Einar Broch Johnsen
Luigia Petre (Eds.)

Integrated
Formal Methods

10th International Conference, IFM 2013
Turku, Finland, June 2013
Proceedings

LNCS 7940

@ Springer

Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison

Lancaster University, UK
Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA
Josef Kittler

University of Surrey, Guildford, UK
Jon M. Kleinberg

Cornell University, Ithaca, NY, USA
Alfred Kobsa

University of California, Irvine, CA, USA
Friedemann Mattern

ETH Zurich, Switzerland
John C. Mitchell

Stanford University, CA, USA
Moni Naor

Weizmann Institute of Science, Rehovot, Israel
Oscar Nierstrasz

University of Bern, Switzerland
C. Pandu Rangan

Indian Institute of Technology, Madras, India
Bernhard Steffen

TU Dortmund University, Germany
Madhu Sudan

Microsoft Research, Cambridge, MA, USA
Demetri Terzopoulos

University of California, Los Angeles, CA, USA
Doug Tygar

University of California, Berkeley, CA, USA
Gerhard Weikum

Max Planck Institute for Informatics, Saarbruecken, Germany

7940

Einar Broch Johnsen Luigia Petre (Eds.)

Integrated
Formal Methods

10th International Conference, IFM 2013
Turku, Finland, June 10-14, 2013
Proceedings

@ Springer

Volume Editors

Einar Broch Johnsen

University of Oslo, Department of Informatics
P.O. Box 1080, 0316 Oslo, Norway

E-mail: einarj@ifi.uio.no

Luigia Petre

Abo Akademi University, Department of Information Technologies
Joukahaisenkatu 3-5A, 20520 Turku, Finland

E-mail: Ipetre@abo.fi

ISSN 0302-9743 e-ISSN 1611-3349

ISBN 978-3-642-38612-1 e-ISBN 978-3-642-38613-8
DOI 10.1007/978-3-642-38613-8

Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2013938948
CR Subject Classification (1998): D.2, F.3, D.3, F4, F.1, F2

LNCS Sublibrary: SL 2 — Programming and Software Engineering

© Springer-Verlag Berlin Heidelberg 2013

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

Formal methods allow the modeling and analysis of various aspects of a complex
system. Modeling languages differ in the system aspects they target, for which
models can be naturally and succinctly developed. Numerous techniques address
model analysis in these languages, specialized for different kinds of properties.
Applying formal methods to complex systems often involves combining several
models in different languages and exploiting the strengths of many analysis tech-
niques. The integrated Formal Methods (iFM) conference series seeks to further
research into hybrid approaches to formal modeling and analysis, and into the
combination of (formal and semi-formal) modeling and analysis methods in all
aspects of software development from language design through verification and
analysis techniques to tools and their integration into software engineering prac-
tice. This volume includes the articles presented at the 10th edition of iFM.

The 10th International Conference on integrated Formal Methods (iFM 2013)
was held during June 12-14, 2013, in Turku, Finland. The conference was orga-
nized by the Department of Information Technologies at Abo Akademi Univer-
sity. Previous editions of iFM were held in York, UK (1999), Schloss Dagstuhl,
Germany (2000), Turku, Finland (2002), Kent, UK (2004), Eindhoven, The
Netherlands (2005), Oxford, UK (2007), Diisseldorf, Germany (2009), Nancy,
France (2010), and Pisa, Italy (2012).

The conference has grown tremendously in the past years. iFM 2013 received
106 abstracts and 84 full paper submissions. The Program Committee ensured
that each paper received three reviews and was carefully discussed, before se-
lecting 25 papers for presentation at the conference. This leads to an acceptance
rate of almost 30%. The scientific program of iFM 2013 was further strengthened
by four outstanding invited speakers:

— Jean-Raymond Abrial, Marseille, France: From Z to B and then Event-B:
Assigning Proofs to Meaningful Programs

— Susanne Graf, VERIMAG, France: Knowledge for the Distributed Implemen-
tation of Constrained Systems

— Kim Larsen, Aalborg University, Denmark: Priced Timed Automata and Sta-
tistical Model Checking

— Cosimo Laneve, University of Bologna, Italy: An Algebraic Theory for Web
Service Contracts

The invited speakers have contributed papers to the proceedings that survey
their work in these areas.

iFM 2013 attracted broad international interest. The authors of the submit-
ted papers were affiliated to 34 countries spread out on all five continents. The
authors of the accepted papers were affiliated to 14 countries, from Europe, Asia,
and South and North America. The Program Committee was also very interna-
tional, its members being affiliated to 16 countries, from Europe, North America,

VI Preface

Asia, and Australia. The biggest number of accepted authors came from France
and the biggest number of PC members came from the UK.

Associated with iFM 2013, the following workshops and tutorials were orga-
nized during June 10-11, 2013:

The 4th International Workshop on Computational Models for Cell Processes
— Rodin User and Developer Workshop 2013

BCS FACS 2013 Refinement Workshop 2013

Tutorial on the Specification and Proof of Programs with Frama-C

These events significantly contributed to an exciting scientific program during
an entire week.

To our great sadness, Professor Kaisa Sere from Abo Akademi University
passed away in December 2012. Kaisa was a renowned researcher in formal meth-
ods and one of the PC chairs of iFM 2002. She was happy that Abo Akademi
University were planning was planning to host the conference again in 2013. We
are very grateful that one of her close scientific collaborators, Emil Sekerinski,
McMaster University, Canada, has accepted to give a short talk at iFM 2013 on
Kaisa’s achievements in computer science.

We warmly thank the Program Committee of iFM 2013 for their excellent
work, their high-quality reviews, their timeliness and enthusiasm, as well as
for their determination to only accept the best papers with respect to novelty,
innovation, and technical merit. It was an honor and a pleasure to work with you!
We would also like to acknowledge and thank the reviewers that supported the
Program Committee. The work of the Program Committee was supported from
the beginning by the EasyChair software: we thank Andrei Voronkov for making
this framework available. We are deeply indebted to the sponsors of iFM 2013:
their generous support enabled a pleasant environment and nice social events,
truly contributing to community building.

In the end, it is the authors of the contributed papers that made iFM 2013 a
reality and a success. Thank you very much for your dedication: it is your work
that makes up these proceedings!

April 2013 Einar Broch Johnsen
Luigia Petre

Program Committee

Erika Abraham
Elvira Albert
Marcello Bonsangue
Phillip J. Brooke
Ana Cavalcanti
Dave Clarke

John Derrick

Jin Song Dong
Kerstin Eder

John Fitzgerald
Andy Galloway
Marieke Huisman
Reiner Hahnle
Einar Broch Johnsen
Peter Gorm Larsen
Diego Latella
Michael Leuschel
Shaoying Liu
Michele Loreti
Dominique Mery
Stephan Merz
Richard Paige
Luigia Petre

Kristin Yvonne Rozier
Philipp Ruemmer
Thomas Santen

Ina Schaefer

Steve Schneider
Emil Sekerinski
Graeme Smith
Colin Snook

Kenji Taguchi
Helen Treharne
Heike Wehrheim
Herbert Wiklicky
Gianluigi Zavattaro

Organization

RWTH Aachen University, Germany

Complutense University of Madrid, Spain

Leiden University, The Netherlands

Teesside University, UK

University of York, UK

Catholic University of Leuven, Belgium

Unversity of Sheffield, UK

National University of Singapore, Singapore

University of Bristol, UK

Newcastle University, UK

University of York, UK

University of Twente, The Netherlands

Technical University of Darmstadt, Germany

University of Oslo, Norway

Aarhus University, Denmark

ISTI-CNR, Pisa, Italy

University of Diisseldorf, Germany

Hosei University, Japan

Universita degli Studi di Firenze, Italy

Université de Lorraine, LORIA, France

INRIA Lorraine, France

University of York, UK

Abo Akademi University, Finland

NASA Ames Research Center, USA

Uppsala University, Sweden

European Microsoft Innovation Center,
Germany

Technische Universitat Braunschweig,
Germany

University of Surrey, UK

McMaster University, Canada

University of Queensland, Australia

University of Southampton, UK

AIST, Japan

University of Surrey, UK

University of Paderborn, Germany

Imperial College London, UK

University of Bologna, Italy

VIII Organization

Additional Reviewers

Ait Sadoune, Idir
Alonso-Blas, Diego
Esteban
Andre, Etiene
Andriamiarina, Manami-
ary Bruno
Bai, Guandong
Bendisposto, Jens
Bodeveix, Jean-Paul
Bruni, Roberto
Bubel, Richard
Carnevali, Laura
Ceska, Milan
Chechik, Marsha
Chen, Xin
Corzilius, Florian
de Gouw, Stijn
De Vink, Erik
Dobrikov, Ivaylo
Dongol, Brijesh
Dukaczewski, Michael
Dwyer, Matt
Edmunds, Andy
Ferrari, Alessio
Filali-Amine, Mamoun
Gibson, J. Paul
Griggio, Alberto
Gui, Lin
Gutiérrez, Raul
Hallerstede, Stefan
Hankin, Chris
Isenberg, Tobias

Isobe, Yoshinao
Jakobs, Marie Christine
Jansen, Nils

Ji, Ran

Kitamura, Takashi
Kleijn, Jetty

Kong, Weigiang
Laarman, Alfons
Lampka, Kai
Larmuseau, Adriaan
Lascu, Tudor Alexandru
Ledru, Yves

Li, Qin

Liu, Yan

Lochau, Malte

Loos, Sarah

Loup, Ulrich
Martin-Martin, Enrique
Masud, Abu Naser
Merro, Massimo
Miao, Weikai
Mihel¢i¢, Matej
Miyazawa, Alvaro
Mostowski, Wojciech
Nakajima, Shin
Nellen, Johanna
Nesi, Monica
Patrignani, Marco
Plagge, Daniel
Poppleton, Michael
Proenca, Jose

Rojas, José Miguel

Roman-Diez, Guillermo
Rot, Jurriaan
Satpathy, Manoranjan
Schremmer, Alexander
Senni, Valerio

Singh, Neeraj
Soleimanifard, Siavash
Song, Songzheng
Stigge, Martin
Subotic, Pavle

Taylor, Ramsay

Ter Beek, Maurice
Tiezzi, Francesco
Timm, Nils

Traverso, Riccardo
Van Delft, Bart
Vandin, Andrea
Vanoverberghe, Dries
Walther, Sven

Wang, Xi

Winter, Kirsten
Wong, Peter
Yeganefard, Sanaz
Zaharieva-Stojanovski,
Marina

Zainuddin, Fauziah
Zelji¢, Aleksandar
Zeyda, Frank

Zhao, Yongxin

Zheng, Manchun

Zhu, Shenghua
Ziegert, Steffen

Organization IX

Organization and Sponsors

The Organizing Committee of iFM 2013 consisted of Luigia Petre (chair), Maryam
Kamali, Yuliya Prokhorova, Magnus Dahlvik, Nina Rytkénen, Tove Osterroos
and Susanne Ramstedt. The Workshops and Tutorials Chair was Pontus Bostrom.

