets. In the following we use the
example in Figure 2 to show how these two approaches work. Note that state s4 is the
only target state, denoted by double cycles.

Solving Linear Equations From the model, the transition matrix between states can
be built. For example, p1 = 0.5 × p2 + 0.5 × p3 and p0 = p1. Since s4 is target, p4
= 1. s5 cannot reach target obviously, therefore p5 = 0. From these equations, each
pi can be solved through matrix operations. Although this approach can get accurate
result, it has drawbacks. Because each state is represented by a variable, there may be a
huge number of variables in large scale systems. The state-of-the-art linear solvers are
limited to handle thousands of variables, therefore linear equation approach may not be
scalable.

Using Value Iterations In this approach, pi is calculated iteratively. Assume pki is an
approximation of pi after the k-th iteration. Starting from the target state s4, in k-th
iteration we update the probability of states which could reach s4 in exactly k steps.
Obviously, ∀i ∈ [0, 3], p0i = 0. As pk4 = 1 and pk5 = 0 for any k, k is ignored in these two
states. In the first iteration, p3 can be updated, and p13 = {0.5× p02+0.5× p4} = 0.5; in

1 If sinit ∈ D, then sinit ∈ Inp(D).

Improved Reachability Analysis in DTMC via Divide and Conquer 167

the second iteration, p1 is updated since s1 reaches s3 in one step. It is trivial to show
p21 = {0.5×p13+0.5×p12} = 0.25. In the third iteration, both p0 and p2 can be updated
since they can reach s1 in one step. Afterwards, p3 is updated again because of the
update of p2. Iteratively, pi in the long run can be calculated. A user-defined threshold
is usually necessary to terminate the calculation, according to the desired precision. The
result of pi will be approximated gradually. This approach has better scalability than the
linear equations method, so it is more popular in existing model checkers. However, the
existence of loops may make the convergence slow. The probability of each state in
SCCs will be updated many times, which means a large number of iterations may be
needed before the results satisfy the terminating criteria.

2.3 States Abstraction and Gauss-Jordan Elimination

Here we follow the idea of [1]. Given a DTMCM = (S, sinit, T r, AP, L) and a group
of states D ⊆ S, D can be abstracted by calculating the transition probability from
Inp(D) to Out(D). According to the proof in [1], the abstraction of any arbitrary
set of states is independent from others, and the abstract transitions do not affect the
probability of reaching target states G.

One example of the abstraction is in Figure 3. Figure 3 (a) is the original DTMC,
which has one SCC D = {s1, s2, s3}. Inp(D) = {s1} and Out(D) = {s4, s5}.
In order to abstract D2, the probability from Inp(D) to each state sout ∈ Out(D)
should be calculated. Theoretically, the calculation from an SCC’s inputs to outputs
can be solved via linear equations or value iteration approaches3. However, for value
iteration approach, since there could be several output states in Out(D), we have to
separately calculate the probability from input states to each output state. If there are
many output states, this method could be inefficient. In addition, the existence of loops
still causes slow convergence issue. Furthermore, using value iteration, there will be
some errors because of the user-defined precision, but there is no way to know the error
bounds. Therefore, we use a specific linear equation solving technique: Gauss-Jordan
elimination [2] to do the abstraction.

Gauss-Jordan elimination is an algorithm for getting matrices in reduced row echelon
form that placing zeros above and below each pivot [2]. Here, we briefly introduce how
it works in our setting.

Assume there are m states in a set of states, say D, and |Out(D)| = n. Then two
matrices A and B, containing linear equations information of all transitions in D, are
first introduced as follows.

A(i, j) =

{
1, if i = j;
−Tr(i, j), otherwise.

B(i, k) = −Tr(i, k).

Here,A is an m×m square matrix.A(i, j) is a negative value of probability of transition
from ith state to jth state in D if i �= j. The diagonal elements of A are filled by 1.

2 Here we take an SCC as an example. Actually this abstraction can be applied to arbitrary set
of states, according to [1].

3 Different from our previous discussion which focuses the calculation from the initial state to
targets, here we discuss the probability from input states to every output state of an SCC.

168 S. Song et al.

s0 s1 s2 s5

s3 s4

1

0.5

0.5

0.5

0.5 0.5

0.5

1

1

s0 s1 s5

s4

1

0.4

0.6

1

1

(a) Before Abstraction (b) After Abstraction

Fig. 3. States Abstraction via Gauss-Jordan Elimination

This records the transition relationship within D. B is an m × n matrix to record the
transition relationship fromD to Out(D). k represents the kth state in Out(D).

Next, augmenting the square matrix A with matrix B, we will have [A | B]. Gauss-
Jordan elimination on [A | B] will then produces [I | C]. Here, I is the identity matrix
with 1s on the main diagonal and 0s elsewhere. The new transition probability e.g.,
Tr′(i, k), stores the transition probability from ith state in D and kth state in Out(D),
which is actually−C(i, k). Now take Figure 3 (a) as an example. Its [A | B] and result-
ing [I | C] are listed as follows. In this example, A(i, j) corresponds to Tr(si+1, sj+1)
and B(i, k) indicates Tr(si+1, sk+4).

[A|B] =

⎡⎣ 1 −0.5 −0, 5
0 1 −0.5
0 −0.5 1

∣∣∣∣∣∣
0 0
0 −0.5
−0.5 0

⎤⎦ ; [I|C] =

⎡⎣ 1 0 0
0 1 0
0 0 1

∣∣∣∣∣∣
−0.4 −0.6
−0.2 −0.8
−0.6 −0.4

⎤⎦
Here the transitions from all the states in D to Out(D) are obtained. Note that those
states which are not in Inp(D) will be removed. Therefore we are just interested in the
new transitions from Inp(D) to Out(D), which are

Tr′(s1, s4) = 0.4; Tr′(s1, s5) = 0.6;

We can obtain that p1 = 0.4× p4 + 0.6× p5 in the abstracted DTMC, which is shown
in Figure 3 (b). Given a group of states D, this abstraction procedure is defined as a
method Abs(D).

Note that in practice, most transition matrices in probabilistic model checking have a
very sparse structure that contains a large number of zeros. We adopt a compressed-row
representation [14] as a data structure for matrices in Gauss-Jordan elimination.

3 Divide and Conquer Approach

From the analysis in Section 2, for a large DTMC with complicated loop structure, both
linear equations and value iteration method are ineffective, even unworkable. In this
section, we propose a divide and conquer approach which tackles the above-mentioned
problem. Our main idea is similar to work [3,1], which transfers the original DTMC to
an acyclic one by abstracting SCCs recursively so as to reduce the number of state and
loops.

Improved Reachability Analysis in DTMC via Divide and Conquer 169

Algorithm 1. Divide and Conquer Approach
input : A DTMC M = (S, sinit, T r,AP,L), target states G ⊆ S and a Bound B
output: P(sinit |= ♦G)

1 Let C be the set of all nontrivial SCCs in M;
2 while |C| > 0 do
3 Let D ∈ C;
4 if |D ≤ B| ∨Out(D) ≤ 1 then
5 Abs(D) and C ← C\D
6 else
7 Divide D into a set of AGs denoted as A;
8 for each E ∈ A do Abs(E);
9 Let D′ be the set of remaining states in D;

10 if |D′| ≤ B ∨ |D′| = |D| then
11 Abs(D′) and C ← C\D
12 else
13 Let CD′ be the set of all nontrivial SCCs in D′;
14 C ← (C\D) ∪ CD′ ;

15 return VI(M,G);

Intuitively, our approach divides large SCCs into smaller partitions, each of which
will be solved via Gauss-Jordan elimination independently. Through this approach,
loops will be eliminated. Afterwards, value iteration method is used to decide the final
probability of reaching targets. In the following, we introduce our algorithm in details.

3.1 Overall Algorithm

Given a DTMC M(S, sinit, T r, AP, L) and target states G ⊆ S, the probability of
reaching G, denoted as P(sinit |= ♦G), can be solved by Algorithm 1. Note that B
is an input parameter, which indicates SCCs having more than B states should be di-
vided. Abs(K) is defined in Section 2.3. VI(M, G) indicates calculating the probabil-
ity of reaching G via value iteration. The procedure of the algorithm is explained in the
following.

– The first step is to find all SCCs C inM by Tarjan’s approach [17], and their input
and output states are recorded as well. This is captured by Line 1.

– For each SCC D ∈ C, we will first check whether |D| exceeds B or whether
|Out(D)| > 1. If not, Abs(D) will be executed directly. States in D but not in
Inp(D) will be removed. AfterwardsD will be removed from C, as shown in Lines
4-5. The reason why we directly abstract cases |Out(D)| ≤ 1 is as follows.
• If |Out(D)| = 0, D has no outgoing transitions, then no matter whetherD has

target states or not, we do not need to solve D. If D ∩G = φ, it is obvious that
all states in D has probability 0 to reach G; otherwise, it is trivial to show that
all states in D has probability 1 to reach G.

170 S. Song et al.

s0 s1

s2

s3

s4

1

1 1

1

1
s0 s1

s2

s3

s4

1 1

1

1

1

(a) Before Abstraction (b) After Abstraction

Fig. 4. Destruction of SCC during Abstraction

• If |Out(D)| = 1, assume sout is the output state. All paths entering D will
leave it eventually. Therefore, for every si ∈ Inp(D), the probability of paths
entering D via si, staying in D and exiting D to sout should be 1. So D can be
abstracted directly.

– Lines 7-14 describe the case when D needs to be divided, i.e., when the SCC has
more than B states. First we divideD into several groups based on some heuristics,
each of which has a reasonably small number of state, i.e., less than B. Therefore,
for each group E we use Abs(E) to get the abstraction. Here we choose AG as
the structure of each partition, because the existence of the root state, say sr, may
remove the most states after abstraction. In the extreme case where Inp(E) = {sr},
all states in E except sr can be removed.

– By removing the states which are not input states of any E , the number of states in
D is often (not always) reduced. Line 10 checks two situations. 1) the size of D′ is
smaller than or equal to B, and 2) there is no reduction for D in this iteration. If 1)
is true, then there is no need to divideD′ again, and Abs(D′) is executed directly. If
2) is true, i.e., no state is reduced after divide and conquer, the main reason should
be that each state in D has a lot of pre-states. Therefore every state in one group
is an input state and cannot be removed. In this case, D′ should also be abstracted.
Afterwards, D is removed from C. If 1) and 2) are both false, Lines 13-14 will be
executed.

– Because of the abstraction, D may not be an SCC now. An example is shown in
Figure 4. On the left hand side, D = {s1, s2, s3}; if we group s1 and s2 together,
then s3 is this group’s output. It is easy to get the abstract transitions between them,
as shown in right hand side. Because both s1 and s2 are input states, no state is
removed. However, it is obvious that D′ = {s1, s2, s3} is not an SCC anymore.
Tarjan’s algorithm is used again to find new SCCs in the D′, captured by Line 13.
New SCCs will be added to C for another iteration.

– When the iteration terminates, there is only trivial SCCs inM now; in other words,
M is acyclic. Value iteration approach can be used to calculate the probability from
the initial state to targets efficiently, and this is captured by Line 15.

As we mentioned in Section 2.3, the iterative abstraction will not affect the final result
of the probability calculation. The following theorem establishes that the algorithm is
always terminating.

Theorem 1. Given a finite state DTMCM, Algorithm 1 always terminates.

Improved Reachability Analysis in DTMC via Divide and Conquer 171

Proof. We assume Ŝ = ΣD∈C |D|, in other words, Ŝ is the total number of states in C.
Then the theorem can be proved by showing (1) Ŝ is finite at the beginning, and (2) Ŝ
monotonically decreases after each iteration.

(1) is obviously true becauseM has finite number of states, and Ŝ ≤ |S| where S is
the set of states ofM.

Given an SCC D ∈ C, if it satisfies the condition in Line 4, then D will be removed
from C, thus Ŝ is reduced. Otherwise, from Line 6, there are two possible outputs. (i)
∃E ∈ A, Abs(E) reduces its number of states, or (ii) ∀E ∈ A, Abs(E) does not reduce
its number of states. If (i) is true, then Ŝ is also reduced. If (ii) is true, then |D′| = |D|.
According to Line 8, D will be abstracted directly and be removed from C. Thus Ŝ is
still reduced. Therefore (2) is true, and the theorem holds. ��

3.2 Dividing Strategies

Although the divide-and-conquer approach is correct and terminating, its efficiency is
highly dependent on how an SCC is divided. Assume A is the set of partitions after
dividing an SCC, then a suitable partition, say E ∈ A, should satisfy the following
conditions.

1. E should not have too many states, since each partition is abstracted using Gauss-
Jordan elimination which is limited to a relatively small number of states;

2. E should not have too few states as well, otherwise there will be too many partitions
to be solved, and the states reduction for E is inefficient;

3. The smaller |Out(E)| is, the better reduction is achieved. Too many output states
will make the input states of E have too many abstract transitions, which makes
the remaining structure complicated, and affects the efficiency of the following
abstraction.

As a result, the remaining issue is that given an SCC D, is there any optimal strategy
to divide it into suitable AGs? In practice, the structure of D could be arbitrary. This
increases the difficulty of finding a general strategy for all cases.

The simplest division method is to try to set each AG to have the same number of
states. Assume each AG should have N states. Then starting from one input state of
D, depth first search (DFS) or breadth first search (BFS) can be used to group every
N states together. Afterwards, each AG can be abstracted, and the remaining states
are combined together to do the next iteration. The advantage of this strategy is that
the number of states in each partition is easily controlled. It can be very efficient in
cases where the states in D has few transitions. However, this method cannot control
the number of output states of each partition, and a predefined N may not be suitable
for D’s structure.

Therefore, another improved strategy is used to automatically decide the number of
states in each AG. Instead of picking a constant N in the beginning, we set a lower
bound BL and an upper bound BU for each partition. Thus the number of states in
each partition should be between BL and BU . At first, BL states will be grouped into
E , and |Out(E)| is recorded. Afterwards, some states in Out(E) are added into E , and
|Out(E)| is updated. If |Out(E)| keeps unchanged or even becomes smaller after the
update, we will try to add more states into E again. If |Out(E)| is increased but the

172 S. Song et al.

increase is not significant, a few states will be added into E but the number should be
small. Otherwise E is confirmed and ready for Abs(E). Note the number of states in E
should be always below BU . This strategy guarantees
1. the number of states in E is under control. BL and BU guarantee that the size of E

should not be too large or too small.
2. the outputs of E are also manageable. This guarantees the states structure after

abstraction is not too complicated, and is suitable for next iteration.
Parameters B, N , BL and BU can be adjusted according to the specific DTMC to get
the optimal efficiency.

3.3 Parallel Computation

Previous work such as [6,13] depends on the topological order between different SCCs.
Therefore, parallel computation is not so easy to use in their setting. On the contrary,
our algorithm eliminates loops via abstracting every SCC one by one, without consider-
ing their order. The independence between different SCCs can be proved following the
proof in [1]. What is more, even each AG in one SCC is also independent from others,
and the proof actually follows the same idea of SCC’s independence. Thus, paralleliza-
tion is suitable in our setting in order to solve different AGs simultaneously.

In details, after finding all SCCs, they are stored with their input and output states.
For each SCC, a spare thread can be used to solve it. Therefore, Lines 2-14 in Al-
gorithm 1 can be solved via parallel computation. In addition, whenever an AG is
grouped, another spare thread, if there is any, can be used to abstract it. Thus Line 8
in Algorithm 1 can also be handled in parallel.

4 Implementation and Evaluation

We have implemented the algorithm into our model checking framework PAT [15],
which supports explicit probabilistic model checking [16] and can be freely downloaded
at http://www.patroot.com.

In the following, several experiments are conducted to show the efficiency of our
new approach. Note that we show the improvement via comparing to PAT itself, which
was based on value iteration method previously. Since the only difference between these
two versions is the algorithm of reachability analysis, it is fair to check the effectiveness
of the new method. Besides, several cases used in our experiment have dynamically
updated probabilistic distributions, and the modeling of them by other model checkers
is highly nontrivial.

In these experiments, we use the improved dividing strategy, and B, BL, BU are
set to be 300, 100, 150 respectively. In other words, an SCC with more than 300 states
should be divided; each group has states between 100 and 150. These parameters are
manually selected based on our experimental experience, i.e., generally these param-
eters have better performance compared with others. The testbed is a server running
Windows Server 2008 64 Bit with Intel Xeon 4-Core CPU×2 and 32 GB memory.

First, we use a simple example to show that our approach gets accurate results, re-
solves the slow convergence problem and results in huge speedup. Assume there are

Improved Reachability Analysis in DTMC via Divide and Conquer 173

s0

start

s1

s2su sf

susf
0.99

0.005

0.005

0.99

0.005

0.005

0.99

0.005 0.005

Fig. 5. A Simple Example: N = 3. su and sf are copied for better demonstration.

Table 1. Experiments: A Simple Example

System
PAT (w) PAT (w/o)

Prob Time (s) Memory (MB) Prob Time (s) Memory (MB)
N = 500 0.5 0.03 71 0.49987 0.5 24

N = 5000 0.5 0.3 83 0.49987 5.5 63
N = 50000 0.5 2.6 151 0.49987 125.2 111
N = 500000 0.5 29.7 885 0.49987 1612.8 838

N + 2 states {s0, s1, ..., sN−1, su, sf} existing in this example. Each state si, i ∈
[0..N − 1], has probability 0.99 to reach s(i+1)%n, and also has probability 0.005 to
reach su and sf separately. The case N = 3 is shown in Figure 5. Obviously, all states
si, i ∈ [0..N − 1] compose an SCC, and su and sf are this SCC’s outputs. We check
the probability from s0 to su, and several experiments are executed based on different
value of N as listed in Table 1.

In Table 1, columns Prob represents the probability returned by the model checking
algorithms. Columns PAT (w) (PAT (w/o)) show the experimental information taken
with (without) the new approach. Columns T ime represent the total time cost in the
verification. For these cases, our new approach outperforms value iteration approach
dramatically by reducing the verification time to less than 10%. On the other hand, the
memory used in new approach is higher than that used in the previous method, which is
reasonable since solving linear equations consumes more memory than value iteration
approach. Through the manual analysis, we know that 0.5 is the accurate result while
0.4998 is only an approximation.

Next, we apply our approach to several more meaningful systems and demonstrate
that our approach can still improve the efficiency significantly.

In multi-agent systems, dispersion games [8] represent an important scenario, i.e.,
dispersion games are the generalization of anti-coordination games to an arbitrary num-
ber of players and actions. Here we use two strategies designed for dispersion games:
bisic simple strategy (BSS) and extend simple strategy (ESS). BSS assumes the number
of players and the number of actions are the same, while ESS does not have this as-
sumption. In each round of the game, every player chooses one action following specific
probabilistic distribution, which is updated roundly according to the output of last round.
There is a desired outcome in this game called Maximal Dispersion Outcome (MDO),
and one property is to calculate the probability that MDO can be achieved.

Another case used in our experiments is coin flipping protocol for polynomial ran-
domized consensus [4] (CS). This case focuses on modeling and verifying the shared

174 S. Song et al.

Table 2. Experiments: Benchmark Systems

System States Prob
PAT (w) PAT (w/o)

Time (s) BMR Memory (MB) Time (s) BMR Memory (MB)
BSS (4) 4196 1 1.3 92.3% 39 0.2 50% 35
BSS (5) 49572 1 3.5 94.3% 297 4.4 11.4% 142
BSS (6) 605890 1 41.4 72.7% 1297 105.3 6.7% 417
BSS (7) 7462639 1 1671 30.1% 6350 2073.1 4.1% 5039

ESS (6, 4) 32662 1 1.4 92.8% 16.3 2.7 14.8% 5.6
ESS (6, 5) 162945 1 6.7 91.1% 48.5 11.4 16.7% 13.9
ESS (7, 5) 463460 1 27.9 84.9% 310 75.8 7.1% 292
ESS (8, 5) 1114480 1 70.5 74.7% 619 278.5 6.1% 643
ESS (8, 6) 6476524 1 438.0 68.5% 4209 1168.1 7.5% 3904
CS (4, 3) 4966 0.023 0.8 87.5% 45 2.4 8.3% 35
CS (6, 3) 34529 0.023 15.7 81.5% 214 124.1 0.9% 108
CS (6, 4) 45281 0.015 24.8 86.7% 324 243.8 0.6% 81
CS (6, 5) 56033 0.012 38.6 91.2% 312 432.1 0.4% 104
CS (7, 4) 99265 0.014 102.3 87.6% 1062 983.1 0.4% 97
CS (7, 5) 122785 0.011 161.7 92.1% 1145 1384.8 0.3% 97
CS (7, 6) 146305 0.01 245.5 94.9% 1404 2409.5 0.2% 156
CS (8, 4) 200083 0.013 585.1 93.4% 1974 - - -

coin protocol of the randomized consensus algorithm. CS is used as a benchmark sys-
tem in the state-of-the-art probabilistic model checker PRISM [12]. Here we use a safety
property in the system as our target.

The experiments based on these three models are listed in Table 2. BSS(N) indi-
cates there are N players (also N actions) in the game; ESS(N,K) means there are
N players and K actions; CS(N,K) indicates there are N processes and K is a con-
stant used in the model. Here we are interested in the ratio of model building (BM) time
to the total time, which is denoted as BMR in the table. In PAT (w), BM means the
time for building acyclic DTMC, i.e., the overall time consumed by eliminating loops
in DTMC; in PAT (w/o), it indicates the time for building the whole system. In both
PAT versions, value iteration is used to get the final result after building the model.
‘-’ indicates the verification takes more than 1 hour thus the result is not taken into
consideration. From the table, we have several observations.

1. For some small examples such as BSS(4), our new approach is slower. This is due
to the overhead taken by the SCC searching algorithm, and value iteration approach
is efficient when loops are small.

2. As the examples become larger, the verification speed is increased by our proposed
approach. This improvement is obvious especially in large-scale systems such as
ESS(8, 5), ESS(8, 6) and CS(8, 4).

3. CS consumes more resource than BSS and ESS when they have similar size of
state space, such as CS(7, 6) and ESS(6, 5). The reason is that CS has more com-
plicated SCCs, and both our new approach and traditional value iteration method
have to use more time and memory to solve it. As a result, the SCCs’ structure
affects the verification efficiency to a large extent.

Improved Reachability Analysis in DTMC via Divide and Conquer 175

4. According to BMR, we can see that in the previous version of PAT, building the
model costs small portion of the overall verification time compared with the value
iteration procedure. The average value of BMR is less than 10%, which means slow
convergence indeed exists in systems having large SCCs. CS has very small BMR
and this is consistent with the fact that CS has complicated SCCs. In the new
approach, time is mainly used by abstractions, as average BMR is more than 80%.
It indicates that the efficiency of the divide and conquer strategy is critical in the
whole verification now, and optimal dividing strategy is worthy to explore.

On the other hand, we want to share some limitations of our approach according to the
experimental information. The efficiency of this approach is dependent on whether large
SCCs exist in the system. During our experiment, the new approach performs slower
than value iteration method in several cases. The main two reasons include 1) there is
no loops in the system, thus the SCC searching algorithm makes the whole verification
slow; 2) the system just has small SCCs while the whole state space is large, thus the
gain of the abstraction is limited.

5 Related Work and Conclusion

SCCs are an important structure in both concurrent and probabilistic verification. For
probability calculation, those loops in SCCs are one of the key factors affecting the
efficiency. Some previous work has been done based on SCC decomposition for prob-
abilistic systems, including DTMCs and Markov Decision Processes (MDPs) [5], and
we are mainly inspired by this work.

To speed up the verification of MDP, the authors of [6] have proposed to decide the
topological order of all SCCs in the MDP, and value iteration method is used to solve the
SCCs from the bottom upwards. Based on this work, the authors of [13] have used SCC
decomposition to handle the incremental quantitative verification of MDP. The topolog-
ical order between SCCs guarantees that some changes in one SCC will not affect those
SCCs after it. Compared to their work, ours does not consider the orders of SCCs via
treating each SCC independently. This makes parallel computation approach feasible.
In addition, Gaussian-Jordan elimination is used to remove loops. Different from value
iteration, which needs a user defined precision, our approach generates accurate result.

Besides, there are several work based on SCC focusing on probabilistic counter-
example generation, such as [3,1]. Their idea of abstracting each SCC from its input to
output is the biggest inspiration of our work. Compared with these work, ours is more
focusing on improving reachability analysis in DTMC. Therefore, we divide SCCs into
smaller partitions and solve them directly.

Conclusion. In this work, we proposed a divide-and-conquer approach to speed up
reachability analysis of DTMCs. Because SCCs are one of main reasons that the prob-
ability calculation is slow, we focus on abstracting SCCs via calculating the transition
probability from their inputs to outputs. We divide every SCC, whose states exceed
some specific bound, into several AGs having reasonable number of states, and can be
solved efficiently via Gauss-Jordan elimination. We have implemented our approach in
PAT, and some benchmark systems are used to show its effectiveness and efficiency.

176 S. Song et al.

For future work, there are two possible directions. Currently, the parameters used in
the algorithm such as B, BL and BU are mainly decided via experience, and are man-
ually defined before the experiments. Therefore, one topic is to find the more efficient
division strategies, which are automatic and suitable for general cases. Another direc-
tion is extending our approach to MDP. Concurrency also exists in many probabilistic
systems, so nondeterminism is unavoidable in some cases. SCCs in MDP can also be
eliminated via calculating the probability distributions from inputs to outputs. Due to
the nondeterminism in MDP, one challenge is that the number of resulting distributions
may be exponential, thus a suitable divide and conquer approach for MDP is needed.

References

1. Ábrahám, E., Jansen, N., Wimmer, R., Katoen, J.-P., Becker, B.: DTMC Model Checking by
SCC Reduction. In: QEST, pp. 37–46 (2010)

2. Althoen, S.C., McLaughlin, R.: Gauss - Jordan reduction: a brief history. The American
Mathematical Monthly 94(2), 130–142 (1987)

3. Andrés, M.E., D’Argenio, P., van Rossum, P.: Significant Diagnostic Counterexamples in
Probabilistic Model Checking. In: Chockler, H., Hu, A.J. (eds.) HVC 2008. LNCS, vol. 5394,
pp. 129–148. Springer, Heidelberg (2009)

4. Aspnes, J., Herlihy, M.: Fast Randomized Consensus Using Shared Memory. Journal of
Algorithms 15(1), 441–460 (1990)

5. Baier, C., Katoen, J.: Principles of Model Checking. The MIT Press (2008)
6. Ciesinski, F., Baier, C., Größer, M., Klein, J.: Reduction Techniques for Model Checking

Markov Decision Processes. In: QEST, pp. 45–54 (2008)
7. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. The MIT Press (1999)
8. Grenager, T., Powers, R., Shoham, Y.: Dispersion Games: General Definitions and Some

Specific Learning Results. In: AAAI, pp. 398–403 (2002)
9. Itai, A., Rodeh, M.: Symmetry Breaking in Distributed Networks. Information and

Computation 88, 150–158 (1981)
10. Katoen, J.-P., Khattri, M., Zapreev, I.S.: A Markov Reward Model Checker. In: QEST,

pp. 243–244 (2005)
11. Katoen, J.-P., Zapreev, I.S., Hahn, E.M., Hermanns, H., Jansen, D.N.: The Ins and Outs of

The Probabilistic Model Checker MRMC. In: QEST, pp. 167–176 (2009)
12. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: Verification of Probabilistic Real-

Time Systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp.
585–591. Springer, Heidelberg (2011)

13. Kwiatkowska, M.Z., Parker, D., Qu, H.: Incremental Quantitative Verification for Markov
Decision Processes. In: DSN, pp. 359–370 (2011)

14. Stoer, J., Bulirsch, R.: Introduction to Numerical Analysis. Springer, Berlin (2002)
15. Sun, J., Liu, Y., Dong, J.S., Pang, J.: PAT: Towards Flexible Verification under Fairness.

In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 709–714. Springer,
Heidelberg (2009)

16. Sun, J., Song, S., Liu, Y.: Model Checking Hierarchical Probabilistic Systems. In: Dong, J.S.,
Zhu, H. (eds.) ICFEM 2010. LNCS, vol. 6447, pp. 388–403. Springer, Heidelberg (2010)

17. Tarjan, R.E.: Depth-First Search and Linear Graph Algorithms. SIAM J. Comput. 1(2),
146–160 (1972)

18. Younes, H.L.S., Clarke, E.M., Zuliani, P.: Statistical Verification of Probabilistic Properties
with Unbounded Until. In: Davies, J. (ed.) SBMF 2010. LNCS, vol. 6527, pp. 144–160.
Springer, Heidelberg (2011)

Solving Games Using Incremental Induction

Andreas Morgenstern, Manuel Gesell, and Klaus Schneider

Embedded Systems Group
Department of Computer Science

University of Kaiserslautern

Abstract. Recently, IC3 has been presented as a new algorithm for for-
mal verification. Based on incremental induction, it is often much faster
compared to otherwise used fixpoint-based model checking algorithms.
In this paper, we use the idea of incremental induction for solving two-
player concurrent games. While formal verification requires to prove that
a given system satisfies a given specification, game solving aims at auto-
matically synthesizing a system to satisfy the specification. This involves
both universal (player 1) and existential quantification (player 2) over
the formulas that represent state transitions. Hence, algorithms for solv-
ing games are usually implemented with BDD packages that offer both
kinds of quantification. In this paper, we show how to compute a solution
of games by using incremental induction.

1 Introduction

It is an old dream of computer science to automatically generate a system from a
formal specification or at least to automatically check whether a system is guar-
anteed to satisfy a specification. The second problem is known as the formal
verification problem and powerful tools exist to automatically check the correct-
ness of a system with respect to a given specification. Recently, a new symbolic
model checking algorithm called IC3 has been presented [4,5] that is based on in-
cremental induction instead of the otherwise used fixpoint computations. Other
researchers [6] talk about ‘Property Directed Reachability’ (PDR) in this con-
text, since this algorithm has a very targeted approach to check the reachability
of a state (violating a safety property). The newly developed algorithms often
outperform existing verification engines based on bounded model checking and
interpolation in practice.

The idea of synthesis or realizability [14,3,15] is to automatically construct a
functionally correct system from a declarative specification. The obvious ben-
efit is that we only have to give a list of desired behaviors and a synthesis
tool comes up with a state-based model that satisfies all given properties. If
no further constraints like limited use of memory or runtime requirements have
to be considered, automatic synthesis can completely avoid manual coding of
programs.

Synthesis can be viewed as a two-player game between an environment and a
system (also called the controller). The environment chooses the uncontrollable

E.B. Johnsen and L. Petre (Eds.): IFM 2013, LNCS 7940, pp. 177–191, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

178 A. Morgenstern, M. Gesell, and K. Schneider

inputs (as usual) and the controller responds by setting the controllable outputs
of the system in order to satisfy the given specification. Hence, for every input
given by the environment, the controller must choose some output so that the
resulting game does not violate a given specification. Hence, one has to solve
a quantified SAT (or QBF) problem involving a quantifier alternation. Most
algorithms to solve games therefore either employ BDDs [3,16] or other data
structures [7] that offer both universal and existential quantifications or replace
the universal quantification by conjunctions [15] (thus blowing up the formulae).

In this paper, we propose a different solution for solving reachability games:
our algorithm can be seen as a modification of PDR [6] where every SAT query
has been replaced by a QBF query (more precisely, a 2QBF query). Recent
results from the QBF community [10] indicate that a good way to implement a
QBF solver is to use two SAT solvers; roughly speaking, one solver for existential
quantification, and the other for universal quantification. For game solving, this
means that the two SAT solvers take the roles of the two players. This fits nicely
into our game setting, and therefore our implementation is based on ordinary
SAT solvers instead of dedicated QBF solvers (although our algorithm borrows
some ideas from that area). Our experiments moreover indicate that the removal
of the universal quantification can be implemented efficiently if one uses the
inductive generalization procedures mentioned in [4,6].

While synthesis in its most general form may be desirable, we consider here
only the problem of determining the winner of a game. This is enough for two
of the most promising application domains of synthesis. The first application
domain is to find errors in an early design phase, where only a part of the whole
system may be available [13]. We can now consider the problem of constructing
a controller in a game that determines the outputs of the absent parts. If the
controller has no winning strategy, then the already constructed parts of the
system contain an error that has to be repaired before new components may be
added. Another promising application for synthesis is fault-localization in dis-
tributed designs [11]. Typically, modern systems are composed of many different
modules and determining the module that is responsible for an error is a tedious
and time consuming work. Using games, one can check whether the faulty part
can be replaced by a correct implementation. If this holds, chances are very high
that the thereby determined candidate is actually responsible for the fault.

2 Preliminaries

A cube over a set of Boolean variables Q is a partial assignment of Boolean values
to some variables in Q. We often represent cubes as a conjunction or just a set
of literals (a literal is either a variable or the negation of a variable). If a cube
contains all variables of VX ∪VU ∪VC , it is called a minterm. If d ⊆ c holds for a
cube c, then d is called a subcube of c. A clause is a disjunction of literals. Given
a cube s = l1 ∧ l2 ∧ · · · ∧ ln, its negation is a clause ¬s = ¬l1 ∨ ¬l2 ∨ · · · ∨ ¬ln.
We often write Φ(Y) to describe a property over the variables Y ⊆ Q.

A finite state transition system S = (VI , VX , ΦI , ΦT) is given by a set of input
variables VI , a set of internal state variables VX , and propositional formulas de-

Solving Games Using Incremental Induction 179

scribing the initial condition ΦI(VX) and the transition relation ΦT (VI , VX , V ′
X).

Given a formula Φ(Y) over a subset Y ⊆ VX of state variables, we denote with
Φ′ the formula that is obtained from Φ by replacing each variable x with its
corresponding next-state variable x′.

A state of the system is a cube over VX . An assignment s to all variables
of a formula Φ either satisfies the formula, s |= Φ, or falsifies it s �|= Φ. If s is
interpreted as a state and s |= Φ holds, we say that s is a Φ-state. A formula Φ
implies another formula Ψ , written Φ ⇒ Ψ , if every satisfying assignment of Φ
also satisfies Ψ . A trace s0, s1, . . . (which may have finite or infinite length) of a
transition system S is a sequence of states such that s0 |= ΦI and for each pair
si, si+1 in the sequence, si, s

′
i+1 |= ΦT holds. That is, a trace is the sequence of

assignments in an execution of the transition system. A state that appears in
some trace of the system is reachable and we denote the set of reachable states
by R. A safety property P (VX) is a propositional formula over VX that asserts
that only P -states are reachable.

3 Another Look at IC3: Computing Ranks of Fixpoints

In order to check the reachability of a bad state, i.e., one that violates a safety
property, one can compute the reachable states of a system as follows: starting
with the initial states, one adds successors of so-far reached states until no new
states are found1:

R0 = ΦI

Ri+1 = Ri ∪ sucΦT

∃ (Ri)

where sucΦT

∃ (A) = {s2 | ∃i ∈ 2VI .∃s1 ∈ 2VX . ΦT (s1, i, s
′
2) ∧ s1 ∈ A} are the

existential successors of a set of states A w.r.t. the transition relation ΦT . Thus,
for any i, Ri is the set of states reachable in at most i steps. Clearly, for a finite
transition system, this fixpoint iteration must terminate, and there must exist
a least number ν ∈ N (called the rank) such that Rν+1 = Rν holds and the set
Rν is then the set of reachable states. It is clear that a system satisfies a safety
property if and only if the intersection of Rν with the states violating the safety
property is empty.

Traditional BDD-based model checkers implement the above fixpoint algo-
rithm, since BDDs are quite efficient in computing the set of all successors, but
they sometimes cannot represent the transition relation ΦT as a single BDD (and
therefore consider often partitioned transition relations [17]). SAT solvers do not
suffer from the latter problem. However, applying a SAT solver for computing all
solutions for image computations seems to be very inefficient [8]. Nevertheless,
SAT solvers played a crucial role in pushing model checkers ahead: combining
the ideas of bounded model checking [1] and interpolation [12], very efficient
model checkers can be implemented using SAT solvers.

1 The computation can also be terminated if a bad state is reached by some Ri.

180 A. Morgenstern, M. Gesell, and K. Schneider

3.1 Applying Induction Incrementally

IC3/PDR follows a rather different way than traditional SAT-based model check-
ers: It can be viewed as computations of over-approximations of the reachable
states. To that end, the algorithm uses incremental induction as defined below:

Definition 1 ((Inductive) Invariants). A property ϕ(VX) is an invariant of
a system S (i.e., an S-invariant), if Rν ⇒ ϕ, i.e., if only ϕ-states are reachable.
A property ϕ(VX) is an inductive invariant if ΦI ⇒ ϕ and ϕ ∧ ΦT ⇒ ϕ′.

If P is not invariant, then there exists a finite counterexample trace s0, s1, . . . , sk
such that sk �|= P . Induction need not be applied in a monolithic way. One can
construct a sequence of inductive assertions, each inductive relative to (a subset
of) the previous assertions. Note that the reachable statesR is the least inductive
invariant and that there are invariants that are not inductive.

Definition 2 (Incremental Induction). A property ϕ(VX) is inductive rela-
tive to another condition ψ(VX), if ΦI |= ϕ and ϕ ∧ ψ ∧ ΦT ⇒ ϕ′

PDR and IC3 use this idea of incremental induction: these algorithms incre-
mentally refine and extend a sequence of formulas R0, R1, . . . , RN that are over-
approximations of the sets of states reachable in at most 0, 1, 2, . . . , N steps2. We
call this list of formulas a trace. While R0 = ΦI always equals the set of initial
states, each Ri is represented by a set of clauses that maintains the property that
Ri ⊆ Ri+1. Together with the trace, PDR maintains a set of proof obligations.
A proof obligation is a cube s together with a rank k3 where s represents a set of
states that are either bad or have a trace to a bad state. The rank k can be seen
as a position in a counterexample where s must be proved to be unreachable
or the proof obligation fails. To obtain new informations about the trace, PDR
poses the following SAT queries:

SAT ?[Rk−1 ∧ ΦT ∧ s′]

This query holds if a state in Rk−1 has a successor in s′. If it is not satisfiable,
then the information about Rk−1 is strong enough to show the unreachability of
s within k steps. We then say that s is blocked at rank k, and we can add the
clause ¬s to Rk. Hence, s is inductive relative to Rk−1.

Otherwise, a new proof obligation (s, k − 1) is generated. If we can continue
until the rank becomes 0, we have reached the initial states, and we have gener-
ated a counterexample for the safety property. If the algorithm does not succeed
in generating a counterexample, at some point the informations obtained for
some Rν are strong enough to capture all reachable states. At that point, no
new information is obtained and we conclude that the system is indeed safe.

2 Hence, each Ri ⊆ Ri, the sets calculated by the fixpoint iteration.
3 Note that the rank is called frame in [6], but we prefer here rank due to the connection
with the fixpoint solutions.

Solving Games Using Incremental Induction 181

3.2 Model Checking by Backward Traversals

Instead of starting with the initial states and then computing new reachable
states until a fixpoint is reached, one can also work backwards to verify a safety
property: starting with the bad states (violating the safety property), compute
the predecessor (instead of successor) states until no new states are found. This
way, all states having a path to a bad state are finally computed. The system is
safe, if and only if the initial states do not intersect with the so-computed closure
of the bad states. PDR/IC3 can be modified to do the same: simply identify R0

with the bad states; each Ri is an over-approximation of the states having a
trace to bad states in at most i steps. Proof obligations (s, k) now contain a
cube s representing a state known to be backwards-reachable from the bad state
and the SAT query changes to SAT ?[s ∧ ΦT ∧ R′

k−1], i.e. checking whether for
any state in Rk−1, there is a predecessor s. The solution of safety games we are
going to present is based on a similar predecessor computation.

4 Games

In the following sections, we describe how IC3 can be modified to solve the
following safety games:

Definition 3 (Games). A game G = (VU , VC , VX , s0, ΦT (VX , VU , VC , V
′
X)) is

given by a set of uncontrollable variables VU , a set of controllable variables VC , a
set of state variables VX , a full cube s0 over VX describing the initial state of the
game, and a transition relation ΦT . The transition relation must be determinis-
tic, i.e., for every (s, u, c), there is exactly one s′ such that (s, u, c, s′) |= ΦT .

Since ΦT is deterministic, we write in the following ΦT (s, u, c) = s′ instead
of (s, u, c, s′) |= ΦT and we say that ΦT (s, u, c) is undefined, if there is no s′

such that (s, u, c, s′) |= ΦT holds. Intuitively, a game is a finite state transition
system where the inputs are partitioned into controllable and uncontrollable
input variables. As before, we consider a safety property P (VX) over the set of
state variables. It is the goal of the controller to keep the game inside this safe
region while the environment tries to reach a state where ¬P holds. It is worth
pointing out that safety games are determined [9], hence either the controller or
the environment wins.

Given a game G = (VU , VC , VX , s0, ΦT (VX , VU , VC , V
′
X)), a (memoryless) strat-

egy for the controller is a function σ : 2VX ×2VU → 22
VC given by a propositional

formula over VX , VU and VC . Intuitively, when the game is in a state s ∈ 2Vx and
the environment chooses an uncontrollable input u ∈ 2Vu , a strategy determines
a set of possible responses, i.e., a set {c0, c1 . . . } of possible assignments ci ∈ 2Vc

to the controllable variables. A play on G according to σ is a finite or infinite se-
quence π = s0

u0c0−→ s1
u1c1−→ . . . such that ci ∈ σ(si, ui) and (si, ui, ci, si+1) |= ΦT .

Either the play is infinite, or there is a n such that σ(sn, un) = ∅. A play is win-
ning according to the safety property P (VX), if it is infinite, and each si ∈ P . A

182 A. Morgenstern, M. Gesell, and K. Schneider

strategy σ is a winning strategy if all plays according to σ on G are winning4.
A state s is winning if there is a winning strategy starting in s. The set of all
winning states is the winning region. The game G is winning or won, if the initial
state s0 is in the winning region.

It is our goal to develop an algorithm that determines whether a game is
winning for the controller. If the game is winning, our algorithmwill also generate
a strategy for the controller. To that end, we will present in the following sections
the necessary modifications to the PDR algorithm.

5 Fixpoint Computations to Solve Games

In this section, we take the viewpoint of the environment. Hence we compute
the set of states from which the environment can force a visit to a ¬P -state, or
dually, the states from which the controller loses.

Definition 4. The set of states from which the environment can force a visit to
a state in A in one step is defined as

sucΦT

∃∀ (A) = {s ∈ S | ∃u ∈ 2Vu .∀c ∈ 2Vc .∀s′ ∈ 2VX′ . ΦT (s, u, c, s
′)→ s′ ∈ A}.

A state s is in sucΦT

∃∀ (A), if the environment can choose an assignment u to the
uncontrollable inputs such that the controller has no chance to choose some c
to prevent a visit from A. As can be seen, in contrast to the model-checking
problem, we need existential (for the environment) and universal quantification
(for the controller) over variables.

It is well-known that for reachability games, the winning region of the envi-
ronment can be computed by the following fixpoint iteration [9]:

R0 = ¬P
Ri+1 = Ri ∪ sucΦT

∃∀ (Ri)

As for the corresponding fixpoint iteration used in model-checking, this fixpoint
iteration converges to a setRν , containing the winning region of the environment.
For every s in the winning region of the environment, there is a minimal n such
that s ∈ Rn holds and if s is not winning, it does not belong to some Rn (and
hence also not to Rν). This leads to the following definition:

Definition 5 (Ranks of States). The rank ρ(s) of a state s with respect to
the above fixpoint iteration is defined as follows:

ρ(s) =

{
& if ∀n ∈ N.s �∈ Rn

min{n ∈ N | s ∈ Rn} otherwise

4 Note that a strategy is typically nondeterministic, but our definition ensures that
we can easily select a deterministic strategy by choosing any particular assignment
from 2VC for the controllable variables due to the fact that all plays according to σ
must be winning.

Solving Games Using Incremental Induction 183

Intuitively, the rank of a state s denotes how far the environment is away from
reaching its goal: if ρ(s) = &, the environment cannot win. Otherwise, it can
drive the game to ¬P in at most ρ(s) steps.

6 Computing Ranks Using Incremental Induction

Our algorithm shares many similarities to the original IC3/PDR algorithm: it
computes over-approximinations of ranks of states of a fixpoint formula and uses
SAT queries for this purpose. Indeed, our algorithm is directly derived from the
re-implementation of IC3 (called the PDR algorithm) given in [6].

6.1 Proof Obligations

In order to compute the ranks, our algorithm maintains a trace [R0, R1, . . .], i.e.,
formulas representing state sets with the meaning thatRi is an over-approximation
of states having rank less than i. R0 is special: it is simply identified with the
set ¬P .

Together with this trace, it also maintains a list of proof obligations (s, k)
with the intended meaning to show that a state s has rank less than k. In order
to show this, the environment must force a visit to a state with rank less than
k − 1 in one step. Hence, we have to check whether the following holds:

∃u.∀c .ΦT (s, u, c) ∈ Rk−1

If we cannot find such an u-value, then the facts already known in Rk−1 are
strong enough to prove that s has a rank greater than k. Hence, we remove s
from Rk and we say that s is blocked at rank k.

However, if we find such a u-value, nothing can be said at that point about the
rank of s since Rk−1 only over-approximates ranks. In order to give a definitive
answer, the ranks of all successor states {s′ | ∃c. ΦT (s, u, c) = s′} have to be
probed for rank k−1. For every such successor state s′, we therefore add a proof
obligation (s′, k − 1) to the list of proof-obligations. If we proceed this way, we
might obtain a proof obligation (s, 1) such that the environment can force the
game into an (original) bad state in one step and prove that the game is losing
for the controller. Or we strengthen some Rk (remove states from Rk) to the
point where it is inductive in the sense that for every u there exists some c that
is inside of Rk. In that case, the game is winning for the controller.

In order to cope with the universal quantification over the c-variables, we
maintain a list of formulas [U0, U1, U2, . . .] over state and uncontrollable vari-
ables. The intended meaning of Ui is the following: it is an over-approximation of
the set of pairs (s, u), such that every c-input leads to a Ri+1-state, or otherwise
spoken: if we identify that s′ �∈ Ri−1 and for some c, we have Φt(s, u, c) = s′, then
(s, u) should be removed from Ui. Finally, we also maintain a state set W , which
is an over-approximation of the states winning for the controller. Those two sets

184 A. Morgenstern, M. Gesell, and K. Schneider

(represented as formulas) help in getting rid of the universal quantification: The
query ∃u.∀c. ΦT (s, u, c) ∈ Rk−1 is replaced by the query

SAT ?[s ∧ ΦT ∧R′
k−1]

If the answer is unsat, then clearly, s is blocked at rank k. Otherwise, a successor
state s′ = ΦT (s, u, c) is computed for the inputs u and c. Instead of continuing
with the proof obligation (s′, k−1), the controller might give a different control-
lable input c with the corresponding successor t′ = ΦT (s, u, c)

5. However, this
successor state has to be a potential winning state. Hence, we probe

SAT ?[s ∧ u ∧ ΦT ∧W ′]

If the query is unsat, then clearly s is a losing state for the controller and
we remove it from W . If s is the (losing) initial state, we can skip the rest
of our calculation and terminate with the result that the game is losing for the
controller. Otherwise, if the computed successor state t′ �∈ Rk−1, we remove (s, u)
from Ui and continue with the proof obligation (s, k). Otherwise, we continue
with the proof obligation (t′, k − 1), but keep the proof obligation (s, k) in the
list of open obligations. Proceeding this way, we either find that s0 is a losing
state (for the controller) or we strengthen some Rk so that it is inductive in the
above sense.
The precise properties of the sets Ri, Ui, and W are:

– All Ri, Ui except R0, U0 are conjunctions of clauses
– R0 = U0 = ¬ΦP

– Ri ⇒ Ri+1

– The clauses of Ri+1 are a subset of the clauses of Ri for i > 0.
– The clauses of Ui+1 are a subset of the clauses of Ui for i > 0.
– Ri+1 is an over-approximation of the pre-image of Ri, hence Ri+1∧ΦT ⇒ R′

i.
– Ui+1 is an over-approximation of the pre-image of Ri for all c-combinations,

hence,
∧

c∈2VC
(Ui+1 ∧ c ∧ ΦT ⇒ R′

i).

– Ri ⇒ ¬s0, except for the last element RN of the trace.
– W is a conjunction of clauses that is an over-approximation of the winning

positions for the controller. Hence W ⇒ P .

6.2 Notation

Let Φ be a predicate over the game variables, let Ψ be a predicate over (next)-
state variables and let ΦT denote the encoding of the transition relation. Given
cubes s0, u0 over state and uncontrollable input variables, a call to the underlying
SAT solver will be expressed similarly as in [6]:

(isSat, s, u, c, t′)← SAT ?[s0 ∧ u0 ∧ Φ ∧ ΦT ∧ Ψ ′]

5 Due to efficiency reasons, this probing for an alternative successor is only done if s′

is a state outside of W , i.e., a state known to be losing for the controller.

Solving Games Using Incremental Induction 185

This query asks whether the environment can choose an uncontrollable input
u0 in a state where s0 and (a formula) Φ holds, so that a state where Ψ holds
is reached in one step, i.e., can the system choose a controllable assignment to
make the game reach a state where Ψ holds?

The answer to this question is put into the Boolean variable isSat. If the an-
swer is positive, the satisfying assignment is put into (s, u, c, t′) with the obvious
meaning: s denotes the assignment to the state variables, u to the uncontrol-
lable variables, c to the controllable variables, and t′ to the next-state variables.
Modern SAT solvers not only compute a solution to SAT problems in case of
success, but also produce reasons for a failed SAT call. If the aforementioned
SAT-call fails, we assume that the SAT-solver computes subcubes s ⊆ s0 and
u ⊆ u0 of the given assumptions s0 and u0 (t’ contains no value in that case).

6.3 Auxiliary Functions

In order to present our algorithm, we need some auxiliary functions that are used
to update the sets Ri, Ui and W . Note that the only updates to one of those
sets is the removal of states which can be readily implemented using cubes and
clauses: Given a cube s representing a set of states or transitions, the clause ¬s
represents all states, resp. transitions outside of s. Hence, the implementation of
the following auxiliary functions are straightforward6:

– addLose(s) adds s as a losing state, i.e., updates W ←W ∧ ¬s
– addBlockedState(s, k) updates Rk ← Rk ∧ ¬s. Due to the syntactic contain-

ment restriction, we have to update also Ri ← Ri ∧ ¬s for every 0 ≤ i ≤ k.
– addBlockedTransition(s, u, k) updates Ui ← Ui ∧ ¬s for every 0 ≤ i ≤ k.
– isLose(s) checks whether s is a losing state
– isBlocked(s, k) checks whether s is blocked at rank k

6.4 Recursively Blocking Cubes

In this section, we discuss the function recBlockCube given in Listing 1.1. Given
a proof obligation (s0, k0), this function checks whether the rank of s0 is greater
than k0, i.e., if s0 is blocked at rank k0. The main internal data structure of this
function is a priority queue Q that stores open proof obligations that are needed
to decide (s0, k0). The following lemma states that the invariants about Ri, Ui,
and W are maintained by our algorithm:

Lemma 1. If (s, k) is the minimal element of Q and the invariants of Ri, Ui

and W hold, then one of the following situations may occur:

1. s is correctly identified as blocking at rank k

6 For an efficient implementation of the algorithm, it is important that the functions
addLose, addBlockedState and addBlockedTransition learn strong facts, meaning small
clauses. For addBlockedState, we use the same literal removal procedure as given
in [6] while for addBlockedTransition, we use ternary simulation minimization, also
described in [6].

186 A. Morgenstern, M. Gesell, and K. Schneider

2. s is correctly identified as losing
3. For some u, (s, u) is correctly identified as a blocking transition at rank k

and (s, k) is again added as a proof obligation.
4. k > 1, (s, k) and (t′, k − 1) are added to Q for some successor t′ of s

Listing 1.1. Recursively Blocking a Cube

1 recBlockCube(Proo fObl igat ion (s0, k0)) {
2 PrioQ<ProofObl igat ion> Q; − order from low to high ranks
3 Q.add((s, k)) ;
4 while (Q. s i z e ()>0){
5 (s, k) ← Q.popMin() ;
6 i f (isLose(s))
7 i f (s == s0) return i sLo se
8 else i f (not isBlocked(s,k)) {
9 (isSat, s, u, c, t′) ← SAT?[s ∧ Uk ∧ ΦT ∧R′

k−1]

10 i f (isSat){
11 i f ((k == 1)or(isLose(t′))){
12 (isSat, s, u, c, t′) ← SAT?[s ∧ u ∧ ΦT ∧W ′]
13 i f (isSat){
14 i f ((k == 1)or(isBlocked(t′, k − 1)))
15 addBlockedTransition(s,u,k) ;
16 else

17 Q.add(t′, k − 1, Some(s, u, c)) ;
18 Q.add(s, k, pre) ;
19 }
20 else
21 addLose(s) ;
22 i f (s == s0) return i sLo se ;
23 }
24 else

25 Q.add(t′, k − 1, Some(s, u, c))
26 Q.add(s, k, pre)
27 }
28 else
29 addBlockedState(s,k) ;
30 }
31 }
32 return ISGREATER

Proof. Let us first consider the case k = 1. In that case, Rk−1 = R0 = ¬ΦP ,
hence Rk−1 represents the bad states. That means that if the SAT query in
line 9: SAT ?[s ∧ Uk ∧ ΦT ∧ R′

k−1] yields ‘not satisfiable’, then s is correctly
identified as blocking in line 29. Otherwise, if it yields ‘satisfiable’, then state s
has a successor in the bad states, hence in the next line, isLose is true . If the
controller cannot avoid a losing position in line 12, SAT ?[s∧u∧ΦT ∧W ′], then
clearly s is a losing position which is identified in line 21. Otherwise, (s, u) is
correctly identified as a blocking transition in line 15. Hence, for k = 1, one of
the first three cases occurs. Now assume that k > 1 holds. Clearly, if the checks
in line 6 or line 8 succeed, either case 1 or 2 applies. Otherwise, the algorithm
proceeds to line 9, and we can make the following case distinctions referring to
the situations of the above lemma:

Solving Games Using Incremental Induction 187

– Case 1 occurs, if the SAT query in line 9 yields ‘not satisfiable’. Correctness
follows from the invariance of Ri and Ui.

– Case 2 occurs, if the SAT query in line 9 yields ‘satisfiable’, t′ is a losing
position (line 11) and the SAT query in line 12 yields ‘not satisfiable’. Cor-
rectness follows from the invariance of Ri (for query in line 12) and W (for
query in line 12).

– Case 3 occurs, if the SAT query in line 9 yields ‘satisfiable’, t′ is a losing po-
sition (line 11), and the SAT query in line 12 yields ‘satisfiable’. Correctness
follows from the invariance of Ri, since we have identified for (s, u) some c
such that the successor t′ is blocked at rank k − 1.

– Case 4 can occur if the SAT query in line 9 yields ‘satisfiable’ and if one of
the following cases occur:
• t′ is a losing position (line 11) and the SAT query in line 12 yields ‘not
satisfiable’
• t′ is no losing position (line 11)

��
The correctness of the algorithm is stated in the following theorem:

Theorem 1. Given a proof obligation (s0, k0) for some k0 > 0, the function
recBlockCube(s0, k0) returns ISGREATER, if the rank of s is greater than k
and isLose, if s0 is a losing position for the controller. Function recBlockCube
moreover updates Rk, Uk and W such that this new information is stored, but
keeps the invariants of all sets Ri, Ui and W .

Proof. If the function returns through lines 7 or 22, we know that the invariants
of the sets are kept, so that s0 is a losing position. Now note that the following
holds: Q cannot grow arbitrarily: We can prove by induction on k that the
following holds: If (s, k) is chosen as the minimal element of Q, then one of the
first three cases of the previous lemma are encountered after a finite number of
steps. The base case k = 1 is already handled by the previous lemma. For the
induction step k → k + 1, note that if we have got a proof obligation (s, k +
1), then s has only a finite number of successor states t′ that may be added
as a proof obligation (t′, k) to Q. For all (t′, k), we can apply the induction
hypothesis. Moreover, if we have processed all successor states (computed the
rank or identified some of them as losing), we can determine the rank of s or
show that s is losing. If the procedure returns with ISGREATER at the end,
previously Q must be emptied. Now note that the following holds: whenever
(s0, k0) is chosen as the minimal element, it is either identified as losing or as
blocking, or added again as a proof obligation. Hence, if the while-loop is left,
the if-condition in line 8 must fail. ��

6.5 Main Function

Our main function is given in Listing 1.2. It first checks whether the initial state
is a bad state. If so, it returns FALSE. Otherwise, our internal data structures
are initialized. It then recursively probes for k = 1 . . . whether the rank of the

188 A. Morgenstern, M. Gesell, and K. Schneider

Listing 1.2. Main Function
1 bool main () {
2 (isSat, , , ,) ← SAT?[s0 ∧ ¬P]
3 i f (isSat) return FALSE;
4 R0 ← ¬P
5 Ri ← 1 , for a l l i > 0 − meaning : Ri = 2VX

6 U0 ← ¬P for a l l $i>0$

7 Ui1 , for a l l i > 0 − meaning : Ui ← 2(VX∪VU)

8 clauses(L) ← ∅ , for a l l i > 0 − meaning : L ← 2VX

9 for (k=1 . .) do {
10 i f (recBlockCube((s0, k) == isLose)) return FALSE
11 propagateBlockedStates (k) ;
12 i f (c l a u s e s (Ri)=c l au s e s (Ri+1)) for 1 ≤ i < k return TRUE
13 }
14 }

initial state equals k. If this is the case, then clearly the controller loses the
game. Otherwise, the function propagateBlockedStates is called: if a state s was
identified as blocked at rank i, but it is also blocked at rank i + 1, then the
corresponding clause ¬s is also added to Ri+1. Finally, as in the original IC3 [4]
or PDR algorithm [6], if we find that some adjacent levels Ri and Ri+1 share all
clauses, then Ri is an inductive strengthening of ¬s0, hence the initial state is
not backwards reachable from the bad states. This is captured by the following
theorem:

Theorem 2. The function main given in listing 1.2 computes a solution of the
game: it returns TRUE if and only if the controller has a winning strategy.

Proof (sketch). Clearly, if the procedure returns FALSE, due to the correctness
of recBlockCube, we have shown that the initial state has a finite rank and
hence is a losing position. Otherwise, if it returns TRUE, then for some k, we
have Rk = Rk+1 and since Rk is an over-approximation of the set computed
in the fixpoint iteration, the game is indeed safe. Finally, can k grow infinitely?
Clearly, if the check in the last line of main would be done semantically, then this
clearly could not happen. Rk+1 would have to block at least one state less than
Rk. Suppose therefore that Rk = Rk+1 holds, but clauses(Rk)¬clauses(Rk+1).
During the propagation phase in propagateBlockedStates, all clauses of Rk will
be moved into Rk+1 and they become syntactically equivalent. ��

7 Experiments

We have implemented a prototype of our algorithm, called IC3G, in Microsoft’s
new language F# with an interface to Minisat 2.2 and evaluated different case
studies. We have also implemented a safety game algorithm with an interface to
the popular BDD-package CUDD in our framework. Unfortunately, the latter
performed so poorly7 that we decided to rather compare with a tool from the

7 It could solve only the smallest benchmarks AMBA2 and GenBuf2 with a space limit
of 2 GB, while the SAT-algorithm uses only a few MB.

Solving Games Using Incremental Induction 189

Listing 1.3. Propagating Blocked States
1 void propagateBlockedStates () {
2 for i = 1 . . k
3 for each ¬s ∈ clauses(Ri) − s i s b locked at rank k

4 (isSat, , , ,) ← SAT?[s ∧ R′
i+1 ∧ Ui+1 ∧ ΦT]

5 i f (not i s S a t) {
6 − s i s a l s o blocked at rank k + 1
7 Ri+1 = Ri+1 ∧ ¬s
8 }
9 }

literature. We therefore use the tool Marduk [2] which is a BDD-based imple-
mentation of the algorithm described in [3] for so-called GR(1)-specifications8.
It is implemented in Python with an interface to the BDD-package CUDD.

The first case study is the GenBuf example which consists of a family of
buffers. The task is to generate a controller that handles in/output for those
buffers. The second example is ARM’s Advanced Microcontroller Bus Architec-
ture (AMBA) which defines the Advanced High performance Bus (AHB), an on-
chip communication standard that connects devices like processor cores, caches
and DMA arbiters. Here, we want to synthesize an arbiter for the bus. Both case
studies can be seen as standard benchmarks that have been used before to eval-
uate game solving algorithms [3,7,16] and can be parametrized by a parameter
that represents the number of clients served.

In [3], temporal logic specifications as well as deterministic ω-automata are
given for these benchmarks. The games we build are obtained as the automaton
product of the deterministic automata, hence they contain fairness constraints.
To obtain a safety-game, we use a (simplified) version of the bounded approach
to synthesis described in [7,15].

Model Marduk IC3G

GenBuf 2 0.08 0.5
GenBuf 4 0.15 1.3
GenBuf8 1.22 2.5
GenBuf16 1.68 4.1

Model Marduk IC3G

Amba2 0.7 0.9
Amba4 2.8 1.6
Amba8 43.1 2.7
Amba16 92.5 7.2

Fig. 1. Experimental Results: Running time in seconds for computing the winner

All experiments have been run on an Intel Core 2 Duo with 2.66 Ghz, the IC3G
algorithm under Windows 7 and Marduk under Ubuntu Linux. The results of
our experiments are summarized in Figure 1 where we have listed the runtimes
in seconds of our tool IC3G and Marduk9. On the GenBuf example, that can
be solved by both algorithms in a couple of seconds, our tool is slightly slower

8 GR(1) specifications have the form
∧

i ϕi →
∧

j ψj with fairness constraints ϕi, ψj .
9 The runtime for Marduk only contains the time needed for strategy generation; the
output function generation is not counted.

190 A. Morgenstern, M. Gesell, and K. Schneider

than the BDD-based algorithm. This changes when we consider the AMBA case
study, which contains much more state variables than the GenBuf example. Here,
our algorithm is significantly faster. This is no surprise, since on big examples
with many variables, BDDs often suffer from memory requirements so that they
can no longer be efficiently handled.

The experiments we performed do however only consider one part of game
solving: we only compute the winner of a game, but we have not looked at
the problem of actually computing a winning strategy. Computing the winning
region of the controller is the first step in generating a winning strategy in
each algorithm for controller synthesis. Known (BDD-based) algorithms can be
easily adjusted to compute from the winning region a winning strategy. For
safety-games one can obtain a simple winning strategy from controller’s winning
region: all we have to do is to forbid every transition that leads from a winning
position to a non-winning position. However, since we only compute an over-
approximation for the winning states, our algorithm is not able to construct
a winning strategy in that straightforward way. However, we expect that it is
possible to modify our algorithm for that purpose so that we can also obtain a
winning strategy using incremental induction. This would then solve also the last
application domain we sketched for game solving: automatically constructing a
system from a temporal logic specification.

8 Conclusions

In the past, many improvements have been suggested to increase the performance
of model checking tools. Starting with symbolic model checking based on BDDs,
bounded model checking based on SAT solvers was used, and then interpolation-
based model checking even allowed to use SAT solvers for unbounded model
checking. Recently, incremental induction has been proposed as an alternative
to the so-far used fixpoint-based methods and it turned out to be much more ef-
ficient for model checking. Controller synthesis or equivalent problems like game
solving are similar to model checking, but have to face the additional problem
of alternating quantifiers which is no problem for BDD-based approaches, but
requires QBF solvers instead of SAT solvers otherwise. In this paper, we have
shown how we can use a simple SAT solver for game solving by following the
ideas of the recently introduced incremental induction procedures, and we expe-
rienced similar improvements concerning the efficiency of our tools. While the
experiments are still quite preliminary, they indicate that incremental induction
may be as useful for game solving as for model-checking.

Solving Games Using Incremental Induction 191

References

1. Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic model checking without BDDs.
In: Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, pp. 193–207. Springer,
Heidelberg (1999)

2. Bloem, R., Cimatti, A., Greimel, K., Hofferek, G., Könighofer, R., Roveri, M.,
Schuppan, V., Seeber, R.: RATSY – A new requirements analysis tool with syn-
thesis. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174,
pp. 425–429. Springer, Heidelberg (2010)

3. Bloem, R., Galler, S., Jobstmann, B., Piterman, N., Pnueli, A., Weiglhofer,
M.: Specify, compile, run: Hardware from PSL. Electronic Notes in Theoretical
Computer Science (ENTCS), vol. 190, pp. 3–16 (2007)

4. Bradley, A.R.: SAT-based model checking without unrolling. In: Jhala, R.,
Schmidt, D. (eds.) VMCAI 2011. LNCS, vol. 6538, pp. 70–87. Springer,
Heidelberg (2011)

5. Bradley, A.R.: IC3 and beyond: Incremental, inductive verification. In:
Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 4–4. Springer,
Heidelberg (2012)

6. Eén, N., Mishchenko, A., Brayton, R.: Efficient implementation of property directed
reachability. In: Bjesse, P., Slobodová, A. (eds.) Formal Methods in Computer-Aided
Design (FMCAD), pp. 125–134. IEEE Computer Society, Austin (2011)

7. Filiot, E., Jin, N., Raskin, J.-F.: Compositional algorithms for LTL synthesis. In:
Bouajjani, A., Chin, W.-N. (eds.) ATVA 2010. LNCS, vol. 6252, pp. 112–127.
Springer, Heidelberg (2010)

8. Grumberg, O., Schuster, A., Yadgar, A.: Memory efficient all-solutions SAT solver
and its application for reachability analysis. In: Hu, A.J., Martin, A.K. (eds.)
FMCAD 2004. LNCS, vol. 3312, pp. 275–289. Springer, Heidelberg (2004)

9. Grädel, E., Thomas, W., Wilke, T. (eds.): Automata, Logics, and Infinite Games.
LNCS, vol. 2500. Springer, Heidelberg (2002)

10. Janota, M., Marques-Silva, J.: Abstraction-based algorithm for 2QBF. In: Sakallah,
K.A., Simon, L. (eds.) SAT 2011. LNCS, vol. 6695, pp. 230–244. Springer,
Heidelberg (2011)

11. Jobstmann, B.: Applications and Optimizations for LTL Synthesis. PhD thesis,
IST – Institute for Software Technology, TU Graz, Graz, Austria (February 2007)

12. McMillan, K.L.: Interpolation and SAT-based model checking. In: Hunt Jr., W.A.,
Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 1–13. Springer, Heidelberg
(2003)

13. Nopper, T., Scholl, C.: Approximate symbolic model checking for incomplete
designs. In: Hu, A.J., Martin, A.K. (eds.) FMCAD 2004. LNCS, vol. 3312,
pp. 290–305. Springer, Heidelberg (2004)

14. Rosner, R.: Modular Synthesis of Reactive Systems. PhD thesis, The Weizmann
Institute of Science, Israel, Rehovot, Israel (1992)

15. Schewe, S., Finkbeiner, B.: Bounded synthesis. In: Namjoshi, K.S., Yoneda, T.,
Higashino, T., Okamura, Y. (eds.) ATVA 2007. LNCS, vol. 4762, pp. 474–488.
Springer, Heidelberg (2007)

16. Sohail, S., Somenzi, F., Ravi, K.: A hybrid algorithm for LTL games. In:
Logozzo, F., Peled, D.A., Zuck, L.D. (eds.) VMCAI 2008. LNCS, vol. 4905,
pp. 309–323. Springer, Heidelberg (2008)

17. Somenzi, F.: Binary decision diagrams. In: Broy, M., Steinbrüggen, R. (eds.)
Calculational System Design. NATO Science Series F: Computer and Systems
Sciences, vol. 173, pp. 303–366. IOS Press (1999)

Model-Checking Software Library API Usage Rules�

Fu Song and Tayssir Touili

LIAFA, CNRS and Univ. Paris Diderot, France
{song,touili}@liafa.univ-paris-diderot.fr

Abstract. Modern software increasingly relies on using libraries which are ac-
cessed via Application Programming Interfaces (APIs). Libraries usually impose
constraints on how API functions can be used (API usage rules) and programmers
have to obey these API usage rules. However, API usage rules often are not well-
documented or documented informally. In this work, we show how to use the
SCTPL logic to precisely specify API usage rules in libraries, where SCTPL can
be seen as an extension of the branching-time temporal logic CTL with variables,
quantifiers, and predicates over the stack. This allows library providers to for-
mally describe API usage rules without knowing how their libraries will be used
by programmers. We also propose an approach to automatically check whether
programs using libraries violate or not the corresponding API usage rules. Our ap-
proach consists in modeling programs as pushdown systems (PDSs), and check-
ing API usage rules on programs using SCTPL model checking for PDSs. To
make the model-checking procedure more efficient, we propose an abstraction
that reduces drastically the size of the program model. Moreover, we characterize
a sub-logic rSCTPL of SCTPL preserved by the abstraction. rSCTPL is sufficient
to precisely specify all the API usage rules we met. We implemented our tech-
niques in a tool and applied it to check several API usage rules. Our tool detected
several previously unknown errors in well-known programs, such as Nssl, Verbs,
Acacia+, Walksat and Getafix. Our experimental results are encouraging.

1 Introduction

Most modern software increasingly relies on using libraries and frameworks provided
by organizations in order to shorten time to market. Libraries or frameworks are ac-
cessed via Application Programming Interfaces (APIs) which are sets of library func-
tions (called API functions) and usually impose constraints (API usage rules) on how
API functions can be used. Programmers have to obey these constraints when calling
API functions. However, most of API usage rules are not well-documented or docu-
mented informally in the API documentation. It is easy to introduce bugs using API
functions. So, it is important to formally describe and automatically check API usage
rules.

Many works addressed this problem [15, 19, 22, 24–26, 28, 30, 32–36, 38, 44, 45, 47].
However, their approaches either cannot describe API usage rules in a precise manner
or cannot automatically check API usage rules. In this paper, we propose a novel tech-
nique to specify and check API usage rules without knowing how API functions will be

� Work partially funded by ANR grant ANR-08-SEGI-006.

E.B. Johnsen and L. Petre (Eds.): IFM 2013, LNCS 7940, pp. 192–207, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Model-Checking Software Library API Usage Rules 193

used by programmers. Our approach consists of (1) modeling programs as pushdown
systems (PDSs), since PDSs are a natural model of sequential programs [23] (the stack
of PDSs stores the calling procedures which allows us to check context-sensitive API
usage rules), (2) specifying in a precise manner API usage rules in the Stack Computa-
tion Tree Predicate Logic (SCTPL) [41] (indeed, SCTPL can describe several API usage
rules that cannot be expressed by the existing works), and (3) automatically checking
whether programs violate or not API usage rules by SCTPL model checking for PDSs.

SCTPL can be seen as an extension of the CTPL logic with predicates over the stack
content. CTPL [29] is an extension of the Computation Tree Logic (CTL) with vari-
ables and quantifiers. In CTPL, propositions can be predicates of the form p(x1, ..., xm),
where the xi’s are free variables or constants. Free variables can get their values from
a finite domain and be universally or existentially quantified. CTPL can specify API
usage rules without knowing how API functions will
be used by programmers. E.g., consider the file opera-
tion API usage rule “The file should be closed by call-
ing the API function fclose whenever this file is opened
by calling fopen”. Closing opened files is important. In-
deed, long time running programs, such as web servers,
will use many resources if opened files are not closed.
This API usage rule can be expressed in CTL as ψ1 ≡

n1 : FILE* f1=fopen(“t1”,“w”);
n2 : FILE* f2=fopen(“t2”,“w”);
n3 : FILE* f3=fopen(“t3”,“w”);
n4 : if(f1) then
n5 : fclose(f1);
n6 : fclose(f3);

Fig. 2. File Operations

AG(f open =⇒ EF f close) (note that the formula ψ′1 ≡ AG(f open =⇒ AF f close) is
incorrect, if fopen returns a null file pointer, then fclose should not be called). However,
ψ1 cannot detect the bug in Figure 2, where the file pointed to by f2 is never closed.
This is due to the fact that we cannot specify the relation between the return value of
fopen and the parameter of fclose. To detect this bug, we have to specify this rule as
ψ2 ≡ AG(

∧3
i=1(fi = f open =⇒ EF f close(fi))

)
. However, this formula is too special to

specify this rule in library, since e.g., replacing the variable f1 by f ′1 breaks ψ2. Using
CTPL, we can specify this rule as ψ3 ≡ ∀x∀y∀z AG(x = f open(y, z) =⇒ EF f close(x))
stating that whenever a file is opened and pointed to by some variable x, it should be
closed in the future. 1

However, CTPL cannot specify properties about the calling procedures. Being able
to express such properties is important. E.g., consider an API usage rule expressing
that “Calling a function proc1 in some procedure proc must be followed by a call to
the function proc2 before the procedure proc returns”. This API usage rule cannot be
specified in CTPL. To overcome this problem, we use the SCTPL logic [40, 41] to
precisely describe API usage rules. SCTPL extends CTPL by predicates over the stack.
Such predicates are given by regular expressions over the stack alphabet and some free

1 Note that ψ3 cannot express the point that fclose is only called when fopen returns a pointer to
the file. Indeed, fopen returns a null pointer when the file does not exist. In this case, calling
fclose(f3) induces an error. To express such a point, we introduce an additional predicate Test(x)
which holds at some control point n iff x is tested at the control point n. Now, we can refine the
rule into ψ4 ≡ ∀x∀y∀z AG

(
x = f open(y, z) =⇒ AF(T est(x)∧EXAF f close(x))

)
. ψ4 states that

whenever x = f open is made, one has to check the return value x (i.e., Test(x)). After this, the
file has to be closed in all the future paths. The motivation of using Test(x) is that we cannot
know how the return value will be checked. Thus, we coarsely specify that the return value is
checked.

194 F. Song and T. Touili

variables (which can also be existentially and universally quantified). Using SCTPL, the
above rule can be specified as ∀l AG

(
(proc1 ∧ ΓlΓ∗) =⇒ AF(proc2 ∧ Γ+lΓ∗)

)
, where

ΓlΓ∗ and Γ+lΓ∗ are regular predicates. The subformula (proc1 ∧ ΓlΓ∗) expresses that
proc1 is called inside some procedure proc whose return address is l (since the return
addresses of the called procedures are put into the stack when executing the program.).
The above formula states that whenever proc1 is called in some procedure proc whose
return address is l (ensured by ΓlΓ∗), a function call to proc2 should be made where
the return address l is still in the stack, i.e., before the procedure proc returns (this is
ensured by Γ+lΓ∗). Note that, in our modeling, the topmost symbol of the stack of the
PDS stores the current control point, the rest of the stack stores the return addresses of
the calling procedures, i.e., the procedures that have not returned yet.

It is shown in [41] that SCTPL model checking for PDSs is decidable. Thus, we
can automatically check whether a program violates or not API usage rules by SCTPL
model-checking for PDSs. To make the verification of API usage rules more efficient,
we introduce the procedure-cutting abstraction, which is an abstraction that drastically
reduces the size of the program model by removing some procedures that do not use
the API functions specified in the SCTPL formula. We also consider rSCTPL, a sub-
logic of SCTPL and show that the procedure-cutting abstraction preserves all rSCTPL
formulas when the removed procedures are infinite execution free. rSCTPL is sufficient
to express all the API usage rules we met. Moreover, rSCTPL can describe all API usage
rules we met. Our abstraction allowed us to apply our techniques to large programs.

The main contributions of this paper are:

1. We propose a novel approach to precisely specify API usage rules using SCTPL.
SCTPL allows library providers to formally describe API usage rules when imple-
menting the libraries.

2. We can automatically check programs against API usage rules by SCTPL model-
checking. Our techniques also allow program developers to automatically verify
API usage rules of their programs without any additional inputs nor environment
abstractions.

3. We propose a procedure-cutting abstraction. We show that this abstraction pre-
serves all rSCTPL formulas when the cut procedures are infinite execution free.
Our abstraction reduces drastically the size of the program model, which makes
API usage rules verification more efficient.

4. We implemented our techniques in a tool and applied it to check several API usage
rules on several open source programs. Our tool was able to find several unknown
bugs in some well-known open source programs, such as Nssl, Verbs, Acacia+,
Walksat and Getafix.

Outline. Section 2 gives a formal definition of PDSs. Section 3 recalls the definition
of SCTPL, and shows how to precisely specify API usage rules in SCTPL. Section
4 describes the procedure-cutting abstraction and the sub-logic rSCTPL of SCTPL.
Section 5 discusses the experimental results. The related work is given in Section 6.

Model-Checking Software Library API Usage Rules 195

2 Formal Model: Pushdown Systems

In this section, we recall the definition of pushdown systems. We use the approach
of [23] to model a sequential program as a pushdown system.

A Pushdown System (PDS) is a tuple P = (P, Γ, Δ), where P is a finite set of control
locations, Γ is the stack alphabet, Δ ⊆ (P×Γ)× (P×Γ∗) is a finite set of transition rules.
A configuration 〈p, ω〉 of P is an element of P × Γ∗. We write 〈p, γ〉 ↪→ 〈q, ω〉 instead
of ((p, γ), (q, ω)) ∈ Δ. The successor relation �P⊆ (P × Γ∗) × (P × Γ∗) is defined as
follows: if 〈p, γ〉 ↪→ 〈q, ω〉, then 〈p, γω′〉�P 〈q, ωω′〉 for every ω′ ∈ Γ∗. A path of the
PDS is a sequence of configurations c1c2... such that ci+1 is an immediate successor of
the configuration ci, i.e., ci �P ci+1, for every i ≥ 1.

3 API Usage Rules Specification

In this section, we recall the definition of the Stack Computation Tree Predicate Logic
(SCTPL) [41], and show how to specify API usage rules in SCTPL.

3.1 Environments, Predicates and Regular Variable Expressions

Hereafter, we fix the following notations. Let X = {x1, x2, ...} be a finite set of variables
ranging over a finite domain D. Let B : X ∪ D −→ D be an environment function
that assigns a value v ∈ D to each variable x ∈ X and such that B(v) = v for every
v ∈ D. B[x ← v] denotes the environment function such that B[x ← v](x) = v and
B[x← v](y) = B(y) for every y � x. Let B be the set of all the environment functions.

Let AP be a finite set of atomic propositions, APX be a finite set of atomic predicates
in the form of a(α1, ..., αm) such that a ∈ AP, αi ∈ X ∪D for every 1 ≤ i ≤ m, and APD
be a finite set of atomic predicates of the form a(α1, ..., αm) such that a ∈ AP, αi ∈ D
for every 1 ≤ i ≤ m.

Given a PDS P = (P, Γ, Δ), let R be a finite set of regular variable expressions over
X ∪ Γ given by: e ::= ∅ | ε | a ∈ X ∪ Γ | e + e | e · e | e∗.

The language L(e) of a regular variable expression e is a subset of P×Γ∗ ×B defined
inductively as follows: L(∅) = ∅; L(ε) = {(〈p, ε〉,B) | p ∈ P,B ∈ B}; L(x), where x ∈ X
is the set {(〈p, γ〉,B) | p ∈ P, γ ∈ Γ,B ∈ B : B(x) = γ}; L(γ), where γ ∈ Γ is the set
{(〈p, γ〉,B) | p ∈ P,B ∈ B}; L(e1 + e2) = L(e1) ∪ L(e2); L(e1 · e2) = {(〈p, ω1ω2〉,B) |
(〈p, ω1〉,B) ∈ L(e1); (〈p, ω2〉,B) ∈ L(e2)}; and L(e∗) = {(〈p, ω〉,B) | B ∈ B and ω =
ω1 · · ·ωm, s.t. ∀i, 1 ≤ i ≤ m, (〈p, ωi〉,B) ∈ L(e)}. E.g., (〈p, γ1γ2γ2〉,B) is an element of
L(γ1x∗) when B(x) = γ2.

3.2 Stack Computation Tree Predicate Logic

A SCTPL formula is a CTL formula where predicates and regular variable expres-
sions are used as atomic propositions and variables can be quantified. Regular variable
expressions are used to express predicates on the stack content of the PDS. More pre-
cisely, the set of SCTPL formulas is given by (where x ∈ X, a(x1, ..., xm) ∈ APX and
e ∈ R):

ϕ ::= a(x1, ..., xm) | e | ¬ϕ | ϕ ∧ ϕ | ∀x ϕ | EXϕ | EGϕ | E[ϕUϕ].

196 F. Song and T. Touili

Let ϕ be a SCTPL formula. The closure cl(ϕ) denotes the set of all the subformulas of
ϕ including ϕ.

Given a PDS P = (P, Γ, Δ) s.t. Γ ⊆ D, let λ : APD → 2Γ be a labeling function that
assigns a set of stack symbols to a predicate. Let c ∈ P × Γ∗ be a configuration of P.
P satisfies a SCTPL formula ψ in c, denoted by c |=λ ψ, iff there exists an environment
B ∈ B s.t. c |=B

λ ψ, where c |=B
λ ψ is defined by induction as follows:

– c |=B
λ a(x1, ..., xm) iff n ∈ λ(a(B(x1), ...,B(xm))) and c = 〈p, nω〉.

– c |=B
λ e iff (c,B) ∈ L(e).

– c |=B
λ ψ1 ∧ ψ2 iff c |=B

λ ψ1 and c |=B
λ ψ2.

– c |=B
λ ∀x ψ iff ∀v ∈ D, c |=B[x←v]

λ ψ.
– c |=B

λ ¬ψ iff c �|=B
λ ψ.

– c |=B
λ EX ψ iff there exists a successor c′ of c s.t. c′ |=B

λ ψ.
– c |=B

λ E[ψ1Uψ2] iff there exists a path π = c0c1... of P with c0 = c s.t. ∃i ≥ 0, ci |=B
λ

ψ2 and ∀0 ≤ j < i, c j |=B
λ ψ1.

– c |=B
λ EGψ iff there exists a path π = c0c1... of P with c0 = c s.t. ∀i ≥ 0: ci |=B

λ ψ.

Intuitively, c |=B
λ ψ holds iff the configuration c satisfies ψ under the environment B.

We will freely use the following abbreviations: AXψ = ¬EX(¬ψ), EFψ = E[trueUψ],
AGψ = ¬EF(¬ψ), AFψ = ¬EG(¬ψ), A[ψ1Uψ2] = ¬E[¬ψ2U(¬ψ1∧¬ψ2)]∧¬EG¬ψ2,
A[ψ1Rψ2] = ¬E[¬ψ1U¬ψ2], E[ψ1Rψ2] = ¬A[¬ψ1U¬ψ2], and ∃xψ = ¬∀x¬ψ.

Theorem 1. [41] SCTPL model-checking for PDSs is decidable.

3.3 Extracting Predicates for API Specifications

API usage rules often state properties concerning the order of API function calls and
return value tests. Indeed, usually, after making a call to an API function, one has to
check whether the call was successful. For example, when fopen is called to open a
file t1, one has to make sure that the call was successful, i.e., that the file t1 exists
(as done in Figure 2, Line n4). Thus, to check API usage rules, we need to extract
predicates about API function calls and return value tests. To do this, for every API
function call y = f (p1, ..., pm) at a control point n where y denotes the return value2 and
for every 1 ≤ i ≤ m, pi denotes the ith parameter of the function f , we add the predicate
f (p1, ..., pm, y) to APD and associate this predicate to the control point n (i.e., we let
n ∈ λ(f (p1, ..., pm, y))). By abuse of notation, such predicates f (p1, ..., pm, y) will also
be denoted by y = f (p1, ..., pm).

For every boolean expression b in a conditional statement (e.g., if-then-else, switch-
case) at a control point n s.t. y is used in b and y is a return value of some function
call, we add the predicate Test(y) in APD and associate this predicate to n (i.e., we let
n ∈ λ(Test(y))).

Intuitively, for every ω ∈ Γ∗, a configuration 〈s0, nω〉 satisfies the atomic predicateσ
(i.e., σ is y = f (p1, ..., pm) or Test(x)) iff σ is associated to n (i.e., n ∈ λ(σ)). W.l.o.g.,
we suppose that the return value of some API function is immediately checked in the
same procedure where the API function is called. This assumption will not restrict the
usefulness of the libraries, and it is recommended to check the return value immediately
after the function call.

2 W.l.o.g., we assume that each function call has a return value assigned to some variable.

Model-Checking Software Library API Usage Rules 197

〈s0, n1〉 ↪→ 〈s0, fo0n2〉
〈s0, n2〉 ↪→ 〈s0, fo0n3〉
〈s0, n3〉 ↪→ 〈s0, fo0n4〉
〈s0, n4〉 ↪→ 〈s0, n5〉
〈s0, n5〉 ↪→ 〈s0, fc0n6〉
〈s0, n6〉 ↪→ 〈s0, fc0n7〉

λ(f1 = fopen(“t1”, “w”)) = {n1}
λ(f2 = fopen(“t2”, “w”)) = {n2}
λ(f3 = fopen(“t3”, “w”)) = {n3}
λ(Test(f1)) = {n4}
λ(fclose(f1)) = {n5}
λ(fclose(f3)) = {n6}

(a) (b)

Fig. 2. (a) The labeling function λ and (b) Transition rules Δ

3.4 An Illustrating Example

To illustrate our approach, we show how to specify the API usage rules for the GNU
socket library.

Description of the Socket Library The socket library implements a generalized in-
terprocess communication channel. It provides TCP and UDP Protocols. As shown in
Figure 3, a server-side program using the TCP Protocol should first create a socket s by
calling socket with SOCK STREAM as second parameter, then bind s to some address
by calling bind and listen to the address by calling listen. When the server receives a
connection request, it will create a new socket ns by calling accept. Then, the server
can communicate with the client by calling send and recv via the socket ns. Finally, s
and ns should be destroyed by calling close.

Figure 4 shows a typical application of the TCP Protocol at the client-side. It con-
nects to a server by calling connect after creating the socket s. Then, it can communicate
with the server by calling send and recv via the socket s. Finally, s should be destroyed
by calling close.

The server-side program using the UDP Protocol should create a socket s by calling
socket with SOCK DGRAM as second parameter as shown in Figure 5. After that, it
should bind s to some address by calling bind. Then, it can communicate with a client
by calling recvfrom and sendto via s. Finally, the socket s should be closed by calling
close. The client-side program using the UDP Protocol can communicate with a server
by calling recvfrom and sendto via a socket s after its creation. Figure 6 is a typical
implementation of the UDP Protocol at the client-side.

1 i n t s , c , ns ;
2 i f ((s = s o c k e t (AF INET , SOCK STREAM, 0))== −1)
3 r e t u r n ;
4 i f (b ind (s ,& s a d d r , l e n)==−1)
5 { c l o s e (s) ; r e t u r n ;}
6 i f (l i s t e n (s ,5)== −1){ c l o s e (s) ; r e t u r n ;}
7 w h i l e (1){
8 ns = a c c e p t (s ,& c addr , &s i z e) ;
9 do{

10 r e c v (ns , da ta , 2 5 6 , 0) ;
11 . . .
12 s end (ns , da ta , 2 5 6 , 0) ;
13 i f (cond1){ c l o s e (ns) ; r e t u r n ;}
14 }w h i l e (cond2)
15 }
16 c l o s e (s) ;

Fig. 3. TCP Server-side

1 i n t s ;
2 i f ((s= s o c k e t (AF INET , SOCK STREAM,
3 0))== −1)
4 r e t u r n ;
5 . . .
6 c o n n e c t (s ,& s a d d r , l e n)
7 do{
8 s end (s , da ta , 2 5 6 , 0) ;
9 . . .

10 r e c v (s , da ta , 2 5 6 , 0) ;
11 }w h i l e (cond3)
12 c l o s e (s) ;

Fig. 4. TCP Client-side

198 F. Song and T. Touili

1 i n t s ;
2 i f ((s = s o c k e t (AF INET , SOCK DGRAM, 0))== −1)
3 r e t u r n ;
4 i f (b ind (s ,& s a d d r , s i z e o f (s a d d r))== −1)
5 { c l o s e (s) ; r e t u r n ; }
6 do{
7 recv f rom (s , da t a , 256 , 0 , & c addr , l e n) ;
8 s e n d t o (s , da t a , 256 , 0 , & c addr , l e n) ;
9 }w h i l e (cond4)

10 c l o s e (s) ;

Fig. 5. UDP Server-side

1 i n t s ;
2 i f ((s= s o c k e t (AF INET ,SOCK DGRAM,
3 0))== −1)
4 r e t u r n ;
5 do (1){
6 s e n d t o (s , da t a , 256 , 0 , & addr , l e n) ;
7 . . .
8 recv f rom (s , da t a , 256 , 0 , & addr , l e n) ;
9 }w h i l e (cond5)

10 c l o s e (s) ;

Fig. 6. UDP Client-side

Specifying the Socket Library API Usage Rules in SCTPL. Table 1 shows some
SCTPL formulas describing some API usage rules of the socket library. Let us consider
the API usage rule “The return value of socket should be checked immediately after the
call to socket is made, and after a socket is created, this socket should be destroyed in all
the future paths”. We can specify this rule by the SCTPL formula r1 as shown in Table
1. r1 states that whenever the call to socket is made in a procedure proc whose return
address is l (the regular predicate ΓlΓ∗ ensures that the return address of the procedure
proc is l), the return value stored in the variable y should be eventually checked in all
the future paths (i.e., Test(y)) inside this procedure (this is ensured by the fact that the
stack is still of the form ΓlΓ∗ when the test of y is made). After this test, the socket y
should be eventually closed in all the future paths (this is ensured by EXAF close(y)).
The other rules in Table 1 are explained as follows.

The formula r2 states that whenever bind is called to bind the socket to some address
in a procedure whose return address is l, the user has to check whether the binding is
correct before this procedure returns. r3 and r4 are similar to r2.

The formula r5 specifies that a socket y should be created (y = socket(−,−,−)) prior
to binding the socket y to some address (bind(y,−,−)), where − matches any constant
(i.e., a variable quantified by ∀). r6 is similar to r5.

The formula r7 states that any occurrence of connect(y,−) should be preceded by an
occurrence of y = socket(−, S OCK S TREAM,−) using the TCP Protocol.

Table 1. A set of API usage rules of the Socket Library extracted from the Socket library manual

No. Rule

r1 ∀y ∀l AG
((

y = socket(−,−,−) ∧ ΓlΓ∗
)
=⇒ AF

(
T est(y) ∧ ΓlΓ∗ ∧ EX AF close(y)

))
r2 ∀y ∀l AG

(
y = bind(−,−,−) ∧ ΓlΓ∗ =⇒ AF (T est(y) ∧ ΓlΓ∗)

)
r3 ∀y ∀l AG

(
y = listen(−,−) ∧ ΓlΓ∗ =⇒ AF (T est(y) ∧ ΓlΓ∗)

)
r4 ∀y ∀l AG

(
y = connect(−,−,−) ∧ ΓlΓ∗ =⇒ AF (T est(y) ∧ ΓlΓ∗)

)
r5 ∀y A[y = socket(−,−,−) R ¬bind(y,−,−)]
r6 ∀y A[listen(y,−) R ¬accept(y,−,−)]
r7 ∀y A[y = socket(−, S OCK S T REAM,−) R ¬connect(y, −,−)]
r8 ∀y A[(y = socket(−, S OCK S T REAM,−) ∧A[bind(y,−,−) R ¬listen(y,−)]) R ¬listen(y,−)]
r9 ∀y A[connect(y, −,−) ∨ y = accept(−,−,−) R ¬send(y,−,−,−)]
r10 ∀y A[connect(y,−,−) ∨ y = accept(−,−,−) R ¬recv(y,−,−,−)]
r11 AG ∀y

(
y = accept(−,−,−) =⇒ AF close(y)

)
r12 ∀y A[y = socket(−, S OCK DGRAM,−) R ¬(sendto(y,−,−,−,−,−) ∨ recv f rom(y,−,−,−,−,−))]
r13 ∀y A[sendto(y,−,−,−,−,−) ∨ bind(y,−,−) R ¬recv f rom(y,−,−,−,−,−)]

Model-Checking Software Library API Usage Rules 199

The formula r8 specifies that any occurrence of listening to a socket y (listen(y,−))
should be preceded by an occurrence of creating the socket y using the TCP Proto-
col (y = socket(−, S OCK S TREAM,−)), and the socket y should be bound to some
address (bind(y,−,−)) before listening.

The formula r9 states that before sending a data (send(y,−,−,−)) via a socket
y, the socket y should either be connected to the target server at the client-side (connect
(y,−,−)) or y should be the socket created by y = accept(−,−,−) at the server-side. r10

is similar.
The formula r11 specifies that the new socket created by y = accept(−,−,−) should

be eventually closed (close(y)) in all the future paths.
The formula r12 states that the socket should be created using the UDP Protocol

(y = socket(−, S OCK DGRAM,−)) prior to sending (sendto(y,−,−,−,−)) or receiving
(recv f rom (y,−,−,−,−)) some data using the UDP Protocol.