We are very grateful to the financial and administrative support of the fol-
lowing institutions:

Department of Information Technologies at Abo Akademi University, Springer,
the Foundation for Abo Akademi University (Stiftelsen for Abo Akademi), and
the Federation of Finnish Learned Societies (Tieteellisten seurain valtuuskunta,
TSV). Their logos are gratefully displayed below:

O

Abo Akademi University

@ Springer

Table of Contents

Invited Paper 1

From Z to B and then Event-B: Assigning Proofs to Meaningful
Programs e 1
Jean-Raymond Abrial

Refinement, Integration, Translation

Systems Design Guided by Progress Concerns 16
Simon Hudon and Thai Son Hoang

Assume-Guarantee Specifications of State Transition Diagrams for
Behavioral Refinement 31
Christian Prehofer

Translating VDM to Alloyt 46
Kenneth Lausdahl

Verification of EB® Specifications Using CADP 61
Dimitris Vekris, Frédéric Lang, Catalin Dima, and Radu Mateescu

Invited Paper 2

Knowledge for the Distributed Implementation of Constrained Systems
(Extended Abstract) 7
Susanne Graf and Sophie Quinton

Verification

Automated Anonymity Verification of the ThreeBallot Voting
SYSEEINL .t 94
Murat Moran, James Heather, and Steve Schneider

Compositional Verification of Software Product Lines................. 109
Jean-Vivien Millo, S. Ramesh, Krishna Shankara Narayanan, and
Ganesh Khandu Narwane

Deductive Verification of State-Space Algorithms..................... 124
Frédéric Gava, Jean Fortin, and Michael Guedj

XII Table of Contents

Inductive Verification of Hybrid Automata with Strongest Postcondition
Calculuso 139
Daisuke Ishii, Guillaume Melquiond, and Shin Nakajima

Invited Paper 3

Priced Timed Automata and Statistical Model Checking 154
Kim Guldstrand Larsen

Reachability and Model Checking

Improved Reachability Analysis in DTMC via Divide and Conquer 162
Songzheng Song, Lin Gui, Jun Sun, Yang Liu, and Jin Song Dong

Solving Games Using Incremental Induction 177
Andreas Morgenstern, Manuel Gesell, and Klaus Schneider

Model-Checking Software Library API Usage Rules 192
Fu Song and Tayssir Touili

Formal Modelling and Verification of Population Protocols 208
Dominique Méry and Michael Poppleton

Usability and Testing

Detecting Vulnerabilities in Java-Card Bytecode Verifiers Using
Model-Based Testingt 223
Aymerick Savary, Marc Frappier, and Jean-Louis Lanet

Integrating Formal Predictions of Interactive System Behaviour with
User Evaluation 238
Rimvydas Ruksénas, Paul Curzon, and Michael D. Harrison

Automatic Inference of Erlang Module Behaviour 253
Ramsay Taylor, Kirill Bogdanov, and John Derrick

Distributed Systems

Integrating Proved State-Based Models for Constructing Correct

Distributed Algorithms 268
Manamiary Bruno Andriamiarina, Dominique Méry, and
Neeraj Kumar Singh

Quantified Abstractions of Distributed Systems 285
Elvira Albert, Jesis Correas, Germdn Puebla, and
Guillermo Romdn-Diez

Table of Contents XIII

Invited Paper 4

An Algebraic Theory for Web Service Contracts 301
Cosimo Laneve and Luca Padovani

Semantics

A Compositional Automata-Based Semantics for Property Patterns 316
Kalou Cabrera Castillos, Frédéric Dadeau, Jacques Julliand,
Bilal Kanso, and Safouan Taha

A Formal Semantics for Complete UML State Machines with

CommuniCationsottt 331
Shuang Liu, Yang Liu, Etienne André, Christine Choppy, Jun Sun,
Bimlesh Wadhwa, and Jin Song Dong

From Small-Step Semantics to Big-Step Semantics, Automatically 347
Stefan Ciobaca

Program Equivalence by Circular Reasoning 362
Dorel Lucanu and Viad Rusu

System-Level Analysis

Structural Transformations for Data-Enriched Real-Time Systems. 378
Ernst-Ridiger Olderog and Mani Swaminathan

Deadlock Analysis of Concurrent Objects: Theory and Practice 394
Elena Giachino, Carlo A. Grazia, Cosimo Laneve,
Michael Lienhardt, and Peter Y.H. Wong

Broadcast, Denial-of-Service, and Secure Communication 412
Roberto Vigo, Flemming Nielson, and Hanne Riis Nielson

Characterizing Fault-Tolerant Systems by Means of Simulation

Relations 428
Ramiro Demasi, Pablo F. Castro, Thomas S.E. Maibaum, and
Nazareno Aguirre

Author Imdex 443

From Z to B and then Event-B:
Assigning Proofs to Meaningful Programs

Jean-Raymond Abrial

Marseille, France
jrabrial@neuf.fr

The very first paper on Z [1] was published in 1980 (at the time, the name Z was
not “invented”), then the book on the B method [2] was published in 1996, and,
finally, the book on Event-B [3] was published in 2010. So, 30 years separate
Z from Event-B. It is thus clear that I spent a significant time of my scientific
professional life working with the same kind of subject in mind, roughly speaking
specification languages. I do not know whether this kind of addiction is good or
bad, but what I know is that I enjoyed it a lot.

So, I was very pleased when the organizers of iFM 2013, Luigia Petre and
Einar Broch Johnsen, invited me to give a talk at the conference and at the
same time suggested that I can give a presentation on “Z to Event-B”.

Since I am the main contributor (at least initially) of these three topics (Z,
B, and Event-B), there are certainly some common features that are interesting
to put forward in the three of them. But at the same time, during these thirty
years, it was also possible to gradually envisage some evolution from the first to
the last.

The main purpose of this presentation is thus to clarify this. This paper does
not contain a description of Z, B, or Event-B, as well as that of the corresponding
tools that have been developed over the years. Readers interested by this can
access the literature.

In the main part of the paper, I will rather present a historical account. The
idea is to explain how all this has slowly emerged as an intellectual evolution.
I will also try to make clear what are the external ideas and events (there are
many) that influenced this evolution. Then I will try to make a synthesis and
present what is common in these three topics and also what makes them differ-
ent from each other. This will take place in two Appendices.

The Way It All Started: Green

In the seventies, I was a member to the “Green” team developing the program-
ming language that later became ADA. During that time, I was probably one
of the first persons to write programs in “Green”: this is because I thought it
was necessary to try some proposed programming features in some significant
programs before incorporating them into a language. I must say that I was a bit
frustrated at the time, and this was for two reasons.

My first frustration came from my colleagues of the “Green” team: they did not
understand why I was so busy with this “programming” activity of mine. In fact,

E.B. Johnsen and L. Petre (Eds.): IFM 2013, LNCS 7940, pp. 1 2013.
© Springer-Verlag Berlin Heidelberg 2013

2 J.-R. Abrial

they were more interested in discussing some fine points of the language in a way
that was, in my opinion, too far from the future job of working programmers.

My second, more important, frustration came from the programming examples
that I decided to use for these experiments. How could I discover that the written
programs were “correct”? More precisely, what does it means for a program to
be “correct™ So, before engaging in the writing of these experimental programs,
I decided to write little notes in English. Their purpose was precisely to clarify
this point about “correctness”.

These notes supposed to describe what each future program was intended to
achieve. In the case of a simple sequential programming experiment like a sorting
program, this was rather straightforward. However, in the case of more elaborate
experiments, I found it to be more difficult. In particular, this was the case on
examples dealing with embedded systems which were the main intended target
of the “Green” language.

About Assertions

Of course, I was aware of the effort made by Tony Hoare whose famous 1969
paper [8] was already well-known among researchers. But it seemed to me that
writing assertions within a program and eventually proving that these assertions
were indeed true was not enough, for the reason that the program and the
assertions are written simultaneously.

My view was that one should have something at one’s disposal before writing
a program, so that it would then be possible to compare fruitfully the program
with something else. The most important word used in the previous statement
is “compare”. This word raises some difficulties: how can I “compare” a program
written in a formal programming language with a note written in English and
how can I prove properties about such comparisons?

Looking for a Notation

Then emerged slowly the idea to write the mentioned “notes” describing the
properties of the future program achievements, not in English, but in a more
formal language so that the comparison between the program and the “notes”
could be made more effective. Clearly the formal language in question could
not be the programming language itself because this would then lead to some
vicious circle. It should be noted however that in some programming languages,
assertions are written using the programming language itself (with possible side
effects...): an obvious misinterpretation. So, the question was: which notation
shall we use to write such “notes”?

It happened that, at this time, I was very interested in reading the treatise
[12] called “Théorie des Ensembles” (Eléments de Mathématiques) by Nicolas
Bourbaki (this is the collective name of a group of French mathematicians). To
be honest, I must admit that it took me a long time to become familiar with
only the first 50 pages of this book. But I was an enthusiastic beginner and

From Z to B and then Event-B: Assigning Proofs to Meaningful Programs 3

I thought that the way first-order predicate calculus and set theory were used
in this book was quite useful to introduce the main initial working concepts of
mathematics (predicates, sets, binary relations, functions and their basic prop-
erties, etc.), although sometimes it was done in a complicated way in the book
(to my subjective taste).

Proving

Putting together these investigations for a formal notation and my interest in
this book was just a matter of time: it became clearer every day. What interested
me in the Bourbaki book was not only the notation itself but also the way it was
used to perform proofs (although such proofs are written in a rather informal
way in the book). It slowly became clear to me that a mathematical notation is
not only used to “write” mathematics but rather, and more importantly, as a way
to write down proofs that can be trusted by the community of mathematicians
(although this very difficult problem has a long history).

The usage of predicate calculus and that of a set-theoretic notation has thus
a dual advantage for writing these famous notes. First, it will allow us to write
them in a way that will be well understood by people with a normal scientific
background. Second, it will allow us to do some formal proofs in a rigorous
fashion. This second advantage helps us to give now more precision on how we
can “compare” the notes and the programs: namely by doing some mathematical
proofs.

All this was more or less perceived at the end of the seventies. But then it
took more than thirty years to be fully understood (by me) and practically im-
plemented on tools (by others and by me) ... and this is not even finished yet!

People Disliked It

When writing the first paper on Z and starting to spread the idea of using a set-
theoretic notation to write a specification before writing a program, I received
sometimes very negative answers. Some days at that time, I was invited to give
a series of lectures at a Summer School but when the organizers saw the subject
of my presentation, they canceled my visit, telling me that this subject was not
relevant to computer scientists.

I discovered then that set theory had a bad reputation among computer scien-
tists in Academia. I think the reason is that people are very afraid by the formal
definition of it in, say, Zermelo-Fraenkel axiomatization (I agree). Quite often,
computer science academic people confuses mathematics and computation, al-
though in many working programs recursive and inductive definitions are totally
absent.

On the one hand, computer scientists prefer to use predicate calculus only
in specifications. But in doing that they still quite often confuse predicates (a
logical concept) and boolean expressions (a programming concept). People think
that mathematics has a semantics. Programming languages have of course a

4 J.-R. Abrial

semantics, because programs can be executed. But mathematics has no semantics
because it is not executed, it is only used to support modeling and proofs in
various other disciplines (computer science is one of them).

On the other hand, I also noticed during this time, that professional mathe-
maticians are not good at logic. To figure that out, it is very instructive to see
how the “Intermediate Value Theorem” (a special case of it was proposed by
Bolzano in1817) is “proved” in textbooks. The apparent difficulty comes from
the fact that in this proof one needs to use the completeness axiom of real num-
bers and also the classical definition of the continuity of a real function. Both
this theorem and this definition are formally defined by some heavy predicates
involving both universal and existential quantifications. The proofs of the “In-
termediate Value Theorem” that can be seen in the literature clearly show that
their authors do not master predicate calculus: obscure wordings replace clear
treatments. However, it is not at all difficult to have a perfect and readable proof
provided it is made by someone who is “fluent” in first-order predicate calculus.

So, I was clearly in a bad situation: I wanted to reconcile computer scientists
and mathematicians but, apparently, these two communities do not understand
each other very well.

Oxford: Z

Fortunately not all people were against this approach: by the end of the seventies,
I was invited by Tony Hoare to come to Oxford at the Programming Research
Group, where I found a very open atmosphere and was able to develop further
the notation with comprehensive colleagues: Bernard Sufrin, Tim Clement, and
Ib Sorensen.

At the time, the emphasis was not put so much on proving. We were too busy
trying to extract from the classical Zermelo-Fraenkel set theory the minimal
notational constructs that could be used for writing program specifications.

However, we were very soon convinced that this notation should be an open
one, because we could not clearly imagine what could be the necessary math-
ematical concepts that might be useful in writing specifications. The result of
this initial work in Oxford was a very general open and powerful notation, Z,
that is still presently in use in various places (mainly in Universities).

More Investigations: B

At the beginning of the eighties, I decided to come back to France and depart a
bit from the Z community that was starting to grow. This community was quite
active. People added very interesting features to Z: the schema and its calculus,
and some techniques (using schemas) were developed to turn the notation into
one for developing sequential programs.