The formula r13 specifies that before receiving (recv f rom(y,−,−,−,−)) some data
using the UDP Protocol, one has to send some data (sendto(y,−,−,−,−)) to the server at
the client-side or bind (bind(y,−,−)) the socket to some address at the server-side. Since
using the UDP protocol, no connection is created, the client sends data by specifying
the target address in the third parameter of the function sendto. After this, the client can
receive data from the server. The server can send data only after receiving the client
address from some client.

Checking the API Usage Rules. Consider the program in Figure 3. If cond1 is true
(Fig. 3: line 13), the socket s will never be closed. The SCTPL formula r1 can detect
this bug by model-checking the program against r1. Consider the program in Figure 4,
if the client managed to connect to a server which only supports the UDP Protocol as
in Figure 5, the connection at line 5 of Figure 4 will fail, then sending (Figure 4: line 7)
or receiving (Figure 4: line 9) some data via the socket s will induce an error. This error
can be detected by checking the SCTPL formula r4.

4 rSCTPL and The Procedure-Cutting Abstraction

To make API usage rules verification more efficient, it is important to model programs
by PDSs having small size. We propose in this section to use the procedure-cutting
abstraction to drastically reduce the size of the program model. The procedure-cutting
abstraction removes all the procedures whose runs don’t call any API function specified
in the given SCTPL formula. We characterize a sub-logic rSCTPL of SCTPL that is
sufficient to specify all the API usage rules that we met, and we show that the procedure-
cutting abstraction preserves all rSCTPL formulas.

4.1 Procedure-Cutting Abstraction

Let M be a program that consists of a finite set of procedures Proc = {proci | 1 ≤
i ≤ m}. Each procedure proci will generate transition rules in the PDS model. Imagine
there exists some procedure proc j whose runs do not call any API function specified in
the given SCTPL formula ψ, then removing proc j will not change the satisfiability of

200 F. Song and T. Touili

ψ. This means that the procedure proc j can be cut. Cutting such procedure proc j will
drastically reduce the size of the PDS model. We call this procedure-cutting abstraction.
From the PDS’s point of view, a function call statement y = proc j(...) at a control
point n (suppose n′ is the next control point of n) is represented by the transition rule
ρ = 〈s0, n〉 ↪→ 〈s0, eproc j n

′〉where eproc j denotes the entry control point of the procedure
proc j. Whenever the procedure proc j can be cut, we will add the transition rule ρ′ =
〈s0, n〉 ↪→ 〈s0, n′〉 instead of ρ. The transition rule ρ′ expresses that the run from n will
immediately move to n′ without entering the procedure proc j. By doing the procedure-
cutting abstraction, the size of the stack alphabet and transition rules will be drastically
reduced.

Formally, to compute the abstracted program, we proceed as follows. Let M be a
program, a call graph ofM is a tuple G = (Proc, E, proc0), where Proc is a finite set of
nodes denoting the procedure names ofM; E ⊆ Proc×Proc is a finite set of edges such
that (proci, proc j) ∈ E, denoted by proci −→ proc j, iff proc j is called in the procedure
proci; proc0 ∈ Proc is the initial node corresponding to the entry procedure (usually,
the main function) ofM. A node proci can reach the node proc j iff there exists a set
of edges prock1 −→ prock2 , ..., prockm −→ prockm+1 in E such that k1 = i and km+1 = j.
Let Op(ψ) = {proc ∈ AP | ∃proc(x1, ..., xm) ∈ cl(ψ) ∧ proc � Test} denote the set
of atomic propositions (i.e., API function names) used in the SCTPL formula ψ except
the additional atomic proposition Test. The procedure-cutting abstraction computes the
abstracted programM′ by (1) removing all the procedures proc ∈ Proc s.t. the node
proc cannot reach any node of Op(ψ) in G (i.e., the run of proc will not call any function
in Op(ψ)), and (2) replacing each function call y = proc(p1, ..., pm) by a skip statement,
i.e., no operation statement.

Proposition 1. Given a program M and a SCTPL formula ψ, we can compute the
abstracted programM′ in linear time.

4.2 The rSCTPL Logic

The procedure-cutting abstraction can drastically reduce the size of the program model.
However, it cannot preserve all SCTPL formulas. Indeed, formulas using the X oper-
ator without any restriction are not preserved, since the procedure-cutting abstraction
removes procedures in the programs and replaces some function calls by skip. However,
formulas of the form a(x1, ..., xm) ∧ EXφ and a(x1, ..., xm) ∧ AXφ are preserved when
φ is a regular predicate e or its negation ¬e or a SCTPL formula using the X operator
as in the above form. Indeed, if the predicate a(x1, ..., xm) appearing in a SCTPL for-
mula (a function call or a return value test) is made in some procedure proc, then all
the procedures including proc whose runs can reach proc will not be removed by the
procedure-cutting abstraction. This implies that the next control point of a(x1, ..., xm)
will not be removed and the stack content at the next control point in the abstracted
programM′ is the same as inM.

Moreover, formulas using regular variable expressions (e.g. e, ¬e) without any re-
striction are not preserved. Indeed, control points in M satisfying e or ¬e may be re-
moved by the procedure-cutting abstraction. Thus, the runs of M′ cannot reach these
control points. However, formulas of the form a(x1, ..., xm) ∧ e or a(x1, ..., xm) ∧ ¬e

Model-Checking Software Library API Usage Rules 201

are preserved. Since all the procedures which can reach the procedure proc where
a(x1, ..., xm) is made are not removed, each control point in M satisfying a(x1, ..., xm)
has the same calling procedures (i.e., stack content) as inM′. Then, a configuration of
M satisfies a(x1, ..., xm) ∧ e iff this configuration ofM′ satisfies a(x1, ..., xm) ∧ e.

Based on the above observations, we define rSCTPL as follows (where a(x1, ..., xm) ∈
APX, x ∈ X, and e ∈ R):

ϕ ::= a(x1, ..., xm) | ¬a(x1, ..., xm) | ϕ ∧ ϕ | ϕ ∨ ϕ | ∀x ϕ | ∃x ϕ
| A[ϕUϕ] | E[ϕUϕ] | A[ϕRϕ] | E[ϕRϕ] | a(x1, ..., xm) ∧ ψ

ψ ::= e | ¬e | EXe | AXe | EX¬e | AX¬e | EXϕ | AXϕ

Intuitively, rSCTPL is a sub-logic of SCTPL, where (1) the next time operator X is
used only to specify that a rSCTPL formula ψ or a regular predicate e or its negation ¬e
holds immediately after an atomic predicate holds (i.e., an API function call is made or
a return value is tested), and (2) regular predicates and their negations are conjuncted
with atomic predicates. rSCTPL is sufficient to specify all the API usage rules we met.

However, the procedure-cutting abstraction does not preserve rSCTPL formulas when

a cut procedure has an infinite execution. For instance, let n1
stmt−→ n2 be an edge s.t. stmt

is a function call y = f (p1, ..., pm) and the procedure f has an infinite execution. Sup-
pose we replace this function call by skip. If n1 and all the control locations of f don’t
satisfy the atomic predicate a (i.e., API function calls or return value test), while n2

satisfies a, then the configuration 〈s0, n1ω〉 ofM satisfies EG¬a, but 〈s0, n1ω〉 does not
satisfy EG¬a inM′ due to the removal of the infinite execution. On the other hand, if n1

and all the control locations of f do not satisfy the atomic predicate a, while n2 satisfies
the atomic predicate b, then the configuration 〈s0, n1ω〉 ofM′ satisfies A[¬aUb] due to
the removal of the infinite execution, while 〈s0, n1ω〉 does not satisfy A[¬aUb] in M
(since b is never true in the infinite execution). We can show the following theorem.

Theorem 2. Let ψ be a rSCTPL formula. LetM be a program andM′ be the program
obtained fromM by applying the procedure-cutting abstraction. Let P (resp. P′) be the
PDS modeling the program M (resp. M′). If all the removed procedures are infinite
execution free, then P satisfies ψ iff P′ satisfies ψ.

5 Experiments

We implemented our techniques in a tool for API usage rules verification. Given a
programM using some libraries which are equipped with the API usage rules specified
in rSCTPL, our tool automatically answers either Yes or No, depending on whether the
program violates the API usage rules or not.

In our implementation, we use goto-cc [31] to parse ANSI-C programs into goto-
cc binary programs. We implemented a translator translating goto-cc binary programs
into pushdown systems and outputs the required predicates as discussed in Section 3.3.
We use the SCTPL model-checker of [41] as engine. In our experiments, we consider
several API usage rules: the socket library API usage rules and the file operation usage
rules. We checked several open-source C programs against these API usage rules. All
the experiments were run on a Linux platform (Fedora 13) with a 2.4GHz CPU and 2GB

202 F. Song and T. Touili

of memory. The time limit is fixed to 30 minutes. Our tool detected several previously
unknown errors in some well-known open source programs. The run time consists of
the time spent for parsing goto-cc binary programs and model-checking. It excludes
the time for translating ANSI-C programs into goto-cc binary programs. We also run
our tool without considering the procedure-cutting abstraction. We observed that the
procedure-cutting abstraction significantly speeds up the analysis.

5.1 Checking The Socket Library API Usage Rules

To check the socket library API usage rules shown in Table 1, we checked seven open-
source programs from SourceForge [12] which are written in C and use the socket
library, and four generic tutorial socket programs written by Seshadri [37].

The benchmark contains the following programs. Comserial is a program that helps
turn console application into a web based service, by reading from TCP connections
and providing commands from each connection to applications through a socket. Mr-
ChaTTY is a chat program that allows users to chat via UNIX terminals through sock-
ets. Mrhttpd is a web server. Nerv is a common socket server. Nssl is a netcat-like
program with SSL support. Pop3client is a mail client which reads mail in a console
and connects to servers using POP3 Protocol. Ser2nets is a program allowing network
connections to remote serial ports. TCPC, TCPS, UDPC and UDPS are a TCP client,
a TCP server, a UDP client and a UDP server tutorial programs, respectively.

Table 2 shows the results of checking the socket library API usage rules with the
procedure-cutting abstraction. The row #LOC gives the number of lines of the program.
For 1 ≤ i ≤ 13, the row ri depicts the results of checking the API usage rule ri against
these programs, where the rows Time(s) and Mem(MB) give the time consumption in
seconds and memory consumption in MB, respectively. The result Proved denotes that
the program satisfies the corresponding API usage rule, FA denotes false alarm and Bug
denotes a real bug. o.o.m. (resp. o.o.t.) means run out of memory (resp. time).

We can see from Table 2, there are 22 alarms including Bug and FA. We found that
12 of these alarms are real bugs and the others are false alarms. These false alarms arose
from the fact that we abstract away the data. We found 12 real errors in these programs.
For instance, the program Comserial does not call listen before calling accept in the
file passwdserver.c when argc is 1. Moveover, most of these programs will not close
the socket by calling close nor check the return values of socket in some paths. E.g.,
Comserial does not check the return value (i.e., socket) in the file comserver.c before it
is used. In the file main.c, when it fails in binding a socket to some address, Mrhttpd
will not close this socket before the program terminates.

5.2 Checking File Operation Usage Rules

File reading and writing are frequently used in programs. To read or write a file, a
user has to correctly open the file by calling fopen which returns a file pointer to the
file. Then the user can read from or write to that file. Finally the file pointer should be
closed by calling fclose.

For file operation API usage rules, we consider two rules from stdio.h: F1 = AG ∀ y(
y = f open(−,−) =⇒ AF

(
Test(y)∧EXAF f close(y)

))
and F2 = ∀ y A[y = f open(−,−)

Model-Checking Software Library API Usage Rules 203

Table 2. Results of checking the socket library API usage rules with the procedure-cutting ab-
straction

Program Comserial MrChaTTY Mrhttpd Nerv Nssl Pop3client Ser2nets TCPC TCPS UDPC UDPS
#LOC 1.0k 1.2k 1.4k 1.1k 1.1k 1.6k 7.3k 70 90 50 60

r1

Time(s) 0.08 0.26 0.29 7.94 1.24 0.41 70.53 0.01 0.01 0.01 0.01
Mem(MB) 0.24 0.44 0.66 5.94 1.44 0.58 11.63 0.09 0.13 0.06 0.06

Result Bug FA Bug FA Bug Bug Bug Bug Bug Bug Bug

r2

Time(s) 0.01 0.09 0.01 0.04 0.23 0.01 8.72 0.01 0.01 0.01 0.01
Mem(MB) 0.06 0.35 0.07 0.24 0.36 0.01 2.04 0.01 0.01 0.01 0.01

Result Proved Proved Proved Proved Proved Proved Proved Proved Proved Proved Proved

r3

Time(s) 0.01 0.09 0.01 0.03 0.11 0.01 9.57 0.01 0.02 0.01 0.01
Mem(MB) 0.05 0.37 0.07 0.20 0.29 0.01 2.03 0.01 0.10 0.01 0.01

Result Proved Proved Proved Proved Proved Proved Proved Proved Proved Proved Proved

r4

Time(s) 0.01 0.01 0.01 0.11 0.16 0.09 6.31 0.01 0.01 0.01 0.01
Mem(MB) 0.01 0.01 0.01 0.29 0.33 0.29 1.72 0.07 0.01 0.01 0.01

Result Proved Proved Proved Proved Proved Proved Proved Proved Proved Proved Proved

r5

Time(s) 0.01 0.01 0.01 0.01 0.01 0.01 0.18 0.01 0.01 0.01 0.01
Mem(MB) 0.04 0.18 0.05 0.22 0.19 0.14 1.07 0.04 0.06 0.04 0.04

Result Proved Proved Proved Proved Proved Proved Proved Proved Proved Proved Proved

r6

Time(s) 0.06 0.01 0.01 0.01 0.01 0.01 0.20 0.01 0.03 0.01 0.01
Mem(MB) 0.15 0.18 0.05 0.19 0.01 0.01 1.12 0.01 0.10 0.01 0.01

Result Bug Proved Proved Proved FA Proved Proved Proved Proved Proved Proved

r7

Time(s) 0.01 0.01 0.01 0.02 0.02 0.02 0.21 0.01 0.01 0.01 0.01
Mem(MB) 0.04 0.15 0.05 0.22 0.19 0.18 0.92 0.05 0.05 0.04 0.04

Result Proved Proved Proved Proved Bug FA Proved Proved Proved Proved Proved

r8

Time(s) 0.01 0.07 0.01 0.09 0.07 0.03 1.03 0.01 0.01 0.01 0.01
Mem(MB) 0.07 0.47 0.08 0.54 0.44 0.30 2.86 0.07 0.12 0.05 0.05

Result Proved Proved Proved Proved FA Proved Proved Proved Proved Proved Proved

r9

Time(s) 0.01 0.01 0.01 0.02 0.01 0.01 0.07 0.02 0.01 0.01 0.01
Mem(MB) 0.11 0.34 0.30 0.50 0.29 0.30 1.46 0.08 0.10 0.01 0.01

Result Proved FA Proved Proved Proved FA Proved Proved Proved Proved Proved

r10

Time(s) 0.01 0.01 0.01 0.05 0.01 0.01 0.07 0.01 0.01 0.01 0.01
Mem(MB) 0.11 0.33 0.33 0.75 0.29 0.35 1.46 0.08 0.09 0.01 0.01

Result Proved FA Proved FA Proved FA Proved Proved Proved Proved Proved

r11

Time(s) 0.10 0.56 0.32 - - 0.13 - 0.02 0.03 0.01 0.01
Mem(MB) 0.47 1.97 1.50 o.o.m. o.o.m. 0.39 o.o.m. 0.11 0.17 0.01 0.01

Result Bug Proved Proved - - Proved - Proved Proved Proved Proved

r12

Time(s) 0.01 0.01 0.01 0.01 0.01 0.01 0.04 0.01 0.01 0.01 0.01
Mem(MB) 0.04 0.15 0.05 0.18 0.15 0.14 0.71 0.04 0.05 0.05 0.04

Result Proved Proved Proved Proved Proved Proved Proved Proved Proved Proved Proved

r13

Time(s) 0.01 0.01 0.01 0.01 0.01 0.01 0.07 0.01 0.03 0.01 0.01
Mem(MB) 0.05 0.31 0.07 0.17 0.30 0.01 1.46 0.01 0.10 0.05 0.05

Result Proved Proved Proved Proved Proved Proved Proved Proved Proved Proved Proved

R¬(f read(−,−,−, y) ∨ f write(−,−,−, y))]. F1 states that whenever a file is opened by
calling fopen where y stores its return file pointer (i.e., y = f open(−,−)), we need to
check whether the opening of the file is correct (i.e., Test(y)), and there exists a next
point after checking y such that the file is eventually closed (i.e., EX AF f close(y)). F2

states that the user cannot read from or write to a file pointer y unless the file pointer y
points to some file (i.e., has already been opened).

To evaluate these two rules, we checked the following open source programs which
use file API functions from stdio.h. Verbs is a bounded model checker [10]. Getafix is a
symbolic model-checker for recursive boolean programs [3]. Moped is a model-checker
for pushdown systems [7]. Acacia+ is a tool for LTL realizability and synthesis [1].
Mist is a solver of the coverability problem for monotonic extensions of Petri nets [6].
Elastic is a translator from elastic specifications to hytech or uppaal language [2]. Mckit

204 F. Song and T. Touili

Table 3. Results of checking the API usage rules F1 and F2 with the procedure-cutting
abstraction

Program Verbs Getafix Moped Acacia+ Mist Elastic Mckit TSPASS MiniSat Walksat Ubcsat
#LOC 4.0k 11.5k 30.3k 8.0k 16.0k 15.4k 26.7k 62.3k 1.4k 1.4k 16.9k

F1

Time(s) 0.96 0.18 9.92 0.05 0.01 1.45 - 0.25 0.01 0.06 216.88
Mem(MB) 1.17 0.36 10.52 0.20 0.10 2.99 o.o.m. 0.67 0.08 0.28 15.92

Result Bug Bug Proved Bug Proved Proved - Proved Proved Bug FA

F2

Time(s) 0.08 0.29 9.67 0.01 0.26 0.89 23.60 0.01 0.01 0.01 0.06
Mem(MB) 0.50 0.84 10.26 0.09 0.90 2.94 15.00 0.27 0.27 0.13 0.89

Result FA Proved FA Proved FA FA Proved Proved FA Proved Proved

is a model-checking Kit [4]. TSPASS is a fair automated theorem prover for monodic
first-order temporal logic with expanding domain semantics and propositional linear-
time temporal logic [8]. Walksat, MiniSat and Ubcsat are three SAT solvers [5,9,11].

Table 3 shows the results of checking these programs against F1 and F2 with the
procedure-cutting abstraction. As shown in Table 3, we found that Verbs, Getafix,
Acacia+ and MiniSat have real errors. E.g., in the file main.c, Verbs does not close
an opened file by calling fclose before the program terminates. Moreover, in the files
issat.c, main.c and util.c, a file pointer is used without checking whether it is NULL
or not (i.e., whether the file exists or not). Acacia+, Walksat and Getafix do not close
opened files which are opened in main.c, walksat.c, bpsuspend.y and bp.y, respectively.

6 Related Work

There has been a lot of works on API usage rules specification and checking [13–16,19,
22, 24–26, 28, 30, 32–36, 38, 44–47]. However, all these works cannot specify context-
sensitive specifications, whereas our approach can.

Some tools dedicated to software model-checking were used to check API usage
rules for device drivers, such as DDVerify [46]. But, these tools can only check safety
properties. Other works on software model-checking, such as [17, 18, 27, 42, 43], could
be applied to check API usage rules. However, all these works cannot check full CTL
properties.

Model-checking is used to verify security-critical applications in which security vul-
nerabilities are expressed by safety properties over API functions [20, 21]. However,
these works consider only safety properties.

Code contracts introduced in [24] can specify pre/post-conditions and invariants for
each API function. Programmers have to make sure that a pre-condition (resp. post-
condition) holds at the entry (resp. exit) of each API function, and that invariants always
hold inside the API function. These code contracts can be verified via either runtime
checking or static checking at compile time. However, they cannot specify relations
between API functions which are often used in API usage rules.

Mining-based methods are proposed [13–15,19,22,25,26,30,32,33,35,38,45,47] to
discover API usage rules from executing traces or source codes, where API usage rules
are represented by some patterns or finite automata. One can apply model-checking
techniques to check whether programs violate or not API usage rules represented by
patterns or finite automata. However, all these works cannot specify data dependencies

Model-Checking Software Library API Usage Rules 205

between API functions’ parameters and return values of API functions. This disallows
one to precisely express API usage rules. Variables are introduced into finite automata
to specify data dependencies between API functions in [15, 28]. However, these works
cannot express CTL-like properties (e.g., the above file operation API usage rule), and
do not show how to check whether programs violate or not API usage rules represented
by finite automata equipped with variables.

A class of temporal properties, called QBEC, is used to specify API usage rules us-
ing at most one temporal operator [34]. We can show that SCTPL is more expressive
than QBEC. Indeed, all the temporal operators in QBEC can be expressed by SCTPL
formulas. Ramanathan et al propose a formalism in [36] to specify data-dependence be-
tween API functions. However, they only consider mining preconditions of API func-
tions rather than verification. CTL extended with variables is proposed to specify API
usage rules in [44]. However, this work cannot specify context-sensitive specifications
which is important for API usage rules.

SCTPL is introduced in our previous work [41], in which SCTPL is used to ex-
press malicious behaviors and model-checking is applied to detect malware. Although,
SCTPL is as expressive as CTL with regular valuations [39], in [41], we have shown
that SCTPL model-checking is more efficient than CTL model-checking with regular
valuations.

References

1. Acacia+, http://lit2.ulb.ac.be/acaciaplus/
2. elastic, http://www.ulb.ac.be/di/ssd/madewulf/aasap/
3. Getafix, http://www.cs.uiuc.edu/madhu/getafix/
4. Mckit, http://www.fmi.uni-stuttgart.de/szs/tools/mckit/
5. Minisat, C.: language version, http://minisat.se/MiniSat.html
6. Mist2, http://software.imdea.org/pierreganty/software.html
7. Moped, http://www.fmi.uni-stuttgart.de/szs/tools/moped/
8. Tspass, http://www.csc.liv.ac.uk/michel/software/tspass/
9. Ubcsat, http://ubcsat.dtompkins.com/

10. Verbs, http://lcs.ios.ac.cn/zwh/verbs/index.html
11. Walksat, version 35, http://www.cs.rochester.edu/kautz/walksat/
12. SourceForge (2012), http://sourceforge.net
13. Acharya, M., Xie, T.: Mining API error-handling specifications from source code. In:

Chechik, M., Wirsing, M. (eds.) FASE 2009. LNCS, vol. 5503, pp. 370–384. Springer,
Heidelberg (2009)

14. Acharya, M., Xie, T., Pei, J., Xu, J.: Mining API patterns as partial orders from source code:
From usage scenarios to specifications. In: ESEC/FSE 2007 (2007)

15. Ammons, G., Bodı́k, R., Larus, J.R.: Mining specifications. In: POPL (2002)
16. Besson, F., Jensen, T.P., Métayer, D.L.: Model checking security properties of control flow

graphs. Journal of Computer Security (2001)
17. Beyer, D., Henzinger, T.A., Jhala, R., Majumdar, R.: The software model checker BLAST.

In: STTT (2007)
18. Chaki, S., Clarke, E.M., Groce, A., Jha, S., Veith, H.: Modular verification of software com-

ponents in C. IEEE Trans. Software Eng. 30(6) (2004)
19. Chen, F., Roşu, G.: Mining parametric state-based specifications from executions. Technical

report (2008)

http://lit2.ulb.ac.be/acaciaplus/
http://www.ulb.ac.be/di/ssd/madewulf/aasap/
http://www.cs.uiuc.edu/madhu/getafix/
http://www.fmi.uni-stuttgart.de/szs/tools/mckit/
http://minisat.se/MiniSat.html
http://software.imdea.org/pierreganty/software.html
http://www.fmi.uni-stuttgart.de/szs/tools/moped/
http://www.csc.liv.ac.uk/michel/software/tspass/
http://ubcsat.dtompkins.com/
http://lcs.ios.ac.cn/zwh/verbs/index.html
http://www.cs.rochester.edu/kautz/walksat/
http://sourceforge.net

206 F. Song and T. Touili

20. Chen, H., Dean, D., Wagner, D.: Model checking one million lines of C code. In: NDSS
(2004)

21. Chen, H., Wagner, D.: Mops: an infrastructure for examining security properties of software.
In: ACM Conference on Computer and Communications Security (2002)

22. Dallmeier, V., Lindig, C., Wasylkowski, A., Zeller, A.: Mining object behavior with ADABU.
In: WODA (2006)

23. Esparza, J., Hansel, D., Rossmanith, P., Schwoon, S.: Efficient algorithm for model check-
ing pushdown systems. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855,
Springer, Heidelberg (2000)

24. Fähndrich, M., Logozzo, F.: Static contract checking with abstract interpretation. In: Beckert,
B., Marché, C. (eds.) FoVeOOS 2010. LNCS, vol. 6528, pp. 10–30. Springer, Heidelberg
(2011)

25. Gabel, M., Su, Z.: Javert: fully automatic mining of general temporal properties from
dynamic traces. In: FSE (2008)

26. Gabel, M., Su, Z.: Symbolic mining of temporal specifications. In: ICSE (2008)
27. Godefroid, P.: Software model checking: The Verisoft approach. Formal Methods in System

Design 26 (2005)
28. Henzinger, T.A., Jhala, R., Majumdar, R.: Permissive interfaces. In: ESEC/SIGSOFT FSE

(2005)
29. Kinder, J., Katzenbeisser, S., Schallhart, C., Veith, H.: Detecting malicious code by model

checking. In: Julisch, K., Kruegel, C. (eds.) DIMVA 2005. LNCS, vol. 3548, pp. 174–187.
Springer, Heidelberg (2005)

30. Kremenek, T., Twohey, P., Back, G., Ng, A.Y., Engler, D.R.: From uncertainty to belief:
Inferring the specification within. In: OSDI (2006)

31. Kroening, D.: CBMC (2012), http://www.cprover.org/cbmc
32. Liu, C., Ye, E., Richardson, D.J.: Software library usage pattern extraction using a software

model checker. In: ASE (2006)
33. Lo, D., Khoo, S.-C.: SMArTIC: towards building an accurate, robust and scalable specifica-

tion miner. In: FSE 2006 (2006)
34. Lo, D., Ramalingam, G., Ranganath, V.P., Vaswani, K.: Mining quantified temporal rules:

Formalism, algorithms, and evaluation. In: WCRE (2009)
35. Lorenzoli, D., Mariani, L., Pezzè, M.: Automatic generation of software behavioral models.

In: ICSE 2008 (2008)
36. Ramanathan, M.K., Grama, A., Jagannathan, S.: Static specification inference using predi-

cate mining. In: PLDI (2007)
37. Seshadri, P.: Generic Socket Programming tutorial (2008), http://www.

prasannatech.net/2008/07/socket-programming-tutorial.html
38. Shoham, S., Yahav, E., Fink, S.J., Pistoia, M.: Static specification mining using automata-

based abstractions. IEEE Trans. Software Eng. (2008)
39. Song, F., Touili, T.: Efficient CTL model-checking for pushdown systems. In:

Katoen, J.-P., König, B. (eds.) CONCUR 2011. LNCS, vol. 6901, pp. 434–449. Springer,
Heidelberg (2011)

40. Song, F., Touili, T.: Efficient malware detection using model-checking. In: Giannakopoulou,
D., Méry, D. (eds.) FM 2012. LNCS, vol. 7436, pp. 418–433. Springer, Heidelberg (2012)

41. Song, F., Touili, T.: Pushdown model checking for malware detection. In: Flanagan, C.,
König, B. (eds.) TACAS 2012. LNCS, vol. 7214, pp. 110–125. Springer, Heidelberg (2012)

42. Visser, W., Havelund, K., Brat, G.P., Park, S., Lerda, F.: Model checking programs. Autom.
Softw. Eng. (2003)

43. Visser, W., Mehlitz, P.C.: Model checking programs with java pathFinder. In: Godefroid, P.
(ed.) SPIN 2005. LNCS, vol. 3639, pp. 27–27. Springer, Heidelberg (2005)

http://www.cprover.org/cbmc
http://www.prasannatech.net/2008/07/socket-programming-tutorial.html
http://www.prasannatech.net/2008/07/socket-programming-tutorial.html

Model-Checking Software Library API Usage Rules 207

44. Wasylkowski, A., Zeller, A.: Mining temporal specifications from object usage. Autom.
Softw. Eng. (2011)

45. Wasylkowski, A., Zeller, A., Lindig, C.: Detecting object usage anomalies. In: ESEC/FSE
(2007)

46. Witkowski, T., Blanc, N., Kroening, D., Weissenbacher, G.: Model checking concurrent linux
device drivers. In: ASE (2007)

47. Yang, J., Evans, D., Bhardwaj, D., Bhat, T., Das, M.: Perracotta: mining temporal API rules
from imperfect traces. In: ICSE (2006)

Formal Modelling and Verification
of Population Protocols

Dominique Méry1 and Michael Poppleton2

1 LORIA & Université de Lorraine, BP 70239,
F-54506 Vandoeuvre lès Nancy, France
dominique.mery@loria.fr

2 School of Electronics and Computer Science,
University of Southampton, Highfield,

Southampton SO17 1BJ, UK
mrp@ecs.soton.ac.uk

Abstract. The population protocols of Angluin, Aspnes et al [3] provide a
theoretical framework for computability reasoning about algorithms for Mobile
Ad-Hoc Networks (MANETs) and Wireless Sensor Networks (WSNs). By devel-
oping two example protocols and proving convergence results using the Event-
B/RODIN [2] and TLA [11] frameworks, we explore the potential for formal
analysis of these protocols.

1 Introduction

The design of a wireless sensor or mobile ad-hoc network (WSN/MANET) [7] for a
given application requires demanding optimization against many parameters, e.g. node
power and transmission range limits, variable node and link reliability, message latency
and throughput [15]. A variety of energy-saving techniques and dynamic routing al-
gorithms have been proposed. The verification of such long-running, time-dependent
systems, with unreliable and dynamic substrate of computation/communication hard-
ware, remains very challenging. While simulation [10] is the dominant design tool for
these networks, formal methods are more recently beginning to be deployed.

A recent theoretical approach of interest is the population protocols of Angluin et
al [3]. Assuming a finite population of agents interacting pairwise from some initial
state, a class of protocols is defined that compute predicates over that state. Variants
and extensions of this basic model, bringing it closer to real applications, have been
proposed. The notion of global fairness - that interactions in these protocols are in-
finitely often enabled - is key to convergence arguments.

We discuss the formal development of two example population protocols. Experi-
mental modelling, analysis and proof in the Event-B formal language and its RODIN
toolkit [2] are straightforward. Event-B is a state-based formal specification language
in first-order logic (FOL), supported by the rich RODIN toolkit of provers, anima-
tor, model checkers, graphical modelling front-ends, and infrastructural support for
composition-decomposition in development. Functional and safety verification is pro-
vided by automatically generated proof obligations (PO) for invariant preservation and
refinement.

E.B. Johnsen and L. Petre (Eds.): IFM 2013, LNCS 7940, pp. 208–222, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Formal Modelling and Verification of Population Protocols 209

The interesting questions about these protocols concern liveness and convergence
properties and to what extent we can specify, reason about and prove such properties
formally. A first-order scheme like Event-B cannot explicitly support this; we turn to
Lamport’s Temporal Logic of Actions (TLA). In the two example protocols we prove
convergence properties using existing and new TLA fairness-based proof rules.

In the next section we give some background on population protocols, Event-B and
TLA respectively. Sections 3 and 4 overview Event-B developments for two example
protocols respectively; each shows a distinct style of reasoning about, and thus clarify-
ing convergence properties. In the first refinement of section 3, the always-enabled char-
acter of the inductive step - two nodes interacting - means that convergence is proved
inductively using the TLA weak fairness rule WF1. Further, the hypotheses of WF1 are
first-order, thus expressible and provable in Event-B/RODIN. We have done one such
proof, thus demonstrating an automated TLA-style proof of convergence. In the next
refinement we introduce a dynamic interaction graph structure, so that the inductive
step is no longer always enabled. This can be proved using the TLA strong fairness
rule SF1; we show how this proof can be reduced to a WF1 proof by observing that
the enablement of the inductive step is itself provable by WF1. The example suggests a
first-order convergence proof method for a certain class of protocols; this remains to be
investigated in future work.

Section 4 gives a more complex example and proposes a new notion of global fair-
ness to prove convergence. Here, there are two stages of convergence; the first is proved
using WF1 as before. We then overview two further proofs for the two alternate cases
for the second stage; these proofs are given in detail in the companion paper [12]. The
second stage proof requires the population protocol notion of global fairness [8]; we
define - and prove sound in [12] - a new TLA proof rule GF1. Section 5 concludes.

2 Population Protocols, TLA and Event-B

2.1 The basic population protocol of Angluin et al [3] is a model of passively mobile
simple devices with minimal storage. These agents are anonymous, and are passively
mobile in the sense that any two agents may interact at any time. Choice/ scheduling
of interacting pairs is outside the protocol. The interaction of any two agents is under a
global fairness assumption [8], which expresses that an execution E = C0→C1→· · ·
is globally fair, when for every configuration C and C′ such that C → C′, if Ci = C
for infinitely many i, then Ci+1 = C′ for infinitely many i.

Initially, each agent reads a single input and takes a corresponding initial state, after
which no more input is read. The idea is for the protocol to compute a predicate over
the multiset of input states. The system stably converges when all computations con-
verge to a constant output vector. Note that the configuration of agent-states in such a
computation need not converge, just the output.

Formally, a population protocol comprises finite input and output alphabets X and
Y , a finite set Q of possible states of an agent, an input function I : X → Q, output
functionO : Q→Y , a transition function δ : Q×Q→Q×Q. A populationP is a finite
set V of agents with an irreflexive relation E ⊆ V × V which is the interaction graph.
For [3] E is the complete interaction graph. A population configuration is a function
C : V →Q giving the state of each node.

210 D. Méry and M. Poppleton

In this scheme, the protocol description is independent of population size, and thus
storable on a small-memory device. Nodes have no identity, since that would increase
with population size. Assuming that interacting pairs are scheduled randomly, indepen-
dently and uniformly gives a conjugating automaton: this converges with probability 1,
with expected number of interactions O(n2 log n). [4] shows that it is only Pressburger1

predicates that are computable in the basic population protocol.
[4] proposes various extensions of the basic model replacing immediate two-way

interaction with one-way anonymous message-passing, immediate or delayed delivery,
recording of sent messages, and queuing of incoming messages. In [5] the basic model is
extended to describe self-stabilizing systems, where the protocol acts on input streams;
the transition function becomes a relation δ : (Q ×X)× (Q×X)→Q×Q.

2.2 Event-B is designed for long-running reactive hardware/software systems that re-
spond to stimuli from user and/or environment. The set-theoretic language in first-order
logic (FOL) takes as semantic model a transition system with guarded transitions be-
tween states. The correctness of a model is defined by an invariant property. The two
units of structuring are the machine of dynamic variables, events and their invariants,
and the context of static data of sets, constants and their axioms. Every machine sees at
least one context.

The unit of behaviour is the event. An event acting on (a list of) state variables v,
subject to enabling guard over local variable(s) t and state-updating action, has the
following syntax and semantic model in a before-after predicate:

ANY t WHERE Q(t, v) THEN v := F (t, v) END =̂ ∃t·(Q(t, v)∧v′ = F (t, v))

This defines a t-indexed nondeterministic choice between those transitions v′ = F (t, v)
for which Q(t, v) is true. t can be interpreted as either an input or an output to the event.

An event works in a model with constants c and sets s subject to axioms P (s, c) and
an invariant I(s, c, v). Consistency proof obligations (POs) require that events are well-
defined, feasible and maintain invariants. The term refinement is overloaded, referring
both to the process of transforming models, and to the more concrete model which
refines the abstract one. When model N(w) refines M(v), it has a refinement relation,
or “gluing invariant” J(s, c, v, w). New events may be introduced in refinement to act
on new variables, effectively refining stuttering steps (called “skip” in Event-B). The
refinement POs enforce the standard forward simulation refinement rule [1] that every
concrete (refining) step of a refining or new event reestablishes the gluing invariant
subject to some step of some abstract refined event, or skip.

A nondivergence PO requires that skip-refining (new) events do not take control
forever: this is modelled using a VARIANT predicate. Every new event must must be
proved to inductively reduce the variant, thus eventually disabling all such events.

2.3 Leslie Lamport’s TLA (Temporal Logic of Actions) [11] is designed for the spec-
ification and verification of reactive systems in terms of their actions and behaviours
(traces). It can be thought of as structured in four tiers [11]: (i) constants, and constant
formulas - functions and predicates - over these, (ii) state formulas for reasoning about

1 Pressburger arithmetic is a restricted integer arithmetic comprising 0, 1, + and <.

Formal Modelling and Verification of Population Protocols 211

states, expressed over variables as well as constants, (iii) transition or action formulas
for reasoning about (before-after) pairs of states, and (iv) temporal predicates for rea-
soning about behaviours, i.e. traces of states; these are constructed from the other tiers
and certain temporal operators.

An action formula expresses some fact or function about a system transition between
one state and its successor, as made available by some system action. An action predi-
cate is very like a before-after predicate in Event-B. A state formula is an action formula
where either all flexible variables are unprimed, or all are primed. A state predicate is
true in a behaviour iff it is true in the first state of that behaviour. If F,G are behaviour
predicates then so are ¬F, F ∨G,F ∧G,F ⇒G,�P,�P . The latter two are temporal
operators. We write �P - called “always P ” - to mean P is always true over a given
behaviour, and define �P - called “eventually P ” - to be ¬�¬P .

For action predicate A, list of state variables f , we define [A]f (called “square A sub
f”) to be true for states s, t iff s�A ∨ f ′ = f�t, that is, if either A defines a transition
from s to t, or all variables f remain unchanged from s to t. Dually we define 〈A〉f
(called “angle A sub f”) to be true for states s, t iff s�A ∧ f ′ �= f�t, that is, A defines a
transition from s to t, and at least one variable in f changes from s to t.

This logic enables us to specify the state-based temporal behaviour of a system, as
well as assert properties over that behaviour, in one notation and logic. In general we
wish to specify systems in the following form:

Φ =̂ InitΦ ∧ �[N]f ∧WFf (F1) ∧ SFf (F2)

N =̂ N1 ∨ N2 ∨ ... is the disjunction of all system actions, i.e. the “next” transition,
denoting progress subject to possible stuttering. Stuttering is required to allow us to
specify and prove refinements.�Inv states an invariant safety property. The WF and SF
constraints are the weak and strong fairness constraints required by the system actions
in order to progress and F1 and F2 are two combinations of actions. We say that action
A is weakly fair if, provided it is eventually always enabled, it is then guaranteed to fire
infinitely often. A is strongly fair if, provided it is infinitely often enabled, it is then
guaranteed to fire infinitely often. With the weaker antecedent in its implicative form,
SF is the stronger fairness property. Global fairness GF is defined consistently with [8],
and is a specialization of strong fairness, with explicit pre and postconditions P,Q′

for A:

WFf (A) =̂ ��Enabled〈A〉f ⇒��〈A〉f
SFf (A) =̂ ��Enabled〈A〉f ⇒��〈A〉f

GFf (P,A,Q) =̂ ��Enabled〈P ∧ A ∧Q′〉f ⇒��〈P ∧ A ∧Q′〉f

Consideration of whether an action eventually stabilises to always-enabled or not, de-
termines the choice of a weak or strong fairness requirement in specification. This form
of fairness specification places requirements on the scheduler of system actions. If the
system environment is in scope its actions must be considered for fairness assump-
tions. Event-B - like other FOL model-based formalisms - does not express scheduling
requirements. The variant mechanism in Event-B - to prevent non-divergence of new
events in refinement - is relevant here. Such a variant eventually disables new events in

212 D. Méry and M. Poppleton

favour of abstract, potentially blocked events. Of course, this simply enables, but does
not guarantee, scheduling of a given abstract event.

Finally we define the leads to operator: P � Q =̂ �(P ⇒ �Q), meaning that
whenever P holds then Q is guaranteed to hold at some later time.

Next we consider some of Lamport’s proof rules for simple TLA [11].
LATTICE is an inductive proof rule for temporal reasoning: provided Hc leads to either
the goal G or Hd for some d strictly smaller than c then the induction is guaranteed to
converge to G.

WF1 gives the conditions under which weak fairness of action A is enough to guar-
antee that P � Q. A stuttering progress step produces either P or Q in the next state,
nonstuttering action 〈A〉f takes the inductive step to produce Q, and under P , inductive
action 〈A〉f is always enabled. SF1 is the strong fairness equivalent to prove P � Q:
a strong fairness assumption on A is made and the same first two conditions hold as in
WF1. An elaborated third condition ensures that 〈A〉f is eventually - rather than always
- enabled. F may be required for expressing further fairness conditions.

LATTICE. ' a well-founded partial order on a set S

F ∧ c ∈ S⇒ (Hc � (G ∨ ∃d ∈ S ·(c ' d) ∧Hd))
F ⇒ ((∃c ∈ S ·Hc) � G)

WF1.

P ∧ [N]f ⇒ (P ′ ∨Q′)

P ∧ 〈N ∧A〉f ⇒Q′

P ⇒ Enabled〈A〉f
�[N]f ∧WFf (A)⇒ (P � Q)

SF1.

P ∧ [N]f ⇒ (P ′ ∨Q′)

P ∧ 〈N ∧ A〉f ⇒Q′

�P ∧ �[N]f ∧ �F ⇒�Enabled〈A〉f
�[N]f ∧ SFf (A) ∧ �F ⇒ (P � Q)

3 Red and Green Lights

We present a simple population protocol model in Event-B and some refinements, in
order to demonstrate a temporal style of reasoning about convergence. Nodes ll are
coloured red or green (coded ll ∈ V →COLOURS where COLOURS = {green, red}).
In an interaction, if any two red nodes are adjacent - i.e. connected by the graph - then
one will turn green. The protocol terminates when only one red remains.

In the abstract model M0, the graph is complete - every node is connected to every
other. Nodes are initialised arbitrarily. In one shot, event conv nondeterministically as-
signs one node to red and all others to green.

M0: EVENT conv
ANY i
WHERE i ∈ V
THEN ll := ((V \ {i}) × {green}) ∪ {i 	→ red}
END

In refinement M1, the new event iact pairwise switches one red node of an adjacent
red pair to green, subject to an obvious variant (the convergent keyword generates an

Formal Modelling and Verification of Population Protocols 213

inductive PO for iact). conv skips, marking convergence to a single red node. Event-B
refinement allows strengthening of guards, as long as the overall system guard is main-
tained; there are associated proof obligations.

M1: EVENT conv
REFINES conv
ANY i
WHERE
i ∈ V ∧ ll(i) = red
∧ ran(i�− ll) = {green}

THEN skip
END

M1: EVENT iact convergent
ANY i j
WHERE
i ∈ V ∧ j ∈ V ∧ i = j ∧ ll(i) = red ∧ ll(j) = red

THEN ll(i) := green
END

VARIANT ll � {red}

Convergence is proved using Lamport’s fairness proof rules - rather trivially, for only
one event apart from initialisation and termination. In M1, it is obvious that each in-
teraction iact reduces the problem and that ll � {red} is a suitable set-valued induc-
tive/variant expression. Using TLA we can be more explicit about the inductive process
of convergence than we can in Event-B - define:

P =̂ InvM1 ∧R(n+ 1) Q =̂ InvM1 ∧R(n)

InvM1 =̂ ll ∈ V → COLOURS R(n+ 1) =̂ card(ll−1[{red}] = n+ 1

N =̂ iact ∨ conv Aiact =̂ iact

Applying WF1 ...

P ∧ [N]ll ⇒ (P ′ ∨Q′) progress

P ∧ 〈N ∧ Aiact〉ll ⇒Q′ inductive step

P ⇒Enabled〈Aiact〉ll inductive action
�[N]ll ∧ WFll(Aiact)⇒ (P � Q)

Inductive action Aiact establishes Q′ = Inv′M1 ∧R′(n). Thus assuming weak fairness
of iact we can prove R(n + 1) � R(n), and apply induction by LATTICE to prove
convergence to R(1). Weak fairness suffices for interaction to happen infinitely often
since iact is always enabled for n ≥ 1. Note, in this simple example, that the three
hypotheses of WF1 contain no temporal operators and are thus all statements of first-
order logic. They are therefore expressible and provable in Event-B/RODIN; this we
have done for this M1 proof.

In refinements M2 and M3, we add a new variable conn ∈ V ↔ V to model the
dynamically connected graph, initialised arbitrarily. The iact guard is refined allowing
only connected nodes to interact. A new event daemon in M2 arbitrarily adds links to,
or removes links from the graph. In M3 the daemon is refined into an angel, which
connects two red nodes in the graph where it can, and a daemon, which arbitrarily
removes links, or connects two nodes when at least one is green.

214 D. Méry and M. Poppleton

M3: EVENT angel REFINES daemon
ANY i j
WHERE i ∈ V ∧ j ∈ V ∧ i = j ∧ ll(i) = red ∧ ll(j) = red
THEN
conn := conn ∪ {i 	→ j}

END

M3: EVENT daemon REFINES daemon
ANY i j
WHERE i ∈ V ∧ j ∈ V ∧ i = j
THEN
conn : | (i 	→ j /∈ conn ∧ (ll(i) = green ∨ ll(j) = green)

∧ conn′ = conn ∪ {i 	→ j})
∨(i 	→ j ∈ conn ∧ conn′ = conn \ {i 	→ j})

END

Consider the M3 scenario. Our simple angel-daemon model of the environment’s dy-
namic disruption of the network is essentially nondeterministic; an implicit variant such
as in M1 is not available. The variant-based convergence proof required by Event-B ef-
fectively forces us to schedule the environment here explicitly, perhaps designing in
some counter or time bound on which to base a variant. This is too concrete a view
of scheduling, and TLA allows more flexible and abstract reasoning about scheduling
and convergence. Note that iact is no longer always enabled since two reds may not
be connected at a given time. It may be infinitely often disabled, thus we need strong
fairness for iact. Subject to the following definitions, apply SF1:

P =̂ InvM3 ∧R(n+ 1) Qiact =̂ InvM3 ∧R(n)

InvM3 =̂

⎛⎝ ll ∈ V → COLOURS
∧ conn ∈ V ↔ V
∧ conn ∩ id = ∅

⎞⎠ R(n+ 1) =̂ card(ll−1[{red}] = n+ 1

N =̂ iact ∨ angel ∨ daemon ∨ conv Aiact =̂ iact

Applying SF1 ...

SF1.1 P ∧ [N]ll⇒ (P ′ ∨Q′
iact)

SF1.2 P ∧ 〈N ∧Aiact〉ll⇒Q′
iact

SF1.3 �P ∧ �[N]ll⇒�Enabled〈Aiact〉ll
SF1.C �[N]ll ∧ SFf (Aiact)⇒ (P � Qiact)

SF1.1 and SF1.2 are similar to the WF proof above, differing only in the stronger in-
variant of M3. SF1.3 is a formula in temporal logic not directly expressible in Event-B.
However we observe that this hypothesis can be expressed in the stronger leadsto form:

�[N]ll⇒ (�P ⇒�Enabled〈Aiact〉ll)

 �[N]ll⇒ P � Enabled〈Aiact〉ll =̂ SF1.3’

That is, if SF1.3’ - that 〈Aiact〉ll is eventually enabled by some event - can be proved in
first-order logic by some fairness argument like that in the previous section, we are done.
In M3 the environment’s dynamic effect on the network is modelled by the daemon and
- helped by the support team - the angel. We regard the angel as always enabled, thus a
weak fairness assumption suffices to ensure it acts infinitely often. We adjust our above
definitions now to prove SF1.3’ by the weak fairness of the angel - the trigger event

Formal Modelling and Verification of Population Protocols 215

is now the angel Aangel = angel and the target state is Qangel, the enablement of
interaction event iact:

Qangel =̂ Enabled〈Aiact〉ll Aangel =̂ angel

... giving

P ∧ [N]ll⇒ (P ′ ∨Q′
angel)

P ∧ 〈N ∧ Aangel〉ll⇒Q′
angel

P ⇒ Enabled〈Aangel〉ll
SF1.3’ �[N]ll ∧WFll(Aangel)⇒ (P � Qangel)

It is useful finally to add one more step in the direction of realism in this example.
Whereas the daemon of environmental conditions or damage may reasonably be as-
sumed to be always enabled, the angel may not: bad weather conditions for node - node
radio transmission take time to clear, as does a maintenance team to replace batteries on
nodes. It is thus more realistic to place a strong fairness requirement on a sometimes-
enabled angel. We then find that the analogous proof of SF1.3’ of the above becomes
a strong fairness proof - thus generating another, secondary proof obligation SF1.3” on
the enablement of the angel:

�[N]ll ∧ �F ⇒ P � Enabled〈Aangel〉ll
This process suggests a recursive first-order proof method - provided the recursion ter-
minates with some initial, weakly fair triggering action.

4 The Dancers

A group of dancers [6] are each marked as either follower(F) or leader(L). The aim of
this protocol is to reach a configuration where if there are (i) initially more leaders than
followers, then #(leaders− followers) leaders and no followers remain, (ii) initially
more followers than leaders, then #(followers − leaders) followers and no leaders
remain, (iii) initially equal numbers of followers and leaders, then none of either remain.
The target configuration is reached by applying the following transitions:

F ↔ L⇒ 0↔ 0 L↔ 0⇒ L↔ 1 0↔ 1⇒ 0↔ 0 F ↔ 1⇒ F ↔ 0

We show that this protocol eventually leads to a configuration in which there are only
X dancers, O dancers and U dancers where X is either a set of followers or a set of
leaders, U is a set of one dancers, and O is a set of zero dancers.

The set D of all dancers is initially partitioned into F0 the initial set of followers,
L0 the initial set of leaders, O0 the initial set of zero dancers and U0 the initial set of
one dancers. In the original problem [6], the sets U0 and O0 are empty but here we
generalize the problem. In temporal language the first property to verify is :

partition(D,L0, F0, U0, O0) � ∃X,U,O.

⎛⎝partition(D,X,U,O)
∧ (X ⊆ F0 ∨X ⊆ L0)
∧ O0 ∪ U0 ⊆ O ∪ U

⎞⎠ (1)

216 D. Méry and M. Poppleton

Our first model PopDancers (PD(1)) starts by defining abstract events which in one
shot nondeterministically assign to the appropriate case: either no leader or no follower.
Event Followers applies when there are as many, or fewer leaders than followers: there
is an injection i from L0 into F0. Event Leaders applies when the number of leaders is
strictly greater than the number of followers: there is an injection i from F0 into L0.

PD(1) : EVENT Followers
ANY i
WHERE
F = F0 ∧ L = L0
i ∈ L0 � F0

THEN
U,O,L,F : |⎛
⎝ (partition(D, F ′, L′, O′, U ′)
∧ L′ = ∅ ∧ F ′ = F \ i[L]
∧O0 ∪ U0 ⊆ O′ ∪ U ′))

⎞
⎠

END

PD(1) : EVENT Leaders
ANY i
WHERE
L = L0 ∧ F = F0
i ∈ F0 � L0 ∧ i[F0] = L0

THEN
U,O, L,F : |⎛
⎝ (partition(D,F ′, L′, O′, U ′)
∧ F ′ = ∅ ∧ L′ = L \ i[F]
∧O0 ∪ U0 ⊆ O′ ∪ U ′))

⎞
⎠

END

partition(D,F, L,O, U) ∧ F ⊆ F0 ∧ L ⊆ L0 ∧O0 ∪ U0 ⊆ O ∪ U (2)

This initial model asserts the existence of an injection from one set of dancers into
the other. The algorithmic process will progressively construct the final injection. By
definition model PopDancers with invariant (2) satisfies property (1).

4.1 The Algorithmic Process

Model PopDancers is refined by PopDancing (PD(2)), which introduces the algo-
rithm for getting a configuration satisfying (1). We introduce new variables vf , vl, vu,
vo, f , l as follows. vl, vf initially contain L0, F0 respectively; L, F are respectively
assigned to the final values of these variables. vu, vo contain one-dancers and zero-
dancers respectively. f, l each record the injection required for the refinement; these
functions are constructed iteratively and only one is finally used, since either followers
or leaders win.

Considering the transition rules, we see that when a dancer of vl or vf moves into
vo, he/she will never return to vl or vf . We can derive an inductive property based on
vl ∪ vf - with followers and leaders remaining - expressing the fact that the set vl ∪ vf
is strictly decreasing by the rule F ↔ L ⇒ 0 ↔ 0. We express this as an intermediate
liveness property (3):

DANCING(vl, vf, vu, vo)
def
= partition(D, vl, vf, vu, vo)(

DANCING(vl, vf, vu, vo)
∧ vl �= ∅ ∧ vf �= ∅

)
� ∃

(
vl′, vf ′

vu′, vo′

)
.

(
DANCING(vl′, vf ′, vu′, vo′)
∧vl′ ∪ vf ′ ⊂ vl ∪ vf

)
(3)

Property (3) is proved by applying the WF1 rule of TLA as follows. The inductive
step (4) is given by event Dancing which models the transformation of an L-F pair in
vl∪vf into a 0-0 pair in vo. Dancing should have a weak fairness assumption to ensure
progress. The progress step (5) ensures that no event increases the dancers of vl ∪ vf .
NB: notation BA(e)(h, h′) denotes the before-after relation of event e in the frame h.

Formal Modelling and Verification of Population Protocols 217

⎛⎜⎜⎜⎜⎝
DANCING(vl, vf, vu, vo)
∧vl �= ∅
∧vf �= ∅
∧h = (vl, vf, vu, vo)
∧BA(Dancing)(h, h′)

⎞⎟⎟⎟⎟⎠
⇒ DANCING(vl′, vf ′, vu′, vo′)
∧ vl′ ∪ vf ′ ⊂ vl ∪ vf

(4)

∀e.e ∈ {Dancing,DancingOU,
DancingFU,DancingLO}∧⎛⎜⎜⎜⎜⎜⎜⎝
DANCING(vl, vf, vu, vo)
∧vl �= ∅
∧vf �= ∅
∧h = (vl, vf, vu, vo)
∧card(L0) < card(F0)
∧BA(e)(h, h′)

⎞⎟⎟⎟⎟⎟⎟⎠
⇒ DANCING(vl′, vf ′, vu′, vo′)
∧vl′ ∪ vf ′ ⊆ vl ∪ vf

(5)

Given these two conditions, and under the assumption of (3) event Dancing is always
enabled, we can infer liveness property (3). Using the LATTICE induction rule vl ∪ vf
will strictly reduce at each Dancing step until either it becomes ∅ or an hypothesis of
(3) goes false, i.e. when either vl = ∅ or vf = ∅. Thus the convergence property (1)
is proved, QED.

Next we give the events of this model PopDancing.

inv1 : l ∈ F0 	→ L0 ∧ f ∈ L0 	→ F0
inv2 : f = ∅⇒ f ∈ dom(f) 	� ran(f) ∧ f ∈ L0 	� F0
inv5 : l ∈ F0 	� L0 ∧ l = ∅⇒ l ∈ dom(l) 	� ran(l)
inv21 : partition(D, vf, vl, vo, vu)
inv11 : vl ⊆ L0 ∧ vf ⊆ F0 ∧ inv14 : oldf ⊆ F0 ∧ inv15 : oldl ⊆ L0 ∧ vl ∪ oldl = L0
inv17 : vf ∪ oldf = F0 ∧ dom(l) = oldf ∧ ran(l) = oldl ∧ l ∈ oldf � oldl ∧ l ∈ oldf � oldl
inv19 : dom(f) = oldl ∧ ran(f) = oldf ∧ f ∈ oldl � oldf ∧ f ∈ oldl � oldf
inv22 : vf ∩ oldf = ∅ ∧ vl ∩ oldl = ∅ ∧ U0 ⊆ vo ∪ vu ∧ O0 ⊆ vo ∪ vu ∧ vf ∪ oldf = F0
inv31 : vl ∪ oldl = L0 ∧ vf = F0 \ oldf ∧ vl = L0 \ oldl ∧ oldl = l[oldf]∧ : oldf = f [oldl]

inv38 : f = l−1 ∧ l = f−1

inv40 : vl = ∅ ∧ f = ∅⇒ f ∈ L0 � F0
inv41 : vf = ∅ ∧ l = ∅⇒ l ∈ F0 � L0
inv42 : end ∈ BOOL
inv43 : end = FALSE⇒ F = F0 ∧ L = L0
inv44 : end = TRUE ∧ L = ∅⇒ F = ∅

inv45 : end = TRUE ∧ F = ∅⇒ L = ∅

Fig. 1. Invariant for the model PopDancing

PD(2) : EVENT Dancing
ANY
x, y

WHERE
grd1 : x ∈ vf ∧ y ∈ vl

THEN
act1 : vo := vo ∪ {x, y}
act2 : vf := vf \ {x}
act3 : vl := vl \ {y}
act4 : oldf := oldf ∪ {x}
act5 : oldl := oldl ∪ {y}
act6 : f(y) := x
act7 : l(x) := y

END

Event Dancing, guarded on the existence of
both followers and leaders, models the transi-
tion rule F ↔ L ⇒ 0 ↔ 0. It modifies vo, vf ,
vl while building both the injections f and l.
The three next events model the three transition
rules F ↔ 1⇒ F ↔ 0, L↔ 0⇒ L↔ 1 and
0↔ 1⇒ 0↔ 0 respectively over vo and vu.

218 D. Méry and M. Poppleton

PD(2) : EVENT DancingFU
ANY
x, y

WHERE
grd1 : x ∈ vf ∧ y ∈ vu

THEN
act1 : vo := vo ∪ {y}
act2 : vu := vu \ {y}

END

PD(2) : EVENT DancingLO
ANY
x, y

WHERE
grd1 : x ∈ vl ∧ y ∈ vo

THEN
act1 : vo := vo \ {y}
act2 : vu := vu ∪ {y}

END

PD(2) : EVENT Dancing0U
ANY
x, y

WHERE
grd1 : x ∈ vo ∧ y ∈ vu

THEN
act1 : vo := vo ∪ {y}
act2 : vu := vu \ {y}

END

This is still an abstract model; not yet sufficiently refined to merge termination in one
unique concrete event. The two events Followers and Leaders are modelling the end
of the construction of the injection: either f or l. The Event-B refinement witness mech-
anism is used to implement the abstract nondeterministic choice of injection i in Pop-
Dancers/Leaders by the concrete injection value l in PopDancing/Leaders below.

The next step is to refine the current model into the concrete version of a codable
Event-B model, equivalent to the set of transition rules that define the population pro-
tocol.

PD(2) : EVENT Leaders
REFINES Leaders
WHEN
grd3 : vf = ∅ ∧ vl = ∅

grd4 : end = FALSE
WITNESSES
i : i = l

THEN
act4 : U := vu
act5 : O := vo
act6 : F := vf
act7 : L := vl
act8 : end := TRUE

END

PD(2) : EVENT Followers
REFINES Followers
WHEN
grd4 : vl = ∅

grd5 : end = FALSE
WITNESSES
i : i = f

THEN
act4 : U := vu
act5 : O := vo
act6 : F := vf
act7 : L := vl
act8 : end := TRUE

END

4.2 Generating the Population Protocol from Refinement

The last model is called Protocol (PD(3)) and is described as follows:

PD(3) : EVENT Termination
REFINES Leaders Followers
WHEN
grd3 : vf = ∅ ∨ vl = ∅

grd5 : end = FALSE
THEN
act4 : U := vu
act5 : O := vo
act6 : F := vf
act7 : L := vl
act8 : end := TRUE

END

PD(3) : EVENT Dancing
REFINES Dancing
ANY
x, y

WHERE
grd1 : x ∈ vf
grd2 : y ∈ vl

THEN
act1 : vo := vo ∪ {x, y}
act2 : vf := vf \ {x}
act3 : vl := vl \ {y}

END

Event Termination models the global termination of the process; it is not an action of
the protocol itself but only an observation by a global observer. The condition end is
set to true at this step. It refines two events by merging them. Event Dancing is trans-
formed into a simplified rule F ↔ L⇒ 0↔ 0, and the other rule events DancingFU,
DancingLO and DancingOU remain unchanged

Formal Modelling and Verification of Population Protocols 219

4.3 Temporal Analysis of Fairness Requirements

The Event-B model of the previous section expresses the population protocol rules, and
does not express any assumptions over executions or scheduling. Indeed, such state-
ments are not possible in Event-B, which is a language of single-step state transitions.

We now analyse fairness conditions to prove that the protocol reaches a stable con-
figuration. Possible configurations D can be described as follows:

– F ⊕ L⊕O ⊕ U : at least one each of Follower, Leader, ZERO and ONE.
– F ⊕O ⊕ U : at least one each of Follower, ZERO and ONE, and no Leader.
– L⊕O ⊕ U : at least one each of Leader, ZERO and ONE, and no Follower.
– L⊕ U : at least one each of Leader and ONE, and no Follower and no ZERO.
– F ⊕O: at least one each of Follower and ZERO, and no Leader and no ONE.
– ...⊕ T ⊕ ... where T = 0 or 1 means that there is exactly one ZERO or ONE.
– L⊕ 0i ⊕ 1j: at least one Leader, and i ZEROs and j ONEs.

We can regard these configurations as liveness properties, and use a predicate diagram
[9] to describe progress through them. Each arrow states a � property. The first liveness
property is in fact (1): D = F ⊕L⊕O⊕U � ∃X.D = X⊕O⊕U which is split into
two cases corresponding to X as F or L. The previous section proved this property,
showing that assuming event Dancing is weakly fair, the appropriate case is eventually
reached.

D = F ⊕ L⊕ O ⊕ U

D = F ⊕ O ⊕ U D = L⊕ O ⊕ U

D = F ⊕ O D = L⊕ U

�������

�������

� �

We describe the two target configurations D = F ⊕ O and D = L ⊕ U as stable
in the sense of not changing further, and prove that they are reachable using fairness
assumptions. We consider each case separately.

Case 1: D = F ⊕ O ⊕U � D = F ⊕ O. A full proof is given in the companion
paper [12]. It is a straightforward WF1 argument similar to that of section 4.1, using
a weak fairness assumption on DancingFU, DancingOU, each of which reduce vu.
These are the only transitions enabled in this case.

Case 2: D = L ⊕ O ⊕ U � D = L ⊕ U . A full proof is given in the compan-
ion paper [12]. As before there are only two enabled events in this case: DancingLO,
DancingOU. However this proof is a more complex argument than case 1 and requires
richer fairness assumptions because of the way DancingOU consumes the ONEs pro-
duced by DancingLO. We see looping transitions through the intermediate configu-
rations and note that the configuration D = L ⊕ U is stable once reached, because

220 D. Méry and M. Poppleton

DancingOU becomes disabled by the absence of ZEROs:

L⊕ 0i ⊕ 1j
DancingLO−→ L⊕ 0i−1 ⊕ 1j+1 DancingLO−→ · · ·L⊕ 1i+j

L⊕ 0i ⊕ 1j
DancingOU←− L⊕ 0i−1 ⊕ 1j+1

Global fairness states that, if a configuration C appears infinitely often in a sequence
of configurations, and if C −→ C′, then C′ should appear also infinitely often in the
sequence. This is expressed using our global fairness rule GFdh applied to the dancers:

GFdh
def
= ∀i, j ·i, j ∈ 1..n ∧ i+ j = card(O ∪ U) = n

⇒ GFh(D = L⊕ 0i ⊕ 1j ,DancingLO, D = L⊕ 0i−1 ⊕ 1j+1)

The question is to integrate the global fairness assumption in the reasoning. The prob-
lem to solve can be summarized by the following diagram which gives the possible
transitions among the possible configurations:

0n � 0n−111 � 0n−212 � . . .� 021n−2 � 01n−1 → 1n

The target configuration is the configuration in which there is no more O element.
The global fairness assumption means that each triple of configuration of the sequence
above is infinitely often enabled, since the number of triples is finite. Intuitively, under
the global fairness, the target configuration is reached.

We propose a new rule GF1 for deriving liveness properties under the global fairness
assumption. The rule is based on the WF1 and SF1 rules of Lamport[11]. It extends
WF1 with another configuration: from B we may progress to B′, take the inductive step
E to C′, or reach another configuration A′ which works against the inductive process.
This “counter-inductive” step is itself counteracted by an assumption that, given GFf ,
A � B. E should be enabled in B.

GF1 B ∧ [N]f ⇒ (B′ ∨ C′ ∨ A′)

B ∧ 〈N ∧E〉f ⇒ C′

�[N]f ∧ GFf (A,E,B)⇒ (A � B)

B⇒ Enabled〈E〉f
�[N]f ∧ GFf (A,E,B)⇒ (B � C)

The global fairness assumption
is defined over (configuration,
event, configuration) tuples, unlike
the classical fairness assumptions
made on actions or events in TLA.
The classical WF/SF proof rules of
TLA are not enough to prove con-
vergence to the configuration D =
L⊕ U .

5 Conclusion

We have performed Event-B developments for two example population protocols and
fully discharged the usual first-order proof obligations in the RODIN toolkit. We cannot
however directly prove - or even specify, for that matter - liveness and convergence
properties for these protocols in this first-order formal language. We have shown how
the standard WF/SF proof rules of TLA can be applied to such liveness and convergence
proofs. In the first protocol we found a style of reasoning where by treating enablement
of the inductive step as an intermediate liveness property, we could express these rules

Formal Modelling and Verification of Population Protocols 221

in FOL. We saw that such a proof could thus be automated using the RODIN provers.
The second protocol gave further examples of the WF style of proof, and demonstrated
the use of global fairness in a more intricate convergence proof.

Both examples illustrate how Event-B can be integrated into a general framework
dealing with trace semantics and fairness assumptions. New proof obligations are re-
duced to FOL proofs upto temporal reasoning using a limited set of temporal proof rules
borrowed to TLA. In this way, we obtain for free a TLA-based trace semantics, which
can be managed by the RODIN toolkit with minor modifications. The integration is
driven by the design of wireless sensor or mobile ad-hoc networks (WSN/MANET) [7]
and it provides a framework integrating the refinement of Event-B and the expressivity
of TLA.

Immediate tasks are to characterise the class of problems tractable to such reasoning,
and to establish the cases when the proofs can be made first-order and thus automatable
in tools like RODIN.

Having demonstrated the utility of Event-B modelling with TLA reasoning for sim-
ple algorithms, further work could tackle (i) the extended population protocol models of
section 2 and even more challenging (ii) a real WSN/MANET algorithm. Two interest-
ing application candidates are data aggregation [13] and localisation [14]. Aggregation
is concerned with reducing data traffic either by averaging sensor data on a regional
basis, or simply packing readings into larger messages. This includes notions of routing
from data source to sink. In localisation, each node must dynamically identify neigh-
bours to whom it is connected.

References

[1] Abrial, J.-R.: Modeling in Event-B - System and Software Engineering. Cambridge
University Press (2010)

[2] Abrial, J.-R., Butler, M., Hallerstede, S., Voisin, L.: An open extensible tool environment for
event-B. In: Liu, Z., Kleinberg, R.D. (eds.) ICFEM 2006. LNCS, vol. 4260, pp. 588–605.
Springer, Heidelberg (2006)

[3] Angluin, D., Aspnes, J., Diamadi, Z., Fischer, M.J., Peralta, R.: Computation in networks
of passively mobile finite-state sensors. Distributed Computing 18(4), 235–253 (2006)

[4] Angluin, D., Aspnes, J., Eisenstat, D., Ruppert, E.: The computational power of population
protocols. Distributed Computing 20(4), 279–304 (2007)

[5] Angluin, D., Aspnes, J., Fischer, M.J., Jiang, H.: Self-stabilizing population protocols.
TAAS 3(4) (2008)

[6] Aspnes, J., Ruppert, E.: An introduction to population protocols. Bulletin of the EATCS 93,
98–117 (2007)

[7] Banatre, M., Ollero, A., Wolisz, A.: Cooperating Embedded Systems and Wireless Sensor
Networks. John Wiley (2008)

[8] Cai, S., Izumi, T., Wada, K.: How to prove impossibility under global fairness: On space
complexity of self-stabilizing leader election on a population protocol model. Theory
Comput. Syst. 50(3), 433–445 (2012)

[9] Cansell, D., Méry, D., Merz, S.: Predicate diagrams for the verification of reactive systems.
In: Grieskamp, W., Santen, T., Stoddart, B. (eds.) IFM 2000. LNCS, vol. 1945, pp. 380–397.
Springer, Heidelberg (2000)

222 D. Méry and M. Poppleton

[10] Egea-López, E., Vales-Alonso, J., Martínez-Sala, A.S., Pavón-Mariño, P., García Haro,
J.: Simulation tools for wireless sensor networks. In: SPECTS 2005: Summer Simulation
Multiconference (2005)

[11] Lamport, L.: The Temporal Logic of Actions. ACM Trans. Program. Lang. Syst. 16(3),
872–923 (1994)

[12] Méry, D., Poppleton, M.: Formal modelling and verification of population protocols.
Technical report, LORIA (2013)

[13] Rajagopalan, R., Varshney, P.K.: Data-aggregation techniques in sensor networks: A survey.
IEEE Communications Surveys and Tutorials 8(1-4), 48–63 (2006)

[14] Stavvides, A., Srivastava, M., Girod, L., Estrin, D.: Wireless Sensor Networks. Springer
(2004)

[15] Woo, A., Tong, T., Culler, D.: Taming the underlying challenges of reliable multihop
routing in sensor networks. In: Proceedings of the 1st International Conference on Em-
bedded Networked Sensor Systems, SenSys 2003, pp. 14–27. ACM, New York (2003)

Detecting Vulnerabilities in Java-Card Bytecode
Verifiers Using Model-Based Testing

Aymerick Savary1,2, Marc Frappier1, and Jean-Louis Lanet2

1 University of Sherbrooke
2 University of Limoges

Abstract. Java Card security is based on different elements among
which the bytecode verifier is one of the most important. Finding vul-
nerabilities is a complex, tedious and error-prone task. In the case of the
Java bytecode verifier, vulnerability tests are typically derived by hand.
We propose a new approach to generate vulnerability test suites using
model-based testing. Each instruction of the Java bytecode language is
represented by an event of an Event-B machine, with a guard that de-
notes security conditions as defined in the virtual machine specification.
We generate vulnerability tests by negating guards of events and gen-
erating traces with these faulty events using the ProB model checker.
This approach has been applied to a subset of twelve instructions of
the bytecode language and tested on five Java Card bytecode verifiers.
Vulnerabilities have been found for each of them. We have developed
a complete tool chain to support the approach and provide a proof of
concept.

Keywords: Model Based Testing, Java Card bytecode Verifier,
Vulnerability Testing, Security, Event-B.

1 Introduction

The Java Card technology [18] is a subset of the Java platform [16] that enables
Java programs to run on resource constrained platforms like smart cards and
other small devices. Security is an important concern in this platform, and it
is ensured through various mechanisms i.e., the firewall, the bytecode Verifier
(BCV), the sharing mechanism... The firewall is in charge to provide segregation
between different application providers. The sharing mechanism implements a
security policy using an identity based protocol to allow information flows be-
tween different application providers. The BCV checks by static analysis that
a Java Card program satisfies security constraints defined in the Java Virtual
Machine specification (JVM). In the last version, 3.0.4 Connected Edition of
the Java Card technology, the BCV is mandatory and must be executed on the
smart card. This raises the issue of checking the correctness of the embedded
BCV. Since a smart card has limited resources, developers may be tempted
to optimize the BCV, possibly introducing subtle errors through complex opti-
mization techniques. Testing such devices is a delicate and time consuming task.

E.B. Johnsen and L. Petre (Eds.): IFM 2013, LNCS 7940, pp. 223–237, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

224 A. Savary, M. Frappier, and J.-L. Lanet

Thus, special care must be taken to ensure good coverage while minimizing the
number of test cases, because testing such embedded systems is more laborious
than stand-alone software systems.

BCV test cases are typically derived by hand. In this paper, we propose an ap-
proach to automate the generation of BCV test cases. We distinguish two classes
of tests: i) conformance tests: they ensure that correct bytecode programs are in-
deed accepted by the BCV; ii) vulnerability tests: they ensure that incorrect Java
bytecode programs are indeed rejected by the BCV. Detecting vulnerabilities is
critical from a security point of view, because accepting incorrect programs may
lead to attacks. These two classes require different test generation strategies; in
this paper, we focus on the generation of vulnerability tests.

We adopt a model-based approach for the generation of vulnerability tests.
This is an alternative to the proof and code generation method used by [5]. The
idea is to model each function of the program (in this case each instruction of
the language) by an event of an Event-B model. The event’s guard represents
the precondition of the instruction as defined in the JVM specification, which
expresses the security constraints on an instruction. The event’s action represents
the result of executing the corresponding instruction. Since the JVM specification
essentially addresses type checking, the Event-B specification abstracts from the
actual value of bytecode variables and only models their types. To generate a
test, we use the execution traces of this Event-B model, since each event in
the trace denotes an instruction. To generate vulnerability tests, we modify the
specification of an event to negate its guard, thus representing a violation of
the JVM specification, in order to generate traces that denote invalid programs.
This approach is modular, easily extensible, and it can reuse existing tools like
ProB [15] to generate test cases.

The rest of this paper is structured as follows. Section 2 describes some se-
curity issues of Java-based smart cards. Section 3 describes our methodology
for generating vulnerability tests. Section 4 reports on the application of our
approach to five Java Card bytecode verifiers. Finally, we conclude with an ap-
praisal of our approach and future work in Section 5.

2 Java Card Security Issues

The Java Card platform is a multi-application environment where critical data
of an applet must be protected against malicious access from another applet.
To enforce protection between applets, classical Java technology uses type ver-
ification, class loader and security managers to create private name spaces for
applets. In a smart card, complying with the traditional enforcement process is
not possible. On the one hand, the type verification is executed outside the card
due to memory constraints. On the other hand, the class loader and security
managers are replaced by the Java Card firewall.

To allow code to be loaded into the card after post-issuance raises security is-
sues similar to those of web applets. An applet not built by a compiler (handmade
bytecode) or modified after the compilation step may break the Java sandbox

Detecting Vulnerabilities in Java Card Bytecode Verifiers Using MBT 225

model. Thus, the client must check that Java typing rules are preserved at the
bytecode level. However, an attacker may attempt to build a bytecode program
that confuses a return address with an object reference, thus allowing inspection
and modification of critical memory values. The absence of pointer operators
in the Java programming language reduces the number of programming errors.
But it does not stop attempts to break security protections with unfair uses of
pointers.

2.1 Logical Attacks in Smart Card

An attack can be carried using an ill–formed applet to obtain sensitive informa-
tion stored in the card; for obtaining it, the applet will try to execute some illegal
instructions to read and write in the smart card memory as explained in [11].
This can be accomplished by making a type confusion attack or by changing the
control flow graph. Type confusion blurs the Java Card Runtime Environment
to use reference to an object’s instance as a value. In Java Card, references are
mainly stored as 16 bit, i.e. the size of a short. This attack can be achieved by
pushing a value and manipulating it as a reference. There are four methods to
obtain a type confusion.

1. Input file manipulation. The goal is to modify the file after the compilation
step to bypass the BCV. An on-card BCV will mitigate these attacks. Other
BCVs are only partially embedded due to the smart card constraints.

2. Fault injection. This technique injects energy on the chip which is trans-
formed into electric signals, which in turn can change values in memory or
let the program behave differently by skipping instructions, inverting results
and so on.

3. Shareable interfaces mechanisms abuse. To perform this attack, one creates
two applets which communicate using the shareable interface mechanism. To
create a type confusion, each of the applets use a different type of array to
exchange data and are compiled separately. During the load phase, there is
no way for the BCV to detect such a problem.

4. Transaction mechanisms abuse. The purpose of a transaction is to bundle a
group of operations together. By definition, the rollback mechanism should
also deallocate any objects allocated during an aborted transaction, and
reset references to such objects to null. However, sometimes cards keep the
references of objects allocated during transaction even after a roll back. Then,
allocating a new object allows to point on the same memory segment with
two references having two different types.

The first approach is the easiest way to perform logical attack against smart
cards. The (3) and (4) are now correctly handled by recent smart cards. The
second approach requires specific equipment, but its effects are exactly the same
as the first attack and can be partially mitigated with dynamic run time type
verification.

226 A. Savary, M. Frappier, and J.-L. Lanet

2.2 Java Card Byte Code Verifier

The BCV is a complex piece of software, and the algorithms to perform the veri-
fication were too expensive both in term of memory and computing requirements
to be embedded in a Java Card except in the 3.0.4 Connected Edition version.
In this version, the BCV is similar to the KVM verifier [17] where the idea is to
separate the verification process in two parts: an off-card part, that computes a
certificate, or “proof” that the code is correct with respect to the security policy,
and an on-card part, that uses the certificate to verify the correctness of down-
loaded code. The “proof” generated is similar to the StackMap attribute used by
the KVM, and contains the same kind of information. Due to the fact that no
products are available for this platform, we focused on the 3.0.4 Classic Edition
version, an evolution of the 2.2 version where the BCV is optional.

This section describes the Java byte code verification process that has to be
performed. This verification should be performed for each package loaded and
should reject the whole package if one of the tests fail. The full description
of the verification can be found in [16], and a more detailed description, with
appropriate discussions is given in [7]. This last description clarifies most of the
unclear or ambiguous parts in the official JVM specification. A difference between
Java and Java Card verification is that the verification has to be performed on
Converted APplet (CAP) files for Java Card instead of class files. A CAP file is
a tokenized and optimized version of a set of Java classes.

First, tests are performed on a CAP file when it is downloaded in order to
ensure that the CAP file is well formed. Those tests do not analyze the code,
but aim to check that the file is well structured. For example, it checks that no
method is empty, or that mandatory parts of the file exist. For example, it is
ensured that no final method is overridden, or that no class inherits from one of
its subclasses. Moreover, in the case of Java Card, if one of the loaded classes
already exists in the card, then the verification should fail.

Then, the type correctness of the program is verified. This verification is
performed on a method basis, and has to be done for each method present
in the package. When a method is invoked, a frame is created on top of the
Java virtual machine stack. A frame contains the method’s local variables and
an operand stack which is used to store intermediate results during method
execution. The size of the operand stack of a method is determined at compile
time. JBC instructions play with these variables and the operand stack. A frame
state denotes the value of the local variables and the operand stack.

Type checking ensures that no disallowed type conversions are performed.
For example, an integer cannot be converted into an object reference, down-
casting can only be performed using the checkcast instruction, and arguments
provided to methods have to be of compatible types. Since the types of the local
variables is not explicitly stored in the bytecode, they are derived by analysing
the bytecode. This part of the verification is the most complicated one, and is
both time and memory expensive. It requires computing the type of each variable
and stack element for each instruction and each execution path. In order to make
such verification possible, the verification is quite conservative on the programs

Detecting Vulnerabilities in Java Card Bytecode Verifiers Using MBT 227

that are accepted. The standard bytecode verification algorithm only accepts
programs where the type of each element in the stack and local variable is the
same, whatever the path taken to reach an instruction. This also requires that
the size of the stack is the same for each instruction for each path that can reach
this instruction. Additionally, as every method defines the maximum size that
the stack can take during execution, it is checked so that neither overflow or
underflow can occur.

Here is an excerpt of the JVM specification for instruction sload x, which
loads a short from the local variable identified by index x in the frame of a
method invocation.

Stack
. . .→
. . . , value

Description
The index is an unsigned byte that must be a valid index into the local vari-
ables of the current frame [...]. The local variable at index must contain a
short. The value in the local variable at index is pushed onto the operand
stack.

The description section provides the precondition and the postcondition of the
instruction, while the stack section describes how the operand stack is modi-
fied by the instruction and the element required on the top of the stack before
execution.

2.3 Verifying the Verifier

Cohen [2] has done a preliminary work on verifying the correctness and proposed
a complete formalization for defensive JVM using ACL2. Each instruction in this
model consists of operational semantics that describes its behaviors and also the
static constraints that express the conditions needed to execute the instruction.
Stata et Abadi [21] were the first to use typing rules to model the BCV. These
rules precise the behavior of the instructions, describing the inputs, the execution
context and all the postconditions of each instruction on the context. Freund et
Mitchell [9] used the same framework to evaluate the object initialization con-
sidering only a minimum set of instructions. They added other Java features like
classes, interfaces, arrays and exception in [10] and they proved the correctness
of their type system.

Considering a set of important Java instructions, Qian [20] achieved one of
the most complete works which proved the correct execution of a program by
verifying its type system. He also proposed a proof for the verifier which is
extracted from its formal model. In [6], a correct implementation of a BCV was
explained by considering the verification problem as a data flow analysis and the
executable was extracted using the Specware tool. Push et al [19] in the project
named Bali used the Isabelle/HOL prover to define and verify the properties
on subset of Java called μ-java. They formalized Qian’s type system and its
semantics. Nipkow in [13] has modeled a complete Java BCV using Isabelle.

228 A. Savary, M. Frappier, and J.-L. Lanet

His idea was to provide a generic proof for the verification algorithm and to
instantiate it for a particular VM. The specific verification algorithm exploiting
the StackMap attribute has been proved correct using its complete formalization
and its proof in Isabelle [12].

In 1998 Gemplus demonstrated the correctness of Java Card optimizations
availing B method [14]. Deutsche Telekom [3] employed a model checker (SMV)
to demonstrate the Java Card verification algorithm which was realized using
Linear Temporal Logic. A similar approach by applying the SMV model checker
was used by Gemplus [4] to ensure whether the confidentiality of a shared data
was preserved for a given applet using a causal dependency model. The first
smart card using synthesized code from formal specifications was exhibited at
Java One by Gemplus in 2002.

From all these studies, it is obvious that such a piece of standardized code
and its implementation should be correct. However, Thales ITSEF [8] reported
at the Common Criteria conference in 2010 a bug that allows a type confusion in
a Java Card. The specification of a verifier changes very rarely, but Java Card is
an exception with on-card verifiers. As high-level optimization is required, some
differences may be expected.

There are very few implementations of verifiers that are publicly used. We
assume that Oracle’s verifier is the most commonly used, even if each smart
card manufacturer has developed its own optimized version. Testing a BCV is a
hard task. Static code analysis tool are used, but they are not easy to use due
to the level of abstraction required. So there still exists an issue with both Java
Card editions. The correctness of a particular implementation of the bytecode
verifier needs at least a test suite or a methodology to check its correctness.

3 Methodology for Generating Vulnerability Tests

Our goal is to generate vulnerability tests for the BCV. We proceed as follows.
A BCV vulnerability test is a faulty bytecode program. A bytecode program is
a sequence of bytecode instructions. To generate a bytecode program, one can
build a formal model of the bytecode language where each operation denotes a
bytecode instruction. An execution trace of such a model then denotes a byte-
code program. A faulty bytecode program contains an instruction which can
be executed when its precondition is false. Thus, to generate a faulty bytecode
program, one simply has to negate the precondition of an instruction and try to
execute it in an execution trace. We use the Event-B notation to represent our
formal model. In Event-B, operations are called “event”, so we will use that term
in the sequel.

In order to verify our approach, we have selected a subset of twelve instructions
of the Java bytecode language (aconst_null, pop, return, sadd, sconst_n1,
sconst_0, sconst_1, sconst_2, sconst_3, sconst_4, sconst_5, sload). These
instructions manage the operand stack and the local variables. Our model can
be used for testing stack overflows and underflows, type confusion on primitive
types, for both local variables and stack elements.

Detecting Vulnerabilities in Java Card Bytecode Verifiers Using MBT 229

For example, an accepted test could be the following sequence (where local
variable at index 4 is a short): [sload_4; sconst_2; sadd; return].
A rejected test could be: [sconst_2; aconst_null; sadd; return].

3.1 The Formal Model

Figure 1 represents the variables and the invariants of the Event-B model. Vari-
able pc denotes the index of the next instruction to be generated. The frame
state of an instruction is represented by variables s and v, which respectively
denote the operand stack and the local variables associated to each instruction
of the bytecode program to be generated, whose length is given by constant
maxpc. Thus, we store a copy of the “before” frame state for each instruction.
It allows us to generate test cases for branching instructions. Branching instruc-
tions entails that an instruction can be reach from several execution paths. In
a valid bytecode program, all frame states resulting from an execution path to
an instruction must be type compatible, so that whatever path is taken, an in-
struction is always executed with valid types. Constant maxstack denotes the
maximum size of the operand stack, which is determined during compile time.
The size of the stack s(i) is given by z(i); this variable is necessary to generate
faulty instructions for stack underflows. Variable halt is set to true when the
program has reached a valid frame state for completing a method.

INVARIANTS
inv1 : pc ∈ 1 .. maxpc
inv2 : s ∈ 1 .. maxpc �→ (0 .. maxstack − 1 �→ TYPE)
inv3 : v ∈ 1 .. maxpc �→ (1 .. maxlocalvar �→ TYPE)
inv4 : z ∈ 1 .. maxpc �→ 0 .. maxstack
inv5 : halt ∈ BOOL

inv7 : dom(s) = dom(v) ∧ dom(s) = dom(z) ∧ dom(v) = dom(z)

Fig. 1. Invariants

Figure 2 represents the Initialisation event. The initial state of the machine
contains, for instruction 1, an empty stack and some local variables defined by
constant initlocalvar; the frame states of the other instructions are undefined.

The model of instruction sload is given in Figure3. Guards grd1_t, grd2_t and
grd3_t represent the security conditions defined in the Java Specification [16].
Guards grd1 and grd2 have been added to control the test generation process.
Guards with suffix “_t” will be negated to generate test cases; guards without
suffix “_t” are never negated. Guard grd1 ensures that no event can be exe-
cuted after variable halt has been set to TRUE; variable halt is set to TRUE by
instruction return, which ends each bytecode execution for a method. Guard
grd2 ensures that the length of execution traces does not exceed maxpc. Stack
overflow is controlled by guard grd1_t. Guard grd2_t checks that the index is
a valid index of the array of local variables. Guard grd3_t checks that the type
of the local variable at the given index is a short. The event actions modify the

230 A. Savary, M. Frappier, and J.-L. Lanet

EVENTS
Initialisation

begin
act1 : pc := 1

act2 : s := {1 �→ ∅}
act3 : v := {1 �→ initlocalvar}
act4 : z := {1 �→ 0}
act6 : halt := FALSE

end

Fig. 2. Initialisation

frame state of the next instruction. Thus, a short is pushed onto the stack (act2
and act3) and the local variables are left unchanged (act4).

EVENTS
Event sload =̂

any
index

where
grd1 : halt = FALSE

grd2 : pc < maxpc

grd1_t : z(pc) ≤ maxstack − 1

grd2_t : index ∈ 1 .. maxlocalvar
grd3_t : v(pc)(index) = short

then
act1 : pc := pc+ 1

act2 : s := s�− {pc+ 1 �→ s(pc) �− {z(pc) �→ short}}
act3 : z := z�− {pc+ 1 �→ z(pc) + 1}
act4 : v := v�− {pc+ 1 �→ v(pc)}

end

Fig. 3. sload event

3.2 The Test Generation Process

To obtain the test suite using MBT, the process is split into 3 steps as illustrated
in Figure 4: test generation, concretization and execution. We have developed
a tool for each step. Abstract test generation is performed by the Vulnerability
Tests Generator (VTG). Then the XML2CAP tool translates these abstract
tests to CAP files. Each CAP file is a concrete test. Finally TestOnPC and
TestOnCard execute the tests on the off-card part and on-card part, respectively.

VTG, depicted in Figure 5, is the test generator. Compared to a traditional
MBT approach, VTG includes a new step, faulty model derivation, between the
model and the test generation. This new step generates a set of faulty models
from the original model.

Detecting Vulnerabilities in Java Card Bytecode Verifiers Using MBT 231

Tests can be split in 3 parts. The preamble leads the system under test (SUT)
from the initial state to a state where it is possible to execute the body. The
body is the execution of the tested behavior. Finally the postamble leads the
SUT to a desired state.

�������

�	
��
����������������

�������

��

�������	�������

��������

��� �������

��������

���������

Fig. 4. Our MBT process

�����

���

��������	
��
���

��	
	��

��

������
����
����

�����	���

����
�

�����

������
���

��	
��

��	

������
���

Fig. 5. VTG process

3.3 Faulty Model Derivation

Algorithm 1 describes the faulty model derivation process. Each generated faulty
model contains only one faulty instruction, in order to ease the location of faults
in the BCV. A faulty instruction is a negation of the JVM specification pre-
conditions. Since there are several ways of negating a condition, several models
are produced for a single faulty instruction. The faulty model contains a new
state variable, eut (event under test) which ensures that a faulty instruction in
executed only once in a test. Variable eut is initialized to FALSE and set to TRUE
by the execution of the faulty instruction; a guard “eut = FALSE” is added to
the faulty instruction so that it is executed only once.

To negate a guard g, the algorithm uses function neg(g), which returns the set
of negations of guard g. It is computed by recursively applying derivation rules. A
negation g′ of a guard g satisfies the following property: g′ ⇒ ¬g. Thus, there are
several possible negations g′ for a guard g. The negations we consider are defined
by derivation rules. The derivation rules necessary to rewrite the instructions of
our subset of the Java bytecode language are presented in Figure 6. A rule has
the following form: neg(f)� {f1, . . . , fn}. Each fi is a negation of f , and it may
include a call to neg as a subformula. Thus, these rules are applied recursively
until no more neg appear. Termination is ensured by (manually) checking that
the rules decrease the height of the formula’s abstract syntax tree. Completeness
is manually checked by ensuring that ¬f ⇔ f1∨ . . .∨fn. These are proved using
the prover of the Rodin toolkit, which supports the Event-B method.

232 A. Savary, M. Frappier, and J.-L. Lanet

Input: m : Event-B model
Output: M ′ : set of Event-B model
for each event e of m do

rewrite the guard of e into two guards:
grd, the conjunction of all guards of e without suffix "_t";
grd_t, the conjunction of all guards of e with suffix "_t";

end
for each event e of m do

e.RW := neg(grd_t);
end
for each event e of m do

for each rw in e.RW do
add a new model m′ to M ′ such that

m′ := m;
m′.events := m′.events ∪ {e′}, where e′ is defined as follows:

e′ := e;
replace e′.grd_t by rw;
add guard “eut = FALSE” to e′;
add action “eut := TRUE” to e′;

end
end

Algorithm 1. Faulty model derivation algorithm

Using derivation rules provides flexibility for controlling the faulty model gen-
eration process. For instance, rule 1 describes that a conjunction can be negated
in three different ways: exactly one of the conjunct is false or both conjuncts are
false. Some rules are also specific to a problem domain. For instance, to negate
a formula h(a) = b, one may want to test two cases, instead of using rule 4 of
Figure 6: i) the case where h(a) is undefined (i.e., a �∈ dom(h)) and the case
where h(a) is defined. This would be represented by the following rule:

4′. neg(h(a) = b)� {a �∈ dom(h), a ∈ dom(h) ∧ a �→ y �∈ h}

The application of derivation rules to a guard may generate a predicate which is
unsatisfiable, or there may not exist a state reachable from the initial state that
satisfies the generated predicate. These cases are detected during the abstract
test generation step, which involves a model checker. In our tool, the user can
check the list of generated predicates and delete those which are obviously not
satisfiable, in order to speed up the test generation step.

As an example of applying derivation rules, consider instruction sload. Its
guard to negate (i.e., the conjunction of guards with suffix “_t” in Figure 3) is
the following:

(z(pc) ≤ maxstack − 1) ∧ (index ∈ 1 .. maxlocalvar) ∧ (v(pc)(index) = short)

Applying the rules of Figure 6, we obtain the following negations; elements iden-
tified in red highlight the modified part of the original guard.

Detecting Vulnerabilities in Java Card Bytecode Verifiers Using MBT 233

1. neg(p1 ∧ p2)� {neg(p1) ∧ p2, p1 ∧ neg(p2), neg(p1) ∧ neg(p2)}
2. neg(i1 ≤ i2)� {i1 > i2}
3. neg(i1 ≥ i2)� {i1 < i2}
4. neg(i1 = i2)� {i1 �= i2}
5. neg(a ∈ B)� {a /∈ B}

Fig. 6. Relevant derivation rules

1. z(pc)>maxstack − 1 ∧ index ∈ 1 .. maxlocalvar ∧ v(pc)(index) = short
2. z(pc) ≤ maxstack − 1 ∧ index�∈1 .. maxlocalvar ∧ v(pc)(index) = short
3. z(pc)>maxstack − 1 ∧ index�∈1 .. maxlocalvar ∧ v(pc)(index) = short
4. z(pc) ≤ maxstack − 1 ∧ index ∈ 1 .. maxlocalvar ∧ v(pc)(index)�=short
5. z(pc)>maxstack − 1 ∧ index ∈ 1 .. maxlocalvar ∧ v(pc)(index)�=short
6. z(pc) ≤ maxstack − 1 ∧ index�∈1 .. maxlocalvar ∧ v(pc)(index)�=short
7. z(pc)>maxstack − 1 ∧ index�∈1 .. maxlocalvar ∧ v(pc)(index)�=short

Negations 2, 3, 6 and 7 are unsatisfiable, because of the conjunction index �∈
1 .. maxlocalvar ∧ v(pc)(index) = short. When index �∈ 1 .. maxlocalvar holds,
expression v(pc)(index) is undefined. Figure 7 illustrates a faulty instruction
obtained with negation 5.

EVENTS
Event evt_sload_11_24_EUT =̂

any
...

where
grd : halt = FALSE ∧ pc < maxpc

grd_t : z(pc) > maxstack − 1 ∧ index ∈ 1 .. maxlocalvar ∧
¬v(pc)(index) = short

grd_EUT : eut = FALSE
then

...
act_EUT : eut := TRUE

end

Fig. 7. evt_sload_11_24_EUT event

3.4 Abstract Tests Generation

With these new models, we generate tests. We use ProB [15] to find traces
containing the preamble, the body and the postamble. This search is driven
by two parameters. First we specify the depth. This parameter represents the
maximum length of the traces i.e., the maximum number of events for a test. The
second parameter is a predicate that each trace must satisfy. Presence of the EUT
and final state are represented by the predicate eut = TRUE ∧ halt = TRUE.
Other parameters must be specified; the reader is referred to the ProB website [1]
for more details.

234 A. Savary, M. Frappier, and J.-L. Lanet

For each model, we only generate a subset of possible traces containing the
EUT. For each transition, when several solutions can satisfy the guard of an
event, only one solution is used. The first solution found for the model of Figure 7
is :

– preamble: INITIALISATION; aconst_null; aconst_null; aconst_null;
– body: evt_sload_11_24_EUT;
– postamble: return .

At the initialization, the local variables contain two references and the maximum
size of stack is equal to 3. The execution of three events aconst_null fills the
stack. In this state, the faulty event can be executed. Finally the return event
leads the machine to the end of the test.

3.5 Concrete Tests

A concrete test is a CAP file which contains a class with one method. This
method contains the instruction trace generated with ProB. The XML2CAP
tool generates one CAP file for each trace. It computes, among other things,
the maximum stack size. Because several other informations are required for
composing a CAP file, we use a predetermined CAP file which is completed
with the generated method. The local variables are fixed in the predetermined
CAP file and in the abstract model.

4 Evaluation

Tests Computation. Our experiments have been performed on a MacBook
Pro with a 2,3 GHz Core i5 dual-core processor, 8GB of RAM and a 5400 t.m−1

hard disk with 8MB of cache. Each measure has been made three times and we
provide the average.

The first step is the negation of guards. It processes four distinct guards. It
generates sixteen negations in less than one second. Eight of the negations are
unreachable and we only keep the eight reachable models. The second step is
the model derivation. We produce eighteen new models in twenty seconds. The
last step is the abstract test generation. The results obtained vary depending on
the search depth.

Table 1 represents the results we obtain for the generation of abstract tests.
The first column represent the depth parameter. The penultimate line of this
table represents the results we obtain if we do not remove the unreachable nega-
tions. In the last line we take the shortest depth for each model. The second and
third columns represent respectively the time and the number of tests extracted.
The next column represent the time taken in average to generate one test. The
penultimate column provides the percentage of models which can produce at
least one test for the given depth (the depth may not be large enough to gener-
ate a test). The last column represents the test coverage with respect to a test
plan manually derived by an expert. In this manual test plan, the expert has

Detecting Vulnerabilities in Java Card Bytecode Verifiers Using MBT 235

identified for each instruction a number of test cases. The test cases considered
by our approach depend on the derivation rules. We have computed the number
of manual test cases that our approach can reproduce using the derivation rules.
Because we only work on a subset of the Java Card instruction set, the manual
test cases which involve other instructions could not be reproduced; thus the
last column is never equal to 100%.

Table 1. Abstract test generation evaluation

Depth Time Nb of tests Speed
(sec/test)

Model
coverage

Manual plan
coverage

3 1min30 30 3,0 13% 12%
4 12min30 432 1,7 33% 31%
5 1h30 10133 0,5 100% 93%

5 Full 2h30 10133 0,9 65% 93%
* 1h05 7318 0,5 100% 93%

Smart Card Execution. After the execution of the vulnerability test suites, we
classify the results as: i) accepted and correctly executed CAP file, ii) rejected
CAP file, and iii) accepted CAP but rejected executions. An accepted CAP
means that the embedded load phase verifications do not detect the ill formed
file. An accepted CAP but rejected during execution detects the presence of a
run time check. The test suites have been evaluated on five different smart cards
from two different smart card manufacturers ({a, e}, {b, c, d}). Cards a, b, c are
Java Card 2.1 while d and e are Java Card 2.2 standard.

Card d allows the execution of all tests. Thus, it is possible to generate stack
over and under flow. It does not mean that the vulnerabilities can be exploited.
To obtain an executable attack, one often needs several vulnerabilities. For ex-
ample, if the card does not check the local variable it offers the possibility to
change the return address. But the return address can be protected by an in-
tegrity check. With our test results, one may be able to characterize a given
implementation and then provide information to set up an attack.

For the other cards, some tests fail (the card become mute) during the ex-
ecution or during the load. On card a, we have been able to find a chain of
vulnerabilities that allows us to execute a shell code on the card.

Overall Effort for the Complete Process. We estimate that it would take
a fresh person about 25 hours to build the formal model of the subset of twelve
instructions. We could not precisely measure this effort, because our model is
the result of several iterations on different subsets of similar bytecode languages
(for instance, our first experiments were conducted on the language of Freund
and Mitchell [10]). The manual removal of unreachable guards takes about 1.5
hour. The model derivation step does not require any human intervention. We
then must choose appropriate parameters for the abstract test generator step.
This will only take a few minutes. Then we launch the abstract test generator.

236 A. Savary, M. Frappier, and J.-L. Lanet

For a full coverage, this step takes 1.5 hour. Finally we concretize the tests in
a few minutes. Overall, the full process for the twelve instruction subset takes
about a week.

It took eight person-months to develop the complete toolchain. Many parts
of this toolchain are re-usable. Only the concretization and the execution tools
must be adapted for a new problem.

Manually writing a test suite for the BCV is tedious. It took us one week
to manually derive a test suite for our subset of twelve instructions. Moreover,
this test suite contains only one test per test case. Our solution can produce
all possible tests in roughly the same time; we have controlled the number of
tests using a timeout. Our vulnerability coverage is slightly less, but our tests
are more complex and they test vulnerabilities in many contexts. When the full
bytecode instruction set will be tackled, we expect increased productivity gains,
because automation will easily generate a greater variety of contexts for testing
an instruction.

5 Conclusion and Future Work

We have proposed a new methodology to generate vulnerability tests and devel-
oped several tools supporting it. Our method is based on using a formal model
of the system under test which represents security constraints. A standard MBT
approach is applied and we obtain a set of vulnerability tests. We applied our
methodology to the testing of five Java smart card BCV. We have discovered
vulnerabilities in all of them. Our approach can be used by a certification au-
thority or an evaluation center in order to set up vulnerability analysis. This
would ease the characterization of the embedded software.

The Java Card byte code verifier is a key component in the security of Java-
based smart cards and finding weaknesses is of prime importance. Our exper-
iment with a subset of the Java Card instruction set constitutes a proof of
concept. We plan to apply our methodology to the complete Java Card instruc-
tion set, including the type lattice, the subroutine mechanism and the exception
mechanism.

Our methodology is generic and can be applied to other security components.
We have started to model the payment protocol EMV, which includes crypto-
graphic primitives, in other to generate vulnerability tests.

References

1. http://www.stups.uni-duesseldorf.de/ProB
2. http://www.computationallogic.com/software/djvm/
3. Basin, D., Friedrich, S., Posegga, J., Vogt, H.: Java bytecode verification by model

checking. In: Halbwachs, N., Peled, D.A. (eds.) CAV 1999. LNCS, vol. 1633,
pp. 491–494. Springer, Heidelberg (1999)

4. Bieber, P., Cazin, J., Girard, P., Lanet, J.L., Wiels, V., Zanon, G.: Checking se-
cure interactions of smart card applets: Extended version. Journal of Computer
Security 10(4), 369–398 (2002)

http://www.stups.uni-duesseldorf.de/ProB
http://www.computationallogic.com/software/djvm/

Detecting Vulnerabilities in Java Card Bytecode Verifiers Using MBT 237

5. Casset, L.: Development of an embedded verifier for java card byte code using
formal methods. In: Eriksson, L.-H., Lindsay, P.A. (eds.) FME 2002. LNCS,
vol. 2391, pp. 290–309. Springer, Heidelberg (2002)

6. Coglio, A., Goldberg, A., Qian, Z.: Toward a provably-correct implementation
of the JVM bytecode verifier. In: Proc. OOPSLA 1998 Workshop on Formal
Underpinnings of Java, pp. 403–410 (1998)

7. Doyon, S.: On the security of Java: The Java Bytecode Verifier. Master’s thesis,
Université Laval, Québec City, Canada (1999)

8. Faugeron, E.: How to hoax an off-card verifier. In: e-Smart, Sophia Antipolis,
France, September 21-24. Strategies Telecoms & Multimedia, pp. 310–328 (2010)

9. Freund, S.N., Mitchell, J.C.: A type system for object initialization in the Java byte-
code language. In: Freeman-Benson, B.N., Chambers, C. (eds.) ACM SIGPLAN
Conference on Object-Oriented Programming Systems, Languages & Applications,
pp. 310–327. ACM Press (1998)

10. Freund, S.N., Mitchell, J.C.: A formal framework for the Java bytecode lan-
guage and verifier. In: Hailpern, B., Northrop, L.M., Berman, A.M. (eds.)
ACM SIGPLAN Conference on Object-Oriented Programming Systems, Languages
& Applications, pp. 147–166. ACM Press (1999)

11. Iguchi-Cartigny, J., Lanet, J.: Developing a Trojan applet in a Smart Card. Journal
in Computer Virology 6, 343–351 (2010)

12. Klein, G., Nipkow, T.: Verified lightweight bytecode verification. Concurrency and
Computation: Practice and Experience 13(13), 1133–1151 (2001)

13. Klein, G., Nipkow, T.: Verified bytecode verifiers. Theor. Comput. Sci. 3(298),
583–626 (2003)

14. Lanet, J.L., Requet, A.: Formal proof of smart card applets correctness. In:
Schneier, B., Quisquater, J.-J. (eds.) CARDIS 1998. LNCS, vol. 1820, pp. 14–16.
Springer, Heidelberg (2000)

15. Leuschel, M., Butler, M.: ProB: An automated analysis toolset for the B method.
International Journal on Software Tools for Technology Transfer 10(2), 185–203
(2008)

16. Lindholm, T., Yellin, F.: Java Virtual Machine Specification, 2nd edn.
Addison-Wesley Longman Publishing Co., Inc., Boston (1999)

17. Sun Microsystems: Connected, limited device configuration, specification 1.0a,
Java 2 platform micro edition (2000)

18. Sun Microsystems: Virtual machine specification Java Card platform (May 2009),
http://www.oracle.com

19. Pusch, C.: Proving the soundness of a Java bytecode verifier specification in is-
abelle/HOL. In: Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, pp. 89–103.
Springer, Heidelberg (1999)

20. Qian, Z.: A formal specification of java-TM virtual machine instructions for objects,
methods and subroutines. In: Alves-Foss, J. (ed.) Formal Syntax and Semantics of
Java. LNCS, vol. 1523, pp. 271–312. Springer, Heidelberg (1999)

21. Stata, R., Abadi, M.: A type system for Java bytecode subroutines. In: MacQueen,
D.B., Cardelli, L. (eds.) Proceedings of the 25th ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages, POPL 1998, San Diego, CA, USA,
January 19-21, pp. 149–160. ACM (1998)

http://www.oracle.com

Integrating Formal Predictions of Interactive System
Behaviour with User Evaluation

Rimvydas Rukšėnas1, Paul Curzon1, and Michael D. Harrison1,2

1 School of Electronic Engineering and Computer Science, Queen Mary University of London
{r.ruksenas,paul.curzon}@eecs.qmul.ac.uk

2 School of Computing Science, Newcastle University, Newcastle upon Tyne, UK
michael.harrison@newcastle.ac.uk

Abstract. It is well known that human error in the use of interactive devices can
have severe safety or business consequences. It is important therefore that aspects
of the design that compromise the usability of a device can be predicted before
deployment. A range of techniques have been developed for identifying poten-
tial usability problems including laboratory based experiments with prototypes
and paper based evaluation techniques. This paper proposes a framework that in-
tegrates experimental techniques with formal models of the device, along with
assumptions about how the device will be used. Abstract models of prototype de-
signs and use assumptions are analysed using model checking techniques. As a
result of the analysis hypotheses are formulated about how a design will fail in
terms of its usability. These hypotheses are then used in an experimental environ-
ment with potential users to test the predictions. Formal methods are therefore
integrated with laboratory based user evaluation to give increased confidence in
the results of the usability evaluation process. The approach is illustrated by ex-
ploring the design of an IV infusion pump designed for use in a hospital context.

1 Introduction

Experiments in usability laboratories play an important role in providing understand-
ing of the way people behave when using interactive devices in specific circumstances.
These experiments can be used to identify flaws in the design of devices before de-
ploying them in a wider context. Experiments, by their nature, are not exhaustive with
respect to behaviour and so some behaviour that would occur under the assumptions of
use made, may not be observed within the confines of the experiment. It is also difficult
to predict all possible interactions that may lead to a particular observed behaviour and
so ought to be dealt with in the interaction design. This is particularly difficult when
investigating human error. For example, Vicente et al [1] have estimated the rate of
errors related to number entry tasks, such as those arising from programming medical
infusion devices, to be in the range of 1 in 33,000 to 1 in 338,800 for an example de-
vice. In experiments error rates have to be increased artificially by, for example, adding
secondary tasks to increase working memory load to overcome such problems. This can
lead to those experiments not being ecologically valid: the errors seen may not actually
correspond to real situations.

This paper describes a framework that can be used to highlight error prone interac-
tion design given a set of cognitive assumptions. When evaluating an interactive system

E.B. Johnsen and L. Petre (Eds.): IFM 2013, LNCS 7940, pp. 238–252, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Integrating Formal Predictions of Interactive System Behaviour with User Evaluation 239

design it is necessary not only to describe assumptions about the device design but also
the assumptions that are being made about the user in terms of capabilities and context.
An approach to exploring the consequences of such assumptions is proposed that com-
bines formal verification techniques with laboratory-based experiment. We claim that
this approach gives increased analytical power to experimental results. The behavioural
assumptions and configuration of an experiment including the device are modelled at
a high level of abstraction. This allows model checking to be used to explore the con-
sequences of the behavioural assumptions exhaustively in a way that is not possible
using experimental or simulation techniques. Formal methods are therefore integrated
with laboratory based user evaluation to give increased confidence in the results of the
usability evaluation process.

The approach contrasts but also has some parallels with the use of cognitive mod-
elling to analyse user assumptions [2], in particular the use of cognitive architectures.
A base set of assumptions is used, similar to cognitive architectures, that are relatively
independent of the task. However cognitive architectures provide much more detailed
models of cognitive processes such as visual or auditory perception, memory and learn-
ing, whereas the approach described here takes a more abstract view of these processes
as discussed in more detail in Section 3.2.

Another important difference relates to the way the models are used to carry out anal-
ysis. In cognitive modelling approaches, the analysis of system properties is based on
individual simulation runs of a relatively small number of possible behavioural traces.
The idea is that each trace represents statistically ‘average’ or ‘likely’ behaviour. The re-
sult is that models which are effectively deterministic are used to predict likely properties
of an interactive system. In the approach described here the models are more abstract and
involve a high degree of non-determinism. This non-determinism generates a wide range
of behaviours. It allows exhaustive exploration of the consequences of the modelled as-
sumptions that lead to these behaviours using automatic tools such as model checkers.

In addition to testing predictions based on the models the analysis gives insight about
the design of the interactive device and helps the evaluator to consider the validity of
the experimental design. It therefore provides insight into the confidence with which
the results of the experiment and its interpretation can be considered. It can highlight
mismatches between the consequences of the assumptions and experimental results and
so lead to suggestions of further experiments as well as ruling out potential explanations
for those mismatches.

To illustrate the proposed approach we explore a design that supports the access of
information within two tasks. The tasks can either be interleaved or carried out sequen-
tially. Our aim is to consider the effectiveness of the design given a set of cognitive
assumptions, in particular the soft constraints hypothesis [3]. Modelling predicted that
errors would be made that matched those observed in the experiment. However the
specific traces identified by the model checker that led to errors were different to the
sequence of actions followed by participants in the experiment. In particular the formal
analysis predicted a different form of interleaving from that assumed or seen in the ex-
periment. This suggests that the modelled assumptions are not sufficient to fully explain
the observed behaviour. Possible explanations for why the actual behaviour differs from
that derived from the assumptions could be explored both by further experiment and/or
by modelling them and model checking to derive the consequences.

240 R. Rukšėnas, P. Curzon, and M.D. Harrison

The contribution of this paper is therefore to:

– present a novel way of combining formal reasoning technology and laboratory-
based experiments to explore the consequences of the design of an interactive en-
vironment, and

– demonstrate on a specific example how the technique can be used to give insight
into experimental results and in particular make explicit the behavioural assump-
tions made and its design consequences.

2 Related Work

The use of formal modelling and analysis as a means of developing hypotheses for ex-
perimental evaluation of interactive systems appears to be a novel approach. There is
however a significant literature on combinations of user or use assumptions with models
of devices. These range from assumptions based on task models to assumptions based
on cognitive models. A recent example of the former approach is the work of Bolton
and others [4] which also contains a good review of related material. They use the En-
hanced Operator Function Model (EOFM) to describe operator tasks. This task model is
combined with a device model as a basis for a model checking analysis using SAL [5].
The analysis involves considering variants of the task by inserting automatically “phe-
notypes of erroneous human behaviour. These variant models are checked against cor-
rectness properties - that the combined model would reach specified goals. Observable
manifestations of erroneous behaviour are also explicitly modelled by Fields [6] who
also analysed error patterns using model checking. Both approaches, however, whilst
giving specific kinds of errors to explore in the form of the mistake model lack dis-
crimination between random and systematic errors. The also assume implicitly that
there is a correct plan, from which deviations are errors. Beckert and Beuster [7] on
the other hand take a step towards combining GOMS modelling and correctness veri-
fication. They present a verification environment with a structure similar to the models
described here — connecting a device specification, a user assumption module and a
user action module, the latter being based on CMN-GOMS. The selection rules of their
GOMS model are driven by the assumption model while the actions drive the device
model. This gives a way of exploring the effect of erroneous user behaviour in the form
of incorrect selection decisions as specified in the user assumption module. However,
the assumption module has no specific structure and, thus, does not provide systematic
guidance as to what kind of potential errors to explore. These decisions are left to the
analysts of the system.

Other relevant research concerns the use of more general assumptions about cog-
nition. A similar approach to the one that forms the basis for this paper is taken by
Bowman and Faconti [8]. They formalise one model of human information process-
ing (Interactive Cognitive Subsystems [9]) using the process calculus LOTOS, and then
apply a temporal interval logic to analyse constraints on the information flow and trans-
formation between the different cognitive subsystems. Their approach is more detailed
than the one described in this paper. It focuses on reasoning about multi-modal inter-
faces and analyses whether interfaces based on several simultaneous modes of inter-
action are compatible with the capabilities of human cognition. One source of of user

Integrating Formal Predictions of Interactive System Behaviour with User Evaluation 241

error is cognitive mismatch between user beliefs about the system state or behaviour
and the reality. Rushby et al [10] focus on mode errors resulting from cognitive mis-
match and the ability of pilots to track mode changes. They formalise a mental model of
the system that is specific to the example being considered and then analyse it using the
Murφ verification tool. Their models make no explicit appeal to cognitive principles.

In our earlier work [12], a similar integration of formal verification and laboratory
based experiments is employed to provide cognitively grounded accounts of interactive
user behaviour. That work, however, does not attempt to evaluate device designs.

3 The Modelling Framework

The proposed analysis of an interactive system is based on a combination of a device
model and a user model that together capture assumptions about the design relevant
to the context of use. The level of abstraction used for the device specification is de-
termined by the issues under investigation. In the example described here the issue is
whether certain task steps are prone to omission given specific design assumptions, not
about precise details as to whether a particular task step is carried out. For this reason
the device specification is given a high level of abstraction. The specification of plausi-
ble user behaviours then follows the same abstraction level. The models are developed
using the SAL verification environment [5].

3.1 The Device Model

Our example involves the programming of infusion pumps. Infusion pumps are used
both in hospital settings and at home to provide intravenous infusions. They are safety-
critical devices, since infusing a drug at the wrong rate or volume may seriously harm
patients. As such they provide a realistic test of the viability of the approach.

Analysis is concerned with the task of programming a pump with the prescribed in-
fusion parameters and then commencing the infusion. However because simultaneous
programming of two infusion pumps is a common activity in operating theatres, the
focus is to consider this multitasking activity and designs where the setting of a pump
requires entry of two infusion parameters: the volume to be infused (VTBI) and the
duration (time) of infusion1. Different makes of infusion pump provide different mech-
anisms for entering these numeric values. The concern here is not with the details of
number entry. This level of abstraction of the pump model captures the generic char-
acteristics of a range of models of infusion pump. The general insights provided by
the analysis are therefore likely to be associated with the design characteristic of these
different pumps.

Pump operation. The first step in developing the device model is to describe the inter-
active aspects of pump operation. When the pump is switched on it goes through a setup
procedure. Since this step is not a concern of the example, the model simply assumes
that the initial state of the pump is on when the setup has finished. The programming

1 The model would be similar if the rate of infusion is required instead of duration.

242 R. Rukšėnas, P. Curzon, and M.D. Harrison

options available to the user are presented at a main menu on the pump display on com-
pletion of setup. Setting the VTBI and setting the duration are two options which, when
selected, move the pump into a mode where the relevant numerical value can be entered.
The entered value must be confirmed by pressing the confirmation key. If confirmation
occurs when both values have been entered the pump calculates the infusion rate auto-
matically. Pressing the confirmation key returns the pump to the mode where the main
menu is displayed. Infusion can then be started using the appropriate key. However,
before that, a roller clamp on the pump must be opened.

Pump model. The SAL model of the interactive behaviour for this pump is given in
Fig. 1. The variables vtbi, time and rate represent the values of the the infusion
parameters. The analysis is to be carried out at a level of abstraction where these nu-
meric values are irrelevant. For this reason the three variables have boolean type. The
value true indicates that a numeric value for the corresponding infusion parameter has
been entered, whereas false indicates the opposite. Depending on its mode, the pump
shows (some of) these infusion values on the display. The boolean variables vtbiDisp,
timeDisp and rateDisp indicate whether the corresponding value is displayed or not.
Finally, the boolean clamp specifies whether the roller clamp is closed (true) or open
(false).

The mode of the pump operation is specified by the variable mode. Three modes of
operation are assumed defined as an enumerated type, Mode:

Mode: type = { off, hold, infusing };

The modes off and infusing indicate that the pump is switched off and infusing,
respectively. The hold mode represents the remaining states of the pump, when it is
switched on but not infusing (for example, being programmed).

The mode of the pump display is specified by the variable dmode. The mode can take
values defined as the following type DispMode:

DispMode: type = { dblank, mainmenu, dvtbi, dtime, dinfusing };

The value mainmenu represents the main pump menu with the programming options
presented. The values dvtbi and dtime represent the numeric entry displays for VTBI
and time respectively. The value dinfusing represents the display shown during the
infusion process. Finally, dblank indicates that the display is blank.

The device model of the infusion pump is driven by a set of actions that are defined
by input events represented by the following enumerated type Event:

{ onoff, mvtbi, mtime, enter, confirm, open, close, infuse, tick }

At the level of abstraction relevant to the analysis, an input event may correspond to a
sequence of button presses. Thus the event onoff represents a key press that switches
the pump on or off. The events mvtbi and mtime model users choosing the VTBI and
time entry options in the main menu. The events enter and confirm represent the
entry and confirmation of a numeric value (depending on the display mode, this can
be either the VTBI or time). Opening and closing of the roller clamp is modelled as
the events open and close. Finally, the time ticking event tick represents cases when
there is no user action taken.

Integrating Formal Predictions of Interactive System Behaviour with User Evaluation 243

pump: module =

begin

input event: Event

local mode: Mode

output dmode: DispMode, vtbi, rate, time, vtbiDisp, rateDisp, timeDisp, clamp: bool

initialization

mode = hold; dmode = dvtbi; vtbi = false; rate = false; time = false; clamp = true;

definition

vtbiDisp = dmode = mainmenu or dmode = dvtbi or dmode = dinfusing;

rateDisp = dmode = mainmenu or dmode = drate or dmode = dinfusing;

timeDisp = dmode = mainmenu or dmode = dtime or dmode = dinfusing;

transition

[event = onoff and mode = hold --> mode’ = off; dmode’ = dblank;

[] event = mvtbi and dmode = mainmenu --> dmode’ = dvtbi

[] event = enter and dmode = dvtbi --> vtbi’ = true

[] event = confirm and dmode = dvtbi --> dmode’ = mainmenu; rate’ = rate or time;

[] event = mtime and dmode = mainmenu --> dmode’ = dtime

[] event = enter and dmode = dtime --> time’ = true

[] event = confirm and dmode = dtime --> dmode’ = mainmenu; rate’ = rate or vtbi;

[] event = open and clamp --> clamp’ = false

[] event = close and not(clamp) --> clamp’ = true

[] event = infuse and dmode = mainmenu and vtbi and rate and time -->

mode’ = infusing; dmode’ = dinfusing

[] event = infuse and dmode = dinfusing --> mode’ = hold; dmode’ = mainmenu

[] else -->

]

end

Fig. 1. Pump model in SAL

These events have behaviours (see transition section in Fig. 1) that depend on
the mode of the device (mode). For example, the event enter sets vtbi to true if the
display mode is dvtbi. This models the entry of the VTBI value when the pump display
is in the corresponding mode. In general, events may have the effect of changing two
modes: the mode of the device and the mode of the display. They may also change the
variables associated with the infusion parameters (vtbi, time and rate).

The example considers the simultaneous programming of two pumps. The model
for each pump is derived from pump by simple renaming of all variables. For example,
event is renamed to events[1] for the first pump and to events[2] for the second.
The full device model, Pumps, is then defined by composing the pump models.

3.2 The User Model

The purpose of the user model is, when combined with the device model, to restrict
the device behaviours to those that are consistent with user behaviour given the cog-
nitive assumptions. The particular user model that is relevant to the analysis of the
device is based on an instantiation of an abstract generic user model. These models are
generic because they provide the means to replace sets of cognitive assumptions and
also because they can be instantiated with the particular task assumptions relevant to
the analysis. The model makes it possible for the experimenter to make, and explore,
conjectures about use of the interactive system. In this way the approach is not locked
into a set of assumptions about how the device will be used.

244 R. Rukšėnas, P. Curzon, and M.D. Harrison

Flexibility of user models is achieved through three modelling layers. The base layer
in the generic model captures core assumptions that are unlikely to be modified by the
approach. The intermediate layer, also part of the generic model, specifies the current
set of cognitive assumptions. The third layer is an instantiation of the generic model
and captures specific assumptions that relate to the details of the device and the task to
be performed on it.

The Base Layer. This layer focuses on the mechanisms that relate to the users choice
of actions and forms a set of core assumptions. It postulates that actions are chosen
non-deterministically but some actions may be preferred to others for cognitive reasons
such as their salience. User preferences are modelled using a notion of action salience
that is informed by the ideas of activation theory [11]. The base layer describes actions
and their salience in generic terms. It also specifies termination behaviour, marking the
conditions that may lead to a person ending an interaction. More detail on this modelling
layer is provided in the earlier paper [12].

The Intermediate Layer. The second (intermediate) layer refines the underlying non-
determinism of action choice by introducing salience levels which it uses to partition
actions. The notion of salience is also refined by specifying how action salience is de-
rived from associated cues. At this level different assumptions about the salience levels
and the relation between salience and cues can be specified. One possible set of such
assumptions is described in more detail below and used in the analysis of the example.

The set of assumptions used in the example specify that actions may have two types
of cues: sensory (that is external) and internal. The sensory cues are provided by the
device and its environment. In the model, they are used to represent any kind (visual,
audio, etc.) of external stimulus. The internal cues originate from the user’s knowledge
of task and device.

Task-knowledge cues can be thought of as a mental representation of the task, and
what is necessary to achieve the main task goal. This knowledge is assumed to derive
from general training as well as previous experience. The form that task-knowledge
cues take in the model is as follows: ‘action A � action B’. This corresponds to learned
behaviour where each action in a sequence provides longer term activation for the next
action. Namely, if ‘action A � action B’ and another action C (or series of actions S)
are taken instead of B, then the latter still gets activation after execution of C (or S). The
second form of task-knowledge cue in the model deals with the first step in a learned
series of actions. In this case, there is no preceding action to provide activation and it is
assumed that activation may also come from task goals.

The set of device-knowledge cues can be thought of as a mental representation of
how the device works, and what is necessary to achieve the task using the device. It is
assumed that this knowledge derives from repeatedly doing the task on the same device.
Thus, the device-knowledge cues as a whole capture learnt sequences of actions. These
sequences may also include device-specific actions. This is not the case with the task-
knowledge cues. The device-knowledge cues take the following form in the model:
‘action A → action B’. They represent more procedural aspects of learned behaviour
and, consequently, are assumed to provide shorter term activation for the next action in a

Integrating Formal Predictions of Interactive System Behaviour with User Evaluation 245

sequence. Namely, if ‘action A → action B’ and another action C is taken immediately
after A, then action B ceases to get activation from A.

Action salience and activation levels. The overall salience of an action is determined by
the activation provided by its sensory, task-knowledge and device-knowledge cues. The
effect of different kinds of cue is assumed to be equal and additive in nature. Here the
equality means that each kind of cue, if present, is assigned a unit (say 1) of activation,
while the additivity means that the overall salience of an action is calculated as the sum
of these units. Thus, if an action gets activation from all three kinds of cues, then its
overall salience will be 3, whereas if it does not have any cues, then the overall salience
will be 0. In this set of assumptions, four discrete levels of activation are assumed, each
corresponding to one of the possible values (from 0 to 3) of overall salience, so that
all the actions are partitioned into these levels. Only actions with the highest level of
salience are assumed to be candidates for execution.

Not all user actions that are possible at some point are equally relevant to achieving
task goals. For example, the action of starting an infusion is irrelevant when the pre-
scribed infusion parameters have not yet been provided. In the model, the concept of
specificity refers to the dynamic aspect of cue relevance for such actions. It is assumed
that an action being non-specific acts as an inhibitor reducing the activation due to the
sensory and task-knowledge cues from 1 to 0. On the other hand, the activation due
to the device-knowledge cues is not linked to the specificity of actions in this set of
assumptions.

A set of cognitive assumptions like this is chosen on the basis that it is believed to
be sufficient to explain behaviour for the given task. If discrepancies with experiments
arise then one possibility is that this understanding is incomplete, which in itself is a
useful result.

The Concrete Layer. The third (concrete) layer instantiates the generic user model
specified by the other two layers to a specific interactive system and its associated
tasks. It does this by defining the state space of the user model, the main task goal
and the actions and their associated cues specific to the device. In this case the task is
programming two infusion pumps.

State space. The state of the user model is specified by the following components:
inp:Inp giving things the user can perceive in the world, mem:Memory giving their
beliefs about the state of the system, and out:Out giving the actions they can take. The
type Inp represents assumptions about what the pump users can perceive:

Inp: type =

[# dmode:array [1..2] of DispMode, vtbi:array [1..2] of bool,

time:..., rate:..., clamp:..., prescription:... #];

Here dmode[i] . . .clamp[i] indicate how the user perceives the corresponding at-
tributes on the pump i, while prescription[i] indicates the perception of the pre-
scription values for the same pump. The type Memory represents assumptions about the
user’s beliefs about the system state:

246 R. Rukšėnas, P. Curzon, and M.D. Harrison

Memory: type =

[# pump:[1..2], vtbiSet:array [1..2] of bool,

timeSet:..., prescription:..., interleave:bool #];

Here pump indicates which pump is the focus of user attention, vtbiSet[i] and
timeSet[i] represent beliefs as to whether the corresponding infusion parameter
has been set, prescription[i] represents the memorised prescription values, and
interleave indicates whether the user has chosen to interleave programming the two
pumps or not. Finally, the type Out specifies assumptions about which user action
(action), and on which pump (pump), has been chosen by the model:

Out: type = [# action: Event, pump: [1..2] #];

Task goal. We assume that, from the users point of view, the main goal, task for
the task of programming the two pumps is to reach a state such that their perception
indicates that both pumps are infusing:

inp.dmode[1] = dinfusing and inp.dmode[2] = dinfusing;

User actions. Programming a pump involves entering the prescribed VTBI first, then
confirming it. After that the time option must be selected from the available menu
which, as in the case of VTBI, allows entry of the prescribed infusion time (duration)
followed by confirmation. The required VTBI and time values can be read from the
prescription form. In the experiment the form could have been positioned either nearby
or further away from the pump so that the user had two plausible options: to read and
memorise both values (VTBI and time) for one infusion, or to consult the prescription
form at the time when each of these values had to be entered. When both values have
been entered the user is required to open the roller clamp and start the infusion process.

The task description prompts the specification of a set of user actions (as opposed to
device actions) in the concrete model layer. The type ActionNames defines the names
of these user actions:

ActionNames: type =

{ memorise, enterVtbi, confirmVtbi, chooseTime,
enterTime, confirmTime, openClamp, startInfusion };

Some of these actions such as enterVtbi or chooseTime represent groups of key
presses. However, these details are deemed to be irrelevant for the analysis of interleav-
ing behaviour and so abstracted away without loss of generality.

These user actions are associated with the action cues as specified in Table 1 (the
actual SAL specification is given by defining the relevant parameters for the generic
user model). Each cell in this table indicates an action (given by its name) and/or a
state condition (written in italic) that is necessary to activate the corresponding cue
(given by the column title) for the action given by the row title. For example, the action
enterTime is cued by the action enterVtbi on the task-knowledge level and by the
action chooseTime on the device-knowledge level. It also has sensory cueing, whereas
its specificity (relevance) is defined by the conjunction of the following boolean condi-
tions: “m.pump = this one OR m.interleave” (user is involved in programming this

Integrating Formal Predictions of Interactive System Behaviour with User Evaluation 247

Table 1. Specification of action cues

Action Task cues Device cues Sensory cues Specific, if

memorise task goal to start infusion NONE NONE
costs = true AND
NOT(m.prescription[pump])

enterVtbi
memorise OR
costs = false

memorise YES

(m.pump = this one OR
m.interleave) AND
NOT(inp.vtbi[pump]) AND
inp.dmode[pump] = dvtbi

confirmVtbi NONE enterVtbi YES

(m.pump = this one OR
m.interleave) AND
inp.vtbi[pump] AND
inp.dmode[pump] = dvtbi

chooseTime NONE confirmVtbi YES

(m.pump = this one OR
m.interleave) AND

(NOT(inp.time[pump]) OR
NOT(m.timeSet[pump]))

enterTime enterVtbi chooseTime YES

(m.pump = this one OR
m.interleave) AND
NOT(inp.time[pump]) AND
inp.dmode[pump] = dtime

confirmTime NONE enterTime YES

(m.pump = this one OR
m.interleave) AND
inp.time[pump] AND
inp.dmode[pump] = dtime

openClamp enterTime confirmTime NONE

(m.pump = this one OR
m.interleave) AND

(inp.vtbi[pump] OR
m.vtbiSet[pump]) AND

(inp.time[pump] OR
m.timeSet[pump])

startInfusion

(openClamp AND
m.pump = this one) OR
startInfusion on
the other pump

openClamp YES

inp.dmode[pump] /= dinfusing

AND for both pumps:
(inp.vtbi[pump] OR
m.vtbiSet[pump]) AND

(inp.time[pump] OR
m.timeSet[pump])

particular pump or has chosen to interleave programming), “NOT(inp.time[pump])”
(the user perceives that the time value currently displayed is different from the prescrip-
tion value), and “inp.dmode[pump] = dtime” (the user perceives that the pump is
in the time entry mode). Table 1 specifies action cues for programming one pump. In
the two pump scenario considered, the specifications for both pumps simply duplicate
that given in the table. This model layer also has a boolean parameter, costs. It is true,
when the costs of accessing information (prescription form) are assumed to be high,
and false otherwise.

These assumptions focus on the distinction between the task-orientated and device-
orientated steps [13]. The device-orientated steps are potentially more problematic be-
cause they have lower activation levels than their task-orientated counterparts. These
lower activation levels are assumed to be the result of the different ways in which
device- and task-orientated steps are represented in a mental model. It is assumed that

248 R. Rukšėnas, P. Curzon, and M.D. Harrison

device-orientated steps are associated only with the device-knowledge cues, while task-
orientated steps are associated with both task- and device-knowledge cues. Table 1
shows that the actions confirmVtbi , chooseTime and confirmTime are assumed
to be device-orientated; they do not have task-knowledge cues. All other actions are
cued on the task-knowledge level. The action memorise, if taken, is the first in a series.
Therefore, it is assumed to be cued by the task goal.

As can be seen in Table 1, it is also assumed that all actions that involve the buttons
on the front panel of an infusion pump are sensorily cued. On the other hand, the roller
clamp (positioned at the side of the pump) provides no sensory cues for the action
openClamp . It is also assumed that there is no sensory cueing for the action memorise .

3.3 The System Model

The specification of the interactive system as a whole involves combining and connect-
ing the device model and the user model. This requires two additional models: firstly
that of user interpretation of the device interfaces (Interpretation) and the environ-
ment, and secondly a model giving the effect of user actions on the pumps (Effect).
These additional models connect the state spaces of the device and user models. These
connectors are in fact simple. The Interpretationmodel renames appropriate vari-
ables as in the following case:

inp.dmode = dmodes

For the values of the infusion parameters (e.g., VTBI) such renaming takes into account
whether the relevant value is displayed by the pump:

inp.vtbi[pump] = (vtbis[pump] and vtbisDisp[pump])

Finally, the perception of a prescription form is assumed to depend on the costs of
consulting it. If these costs are considered to be low, a prescription form can always be
perceived (consulted):

inp.prescription[pump] = (costs = FALSE)

The effect of user actions is specified in Effect by stating that the input event on pump
(events[pump]) is either a “do nothing step (tick) or whatever action (out.action)
the user model produced.

The SAL module System of the interactive system is then specified as the following
composition of all these separate models:

(User || Effect) [] (Pumps || Interpretation)

The structure of this composition also applies to other interactive systems involving
different devices.

4 Verification-Based Analysis

Given the model as specified in the previous section, the aim is to explore potential
usability problems that might arise through the use of this interactive device under the

Integrating Formal Predictions of Interactive System Behaviour with User Evaluation 249

cognitive assumptions made. The impact of the costs of accessing information are of
particular interest. The aim is to generate predictions about use that can be compared
with the results of an experimental study.

SAL model checking tools were used to analyse the properties of the interactive
system model. The cognitive assumptions about user behaviour (a ‘surrogate’ user)
help to identify unforeseen interaction issues by asking general questions: for example,
does the user model always achieve the task goal? In the example, such a question is
formulated as the following LTL property goal (F means ‘eventually’):

F (task)

The property states that, in any interactive system behaviour, the task goal is eventually
achieved (i. e., user perception indicates that both pumps are infusing). However, start-
ing infusion before a roller clamp is opened is unsafe. Thus the following LTL property,
safe, is formulated to check if that holds (G means ‘always):

G ((dmodes[1] = dinfusing => not(clamps[1])) and

(dmodes[2] = dinfusing => not(clamps[2])))

This property checks, for each pump, whether its roller clamp is open whenever the
pump is infusing.

The analysis starts with the assumption that the costs of consulting a prescription
form are low (costs was set to false in System). Indeed, before programming a
pump, it makes sense for a nurse to position a prescription form nearer to the device
so as to minimize the cost of looking back and forth between each. In this case, model
checking the property safe produces a trace that describes a roller clamp error on
the first pump. It is not obvious how to change the design of the infusion pump itself
to prevent this error of forgetting to open the roller clamp. However, this error can
be explained by the interleaving behaviour in programming two pumps, while such
behaviour may be encouraged by easy access to a prescription form. Therefore, it is
plausible to hypothesise that increasing the costs of accessing prescription may help to
avoid the omission error on the roller clamp step.

The next step in the analysis is to verify this hypothesis by setting costs to true
in the model. In this case, model checking both properties safe and goal succeeds.
The successful verification can be interpreted as a prediction that any design change
in the interactive environment, that increases the costs of accessing the prescription
values, helps to prevent the omission error. In practice, such a change can be achieved
in several ways: for example, by positioning a prescription form further away from the
pumps, or by chunking prescription values (VTBI and time) for each pump on the form.
The impact of such changes on the safety of pump programming can be further explored
in experimental studies.

5 The Experiment

As already discussed one of the aims of the experiment was to investigate how the
design of an interactive environment impacts on safety when programming two infusion
pumps simultaneously. The experiment demonstrates that the seemingly sensible action

250 R. Rukšėnas, P. Curzon, and M.D. Harrison

to position a prescription form nearer to the device increases the likelihood of the error
of forgetting to open the roller clamp when programming two pumps.

Method. Back et al [14] describe an experiment that investigates how the physical lay-
out of the environment impacts on participants’ interleaving behaviour when program-
ming two infusion pumps. Participants were invited to program the pumps using infor-
mation from a prescription form. The physical and mental effort involved in accessing
information was manipulated by varying the physical distance between the prescription
form and the devices.

The soft constraints hypothesis [3] maintains that when selecting between low-level
memorisable procedures, those that tend to minimise performance cost while achiev-
ing expected benefits will be selected. Performance cost can be measured in terms of
time for example. Depending on the situation, a perceptual strategy (where the prescrip-
tion form is consulted when the relevant value is needed) may be more efficient than a
memory-intensive one of memorising both prescription values at once. In the low in-
formation access cost condition, the soft constraints hypothesis suggests that people are
more likely to use a perceptual strategy, when retrieving information needed to program
a device, over a memory-intensive one.
Results. Participants were only able to use a low-level strategy when the prescription
form was located alongside the devices being programmed. Critically when adopting a
perceptual strategy, value entry may be driven by prompts from the devices, rather than
what values are held in memory. A user may continue to enter values, consulting the pre-
scription form and interleaving between devices as necessary, until all requested values
are entered. Experimental data showed that adopting a perceptual strategy encouraged
interleaving during device programming, which resulted in an increased omission er-
ror rate. Such errors were rare when people chose not to interleave until they finished
programming one device.

Generally, these results corresponds to the predictions based on the verification of
the interactive system model. However, the specific example of erroneous behaviour
generated by the model suggests a different interleaving behaviour than the ones ob-
served in the experiment. This discrepancy could be a behaviour that could plausibly
happen in reality but was just not seen in the (limited) experiment. It may alternatively
suggest that the cognitive assumptions believed to apply (so modelled in the intermedi-
ate layer) in this situation are actually insufficient. In particular it may be that there is
something more that matters than is captured by the specified distinction between task-
and device-oriented interaction steps. Alternatively, it could be that the set of concrete
modelling assumptions about action salience and cueing (Section 3.2) is not sufficiently
precise. In either case, the modelling has drawn attention to something that needs fur-
ther investigation if the experimental results and so the usability of the design are to be
fully understood. On the other hand, systematic experimentation can be used to validate
the generic user model [12].

6 Conclusion

This paper has described a novel approach to evaluating the usability of an interactive
device design using a formal method that focuses on the experimentation associated

Integrating Formal Predictions of Interactive System Behaviour with User Evaluation 251

with user evaluation. The technique helps the experimenter to interpret results forma-
tively to improve a potential design. It also makes more general predictions (e.g., about
the impact of the costs of accessing information) as opposed to specific conditions and
scenarios that are investigated in experiments. In the example an abstract description of
a design of the interactive system was produced that not only described the device but
also provided information about other resources, such as prescription forms, that could
be used in the interaction. The results of the evaluation indicate potential changes to the
larger system — the context in which the interactive device is to be used.

It is typically difficult both to interpret the results of usability evaluation, and to make
appropriate changes to the design of an interactive system as a result of the evaluation.
The approach presented in this paper uses formal methods in a novel way, integrat-
ing it with laboratory studies to improve an iterative design process in relation to the
development of interactive systems.

There are several issues that require further study. Firstly, if these techniques are to
be used effectively in bridging the gap between a formal specification of the interactive
system design and its empirical evaluation then the assumptions that are captured by the
interaction model must be developed in a format that is comprehensible and disputable
by the evaluator who will come from a human factors tradition.

Secondly, the behaviours that are being investigated using this approach are intended
to be error behaviours. These are behaviours that may be business or safety critical.
Typically (and hopefully) these behaviours are rare. Experiment cannot always provide
access to such errors and therefore other techniques intended to increase their likelihood
must be chosen, for example by using secondary tasks. Aspects of experiments such as
these are not explored using the modelling approach described in the paper.

These two issues are the basis for further study.

Acknowledgments. This project was partly funded by the CHI+MED project: Multi-
disciplinary Computer Human Interaction Research for the design and safe use of inter-
active medical devices (UK EPSRC Grant EP/G059063/1). We are grateful to Jonathan
Back and Anna Cox of University College London Interaction Centre for input relating
to the experiment and cognitive assumptions.

References

1. Vicente, K., Kada-Bekhaled, K., Hillel, G., Cassano, A., Orser, B.: Programming errors
contribute to death from patient-controlled analgesia: case report and estimate of probability.
Canadian Journal of Anesthesia / Journal canadien d’anesthésie 50, 328–332 (2003)

2. Ritter, F.E., Young, R.M.: Embodied models as simulated users: introduction to this
special issue on using cognitive models to improve interface design. International Journal of
Human-Computer Studies 55, 1–14 (2001)

3. Gray, W.D., Sims, C.R., Fu, W.T., Schoelles, M.J.: The soft constraints hypothesis:
A rational analysis approach to resource allocation for interactive behavior. Psychological
Review 113(3), 461–482 (2006)

4. Bolton, M.L., Bass, E.J., Siminiceanu, R.I.: Generating phenotypical erroneous human
behavior to evaluate human–automation interaction using model checking. International
Journal of Human-Computer Studies 70(11), 888–906 (2012)

252 R. Rukšėnas, P. Curzon, and M.D. Harrison

5. de Moura, L., Owre, S., Rueß, H., Rushby, J., Shankar, N., Sorea, M., Tiwari, A.: SAL 2. In:
Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 496–500. Springer, Heidelberg
(2004)

6. Fields, R.E.: Analysis of erroneous actions in the design of critical systems. Technical Report
YCST 20001/09, University of York, Department of Computer Science, D.Phil Thesis (2001)

7. Beckert, B., Beuster, G.: A method for formalizing, analyzing, and verifying secure user
interfaces. In: Liu, Z., Kleinberg, R.D. (eds.) ICFEM 2006. LNCS, vol. 4260, pp. 55–73.
Springer, Heidelberg (2006)

8. Bowman, H., Faconti, G.: Analysing cognitive behaviour using LOTOS and Mexitl. Formal
Aspects of Computing 11, 132–159 (1999)

9. Barnard, P.J., May, J.: Interactions with advanced graphical interfaces and the deployment
of latent human knowledge. In: Interactive Systems: Design, Specification, and Verification
(DSV-IS 1995), pp. 15–49. Springer (1995)

10. Rushby, J.: Analyzing cockpit interfaces using formal methods. Electronic Notes in
Theoretical Computer Science 43 (2001)

11. Altmann, E.M., Trafton, J.: Memory for goals: an activation-based model. Cognitive
Science 26(1), 39–83 (2002)

12. Rukšėnas, R., Back, J., Curzon, P., Blandford, A.: Verification-guided modelling of salience
and cognitive load. Formal Aspects of Computing 21, 541–569 (2009)

13. Ament, M.: The role of goal relevance in the occurrence of systematic slip errors in routine
procedural tasks. Technical report, UCL, PhD thesis (2011)

14. Back, J., Cox, A., Brumby, D.: Choosing to interleave: human error and information access
cost. In: Proceedings of the 2012 ACM annual conference on Human Factors in Computing
Systems, CHI 2012, pp. 1651–1654. ACM, New York (2012)

Automatic Inference

of Erlang Module Behaviour

Ramsay Taylor, Kirill Bogdanov, and John Derrick

Department of Computer Science, The University of Sheffield

Abstract. Previous work has shown the benefits of using grammar in-
ference techniques to infer models of software behaviour for systems
whose specifications are not available. However, this inference has re-
quired considerable direction from an expert user who needs to have
familiarity with the system’s operation, and must be actively involved
in the inference process. This paper presents an approach that can be
applied automatically to infer a model of the behaviour of Erlang mod-
ules with respect to their presented interface. It integrates the automated
learning system StateChum with the automated refactoring tool Wran-
gler to allow both interface discovery and behaviour inference to proceed
without human involvement.

1 Introduction

This paper presents an automated technique to reverse engineer state machine
models of the behaviour of Erlang modules. Reverse engineering specifications in
the form of Finite State Machines can be of considerable benefit to projects where
the original specification has been lost, never existed, or no longer reflects the
state of the system due to requirements changes. Additionally, where a system
is to be updated or replaced, an understanding of the behaviour of the current
system behaviour is required to form a regression test for the replacement.

Erlang (described in more detail in Section 2.1) is a language designed to sup-
port communicating concurrent systems. As such, Erlang software can consist
of many independent modules that implement particular processes within the
overall system. Erlang was originally intended for use in telecoms infrastructure,
so it contains features to support the in-place replacement of live, running mod-
ules. As such, gaining a proper understanding of an Erlang module can be vital
if a replacement is to be made without damaging the integrity of the overall
system.

Grammar inference (or language learning) algorithms, which are described
in more detail in Section 2.3, have been shown to be useful in determining the
behaviour of software systems [6,15,17,14]. However, previous work on inferring
behaviour from Erlang systems [14,16] required considerable human involvement
in the abstraction of the data into traces, and in answering the queries generated
by the inference algorithm. Some effort has been made to automate the process
[17] but this still requires human input in instrumenting the system under test,

E.B. Johnsen and L. Petre (Eds.): IFM 2013, LNCS 7940, pp. 253–267, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

254 R. Taylor, K. Bogdanov, and J. Derrick

and in selecting and presenting the initial traces to the learning system. Ad-
ditionally, since the learning algorithms that are considered here require both
positive and negative traces there has to be some definition of failure encoded
by a human user.

The principle contribution of this paper is to remove the human involvement
as far as possible from the incremental stages of system behaviour inference. The
structure of Erlang [5] makes this automation practical, as Erlang modules can
implement defined behaviours that place specific requirements on their interface.
This defined interface, combined with Erlang’s language features for executing
function calls in monitored child threads makes the automatic execution and
evaluation of program traces practical.

The process is presented as three phases:

– Alphabet determination The automatic inference of the interface of the
System Under Test.

– Automated query evaluation The automatic evaluation of proposed pro-
gram traces, their classification as positive or negative, and the collection of
sample output.

– Active behaviour inference A query-based process of learning that gen-
erates an adequate test set to evaluate the system’s behaviour.

The inference process utilises the StateChum [2] learner, which provides a frame-
work for grammar inference implemented in Java. This was augmented with an
Erlang wrapper layer (described in detail in Section 4) to facilitate trace execu-
tion and evaluation. The instrumentation that is undertaken in Section 3 makes
use of the API for the Wrangler [11] Erlang refactoring system to instrument
available test cases, or the TypEr [12] type inference system to infer types and
interfaces. The workflow outline is presented in Figure 1.

Together, these components are composed into an entirely automated work-
flow that, when applied to an Erlang module, can perform interface discovery,
test generation, and active learning with feedback from dynamic tests, without
any human involvement. The prototype software used to generate the results
presented in this paper is available from the author’s website1.

The remainder of this paper is structured as follows: Section 2 contains de-
scriptions of Erlang, the OTP framework, and the learning algorithms used in
this work; Section 3 describes the process of inferring a suitable interface to
the module; Section 4 describes the Erlang Oracle that can evaluate potential
traces; Section 5 explains the active learning process itself; Section 6 contains
conclusions.

2 Background

2.1 Erlang

Erlang [5] is a programming language originally developed at Ericsson for use
in their telecoms infrastructure products. It is now available as open source

1 http://staffwww.dcs.shef.ac.uk/people/R.Taylor/ErlangInference/

http://staffwww.dcs.shef.ac.uk/people/R.Taylor/ErlangInference/

Automatic Inference of Erlang Module Behaviour 255

Fig. 1. The automated workflow

software. It is a declarative language but uses several components of the func-
tional programming paradigm, such as pattern matching and extensive use of
recursion.

The examples in this paper will use the Erlang locker module shown in Fig-
ure 2. This implements a single item storage space that can only be written to
when in the locked state.

An Erlang module contains a number of functions, each of which is defined by a
series of patterns starting with a name, a set of parameters, the arrow symbol ->,
the function definition, and ends with a full stop. Separate patterns are separated
by semicolons and the final pattern terminated with a full stop. Patterns are
matched in order with the first matching pattern being applied. Variable names
begin with capital letters or the underscore character (e.g. Var, S), whilst lower

256 R. Taylor, K. Bogdanov, and J. Derrick

-module(locker).

-behaviour(gen_server).

-export([init/1, handle_call/2, handle_call/3, handle_cast/2, terminate/2]).

init(_) -> {ok, {unlocked, -1}}.

handle_call(lock, {unlocked, S}) -> {reply, {ok, locked}, {locked, S}};

handle_call(lock, {locked, _S}) -> erlang:error("Locked lock!");

handle_call(unlock, {unlocked, _S}) -> erlang:error("Unlocked unlock!");

handle_call(unlock, {locked, S}) -> {reply, {ok, unlocked}, {unlocked, S}};

handle_call(read, {State, S}) -> {reply, S, {State, S}};

handle_call({write, Val}, {locked, _S}) ->

{reply, {ok, Val}, {locked, Val}};

handle_call({write, _Val}, {unlocked, _S}) ->

erlang:error("Unlocked write!").

handle_call(Msg, _From, State) -> handle_call(Msg, State).

terminate(_Reason, _State) -> ok.

Fig. 2. The locker module — locker.erl

case letters indicate an “atom” value (conceptually a user defined keyword, e.g.
lock, unlock). Tuples are contained in curly brackets ({lock, S}), lists in
square brackets ([a,b,c]). Strings are treated as lists but can be presented in
double quotation marks.

The locker server begins in the unlocked state, storing the value -1 in its
internal state. It will respond to the call operation, responding according to
a number of different parameters. The atom read can be sent at any time to
query the currently stored value. lock transitions to the locked state, and unlock

performs the reverse. The tuple {write, Val} will replace the current value with
Val, but will cause the system to exit with an exception if sent whilst the system
is in the unlocked state. Sending lock whilst already locked, or unlock whilst
unlocked also causes an error. All other parameter values are ignored.

Erlang is an interpreted language and so the failure of the interpreter to find
a matching pattern for a particular function application is reported at runtime.
There is an exception throwing model for error handling, which allows pattern
matching over the types of exceptions caught. Erlang also features a process-
oriented distributed programming model that uses asynchronous communication
channels.

2.2 The Open Telecoms Platform (OTP)

The Open Telecoms Platform (OTP) describes an open source software collection
released by Ericsson that includes the Erlang compiler and interpreter, along
with various tools for Erlang analysis (including dialyzer and TypEr [12]) and
a large collection of libraries to support the creation of Erlang systems using
standard patterns. As these patterns are widely used, the inference technique

Automatic Inference of Erlang Module Behaviour 257

presented in this paper uses them as a starting point for the automatic inference
of the interface of the system under test.

The gen server “behaviour”, for example, describes a generic server sys-
tem that accepts synchronous and asynchronous requests and responds, whilst
maintaining some internal state that influences the responses. To implement a
gen server the programmer simply needs to provide a module containing “call-
back” functions. The OTP gen server behaviour provides all of the mechanics
of maintaining the Erlang processes and handling both the synchronous and
asynchronous messaging. When the server process receives a request it calls the
appropriate callback function with the request content and the current server
state as arguments. The callback function determines what response is provided,
and how the state of the server process evolves. The locker example is imple-
mented as a gen server, so it responds to the call and cast operations, the
behaviour being defined by the handle call and handle cast functions that
can be seen in Figure 2.

The OTP libraries do not interact with the state variable of the server process,
so any form can be used. The locker example stores a pair of an atom and a
user value in its state. The lock operation (the first pattern in handle call) is
defined for a state that is a pair containing the atom unlocked, and the stored
value, which is bound to variable S. When the system is unlocked (as defined by
the second pattern) it will move to the locked state, retaining its stored content,
and replies with the message {ok, locked}. If the system is already locked then
an exception is raised. This failure mode will be identifiable by the automatic
learning described in the remainder of this paper.

In the gen server behaviour the cast operation is performed asynchronously
— that is, the calling process continues execution immediately — whereas the
call operation blocks the calling process until a response is received. The learn-
ing process utilised in this paper is a FSM learner and so expects responses to
be synchronised to calls. Consequently, asynchronous communications are not
considered, however it might be possible to utilise some ideas from [7] to cover
some of these cases.

2.3 Language Learning Algorithms for Software Test Generation

Algorithmic approaches to language learning started in the 1960s with Gold [9],
building on earlier work to formalise natural language. In the 1980s, Anlguin
published the L* algorithm [4] that learns a language from an expert oracle by
presenting queries. The queries take the form of sequences that may or may not
be in the language, and the expert oracle replies simply whether they are or are
not valid language elements. The L* algorithm queries the language incremen-
tally and exhaustively, attempting each alphabet element from each state and
iterating until no new states are identified. This produces the complete automa-
ton but requires lengthy exploration of the language and heavy use of an expert
oracle.

Later work has aimed to learn state machine language representations from
partial data, usually a subset of the possible sequences of the language. Evidence

258 R. Taylor, K. Bogdanov, and J. Derrick

driven state merging (EDSM) algorithms such as BlueFringe [10] operate on a
set of positive and negative traces from a system or language and produce a state
machine that accepts positive traces and rejects (in the form of a transition to a
failure state) negative traces. The algorithm was shown to be highly effective in
the “Abadingo One” competition for learning algorithms, but does not require
the use of an expert oracle, operating exclusively on the presented positive and
negative traces. The QSM algorithm [8] reintroduces the oracle query approach
by producing queries from the new traces that are possible in the system after
the proposed merge and requires the oracle to either confirm that they are pos-
itive traces, or supply the shortest negative prefix. If the response is the same
as the classification of those traces by the outcome of the proposed merge then
QSM will continue to suggest merges. If the response contradicts the merged au-
tomaton the algorithm restarts from the beginning, with this additional negative
trace. Eventually enough information is accumulated for the learning process to
converge.

Non-exhaustive language learning algorithms have significant application to
software testing as they present an opportunity to explore the behaviour of
the software system, without the resource and time requirements of exhaustive
model checking. The StateChum system was developed to implement the QSM
algorithm with the objective of reverse engineering state machine representations
of software behaviour from software trace data [16].

To learn the behaviour of the locker example presented in Figure 2 it is first
necessary to produce a set of positive and negative traces. A system expert, who
already has a reasonably understanding of the operation of the system, must
first identify the interface elements that will form the alphabet of the traces.
Positive traces can often be extracted from log data, but negative traces must
be prepared by the system expert who can identify usage patterns that are not
accepted.

Initially, known traces are represented as a tree by merging common prefixes.
A possible tree for the locker example is shown in Figure 3.

The manual process of inference using QSM begins by presenting the user
with a query in the form of a trace, such as {call,init} {call,unlock}. The
query requires that the user either accepts the trace as valid in the system, or
identifies the first point at which it is rejected. It is also possible for formulae to
be entered in order to answer questions [14].

The response to this query is used to update the system model and a new
query is presented. This continues until no more states can be merged. The
number of queries that must be processed manually can be considerable, even
for a small system such as this.

The work presented in the remainder of this paper uses the same core learning
system from StateChum but automates the process of answering queries. For the
same initial trace set the automated system presented here was able to infer the
correct state machine (presented in Figure 8) in 5.8 seconds with no human input
on a single core of a 2GHz Intel Xeon.

Automatic Inference of Erlang Module Behaviour 259

Fig. 3. The Prefix Tree Automaton (PTA) produced before QSM queries begin

3 Alphabet Determination

This section presents the integration of the refactoring tool Wrangler [11] with
the newly developed Erlang tracing components (described in Section 3) to fully
automate the process of interface discovery for Erlang modules.

To begin learning the behaviour of a module it is first necessary to determine
its alphabet, that is the externally observable and accessible actions that can
be performed. Erlang modules specify a list of exported functions, and this is
the most general alphabet of any module. However, some Erlang OTP libraries
require that various handlers and callback functions be exported to allow the
library modules to use them where necessary. This can result in Erlang modules
having a mixture of genuine interface functions and internal callback functions
in their export list.

Where a module implements one of the OTP behaviours it is expected that
the module will be accessed through the relevant behaviour library functions.
This presents a more consistent and predictable interface. Using the behaviour
to inform the choice of interface has the advantages that there will be a known
set of relevant functions, and the standard functions only take one argument
(although this can be of arbitrary complexity).

Having identified the functions that form the module’s interface, it is also
necessary to determine relevant values for the parameters. This work is directed
at inferring FSM models of software, and not Extended Finite State Machine

260 R. Taylor, K. Bogdanov, and J. Derrick

(EFSM) models, and so parameter values are condensed into the transition la-
bels (e.g. f(1) and f(2) are considered to be different and independent events).
However, some parameter values are necessary to seed the learning process.
In the case of the locker example the simple pattern matching nature of the
handler functions makes it easy to determine a suitable set of parameters, but
Erlang functions are often written with more subtle pattern matching and with
more complex internal behaviour. Additional information can be provided by
the TypEr [12] type inference system. Erlang is not an explicitly typed language
like Haskell, so the TypEr system was designed to infer the type signature of Er-
lang functions. When run on the locker module TypEr infers that the available
argument values for handle call are lock, read, unlock, and {write, Val}.

When combined with the known structure of the OTP behaviour handler re-
quirements this can be interpreted automatically to derive the range of possible
patterns that this function responds to. Although irrelevant in this example,
TypEr performs inference on the entire function definition, not only the pattern
headers. If the function definition contains unconstrained variables but the de-
fined behaviour identifies particular types using Erlang’s pattern-sensitive choice
operations, then this information will be reflected in the type signature.

These type signatures may not define the entire behaviour of the module but
are a useful basis for an active learning system such as QSM to explore. As well
as being more general than simple text analysis, TypEr has the advantage that
it can be run on compiled beam files — so long as they were compiled with the
debug info flag — without access to the source code. The critical disadvantage
of the TypEr inference system is its production of the most general type signature
for the function. Well written Erlang function definitions utilise defensive coding
techniques that include “catch all” patterns to gracefully handle unexpected
inputs. This produces more robust software but it results in TypEr inferring the
most general type any() for all such functions, which gives no guidance as to
useful parameter values.

In the case that the source code is available but a function’s type is too general
it is necessary to gather some example usage. To produce some sample values
the code can be instrumented and inserted into a live system. Alternatively,
if a test set exists, this can be run on the instrumented code. For this work
the instrumentation was provided automatically using the Wrangler refactoring
system[11]. Wrangler is a refactoring system that presents an emacs interface,
but it also contains a programatically accessible API. The Wrangler API allows
refactorings to be specified in an elegant template format. Using this system it
was possible to automatically insert logging calls into each of the functions that
were relevant to a module’s alphabet. This produced a log that consisted of a
sequence of functions names and parameter values. The code shown in Figure 4
demonstrates how the Wrangler API makes this a simple procedure.

On its own, this provides suitable information to derive some sample param-
eter values, but by instrumenting the test functions it was possible to break the
log file into sections corresponding to distinct tests. These form traces of the

Automatic Inference of Erlang Module Behaviour 261

specific_log_mutation(File, FunctionNames, LogID) ->

?FULL_TD_TP([?RULE(?T("f@(Args@@) when Guard@@-> Body@@;"),

begin

{NewArgs@@, LogArgs@@, _} = convert_args(Args@@, 1),

?TO_AST("f@(NewArgs@@) when Guard@@->

mu2_logger:log(?MODULE, f@, [LogArgs@@], "

++ LogID ++ "), Body@@;")

end,

contains(FunctionNames, {list_to_atom(?PP(f@)), length(Args@@)}))],

[File]).

Fig. 4. The Wrangler API code to apply function instrumentation

system, but they do not contain the results of the function calls, nor do they
encode any sense of failure. The next section resolves this problem.

4 Query Evaluation

This section describes the development of an Erlang wrapper system to dynam-
ically execute and observe traces of a System Under Test. This provides the
classification of artificially generated traces, additional information as to the re-
sponse alphabet of the functions, and the ability to automatically answer the
queries generated by the active learning in Section 5.

Having determined a suitable alphabet for the behaviour inference it is pos-
sible to propose some possible traces of the system by simple, random con-
catenation of alphabet elements that can then be evaluated. Alternatively, the
instrumentation described in Section 3 can provide some sample traces, but these
will be limited by the available stimulation for the instrumented code.

In either scenario there will be areas of the module’s behaviour that have not
been explored. In Section 5 the process of expanding the covered behaviour is
discussed, but it will require an oracle that can execute potential traces and
classify them as positive or negative.

The traces must be encoded in a way that is usable by standard learning tools
such as StateChum, which generally expect traces to be composed of distinguish-
able strings, but also allow the oracle to evaluate the behaviour of queries. To
facilitate the evaluation the alphabet elements are encoded as Erlang tuples con-
taining the name of the function to call (or the behaviour library action), the
parameters to use, and (optionally) the expected result, e.g.:

{init,[]} {call,read,{ok,-1}}

The first tuple encodes the use of the init action in the gen server behaviour
library, with the empty list as parameters and it places no requirements on the
result. The second tuple encodes the use of the call action with the parameter
read and expects the result {ok,-1}.

262 R. Taylor, K. Bogdanov, and J. Derrick

Fig. 5. Incomplete locker state machine

It is possible to infer some behaviour by simply observing the sequence of
function calls performed and considering those that cause the system to crash
or throw an unhandled exception as failures. In the locker example this will
identify that init must be called first, and that write cannot be performed
in the unlocked state, as shown in Figure 5. However, this misses an important
detail of the write operation: that it changes the internal state of the system
such that read operations will return the newly-written value instead of the old
one. To capture this detail it is necessary to record the output of the system
in response to specific operations. Erlang systems can have multiple outputs
in various forms but this work limits its consideration of output to just the
function return value. In the case of gen server operations — such as call —
this makes sense since they have an explicit mechanism to return a value to the
calling process.

The Erlang oracle can evaluate a trace (in the form of a sequence of these
tuples) by executing each action with the specified parameters and comparing
the received output to the expected output. Since StateChum operates on prefix
closed systems the evaluation can terminate immediately if either the system is
observed to crash after a particular sequence, or if the received output is different
from the expected output. In the latter case the oracle will report the trace up
to that point as negative (since the required output cannot be observed) but
it will also report a positive trace with the actually received output in the last
tuple. In this way the learner will gain an additional transition, and possibly an
additional alphabet element if the response has not been previously recorded,
for example:

- {call,init} {call,lock} {call,{write,text},{ok,text}}

Automatic Inference of Erlang Module Behaviour 263

{call,read,{ok,-1}}

+ {call,init} {call,lock} {call,{write,text},{ok,text}}

{call,read,{ok,text}}

A pseudocode algorithm representation of the trace component is shown in
Figure 6.

procedure tracer(MUT,Wrapper,T race)
Pid ← spawn Wrapper(MUT,Trace, self())
Observed ← []
repeat

Elem ← receive from Pid
Observed ← Observed++Elem

until (Observed = Trace) ∨ (Pid dies)
if Observed = Trace then return {accept, T race}
else

Elem ← nth(length(Observed) + 1, T race)
return {reject, Observed++Elem}

end if
end procedure

Fig. 6. The tracer algorithm

This evaluation can respond to the queries generated by the active learning
process described in Section 5, but it can also be used to classify randomly gener-
ated traces, or to fill in details such as uncaptured output data in instrumentation
logs. By classifying traces from these sources it is possible fully automatically to
build a suitable set of traces for the active learning process.

5 Behaviour Inference

The previous sections have described automated processes to determine the al-
phabet of an Erlang module, and to evaluate traces over the module. By utilising
the Erlang oracle to answer QSM queries with the StateChum inference system
the process for inferring a state machine model can be completely automated.

To allow automatic learning an initial set of system traces is required. If
instrumentation of a running system has been possible then this may provide
some positive traces, but some negative traces are also required. To generate
the initial traces to seed StateChum’s QSM algorithm it is adequate to produce
random sequences of alphabet elements and present them to the Erlang oracle
for classification. The oracle will either verify them as positive traces, or produce
the negative prefix. The selection of suitable initial traces will partly depend on
the behaviour of the module itself. A balance between breadth and depth must
be found. Some behaviour will not become apparent until a certain trace depth,
such as the write behaviour of the locker example, which cannot be detected
without at least the positive traces:

264 R. Taylor, K. Bogdanov, and J. Derrick

{call,init} {call,read,{ok,-1}}

{call,init} {call,lock} {call,read,{ok,-1}}

{call,init} {call,lock} {call,{write,text},{ok,text}}

{call,read,{ok,text}}

Pure depth is also not adequate, since such traces do not highlight the variety
of the behaviour of the lock event, because write is not attempted prior to the
lock. The exact combination of breath and depth will vary between modules so
the StateChum implementation leaves these choices to the user.

Fig. 7. StateChum trace generation interface

The seed interface shown in Figure 7 provides control of the generation process
and allows the reuse of a random seed value for repeatability. The exhaustive
generation method is included for comparative value but it is impractical for
alphabet sizes and trace depths that are larger than trivial values. The “exhaust
alphabet” option will attempt every element of the alphabet as a single element
trace. In many cases most of these will fail since they are not an init element,
but having the elements present in the trace file informs QSM of their existence,
which then allows it to attempt those transitions at other points in the state
machine.

Finally, StateChum was modified to present queries via the Ericsson Java-
Erlang bridge [1] to the Erlang oracle. This allows hundreds of queries to be
answered per second, rather than the labourious process of manual responses.
Also, it does not depend on an expert user, as the answers are provided by
observation of the implementation.

A complete workflow that produces a state machine model of a module’s
behaviour automatically is presented in Figure 1.

The final FSM inferred by this process appears in Figure 8. Clearly, subsequent
writes with different values will produce even more states. It is also possible
for this system to correctly unify the result of changing the system’s internal

Automatic Inference of Erlang Module Behaviour 265

Fig. 8. Expanded locker state machine

variable back to a previous value with the state of the system at that previous
point. Since there are infinitely many possible internal values this is no longer a
regular grammar, and it is impossible for QSM to completely infer the possible
behaviour of the system. The limit of exploration will depend on the choices
of input parameters when the alphabet was created in Section 3. With output
matching a trace length of 7 must be supplied to the random trace generator,
and then learning is complete in approx. 5 seconds.

6 Conclusions

This paper has presented the application of several existing and newly developed
automated techniques to the inference of Erlang system behaviour. The elements
are combined into the workflow shown in Figure 1 to produce an entirely auto-
mated process that can be presented with an Erlang module and can produce a
state machine model of the module’s behaviour.

A significant limitation of this technique, which is common to all active learn-
ing techniques, is that some functions require parameters that can not be syn-
thesised for trace execution — for example, the process IDs of other system
components, which are regenerated every time the system is re-initialised. Such
parameters can be captured by the instrumentation described in Section 3 and

266 R. Taylor, K. Bogdanov, and J. Derrick

can be used by passive learning (which StateChum also implements), but they
frustrate the generation and evaluation of queries for an active learner. Some
attempts have been made to avoid this problem [13], which operate by hiding
un-sythesisable parameters if possible, and similar approaches could be applied
to Erlang modules.

The integration of the separate automatic systems (StateChum and Wrangler)
presented here demonstrates that many of the difficulties in the application of
learning algorithms — such as the large number of queries and the requirement
for an oracle — can be mitigated by combination with techniques and tools from
other areas of program analysis and verification. Future work will aim to identify
and apply other techniques to the problems that remain, for example applying
machine learning approaches [3] to mitigate difficulties with parameter values.

References

1. jinterface, http://www.erlang.org/doc/apps/jinterface/jinterface users

guide.html (accessed January 25, 2013)

2. StateChum, http://statechum.sourceforge.net/ (accessed January 14, 2013)

3. Weka 3 - Data Mining with Open Source Machine Learning Software in Java,
http://www.cs.waikato.ac.nz/ml/weka/ (accessed January 27, 2013)

4. Angluin, D.: Learning regular sets from queries and counterexamples. Inf.
Comput. 75, 87–106 (1987)

5. Armstrong, J., Virding, R., Wikström, C., Williams, M.: Concurrent Programming
in ERLANG. Prentice-Hall (1996)

6. Arts, T., Seijas, P.L., Thompson, S.: Extracting quickcheck specifications from
eunit test cases. In: Proceedings of the 10th ACM SIGPLAN workshop on Erlang,
pp. 62–71. ACM (2011)

7. Bogdanov, K.: Test generation for X-machines with non-terminal states and prior-
ities of operations. In: Fourth IEEE International Conference on Software Testing,
Verification and validation, ICST (2011)

8. Dupont, P., Lambeau, B., Damas, C., Van Lamsweerde, A.: The QSM algorithm
and its application to software behavior model induction. Applied Artificial Intel-
ligence 22, 77–115 (2008)

9. Gold, E.M.: Language identification in the limit. Information and Control 10(5),
447–474 (1967)

10. Lang, K.J., Pearlmutter, B.A., Price, R.A.: Results of the abbadingo one DFA
learning competition and a new evidence-driven state merging algorithm. In:
Honavar, V.G., Slutzki, G. (eds.) ICGI 1998. LNCS (LNAI), vol. 1433, pp. 1–12.
Springer, Heidelberg (1998)

11. Li, H., Thompson, S.: A User-extensible Refactoring Tool for Erlang Programs.
Technical report, University of Kent (2011)

12. Lindahl, T., Sagonas, K.: Typer: a type annotator of erlang code. In: Proceedings
of the 2005 ACM SIGPLAN workshop on Erlang, ERLANG 2005, pp. 17–25. ACM
(2005)

13. Vaandrager, F.: Active Learning of Extended Finite State Machines. In: Nielsen,
B., Weise, C. (eds.) ICTSS 2012. LNCS, vol. 7641, pp. 5–7. Springer, Heidelberg
(2012)

http://www.erlang.org/doc/apps/jinterface/jinterface_users_guide.html
http://www.erlang.org/doc/apps/jinterface/jinterface_users_guide.html
http://statechum.sourceforge.net/
http://www.cs.waikato.ac.nz/ml/weka/

Automatic Inference of Erlang Module Behaviour 267

14. Walkinshaw, N., Bogdanov, K.: Inferring finite-state models with temporal con-
straints. In: Proceedings of the 2008 23rd IEEE/ACM International Conference on
Automated Software Engineering, ASE 2008, pp. 248–257. IEEE Computer Society
Press (2008)

15. Walkinshaw, N., Bogdanov, K., Damas, C., Lambeau, B., Dupont, P.: A framework
for the competitive evaluation of model inference techniques. In: Proceedings of the
International Workshop on Model Inference in Testing, MIIT (2010)

16. Walkinshaw, N., Bogdanov, K., Holcombe, M., Salahuddin, S.: Reverse engineer-
ing state machines by interactive grammar inference. In: Proceedings of the 14th
Working Conference on Reverse Engineering (WCRE), IEEE (2007)

17. Walkinshaw, N., Derrick, J., Guo, Q.: Iterative refinement of reverse-engineered
models by model-based testing. In: Cavalcanti, A., Dams, D.R. (eds.) FM 2009.
LNCS, vol. 5850, pp. 305–320. Springer, Heidelberg (2009)

Integrating Proved State-Based Models
for Constructing Correct Distributed Algorithms

Manamiary Bruno Andriamiarina1, Dominique Méry1, and Neeraj Kumar Singh2

Université de Lorraine, LORIA, BP 239, 54506 Vandœuvre-lès-Nancy, France
{Manamiary.Andriamiarina,Dominique.Mery}@loria.fr

Department of Computer Science, University of York, United Kingdom
neeraj.singh@cs.york.ac.uk, Neerajkumar.Singh@loria.fr

Abstract. The verification of distributed algorithms is a challenge for formal
techniques supported by tools, such as model checkers and proof assistants. The
difficulties lie in the derivation of proofs of required properties, such as safety
and eventuality, for distributed algorithms. In this paper, we present a method-
ology based on the general concept of refinement that is used for developing
distributed algorithms satisfying a given list of safety and liveness properties. The
methodology is a recipe for reusing the old ingredients of the classical temporal
approaches, which are illustrated through standard example of routing protocols.
More precisely, we show how the state-based models can be developed for spe-
cific problems and how they can be simply reused by controlling the composition
of state-based models through the refinement relationship. The service-as-event
paradigm is introduced for helping users to describe algorithms as a composition
of simple services and/or to decompose them into simple steps. Consequently,
we obtain a framework to derive new distributed algorithms by developing
existing distributed algorithms using correct-by-construction approach. The
correct-by-construction approach ensures the correctness of developed
distributed algorithms.

Keywords: Distributed algorithms, state-based models, composition,
correct-by-construction, Event-B, liveness, eventuality.

1 Introduction

The formal modelling of distributed algorithms constitutes a challenge for methods and
tools: these algorithms can be used to evaluate strengths and weaknesses of formal tech-
niques supported by tools, such as model-checkers [12] and proof assistants [23, 27].
Formal techniques address properties, like safety, liveness and fairness. However, for-
mal design and study of distributed algorithms also introduce other constraints to take
into account, including time aspects [25], probabilistic features [17], fault-tolerance,
scalability, dependability, etc. The correct-by-construction paradigm [15] offers an alter-
native and a promising approach to prove and derive correct distributed algorithms us-
ing a progressive and validated methodological approach [7]. More precisely, refinement
is a key concept for organizing or structuring the (re-)development and (re-)discovery
of distributed algorithms [2, 20] by reusing or replaying the former developments.

E.B. Johnsen and L. Petre (Eds.): IFM 2013, LNCS 7940, pp. 268–284, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Integrating Proved State-Based Models 269

In this paper, we present a way to organise incremental refinement-based designs of
distributed algorithms. Our methodology is based on structures coping with the mod-
elling of distributed algorithms and providing a semantical framework for expressing
both safety and liveness properties. We provide a list of recipes for reusing the old in-
gredients of the classical temporal approaches, by integrating refinement. Refinement-
based development necessitates guidelines for helping the user to develop systems;
these guidelines have to be able to incorporate refinement and make the composition
of different interacting systems as simple as possible. When dealing with composition
of interacting systems, there are more elements to prove, since we should demonstrate
that the interacting systems are without interference [21]. We propose to minimize the
complexity of proofs and formalisation, by reusing previous developments and proofs,
and by organizing them. We introduce here a component-driven development of an al-
gorithm: the service-as-event paradigm. A component actually represents a phase or a
step of the algorithm: for instance, there are initialisation, requesting critical sections
or stabilisation phases. It should be noted that we work on distributed algorithms ex-
hibiting the following properties: the algorithms can be divided into components that
describe phases local to nodes; and these phases are coordinated and synchronized ac-
cording to the local states of the nodes. The main goal is to reuse as much as possible
previous proofs of former refinement-based developments to model the phases.

The current approach extends the methodology described in [19] for developing
sequential programs and combining phases, that we have experienced on algorithmic
classical case studies related to the distributed protocols. We have noticed that graphi-
cal (sequence) diagrams can be used for expressing possible scenarios or phases of the
protocols/algorithms, as defined by Tanembaum in [26]. The initial objective was to in-
tegrate such graphical notations, for co-proving a sequential program characterised by
a pre/post specification. In a large number of cases, by using these diagrams and apply-
ing the correct-by-construction paradigm, we are able to derive algorithmic solutions
annotated with invariants that can be checked and verified. However, these diagrams are
not abstract enough to express properties on traces and fairness, and are also difficult to
refine, while preserving properties such as fairness or liveness. Therefore, we limit the
usage of these diagrams to the identification of algorithmic phases. The phases of an al-
gorithm are defined by an initial (PRE) and a final (POST) states; and these phases are
linked sequentially, by temporal operators, like leads to (�). The purpose of our work
is to link and coordinate phases to obtain targeted distributed algorithms, by integrat-
ing and composing formal models, using refinement diagrams and the service-as-event
paradigm.

Our paper is organised as follows. Section 2 introduces the modelling framework.
Section 3 depicts the temporal framework for refinement-based development, more
precisely state properties and refinement diagrams. Section 4 discusses structures for
refinement-based development: the temporal coordination and decomposition of mod-
els, using the service-as-event paradigm. Section 5 illustrates our methodology with the
study of the protocol ANYCAST RP. Finally, Section 6 concludes this paper along with
the future work.

270 M.B. Andriamiarina, D. Méry, and N.K. Singh

2 Choice of a State-Based Modelling Language

We choose EVENT B [1] as a state-based modelling language, mainly because of the
effective refinement of models: an abstract model expressing the requirements of a given
system can be verified and validated easily; a concrete model corresponding to the ac-
tual system is constructed incrementally and progressively by refining the abstraction.
Event-B is also supported by a complete toolset RODIN [24] providing features like re-
finement, proof obligations generation, proof assistants and model-checking facilities.

The EVENT B modelling language can express safety properties, which are either
invariants or theorems in a model corresponding to the system. Two main structures are
available in EVENT B : (1) Contexts express static informations about the model; (2)
Machines express dynamic informations about the model, safety properties, and events.
An EVENT B model is defined either as a context or as a machine. A machine organises
events (or actions) modifying state variables and uses static informations defined in a
context. These basic structures are extended by the refinement of models which relates
an abstract model and a concrete model.

Modelling Actions Over States. An EVENT B model is characterised by a (finite) list
x of state variables possibly modified by a (finite) list of events. An invariant I(x) states
properties that must always be satisfied by the variables x and maintained by the activa-
tion of the events. The general form of an event e is as follows: ANY t WHERE G(t,x)
THEN x : |P(t,x,x′) END and corresponds to the transformation of the state of the vari-
able x, which is described by a before-after predicate BA(e)(x,x′): the predicate is se-
mantically equivalent to ∃t ·G(t,x)∧P(t,x,x′) and expresses the relationship linking the
values of the state variables before (x) and just after (x′) the execution of the event e.
Proof obligations are produced by RODIN, from events: INV1 and INV2 state that an
invariant condition I(x) is preserved; their general form follows immediately from the
definition of the before-after predicate BA(e)(x,x′) of each event e; FIS expresses the fea-
sibility of an event e, with respect to the invariant I. By proving feasibility, we achieve
that BA(e)(x,z) provides a next state whenever the guard grd(e)(x) holds: the guard is the
enabling condition of the event.

Model Refinement. The refinement of models extends the structures described previ-
ously, and relates an abstract model and a concrete model. This feature allows users
to develop EVENT B models gradually and validate each decision step using the proof
tool. The refinement relationship is expressed as follows: a model AM is refined by a
model CM, when CM simulates AM (i.e. when a concrete event ce occurs in CM, there
must be a corresponding enabling abstract event ae in AM). The final concrete model is
closer to the behaviour of a real system that observes events using real source code. The
relationships between contexts, machines and events are illustrated by the following
diagrams (Fig.1) , which consider refinements of events and machines.

Integrating Proved State-Based Models 271

Fig. 1. Machines and Contexts relationships

The refinement of a formal model allows us to enrich the model via a step-by-step ap-
proach and is the foundation of our correct-by-construction approach [15]. Refinement
provides a way to strengthen invariants and to add details to a model. It is also used to
transform an abstract model to a more concrete version by modifying the state descrip-
tion. This is done by extending the list of state variables (possibly suppressing some
of them), by refining each abstract event to a set of possible concrete versions, and by
adding new events.

We suppose (see Fig.1) that an abstract model AM with variables x and an invariant
I(x) is refined by a concrete model CM with variables y. The abstract state variables, x,
and the concrete ones, y, are linked together by means of a, so-called, gluing invariant
J(x,y). Event ae is in abstract model AM and event ce is in concrete model CM. Event ce
refines event ae. BA(ae)(x,x′) and BA(ce)(y,y′) are predicates of events ae and ce respec-
tively; we have to discharge the following proof obligation:

I(x) ∧ J(x,y) ∧ BA(ce)(y,y′) ⇒ ∃x′ · (BA(ae)(x,x′) ∧ J(x′,y′))

We have briefly introduced the EVENT B modelling language and the structures pro-
posed for organising the development of state-based models. In fact, the refinement-
based development of EVENT B requires a very careful derivation process, integrating
possible tough interactive proofs for discharging generated proof obligations, at each
step of development.

3 State Properties and Refinement Diagrams

This section extends semantically EVENT B and introduces a way to deal with liveness
properties using especially the refinement diagrams and the leads to (�) operator. Re-
finement diagrams have been introduced in a previous work [19], in order to help to
develop sequential programs using refinement. The notation using the leads to operator
A� B is defined by the temporal assertion “�(A⇒♦B)”. This formula means that every
A will eventually be followed by B.

Extending the Scope of EVENT B Properties. EVENT B allows users to express safety
properties on models considered as reactive systems. An EVENT B model is valid
with respect to a set of discharged proof obligations. However, since we have a list
of events for each model, we can simulate reactions to events by extending the semanti-
cal scope of EVENT B properties. This extension of the properties taken into account by
EVENT B to liveness ones, requires the definition of traces for an EVENT B model in an
operational style. Therefore, we propose the use of the TLA [14] framework to support
our proofs, as the framework provides simple temporal modalities, such as liveness and
fairness.

272 M.B. Andriamiarina, D. Méry, and N.K. Singh

We first define the temporal framework of an EVENT B machine M, using the fol-
lowing TLA notations: Init is the predicate specifying initial states; �[Next]y means that
each pair of consecutive states either satisfies Next or leaves the values of y unchanged;
WFy(Next) expresses a weak fairness condition over Next.

Definition 1. Let M be an EVENT B machine and C a context seen by M. Let y be the
list of variables of M, let E be the set of events of M, and let Init(y) be the predicate
defining the initial values of y in M. The temporal framework of M is defined by the TLA
specification S pec(M): Init(y)∧�[Next]y ∧WFy(Next), where Next≡ ∃e ∈ E.BA(e)(y,y′).

Following Lamport [14], S pec(M) is valid for the set of infinite traces simulating M,
with respect to the events of M and to fairness constraints. The set of traces for M is a
subset of Valuesω, which is the set of infinite words over the set of possible values of y
in M, namely Values.

Liveness properties for M are, de facto, defined in TLA as follows. M satisfies P� Q
when Γ(M) , S pec(M)⇒ (P� Q). Γ(M) is the proof context of M. Obviously, safety
properties can be reformulated in the same framework. As for liveness properties, we
can also use the wp-based approach for defining these properties under weak fairness.
We can apply as well the works of Abrial et al [9, 18] on mathematical semantics in a
wp framework, and on specific constructs [4] to state liveness properties as events.

Refinement Diagrams and Leads To (�) Operator. Refinement diagrams are used to
develop the machine M and to add control in the EVENT B models. These diagrams
are close to predicate diagrams [8] and to proof lattices introduced by Owicki and
Lamport in [22] for representing (proofs of) liveness properties under fairness assump-
tions. We do not use these diagrams for proving but for supporting refinement. We con-
struct the refinement lattices by applying the inference rules for the temporal operator
leads to (�).

Definition 2. Let M be an EVENT B machine and C a context seen by M. A is a set
of assertions; I(M) is the invariant of M; c are (control) variables of M, with values
identifying the control points of M (e.g. start, end, etc.); G is a finite set of assertions
for M called conditions of the form g(x), where x are variables of M. Let E be the set of
events for M.

A refinement diagram for M, over A, is a labeled directed graph over A, with labels
from G or E, satisfying the following rules:

– If R is related to S by a unique arrow labeled e ∈ E, then
• It satisfies the property R� S
• ∀c,x,c′,x′.R(c,x)∧ I(M)(c,x)∧BA(e)(c,x,c′,x′)⇒ S(c′,x′)
• ∀c,x.R(c,x)∧ I(M)(c,x)⇒∃c′,x′.BA(e)(c,x,c′,x′)

– If R is related to S1, . . . , Sp, then
• Each arrow R to Si is labeled by a guard gi ∈ G.
• For any i in 1..p the following conditions hold.(

R∧ I(M)∧gi(x)⇒ Si

∀ j. j ∈ 1..p∧ j �= i∧R∧ I(M)∧gi(x)⇒¬g j(x)
• R∧ I(M)⇒∃i ∈ 1..p.gi.

Integrating Proved State-Based Models 273

– For each e ∈ E, there is only one instance of e in the diagram.

A refinement diagram D for M, over A, is denoted by PD(M) = (A,M,G,E).

Fig. 2. A refinement diagram

A refinement diagram, as illustrated by the fig-
ure 2, relates a pair of assertions (T,W). We
assume that T is a precondition, that can be
decomposed into p assertions S1, · · · ,Sp, and W
is a postcondition.

Refinement diagrams can be used to infer the total correctness of an algorithm con-
structed step-by-step using refinement. The operator leads to (�) is transitive and con-
fluent. Therefore, if a refinement diagram is built for a given problem, it is sound with
respect to the requirements of the problem. Refinement diagrams possess proved prop-
erties [19], that we enumerate here.

Property 1. Let M be a machine and D = (A,M,G,E) be a refinement diagram for M.

1. If M satisfies P� Q and Q� R, it satisfies P� R.
2. If M satisfies P� Q and R� Q, it satisfies (P∨R)� Q.
3. If I is invariant for M and if M satisfies P∧ I� Q, then M satisfies P� Q.
4. If I is invariant for M and if M satisfies P∧ I⇒ Q, then M satisfies P� Q.
5. If P

e−→ Q is a link of D for the machine M, then M satisfies P� Q.
6. If P and Q are two nodes of D such that there is a path in D from P to Q and any

path from P can be extended in a path containing Q, then M satisfies P� Q.
7. If I, U , V , P, and Q are assertions such that I is the invariant of M; P∧ I⇒U ; V ⇒ Q;

and there is a path from U to V and each path from U leads to V ;
then M satisfies P� Q.

These properties are derived from TLA definitions [14]. Refinement diagrams are a
generalised version of diagrams proposed for developing sequential algorithms [19]
and these are based on the call-as-event paradigm. Moreover, refinement diagrams are
attached to EVENT B models and can be used for deriving liveness properties. The justi-
fication of such diagrams is based on the analysis of leads to properties and on liveness
properties. The proof system of TLA contains proof rules for deriving the correctness
of those properties. In the next section, we detail a paradigm for aiding the proof-based
development of distributed algorithms.

4 Service-As-Event Paradigm

The EVENT B methodology requires skills in understanding the notion of refinement.
Expertise is also required in the use of proof assistants and management of the mod-
elling process, in order to ensure the discharging of proofs. In the EVENT B modelling
method, the most important step is the expression of a very abstract definition of the
problem to solve. The first abstract model usually gives a list of events corresponding
to the pre/post specification with respect to the different cases. Each refinement step
details progressively the abstract specifications (e.g. by decomposing them into phases,

274 M.B. Andriamiarina, D. Méry, and N.K. Singh

in the case of algorithmic systems, etc.). Each new step is checked by discharging proof
obligations. Hence, the objective is clearly to simplify the effort of proof and explore
simple ways to express a problem as a combination of (possibly reusable) components.
We are interested in distributed algorithms; therefore, a component is equivalent to a
phase/step of an algorithm. Components can be viewed as “sub”-distributed algorithms
composing the actual algorithm.

In this paper, we present the service-as-event paradigm, inspired by the call-as-
event [19] paradigm and based on refinement diagrams. The service-as-event paradigm
helps us to state problems, using liveness properties, as for instance P� Q. An event e
models the effective service leading from P to Q.

Primary Usage: Service Description. The service-as-event paradigm can help to state
a problem in an abstract manner. The abstraction of a problem in EVENT B is as follows:
An abstract event e expresses a pre/post specification. The pre-condition P is stated by
the guard of the event e, whereas the post-condition Q is defined by the action of e. Using
the properties of refinement diagrams, we can depict this statement with the property:
(P

e−→ Q)⇒ (P� Q). The event e expresses, in an abstract way, the service linking P
and Q: every time P holds, e will be triggered and consequently, P will (eventually) be
followed by Q.

Example 1. For instance, the leader election problem [2] is expressed using the follow-
ing property: acyclic(gr)� ∃rt, ts.spanning(rt, ts,gr), where acyclic(gr) states that gr is an
acyclic connected graph and spanning(rt, tr,gr) states that tr is a directed spanning tree
of gr and its root rt is the leader. The property is illustrated by the refinement diagram
3 and simply stated in EVENT B , as follows:

Fig. 3. A refinement diagram for leader election

EVENT election =̂
WHEN

acyclic(gr)
THEN

rt, ts : |spanning(rt ′, ts′,gr)
END

The refinement diagram Fig.3 expresses that a process election is characterized by
an abstract event election stating what is computed, but not how it is computed. The
computation process is depicted in the refinement model, which will be defined later.