I was interested by what was done there but also found that we were lacking
an essential powerful proving system. I doubted that one could be developed out

From Z to B and then Event-B: Assigning Proofs to Meaningful Programs 5

of such a general language as Z was. I also found that the relationships between
different schemas was too weak. My new investigations went into four directions:

1. Could we simplify the mathematical notation of Z but nevertheless keep it
powerful enough so that it could be used to develop significant programs?

2. Could we structure the notation into building blocks being able to mimic
what happens in classical programming languages: modular languages and object
oriented languages?

3. Could we incorporate into the notation some techniques borrowed from the
refinement calculus of Ralph Back [6] and others (Tony Hoare [9], Cliff Jones
[10], and Carroll Morgan [I1]), so that the construction of large programs could
be envisaged in a practical and gradual way?

4. Could we develop some powerful proving system that could be used in
practice?

What became clear at the time was that the relationship between the men-
tioned “notes” and the corresponding program makes the former more and more
important. Incorporating refinements into the pictures makes it possible now to
investigate the following;:

5. Could it be possible to remove completely the human programming and
replace it by an automatic procedure performed on the last refinement
of the specification?

With all this in mind, B was launched. But, of course, it took many more years
for these ideas to be pushed enough until B could become a practical and indus-
trial technique. This was clearly not at all the case at the time.

First Contact with Parisian Metro: RER

In the eighties, RATP (the Parisian Metro authority) was modernizing one of
its RER lines (a special line from central Paris to and from some suburb). The
idea was to have the driver following the instruction of a computer rather than
looking at traffic lights. A huge embedded system was developed with computers
on board the trains and on the wayside either. But when all this was completed,
people in charge of the project were suddenly very afraid to sign the final autho-
rization. This was because they were having some doubts about the correctness
of the system. One could imagine the consequences of a sudden program crash.
I was very surprised to be asked by RATP to perform a technical audit of this
system. Among others, I had to answer the following question:

Are we sure that the technique used to validate this system makes us
confident that it will satisfy its specification?

For three weeks I met many people, essentially engineers in charge of developing
this system and also those (different) in charge of testing it. I met extremely
professional people who impressed me a lot. I had nothing against the verification

6 J.-R. Abrial

technique they were using, essentially some heavy testing. But I had nevertheless
a problem because I was not shown any clear specifications of this system. So,
something was not clear to me: against what were these people testing?

When I presented my report to RATP and others, I said that I was very
sorry but that I could not answer the question they asked me because I had not
seen the specification. There was some kind of a shock in the audience. People
were very nervous and said that I was not telling the truth. But the lack of
specification documents (and design documents as well) was clearly established,
so, at the end, they could not disagree.

As a result, and certainly for some other reasons, RATP was courageous
enough and decided to postpone the starting of the new RER semi-automatic
system for one year. Of course, they were not very happy to do so, because the
Parisian Metro is considered to be one of the safest in the world: they had to
recognize that this was not the case here.

More Contacts with Parisian Metro: Line 14

After the audit mentioned in the previous section, RATP asked me whether I
could give them a course on how to write formal specifications. Needless to say,
T was not at all at ease to give a positive answer, because B (this name even did
not existed yet) was in its infancy and Z was not, in my view, the right approach
to their problem. Nevertheless, I tried to do my best and I gave a course using
a formal notation that was “in between” Z and B, clearly something that was
not very satisfactory. Curiously enough, in spite of these approximations, the
course was well received by RATP and by some industry people also attending
the course, and, maybe more importantly, it helped me to clarify many things
in B. During the course, we studied some part of the RER system (the structure
and properties of a metro line) and tried to build a formal model of it.

After that, RATP was silent for a certain time: I thought that finally they
were not interested by this approach. During that time, I tried to develop B
further by stabilizing the retained notation and by starting to build a draft tool.
The final notation was not an open one as Z was. A simple typing system was
set up, and some structuring devices (probably too much) were developed as this
was missing in Z. All this was done as I was a consultant for BP in the UK.

During this time I figured out how important it was to have some solid indus-
trial contacts in order to develop some notation that could be used in practical
developments. After more than a year, RATP contacted me again. They ex-
plained that they intended to develop a new metro line within Paris (Line 14,
also called the Meteor Line) and that this line would be entirely automatic (with-
out drivers). So far so good. But then they asked me whether B could be used
to develop a part of the corresponding computerized system (the safety critical
part). What was my feeling about it?

It was very difficult to give a positive answer: the definition of B was in
principle stabilized but no experience was available yet about the usefulness of
all this, and moreover, the tool was in its infancy (in particular the proving tool).

From Z to B and then Event-B: Assigning Proofs to Meaningful Programs 7

They suggested that the usage of B and that of the corresponding “tool” could
be done in parallel with a more classical development. That seemed to me to
be very reasonable, but probably quite costly! The company Matra Transport
(now part of Siemens) was awarded the contract for developing this driverless
train system. Of course, people in charge of this company were heavily against
using B, but RATP convinced them (mainly financially) to go ahead with it (in
parallel with a classical development as said before).

After some difficulties, a French software house, Steria, was in charge of de-
veloping further the tool for B (also funded by RATP). It was given the name
“Atelier B”. To my astonishment, this organization made of RATP, Matra Trans-
port, and Steria worked well. At some point, RATP even decided to ask Matra
Transport to cancel completely unit tests and also integration tests (both of
them are very costly) because they felt confident enough in the proofs that were
done with the tool. This saved a lot of money which was then used instead to
perform more elaborate testing at a global system level.

In October 1998, Line 14 was launched. Since then, it has not suffered any
software bugs. It has later been extended on both ends very easily. I must ad-
mit that I am always very impressed (and a bit anxious) to embark in a metro
without driver running at full speed in the tunnels ... but the Parisians like it a
lot: Line 14 is always very crowded.

Some Figures

In the Line 14 metro system, the software is not entirely developed with B, only
those parts dealing with safety critical constraints are. On the whole, 86,000 lines
of ADA code had been produced entirely automatically from the B development.
Of course, it was totally forbidden to touch a single line of the code of this part.
This B development required 27,800 proofs to be performed. Among them, 8.1%
were interactive proofs. Such proofs are still done with the tool, but they require
a human intervention. This corresponded to a work load of 7.1 man/months.
The corresponding price is interesting as it can be compared with that of testing
that had been canceled: a clear advantage to proving over testing.

What is interesting to note here is that the Matra Transport engineers had no
difficulty to adapt to this technology that was entirely new for them. In partic-
ular, they were able to perform interactive proofs after a rather short updating.
Moreover, the integration of the proof effort within their modeling work was very
positive, difficulties in performing proofs became a sign that the modeling could
be restructured: improving the modeling has a positive effect on the automati-
zation of the proofs.

Ups and Downs

Since then, the usage of B has been expanded world wide in many other metro
systems: in New York City, in South America, in Europe, in China, etc. Here
are three projects developed with B in France:

8 J.-R. Abrial

1. Another Parisian metro line (Line 1) is now completely automatic and works
with B.

2. The shuttle in Charles de Gaulle airport is automatic and is also using
B. For that system, 158,000 lines of ADA were produced automatically.
This required 43,600 proofs among which 3.3% were interactive, that is 4.6
man,/months (the difference with the figures for Line 14 project, as men-
tioned in the previous section, is due to some improvment in the tool).

3. A line of the Lyon metro has been renovated and uses B.

The Atelier B tool has been developed further by Clearsy, specially its prover.
Other tools have been developed by Siemens to partially automatize the refine-
ment process. Finally, two French software houses are making successful business
with B: Clearsy and Systerel. All this is the positive side.

But there is also a negative side that is quite important. Curiously enough,
to the best of my knowledge, the usage of B is totally absent in other advanced
industrial domains: automotive, aircraft, space, nuclear industries, etc. To my
opinion, B could have been used equally well in these domains. In fact, people
there strongly object to use it. They claimed to have many reasons to do so: in
particular, they said that their engineers could not perform interactive proofs.
They also claimed that B is too far from their engineers technical culture. They
took other options so that it is certainly the case that there will probably be no
progress in using a formal method such as B for the next 15 years in these areas.

On the negative part, it is also interesting to note that B was very much
disregarded initially by Siemens when this company purchased Matra Transport
(it became Siemens Transport). Also in RATP itself, some lobbies were strongly
against B. One of their arguments was that because of the automatization of
proofs and programming then the engineers would be less involved in their job.
I heard also the argument that because B was a success in the Line 14 project
then one has to think of a different approach! In both cases, after some years, B
was still being used fruitfully...

System Modeling

At the turn of the century, after the success of the Line 14 project of Paris
metro, I was worried about one question, which is the following. In this project
and in many similar ones, some initial studies are performed by, so-called, sys-
tem engineers. They determine the main structure of the system, mainly its
components and their relationship. They eventually deliver an analysis out of
which one defines the informal specifications of the various components of the
future system. The formal development undertaken with B (or with any other
similar approach) starts at this point only. This is then done on each of these
components independently.

Now, the question is: how about these system studies? I am not claiming that
the system engineers are doing a bad job, they are usually extremely good and

From Z to B and then Event-B: Assigning Proofs to Meaningful Programs 9

professional, but, clearly, if mistakes are made during this preliminary phase,
then the formal developments undertaken afterwards will probably not discover
them.

In the case of a train system, such studies are responsible for ensuring that
no two trains can hit each other when they both circulate on a complex rail net-
work containing many dynamic points (switches in US English) allowing train
to change rails. In other words, they guarantee that many trains can circulate
simultaneously on the rail network in a safe way. As can be seen, this is not
a simple task: the computer of each train has to communicate with the way-
side computers receiving information about various trains circulating in their
neighborhood and information about the points’ position in the rails under the
supervision of the wayside computers.

So the idea is to develop a formal approach for such system studies as well. We
would like these studies to be concluded by formal proofs, thus being possibly
safer than those done “manually”. Clearly the formalism to be used here had
to be different from that used for developing software as is done with B. We
have to model an entire system where some components will eventually turn
into software controllers whereas others are models of the physical components
pertaining to the, so-called, environment of the various software parts.

In other words, we have to model a situation where the “computation” is es-
sentially distributed. We also have to take into account the cases where one of
the components fails. Finally, we have to consider complex timing constraints.
All this make it necessary to start a new formalism that inherited a lot from B
but was nevertheless different from it: Event-B [3].

A European Effort: Event-B and the Rodin Platform

At that time, I was made aware by Michael Butler of the work done in the late
eighties by Ralph Back and Reino Kurki-Suonio on Action System [5]. I became
fascinated by the excellent ideas contained in their approach and figured out
that many of them could be borrowed and incorporated into B for making such
formal system modeling possible. It happened that B, as it what at the time,
was rich enough to be used for experimenting these ideas. This was done for
many years.

From 2002 until now, this new developmentt was funded by the European
Commission under four different successive European projects: Matisse, Rodin,
Deploy, and Advance. This effort of the European Commission is quite remak-
able. Some European Universities were involved: the University of Southamp-
ton and Newcastle University in the UK, Aabo Akademi in Finland, ETH-
Zuerich in Switzerland, and the University of Duesseldorf in Germany. Likewise,
some industrial companies were involved among which are Siemens, Bosch, SAP,
Alstom, Clearsy, and Systerel.

I also received some very important help and scientific support from
Dominique Cansell and Dominique Méry.

10 J.-R. Abrial

These European projects evolved in three directions: first the development
of Event-B itself, second the construction of a tool, the Rodin Platform [I5],
and third, some industrial case studies (such case studies were not completely
satisfactory).

The Rodin tool is built on top of Eclipse. This allowed us to have a platform
that is extensible by means of, so-called, plug-ins. The development of the Rodin
Platform started at ETH Zuerich during the Rodin project. The technical leader
of the project was Laurent Voisin working with by Stefan Hallerstede, Thai Son
Hoang, Farhad Mehta, and Frangois Terrier. It was extended during the Deploy
project at Systerel, still under the guidance of Laurent Voisin working this time
with Nicolas Beauger, Thomas Muller, and Christophe Métayer.