Extended Usage: Phase Identification from Service Decomposition. Another way to
use the service-as-event paradigm is to decompose liveness properties, using the infer-
ence rules of the leads to (�) operator, such as the transitivity rule. In fact, we use the
rules related to� to break up a global service into multiple and simpler “sub”-services,
analogous to steps or phases. As an illustration, one can decompose an EVENT B
specification of a problem, represented by the property P� Q, as follows:

The initial property P� Q is separated into several simpler properties (representing
phases of the algorithm), until a satisfactory decomposition into independent phases,

Integrating Proved State-Based Models 275

linked by services is obtained. Therefore, allowing the phases to be developed sepa-
rately.

This process is similar to refinement, as shown by the following figure (see Fig.4):
The first property P� Q is associated with an abstract model, describing the service
offered by the algorithm with an abstract event; the use of the transitivity rule to simplify

Fig. 4. Refinement and Decomposition

P� Q is interpreted as identifying the vari-
ous steps from P to Q: it corresponds to the
fact that new events, modelling intermedi-
ate transitions between P and Q, are added
to the model, using refinement. A level in
the proof tree is associated with a level of re-
finement. One may continue to decompose
services, until each phase of the concrete al-
gorithm is matched with a property.

Example 2. For instance, a routing algorithm can be decomposed into two phases: (1)
a route discovery step, (2) a route maintenance/reconstruction, if the route is broken.
Another point is to decompose the routing process into steps which are simpler, safer
and more stable. In the next section, we give an example in which three phases for a
routing algorithm are identified, to ensure that the routing service is satisfied.

First, the development methodology consists in decomposing a complex algorithm into
simple fragments (services) using the service-as-event paradigm and refinement dia-
grams. The following step is to detail the developed services/phases and coordinate
them by adding control. Hence, we can guide our refinement-base process by using
refinement diagrams related to the EVENT B models.

5 Case Study: ANYCAST RP

We present in this section an example illustrating our modelling methodology (refine-
ment diagrams and service-as-event paradigm), with the ANYCAST RP routing proto-
col [10, 11]. However, due to space requirements, we do not provide the whole devel-
opment1, we only give relevant details allowing us to explain clearly the methodology
and the integration of models.

Fig. 5. ANYCAST RP

Introduction. ANYCAST RP is
a protocol for multicast (one-to-
many) communications (see Fig.5).
In this protocol, a set of routers,
called Designated Routers (DR),
are used by directly connected
sources to transmit data (msg) to
another set of distant routers, the

1 Available at: http://www.loria.fr/~andriami/ifm/index.html

http://www.loria.fr/~andriami/ifm/index.html

276 M.B. Andriamiarina, D. Méry, and N.K. Singh

Rendezvous Points (RP). These Rendezvous Points (RP) are in charge of load sharing,
redundancy and message delivery to connected destinations. ANYCAST RP is a non-
toy protocol recommended by Cisco Systems, Inc as a reliable solution for multicasting
[10]. Moreover, the protocol is cited as robust, scalable, having satisfactory bandwidth
efficiency and good QoS [10,13]. We use this protocol as an illustration, because it can
be divided easily into independent and sequential phases/steps: the routing of messages
(msg) (1) from sources (s) to Designated Routers (DR), (2) from Designated Routers (DR)
to Rendezvous Points (RP) and (3) from Rendezvous Points (RP) to connected destina-
tions. The following sections demonstrate the formal modelling of the ANYCAST RP
protocol.

Abstract Model. We start with an abstract model ANYCAST_M0, describing the ser-
vice offered by the protocol: that is, the routing and delivery of a message (msg),
from a source (s) to a set of destinations (g_t). Sets of messages (MESSAGES), nodes
(NODES), sources and destinations of each message (m) (indicated by functions source
and group_target) are defined. Variables are also defined: sent contains messages sent
by sources, got depicts messages received by destinations, lost contains lost messages.
These variables are initialised with an empty set (∅). Simple invariants constrain
these variables: got ∪ lost ⊆ sent; got ∩ lost = ∅. Events define the behaviour of the
system:

– We have events related to the protocol:
• SENDING0 models the sending of a message (msg) by a source (s).
• RECEIVING0 demonstrates the receiving of a message (msg) by a group of des-

tinations (g_t): the message (msg) has been sent by a source, has not yet been
lost nor received, therefore all the destinations (g_t) can receive the message
(msg).
• RESENDING0 depicts the re-sending of a message (msg): if the message (msg)

has been lost, it is recovered.
– And events related to environment: LOSING0 presents the loss of a sent but not yet

received message (msg).

This model is associated to the following refinement diagram:

Integrating Proved State-Based Models 277

Fig. 6. Diagram D0 for ANYCAST_M0

The diagram D0 (see Fig.6) gives us
the possibility to express the goal
of ANYCAST RP as follows: (s =

source(msg)∧msg /∈ got)� (msg ∈ got).
The routing service allows a non-
received message (msg), whose source
is (s), to be eventually received by
all of its destinations. This routing
service can be decomposed into sub-
services: a sending one (SENDING0),
a re-sending one (RESENDING0) and
a receiving one (RECEIVING0).

The service RECEIVING0 can be considered as the main service that allows users to
verify the property P� Q (with P =̂ (s = source(msg)∧msg /∈ got) and Q =̂ (msg ∈ got)),
because it actually models the receiving of a message (msg) by the destinations (got :=
got ∪ {msg}). The diagram D0 and the property P� Q describe the normal behaviour
of the algorithm, without errors. However, we also consider message losing in P� F ,
with F =̂ (msg ∈ lost), because messages can be lost (event LOSING0). But, since lost
messages are sent again to the destinations (RESENDING0), and since we assume that
the messages are not stuck in the lost state forever (to ensure progress of the algorithm),
we have F � Q. Therefore, P� Q is verified.

First Refinement. This refinement2 (ANYCAST_M1) adds the Designated Routers (DR)
between the sources (s) and the destinations (g_t). New variables are defined: dr_rcvd
contains the messages received by some selected (not yet identified at this level of
abstraction) Designated Routers (DR) from sources and dr_sent depicts the messages
sent by selected Designated Routers (DR) to destinations; simple invariants are given:
(1) dr_rcvd ⊆ sent, (2) dr_sent ⊆ dr_rcvd, (3) got ∪ lost ⊆ dr_sent. Previous events are
refined and new ones are added: DR_RECEIVING1 models the receiving of a message
(msg) by a selected Designated Router (dr), from a source (s); DR_SENDING1 demon-
strates the transmission of a message (msg) by a selected Designated Router (dr), to
the destinations; DR_RESENDING1 is a refinement of RESENDING0. In fact, the sources
are not in charge of the re-sending procedure, but the Designated Routers; RECEIVING1

presents the receiving of a message (msg) by destinations, from a Designated Router
(dr); LOSING1 models losses of message (msg) between only Designated Routers and
destinations, since losses between sources and Designated Routers are highly improb-
able. Let us denote by X the events DR_RESENDING1, RECEIVING1, LOSING1; and by Y

their corresponding abstract versions: RESENDING0, RECEIVING0, LOSING0.

2 ⊕: to add an element to a model, -: to remove an element from a model, ...: unchanged parts.

278 M.B. Andriamiarina, D. Méry, and N.K. Singh

This model expresses an abstraction of ANYCAST RP, as follows: P′ � Q, with
P′ =̂ (s = source(msg)∧msg /∈ sent) and Q =̂ (msg ∈ got). We can see here that the initial
predicate P =̂ (s= source(msg)∧msg /∈ got) is transformed into P′, which is more detailed
and more precise, saying that the message msg is not received because it has not yet been
sent. An additional step related to the Designated Routers is added: P′� R∧R�Q, with
an intermediate step R being msg ∈ dr_rcvd.

Decomposing ANYCAST RP into Phases. The model ANYCAST_M2 introduces
another intermediate routing: messages must be redirected to their destinations by
routers called Rendezvous Points (RP). New variables are added in this refinement:
rp_rcvd represents the messages received by some selected (not yet identified at
this level of abstraction) Rendezvous Points (RP) from Designated Routers (DR)
and rp_sent depicts the messages sent by selected Rendezvous Points (RP) to desti-
nations; simple invariants on these variables are defined: (1) rp_rcvd ⊆ dr_sent, (2)
rp_sent ⊆ rp_rcvd, (3) got ⊆ rp_sent, (4) got ⊆ rp_rcvd, (5) rp_rcvd ∩ lost =∅. The last
invariant describes an assumption on the system: messages can only be lost between
selected Designated Routers (DR) and Rendezvous Points (RP). Events are refined
or added: RP_RECEIVING2 models the receiving of a message (msg) by a selected
Rendezvous Point, from a Designated Router; RP_SENDING2 presents the sending of
a message (msg) by selected Rendezvous Point to destinations; RECEIVING2 depicts
the receiving of a message (msg) by all the destinations of the message; LOSING2

models the losses of messages between Designated Routers (DR) and Rendezvous
Points (RP).

This model defines the entire dataflow that occurs during ANYCAST RP: (1)
from sources to Designated Routers (DR), (2) from Designated Routers (DR) to Ren-
dezvous Points (RP) and (3) from Rendezvous Points (RP) to destinations. This de-
scription of the complete dataflow is emphasized by the refinement diagram of the
model:

Integrating Proved State-Based Models 279

Fig. 7. Diagram D2 for ANYCAST_M2

The diagram D2 (see Fig.7) allows us
to express ANYCAST RP using the
following property: P′ � R∧R� S∧
S � Q, with P′ =̂ (s = source(msg) ∧
msg /∈ sent), R =̂ (msg ∈ dr_rcvd), S =̂

(msg ∈ rp_rcvd), and Q =̂ (msg ∈ got).
We have decomposed R� Q, by tran-
sitivity, to add a new step related
to the additional routing (Rendezvous
Points). Moreover, the diagram allows
us to identify phases of the proto-
col: (Phase 1) Routing from sources
to Designated Routers, (Phase 2)
Routing from Designated Routers
to Rendezvous Points, (Phase 3)
Routing from Rendezvous Points to
Destinations.

The three identified phases are independent and can be developed separately: we have
(1) P′� R, (2) R� S and (3) S�Q. The development in phases is driven by the location
of a message/packet in the network and by the type of nodes.

Combining and Coordinating Phases. We have divided ANYCAST RP into three com-
ponents, described by the diagram D2 (see Fig.7), in the previous section. Since we
develop the components independently, we relax the conditions msg ∈ dr_rcvd, msg ∈
rp_rcvd. We replace them by msg ∈MESSAGES. The goal is to reintroduce these condi-
tions (or their refined forms) in the events to add control and coordination during the
combination of phases. Abstract models of each phase are composed of the events of
ANYCAST_M2 related to (1) P′ � R, (2) R� S and (3) S� Q and modified as said pre-
viously (relaxing some conditions). The next paragraphs give the development of each
phase.

Phase 1: From sources to Designated Routers. We introduce the identity of a se-
lected Designated Router (dr), which receives a message (msg) sent by a source (s).
We notice that the variables sent, dr_rcvd have been replaced by msg_sent_by_src and
msg_rcvd_by_dr. These variables associate sent/received messages with the identities of
senders (sources) and receivers (Designated Routers).

280 M.B. Andriamiarina, D. Méry, and N.K. Singh

SENDING models the sending of a message (msg) by a source (s) to a Designated Router
(dr). A variable dest_grp indicates the Designated Router (dr) target of a message (msg).
RECEIVING presents the receiving of a message (msg) by a Designated Router (dr).

Phase 2: From Designated Routers to Rendezvous Points. This model identifies the
selected Designated Router (dr), sender of a message (msg) and the chosen Rendezvous
Point (rp), target of the message.

We use the same techniques as in phase 1 to identify the senders and receivers of a mes-
sage, namely Designated Routers and Rendezvous Points: the variables dr_sent, rp_rcvd
are replaced with msg_sent_by_dr and msg_rcvd_by_rp, which associate sent/received
messages with the identities of senders and receivers; rp_dest indicates the selected
Rendezvous Points destinations of sent messages.

Phase 3: From Rendezvous Points to Destinations. The identities of selected Ren-
dezvous Points (rp) sending messages (msg) to destinations are introduced by this model.

This model is simple to understand: a Rendezvous Points (rp) sends (RP_SENDING) a
message (msg) to a group of destinations (g_t), which receive the message (RECEIVING).

We show how the uses of refinement diagrams and the service-as-event paradigm
help in the models (components) combination and coordination. First, we draw the re-
finement diagrams for each phase, and then, we add/combine predicates to link the
diagrams and models. The diagram D (see Fig.8) shows three sub-diagrams for each
phase, and demonstrates how the phases can be coordinated to obtain a formal model
of ANYCAST RP: to link two consecutive phases, we form a conjunction with the post-
condition of the first phase and the pre-condition of the other one; for example, to
combine phases 1 and 2, we use a property resulting of the conjunction of the pre/post:

Integrating Proved State-Based Models 281

dr ∈ DR∧ dest_grp = {rp}∧ dr �→ msg ∈ msg_rcvd_by_dr, meaning that only a message
(msg), received by a Designated Router (dr), can be sent to a Rendezvous Point (rp).

The same applies for the combination of phases 2 and 3, as we also use the result
of the conjunction of the pre/post: rp �→ msg ∈ msg_rcvd_by_rp. We notice that in fact,
the combination is equivalent here to the fact of linking and ordering sending and
receiving services, e.g. sending1 � receiving1 ∧ receiving1 � sending2 ∧ ... These oper-
ations on refinement diagrams are reflected in the resulting model after integrating
phases.

Fig. 8. Diagram D for Phases Combination

A set of invariants related
to ordering and coordinating
for sending and receiving
services is added to the model:
msg_sent_by_dr⊆msg_rcvd_by_dr

and msg_sent_by_rp ⊆
msg_rcvd_by_rp express that
only received messages are
sent by respectively selected
Designated Routers and
Rendezvous Points. Accord-
ing to the diagram 8, the
pre-conditions of the send-
ing services DR_SENDING,

RP_SENDING must also be
modified. Therefore, we pro-
pose to modify these events as
follows, by strengthening their
guards: We add new

guards that state that receiving services have to occur before following sending
ones.

The model expresses the follow-
ing property (see Fig.8), which
describes ANYCAST RP:
P� R ∧ R� S ∧ S� Q,

with P =̂ (s = source(msg) ∧ dest_grp = {dr} ∧ s �→ msg /∈ msg_sent_by_src∧ dr �→ msg /∈
dr_dest), R =̂ (dr ∈DR∧dest_grp= {rp}∧dr �→msg∈msg_rcvd_by_dr), S =̂ (rp �→msg∈
msg_rcvd_by_rp), Q =̂ (msg ∈ got). We refine this model, until we obtain a local model
(where events are local to nodes of the network), from which an algorithmic form of
the protocol can be derived. An interesting property of these kinds of combination is
that one can develop the phases separately and choose at which level of refinement
the combination will occur. Moreover, the splitting of ANYCAST RP into small pieces
helped us to concentrate our main efforts on finding correct ways of composing and

282 M.B. Andriamiarina, D. Méry, and N.K. Singh

coordinating the models of the phases, understanding and discharging the proof
obligations generated by the integration of models.

6 Discussion, Conclusion and Future Work

We have introduced the service-as-event paradigm, as an integration of the EVENT

B language with temporal notations and diagrams to cope with liveness properties,
system decomposition and components integration, and as an extension of the call-as-
event paradigm [19]. The diagrammatic notation describing services, namely
the refinement diagrams, provides a graphical mean to support the intuition. These dia-
grams are particularly suited for guiding refinement-based development, because their
refinement is possible [8]. The underlying semantical framework behind them is based
on trace semantics and temporal structures, derived from TLA. In the literature, Manna
and Pnueli [16] developed a collection of verification techniques based on verification
diagrams, which are related to proving various temporal properties (invariance, safety,
fairness, liveness, etc.) of reactive systems. They introduced different diagrams (WAIT-
FOR and INVARIANCE diagrams, CHAIN diagrams, etc.), which are related to proof rules
for deriving these properties. Our refinement diagrams are similar but we use them for
refinement and they are integrated to the EVENT B models; the objectives are clearly
to help in the refinement of complex systems and to decompose systems into subsys-
tems in a correct-by-construction process. UNITY [9, 18] proposes also a combination
of temporal logic and actions systems using the superposition technique, and a mod-
elling of distributed and parallel programs under weak fairness, which is a limitation for
expressing general fairness assumptions.

Our case study (ANYCAST RP) is simple to understand, because the protocol
contains three identifiable, consecutive and independent routing phases, expressed as
follows: msg /∈ sent � msg ∈ sent ∧msg ∈ sent � msg ∈ received. This simplicity hides
technical details of the Event B models of the phases. In fact, the decomposition of
the (complex) problem into smaller sub-problems allows us to discharge easy proof
obligations related to parts of the algorithm and helps us to focus our efforts on the inte-
gration of models. However, decompositions of systems may present more difficulties
and require a clever analysis. The application of the service-as-event paradigm and re-
finement diagrams is effective for modelling distributed algorithms with behaviours that
can be decomposed into strict, sequential and/or non-interfering (or with little interfer-
ences) phases local to nodes: we have solved other case studies, related to Network-on-
Chips [5], especially the XY routing and network dynamic reconfiguration
services.

Our future works involve the connection of our approach to a platform integrating
real concurrency concepts related to effective programming languages based on the
service-as-event paradigm. Moreover, we plan to delve into the topic of feature inter-
actions and how interferences can be taken into account. Another point is the relation
between the complexity of proofs and models reuse for the description of the routing
phases. The reuse and the adaptation of formal models are related to formal design pat-
terns [3]. Finally, we intend to develop few more case studies related to distributed
networks, and our goal is to develop a toolbox that can be used to implement dis-
tributed protocols using a programming language, where the toolbox will transform

Integrating Proved State-Based Models 283

the verified formal specifications of EVENT B models [5, 6] into a given programming
language.

References

1. Abrial, J.-R.: Modeling in Event-B: System and Software Engineering (2010)
2. Abrial, J.-R., Cansell, D., Méry, D.: A mechanically proved and incremental development of

ieee 1394 tree identify protocol. Formal Asp. Comput. 14(3), 215–227 (2003)
3. Abrial, J.-R., Hoang, T.S.: Using design patterns in formal methods: An event-B approach.

In: Fitzgerald, J.S., Haxthausen, A.E., Yenigun, H. (eds.) ICTAC 2008. LNCS, vol. 5160, pp.
1–2. Springer, Heidelberg (2008)

4. Abrial, J.-R., Mussat, L.: Introducing Dynamic Constraints in B. In: B98, pp. 83–128 (1998)
5. Andriamiarina, M.B., Daoud, H., Belarbi, M., Méry, D., Tanougast, C.: Formal Verification

of Fault Tolerant NoC-based Architecture. In: First International Workshop on Mathematics
and Computer Science (IWMCS 2012), Tiaret, Algérie (December 2012)

6. Andriamiarina, M.B., Méry, D., Singh, N.K.: Revisiting Snapshot Algorithms by Refinement-
based Techniques. In: PDCAT, IEEE Computer Society (2012)

7. Back, R.-J., Sere, K.: Stepwise refinement of action systems. Structured Programming 12(1),
17–30 (1991)

8. Cansell, D., Méry, D., Merz, S.: Diagram refinements for the design of reactive systems. J.
UCS 7(2), 159–174 (2001)

9. Chandy, K.M., Misra, J.: Parallel Program Design A Foundation. Addison-Wesley Publishing
Company (1988) ISBN 0-201-05866-9

10. Cisco Systems. Anycast RP, http://www.cisco.com/en/US/docs/ios/solutions_
docs/ip_multicast/White_papers

11. Cisco Systems. Anycast RP using PIM,
http://tools.ietf.org/html/draft-ietf-pim-anycast-rp-07

12. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press (2000)
13. Kang, J., Sucec, J., Kaul, V., Samtani, S., Fecko, M.A.: Robust pim-sm multicasting using

anycast rp in wireless ad hoc networks. In: Proceedings of the 2009 IEEE International Con-
ference on Communications, ICC 2009, pp. 5139–5144. IEEE Press, Piscataway (2009)

14. Lamport, L.: A temporal logic of actions. ACM Trans. Prog. Lang. Syst. 16(3), 872–923
(1994)

15. Leavens, G.T., Abrial, J.-R., Batory, D.S., Butler, M.J., Coglio, A., Fisler, K., Hehner, E.C.R.,
Jones, C.B., Miller, D., Jones, S.L.P., Sitaraman, M., Smith, D.R., Stump, A.: Roadmap for
enhanced languages and methods to aid verification. In: Jarzabek, S., Schmidt, D.C., Veld-
huizen, T.L. (eds.) GPCE, pp. 221–236. ACM (2006)

16. Manna, Z., Pnueli, A.: Temporal verification diagrams. In: Hagiya, M., Mitchell, J.C. (eds.)
TACS 1994. LNCS, vol. 789, pp. 726–765. Springer, Heidelberg (1994)

17. McIver, A., Morgan, C.: Abstraction, Refinement And Proof For Probabilistic Systems
(Monographs in Computer Science). Springer (2004)

18. Méry, D.: Requirements for a temporal B: Assigning Temporal Meaning to Abstract Ma-
chines. and to Abstract Systems. In: Galloway, A., Taguchi, K. (eds.) IFM 1999 Integrated
Formal Methods 1999, YORK (June 1999)

19. Méry, D.: Refinement-based guidelines for algorithmic systems. Int. J. Software and Infor-
matics 3(2-3), 197–239 (2009)

20. Méry, D., Singh, N.K.: Analysis of DSR protocol in event-B. In: Proceedings of the 13th
International Conference on Stabilization, Safety, and Security of Distributed Systems, SSS
2011, pp. 401–415. Springer-Verlag, Heidelberg (2011)

http://www.cisco.com/en/US/docs/ios/solutions_docs/ip_multicast/White_papers
http://www.cisco.com/en/US/docs/ios/solutions_docs/ip_multicast/White_papers
http://tools.ietf.org/html/draft-ietf-pim-anycast-rp-07

284 M.B. Andriamiarina, D. Méry, and N.K. Singh

21. Owicki, S., Gries, D.: An axiomatic proof technique for parallel programs I. Acta Informat-
ica 6, 319–340 (1976)

22. Owicki, S., Lamport, L.: Proving liveness properties of concurrent programs. ACM Trans.
Program. Lang. Syst. 4(3), 455–495 (1982)

23. Owre, S., Shankar, N.: A brief overview of PVS. In: Mohamed, O.A., Muñoz, C., Tahar, S.
(eds.) TPHOLs 2008. LNCS, vol. 5170, pp. 22–27. Springer, Heidelberg (2008)

24. Project RODIN. Rigorous open development environment for complex systems (2004-2010),
http://www.eventb.org/

25. Rehm, J., Cansell, D.: Proved Development of the Real-Time Properties of the IEEE 1394
Root Contention Protocol with the Event B Method. In: ISoLA, pp. 179–190 (2007)

26. Tanenbaum, A.S.: Computer networks (4. ed.). Prentice-Hall (2002)
27. Wenzel, M., Paulson, L.C., Nipkow, T.: The Isabelle Framework. In: Mohamed, O.A., Muñoz,

C., Tahar, S. (eds.) TPHOLs 2008. LNCS, vol. 5170, pp. 33–38. Springer, Heidelberg (2008)

http://www.eventb.org/

Quantified Abstractions of Distributed Systems

Elvira Albert1, Jesús Correas1, Germán Puebla2, and Guillermo Román-Dı́ez2

1 DSIC, Complutense University of Madrid (UCM), Spain
2 DLSIIS, Technical University of Madrid (UPM), Spain

Abstract. When reasoning about distributed systems, it is essential to have infor-
mation about the different kinds of nodes which compose the system, how many
instances of each kind exist, and how nodes communicate with other nodes. In
this paper we present a static-analysis-based approach which is able to provide in-
formation about the questions above. In order to cope with an unbounded number
of nodes and an unbounded number of calls among them, the analysis performs
an abstraction of the system producing a graph whose nodes may represent (in-
finitely) many concrete nodes and arcs represent any number of (infinitely) many
calls among nodes. The crux of our approach is that the abstraction is enriched
with upper bounds inferred by a resource analysis which limit the number of
concrete instances which the nodes and arcs represent. The combined informa-
tion provided by our approach has interesting applications such as debugging,
optimizing and dimensioning distributed systems.

1 Introduction

When reasoning about distributed systems, it is essential to have information about their
configuration, i.e., the sorts and quantities of nodes which compose the system, and their
communication, i.e., with whom and how often the different nodes interact. Whereas
configurations may be straightforward in simple applications, the tendency is to have
rather complex and dynamically changing configurations. Cloud computing [5] is an
example of this. In this paper, we introduce the notion of Quantified Abstraction (QA for
short) of a distributed system which abstracts both its configuration and communication
by means of static analysis. QAs are abstract in the sense that a single abstract node
may represent (infinitely) many nodes and a single abstract interaction may represent
(infinitely) many interactions. QAs are quantified in that we provide an upper bound
on the (possibly infinite) number of actual nodes which each abstract node represents,
and an upper bound on the (possibly infinite) number of actual interactions which each
abstract interaction represents. Note that abstraction allows dealing with an unbounded
number of elements in the system, whereas the upper bounds allow regaining accuracy
by bounding the number of elements which each abstraction represents.

Actors form a well established model for distributed systems [14,4,6,12]. We ap-
ply our analysis to an Actor-like language [10] for distributed concurrent systems based
on asynchronous communication. The distribution model is based on (possibly interact-
ing) objects which are grouped into distributed nodes, called coboxes. Objects belong to
their corresponding cobox for their entire lifetime. To realize concurrency, each cobox
supports multiple, possibly interleaved, processes which we refer to as tasks. Tasks are

E.B. Johnsen and L. Petre (Eds.): IFM 2013, LNCS 7940, pp. 285–300, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

286 E. Albert et al.

created when methods are asynchronously called on objects, e.g., o!m() starts a new
task. The callee object o is responsible for executing the method call. The communica-
tion can be observed by tracking the calls between each pair of objects (e.g., we have
a communication between the this object and o due to the invocation of m). Informally,
given an execution, its configuration consists of the set of coboxes which have been cre-
ated along such execution and which are the nodes of the distributed system, together
with the set of objects created within each cobox. Similarly, the communication of an
execution is defined as the set of calls between each pair of objects in the system; from
which we can later obtain the communication for pairs of coboxes.

Statically inferring QAs is a challenging problem, since it requires (1) keeping track
of the relations between the coboxes and the objects, (2) bounding the number of ele-
ments which are created, (3) bounding the number of interactions between objects, and
(4) doing so in the context of distributed concurrent programming. The main contribu-
tions of this paper are:

1. Abstract configurations. The abstraction of objects and coboxes we rely on is based
on allocation sequences [11] (i.e., the sequence of allocation sites where the objects
that led to the creation of the current one were created). We use a points-to analysis
to infer the allocation sequences which allow us to infer the ownership relations
between the coboxes and the objects created.

2. Quantified nodes. We define a new cost model which can be plugged in the generic
resource analyzer COSTABS [2] (without requiring any change to the analysis en-
gine) in order to infer upper bounds on the number of coboxes and of objects that
each element of an abstract configuration represents.

3. Quantified edges. We propose a cost model which can be also plugged in COSTABS
to infer upper bounds on the number of calls among nodes.

4. Implementation. We have implemented our analysis in COSTABS and applied it
on a case study developed by Fredhopper R©. A notable result of our experiments is
that COSTABS was able to spot an excessive number of connections between two
distributed nodes that should be better allocated together.

QAs have many applications for optimizing, debugging and dimensioning distributed
applications which include among others: (1) QAs provide a global view of the dis-
tributed application, which may help to detect errors related to the creation of the topol-
ogy or task distribution. (2) They allow us to identify nodes that execute a too large
number of processes while other siblings execute only a few of them. (3) They are
required to perform meaningful resource analysis of distributed systems, since they al-
low determining to which node the computation of the different processes should be
associated. (4) They allow us to detect components that have many interactions and
that would benefit from being deployed in the same machine or at least have a very
fast communication channel. (5) They provide a further step towards static bandwidth
analysis.

2 The Language

We apply our analysis to the language ABS [10,12]. ABS extends the basic concur-
rent objects model [14,4,6,12] with the abstraction of object groups, named coboxes.

Quantified Abstractions of Distributed Systems 287

Each cobox conceptually has a dedicated processor and a number of objects can live
inside the cobox and share its processor. Communication is based on asynchronous
method calls with standard objects as targets. Consider an asynchronous method call m
on object o, written as f = o!m(). The objects this and o communicate by means of the
invocation m. Here, f is a future variable which allows synchronizing with the comple-
tion of task m by means of the await f ? instruction which behaves as follows. If m has
finished, execution of the current task proceeds. Otherwise, the current task releases the
processor to allow other available tasks (possibly a task of another object in the cobox)
to take it. The language syntax is as follows. A program consists of a set of classes
class C1

(t1 fn1,...,tn fnn) {M1 ... Mk} where each ti fni declares a field fni of type ti, and each
Mi is a method definition t m(t1 w1,...,tn wn) {tn+1 wn+1;...;tn+p wn+p; s} where t is
the type of the return value; w1, ...,wn are the formal parameters with types t1, ..., tn;
wn+1, ...,wn+p are local variables with types tn+1, ..., tn+p; s is a sequence of instructions
which adhere to the following grammar, where x and z denote standard variables, and y
a future variable whose declaration includes the type of the returned value:

s ::= in | in; s b ::=e>e | e==e | b∧b | b∨b | !b e ::=null | this. f | x | e+e | e∗e | e−e
in ::= x=new C(x̄) | x=newcog C(x̄) | x=e | this. f =e | y = x!m(z) | if b then s1 else s2 |

return x | while b do s | await y?

There is an implicit local variable called this that refers to the current object. Observe
that the only fields which can be accessed are those of the current object, i.e., this. Thus,
the language is data-race free [10], since no two tasks for the same object can be active
at the same time. The instruction newcog (i.e., “new component object group”) creates a
new object, but instead of within the current cobox, the new object becomes the root of a
brand new cobox. It is the root since all other objects which are transitively created using
new belong to such new cobox, until other newcog instructions are executed, which
introduce other coboxes with their respective roots. We assume all programs include a
method called main, which does not belong to any class and has no fields, from which
the execution starts in an implicitly created initial cobox, called ε.

Program execution is non-deterministic, i.e., given a state there may be different ex-
ecution steps that can be taken, depending on the cobox selected and, when processors
are released, it is also non-deterministic on the particular task within each cobox se-
lected for further execution. We refer to [10] for a precise definition of the language
semantics. For our purposes, we only need to know that a program state is formed by a
set of coboxes, a set of objects and a set of futures. Each cobox simply contains a unique
identifier and the identifier of the currently active object in the cobox (or ∅ if all objects
are idle). Each object contains a unique identifier, the value of its fields, the method
name of the active task, and a pool of suspended tasks. Each task in turn contains the
values of the local variables and the list of instructions to execute. Execution steps are
denoted S �b

l S ′, indicating that we move from state S to state S ′ by executing in-
struction b on the object identified by l. Traces take the form t ≡ S 0 �

b0
ε · · · �bn−1

ln−1
S n

where S 0 is an initial state in which only the main method is available.

Example 1. Our running example sketches an implementation of a distributed applica-
tion to store and retrieve data from a database. The main method creates a new server and

288 E. Albert et al.

initializes it using two arguments, n, the number of handlers (i.e., objects that perform
requests to the database), and m, the number of requests performed by each handler.

void main (Int n, Int m) {
1© Server s = newcog Server(null);

s!start (n,m);
}
class Server (DAO dao) {

void start (Int n, Int m) {
Fut f<void> = this!initDAO();
await f?;
while(n > 0) {

2© H h = new Handler(this.dao);
h!run(m);
n = n − 1;
}
}
void initDAO () {

3© this. dao = new DAO(null);
Fut f<void> = this.dao!initDB();
await f?;
}
}

class Handler (DAO dao) {
void run (Int m) {

while(m>0) {
this. dao.query(m);
m = m − 1;
}
}
}
class DAO (DB db) {

void initDB () {
4© this. db = new DB();
}
boolean query(Int m) {

String s = . . .//query m
this. db!exec(s);
}
}
class DB () {

boolean exec(String s) {. . .}
}

Method start initializes a data access object (DAO) that is used by Handler objects to re-
quest the database. Then, it creates n Handler objects at program point (p.p. for short) 2©
and starts their execution via the run method. The DAO object creates a fresh DB ob-
ject at p.p. 4©, that will actually execute queries from handlers. When executing run,
each handler performs m requests to the DAO object by invoking method query. The use
of Fut<void> variables and await instructions allow method synchronization. Regarding
distribution, observe that the configuration contains a single distributed component (the
Server cobox at 1©), as all other objects are created using new. �

3 Background: Points-to and Resource Analysis

In this paper, we make use of the techniques of points-to analysis [11,13] and resource
analysis [1,3] to infer quantified abstract configurations. We will try to use them as
black boxes along the paper as much as possible. Still, we need to review the basic
components that have to be used and/or adapted for our purposes.

3.1 Cost Centers and Points-to Analysis

An essential concept of the resource analysis framework for distributed systems in [1,3]
is the notion of cost center. A cost center represents a distributed component (or node)
of the system such that the cost performed on such component can be attributed to its
cost center. Since in our language coboxes are the distributed components of the system,

Quantified Abstractions of Distributed Systems 289

finding out the cost centers amounts to inferring the set of coboxes in the program. This
can be done by means of points-to analysis [3]. The aim of points-to analysis is to
approximate the set of objects (or coboxes) which each reference variable may point
to during program execution. Following [11,13], the abstraction of each object created
in the program is a syntactic construction of the form oi j...pq, where all elements in
i j . . . pq are allocation sites, which represents all run-time objects that were created at
q when the enclosing instance method was invoked on an object represented by oi j...p,
which in turn was created at allocation site p. Let S be the set of all allocation sites
in a program. Given a constant k ≥ 1, the analysis considers a finite set of object
names, denoted N , which is defined as: N = {ε} ∪ S ∪ S 2 . . . S k. Note that k defines
the maximum size of sequences of allocations, and it allows controlling the precision
of the analysis. Allocation sequences have in principle unbounded length and thus it is
sometimes necessary to lose precision during analysis. This is done by just keeping the
k rightmost positions in sequences whose length is greater than k. We use |s| to denote
the length of a sequence s. We define the operation 〈i, j, . . . , p〉 ⊕ q for referring to the
following object name: oi j...pq if |〈i, j, . . . , p, q〉| ≤ k, or o j...pq otherwise. In addition, a
variable can be assigned objects with different object names. In order to represent all
possible objects pointed to by a variable, sets of object names are used. We will use the
results of the points-to analysis by using pt(q, x) which refers to the set of object names
at p.p. q for a given reference variable x.

Example 2. Let us show (part of) the result of applying the points-to analysis to each
program point. Since ε is the first element of all allocation sequences, we omit it.

void start (Int n, Int m) {
Fut f<void> = this!initDAO();
await f?;
while(n > 0) {

2© H h = new Handler(this.dao);
h!run(m);
n = n - 1; } }

void initDAO () {
3© this.dao = new DAO(null);

Fut f<void> = this.dao!initDB();
await f?;

void initDB () {
4© this.db = new DB();}

{this �→ {o1}}
{this �→ {o1}, o1.dao �→ {o13}}
{this �→ {o1}, o1.dao �→ {o13}}
{this �→ {o1}, o1.dao �→ {o13}}
{this �→ {o1}, o1.dao �→ {o13}, h �→ {o12}}
{this �→ {o1}, o1.dao �→ {o13}, h �→ {o12}}
{this �→ {o1}, o1.dao �→ {o13}, h �→ {o12}}
{this �→ {o1}}
{this �→ {o1}, o1.dao �→ {o13}}
{this �→ {o1}, o1.dao �→ {o13}}
{this �→ {o1}, o1.dao �→ {o13}}
{this �→ {o13}}
{this �→ {o13}, o13.db �→ {o134}}

All object creations use the object name(s) pointed to by this to generate new object
names by adding the current allocation site. E.g., at p.p. 2©, this �→ {o1}; the new object
name created is o12. The set of possible values for this within a method comes from
the object name(s) for the variable used to call the method. In what follows, we use O
to refer to the set of object names generated by the points-to analysis. In our example
O={oε , o1, o12, o13, o134}. �

290 E. Albert et al.

3.2 Cost Models

Cost models determine the type of resource we are measuring. Traditionally, a cost
modelM is a functionM : Instr �→ N which for each instruction in the set of instruc-
tions Instr returns a natural number which represents its cost. As an example, if we are
interested in counting the number of instructions executed by a program, we define a
cost model that counts one unit for any instruction, i.e.,M(b) = 1.

In the context of distributed programs, the main difference is that the cost model not
only accounts for the cost consumed by the instruction, but it also needs to attribute
it to the corresponding cost center. In order to do so, we add an additional parame-
ter to the previous model which corresponds to the allocation site of the cost center:
MI(b, o)=c(o)·1. As before, we count “1” instruction but now we attribute it to the cost
center of the provided object, named c(o). Technically, the way to assign the cost to its
corresponding center is by using symbolic cost expressions that contain the cost centers
such that, if we are interested in knowing how many instructions have been executed
by the cost center c(o), we replace c(o) by 1 and c(o′) by 0 for all other o′�o. In the
following sections, we will define the cost models that we need for our analysis.

3.3 Upper Bounds

Given a set of cost centers O, a definition of cost modelM, and a program P(x), where
x are the input values for the arguments of the main method, resource analysis obtains
an upper bound UBMP (x) which is an expression of the form c(o1)·e1 + . . . + c(on)·en

where oi ∈ O and ei is a cost expression (e.g., polynomials, exponential functions, etc.)
with i = 1, . . . , n.

The analysis [1] is object-sensitive in that, given an object x at a program point p, it
considers the cost for all different possible abstract values in O that x can take. Tech-
nically, this is done by generating cost equations for each possible abstract value and
taking the maximum. To allow this object-sensitive extension, the cost model receives
the particular allocation site which is being considered by the analysis. The analysis
guarantees that UBMP is an upper bound on the worst-case cost (for the type of resource
defined byM) of the execution of P w.r.t. any input data; and in particular, that each ei

is an upper bound on the execution cost performed within the objects that oi represents.
Formally, the following theorem states the soundness result of the analysis. Since the

length of object names is limited to a length k, allocation sequences of length greater
than k do not appear as such in the results of points-to analysis. Instead, they are repre-
sented by object names which cover them. Therefore, we need some means for relating
allocation sequences to the object name which best approximate them. We now define
such notion. Given an allocation sequence l and a set of object names O, the best ap-
proximation of l inO is the longest object name inOwhich covers l. I.e., an object name
ol′ ∈ O is the best approximation of l inO iff ol ≤ ol′ and ∀ol′′ ∈ O . ol ≤ ol′′ → |l′′| < |l′|
or l′′ = l′. We use UBMP (x)|N to denote the result of replacing c(ol) by 1 if ol ∈ N and
by 0 otherwise in the resulting UB expression.

Theorem 1 (soundness [1,3]). Let P be a program and l an allocation sequence. Let
O be the object names computed by a points-to analysis of P. Let l′ be the best approx-
imation of l in O. Then, ∀x, cost(l, P, x) ≤ UBMP (xs)|{ol′ }.

Quantified Abstractions of Distributed Systems 291

Example 3. The UB expression obtained by applying resource analysis on the run-
ning example using MI , which counts the number of instructions executed by each
object inferred by the points-to analysis, is UBM

I

main(n,m) = c(o1)·18+c(o13)·6+c(o1)·12·nat
(n)+c(o12)·6·nat(n)+c(o12)·8·nat(n)·nat(m)+c(o13)·2·nat(n)·nat(m)+c(o134)·nat(n)·nat(m), where
nat(x)= max(x, 0) and it is used for avoiding negative evaluations of cost expressions. In
what follows, for readability, nat is omitted from the UB expressions. The number of in-
structions executed by a particular object name, say o12, is obtained as UBM

I

main(n,m)|{o12}=n·
(6+ 8 ·m). Although the resource analysis in [1,3] cannot infer how object identifiers are
grouped in the configuration of the program, it can give us the cost executed by a set of
objects, UBM

I

main(n,m)|{o1 ,o12}=18 + n · (18 + 8 · m).

4 Concrete Definitions in Distributed Systems

This section formalizes the concrete notions of configuration and communication that
we aim at approximating by static analysis in the next section.

4.1 Configuration

Let us introduce some notation. All instructions are labeled. The expression b ≡ q : i
denotes that the instruction b has q as label (program point) and i is the instruction
proper. Similarly to the points-to analysis defined in Sec. 3.1, any object can be assigned
an allocation sequence l = 〈 j, . . . , p, q〉which indicates that such object was allocated at
program point q during the execution of a method invoked on an object whose allocation
sequence is in turn 〈 j, . . . , p〉. We use ol to refer to an object whose allocation sequence
is l. Note that allocation sequences are not identifiers since there may be multiple objects
with the same allocation sequence. Therefore, we sometimes use multisets (denoted {| |}).
Underscores () are used to ignore irrelevant information. Given an allocation sequence
l, we use root(l) to refer to the allocation sequence of the root object of the cobox for l. It
can be defined as the longest prefix of l which ends in an allocation site for coboxes, i.e.,
one site where a newcog instruction is executed. Therefore, if l ends in an allocation site
for coboxes, then root(l) = l. If it ends in an allocation site for objects, i.e., one where a
new instruction is executed, then root(〈 j, . . . , p, q〉) = root(〈 j, . . . , p〉).

Given a trace t (see Section 2), we use steps(t) to denote the set of steps which form
trace t. Since execution is non-deterministic, given a program P(x), multiple (possibly
infinite) fully expanded traces may exist. We use executions(P(x)) to denote the set of
all possible fully expanded traces for P(x). Given a trace t, the multiset of cobox roots
created during t is defined as cobox roots(t) = {|ol | �q:newcog

〈 j,...,p〉 ∈ steps(t) ∧ l =
〈 j, . . . , p, q〉|}. Also, given a cobox root ol, the multiset of objects it owns in a trace t is
defined as abs in cobox(ol, t) = {|o〈 j,...,p,q〉| �q:new

〈 j,...,p〉 ∈ steps(t) ∧ root(〈 j, . . . , p〉) = l|}.
Definition 1 (configuration). Given an execution trace t, we define its configuration,
denoted Ct, as Ct = {|〈o, abs in cobox(o, t)〉 | o ∈ cobox roots(t)|}. The configuration of a
program P on input values x, denoted Conf P(x) is defined as {Ct | t ∈ executions(P(x))}.
Example 4. Deliberately, the running example shown in Ex. 1 executes in a single
cobox. It can be configured as a distributed application by creating coboxes instead

292 E. Albert et al.

of objects, i.e., by replacing selected new instructions by newcog . The following graphs
graphically show three possible settings and the memory allocation instruction (new or
newcog) that have been used at the program points 2©, 3© and 4©.

Setting 1

o1

o13

o134

o12 o121...n

2©: new
3©: new
4©: newcog

Setting 2

o1

o13

o134

o12 o121...n

2©: new
3©: newcog
4©: newcog

Setting 3

o1

o13

o134

o12 o121...n

2©: newcog
3©: newcog
4©: new

The object names in the graph are grouped using dotted rectangles according to the
cobox to which they belong. Cobox roots appear in grey and dashed edges represent the
creation sequence. The annotation 1 . . . n indicates that we have n objects of this form.
In Setting 1, all objects are created in the same cobox, except for the object of type
DB. In Setting 2, also the object of type DAO is in a separate cobox. In Setting 3, each
handler is in a separate cobox, and DAO and DB share a cobox. The configurations for
the different settings are (see Def. 1):

Setting 1:{|〈o1, {| o12, ..., o12︸������︷︷������︸
n objects

, o13 |}〉, 〈o134, {||}〉|} Setting 2:{|〈o1, {| o12, ..., o12︸������︷︷������︸
n objects

|}〉, 〈o13, {||}〉, 〈o134, {||}〉|}

Setting 3:{|〈o1, {||}〉, 〈o12, {||}〉, ..., 〈o12, {||}〉︸�������������������︷︷�������������������︸
n coboxes

, 〈o13, {|o134|}〉|}
�

Given input values and an allocation sequence, the definition below counts the maxi-
mum number of instances (objects) created at such allocation sequence. We use
card(x, M) to refer to the number of occurrences of x in a multiset M.

Definition 2 (number of instances). Given an allocation sequence l, a program P and
input values x, we define the number of instances for l as:

inst(l, P, x) = max
Ct∈Conf P(x)

(
∑

〈c,O〉 ∈ Ct

card(l,O ∪ {|c|}))

Example 5. The number of instances for the allocation sequence 〈1, 2〉 in our running
example with input values x = 〈3, 4〉 (i.e., n=3 and m=4) is the maximum number of
objects with 〈1, 2〉 as allocation sequence, over all possible executions. Such maximum
is 3. In fact, for any execution the maximum coincides with the value of n. �

4.2 Communication

The communication refers to the interactions between objects occurred during the ex-
ecution of a program. As in the above section, objects are represented using allocation
sequences.

Quantified Abstractions of Distributed Systems 293

Definition 3 (communication). Given an execution trace t, its interactions, denoted
It, are defined as: It = {|〈ol, ok,m〉 | � : ok!m()

l ∈ steps(t)|}. The communication
performed in the execution of a program P and input values x, denoted CommP(x) is
defined as {It | t ∈ executions(P(x))}.
A global view of the distributed system for a trace execution t can be depicted as a graph
whose nodes are object representations of the form ol, where l is an allocation sequence
which occurs in the trace t, and whose arcs, annotated with the method name, are given
by the elements in the set It.

Example 6. The interactions for any execution of our
running example, and thus, the communication of
the program, is depicted graphically in the following
graph and, according to Def. 3 it is defined as:

{|〈ε, o1, start〉, 〈o1, o1, initDAO〉, 〈o1, o13, initDB〉,
〈o1, o12, run〉, ..., 〈o1, o12, run〉︸��������������������������������︷︷��������������������������������︸

n interactions

,

〈o12, o13, query〉, ..., 〈o12, o13, query〉︸��︷︷��︸
n·m interactions

〈o13, o134, exec〉, ..., 〈o13, o134, exec〉︸���︷︷���︸
n·m interactions

|}

start

o1

o13

o134

o12 o121...n

run run

exec

initDB

initDAO

query
query

Observe that the communication of the program comprises all calls to methods, includ-
ing calls within the same object such as 〈o1, o1, initDAO〉. A relevant aspect of commu-
nications is that they are independent from the distributed setting of the program. �

Definition 4 (number of interactions). Given two allocation sequences l and k, a
method m, a program P and its input values x, we define the number of interactions
between l and k for method m in the execution of P on x as: ninter(l, k,m, P, x) =

max
It∈CommP(x)

(card(〈l, k,m〉, It)).

Example 7. In the running example, methods initDAO and initDB are executed only once.
During the execution of start in object o1, method run is called inside the while loop
and it is executed n times by the objects o12. Similarly, for each execution of run in o12,
method query is called m times, resulting in n · m calls to method query in o13. Besides,
each call to query executes exec in o134. �

5 Inference of Quantified Abstractions

This section presents our method to infer quantified abstractions of distributed systems.
The main novelties are: (1) We provide an abstract definition for configuration and
communication that can be automatically inferred by relying on the results computed by
points-to analysis. (2) We enrich the abstraction by integrating quantitative information
inferred by resource analysis. For this, we build on prior work on resource analysis
[1,3] that was primarily used for the estimation of upper bounds on the worst-case cost
performed by each node in the system (see Section 3). To use this analysis, we need to
define new cost models that allow establishing upper bounds for the number of nodes
and communications which the execution of the system requires.

294 E. Albert et al.

5.1 Quantified Configurations

The points-to analysis results can be presented by means of a points-to graph as follows.
We use alloc(P) to denote the set of allocation sites in program P.

Definition 5 (points-to graph). Given a program P and its points-to analysis results,
we define its points-to graph as a directed graph GP = 〈V, E〉 whose set of nodes is
V = O and set of edges is E = {ol → ol′ | q:y=new or q:y=newcog ∈ alloc(P) ∧ ol ∈
pt(q, this) ∧ ol′ ∈ pt(q, y)}.
Example 8. The following graph shows the points-to graph
for the running example. It contains one node for each object
name inferred by the points-to analysis. Given an allocation
site, edges link object names pointed to by this to the corre-
sponding objects created at that program point, e.g., an edge
from o1 to o13 and o12 and another one from o13 to o134. �

Points-to graphs provide abstractions of the ownership rela-
tions among objects in the program. To extract abstract

o1

o13

o134

o12

configurations from them, it is necessary to identify cobox roots and find the set of ob-
jects which belong to the coboxes associated to such roots. Note that given an object
name 〈 j . . . q〉 it can be decided whether it represents a cobox root, denoted
is root(〈 j . . . q〉), by simply checking whether the allocation site q contains a newcog
instruction. We write a � b to indicate that there is a non-empty path in a graph from
a to b and denote by interm(a, b) the set of intermediate nodes in the path (excluding a
and b).

Definition 6 (abstract configuration). Given a program P and a points-to graph GP =

〈V, E〉 for P, we define its abstract configuration AP as the set of pairs of the form
〈o, abs in cobox(o,GP)〉 s.t. o ∈ V ∧ is root(o) where abs in cobox(o,GP) = {o′ ∈ V s.t.
o� o′ in GP and ∀o′′ ∈ interm(o, o′) ∧ ¬is root(o′′)}.
Note that, in the above definition, function abs in cobox returns the subset of objects
which are part of the cobox whose root is the parameter o.

Example 9 (abstract configuration). The abstract configuration for the concrete Set-
ting 2 is represented graphically in Ex. 8. As before, cobox roots appear in grey and
objects are grouped by cobox. The abstract configurations for the Settings in Ex. 4 are:
Setting 1: 〈o1, {o12, o13}〉, 〈o134, {}〉, Setting 2: 〈o1, {o12}〉, 〈o13, {}〉, 〈o134, {}〉,
Setting 3: 〈o1, {}〉, 〈o12, {}〉, 〈o13, {o134}〉 �

Soundness of the analysis requires that the abstract configuration obtained is a safe
approximation of the configuration of the program for any input values. Given two
object names ol and ol′ , we say that ol′ covers ol, written ol ≤ ol′ if l′ is a suffix of l
modulo ⊕. Given two sets of object names O1 and O2, we write O1 � O2 if all objects
in O1 are covered by some element in O2. Given 〈ol,O〉 and 〈ol′ ,O′〉, we write 〈ol,O〉 �
〈ol′ ,O′〉 if ol ≤ ol′ and O � O′. Given two configurations C and C′, we write C � C′ if
∀〈ol,O〉 ∈ C there exists 〈ol′ ,O′〉 ∈ C′ s.t. 〈ol,O〉 � 〈ol′ ,O′〉.

Quantified Abstractions of Distributed Systems 295

Theorem 2 (soundness of abstract configurations). Let P be a program and Ap its
abstract configuration. Then ∀x,∀Ct ∈ Conf P(x),Ct � Ap.

The proof is entailed from the soundness proof of the underlying points-to analysis (our
implementation uses an adaptation of [11]). It is easy to see that the theorem holds for
the configuration Conf P in Ex. 4, and any abstract configurationAP of Ex. 9.

(Non-quantified) abstract configurations are already useful when combined with the
resource analysis in Sec. 3, since they allow us to obtain the resource consumption at
the level of cobox names. In what follows, given a points-to graph GP and a cobox root
o, we use cobox(o,GP,) to denote {o} ∪ abs in cobox(o,GP).

Example 10. Using the UB expression inferred in Ex. 3 and the abstract configurations
for all settings in Ex. 9, we can obtain the cost for each cobox name. The following
table shows the results obtained from UBM

I

main(n,m)|cobox(c,Gmain) where c corresponds, in
each case, to the cobox name in the considered abstract configuration:

Setting 1 Setting 2 Setting 3
c UB c UB c UB
o1 24 + 18·n + 10·n·m o1 18 + 18·n + 8·n·m o1 18 + 12·n

o134 n·m o13 6 + 2·n·m o12 6·n + 8·n·m
o134 n·m o13 6 + 3·n·m

As the table shows, in Settings 1 and 2 most of the instructions are executed in cobox(es)
represented by cobox name o1. In Setting 3, the cost is more evenly distributed among
cobox names. However, in order to reason about how loaded actual coboxes are it is
required to have information about how many instances of each cobox name exist. For
example, in Setting 3, o12 represents n Handler coboxes. This essential (and comple-
mentary) information will be provided by the quantified abstraction. �

We now aim at quantifying abstract configurations, i.e., at inferring an over-ap-
proximation of the number of concrete objects (and coboxes) that each abstract
object (or cobox) represents. For this purpose, we define the MC(b, ol) cost model as
a function which returns c(ol⊕q) if b ≡ q:y=new C or b ≡ q:y=newcog C, and 0 oth-
erwise. The novelty is on how the information computed by the points-to analysis is
used in the cost model: it concatenates the allocation sequence of the object received
as parameter (that corresponds to the considered allocation sequence for this) with the
instruction allocation site q. This allows counting the elements created at this point for
each particular instance of this considered by the points-to analysis.

Example 11. Using MC , the upper bound obtained for the running example is the
expression UBM

C

main(n,m) = c(o1) + c(o13) + c(o134) + n · c(o12). This expression allows
us to infer an upper bound of the maximum number of instances for any object identi-
fied in the points-to graph. Regarding configurations, we are interested in the number
of instances of those objects that are distributed nodes (coboxes). The following table
shows the results of solving the expression UBM

C

main(n,m)|cobox(c,Gmain) where c as before are
the coboxes for each abstract configuration.

296 E. Albert et al.

Setting 1 Setting 2 Setting 3
c UB c UB c UB
o1 1 o1 1 o1 1

o134 1 o13 1 o12 n
o134 1 o13 1

2 3 2 + n

Clearly, Setting 1 is the setting that creates fewer
coboxes (only 2 coboxes execute the whole pro-
gram). Thus, the queries requested by handlers can-
not be processed in parallel. If there is more parallel
capacity available, Setting 3 may be more appropri-
ate, since handlers can process requests in parallel.

Theorem 3. Under the assumptions in Th. 1, ∀x, inst(l, P, x) ≤ UBM
C

P (xs)|{ol′ }.

The proof is an instance of Th. 1 forMC and the definition of inst in Def. 2.

5.2 Quantified Communication

From the points-to analysis results, we can generate the interaction graph as follows.

Definition 7 (interaction graph). Given a program P and its points-to analysis results,
we define its interaction graph as a directed graph IP = 〈V, E〉 with a set of nodes V = O
and a set of edges E = {ol

m−→ ol′ | q:x!m() ∧ ol ∈ pt(q, this) ∧ ol′ ∈ pt(q, x)}.
Example 12. The following graph shows the interaction
graph for the example. Edges connect the object that is
executing when a method is called with the object respon-
sible for executing the call, e.g., during the execution of
start, object o1 calls method initDAO using the this refer-
ence and it also interacts with o12 by calling run. Note that
the multiple calls to query from o12 to o13 are abstracted
by one edge. �

o1

o13

o134

o12

exec
query

runinitDB

initDAO

We now integrate quantitative information in the interaction graph. For this purpose,
we define the cost model MK(b, o, p) as a function which returns c(m)·c(o, p) if b ≡
!m(), and 0 otherwise. The key point is that for capturing interactions between objects,

when applying the cost model to an instruction, we pass as parameters the considered
allocation sequences of the caller and callee objects. The resulting upper bounds will
contain cost centers made up of pairs of abstractions c(o, p), where o is the object that is
executing and p is the object responsible for executing the call. Besides, we attach to the
interaction the name of the invoked method c(m) (multiplication is used as an instrument
to attach this information and manipulate it afterwards as we describe below).

From the upper bounds on the interactions, we can obtain a range of useful informa-
tion: (1) By replacing c(m) by 1, we obtain an upper bound on the number of interactions
between each pair of objects. (2) We can replace c(m) by (an estimation of) the amount
of data transferred when invoking m (i.e., the size of its arguments). This is a first ap-
proximation of a band-width analysis. (3) Replacing c(o, p) by 1 for selected objects
and the remaining ones by 0, we can see the interactions between the selected objects.
(4) If we are interested in the communications for the whole program, we just replace
all expressions c(o, p) by 1. (5) Furthermore, we can obtain the interactions between
the distributed nodes by replacing by 1 those cost centers in which o and p belong to
different coboxes and by 0 the remaining ones. From this information, we can detect
nodes that have many interactions and that would benefit from being deployed on the
same machine or at least have a fast communication channel.

Quantified Abstractions of Distributed Systems 297

Example 13. The interaction UB obtained by the resource analysis is as follows:
UBM

K

main(n,m) = c(start)·c(ε, o1) + c(initDAO)·c(o1, o1) + c(initDB)·c(o1, o13)+
n·c(run)·c(o1, o12) + n·m·c(query)·c(o12, o13) + n·m·c(exec)·c(o13, o134)

From this global UB, we obtain the following UBs on the number of interactions be-
tween coboxes for the different settings in Ex. 4:

Setting 1 Setting 2 Setting 3
method coboxes UB method coboxes UB method coboxes UB
exec o1 → o134 n·m query o1 → o13 n·m run o1 → o12 n

exec o13 → o134 n·m initDB o1 → o13 1
query o12 → o13 n·m

n·m n·m + n·m 1 + n + n·m

The last row shows the total number of interactions between coboxes. Clearly, the min-
imum number of inter-cobox interactions happens in Setting 1, where most of the ob-
jects are in the same cobox. Setting 2 has a higher number of interactions, because the
database objects DAO and DB are in different coboxes. In Setting 3 most interactions are
produced between the coboxes created for the handlers which, on the positive side, may
run in parallel. By combining
this information with the quantified
configuration of the system, for set-
ting 3, we generate the quantified
abstraction (shown in the graph).
Each node contains as object iden-
tifier its allocation sequence and the
number of instances (e.g., the num-
ber of instances of o12 is n). Op-
tionally, if it is a cobox, it contains
the number of instructions executed
by it. For instance, the UB on the
number of instructions executed in
cobox o12 is 6·n+8·n·m (see Ex. 10).
The edges represent the interactions

o1

18+12·n
1

o13

6+n·3·m
1 o12

6·n+8·n·m
n

o134

−
1

initDAO [1]

query [n·m]

exec [n·m]

run [n]initDB [1]

UB Total Comm.: 1+n+n·m
UB Total Coboxes: 2+n

and are annotated (in brackets) with the UB on the number of calls (e.g., the objects
represented by o12 call to o13 n·m times calling method query). �

From the example, we can figure out the five applications described in Sec. 1: (1) We
can visualize the topology and view the number of tasks to be executed by the dis-
tributed nodes and possibly spot errors. (2) We detect that node o1 executes only one
process, while o13 executes many. Thus, it probably makes sense to have them sharing
the processor. (3) We can perform meaningful resource analysis by assigning to each
distributed node the number of steps performed by it, rather than giving this number at
the level of objects as in [1,3] (as maybe the objects do not share the processor). (4) We
can see that o13 and o12 have many interactions and would benefit from having a fast
communication channel. (5) From the quantified interactions, if we compute the sizes
of the arguments, we can figure out the size of the data to be transferred (bandwidth

298 E. Albert et al.

Similarly to abstract configurations, we use UBM
K

main(x)|N,M to denote the result of
replacing in the resulting UB the expression: c(o1, o2) by 1 if o1, o2 ∈ N and by 0
otherwise and c(m) by 1 if m ∈ M and by 0 otherwise. This theorem is also an instance
of Th. 1 for the defined cost model and Def. 4.

Theorem 4 (soundness). Under the assumptions in Theorem 1, ∀ x we have that
ninter(l, k,m, P, x) ≤ UBM

K

P (x)|{ol,ok},{m}.

6 Implementation and Application to Case-Study

We have implemented our analysis in COSTABS [1] and applied it to a realistic case-
study, the Trading System developed by Fredhopper R© and available from
http://www.hats-project.eu. Due to some limitations of the underlying resource
analysis which are not related to our method, we had to slightly modify the program
by changing the structure of some loops, and had to add some size relations that the
analysis could not infer. The simple online interface to our analysis and the modified
case-study can be found at http://costa.ls.fi.upm.es/costabs/QA. This Trad-
ing System is a typical example for a distributed component-based information system.
It models a supermarket sales handling system: it includes the processes at a single cash
desk (like scanning products using a bar code scanner or paying by cash or by credit
card); it also handles bill printing; as well as administrative tasks In the Trading System,
a store consists of an arbitrary number of cash desks. Each of them is connected to the
store server, holding store-local product data such as inventory stock, prices, etc.

The experiments presented have been performed on an Intel Core 2 Duo at 2.53GHz
with 4GB of RAM, running Ubuntu 12.10. The analyzed source code has 1340 l.o.c.,
with 94 methods and 22 classes. Points-to analysis has been performed with k = 2, i.e.,
the maximum length of object names (see Sec. 3) is two. The inference of the quantified
configuration took 109 seconds and of the quantified communication 410 seconds. The
larger time taken by the communication is justified because there are many more method
invocations than object creations in the program and, thus, the resource analysis has
more equations to solve in the latter case. The analysis identifies 22 different object
names (17 of them are coboxes) and 96 interactions in the communication graph. We
do not show the UBs inferred because the expressions obtained are rather large.

The QA obtained for the system is as follows: we identify two separate parts in the
model, an environment part that creates a handler for each physical device and another
part that represents the physical devices. The configuration of the system is distributed
by creating one cobox for each physical device. The quantified abstraction infers that
the number of instances for each identified cobox is linear on the number of cash desks
installed. Besides, the system also creates one distributed environment object running
on its own cobox for handling each physical device. The interactions of the system
show that each environment cobox communicates with its physical device in order to
perform each task. A notable result of our experiments is that we have detected two
objects with a high number of interactions, namely CashDeskPCImpl and CashBox-
Impl, and which run in separate coboxes. Clearly, the implementation would benefit
from deploying these two coboxes on the same machine since their tasks are highly

http://www.hats-project.eu
http://costa.ls.fi.upm.es/costabs/QA

Quantified Abstractions of Distributed Systems 299

cooperative. If this is not possible, it should be at least guaranteed that they have a fast
communication channel. The remaining objects do not show any overloading problem.

7 Conclusions and Future Work

We have shown that distributed systems can be statically approximated, both qualita-
tively and quantitatively. For this, we have proposed the use of powerful techniques
for points-to and resource analysis whose integration results in a novel approach to de-
scribing system configurations. There exist several contributions in the literature about
occurrence counting analysis in mobile systems of processes, although they focus on
high-level models, such as the π-calculus and BioAmbients [8,9]. But, to the best of
our knowledge, this paper is the first approach that presents a quantitative abstraction
of a distributed system for a real language and experimentally evaluates on a prototype.
We argue that our work is a first crucial step towards automatically inferring optimal
deployment configurations of distributed systems. In future work, we plan to tackle this
problem and consider objective functions. An objective function should indicate the
cost metrics that we aim at keeping minimal, e.g., by taking into account the actual
features of the deployment platforms.

Acknowledgments. This work was funded in part by the Information & Commu-
nication Technologies program of the European Commission, Future and Emerging
Technologies (FET), under the ICT-231620 HATS project, and by the Spanish projects
TIN2008-05624, TIN2012-38137, PRI-AIBDE-2011-0900 and S2009TIC-1465
PROMETIDOS-CM.

References

1. Albert, E., Arenas, P., Genaim, S., Gómez-Zamalloa, M., Puebla, G.: Cost Analysis of Con-
current OO Programs. In: Yang, H. (ed.) APLAS 2011. LNCS, vol. 7078, pp. 238–254.
Springer, Heidelberg (2011)

2. Albert, E., Arenas, P., Genaim, S., Gómez-Zamalloa, M., Puebla, G.: COSTABS: A Cost and
Termination Analyzer for ABS. In: Procs. of PEPM 2012, pp. 151–154. ACM Press (2012)

3. Albert, E., Arenas, P., Correas, J., Gómez-Zamalloa, M., Genaim, S., Puebla, G.,
Román-Dı́ez, G.: Object-sensitive cost analysis for concurrect objects. Technical Report
(2012), http://costa.ls.fi.upm.es/papers/costa/AlbertACGGPRtr.pdf

4. America, P.: Issues in the design of a parallel object-oriented language. Formal Aspects of
Computing 1, 366–411 (1989)

5. Buyya, R., Yeo, C.S., Venugopal, S., Broberg, J., Brandic, I.: Cloud computing and emerging
IT platforms: Vision, hype, and reality for delivering computing as the 5th utility. Future
Generation Computer Systems 25(6), 599–616 (2009)

6. Caromel, D.: Towards a method of object-oriented concurrent programming.
Communications of the ACM 36(9), 90–102 (1993)

7. Cousot, P., Halbwachs, N.: Automatic Discovery of Linear Restraints Among Variables of a
Program. In: POPL, ACM Press (1978)

8. Feret, J.: Occurrence counting analysis for the pi-calculus. ENTCS 39(2), 1–18 (2001)

http://costa.ls.fi.upm.es/papers/costa/AlbertACGGPRtr.pdf

300 E. Albert et al.

9. Gori, R., Levi, F.: A new occurrence counting analysis for bioambients. In: Yi, K. (ed.)
APLAS 2005. LNCS, vol. 3780, pp. 381–400. Springer, Heidelberg (2005)

10. Johnsen, E.B., Hähnle, R., Schäfer, J., Schlatte, R., Steffen, M.: ABS: A Core Language
for Abstract Behavioral Specification. In: Aichernig, B.K., de Boer, F.S., Bonsangue, M.M.
(eds.) FMCO 2010. LNCS, vol. 6957, pp. 142–164. Springer, Heidelberg (2011)

11. Milanova, A., Rountev, A., Ryder, B.G.: Parameterized object sensitivity for points-to
analysis for java. ACM Trans. Softw. Eng. Methodol. 14, 1–41 (2005)

12. Schäfer, J., Poetzsch-Heffter, A.: JCoBox: Generalizing Active Objects to Concurrent
Components. In: D’Hondt, T. (ed.) ECOOP 2010. LNCS, vol. 6183, pp. 275–299. Springer,
Heidelberg (2010)

13. Smaragdakis, Y., Bravenboer, M., Lhoták, O.: Pick your contexts well: understanding
object-sensitivity. In: Procs. of POPL 2011, pp. 17–30. ACM (2011)

14. Yonezawa, A., Briot, J.P., Shibayama, E.: Object-oriented concurrent programming ABCL/1.
In: Procs. of OOPLSA 1986, pp. 258–268. ACM, USA (1986)

An Algebraic Theory for Web Service Contracts

Cosimo Laneve1 and Luca Padovani2

1 Università di Bologna – INRIA Focus Team, Italy
2 Università di Torino – Dipartimento di Informatica, Italy

Abstract. We study a natural notion of compliance between clients
and services in terms of their bpel (abstract) descriptions. The induced
preorder shows interesting connections with the must preorder and has
normal form representatives that are parallel-free finite-state activities,
called contracts. The preorder also admits the notion of least service
contract that is compliant with a client contract, called principal dual
contract. Our framework serves as a foundation of Web service tech-
nologies for connecting abstract and concrete service definitions and for
service discovery.

1 Introduction

Service-oriented technologies and Web services have been proposed as a new
way of distributing and organizing complex applications across the Internet.
These technologies are nowadays extensively used for delivering cloud computing
platforms.

A large effort in the development of Web services has been devoted to their
specification, their publication, and their use. In this context, the Business Pro-
cess Execution Language for Web Services (bpel for short) has emerged as the
de-facto standard for implementing Web service composition and, for this rea-
son, it is supported by the toolkits of the main software vendors (Oracle Process
Manager, IBM WebSphere, and Microsoft BizTalk).

As regards publication, service descriptions should retain abstract (behav-
ioral) definitions, which are separate from the binding to a concrete protocol or
endpoint. The current standard is defined by the Web Service Description Lan-
guage (wsdl) [10], which specifies the format of the exchanged messages – the
schema –, the locations where the interactions are going to occur – the inter-
face –, the transfer mechanism to be used (i.e. soap-rpc, or others), and basic
service abstractions (one-way/asynchronous and request-response/synchronous
patterns of conversations). Since these abstractions are too simple for expressing
arbitrary, possibly cyclic protocols of exchanged messages between communicat-
ing parties, wsdl is not adequate to verify the behavioral compliance between
parties. It is also worth to notice that the attempts, such as uddi (Universal
Description, Discovery and Integration) registries [5], provide limited support
because registry items only include pointers to the locations of the service ab-
stractions, without constraining the way these abstractions are defined or related
to the actual implementations (cf. the <tModel> element). In this respect, uddi

E.B. Johnsen and L. Petre (Eds.): IFM 2013, LNCS 7940, pp. 301–315, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

302 C. Laneve and L. Padovani

registries are almost useless for discovering services; an operation that is per-
formed manually by service users and consumers.

The publication of abstract service descriptions, called contracts in the fol-
lowing, and the related ability of service searching assume the existence of a
formal notion of contract equivalence and, more generally, of a formal theory
for reasoning about Web services by means of their contracts. We identify three
main goals of a theory of Web service contracts: (1) it should provide a for-
mal language for describing Web services at a reasonable level of abstraction
and for admitting static correctness verification of client/service protocol im-
plementations; (2) it should provide a semantic notion of contract equivalence
embodying the principle of safe Web service replacement. Indeed, the lack of a
formal characterization of contracts only permits excessively demanding notions
of equivalence such as nominal or structural equality; (3) it should provide tools
for effectively and efficiently searching Web services in Web service repositories
according to their contract.

The aim of this contribution is to provide a suitable theory of contracts for
Web services by developing a semantic notion of contract equivalence. In fact, we
relax the equivalence into a subcontract preorder, so that Web services exposing
“larger” contracts can be safely returned as results of queries for Web services
with “smaller” contracts. We will precisely define what “smaller” and “larger”
mean, and we will define which safety property we wish to preserve when sub-
stituting a service exposing a contract with a service exposing a larger contract.
Our investigation abstracts away from the syntactical details of schemas as well
as from those aspects that are oriented to the actual implementations, such as
the definition of transmission protocols; all these aspects may be easily inte-
grated on top of the formalism. We do not commit to a particular interpretation
of the actions occurring in contracts either: they can represent different typed
channels on which interaction occurs or different types of messages.

To equip contracts with a subcontract preorder, we commit to a testing ap-
proach. We define client satisfaction as the ability of the client to successfully
complete every interaction with the service; here “successfully” means that the
client never gets stuck (this notion is purposefully asymmetric as client’s satis-
faction is our main concern). The preorder arises by comparing the sets of clients
satisfied by services.

The properties enjoyed by the subcontract preorder are particularly relevant
in the context of Web services. Specifically, it is possible to determine, given a
client exposing a certain behavior, the smallest (according to subcontract pre-
oder) service contract that satisfies the client – the principal dual contract. This
contract, acting like a principal type in type systems, guarantees that a query
to a Web service registry is answered with the largest possible set of compatible
services in the registry’s databases.

Related Works. Our contracts are normal forms of τ -less ccs processes, a calcu-
lus developed by De Nicola and Hennessy in a number of contributions [13,15,18].
The use of formal models to describe communication protocols is not new (see
for instance the exchange patterns in ssdl [20], which are based on csp and the

An Algebraic Theory for Web Service Contracts 303

π-calculus), nor is it the use or ccs processes as behavioral types (see [19]
and [9]). The subcontract relation � has been introduced in [17]. In [6] the
authors have studied a refined version of � that is more suited for orchestra-
tions. The works that are more closely related to ours are by Castagna et al. [8]
and the ones on session types, especially [14] by Gay and Hole. The authors
of [8] make the assumption that client and service can be mediated by a filter,
which prevents potentially dangerous interactions by dynamically changing the
interface of the service as it is seen by the client. The present work can be seen
as a special case of [8] in which the filter is static and consequently is unneces-
sary; at the same time, in the present work we also consider divergence, which is
not addressed in [8]. With respect to [14] (and systems based on session types)
our contract language is much simpler and it can express more general forms
of interaction. While the language defined in [14] supports first-class sessions
and name passing, it is purposefully tailored so that the transitivity problems
mentioned above are directly avoided at the language level. This restricts the
subcontract relation in such a way that internal and external choices can never
be related (hence, {a, b} : a⊕ b " {a, b} : a+ b does not hold).

As regards schemas, which are currently part of bpel contracts, it is worth
mentioning that they have been the subject of formal investigation by several
research projects [4, 16]. This work aims at pursuing a similar objective, but
moving from the description of data to the description of behaviors.

Structure of the Paper. In Section 2 we introduce bpel abstract activities and
their semantics. In Section 3 we define contracts and detail their relationship with
bpel abstract activities. In Section 4 we address the issue of service discovery
in repositories. We conclude in Section 5. Due to space limitations, proofs have
been omitted; they can be found in the full paper.

2 BPEL and the Abstract Language

We introduce the basic notions of bpel by means of an example. The xml doc-
ument in Figure 1 describes the behavior of an order service that interacts with
four other partners, one of them being the customer (purchasing), the oth-
ers being providers of price (invoicing service), shipment (shipping service),
and manufacturing scheduling (scheduling service). The business process is
made of activities, which can be either atomic or composite. In this example
atomic activities are represented by invocation of operations in other partners
(lines 7–9, 15–18, 22–25), acceptance of messages from other partners, either
as incoming requests (line 3) or as responses to previous invocations (lines 10–
12 and 19), and sending of responses to clients (line 28). Atomic activities are
composed together into so-called structured activities, such as sequential com-
position (see the sequence fragments) and parallel composition (see the flow

fragment at lines 4–27). In a sequence fragment, all the child activities are
executed in the order in which they appear, and each activity begins the exe-
cution only after the previous one has completed. In a flow fragment, all the

304 C. Laneve and L. Padovani

1 <process>
2 <sequence>
3 <receive partnerLink="purchasing" operation="sendPurchaseOrder"/>
4 <flow>
5 <links> <link name="ship-to-invoice"/> <link name="ship-to-scheduling"/> </links>
6 <sequence>
7 <invoke partnerLink="shipping" operation="requestShipping">
8 <sources> <source linkName="ship-to-invoice"/> </sources>
9 </invoke>

10 <receive partnerLink="shipping" operation="sendSchedule">
11 <sources> <source linkName="ship-to-scheduling"/> </sources>
12 </receive>
13 </sequence>
14 <sequence>
15 <invoke partnerLink="invoicing" operation="initiatePriceCalculation"/>
16 <invoke partnerLink="invoicing" operation="sendShippingPrice">
17 <targets> <target linkName="ship-to-invoice"/> </targets>
18 </invoke>
19 <receive partnerLink="invoicing" operation="sendInvoice"/>
20 </sequence>
21 <sequence>
22 <invoke partnerLink="scheduling" operation="requestProductionScheduling"/>
23 <invoke partnerLink="scheduling" operation="sendShippingSchedule">
24 <targets> <target linkName="ship-to-scheduling"/> </targets>
25 </invoke>
26 </sequence>
27 </flow>
28 <reply partnerLink="purchasing" operation="sendPurchaseOrder"/>
29 </sequence>
30 </process>

Fig. 1. bpel business process for an e-commerce service

child activities are executed in parallel, and the whole flow activity completes
as soon as all the child activities have completed. It is possible to constrain the
execution of parallel activities by means of links. In the example, there is a link
ship-to-invoice declared at line 5 and used in lines 8 and 17, meaning that the
invocation at lines 16–18 cannot take place before the one at lines 7–9. Similarly,
the link ship-to-scheduling means that the invocation at lines 23–25 cannot
take place before the receive operation at lines 10–12 has completed. Intuitively,
the presence of links limits the possible interleaving of the activities in a flow

fragment.
Note that bpel includes other conventional constructs not shown in the ex-

ample, such as conditional and iterative execution of activities.
To pursue our formal investigation, we will now present an abstract language

of processes whose operators correspond to those found in bpel. Since we will
focus on the interactions of bpel activities with the external environment, rather
than on the actual implementation of business processes, our process language
overlooks details regarding internal, unobservable evaluations. For example, the
bpel activity

<if>
<condition> bool-expr </condition>
activity-True
<else> activity-False </else>

</if>

will be abstracted into the process activity-True⊕ activity-False, mean-
ing that one of the two activities will be performed and the choice will be a

An Algebraic Theory for Web Service Contracts 305

consequence of some unspecified internal decision. A similar observation per-
tains to the <while> activity (see Remark 2).

2.1 Syntax of BPEL Abstract Activities

Let N be a set of names, ranged over by a, b, c, . . . , and N be a disjoint set of co-
names, ranged over by a, b, c, . . . ; the term action refers to names and co-names
without distinction; actions are ranged over by α, β, Let a = a. We use
ϕ, ψ, . . . to range over (N ∪ N)∗ and r, s, . . . to range over finite sets of actions.

Let r
def
= {α | α ∈ r}. The syntax of bpel abstract activities is defined by the

following grammar:

P,Q,Pi ::= 0 (empty)
| a (receive)
| a (invoke)
|

∑
i∈I αi ;Pi (pick)

| P |A Q (flow & link)
| P ;Q (sequence)
|

⊕
i∈I Pi (if)

| P* (while)

Each construct is called with the name of the corresponding bpel construct.
The activity 0 represents the completed process, it performs no visible action.
The activity a represents the act of waiting for an incoming message. Here we
take the point of view that a stands for a particular operation implemented
by the process. The activity a represents the act of invoking the operation a
provided by another partner. The activity

∑
i∈I αi;Pi represents the act of

waiting for any of the αi operations to be performed, i belonging to a finite set
I. Whichever operation αi is performed, it first disables the remaining ones and
the continuation Pi is executed. If αi = αj and i �= j, then the choice whether
executing Pi or Pj is implementation dependent. The process P |A Q, where A
is a set of names, represents the parallel composition (flow) of P and Q and
the creation of a private set A of link names that will be used by P and Q to
synchronize; an example will be given shortly. The n-ary version

∏A
i∈1..n Pi of

this construct may also be considered: we stick to the binary one for simplicity.
The process P ;Q represents the sequential composition of P followed by Q.
Again we only provide a binary operator, where the bpel one is n-ary. The
process

⊕
i∈I Pi, again with I finite, represents an internal choice performed by

the process, that results into one of the I exclusive continuations Pi. Finally, P
*

represents the repetitive execution of process P so long as an internally verified
condition is satisfied.

The pick activity
∑

i∈1..n αi;Pi and the if activity
⊕

i∈1..n Pi will be also
written α1;P1+ · · ·+αn;Pn and P1⊕· · ·⊕Pn, respectively. In the following we
treat (empty), (receive), and (invoke) as special cases of (pick), while at the
same time keeping the formal semantics just as easy. In particular, we write 0
for

∑
α∈∅ α;Pα and α as an abbreviation for

∑
α∈{α} α;0 (tailing 0 are always

omitted). Let also actions(P) be the set of actions occurring in P .

306 C. Laneve and L. Padovani

Table 1. Legend for the operations of the bpel process in Figure 1

Name Operation

a sendPurchaseOrder

b requestShipping

c sendSchedule

d initiatePriceCalculation

e sendShippingPrice

f sendInvoice

g requestProductionScheduling

h sendShippingSchedule

x ship-to-invoce

y ship-to-scheduling

Example 1. Table 1 gives short names to the operations used in the business
process shown in Figure 1. Then the whole bpel activity can be described by
the term

a;
(
b;

(
(x |∅ c;y) |{x} d;x;e; f

)
|{y} g;y;h

)
;a

where we use names for specifying links. Such names are restricted so that they
are not visible from outside. Indeed, they are completely internal to the process
and should not be visible in the process’ contract. ♦

Remark 1. The bpel specification defines a number of static analysis require-
ments beyond the mere syntactic correctness of processes whose purpose is to
“detect any undefined semantics or invalid semantics within a process defini-
tion” [2]. Several of these requirements regard the use of links. For example, it is
required that no link must cross the boundary of a repeatable construct (while).
It is also required that link ends must be used exactly once (hence 0 |{a} a is
invalid because a is never used), and the dependency graph determined by links
must be acyclic (hence a.b |{a,b} b.a is invalid because it contains cycles). These
constraints may be implemented by restricting the arguments to the above ab-
stract activities and then using static analysis techniques.

2.2 Operational Semantics of BPEL Abstract Activities

The operational semantics of bpel abstract activities is defined by means of a
completion predicate and of a labelled transition system. Let P�, read P has
completed, be the least predicate such that

0� P� Q�
P |A Q�

P� Q�
P ;Q�

Let μ range over actions and the special name ε denote internal moves. The
operational semantics of processes is described by the following rules plus the

An Algebraic Theory for Web Service Contracts 307

symmetric of the rules for |.

(action)∑
i∈I αi;Pi

αi−→ Pi

(if)⊕
i∈I Pi

ε−→ Pi

(flow)

P
μ−→ P ′ μ �∈ a ∪ a

P |A Q
μ−→ P ′ |A Q

(link)

P
α−→ P ′ Q

α−→ Q′ α ∈ a ∪ a

P |A Q
ε−→ P ′ |A Q′

(seq)

P
μ−→ P ′

P ;Q
μ−→ P ′;Q

(seq-end)

P� Q
μ−→ Q′

P ;Q
μ−→ Q′

(while-end)

P* ε−→ 0

(while)

P
μ−→ P ′

P* μ−→ P ′;P*

We briefly describe the rules. The process
∑

i∈I αi ;Pi has as many α-labelled
transitions as the number of actions in {αi | i ∈ I}. After a visible transition,
only the selected continuation is allowed to execute. The process

⊕
i∈I Pi may

internally choose to behave as one of the Pi, with i ∈ I. The process P |A Q
allows P and Q to internally evolve autonomously, or to emit messages, or to
synchronize with each other on names in the set A. It completes when both P
and Q have completed. The process P ;Q reduces according to the reductions
of P first, and of Q when P has completed. Finally, the process P* may either
complete in one step by reducing to 0, or it may execute P one more time
followed by P*. The choice among the two possibilities is performed internally.

Remark 2. According to the operational semantics, P* may execute the activity
P an arbitrary number of times. This is at odds with concrete bpel activities
having P* as abstract counterpart. For example, the bpel activity

<while>
<condition> bool-expr </condition>
activity

</while>

executes activity as long as the bool-expr condition is true. Representing such
bpel activity with activity* means overapproximating it. This abstraction is
crucial for the decidability of our theory.

We illustrate the semantics of bpel abstract activities through a couple of
examples:

1. (a⊕ b |{a,b} a⊕ b);c
ε−→ (a |{a,b} a⊕ b);c by (if), (flow), and (seq). By

the same rules, it is possible to have (a |{a,b} a ⊕ b);c
ε−→ (a |{a,b} b);c,

which cannot reduce anymore (a |{a,b} b is a deadlocked activity).

2. let Ψ
def
= 0;(0⊕0)*. Then, according to rules (seq-end), (if), and (while),

Ψ
ε−→ Ψ and Ψ

ε−→ 0.

Let
ε

=⇒ be the reflexive, transitive closure of
ε−→ and

α
=⇒ be

ε
=⇒ α−→ ε

=⇒; let

also P
μ−→ (resp. P

α
=⇒) if there exists P ′ such that P

μ−→ P ′ (resp. P
α

=⇒ P ′);

we let P �
μ−→ if not P

μ−→.

308 C. Laneve and L. Padovani

A relevant property of our bpel abstract calculus is that the model of every
activity is always finite. This result is folklore (the argument is similar to the
one for ccs* [7]).

Lemma 1. Let Reach(P) = {Q | there are μ1, . . . , μn with P
μ1−→ · · · μn−→ Q}.

Then, for every activity P , the set Reach(P) is always finite.

We introduce a number of auxiliary definitions that will be useful in Section 3.
By Lemma 1 these notions are trivially decidable.

Definition 1. We introduce the following notation:

– P↑ if there is an infinite sequence of ε-transitions P
ε−→ ε−→ · · · starting

from P . Let P↓ if not P↑.
– init(P)

def
= {α | P α

=⇒};
– we say that P has ready set r, notation P ⇓ r, if P

ε
=⇒ P ′ and r = init(P ′);

– let P
α

=⇒. Then P (α)
def
=

⊕
P

ε
=⇒ α−→P ′ P

′. We call P (α) the continuation of
P after α.

The above definitions are almost standard, except for P (α) (that we already used
in [17]). Intuitively, P (α) represents the residual behavior of P after an action
α, from the point of view of the party that is interacting with P . Indeed, the
party does not know which, of the possibly multiple, α-labelled branches P has
taken. For example (a;b+ a;c+ b;d)(a) = b⊕ c and (a;b+ a;c+ b;d)(b) = d.

2.3 The Compliance Preorder

We proceed defining a notion of equivalence between activities that is based on
their observable behavior. To this aim, we introduce a special name e for denoting
the successful termination of an activity (“e” stands for end). By compliance
between a “client” activity T and a “service” activity P we mean that every
interaction between T and P where P stops communicating with T is such that
T has reached a successfully terminated state.

Definition 2 (Compliance). Let AP = {a | a ∈ actions(P) ∪ actions(P)}
and e /∈ AP . The (client) activity T is compliant with the (service) activity P ,

written T / P , if P |AP T
ε

=⇒ P ′ |AP T ′ implies:

1. if P ′ |AP T ′ �
ε−→, then {e} ⊆ init(T ′), and

2. if P ′↑, then {e} = init(T ′).

We write P �∼ Q, called compliance preorder, if and only if T / P implies T / Q

for every T . Let �
def
= �∼ ∩�∼.

According to the notion of compliance, if the client-service conversation ter-
minates, then the client is in a successful state (it will emit an e-name). For
example, a;e+ b;e / a⊕ b and a;e⊕ b;e / a+ b but a;e⊕ b;e �/ a⊕ b because
of the computation a;e ⊕ b;e |{a,b} a⊕ b =⇒ a;e |{a,b} b �−→ where the client

An Algebraic Theory for Web Service Contracts 309

waits for an interaction on a in vain. Similarly, the client must reach a successful
state if the conversation does not terminate but the divergence is due to the
service. In this case, however, every reachable state of the client must be such
that the only possible action is e. The practical justification of such a notion of
compliance derives from the fact that connection-oriented communication pro-
tocols (like those used for interaction with Web services) typically provide for
an explicit end-of-connection signal. Consider for example the client behavior
e+ a;e. Intuitively this client tries to send a request on the name a, but it can
also succeed if the service rejects the request. So e+ a;e / 0 because the client
can detect the fact that the service is not ready to interact on a. The same client
interacting with a diverging service would have no way to distinguish a service
that is taking a long time to accept the request from a service that is perpetually
performing internal computations, hence e+ a;e �/ Ψ. As a matter of facts, the
above notion of compliance makes Ψ the “smallest service” – the one a client
can make the least number of assumptions on (this property will be fundamen-
tal in the definition of principal dual contract in Section 4). That is Ψ �∼ P , for

every P . As another example, we notice that a;b+ a;c �∼ a;(b⊕ c) since, after
interacting on a, a client of the smaller service is not aware of which state the
service is in (it can be either b or c). Had we picked only one a-derivative of the
smaller contract behavior, we would have failed to relate it with the a-derivative

of the larger contract, since both b ��∼ b⊕ c and c ��∼ b⊕ c.
As by Definition 2, it is difficult to understand the general properties of the

compliance preorder because of the universal quantification over all (client) activ-
ities T . For this reason, it is convenient to provide an alternative characterization
of �∼ which turns out to be the following:

Definition 3. A coinductive compliance is a relation R such that P R Q and
P↓ implies

1. Q↓, and
2. Q ⇓ r implies P ⇓ s for some s ⊆ r, and
3. Q

α
=⇒ implies P

α
=⇒ and P (α) R Q(α).

Let " be the largest coinductive compliance relation.

The pre-order " corresponds to the must-testing preorder [15] and is also an
alternative definition of �∼:

Theorem 1. P �∼ Q if and only if P " Q.

3 Contracts

In this section we discuss how to associate a behavioral description, called con-
tract, to a bpel abstract activity. The ultimate goal is being able to reason about
properties of bpel activities by means of the respective contracts.

Contracts use a set of contract names, ranged over C,C′,C1, A contract
is a tuple

(C1 = σ1, . . . ,Cn = σn, σ)

310 C. Laneve and L. Padovani

where Cj = σj are contract name definitions, σ is the main term, and we assume
that there is no chain of definitions of the form Cn1 = Cn2 , Cn2 = Cn3 , . . . ,
Cnk

= Cn1 . The syntax of σj and σ is given by

σ ::= C | α;σ | σ + σ | σ ⊕ σ

where C ∈ {C1, . . . ,Cn}. The contract α;σ represents sequential composition in
the restricted form of prefixing. The operations + and ⊕ correspond to pick and
if of bpel activities, respectively. These operations are assumed to be associa-
tive and commutative; therefore we will write σ1 + · · · + σn and σ1 ⊕ · · · ⊕ σn

without confusion and will sometimes shorten these contracts as
∑

i∈1..n σi and⊕
i∈1..n σi, respectively. The contract name C is used to model recursive behav-

iors such as C = a;C. In what follows we will leave contract name definitions
implicit and identify a contract (C1 = σ1, . . . ,Cn = σn, σ) with its main body
σ. We will write cnames(σ) for the set {C1, . . . ,Cn} and use the following abbre-
viations:

– 0
def
= C0, where C0 = C0 + C0 represents a terminated activity;

– Ω
def
= CΩ, where CΩ = CΩ ⊕ CΩ represents divergence, that is a non-

terminating activity.

Note that, even if apparently simpler, the contract language is not a sublanguage
of bpel abstract activities. For example, Ω cannot be written as a term in
the syntax of Section 2.1. Nevertheless, in the following, we demonstrate that
contracts provide alternative descriptions (with respect to the preorder �∼) to
bpel abstract activities.

The operational semantics of contracts is defined by the rules below:

α;σ
α−→ σ σ ⊕ ρ

ε−→ σ

σ
ε−→ σ′

σ + ρ
ε−→ σ′ + ρ

σ
α−→ σ′

σ + ρ
α−→ σ′

C = σ σ
μ−→ σ′

C
μ−→ σ′

plus the symmetric of rules + and ⊕. Note that + evaluates the branches as
long as they can perform invisible actions. This rule is absent in bpel abstract
activities because, there, the branches are always guarded by an action.

���� ��
��
��
��

����

in: Login

out: ValidLogin

out: InvalidLogin

in: Query

out: Catalog
in: Purchase

out: Accepted

out: InvalidPayment

out: OutOfStock

in: Logout

[ValidLogin]

[OutOfStock]

[InvalidLogin]

[InvalidPayment]

[Accepted]

[OutOfStock]
[InvalidPayment]

Fig. 2. Contract of a simple e-commerce service as a wscl diagram

An Algebraic Theory for Web Service Contracts 311

Example 2. The Web service conversation language wscl [3] describes conver-
sations between two parties by means of an activity diagram (Figure 2). The
diagram is made of interactions connected with each other by transitions. An
interaction is a basic one-way or two-way communication between the client and
the server. Two-way communications are just a shorthand for two sequential one-
way interactions. Each interaction has a name and a list of document types that
can be exchanged during its execution. A transition connects a source interaction
with a destination interaction. A transition may be labeled by a document type
if it is active only when a message of that specific document type was exchanged
during the previous interaction.

The diagram in Figure 2 describes the conversation of a service requiring
clients to login before they can issue a query. After the query, the service returns
a catalog. From this point on, the client can decide whether to purchase an item
from the catalog or to logout and leave. In case of purchase, the service may
either report that the purchase is successful, or that the item is out-of-stock, or
that the client’s payment is refused. By interpreting names as message types,
this e-commerce service can be described by the tuple:

(C1 = Login;(InvalidLogin;C1 ⊕ ValidLogin;C2) ,
C2 = Query;Catalog;(C2 + C3 + C4) ,
C3 = Purchase;(Accepted

⊕ InvalidPayment;(C3 + C4)
⊕ OutOfStock;(C2 + C4)) ,

C4 = Logout ,
C1)

There is a strict correspondence between unlabeled (respectively, labeled) tran-
sitions in Figure 2 and external (respectively, internal) choices in the contract.
Recursion is used for expressing iteration (the cycles in the figure) so that the
client is given another chance whenever an action fails for some reason. ♦

We can relate bpel abstract activities and contracts by means of the corre-
sponding transition systems. To this aim, let X and Y range over bpel abstract
activities and contracts. Then, X and Y interact according to the rules

X
ε−→ X′

X ‖Y ε−→ X′ ‖Y

Y
ε−→ Y′

X ‖Y ε−→ X ‖Y′

X
α−→ X′ Y

α−→ Y′

X ‖Y ε−→ X′ ‖Y′

It is possible to extend the definition of compliance to contracts and, by Def-
inition 2, obtain a relation that allows us to compare activities and contracts
without distinction, and similarly for ". To be precise, the relation X �∼ Y is

smaller (in principle) than the relation �∼ given in Definition 2 because, as we
have said, the contract language is not a sublanguage of that of activities and,
therefore, the set of tests that can be used for comparing X and Y is larger.
Nonetheless, the process language used in [12] includes both bpel abstract ac-
tivities and contracts and since �∼ is equivalent to must-testing, then we may

312 C. Laneve and L. Padovani

safely use the same symbol �∼ for both languages. This is a key point in our
argument, which will allow us to define, for every activity P , a contract σP such
that P � σP . In particular, let CP be the set of contract name definitions defined
as follows

CP =

{
Ω if P↑⊕

P⇓r
∑

α∈r α;CP (α) otherwise

A relevant property of CP is an immediate consequence of Lemma 1.

Lemma 2. For every P , the set cnames(CP) is finite.

The construction of the contract CP with respect to a bpel abstract activity is
both correct and complete with respect to compliance:

Theorem 2. P � CP .

4 Service Discovery and Dual Contracts

We now turn our attention to the problem of querying a database of Web service
contracts. To this aim, the relation �∼ (and the must-testing) turns out to be
too strong (see below). Following [17], we switch to more informative service
contracts than what described in Section 3. In particular, we consider pairs i : σ,
where i is the interface, i.e. the set of actions performed by the service, and σ is
as in Section 3 (it is intended that the names occurring in σ are included into
i). It is reasonable to think that a similar extension applies to client contracts:
clients, which are defined by bpel activities as well, are abstracted by terms in
the language of Section 2 and, in turn, their behavior is defined by a term in the
contract language, plus the interface.

Definition 4 (Subcontract relation). Let i : σ � j : τ if i ⊆ j and, for every
ρ such that actions(ρ) \ {e} ⊆ i and ρ / σ implies ρ / τ . Let ≈ be � ∩ �.

Let us comment on the differences between i : σ � j : τ and σ �∼ τ . We notice that
i : σ � j : τ only if i ⊆ j. This apparently natural prerequisite has substantial
consequences on the properties of � because it ultimately enables width and
depth extensions, which are not possible in the �∼ preorder. For instance, we have

{a} : a � {a, b} : a + b whilst a ��∼ a + b (width extension). Similarly we have

{a} : a � {a, b} : a;b whilst a ��∼ a;b (depth extension). These extensions are
desirable when searching for services, since every service offering more methods
than required is a reasonable result of a query. The precise relationship between
� and �∼ is expressed by the following statement.

Proposition 1. i : σ ≈ j : τ if and only if σ � τ and i = j.

The basic problem for querying Web service repositories is that, given a client
k : ρ, one wishes to find all the service contracts i : σ such that actions(ρ)\{e} ⊆ i
and ρ / σ. We attack this problem in two steps: first of all, we compute one

An Algebraic Theory for Web Service Contracts 313

particular service contract k \ {e} : Dk
ρ such that ρ / Dk

ρ; second, we take all
the services in the registry whose contract is larger than this one. In order to
maximize the number of service contracts returned as answer to the query, the
dual of a (client) contract k : ρ should be a contract k \ {e} : Dk

ρ such that it is
the smallest service contract that satisfies the client contract k : ρ. We call such
contract the principal dual contract of k : ρ.

In defining the principal dual contract, it is convenient to restrict the definition
to those client’s behaviors ρ that never lead to 0 without emitting e. For example,
the behavior a;e + b describes a client that succeeds if the service proposes a,
but that fails if the service proposes b. As far as querying is concerned, such
behavior is completely equivalent to a;e. As another example, the degenerate
client behavior 0 is such that no service will ever satisfy it. In general, if a client
is unable to handle a particular action, like b in the first example, it should
simply omit that action from its behavior. We say that a (client) contract k : ρ

is canonical if, whenever ρ
ϕ

=⇒ ρ′ is maximal, then ϕ = ϕ′e and e /∈ actions(ϕ′).
For example {a, e} : a;e, {a} : C, where C = a;C, and ∅ : Ω are canonical;
{a, b, e} : a;e+ b and {a} : C′, where C′ = a⊕ C′, are not canonical.

Observe that Lemma 1 also applies to contracts. Therefore it is possible to
extend the notions in Definition 1, by replacing activities with contracts.

Definition 5 (Dual contract). Let k : ρ be a canonical contract. The dual of
k : ρ is k \ {e} : Dk

ρ where Dk
ρ is the contract name defined as follows:

Dk
ρ

def
=

⎧⎪⎪⎨⎪⎪⎩
Ω if init(ρ) = {e}

∑
ρ ⇓ r
r\{e} = ∅

(
0⊕︸︷︷︸
if e∈r

⊕
α∈r\{e} α;D

k
ρ(α)

)
+ OTHk\init(ρ) otherwise

where OTHs
def
= 0 ⊕

⊕
α∈s α;Ω︸ ︷︷ ︸

if s = ∅

Few comments about Dk
ρ, when init(ρ) �= {e}, follow. In this case, the behavior ρ

may autonomously transit to different states, each one offering a particular ready
set. Thus the dual behavior leaves the choice to the client: this is the reason for
the external choice in the second line. Once the state has been chosen, the client
offers to the service a spectrum of possible actions: this is the reason for the
internal choice underneath the sum

∑
.

The contract OTHk\init(ρ) covers all the cases of actions that are allowed by the
interface and that are not offered by the client. The point is that the dual opera-
tor must compute the principal (read, the smallest) service contract that satisfies
the client, and the smallest convergent behavior with respect to a nonempty (fi-
nite) interface s is 0⊕

⊕
α∈s α;Ω. The 0 summand accounts for the possibility

that none of the actions in k \ init(ρ) is present. The external choice “+” dis-
tributes the proper dual contract over the internal choice of all the actions in

k \ init(ρ). For example, D
{a,a,e}
a; e = a;Ω + (0 ⊕ a;Ω). The dual of a divergent

314 C. Laneve and L. Padovani

(canonical) client {a} : C, where C = a;e⊕C, is also well defined: D{a,e}C′′ = a;Ω.
We finally observe that the definition also accounts for duals of nonterminating

clients, such as {a} : C′, where C′ = a;C′. In this case, D
{a}
C′ = a;D

{a}
C′ .

Similarly to the definition of contract names CP , it is possible to prove that
Dk

ρ is well defined.

Lemma 3. For every k : ρ, the set cnames(Dk
ρ) is finite.

The property that k \ {e} : Dk
ρ is the least dual contract of k : ρ follows.

Theorem 3. Let k : ρ be a canonical contract. Then:

1. ρ / Dk
ρ;

2. if k \ {e} ⊆ s and ρ / σ, then k \ {e} : Dk
ρ � s : σ.

A final remark is about the computational complexity of the discovery algorithm.
Determining � is EXPTIME-complete in the size of the contracts [1], which has
to be multiplied by the number of �-checks (to find a compliant service in the
repository) to obtain the overall cost.

5 Conclusions

In this contribution we have studied a formal theory of Web service abstract (be-
havioral) definitions as normal forms of a natural semantics for bpel activities.
Our abstract definitions may be effectively used in any query-based system for
service discovery because they support a notion of principal dual contract. This
operation is currently done in an ad hoc fashion using search engines or similar
technologies.

Several future research directions stem from this work. On the technical side,
a limit of our technique is that bpel activities are “static”, i.e. they cannot
create other services on the fly. This constraint implies the finiteness of models
and, for this reason, it is possible to effectively associate an abstract description
to activities. However, this impacts on scalability, in particular when services
adapt to peaks of requests by creating additional services. It is well-known that
such an additional feature makes models to be infinite states and requires an
approximate inferential process to extract abstract descriptions from activities.
Said otherwise, extending our technique to full ccs or π-calculus amounts to
defining abstract finite models such that Theorem 2 does not hold anymore. For
this reason, under- and over-estimations for services and clients, respectively,
must be provided.

Another interesting technical issue concerns the extension of our study to
other semantics for bpel activities, such as the preorder in [6], or even to weak
bisimulation (which has a polynomial computational cost). Perhaps one may
use axiomatizations of these equivalences for determining the class of contracts.
However it is not clear whether they admit a principal dual contract or not.

It is also interesting to prototyping our theory and experimenting it on some
existing repository, such as http://www.service-repository.com/. To this
aim we might use tools that have been already developed for the must test-
ing, such as the concurrency workbench [11].

An Algebraic Theory for Web Service Contracts 315

References

1. Aceto, L., Ingolfsdottir, A., Srba, J.: The algoritmics of bisimilarity. In: Sangiorgi,
D., Rutten, J. (eds.) Advanced Topics in Bisimulation and Coinduction. Cambridge
Tracts in Theoretical Computer Science, vol. 52, ch.3, pp. 100–172. Cambridge
University Press (2011)

2. Alves, A., et al.: Web Services Business Process Execution Language Version 2.0
(January 2007), http://docs.oasis-open.org/wsbpel/2.0/CS01/wsbpel-v2.0-
CS01.html

3. Banerji, A., Bartolini, C., Beringer, D., Chopella, V., et al.: Web Services
Conversation Language (WSCL) 1.0 (March 2002),
http://www.w3.org/TR/2002/NOTE-wscl10-20020314

4. Benzaken, V., Castagna, G., Frisch, A.: CDuce: an XML-centric general-purpose
language. SIGPLAN Notices 38(9), 51–63 (2003)

5. Beringer, D., Kuno, H., Lemon, M.: Using WSCL in a UDDI Registry 1.0. UDDI
Working Draft Best Practices Document (2001),
http://xml.coverpages.org/HP-UDDI-wscl-5-16-01.pdf

6. Bravetti, M., Zavattaro, G.: A theory of contracts for strong service compliance.
Mathematical Structures in Computer Science 19(3), 601–638 (2009)

7. Busi, N., Gabbrielli, M., Zavattaro, G.: On the expressive power of recursion,
replication and iteration in process calculi. Mathematical Structures in Computer
Science 19(6), 1191–1222 (2009)

8. Castagna, G., Gesbert, N., Padovani, L.: A Theory of Contracts for Web Services.
ACM Transactions on Programming Languages and Systems 31(5) (2009)

9. Chaki, S., Rajamani, S.K., Rehof, J.: Types as models: model checking message-
passing programs. SIGPLAN Not. 37(1), 45–57 (2002)

10. Christensen, E., Curbera, F., Meredith, G., Weerawarana, S.: Web Services
Description Language (WSDL) 1.1 (2001),
http://www.w3.org/TR/2001/NOTE-wsdl-20010315

11. Cleaveland, R., Parrow, J., Steffen, B.: The concurrency workbench: a semantics-
based tool for the verification of concurrent systems. ACM Trans. Program. Lang.
Syst. 15(1), 36–72 (1993)

12. De Nicola, R., Hennessy, M.: Testing equivalences for processes. Theor. Comput.
Sci. 34, 83–133 (1984)

13. De Nicola, R., Hennessy, M.: CCS without τ ’s. In: Ehrig, H., Levi, G., Montanari,
U. (eds.) CAAP 1987 and TAPSOFT 1987. LNCS, vol. 249, pp. 138–152. Springer,
Heidelberg (1987)

14. Gay, S., Hole, M.: Subtyping for session types in the π-calculus. Acta Informat-
ica 42(2-3), 191–225 (2005)

15. Hennessy, M.: Algebraic Theory of Processes. Foundation of Computing. MIT Press
(1988)

16. Hosoya, H., Pierce, B.C.: XDuce: A statically typed XML processing language.
ACM Trans. Internet Techn. 3(2), 117–148 (2003)

17. Laneve, C., Padovani, L.: The must preorder revisited – an algebraic theory for
web services contracts. In: Caires, L., Vasconcelos, V.T. (eds.) CONCUR 2007.
LNCS, vol. 4703, pp. 212–225. Springer, Heidelberg (2007)

18. Milner, R.: A Calculus of Communicating Systems. Springer (1982)
19. Nielson, H.R., Nielson, F.: Higher-order concurrent programs with finite commu-

nication topology (extended abstract). In: Proceedings of POPL 1994, pp. 84–97.
ACM Press (1994)

20. Parastatidis, S., Webber, J.: MEP SSDL Protocol Framework (April 2005),
http://ssdl.org

http://docs.oasis-open.org/wsbpel/2.0/CS01/wsbpel-v2.0-CS01.html
http://docs.oasis-open.org/wsbpel/2.0/CS01/wsbpel-v2.0-CS01.html
http://www.w3.org/TR/2002/NOTE-wscl10-20020314
http://xml.coverpages.org/HP-UDDI-wscl-5-16-01.pdf
http://www.w3.org/TR/2001/NOTE-wsdl-20010315
http://ssdl.org

A Compositional Automata-Based Semantics

for Property Patterns

Kalou Cabrera Castillos1, Frédéric Dadeau1, Jacques Julliand1,
Bilal Kanso2, and Safouan Taha2

1 FEMTO-ST/DISC - INRIA CASSIS Project
16 route de Gray 25030 Besançon cedex, France

2 SUPELEC Systems Sciences (E3S) - Computer Science Department
3 rue Joliot-Curie F-91192 Gif-sur-Yvette cedex, France

{kalou.cabrera,frederic.dadeau,jacques.julliand}@femto-st.fr,
{bilal.kanso,safouan.taha}@supelec.fr

Abstract. Dwyer et al. define a language to specify dynamic properties
based on predefined patterns and scopes. To define a property, the user
has to choose a pattern and a scope among a limited number of them.
Dwyer et al. define the semantics of these properties by translating each
composition of a pattern and a scope into usual temporal logics (LTL,
CTL, etc.). First, this translational semantics is not compositional and
thus not easily extensible to other patterns/scopes. Second, it is not
always faithful to the natural semantics of the informal definitions.

In this paper, we propose a compositional automata-based approach
defining the semantics of each pattern and each scope by an automa-
ton. Then, we propose a composition operation in such a way that the
property semantics is defined by composing the automata. Hence, the se-
mantics is compositional and easily extensible as we show it by handling
many extensions to the Dwyer et al.’s language. We compare our com-
positional semantics with the Dwyer et al.’s translational semantics by
checking whether our automata are equivalent to the Büchi automata of
the LTL expressions given by Dwyer et al. In some cases, our semantics
reveals a lack of homogeneity within Dwyer et al.’s semantics.

Keywords: Formal Methods, Temporal Properties, Compositional
Automata Semantics, Temporal logics, Property Patterns.

1 Motivations

Dynamic properties are commonly described by temporal logics such as the
Linear Temporal Logic (LTL). These formalisms are difficult to appropriate by
system designers and validation engineers. In order to ease their understanding
and writing, Dwyer et al. (denoted DAC in the reminder of the paper) propose
in [4,5] a language of properties based on the composition of predefined patterns
and scopes. A pattern expresses a temporal property on executions seen as se-
quences of states/events. A scope determines the parts of executions on which
the pattern must hold.

E.B. Johnsen and L. Petre (Eds.): IFM 2013, LNCS 7940, pp. 316–330, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

A Compositional Automata-Based Semantics for Property Patterns 317

In these works, we can measure how much it can be difficult to express prop-
erties directly by temporal formulæ. For example, with the language of DAC,
one can express the following property: ”the state property P′ responds to the
state property P between the state properties Q and R” by composing the pat-
tern P′ responds to P and the scope between Q and R. The corresponding LTL
formula given by DAC is: �((Q ∧ ¬R ∧ ♦R) ⇒ (P ⇒ (¬R U (P ′ ∧ ¬R))) U
R). Even if the specifier is familiar with LTL, these formulæ are very difficult
either to write or to understand due to the huge semantics gap between the
intuitive formulation of the property in the natural language and its complex
and error-prone translation into LTL.

Besides the natural semantics of the patterns and scopes, DAC provide formal
semantics by translation into many temporal logics, mapping each pattern/scope
combination to a corresponding temporal formula. As there are 10 patterns and
5 scopes, they had to translate the 50 combinations [3]. DAC also noted many
possible patterns/scopes variants [3], but they do not support them because
translating more than 20 pattern and 20 scope variants requires up to 400 tem-
poral formulæ. Moreover, DAC have defined informally generic patterns (e.g. a
first chain of events precedes a second chain of events) that they do not succeed
to translate into equivalent generic temporal logic formulæ. Hence, they trans-
lated a limited number of obvious cases (e.g. chains having only 1 or 2 events).
Extensibility and Genericity are the main limitations of such a translational
semantics.

Furthermore, this translational semantics arises two consistency limitations:

Faithfulness : DAC claim that the temporal formulæ were primarily validated
by peer review amongst the project members and then tested against some
(un)satisfying sequences of states/events. Hence, we have no formal guarantee
that the translated temporal formula is faithful to the intended natural semantics
associated to the pattern/scope combination;
Homogeneity : DAC define their language by clearly separating both pattern
and scope notions. From a user point of view, a pattern (resp. scope) has a
unique natural semantics never mind the scope (resp. pattern) with which it
is combined. By adopting translational semantics, they flattened this key sep-
aration and translated each pattern and each scope many times into different
formulæ corresponding to the different possible combinations. Hence, the same
pattern (resp. scope) may have different interpretations according to the scope
(resp. pattern) with which it is combined.

In this work, we want a specification language (1) to make easier the expres-
sion of the temporal properties by relying on the predefined patterns and scopes
of DAC [5]. This language must be easily extensible (2) by adding new variants
of patterns and scopes thanks to a compositional semantics. Finally, we intend
to adopt an automata-based semantics (3) that is well-adapted to verify proper-
ties, and to generate and evaluate tests because it is provided with many usual
structural coverage criteria.

These motivations bring three main contributions that we present in this pa-
per. First, we define a compositional semantics giving an automaton semantics

318 K. Cabrera Castillos et al.

combining the automata of any pattern and any scope. Second, we compare
this compositional semantics w.r.t. the LTL translational semantics given by
DAC. We will show that even though they focused on translating few specifica-
tion patterns, they give non-homogeneous interpretations to some patterns and
scopes when writing the LTL formulæ. Third, We will give support to many
generic patterns and many scope variants emphasizing the extensibility of our
compositional semantics.

The paper is structured as follows. Sec. 2 recalls the property language pro-
posed by DAC Sec. 3 presents the compositional semantics of this language by
means of automata and their composition. Sec. 4 compares our semantics w.r.t.
DAC’s semantics and presents the automatization process of our approach using
an LTL transformation tool into Büchi automata and a model-checking environ-
ment to prove that our automaton is (or is not) equivalent to the LTL formula.
Sec. 5 shows the extensibility potential of the language and its semantics. Finally,
Sec. 6 concludes and gives some future works.

2 Dwyer et al.’s Property Specification Language

DAC have proposed a pattern-based approach [4]. This approach uses specifi-
cation patterns that, at a higher abstraction level, capture recurring temporal
properties. The main idea is that a temporal property is a combination of one
pattern and one scope. A scope is the part of system execution paths over
which a pattern must hold.

Patterns. The patterns are temporal conditions on the system executions. DAC
propose the ten following patterns classified in the left side of Fig. 1.

– always P: the state property P must hold in all states,
– never P: the state property P does not occur in any state,
– eventually P: the state property P occurs at least once,
– eventually P at most 2 times: the state property P becomes true (after being

false in the preceding state) at most 2 times. In other words, switching from
¬P to P occurs at most twice

– P precedes P′: a state property P′ must always be preceded by a state property
P within the execution interval,

– (P1,P2) precedes P
′: a state property P′ must be preceded by a sequence of

states starting by a state property P1 and leading to a state property P2,
– P precedes (P′1,P

′
2): a sequence of state properties P′1,P

′
2 must be preceded by

a state property P,
– P′ responds to P: a state property P must always be followed by a state prop-

erty P′ within the execution interval,
– P′ responds to (P1,P2): a sequence of states starting by a state property P1

and leading to a state property P2 must be followed by a state property P′,
– (P′1,P

′
2) responds to P: a state property P must be followed by a sequence of

states P′1,P
′
2.

Scopes. A scope determines the system execution intervals over which the pat-
tern must hold. In [4], the authors propose five kinds of scopes that are illustrated

A Compositional Automata-Based Semantics for Property Patterns 319

Property Patterns

Occurrence

always

never eventually
at most 2 times

eventually

Order

precedes responds to

chain
precedence

chain
response

Q R Q Q R Q

globally

before Q

after Q

between Q and R

after Q unless R

Fig. 1. DAC’s Patterns and Scopes

in the right part of Fig. 1. A property is true if the pattern holds on the execu-
tion intervals represented by the thick slices of the sequences. Let p be a pattern
and s be a scope, the property p s has the following meaning:

– p globally: the pattern p must hold on the whole execution,
– p before Q: the pattern p must hold before a state property Q occurs,
– p after Q: the pattern p must hold after a state property Q occurs,
– p between Q and R: the pattern p must hold within the system execution in-

tervals from an occurrence of Q to the next occurrence of R,
– p after Q unless R has the same meaning of p between Q and R, but it must

hold even if the state property R does not occur.

It is clear that the patterns of DAC dramatically simplify the specification of
temporal properties, with a fairly complete coverage. Indeed, they collected hun-
dreds of specifications and they observed that 92% of them fall into this small
set of patterns/scopes [4]. Furthermore, DAC adopt translational semantics and
provide a complete library [3], mapping each pattern/scope combination to the
corresponding formula in many formalisms (e.g. LTL, CTL, Quantified Regular
Expressions, μ-calculus). For example, for each scope s, this library maps the
property schema P′ responds to P s to the equivalent LTL formula as it is given
in Table 1.

Table 1. DAC’s LTL Mappings of P′ responds to P s

Scope s LTL

globally �(P ⇒ ♦P ′)
before Q ♦Q ⇒ (P ⇒ (¬Q U (P ′ ∧ ¬Q))) U Q
after Q �(Q ⇒ �(P ⇒ ♦P ′))
between Q and R �((Q ∧ ¬R ∧ ♦R) ⇒ (P ⇒ (¬R U (P ′ ∧ ¬R))) U R)
after Q unless R �(Q ∧ ¬R ⇒ ((P ⇒ (¬R U (P ′ ∧ ¬R))) W R)

We may note that DAC define informally the generic pat-
terns: bounded existence [eventually P at most k times], chain prece-
dence [(P1, . . . ,Pn) precedes (P

′
1, . . . ,P

′
m)] and chain response

[(P′1, . . . ,P
′
m) responds to (P1, . . . ,Pn)]. But because of the translational se-

mantics they can only consider and translate a limited number of cases that are
the ten patterns listed above.

320 K. Cabrera Castillos et al.

3 Compositional Automata-based Semantics

In our approach, the semantics of the temporal properties is defined composition-
ally by automata composition. Any pattern p is defined by a Büchi automaton
pa where the transitions are labeled by state propositions. Any scope s is defined
by a specialized Büchi automaton that has a special state, called composition
state and noted cs, in which a pattern automaton pa can be replaced. Hence, the
resulting automaton corresponding to a property p s is defined by substituting
the composition state cs of the scope automaton sa by a pattern automaton pa.
The resulting automaton is then a Büchi automaton that accepts all the infinite
executions (or runs) that satisfy the property.

3.1 Pattern and Scope Automata

Let P be a finite set of state propositions. A Büchi automaton over P is a finite-
state automaton which accepts infinite words. It is formally defined by a 5-tuple
(Q, init, F,P , T)) where Q is a finite set of states, init(∈ Q) is the initial state,
F (⊆ Q) is a set of accepting states and T (⊆ Q× P ×Q) is a labeled transition
relation.

An infinite word P1 P2 . . . Pn . . . is accepted by a Büchi automaton if there

exists a run q0
P1−→ q1

P2−→ q2 . . . qn−1
Pn−→ qn . . . such that q0 = init and each

step of the run is a transition (∀i ∈ N, qi
Pi+1−→ qi+1 ∈ T) and the set of accepting

states within the run is infinite ({i ∈ N | qi ∈ F}).
While a pattern is described as a Büchi automaton, a scope s is a Büchi

automaton which has a composition state cs representing a generic pattern.
Hence, a temporal property p s is described by a standard Büchi automaton
that is the scope one in which the composition state is substituted by the pattern
automaton.

Definition 1 (Pattern and Scope Automata). Let P be a finite set of state

propositions. A pattern automaton is defined by a Büchi automaton pa
def
=

(Qpa, initpa, Fpa,P , Tpa) and a scope automaton by a Büchi automaton sa
def
=

(Qsa ∪ {cs}, initsa, Fsa,P , Tsa) in which the set of states is the disjoint union of
a set of standard states Qsa and a composition state denoted cs.

Figure 2 illustrates the pattern automata associated to the patterns presented
in Sec. 2. The initial states are pointed to by incoming arrows while the accepting
states are marked by double circles. We give here the complements of both
chain response patterns because the complements are simpler and smaller (3
states instead of 6). The reader may know that Büchi automata are closed under
complementation and there are many construction algorithms [9]. In Sec. 4, we
will explain how we proceed to automatically obtain all these pattern automata.

Fig. 3 illustrates the scope automata associated with the scopes presented
in Sec. 2. Squares are used to represent the composition states. Double squares
are accepting composition states. In Sec. 4, we will explain how we proceed to
automatically obtain all these scope automata.

A Compositional Automata-Based Semantics for Property Patterns 321

P

(a) always P

¬P

(b) never P

¬P
P

True

(c) eventually P

¬P
P

P

¬P
¬P

P ¬P
P ¬P

(d) eventually P at most 2 times

¬P ∧ ¬P ′

P

True

(e) P precedes P′

¬P ′ ∧ P1

¬P ′ ∧ ¬P2

P2

¬P ′ True

(f) (P1,P2) precedes P
′

P ′
1 ¬P ′

2

P
¬P ′

1 True

(g) P precedes (P′
1,P

′
2)

P ′ ∨ ¬P P ∧ ¬P ′

P ′

¬P ′

(h) P′ responds to P

P1

¬P2

P2 ∧ ¬P ′
True ¬P ′

(i) ¬[P′ responds to (P1,P2)]

P ∧ P ′
1

¬P ′
2

P ∧ ¬P ′
1

¬P ′
1

True P ′
1

(j) ¬[(P′
1,P

′
2) responds to P]

Fig. 2. Pattern Automata

cs

(a) cs globally

cs
True

¬R

R

R

True

¬R

(b) cs before R

cs

¬Q
Q

(c) cs after Q

cs

¬Q ∨R¬R
Q ∧ ¬R

¬R

R

(d) cs between Q and R

cs

¬Q ∨R Q ∧ ¬R

R

(e) cs after Q unless R

Fig. 3. Scope Automata

3.2 Composition

In this subsection, we formally define the operation of substitution of the com-
position state cs by a pattern automaton pa in a scope automaton sa.

Definition 2 (Composition Operation). Let pa
def
= (Qpa, initpa, Fpa,P , Tpa)

be a pattern automaton and sa
def
= (Qsa ∪ {cs}, initsa, Fsa,P , Tsa) be a scope au-

tomaton where cs is the composition state of sa. The substitution of the state
cs by pa in sa is the Büchi automaton (Q, init, F,P , T) where:
– Q = Qpa ∪Qsa

– init
def
=

{
initsa if initsa �= cs
initpa otherwise

– F
def
=

{
Fsa if cs �∈ Fsa

(Fsa \ {cs}) ∪ Fpa otherwise

322 K. Cabrera Castillos et al.

– T ⊆ Q× P ×Q is the smallest relation defined by the following rules:

1. Pattern transitions:
q

P−→ q′ ∈ Tpa

q
P∧R−−−→ q′ ∈ T

where R
def
=

∧
P ′∈Out(cs)

¬P ′ and Out(cs) = {P ′ | ∃q′′.(q′′ ∈ Qsa ∧ cs
P ′
−→ q′′ ∈ Tsa)}

2. Left-closed scope opening transitions:
q

P−→ cs ∈ Tsa, initpa
P ′
−→ q′ ∈ Tpa

q
P∧P ′−−−−→ q′ ∈ T

3. Right-open scope closing transitions:
cs

P−→ q′ ∈ Tsa, q ∈ Fpa

q
P−→ q′ ∈ T

4. Other scope transitions: q
P−→ q′ ∈ Tsa, q, q′ ∈ Qsa

q
P−→ q′ ∈ T

The resulting set of states is the union of the sets of states without the composi-
tion state cs. The initial state is the initial state of the pattern if the composition
state is initial, otherwise it is the initial state of the scope. When the composi-
tion state cs is an accepting one, the set of accepting states is the union of both
sets of accepting states without cs. Otherwise, it is only composed of those of
the scope.

The resulting transitions are defined as follows. The rule 1 adds each transition
within the pattern automaton after modifying the label into P ∧¬P ′

0∧· · ·∧¬P ′
n

where P ′
i , i ∈ [0, . . . , n] are the labels carried by the n transitions outgoing from

the composition state cs as illustrated in Fig. 4(a) where the rectangle represents
the composition state cs having two outgoing transitions. This restriction of the
labels on the pattern transitions is applied in order to avoid that they capture
the scope ones, hence scope transitions keep priority. For example, any transition
of the pattern P′ responds to P does not satisfy the condition R which is the exit
condition of the scope between Q and R. Indeed, the condition R must not be
satisfied (i.e. the exit of the scope must not be possible) before reaching the
pattern’s accepting state where outgoing transitions hold R (see rule 3). The
rule 2 synchronizes the transitions of the scope leading to the composition state
cs with the initial transitions of the pattern by making the conjunction of their
labels as it is illustrated in Fig. 4(b). For every transition outgoing from the
composition state cs, the rule 3 adds a transition from every accepting state of
the pattern as illustrated in Fig. 4(c). Rule 2 makes the scope interval left-closed
and rule 3 makes it right-open, this aspect will be detailed in Sec. 5. Finally,
the rule 4 adds each transition of the scope automaton in which the composition
state cs is not involved.

Example 1 (Composition of Automata). Fig. 5 shows the Büchi automaton ob-
tained by applying the composition operation given in Def. 2 to the temporal
property P′ responds to P between Q and R.

Our composition operation is made in a linear complexity w.r.t. the size of the
pattern and scope automata. Thus, this automata-based approach yields a tech-
nique to transform each DAC temporal property into a Büchi automaton from
two Büchi automata in a linear complexity. In contrast, building the same Büchi

A Compositional Automata-Based Semantics for Property Patterns 323

q q′
P

cs
P ′
1

P ′
2

q q′
P ∧ ¬P ′

1 ∧ ¬P ′
2

(a) Rule 1

q initpa q′
P ′P q q′

P ∧ P ′

(b) Rule 2 (left-closed)

q q′
P q q′

P

(c) Rule 3 (right-open)

Fig. 4. Illustration of Composition Rules

(P ′ ∨ ¬P) ∧ ¬R
P ∧ ¬P ′ ∧ ¬R

P ′ ∧ ¬R

¬P ′ ∧ ¬R¬Q ∨ R¬R

¬R
(P ′ ∨ ¬P) ∧Q ∧ ¬R

P ∧ ¬P ′ ∧Q ∧ ¬R

R

Fig. 5. P′ responds to P between Q and R

automaton from the LTL formula given as translation would be exponential
w.r.t. the size of the formula [7].

4 Comparison of Both Semantics

In this section, we present the experiments we conducted in order to measure the
consistency of our compositional semantics against the translational semantics
given by DAC [3]. We do so by comparing our resulting automata with the LTL
formulæ given by DAC.

For these experiments, we used the GOAL (Graphical Tool for Omega-
Automata and Logics) tool [11] that is an adequate graphical tool for defining
and manipulating Büchi automata and temporal logic formulæ. GOAL supports
the translation of temporal formulæ such as Quantified Propositional Tempo-
ral Logic (QPTL) into Büchi automata where many well-known translation al-
gorithms (e.g. LTL2BA [6]) are implemented and most of them support past
operators. It also provides language equivalence between two Büchi automata
thanks to efficient complementation, intersection and emptiness algorithms. As
the recent implementation of GOAL is based on the Java Plugin Framework,
it can be properly extended by new plugins, providing new functionalities that
are loaded at run-time. We implemented our composition algorithm within an
independent plug-in that we make available at the web page [10].

The process we applied to do our experiments can be summarized as follows:

1. We used the DAC’s LTL formulæ that correspond to the properties combin-
ing any pattern with the globally scope to generate the patterns automata
using GOAL. These formulæ are shown in Table 2 within the globally column.

324 K. Cabrera Castillos et al.

Note that, using our composition operation, the substitution of some pattern
p within the scope globally keeps unchanged the automaton pa. This is the
way we obtained the pattern automata previously presented in Fig. 2.

2. We used the DAC’s LTL formulæ that correspond to the properties com-
bining the always P pattern with any scope to generate the scope automata
using GOAL. These formulæ are shown in Table 2 within the always P row.
Interpreting the unique state having the P loop transition as the composition
state, we obtained the scope automata previously presented in Fig. 3.

3. We ran our composition to automatically generate the automata for all pat-
tern/scope combinations. We compared them with the automata obtained
directly from the corresponding DAC’s LTL formulæ given in [3]. The results
of the comparison are given in Table 2. For each combination, the automaton
of the translational semantics may be equivalent (≡), strictly included (⊂),
strictly superior (⊃) or not included nor superior (�=) to the automaton given
by composition. The non-equivalent cases are indexed by a case number which
we use below to explain the reasons behind the mismatching.

Table 2. Comparison between DAC’s Semantics and Compositional Semantics

globally before R after Q between Q and R after Q unless R

always P �P ♦R ⇒ �(¬Q)∨ �(Q ∧ ¬R ⇒ �(Q ∧ ¬R ⇒
(¬P U R) ♦(Q ∧ ♦P) (¬R W (P ∧ ¬R))) (¬R U (P ∧ ¬R)))

never P �¬P ≡ ≡ ≡ ≡
eventually P ♦P ⊂ (1) ≡ ⊂(2) ⊂ (2)

eventually P (¬P W (P W (¬P ≡ ≡ ≡ ≡
at most 2 times W (P W �¬P))))

P precedes P′ ¬P ′ W P ≡ ⊃ (3) ⊂ (2) ⊂ (2)

(P1,P2) precedes P′ ♦P ′ ⇒ (¬P ′ U (P1∧ ≡ ≡ ⊂ (2) ⊂ (2)

¬P ′ ∧ ©(¬P ′ U P2)))

P precedes (P′
1,P

′
2) (♦(P ′

1 ∧ ©♦P ′
2)) ⇒ ≡ ≡ ⊂ (2) ⊂ (2)

((¬P ′
1) U P))

P′ responds to P �(P ⇒ ♦P ′) ≡ ≡ ≡ ≡
(P′

1,P
′
2) responds to P �(P ⇒ ♦(P ′

1 ∧ ©♦P ′
2)) ⊃ (4) ≡ ⊃ (4) ⊃ (4)

P′ responds to (P1,P2) �(P1 ∧ ©♦P2 ⇒ �= (5) ≡ �= (5) �= (5)

©(♦(P2 ∧ ♦P ′)))

Table 3 provides for each mismatching case the formula proposed by DAC and
the corresponding formula (verified using GOAL) to the composition automaton
we obtained by our composition algorithm. We call this formula composition
formula and we underline the differences. We use the symbol - for “previous”
(resp. B for “back-to”) to represent the past-time dual operator of the future
operator © for “next” (resp., W for “weak-until”). We use the past temporal
operators only in case (2) to obtain a concise formula. The reader may know
that past-time modalities do not add expressive power to future linear-time
temporal logic but it can be exponentially more succinct [8].

The mismatching case (1) emphasizes that DAC’s formula does not rec-
ognize the case where R occurs at the initial state, so the interval of the
scope is empty since the interval is right-open (see details in Sec. 5) and the

A Compositional Automata-Based Semantics for Property Patterns 325

Table 3. Mismatching Cases

Mismatching cases DAC’s Formula Composition Formula

(1) eventually P before R ¬R W (P ∧ ¬R) ⊂ R ∨ ¬R W (P ∧ ¬R)

(2) eventually P/Precedence
between Q and R/after Q unless R �((Q ∧ ¬R) ⇒ . . .) ⊂ �((Q ∧ (¬Q B R) ∧ ¬R) ⇒ . . .)

(3) P precedes P′ after Q �¬Q ∨ ♦(Q ∧ (¬P ′ W P)) ⊃ �¬Q ∨ (¬Q U (Q ∧ (¬P ′ W P)))

(4) (P′
1,P

′
2) responds to P . . . (P ⇒ (¬R U (P ′

1 ∧ ¬R ⊃ . . . (P ⇒ (¬R U (P ′
1 ∧ ¬R

before R/ . . . ∧ © (¬R U P ′
2)))) . . . ∧ © (¬R U (P ′

2∧¬R))))) . . .

(5) P′ responds to (P1,P2) . . . (P1 ∧ ©(¬R U P2) ⇒ = . . . (P1 ∧ ©(¬R U (P2∧¬R)) ⇒
before R/ . . . ©(¬R U (P2 ∧ ♦P ′))) . . . ©(¬R U (P2 ∧ (¬R U (P ′ ∧ ¬R))))) . . .

property eventually P before R is obviously true. It was an oversight as all other
LTL formulæ of the before scope handle such empty interval cases.

Considering case (2), DAC mention in the notes published in [3] that the first
occurrence of Q opens the intervals of the scopes after Q, between Q and R and
after Q unless R (See the right part of Fig. 1). However, some of the proposed
formulæ are unfaithful to the first occurrence semantics as they consider all
occurrences of Q. For example, the trace of Fig. 6a that verifies the property
P precedes P′ between (first) Q and R, is accepted by our generated composition
automaton (equivalent to �((Q ∧ ¬R ∧ - (¬Q B R) ∧ ♦R) ⇒ (¬P U (P ′ ∨
R)))), but it is rejected by the formula given by DAC (i.e. �((Q ∧ ¬R ∧ ♦R)⇒
(¬P U (P ′∨R)))). The past predicate -(¬Q B R) (i.e. previous (¬Q back-to R))
ensures that only the first occurrence of Q is considered as there is no occurrence
of Q in the past since the last occurrence of R if there is any. We note here
that expressing with future modalities the first occurrence of Q following some
occurrence of R in between Q and R or after Q unless R, is tedious. For example,
the equivalent pure future formula of P precedes P′ between (first) Q and R is:

(¬(Q ∧ ¬R ∧ ♦R) W ((Q ∧ ¬R ∧ ♦R) ∧ (¬P ′ W (P ∨R))))

∧ �(R⇒ (¬(Q ∧ ¬R ∧ ♦R) W ((Q ∧ ¬R ∧ ♦R) ∧ (¬P ′ W (P ∨R))))).

Q P Q P ′ R

(a) case (2)

Q P ′ Q P P ′

(b) case (3)

P1 P2 R P ′

(c) case (5)

Fig. 6. Mismatching examples

In case (3), the formulæ proposed by DAC consider any occurrence of
Q (♦(Q ∧ . . .)) rather than the first occurrence (¬Q U (Q ∧ . . .)). As a
typical example, the trace of Fig. 6b that does not verifiy the property
P precedes P′ after Q, is rejected by our generated composition automaton but
it is accepted by the formula given by DAC.

Cases (2) and (3) are quite similar and the question “why such a mis-
matching does not happen for other patterns?” obviously arises. There are
two answers depending on cases. In most cases, DAC handle the first oc-
currence semantics within their LTL formulæ, in other cases, patterns are
response-oriented properties where the all and first occurrence of Q semantics

326 K. Cabrera Castillos et al.

are equivalent. For example the LTL formula given by DAC of the property
P′ responds to P after Q, i.e. �(Q ⇒ �(P ⇒ ♦P ′)) (all occurrences) is equiva-
lent to ours ♦Q⇒ (¬Q U (Q ∧ �(P ⇒ ♦P ′))) (first occurrence).

DAC have chosen to define scopes as right-open intervals that do not include
the state marking the end of the scope [3]. In case (4) and a part of case (5), DAC
provide formulæ where P ′

2 and R can occur simultaneously; that is unfaithful to
the right-open scope semantics.

In case (5), the DAC formula of P′ responds to (P1,P2) using the modality
eventually (♦R) does not require that the response P ′ occurs within the scope!
(i.e. before R). For example, the trace of Fig. 6c that does not verify the prop-
erty P′ responds to (P1,P2) before R, is rejected by our generated composition
automaton but it is accepted by the formula given by DAC.

The experiments, we did here, show the homogeneity of our composition se-
mantics and reveal many different interpretations of the same scope within the
translational semantics given by DAC. This emphasizes that it is difficult to
give faithful LTL translation to all combinations of patterns and scopes. Our
composition semantics brings a valuable consistency.

5 Genericity and Extensibility of the Approach

In the following, we will show the genericity and extensibility of our composition
semantics. First we propose some generic patterns and some variant scopes that
are not supported by the translational semantics of DAC and then we show their
corresponding representation using our automata-based approach.

5.1 Generic Patterns and Variants of Scopes

First, we consider generic patterns that DAC have defined informally but they
do not succeed to translate them into equivalent generic temporal logic formulas,
hence they only translated a limited number of obvious cases.

– In DAC’s work, the pattern eventually has only two forms: eventually P
means that P is true at least once and eventually P at most 2 times means
that the states switch from ¬P to P at most twice (see Fig. 2). We
consider three new generic variants to this pattern: eventually P k times,
eventually P at least k times and eventually P at most k times that mean re-
spectively: the state P becomes true exactly k times, at least k times and
at most k times where k is some natural integer constant.

– Similarly, we propose three generic variants of the eventually pattern con-
sidering the number of all occurrences of state P rather than the number
of switching occurrences from ¬P to P. We call them precisely P k times,
precisely P at least k times and precisely P at most k times.

– Finally, we consider both Chain Precedence and Chain Response pat-
terns having the generic forms [(P1, . . . ,Pn) precedes (P

′
1, . . . ,P

′
m)] and

[(P′1, . . . ,P
′
m) responds to (P1, . . . ,Pn)].

A Compositional Automata-Based Semantics for Property Patterns 327

Next, we propose some enhancements to improve the expressiveness of scopes.
These enhancements are inspired by the DAC’s notes [3] and our needs within
the TASCCC project [1].

– DAC have chosen to define scopes as right-open intervals (i.e. left-closed) that
include the state marking the beginning of the scope, but do not include the
state marking the end of the scope. We extend scopes with support to open
the scope on the left or close it on the right. Hence, we add one variant for
both the before and after scopes and three supplementary variants for the
between and and after unless scopes. We chose DAC’s semantics as the
default semantics.

– In DAC’s work, between Q and R and after Q unless R scopes are interpreted
relatively to the first occurrence of Q (see Fig. 1). We keep the first occurrence
as default semantics and we add variants to support the last occurrence
semantics.

The syntax of our extended pattern-based language is summarized in Fig. 7.
Non-terminals are indicated by italics, keywords are in policy and terminals are
underlined. For example a is an atomic proposition. (. . .)? designates an optional
part. The element P stands for a state property which is a boolean proposition
over the alphabet of the different atomic propositions and the optional element
‘[’ or ‘]’ stands for the interval’s nature, open or closed at each endpoint.

Property ::= Pattern Scope
Pattern ::= always P

| never P
| (eventually | precisely) P ((at least | at most)? integer times)?
| Chain precedes Chain
| Chain responds to Chain

Scope ::= globally
| before P (‘[’ | ‘]’)?
| after (‘[’ | ‘]’)? P
| between (‘[’ | ‘]’)? last? P and P (‘[’ | ‘]’)?
| after (‘[’ | ‘]’)? last? P unless P (‘[’ | ‘]’)?

Chain ::= P | P ‘,’ Chain
P ::= a | true | ¬P | P ∨ P

Fig. 7. Syntax of Enriched DAC’s Temporal Properties

5.2 Variant Semantics

The generic patterns and the last variants of scopes such as between last Q and R
are directly expressed in our approach by describing their suitable automata,
since their semantics does not have impact on the composition definition (Def. 2)
given in Sec. 3. Fig. 8 shows graphically their associated automata.

However, the scopes variants on the closure and opening of the intervals such
as before Q] or after] Q require some generalizations in the composition defini-
tion. Indeed, in Def. 2, we did not make a distinction between right-open and

328 K. Cabrera Castillos et al.

. . .

¬P
P ¬P

P ¬P ¬P
P

×k

(a) eventually P k times

. . .

¬P
P ¬P

P ¬P True

P

×k

(b) eventually P at least k times

. . .

¬P
P ¬P

P ¬P ¬P
P

×k

(c) eventually P at most k times

. . .

¬P
P

¬P ¬P
P

×k

(d) precisely P k times

. . .

¬P
P

¬P True

P

×k

(e) precisely P at least k times

. . .

¬P
P

¬P ¬P
P

×k

(f) precisely P at most k times

¬P ′
1

P1
∧ ¬P

′
1

¬P2 ∧ ¬P ′
1

. . .
P2 ∧ ¬P ′

1 Pn−1 ∧ ¬P ′
1

¬Pn ∧ ¬P ′
1

Pn

True

P ′
1

¬P ′
2

. . .
P ′

2
P ′

m−1

¬P ′
m

(g) (P1, . . . ,Pn) precedes (P′
1, . . . ,P

′
m)

True

P1

¬P2

. . .
P2 Pn−1

¬Pn

Pn ∧ ¬P ′
1

¬P ′
1

P ′
1
¬P ′

2

Pn ∧ P ′
1

. . .
P ′

2
P ′

m−1

¬P ′
m

(h) ¬[(P′
1, . . . ,P

′
m) responds to (P1, . . . ,Pn)]

cs

¬Q ∨ R

¬R

Q ∧ ¬R

¬R R

Q ∧ ¬R

(i) cs between last Q and R

cs

¬Q ∨ R

Q ∧ ¬R

Q ∧ ¬R

Q ∧ ¬R

R

Q ∧ ¬R

¬Q ∧ ¬R

Q ∧ ¬R

Q ∧ ¬R

¬Q ∧ ¬R

(j) cs after last Q unless R

Fig. 8. Automata of Generic Pattern and Scope Variants

right-closed intervals, and left-open and left-closed intervals. We have chosen by
default the right-open and left-closed intervals as initially given by DAC [4,3].
An interval left/right-open corresponds to a strict composition while a left/right-
closed corresponds to a non-strict composition. A strict composition means that
given a composition state cs, its ingoing transitions should be completely exe-
cuted before the transitions outgoing from the initial state of the pattern au-
tomaton are triggered (left-open, see Fig. 9a), and the transitions ingoing in
the accepting states of the pattern automaton should be completely performed
before the outgoing transitions of cs are triggered (right-open, see Fig. 4c). A
non-strict substitution means that the transitions outgoing from the initial state
of the pattern automaton should be simultaneously executed with the ingoing
transitions of cs (left-closed, see Fig. 4b), and the transitions ingoing in the ac-
cepting states of the pattern automaton should be simultaneously executed with
the outgoing transitions of cs (right-closed, see Fig. 9b).

Hence, to describe sequencing relationships between the states of the scope au-
tomaton and the pattern automaton at the left and the right borders of the com-
position state, we add the following rules 2′ and 3′ to the composition definition
Def. 2 :

A Compositional Automata-Based Semantics for Property Patterns 329

q initpa
P q initpa

P

(a) left-open

q qpa
P

q′
P ′

q q′
P ∧ P ′

(b) right-closed

Fig. 9. Illustration of Left-open and Right-closed Composition Rules

2’. Left-open scope opening transitions: q
P−→ cs ∈ Tsa

q
P−→ initpa ∈ T

3’. Right-closed scope closing transitions:
q

P−→ qpa ∈ Tpa, qpa ∈ Fpa, cs
P ′
−→ q′ ∈ Tsa

q
P∧P ′−−−−→ q′ ∈ T

Due to the compositional semantics we adopted to support the patterns and the
scopes proposed by DAC, our language is generic and easily extensible. To add
a new variant of any pattern or any scope, it suffices to describe it once in terms
of an automaton. This is much easier than specifying all resulting combinations
in LTL. We only need to specify the n patterns plus the m scopes to generate
the n × m combinations. In our extension for [1], we have identified above 12
patterns and 21 scopes. To describe them using DAC’s semantics, we need to
translate 252 combinations whereas following our approach, it suffices to specify
the 17 scheme of automata of Fig. 2, Fig. 3 and Fig. 8.

6 Conclusion and Future Work

In this paper, we present a compositional semantics of the DAC’s property lan-
guage. It is defined by the automata of the patterns and the scopes and by the
composition operation. We compare it with DAC’s translational semantics asso-
ciating an LTL formula with each pattern/scope combination. This comparison
emphasizes the homogeneity of our semantics and reveals that the interpreta-
tions of many scopes within their semantics are unfaithful w.r.t the informal
definitions given in [4,5].

Our semantics being compositional, the property language is generic and eas-
ily extensible. In this paper, we have shown that handling generic patterns and
adding new scope variants, only require to give their semantics by automata.
Then, the composition operation gives the semantics of all properties that can
be described by combining any new pattern with all existing scopes and com-
bining any new scope with all existing patterns. We also made explicit both
the closing and opening default choices of the DAC’s semantics by generaliz-
ing the composition operation. Moreover, our approach, consisting to choose a
scope and a pattern automata, is more efficient for automata-based verification
of properties or coverage evaluation of test sequences than a method which con-
sists to choose an LTL formula because it replaces the exponential LTL formula
translation into automata by a linear automata composition.

In [2], we are currently using this approach for the evaluation of the coverage
of dynamic properties (described as a pattern and a scope composition) by a

330 K. Cabrera Castillos et al.

test suite. The works that we present here are limited to combine one pattern
with one scope. We aim to generalize this work by combining several patterns
with a succession of scopes.

References

1. Cabrera Castillos, K., Dadeau, F., Julliand, J., Taha, S.: Projet TASCCC,
Test Automatique basé sur des SCénarios et évaluation Critères Communs.,
http://lifc.univ-fcomte.fr/TASCCC/

2. Cabrera Castillos, K., Dadeau, F., Julliand, J., Taha, S.: Measuring test properties
coverage for evaluating UML/OCL model-based tests. In: Wolff, B., Zäıdi, F. (eds.)
ICTSS 2011. LNCS, vol. 7019, pp. 32–47. Springer, Heidelberg (2011)

3. Dwyer, M.B., Alavi, H., Avrunin, G., Corbett, J., Dillon, L., Pasareanu, C.:
Specification Patterns, http://patterns.projects.cis.ksu.edu/

4. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Patterns in property specifications for
finite-state verification. In: Proceedings of the 21st International Conference on
Software Engineering, pp. 411–420 (1999)

5. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Property specification patterns for
finite-state verification. In: FMSP, pp. 7–15 (1998)

6. Gastin, P., Oddoux, D.: Fast LTL to Büchi automata translation. In: Berry, G.,
Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 53–65. Springer,
Heidelberg (2001)

7. Gerth, R., Peled, D., Vardi, M.Y., Wolper, P.: Simple on-the-fly automatic ver-
ification of linear temporal logic. In: Proceedings of the Fifteenth IFIP WG6.1
International Symposium on Protocol Specification, Testing and Verification XV,
pp. 3–18. Chapman, Hall, Ltd., London (1996)

8. Markey, N.: Temporal logic with past is exponentially more succinct, concurrency
column. Bulletin of the EATCS 79, 122–128 (2003)

9. Sistla, A.P., Vardi, M.Y., Wolper, P.: The complementation problem for Büchi au-
tomata with applications to temporal logic. Theoretical Computer Science 49(2-3),
217–237 (1987)

10. Taha, S.: OCL temporal extension (2012),
http://wwwdi.supelec.fr/taha/temporalocl/

11. Tsay, Y.K., et al.: Graphical Tool for Omega-Automata and Logics,
http://goal.im.ntu.edu.tw/wiki/doku.php

http://lifc.univ-fcomte.fr/TASCCC/
http://patterns.projects.cis.ksu.edu/
http://wwwdi.supelec.fr/taha/temporalocl/
http://goal.im.ntu.edu.tw/wiki/doku.php

A Formal Semantics for Complete UML State Machines
with Communications�

Shuang Liu1, Yang Liu2, Étienne André3, Christine Choppy3, Jun Sun4,
Bimlesh Wadhwa1, and Jin Song Dong1

1 School of Computing, National University of Singapore, Singapore
2 Nanyang Technology University, Singapore

3 Université Paris 13, Sorbonne Paris Cité, LIPN, F-93430, Villetaneuse, France
4 Singapore University of Design and Technology, Singapore

Abstract. UML is a widely used notation, and formalizing its semantics is an
important issue. Here, we concentrate on formalizing UML state machines, used
to express the dynamic behaviour of software systems. We propose a formal op-
erational semantics covering all features of the latest version (2.4.1) of UML state
machines specification. We use labelled transition systems as the semantic model,
so as to use automatic verification techniques like model checking. Furthermore,
our proposed semantics includes synchronous and asynchronous communications
between state machines. We implement our approach in USM2C, a model checker
supporting editing, simulation and automatic verification of UML state machines.
Experiments show the effectiveness of our approach.

1 Introduction

UML state machines are widely used to model the dynamic behaviour of an object.
Since the UML specification is documented in natural language, inconsistencies and
ambiguities arise, and it is thus important to provide a formal semantics for UML state
machines. A formal semantics (1) allows more precise and efficient communication
between engineers, (2) yields more consistent and rigorous models, and (3) lastly and
most importantly, enables automatic formal analysis of UML state machines.

However, existing works only provide formal semantics for a subset of UML state
machines features, leaving some important issues unaddressed. A few approaches
[19,22] consider the non-determinism in the presence of orthogonal composite states,
which is an important modelling concept. Although extensibility of the syntax structure
is important due to the refinement operations on UML state machines, the syntax for-
mats defined in those works does not extend well. A semantics able to support the full
set of syntax features will help to bring the expressive power of UML state machines to
life.

Secondly, in the existing approaches, the event pool mechanism and the communi-
cations between state machines are not thoroughly addressed. UML state machines are
used to model the behaviour of objects. The whole system may include several state

� This work is supported by project 9.10.11 “Software Verification from Design to Implementa-
tion” of Programme Merlion (official collaborative grant co-funded by France and Singapore).

E.B. Johnsen and L. Petre (Eds.): IFM 2013, LNCS 7940, pp. 331–346, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

332 S. Liu et al.

machines interacting with each other synchronously or asynchronously. Enabling the
verification of the entire system is quite important, especially in the presence of syn-
chronous communications, which are more likely to cause deadlock situations.

Lastly, the unclarities (that is, inconsistencies and ambiguities) in the UML state
machines specifications are not thoroughly checked and discussed. Fecher et al. [8]
discussed 29 unclarities in UML 2.0 state machines. But there are still some unclarities
(such as the granularity of a transition execution sequence) that are not covered in [8]
but will be discussed in this work.

This work aims at bridging the gaps in the existing approaches with the following
contributions. (1) We provide a formal operational semantics for UML 2.4.1 state ma-
chines covering the complete set of UML state machines features. In particular, our
syntax structure is extensible to state machine refinement and future changes. Our se-
mantics formalization considers non-determinism as well as synchronous and asyn-
chronous communications between state machines. (2) We explicitly discuss the event
pool mechanisms and consider deferral events as well as completion events. (3) We
report new unclarities in UML 2.4.1 state machines specifications. (4) We develop a
self-contained tool USM2C based on the semantics we have defined; it model checks
various properties such as deadlock-freeness and linear temporal logic (LTL) properties.
We conduct experiments on our tool and results show its effectiveness.

The rest of this paper is organized as follows. Section 2 provides the preliminaries of
UML state machines. Section 3 and Section 4 define the syntax and semantics for UML
state machines, respectively. Section 5 provides the implementation and evaluation re-
sults. Related work is discussed in Section 6. Section 7 addresses the limitations of our
work, and concludes the paper with future works.

2 UML State Machines Features and Our Assumptions

2.1 Introduction of Basic Features of UML State Machines

We briefly introduce basic features of UML state machines in this section. We use the
RailCar system in Fig. 1 (a modified version of the example used in [10]) as a running
example. The RailCar system is composed of 3 state machines: Car, Handler and Depar-
tureSM (referenced by the Departure submachine state in the Car state machine). They
communicate with each other through synchronous event calls.

Vertices and Transitions. A vertex is a node, which refers to a state, a pseudostate, a
final state or a connection point reference. A transition is a relation between a source
vertex and a target vertex. It may have a guard, a trigger and an effect. The container of
a transition is the region which owns the transition. A compound transition is composed
of multiple transitions joined via choice, junction, fork and join pseudostates.

Regions. It is a container of vertices and transitions, and represents the orthogonal parts
of a composite state or a state machine. In Fig. 1, the area [R1] is a region.

States. There are three kinds of states, viz., simple state (Idle), composite state (Oper-
ating) and submachine state (Departure). An orthogonal composite state (WaitArrivalOK)
has more than one region. States can have optional entry/exit/do behaviours. A do be-
haviour (PlaySound in state Alerted) can be interrupted by an event. A state can also

A Formal Semantics for Complete UML State Machines with Communications 333

Idle Standby

Initial1

Operating

[RO]

WaitArriv alOK

[R1]

[R2] Departure

- :DepartureSM

Crusing

Choice2

Initial2

Watch

Alerted

+ do / PlaySound

Initial3

WaitEnter

- Defer: opend

Choice1

WaitDepart

WaitStop

- Defer:opend
Final1

Junction1

EntryP1

ExitP1

DepartureSM

[RD]
SubDepart

+ entry / Handler.departReq

[R3]

[R4]

WaitExit

SyncExit

WaitCruise

SyncCruise

Initial4

Initial5
Join1

EntryPoint1

ExitPoint1

Initial6

WaitPlatform WaitEnterParked WaitExit WaitComplete WaitDepart

Handler State Machine

Car State Machine
DepartureSM State Machine

t6

t7

t16

t17

t13

t12

t0

moveCompleted

/Car.arriveAck

platformAllocated

departAck

setDest

/stopNum=stopNum+1;

t25

[stopNum!=0]

t21 [mode==false]

/stopNum=stopNum-1;

t18

[mode==false]

arriveAck

alert100

/Handler.arriveReq

opend

t22 [mode==true]

t11

t24

[stopNum==0]

progress1

t15
t10

t9

t8

t14
alert80

departReq

t4

exitAllocated

t23 [mode==true]

/Handler.departReq

alertStop

departAck

started

completed

/Car.departAck arriveReq

t3

t5

Fig. 1. The RailCar state machine

define a set of deferred events ({opend} in state WaitEnter). A final state (Final1) is a
special kind of state which indicates finishing of its enclosing region.

Pseudostates. Pseudostates are introduced to connect multiple transitions to form com-
plex transition paths. There are 10 kinds of pseudostates: initial, join, fork, junction,
choice, entry point, exit point, shallow history, deep history, terminate. A join pseu-
dostate (join1) is used to merge transitions from states in orthogonal regions. A fork
pseudostate is used to split transitions targeting states in orthogonal regions. Junction
pseudostates (Junction1) represent static branching points. Choice pseudostates (Choice1)
represent dynamic branching points, i.e., the evaluation of enabled transitions is based
on the environment when the choice pseudostate is reached.

Connection Point Reference. It is an entry/exit point of a submachine state and refers
to the entry/exit pseudostate of the state machine that the submachine state refers to. In
Fig. 1, EntryP1 and ExitP1 in Departure state are connection point references.

Active State Configuration. It is a set of active states of a state machine when it is in
a stable status1. In Fig. 1, {Operating, Crusing} is an active state configurations.

Run to Completion Step (RTC). It captures the semantics of processing one event
occurrence, i.e., executing a set of compound transitions (fired by the event), which may
cause the state machine to move to the next active state configuration, accompanied by
behaviour executions. It is the basic semantic step in UML state machines. For example

in Fig. 1, {Operating, WaitArrivalOK, Watch, WaitDepart,} opend−−−−→ {Idle} is an RTC step.

1 The state machine is waiting for event occurrences.

334 S. Liu et al.

S1

+ entry / print(i)

S3

+ exit / i=0

S2

+ entry / i=i*2

S21

Choice

t3 /i- -

t2 [i==0]
t1 /i++;

Fig. 2. Illustration of transition execution sequence

2.2 Basic Assumptions on UML State Machines Semantics

We briefly sketch below some new unclarities (detailed in [17]) we found in the UML
2.4.1 state machines specification, as well as our assumptions in this work.

Transition Execution Sequence. Transitions and compound transitions are used in in-
terleaving in the descriptions of transition execution sequence, which raises confusions.
The transition execution ordering is important since different execution orders may lead
to different results. For example in Fig. 2, Suppose S3 is active and transition t1 is fired.
If we define the transition execution sequence based on the compound transition, the
behaviour execution sequence is “i = 0; i + +; i − −; print(i) ” and 0 should be
printed. If we define the transition execution sequence based on a single transition, the
behaviour execution sequence should be “i = 0; i + +; i = i ∗ 2; i − −; print(i)”
and 1 should be printed. In the first case, the entry behaviour of state S2 is not executed,
which contradicts the semantics of entry behaviours. We define the transition execution
sequence based on a transition to keep the semantics consistent with entry behaviours.

Basic Interleave Execution Step. If multiple compound transitions in orthogonal re-
gions are fired by the same event, it is unclear in what granularity should the interleaving
execution be conducted: either on transition or on compound transition level. The ex-
ecution order of the (behaviours associated with the) fired transitions may affect the
value of global shared variables. We decide to regard a compound transition as the in-
terleaving execution step, since a compound transition is a semantically complete path.

Order Issues of Entering Orthogonal Composite States. On entering an orthogonal
composite state, all possible interleaving orders among its substates to be entered are
allowed, as long as the hierarchical order is preserved.

3 Syntax of UML State Machines

In this section, we provide formal syntax definitions for UML state machines features
and abstractions of event pools. We define a self-contained model which includes mul-
tiple state machines. Table 1 lists the basic notations of types defined in this work.

Our syntax definition preserves the structure specified by [1], which makes it suitable
to support refinement as well as future changes of UML state machines.

A Formal Semantics for Complete UML State Machines with Communications 335

Table 1. Type notations

Symbol Type Symbol Type Symbol Pseudostate type

KS active state configuration B boolean DHps deep history
T̃ compound transition C constraints Ips initial
K configurations Sf final state Cps choice
〈T̃〉 compound transition list S state Jops join
V vertex Trig triggers Jups junction
KV active vertex configuration T transition Tps terminate
CR connection point reference E event Enps entry point
SM state machine R region Fps fork
B behaviours PS pseudostate SHps shallow history
〈B〉 behaviour list N natural number Exps exit point

Definition 1 (State). A state is a tuple s = (r̂ , t̂def , αen , αex , αdo , ên , êx , ĉr , sm, t̂)
where:

– r̂ ⊂ R is the set of regions directly contained in this state,
– t̂def ⊂ Trig , αen ∈ B , αex ∈ B and αdo ∈ B are the set of deferred events, the

entry, exit and do behaviours defined in the state, respectively.
– ên ⊂ Enps and êx ⊂ Exps are the set of entry point and exit point pseudostates

associated with the state.
– ĉr ⊂ CR is the set of connection point references belonging to the state. sm ∈ SM

is the state machine referenced by this state; the two fields are used only when the
state is a submachine state.

– t̂ ⊂ T is the set of internal transitions defined in the state.

There are four kinds of states, viz., simple state (Ss), composite state (Sc), orthogonal
composite state (So) and submachine state (Sm). In Fig. 1, the submachine state Depar-
ture is denoted as (∅,∅, ε, ε, ε,∅,∅, {EntryP1, ExitP1},DepartureSM,∅), where ε and ∅
denote the empty element and the empty set, respectively.

Definition 2 (Pseudostate). A pseudostate is a tuple ps = (ι, ĥ), where ι ∈ R ∪ SM

is the region or state machine in which the pseudostate is defined, and ĥ ∈ S is an
optional field which is used to record the last active set of states. This latter field is only
used when the pseudostate is a shallow history or deep history pseudostate.

The last column of Table 1 shows the notations of the ten kinds of pseudostates PS .

Definition 3 (Final state). A final state is a special kind of state, which is defined as a
tuple sf = (ι) where ι ∈ So ∪ Sc ∪ SM is the composite state or state machine which
is the direct ancestor of the container of the final state.

Definition 4 (Connection Point Reference). A Connection Point Reference is defined
as a tuple (ên , êx , s) where ên ⊂ Enps and êx ⊂ Exps are the entry point and
exit point pseudostates corresponding to this connection point reference, and s is the
submachine state in which the connection point reference is defined.

For example, in Fig. 1, EntryP1 is defined as ({EntryPoint1},∅,DepartureSM).
Vertex V � S ∪ Sf ∪ PS ∪ CR is an abstraction of all nodes.

336 S. Liu et al.

Definition 5 (Transition). A transition is a tuple t = (sv , tv , t̂g , g , α , ι, t̂c) where:

– sv ∈ V , tv ∈ V are the source and target vertex of the transition, respectively.
– t̂g ⊂ Trig , g ∈ C , α ∈ B and ι ∈ R are the set of triggers, the guard, the

associated behaviour and the container of the transition, respectively.
– t̂c is a set of tuples of the form segt = (ss , αst , ιst). It represents the special

situation that a join or fork pseudostate2 connects multiple transitions to form a
compound transition. Each tuple represents a segment transition which ends in the
join (resp. emanates from the fork) pseudostate. ss ∈ S is the non-fork (resp. non-
join) end of the segment transition, αst ∈ B is the behaviour associated with the
segment transition. ιst ∈ R is the container of the segment transition.

We define the following functions on transitions for clarity sake. Functions isFork(t)
and isJoin(t) decide whether transition t is a fork transition and join transition, respec-
tively. For example, in Fig. 1, the join transition t10 is ({Join1}, {ExitPoint1}, ∅, ε, ε,
RD, {(SyncExit, ε, RD), (SyncCruise, ε, RD)}). We use t .α̃ to represent all possible action
execution sequences of t . Formal definition of t .α̃ is in [17].

Definition 6 (Region). A region is defined as a tuple r � (v̂ , t̂), where v̂ ⊂ (S ∪PS ∪
Sf), t̂ ⊂ T are the set of vertices and transitions directly owned by the region.

Definition 7 (State Machine). A state machine is defined as sm � (r̂ , ĉp), where
r̂ ⊂ R, ĉp ⊂ Enps ∪ Exps are the set of (directly owned) regions and the set of
entry/exit point pseudostates defined for this state machine.

For example in Fig. 1, state machine DepartureSM is ({RD}, {EntryPoint1, ExitPoint1}).
Definition 8 (Compound Transition). A compound transition is a “semantically com-
plete” path composed of one or multiple transitions connected by pseudostates. The set
of compound transition T̃ = {t̃ | t̃ ∈ ST ∧ t̃ .ŝv ∈ S ∧ t̃ .t̂v ∈ S} where st ∈ ST ≡
(len(st) = 1 ∧ seg(st , 0) ∈ T) ∨ ∃ sti , stj ∈ ST : last(sti) = first(stj) ∧ st = sti � stj .

The operator � denotes the operation of connecting transitions in order. Notation
len(t̃) denotes the total number of segment transitions the compound transition is com-
posed of. seg(t̃ , i) denotes the i th segment specified by the natural number index i of
a given compound transition. We use first(t̃) and last(t̃) to denote the first and last
segment of t̃ . We define t̃ .ŝv = first(t̃).ŝv , t̃ .t̂v = last(t̃).t̂v for convenience sake.

Compositional Operators. The operator “; ” represents a sequential composition. In-
terleave operation (‖|) represents a non-determinism in the execution orders. Interleave
with synchronous communications (‖|C) is a special case of interleaving: it requires the
state machines to synchronize on the specified event in C . Interruption (∇) is used to
represent interruption of a do activity by some event occurrence. Parallel composition
(‖) represents a real concurrency, i.e., execute at the same time.

Definition 9 (System). A system is a set of state machines executing in interleaving
(with synchronous communications). sys � ‖|Ci∈[1,n]Smi where Sm � (sm,P ,GV).
In Sm, sm denotes the state machine,P the event pool associated with sm, and GV the
shared variables of sm. And n is the number of state machines within the system sys .

2 We treat exit (resp. entry) point pseudostate the same way with join (resp. fork) pseudostate.

A Formal Semantics for Complete UML State Machines with Communications 337

For example, the RailCar system in Fig. 1 is defined by ‖|C (Car,Handler), where C =
{departReq, departAck, arriveReq, arriveAck}.3

Event Pool Abstraction. Change events, signal events, and deferred events are pro-
cessed differently in UML state machines. We provide for this purpose 3 separate event
pools, viz., completion event pool (CP), deferred event pool (DP), and normal event
pool (NP). P � (CP ,DP ,NP) represents the event pool, and we define two basic
operations on P . Merge(e,EP) merges an event e into the corresponding event pool
represented by EP , and Disp(P) dispatches an event from P . Since function Merge
(formally defined in [17]) is straightforward, we focus here on Function Disp.

Definition 10. The following function formally defines the event dispatch mechanism.

Disp(P , ks) �

⎧⎪⎪⎨
⎪⎪⎩
CP\{e}; CheckDP(P , ks) if CP �= ∅ ∧ HighestPriority(e,CP)
DP\{e}; CheckDP(P , ks) if CP = ∅ ∧ DP �= ∅ ∧!isDeferred(e, ks)
NP\{e}; CheckDP(P , ks) if CP = ∅ ∧ allDefer(DP , ks) ∧ NP �= ∅
ε otherwise

CheckDP(P , ks) � DP\E ; NP ∪ E , where E � {e | e ∈ DP ∧!isDeferred(e, ks)}.

The function guarantees that the precedence order CP ≺ DP ≺ NP is preserved (≺
denotes the preceding partial order). But the order within each event pool is not speci-
fied. The macro HighestPriority(e,CP) denotes that event e has the highest priority in
CP , which preserves the priority order of a nested state over its ancestor states. In the
deferred event pool, only events that are not deferred in the current active state config-
uration (!isDeferred(e, ks)) can be dispatched. The macro allDefer(DP , ks) ⇔ ∀ e ∈
DP , isDeferred(e, ks) guarantees the priority of deferred events over normal events.
When an event is dispatched, we check all the deferred events defined in the states
of the current active state configuration, and remove those events that are not deferred
any more from DP to NP ; this is accomplished by CheckDP .

4 A Formal Semantics for UML State Machines

This section devotes to a self-contained formal semantics for all UML state machines
features. We have adopted the semantic model of Labelled Transition Systems (LTS).
The dynamic semantics of a state machine is captured by the execution of RTC steps,
which have two kinds of effects, viz., changing active states and executing behaviours.
We formally define the two kinds of effects separately. Then the semantics of the RTC
step is defined formally. At last, we define the semantics of the system.

4.1 Active State Configuration Changes

An active state configuration KS is a set of states which are active at the same time.
It describes a stable state status when the previous RTC step finishes. We use Active

3 We treat the state machine (DepartureSM) that is referenced by a submachine state (Departure)
the same way as a composite state.

338 S. Liu et al.

Vertex Configuration KV (a set of vertices that are active at the same time) to repre-
sent the snapshot of a state machine during an RTC execution. For example, in Fig. 1,
{Operating, Choice2} is an active vertex configuration.KS and KV are defined in [17].

Next Active State Configuration. NextK : KS × 〈T̃ 〉 → KS computes the next ac-
tive state configuration after executing the compound transition list indicated by 〈T̃ 〉.
Formally: NextK (ks , (t̃1; . . . ; t̃n)) � NxK (ksn , t̃n), where ∀ i ∈ [2, n], ksi =

NxK (ksi−1, t̃i−1) ∧ ks1 = ks . Function NxK : KS × T̃ → KS computes the next
active state configuration after executing a compound transition indicated by T̃ . For-
mally: NxK (ks , t̃) � NxPK (kvn , seg(t̃ , n)), where n = len(t̃), kv1 = ks , and
∀ i ∈ [2, n], kvi = NxPK (kvi−1, seg(t̃ , i − 1)). Function NxPK : KV × T → KV
computes the next active vertex configuration after executing a transition. Formally:
NxPK (kv , t) � kv\Leave(kv , t) ∪ Enter(t). Functions Leave and Enter represent
the set of states left and entered after executing a transition and are defined in [17].

4.2 Behaviour Execution

Another effect of executing an RTC step is to cause behaviours to be executed. We
define the following functions to collect the behaviour execution sequence.

Exit Behaviour. ExitBehaviour : KV×T → 〈B〉 collects the ordered exit behaviours
of states that a given transition leaves in the current vertex configuration. Formally:

ExitBehaviour(kv , t) = ExV (kv ,MainSource(t), t)

ExR(kv , r , t) �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

SH (h, v); ExV (kv , v , t) if r ∈ R ∧ ∃ v ∈ r .v̂ : v ∈ kv ∧
v ∈ S ∧ ∃ h ∈ SHps : h ∈ r .v̂

DH (h, v); ExV (kv , v , t) if r ∈ R ∧ ∃ v ∈ r .v̂ : v ∈ kv ∧ v ∈ S
∧ ∃ h ∈ DHps : isAncestor(h.ι, r)
∧ isAncestor(t .ι, h.ι)

ExV (kv , v , t) if r ∈ R ∧ ∃ v ∈ r .v̂ : v ∈ kv
∧ ∀ s ′ ∈ r .v̂ , s ′ �∈ SHps

∧ �h ∈ DHps : isAncestor(h.ι, r)
∧ isAncestor(t .ι, h.ι)

ExV (kv , v , t) �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

‖|Cr∈v.r̂ExR(kv , r , t); exit(v) if v ∈ So ∨ (v ∈ Sm ∧ v .r̂ �= ∅)
ExR(kv , r , t); exit(v) if v ∈ Sc ∨ (v ∈ Sm ∧ v .r̂ �= ∅)
exit(v) if v ∈ Ss

ExV (kv , cr , t) if v ∈ Exps ∧
∃ cr ∈ CR : v ∈ cr .êx

ExV (kv , v .s, t) if v ∈ CR
Agn(v .r̂ , v .sm.r̂); ExV (kv , v , t) if v ∈ Sm ∧ v .r̂ = ∅
ε otherwise

The exit behaviours of executing a transition are collected recursively starting from
the innermost state. We define functions ExV and ExR to recursively collect exit be-
haviours. All the regions of a composite state should be exited before it. If the region
contains a (shallow/deep) history pseudostate, the content of the history pseudostate
should be set properly (by functions SH and DH respectively) before exiting the re-
gion. Exiting simple states means terminating the do behaviour (if any) and executing

A Formal Semantics for Complete UML State Machines with Communications 339

the exit behaviour, as defined by exit(v) = v .αdo∇v .αex . If an exit point pseudostate is
encountered, the associated connection point reference is exited, which means the state
defining the connection point reference is exited. Exiting a submachine state means ex-
iting all the regions in the state machine it refers to. Function Agn(v .r̂ , v .sm.r̂) assigns
the set of regions of a state machine to the the of regions of a submachine state.

Entry Behaviour. EntryBehaviour : T → 〈B〉 collects the ordered entry behaviours
of the states a given transition enters. Formally:
EntryBehaviour(t) = EnV (MainTarget(t),Enter(t))

EnR(r , V̂) � EnV (s ′, V̂) where r ∈ R ∧ s ′ ∈ r .v̂ ∧ s ′ ∈ V̂

EnV (v , V̂) �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

v .αen ; (‖|Cr∈v.r̂EnR(r , V̂) ‖ v .αdo) if v ∈ So ∨ (v ∈ Sm ∧ v .r̂ �= ∅)

v .αen ; (EnR(r , V̂) ‖ v .αdo) if v ∈ Sc ∨ (v ∈ Sm ∧ v .r̂ �= ∅)
v .αen ; v .αdo if v ∈ Ss

GenEvent(v .ι) if v ∈ Sf ∧ ∀ r ∈ v .ι.r̂ ,
∃ s ′ ∈ r .v̂ : s ′ ∈ kv ⇒ s ′ ∈ Sf

Agn(v .r̂ , v .sm.r̂); EnV (v , V̂) if v ∈ Sm ∧ v .r̂ = ∅

EnV (v .s, V̂) if v ∈ CR

EnV (cr , V̂) if v ∈ Enps ∧ ∃ cr ∈ CR : v ∈ cr .ên
ε otherwise

Entry behaviours are collected in a similar manner to exit behaviours, except that the
collect starts from the outermost state. We define functions EnV and EnR to recur-
sively collect the entry behaviours of all the vertices in V̂ in order. States entered by fir-
ing transition t are computed by function Enter(t). Starting from the main target state
of a transition, all regions of a composite state are entered in interleaving. Entering each
state means executing its entry behaviour followed by its do activities (s .αen ; s .αdo).
Do activities of a composite state should be executed in parallel (‖) with all the be-
haviours of its containing states. Function GenEvent(s) generates a completion event
for state s .ι and merges the generated event in the completion event pool (CP).

Collect Actions. CollectAct : KS × T̃ → 〈B〉 collects the ordered sequence of
behaviours associated with the execution of the given compound transition. Formally:
CollectAct(ks, t̃) � Act(kv1, seg(t̃ , 1)); . . . ; Act(kvi , seg(t̃ , i)); . . . ; Act(kvn , seg(t̃ ,n)),

andAct(kv , t) � ExitBehaviour(kv , t); t .α̃; EntryBehaviour(t) where n = len(t̃),
kv1 = ks and kvi = NxPK (kvi−1, seg(t̃ , i − 1)) for i ∈ [2, n].

4.3 The Run to Completion Semantics

The effects of an RTC step execution include both active state changes and behaviour
executions which may cause the event pool and global shared variables to be updated.
We use the term configuration to capture the stable status of a state machine.

Definition 11. A configuration is a tuple k = (ks ,P ,GV) where ks is the active state
configuration, P is the event pool and GV is the set of valuation of global variables.

For example, ({Idle}, (∅,∅, {setDest}), {stopNum = 0,mode = false}) is a configu-
ration. The execution of an RTC step can be depicted as moving from one configuration

340 S. Liu et al.

to the next configuration. We provide the following rules to formalize an RTC step. We
use the RailCar system in Fig. 1 to illustrate the following RTC step rules.

Wandering Rule. This rule captures the case where a dispatched event e is neither
consumed nor delayed. As a result, it is discarded.

e = Disp(P),P ′ = P\{e}, ∀ s ∈ ks, e �∈ s.t̂def ,Enable((ks,P
′,GV), e) = ∅

(ks,P ,GV)
e−→ (ks,P ′,GV)

Event e is dispatched from event pool (Disp(P)), but no transition is triggered by e
(i.e., Enable((ks,P ′,GV), e) = ∅), and no deferred event in the current configuration
matches the event e (i.e., ∀ s ∈ ks, e �∈ s.t̂def).

Deferral Rule 1. This rule captures the case where a dispatched event is deferred by
some states in the current active state configuration, but does not trigger any transitions.

e = Disp(P),P ′ = P\{e}, ∃ s ∈ ks : e ∈ s.t̂def ,Enable((ks,P
′,GV , e) = ∅,

P ′′ = Merge(e,P ′.DP)

(ks,P ,GV)
e−→ (ks,P ′′,GV)

Since event e is deferred, it should be merged back to the deferred event pool (i.e.,
Merge(e,P ′.DP)). So after the RTC execution, only the event pool is changed to P ′′.

Deferral Rule 2. This rule captures the case where the dispatched event e triggers some
transitions and it is also deferred by some states in the current active state configuration.
But there exists at least one state, which defines the deferred event, that has higher
priority than the source states of the enabled transitions.

e = Disp(P),P ′ = P\{e}, ∃ s ∈ ks : e ∈ s.t̂def , T̂ = Enable((ks,P ′,GV , e), T̂ �= ∅,

∀ t̃ ∈ T̂ ⇒ deferralConflict(t̃ , (ks,P ′,GV), e),P ′′ = Merge(e,P ′.DP)

(ks,P ,GV)
e−→ (ks,P ′′,GV)

T̂ is the set of transitions enabled by the dispatched event e. Event e is also de-
ferred by some states in the current active state configuration and the event deferral has
higher priority over transition firing (∀ t̃ ∈ T̂ ⇒ deferralConflict(t̃ , (ks,P ′,GV), e))).
As a consequence, only the event pool of the state machine changes. For example,

({Operating, WaitArriveOK, Watch, WaitEnter}, (∅,∅, {opend}),Env1) opend−−−−→
({Operating, WaitArriveOK, Watch, WaitEnter}, (∅, {opend},∅),Env1) illustrates the ap-
plication of this rule, where Env1 denotes {stopNum = 1,mode = false}.

To increase the rules readability, we use the following notations. A(t̃1, . . . , t̃n) =
CollectAct(t̃1); , . . . , ; CollectAct(t̃n) denotes the behaviours collection along tran-
sitions t̃1, . . . , t̃n . Merge(A(〈t̃ 〉),P) merges all events generated by actions in A(〈t̃〉)
into event pool P . Function UpdateV (A(〈t̃〉),GV) updates global variables GV by
actions in A(〈t̃〉).

Progress Rule. This rule captures the case where a set of compound transitions are
triggered by a dispatched event e. There is no event deferred, or the fired transitions

A Formal Semantics for Complete UML State Machines with Communications 341

have higher priority over event deferral.

e = Disp(P),P ′ = P\{e}, T̂ ∈ Firable((ks,P ′,GV), e), | T̂ |= n,

〈t̃〉 ∈ Permutation(T̂),P ′′ = MergeA(A(〈t̃〉),P ′),V ′ = UpdateV (A(〈t̃〉),GV)

(ks,P ,GV)
e−→ (NextK (ks, 〈t̃〉),P ′′,GV ′)

Function Firable((ks ,P ′,GV), e) (defined in [17]) returns a set of maximal non-
conflicting subset of enabled transitions. The firable set of transitions4 will be executed
in an order specified by 〈t̃〉. FunctionPermutation (defined in [17]) computes all possi-
ble total orders on the set of compound transitions T̂ . Behaviours are collected along the
transition execution sequence following the permutation order (indicated by A(〈t̃〉)).
Active state configuration is changed as computed by function NextK (ks , 〈t̃〉).

ProgressC Rule. This rule captures the case where choice pseudostates are encoun-
tered during an RTC execution. Different from the RTC Progress rule, dynamic evalua-
tion would be conducted at the point where a choice pseudostate is reached.

e = Disp(P),P ′ = P\{e}, T̂ ∈ Firable((ks,P ′,GV), e), | T̂ |= n,

t̃1i ∈ T̂ , t̃1i .tv ∈ Cps , 〈t̃〉 = (t̃1, . . . t̃
1
i , . . . , t̃n) ∈ Permutation(T̂),

GV ′ = UpdateV (A(t̃1, . . . , t̃
1
i)),GV),P ′′ = MergeA(A(t̃1 , . . . , t̃

1
i)),P

′),
t̃2i ∈ Firable(({last(t̃1i).tv},P ′′,GV ′), e),P ′′′ = MergeA(A(t̃2i . . . , t̃n),P

′′),
GV ′′ = UpdateV (A(t̃2i . . . , t̃n),GV ′)

(ks,P ,GV)
e−→ (NextK (ks, 〈t̃〉),P ′′′,GV ′′)

Compound transition ti is split by a choice pseudostate into t1i and t2i . The second half
of ti is evaluated based on environment GV ′ . In Fig. 1, ({Operating, WaitArriveOK,

Watch, WaitDepart}, (∅,∅, {opend}),Env1) opend��� ({Operating,Choice2}, (∅,∅,∅),
Env0) ��� ({Idle}, (∅,∅,∅),Env0)5 illustrates the application of this rule.

4.4 System Semantics

A UML state machine models the dynamic behaviour of one object within a system.
But state machines representing different components of a system may interact with
each other. In order to verify the correctness of the overall system behaviours, we need
to capture the message passing sequences between state machines in the system.

Definition 12 (Semantics of a system). The semantics of a system is defined as a La-
belled Transition System (LTS) L � (S,Sinit ,�). In this expression, S is the set of
states of L. Each LTS state is a tuple (k1, . . . , kn) where ki is the configuration of the
state machine Smi within the system. Sinit is the initial state of L. And�⊆ S × S is
the transition relation of L, defined below.

4 We assume the UML state machines obey well-formedness rules. If more than one non-
conflicting sets of transitions are fiable, the choice of which set to execute is non-deterministic.

5 We use Env0 to represent the set {stopNum = 0,mode = false}. The dashed arrow ���
represents an instant stop in a choice pseudostate.

342 S. Liu et al.

Table 2. Evaluation results

Model Property Result
USM2C HUGO

Time(s) State Transition Mem (KiB) TTime(s) ETime(s) State Transition Mem (KiB)
RailCar Prop1 not valid 0.013 30 34 43, 342 - - - - -

RailCarO Prop1 valid 0.011 44 54 43, 058 - - - - -
BankATM Prop2 valid 0.009 25 28 917.5 0.231 0.050 578 1, 133 98, 528

DP2 deadlock not valid 0.005 39 65 2, 318 0.196 0.111 12, 766 42, 081 98, 918

TollGate Prop3 valid 0.110 36 50 43, 345 0.197 0.505 61, 451 256, 807 100, 578

‖|Ci∈[1,n]Smi , kj −→ k ′
j

[LTS1]
(k1, . . . , kj , . . . , kn)� (k1, . . . , k

′
j , . . . , kn)

‖|Ci∈[1,n]Smi , kj −→ k ′
j , e = SendSignal(j , l),Merge(e,EPl)

[LTS2]
(k1, . . . , kl , . . . , kj , . . . , kn ,)� (k1, , . . . , k

′
l , . . . , k

′
j , . . . , kn)

‖|Ci∈[1,n]Smi , kj −→ k ′
j , e = Call(j , l), e ∈ C , kl

e−→ k ′
l

[LTS3]
(k1, . . . , kl , . . . , kj , . . . , kn)� (k1, . . . , k

′
l , . . . , k

′
j , . . . , kn)

All the state machines in the system are executed non-deterministically. Rule LTS1
captures the normal situation that a single state machine is executed without commu-
nicating with other state machines. The notation with prime, i.e., k ′j , represents the
new configuration after executing an RTC step. Rule LTS2 defines asynchronous com-
munication, i.e., the executing state machine (Smj) sends an asynchronous message
(e = SendSignal(j , l)) to another state machine (Sml). The state machine receiv-
ing the message merges the message into its own event pool. Rule LTS3 defines syn-
chronous communication. In this case, the callee state machine (Sml) is triggered by
the call event (e = Call(j , l), e ∈ C). The caller state machine (Smj) cannot finish its
RTC step until the callee has finished execution. For example in Fig. 1, if state machine
Car and Handler are in configuration ({Operating, Crusing}, (∅,∅, {alert100},Env1),
({WaitDepart}, (∅,∅,∅),∅) separately and event alert100 is dispatched and fires tran-
sition t12. The behaviour associated with t12 invokes a call event (that is arriveReq =
Call(Car,Handler)) in Handler state machine. The Handler state machine consumes the
call event and execute an RTC step. After applying rule LTS3, the system is (({Operating,
WaitArriveOK, Watch, WaitEnter}, (∅,∅,∅),Env1), ({WaitPlatform}, (∅,∅,∅),∅)).

5 Implementation and Evaluation

We have implemented the formal semantics in a self-contained tool USM2C [2]. It sup-
ports model checking of deadlock, LTL properties, and step-wise simulation. . We com-
pared USM2C with HUGO [13] on 5 examples used in literature, viz., RailCarO [10],

A Formal Semantics for Complete UML State Machines with Communications 343

Table 3. Scalability evaluation result

N Time (s) States Transitions Memory (KiB) N Time (s) States Transitions Memory (KiB)
2 0.005 39 65 2, 318 3 0.039 237 589 10, 145
4 0.34 1, 519 5, 079 21, 059 5 3.11 9, 634 40, 366 41, 651
6 27.87 63, 069 324, 275 90, 023 7 232.64 398, 101 2, 385, 361 2, 852, 672

RailCar in Fig. 1 (modifies RailCarO to manually introduce bugs6), BankATM [13], dining
philosopher (n = 2) and TollGate [15]. HUGO is a tool translating UML state machines
into Promela models and using Spin to perform model checking.

Results are in Table 2, where Prop1=�(alert100 → ♦arriveAck), Prop2=�(retain →
((!cardValid ∧ numIncorrect ≥ maxNumIncorrect)), Prop3=�(TurnGreen → ♦carExit).
Our tool finds the manually injected bugs in RailCar system, which is out of the capa-
bility of HUGO. The results also show that our tool is more efficient in execution time
and memory consumption compared to HUGO7. The main reason is that the Promela
code generated by HUGO has many local transitions, which introduce overheads. For
example, in the generated TollGate promela code, 7 steps are conducted to move from
a initial pseudostate to its target state, while in our model only one (implicit) step is
taken. The effect is exponential in case of non-determinism.

We conducted another experiment on the dining philosophers problem to evaluate
the scalability of USM2C. Table 3 shows the result of checking deadlock free property
(with breadth first search). We can see from the result that USM2C can handle large state
spaces caused by non-determinism. Reducing further the state space through techniques
such partial-order reduction is the subject of our future work.

We believe that communications between objects are error-prone and hard to find
manually. The experiment results show that our method can find design errors in the
presence of both synchronous and asynchronous communications and is scalable.

6 Related Work

Existing approaches for formalizing UML state machines semantics fall into two major
groups, viz., translation-based approaches and direct formalization approaches.

A large number of existing approaches translate UML state machines to an existing
formal modelling language, such as Abstract State Machines [11,5,12], Petri nets [6,3],
or the modelling language of some model checkers. The verification can be accom-
plished by relying on verification tools for the translated languages. For example, state
machines have been translated to Promela [14], CSP [18], Event-B [21] and CSP# [23];
then Spin, FDR, ProB and PAT model checkers are used to perform the verification,
respectively. The translation approaches suffer from the following defects: (1) Due to
the semantic gaps, it may be hard to translate some syntactic features of UML state
machines, introducing sometimes additional but undesired behaviours. For example

6 Both examples contain transitions which emanate/enter orthogonal composite states, e.g., the
transition from Cruising state to WaitArrivalOK state, which is not supported by HUGO.

7 TTime represents the time used to translate UML state machines models into Promela. ETime
represents the time used by Spin to do model checking.

344 S. Liu et al.

in [23], extra events have to be added to each process so as to model exit behaviours
of orthogonal composite states. (2) For the verification, translation approaches heavily
depend on the tool support of the target formal languages. Furthermore, the additional
behaviours introduced during the translation may significantly slow down the verifi-
cation; and optimizations and reduction techniques (like partial order reduction) may
not apply in order to preserve the semantics of the original model. (3) Lastly, when a
counterexample is found by the verification tool, it is hard to map it to the original state
machine execution, especially when state space reduction techniques are used.

Works directly provide operational semantics for UML state machines are more re-
lated to our approach. [22] provides an operational semantics for a subset of UML state
machines. The approach uses terms to represent states and transitions are nested into
Or-terms, which makes it hard to extend to support the other features. Fecher [7] de-
fines a formal semantics for a subset of UML state machines features. The remaining
features are informally transformed to the formalized features. The informal transfor-
mation procedure as well as the extra costs it introduces might make it infeasible for
tool developing. The work in [19] considers non-determinism in orthogonal composite
states. But it supports only a subset of features and neither event pool mechanisms nor
RTC steps are discussed. In all those works [22,7,19], behaviours associated with states
and transitions are explicitly represented with mapping functions. As a consequence,
future changes to the state machines may cause modifications of multiple structures in
their syntax definition and the consistencies between those structures need to be prop-
erly maintained. Conversely, our semantics preserves the syntax structure specified by
the specification and should extend better to future changes and refinements of state
machines. For example, if a simple state is refined into a composite state, only the
definition of that simple state needs to be changed in our approach, whereas all the
mappings related to that simple state need to be changed in their work.

A number of prototype tools were developed to support the verification of UML
state machines in the literature. vUML [16] and HUGO [13] are tools that translate
UML state machines to PROMELA and use Spin for the verification. TABU [4] and
the tool proposed in [20] translate UML state machines to the input language of SMV.
JACK [9] is an integrated environment containing an AMC component, which is able to
conduct model checking. UML-B [21] is developed to support translation from UML
state machines into Event-B model and ProB is invoked to conduct model checking.
Among all the tools discussed here, only HUGO and UML-B are currently available.
HUGO has compatibility problems with newer versions of Spin (Spin5.x, Spin6.x),
thus manual efforts and knowledge of Spin are required for the verification. UML-B is
a UML-like notation, which integrates with B.

7 Discussion and Perspectives

In this paper, we provide a formal semantics for the complete set of UML state machines
features. Our semantics considers non-determinism as well as the communication as-
pects between UML state machines, which bridge the gap of current approaches. We
have implemented a self-contained tool, USM2C, for model checking various properties
for UML behavioural state machines. The experiments show that our tool is effective in
finding bugs with communications between different state machines.

A Formal Semantics for Complete UML State Machines with Communications 345

We discuss in the following limitations related to our work. (1) We provide basic
assumptions for those unclarities found in UML 2.4.1 state machines specifications
based on our understanding, which may introduce thread to the validity of our work. (2)
We did not formally define the constraint and action language in this work.

Several other issues linked with UML state machines remain unaddressed. As future
work, we aim at considering the real-time aspects and object-oriented issues, such as
dynamic invoking and destroying objects.

Acknowledgements. We thank the anonymous reviewers for their insightful comments.