Many plug-ins for the Rodin Platform were developed at the University of
Southampton under the guidance of Michael Butler (among which are UML-B,
EventB-ADA,Theory), and at the University of Duesseldorf under the guidance
of Michael Leuschel (ProB, ProR).

The net result of all these efforts is that we now have a very rich software
tool [15] that can be made available for free to anyone. Courses on Event-B and
practical works with the Rodin Platform are taught in many parts of the world:
Australia, Japan, China, Malaysia, India, many places in Europe, South and
North America, North Africa.

Putting B and Event-B Together

The next step is now to try both Event-B and B in the same industrial project.
The former being used to perform the system studies followed by the latter used
to implement the software controller. This has not fully happen yet although I
am quite confident that it could be done.

There has been an attempt, but the industrial partner was not ready to fully
cope with this dual approach, although he was quite convinced and happy with
the usage of B, which was very successful.

The Last Evolution: Hybrid Systems

In recent years, several groups, mainly in Shanghai (East China Normal Univer-
sity) and in the UK (Manchester University) [14] are interested in studying how
Event-B and the Rodin platform could be able to cope with hybrid systems.

So far, B and Event-B were used to model discrete systems only. But hybrid
systems are becoming more and more important, especially in the development
of embedded systems where the problem is to control, with some discrete inter-
ventions, an external situation that is supposed to evolve continuously.

Here again, among a very important literature, the work of Ralph Back and
his colleagues Luigia Petre and Ivan Porres [7] is quite important. They extended
Action System to become Continuous Action system. This is done by generalizing
timeless variables to be time function variables recording their future evolution

From Z to B and then Event-B: Assigning Proofs to Meaningful Programs 11

as time goes. This generalization can be incorporated into models done with
Event-B without too much difficulties [4].

However, when such functions are not defined directly but rather indirectly
by means of unsolvable differential equations, things are becoming more com-
plicated. One has thus to prove some properties of the solution of a differential
equation without solving it. This topic is still presently a research subject.

Some Concluding Remarks

In this paper, I covered thirty years of history concerning Z, B, and Event-B.
The sociological adventure of all this is quite interesting. The first remark that
could be made is that more and more people and institutions were involved over
the years. On can also notice that people involvement was not so much “linear”
on the short term (it could stop temporarily) but it does increase regularly in
the long term.

The situation with Event-B and the Rodin Platform is quite different from
that of B and the Atelier B tool. Event-B and the Rodin Platform are largely
used in Academia and almost not used in Industry (with the exception of Hitachi
in Japan). On the contrary, B and the Atelier B tool are used in many industrial
projects but not so much in Academia. It could be interesting to investigate why.

I think that the main reason is due to the different kinds of funding that were
used. In the case of B and Atelier B, the main funding came from RATP together
with the development of a huge industrial project: Line 14.

Some lessons have to be learned from this. It seems to me that a practical
research could be partially funded by taking a very small percentage of the money
spent in large industrial projects. This is what has happened for the funding to
B and Atelier B. The same thing happens with some piece of art in France and
certainly in other countries as well. For instance, when the French government
decides to fund the construction of, say, a hospital, then a small amount of the
funding is devoted to pay an artist to erect a sculpture in front of the hospital.
I think that there is even a law enforcing this.

Why not to have the same kind of law for the funding of a practical research?
There will be many positive outcomes from doing this: the research project
will last as long as the industrial project does. In my opinion, it is important,
although sometimes difficult, to stop a research project, here it would be implicit
from the beginning. The outcome of the research project (if successful) can be
incorporated into the industrial project. People involved in the research project
are very committed because they are willing to see their results being used in
the industrial project and later elsewhere.

In the case of Event-B and the Rodin Platform, the funding came from the
European Commission. In these cases we observed, as mentioned earlier, that
the industrial case studies were not very successful. The reason, I think, for these
relative failures came from the fact that the involved parts of the industries were
R&D units, not business units. It is well known fact that in large corporations,
the relationship between these entities is rather delicate: usually, works done

12 J.-R. Abrial

in R&D departments have some difficulties to be eventually incorporated into
business units.

On the other hands, the academic results of these European projects is ex-
tremely successful (Event-B, the Rodin Platform). So, the European funding
was here very positive. As said earlier, many courses on this material are now
distributed in many places over the world and many PhD thesis were awarded.
The influence on industry can then take more time when these educated people
will eventually reach industry. This is a long-term human investment very much
in the spirit of the European Commission.

Acknowledgments. I would like to thank very much some people who read ini-
tial drafts of this paper providing encouragements and useful comments: Richard
Banach, Michael Butler, Thai Son Hoang, Luigia Petre, Ken Robinson, and
Bernard Sufrin.

References

1. Abrial, J.-R., Schuman, S.A., Meyer, B.: Specification Language. On the
Construction of Programs (1980)

2. Abrial, J.-R.: The B-book: assigning programs to meanings. Cambridge University
Press (1996)

3. Abrial, J.-R.: Modeling in Event-B: System and Software Engineering. Cambridge
University Press (2010)

4. Abrial, J.-R., Su, W., Zhu, H.: Formalizing Hybrid Systems with Event-B.
ABZ (2012)

5. Back, R.J., Kurki-Suonio, R.: Distributed Cooperation with Action Systems.
ACM Transaction on Programming Languages and Systems (1988)

6. Back, R.J.: A Calculus of Refinements for Program Derivations. Acta Informatica
(1988)

7. Back, R.-J., Petre, L., Porres, 1.: Generalizing action systems to hybrid systems.
In: Joseph, M. (ed.) FTRTFT 2000. LNCS, vol. 1926, p. 202. Springer, Heidelberg
(2000)

8. Hoare, C.A.R.: An Axiomatic Basis for Computer Programming. CACM (1969)

9. Hoare, C.A.R.: Proof of Correctness of Data Representations. Acta Informatica
(1972)

10. Jones, C.B.: Software Development: A Rigorous Approach. Prentice Hall
International (1980)

11. Morgan, C.C.: Programming from specifications. Prentice Hall International (1990)

12. Bourbaki, N.: Théorie des Ensembles. Hermann (1970)

13. Maamria, I.: Towards a Practically Extensible Event-B Methodology. PhD Thesis.
The University of Southampton (2012)

14. Banach, R., Zhu, H., Su, W., Wu, X.: Continuous Behaviour in Event-B: A Sketch.
ABZ (2012)

15. http://www.event-b.org

http://www.event-b.org

From Z to B and then Event-B: Assigning Proofs to Meaningful Programs 13

Appendix A: What Is Common in Z, B, and Event-B: the Set
Notation

The mathematical notation used in Z, B and Event-B is that of set theory. It is
often said that Z is named after Zermelo-Fraenkel set theory. People could then
think that the Z (and B) notation was directly dictated by this set theory. In
my opinion, this is far from being true. In order to illustrate this, let me present
here a mail conversation I had some times ago with Prof. Freek Wiedijk. Here is
part of a mail I received from him:

I was talking to Josef Urban, and he claimed that someone told him
last week (at Dagstuhl) that B has the full strength of ZFC set theory.
Now I had the impression that although B is very much in the spirit of
ZFC set theory, it is logically slightly weaker. I don’t remember where
that impression came from, though. (Maybe it was related to the type
system?)

Can you tell us who’s right about this? I would very much like to know!

Here was my answer:

Let me explain what we have in Event-BlJ (see chapter 9 of my book).

Set Theory

The set theory we use in Event-B is a TYPED (see below) set theory
made of the following axioms:

1. Extensionality: A=B < Ve-z€e Az e B

2. Powerset: T€P(S) & Vo €eT=z€S

3. Comprehension: z € {y|y € S A P(y)} © z€ S A P(x)

4. Cartesian product: z —y € SXT < € S Ay €T (see below for
the notation of the pair of z and y)

5. The axiom of choice can be added if necessary by defining in the lan-
guage a (polymorphic) choice function for each non-empty set.

Remarks

rl: It does not contain the foundation axiom. It is implicit from the
syntax.

r2: It does not contain the union axiom. It is forbidden by the typing.
r3: It does not contain the infinity axiom as the natural numbers and
the integers are axiomatized directly with the Peano axioms and the
extension to negative numbers.

r4: The Cartesian product axiom is necessary as the usual Kuratowski
construction of the pair ((z,y) = {{z}, {z,y}}) is forbidden by the typ-
ing.

r5: In fact, the pair is axiomatized OUTSIDE SET THEORY as it it
necessary in predicate calculus with equality: x — y =2 —t & z =
z A y =t (we denote the pair of z and y as z — y).

! What follows is equally valid for Z and B.

14 J.-R. Abrial

About Typing

When defining a problem, we start with statements like this “Let S, T,
... be given sets ...” Within such a statement, the BASIC TYPES are the
sets S, T, ... together with Z, the set of Integers. Type constructors are:
1. Cartesian product of types

2. Power of types.

Type checking (a procedural treatment) must ensure that all expressions
in a formal statement are WELL-TYPED. It means that each expression
belongs to a basic type or belong to a set defined (recursively) from basic
types and the type constructors. If it is not the case, then the statement
is rejected for future treatment.

Well-Definedness

Besides type checking, another initial treatment is performed on a
formal statement, namely checking that expressions and predicates are
WELL-DEFINED. This treatment may require some proofs (it is NOT
procedural as type checking is).

The most common well-definedness checking is that in an expression such
as f(x) (where f is a partial function) then z must belong to the domain
of f. Others are no division by 0, min and max are well-defined on some
numerical sets ...

In a proof, after well-definedness checking, one can assume that expres-
sions remain well defined unless one introduces new expressions as in a
cut treatment (in this case, well-definedness has to be performed in the
middle of a proof).

Answering Your Question

I agree with your wording: “B is very much in the spirit of ZFC set the-
ory”. Now the question is: can we do the same as in full ZFC? We have
tried many set theoretic theorems such as (see the end of the last chap-
ter of my book): Tarski’s fix point theorem, Cantor-Bernstein theorem,
Zermelo’s theorem, etc. We were able to prove them all within our set
theory. However ordinals cannot be defined explicitly because of typing.

Finally, here is the reply sent by Prof. Freek Wiedijk

Many thanks for clarifying to us how the set theory of Event-B relates
to ZFC!

What I find suprising is that you claim that the fact that it is a bit
weaker (no union axiom, no replacement, no way to define the ordinals)
is caused by the fact that everything is typed. However, in the Mizar
system one does have full ZFC (even a bit more), and there everything
is typed too.

But I guess that maybe you don’t like to have a more complicated type
system (like the one in Mizar, with its rather involved subtyping rules)
for good reasons?

From Z to B and then Event-B: Assigning Proofs to Meaningful Programs 15

Here is my final mail in reply to this one:

Yes, the typing we use is very simple (basic types + (recursively) carte-
sian product of types and power of types). This was decided on purpose
so that the typing procedure is also very simple (does not require any
proof) ... and, as we find it, sufficient for our purpose.

Appendix B: What Is Different in Z, B, and Event-B: Their Purpose

The initial purpose of Z was to identify a set-theoretic notation to be used as
a medium for writing formal specifications of programs. The result is a very
powerful generic notation.

The initial purpose of B was to develop a notation able to be used for the
specification and development of large software. The set notation used, although
in the same spirit as the one used in Z, is in fact less general and not generic. It
was felt however to be sufficient for the intended purpose. The main structure
is the so-called “machine” containing variables, invariant and operations defined
by pre- and post-conditions. A machine can be refined. It can also import an-
other machine for an implementation. The notation is thus close (although more
general) to that of a modular programming language. Refinement is defined by
weakening the pre-condition and strengthening the post-condition of operations.

The Atelier B tool (proprietary of Clearsy but freely distributed to Univer-
sities) allows one to define machines, refines them and prove the corresponding
proof obligations (invariant preservation and correct refinement).

The initial purpose of Event-B is to have a notation able to be used for
modeling distributed systems. As for B, the main structure is also a “machine”.
However a machine does not define a programming module as in B but rather
contains a set of events defined by a guard and an action (assignment, possibly
non-deterministic of variables). Refinement is defined by strengthening the guard
and the actions.

The Rodin Platform [I5] is a free software, and, like Atelier B for B, allows one
to define machines, refines them and prove the corresponding proof obligations
(invariant preservation and correct refinement). This platform sits on top of
Eclipse. It can be extended by plug-ins.