References

1. OMG unified language superstructure specification (formal), Version 2.4.1 (August 06,
2011), http://www.omg.org/spec/UML/2.4.1/Superstructure/PDF/.

2. USM 2C , a UML state machines model checker (April 05, 2013),
http://www.comp.nus.edu.sg/˜lius87

3. André, É., Choppy, C., Klai, K.: Formalizing non-concurrent UML state machines using
colored Petri nets. ACM SIGSOFT Software Engineering Notes 37(4), 1–8 (2012)

4. Beato, M.E., Barrio-Solórzano, M., Cuesta, C.E., Fuente, P.: UML automatic verification tool
with formal methods. Elec. N. in Th. Computer Sc. 127(4), 3–16 (2005)

5. Börger, E., Cavarra, A., Riccobene, E.: On formalizing UML state machines using ASMs.
Information Software Technology 46(5), 287 (2004)

6. Choppy, C., Klai, K., Zidani, H.: Formal verification of UML state diagrams: a Petri net
based approach. ACM SIGSOFT Software Engineering Notes 36(1), 1–8 (2011)

7. Fecher, H., Schönborn, J.: UML 2.0 state machines: Complete formal semantics via core
state machine. Formal Methods: Applications and Technology, 244–260 (2007)

8. Fecher, H., Schönborn, J., Kyas, M., de Roever, W.: 29 new unclarities in the semantics of
UML 2.0 state machines. Formal Methods and Software Engineering, 52–65 (2005)

9. Gnesi, S., Latella, D., Massink, M.: Model checking UML statechart diagrams using JACK.
In: HASE 1999, pp. 46–55 (1999)

10. Harel, D., Gery, E.: Executable object modeling with statecharts. IEEE Computer 30, 31–42
(1997)

11. Jin, Y., Esser, R., Janneck, J.: A method for describing the syntax and semantics of UML
statecharts. Software and Systems Modeling 3(2), 150–163 (2004)

12. Jürjens, J.: A UML statecharts semantics with message-passing. In: Proceedings of the 2002
ACM Symposium on Applied Computing, pp. 1009–1013. ACM (2002)

13. Knapp, A., Merz, S.: Model checking and code generation for UML state machines and
collaborations. In: Proc. 5th W. Tools System Design & Verif, vol. 11, pp. 59–64 (2002)

14. Knapp, A., Merz, S., Rauh, C.: Model checking - timed UML state machines and collabora-
tions. In: Damm, W., Olderog, E.-R. (eds.) FTRTFT 2002. LNCS, vol. 2469, pp. 395–416.
Springer, Heidelberg (2002)

15. Kong, J., Zhang, K., Dong, J., Xu, D.: Specifying behavioral semantics of UML diagrams
through graph transformations. Journal of Systems and Software 82(2), 292–306 (2009)

16. Lilius, J., Paltor, I.P.: vUML: A tool for verifying UML models, pp. 255–258 (1999)
17. Liu, S., Liu, Y., André, É., Choppy, C., Sun, J., Wadhwa, B., Dong, J.S.: A formal semantics

for complete UML state machines with communications (report). Technical report, National
University of Singapore (2013), http://www.comp.nus.edu.sg/ lius87/uml/
techreport/uml sm semantics.pdf

http://www.omg.org/spec/UML/2.4.1/Superstructure/PDF/
http://www.comp.nus.edu.sg/~lius87
http://www.comp.nus.edu.sg/~lius87/uml/techreport/uml_sm_semantics.pdf
http://www.comp.nus.edu.sg/~lius87/uml/techreport/uml_sm_semantics.pdf

346 S. Liu et al.

18. Ng, M., Butler, M.: Towards formalizing UML state diagrams in CSP. In: SEFM 2003,
p. 138 (2003)

19. Schönborn, J.: Formal semantics of UML 2.0 behavioral state machines. Technical report,
Inst. Computer Science and Applied Mathematics, Christian-Albrechts-Univ. of Kiel (2005)

20. Shen, W., Compton, K., Huggins, J.: A toolset for supporting UML static and dynamic model
checking. In: COMPSAC 2002, pp. 147–152 (2002)

21. Snook, C., Butler, M.: UML-B: Formal modeling and design aided by UML. ACM Trans.
Softw. Eng. Methodol. 15(1), 92–122 (2006)

22. Von Der Beeck, M.: A structured operational semantics for UML-statecharts. Software and
Systems Modeling 1(2), 130–141 (2002)

23. Zhang, S., Liu, Y.: An automatic approach to model checking UML state machines. In:
4th Int. Conf. Secure Software Integration & Reliability etc (SSIRI-C), pp. 1–6. IEEE (2010)

From Small-Step Semantics

to Big-Step Semantics, Automatically�

Ştefan Ciobâcă

Faculty of Computer Science, University “Alexandru Ioan Cuza”
Iaşi, Romania

stefan.ciobaca@info.uaic.ro

Abstract. Small-step semantics and big-step semantics are two styles
for operationally defining the meaning of programming languages. Small-
step semantics are given as a relation between program configurations
that denotes one computational step; big-step semantics are given as
a relation directly associating to each program configuration the corre-
sponding final configuration. Small-step semantics are useful for making
precise reasonings about programs, but reasoning in big-step semantics
is easier and more intuitive. When both small-step and big-step seman-
tics are needed for the same language, a proof of the fact that the two
semantics are equivalent should also be provided in order to trust that
they both define the same language. We show that the big-step seman-
tics can be automatically obtained from the small-step semantics when
the small-step semantics are given by inference rules satisfying certain
assumptions that we identify. The transformation that we propose is very
simple and we show that when the identified assumptions are met, it is
sound and complete in the sense that the two semantics are equivalent.
For a strict subset of the identified assumptions, we show that the result-
ing big-step semantics is sound but not necessarily complete. We discuss
our transformation on a number of examples.

1 Introduction

In order to reason about programs, a formal semantics of the programming lan-
guage is needed. There exist a number of styles in which the semantics can be
given: denotational [1] (which associates to a program a mathematical object
taken to be its meaning), axiomatic [2,3] (where the meaning of a program is
exactly what can proven about it from the set of axioms) and operational [4,5,6]
(which describes how the program executes on an abstract machine). Each se-
mantic style has its own advantages and disadvantages. Sometimes, two or more
semantics in different styles are needed for a programming language. In such a
case, the equivalence of the different semantics must be proven in order to be
sure that they really describe the same language.

In this article, we focus on two (sub)styles of operational semantics: small-
step structural operational semantics [5] and big-step structural operational se-
mantics [6] (also called natural semantics). Small-step semantics are given as

� This work was supported by Contract 161/15.06.2010, SMISCSNR 602-12516 (DAK).

E.B. Johnsen and L. Petre (Eds.): IFM 2013, LNCS 7940, pp. 347–361, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

348 Ş. Ciobâcă

a relation (→) between program configurations modelling code and state. The
small-step relation is usually defined inductively (based on the structure of the
abstract syntax of the programming language – therefore the name of structural
operational semantics). Configurations in which programs are expected to end
are called final configurations (e.g., configurations in which there is no more
code to execute). The transitive-reflexive closure →∗ of the small-step rewrite
relation → is taken to model the execution of a program. Configurations that
cannot take a small step but which are not final configurations are stuck (e.g.,
when the program is about to cause a runtime error such as dividing by zero).

In contrast, big-step (structural operational) semantics describe the meaning
of a programming language by an inductively defined predicate ⇓ which links a
(starting) program configuration directly to a final configuration. Therefore the
big-step semantics of a programming language is in some sense similar to the
transitive closure of the small-step semantics.

Small-step semantics are especially useful in modeling systems with a high
degree of non-determinism such as concurrent programming languages and in
proofs of soundness for type systems, since small-step semantics can distinguish
between programs that go wrong (by trying to perform an illegal operation such
as adding an integer to a boolean) and programs which do not terminate because
they enter an infinite loop. In contrast, a big-step semantics has the disadvantage
that it cannot distinguish between a program that does not terminate (such as
the program μx.x in a lambda calculus extended with the fix-point operator μ)
and a program that performs an illegal operation (such as the program 1 2 –
the program which tries to apply the natural number 1 (which is not a function
and therefore cannot be applied to anything) to the natural number 2 – in
a lambda calculus extended with integers). The reason for which the big-step
semantics cannot distinguish between these is that in both cases there does not
exist a final configuration M such that μx.x⇓M or 1 2⇓M . Furthermore, big-
step semantics cannot be used to model non-determinism accurately: consider a
language with a C-like add-and-assign operator += and the following statement:
x := (x += x + 1) + ((x += x + 2) + (x += x + 3)). The add-and-assign
operator evaluates the right-hand side, adds the result to the variable on the
left-hand side and returns the new value of the variable. If the language has a
non-deterministic + operator, then the evaluation of the three add-and-assign
expressions can happen in any order. However, the following (slightly simplified)
big-step rules which seem to naturally model the non-determinism of +:

V1 + V2⇓V
V = V1 +Int V2

M⇓V1 V1 +N⇓V
M +N⇓V

N⇓V2 M + V2⇓V
M +N⇓V

will fail to capture all behaviors of the statement, since the side-effects of x +=
x+1 will never be taken into account in the middle of the evaluation of ((x += x+
2) + (x += x + 3)). This is a known inherent limitation of big-step
semantics which prevents it from being used to reason about concurrent sys-
tems. Known workarounds [7] that allow a certain degree of non-determinism in

From Small-Step Semantics to Big-Step Semantics, Automatically 349

big-step semantics require adding additional syntax to the language (required
only for the evaluation), which makes the semantics less structural.

Big-step semantics do have however a few notable advantages. First of all,
they can be used to produce efficient interpreters and compilers [8] since there is
no need to search for the redex to be reduced – instead, the result of a program
is directly computed from the results of smaller programs. In contrast, an inter-
preter based on small-step semantics has to search at each step for a possible
redex and then perform the update. Secondly, reasoning about programs and
about the correctness of program transformations with a big-step semantics is
easier [9,10].

Therefore, because both small-step semantics and big-step semantics each
have their own set of advantages, it is desirable to have both types of seman-
tics for a programming language. However, when both the small-step semantics
and the big-step semantics are given for a language, the equivalence of the two
semantics needs to be proven in order to be sure that the two semantics define
the same language. We would like to obtain the advantages of both small-step
semantics and big-step semantics, but without having to do this proof (or at
least, not having to redo it for every programming languages being defined).

Therefore, we propose and investigate a transformation to automatically ob-
tain the big-step semantics of a language from its small-step semantics. This
allows in principle to enjoy both the advantages of the small-step semantics and
those of the big-step semantics without having to manually maintain the two se-
mantics and their proof of equivalence. Of course, this automation does not come
without costs: in order for the transformation to yield an equivalent semantics,
a number of assumptions must hold for the small-step semantics.

Our motivation for transforming small-step semantics into big-step semantics
comes from our research on the K Semantic Framework [11], which is a framework
for defining programming languages based on rewriting logic [12]. The K frame-
work can be seen as a methodological fragment of rewriting logic with rewrite
rules that describe small-step semantics and heating and cooling rules which
describe under which contexts the rules can apply. We intend to generate stan-
dalone compilers for efficient execution and mechanized formal specifications for
proof assistants in order to perform machine-assisted reasoning about programs.
This transformation could serve as a starting point for both these directions.

In Section 2, we describe the meta-language we use for the small-step and big-
step semantics. In Section 3, we formalize our transformation and present all of
the assumptions under which it is sound and complete. In Section 4 we present a
number of examples and in Section 5 we present related work. Section 6 contains
a discussion and directions for further work.

2 Preliminaries

Before formalizing our transformation from small-step semantics to big-step
semantics, we need a precise mathematical language (the meta-language) to
describe such semantics. As previously discussed, the small-step semantics of a

350 Ş. Ciobâcă

programming language is a binary relation → between program configurations.
In the following, we model ground program configurations by an arbitrary al-
gebra A over a signature Σ. Abstract configurations (i.e. configurations with
variables, simply “configurations” from here on) are built from the signature Σ
and a countably infinite set of variables X as expected. Substitutions σ are de-
fined as expected and substitution application is written in suffix form. We use
the letters M,N,P and their decorated counterparts (Mi,M

i,M j
i , etc) as meta-

variables in the meta-language; i.e., they can denote any particular program
configuration.

Example 1. To define the untyped lambda calculus, we consider the signature
Σ = {app, fun, x0, . . . , xn, . . .}. The constants x0, . . . , xn, . . . denote the variables
of lambda calculus, the binary symbol fun denotes functional abstraction and
the binary symbol app denotes application. We follow the usual notations in
lambda calculi and we write applications app(M,N) as juxtapositions MN and
functional abstractions fun(xi,M) as lambda-abstractions λxi.M . The algebra
A is then the initial algebra of Σ. We assume that A is sorted such that the first
argument of fun is always a constant xi (i ∈ N). ��

We let P be a set of predicates. We assume that P contains the distinguished
binary predicates → and ⇓ and the distinguished unary predicate ↓. The predi-
cates→ and respectively ⇓ are used in infix notation and the predicate ↓ is used
in suffix notation. The predicate→ is reserved for the small-step transition rela-
tion, the predicate ⇓ is used for the big-step relation and ↓ is used for denoting
final configurations.

Example 2. Continuing the previous example, for call-by-value lambda calcu-
lus (CBV lambda calculus), the predicate ↓ (denoting final configurations) is
defined to be true only for configurations that are either variables or lambda-
abstractions:

M↓ iff
{
M = xi or
M = λxi.N

(for some i ∈ N, N ∈ A).

In the context of lambda calculi, we also consider a predicate Subst(M,x,N, P)
which is true when P is a lambda-term obtained by substituting N for the
variable x in M while avoiding name-capture. ��

We model the small-step semantics as a set of inference rules R of the form

R =
M1→N1, . . . ,Mn→Nn

M→N
Q1(P̃1), . . . , Qm(P̃m),

where M,N,M1, . . . ,Mn, N1, . . . , Nn are configurations, P̃1, . . . , P̃m are
sequences of configurations and Q1, . . . , Qm ∈ P \ {→,⇓} are predicates. The
transition relation → associated to such a set of inference rules is the smallest
relation which is closed by each inference rule, i.e., for each rule R as above and
each substitution σ grounding for R, we have that if M1σ→N1σ, . . . ,Mnσ→Nnσ
and Q1(P̃1σ), . . . , Qm(P̃mσ) then Mσ→Nσ.

From Small-Step Semantics to Big-Step Semantics, Automatically 351

Example 3. Continuing the previous example, the small-step semantics of call-
by-value lambda calculus can be defined by the following set S = {R1, R2, R3}
of inference rules:

(R1)
X→X ′

XY→X ′Y
(R2)

Y→Y ′

XY→XY ′ X↓ (R3)
(λx.X)Y→Z

Y ↓,Subst(X,x, Y, Z)

Note that in the above rules, x,X,X ′, Y, Y ′, Z ∈ X are variables; we assume
x ∈ X is sorted to be instantiated only with lambda-calculus variables xi ∈ Σ.

��

As a sanity check for the definition of small-step semantics, it is expected that
M↓ implies M �→N for any N (i.e. configurations that are considered final cannot
take any step). The reverse implication is not expected, since a configuration such
as x0x1 (application of the variable x0 to the variable x1) is stuck and cannot
advance even if it not a final configuration. Similarly to small-step semantics,
big-step semantics are modeled as a set of inference rules R of the form

R =
M1⇓N1, . . . ,Mn⇓Nn

M⇓N
Q1(P̃1), . . . , Qm(P̃m),

where M,N,M1, . . . ,Mn, N1, . . . , Nn are configurations, P̃1, . . . , P̃m are
sequences of configurations and Q1, . . . , Qm ∈ P \ {→,⇓} are predicates. The
relation ⇓ associated to such a set of inference rules is the smallest relation
which is closed by each inference rule, i.e., for each rule R as above and each
substitution σ grounding for R, we have that if M1σ⇓N1σ, . . . ,Mnσ⇓Nnσ and
Q1(P̃1σ), . . . , Qm(P̃mσ) then Mσ⇓Nσ. Note that syntactically there is no dif-
ference between inference rules for big-step semantics and small-step semantics.
The only difference is that in the small-step semantics, → is expected to denote
one computation step while in the big-step semantics, ⇓ is expected to relate
configurations to their associated final configuration.

Example 4. Continuing the previous examples, we consider the following big-
step semantics B = {T1, T2} for the call-by-value lambda calculus:

(T1)
X⇓X

X↓ (T2)
X⇓λx.X′, Y ⇓Y ′, Z⇓V

XY ⇓V
Subst(X ′, x, Y ′, Z)

As for the small-step semantics, in the above rules x,X,X ′, Y, Y ′, Z, V ∈ X
are variables and x ∈ X is sorted to be instantiated only with lambda-calculus
variables xi ∈ Σ. ��

As a sanity check, it is expected for any big-step semantics thatM⇓N implies N↓.
This will indeed be the case for the big-step semantics that are obtained by the
algorithm that we describe next. In the following, wewill write→∗ for the reflexive-
transitive closure of→. The following definition captures the fact that a small-step
semantics and a big-step semantics define the same programming language.

Definition 1. A small-step semantics → and a big-step semantics ⇓ are equiv-
alent when M→∗N and N↓ hold if and only if M⇓N holds.

352 Ş. Ciobâcă

The two semantics that we have defined above for call-by-value lambda calculus
are equivalent (see, e.g., [13]):

Theorem 1. The small-step semantics → defined by S in Example 3 is equiva-
lent to the big-step semantics ⇓ defined by B in Example 4.

Ideally, the big-step semantics and small-step semantics of a language should
be equivalent in the sense of the definition above. However, producing a big-
step semantics completely equivalent to the small-step semantics is sometimes
impossible because, e.g., of non-determinism which can be described by small-
step semantics but cannot be handled by big-step semantics (see discussion of
non-determinism in Section 1). In such cases, it is desirable to have a slightly
weaker link between the big-step semantics and the small-step semantics:

Definition 2. A big-step semantics ⇓ is sound for a small-step semantics → if
M⇓N implies M→∗N and N↓.

Note that if a small-step semantics → is equivalent to a big-step semantics ⇓,
then it immediately follows that ⇓ is sound for→. In all of the examples that we
discuss in the rest of the paper, we will obtain big-step semantics that are fully
equivalent to the initial small-step semantics. However, as discussed in Section 1,
this cannot be the case for all languages. In such cases, it is desirable to establish
that the two semantics satisfy the link in Definition 2.

3 From Small-Step Semantics to Big-Step Semantics

This section describes the transformation from small-step semantics to big-step
semantics. We also give the class of small-step semantics for which our trans-
formation is sound and complete in the sense of obtaining big-step semantics
equivalent to the original small-step semantics.

3.1 The Transformation

The first idea that comes to mind when transforming a small-step semantics
into a big-step semantics is to just add an explicit Transitivity-like inference
rule. However, this defeats the purpose of having big-step semantics in the first
case, since the → relation still explicitly appears in the inference system and
must be reasoned about. Therefore, another approach is desirable.

Let S = {R1, . . . , Rk} be a set of small-step inference rules R1, . . . , Rk definin-
ing a small-step semantics. To S we associate the set B(S) = {R,R′

1, . . . , R
′
k},

where

R = V ⇓V
V ↓

and where

R′
i =

M1⇓N1, . . . ,Mn⇓Nn, N⇓V
M⇓V

Q1(P̃1), . . . , Qm(P̃m)

From Small-Step Semantics to Big-Step Semantics, Automatically 353

for every inference rule

Ri =
M1→N1, . . . ,Mn→Nn

M→N
Q1(P̃1), . . . , Qm(P̃m)

in S (1 ≤ i ≤ k). In the above rules, V ∈ X is a variable, M,N,M1, . . . ,Mn,
N1, . . . , Nn are configurations, P̃1, . . . , P̃m are sequences of configurations and
Q1, . . . , Qm are predicates.

Example 5. Continuing Example 3, we have that B(S) = {R,R′
1, R

′
2, R

′
3} is:

R = V ⇓V
V ↓ R′

1 =
X⇓X′, X′Y ⇓V

XY ⇓V R′
2 =

Y ⇓Y ′, XY ′⇓V
XY ⇓V

X↓

R′
3 =

Z⇓V
(λx.X)Y ⇓V

Y ↓,Subst(X,x, Y, Z) ��

Note that for the call-by-value lambda calculus that we have used as a run-
ning example, the big-step semantics B(S) = {R,R′

1, R
′
2, R

′
3} obtained automat-

ically from the small-step semantics S = {R1, R2, R3} by the transformation
described above is slightly different from the manually designed big-step seman-
tics B = {T1, T2} (defined in Example 4). The difference is that the automatically
generated rules R′

1, R
′
2, R

′
3 are synthesized into a single rule T2 in the manually

designed big-step semantics. It is not a surprise that the manually designed rules
are slightly simpler than the automatically generated rules since the automated
rules must be more generic. Note however that there is no redundancy in the
generated rules and that the implementations of interpreters based on the two
sets of rules would look very similar. We speculate that simplification rules could
reduce the gap between the generated rules and the manually designed rules but
we leave this as an open problem for further study.

3.2 The Assumptions

In order for the automatic derivation of the big-step semantics from the small-
step semantics to produce a completely equivalent semantics, we require that the
inference system S satisfies four assumptions. The big-step semantics are sound
for the small-step semantics in the sense of Definition 2 when one of the four
assumptions holds. In order to state the four assumptions, we need to notions
of star-soundness and star-completeness, defined below.

Definition 3 (Star-sound Inference Rule). A small-step inference rule

R =
M1→N1, . . . ,Mn→Nn

M→N
Q1(P̃1), . . . , Qm(P̃m)

is star-sound if it still holds when → is replaced by →∗, i.e. for any σ such that
M1σ→∗N1σ, . . . ,Mnσ→∗Nnσ and Q1(P̃1σ), . . . , Qm(P̃mσ) we have Mσ→∗Nσ.

Intuitively, star-soundness means that if one can take zero or more steps to reach
Ni from Mi (for all 1 ≤ i ≤ n), then M can also be reached from N in zero or
more steps.

354 Ş. Ciobâcă

Definition 4 (Star-complete Inference Rule). We say that a small-step
inference rule

R =
M1→N1, . . . ,Mn→Nn

M→N
Q1(P̃1), . . . , Qm(P̃m)

is star-complete w.r.t to a small-step semantics → if for every substitution
σ such that M1σ→N1σ, . . . ,Mnσ→Nnσ,Q1(P̃1σ), . . . , Qm(P̃mσ) and Nσ→∗V
for some ground configuration V with V ↓, we have that there exists a substitu-
tion σ′ which agrees with σ on Var(M,M1, . . . ,Mn) such that N1σ→∗N1σ

′, . . . ,
Nnσ→∗Nnσ

′, Q1(P̃1σ
′), . . . , Qm(P̃mσ′) and N1σ

′↓, . . . , Nnσ
′↓ where the number

of steps in each of the derivations Niσ→∗Niσ
′ (1 ≤ i ≤ n) is strictly smaller

than the number of rewrite steps in the derivation Nσ→∗V .

Intuitively, star-completeness means that if the rule can be used to start a termi-
nating computation, then one can find terminating computations starting with
Mi (1 ≤ i ≤ n) as well. We are now ready to state our assumptions.

Assumption 1 (Ground Confluency). The relation→ induced by S is ground
confluent: If M→∗N1 and M→∗N2 for some ground configurations M,N1, N2,
then there exists a ground configuration P such that N1→∗P and N2→∗P .

Assumption 2. For any ground configuration M , we have that M↓ implies
M �→N for any ground configuration N .

Assumption 3 (Star-soundness). Any inference rule R ∈ S is star-sound
with respect to the rewrite relation → induced by S.

Assumption 4 (Star-completeness). Any inference rule R ∈ S is star-
complete with respect to the rewrite relation → induced by S.

Our next theorem states that the transformation that we have presented is sound
and complete in the sense that the resulting big-step semantics is equivalent to
the original small-step semantics whenever S satisfies the above assumptions.

Theorem 2. Let → be the small-step relation defined by S and let ⇓ be the
big-step relation defined by B(S). If S satisfies Assumptions 1, 2, 3, 4 defined
in Subsection 3.2, then → and ⇓ are equivalent.

Proof (Sketch). In one direction, the proof follows by induction on the number
of small-steps taken and in the reverse direction by induction on the big-step
proof tree.

The CBV lambda calculus in Example 3 satisfies the above assumptions:

Lemma 1. The small-step semantics S = {R1, R2, R3} defined in Example 3
satisfies Assumptions 1, 2, 3, 4.

Proof (Sketch.). It is well known (e.g., starting with the seminal result of
Plotkin [13]) that Assumption 1 (confluence or “the Church-Rosser” property)
holds for various (extensions of) lambda-calculi. Assumptions 2, 3, 4 follow by
case analysis and induction.

From Small-Step Semantics to Big-Step Semantics, Automatically 355

Therefore we obtain immediately from Lemma 1 and Theorem 2:

Corollary 1. The big-step semantics ⇓ defined by B(S) in Example 5 is equiv-
alent to the small-step semantics → defined by S in Example 3.

It might seem that Assumptions 1, 2, 3, 4 are excessive. However, note that hav-
ing these assumptions establishes a very strong link between the two semantics.
If the big-step semantics should just be a sound approximation of the small-
step semantics (i.e., when some behaviors of the small-step semantics can be
discarded), then only Assumption 3 (star-soundness) is needed:

Theorem 3. Let → be the small-step relation defined by S and let ⇓ be the
big-step relation defined by B(S). If S satisfies Assumption 3 defined in Subsec-
tion 3.2, then ⇓ is sound for → in the sense of Definition 2.

Proof (sketch). By induction on the big-step proof tree.

4 Examples

4.1 Call-by-Name Lambda Calculus

We have already shown how our transformation works for CBV lambda calculus
as a running example in Section 3. We consider the same signature as for CBV
lambda calculus and the following set S = {R1, R2} of small-step inference rules
modeling call-by-name lambda calculus (CBN lambda calculus):

(R1)
X→X

′

XY→X
′
Y

(R2)
(λx.X)Y→Z

Subst(X,x, Y, Z)

The CBN big-step semantics obtained from the above definition is the setB(S) =
{R,R′

1, R
′
2}, where:

(R′
1)

X⇓X′, X′Y ⇓V
XY ⇓V

V ↓ (R′
2)

Z⇓V
(λx.X)Y ⇓V

Subst(X,x, Y, Z)

It can be shown that the CBN lambda-calculus defined above satisfies Assump-
tions 1, 2, 3 and 4 and therefore the above transformation is sound and complete.

4.2 Call-by-Value Mini-ML

Mini-ML is a folklore language used for teaching purposes which extends lambda-
calculus with some features like numbers, booleans, pairs, let-bindings or fix-
points in order to obtain a language similar to (Standard) ML. We use a variant

356 Ş. Ciobâcă

of Mini-ML where the abstract syntax is:

Var ::= variables
| x0 | . . . | xn | . . .

Exp ::= expressions
| Var variable
| 0 | 1 | . . . | n | . . . natural number
| Exp+ Exp arithmetic sum
| λVar.Exp function definition
| μVar.Exp recursive definition
| Exp Exp function application
| let Var = Exp in Exp let binding

Here Exp and Var are sorts in the signature Σ, with Var being a subsort of Exp.
The additional syntax can of course be desugared into pure lambda calculus, but
we prefer to give its semantics directly in order to show how our transformation
works. We define configurations to consist of expressions Exp and final configura-
tions to be natural numbers 0, 1, . . . , n, . . . or function definitions λVar.Exp. We
consider the predicate +(M,N,P) which holds when M , N and P are integers
such that P is the sum of M and N . We define the small-step semantics of the
language to be S = {R1, . . . , R10}, where:

R1 =
X→X′

X + Y→X′ + Y
R2 =

Y→Y ′

X + Y→X + Y ′ X↓ R3 =
X + Y→Z

+(X,Y, Z)

R4 =
μx.X→Z

Subst(X,x, μx.X,Z) R5 =
X→X′

XY→X′Y
R6 =

Y→Y ′

XY→XY ′ X↓

R7 =
(λx.X)Y→Z

Y ↓,Subst(X,x, Y,Z) R8 =
X→X′

let x = X in Y→let x = X′ in Y

R9 =
Y→Y

′

let x = X in Y→let x = X in Y ′ X↓

R10 = let x = X in Y→Z
X↓, Y ↓,Subst(Y, x,X,Z)

Rules R1, R2, R3 describe integer arithmetic where the arguments to the plus
operator are evaluated in order. Rule R4 describes recursive definitions. The
term μx.M reduces to M where x is replaced by μx.M . This allows the definition
of recursive functions. Note that μx.M is not a final configuration. The next
rules R5, R6, R7 are those from the standard call-by-value lambda calculus and
handle function application. Finally, rules R8, R9, R10 handle let bindings. Not
surprisingly, the small-step semantics of Mini-ML satisfies Assumptions 1, 2, 3
and 4 as well. Therefore, by our result, the big-step semantics obtained by our
transformation is equivalent to the small-step semantics.

4.3 IMP

Much like Mini-ML, IMP is a simple language used for teaching purposes. How-
ever, IMP is imperative and it usually features arithmetic and boolean expres-
sions, variables, and statements such as assignment, conditionals and while-loops.

From Small-Step Semantics to Big-Step Semantics, Automatically 357

We define a variant of IMP with the following abstract syntax:

Var ::= variables
| x0 | . . . | xn | . . .

Exp ::= expressions
| Var variable
| 0 | 1 | . . . | n | . . . natural number
| Exp+ Exp arithmetic sum
| Exp ≤ Exp comparison

Seq ::= sequence of statements

| emp empty sequence
| Var := Exp;Seq assignment
| if Exp then Seq else Seq;Seq conditional
| while Exp do Seq; Seq loop

Pgm ::= programs
| Seq;Exp execute statement

return expression

For simplicity, we do not model booleans and we assume a C-like interpretation
of naturals as booleans: any non-zero value is interpreted as truth and the com-
parison operator ≤ returns 0 (representing false) or 1 (representing true). We
will define therefore the predicates Zero(n) and NonZero(n) which hold when n
is a natural number equal to 0 (for Zero) and respectively when n is a natural
number different from 0 (for NonZero).

Programs are described by terms of sort Pgm. As opposed to the previous ex-
amples of programming languages (all based on lambda-calculus), IMP programs
do not run standalone; an IMP program runs in the presence of an environment
which maps variables to natural numbers. Therefore the small-step relation will
relate configurations which consist of a program and an environment:

Env ::= environment (list of bindings)
| ∅ empty
| Var �→ Nat,Env non-empty

Cfg ::= configuration
| (Pgm,Env) program + environment

As environments are essentially defined to be lists of pairs x �→ n (for variables
x and naturals n), there is no stopping a variable from appearing twice in an
environment (making the environment map the same variable to potentially
different natural numbers). We break ties by making the assumption that the
binding which appears first in a list for a given variable is the right one. We define
the predicate Lookup(e, x, n) to hold exactly when the variable x is mapped to
the integer n by the environment e (breaking ties as described above). The
predicate Update(e, x, n, e′) holds when e′ is the environment obtained from e
by letting x map to n.

A final configuration (at which the computation stops) is a configuration in
which the program is the empty sequence of statements (emp) followed by a
fully evaluated expression (i.e., a natural number). Therefore the predicate ↓
will be true exactly of configurations of the form (emp;n, e) where e is any

358 Ş. Ciobâcă

environment and n is a natural number. To simplify notations, when the sequence
of statements is empty, we also write (N, e) instead of (emp;N, e).

To define our semantics, we also consider a predicate Nat(N) which holds
exactly when N is a natural number, a predicate +(M,N,P) which relates
any two natural number M and N to their sum P , a predicate ≤ (M,N,P)
which is true when M,N are natural numbers and M ≤ N implies P = 1
and M > N implies P = 0. Then the small-step semantics of IMP is given
by S = {R1, . . . , R10}, where the rules R1, . . . R10 are described below. The
rules for evaluating expressions are the following (recall that (M, e) is short for
(emp;M, e)):

R1 =
(X, e)→(X′, e)

(X + Y, e)→(X
′
+ Y, e)

R2 =
(Y, e)→(Y ′, e)

(X + Y, e)→(X + Y
′
, e)

Nat(X)

R3 = (X + Y, e)→(Z, e)
+(X,Y, Z) R4 = (x, e)→(Y, e)

Lookup(e, x, Y)

Assignments work by first evaluating the expression and then updating the en-
vironment:

R5 =
(X, e)→(X′, e)

((x := X);Z; Y, e)→((x := X′);Z; Y, e)

R6 = ((x := X);Z;Y, e)→(Z;Y, e′)
Nat(X),Update(e, x,X, e′)

Note that, in the last two rules above, Z matches the remaining sequence of state-
ments while Y matches the expression representing the result of the program.
The rules for the conditional and for the while loop are as expected:

R7 =
(X, e)→(X′, e)

(if X then Y1 else Y2;Z;Y, e)→
(if X′ then Y1 else Y2;Z; Y, e)

R8 = (if X then Y1 else Y2;Z; Y, e)→
(Y1;Z;Y, e)

Zero(X)

R9 = (if X then Y1 else Y2;Z;Y, e)→
(Y2;Z; Y, e)

NonZero(X)

R10 =
(while X do X0;Z; Y, e)→

(if X then (X0;while X do X0; emp)
else Z; emp;Y, e)

Note that in the above 10 rules, X,X ′, Y, Y ′, Z, x, e,X0, Y1, Y2 ∈ X are variables.
Furthermore, e is sorted to only match environments. The big-step semantics
B(S) = {R,R′

1, . . . , R
′
10} obtained through our transformation is:

R = V ⇓V
V ↓ R′

1 =
(X, e)⇓(X′, e), (X′ + Y, e)⇓V

(X + Y, e)⇓V

R′
2 =

(Y, e)⇓(Y ′, e), (X + Y ′, e)⇓V
(X + Y, e)⇓V

Nat(X) R′
3 =

(Z, e)⇓V
(X + Y, e)⇓V

+(X,Y, Z)

R′
4 =

(Y, e)⇓V
(x, e)⇓V

Lookup(e, x, Y) R′
5 =

(X, e)⇓(X′, e), ((x := X′);Z;Y, e)⇓V
((x := X);Z; Y, e)⇓V

From Small-Step Semantics to Big-Step Semantics, Automatically 359

R′
6 =

(Z;Y, e′)⇓V
((x := X);Z;Y, e)⇓V

Nat(X),Update(e, x,X, e′)

R′
7 =

(X, e)⇓(X′, e), (if X′ then Y1 else Y2;Z;Y, e)⇓V
(if X then Y1 else Y2;Z;Y, e)⇓V

R′
8 =

(Y1;Z;Y, e)⇓V
(if X then Y1 else Y2;Z; Y, e)⇓V

Zero(X)

R′
9 =

(Y2;Z; Y, e)⇓V
(if X then Y1 else Y2;Z;Y, e)⇓V

NonZero(X)

R′
10 =

(if X then (X0;while X do X0; emp) else Z; emp;Y, e)⇓V
(while X do X0;Z;Y, e)⇓V

It can be shown that the small-step semantics of IMP, as defined above, satisfies
Assumptions 1, 2, 3 and 4. Therefore, by our result, the big-step semantics de-
scribed above is equivalent to the small-step semantics. Note that Assumption 1
(confluence) is satisfied due to the deterministic nature of the language.

5 Related Work

Each semantic style has its own advantages and disadvantages. Work on ad-
dressing the disadvantages of big-step semantics includes [14], which presents a
method to reduce verbosity called pretty big step semantics and [10,15], propos-
ing methods of distinguishing between non-terminating and stuck configurations.
However, it is surprising that little work has gone into (automatic) transforma-
tion of one style of semantics into another, given that proving that two semantics
are equivalent can be nontrivial.

Huizing et al. [16] show how to automatically transform big-step semantics
into small-step semantics. In some sense, they propose the exact inverse of our
transformation with the goal of obtaining a semantics suitable for reasoning
about concurrency. However, their transformation is not natural in the sense
that the small-step semantics does not look like what would be written “by
hand”: instead, a stack is artificially added to program configurations in order
to obtain the small-step semantics.

A line of work by Danvy et al. ([17,18,19,20]) shows that functional implemen-
tations of small-step semantics and big-step semantics can be transformed into
each other via sound program transformations (like the well-known CPS trans-
form). Their transformation looks similar to ours, but operates on interpreters
of the language and is different from our work in several significant ways. Firstly,
we address the transformation of the semantics itself (defined in a simple meta-
language) and not of the implementation of the semantics as an interpreter writ-
ten in a functional language. This is in principle somewhat more powerful since
tools other than interpreters (like programverifiers) can also take advantage of the
newly obtained semantics. Secondly, because our transformation is completely for-
mal, we are able to prove that it is correct (under a number of assumptions on the
initial small-step semantics). This is in contrast to the above line of work, where
the program transformations are performed manually and are shown to produce
equivalent interpreters for a set of example languages. In particular, Danvy et al.

360 Ş. Ciobâcă

do not prove ameta-theorem stating that their transformation is sound for any lan-
guage – they conclude that small-step machines can be mechanically transformed
into big-step machines by generalizing from a set of example languages. On the
other hand and in contrast to the present work, their transformation also works
in reverse (obtaining small-step machines from big-step machines) and is more
flexible than ours since the set of transformations is not fixed a-priori.

In order to formalize our transformation we define in Section 2 ameta-language
for describing small-step (and big-step) structural operational semantics. Such
meta-languages (also called rule formats) abound [21,22] in the literature. How-
ever these restricted rule formats are used to prove meta-theorems about well-
definedness, compositionality, etc. and not for changing the style of the semantics.

6 Discussion and Further Work

We have presented a very simple syntactic trick for transforming small-step se-
mantics into big-step semantics. We have analysed the transformations on several
examples including both lambda-calculus based languages and an imperative lan-
guage and we have identified four assumptions under which the transformation is
sound and complete in the sense of yielding a big-step semantics which is equiv-
alent to the initial small-step semantics. The confluence assumption (1) seems to
be unavoidable since we have already shown that big-step semantics cannot deal
with non-determinism; furthermore, it is already known for many variants and ex-
tensions of lambda-calculi that they satisfy confluence. The second assumption
(2) regarding the definition of the final configuration (↓) predicate does not seem
to be too strong since it is what we expect of any sound small-step semantics. Fi-
nally, the last two assumptions (3 – star-soundness and 4 – star-completeness) are
the most problematic in the sense that they are semantic assumptions which must
be proven to hold. Note however that they hold for a variety of programming lan-
guages that we have analysed (imperative, functional) in different settings (call-by-
name, call-by-value) and with both explicit (for the IMP language) and implicit
substitutions (for the lambda-calculi). However, obtaining a sound syntactic ap-
proximation for the last two assumptions is an important step for further work.

We have also shown (Theorem 3) that a sound big-step semantics can be ob-
tained from the initial small-step semantics under Assumption 3 (start-soundness)
only. Having a sound (but not necessarily complete) big-step semantics can be ac-
ceptable in case the big-step semantics is used for generating a compiler, since a
compiler is free to choose among the behaviors of the program. This could lead to
obtaining an (efficient) compiler directly from the small-step semantics. As future
work, we would like to investigate syntactic approximations of the four assump-
tions, the degree to which checking the assumptions can be automated and the pos-
sibility of generating variations of big-step semantics such as the ones in [10,14,23].

References

1. Strachey, C.: Towards a formal semantics. In: Formal Language Description Lan-
guages for Computer Programming, pp. 198–220. North-Holland (1966)

From Small-Step Semantics to Big-Step Semantics, Automatically 361

2. Floyd, R.W.: Assigning meanings to programs. In: Schwartz, J.T. (ed.) Mathemat-
ical Aspects of Computer Science, pp. 19–32. AMS, Providence (1967)

3. Hoare, C.A.R.: An axiomatic basis for computer programming. Communications
of the ACM 12(10), 576–580 (1969)

4. Plotkin, G.D.: A structural approach to operational semantics. Technical Report
DAIMI FN-19, University of Aarhus (1981)

5. Plotkin, G.D.: A structural approach to operational semantics. J. Log. Algebr.
Program. 60-61, 17–139 (2004)

6. Kahn, G.: Natural semantics. In: Brandenburg, F.J., Wirsing, M., Vidal-Naquet,
G. (eds.) STACS 1987. LNCS, vol. 247, pp. 22–39. Springer, Heidelberg (1987)

7. Mosses, P.D.: Modular structural operational semantics. J. Log. Algebr. Pro-
gram. 60-61, 195–228 (2004)

8. Pettersson, M.: A compiler for natural semantics. In: Gyimóthy, T. (ed.) CC 1996.
LNCS, vol. 1060, pp. 177–191. Springer, Heidelberg (1996)

9. Klein, G., Nipkow, T.: A machine-checked model for a Java-like language, virtual
machine, and compiler. ACM T. Prog. Lang. Syst. 28, 619–695 (2006)

10. Leroy, X., Grall, H.: Coinductive big-step operational semantics. Information and
Computation 207(2), 284–304 (2009)

11. Roşu, G., Şerbănuţă, T.F.: An overview of the K semantic framework. Journal of
Logic and Algebraic Programming 79(6), 397–434 (2010)

12. Meseguer, J., Roşu, G.: The rewriting logic semantics project: A progress report.
In: Owe, O., Steffen, M., Telle, J.A. (eds.) FCT 2011. LNCS, vol. 6914, pp. 1–37.
Springer, Heidelberg (2011)

13. Plotkin, G.D.: Call-by-name, call-by-value and the lambda-calculus. Theor. Com-
put. Sci. 1(2), 125–159 (1975)

14. Charguéraud, A.: Pretty-big-step semantics. In: Felleisen, M., Gardner, P. (eds.)
Programming Languages and Systems. LNCS, vol. 7792, pp. 41–60. Springer, Hei-
delberg (2013)

15. Cousot, P., Cousot, R.: Bi-inductive structural semantics. Information and Com-
putation 207(2), 258–283 (2009)

16. Huizing, C., Koymans, R., Kuiper, R.: A small step for mankind. In: Dams, D.,
Hannemann, U., Steffen, M. (eds.) de Roever Festschrift. LNCS, vol. 5930, pp.
66–73. Springer, Heidelberg (2010)

17. Danvy, O.: Defunctionalized interpreters for programming languages. In: ICFP
2008, pp. 131–142. ACM, New York (2008)

18. Danvy, O., Millikin, K.: On the equivalence between small-step and big-step
abstract machines: a simple application of lightweight fusion. Inf. Process.
Lett. 106(3), 100–109 (2008)

19. Danvy, O., Millikin, K., Munk, J., Zerny, I.: Defunctionalized interpreters for call-
by-need evaluation. In: Blume, M., Kobayashi, N., Vidal, G. (eds.) FLOPS 2010.
LNCS, vol. 6009, pp. 240–256. Springer, Heidelberg (2010)

20. Danvy, O., Johannsen, J., Zerny, I.: A walk in the semantic park. In: Khoo, S.C.,
Siek, J.G. (eds.) PEPM, pp. 1–12. ACM (2011)

21. Groote, J.F., Mousavi, M., Reniers, M.A.: A hierarchy of SOS rule formats. In:
Proceedings of SOS 2005, Lisboa, Portugal. ENTCS, Elsevier (2005)

22. Aceto, L., Fokkink, W., Verhoef, C.: Structural operational semantics. In: Hand-
book of Process Algebra, pp. 197–292. Elsevier (1999)

23. Uustalu, T.: Coinductive big-step semantics for concurrency. In: Vanderbauwhede,
W., Yoshida, N. (eds.) Proceedings of PLACES 2013. EPTCS (2013) (to appear)

Program Equivalence by Circular Reasoning

Dorel Lucanu1 and Vlad Rusu2

1 Al. I. Cuza University of Iaşi, Romania
dlucanu@info.uaic.ro

2 Inria Lille Nord-Europe, France
Vlad.Rusu@inria.fr

Abstract. We propose a logic and a deductive system for stating and
automatically proving the equivalence of programs in deterministic lan-
guages having a rewriting-based operational semantics. The deductive
system is circular in nature and is proved sound and weakly complete;
together, these results say that, when it terminates, our system correctly
solves the program-equivalence problem as we state it. We show that our
approach is suitable for proving the equivalence of both terminating and
non-terminating programs, and also the equivalence of both concrete and
symbolic programs. The latter are programs in which some statements or
expressions are symbolic variables. By proving the equivalence between
symbolic programs, one proves in one shot the equivalence of (possibly,
infinitely) many concrete programs obtained by replacing the variables
by concrete statements or expressions. A prototype of the proof system
for a particular language was implemented and can be tested on-line.

1 Introduction

In this paper we propose a formal notion of program equivalence, together with
a logic for expressing this notion and a deductive system for automatically prov-
ing it. Programs can belong to any deterministic language whose semantics is
specified by a set of rewrite rules. The equivalence we consider is a form of
weak bisimulation, allowing several instructions of one program to be matched
by several instructions of the other one. The proof system is circular: its con-
clusions can be re-used as hypotheses in a controlled way. It is not guaranteed
to terminate, but when it does terminate, our proof system correctly solves the
program-equivalence problem as stated, thanks to its soundness and weak com-
pleteness properties. These are informally presented below and are formalised
and proved in the paper.

The proposed framework is also suitable for proving the equivalence of sym-
bolic programs. These are programs in which some expressions and/or state-
ments are symbolic variables, which denote sets of concrete programs obtained by
substituting the symbolic variables by concrete expressions and/or statements.
Thus, by proving the equivalence between symbolic programs, one proves in just
one shot the equivalence of (possibly, infinitely) many concrete programs, which
has applications in the verification of certain classes of compilers/translators.
Here is an example of equivalent symbolic programs.

E.B. Johnsen and L. Petre (Eds.): IFM 2013, LNCS 7940, pp. 362–377, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Program Equivalence by Circular Reasoning 363

Example 1. Assume that we want to translate between a language that has for-
loops into a language that only has while-loops. This amounts to translating
the symbolic program in the left-hand side to the one in the right-hand side.
for I from A to B do{ S } I = A ;while I <= B do { S ; I = I + 1 }

Their symbolic variables I, A,B, S can be matched by, respectively, any identifier
(I), arithmetical expression (A,B), and program statement (S). If we prove the
equivalence between these two symbolic programs (as we shall do in this paper
as an illustrative example) then we also prove that every concrete instance of the
for-loop is equivalent to its translation to a concrete while-loop (or vice-versa).
Nonterminating programs can be proved equivalent as well, e.g. by replacing the
test I <= B with not(I = B) and by assuming nonterminating for loops when
A > B, some instances of the above two symbolic programs are nonterminating.

In the rest of the paper we often refer to symbolic programs just as “programs”.
A typical use of our program-equivalence framework consists in:

1. defining the operational semantics of a programming language, say, L;
2. defining a language Lsym, which extends the syntax of and semantics of L,

such that the programs in Lsym are exactly the symbolic programs of L;
3. applying our deductive system to check the equivalence of programs in Lsym.

Running the deductive system amounts essentially to executing the semantics of
Lsym on pairs of Lsym-programs. This may lead to any of the following outcomes:

– termination with success, in which case the programs given as input to the
deductive system are equivalent, due to the deductive system’s soundness ;

– termination with failure, in which case the programs given as input to the
deductive system are not equivalent, due to the system’s weak completeness ;

– non-termination, in which case nothing can be concluded about equivalence.

Non-termination is inherent in any sound automatic system for proving program
equivalence, because the equivalence problem is undecidable. We show, however,
that our system terminates when the programs given to it as inputs terminate,
and also when they do not terminate but behave in a certain regular way (by
infinitely repeating pairs of so-called observationally equivalent configurations).

Contributions. A logic and a proof system suitable for stating and proving
the equivalence of concrete and of symbolic programs, as well as that of termi-
nating and non-terminating ones. Programs can be written in any deterministic
language that has a formal operational semantics based on term rewriting. We
prove the soundness and weak completeness of our proof system, which ensure
that the system correctly solves the program equivalence problem as we state it.
A prototype implementation of the proposed deductive system is also presented.

Related Work. An exhaustive bibliography on the program-equivalence prob-
lem is outside the scope of this paper, as this problem is even older than the
program-verification problem. Among the recent works perhaps the closest to
ours is [1]. They also deal with the equivalence of parameterised programs (sym-
bolic, in our terminology) and define equivalence in terms of bisimulation.

364 D. Lucanu and V. Rusu

Their approach is, however, very different from ours. One major difference
lies in the models of programs: [1] use CFGs (control flow graphs) of programs,
while we use the operational semantics of languages. CFGs are more restricted,
e.g., they are not well adapted to recursive or object-oriented programs, whereas
operational semantics do not have these limitations. Of course, our advantage will
only become apparent when we actually apply our approach to such programs.

Other closely related recent works are [2,3,4]. The first one targets programs
that include recursive procedures, the second one exploits similarities between
single-threaded programs in order to prove their equivalence, and the third one
extends the latter to multi-threaded programs. They use operational semantics
(of a specific language) and proof systems, and formally prove their proof sys-
tem’s soundness. In [2] they make a useful classification of equivalence relations
used in program-equivalence research, and use these relations in their work.

However, all the relations classified in [2] are of an input/output nature: for
given (sequences of) inputs, programs generate equal (sequences of) outputs
and/or do not terminate. Such relations are well adapted for concrete programs
with inputs and outputs, but not to symbolic programs with symbolic state-
ments, for which a clear input-output relation may not exist. Indeed, symbolic
statements may denote arbitrary concrete statements - including ones that do
not perform input/output - actually, when symbolic programs are concerned,
one cannot even rely on the existence of inputs and outputs. One may rely, how-
ever, on the observations of the effects of symbolic statements on the program’s
environment (e.g., values of variables). Our notion of weak bisimulation (up to a
certain observation relation) allows this, both for finitely and for infinitely many
repeated observations. We also show that some of the relations from [2] can be
encoded in our relation by adding information to the program environment.

Many works on program equivalence arise from the verification of compilation
in a broad sense. At one end there is full compiler verification [5], and at the
other end, the so-called translation validation, i.e., the individual verification of
each compilation [6] (we only cite two of the most relevant recent works). As
also observed by [1], symbolic program verification can also be used for certain
compilers, in which one proves the equivalence of each basic instruction pattern
from the source language with its translation in the target language. The appli-
cation of this observation to the verification of a compiler (from another project
we are involved in) is ongoing and will be presented in another paper.

Several other works have targeted specific classes of languages: functional [7],
microcode [8], CLP [9]. In order to be less language-specific some works advocate
the use of intermediate languages, such as [10], which works on the Boogie inter-
mediate language. And finally, only a few approaches, among which [5,8], deal
with real-life language and industrial-size programs in those languages. This is
in contrast to the equivalence checking of hardware circuits, which has entered
the mainstream industrial practice (see, e.g., [11] for a survey on this topic).

Our proof system is inspired by that of circular coinduction [12], which allows
one to prove equalities of data structures such as infinite streams and regular
expressions. A notable difference between the present approach and [12] is that

Program Equivalence by Circular Reasoning 365

our specifications are essentially rewrite theories (meant to define the semantics
of programming languages), whereas those of [12] are behavioural equational
theories, a special class of equational specifications with visible and hidden sorts.

The rest of the paper is organised as follows. Section 2 presents our running
example: imp, a simple imperative language and its definition in K [13]. K is a
formal framework for defining operational semantics of programming languages.

Our approach is, however, independent of the K framework and the imp lan-
guage; hence, we present a general, abstract notion of language definition in
Section 3, and show how the K definition of imp is an instance of that notion.

Section 4 contains our proposed definition for program equivalence, and Sec-
tion 5 gives the syntax and semantics of a logic capturing the chosen equivalence.

Section 6 introduces two operations on formulas of the logic (derivatives and
conjunction) which are used in our circular proof system for formula validity.

The proof system itself is presented in Section 7, together with its soundness
and weak completeness results. The results say that, when it terminates, the
proof system correctly answers to the question of whether its input (which is a
set of formulas in our program-equivalence logic) denotes equivalent programs.

The conclusion and future work are presented in Section 8. Finally, formal
proofs of the results in the paper are given in the technical report that can be
found at http://hal.archives-ouvertes.fr/hal-00744374/ .

2 A Simple Imperative Language and Its Semantics in K

The language we are using as running example is imp, a simple imperative lan-
guage intensively used in research papers. A full K definition of it can be found
in [13]. The syntax of imp is described in Figure 1 and is mostly self-explained.
The attribute (given as an annotation) strict from the syntax means the argu-
ments of the annotated expression/statement are evaluated before the expres-
sion/statement itself is evaluated/executed. If the attribute has as arguments a
list of natural numbers, then only the arguments in positions specified by the list
are evaluated before the expression/statement. The strict attribute is actually
syntactic sugar for a set of K rules, briefly presented later in the section.

The configuration of an imp program consists of code to be executed and
an enviroment mapping identifiers to integers. In K, this is written as a nested
structure of cells : here, a top cell cfg, having a cell k and a cell env (see Figure 2).

The cell k includes the code to be executed, represented as a list of computa-
tion tasks C1 � C2 � . . ., meaning that first C1 will be executed, then C2, etc.
Computation tasks are typically the evaluation of statements and expressions.
The cell env is an environment that binds the program variables to values; such
a binding is written as a multiset of bindings of the form, e.g., a �→ 3.

The semantics of imp is given by a set of rules (see Figure 3) that say how the
configuration evolves when the first computation task (statement or instruction)
from the k cell is executed. The dots in a cell mean that the rest of the cell
remains unchanged. Except for the conjunction, negation, and if statement, the
semantics of each operator and statement is described by exactly one rule.

366 D. Lucanu and V. Rusu

Int ::= domain of integer numbers (including operations)
Bool ::= domain of boolean constants (including operations)
Id ::= domain of identifiers
AExp ::=Int | Id

| AExp / AExp [strict]
| AExp * AExp [strict]
| AExp + AExp [strict]
| (AExp)

BExp ::=Bool
| AExp <= AExp [strict]
| not BExp [strict]
| BExp and BExp [strict(1)]
| (BExp)

Stmt ::= skip | Stmt ; Stmt
| Id = AExp
| if BExp then Stmt
else Stmt [strict(1)]

| { Stmt }
| while BExp do Stmt
| for Id from AExp to AExp
do Stmt [strict(2, 3)]

Code ::= Id | Int | Bool | AExp | BExp | Stmt | Code � Code

Fig. 1. K Syntax of IMP

Cfg ::= 〈〈Code〉k〈Map〉env〉cfg

Fig. 2. K Configuration of IMP

In Figure 3, the operations lookup : Map × Id → Int and update : Map ×
Id × Int → Map are part of the domain of maps and have the usual meanings:
lookup returns the value of an identifier in a map, and update modifies the map
by adding (or, if it exists, by updating) the binding of an identifier to a value.

In addition to the rules in Figure 3 there are rules induced by the strictness
of some statements. For example, the if statement is strict only in the first
argument, meaning that this argument is evaluated before the if statement.
This amounts to the following rules (automatically generated by the K tool):

〈〈if BE then S1 else S2 ···〉k ···〉cfg ⇒ 〈〈BE �if � then S1 else S2 ···〉k ···〉cfg
〈〈B �if � then S1 else S2 ···〉k ···〉cfg ⇒ 〈〈if B then S1 else S2 ···〉k ···〉cfg

where BE ranges over BExp \ {false, true}, B ranges over {false, true}, and �
is a special variable destined to receive the value of BE once it is computed.

3 A Generic Notion of Language Definition

Our program-equivalence approach is independent of the formal framework used
for defining languages as well as from the languages being defined. We thus
propose a general notion of language definition and illustrate it later in the
section on the K definition of imp. We assume the reader is familiar with the
basics of algebraic specification and rewriting. A language L is defined by:

1. A many-sorted algebraic signature Σ, which includes at least a sort Cfg
for configurations and a subsignature ΣBool for Booleans with their usual

Program Equivalence by Circular Reasoning 367

〈〈I1 + I2 ···〉k ···〉cfg ⇒ 〈〈I1 +Int I2 ···〉k ···〉cfg
〈〈I1 * I2 ···〉k ···〉cfg ⇒ 〈〈I1 ∗Int I2 ···〉k ···〉cfg
〈〈I1 / I2 ···〉k ···〉cfg ∧ I2 �= 0 ⇒ 〈〈I1/IntI2 ···〉k ···〉cfg
〈〈I1 <= I2 ···〉k ···〉cfg ⇒ 〈〈I1 ≤Int I2 ···〉k ···〉cfg
〈〈true and B ···〉k ···〉cfg ⇒ 〈〈B ···〉k ···〉cfg
〈〈false and B ···〉k ···〉cfg ⇒ 〈〈false ···〉k ···〉cfg
〈〈not true ···〉k ···〉cfg ⇒ 〈〈false ···〉k ···〉cfg
〈〈not false ···〉k ···〉cfg ⇒ 〈〈true ···〉k ···〉cfg
〈〈skip ···〉k ···〉cfg ⇒ 〈〈 ···〉k ···〉cfg
〈〈S1;S2 ···〉k ···〉cfg ⇒ 〈〈S1 � S2 ···〉k ···〉cfg
〈〈{ S } ···〉k ···〉cfg ⇒ 〈〈S ···〉k ···〉cfg
〈〈if true then S1 else S2 ···〉k ···〉cfg ⇒ 〈〈S1 ···〉k ···〉cfg
〈〈if false then S1 else S2 ···〉k ···〉cfg ⇒ 〈〈S2 ···〉k ···〉cfg
〈〈while B do S ···〉k ···〉cfg ⇒

〈〈if B then{ S ;while B do S }else skip ···〉k ···〉cfg
〈〈for X from I1 to I2 do S ···〉k ···〉cfg ⇒

〈〈X = I1 ;if X <= I2 then{ S ;for X from I1 + 1 to I2 do S }else skip ···〉k ···〉cfg
〈〈X ···〉k〈Env〉env ···〉cfg ⇒ 〈〈lookup(Env ,X) ···〉k〈Env〉env ···〉cfg
〈〈X = I ···〉k〈Env〉env ···〉cfg ⇒ 〈〈 ···〉k〈update(Env ,X , I)〉env ···〉cfg

Fig. 3. K Semantics of IMP

constants and operations. Σ may also include other subsignatures for other
data sorts, depending on the language L (e.g., integers, identifiers, lists,
maps,. . .). Let ΣData denote the subsignature of Σ consisting of all data
sorts and their operations. We assume that the sort Cfg and the syntax of
L are not data, i.e., they are defined in Σ \ ΣData, and that terms of sort
Cfg have exactly one subterm denoting statements (which are programs in
the syntax of L) remaining to be executed. Let TΣ denote the Σ-algebra
of ground terms and TΣ,s denote the set of ground terms of sort s. Given a
sort-wise infinite set of variables Var , let TΣ(Var) denote the free Σ-algebra
of terms with variables, TΣ,s(Var) denote the set of terms of sort s with
variables, and var(t) denote the set of variables occurring in the term t.

2. A Σ-algebra T . Let Ts denote the elements of T that have the sort s; the
elements of TCfg are called configurations. T interprets the data sorts (those
included in the subsignature ΣData) according to some ΣData -algebra D. T
interprets the non-data sorts (statements) as ground terms over the signature

(Σ \ΣData) ∪
⋃

d∈sorts(ΣData)

Dd (1)

where Dd denotes the carrier set of the sort d in the algebra D, and the
elements of Dd are added to the signature Σ \ ΣData as constants of sort

368 D. Lucanu and V. Rusu

d. That is, a language is parametric in the way its data are implemented; it
just assumes there is such an implementation ΣData . This is important for
technical reasons (implementing unification by matching, discussed below).
Any valuation ρ : Var → T is extended to a (homonymous) Σ-algebra
morphism ρ : TΣ(Var) → T . The interpretation of a ground term t in T is
denoted by Tt. If b ∈ TΣ,Bool(Var) then we write ρ |= b iff ρ(b) = Dtrue . For
simplicity, we often write in the sequel true, false instead of Dtrue ,Dfalse .

3. A set S of rewrite rules, whose definition is given later in the section.

We explain these concepts on the imp example. Each nonterminal from the syn-
tax (Int,Bool,AExp, . . .) is a sort in Σ. Each production from the syntax de-
fines an operation in Σ; for instance, the production AExp ::= AExp + AExp
defines the operation _+_ : AExp × AExp → AExp. These operations de-
fine the constructors of the result sort. For the configuration sort Cfg , the
only constructor is 〈〈_〉k〈_〉env〉cfg : Code × MapId,Int → Cfg . The expression
〈〈X = I � C〉k〈Env〉env〉cfg is a term of TCfg(Var), where X is a variable of sort
Id, I is a variable of sort Int, C is a variable of sort Code (the rest of the com-
putation), and Env is a variable of sort MapId,Int (the rest of the environment).
The data algebra D interprets Int as the set of integers, the operations like +Int

(cf. Figure 3) as the corresponding usual operation on integers, Bool as the set
of Boolean values {false, true}, the operation like ∧ as the usual Boolean op-
erations, the sort MapId,Int as the multiset of maps X �→ I, where X ranges
over identifiers Id and I over the integers. The fact that maps are modified only
by the update operation ensures that each identifiers is bound to at most one
integer value. The other sorts, AExp, BExp, Stmt, and Code, are interpreted in
the algebra T as ground terms over a modification of the form (1) of the sig-
nature Σ, in which data subterms are replaced by their interpretations in D.
For instance, the term if 1 >Int 0 then skip else skip is interpreted in T as
if true then skip else skip, since D interprets 1 >Int 0 as Dtrue(= true).

Definition 1 (pattern [14]). A pattern is an expression of the form π ∧ b,
where π ∈ TΣ,Cfg(Var) are basic patterns, b ∈ TΣ,Bool(Var), and var (b) ⊆
var(π). If γ∈TCfg and ρ :Var→T we write (γ, ρ) |=π ∧ b for γ=ρ(π) and ρ |= b.

A basic pattern π defines a set of (concrete) configurations, and the condition b
gives additional constraints these configurations must satisfy. In [14] patterns are
encoded as FOL formulas, hence the conjunction notation π ∧ b. In this paper
we keep the notation but separate basic patterns from constraining formulas.

We identify basic patterns π with paterns π ∧ true. Examples of patterns are
〈〈I1 + I2 � C〉k〈Env〉env〉cfg and 〈〈I1 / I2 � C〉k〈Env〉env〉cfg ∧ I2 �= 0.

Definition 2 (semantical rule and transition system). A rule is a pair of
patterns of the form l∧b⇒ r (note that r is the pattern r∧ true). Any set S of
rules defines a labelled transition system (TCfg ,⇒T

S) such that γ ⇒T
S γ′ iff there

are (l∧b⇒ r) ∈ S and ρ : Var → T such that (γ, ρ) |= l∧ b and (γ′, ρ) |= r.

A configuration γ is final if its program subterm is empty. A configuration γ is
a deadlock if it is not final and there is no configuration γ′ such that γ ⇒T

S γ′.

Program Equivalence by Circular Reasoning 369

Deadlocks are erroneous program terminations, e.g., division-by-zero attempts.
A language is deterministic if its transition system (T ,⇒T

S) is deterministic.

Assumption 1. We assume that the transition system (T ,⇒T
S) is

deterministic.

We shall be using unification in our program-equivalence deductive system. We
call symbolic unifier of two terms t1, t2 any substitution σ : var (t1) 3 var (t2)→
TΣ(Z) for some set Z of variables such that t1σ = t2σ. We call a concrete unifier
of terms t1, t2 any valuation ρ : var(t1) 3 var (t2)→ T such that t1ρ = t2ρ.

Assumption 2. For all rules (l∧b⇒ r) ∈ S and all patterns π ∈ TΣ,Cfg(Var)
with var (l)∩ var (π) = ∅, there is a finite, possibly empty set U(π, l) of symbolic
unifiers of π and l, which satisfy the property that for all concrete unifiers ρ of
π and l, there exist substitutions σ ∈ U(π, l) and valuations η such that ση = ρ.

In related work [15] we prove that the above assumption can always be satisfied,
by implementing unification with the rules of L by the matching with the rules
of a language Lsym, which extends the definition of L such that the symbolic
execution of programs in L is the usual execution of programs in Lsym. We
illustrate how this is done via an example; other examples follow in the paper.

Example 2. Consider the pattern 〈〈if B then S1 else S2〉k, 〈M〉env〉cfg of sort
Cfg, where B is a variable of sort Bool and S1, S2 are variables of sort Stmt, and
the rule 〈〈(if true then S′1 else S′2) � S〉k〈M ′〉env〉cfg ⇒ 〈〈S′1 � S〉k〈M ′〉env〉cfg.
Here we have filled in the ". . . " from Figure 3 with actual variables, and the rule’s
variables were chosen so that they are distinct from those in the formula. Let π
denote the basic pattern and l the left-hand side of the rule. The set U(π, l) is a
singleton given by the substitution σ=(B �→ true, S′1 �→ S1, S

′
2 �→ S2,M

′ �→M).
On the other hand, l does not match π because the constant leaf true of l does
not match the variable B in π. However, the rule can be equivalently rewritten as

〈〈(if B′ then S′1 else S′2) �〉k〈M ′〉env〉cfg ∧B′= true ⇒ 〈〈S′1 � S〉k〈M ′〉env〉cfg
and now, there is match between the configuration l′ from the left-hand side of
the new rule and π, i.e., (B′ �→ B,S′1 �→ S1, S

′
2 �→ S2,M

′ �→ M). This match,
combined with the condition B′= true, amount to the above symbolic unifier σ.

4 Defining Program Equivalence

We define in this section our notion of program equivalence. We base our defini-
tion on the transition system (TCfg ,⇒T

S), whose states TCfg are configurations,
and ⇒T

S is the transition relation defined in the previous section (Definition 2).
Our goal is to have a definition of equivalence that is equally suitable for termi-
nating programs and non-terminating ones and for symbolic and concrete ones.

A natural approach (already chosen by [1]) is to use strong bisimulation: a
symmetrical relation R ⊆ TCfg ×TCfg is a strong bisimulation if for all (γ1, γ2) ∈
R, when γ1 ⇒T

S γ′1, there is a transition γ2 ⇒T
S γ′2 such that (γ′1, γ

′
2) ∈ R.

However, for our purpose such relations are too strong; e.g., the assignment

370 D. Lucanu and V. Rusu

i = 2 is not equivalent to the sequence i = 1; i = 2 because, starting from i = 0,
the former reaches i = 2 in one semantical step, whereas the latter cannot.

Hence, we need to alter strong bisimulation for our purposes. We do it, first,
by removing the constraint that each step of one program is matched by exactly
one step of the other one, and second, by requiring that our relation be bounded
from above by a certain relation O ⊆ TCfg ×TCfg called the observation relation.

Definition 3 (O-weak bisimulation). An O-weak bisimulation is a relation
R ⊆ O satisfying: for all (γ1, γ2) ∈ R,

– if γ1 ⇒T
S γ′1 then γ′1⇒∗TS γ′′1 and γ2⇒∗TS γ′′2 , for some (γ′′1 , γ

′′
2) ∈ R

– if γ2 ⇒T
S γ′2 then γ1⇒∗TS γ′′1 and γ′2⇒∗TS γ′′2 for some (γ′′1 , γ

′′
2) ∈ R.

In the sequel we assume O to be an arbitrary, fixed parameter to our definitions.
We omit it and only write "weak bisimulation" instead of "O-weak bisimulation".
We now have our definition of program (actually, of configuration) equivalence:

Definition 4 (Configuration Equivalence). Configurations γ1, γ2 are equiv-
alent, written γ1 ∼ γ2, if there is a weak bisimulation R such that (γ1, γ2) ∈ R.

Example 3. The following configurations: γ1 � 〈〈x = 2〉k〈x �→ 0〉env〉cfg and
γ′1 � 〈〈x = 1; x = x+1〉k〈x �→ 0〉env〉cfg are equivalent when O is defined by
requiring that x has the same value in γ1, γ2. The "witness" weak bisimu-
lation R for the equivalence γ1 ∼ γ′1 is defined by {(γ1, γ′1), (γ2, γ2)}, where
γ2 � 〈〈·〉k〈x �→ 2〉env〉cfg.

The relation O gives us quite a lot of expressiveness for capturing various kinds
of program equivalences. For example, partial equivalence [2] is: two programs
are equivalent if, whenever presented with the same input, if they both termi-
nate they produce the same output. This can be encoded by including cells in
the configuration for the input and output, and by including in O the pairs of
configurations satisfying: if their programs are both empty and their inputs are
equal then their outputs are equal. Also, full equivalence from [2] is: two pro-
grams are equivalent if, whenever presented with the same input, they either
both terminate and produce the same output, or they both do not terminate.
This is captured by adding to the above relation all pairs of configurations from
which there is an infinite execution starting from both configurations of the pair.

5 A Logic for Program Equivalence

We present in this section a logic for program equivalence. We first present the
logic’s syntax, then its semantics, and finally the notion of validity for formulas.

Definition 5 (Formulas). A formula is an expression of the form π1 ∼ π2 if C
where π1, π2 ∈ TΣ,Cfg(Var) are basic patterns and C ∈ TΣ,Bool(Var).

Program Equivalence by Circular Reasoning 371

Example 4. Assume that the signature Σ for the language imp contains a pred-
icate isModified : Id × Stmt → Bool, expressing the fact that the value of the
given identifier is modified by the semantics of the given statement. A formula
expressing the equivalence of the programs in Example 1 is

〈〈for I from A to B do{S }〉k, 〈M〉env〉cfg ∼
〈〈I = A;while I <= B do{S ;I = I +1}〉k, 〈M〉env〉cfg
if not isModified(I, S)

where M a variable of sort Map. The condition says that the loop counter I is
not modified in the loop body S. It is essential for the formula’s validity.

We now define two semantics for formulas f � π1 ∼ π2 if C. The first one,
denoted by �f�, is the set of pairs of configurations γ1, γ2 that satisfy, respectively,
the patterns π1 ∧ C and π2 ∧ C by means of one valuation (the same valuation
for both γ1, γ2). The second one, denoted by �f�, excludes from �f� the pairs of
configurations from which at least one component eventually leads to a deadlock.

Definition 6 (Semantics).
�f� � {(γ1, γ2) | ∃ρ : Var → T .(γi, ρ) |= πi ∧ C, i = 1, 2}, and
�f� � {(γ1, γ2) ∈ �f� | ∀i ∈ {1, 2}∀γ ∈ TCfg . γi⇒∗TS γ implies γ is no deadlock}.

We now define what it means for a formula f to be valid. Intuitively, we want
to capture the idea that all configurations pairs (γ1, γ2) ∈ �f� satisfy γ1 ∼ γ2
according to Definition 4. We use the �·� semantics (not the �·� one) because we
are not interested in deadlocks. This is not really a restriction since deadlocks
can be turned into final configurations by adding rules and, e.g., setting the
content of some cell, say, error, to some value encoding the deadlock situation.

Definition 7 (Validity). A formula f is valid, written S |= f , if �f� �= ∅
whenever �f� �= ∅, and for all γ1, γ2 ∈ �f�, γ1 ∼ γ2.

Note that f is (vacuously) valid if �f� = ∅, and that f is not valid when �f� �= ∅
and �f� = ∅ because in this case all the concrete configurations in �f� lead to
deadlocks.

6 Auxiliary Operations: Derivatives and Conjunction

Our proof system consists in symbolically executing formulas according to the
semantics of the language L. This is achieved using the notion of derivative.

Definition 8 (Derivatives). Given a formula g � π1 ∼ π2 if C, its derivatives
are the formulas in the set Δ(g) = Δl(g) ∪ Δr(g), where Δl(g), Δr(g) are the
smallest sets defined by: for each (l∧C′⇒ r) ∈ S, σl ∈ U(π1, l), σr ∈ U(π2, r):

– (rσl ∼ π2 if (C ∧ C′)σl ∧
∧
σl) ∈ Δl(g),

– (π1 ∼ rσr if (C ∧ C′)σr ∧
∧
σr) ∈ Δr(g)

372 D. Lucanu and V. Rusu

where
∧
σ �

∧
x∈dom(σ)(x = σ(x)), and dom(σ) denotes the subset of the gobal

set Var of variables where the substitution σ is not the identity. We naturally
extend derivatives to sets F of formulas by Δ(F) =

⋃
f∈F Δ(f).

Remark 1. In Definition 8 we assume var (l) ∩ var (g) = ∅, which can always be
obtained by renaming the variables in the rewrite rule.

Example 5. Let B be a variable of sort Bool and S1, S2 be variables of sort Stmt.
We consider the formula f below and compute its left-derivatives:

〈〈if B then S1 else S2〉k, 〈M〉env〉cfg ∼ 〈〈if B′ then S2 else S1〉k, 〈M〉env〉cfg
if B′ = ¬B

The rules with a nonempty set of unifiers with the patterns in the formula are

〈〈(if true then S′1 else S′2) � S〉k〈M ′〉env〉cfg ⇒ 〈〈S′1 � S〉k〈M ′〉env〉cfg
〈〈(if false then S′1 else S′2) � S〉k〈M ′〉env〉cfg ⇒ 〈〈S′2 � S〉k〈M ′〉env〉cfg

The formula f has two left-derivatives, i.e., Δl(f) are the formulas in the set

〈〈S1〉k, 〈M〉env〉cfg ∼ 〈〈ifB′ then S2 else S1〉k, 〈M〉env〉cfg if B′=¬B ∧B=true

〈〈S2〉k, 〈M〉env〉cfg ∼ 〈〈ifB′ then S2 else S1〉k, 〈M〉env〉cfg if B′=¬B ∧B=false

where B = true and B = false are induced by the symbolic unifiers: B �→ true,
S′1 �→ S1, S′2 �→ S2, M ′ �→ M and, respectively, B �→ false , S′1 �→ S1, S′2 �→ S2,
M ′ �→M . The superfluous equalities S′1 = S1, S′2 = S2, M ′ = M were removed
from conditions since S′1, S′2, and M ′ do not occur in the rest of the formula.

Another auxiliary operation used in our proof system is conjunction of formulas.
We need it in order to compute the subsets of configuration pairs, denoted by
formulas, which are included in the observation relation O (cf. Section 4).

Definition 9. For formulas f : π1 ∼ π2 if C and g : π′1 ∼ π′2 if C′, let f ∧ g =
{π1σ1∼π2σ2 if (C ∧C′)(σ1∪σ2)∧

∧
σ1∧

∧
σ2 | σ1 ∈ U(π1, π

′
1), σ2 ∈ U(π2, π

′
2)}.

Example 6. Let f be the formula in Example 5 and let g denote the formula
〈〈P1〉k〈M ′〉env〉cfg ∼ 〈〈P2〉k〈M ′′〉env〉cfg ifM ′ = M ′′. We denote by π1, π

′
1 and

π2, π
′
2 their left and right-hand sides, respectively. Then, U(π1, π

′
1) can be com-

puted by matching, and consists of the unique substitution σ1 = (P1 �→if
B then S1 else S2,M

′ �→ M). Similarly, U(π2, π
′
2) consists of the substitu-

tion σ2 = (P2 �→if B′ then S2 else S1,M
′′ �→ M). Thus, if we remove the

conditions M ′ = M ′′,
∧
σ1, and

∧
σ2 (which are superfluous here since they

constrain variables not occuring in the rest of the result), f ∧ g is syntactically
equal to f . This is consistent with the fact that ∧ is, semantically speaking,
intersection, because we have �f� ⊆ �g� and thus �f ∧ g� = �f� ∩ �g� = �f�.

Program Equivalence by Circular Reasoning 373

7 A Circular Proof System

In this section we define a three-rule proof system for proving program equiva-
lence. It is inspired from circular coinduction [12], a coinductive proof technique
for infinite data structures and coalgebras of expressions [16].

Remember that we have fixed an observation relation O. We assume a set of
formulas Ω such that �Ω� = O. We also assume that for all h ∈ Ω and for all
formula f , the conjunction f ∧ h can be computed according to Definition 9:

Assumption 3. For all (π1 ∼ π2 if C) ∈ Ω and all π ∈ TΣ,Cfg(Var) with
(var (π1)∪var (π2))∩var (π) = ∅, there are two finite, possibly empty sets U(π, π1)
and U(π, π1) of symbolic unifiers of π, π1 and of π, π2, respectively.

Let also , be an entailment relation satisfying S, F , g implies (S |= g or
�g� ⊆ �F �). The set Ω and the relation , are parameters of our proof system:

Definition 10 (Circular Proof System).

[Axiom] S, F ,� ∅

[Reduce]
S, F , g S, F ,� G

S, F ,� G ∪ {g}

[Derive]
S, F ∪ F ′ ,� G ∪ Δ(g) S, g ∧Ω , F ′

S, F ,� G ∪ {g} if Δ(g) �= ∅

where g ∧Ω denotes the set {g ∧ h | h ∈ Ω}.

[Axiom] says that when an empty set of goals is reached, the proof is finished.
The [Reduce] rule says that if a given goal g from the current set of goals

G ∪ {g} is discharged by the entailment , then it is eliminated from the goals.
The last rule, [Derive], is the most complex. It says that any given goal g

from the current set of goals, with a nonempty set Δ(g) of derivatives, can be
replaced in the goals to be proved with the set Δ(g); and, simultaneously, any set
of formulas F ′ that can be ,-entailed from S, g∧Ω can be added as hypotheses.
Note that the application of the [Derive] rule is nondeterministic in the choice of
hypotheses F ′, which depend on the parameters , and Ω of the proof system.

Theorem 1 (soundness of ,�). Let Γ be a set of formulas such that �Γ � ⊆
�Ω� and for all g ∈ Γ , �g� �= ∅. If S ,� Γ then S |= Γ .

Note that we require �Γ � ⊆ �Ω� because otherwise the goals Γ have no chance
of being valid. The asumption for all g ∈ Γ , �g� �= ∅ (that implies �g� �= ∅) is
made for ensuring that g is not vacuously valid. Note also that initially, the set
of hypotheses, denoted by F in the proof system, is empty: S ,� Γ is S, ∅ ,� Γ .

We now show that the circular proof system, when it terminates, always pro-
vides an answer (positive or negative) to the question S |= Γ . Thus, in addition
to soundness we have a weak completeness result. The result is "weak" because

374 D. Lucanu and V. Rusu

it assumes termination of the proof system. It ensures that we have a decision
procedure for the equivalence of concrete, terminating programs.

In order to achieve weak completeness we need the following adaptations of
Definition 8: we only keep the formulas with a satisfiable condition, i.e., we elim-
inate "empty" formulas f with �f� = ∅. We also need additional assumptions.
The first one says that non-derivable goals g that denote observationally equiv-
alent configuration pairs are valid, and are discharged by the entailment ,. The
second one says that deadlocks are not observationally equivalent to anything.

Assumption 4. For all formulas g such that �g� ⊆ �Ω� and Δ(g) = ∅, S , g;
and for all configurations γ1, γ2, if γ1 or γ2 are deadlocks then (γ1, γ2) /∈ �Ω�.

Theorem 2 (Weak Completeness of ,�). Assume S |= Γ and the proof
system ,� terminates on Γ . Then, S ,� Γ .

Given a set of goals Γ , the proof system ,� may terminate successfully on it,
which means it generates a tree that has at least one "empty" leaf (generated by
[Axiom]). The proof system may also terminate unsucessfully when it generates
a finite tree and cannot expand it (i.e., it is blocked) and moreover that tree does
not have any empty leaf. The proof system terminates on Γ if it terminates either
sucessfully or unsucessfully. Weak completeness thus says that if a set of goals
is valid and the proof system terminates on it, then it terminates successfully.

Together, the soundness and weak completeness say that, if the proof sys-
tem applied to a given set of goals terminates, then termination is successful if
and only if the set of goals is valid. That is, when it terminates, the proof sys-
tem correctly solves the program-equivalence problem. Of course, termination
cannot be guaranteed, because the equivalence problem is undecidable. It does
terminate on goals in which both programs terminate (because eventually the
set of derivatives becomes empty) and also for goals in which one or both of the
programs does not terminate, provided they behave in a certain regular way.

Example 7. We show the application of our proof system for proving the equiv-
alence of our for and while programs formalised as the validity of the formula f
(in which we assume for simplicity that the symbolic statement S is terminating;
non-terminating statements can be handled as well but complicate the example):

〈〈for I from A to B do{S }〉k, 〈M〉env〉cfg ∼
〈〈I = A;while I <= B do{S ;I = I +1}〉k, 〈M〉env〉cfg
if not isModified(I, S) (2)

when the observation relation is denoted by the set Ω = {〈〈P1〉k〈M ′〉env〉cfg ∼
〈〈P2〉k〈M ′′〉env〉cfg ifM ′ = M ′′}. The observation relation says that two configu-
rations are observationally equivalent whenever they have equal environments.

The first applied rule is [Derive], which adds to the initially empty set of
hypotheses the formula f , simulataneously replacing it in the goals with Δ(f).
(f can be added to the hypotheses because �f� ⊆ �Ω�, which implies Ω∧f , f).

Program Equivalence by Circular Reasoning 375

After a certain number of applications of the [Derive] rule, the set of goals
becomes (after some simplifications, which consist in removing goals with un-
satisfiable conditions and logically simplifying the conditions of the remaining
goals; note that A and B became (symbolic) values due to the strict attribute):

〈〈〉k, 〈update(M, I,A)〉env〉cfg ∼ 〈〈〉k, 〈update(M, I,A)〉env〉cfg ifA >Int B

〈〈for I from A+Int 1 to B do{S }〉k, 〈followup(S, update(M, I,A))〉env〉cfg ∼
〈〈I =A+Int 1;whileI <=B do{S;I =I +1}〉k, 〈followup(S, update(M, I,A))〉env〉cfg
if not isModified(I, S) ∧ A ≤Int B

where followup(S,M) denotes the effect of executing statement S on map M .
Recall that S is terminating, so followup(S,M) is defined. The fact that I is
not modified by S is expressed by the equation followup(S, update(M, I, V)) =
update(M, I, V)), assumed to hold in the domain of maps for all concrete in-
stances of S that do not modify I. Moreover, for each terminating concrete
instance P of S, followup(P,M) = M ′ iff 〈〈P 〉k, 〈M〉env〉cfg⇒∗TS 〈〈〉k, 〈M ′〉env〉cfg.

The first goal is discharged by the [Reduce] rule (based on the fact that the
, relation "knows" that goals with same left and right-hade side are valid). The
second goal f ′ is actually an instance of the first one: i.e., �f ′� ⊆ �f� since any
concrete instance of f ′ is also a concrete instance of f . Thus, S, f , f ′, and
since f was added to the set hypotheses by the first application of [Derive], f ′ is
eliminated by the [Reduce] rule. The set of goals to be proved is now empty; the
proof system has terminated successfully, meaning that the formula f is valid.

8 Conclusion and Future Work

We have presented a definition for program equivalence, a logic that encodes this
definition in its formulas, and a proof system for the logic, which is proved sound
and weakly complete. A prototype implementation for the proof system in the
K framework was also presented and illustrated on a simple but paradigmatic
example of equivalent programs in a language imp defined in the K framework.

The proposed approach is general: it does not depend on K and imp but only
requires a formal semantics of the language of interest as a term-rewriting system.
The chosen equivalence relation is a weak bisimulation, which is parametric in
a certain observation relation. We show the approach is applicable for concrete
and symbolic programs, as well as for terminating and non-terminating ones.

A prototype that implements the approach for the imp language has been
developed in the K Framework. The implementation can be tested using the
on-line interface1 of the K tool.

Future Work. We are currently applying our deductive system for proving the
correctness of a compiler between two languages (as part of another project we
are involved in). The source language is a stack-based language with control
1 http://fmse.info.uaic.ro/tools/K/?tree=examples/prog-equiv/peq.k

376 D. Lucanu and V. Rusu

structures (loops, conditionals, dynamical function definitions). The target is
also stack-based but only has (possibly, conditional) jumps. The correctness of
the compiler amounts to proving the equivalence of several pairs of symbolic
programs; in each pair, one component denotes a source-language control struc-
ture, and the other component is the translation of that control structure in
the target language using jumps. We are also planning to combine our program-
equivalence verification with matching logic [14] verification. Matching logic is
an automatic, language-independent formal verification framework for languages
with a rewrite-based semantics. The idea is to prove matching logic properties on
programs in the source language, and guarantee, via the compiler’s correctness
that the compiled programs in the target language satisfy those properties as
well.

References

1. Kundu, S., Tatlock, Z., Lerner, S.: Proving optimizations correct using parameter-
ized program equivalence. In: Programming Languages Design and Implementa-
tion, pp. 327–337 (2009)

2. Godlin, B., Strichman, O.: Inference rules for proving the equivalence of recursive
procedures. Acta Inf. 45(6), 403–439 (2008)

3. Godlin, B., Strichman, O.: Regression verification: proving the equivalence
of similar programs. Software Testing, Verification and Reliability (2012),
10.1002/stvr.1472

4. Chaki, S., Gurfinkel, A., Strichman, O.: Regression verification for multi-threaded
programs. In: Kuncak, V., Rybalchenko, A. (eds.) VMCAI 2012. LNCS, vol. 7148,
pp. 119–135. Springer, Heidelberg (2012)

5. Leroy, X.: Formal verification of a realistic compiler. Comm. ACM 52(7), 107–115
(2009)

6. Necula, G.C.: Translation validation for an optimizing compiler. In: PLDI,
pp. 83–94. ACM (2000)

7. Pitts, A.M.: Operational semantics and program equivalence. In: Barthe, G.,
Dybjer, P., Pinto, L., Saraiva, J. (eds.) APPSEM 2000. LNCS, vol. 2395,
pp. 378–412. Springer, Heidelberg (2002)

8. Arons, T., et al.: Formal verification of backward compatibility of microcode. In:
Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 185–198.
Springer, Heidelberg (2005)

9. Craciunescu, S.: Proving the equivalence of CLP programs. In: Stuckey, P.J. (ed.)
ICLP 2002. LNCS, vol. 2401, pp. 287–301. Springer, Heidelberg (2002)

10. Lahiri, S.K., Hawblitzel, C., Kawaguchi, M., Rebêlo, H.: Symdiff: A language-
agnostic semantic diff tool for imperative programs. In: Madhusudan, P., Seshia,
S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 712–717. Springer, Heidelberg (2012)

11. Somenzi, F., Kuehlmann, A.: Equivalence Checking. In: Electronic Design Automa-
tion For Integrated Circuits Handbook, vol. 2, ch. 4. Taylor & Francis (2006)

12. Roşu, G., Lucanu, D.: Circular coinduction: A proof theoretical foundation.
In: Kurz, A., Lenisa, M., Tarlecki, A. (eds.) CALCO 2009. LNCS, vol. 5728,
pp. 127–144. Springer, Heidelberg (2009)

13. Roşu, G., Şerbănuţă, T.-F.: An Overview of the K Semantic Framework. Journal
of Logic and Algebraic Programming 79(6), 397–434 (2010)

Program Equivalence by Circular Reasoning 377

14. Roşu, G., Stefanescu, A.: Checking reachability using matching logic. In: Proceed-
ings of the 27th Conference on Object-Oriented Programming, Systems, Languages,
and Applications (OOPSLA 2012). ACM (2012) (to appear)

15. Arusoaie, A., Lucanu, D., Rusu, V.: A Generic Approach to Symbolic Execution.
Research Report RR-8189, INRIA, http://hal.inria.fr/hal-00766220/

16. Bonsangue, M., Caltais, G., Goriac, E.-I., Lucanu, D., Rutten, J., Silva, A.: A
decision procedure for bisimilarity of generalized regular expressions. In: Davies,
J. (ed.) SBMF 2010. LNCS, vol. 6527, pp. 226–241. Springer, Heidelberg (2011)

http://hal.inria.fr/hal-00766220/

Structural Transformations

for Data-Enriched Real-Time Systems�

Ernst-Rüdiger Olderog and Mani Swaminathan

Department of Computing Science
University of Oldenburg, Germany

{olderog,mani.swaminathan}@informatik.uni-oldenburg.de

Abstract. We investigate structural transformations for easier verifica-
tion of real-time systems with shared data variables, modelled as net-
works of extended timed automata (ETA). Our contributions to this
end are: (1) An operator for layered composition of ETA that yields
communication closed equivalences under certain independence and / or
precedence conditions. (2) Two reachability preserving transformations of
separation and flattening for reducing (under certain cycle conditions)
the number cycles of the ETA. (3) The interplay of the three structural
transformations (separation, flattening, and layering), illustrated on an
enhanced version of Fischer’s real-time mutual exclusion protocol.

1 Introduction

Reasoning about networks of (real-time) systems is much easier when the
execution of the system components is viewed sequentially, as opposed to
corresponding distributed or concurrent representations. Transformations of dis-
tributed system representations to equivalent layered (i.e., sequential) represen-
tations were first explored in [1] through a notion of communication closedness
between system components. Such a layered transformation was subsequently
investigated in [2] for a process algebra based on hierarchical graphs, with an
operator for layered composition (intermediate between sequential and parallel
composition) that formalized equivalences between the distributed and layered
system representations through the Communication Closed Layer (CCL) laws,
by exploiting independence between system components. Real-time extensions
to this process algebra were presented in [3], where CCL laws were shown to
hold under certain timing conditions, even in the absence of cross-component
independence.

The layered transformation used in the assertion-based reasoning techniques
of the above works was recently adapted in [4] for automatic verification of real-
time systems modelled as timed automata (TA) [5]. Our layered transformation
in [4] aimed for state-space reduction in TA networks, based on transition inde-
pendence as studied for partial order reduction of TA [6,7,8,9]. We enhance here

� This work has been partially funded by the German Research Council (DFG) as
part of the Transregional Collaborative Research Center “Automatic Verification
and Analysis of Complex Systems” (SFB/TR 14 AVACS, www.avacs.org).

E.B. Johnsen and L. Petre (Eds.): IFM 2013, LNCS 7940, pp. 378–393, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Structural Transformations for Data-Enriched Real-Time Systems 379

the layered transformation in [4] for TA, and complement this by the transfor-
mation techniques of separation and flattening. The structure of this paper and
the enhancements therein w.r.t [4] are as follows :

(1) We considered in [4] networks of TA under local time semantics, as in
many works on partial order reduction for TA (cf. [6,7,8,9]), where the clocks of
each constituent TA evolve independently so as to induce greater timing-based
independence, but at the expense of extra reference clocks for resynchronization
(cf. [6]). In this paper, we instead work with networks of TA extended with shared
data variables (termed extended timed automata (ETA)), having synchronous
clocks across the constituent ETA, as supported by the well-established ETA
model-checker UPPAAL [10]. Dependencies in such ETA networks arise due to
(a) the read-write interference of the variables shared across the ETA (b) the
global timing constraints induced by synchronous clocks.

Section 2 of this paper reviews ETA and their compositional constructs, and
establishes communication closed equivalences that exploit the absence of de-
pendencies due to (a) and (b) above. Notions of non-interference are introduced
for dealing with (a), while (b) is handled by wrapped ETA that mimic local time
semantics in a network even with synchronous clocks.

Section 3 of this paper establishes communication closed equivalences for ETA
with synchronous clocks that exploit global-time-induced precedence relations,
in the presence of shared variable and clock dependencies between ETA.

(2) The explicit passage of control (from one sequential phase of the system to
the next) necessary for applying (non-interference- or precedence-based) layered
transformations may however not be directly apparent from the system’s struc-
ture, owing to multiple nested cycles that often arise while modelling reactive
distributed real-time systems as ETA networks. We therefore introduce in Sec-
tion 4 the transformations of separation and flattening as (reachability preserv-
ing) pre-processing steps that (under certain cycle conditions on the ETA) reduce
the nesting depth and the number of cycles in ETA networks. Communication
closedness (via appropriate non-interference and/or precedence conditions) may
then be easily investigated on such separated and flattened ETA, such that the
verification of reachability properties may be rendered almost trivial.

(3) The interplay of the three structural transformations (separation, flatten-
ing, and layering) is illustrated in Section 5 on an enhanced version of Fischer’s
real-time mutual exclusion protocol for two critical sections.

Section 6 concludes the paper with further comparisons to related work. A
full version of this paper is available at [11], whose Appendix A details the syn-
tax and semantics of ETA and their compositional constructs, whose Appendix
B includes proofs of the results stated in this paper, and whose Appendix C
discusses the generality of these results.

2 ETA, Compositions, and CCL

We briefly review the Extended Timed Automata (ETA) model for (networks
of) real-time systems enriched with shared data variables. Various compositional

380 E.-R. Olderog and M. Swaminathan

operators for ETA are also introduced, along with the notion of transition inde-
pendence yielding communication closed equivalences for suitably wrapped ETA
in the presence of synchronous clocks.

Extended Timed Automata. Let (α, β, · · · ∈) Σ be a finite alphabet of chan-
nels. For each channel α ∈ Σ there are two actions : α? denotes input on α and
α! output on α, where α?, α! /∈ Σ. We consider two different internal actions
τ, ε �∈ Σ, where τ results only from synchronization. The set of all actions over
Σ is denoted by (a, b, · · · ∈) Σ?! = {α? | α ∈ Σ} ∪ {α! | α ∈ Σ} ∪ {τ, ε}. In
the context of parallel composition, input and output are complementary actions
that can synchronize yielding τ . For an action a ∈ Σ?!\{τ, ε}, its complementary
action is denoted by a, i.e., α? = α!, and vice-versa.

Let (v ∈) V be a finite set of data variables ranging over a finite value set D.
The set (ψD ∈) Ψ(V) of data expressions over V is the set of expressions involving
variables of V and the usual arithmetic operators +,−, · · · . The set (φD ∈) Φ(V)
of data constraints over V is the set of Boolean constraints over variables in V
involving the usual arithmetic (+,−, · · ·) and relational (<,≤, >,≥) operators.
A data valuation assigns to each data variable in V a value in D. If |V | = m, a
data valuation is identified with a point in Dm, denoted typically by �u,�v etc.

Let (x, y, · · · ∈) C be a finite set of clocks. The set (φ ∈) Φ(C) of clock
constraints over C has the following syntax: φ ::= x ! k | φ1 ∧ φ2, where
x ∈ C, k ∈ N, and ! ∈ {<,≤,≥, >}. The set (g ∈) G(C, V) of guards has the
syntax: g ::= φ | φD | g1 ∧ g2, where φ ∈ Φ(C) and φD ∈ Φ(V).

A clock valuation assigns a non-negative real value to each clock in C. If
|C| = n, a clock valuation is identified with a point in Rn

≥0, which we typically

denote by �x, �y etc. By �0 we denote the clock valuation where all clocks are set to
0, while �v0 ∈ Dm denotes a designated initial data valuation. A reset operation
is an assignment x := 0 to a clock x ∈ C, or an assignment v := ψD to a
data-variable v ∈ V , involving a data expression ψD ∈ Ψ(V).

We may then define an extended timed automaton (ETA) A as a tuple A =
(L,Σ,C, V, l0, lF , Inv, E) over a set of (finitely many) locations, channel names,
clocks, data variables, initial and final locations, invariants, and edges. An edge
e ∈ E is of the form e = (l, a, g, r, l′) with l, l′ ∈ L, a ∈ Σ?!, g ∈ G(C, V), and
r a list of reset operations. Define target(e) = l′ as the target location of the
edge e, act(e) = a as the action of e and edgesA(a) = {e ∈ E | act(e) = a} as
the set of edges in A with action a. For a pair of clock valuations �x and �y and a
constant k ∈ N, we denote by �x ≈k �y the k-region-equivalence between �x and �y.
The corresponding equivalence class for a clock valuation �x is denoted [�x]k, cf.
Definitions 11 and 12 in Appendix A of [11].

The semantics of an ETA is given in terms of its timed transition system, which
consists of an infinite set of states of the form (l, �x, �v), where l ∈ L, �x ∈ Rn

≥0,
and �v ∈ Dm. The transitions between such states result in the formation of
paths through the timed transition system. Such a path π is a (possibly infinite)

sequence π = 〈(l0,�0, �v0)
d0→ (l1, �x1, �v1)

e1→ (l2, �x2, �v2)
d2→ (l3, �x3, �v3)

e3→ . . .〉 of
states with delays di ∈ R≥0 and edges ei ∈ E, subject to the initiation and

Structural Transformations for Data-Enriched Real-Time Systems 381

consecution conditions (cf. Definition 13 in Appendix A of [11]). This path π
induces a timed trace ξ = 〈(t0, e1), (t2, e3), . . .〉 with t0 = d0 and ∀i ∈ N :
t2i+2 − t2i = d2i+2, where ξ consists of pairs (t, e) indicating the absolute time
instant t ≥ 0 at which the edge e ∈ E is executed by ETA A along path π. Note
that all timestamps in π and ξ have even subscripts. The reachable state space of
the ETA A, denoted Reach(A), is then given by the set of states reachable from
the initial state through transitions of all paths, with Reachi(A) denoting the set
of reachable states of A after i iterations of its transition relation (cf. Definition
14 in Appendix A of [11]). This leads to the notion of reachability equivalence
denoted by ≡. Given two ETA A1 and A2, we define A1 ≡ A2 iff ∀i ∈ N :
Reachi(A1) = Reachi(A2). Thus ≡ requires equal sets of reachable states after
every iteration of the transition relation.

ETA Compositions. So far we considered ETA operating in isolation. In
practice, real-time systems communicate with each other and their environment.
This results in composite systems with communicating components. The com-
munication is via synchronizing actions drawn from a shared alphabet and via
shared data variables. We now consider four operators for constructing compos-
ite systems: sequential, step, parallel, and layered composition (where the latter
is new for (extended) timed automata), defined for ETA Ai = (Li, Σi, Ci, Vi, l0i,
lF i, Invi, Ei), i = 1, 2, with disjoint locations: L1 ∩ L2 = ∅.

For modeling that the execution of A1 is followed by that of A2, it is conve-
nient to have two composition operators at hand. Sequential composition A1;A2

amalgamates the final location lF 1 of A1 with the initial location l02 of A2,
the step composition A1 �A2 links lF 1 and l02 by an explicit step transition t.

Formally, A1;A2 = (L1 ∪ L2 ∪ {l̃F 1}, Σ1 ∪Σ2, C1 ∪C2, V1 ∪ V2, l01, lF 2, Inv, E),

where l̃F 1 is a new location obtained by amalgamating lF 1 with l02. We require
that there is no outgoing edge from lF 1, as it would otherwise be possible to
reenter A1 from A2 via incoming edges to l02 and outgoing edges from lF 1. The

set of edges E is obtained by appropriately assigning l̃F 1 as the target or source
location for edges in E1 entering lF 1 and for edges in E2 entering or leaving l02,
cf. Definition 15 in Appendix A of [11]. In the step composition A1 �A2 defined
below, the stepping transition t allows for lF 1 to have outgoing transitions, as
no location of A1 will be re-entered once t has been executed.

Definition 1 (Step Composition). The step composition A1 � A2, read A1

step A2, is defined by A1 �A2 = (L,Σ1 ∪Σ2, C1 ∪C2, V1 ∪ V2, l01, lF 2, Inv, E),
where L = L1 ∪ L2, with Inv(li) = Invi(li) for li ∈ Li and i = 1, 2, and
E = E1 ∪E2 ∪ {t}, where t = (lF 1, ε, true, ∅, l02) steps from lF 1 to l02.

Alternative definitions of sequential and step compositions for timed automata
may be found in [12,13]. Parallel composition ‖ of ETA is in the CCS-style [14],
i.e., parallel ETA synchronize on common actions but also act autonomously on
all actions – the latter is modelled by interleaving. In order to avoid any read-
write and write-write conflicts w.r.t the shared variables in the parallel ETA,
we require that edges with synchronizing actions are non-interfering, as defined
below. For an edge e = (l, a, g, r, l′) of an ETA A its write-set wr(e) is the set of

382 E.-R. Olderog and M. Swaminathan

all clocks and data variables appearing on the left-hand side of one of the reset
operations in r, while its read-set rd(e) is the set of all clocks and data variables
appearing in the guard g or on the right-hand side of a reset operation in r.

Definition 2 (Non-interfering edges). Let E1 and E2 be sets of edges. The
non-interference relation ��⊆ E1 × E2 is defined for e1 ∈ E1 and e2 ∈ E2 by:
e1 �� e2 if rd(e1) ∩ wr(e2) = wr(e1) ∩ rd(e2) = wr(e1) ∩ wr(e2) = ∅.

The relation �� is canonically lifted to sets of edges (and consequently to ETA):
E1 �� E2 iff for all e1 ∈ E1 and e2 ∈ E2 we have e1 �� e2. For two ETA A1

and A2 with respective edge-sets E1 and E2, we have that A1 �� A2 when (1)
E1 �� E2, i.e., their edge-sets are non-interfering, and (2) C1 ∩C2 = ∅, i.e., their
clock-sets are disjoint so as to eliminate timing-induced dependencies between
A1 and A2 by the wrapping construction (cf. Definition 4). In the context of
parallel composition ‖, we require a more relaxed notion of synchronized non-
interference on the constituent ETA A1 and A2 for A1‖A2 to be well-formed.

Definition 3 (Synchronized non-interfering ETA). ETA A1 and A2 over
alphabets Σ1 and Σ2, respectively, are synchronized non-interfering, denoted
A1 ��sync A2, if ∀a ∈ Σ1?! \ {τ, ε} : a ∈ Σ2?! =⇒ edgesA1(a) �� edgesA2(a).

The relation ��sync on ETA is only w.r.t synchronizing actions on common chan-
nels, and thus (unlike the more restrictive �� relation on ETA) does not preclude
shared-variable and clock dependencies between actions on disjoint channels.

The parallel composition of two A1 and A2, with A1 ��sync A2, is defined by
A1‖A2 = (L1×L2, Σ1 ∪Σ2, C1 ∪C2, V1 ∪ V2, (l01, l02), (lF 1, lF 2), Inv, E), where
∀ (l1, l2) ∈ L1 × L2 : Inv(l1, l2) = Inv1(l1) ∧ Inv2(l2), and E is constructed
according to a CCS-style synchronization and interleaving, cf. Definition 16 of
Appendix A of [11]. As mentioned in the introduction, a real-time distributed
system often consists of (sequential) phases that execute in parallel on multiple
platforms, wherein a transition (edge) within a given phase can execute only
after all dependent transitions (edges) in each preceding phase have been exe-
cuted. It is clear that the non-interference relation of Definition 2 is sufficient
to ensure independence in the untimed setting, where dependencies are induced
only by shared variables. In the timed setting of ETA, however, the clocks of
the various system components evolve synchronously, resulting in timing-induced
dependencies even in the presence of disjoint sets of clocks. In contrast to sev-
eral works on the partial order reduction of TA (e.g., [6,7,8]) that deal with such
timing-induced dependencies by imposing the semantic condition of local time
(where, in addition to mutual disjointness, the clocks of the constituent com-
ponents run entirely independent of each other), we retain here the synchrony
between the clocks of the various components as in the UPPAAL model-checker,
but eliminate timing-induced dependencies by wrapping the ETA with an initial
location that admits idling for arbitrarily long periods before proceeding to its
actual execution. The wrapping concept is defined as follows:

Definition 4 (Wrapped ETA). An ETA A = (L,Σ,C, V, l0, lF , Inv, E) is
wrapped if Inv(l0) = true and every edge e ∈ E leaving l0 is of the form

Structural Transformations for Data-Enriched Real-Time Systems 383

e = (l0, ε, true, r, l), where r resets all clocks in C to 0 and all data variables in
V to their initial value �v0. If A is wrapped, we denote this by writing [A].

The arbitrary idling permitted in l0 mimics local time semantics when [A] is
considered in the context of a (parallel) composition. Intuitively, [A] is protected
against time influences from components working in parallel.

We now introduce an asymmetric layered composition operator • (intermedi-
ate between parallel and sequential composition) that involves the non-
interference relation on edges of ETA. The layered composition of A1 and A2 is
given by A1•A2 = (L1×L2, Σ1∪Σ2, C1∪C2, V1∪V2, (l01, l02), (lF 1, lF 2), Inv, E),
where A1 ��sync A2, and Inv is as in the parallel composition A1‖A2, while E is
a subset of the set of edges of A1‖A2, as an edge of A2 is allowed to execute in
A1 •A2 only after all dependent edges of A1 have been executed, cf. Def. 17 and
Fig. 5 in Appendix A of [11]. Theorem 1 states the CCL laws of [2] for ETA.

Theorem 1 (CCL laws for ETA). For all ETA A1, A2 and B1, B2 with
A1 �� B2 and B1 �� A2 the communication closed layer (CCL) laws hold:

1. A1 •B2 = A1‖B2 (Indep)
2. (A1 •A2)‖B2 = A1 • (A2‖B2) (CCL-L)
3. (A1 •A2)‖B1 = (A1‖B1) •A2 (CCL-R)
4. (A1 •A2)‖(B1 •B2) = (A1‖B1) • (A2‖B2) (CCL)

PO-Equivalence. We now formalize partial order (po) equivalence as a means
of relating step and layered compositions. For this relationship, we have to ad-
dress the fact that in a layered composition A1 •A2 there may be τ -edges arising
from synchronization of complementary actions, whereas such τ -edges do not
arise in the step composition A1 �A2. For this purpose, we introduce for a path
π of A1 • A2 the operation split(π) that splits every synchronization edge of π
(labelled with τ) into a sequence of its constituent input and output edges, which
is possible owing to the synchronized non-interference assumed for edges labelled
with complementary actions (see Definition 3). Note that this non-interference
implies that the order in which synchronization edges are split into constituent
input and output edges is irrelevant.

Consider a finite τ -labelled path π of A1 • A2 with fragments π′ and π′′ of

the form π = π′ d0−−→ (l1, �x1, �u1)
τ−−→ (l2, �x2, �u2)

d2−−→π′′. We then have split(π) =

π′
d′
0−−→ (l′1, �x

′
1, �u

′
1)

a−→ (l′2, �x
′
2, �u

′
2)

d′
2−−→ (l′3, �x

′
3, �u

′
3)

a−→ (l′4, �x
′
4, �u

′
4)

d′
4−−→π′′, with a ∈

Σi and a ∈ Σ3−i, i ∈ {1, 2}, where l1 = l′1, �x1 ≈k �x′1, �u1 = �u′1, l2 = l′4, �x2 ≈k �x′4,
�u2 = �u′4, and where d0, d

′
0, d2, d

′
2, d

′
4 ∈ R≥0, d0 = d′0, d

′
2 = 0, d2 = d′4, and k is

the maximum of the clock constants appearing in A1 and A2. Following such a
splitting of τ -edges, we may now define po-equivalence on paths of ETA.

Definition 5 (po equivalence of paths). Let A1 and A2 be two ETA sharing
an alphabet Σ, with Π1 and Π2 denoting the corresponding sets of finite paths.
Let ≈ be a relation between the locations of A1 and A2. A path π1 ∈ Π1 is po
equivalent to π2 ∈ Π2, denoted π1 ≡po π2, relative to ≈ on the corresponding
locations, ≈k on the corresponding clock-valuations (where k is the maximum

384 E.-R. Olderog and M. Swaminathan

constant of A1 and A2), and identity on the corresponding data valuations, if
split(π2) can time-abstractedly be obtained from split(π1) by repeated permuta-
tion of adjacent independent edges separated by only one time-passage.

For π1 = 〈(l01,�0, �v0)
d0→ (l1, �x1, �u1)

e→ (l2, �x2, �u2)
d2→ (l3, �x3, �u3)

f→ (l4, �x4, �u4)〉
and π2 = 〈(l02,�0, �v0)

d′
0→ (l′1, �y1, �v1)

f→ (l′2, �y2, �v2)
d′
2→ (l′3, �y3, �v3)

e→ (l′4, �y4, �v4)〉,
where d0, d2, d

′
0, d

′
2 ∈ R≥0, we say that π1 ≡po π2 relative to ≈ iff l01 ≈ l02, and

∀1 ≤ i ≤ 4 : li ≈ l′i, �x4 ≈k �y4, �u4 = �v4, and e �� f . Thus, two po equivalent paths
π1 and π2 (relative to ≈ on their locations, region-equivalence on their clock
valuations, and identity on their data valuations) differ only in the (permutative)
ordering of independent transitions. This definition has been adapted for ETA
from [15]. The notion of po equivalence is then lifted to ETA as follows: For
ETA A1 and A2 sharing a common alphabet Σ, with Π1 and Π2 denoting the
corresponding sets of finite paths ending in their respective final states, we write
A1 ≡po A2 iff ∀πi ∈ Πi ∃π3−i ∈ Π3−i : πi ≡po π3−i, where i ∈ {1, 2}.

Definition 6 (Layered Normal Form). A (finite) path π of A1 • A2 is in
layered normal form (LNF) if it consists of consecutive edges from E1 passing
through lF 1, followed by consecutive edges from E2 ending in lF 2.

In a path π of A1 • A2 in LNF, the A2-transitions are delayed until all A1-
transitions have occurred. This may be too late because the clock constraints
of the A2-transitions may not be satisfied any more. To avoid this issue, we
wrap A2 so that starting [A2] resets all clocks of A2. This way, we mimic a
local time semantics for A2. Now Lemma 1 states that every path of A1 • [A2]
can be rewritten into a po equivalent path in LNF, which leads to Theorem 2
establishing po equivalence between layered and step compositions of ETA.

Lemma 1. Consider an ETA A1 that can terminate in its final location lF 1,
and a wrapped ETA [A2]. Let Π denote the set of all finite paths of A1 • [A2],
and ΠL ⊆ Π the subset of the paths in LNF. Then ∀π ∈ Π ∃π′ ∈ ΠL : π ≡po π′.

Theorem 2 (po equivalence between • and �). For an ETA A1 that can
terminate, and a wrapped ETA [A2], we have that A1 • [A2] ≡po A1 � [A2].

Note that A1 • [A2] ≡po A1 � [A2] implies that local reachability of locations
is preserved, as Reachloc(A1) ∪ Reachloc([A2]) = Reachloc(A1 � [A2]), where
Reachloc(A) denotes the set of reachable locations of the ETA A. Theorems 1
and 2 lead to the following corollary.

Corollary 1 (CCL laws with step). For all ETA A1, B1 and all wrapped
ETA [A2], [B2] such that A1 �� B2 and B1 �� A2, and such that when A1 can
terminate, then so can B1, and vice-versa, with P = (A1 � [A2]) ‖ (B1 � [B2])
and S = (A1 ‖B1)� ([A2] ‖ [B2]), we then have that P ≡L S.

≡L between P and S here is the layered reachability equivalence satisfying:
Reachloc(S) ⊆ Reachloc(P), and for any (la, lb) ∈ Reachloc(P)

– if la ∈ LAi, lb ∈ LBi , then (la, lb) ∈ Reachloc(S),

Structural Transformations for Data-Enriched Real-Time Systems 385

– if la ∈ LAi , lb ∈ LB3−i , then ∃ l′a ∈ LA3−i , l
′
b ∈ LBi : (la, l

′
b) ∈ Reachloc(S) ∧

(l′a, lb) ∈ Reachloc(S),

where i ∈ {1, 2}.

3 Time Precedence and Timed CCL

The non-interference conditions used in the CCL laws of the preceding section
may be syntactically inferred from the structure of the ETA. We now introduce a
semantic condition termed time precedence and demonstrate its use in establish-
ing equivalences analogous to Theorem 1 and Corollary 1 for ETA networks that
do not respect the non-interference conditions discussed in the previous section.
This time precedence relation is defined below for ETA.

Definition 7 (Time Precedence in ETA). For ETA A1 and A2 we say that
A1 precedes A2, denoted A1 ≺ A2 if A1‖A2 ≡ A1;A2.

Though ≺ is a semantic condition, it may be easily verified by inspecting the
ETA guards, as will be shown in Section 5. For the specific case of acyclic ETA,
where there is no location that is syntactically reachable from itself, we may
refine Definition 7 to relate time-stamps of individual edges as follows:

Definition 8 (Time Precedence of Edges). Consider two acyclic ETA A1

and A2 with corresponding edge sets E1 and E2, and the set Ξ(A1‖A2) of timed
traces induced by paths of A1‖A2. Then an edge e1 ∈ E1 is said to precede an
edge e2 ∈ E2, denoted e1 ≺ e2, if

∀ξ ∈ Ξ(A1‖A2)

(
∃t2 ∈ R≥0 : (t2, e2) ∈ ξ
⇒ ∃t1 ∈ R≥0 : [(t1, e1) ∈ ξ ∧ t1 < t2]

)
.

The following Lemma then follows as an immediate consequence:

Lemma 2 (Edge Precedence in acyclic ETA). Given two acyclic ETA A1

and A2, we have that A1 ≺ A2 ⇐⇒ ∀e1 ∈ E1 ∀e2 ∈ E2 : e1 ≺ e2.

The CCL laws discussed previously may then be reformulated as follows, using
this semantic notion of time-precedence as an alternative side-condition in the
presence of syntactic dependencies.

Theorem 3 (Timed CCL laws for ETA). For ETA A1, A2 and B1, B2 with
A1 ≺ B2 and B1 ≺ A2 the following timed communication closed layer (Timed
CCL) laws hold for the reachability equivalence ≡ :

1. A1 •B2 ≡ A1‖B2 (Timed Indep)
2. (A1 •A2)‖B2 ≡ A1 • (A2‖B2) (Timed CCL-L)
3. (A1 •A2)‖B1 ≡ (A1‖B1) •A2 (Timed CCL-R)
4. (A1 •A2)‖(B1 •B2) ≡ (A1‖B1) • (A2‖B2) (Timed CCL)

Theorem 3 then implies the reachability equivalence ≡ when • is replaced by ;
within the expressions of Theorem 3, as stated in the following corollary:

386 E.-R. Olderog and M. Swaminathan

Corollary 2. Replacing • by ; within the expressions appearing in Theorem 3
yields the reachability equivalence ≡.

Unlike the CCL laws in Theorem 1, the Timed CCL laws of Theorem 3 do
not hold for the equality =. Note also that Corollary 2 does not require the
ETA to the right of the • to be wrapped, in contrast to Corollary 1. As ≡ is
not a congruence w.r.t. parallel composition, the Timed CCL laws do not yield
equivalences in an arbitrary parallel context.

4 Separation and Flattening

We consider in this section two transformations on cycles in ETA. Separation
reduces the nesting of cycles, while flattening reduces the number of cycles. These
transformations are sound (in the sense of reachability preservation) under the
assumption that the ETA involved have memoryless cycles. Such an assumption
is justified for protocols where each cycle performs some service, and there is no
need to carry over some information from one service cycle to the next. Separa-
tion was studied in [16] in the abstract setting of Kleene algebras, where, under
certain conditions, a nondeterministic iteration of the form (a + b)∗ could be
separated into a sequence a∗b∗ of iterations, with a and b being regular expres-
sions for programs in a Kleene algebra. This is in essence what we will prove for
ETA in the Separation Theorem of this section. The role of the nondeterministic
choice + on regular expressions is played by a union operator ∪ on ETA [12].

Definition 9 (Union). Consider ETA Ai = (Li, Σi, Ci, Vi, l0, l0, Invi, Ei), i ∈
{1, 2}, with an identical initial and final location l0 such that L1 ∩ L2 = {l0}.
A1 ∪A2 = (L1 ∪L2, Σ1 ∪Σ2, C1 ∪C2, V1 ∪V2, l0, l0, Inv1 ∪ Inv2, E1 ∪E2) is then
the union of A1 and A2.

Whereas in the union A1 ∪ A2 possible cycles of A1 and A2 are glued together
in their initial location, in A1 �A2 the new transition t separates the A1 cycles
from the A2 cycles so that all A1 cycles are performed before the A2 cycles. In
contrast to the other composition operators of the previous sections requiring
the location disjointness condition L1 ∩ L2 = ∅, the operator ∪ in this section
instead requires that A1 and A2 have a common memoryless initial location,
where the notion of a location being memoryless is as defined below:

Definition 10 (Memoryless locations in ETA). A location l of an ETA A
is said to be memoryless if l is always entered with the initial valuations of the
clocks and the data variables.

A sufficient syntactic condition for a location l to be memoryless is that all cycles
through l have strong resets. A cycle of an ETA A through a location l is said
to have strong resets if every transition entering l resets all clocks and all data
variables. To simplify the reasoning about cycles, we wish to transform the union
of ETA with memoryless cycles into their step composition. The Separation
Theorem shows that this transformation respects a weak reachability equivalence
≡r sufficient for the preservation of safety properties, as seen next.

Structural Transformations for Data-Enriched Real-Time Systems 387

Definition 11 (Weak Reachability Equivalence). For ETA A and A′, with
A = (L,Σ,C, V, l0, lF , Inv, E) and A′ = (L′, Σ′, C′, V ′, l0

′, lF
′, Inv′, E′), with

|C| = |C′| = n, and |V | = |V ′| = m, we define the weak reachability equivalence
between A and A′, denoted by A ≡r A′, (relative to a relation ≈ ⊆ L × L′) if
∀ l ∈ L ∀ l′ ∈ L′ ∀�x ∈ Rn

≥0 ∀�v ∈ Dm :

1. (l, �x, �v) ∈ Reach(A) ⇒ ∃ l′ ∈ L′ : l ≈ l′ ∧ (l′, �x, �v) ∈ Reach(A′).
2. (l′, �x, �v) ∈ Reach(A′) ⇒ ∃ l ∈ L : l ≈ l′ ∧ (l, �x, �v) ∈ Reach(A).

Theorem 4 (Separation). Consider ETA A1 and A2 as in Definition 9 with
memoryless initial locations l01 = l02. Then A1 ∪ A2 ≡r A1 �A2.

In general, ≡r is not a congruence w.r.t. parallel composition. Nevertheless, the
following theorem states its preservation by parallel instances of separation under
the non-interference conditions similar to those of the CCL laws.

Theorem 5 (Separation in parallel context). For ETA A1, B1, A2, B2 with
memoryless initial locations, with A2 and B2 wrapped and satisfying A1 �� B2

and B1 �� A2, it holds that (A1 ∪ [A2])‖(B1 ∪ [B2]) ≡r (A1 � [A2])‖(B1 � [B2]).

The next theorem states that an ETA with a memoryless location l can be
flattened into one that contains fewer cycles through l, while preserving ≡r.

Theorem 6 (Flattening). Consider an ETA A∗ = (L,Σ,C, V, l0, lF , Inv, E
∗)

with a memoryless location l ∈ L. Then Al = (L,Σ,C, V, l0, lF , Inv, El), where
El = E∗\{e | target(e) = l and there is no syntactic path from l0 to l in E∗ such
that e is the first edge with target(e) = l on this path}, satisfies A∗ ≡r Al.

If El ⊂ E∗ then Al is a flattened version of A∗ with a reduced number of cycles
through l. Note that flattening at l0 results in Al0 being cycle-free at l0. Next,
we consider flattening of A∗ in the context of a parallel composition A∗‖B and
state sufficient conditions for the preservation of location reachability.

Theorem 7 (Flattening in parallel context). Suppose that for A∗ and B,
where A∗ is memoryless at la ∈ LA, the following holds within A∗‖B:

1. Every location of A∗ is reachable from its initial location l0A without visiting
la more than once, while B stays in its initial location l0B.

2. Every location of B is reachable from l0B, while A∗ stays in la.
3. If a transition entering la enables a transition of B with target lb then every

location of A∗ is reachable from la without visiting la again, while B is in lb.

Then Reachloc(A∗‖B) = Reachloc(Ala‖B).

In contrast to all the other transformations, flattening in a parallel context does
not easily generalize to multiple parallel instances (cf. Appendix C of [11]), and
the three itemized conditions of Theorem 7 above require an exploration of the
reachable state space. Such an exploration however does not entail a complete
resolution of the ‖ operator in A∗‖B, as each of the above conditions reduces to
a local reachability check of A∗ resp. B, with control residing at a fixed location

388 E.-R. Olderog and M. Swaminathan

A1∗:

A2∗:

cs1A

remA

wait1A

req1A
x ≤ 10

req2A
x ≤ 10

wait2A

remA

cs2A

i = 0
x := 0

i := 1
x := 0

i = 1

x > 10

i := 0

x := 0

i = 0

j := 1
x := 0

j = 0
x := 0

x > 10

j = 1

j := 0

j = 0

x := 0

B1∗:

B2∗:

cs1B

remB

wait1B

req1B
y ≤ 10

req2B
y ≤ 10

wait2B

remB

cs2B

i = 0
y := 0

i := 2
y := 0

i = 2

y > 10

i := 0

y := 0

i = 0

j := 2
y := 0

j = 0
y := 0

y > 10

j = 2

j := 0

j = 0

y := 0

Fig. 1. Double Fischer protocol DF = (A1∗ ∪ [A2∗]) ‖ (B1∗ ∪ [B2∗]) for processes A
and B accessing two critical sections cs1 and cs2. Left : ETA A1∗ ∪ [A2∗]; right : ETA
B1∗ ∪ [B2∗]. In this and all subsequent figures, we omit the ε-labels of all edges.

of B resp. A∗. For the case where B is itself composed of multiple parallel
ETA, a limited resolution of ‖ within B may be necessary in order to verify the
second reachability condition of Theorem 7. The above reachability checks may
nonetheless be localized within a layer if the flattening is performed subsequent
to separation and layering, as will be shown in the next section.

5 Example: Real-Time Mutual Exclusion

Consider two processes A and B competing for two critical sections cs1 and cs2.
We safeguard these sections by a double Fischer protocol DF obtained by taking
for each process the union of two copies of Fischer’s real-time protocol.

We represent DF by the following composition of ETA:

DF = (A1∗ ∪ [A2∗]) ‖ (B1∗ ∪ [B2∗]),

where A1∗, A2∗ are the two copies of Fischer’s protocol used by process A, and
B1∗, B2∗ the two copies used by process B, cf. Fig. 1. The stars ∗ indicate
the presence of cycles. In locations cs1A and cs2A process A accesses the crit-
ical sections cs1 and cs2, respectively, and in cs1B and cs2B process B does
so. Initially, A and B need not access the critical sections and are busy with
remaining activities in the initial locations remA and remB , whose conditions
permit the wrapping of all ETA, and in particular A2∗ and B2∗. In req1A, req2A
and req1B, req2B the processes A and B request access to cs1, cs2. The locations
wait1A, wait2A and wait1B, wait2B represent waiting of A and B for cs1, cs2.
The parallel ETA in DF use disjoint (but synchronous) clocks x and y, while
sharing the data variables i and j that range over 0, 1, 2 and initialized with 0.

Structural Transformations for Data-Enriched Real-Time Systems 389

These values indicate whether (0) none of the processes, (1) process A, or (2)
process B wants to access cs1 or cs2, respectively. In these ETA, all edges are
labelled by ε-actions. Synchronization between the ETA takes place via guards
checking the values of the shared variables i and j.

We wish to prove that DF satisfies the double mutual exclusion property

DMX = �¬(cs1A ∧ cs1B) ∧ �¬(cs2A ∧ cs2B).

We simplify the verification task now by a series of structural transformations
so that it finally becomes almost trivial.

1. Separation. We apply the separation transformation to DF and obtain two
single versions of Fischer’s protocol separated by an extra transition, cf. Fig. 2.
This is possible due to A1∗ �� B2∗ and B1∗ �� A2∗. The result is

SDF = (A1∗ � [A2∗]) ‖ (B1∗ � [B2∗]).

By the Separation Theorem 5, we have DF ≡r SDF .

A1∗:

A2∗:

cs1A

rem1A

wait1A

req1A
x ≤ 10

req2A
x ≤ 10

wait2A

rem2A

cs2A

i = 0
x := 0

i := 1
x := 0

i = 1

x > 10

i := 0

x := 0

i = 0

j := 1
x := 0

j = 0
x := 0

x > 10

j = 1

j := 0

j = 0

x := 0

B1∗:

B2∗:

cs1B

rem1B

wait1B

req1B
y ≤ 10

req2B
y ≤ 10

wait2B

rem2B

cs2B

i = 0
y := 0

i := 2
y := 0

i = 2

y > 10

i := 0

y := 0

i = 0

j := 2
y := 0

j = 0
y := 0

y > 10

j = 2

j := 0

j = 0

y := 0

Fig. 2. Separated version of double Fischer: SDF = (A1∗ � [A2∗]) ‖ (B1∗ � [B2∗]).
The layered version LDF is obtained from SDF by cutting the two component ETA
of SDF at rem2A and rem2B, yielding LDF = (A1∗ ‖B1∗) � ([A2∗] ‖ [B2∗]).

2. Layering. To apply layering to SDF , we calculate:

SDF = (A1∗ � [A2∗]) ‖ (B1∗ � [B2∗])

≡L { Corollary 1, using A1∗ �� B2∗ and B1∗ �� A2∗}
(A1∗ ‖B1∗) � ([A2∗] ‖ [B2∗]) = LDF

LDF stands for layered double Fischer. The component ETA of LDF are ob-
tained from the ETA shown in Fig. 2 by cutting these at rem2A and rem2B.

To prove that DF satisfies DMX, it suffices to do this for LDF . Since step
composition is the top operator in LDF , it suffices to show that both step
components, A1∗‖B1∗ and [A2∗] ‖ [B2∗], individually satisfy DMX.

390 E.-R. Olderog and M. Swaminathan

A1∗: A1 = A1req1A,rem1A :

cs1A

rem1A

wait1A

req1A
x ≤ 10

cs1A

rem1A

wait1A

req1A
x ≤ 10

i = 0
x := 0

i := 1
x := 0

i = 1

x > 10

i := 0

x := 0

i = 0

i := 1
x := 0

i = 1

x > 10

x := 0

i = 0

A1req1A :

cs1A

rem1A

wait1A

req1A
x ≤ 10

i := 1
x := 0

i = 1

x > 10

i := 0

x := 0

i = 0

Fig. 3. Flattening A1∗ at location req1A yields A1req1A and flattening this ETA at
location rem1A yields the cycle-free ETA A1 = A1req1A,rem1A

3. Flattening. We remove all cycles in A1∗, B1∗, A2∗, B2∗ and show this in
detail for A1∗ in Fig. 3. Flattening A1∗ at req1A is possible, since whenever
req1A is entered, i = 0 and x = 0 holds. Flattening the resulting A1req1A
at rem1A does not seem possible at first sight because only the data variable
i is reset to 0. However, we may safely add x := 0 because this clock reset
occurs when rem1A is left. Note also that the additional three conditions of
Theorem 7 hold for A1∗ at the locations req1A and rem1A. Hence, we arrive
at A1 = A1req1A,rem1A without any cycles. We may similarly flatten B1∗ at
req1B and rem1B, yielding a corresponding cycle-free ETA B1. It thus remains
to show that two cycle-free versions of Fischer’s protocol, A1 ‖B1 and A2 ‖B2,
individually satisfy DMX, where we have, for i ∈ {1, 2}, Reachloc(Ai‖Bi) =
Reachloc(Ai∗‖Bi∗) by Theorem 7, which is sufficient for preserving DMX.

4. Timed Layering. We prove that A1‖B1 satisfies DMX (and symmetrically
for A2‖B2). Consider the ETA A01, A11, A21, B01, B11, B21 shown in Fig. 4. As
before, x and y are clocks, and i is a shared data variable ranging over 0, 1,
2, initialized with 0. The ETA A01, A11, A21 represent three phases of A1 and
B01, B11, B21 those of B1, such that A1‖B1 = (A01;A11;A21) ‖ (B01;B11;B21).

A01:

rem1A

lA01

i = 0
x := 0

A11:

req1A
x ≤ 10

lA11

i := 1
x := 0

A21:

wait1A

cs1A

i = 1
x > 10

B01:

rem1B

lB01

i = 0
y := 0

B11:

req1B
y ≤ 10

lB11

i := 2
y := 0

B21:

wait1B

cs1B

i = 2
y > 10

Fig. 4. Six ETA for building Fischer’s protocol for single mutual exclusion of two
processes: A1 = A01;A11;A21 and B1 = B01;B11;B21.

We explore the interleavings of A01;A11;A21 with B01;B11;B21 by (partially)
expanding (as in CCS, cf. [14]) the parallel composition in A1‖B1. After A11

Structural Transformations for Data-Enriched Real-Time Systems 391

neither B01 nor B21 can occur due to the i-guard, and vice versa, after B11

neither A01 nor A21 can occur. After A01‖B01 we observe that timewise (by the
synchronous evolution of the clocks x and y) B21 cannot proceed from wait1B
to cs1B (due to the clock guard y > 10) before A11 has left req1A (with clock
invariant x ≤ 10) to reach its final location lA11, and vice versa, A21 cannot
proceed to cs1A beforeB11 reaches its final location lB11. So the time precedences
A11 ≺ B21 and B11 ≺ A21 hold. Thus expansion and Corollary 2 yield

A1‖B1 = (A01;A11;A21) + (B01;B11;B21) + (A01‖B01); ((A11;A21)‖(B11;B21))

≡ (A01;A11;A21) + (B01;B11;B21) + (A01‖B01); (A11‖B11); (A21‖B21) = SF,

where + denotes a non-deterministic choice operator on ETA (cf. Definition
18 in Appendix A of [11]), and SF stands for sequential Fischer. Clearly, SF
satisfies DMX because after A11‖B11 the data variable i stores either 1 or 2,
and thus either A21 or B21 (but not both) can proceed to their critical section.
Since each of the equivalences induced by our transformations (namely, ≡, ≡r,
≡L, and equality w.r.t Reachloc) is clearly sufficient for DMX, we then conclude
that DMX holds for DF as required.

6 Related Work

We now discuss related transformational approaches in the literature.
A constraint-based decompositional proof methodology was illustrated in [17]

on the standard Fischer’s protocol, formalized as a timed modal specification.
More recently, an analysis of TA networks with “disjoint phases of activity” has
been carried out in [18], where it has been shown that the parallel composi-
tion of two TA (without shared data variables) is bismilar to their sequential
composition, if the TA exhibit certain periodic but non-overlapping behaviours.

In [19] it was shown that any TA (possibly containing nested cycles, but
again without shared data variables) may be transformed into one that is flat
(in the sense that each location is part of at most one cycle), while preserving
the reachability relation between states. Their (non-local) transformation, while
applicable to all TA, is however not preserved in the context of parallel compo-
sition, and suffers from an exponential blow-up in the number of locations in the
resulting flattened TA, cf. Lemma 3 of [19]. Our (local) separation and flatten-
ing transformations, on the other hand, are applicable (in the context of parallel
composition) to the data-enriched setting of ETA networks, and maintain the
same number of locations, while reducing the nesting depth and deleting those
transitions that (re-)enter memoryless locations, cf. Theorems 5 and 7.

A layered transformation for distributed algorithms with (predominantly syn-
chronous) message passing was presented in [20]. Round-based communication
closedness was considered in [21] for fault-tolerant distributed algorithms with
asynchronous message passing, with messages being considered only in the rounds
during which they were sent. Consensus algorithms in such a setting were then

392 E.-R. Olderog and M. Swaminathan

brought under the scope of automatic verification, by means of “reduction the-
orems”, cf. [21]. Layered transformations for randomized distributed algorithms
(modelled as compositions of probabilistic automata with shared data variables)
have been recently investigated by the authors in [22].

Acknowledgements. A. Kupriyanov and the reviewers gave insightful
feedback.

References

1. Elrad, T., Francez, N.: Decomposition of distributed programs into communication-
closed layers. Sci. Comput. Program. 2, 155–173 (1982)

2. Janssen, W.: Layered Design of Parallel Systems. PhD thesis, U. Twente (1994)

3. Janssen, W., Poel, M., Xu, Q., Zwiers, J.: Layering of real-time distributed pro-
cesses. In: Langmaack, H., de Roever, W.-P., Vytopil, J. (eds.) FTRTFT 1994 and
ProCoS 1994. LNCS, vol. 863, pp. 393–417. Springer, Heidelberg (1994)

4. Olderog, E.-R., Swaminathan, M.: Layered composition for timed automata.
In: Chatterjee, K., Henzinger, T.A. (eds.) FORMATS 2010. LNCS, vol. 6246,
pp. 228–242. Springer, Heidelberg (2010)

5. Alur, R., Dill, D.: A theory of timed automata. TCS, 183–235 (1994)

6. Bengtsson, J., Jonsson, B., Lilius, J., Yi, W.: Partial order reductions for timed
systems. In: Sangiorgi, D., de Simone, R. (eds.) CONCUR 1998. LNCS, vol. 1466,
pp. 485–500. Springer, Heidelberg (1998)

7. Minea, M.: Partial order reduction for model checking of timed automata. In:
Baeten, J.C.M., Mauw, S. (eds.) CONCUR 1999. LNCS, vol. 1664, pp. 431–436.
Springer, Heidelberg (1999)

8. Lugiez, D., Niebert, P., Zennou, S.: A partial order semantics approach to the clock
explosion problem of timed automata. Theor. Comput. Sci. 345, 27–59 (2005)

9. H̊akansson, J., Pettersson, P.: Partial order reduction for verification of real-time
components. In: Raskin, J.-F., Thiagarajan, P.S. (eds.) FORMATS 2007. LNCS,
vol. 4763, pp. 211–226. Springer, Heidelberg (2007)

10. Behrmann, G., David, A., Larsen, K.G.: A tutorial on uppaal. In: Bernardo,
M., Corradini, F. (eds.) SFM-RT 2004. LNCS, vol. 3185, pp. 200–236. Springer,
Heidelberg (2004)

11. Olderog, E.R., Swaminathan, M.: Structural transformations for data-enriched
real-time systems. Technical Report 90, Reports of SFB/TR 14 AVACS (2013),
http://www.avacs.org

12. Bouyer, P., Petit, A.: Decomposition and composition of timed automata. In:
Wiedermann, J., Van Emde Boas, P., Nielsen, M. (eds.) ICALP 1999. LNCS,
vol. 1644, pp. 210–219. Springer, Heidelberg (1999)

13. Dong, J.S., Hao, P., Qin, S., Sun, J., Yi, W.: Timed automata patterns. IEEE
Trans. Software Eng. 34, 844–859 (2008)

14. Milner, R.: Communication and Concurrency. Prentice-Hall (1989)

15. Alur, R., Brayton, R.K., Henzinger, T.A., Qadeer, S., Rajamani, S.K.: Partial-order
reduction in symbolic state-space exploration. FMSD 18, 97–116 (2001)

16. Cohen, E.: Separation and reduction. In: Backhouse, R., Oliveira, J.N. (eds.) MPC
2000. LNCS, vol. 1837, pp. 45–59. Springer, Heidelberg (2000)

http://www.avacs.org

Structural Transformations for Data-Enriched Real-Time Systems 393

17. Larsen, K.G., Steffen, B., Weise, C.: Fischer’s protocol revisited: A simple proof
using modal constraints. In: Alur, R., Sontag, E.D., Henzinger, T.A. (eds.) HS
1995. LNCS, vol. 1066, pp. 604–615. Springer, Heidelberg (1996)

18. Muñiz, M., Westphal, B., Podelski, A.: Timed automata with disjoint activity. In:
Jurdziński, M., Ničković, D. (eds.) FORMATS 2012. LNCS, vol. 7595, pp. 188–203.
Springer, Heidelberg (2012)

19. Comon, H., Jurski, Y.: Timed automata and the theory of real numbers. In: Baeten,
J.C.M., Mauw, S. (eds.) CONCUR 1999. LNCS, vol. 1664, pp. 242–257. Springer,
Heidelberg (1999)

20. Stomp, F.A., de Roever, W.P.: A principle for sequential reasoning about dis-
tributed algorithms. Formal Asp. Comput. 6, 716–737 (1994)

21. Chaouch-Saad, M., Charron-Bost, B., Merz, S.: A reduction theorem for the veri-
fication of round-based distributed algorithms. In: Bournez, O., Potapov, I. (eds.)
RP 2009. LNCS, vol. 5797, pp. 93–106. Springer, Heidelberg (2009)

22. Swaminathan, M., Katoen, J.P., Olderog, E.R.: Layered reasoning for randomized
distributed algorithms. Formal Asp. Comput. 24, 477–496 (2012)

Deadlock Analysis of Concurrent Objects:
Theory and Practice�

Elena Giachino1, Carlo A. Grazia1, Cosimo Laneve1,
Michael Lienhardt2, and Peter Y. H. Wong3

1 University of Bologna – INRIA Focus Team, Italy
2 PPS, Paris Diderot, France

3 SDL Fredhopper, Amsterdam, The Netherlands

Abstract. We present a framework for statically detecting deadlocks in a con-
current object language with asynchronous invocations and operations for get-
ting values and releasing the control. Our approach is based on the integration of
two static analysis techniques: (i) an inference algorithm to extract abstract de-
scriptions of methods in the form of behavioral types, called contracts, and (ii) an
evaluator that computes a fixpoint semantics returning a finite state model of con-
tracts. A potential deadlock is detected when a circular dependency is found in
some state of the model. We discuss the theory and the prototype implementation
of our framework. Our tool is validated on an industrial case study based on the
Fredhopper Access Server (FAS) developed by SDL Fredhoppper. In particular
we verify one of the core concurrent components of FAS to be deadlock-free.

1 Introduction

Modern systems are designed to support a high degree of parallelism by ensuring that
as many system components as possible are operating concurrently. Deadlock repre-
sents an insidious and recurring threat when such systems also exhibit a high degree of
resource and data sharing. In these systems, deadlocks arise as a consequence of exclu-
sive resource access and circular wait for accessing resources. A standard example is
when two processes are exclusively holding a different resource and are requesting ac-
cess to the resource held by the other. That is, the correct termination of each of the two
process activities depends on the termination of the other. The presence of a circular
dependency makes termination impossible.

Deadlocks may be particularly hard to detect in systems where the basic communi-
cation operation is asynchronous and where a synchronization would explicitly occur
when the value is strictly needed. Further difficulties arise in the presence of unbounded
(mutual) recursion. A paradigm case is an adaptive system that creates an unbounded
number of processes such as server applications. In such systems, process interaction
becomes complex and difficult to predict.
ABS [2] is an abstract, executable, object-oriented modeling language with a

formal semantics, targeting distributed systems. The concurrency model of ABS is two-
tiered. At the lower level it is similar to that of JCoBox [19], which in turn generalizes

� Partly funded by the EU project FP7-231620 HATS: Highly Adaptable and Trustworthy Soft-
ware using Formal Models (http://www.hats-project.eu).

E.B. Johnsen and L. Petre (Eds.): IFM 2013, LNCS 7940, pp. 394–411, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Deadlock Analysis of Concurrent Objects: Theory and Practice 395

the concurrency model of Creol [14] from single concurrent objects to concurrent object
groups (COGs). COGs encapsulate synchronous, multi-threaded, shared state compu-
tation on a single processor. On top of this level, there is an actor-based model with
asynchronous calls, message passing, active waiting, and future types.

An essential difference to thread-based concurrency is that task scheduling is coop-
erative, i.e., control switching between tasks of the same object group happens only at
specific scheduling points during the execution, which are explicit in the source code
and can be syntactically identified. This allows one to write concurrent programs in a
much less error-prone way than in a thread-based model and makes ABSmodels suitable
for static analysis.

We developed a theoretical framework for statically detecting deadlocks in
core ABS [13] (a subset of ABS) programs, exploiting and combining results and
techniques coming from different well-known theories:

Type theory. We designed an inference system to automatically extract abstract behav-
ioral descriptions pertinent to deadlock analysis from core ABS code. These de-
scriptions are called contracts. This is necessary as analyzing the whole program
would be hard and time-consuming, while most part of the code would be irrelevant
for deadlock and synchronization behavior, such as the local data and computa-
tions. The inference system is constraint-based and uses a standard semiunification
technique for solving the set of generated constraints.

Abstract behavioral language. Contracts are defined by a basic behavioral language,
that is similar to those ranging from languages for session types to calculi of pro-
cesses as Milner’s CCS or pi-calculus. There are a wide number of theories and
tools for verifying their properties. However, unlike most techniques on deadlock
analysis, our behavioral language handles dynamic name creation and does not re-
quire a predefined partial order.

Fixpoint Theory. The semantics of contracts is denotational. However, in presence of
recursion in the code, a fixpoint may not exist because the underlying model would
have infinitely many states (due to the creation of new objects in recursive meth-
ods). To circumvent this issue, we use a fixpoint technique on models with a limited
capacity of name creation. This entails fixpoint existence and finiteness of models.
While we lose precision, our technique is sound (in some cases, our technique may
signal false positives).

We prototyped an implementation of our framework, called the SDA tool and validated
it via an industrial case study. The case study is based on the Fredhopper Access Server
(FAS) developed by SDL Fredhopper1. In particular we were able to verify one of the
core concurrent components of FAS to be deadlock-free.

The structure of the paper is as follows. In Section 2, we introduce the core ABS
language, emphasizing its concurrency model, which is most relevant to this paper. In
Section 3, we present the behavioral language for specifying contracts and the inference
system for extracting contracts from core ABS programs. In Section 4, we overview the
algorithm for computing the contracts into their associated abstract models. In Section 5
we present the implementation of the tool, and its validation against the case study.

1 http://sdl.com/products/fredhopper/

http://sdl.com/products/fredhopper/

396 E. Giachino et al.

Related works are discussed in Section 6 and final remarks are collected in Section 7.
Due to space limitations, some technical parts are informally discussed and proofs are
omitted; they can be found in the full paper.

2 The Language core ABS

We begin with a brief presentation of the syntax of core ABS (See Figure 1). Full details
of the language, its semantics and its type system, can be found in [13].

In the syntax, an overlined element corresponds to any finite sequence of such ele-
ment; as usual, an element between square brackets is optional. When we write T (or
V or T x or e or v) we mean a (possibly empty) sequence T1, · · · , Tn (or, respectively,
V1, · · · ,Vn or T1 x1, · · · , Tn xn or e1, · · · , en or v1, · · · , vn).

A program P is a list of declarations followed by a main function {T x ; s }. Decla-
rations include data-types D and functions F, which constitute the functional part of the
language, and interfaces I and classes C, which constitute the object-oriented part of
the language. A type T is the name of either a type variable V used for polymorphism,
a datatype with parameters D〈T 〉 (to type structured data), or an interface I (to type ob-
jects). A data type D has a name D and a sequence of parameters V , and is constructed
as a nonempty sequence of type constructors Co with possible parameters T . Note that
data types include primitive types such as Int, Bool, String, as well as complex types
such as list of integers List〈Int〉. The complex type Fut〈T 〉 is called future type and
its values are futures. The future type is relevant in core ABS because it is used to type
method invocations (that return values of type T). A function F has a return type T , a
name f, an optional sequence of type parameters T (for polymorphism), a sequence of
parameters T x, and returns the value of the expression e. An interface I has a name I
and a body declaring a sequence of method headers S . A class C has a name C, may
implement several interfaces, and declares its fields Fl and its methods M.

A statement s may be either one of the standard operations of a core imperative
language or one of the operations for scheduling. Scheduling operations include await

P ::= D F I C { T x ; s } program
T ::= V | D〈T 〉 | I type

D ::= data D〈V〉 = Co [(T)] data type
F ::= def T f [〈T 〉](T x) = e function
I ::= interface I { S ; } interface

S ::= T m(T x) method signature
C ::= class C(T x) [implements I] { T x ; M } class
M ::= S {T x ; s } method definition
s ::= skip | s ; s | x = z | await g statement
| if e { s } else { s } | while e { s } | return e

z ::= e | new [cog] C (e) | e.m(e) | e!m(e) | e.get expression with side effects
e ::= v | x | this | fun(e) | case e {p⇒ e} expression
v ::= null | Co[(v)] value
p ::= | x | null | Co[(p)] pattern
g ::= e | x? | g ∧ g guard

Fig. 1. The language core ABS

Deadlock Analysis of Concurrent Objects: Theory and Practice 397

g, which suspends the method’s execution until the argument, called a guard, becomes
true. Guards may be a Boolean expression e that must be true in order to continue the
method’s execution, and a future lookup x? that requires the value of x to be resolved
before resuming the method’s execution, or a conjunction of guards g ∧ g.

An expression z may have side effects (may change the state of the system) and is
either an object creation new C (e) in the same group of the creator or an object creation
new cog C (e) in a new group, a method call e.m(e) or e!m(e), or a get on a expression
returning a future value.On the other hand, a pure expression e is free of side effects
and is either a value v, a variable x, a function application fun(e), or a pattern matching
case e {p⇒ e}. Values include the null object, and structured data Co[(v)], while
patterns p extend these values with variables x and anonymous variables .

2.1 The Concurrency Model of core ABS

We describe informally the concurrency model of core ABS and provide an illustration
in the form of a small example. In core ABS, objects belong to a group; a task executing
an object method belongs to the object’s group. At each point in time there is at most one
task per group that is active. The active task must explicitly release control in order for
another task of the same group to progress. Tasks are created by method invocations:
the caller activity continues after the invocation while the called code runs as a new
task. Caller and callee synchronize when the returned value of the method is strictly
necessary. In order to decouple method call and returned value, core ABS uses futures,
i.e., pointers to returned values that may not yet be available. Accesses to the future
values may require waiting for the values to be returned.

The code in Figure 2 gives three different implementations of the factorial function
in an hypothetical class Math. The function fact_g is the standard definition of factorial:
the recursive invocation this!fact_g(n-1) is followed by a get operation that retrieves
the value returned by the invocation. Yet, get does not allow the task to release the group
lock; therefore the task evaluating this!fact_g(n-1) is fated to be delayed forever
because its object (and, therefore, the corresponding group) is the same as that of the

class Math {

Int fact_g(Int n){

if (n==0) { return 1; }

else { Fut<Int> x = this!fact_g(n-1); Int m = x.get; return n*m; } }

Int fact_ag(Int n){

if (n==0) { return 1; }

else { Fut<Int> x = this!fact_ag(n-1); await x?; Int m = x.get;

return n*m; } }

Int fact_nc(Int n){

if (n==0) { return 1 ; }

else { Math z = new cog Math(); Fut<Int> x = z!fact_nc(n-1);

Int m = x.get; return n*m; } } }

Fig. 2. The class Math

398 E. Giachino et al.

caller. The function fact_ag solves this problem by permitting the caller to release the
lock with an explicit await operation, before getting the actual value with x.get. An
alternative solution is defined by the function fact_nc, whose code is similar to that
of fact_g, except for that fact nc invokes z!fact_nc(n-1) recursively, where z is an
object in a new group. This means the task of z!fact_nc(n-1)may start without waiting
for the release of any lock by the caller.

2.2 Restrictions of core ABS of the Current Release of SDA

In order to verify the feasibility of our techniques, in the first release of our prototype
we considered a subset of core ABS features. Note that these restrictions have been
considered in order to ease the initial development of the SDA tool. These restrictions
do not jeopardize the tool’s extension to the full language. Below we discuss the re-
strictions and, for each of them, we detail the techniques that will be used to remove
them in the next release of SDA. We also notice that, notwithstanding the following
restrictions, we were able to verify large commercial codes, such as a core component
of FAS (Section 5.2).

Split Synchronizations. core ABS allows synchronization primitives (await and get) to
be performed long after the method invocation. Recording the associated invocation-
synchronization primitives is problematic because it requires the analysis of aliases.
To avoid such complexity, we constrain codes to perform the synchronization, when
needed, right after the method invocation. Clearly, the extension of the SDA tool with a
standard alias analysis will permit the removal of this constraint.

Synchronization on Booleans. In addition to synchronization on method invocations,
core ABS permits synchronizations on Booleans, with the statement await g. When g
is False, the execution of the method is suspended, and when it becomes True, the
await terminates and the execution of the method may proceed. It is possible that the
expression g refers to a field of an object that can be modified by another method. In
this case, the await becomes synchronized with any method that may set the field to
true. This subtle synchronization pattern is difficult to verify statically. We therefore
require await statements to be annotated with the dependencies they create. For exam-
ple, consider the code:

class ClientJob(...) {

Schedules schedules = EmptySet; ConnectionThread thread; ...

Unit executeJob() {

thread = ...; thread!command(ListSchedule);

[thread] await schedules != EmptySet; ... }}

The statement await compels the task to wait for schedules to be set to something dif-
ferent from the empty set. Since schedules is a field of the object, any concurrent thread
(on that object) may update it. It is not evident how to extract this implicit dependency
relation from the guard of await. Therefore we constrain the programmer to provide
an annotation making explicit the dependency. In the above case, the object that will
modify the boolean guard is stored in the variable thread. Thus we need the annotation
[thread].

Deadlock Analysis of Concurrent Objects: Theory and Practice 399

Data Types and While Loops. In core ABS, data types are used to define primitive types
(e.g. Booleans) and dynamic structures, such as lists or maps. In particular, dynamic
structures can store an unbounded number of objects and, using a while loop, it is
possible to invoke methods on these objects according to some ad-hoc protocol. This
is problematic as our technique concerns static analysis. As a result we require that: (i)
data types are simply used to store objects of the same class; (ii) at each iteration, these
objects are manipulated independently (no synchronization with objects in the context is
performed), and in an identical manner. A core ABS program with these properties may
be analyzed for deadlocks using representatives. Namely, a data type value is abstracted
by one of its objects and a while loop is abstracted by its body. Note that both conditions
hold in many usages of dynamic data types and iteration, particularly in the case study.
The next release of SDA will permit ad-hoc annotations for while loops (invariants)
that affect contracts generated by the inference system.

Assignments and Local Variables. Assignments in core ABS (as usual in object-oriented
languages) may update the fields of objects that are accessed concurrently by other
threads, thus could lead to indeterminate behavior. In order to simplify the analysis, we
constrain field assignments to keep field’s record structure unchanged. For instance, if
a field contains an object of group a, then that field may be only updated with objects
belonging to a (and this correspondence must hold recursively with respect to the fields
of objects referenced by a). When the field is of a primitive type (Int, Bool, etc.) this
constraint is equivalent to the standard type-correctness. This restriction does not cover
local variables of methods, as they can only be accessed by the method in which they are
declared. In fact it is easy to track local changes in the inference algorithm. It is possible
to be more liberal as regards fields assignments. In [11] an initial study for covering
full-fledged field assignments was undertaken using so-called union types (that is, by
extending the syntax of future records with a + operator, as for contracts, see below) and
collecting all records in the inference rule of the field assignment (and the conditional).

Interfaces. In core ABS objects are typed with interfaces, which may have several im-
plementations. As a consequence, when a method is invoked, it is in general not possible
to statically determine which method will be executed at runtime (dynamic dispatch).
This is problematic for our technique because it breaks the association of a unique ab-
stract behavior with a method invocation. In the current release of SDA we avoid this
issue by constraining codes to have interfaces implemented by at most one class. This
restriction will be relaxed by admitting that methods have multiple contracts, one for
every possible class implementation of the arguments, and return values of methods are
unions of records. In turn, method invocations yield unions of contracts, according to
the possible instantiations of their arguments.

Recursive Object Structures. In core ABS, like in any other object-oriented language,
it is possible to define circular object structures, such as an object storing a pointer to
itself in one of its fields. Currently, the SDA tool cannot deal with recursive structures,
because the semi-unification process associates each object with a finite tree structure.
In this way, it is not possible to capture circular definitions, such as the recursive ones.
This restriction will be removed in the next release of SDA by admitting the association
of regular terms [5] with objects in the semi-unification process.

400 E. Giachino et al.

3 Contracts and the Contract Inference System

In order to analyze core ABS codes, we use abstract descriptions called contracts. The
syntax of these descriptions uses record names X, Y, Z, . . ., and group names a, b,
The rules are

Future records r encode the values of expressions in contracts. A record may be one
of the following: an empty record --, which corresponds to primitive types; a record
name X, which represents a place-holder for a value and can be instantiated by substi-
tutions; a[f : r] that defines an object with its group name a, and a� r which specifies
that accessing r requires control of the group a (and that the control is to be released
once the method has been evaluated). Note that the future record a � r is associated
with method invocations: a is the group of the object on which the method is invoked.

Contracts c collect the method invocations and the group dependencies inside state-
ments. Apart from 0, (a, a′), and (a, a′)w that respectively represent the empty behavior,
the dependency pairs due to a get and an await operation, the other basic contracts
deal with method invocations. The contract C.m r(r) → r′ models synchronous method
invocations, while C!m r(r) → r′ models asynchronous invocations. This latter contract
may be followed by a get – the suffix “.(a, a′)” –, or followed by an await – the suffix
“.(a, a′)w”. Composite contracts define the sequential composition c�c′ and conditionals
c + c′.

Finally, our tool uses constraintsU that are defined by the following syntax
where true is the constraint that is always true; r = r′ is a classic unification

constraint between terms; r(r) → s � r′(r′) → s′ is a semiunification constraint; the
constraintU ∧U′ is the conjunction ofU andU′.

Contracts are extracted from core ABS programs by means of an inference algo-
rithm. Figures 3 and 4 illustrate a (relevant) subset of the rules; the other ones are omit-
ted to lighten our presentation. The following auxiliary operators are used: fields(C) and
param(C) return the sequence of fields and parameters of a class C; types(e) returns the
type of an expression e, which is an interface; if e is an object, class(I) returns the unique
(see the restriction Interfaces in Section 2.2) class implementing I; and mname(M) re-
turns the sequence of method names in the sequence M of method declarations.

Inference statements for pure expressions e have the form Γ �a e : r, where Γ is a
typing context mapping variables to their records, and methods to their signatures; a
is the group name of the object executing the expression; and r is the inferred record.
Constraints and contracts are not generated at this stage.

Inference statements for expressions z have the form Γ �a z : r, c �U where Γ, a,
and r are as for expressions e. The term c is the contract for z created by the inference
rules and U is the generated constraint. The rule NewCOG creates a new group name
that is returned in the record of the expression, while New uses the name of the group of
this. It is worth to recall that, in core ABS, the creation of an object, either with a new
or with a new cog, amounts to executing the method init of the corresponding class,
whenever defined (the new performs a synchronous invocation, the new cog performs an
asynchronous one). In turn, the termination of init triggers the execution of the method
run, if present. The method run is asynchronously invoked when init is absent. Since
initmay be regarded as a method in core ABS, the inference system in our tool explic-
itly introduces a synchronous invocation to init in case of new and an asynchronous

Deadlock Analysis of Concurrent Objects: Theory and Practice 401

Var
x ∈ dom(Γ)

Γ �a x : Γ(x)

Field
x � dom(Γ) Γ(this) = a[f′ : r; f : r]

Γ �a f
′ : r

Get
Γ �a e : r X, b fresh

Γ �a e.get : X, (a, b) � r = b� X

NewCog
Γ �a e : r a′ fresh

fields(C) = f param(C) = f
′

X fresh

Γ �a new cog C(e) : a′[f : X; f
′

: r], 0 � true

New
Γ �a e : r X fresh

fields(C) = f param(C) = f
′

Γ �a new C(e) : a[f : X; f
′

: r], 0 � true

AInvk
Γ �a e : r Γ �a e : s class(types(e)) = C b,Y,Y fresh

Γ �a e!m(e) : b� Y, C!m r(s)→ Y � b[f : Y] = r ∧ C.m � r(s)→ Y

Return
Γ �a e : r Γ(destiny) = s

Γ �a return e : 0 � r = s |Γ

SInvk
Γ �a e : r Γ �a e : s

class(types(e)) = C Y fresh

Γ �a e.m(e) : a� Y, C.m r(s)→ Y � C.m � r(s)→ Y

Await
Γ �a x : r X, b fresh

Γ �a await x? : (a, b)w � r = b� X |Γ

Await-b
Γ �a x : r X, b fresh

class(types(x)) = C fields(C) = f

Γ �a [x] await y : (a, b)w� � r = b[f : X] |Γ

AssignVar
x ∈ dom(Γ) Γ �a z : r, c �U
Γ �a x = z : c �U |Γ[x = r]

AssignField
Γ �a z : r, c �U f′ � dom(Γ)

Γ(this) = a[f′ : r′; f : r]

Γ �a f
′ = z : c �U ∧ r = r′ |Γ

If
Γ �a e : r Γ �a s1 : c1 �U1 |Γ1

Γ �a s2 : c2 �U2 |Γ2 Γ1|dom(Γ) = Γ2 |dom(Γ)

Γ �a if e { s1 } else { s2 } : c1 + c2 �U1 ∧U2 |Γ1|dom(Γ)

Seq
Γ �a s1 : c1 �U1 |Γ1
Γ1 �a s2 : c2 �U2 |Γ2

Γ �a s1; s2 : c1 � c2 �U1 ∧U2 |Γ2

Fig. 3. Contract inference for expressions and statements

(Method)

fields(C) = f param(C) = f
′

a, X,Y ,Z fresh

Γ + this : a[ff
′

: X] + x : Y + destiny : Z �a s : c �U |Γ′

Γ � T m (T x){s} : a[ff
′

: X](Y){̂c} Z � U ∧ a[ff
′

: X](Y)→ Z = C.m in C

(Class)

X fresh Γ + ff
′

: X � M : C �U in C

Γ � class C(T f) {T′ f′; M} : {mname(M) �→ C} � U

Fig. 4. Contract rules of method and class declarations

one in case of new cog. However, for simplicity, we overlook this (simple) issue in the
rules New and NewCog, acting as if init and run are always absent.

Rules for statements s have the form Γ �a s : c � U |Γ′ where Γ, a, s, c and
U are as before, and Γ′ is the environment of the method after the execution of the
statement. The environment may change because of local variable updates. Rule Await
deals with the await synchronization when applied to a simple future lookup x?, re-
turning a dependency (a, b)w. In order to correctly associate dependencies with each

402 E. Giachino et al.

synchronization, we assume statements of the form await (?x1∧?x2) to be decomposed
into await ?x1 ; await ?x2. Rule AssignVar manages assignments to local variables of
methods and is the only rule that changes the environment. This rule must be compared
with AssignField, which deals with assignment to fields. In this case, as we said be-
fore, since we do not admit field updates, the rule enforces that the future record of the
right-hand-side expression to be the same as that of the field. Rule Return constrains
the record of destiny, which is an identifier introduced by Method, shown in Figure 4,
for storing the return record. Rule Seq defines the sequential composition of contracts.
This rule uses an auxiliary binary operator � on contracts to manage accumulations of
dependencies in sequence. The operator � is defined case-by-case. For example

c � C!m r(s)→ r′ � c′ =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
c � C!m r(s)→ r′.(a, b) � c′′ if c′ = (a, b) � c′′

c � C!m r(s)→ r′.(a, b)w � c′′ if c′ = (a, b)w � c′′

c � C!m r(s)→ r′ � c′ otherwise

The rules for method and class declarations are defined in Figure 4. In Method, in order
to derive the method contract of T m (T x){s}, we infer the type of s in an environment
extended with this, destiny (that will be set by return statements), and the arguments
x. The resulting contract c will be used in the method contract. The rule Class yields an
abstract class table that associates a method contract with every method name. It is this
abstract class table that is used by our analyzer in Section 4.

As an example, the methods of Math in Figure 2 have the following contracts, once
the constraints are solved (we always simplify c � 0 into c):

– fact g has contract a[](--) {0 + Math!fact g a[](--) → --.(a, a)} --. The name a in
the header refers to the group name associated with this in the code, and binds
the occurrences of a in the body. The contract body has a recursive invocation to
fact g, which is performed on an object in the same group a and followed by
a get operation. This operation introduces a dependency pair (a, a). We observe
that, if we replace the statement Fut<Int> x = this!fact_g(n-1) in fact g with
Math z = new Math() ; Fut<Int> x = z!fact_g(n-1), we obtain the same con-
tract as above because the new object is in the same group as this.

– fact ag has contract a[](--) {0 + Math!fact ag a[](--) → --.(a, a)w} --. In this case,
the presence of an await statement in the method body produces a dependency
pair (a, a)w. The subsequent get operation does not introduce any dependency pair:
(a, a) is absorbed by (a, a)w by definition of �. Intuitively, in this case, the success
of get is guaranteed, provided the success of the await synchronization.

– fact nc has contract a[](--) {0 + Math!fact nc b[](--) → --.(a, b)} --. This method
contract differs from the previous ones in that the receiver of the recursive invo-
cation is a free name (i.e., it is not bound by a in the header). This because the
recursive invocation is performed on an object of a new group (which is therefore
different from a). As a consequence, the dependency pair added by the get relates
the group a of this with the new group b.

Properties. The inference system for contracts possesses the classic soundness and
completeness properties.

Deadlock Analysis of Concurrent Objects: Theory and Practice 403

Theorem 1. The inference system for contracts produces a class table (when the semi-
unification algorithm terminates) that is sound and complete.

This result is proved in a standard way by (1) defining a type system for contracts where
method contracts are explicitly provided by programmers; then by (2) demonstrating
that this type system is sound with respect to the operational semantics in [13] (sub-
ject reduction); and finally by (3) proving that the class table obtained by the inference
system yields method contracts that are type correct with respect to (1) (completeness).
As regards (1), the type system is very similar to the inference one, but it does not
collect constraints. As regards (3), the rules also produce a set of semiunification con-
straints [12] r(r) → s � r′(r′) → s′ by binding constraints of the form r(r) → s = C.m
(rule Method) with constraints of the form C.m � r′(r′) → s′ (rules AInvk and SInvk).
It is well-known that solving these constraints is undecidable in general [16]. There-
fore, it is to be expected that the algorithm loops indefinitely in some cases, which are
defined in very ad-hoc ways. In our various tests, we never reached this limitation of
our approach.

4 The Analysis of Contracts

Contracts are inputs to our deadlock analysis technique, which returns finite state mod-
els, called lam (an acronym for deadLock Analysis Models [10]), where states are rela-
tions on group names. For example:

– [(a, b)],[(a, b), (b, c)] is a two-states lam where one state contains the relation
{(a, b)} and the other state contains {(a, b), (b, c)};

– [(a, b)w] is a one-state lam containing the relation {(a, b)w}.
The algorithm takes as input an abstract class table and a main contract, both produced
by the inference system; then it applies the standard Knaster-Tarski technique. The crit-
ical issue of this technique is that it may create pairs on fresh names at each step,
technically speaking, at every approximant, because of free names in method contracts
that correspond to new cogs. As a consequence, the lam model is not a complete partial
order (the ascending chains of lams may have infinite length and no upper bound). A
classical example is the model of the recursive method contract (of Math.fact nc)

Math.fact nc a[](--) {0 + Math!fact nc b[](--)→ --.(a, b)} --
In order to circumvent this issue and to get a decision on deadlock-freedom in a finite
number of steps, we use another usual method: running the Knaster-Tarski technique
up-to a fixed approximant, let us say n, and then resorting to a saturation argument.
If the n-th approximant is not a fixpoint, then the (n+1)-th approximant is computed by
reusing the same group names used by the n-th approximant (no additional group name
is created anymore). Similarly for the (n + 2)-th approximant till a fixpoint is reached
(by straightforward cardinality arguments, the fixpoint does exist, in this case). This fix-
point is called the saturated state. For example, in the case of the above contract, the n-th
approximant returns the single state lam [(a1, a2), · · · , (an−1, an)]. If we saturate at this
stage, the next approximant returns the saturated state [(a1, a2), · · · , (an−1, an), (a2, a2)].
This state contains a circular dependency – the pair (a2, a2) – revealing a potential
deadlock in the corresponding program. Actually, in this case, this circularity is a false

404 E. Giachino et al.

positive that is introduced by the (over)approximation: the original code never manifests
a deadlock.

A more detailed account of the algorithm follows (a simplified version of the algo-
rithm may be found in [9], see also Section 6). The model of lams is a partial order
with a bottom element, which is the single state lam with the emptyset relation. For
every syntactic operation on contracts, in particular + and �, we define a monotone op-
eration on the model (an operation is monotone if, whenever it is applied to arguments
in the order relation, it returns values in the same order relation). The algorithm an-
alyzing contracts computes an abstract class table that associates with every method
a function from tuples of group names to pairs of lams. The need for using pairs of
lams, let them be 〈W, W′〉, is illustrated by means of an example. Consider the con-
tract c = C!m b[]() → --.(a, b). This contract adds the dependency pair (a, b) to
the current state. If the method m of class C only performs a method invocation, let it
be D!n b[]() → -- (without any get or await synchronization), then the invocation
C!m b[]() → -- does not contribute to the current state with other pairs. However it is
possible that D!n b[]() → -- introduces dependency pairs that affect the future states
and that have nothing to do with (a, b). The same arguments apply in the case where D!n
is a set of states: future dependency pairs are added according to what prescribed by the
model of D!n. The dichotomy between present and future states allows us to augment
the precision of our (compositional) abstract semantics. We notice that this dichotomy
is not needed anymore for the main function. In fact, letting 〈Wmain, W′

main〉 be the
corresponding model, it is equivalent to the (single) lamWmain ∪W′

main – in this case,
futures are simply additional states to the current ones.

Back to the abstract class table, it is computed starting from the first approximant,
which associates the function λãC,m.〈0, 0〉 with every method C.m. The next approximant
is computed by transforming every entry of the lam class table according to the corre-
sponding contract. When the saturated state is reached, the lam of the main function
{T x ; s } is computed. Let 〈Wmain, W′

main〉 be such lam. The input program is then
deadlock-free if for every W ∈ Wmain ∪W′

main, Wget has no circularity, where Wget is
defined below.

Definition 1. Let W be a set of group name dependencies. The get-closure of W, noted
Wget, is the least set such that

W ∈ Wget
(a, b) ∈ Wget (b, c) ∈ Wget

(a, c) ∈ Wget

(a, b) ∈ Wget (b, c)w ∈ Wget

(a, c) ∈ Wget

A set W contains a circularity if the get-closure of its dependencies has a pair (a, a).

As an example, we compute the abstract class table of the class Math in Figure 2.
The contracts of such methods have been discussed in Section 3. Our analysis algorithm
returns

method first approx. second approx. third approx.

Math.fact_g λa.〈0, 0〉 λa.〈[(a, a)], 0〉 λa.〈[(a, a)], 0〉
Math.fact_ag λa.〈0, 0〉 λa.〈[(a, a)w], 0〉 λa.〈[(a, a)w], 0〉
Math.fact_nc λa.〈0, 0〉 λa.〈[(a, b)], 0〉 λa.〈[(a, c), (c, d)], 0〉

Deadlock Analysis of Concurrent Objects: Theory and Practice 405

The fixpoints for Math.fact_g and Math.fact_ag are found at the third iteration.
According to the above definition of deadlock-freeness, Math.fact_g yields a dead-
lock, whilst Math.fact_ag is deadlock-free. As discussed before, there exists no fix-
point for Math.fact_nc. If we decide to stop at the third iteration and saturate, we get
λa.〈[(a, c), (c, c), (c, d)], 0〉, which contains a circularity. As we said before, this cir-
cularity is a false positive.

Note that saturation might even start at the first approximant (where every method
is λa.〈0, 0〉). In this case, for Math.fact_g and Math.fact_ag, we get the same answer
and the same pair of lams as the above third approximant. For Math.fact_nc we get
λa.〈[(a, b), (b, b)], 0〉, which contains a circularity. In general, it is possible to augment
precision by delaying saturation. Consider the following abstract class table:

C.m : a[](b[], c[]) {C.n b[](c[])→ -- � C.n c[](b[])→ --} --
C.n : a[](b[]) {C.p w[](a[])→ -- � C.p b[](w′[])→ --} --
C.p : a[](b[]) {C.q b[]()→ --.(a, b)} --
C.q : a[]() {0} --

This class table saturates at the second approximant and uses the same names w and w′
in the two invocations of C.n inside C.m. This will produce a false positive. Saturating at
the third approximant, instead, produces a precise response (the program is deadlock-
free). We observe that the above abstract class table has a fixpoint at the fourth iteration.

Our technique is correct. We in fact demonstrate the following result.

Theorem 2. Let 〈Wmain,W′
main〉 be the lams of the main function of a core ABS pro-

gram computed with an abstract class table (saturated at the n-th approximant, for
some n). If no state ofW∪W′ has a circularity then the program is deadlock-free.

5 The SDA Tool and Its Application to the Case Study

ABS (and, therefore, core ABS) comes with a suite [24] that offers a compilation frame-
work, a set of tools to analyze the code, an Eclipse IDE plugin and Emacs mode for the
language. We extended this suite with an implementation of our static deadlock anal-
ysis tool (SDA tool), available at http://cs.unibo.it/˜laneve/deadlock. The
SDA tool is built upon the abstract syntax tree (AST) of the ABS type checker. We can
therefore exploit the type information stored in every node of the tree. This simplifies
the implementation of several contract inference rules. The SDA tool is structured in
three modules.
1. Contract and Constraint Generation. This is performed in three steps: i) the tool

first parses the classes of the program and generates a map between interfaces and
classes, required for the contract inference of method calls; ii) then it parses again
all classes of the program to generate the initial environment Γ that maps methods
to the corresponding method signatures; and iii) it finally parses the AST and, at
each node, it applies the contract inference rules.

2. Constraint Solving is done by a generic semi-unification solver implemented in
Java, following the algorithm defined in [12]. The implementation of that solver is
available at http://proton.inrialpes.fr/ m̃lienhar/semi-unification.

http://cs.unibo.it/~laneve/deadlock
http://proton.inrialpes.fr/~mlienhar/semi-unification

406 E. Giachino et al.

When the solver terminates (and no error is found), it produces a substitution that
validates the input constraints. Applying this substitution to the generated contracts
produces the abstract class table and the contract of the main statement of the pro-
gram.

3. Contract Analysis uses dynamic structures to store states of every method contract
(because states become larger and larger as the analysis progresses). At each it-
eration of the analysis, a number of fresh group names is created and the states
are updated according to what is prescribed by the contract. A basic operation of
the analyzer is the renaming, which is used when computing every approximant. At
each iteration, the tool checks whether a fixpoint has been reached. Saturation starts
when the number of iterations reaches a maximum value (that may be customized
by the user). In this case, since the precision of the algorithm degrades, the tool
signals that the answer may be imprecise.

5.1 Simple Experiments

The SDA tool has been tested on a number of medium-size programs written for bench-
marking purposes by ABS programmers. The programs may be found on the tool web-
site; some of them (those with suffix Mod) required modifications to remove recursive
object structures. The following table reports our experiments: for every program we
display the number of lines, whether the analysis has reported a deadlock (D) or not
(�), and the time required for the analysis. With regards to time, we only report the
time required by the contract inference system and the contract analysis when they run
on a QuadCore 2.4GHz and Gentoo (Kernel 3.4.9):

program lines result time
PeerToPeer 185 � 0.474 sec
BoundedBuffer 103 � 0.353 sec
PingPongMod 61 � 0.046 sec
MultiPingPongMod 88 D 0.109 sec

5.2 The Industrial Case Study

The Fredhopper Access Server (FAS) is a distributed concurrent object-oriented system
that provides search and merchandising services to eCommerce companies. FAS con-
sists of a set of live environments and a single staging environment. A live environment
processes queries from client web applications via web services and aims to provide a
constant query capacity to client-side web applications. A staging environment is re-
sponsible for receiving data updates, and distributing the resulting indices across all
live environments according to the Replication Protocol. The Replication Protocol has
a single SyncServer module and one SyncClient module for each live environment. In
turn, the SyncServer determines the schedule of replications, as well as their content,
while a SyncClient receives data and configuration updates according to the schedule.

The SyncServer communicates to SyncClients by creating Worker objects, which
serve as the interface to the server-side of the Replication Protocol. On the other hand,
SyncClients schedule and create ClientJob objects to handle communications to the
client-side of the Replication Protocol. When transferring data between the staging and

Deadlock Analysis of Concurrent Objects: Theory and Practice 407

the live environments, it is critical that the data remains immutable. To enforce im-
mutability, without interfering with read/write accesses to the staging environment’s
underlying file system, the SyncServer creates a Snapshot object that encapsulates a
snapshot of the necessary part of the staging environment’s file system, and periodi-
cally refreshes it against the file system. This guarantees immutability of data until their
update is deemed safe. The SyncServer uses a Coordinator object to determine the safe
state in which the Snapshot can be refreshed.

5.3 The Application of SDA to FAS

As the Replication Protocol is a program with multiple threads interacting concurrently,
there are risks of deadlock. In order to be able to to apply the SDA tool to the case study,
we first made few adaptations.

We modified the core ABSmodel such that each interface defined in the model is im-
plemented by at most one class. In particular we have restricted the types of replication
items supported by the core ABS model to one. This change is adequate for deadlock
analysis as these implementations only perform synchronous method calls or function
calls with no scheduling point (await statements). In total we removed two implemen-
tations of replication item types.

We also removed all circular object structures. For example, in order to keep track
of the number of ClientJob objects active at any given time, the SyncClient object
keeps a list of references to such objects. On the other hand, each ClientJob object
keeps a reference to its SyncClient object such that it can notify the SyncClient at
the end of a replication session. We remove SyncClient’s reference to ClientJob such
that SyncClient only increments an integer counter when a ClientJob is created and
decrements the counter when a ClientJob object finishes a replication session. In total
we modified three circular object structures to be non recursive.

Finally, we have annotated every await statement on boolean guards with a
reference to the object that would resolve the expression to True. For example,
during the interaction between ClientJob and ConnectionThread, ClientJob asyn-
chronously invokes method command(ListSchedule) on ConnectionThread to ask the
ConnectionThread to send all replication schedules, and then waits with the state-
ment await schedules != EmptySet, where field schedules is subsequently set by
ConnectionThread to transfer replication schedules on to the ClientJob object via
method receiveSchedule(Schedules) (see Section 2.2). In this case we add the an-
notation [thread], where thread is a reference to the ConnectionThread object. We
have annotated 13 such await statements in total.

After these adaptations, we were ready to run the SDA tool. We ran it with number
of iterations 1 and, within 40 seconds, we got the answer

LOCK INFORMATION RESULTED BY THE ANALYSIS

Saturation: true

Deadlock in Main: false

In order to test the performance of SDA, we have also run it with other iteration values
(which are not necessary for the functional analysis, in this case). The following table
summarizes the results of our experiments:

408 E. Giachino et al.

Replication Protocol time
Iteration 1 39.783 sec
Iteration 2 60.582 sec
Iteration 3 341.10 sec

We conclude with a remark about performance. The constraint inference is pseudo-
linear in most of the cases. The fixpoint algorithm is exponential in the number of
identifiers in a program. This is the reason why, in the above table, increasing the num-
ber of iterations (from 2 to 3) causes the runtime to increase by a factor of 6. We remark
that in most cases, the precision of the SDA tool does not enhance at iterations higher
than 1.

6 Related Works

A preliminary theoretical study was undertaken in [9], where (i) the considered lan-
guage is a functional subset of core ABS; (ii) contracts are not inferred, they are pro-
vided by the programmer and type-checked; (iii) the deadlock analysis is less precise
because it is not iterated as in this contribution, but stops at the first approximant, and
(iv), more importantly, models of methods are not pairs of lams, which led it to discard
dependencies (thereby causing the analysis, in some cases, to yield false negatives).

The proposals in the literature that statically analyze deadlocks are largely based
on types. In [1, 3, 7, 22] a type system is defined that computes a partial order of the
locks in a program and a subject reduction theorem demonstrates that tasks follow this
order. On the contrary, our technique does not compute any ordering of locks, thus be-
ing more flexible: a computation may acquire two locks in different order at different
stages, being correct in our case, but incorrect with the other techniques. In [17,20,21],
Kobayashi and his colleagues use a very powerful technique, since they do not commit
to any predefined partial order of locks and apply to codes with dynamic structures.
However their concurrency models are different from that of ABS and a precise com-
parison is a matter for future work. Type-based deadlock analysis has also been studied
in [18]. In this contribution, types define objects’ states and can express acceptability of
messages. The exchange of messages modifies the state of the objects. In this context, a
deadlock is avoided by setting an ordering on types. With respect to our technique, [18]
uses a deadlock prevention approach, rather than detection, and no inference system for
types is provided. A number of model-theoretic techniques for deadlock analysis have
also been defined.To mention one contribution (another one is [6], see below), in [4],
circular dependencies among processes are detected as erroneous configurations, but
dynamic creation of names is not treated.

Works that specifically tackle the problem of deadlocks for languages with the same
concurrency model as that of core ABS are the following: [23] defines an approach
for deadlock prevention (as opposed to our deadlock detection) in SCOOP, an Eiffel-
based concurrent language. Different from our approach, they annotate classes with the
used processors (the analogue of groups in ABS), while this information is inferred
by our technique. Moreover each method exposes preconditions representing required
lock ordering of processors (processors obeys an order in which to take locks), and this

Deadlock Analysis of Concurrent Objects: Theory and Practice 409

information must be provided by the programmer. [6] studies a Petri net based analy-
sis, reducing deadlock detection to a reachability problem in Petri nets. This technique
is more precise in that it is thread based and not just object based. Since the model
is finite, this contribution does not address the feature of object creation and it is not
clear how to scale the technique. We plan to extend our analysis in order to consider
finer-grained thread dependencies instead of just object dependencies. [15] offers a de-
sign pattern methodology for CoJava to obtain deadlock-free programs. CoJava, a Java
dialect where data-races and data-based deadlocks are avoided by the type system, pre-
vents threads from sharing mutable data. Deadlocks are excluded by a programming
style based on ownership types and promise (i.e. future) objects. The main differences
with our technique are (i) the needed information must be provided by the programmer,
(ii) deadlock freedom is obtained through ordering and timeouts, and (iii) no guarantee
of deadlock freedom is provided by the system.

The work by Flores-Montoya et al. [8] and the corresponding DECO prototype de-
serve a separate discussion. They perform deadlock analysis on (a subset of) core ABS
with a point-to analysis technique that returns a dependency graph. Then, in a clever
way (by means of a may-happen-in-parallel analysis), unfeasible cycles in the depen-
dency graph are discarded. The technique relies on an abstract evaluation of the code;
therefore no inference system for extracting relevant informations is used. For this rea-
son, the DECO tool does not manifest limitations of the current version of SDA, such as
recursive object structures. As regards performance, DECO and SDA are comparable
on small/mid-size programs (codes in Section 5.1). In case of the FAS module, DECO
provides an answer in a bit more than 4 seconds. As regards the design, DECO is a
monolithic code written in Prolog. On the contrary, SDA is a highly modular Java code
(see Section 5). Every module may be replaced by another; for instance one may rewrite
the inference system for another language and plug it easily in the tool, or one may use
a different/refined contract analysis algorithm (see Conclusions).

7 Conclusions

We have developed a technique for statically detecting deadlocks in core ABS and dis-
cussed an industrial case study. The technique uses (i) an inference algorithm to extract
abstract descriptions of methods, called contracts, and (ii) an evaluator of contracts,
which computes an over-approximated fixpoint semantics.

This study can be extended in several directions. As regards the prototype, in the
next release, we intend to remove most of the restrictions, as discussed in Section 2.2,
since they have been considered only to ease the initial version. The next release of
SDA will also provide indications about how deadlocks have been produced by pointing
out the elements in the code that generated the detected circular dependencies. This
way, the programmer will be able to check whether or not the detected circularities are
actual deadlocks, fix the problem in case it is a verified deadlock, or be assured that his
program is deadlock-free.

The current SDA tool is also able to capture (a form of) livelock, namely when sev-
eral processes are continuously releasing and acquiring a set of group locks in a circular
way. However, the theoretical development of this issue is at an early stage and we will

410 E. Giachino et al.

extend the tool when the theory becomes more stable. SDA, being modular, may be in-
tegrated with other analysis techniques. In particular, we are prototyping the technique
discussed in [10], which extends the theory of permutations to the contracts discussed
in this paper. This technique provides a deadlock analysis that is complementary to the
one discussed here. In the sense that there are programs that are false-positive in one
technique and deadlock-free in the other, and conversely. Once this work is carried out,
we will have an SDA tool with augmented precision.

Acknowledgment. We wish to thank Stephan Schroevers for proof reading this paper
and the anonymous referees for useful suggestions and comments.

References

1. Abadi, M., Flanagan, C., Freund, S.N.: Types for safe locking: Static race detection for Java.
ACM Trans. Program. Lang. Syst. 28 (2006)

2. The ABS Language Specification, ABS version 1.2.0 edition (September 2012),
http://tools.hats-project.eu/download/absrefmanual.pdf

3. Boyapati, C., Lee, R., Rinard, M.: Ownership types for safe program.: preventing data races
and deadlocks. In: Proc. OOPSLA 2002, pp. 211–230. ACM (2002)

4. Carlsson, R., Millroth, H.: On cyclic process dependencies and the verification of absence of
deadlocks in reactive systems (1997)

5. Coppo, M.: Type inference with recursive type equations. In: Honsell, F., Miculan, M. (eds.)
FOSSACS 2001. LNCS, vol. 2030, pp. 184–198. Springer, Heidelberg (2001)

6. de Boer, F., Bravetti, M., Grabe, I., Lee, M., Steffen, M., Zavattaro, G.: A petri net based
analysis of deadlocks for active objects and futures. In: Păsăreanu, C.S., Salaün, G. (eds.)
FACS 2012. LNCS, vol. 7684, pp. 110–127. Springer, Heidelberg (2013)

7. Flanagan, C., Qadeer, S.: A type and effect system for atomicity. In: In PLDI 03: Program-
ming Language Design and Implementation, pp. 338–349. ACM (2003)

8. Flores-Montoya, A.E., Albert, E., Genaim, S.: May-happen-in-parallel based deadlock anal-
ysis for concurrent objects. In: Beyer, D., Boteale, M. (eds.) FMOODS/FORTE 2013. LNCS,
vol. 7892, pp. 273–288. Springer, Heidelberg (2013)

9. Giachino, E., Laneve, C.: Analysis of deadlocks in object groups. In: Bruni, R., Dingel, J.
(eds.) FORTE/FMOODS 2011. LNCS, vol. 6722, pp. 168–182. Springer, Heidelberg (2011)

10. Giachino, E., Laneve, C.: A beginner’s guide to the deadLock Analysis Model. In: TGC,
Springer, Heidelberg (2013)

11. Giachino, E., Lascu, T.A.: Lock Analysis for an Asynchronous Object Calculus. In: Proc.
13th ICTCS (2012)

12. Henglein, F.: Type inference with polymorphic recursion. ACM Trans. Program. Lang.
Syst. 15(2), 253–289 (1993)

13. Johnsen, E.B., Hähnle, R., Schäfer, J., Schlatte, R., Steffen, M.: ABS: A core language for
abstract behavioral specification. In: Aichernig, B.K., de Boer, F.S., Bonsangue, M.M. (eds.)
FMCO 2011. LNCS, vol. 6957, pp. 142–164. Springer, Heidelberg (2011)

14. Johnsen, E.B., Owe, O.: An asynchronous communication model for distributed concurrent
objects. Software and System Modeling 6(1), 35–58 (2007)

15. Kerfoot, E., McKeever, S., Torshizi, F.: Deadlock freedom through object ownership. In:
Wrigstad, T. (ed.) 5th International Workshop on Aliasing, Confinement and Ownership in
Object-Oriented Programming (IWACO), in Conjunction with ECOOP 2009 (2009)

http://tools.hats-project.eu/download/absrefmanual.pdf

Deadlock Analysis of Concurrent Objects: Theory and Practice 411

16. Kfoury, A.J., Tiuryn, J., Urzyczyn, P.: The undecidability of the semi-unification problem.
Inf. Comput. 102(1), 83–101 (1993)

17. Kobayashi, N.: A new type system for deadlock-free processes. In: Baier, C., Hermanns, H.
(eds.) CONCUR 2006. LNCS, vol. 4137, pp. 233–247. Springer, Heidelberg (2006)

18. Puntigam, F., Peter, C.: Types for active objects with static deadlock prevention. Fundam.
Inform. 48(4), 315–341 (2001)

19. Schäfer, J., Poetzsch-Heffter, A.: JCoBox: Generalizing active objects to concurrent com-
ponents. In: D’Hondt, T. (ed.) ECOOP 2010. LNCS, vol. 6183, pp. 275–299. Springer,
Heidelberg (2010)

20. Suenaga, K.: Type-based deadlock-freedom verification for non-block-structured lock prim-
itives and mutable references. In: Ramalingam, G. (ed.) APLAS 2008. LNCS, vol. 5356,
pp. 155–170. Springer, Heidelberg (2008)

21. Suenaga, K., Kobayashi, N.: Type-based analysis of deadlock for a concurrent calculus with
interrupts. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 490–504. Springer,
Heidelberg (2007)

22. Vasconcelos, V.T., Martins, F., Cogumbreiro, T.: Type inference for deadlock detection in
a multithreaded polymorphic typed assembly language. In: Proc. PLACES 2009. EPTCS,
vol. 17, pp. 95–109 (2009)

23. West, S., Nanz, S., Meyer, B.: A modular scheme for deadlock prevention in an object-
oriented programming model. In: Dong, J.S., Zhu, H. (eds.) ICFEM 2010. LNCS, vol. 6447,
pp. 597–612. Springer, Heidelberg (2010)

24. Wong, P.Y.H., Albert, E., Muschevici, R., Proença, J., Schäfer, J., Schlatte, R.: The ABS
tool suite: modelling, executing and analysing distributed adaptable object-oriented systems.
Journal on Software Tools for Technology Transfer 14(5), 567–588 (2012)

Broadcast, Denial-of-Service,

and Secure Communication

Roberto Vigo, Flemming Nielson, and Hanne Riis Nielson

Department of Applied Mathematics and Computer Science
Technical University of Denmark

{rvig,fnie,hrni}@dtu.dk

Abstract. A main challenge in the design of wireless-based Cyber-
Physical Systems consists in balancing the need for security and the
effect of broadcast communication with the limited capabilities and reli-
ability of sensor nodes. We present a calculus of broadcasting processes
that enables to reason about unsolicited messages and lacking of ex-
pected communication. Moreover, standard cryptographic mechanisms
can be implemented in the calculus via term rewriting. The modelling
framework is complemented by an executable specification of the seman-
tics of the calculus in Maude, thereby facilitating solving a number of
simple reachability problems.

Keywords: Cyber-Physical Systems, Broadcast communication,
Denial-of-Service, Process calculus, Security protocol verification.

1 Introduction

Cyber-Physical Systems (CPSs) [1] are nowadays increasingly exploited in the
realisation of critical infrastructure (e.g. power grid, healthcare, traffic control,
defence). These are networks of sensors and actuators that monitor and interact
with physical processes, often communicating on a wireless medium.