The initial set-theoretic notation of Event-B is a little less general that
the one used in B. However, the usage of the “Theory” plug-in [I3] under the
Rodin Platform allows one to freely extend the mathematical language in a
polymorphic way.

Systems Design Guided by Progress Concerns

Simon Hudon! and Thai Son Hoang?

! Department of Computer Science, York University, Toronto, Canada
simon@cse.yorku.ca
2 Institute of Information Security, ETH-Zurich, Switzerland
htson@inf.ethz.ch

Abstract. We present Unit-B, a formal method inspired by Event-B and
UNITY, for designing systems via step-wise refinement preserving both safety
and liveness properties. In particular, we introduce the notion of coarse- and fine-
schedules for events, a generalisation of weak- and strong-fairness assumptions.
We propose proof rules for reasoning about progress properties related to the
schedules. Furthermore, we develop techniques for refining systems by adapting
event schedules such that liveness properties are preserved. We illustrate our ap-
proach by an example to show that Unit-B developments can be guided by both
safety and liveness requirements.

Keywords: progress properties, refinement, fairness, scheduling, Unit-B.

1 Introduction

Developing systems satisfying their desirable properties is a non-trivial task. Formal
methods have been seen as a solution to the problem. Given the increasing complex-
ity of systems, many formal methods adopt refinement techniques, where systems are
developed step-by-step in a property-preserving manner. In this way, a system’s details
are gradually introduced into its design in a hierarchical development.

System properties are often put into two classes: safety and liveness [10]. A safety
property ensures that undesirable behaviours will never happen during the system exe-
cutions. A liveness property guarantees that eventually desirable behaviours will hap-
pen. Ideally, systems should be developed in such a way that they satisfy both their
safety and liveness properties. Although safety properties are often considered the most
important ones, we argue that having live systems is also important. A system that is
safe but not live is useless. For example, consider an elevator system that does not move.
Such an elevator system is safe (nobody could ever get hurt), yet useless. According to
a survey [6], liveness properties (in terms of existence and progress) amount to 45% of
the overall system properties.

In most refinement-based development methods such as (B, Event-B, VDM, Z) the
focus is on preserving safety properties. A possible problem for such safety-oriented
methods is that when applying them to design a system, we can make the design so
safe that it becomes unusable. It is hence our aim to design a refinement framework
preserving both safety and liveness properties.

E.B. Johnsen and L. Petre (Eds.): IFM 2013, LNCS 7940, pp. 16-30] 2013.
(© Springer-Verlag Berlin Heidelberg 2013

Systems Design Guided by Progress Concerns 17

Some modelling methods such as UNITY [3], include the capability of reasoning
about liveness properties. In UNITY, there is a clear distinction between specifica-
tions (temporal properties) and programs (transition systems). Refinement in UNITY
involves transforming specifications according to the UNITY logic. At the end of the
refinement process, one obtains several temporal properties which then can be imple-
mented by some program fragments according to well-defined rules. As a result, pro-
grams (transition systems) in UNITY are not part of the design, they are the output of
the refinement process. A disadvantage of this approach is that the transformation of
temporal properties can make the choice of refinements hard to understand. In order
to overcome this limitation, we unified the notion of specification and that of program,
making smoother the transition from one to the other.

In this paper, we present a formal method, namely Unit-B [§]], inspired by UNITY [3]]
and Event-B [1]. We borrow the ideas of system development from Event-B, in which
a series of models is constructed and linked by refinement relationships. The temporal
logic that we use to specify and to reason about progress properties is based on UNITY.

The main attraction of our method is that it incorporates the reasoning about safety
and liveness properties within a single refinement framework. Furthermore, our ap-
proach features the novel notions of coarse- and fine-schedules, a generalisation of the
standard weak- and strong-fairness assumptions. They allow us (1) to reason about the
satisfiability of progress properties by a given model, and (2) to refine a given model
while preserving liveness properties. This makes it possible in Unit-B to introduce live-
ness properties at any stage of the development process. Subsequently, not only does
it rule out any design that would be too conservative, but it also justifies design deci-
sions. As a result, liveness properties, in particular progress properties, act as a design
guideline for developing systems.

We give a semantics for Unit-B models and their properties using computation cal-
culus [5]]. This enables us to formally prove the rules for reasoning about properties and
refinement relationship in Unit-B.

Structure. The rest of the paper is organised as follows. In Section[2] we review Dijk-
stra’s computation calculus [5] which we used to formulate our semantics and design
our proofs. We follow with a description of the Unit-B method (Section[3). The method
and its refinement rules are demonstrated by an example in Section [l We summarise
our work in Section [3]including discussion about related work and future work.

2 Background: Computation Calculus

This section gives a brief introduction to computation calculus, based on [5]. Let S be
the state space: a non-empty set of “states”. Let C be the computation space: a set of non-
empty (finite or infinite) sequences of states (“computations”). The set of computation
predicates C Pred is defined as follows.

Definition 1 (Computation Predicate). CPred = C — B, i.e. functions from
computations to Booleans.

18 S. Hudon and T.S. Hoang

The standard boolean operators of the predicate calculus are lifted, i.e. extended to
apply to C Pred. For example, assuming s,t € C'Pred and 7 € C, we have[l

(s=t)os = (st=t1) (1) Viz sayr = (Vi sidT). (2)

The everywhere-operator quantifies universally over all computations, i.e.
[s] = (V7 s.7) 3)

Whenever there are no risks of ambiguity, we shall use s = ¢ as a shorthand for [s = ¢ |
for computation predicates s, t.

Postulate 1. C Pred is a predicate algebra.

A consequence of Postulate [l is that C'Pred satisfies all postulates for the predicate

calculus as defined in [4]. In particular, true (maps all computations to TRUE) and

false (maps all computations to FALSE) are the “top” and the “bottom” elements of

the complete boolean lattice with the order [= | specifying by these postulates. The

lattice operations are denoted by various boolean operators including A, V, -, =, etc.
The predicate algebra is extended with sequential composition as follows.

Definition 2 (Sequential Composition)
(s;t)t = (#r=o00AsT)V Tn:n<#r:s(rtn+)At(rin)) @)
where #, 1 and | denote sequence operations ‘length’, ‘take” and ‘drop’, respectively.

Intuitively, a computation 7 satisfies s ; ¢ if either it is an infinite computation satisfying
s, or there is a finite prefix of 7 (i.e. 7 T n+1) satisfying s and the corresponding suffix
7 J n (which overlaps with the prefix on one state) satisfying t.

In the course of reasoning using computation calculus, we make use of the distinction
between infinite (“eternal”) and finite computations. Two constants E, F € CPred
have been defined for this purpose.

Definition 3 (Eternal and Finite Computations). For any predicate s,
E = true; false (5) siseternal = [s=E]| (7)
F=-E (6) sis finite = [s=F] (8)

Given F the temporal “eventually” operator (i.e., {»>) can be formulated as F;s. The
“always” operator G is defined as the dual of the “eventually” operator.

Definition 4 (Always Operator). G s = =(F; —s), for any predicate s

Important properties of G are that it is strengthening and monotonic. For any predicates
s and ¢, we have:

[Gs=s], 9)
[s=t] = [Gs=Gt], (10)
[G(s=t) = (Gs=Gt)]. (11)

! In this paper, we use f.z to denote the result of applying a function f to argument z. Function
application is left-associative, so f.z.y is the same as (f.x).y.

Systems Design Guided by Progress Concerns 19

A constant 1 is defined as the (left- and right-) neutral element for sequential
composition.

Definition 5 (Constant 1). For any computationt, 1.1 = #7=1

State Predicates In fact, 1 is the characteristic predicate of the state space. Moreover,
we choose not to distinguish between a single state and the singleton computation con-
sisting of that state, which allows us to identify predicates of one state with the predi-
cates that hold only for singleton computations. Let us denote the set of state predicates
by SPred.

Definition 6 (State Predicate). For any predicatep, p € SPred = [p=1].

A consequence of this definition is that S Pred is also a complete boolean lattice with
the order [=], with 1 and false being the “top” and “bottom” elements. It inherits
all the lattice operators that it is closed under: conjunction, disjunction, and existential
quantification. The other lattice operations, i.e. negation and universal quantification,
are defined by restricting the corresponding operators on C'Pred to state predicates.
We only use state predicate negation in this paper.

Definition 7 (State predicate negation ~). For any state predicate p, ~p = —-p A 1.

For a state predicate p, the set of computations with the initial state satisfying p is
captured by p;true: the weakest such predicate. A special notation e : SPred —
C Pred is introduced to denote this predicate.

Definition 8 (Initially Operator). For any state predicate p, ep = p; true

This entails the validity of the following rule, which we will use anonymously in the
rest of the paper: for p, g two state predicates,p;q = p /N q.

An important operator in LTL is the “next-time operator”. This is captured in com-
putation calculus by the notion of atomic computations: computations of length 2. A
constant X € CPred is defined for this purpose.

Definition 9 (Atomic Actions). For any computation T and predicate a,

Xr = #r=2 (12)

a is an atomic action = [a = X|] (13)

Given the above definition, the “next” operator can be expressed as X ; s for arbitrary
computation s.

3 The Unit-B Method

This section presents our contribution: the Unit-B method which is inspired by Event-
B and UNITY. Similar to Event-B, Unit-B is aimed at the design of software systems
by stepwise refinement. It differs from Event-B by the capability of reasoning about
progress properties and its refinement-order which preserves liveness properties. It also
differs from UNITY by unifying the notions of programs and specifications, allowing
refinement of programs.

20 S. Hudon and T.S. Hoang

3.1 Syntax

Similar to Event-B, a Unit-B system is modelled by a transition system, where the state
space is captured by variables v and the transitions are modelled by guarded events.
Furthermore, Unit-B has additional assumptions on how the events should be scheduled.
Using an Event-B-similar syntax, a Unit-B event has the following form:

e Z any t where g.t.v during c.t.v upon f.t.v then s.t.v.v’ end , (14)

where t are the parameters, g is the guard, c is the coarse-schedule, f is the fine-
schedule, and s is the action changing state variables v. The action is usually made up of
several assignments, either deterministic (:=) or non-deterministic (:|). An event e with
parameters ¢ stands for multiple events. Each corresponds to several non-parameterised
events e.t, one for each possible value of the parameter ¢. Here g, ¢, f are state predi-
cates. An event is said to be enabled when the guard g holds. The scheduling assump-
tion of the event is represented by c and f as follows: if ¢ holds for infinitely long and f
holds infinitely often then the event is carried out infinitely often. An event without any
scheduling assumption will have its coarse-schedule ¢ equal to false. An event having
only the coarse-schedule ¢ will have the fine-schedule to be 1. Vice versa, an event
having only the fine-schedule f will have the coarse-schedule to be 1.

In addition to the variables and the events, a model has an initialisation state predicate
init constraining the initial value of the state variables. All computations of a model start
from a state satisfying the initialisation and are such that, at every step, either one of
its enabled events occurs or the state is unchanged, and each computation satisfies the
scheduling assumptions of all events.

Properties of Unit-B models are captured by two types of properties: safety and
progress (liveness).

3.2 Semantics

We are going to use computation calculus to give the semantics of Unit-B models. Let
M be a Unit-B model containing a set of events of the form (I4) and an initialisation
predicate init. Since the action of the event can be described by a before-after predicate
s.t.w.v', it corresponds to an atomic action S.t = (Ve: e(e=v) = X;s.t.e.v).
Given that an event e.t can only be carried out when it is enabled, the effect of each
event execution can therefore be formulated as follows: act.(e.t) = g.t; S.t. A special
constant SKIP is used to denote the atomic action that does not change the state.

Definition 10 (Constant SKIP). SKIP.7 = #7=2 A 7.0=7.1, for all traces T (7.0,
7.1 denotes the first two elements of T).

The semantics of M is given by a computation predicate ex.lM which is a conjunction
of a “safety part” saf .M and a “liveness part” live.M, i.e.,

[exM = saf M A liveM]. (15)
A property represented by a formula s is satisfied by M, if

[exM=s]. (16)

Systems Design Guided by Progress Concerns 21

Safety Below, we define the general form of one step of execution of model M and the
safety constraints on its complete computations.