In a great many cyber-physical applications, the need for broadcast commu-
nication and some form of security conflicts with the limited capabilities of the
sensors that are at the heart of these systems. On the one hand, broadcast
(wireless) communication is often unavoidable, due to its reduced cost and ease
of deployment, while cryptography is needed to ensure privacy, confidentiality,
authentication, and other security properties. On the other hand, sensor nodes
have limited computational capabilities and are typically powered by batteries,
hence demanding for a careful use of the transceiver and of the on-board pro-
cessor. In addition to this, sensors are often deployed in locations that lack of
physical security, where environmental conditions and the presence of malicious
parties are potential source of communication failure [2].

Coping with the coexistence of broadcast communication, security demands,
limited computational power, and communication failure is therefore a main
challenge in the design of reliable CPSs. Modelling frameworks and verification

E.B. Johnsen and L. Petre (Eds.): IFM 2013, LNCS 7940, pp. 412–427, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Broadcast, Denial-of-Service, and Secure Communication 413

techniques are needed that can facilitate the work of the designers and developers
of such systems

In this work we present a calculus of broadcasting processes, the Applied
Quality Calculus, instrumented with a theory that allows modelling and rea-
soning about cryptographic primitives, and equipped with explicit notions of
communication failure and unwanted communication. The calculus is comple-
mented by an executable specification of its semantics in Maude, resulting in
a simulation engine that can directly be used for prototyping and for solving
bounded reachability problems.

The Applied Quality Calculus extends the Quality Calculus [3], and thus
inherits the capability of reasoning about absence of expected communication
and planning for default behaviour. In addition to this, the calculus is based
on an asynchronous instant communication model, where a process is always
allowed to perform an output (broadcast) and continue, while an input is allowed
only when a matching output is being performed. This communication model
faithfully represents wireless-based CPSs. Moreover, inputs are parametrised as
to accept only messages with specific properties (e.g. format), ignoring unwanted
communication and thus cutting down the confusion generated by broadcasting
over a few (often just one) wireless channels.

Equational reasoning is implemented in the calculus by means of term
rewriting, and leveraged for modelling both selective inputs and cryptographic
operations. A rewrite theory for cryptographic primitives is presented, which re-
lies on a simple yet powerful approach for defining cryptographic material, closer
to real cryptosystems than other signature-based calculi, without the burden of
an explicit type system.

Finally, the modelling expressiveness of the framework is illustrated on a
meaningful case study, where two nodes of a wireless sensor network perform
a key update exploiting asymmetric cryptography and secret sharing in order to
hamper the work of an attacker. The example highlights how the calculus facili-
tates dealing with denial-of-service (expected information is not received), flood-
ing generated by broadcast communication (receiving messages non-pertinent to
the protocol), and cryptographic reasoning at the same time, and how the Maude
implementation can support the verification of simple properties.

Related Work. The Calculus of Broadcasting Systems (CBS) [4] is the ancestor
of a number of modern broadcasting calculi. In the subsequent studies, two
main strands have flourished: on the one hand, theories for node mobility and
dynamic topologies have been investigated; on the other hand, a number of
calculi have been proposed that deal with low level characteristic of broadcast
communication, such as transmission interference and range.

The calculus presented in [5] extends CBS with the notion of topology and
presents an analysis for checking its consistency, but does not discuss the rep-
resentation of cryptographic primitives in detail. Mobility in ad hoc networks
is considered in [6], where a labelled characterisation of reduction barbed con-
gruence is proposed. In [7], the dynamics of the topology is implicitly modelled

414 R. Vigo, F. Nielson, and H.R. Nielson

in the semantics of the calculus. Different mobility models are studied in [8],
together with their relationship to real applications.

The Calculus of Wireless Systems (CWS) [9] gives a lower-level representation
of communication, modelling transmission interference in the semantics. CWS
is extended in [10], where a timed scenario is considered which allows to study
communication collisions and CSMA protocols. Interference is also considered
in [11], where a notion of interference-sensitive preorder is introduced for mobile
ad hoc networks.

Node mobility is studied together with limited transmission range in [12],
combining the two lines of research mentioned above. A similar perspective is
adopted in [13], which proposes a calculus where node mobility impacts on the
reliability of transmissions in a probabilistic fashion. Finally, the calculus of [14]
investigates different abstraction levels for describing dynamic networks, and
considers the possibility of broadcasting at multiple transmission ranges.

Except for [5], none of the calculi mentioned so far provide any kind of equa-
tional reasoning on the messages that communicating parties exchange. In [15]
a calculus for mobile ad hoc networks (CMAN) is devised, encompassing node
mobility, spatially-oriented broadcast, and an implementation of cryptographic
primitives via equations à la applied π-calculus [16]. Recently, [17] proposed a
timed process calculus with fixed transmission ranges, where equational rea-
soning is parametrised on an inference system (our approach based on rewrite
theories is similar, but allows a more expressive treatment of cryptographic prim-
itives). Moreover, the calculus is equipped with a simulation theory, and the
authors envision a possible mechanisation via Isabelle/HOL or Coq, in the spirit
of our Maude implementation.

As for the analysis of reachability properties in wireless settings, [18] presents
a broadcast version of the psi-calculi framework with an application to a routing
protocol for mobile ad hoc networks.

Selective inputs have been proposed in [19] in connection to a generic pattern
matching mechanism for cryptographic reasoning. Finally, [20] investigates in de-
tail different ways of obtaining executable specification of structural operational
semantics in rewriting logic, providing inspiring examples.

2 Syntax

The Applied Quality Calculus is a statically typed process calculus. Accord-
ing to the syntax displayed in Table 1, a process consists of actions that range
over expressions. An expression e can be a variable x, a name a, or a func-
tion application f(e1, . . . , en). The syntax assumes to have a sorted signature
Σ containing elements of the form (f : sf), where f is a function symbol and
sf = t1 × · · · × tn → t is its sort, defining f as a function of arity n, the types
t1, . . . , tn of its arguments, and the type t of the expression computed by f .
Constants are represented as functions of arity 0.

Data and Optional Data. The Applied Quality Calculus insists on the distinction
between data and optional data introduced by the Quality Calculus and borrowed

Broadcast, Denial-of-Service, and Secure Communication 415

from programming languages like Standard ML. The reserved constant none is
used to denote expressions which do not carry information, while the reserved
function symbol some(·) is used to denote expressions which evaluate to actual
data. This distinction is formalised by means of a simple type system: the type
D identifies expressions which convey information (data), whereas the type D?

identifies expressions which possibly do not carry information (optional data). A
name a has type D, a function f is typed according to its sort, none has type D?,
while some :D → D? takes an expression of type D and returns an expression of
type D?. A variable x could have either type D or D?; in the following we will
write x for variables of type D? and y to denote variables of type D.

Equational Reasoning. The behaviour of a function application is defined by a
set F of conditional rewrite rules of the form

f(e1, . . . , en)→ e if cond

where f and all the function symbols occurring in the ei’s belong to Σ, the
ei’s contain all the variables appearing in e, and the side condition specifies
some constraints on the ei’s. Valid constraints are limited to testing whether
or not a list of names is in a given relation, e.g. whether or not two names
form an asymmetric key pair, or checking whether a parameter e evaluates to
an expression e′, according to the following syntax:

cond ::= −→a ∈ R | e � e′ | cond ∧ cond | cond ∨ cond | ¬cond | ∃x.cond

where x has either type D or D? in ∃x.cond. The keyword otherwise is used
in place of if cond to denote a rule which applies when no other rule can be
applied for the given function symbol. We assume that e and the ei’s are typed
coherently with the sort of the function f . Finally, we require that the rewrite
system specified by F is confluent and terminating [21].

The restriction operator (ν−→a ;W)P declares the names −→a = (a1, . . . , am) as
fresh in P and states a set of beliefs W on them. A belief w ∈ W has the
form (ai, . . . , ai+k) ∈ R, asserting that the tuple (ai, . . . , ai+k) is in the relation
R. Given a restriction (ν−→a ;W), we require that fn(W) ⊆ fn(−→a). In Sect. 2.1
relations will be introduced that contain symmetric keys (unary) and asymmetric
key pairs (binary). In the following, W will denote the set of beliefs stated in a
system so far, and we will call it world. A regular restriction is obtained specifying
no belief on the restricted term, and it will be denoted (ν−→a).

The world W plays a key role in evaluating function applications, as the side
condition of a rewrite rule can test whether or not some parameters are in a
relation R. Such a condition holds if the given relation is in W , as required by
the semantics of Sect. 3. It is worth noting that a function application may have
different evaluations in different worlds.

Processes and Quality Binders. As for the remaining operators, e1!e2 represents
an asynchronous output of an expression e2 on channel e1. The input e1?x[e2]
waits for a message on channel e1 and binds it to variable x if the expression

416 R. Vigo, F. Nielson, and H.R. Nielson

Table 1. Syntax of the Applied Quality Calculus

P ::= 0 | (ν−→a ;W)P | e1!e2.P | b.P | P1|P2 | A(e)
| case e of some(y) : P1 else P2

b ::= e1?x[e2] | &f(e1,...,em)(b1, . . . , bn)

e ::= x | a | f(e1, . . . , en) | none | some(e)

e2 evaluates to some(c). When e2 is a constant other than none we obtain the
standard input operator e?x; when e2 contains x we obtain an input operator
able to select messages with specific properties: c?x[fst(x)], for example, accepts
only pairs whose first component is not none. This is a very useful feature in a
broadcast calculus, in particular when modelling system communicating over a
single channel, as we will see in Sect. 4. P1|P2 is the parallel composition of two
processes, and A(e) is a call to a process defined in the system, with e being the
actual parameter.

Finally, a quality binder &q(e1?x1[e
′
1], . . . , en?xn[e

′
n]) is used when n inputs

are simultaneously active, and it is consumed when the quality guard q evalu-
ates to true (tt). The quality guard q is a place-holder for a function applica-
tion f(e1, . . . , em), that states a condition to be met before proceeding with the
computation (e.g. how many/which inputs must be performed), as explained in
Sect. 2.1. The quality binder entails the distinction between data D and op-
tional data D?: when a binder &q(e1?x1[e

′
1], . . . , en?xn[e

′
n]) is passed, indeed,

some inputs might have not received a value, if this is allowed by the guard q.
Therefore, in the remainder of the computation, we need to record which inputs
have been performed and which have not. The semantics achieves this goal by
explicitly binding the variable of a non-performed input to none, and by binding
the variable of a successful input to the constant expression some(c) that has
been received.

Well-Formedness. As for typing, we require that

– in e1!e2 the channel e1 and the outputted value e2 have type D;
– in e1?x[e2] the channel e1 has type D, the input expression (or condition)

e2 has type D?, and the input variable x has type D?;
– in the call A(e) the expression e has type D?;
– in case e of some(y) : P1 else P2 the expression e has type D?, and the

variable y has type D.

In the following we will write c and d to denote constant expressions of type D
and D?, respectively.

As the syntax is overly liberal in a number of respects, some restrictions
help design well-formed processes. First, we will assume that expressions and
processes are well-typed and that processes are closed (neither free variables nor
free names are allowed). Secondly, we assume that input expressions and quality
guards contain only variables that have been defined prior to the binder in which
they occur. In particular, the process &q(e1?x1, e2?x2[f(x1)]) is not well-formed,

Broadcast, Denial-of-Service, and Secure Communication 417

as the input on e2 may arrive before the input on e1, and in this case we would
not be able to evaluate the input condition f(x1). Finally, limitations apply also
to quality guards, as discussed in the following section.

2.1 Rewrite Rules for Cryptography and Quality Guards

Real cryptosystems lay down precise conditions that keys have to fulfil. In the
Advanced Encryption Standard (AES), for example, a valid key must have a
predefined length. The Applied Quality Calculus supports these limitations in-
troducing explicit relations that apply to names, to be exploited in side con-
ditions of rewrite rules. This is achieved without overly complicating the type
system of the calculus.

Two simple relations are used to state that a name is a key:

– a1 ! a2, meaning that (a1, a2) ∈ ! is a pair of keys in an asymmetric cryp-
tosystem; we assume that a1 is the private key and a2 is the corresponding
public key;

– a�, meaning that a is a key in a symmetric cryptosystem.

For instance, the process (νa1, a2; a1 ! a2)P declares a1, a2 as a new key pair
in P , and in the trailing process every function application will be evaluated in
the world W = {a1 ! a2}. On the basis of these relations, a theory for cryp-
tographic primitives is displayed in Table 2, in the wake of [22], that pioneered
the rewriting approach to the symbolic modelling of cryptographic primitives
(in turn inspired by the applied π-calculus). The main novelty of our approach
is the use of conditions in rewrites for identifying keys.

Let us consider asymmetric cryptography as an illustrative example. Encryp-
tion and decryption are represented by the binary function symbols aenc and
adec in Σ, respectively, while two rewrite rules in F are used to model the be-
haviour of asymmetric decryption. The side condition of the first rule requires
that the keys y2 (public) and y3 (private) come from a valid key pair, i.e. are in
the relation defined by !. If the condition does not hold or the first parameter
is not an asymmetric encryption, then the decryption fails and none is returned.
Intuitively, the second rule is applied only if the first rule cannot be applied.
The formal treatment of otherwise relies on a transformation that translates a
theory containing this keyword into a semantically equivalent theory without
this attribute, as explained in [23, Sec. 4.5.4].

Quality Guards. Quality guards decide when a quality binder is satisfied and
the trailing process can be executed. Let B be a subtype of D representing
booleans, where the truth values {ff, tt} are constants defined in the signature
Σ. A quality guard q(e1, . . . , em) for a binder &q(e1,...,em)(b1, . . . , bn) is a function
(q : t1 × · · · × tm × Bn → B) ∈ Σ which takes as parameters

– m expressions e1, . . . , em with types t1, . . . , tm (either D or D?),

– n boolean parameters, each one stating whether or not a bi has been satisfied,

418 R. Vigo, F. Nielson, and H.R. Nielson

Table 2. Function symbols and rules modelling cryptographic primitives and pairing

Σ F
enc :D ×D → D dec(enc(y1, y2), y2) → some(y1) if y2�
dec :D ×D → D? dec(y1, y2) → none otherwise

aenc :D ×D → D adec(aenc(y1, y2), y3) → some(y1) if y3 �� y2
adec :D ×D → D? adec(y1, y2) → none otherwise

sign :D ×D → D getmessage(sign(y1, y2)) → some(y1)
getmessage :D → D? getmessage(y) → none otherwise
checksign :D ×D → D? checksign(sign(y1, y2), y3) → some(y1) if y2 �� y3

checksign(y1, y2) → none otherwise
hash :D → D

pair :D ×D → D fst(pair(y1, y2)) → some(y1)
snd :D → D? fst(y) → none otherwise (likewise for snd)

and returns tt, in which case the binder is satisfied, or ff otherwise. A simple
input evaluates to tt if it is performed, i.e. it transforms into a substitution,
while it gives ff if at the time of the evaluation it has not been performed yet.
As the n parameters related to the sub-binders are always there, we omit them
for the sake of brevity.

In the Quality Calculus guards involve only the status of the sub-binders and
are specified with predicates, denoted with ∀, ∃, ∃!, m/n, requiring to perform
all the inputs, one input, exactly one input, or m out of n possible inputs before
passing a binder, respectively. Rewrite rules can express predicates but allow to
design also more elaborate guards. We can legally write, for example,

P � &∃(c1?x1, c2?x2).&q(x1,x2)(c1?x3, c2?x4)

where the guard q is defined by the rule

q(x′1, x
′
2, y

′
1, y

′
2)→ (issome(x′1) ∧ y′1) ∨ (issome(x′2) ∧ y′2)

The first two arguments of q are the input variables on which the first quality
binder in P ranges, while the latter correspond to the boolean interpretation of
the inputs of the second quality binder in P . The quality guard q states that the
condition for consuming the second quality binder depends on the outcome of
the first quality binder: if only the input concerning x1 was performed, then x3

must be bound to some(c), i.e. y1 must be tt, and conversely x4 must be some(c)
if only the input involving x2 was received.

The use of function issome(·), checking if its argument is none, is crucial, as
we can ask whether or not an input has been performed, but we should not
inspect its content in a quality guard. Assume that a guard decides whether or
not to pass a quality binder inspecting the content of received inputs: in this
case we might end up in a situation in which all the inputs have been performed
but the binder cannot be consumed due to what we received, and the process
would be stuck since we have no means to rebind an input. Input expressions
are entrusted of selecting inputs on the basis of their content, and such a test

Broadcast, Denial-of-Service, and Secure Communication 419

Table 3. The structural congruence ≡

P ≡ P P1 ≡ P2 ⇒ P2 ≡ P1 P1 ≡ P2 ∧ P2 ≡ P3 ⇒ P1 ≡ P3 P |0 ≡ P

P1 |P2 ≡ P2 |P1 P1 | (P2 |P3) ≡ (P1 |P2) |P3 A(e) ≡ P [e/x] if A(x) � P

P1 ≡ P2 ⇒ C[P1] ≡ C[P2] where C ::= [] | (ν−→a ;W)C | C|P | P |C
(ν−→a ;W)P ≡ P if −→a = (a1, . . . , am) and {a1, . . . , am} ∩ fn(P) = ∅
(ν−→a1;W1)(ν

−→a2;W2)P ≡ (ν−→a2;W2)(ν
−→a1;W1)P

(ν−→a ;W)(P1 | P2) ≡ ((ν−→a ;W)P1) | P2 if −→a = (a1, . . . , am) and {a1, . . . , am} ∩ fn(P2) = ∅

should be carefully avoided in quality guards. The example of Sect. 4 will show
how to combine quality guards and input expressions.

3 Semantics

The semantics of the Applied Quality Calculus is defined by a structural equiva-
lence ≡ and a labelled transition relation

α
==⇒. The standard structural congru-

ence is adapted to the new restriction operator, cf. Table 3. As usual, we assume
to apply α-conversion wherever needed, in order to avoid accidental captures.

The semantics is parametrised on some auxiliary relations:

– W , e1!e2|b → b′, specifying the effect of the output e1!e2 on the binder b
in the world W ; technically, the syntax of binders has to be extended up
consider substitutions of the form [e/x];

– b ::v θ, for recording in v ∈ {ff, tt} whether or not the binder b has been
satisfied by the received inputs, that led to the substitutions recorded in θ.
Observe that v has type B, and thus can be passed as argument to a rewrite
rule specifying a quality guard (boolean interpretation of binders);

– W , e� e′, describing how an expression e evaluates to a constant expression
e′ (either a c or a d) in the world W , according to the following rules:

, a � a , none � none

(f(e1, . . . , en)→ e if cond) ∈ F W , θ(cond)

W , f(θ(e′1), . . . , θ(e
′
n))→ θ(e)

W , f(e1, . . . , en)→∗ u �u′.W , u→ u′

W , f(e1, . . . , en) � u

A name a and the constant none always evaluate to themselves in every world. A
world W supports a rewrite step if the side condition holds in W . A function ap-
plication f(e1, . . . , en) is evaluated applying rewriting steps until a non-reducible
expression u is produced (i.e. a normal form). Observe that a rewrite step is vi-
able only if there exists a rule f(e′1, . . . , e

′
n) if cond in F such that (i) the leftmost

420 R. Vigo, F. Nielson, and H.R. Nielson

symbol corresponds to f (and arity and sort match), (ii) the formal parameters
unify with the actual parameters under a most general unifier θ, (iii) the side con-
dition (if any) holds in W after having undergone the substitutions in θ. If one of
these conditions does not hold, then the evaluation fails and the process is stuck
(the otherwise condition helps design robust function specification). →∗ denotes
the reflexive transitive closure of the rewriting relation →, and W , t →∗ t′ if
W supports all the side conditions of at least one rewrite path which reduces t
to t′. Since we require the rewrite system to be confluent and terminating, the
evaluation strategy supporting the computation does not affect the result, even
if it can heavily impact the performance.

We can now formally define issome :D? → B:

issome(x)→ tt if x � some(c) issome(x)→ ff if x � none

The expression evaluation relation allows also to define equality modulo
rewriting, represented by the symbol (=:D?2 → D?) ∈ Σ:

= (x1, x2)→ some(tt) if x1 � d ∧ x2 � d
= (x1, x2)→ none otherwise

In the following we will use the infix notation for the sake of simplicity.
The labelled transition relation P

α
==⇒ P ′ describes when a process P evolves

into another process P ′, and it is instrumented with a label α which can be
τ or an output action c1!c2. The transition relation is based on the relation
W , P

α−−−→
i

P ′, which enables
α

==⇒ under precise conditions. The relation
α−−−→
i

and its relationship with
α

==⇒ are defined in Table 4.
α−−−→
i

is labelled with

an action α and an integer i, which can be either 0 (passive action) or 1 (active

action). An active step
α−−−→
1

enables a transition
α

==⇒, as explained by the first

rule, which also takes care of pushing restrictions to the top. The set W contains
the beliefs accumulated with restrictions, and the second rule enables to evaluate
rewrite conditions. As the world W affects expression and binder evaluation, it
is a key component in determining the path followed by the computation: the
possibility to execute a step

α−−−→
i

may depend on W . In order to highlight this

relationship, we write W , P
α−−−→
i

P ′.

The second group of clauses defines
α−−−→
i

. Rule (Self) states that a process

can silently evolve to itself, and it is central in enabling non-communicating pro-
cesses to interleave. Rule (Brd) describes that performing an output is possibly

an asynchronous active action (and thus can directly turn into a step
α

==⇒). The
following two rules describe how an output affects a process guarded by a binder:
if the output does not satisfy the binder (In-ff), then the related substitution is
recorded and the binder modified accordingly; otherwise, if the output satisfies
the binder (In-tt), the substitution computed so far is applied to the continu-
ation process and the binder consumed. Observe that in both cases the action
is passive, and therefore cannot directly enable a

α
==⇒ transition. This happens

Broadcast, Denial-of-Service, and Secure Communication 421

only when a synchronisation step takes place, as described by rule (Par). The

composition of two processes that can make a transition
α−−−→
i

evolves only if the

processes share the label α and the transitions are not both active. This implies
that two input processes waiting for a value on the same channel can evolve to-
gether, as well as two processes that can synchronise: the synchronisation with an
output process is actually the only case in which an input transition transforms
into an active action, giving rise to a transition

α
==⇒. Thanks to this behaviour,

the semantics realises broadcast communication: a binder accumulates expected
outputs and the related substitutions, and when the synchronisation finally takes
place with a matching output all the involved binders evolve at the same time.
Observe that two outputs cannot evolve simultaneously, as they both are ac-
tive actions. The last two rules of the group describe the evaluation of a case
construct: the else branch is taken whenever the expression evaluates to none,
otherwise the computation proceeds binding to the variable y the value to which
the expression evaluates. Observe that a case transition is always labelled with
τ , and thus cannot be mixed with input or output actions when composing two
processes.

The clauses in the third group present how I/O substitutions are computed.
An output affects an input binder only if they are performed on the same
channel and the input condition evaluates to data when the outputted value is
substituted to the input variable; otherwise it has no effect. Observe how broad-
casting is realised within a single quality binder: sub-binders can be affected
by the same output. This behaviour is coherent with the intended semantics
of the quality binder, which states that n inputs are simultaneously active in
&q(e1?x1[e

′
1], . . . , en?xn[e

′
n]), and therefore a number of them can synchronise

with a single matching output.
The last group of clauses shows how a binder is evaluated, complementing

the input clauses of the second group. In particular, a substitution evaluates
to tt, since it is the result of a successful input, while a non-performed input
evaluates to ff and maps the input variable to none. A quality binder is evaluated
computing the function specified by the quality guard.

Finally, we require that a process is always in a stable configuration, according
to which all the internal (silent) actions are performed before the possibility to
synchronise with an external output vanishes. This implies that the process

c1!c2 | case some(c1) of some(y) : y?x.P else Q

will always evolve to P [some(c2)/x]. Intuitively, by imposing this restriction we
assume that internal actions are always processed faster than communicating
actions (an on-board processor is faster than a transceiver).

4 Motivating Example

We demonstrate the flexibility of the Applied Quality Calculus modelling a hier-
archical Wireless Sensor Network (WSN) where secret sharing to communicate
security-critical information to a base station, as studied in [24].

422 R. Vigo, F. Nielson, and H.R. Nielson

Table 4. The labelled transition rules of the Applied Quality Calculus

P1 ≡ (ν−→a ;W)P2 W 	 P2
α−−−→
1

P3 (ν−→a ;W)P3 ≡ P4

P1
α

===⇒ P4

w ∈ W

W 	 w

(Self) P
τ−−−−→
0

P (Brd)
W e1 � c1 W e2 � c2

W e1!e2.P
c1!c2−−−−→

1
P

(In-ff)
W c1!c2|b → b′ b′ ::ff θ

W b.P
c1!c2−−−−→

0
b′.P

(In-tt)
W c1!c2|b → b′ b′ ::tt θ

W b.P
c1!c2−−−−→

0
Pθ

(Par)
W P1

α−−−−→
i

P ′
1 W P2

α−−−−→
j

P ′
2

W P1 | P2
α−−−−→

i+j
P ′

1 | P
′
2

i+ j ≤ 1

W e � some(c)

W case e of some(y) : P1 else P2
τ−−−−→
1

P1[c/y]

W e � none

W case e of some(y) : P1 else P2
τ−−−−→
1

P2

W � e1 � c1 W � e2[c2/x] � some(c3)

W � c1!c2|e1?x[e2] → [some(c2)/x]

W � e1 � c1 W � e2[c2/x] � none

W � c1!c2|e1?x[e2] → e1?x[e2]

W � e1 � c′1
W � c1!c2|e1?x[e2] → e1?x[e2]

c′1 �= c1
W � c1!c2|b1 → b′1 · · ·W � c1!c2|bn → b′n
W � c1!c2|&q(b1, . . . , bn) → &q(b

′
1, . . . , b

′
n)

e1?x[e2] ::ff [none/x] [some(c)/x] ::tt [some(c)/x]

b1 ::v1 θ1 · · · bn ::vn θn

&q(e1,...,em)(b1, . . . , bn) ::v θn · · · θ1
q(e1, . . . , em, v1, . . . , vn) � v

In such a scenario, each message is broadcast over a single wireless channel
and can thus be eavesdropped by an attacker. A (k,m)-threshold-scheme can be
applied to security-critical messages in order to hamper the work of the adver-
sary, who is required to intercept at least k shares (or shadows) before obtaining
a message (and trying to break an encryption scheme). Moreover, we assume
that the communication may fail, due to environmental conditions, hardware
failures, or the attacker’s intervention, and we exploit quality binders in order
to design processes robust against this sort of denial-of-service. Finally, the base
station is periodically receiving data from sensor nodes in its range, which mea-
sure some physical parameters of the environment. Nonetheless, when updating
the session key, the base station ignores messages sent by the sensors, in order
to accomplish this critical task as quickly as possible. As all the communications
take place on a single channel, we make use of input conditions to distinguish
among messages.

Secret Sharing. A shadow is represented by a function (share :D3 → D) ∈ Σ,
the first parameter being the secret, the second the number of shares needed
for reconstructing it, and the third an identifier which helps distinguish different

Broadcast, Denial-of-Service, and Secure Communication 423

shares. The reconstruction step is modelled with a function (combine : Dk →
D?) ∈ Σ, which takes k shares and returns the secret only if they are all different.
For fixed k = m = 3, we obtain the following implementation:

combine(share(y1, 3, y
′
1), share(y1, 3, y

′
2), share(y1, 3, y

′
3))→ some(y1)
if y′i � ci ∧ i �= j ⇒ ci �= cj

combine(y1, y2, y3)→ none otherwise

Note that the ci’s are of type D. We omit the parameter m for simplicity, but it
could be included to capture the fact that shadows of a same secret s belonging
to different schemes cannot be used to rebuild s.

The Protocol. Consider now a WSN in which a central unit CU has to com-
municate a new symmetric session key to a base station under its control. CU
generates a new symmetric key k, signs it with its secret key skCU, computes 3
shares, encrypts the shadows under the base station public key pkBS, and finally
communicates the shares on a wireless channel c after having notified the base
station that an update transaction is starting:

CU � (νk; k�)c!start transaction
c!pair(aenc(share(sign(k, skCU), 3, 1), pkBS), 1)
c!pair(aenc(share(sign(k, skCU), 3, 2), pkBS), 2)
c!pair(aenc(share(sign(k, skCU), 3, 3), pkBS), 3)
set1!t1.&∃(c?xe[dec(xe, k) = some(end transaction)], tick1?xt1)
case xe of some(ye) : set2!t2.tick2?xt2.CU else CU

The process CU makes use of constants to represent integers (threshold-scheme
parameters and share identifiers). After having issued the new key (signed and
then split in three encrypted shadows), the central unit sets a local timer to t1
and waits for a notification from the base station to arrive within the prescribed
time. The time expires when a message is received from the timer on channel
tick1. Observe that the first input is instrumented with a condition that tests
whether or not the received message corresponds to end transaction encrypted
under the new key k. At this point the central unit is enabled to check which in-
put triggered passing the binder, and thus decide if the key update was successful
or not: in the event the key has been updated, the central unit waits for t2 unit
of time and then starts a new update transaction, otherwise the new transaction
is started immediately. A new timer is used to avoid message confusion. Observe
that there is no need to decrypt xe since its content has already been tested in
the input condition: we only need to check that it is not none.

It is worth noting that the central unit is robust with respect to the event that
the base station does not respond, thanks to the use of the existential quality
guard and of the local clock, which always responds.

424 R. Vigo, F. Nielson, and H.R. Nielson

The base station is defined by a process BS, which waits for three shares and
then sends an acknowledgement back to CU, encrypted under the new key.

BS � c?x.case x of some(y1) :
case y1 = end transaction of some(y2) : set3!t3
&∃(&∀(c?z1[snd(z1) = some(1)], c?z2[snd(z2) = some(2)]

c?z3[snd(z3) = some(3)]),
tick3?xt3) . . . (extract the shares in y′1, y

′
2, y

′
3) . . .

case combine(y′1, y
′
2, y

′
3) of some(ys) :

case checksign(ys, pkCU) of some(yk) :
c!enc(end transaction, yk).BS else 0

else 0
else 0 . . . (if share extraction fails then shut down) . . .

else store!y1.BS
else 0

If BS receives a reading from a sensor, the value is stored in the base station
memory (simulated by channel store). If an update instruction is received, then
the base station waits for three shares. BS must wait for all the shadows to arrive,
and thus uses a quality binder instrumented with the ∀ guard. Furthermore, in
order to discard messages from the sensors, the inputs within the binder rely on a
condition matching only a fixed pattern. For the sake of brevity, we have omitted
a number of case constructs needed to compute projections and to decrypt the
result. When three messages are received within time t3, the base station tries
to compute the original secret: if the operation succeeds then the signature is
verified using the public key pkCU of CU, and then an acknowledgement is sent
back to the central unit.

Observe that the base station continues to behave in a planned manner even if
the information expected from the central unit does not arrive. If the shares are
not received within time t3, their combination or the verification of the signature
fail, then BS is automatically switched off for security reasons.

5 Executable Specification of the Semantics

We have developed an executable specification of the semantics of the calculus
in Maude [23], in the wake of [20]. The rewriting theory F is encoded as a set of
conditional equations, with which Maude can directly deal. As for the semantics,
the central idea is to generate a rewrite rule of the form P → Q if P1 →
Q1∧· · ·∧Pn → Qn for each inference rule with premises P1 → Q1, . . . , Pn → Qn

and conclusion P → Q, thus transforming transitions into rewrites. For the sake
of simplicity and performance we encoded the semantics in a way that is directly
executable by Maude’s default interpreter, that is, variables in the conclusion
of a rule (right-hand side) either appear in the premise or in the conditions
(admissible module). This is not the case of the input rules of the semantics of
Table 4, where we are implicitly quantifying over all possible outputs. In order
to overcome this inconvenient, we introduced extended processes in which we

Broadcast, Denial-of-Service, and Secure Communication 425

record available broadcast values. Formally establishing the equivalence of the
two semantics is part of our future work.

Besides the usefulness for prototyping and debugging, the possibility to
simulate the execution of a system helps deal with reachability problems. Our
experiments with the implementation exploit the powerful search command of
Maude’s default interpreter, by means of which bounded reachability problems
can be simply solved. As regards the example of Sect. 4, we verified that when-
ever the base station receives the clock signal before the three shares, then it
shuts down. Obviously, any infinite state system can only be simulated up to a
certain bound, but bounded reachability can be an effective verification method
if we consider that a node lifetime is limited in a WSN, and that also the attacker
usually has limited resources.

6 Conclusion and Future Work

The characteristics of typical components of CPSs and the nature of the envi-
ronment in which they are deployed demand for designing software that is both
robust against lacking communication and able to ignore unwanted information.
This is a complex task per se, and it is even harder in those applications that
require some degree of security and need a broadcast communication model,
where everyone hears everyone.

The framework we have presented facilitates the design of CPSs by providing
a calculus that is naturally equipped with the notion of absence of communi-
cation and selective inputs. Denial-of-service is addressed by resorting to the
distinction between data and optional data introduced by the Quality Calcu-
lus. A single mechanism based on rewrite rules is leveraged to implement both
selective inputs and cryptographic reasoning, and it is also exploited to design
elaborate quality guards, more expressive than propositional predicates. More-
over, a simple yet powerful approach to the definition of cryptographic material
has been introduced. The expressiveness of the framework has been discussed
on a meaningful example, and some results obtained via the implementation of
the semantics of the calculus in Maude have been sketched.

Future work includes further investigation of verification techniques based on
term rewriting. It seems promising to study abstraction approaches for analysing
infinite state systems beyond bounded reachability, in the wake of studies carried
out in Maude’s community. Moreover, it would be interesting to consider a wider
class of CPSs with component mobility, thus enriching the framework with a
notion of network topology and spatially-bounded broadcast.

Acknowledgement. This work is supported by the IDEA4CPS project, granted
by the Danish Research Foundations for Basic Research (DNRF86-10), and
by MT-LAB, a VKR Centre of Excellence for the Modelling of Information
Technology.

426 R. Vigo, F. Nielson, and H.R. Nielson

References

1. Lee, E.A.: Cyber Physical Systems: Design Challenges. In: Int. Symp. on
Object/Component/Service-Oriented Real-Time Distributed Computing (2008)

2. Neuman, C.: Challenges in Security for Cyber-Physical Systems. In: DHSWorkshop
on Future Directions in Cyber-Physical Systems Security (2009)

3. Nielson, H.R., Nielson, F., Vigo, R.: A Calculus for Quality. In: Păsăreanu, C.S.,
Salaün, G. (eds.) FACS 2012. LNCS, vol. 7684, pp. 188–204. Springer, Heidelberg
(2013)

4. Prasad, K.: A calculus of broadcasting systems. Science of Computer
Programming 25(2-3), 285–327 (1995)

5. Nanz, S., Hankin, C.: A framework for security analysis of mobile wireless networks.
Theoretical Computer Science 367(1-2), 203–227 (2006)

6. Merro, M.: An Observational Theory for Mobile Ad Hoc Networks. Inf.
Comput. 207(2), 194–208 (2009)

7. Ghassemi, F., Fokkink, W., Movaghar, A.: Equational Reasoning on Mobile Ad
Hoc Networks. Fundamenta Informaticae 105(4), 375–415 (2010)

8. Godskesen, J.C., Nanz, S.: Mobility Models and Behavioural Equivalence for
Wireless Networks. In: Field, J., Vasconcelos, V.T. (eds.) COORDINATION 2009.
LNCS, vol. 5521, pp. 106–122. Springer, Heidelberg (2009)

9. Lanese, I., Sangiorgi, D.: An operational semantics for a calculus for wireless
systems. Theoretical Computer Science 411(19), 1928–1948 (2010)

10. Merro, M., Ballardin, F., Sibilio, E.: A timed calculus for wireless systems.
Theoretical Computer Science 412(47), 6585–6611 (2011)

11. Bugliesi, M., Gallina, L., Marin, A., Rossi, S., Hamadou, S.: Interference-Sensitive
Preorders for MANETs. In: 9th Int. Conf. on Quantitative Evaluation of Systems
(QEST), pp. 189–198 (2012)

12. Singh, A., Ramakrishnan, C., Smolka, S.A.: A process calculus for Mobile Ad Hoc
Networks. Science of Computer Programming 75(6), 440–469 (2010)

13. Song, L., Godskesen, J.C.: Probabilistic Mobility Models for Mobile and Wireless
Networks. In: Theoretical Computer Science - 6th IFIP Int. Conf., pp. 86–100
(2010)

14. Kouzapas, D., Philippou, A.: A Process Calculus for Dynamic Networks. In:
Bruni, R., Dingel, J. (eds.) FORTE 2011 and FMOODS 2011. LNCS, vol. 6722,
pp. 213–227. Springer, Heidelberg (2011)

15. Godskesen, J.C.: A Calculus for Mobile Ad Hoc Networks. In: Murphy, A.L.,
Vitek, J. (eds.) COORDINATION 2007. LNCS, vol. 4467, pp. 132–150. Springer,
Heidelberg (2007)

16. Abadi, M., Fournet, C.: Mobile values, new names, and secure communi-
cation. In: ACM Symp. on Principles of Programming Languages (POPL),
pp. 104–115 (2001)

17. Macedonio, D., Merro, M.: A Semantic Analysis of Wireless Network Security
Protocols. In: Goodloe, A.E., Person, S. (eds.) NFM 2012. LNCS, vol. 7226,
pp. 403–417. Springer, Heidelberg (2012)

18. Borgström, J., Huang, S., Johansson, M., Raabjerg, P., Victor, B., Åman Pohjola,
J., Parrow, J.: Broadcast Psi-calculi with an Application to Wireless Protocols.
In: Barthe, G., Pardo, A., Schneider, G. (eds.) SEFM 2011. LNCS, vol. 7041,
pp. 74–89. Springer, Heidelberg (2011)

19. Buchholtz, M., Nielson, H.R., Nielson, F.: A Calculus for Control Flow Analysis of
Security Protocols. Int. J. of Information Security 2(3-4), 145–167 (2004)

Broadcast, Denial-of-Service, and Secure Communication 427

20. Verdejo, A., Mart́ı-Oliet, N.: Executable structural operational semantics in
Maude. Journal of Logic and Algebraic Programming 67(1-2), 226–293 (2006)

21. Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press
(1998)

22. Blanchet, B.: From Secrecy to Authenticity in Security Protocols. In:
Hermenegildo, M.V., Puebla, G. (eds.) SAS 2002. LNCS, vol. 2477, p. 342. Springer,
Heidelberg (2002)

23. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Talcott,
C.: Maude Manual, Version 2.6 (2011)

24. Shu, T., Liu, S., Krunz, M.: Secure Data Collection in Wireless Sensor Networks
Using Randomized Dispersive Routes. IEEE Transactions on Mobile
Computing 9(7), 941–954 (2010)

Characterizing Fault-Tolerant Systems

by Means of Simulation Relations

Ramiro Demasi1, Pablo F. Castro2,3,
Thomas S.E. Maibaum1, and Nazareno Aguirre2,3

1 Department of Computing and Software,
McMaster University, Hamilton, Ontario, Canada

demasira@mcmaster.ca, tom@maibaum.org
2 Departamento de Computación, FCEFQyN,

Universidad Nacional de Ŕıo Cuarto, Ŕıo Cuarto, Córdoba, Argentina
{pcastro,naguirre}@dc.exa.unrc.edu.ar

3 Consejo Nacional de Investigaciones Cient́ıficas y Técnicas (CONICET), Argentina

Abstract. In this paper, we study a formal characterization of fault-
tolerant behaviors of systems via simulation relations. This formaliza-
tion makes use of particular notions of simulation and bisimulation in
order to compare the executions of a system that exhibit faults with
executions where no faults occur. By employing variations of standard
(bi)simulation algorithms, our characterization enables us to algorithmi-
cally check fault-tolerance, i.e., to verify that a system behaves in an
acceptable way even under the occurrence of faults.

Our approach has the benefit of being simple and supporting an ef-
ficient automated treatment. We demonstrate the practical application
of our formalization through some well-known case studies, which illus-
trate that the main ideas behind most fault-tolerance mechanisms are
naturally captured in our setting.

1 Introduction

The increasing demand for highly dependable and constantly available systems
has brought attention to providing strong guarantees for software correctness,
especially for safety critical systems. Some examples of such critical systems
include software for medical devices and software controllers in the avionics and
automotive industries. In this context, a problem that deserves attention is that
of capturing faults, understood as unexpected events that affect a system and
may corrupt or degrade its performance, as well as expressing and reasoning
about the properties of systems in the presence of faults.

The field of fault-tolerant systems is concerned with providing techniques
that can be used to increase the fault-tolerance characteristics of software, or
computer systems in general. This includes specific mechanisms for achieving
fault-tolerance, as well as for appropriately modeling fault-tolerant systems,
and expressing and reasoning about fault-tolerant behaviors. Some examples
of traditional techniques employed to deal with fault-tolerance are: component

E.B. Johnsen and L. Petre (Eds.): IFM 2013, LNCS 7940, pp. 428–442, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Characterizing Fault-Tolerant Systems by Means of Simulation Relations 429

replication, N-version programming, exception mechanisms, transactions, etc.
Some emerging approaches try to deal with fault-tolerance in formal settings,
with the aim of mathematically proving that a given system effectively tolerates
faults. For example, in [9], an approach to design and verify programs that toler-
ate faults, where faults are formalized as operations performed at random time
intervals, is proposed. Another example of formal approach to fault-tolerance
is that presented in [3–5], where Unity programs are complemented with fault
steps, and the logic underlying Unity is used to prove properties of programs.
More recently, formal approaches involving model checking, applied to fault-
tolerance, have been proposed. In these approaches, temporal logics are em-
ployed to capture fault-tolerance properties of reactive systems, and then model
checking algorithms are used to automatically verify that these properties hold
for a given system. Since model checking provides fully automated analysis,
and counterexamples are generated when a property does not hold (which is
extremely helpful in finding the source of the problem in the system), model
checking based approaches to fault-tolerance provide significant benefits over
other semi-automated or manual formal approaches. However, the languages
employed for the description of systems and system properties in model check-
ing do not provide a built-in way of distinguishing between normal and ab-
normal behaviors. Thus, when capturing fault-tolerant systems, and expressing
fault-tolerance properties, the specifier needs to encode in some suitable way the
faults and their consequences. This makes formulas longer and more difficult to
understand, which has a negative impact on analysis, since the performance of
model checking algorithms depends on the length of the formula being analyzed.

In this paper, we propose an alternative formal approach for dealing with
the analysis of fault-tolerance, which allows for a fully automated analysis, and
appropriately distinguishes faulty behaviors from normal ones. This approach
provides a formalism for modeling fault-tolerant systems that features a built-in
notion of abnormal transition, to capture faults. The notion of fault-tolerance
is characterized by defining simulation/bisimulation relations, between the de-
sired “fault-free” program, and that which tolerates faults. Since, as it is well
known, a system may tolerate faults exhibiting different degrees of so called
fault-tolerance, different simulation/bisimulation relations are provided for dif-
ferent kinds of fault-tolerance. More precisely, the kinds of fault-tolerance that
we capture in our setting are masking, nonmasking and failsafe. Masking fault-
tolerance corresponds to the case in which the system may completely tolerate
the faults, not allowing these to have any observable consequences for the users;
nonmasking fault-tolerance corresponds to the case in which, after a fault oc-
curs, the system may undergo some process to eventually take the system back
to a “good” behavior; finally, failsafe fault-tolerance corresponds to the case
in which the system may react to a fault by switching to a behavior that is
safe but in which the system is restricted in its capacity. Since in this approach
fault-tolerance is captured via bisimulation, one is able to check that a system
tolerates faults to some degree (masking, nonmasking, failsafe), without the need
for user intervention, by employing (bi)simulation algorithms.

430 R. Demasi et al.

2 Preliminaries

In this section we introduce some concepts that will be necessary throughout
the paper. For the sake of brevity, we assume some basic knowledge on model
checking; the interested reader may consult [7]. We model fault-tolerant sys-
tems by means of colored Kripke structures, as introduced in [8]. Given a set of
propositional letters AP = {p, q, s, . . .}, a colored Kripke structure is a 5-tuple
〈S, I, R, L,N〉, where S is a set of states, I ⊆ S is a set of initial states, R ⊆ S×S
is a transition relation, L : S → ℘(AP) is a labeling function indicating which
propositions are true in each state, and N ⊆ S is a set of normal, or “green”
states. The complement of N is the set of “red”, abnormal or faulty states. Arcs
leading to abnormal states (i.e., states not in N) can be thought of as faulty
transitions, or simply faults. Then, normal executions are those transiting only
through green states. The set of normal executions is denoted by NT . We as-
sume that in every colored Kripke structure, and for every normal state, there
exists at least one successor state that is also normal, and that at least one ini-
tial state is green. This guarantees that every system has at least one normal
execution, i.e., that NT �= ∅.

As is usual in the definition of temporal operators, we employ the notion of
trace. Given a colored Kripke structureM = 〈S, I, R, L,N〉, a trace is a maximal
sequence of states, whose consecutive pairs are adjacent wrt. R. When a trace of
M starts in an initial state, it is called an execution ofM , with partial executions
corresponding to non-maximal sequences of adjacent states starting in an initial
state. Given a trace σ = s0, s1, s2, s3, . . ., the ith state of σ is denoted by σ[i],
and the final segment of σ starting in position i is denoted by σ[i..]. Moreover,
we distinguish among the different kinds of outgoing transitions from a state.
We denote by ��� the restriction of R to faulty transitions, and→ the restriction
of R to non-faulty transitions. We define PostN (s) = {s ∈ S| s → s′} as the
set of successors of s reachable via non-faulty (or good) transitions; similarly,
PostF (s) = {s ∈ S| s ��� s′} represents the set of successors of s reachable via
faulty arcs. Analogously, we define PreN (s′) and PreF (s

′) as the set of prede-
cessor of s′ via normal and faulty transitions, respectively. Moreover, Post∗(s)
denotes the states which are reachable from s. Without loss of generality, we
assume that every state has a successor [7]. We denote by ⇒∗ the transitive
closure of ��� ∪ →.

In order to state properties of systems, we use a fragment of dCTL [8], a
branching time temporal logic with deontic operators designed for fault-tolerant
system verification. Formulas in this fragment, that we call dCTL-, refer to prop-
erties of behaviors of colored Kripke structures, in which a distinction between
normal and abnormal states (and therefore also a distinction between normal
and abnormal traces) is made. The logic dCTL is defined over the Computation
Tree Logic CTL, with its novel part being the deontic operators O(ψ) (obliga-
tion) and P(ψ) (permission), which are applied to a certain kind of path formula
ψ. The intention of these operators is to capture the notion of obligation and
permission over traces. Intuitively, these operators have the following meaning:

Characterizing Fault-Tolerant Systems by Means of Simulation Relations 431

– O(ψ): property ψ is obliged in every future state, reachable via non-faulty
transitions.

– P(ψ): there exists a normal execution, i.e., not involving faults, starting from
the current state and along which ψ holds.

Obligation and permission will enable us to express intended properties which
should hold in all normal behaviors and some normal behaviors, respectively.
These deontic operators have an implicit temporal character, since ψ is a path
formula. Let us present the syntax of dCTL-. Let AP = {p0, p1, . . .} be a set
of atomic propositions. The sets Φ and Ψ of state formulas and path formulas,
respectively, are mutually recursively defined as follows:

Φ ::= pi | ¬Φ | Φ→ Φ | A(Ψ) | E(Ψ) | O(Ψ) | P(Ψ)
Ψ ::= XΦ | Φ U Φ | ΦW Φ

Other boolean connectives (here, state operators), such as ∧, ∨, etc., are defined
as usual. Also, traditional temporal operators G and F can be expressed, as
G(φ) ≡ φ W ⊥, and F(φ) ≡ & U φ. The standard boolean operators and
the CTL quantifiers A and E have the usual semantics. Now, we formally state
the semantics of the logic. We start by defining the relation �, formalizing the
satisfaction of dCTL- state formulas in colored Kripke structures. For the deontic
operators, the definition of � is as follows:

– M, s � O(ψ)⇔ for every σ ∈ NT such that σ[0] = s we have that for every
i ≥ 0 M,σ[i..] � ψ.

– M, s � P(ψ)⇔ for some σ ∈ NT such that σ[0] = s we have that for every
i ≥ 0 M,σ[i..] � ψ.

For the standard CTL operators the definition of � is as usual (see [7]).
We denote by M � ϕ the fact that M, s � ϕ holds for every state s of M , and

by � ϕ the fact that M � ϕ for every colored Kripke structure M .
In order to illustrate the semantics of the deontic operators, let us consider

the colored Kripke structure in Figure 1, where the set of propositional variables
is {p, q, r, t}, and each state is labeled by the set of propositional variables that
hold in it. The states that are the target of dashed arcs are abnormal states
(those in which something has gone wrong); faulty states are also drawn with
dashed lines, while the others represent normal configurations. Notice that the
unique faulty state in this model is that named t. In this simple model, for every
non-faulty execution, p ∧ q is always true. In dCTL- this is expressed by the
formula O(p∧q). Note that there also exist normal executions for which p∧q∧r
holds. This fact is expressed as P(p ∧ q ∧ r). Other deontic operators such as
prohibition can be expressed by using those introduced above (see [8]).

One of the interesting characteristics of dCTL- is the possibility of distinguish-
ing between formulas that state properties of good executions and the standard
formulas, which state properties over all possible executions. For every formula
ϕ, a formula ϕN can be built, which captures the same property as ϕ but re-
stricted to good executions. This leads to the notion of normative formula of a
given formula, and is defined as follows.

432 R. Demasi et al.

Fig. 1. A Simple Colored Kripke Structure

Definition 1. Given a dCTL- formula ϕ over an alphabet AP, its normative
formula ϕN , is defined by the following rules:

– (pi)
N def

= pi, (¬ϕ)N def
= ¬ϕN , (ϕ ∧ ϕ′)N

def
= ϕN ∧ ϕ′N ,

– (A(ϕ U ϕ′))N
def
= O(ϕN U ϕ′N), (A(ϕW ϕ′))N

def
= O(ϕN W ϕ′N),

– (E(ϕ U ϕ′))N
def
= P(ϕN U ϕ′N), (E(ϕW ϕ′))N

def
= P(ϕN W ϕ′N),

– (O(ϕ U ϕ′))N
def
= O(ϕN U ϕ′N), (O(ϕW ϕ′))N

def
= O(ϕN W ϕ′N),

– (P(ϕ U ϕ′))N
def
= P(ϕN U ϕ′N), (P(ϕW ϕ′))N

def
= P(ϕN W ϕ′N).

3 (Bi)Simulations and Fault-Tolerance

In this section we present a number of simulation relations that allow us to
capture various kinds of fault-tolerance, namely masking, nonmasking, and fail-
safe. In order to define these relations, we follow the basic definitions regarding
simulation and bisimulation relations given in [7]. Due to space restrictions,
the technical proofs of the theorems presented in this section are omitted; the
interested reader can find them in [10].

We will assume that the properties of interest of a system will be safety and
liveness properties (recall that any temporal specification can be written as a
conjunction of safety and liveness properties [1]). Basically, in order to check
fault-tolerance, we consider two colored Kripke structures of a system, the first
one acting as a specification of the intended behavior and the second as the
fault-tolerant implementation. A system will be fault-tolerant if it is able to
preserve, to some degree, the safety and liveness properties corresponding to its
specification, even in the presence of faults. Our purpose will be to capture, via
appropriate (bi)simulation relations between the system specification and the
fault-tolerant implementation, different kinds of fault-tolerance, with different
levels of property preservation.

In the following definitions, given a colored Kripke structure with a labeling
L, we consider the notion of a sublabeling: we say that L0 is a sublabeling
of L (denoted by L0 ⊆ L), if L0(s) = L(s) ∩ AP ′, for all states s and some
AP ′ ⊆ AP . We also say that L0 is obtained by restricting AP to AP ′. The
concept of sublabeling allows us to focus on certain properties of models.

Characterizing Fault-Tolerant Systems by Means of Simulation Relations 433

Let us start by introducing the notion of masking tolerance relations.

Definition 2. (Masking fault-tolerance) Given two colored Kripke structures
M = 〈S, I, R, L,N〉 and M ′ = 〈S′, I ′, R′, L′,N ′〉, we say that a relationship
≺Mask⊆ S × S′ is masking fault-tolerant for sublabelings L0 ⊆ L and L′0 ⊆ L′

iff:

(A) ∀s1 ∈ I : (∃s2 ∈ I ′ : s1 ≺Masks2) and ∀s2 ∈ I ′ : (∃s1 ∈ I : s1 ≺Masks2).
(B) for all s1 ≺Masks2 the following holds:

(1) L0(s1) = L′0(s2).
(2) if s′1 ∈ PostN (s1), then there exists s′2 ∈ PostN (s2) with s′1 ≺Masks

′
2.

(3) if s′2 ∈ PostN (s2), then there exists s′1 ∈ PostN (s1) with s′1 ≺Masks
′
2.

(4) if s′2 ∈ PostF (s2), then either there exists s′1 ∈ PostN (s1) with
s′1 ≺Masks

′
2 or s1 ≺Masks

′
2.

We say that state s2 is masking fault-tolerant for s1 when s1 ≺Masks2. Intu-
itively, the intention in the definition is that, starting in s2, faults can be masked
in such a way that the behavior exhibited is the same as that observed when
starting from s1 and executing transitions without faults. Let us explain the
above definition. Conditions A, B.1, B.2 and B.3 imply that we have a bisim-
ulation between the normative parts of M and M ′. Condition B.4 states that
every outgoing faulty transition from s2 either must be matched to an outgoing
normal transition from s1, or s

′
2 is masking fault-tolerant for s1.

Notice that, if there exists a self-loop at state s′2, then we can stay forever
satisfying s1 ≺Masks

′
2. Therefore, a fairness condition needs to be imposed on

B.4 to ensure that masking implementations preserve liveness properties. For
example, we can assume that, if a set of non-faulty transitions are enabled in-
finitely often, then these transitions will be executed infinitely often. We denote
by M �f ϕ the restriction of � to fair executions. It is worth remarking that the
condition symmetric to (B.4) is not required, since we are only interested in the
masking properties of M ′.

We say that M ′ masks faults for M iff for every initial state s0 of M there
exists an initial state s′0 of M ′ such that s0 ≺Masks

′
0, for some masking fault-

tolerant relation ≺Mask; we denote this situation by M ≺MaskM
′. Let us not

present a simple example to illustrate the above definition.

Example 1. Let us consider a memory cell that stores a bit of information and
supports reading and writing operations. A state in this system maintains the
current value of the memory cell (m = i, for i = 0, 1), writing allows one to
change this value, and reading returns the stored value.

A potential fault in this problem would be that the cell unexpectedly loses
its charge, and its stored value turns into another one (e.g., it changes from 1 to
0 due to charge loss). A typical technique to deal with this situation is redun-
dancy: use three memory bits instead of one. Writing operations are performed
simultaneously on the three bits. Reading, on the other hand, returns the value
that is repeated at least twice in the memory bits, known as voting, and the
ready value is written back in all the bits.

434 R. Demasi et al.

Fig. 2. Two masking fault-tolerance colored Kripke structures

In a model of this system, each state is described by variables m and w, which
record the value stored in the system (taking voting into account) and the last
writing operation performed, respectively. The state also maintains the values
of the three bits that constitute the system, captured by boolean variables c0,
c1 and c2. For instance, in Figure 2, state s0 contains the information 11/111,
representing the state: w = 1, m = 1, c0 = 1, c1 = 1, and c2 = 1.

Consider the colored Kripke structures M (left) and M ′ (right) depicted in
Figure 2. M contains only normal transitions describing the expected ideal be-
havior (without taking into account faults). M ′ includes a model of a fault: a bit
may suffer a discharge and then it changes its value from 1 to 0. It is straight-
forward to show that in this simple case there exists a masking fault-tolerance
relation (specifically, the relation R1 = {(s0, t0), (s1, t1), (s0, t2)}) between M
and M ′ with the sublabelings L0 and L′0 obtained by restricting L and L′ to
propositions m and w, respectively.

An important property of masking fault-tolerance is that both safety and
liveness properties of normative (i.e., non-faulty) executions are preserved by
masking tolerant implementations under fairness restrictions.

Theorem 1. Let M = 〈S, I, R, L,N〉 and M ′ = 〈S′, I ′, R′, L′,N ′〉 be colored
Kripke structures, s1 ∈ S and s2 ∈ S′. If s1 ≺Masks2 for sublabelings L0 and
L′0 obtained by restricting L and L′ to AP ′, respectively, then M, s1 �f ϕN ⇒
M ′, s2 �f ϕ, where all the propositional variables of ϕ are in AP ′.

Let us now focus on nonmasking fault-tolerance. This kind of tolerance is less
strict than masking tolerance, since it allows for the existence of some states
which do not mask faults. Intuitively, this type of fault-tolerance allows the
system to violate its specification while it is recovering from a fault and returning
to a normal behavior. More technically, the normative liveness properties of the
system are always preserved, whereas the normative safety properties may not
be fully preserved, but must be eventually restated. The characterization of this
kind of fault-tolerance is the following.

Definition 3. (Nonmasking fault-tolerance) Given two colored Kripke struc-
tures M = 〈S, I, R, L,N〉 and M ′ = 〈S′, I ′, R′, L′,N ′〉, we say that a relation
≺Nonmask⊆ S × S′ is nonmasking for sublabelings L0 ⊆ L and L′0 ⊆ L′, iff:

Characterizing Fault-Tolerant Systems by Means of Simulation Relations 435

(A) ∀s1 ∈ I : (∃s2 ∈ I ′ : s1 ≺Nonmasks2) and ∀s2 ∈ I ′ : (∃s1 ∈ I : s1
≺Nonmasks2).

(B) for all s1 ≺Nonmasks2 the following holds:
(1) L0(s1) = L′0(s2).
(2) if s′1 ∈ PostN (s1), then there exists s′2 ∈ PostN (s2) with s′1 ≺Nonmasks

′
2.

(3) if s′2 ∈ PostN (s2), then there exists s′1 ∈ PostN (s1) with s′1 ≺Nonmasks
′
2.

(4) if s′2 ∈ PostF (s2), then there exists s′1 ∈ PostN (s1) with s′1 ≺Nonmasks
′
2,

or
(5) if s′2 ∈ PostF (s2) with s′1 ⊀Nonmasks

′
2 for all s′1 ∈ PostN (s1), then

there exists a finite path fragment s2 ��� s′2 ⇒∗ s′′2 such that either
s′1 ≺Nonmasks

′′
2 for some s′1 ∈ PostN (s1), or s1 ≺Nonmasks

′
2.

Let us explain this definition. Conditions A, B.1, B.2, B.3, B.4 are similar to
the conditions of Def. 2. Condition B.5 asserts that if s1 ≺Nonmasks2 and every
“faulty” successor state s′2 of s2 is not in a nonmasking relation with any normal
successor of s1, then there exists a path fragment that leads from s2 to s′′2 such
that s′1 ≺Nonmasks

′′
2 for some normal successor state s′1 of s1, or s

′
2 is nonmasking

fault-tolerant for s1.
We say that M ′ is nonmasking fault-tolerant wrt. M iff for every initial state

s0 of M there exists an initial state s′0 of M ′ such that s0 ≺Nonmasks
′
0, for some

nonmasking fault-tolerance ≺Nonmask(indicated by M ≺NonmaskM
′).

At first sight, nonmasking fault-tolerance seems similar to the notion of weak
bisimulation used in process algebra [2], where silent steps are taken into ac-
count. Notice however that, as opposed to weak bisimulation where silent steps
produce only nonobservable (i.e., internal) changes, faults may produce observ-
able changes in a nonmasking fault-tolerance relation. Let us present an example
of nonmasking tolerance.

Example 2. For the memory cell introduced in Example 1, consider now the
colored Kripke structures M (left) and M ′ (right) depicted in Figure 3. Now we
consider that two faults may occur: up to two bits may lose its charge before
any normal transition is taken. The relation R2 = {(s0, t0), (s1, t1), (s0, t2)} is
nonmasking tolerant for (M,M ′) and the sublabelings L0 and L′0, obtained by
restricting L and L′ to propositions m and w, respectively.

An important property is that if s2 is nonmasking fault-tolerant for s1 and
for every state of normal paths starting in s1, ϕ holds, then in fair executions
starting in s2, ϕ eventually holds even in the presence of faults.

Theorem 2. Let M = 〈S, I, R, L,N〉 and M ′ = 〈S′, I ′, R′, L′,N ′〉 be colored
Kripke structures, s1 ∈ S and s2 ∈ S′. If s1 ≺Nonmasks2 for sublabelings L0 and
L′0 obtained by restricting L and L′ to AP ′, respectively, then M, s1 �f ϕN ⇒
M ′, s2 �f AFAG(ϕ), where all the propositional variables of ϕ are in AP ′.

We now present a characterization of failsafe fault-tolerance. Essentially, failsafe
fault-tolerance must ensure that the system will stay in a safe state, although it
may be limited in its capacity. More technically, this means that the normative
safety properties must be preserved, while normative liveness properties may not
be respected.

436 R. Demasi et al.

Fig. 3. Two nonmasking fault-tolerance colored Kripke structures

Definition 4. (Failsafe fault-tolerance) Given two colored Kripke structures
M = 〈S, I, R, L,N〉 and M ′ = 〈S′, I ′, R′, L′,N ′〉, we say that a relation
≺Failsafe⊆ S × S′ is failsafe for sublabelings L0 ⊆ L and L′0 ⊆ L′ iff:

(A) ∀s1 ∈ I : (∃s2 ∈ I ′ : s1 ≺Failsafes2) and ∀s2 ∈ I ′ : (∃s1 ∈ I : s1
≺Failsafes2).

(B) for all s1 ≺Failsafes2 the following holds:
(1) L0(s1) = L′0(s2).
(2) if s′1 ∈ PostN(s1), then there exists s′2 ∈ PostN (s2) with s′1 ≺Failsafes

′
2.

(3) if s′2 ∈ PostN(s2), then there exists s′1 ∈ PostN (s1) with s′1 ≺Failsafes
′
2.

(4) if s′2 ∈ PostF (s2), then either there exists s′1 ∈ PostN (s1) with L0(s
′
1) =

L′0(s
′
2) or L0(s1) = L′0(s

′
2).

Whenever two states s1 and s2 are related by a failsafe fault-tolerant relation
≺Failsafe, i.e., s1 ≺Failsafes2, we say that s2 is failsafe fault-tolerant for s1. We
say that M ′ is failsafe fault-tolerant for M iff for every initial state s0 of M
there exists an initial state s′0 of M ′ such that s0 ≺Failsafes

′
0, for some failsafe

fault-tolerant relation ≺Failsafe; we denote this situation by M ≺FailsafeM
′.

Let us explain the above definition. Conditions A, B.1, B.2, and B.3 are
similar to those of Def. 2, regarding masking fault-tolerance. ConditionB.4 states
that if s1 ≺Failsafes2, then every outgoing faulty transition from s2 either must
be matched to an outgoing normal transition from s1, requiring states s′1 and
s′2 to be labeled with the same propositions, or s′2 must be failsafe fault-tolerant
for s1. We now present a simple example to illustrate this notion.

Example 3. Consider the colored Kripke structures M (left) and M ′ (right) de-
picted in Figure 4. M is the specification of the expected ideal, fault-free, be-
havior. M ′, on the other hand, involves the occurrence of one fault. The relation
R3 = {(s0, t0), (s1, t1)} is a failsafe fault-tolerance relation for (M,M ′) and the
sublabelings that are obtained by restricting L and L′ to propositions m and w.

Our definition of failsafe fault-tolerance preserves safety properties.

Theorem 3. Let M = 〈S, I, R, L,N〉 and M ′ = 〈S′, I ′, R′, L′,N ′〉 be colored
Kripke structures, s1 ∈ S and s2 ∈ S′. If s1 ≺Failsafes2 for sublabelings L0

Characterizing Fault-Tolerant Systems by Means of Simulation Relations 437

Fig. 4. Two failsafe fault-tolerance colored Kripke structures

and L′0 obtained by restricting L and L′ to AP ′, respectively, and ϕ is a safety
property, then M, s1 � ϕN ⇒M ′, s2 � ϕ, where all the propositional variables of
ϕ are in AP ′.

This property says that if we have a failsafe relation between s1 and s2 and for
every state in normal paths starting in s1, ϕ holds in the absence of faults, then
ϕ is always true even in the presence of faults in paths starting in s2.

The following lemma provides important information regarding all the fault-
tolerance relations defined above.

Lemma 1. Given relations ≺Mask, ≺Nonmask and ≺Failsafe, we have the
following properties:

– ≺Mask, ≺Nonmask, ≺Failsafe are transitive,
– If M does not have faults, then: M �M ′ ⇒M ′ �M ,

where �∈ {≺Mask,≺Nonmask,≺Failsafe}
– ≺Mask, ≺Nonmask and ≺Failsafe are not necessarily reflexive.

We also have properties of these relations corresponding to inclusions :

Theorem 4. Let Mask, NMask and FSafe be the sets of masking, nonmasking
and failsafe relations between two colored Kripke structures M and M ′. Then we
have:

Mask ⊆ FSafe and Mask ⊆ NMask

3.1 Checking Fault-Tolerance Properties

Simulation and bisimulation relations are amenable to efficient computational
treatment. For instance, in [7, 11] algorithms for calculating several simulation
and bisimulation relations are described and proved to be polynomial with re-
spect to the number of states and transitions of the corresponding models. We
have adapted these algorithms to our setting, thus obtaining efficient procedures
to prove masking, nonmasking and failsafe fault-tolerance. Such algorithms can
be used to verify whether M �M ′, with �∈ {≺Mask,≺Nonmask,≺Failsafe}. We
discuss the algorithm for computing masking fault-tolerance. The algorithms

438 R. Demasi et al.

Algorithm 1. Computation of masking fault-tolerant

Input: colored Kripke structure M
Output: masking fault-tolerant ≺Mask

1: for all s2 ∈ F do
2: Mask(s2) := {s1 ∈ N | L0(s1) = L0(s2)}
3: Remove(s2) := N\PreN(Mask(s2))
4: end for
5: while ∃ s′2 ∈ F with Remove(s′2) �= ∅ do
6: select s′2 such that Remove(s′2) �= ∅
7: for all s1 ∈ Remove(s′2) do
8: for all s2 ∈ PreN(s′2) do
9: if s1 ∈ Mask(s2) then
10: Mask(s2) := Mask(s2)\{s1}
11: for all s ∈ PreN(s1) with PostN (s) ∩ Mask(s2) = ∅ do
12: Remove(s2) := Remove(s2) ∪ {s}
13: end for
14: end if
15: end for
16: end for
17: Remove(s′2) := ∅
18: end while
19: for all s2 ∈ F do
20: if Post∗(s2) �= Post∗(Mask(s2)) then
21: Mask(s2) := ∅
22: end if
23: end for
24: return {(s1, s2) | s1 ∈ Mask(s2)}

for the other relations can be obtained in a similar way; the interested reader
is referred to [10]. The basic scheme for checking masking fault-tolerance is
sketched in Algorithm 1. This algorithm takes as input a colored Kripke struc-
ture M = 〈S, I, R, L,N〉 and a sublabeling L0 ⊆ L, and produces a masking
fault-tolerance relation ≺Mask. In order to check fault-tolerance properties, we
take two colored Kripke structures M and M ′ over AP (the system specification
and the fault-tolerant implementation), and combine them in a single structure
M ⊕M ′ via disjoint union, to feed as input to the algorithm. Notice that Al-
gorithm 1 only deals with the case of faulty states/transitions (condition B.4
of Def. 2), since a standard bisimulation algorithm can be used for checking
that the normative behavior described in the specification is bisimilar with that
exhibited by the fault-tolerant implementation (conditions B.2 and B.3). This
algorithm is an adaptation of the similarity-checking algorithm for finite graphs
defined in [11]. We have made slight changes (between lines 1 and 18) in order to
explore all the faulty transitions s2 ��� s′2 and look for those normal transitions
s1 → s′1 which mask faulty ones.

Let us briefly explain Algorithm 1. Consider F = S\N to be the set of faulty
states in M . For each s2 ∈ F , the set Mask(s2) contains the normal states that

Characterizing Fault-Tolerant Systems by Means of Simulation Relations 439

are candidates for masking s2. Initially, Mask(s2) consists of all normal states
with the same labels as s2 and Remove(s2) contains all the normal states which
do not have a (normal) successor state masking s2. Moreover, these states cannot
mask any of the predecessors of s2. The termination condition of the outermost
loop of lines 5–18 is Remove(s′2) = ∅ for all s′2 ∈ F , in which case there are no
normal states that need to be removed from the sets of simulators Mask(s2)
for s2 ∈ PreN (s′2). Within the while-loop body, the main idea is to pick one
pair (s1, s

′
2) with s1 ∈ Remove(s′2) per iteration; for each one we scan through

the predecessor list of s′2 and test for each normal state s2 ∈ PreN (s′2) to see
whether s1 ∈ Mask(s2). In the positive case, s1 is removed from Mask(s2).
Subsequently, we add to the set Remove(s2) all normal predecessors s of s1
such that PostN (s) ∩ Mask(s2) = ∅. The last for-loop checks whether from
any faulty state s2 which is masked by a normal state, we can reach a normal
state to recover to the normal behavior. Therefore, for each faulty state s2,
we inspect the existence of the reachable normal states from s2 (line 20). In
the case that the set of successors of s2 is not equal to the set of the normal
successors of the normal state which mask s2, then we remove all states from
Mask(s2). Finally, the masking fault-tolerance≺Mask is obtained from a colored
Kripke structure M by performing the union between the set obtained from a
bisimulation algorithm used to check that the system strongly bisimulates the
specification for the normative part, and the set returned by Algorithm 1.

Regarding the complexity of the algorithm for checking masking fault-
tolerance, it is polynomial. More precisely, the time complexity of the bisim-
ulation quotient algorithm [7] is O(|N | · |AP ′| + E · log |N |), where E is the
number of edges in M . On the other hand, Algorithm 1 can be computed in time
O(E ·|F|+|F|·AP ′+|F|). Hence, the masking fault-tolerance of a colored Kripke
structure M = 〈S, I, R, L,N〉 for sublabeling L0 ⊆ L obtained by restricting AP
to AP ′, can be computed in a running time of O(E · log |N |+ E · |F |).

4 An Example: The Muller C-element

The Muller C-element [14] is a simple delay-insensitive circuit which contains
two boolean inputs and one boolean output. Its logical behavior is described as
follows: if both inputs are true (resp. false) then the output of the C-element
becomes true (resp. false). If the inputs do not change, the output remains the
same. In [3], the following (informal) specification of the C-element with inputs
x and y and output z is given:

(i) Input x (resp. y) changes only if x ≡ z (resp., y ≡ z), (ii) Output z
becomes true only if x∧y holds, and becomes false only if ¬x∧¬y holds;
(iii) Starting from a state where x∧y, eventually a state is reached where
z is set to the same value that both x and y have. Ideally, both x and y
change simultaneously. Faults may delay changing either x or y.

We consider an implementation of the C-element with a majority circuit in-
volving three inputs, where an extra input u in the circuit is added. Then, the

440 R. Demasi et al.

Fig. 5. A nonmasking fault-tolerance for the Muller C-element with a majority circuit

predicate maj(x, y, u) returns the value of the majority circuit, which is assumed
to work correctly, and is defined as maj(x, y, u) = (x ∧ y) ∨ (x ∧ u) ∨ (y ∧ u).
In addition to the traditional logical behavior of the C-element, u and z have
to change at the same time, where the output z is fed back to the input u.
Figure 5 shows two models of this circuit. M exhibits the ideal behavior of the
C-element containing only normal transitions. M ′ takes into account the possi-
bility of faults occurring, and provides a reaction to these. Every state in these
models is composed of boolean variables x, y, u, and z, where x, y, and u repre-
sent the inputs, and z represents the output. For instance, the state s0 contains
the information 000 \ 0 interpreted (reading from left to right) as x = 0, y = 0,
u = 0, and z = 0. Transitions are labeled by subsets of the set {cx, cy, cu, cz} of
actions; action cx (resp., cy and cu) is the action that changes input x (resp.,
y and u); cz is the action of changing output z. When the actions cx and cy
are executed in the same transition, we just write cxy. We consider two types of
faults: (i) a delay may occur in the arrival of some of the inputs x or y (i.e., they
do not change simultaneously), and (ii) a delay in the signal from z to u occurs.
We can observe these classes of faults in the faulty states (indicated by dashed
circles) when either x and y or u and z do not match one another. The relation
Rc−element = {(s0, t0), (s1, t1), (s2, t2), (s3, t3)} is a nonmasking fault-tolerance
for (M,M ′) and the sublabelings obtained by restricting the original labelings
to letters u, x, y, z. Therefore, when the majority circuit behaves correctly, this
implementation masks delays of inputs.

We have developed other case studies illustrating the practical application
of our framework, based on well known fault-tolerance models, including, e.g.,
Byzantine agreement. These can be found in [10].

Characterizing Fault-Tolerant Systems by Means of Simulation Relations 441

5 Related Work

Our work is most closely related to formal approaches to fault-tolerance. One of
these is that presented in [4], where the problem of multitolerance is addressed.
In order to do so, the authors define the concepts of masking, nonmasking and
failsafe tolerances using liveness and safety specifications in a linear-time frame-
work. In our approach, we focus on branching time properties of programs. In
our opinion, branching time is important for fault-tolerance specification. This
view is also shared by Attie, Arora, and Emerson in [6], where an algorithm for
synthesizing fault-tolerant programs from CTL specifications is presented. They
consider CTL as the temporal logic specification for the input of their synthe-
sis method. Instead of using CTL, we use a branching time temporal logic that
has a convenient mechanism for stating fault-tolerance properties, via the use
of deontic operators. We believe that our formalism is better suited for cap-
turing fault-tolerance properties. Finally, we can mention the works presented
in [12, 13], where various notions of bisimulation are investigated with the aim
of capturing fault-tolerant properties, in the context of process algebras. An
obvious difference wrt. our work is that we use a state based approach and a
temporal logic to reason about state based models, in contrast to the aforemen-
tioned works where process algebras are employed for modeling systems, and the
associated logic is a variation of Hennesy-Milner logic, which is known to be less
expressive than temporal logics. Also, the notions of masking, nonmasking and
failsafe fault-tolerance are not investigated in the referenced works.

6 Conclusions and Future Work

We have presented a characterization of different levels of fault-tolerance by
means of simulation relations. This formalization is simple and uses standard
notions of simulation relations, by relating an operational system specification
and a corresponding fault-tolerant implementation. Moreover, our approach to
capturing fault-tolerance enables us to automatically verify, for example, that a
given implementation of a system masks certain faults, or recovers from these
faults, by employing variants of traditional bisimulation algorithms to our con-
text. Indeed, we have adapted well known (bi)simulation algorithms to our set-
ting, so that one can automatically check if a system implementation exhibits
some degree of fault-tolerance. We have also studied the complexity of the result-
ing algorithms, and proved that they preserve the time complexity of traditional
bisimulation algorithms. We have also studied properties of our formalizations of
fault-tolerance, showing that different kinds of temporal properties are preserved,
depending on the degree of fault-tolerance that a system exhibits. Moreover, we
have also presented results relating the different kinds of fault-tolerance.

As future work, we are exploring the extension of our setting with synthesis, so
that fault-tolerant programs may be automatically constructed from the system
specification, a description of the faults and their consequences, and a desired
degree of fault-tolerance. Synthesis of programs has been extensively investigated

442 R. Demasi et al.

in the context of linear time logic [15], while in our case it is necessary to deal
with a branching time formalism. This is important since, as argued in [6], some
important properties related to fault-tolerance require branching time operators.
It is also in [6] where a framework for synthesis of programs from branching time
specifications is introduced. We believe that some of the work presented in this
paper can be used to extend that introduced in [6], to automatically synthesize
programs that mask faults, recover from error situations or stay in safe states.
Finally, we also plan to extend our framework to accommodate multitolerance
[4], in which multiple classes of faults may occur simultaneously.

Acknowledgements. The authors would like to thank the anonymous referees
for their helpful comments. This work was partially supported by a Fellowship
from IBM Canada, in support of the Automotive Partnership Canada funded
project NECSIS; by the Argentinian Agency for Scientific and Technological Pro-
motion (ANPCyT), through grants PICT PAE 2007 No. 2772, PICT 2010 No.
1690 and PICT 2010 No. 2611; and by the MEALS project (EU FP7 programme,
grant agreement No. 295261).

References

1. Alpern, B., Schneider, F.: Defining Liveness. Inf. Process. Lett. 21(4) (1985)
2. Milner, R.: Communication and Concurrency. PHI Series in Computer Science.

Prentice-Hall (1989)
3. Arora, A., Gouda, M.: Closure and Convergence: A Foundation of Fault-Tolerant

Computing. IEEE Trans. Soft. Eng. 19(11) (1993)
4. Arora, A., Kulkarni, S.: Component Based Design of Multitolerant Systems. IEEE

Trans. Software Eng. 24(1) (1998)
5. Arora, A., Kulkarni, S.: Detectors and Correctors: A Theory of Fault-Tolerance

Components. In: Proc. of ICDCS (1998)
6. Attie, P., Arora, A., Emerson, A.: Synthesis of fault-tolerant concurrent programs.

ACM Trans. Program. Lang. Syst. 26(1) (2004)
7. Baier, C., Katoen, J.-P.: Principles of Model Checking. MIT Press (2008)
8. Castro, P.F., Kilmurray, C., Acosta, A., Aguirre, N.: dCTL: A Branching Time

Temporal Logic for Fault-Tolerant System Verification. In: Barthe, G., Pardo,
A., Schneider, G. (eds.) SEFM 2011. LNCS, vol. 7041, pp. 106–121. Springer,
Heidelberg (2011)

9. Cristian, F.: A rigorous approach to fault-tolerant programming. IEEE Trans.
Software Eng. (1985)

10. Demasi, R., Castro, P., Maibaum, T., Aguirre, N.: Characterizing Fault-Tolerant
Systems by Means of Simulation Relations, Tech. Report,
http://www.cas.mcmaster.ca/~demasira/reportSimFTS.pdf

11. Henzinger, M., Henzinger, T., Kopke, P.: Computing Simulations on Finite and
Infinite Graphs. In: Proc. of FOCS (1995)

12. Janowski, T.: Bisimulation and Fault-Tolerance. PhD thesis (1995)
13. Janowski, T.: On Bisimulation, Fault-Monotonicity and Provable Fault-Tolerance.

In: Proc. of AMAST (1997)
14. Mead, C., Conway, L.: Introduction to VLSI systems. Addison-Wesley (1980)
15. Pnueli, A., Rosner, R.: On the Synthesis of a Reactive Module. In: Proc. of POPL

(1989)

http://www.cas.mcmaster.ca/~demasira/reportSimFTS.pdf

Author Index

Abrial, Jean-Raymond 1
Aguirre, Nazareno 428
Albert, Elvira 285
André, Étienne 331
Andriamiarina, Manamiary Bruno 268

Bogdanov, Kirill 253

Cabrera Castillos, Kalou 316
Castro, Pablo F. 428
Choppy, Christine 331
Ciobâcă, Ştefan 347
Correas, Jesús 285
Curzon, Paul 238

Dadeau, Frédéric 316
Demasi, Ramiro 428
Derrick, John 253
Dima, Catalin 61
Dong, Jin Song 162, 331

Fortin, Jean 124
Frappier, Marc 223

Gava, Frédéric 124
Gesell, Manuel 177
Giachino, Elena 394
Graf, Susanne 77
Grazia, Carlo A. 394
Guedj, Michael 124
Gui, Lin 162
Guldstrand Larsen, Kim 154

Harrison, Michael D. 238
Heather, James 94
Hoang, Thai Son 16
Hudon, Simon 16

Ishii, Daisuke 139

Julliand, Jacques 316

Kanso, Bilal 316

Lanet, Jean-Louis 223
Laneve, Cosimo 301, 394
Lang, Frédéric 61
Lausdahl, Kenneth 46
Lienhardt, Michael 394
Liu, Shuang 331

Liu, Yang 162, 331
Lucanu, Dorel 362

Maibaum, Thomas S.E. 428
Mateescu, Radu 61
Melquiond, Guillaume 139
Méry, Dominique 208, 268
Millo, Jean-Vivien 109
Moran, Murat 94
Morgenstern, Andreas 177

Nakajima, Shin 139
Narwane, Ganesh Khandu 109
Nielson, Flemming 412
Nielson, Hanne Riis 412

Olderog, Ernst-Rüdiger 378

Padovani, Luca 301
Poppleton, Michael 208
Prehofer, Christian 31
Puebla, Germán 285

Quinton, Sophie 77

Ramesh, S. 109
Román-Dı́ez, Guillermo 285
Rukšėnas, Rimvydas 238
Rusu, Vlad 362

Savary, Aymerick 223
Schneider, Klaus 177
Schneider, Steve 94
Shankara Narayanan, Krishna 109
Singh, Neeraj Kumar 268
Song, Fu 192
Song, Songzheng 162
Sun, Jun 162, 331
Swaminathan, Mani 378

Taha, Safouan 316
Taylor, Ramsay 253
Touili, Tayssir 192

Vekris, Dimitris 61
Vigo, Roberto 412

Wadhwa, Bimlesh 331
Wong, Peter Y.H. 394

	Preface
	Organization
	Table of Contents
	From Z to B and then Event-B:Assigning Proofs to Meaningful Programs
	References

	Systems Design Guided by Progress Concerns
	1 Introduction
	2 Background: Computation Calculus
	3 The Unit-B Method
	3.1 Syntax
	3.2 Semantics
	3.3 Progress Properties
	3.4 Refinement

	4 Example: A Signal Control System
	4.1 Requirements
	4.2 Initial Model
	4.3 First Refinement
	4.4 Second Refinement
	4.5 Third Refinement

	5 Conclusion
	References

	Assume-Guarantee Specifications of StateTransition Diagrams for Behavioral Refinement
	1 Introduction
	2 State Transition Diagrams
	2.1 Behavioral Semantics
	2.2 Syntactic Extensions of State Transition Diagrams

	3 Assume-Guarantee Specifications and Refinement
	3.1 SD Extensions and Refinements
	3.2 Trace Eliminations for Added Features
	3.3 Weak Elimination-Based Refinement
	3.4 Strong Elimination-Based Refinement

	4 Establishing Elimination-Based Refinements
	5 Related Work
	6 Conclusions
	References

	Translating VDM to Alloy
	1 Introduction
	2 VDM Models and Alloy Instances
	3 Semantics Preserving Translation
	3.1 Limitations

	4 Checking Implicit VDM Specifications
	5 Case Studies
	6 Related Work
	7 Conclusion Remarks
	References

	Verification of EB3 Specifications Using CADP
	1 Introduction
	2 The Language EB3
	3 The Language LNT
	4 Translation from EB3 to LNT
	5 Case Study
	6 Conclusion
	References

	Knowledge for the Distributed Implementationof Constrained Systems
	1 Introduction
	2 Related Work
	3 Centralized Controlled Specifications
	3.1 Petri Nets
	3.2 Centralized Control

	4 Distributed Implementations and Control
	4.1 Distributed Petri Nets
	4.2 Correctness Criteria for Distributed Implementation of Petri Nets
	4.3 Using Knowledge and Communication for Distributed Control

	5 Discussion Based on the Protocol of [11]
	6 Conclusion
	References

	Automated Anonymity Verificationof the ThreeBallot Voting System
	1 Introduction
	1.1 Voting with ThreeBallot
	1.2 Related Work

	2 Modelling the ThreeBallot Voting System
	2.1 Data-Types, Functions and Sets
	2.2 Processes and Channels

	3 Automated Anonymity Verification
	3.1 Results for the ThreeBallot Model with No SBA
	3.2 Short Ballot Assumption
	3.3 Verified Privacy Cases

	4 Conclusion
	References

	Compositional Verificationof Software Product Lines
	1 Introduction
	1.1 Related Work

	2 Design Verification of a Single Feature
	2.1 FSMv and Language Refinement
	2.2 Variants of FSMv and Conformance
	2.3 Checking the Conformance

	3 Design Verification of SPL
	3.1 Conformance Checking

	4 Implementation and Case Studies
	References

	Deductive Verification of State-Space Algorithms
	1 Introduction
	2 Verification of Sequential State-Space Algorithms
	2.1 Deductive Verification of Algorithms Using
	2.2 Definition of the Finite State-Space
	2.3 Sequential Algorithms for State-Space Construction
	2.4 Verification of These Algorithms

	3 Verification of a Distributed State-Space Algorithm
	3.1 The Bulk-Synchronous Parallel (BSP) Model
	3.2 Deductive Verification of BSP Algorithms
	3.3 BSP State-Space Construction
	3.4 Verification of the Parallel Algorithm

	4 Related Work
	5 Conclusion
	References

	Inductive Verification of Hybrid Automatawith Strongest Postcondition Calculus
	1 Introduction
	2 HybridAutomata
	3 Modeling HA Executions with Programs
	3.1 Imperative Language
	3.2 Strongest Postconditions

	4 Inductive Verification Method
	4.1 Induction Strategy
	4.2 Verification Algorithm
	4.3 Loop Invariant Generation

	5 Implementation
	6 Experiments
	6.1 Considered Examples
	6.2 Discussions

	7 Related Work
	8 Conclusions
	References

	Priced Timed Automataand Statistical Model Checking
	1 Introduction
	2 Priced Timed Automata
	3 EnergyGames
	4 Statistical Model Checking
	References

	Improved Reachability Analysis in DTMCvia Divide and Conquer
	1 Introduction
	2 Preliminaries
	2.1 Discrete Time Markov Chains
	2.2 Reachability Analysis
	2.3 States Abstraction and Gauss-Jordan Elimination

	3 Divide and Conquer Approach
	3.1 Overall Algorithm
	3.2 Dividing Strategies
	3.3 Parallel Computation

	4 Implementation and Evaluation
	5 Related Work and Conclusion
	References

	Solving Games Using Incremental Induction
	1 Introduction
	2 Preliminaries
	3 Another Look at IC3: Computing Ranks of Fixpoints
	3.1 Applying Induction Incrementally
	3.2 Model Checking by Backward Traversals

	4 Games
	5 Fixpoint Computations to Solve Games
	6 Computing Ranks Using Incremental Induction
	6.1 Proof Obligations
	6.2 Notation
	6.3 Auxiliary Functions
	6.4 Recursively Blocking Cubes
	6.5 Main Function

	7 Experiments
	8 Conclusions
	References

	Model-Checking Software Library API Usage Rules
	1 Introduction
	2 Formal Model: Pushdown Systems
	3 API Usage Rules Specification
	3.1 Environments, Predicates and Regular Variable Expressions
	3.2 Stack Computation Tree Predicate Logic
	3.3 Extracting Predicates for API Specifications
	3.4 An Illustrating Example

	4 rSCTPL and The Procedure-Cutting Abstraction
	4.1 Procedure-Cutting Abstraction
	4.2 The rSCTPL Logic

	5 Experiments
	5.1 Checking The Socket Library API Usage Rules
	5.2 Checking File Operation Usage Rules

	6 Related Work
	References

	Formal Modelling and Verificationof Population Protocols
	1 Introduction
	2 Population Protocols, TLA and Event-B
	3 Red and Green Lights
	4 The Dancers
	4.1 The Algorithmic Process
	4.2 Generating the Population Protocol from Refinement
	4.3 Temporal Analysis of Fairness Requirements

	5 Conclusion
	References

	Detecting Vulnerabilities in Java-Card BytecodeVerifiers Using Model-Based Testing
	1 Introduction
	2 Java Card Security Issues
	2.1 Logical Attacks in Smart Card
	2.2 Java Card Byte Code Verifier
	2.3 Verifying the Verifier

	3 Methodology for Generating Vulnerability Tests
	3.1 The Formal Model
	3.2 The Test Generation Process
	3.3 Faulty Model Derivation
	3.4 Abstract Tests Generation
	3.5 Concrete Tests

	4 Evaluation
	5 Conclusion and Future Work
	References

	Integrating Formal Predictions of Interactive SystemBehaviour with User Evaluation
	1 Introduction
	2 Related Work
	3 The Modelling Framework
	3.1 The DeviceModel
	3.2 The User Model
	3.3 The System Model

	4 Verification-Based Analysis
	5 The Experiment
	6 Conclusion
	References

	Automatic Inferenceof Erlang Module Behaviour
	1 Introduction
	2 Background
	2.1 Erlang
	2.2 The Open Telecoms Platform (OTP)
	2.3 Language Learning Algorithms for Software Test Generation

	3 Alphabet Determination
	4 Query Evaluation
	5 Behaviour Inference
	6 Conclusions
	References

	Integrating Proved State-Based Modelsfor Constructing Correct Distributed Algorithms
	1 Introduction
	2 Choice of a State-Based Modelling Language
	3 State Properties and Refinement Diagrams
	4 Service-As-EventParadigm
	5 Case Study: ANYCAST RP
	6 Discussion, Conclusion and Future Work
	References

	Quantified Abstractions of Distributed Systems
	1 Introduction
	2 The Language
	3 Background: Points-to and Resource Analysis
	3.1 Cost Centers and Points-to Analysis
	3.2 Cost Models
	3.3 Upper Bounds

	4 Concrete Definitions in Distributed Systems
	4.1 Configuration
	4.2 Communication

	5 Inference of Quantified Abstractions
	5.1 Quantified Configurations
	5.2 Quantified Communication

	6 Implementation and Application to Case-Study
	7 Conclusions and Future Work
	References

	An Algebraic Theory for Web Service Contracts
	1 Introduction
	2 BPEL and the Abstract Language
	2.1 Syntax of BPEL Abstract Activities
	2.2 Operational Semantics of BPEL Abstract Activities
	2.3 The Compliance Preorder

	3 Contracts
	4 Service Discovery and Dual Contracts
	5 Conclusions
	References

	A Compositional Automata-Based Semanticsfor Property Patterns
	1 Motivations
	2 Dwyer et al.’s Property Specification Language
	3 Compositional Automata-based Semantics
	3.1 Pattern and Scope Automata
	3.2 Composition

	4 Comparison of Both Semantics
	5 Genericity and Extensibility of the Approach
	5.1 Generic Patterns and Variants of Scopes
	5.2 Variant Semantics

	6 Conclusion and Future Work
	References

	A Formal Semantics for Complete UML State Machineswith Communications
	1 Introduction
	2 UML State Machines Features and Our Assumptions
	2.1 Introduction of Basic Features of UML State Machines
	2.2 Basic Assumptions on UML State Machines Semantics

	3 Syntax of UML State Machines
	4 A Formal Semantics for UML State Machines
	4.1 Active State Configuration Changes
	4.2 Behaviour Execution
	4.3 The Run to Completion Semantics
	4.4 System Semantics

	5 Implementation and Evaluation
	6 Related Work
	7 Discussion and Perspectives
	References

	From Small-Step Semanticsto Big-Step Semantics, Automatically
	1 Introduction
	2 Preliminaries
	3 From Small-Step Semantics to Big-Step Semantics
	3.1 The Transformation
	3.2 The Assumptions

	4 Examples
	4.1 Call-by-Name Lambda Calculus
	4.2 Call-by-Value Mini-ML
	4.3 IMP

	5 Related Work
	6 Discussion and Further Work
	References

	Program Equivalence by Circular Reasoning
	1 Introduction
	2 A Simple Imperative Language and Its Semantics in
	3 A Generic Notion of Language Definition
	4 Defining Program Equivalence
	5 A Logic for Program Equivalence
	6 Auxiliary Operations: Derivatives and Conjunction
	7 ACircularProofSystem
	8 Conclusion and Future Work
	References

	Structural Transformationsfor Data-Enriched Real-Time Systems
	1 Introduction
	2 ETA, Compositions, and CCL
	3 Time Precedence and Timed CCL
	4 Separation and Flattening
	5 Example: Real-Time Mutual Exclusion
	6 Related Work
	References

	Deadlock Analysis of Concurrent Objects:Theory and Practice
	1 Introduction
	2 The Language
	2.1 The ConcurrencyModel of
	2.2 Restrictions of core ABS of the Current Release of SDA

	3 Contracts and the Contract Inference System
	4 The Analysis of Contracts
	5 The SDA Tool and Its Application to the Case Study
	5.1 Simple Experiments
	5.2 The Industrial Case Study
	5.3 The Application of SDA to FAS

	6 Related Works
	7 Conclusions
	References

	Broadcast, Denial-of-Service,and Secure Communication
	1 Introduction
	2 Syntax
	2.1 Rewrite Rules for Cryptography and Quality Guards

	3 Semantics
	4 Motivating Example
	5 Executable Specification of the Semantics
	6 Conclusion and Future Work
	References

	Characterizing Fault-Tolerant Systemsby Means of Simulation Relations
	1 Introduction
	2 Preliminaries
	3 (Bi)Simulations and Fault-Tolerance
	3.1 Checking Fault-Tolerance Properties

	4 An Example: The Muller C-element
	5 Related Work
	6 Conclusions and Future Work
	References

	Author Index