[step.M = (Je,t: et € M: act.(e.t)) V SKIP | (17)
[saf M = einit A G (step.M; true)] (18)

Safety properties of the model are captured by invariance properties (also called invari-
ants) and by unless properties.

An invariant [.v is a state-properties that hold at every reachable state of the model.
In order to prove that [.v is an invariant of M, we prove that [ez, M = G o] |. In
particular, we rely solely on the safety part of the model to prove invariance properties,
i.e., we prove [saf M = G eI]. This leads to the well-known invariance principle.

[init=1] A [(Ve,t: et € M: I;act.(et) = X;I)]
N (INV)
[saf M= G oI]

Invariance properties are important for reasoning about the correctness of the models
since they limit the set of reachable states. In particular, invariance properties can be
used as additional assumptions in proofs for progress properties.

The other important class of safety properties is defined by the unless operator un.

Definition 11 (un operator). For all state predicates p and q,
[(punq) = G(op = (G ep);(1VX);eq)] (19)

Informally, pun q is a safety property stating that if condition p holds then it will hold
continuously unless ¢ becomes true. The formula (1 v X) is used in (I9) to allow the
last state where p holds and the state where ¢ first holds to either be the same state or
to immediately follow one another. The following theorem is used for proving that a
Unit-B model satisfies an unless property.

Theorem 1 (Proving an un-property). Consider a machine M and property pun q. If
(Ve t: et e M: G((pA~q);act.(e.t)true = X;(pV ¢);true)) (20)
then [ex.M = punq |

Proof (Sketch). Condition 2Q) ensures that every event of M either maintains p or
establishes q. By induction, we can see that the only way for p to become false after a
state where it was true is that either ¢ becomes true or that it was already true.

Liveness. For each event of the form (I4), its schedule sched.(e.t) is formulated as
follows, where c and f are the event’s coarse- and fine-schedule, respectively.

[sched.(et) = G(G ec AN GF;ef = F; f;act.(et);true)]. (21)

To ensure that the event e.t only occurs when it is enabled, we require the following
feasibility condition:
[ezM = G e(cAf = g)] (SCH-FIS)

22 S. Hudon and T.S. Hoang

Our scheduling is a generalisation of the standard weak-fairness and strong-fairness as-
sumptions. The standard weak-fairness assumption for event e (stating that if the event
is enabled infinitely long then eventually it will be taken) can be formulated by using
¢ = g and f = 1. Similarly, the standard strong-fairness assumption for e (stating that
if the event is enabled infinitely often then eventually it will be taken) can be formulated
byusingc=1and f = g.

[wf.(et) = G (G eg = F;act.(e.t);true) | (22)
[sf.(e.t) = G (GF;eg = F;act.(e.t); true) | (23)

The liveness part of the model is the conjunction of the schedules for its events, i.e.,

[live M = (Ve,t: et € M: sched.(el)) | (24)

3.3 Progress Properties
Progress properties are of the form p ~~ g, where ~~ is the leads-to operator.

Definition 12 (~~ operator). For all state predicates p and q,

[(p~q) = G(ep = Fegq)] (25)

In this paper, properties and theorems are often written without explicit quantifications:
these are universally quantified over all values of the free variables occurring in them.
Important properties of ~~ are as follows. For state predicates p, ¢, and r, we have:

[(p=q9) = (@~a] (Implication)
(P~ N (g~7) = (p~r1)] (Transitivity)
[p~aq) = (A~g ~ q)] (Split-Off-Skip)

The main tool for reasoning about progress properties in Unit-B is the transient
operator tr.

Definition 13 (tr operator). For all state predicate p, [trp = GF;e~p].

tr p states that state predicate p is infinitely often false. The relationship between tr and
~ 1is as follows:

The attractiveness of properties such as trp is that we can implement these using a
single event as follows.

Theorem 2 (Implementing tr). Consider a Unit-B model M and a transient property
trp. We have | ex. M = trp |, if there exists an event

e = any t where g.t.v during c.t.v upon f.t.v then s.t.v.v’ end ,
that is to say ex.M entails:

G (G ecANGF;eof = F; f;act.(et)), (LIVE)

Systems Design Guided by Progress Concerns 23

and parameter t such that e.t € M and ex.M entails each of the conditions below:

G e(p=c), (SCH)
c~ f, (PRG)
G((pAcAf);act.(et);true = X;e~p). (NEG)

Proof. Inthis case, G acts as an everywhere operator which allows us to prove F; e ~p
instead of G F;e ~ p. Additionally, since [~s=>s = s] for any computation predicate
s, we discharge our proof obligation by strengthening F' ; e ~p to its negation, G ep.

Fie~p

= {[F;X = F], aiming for (NEG) }
F:X;e~p

< {QNEGQ}
F;(pAcA f);act;true

<= { computation calculus }
F;f;act;true A G ec N G op

<= { IYB); G is conjunctive }
GFief AN Gec A G ep

= { (PRG) }
G ec NG ep

= { G is conjunctive; (SCH) }
G ep

(Due to space restriction, for the rest of this paper, we only present sketch of proofs of
theorems. Detailed proofs are available in [8§]]).

Condition (SCH) is an invariance property. Condition (PRG) is a progress property.
Condition (NEG)) states that event e.t establish ~ p in one step. In practice, often we
design c such that it is the same as p and f is 1 (i.e., omitting f); as a result, conditions
(SCH) and are trivial. Condition (NEG)) can take into account any invariance
property [and can be stated as [(I Ap AcA f) ;act.(et) = X;~p].

In general, progress properties can be proved using the following ensure-rule. The
rule relies on proving an unless property and a transient property.

Theorem 3 (The ensure-rule). For all state predicates p and q,

[(punq) A (trph ~q) = (p~q)] (27)

Proof (Sketch). pun q ensures that if p holds then it will hold for infinitely long or
eventually ¢ holds. If ¢ holds eventually then we have p ~~ ¢. Otherwise, if p holds
for infinitely long and ~ g also hold for infinitely long, we have a contradiction, since
tr pA ~ g ensures that eventually pA ~ g will be falsified. As a result, if p holds for
infinitely long then eventually ¢ has to hold.

24 S. Hudon and T.S. Hoang

3.4 Refinement

In this section, we develop rules for refining Unit-B models such that safety and liveness
properties are preserved. Consider a machine M and a machine N, N refines M if

[ex. N = ex.M]. (REF)

As a result of this definition, any property of M is also satisfied by IN. Similarly to
Event-B, refinement is considered in Unit-B on a per event basis. Consider an abstract
event e.t belong to M and a concrete event f.¢ belong to N as follows.

e = any ¢t where g.t.v during c.t.v upon f.t.v then s.t.v.v’ end (28)

f = any t where h.t.v during d.t.v upon e.t.v thenr.t.v.v’ end (29)
We have f.t is a refinement of e.t if

[ex. N = (act.(f.t) = act.(e.t))],and (EVT-SAF)
[ex.N = (sched.(f.t) = sched.(e.t))] (EVT-LIVE)

A similar rule is presented for the initialisation. The proof that N refines M (i.e., (REB))
given conditions such as and (EVT-LIVE) is left out. A special case of event
refinement is when the concrete event f is a new event. In this case, f is proved to be
a refinement of a special SKIP event which is unscheduled and does not change any
abstract variables.

Condition (EVIESAD) leads to similar proof obligations in Event-B such as guard
strengthening and simulation. We focus here on expanding the condition (EVIELIVE).
The subsequent theorems are related to concrete event f (29) and abstract event e 28)),
under the assumption that condition has been proved. They illustrate dif-
ferent ways of refining event scheduling information: weakening the coarse-schedule,
replacing the coarse-schedule, strengthening the fine-schedule, and removing the fine-
schedule.

Theorem 4 (Weakening the coarse-schedule). Given e = f. If
[ex N = Ge(c=d)] then [ex.N=(sched.(f.t)= sched.(e.t))].

Proof (Sketch). The coarse-schedule is at an anti-monotonic position within the defini-
tion of sched.

Theorem 5 (Replacing the coarse-schedule). Given e = f. If

[ezN = ¢ ~ d] (30)
[exN = dun ~c], 31)

then [ex.N = (sched.(f.t) = sched.(e.t))]

Proof (Sketch). Conditions (30) and (BI) ensures that if ¢ holds then eventually d holds
and it will hold for at least as long as ¢ As a result, if ¢ holds for infinitely long, d also
holds for infinitely long. Hence the new schedule ensures that f occurs at least on those
cases where e has to occur.

Systems Design Guided by Progress Concerns 25

Theorem 6 (Strengthening the fine-schedule). Given d = c. If
[exN = Ge(e=f)],and (32)
[ex N = [~ €] (33)
then [ex.N = (sched.(f.t) = sched.(e.t)) |.

Proof (Sketch). We can prove sched.(e.t) under the assumptions sched.(f.t) and exz.N
by calculating from F; (¢ A f) ; act.(e.t) ; true (the right hand side of sched.(e.t)) and
applying one assumption after the other (in this order (32), (EVIT-SAB), sched.(f.t),
[BB3)) to strengthen it to G ec A G F ; of (the right hand side of sched.(e.t)).

Theorem 7 (Removing the fine-schedule). Given d = c and e = 1. If
[ezM = Ge(c=f)] (34)
then [ex.N = (sched.(f.t) = sched.(e.t))].

Proof (Sketch). Condition (34) ensures that when ¢ holds for infinitely long, f holds
for infinitely long, hence we can remove the fine-schedule f, i.e., replaced it by 1.

4 Example: A Signal Control System

We illustrate our method by applying it to design a system controlling trains at a sta-
tion [9]]. We first present some informal requirements of the system.

4.1 Requirements

The network at the station con-
tains an entry block, several plat-

form blocks and an exiting block, as platform signals
seen in Figure [Il Trains arrive on E]
the network at the entry block, then . —
R == entry signal , '
can move into one of the platform ' ﬂ v
blocks before moving to the exit- ('- _‘;
ing block and leaving the network. block Y ﬂ R
In order to control the trains at the enyblosk J exitblock

station, signals are positioned at the
end of the entry block and each plat-
form block. The train drivers are as-
sumed to obey the signals. The sig- Fig. 1. A signal control system
nals are supposed to change from
green to red automatically when a
train passes by.

The most important properties of the system are that (1) there should be no collision
between trains (SAF), and (2) each train in the network eventually leaves (REQ 2).

platform blocks

SAF 1 There is at most one train on each block

REQ 2 Each train in the network eventually leaves

26 S. Hudon and T.S. Hoang

Refinement strategy. In the initial model, we abstractly model the trains in the network,
focusing on In the first refinement, we introduce the topology of the network.
We strengthen the model of the system, focusing on [SAE 1]in the second refinement.
In the third refinement, we introduce the signals and derive a specification for the con-
troller that manages these signals.

4.2 Initial Model

In this initial model, we use a carrier set TRN to denote the set of trains and a variable
trns to denote the set of trains currently within the network. Initially ¢rns is assigned
the empty set. At this abstract level, we have two events to model a train arriving at the
station and a train leaving the station as below.

arrive = any ¢t where t € TRN then trns := trns U {t} end
depart = any t where t € TRN then trns := trns \ {t} end

The requirement [REQ 2] can be specified as a progress property prg0 1: ¢ € trns ~
t & trns. According to 6], prg0 1 is equivalent to prg0 2: tr ¢ € trns. In order to im-
plement this transient property, we rely on Theorem[2land add scheduling information
for event depart as follows.

depart = any ¢t where t € TRN during t € trns then trns := trns \ {t} end

Here, we design our depart event to implement the transient property prg0 2 such that
conditions (SCH)) and are trivial. For condition (NEG), it is easy to prove that
depart establishes the fact ¢ ¢ trns in one step.

Since event arrive will not affect our reasoning about progress properties (it is al-
ways unscheduled), we are going to omit the refinement of arrive in the subsequent
presentation.

4.3 First Refinement

In this refinement, we first introduce the topology of the network in terms of blocks. We
introduce a carrier set BLK and three constants Entry, PLF, Ezit denoting the entry
block, platform blocks and exit block, respectively. A new variable loc is introduced
denoting the location of trains in the network, constrained by invariant invl 1: loc €
trns — BLK.

For event depart, we strengthen the guard to state that a train can only leave from
the exit block. Subsequently, in order to make sure that the schedule is stronger than the
guard (condition (SCH-FIS)), we need to strengthen the coarse-schedule accordingly
(see Figure). In order to prove the refinement of depart, we apply Theorem[3] (coarse-
schedule replacing). In particular we need to prove the following conditions:

t € trns ~ t € trns A loc.t = FEuxit (prgl 1)
t € trns A loc.t = Exit un ~(t € trns) (unl 2)

From now on, we focus on reasoning about progress properties, e.g., omitting
the reasoning about unless properties, e.g., The readers should be convinced

Systems Design Guided by Progress Concerns 27

depart .
any ¢ where moveout h movein h
_ . any t where any t where
;uiizgs A loe.t = Euit t € trns A loc.t € PLF t € trns A loc.t = Entry
_ . during during
tthe trns A loc.t = Exit t € trns A loc.t € PLF t € trns A loc.t = Entry
tri:: :=trns \ {t} then then
loc~;7{t}<loc loc.t := Exzit loc:| (3p: p € PLF: loc’ = loc <& {t — p})
T end end

end

Fig. 2. Events of the first refinement

that using Theorem [I} these unless properties are valid for our model. We first apply
to obtain ¢t € trns A loc.t # Exit ~ t € trns A loc.t = Exit and

then apply the transitivity property (Transitivity) of the leads-to operator to establish
two progress properties|prgl 3|and [prgl 4]as follows.

t € trns A\ loc.t # FExit ~> t € trns A loc.t € PLF (prgl 3)
t € trns Aloc.t € PLF ~~ t € trns A loc.t = Exit (prgl 4)

Consider[prgI 4] we first apply the ensure-rule (Theorem[3) to establish two properties
(after simplification) as follows:

t € trns A loc.t € PLF un t € trns A loc.t = Exit (unl 5)
trt € trns A loc.t € PLF (prgl 6)

We apply Theorem [2] to implement by the new event moveout which has a
weakly-fair scheduling (see Figure 2)). The proof that moveout implements is
straightforward and therefore is omitted.

Similarly, for[prgI 3] we apply the ensure-rule and implementing the resulting tran-
sient property, i.e., tr t € trns A loc.t = Entry, by event movein in Figure 21

4.4 Second Refinement

In this refinement, we incorporate the safety requirement stating that there are no colli-
sions between trains within the network, i.e. This is captured by invariant inv2 1
about loc: (V t1, ta: t, t2 € trns Aloc.ty = loc.ly: t = o).

The guard of event moveout needs to be strengthened to maintain inv2 1. As a
result, we need to modify the schedule information to ensure the feasibility condi-
tion (SCH-FIS)) for Unit-B events stating that the schedules are stronger than the guard.
In particular, we add (through strengthening) a fine-schedule to moveout (see Figure3).
The scheduling information for moveout states that for any train ¢, if ¢ stays in a plat-
form for infinitely long and the exit block becomes free infinitely often, then ¢ can move
out of the platform.

We want to highlight the fact that moveout has both coarse- and fine-schedules. In
particular, using only either weak- or strong-fairness would be unsatisfactory. Weak-
fairness requires for the exit block to be remain free continuously in order for trains to
move out. This assumption is not met by the current system. Strong-fairness allows a
train to leave if the train is present on the platform intermittently. This assumption is

28 S. Hudon and T.S. Hoang

moveout
any ¢t where
t € trns A loc.t € PLFA
Ezit ¢ ran .loc
during

movein
any t where
t € trns A loc.t = Entry A (Ip: p € PLF: p ¢ ran.loc)

during
lﬁ eof:"s Aloc.t € PLF t € trns A loc.t = Entry A (Ip: p € PLF: p ¢ ran.loc)
E]‘E;cit ¢ ran .loc then ,
then loc:| (3p: p € PLF \ ran.loc: loc’ = loc < {t — p})
loc.t := Euxit end
end

Fig. 3. Events of the second refinement

more flexible than we need since it allows behaviours where a train hops on and off the
platform infinitely often. The price of that flexibility is to entangle properties of the exit
block with properties of trains: indeed, we would need not only to prove that the train
will be on its platform and that the exit block will become free but that both happen
simultaneously infinitely often.

We choose to relinquish this flexibility and are therefore capable of structuring our
proof better: on one hand, the train stays on its platform as long as necessary; indepen-
dently, the exit block becomes free infinitely many times.

In order to prove the refinement of moveout, we apply Theorem 6] (fine-schedule
strengthening), which requires to prove the following progress property (remember that
when an event has no fine schedules, it is assumed to be 1).

1 ~ Ezit ¢ ran .loc (prg2 3)

Property [prg2 3|is equivalent to transient property prg2 4: tr Ezit € ran.loc. We sat-
isfy prg2 4 by applying the transient rule (Theorem 2)) using event depart where the
value for the parameter ¢ is given by loc™1.Euit, i.e., the train at the exit block. The
proofs of conditions (SCH)), (PRG), and (NEG) are straight-forward.

Finally we strengthen the guard of movein and subsequently strengthen its coarse-
schedule (see Figure[3). We apply Theorem[3] (coarse-schedule replacing) movein. The
detailed proof is omitted here.

4.5 Third Refinement

In this refinement, we introduce the signals associated with different blocks within the
network. Variable sgn is introduced to denote the value of the signals associated with
different blocks. We focus on the controlling of the platform signals here. In particular,
invariants inv3 2 and inv3 3 state that if a platform signal is green (GR) then the exit
block is free and the other platform signals are red (RD).

inv3 1:sgn € {Entry} U PLF — COLOR
inv32:(Vp: p€ PLF A sgn.p = GR: Exzit ¢ ran .loc)
inv33:(Vp,q: p,q € PLF A sgn.p=sgn.q= GR: p=q)

We refine the moveout event using the platform signal as shown in Figure @l The re-
finement of moveout is justified by applying Theorem [3] (coarse-schedule replacing)

Systems Design Guided by Progress Concerns 29

moveout ctrl platform

any t where any p where

t € trns A loc.t € PLFA p € PLF A p € ran.loc A Ezit ¢ ran .locA
sgn.(loc.t) = GR (Vq: q € PLF: sgn.q = RD)

during during

t € trns A loc.train € PLFA p € PLF N p €ran.loc A sgn.p = RD
sgn.(loc.t) = GR upon

then Ezit ¢ ran(loc) A(Vq: g € PLFANq# p: sgn.q = RD)
loc.t := Exit then

sgn.(loc.t) := RD sgn.p := GR

end end

Fig. 4. Events of the third refinement

and Theorem [7 (fine-schedule removing). In particular, replacing the coarse-schedule
requires the following transient property

trt € trns A loc.t € PLF A sgn.(loc.t) = RD . (prg3 5)

In order to satisfy we introduce a new event ctrl platform for the controller to
change a platform signal to green according to Theorem 2] (see Figure d). This event
ctrl platform is a specification for the system to control the platform signals preserving
both safety and liveness properties of the system. In particular, the scheduling informa-
tion states that if (1) a platform is occupied and the platform signal is R D infinitely long
and (2) the exit block is unoccupied and the other platform signals are all RD infinitely
often, then the system should eventually set this platform signal to GR. The refinement
of event movein and how the entry signal is controlled is similar and omitted.

5 Conclusion

We presented in this paper Unit-B, a formal method inspired by Event-B and UNITY.
Our method allows systems to be developed gradually via refinement and support rea-
soning about both safety and liveness properties. An important feature of Unit-B is the
notion of coarse- and fine-schedules for events. Standard weak- and strong-fairness as-
sumptions can be expressed using these event schedules. We proposed refinement rules
to manipulate the coarse- and fine-schedules such that liveness properties are preserved.
We illustrated Unit-B by developing a signal control system.

A key observation in Unit-B is the role of event scheduling regarding liveness prop-
erties being similar to the role of guards regarding safety properties. Guards prevent
events from occurring in some unsafe state so that safety properties will not be vio-
lated; similarly, schedules ensure the occurrence of events in order to satisfy liveness
properties. Another key aspect of Unit-B is the role of progress properties during refine-
ment. Often, to ensure the validity of a refinement, one needs to prove some progress
properties which (eventually) can be implemented (satisfied) by some scheduled events.

Related work. Unit-B and Event-B differ mainly in the scheduling assumptions. In
Event-B, event executions are assumed to satisfy the minimal progress condition: as long
as there are some enabled events, one of them will be executed non-deterministically.
Given this assumption, certain liveness properties can be proved for Event-B models

30 S. Hudon and T.S. Hoang

such as progress and persistence [[1]. However, this work does not discuss how the re-
finement notion can be adapted to preserve liveness properties. Moreover, the minimum
progress assumption is often either too weak to prove liveness properties or, when it is
not, make the proofs needlessly complicated.

TLA+[11] is another formal method based on refinement supporting liveness prop-
erties. The execution of a TLA+ model is also captured as a formula with safety and
liveness sub-formulae. However, refinement of the liveness part in TLA+ involves cal-
culating explicitly the fairness assumptions of the abstract and concrete models. In our
opinion, this is not practical for developing realistic systems. The lack of practical rules
for refining the liveness part in TLA+ might stem from the view of the author of TLA+
concerning the unimportance of liveness [11, Chapter 8]. In our opinion, liveness prop-
erties are as important as safety properties to design correct systems.

Future work. Currently, we only consider superposition refinement in Unit-B where
variables are retained during refinement. More generally, variables can be removed and
replaced by other variables during refinement (data refinement). We are working on
extending Unit-B to provide rules for data refinement.

Another important technique for coping with the difficulties in developing complex
systems is composition/decomposition and is already a part of methods such as Event-B
and UNITY. We intend to investigate on how this technique can be added to Unit-B, in
particular, the role of event scheduling during composition/decomposition.

Given the close relationship between Unit-B and Event-B, we are looking at extend-
ing the supporting Rodin platform [2] of Event-B to accomodate Unit-B. We expect
to generate the corresponding proof obligations according to different refinement rules
such that it can be verified using the existing provers of Rodin.

References

1. Abrial, J.-R.: Modeling in Event-B - System and Software Engineering. Cambridge
University Press (2010)
2. Abrial, J.-R., Butler, M., Hallerstede, S., Hoang, T.S., Mehta, F., Voisin, L.: Rodin: an open
toolset for modelling and reasoning in Event-B. STTT 12(6), 447-466 (2010)
3. Chandy, M., Misra, J.: Parallel program design - a foundation. Addison-Wesley (1989)
4. Dijkstra, E., Scholten, C.: Predicate Calculus and Program Semantics. Springer-Verlag
New York, Inc., New York (1990)
5. Dijkstra, R.: Computation calculus: Bridging a formalization gap. Mathematics of Program
Construction (January 1998)
6. Dwyer, M., Avrunin, G., Corbett, J.: Patterns in property specifications for finite-state
verification. In: ICSE, pp. 411-420 (1999)
7. Hoang, T.S., Abrial, J.-R.: Reasoning about liveness properties in event-B. In: Qin, S.,
Qiu, Z. (eds.) ICFEM 2011. LNCS, vol. 6991, pp. 456-471. Springer, Heidelberg (2011)
8. Hudon, S.: A progress preserving refinement. Master’s thesis, ETH Zurich (July 2011)
9. Hudon, S., Hoang, T.S.: Development of control systems guided by models of their
environment. ENTCS, vol. 280, pp. 57-68 (December 2011)
10. Lamport, L.: Proving the correctness of multiprocess programs. IEEE Trans. Software
Eng. 3(2), 125-143 (1977)
11. Lamport, L.: Specifying Systems, The TLA+ Language and Tools for Hardware and
Software Engineers. Addison-Wesley (2002)

Assume-Guarantee Specifications of State
Transition Diagrams for Behavioral Refinement

Christian Prehofer

LMU Miinchen and Fraunhofer ESK Miinchen,
prehofer@pst.ifi.lmu.de

Abstract. In this paper, we consider extending state transition dia-
grams (SDs) by new features which add new events, states and transi-
tions. The main goal is to capture when the behavior of a state transition
diagram is preserved under such an extension, which we call behavioral
refinement. Our behavioral semantics is based on the observable traces
of input and output events. We use assume/guarantee specifications to
specify both the base SD and the extensions, where assumptions limit
the permitted input streams. Based on this, we formalize behavioral re-
finement and also determine suitable assumptions on the input for the
extended SD. We argue that existing techniques for behavioral refine-
ment are limited by only abstracting from newly added events. Instead,
we generalize this to new refinement concepts based on the elimination of
the added behavior on the trace level. We introduce new refinement rela-
tions and show that properties are preserved even when the new features
are added.

1 Introduction

State transition diagrams (in short: SD) are used in various forms to model
software, e.g. modeling a software component which interacts with the environ-
ment based on events. In this paper, we consider behavioral models represented
as state transition diagrams which are incrementally extended by new features.
The main goal is to reason about the behavior and definedness of such an ex-
tended state transition diagram in a modular way.

The idea of incremental development is to start with a base model and then
to add small features in succession, which add previously unspecified behavior.
Extending an SD by a feature means to add new states and transitions.

Assuming such a (syntactic) extension of an SD, the question addressed here
is whether the old behavior is preserved when incrementally extending an SD.
This we call behavioral refinement. We use a behavioral semantics based on the
observable traces of input and output events, respectively. Behavior preservation
means that the resulting output trace is unchanged for all input streams, possibly
under some abstraction.

As an example consider the lock extension in Figure [l which adds a new
locked state and ignores any input in the lock state except for the unlock event.

E.B. Johnsen and L. Petre (Eds.): IFM 2013, LNCS 7940, pp. 31-ff5] 2013.
(© Springer-Verlag Berlin Heidelberg 2013

32 C. Prehofer

set/s lock, off,
set

off /o
unlock

Fig. 1. Locking Feature

By convention, we show the added elements of the new feature in bold text and
thicker lines.

In this example, it is easy to see that the behavior of the original base SD is
preserved if no lock event occurs. While this is a basic compatibility property, we
alm to go beyond. As we can see, even after traversing the lock extension, the SD
behaves as before. However, during the traversal the externally visible behavior
is altered. Furthermore, it may be the case that the SD does not return from
the extension if no unlock event occurs. We aim to capture these observations
in a formal calculus. For this, we address the following two main issues.

The first issue is that the extension also uses the off and set events of the
base SD. Due to this, existing refinement and simulation techniques, e.g. [16] [I7]
18, 19, 1, [14] , are not sufficient as they only abstract from newly added events,
by definition. This is important in many cases when events are reused in the
extension, as in this example above. For this purpose, we use a new concept which
eliminates behavior on the trace level. Such an elimination essentially removes
the added behavior on the level of observable input/output traces. Technically,
we will use entry and exit events to detect and eliminate those segments of the
trace that correspond to the newly added behavior.

The second, main point about this example is that we need assumptions
on the permitted inputs, both for the base SD as well as for the extension,
to reason about the behaviour. For instance, we may want that the extension
always terminates and returns to the old SD. In the above example, the ex-
tended SD may loop forever in state locked. This can be avoided by restric-
tions on the permitted input. In general, both the base SD and the extension
may have assumptions on the permitted input. From these two assumptions,
we aim to create a single, combined assumption on the permitted input for the
extended SD.

As in other assume/guarantee calculi, we use assumptions to specify what
inputs are permitted. These need to make sure that the SD is defined for the
permitted inputs, i.e. there is a defined transition for each event in an execution
for a given input stream. Our notion of SDs is similar to interface input/output
automata in [§], which use a separate state-based model to describe the input
assumptions. Here, we use basic predicates to specify the input, not models. Note
that our notion of automata is different from interface automata [Il, 4], which
are intended to specify which input events are permitted for an interface.

Assume-Guarantee Specifications of SDs for Behavioral Refinement 33

For instance, in the example above, we also want to ensure that the lock event
only occurs in state B, not in state A where it is not defined. Thus, we have to
reason about the permitted inputs, both in the extension and in the base SD.
This is the main motivation for the assume/guarantee specifications, which are
used to formalize this in a modular way.

In summary, the goal is to extend SDs by additional features with new states
and transitions, and then to reason about the behavior of the extended SD. For
this, we develop a notion of assume/guarantee specifications for SDs. The main
idea is to make the permitted inputs and guarantees explicit on the trace level.
This follows typical assume/guarantee specifications. We introduce new concepts
for semantic refinement based on behavior elimination and present new results
when an extension preserves behavior with respect to the base SD.

Our work is similar, on a conceptual level, to aspect- and feature-based pro-
gramming languages. For these, there are results on so-called conservative ex-
tensions or observer aspects, which only add additional behavior but do not
modify behavior (see [12[5]). In other words, we aim to apply these ideas also to
SDs, where we are reasoning only about input/output behavior, and not about
internal state as on the programming language level. There was recent work to
extend automata by aspects, as for instance [20], which includes a calculus for
reasoning about automata, but does not identify specific classes of refinement
and property preservation. There is earlier work on elimination based refinement
in [13], which also permits non-deterministic SDs and also does not require ex-
plicit exit events. While there are first results on behavior preservation, in [I3] it
is not possible to reason about definedness and termination of such extensions.

The paper is organized as follows. In the next section, we introduce the syntax
and semantics of SDs. Then, we define syntactic extensions on SDs, followed
by behavior eliminations on the semantic level. In Section [3 we introduce new
refinement concepts based on these elimination concepts. In Section[d] we present
new results to show when a refinement relation can be established for an SD
extension. Finally, Section [B] discusses related work, followed by conclusions.

2 State Transition Diagrams

We model software systems by SDs that describe the behavior of a software
system. More precisely, an SD consists of

(i) States St, with an initial state s € St
(ii) Input events I and disjoint output events O
(iii) A vector of internal variables v™, ranging over a vector of values V" with
initial values Vinitial,
(iv) A transition function tr: St x I x V= St x V x O*

A transition is triggered by an input event and produces a set of output events.
It may have an action that it initiates. This action describes the output events
triggered by the transition and the changes on the internal variables. We use the

34 C. Prehofer

notation event / action for transitions. The vector of variables describes the
values of the variables and is also called variable valuation.

We focus on deterministic SDs as defined above. For the non-deterministic
case, there exist several other issues, as considered in [I3].

2.1 Behavioral Semantics

Our semantic model employs an external black-box view of the system. It is
based on events from the outside that trigger transitions. Only the observed
input and output events are considered, not the internal states. A possible run
can be specified by a trace of the events and the resulting output of the SD.

Formally, we assume traces (¢, 0) over finite and infinite streams over I and O,
respectively, denoted as I¥ = I* U I*° and O¥ = O* U O*. Note that for each
input event, there is a set of output events if a transition is defined. Hence for
the n-th element in 4, the n-th element of S(7) is the corresponding set of output
events.

For an SD S and a finite or infinite input stream 4, we say S is defined for 1,
if there is always a defined transition for each input event in 7 when executing S
with input . This is written as Def(S(4)). For instance, in the above example,
the lock SD is undefined for the input unlock in the initial state. We write S(2)
to denote the output of S for i if S is defined for i.

For a state s and a variable valuation V, we write S(i,s,V) = (0,8, V') to
denote the state s’ and variable valuation V' after running S at state s with
input ¢ and V. This assumes that S is defined for i at state s. We also write
S(i) = (0,s,V) if S is run from the initial state. We write S(i) = s if o and V" are
not of interest. Two SDs are considered equivalent if they behave equivalently
for all inputs.

We denote the empty trace as Nil and use the following notation on traces:

— s:: s’ concatenates two streams, where s is assumed to be finite.
— a: s creates a stream from an element a by appending the stream s.

When clear from the context, we often write just e instead of {e} for singleton
sets, and also a : a instead of a : a : Nil. Furthermore, first(s) is the first element
of a stream s. We denote by I'\In the elimination of elements of In from I and
by O + I the union of disjoint sets.

As an example, consider the alarm SD as shown in Figurel which is extended
by a flexible snooze function called Snooze. When the alarm rings, the user can
press the snooze button, which sets a new alarm (after a snooze period). In this
example, observe that the extension uses new events, like Snooze(), but also
existing ones like AskTime().

For instance in Figure[2 a possible trace (with input events shown above the
corresponding output events) is T =
(SetAl : TimerEvent : Snooze : TimerEvent : AlLOff,

setTimer : StartAlarm : {StopAlarm, setTimer} : StartAlarm : StopAlarm).

Assume-Guarantee Specifications of SDs for Behavioral Refinement 35

SetAl / setTimer

AlarmOff AlarmSet

AlOff / StopAlarm

Fig. 2. Alarm extended by Snooze

TimerEvent / StartAlarm

TimerEvent / Snooze / {StopAlarm, setTimer}

StartAlarm

2.2 Syntactic Extensions of State Transition Diagrams

When adding new features to an SDs, we use the following notion of syntactic
extensions of SDs. While we permit any syntactic extensions in the definition
below, this will be restricted further below to establish refinement relation on
the semantical level.

For an SD S, we say S is extended by E to an SD 5’| if:

(i) S’ results from adding both states and transitions on S,
(ii) S’ may extend the input and output events of S, and
(iii) S’ may add internal variables to S.

S’ is also called an extension of S by F. Examples of extensions are shown via
the bold states and transitions in Figures [Il and 2

We can alternatively define extensions as a set of states and transitions to be
added, which corresponds to a partial or incomplete SD. This is however more sub-
tle, as we need to ensure that a composed SD is well defined, which is implicit here.

3 Assume-Guarantee Specifications and Refinement

In the following, we develop concepts to explicitly specify the assumptions on
the input and the resulting output guarantees as in typical assume-guarantee
specifications [I]. We will use predicates over finite and infinite streams. We
denote assumptions as a predicate A where A(7) is a Boolean value over a stream
i, and predicates G as guarantees over a pair of input and output streams, G(i, 0).
We use the following notation for assume guarantee specifications over SDs.
Assume an SD S, an assumption A and a guarantee G over streams. Then

A/S)G

states that for all input traces i where A holds, S is defined for ¢ with S(i) = o,
and G(i,0) holds.
We also write just

A/S
which then denotes that S is defined for inputs ¢ where A(4) holds.

36 C. Prehofer

Assumptions can express two things, unwanted cases and unspecified cases,
which we do not distinguish here. Unspecified cases are cases which shall be
defined in a later phase by incremental refinement, while unwanted cases must
be avoided by the environment and are not allowed.

The typical purpose of assumptions in our treatment of extensions is to spec-
ify which inputs are allowed in what phase of a traversal. For instance, when
traversing an extension, we may only permit specific events.

The common notion of refinement on SDs is to allow more inputs and to
produce less outputs, see for instance [I]. We can formalize more inputs easily
by our notion of assumptions. We consider guarantees on the new output based
on assumptions for new inputs. Note that we do not allow one to drop individual
output events in the output stream.

Assuming a specification A/S/G, we can relax the assumptions if the guar-
antees hold. Also, the guarantees can be strengthened. Formally, A'/S/G’ is a
refinement of A/S/G if A(i) = A’(i) and G'(i,0) = G(i,0).

3.1 SD Extensions and Refinements

In the following, we aim to cover extensions an SD which add new features with
additional behavior. The problem is now that assumptions and guarantees need
to consider different input and output events over an extended interface.

For the purpose of refinement, we consider in the following equality on the
output traces as follows: Assuming a specification A/S, then A’/S’ is a refine-
ment of A/S, if A(i) = A’(i), and A(:) implies S(i) = S’ ().

This means that S and S’ must behave identically for the input permitted
for S/, i.e. when A holds. In other words, when S’ is restricted to the input
for A for S, they behave the same. Internally, the two SDs may differ in states
and transitions. Compared to the above assume/guarantee specifications the
following holds: If A’/S’ is a refinement of A/S and G and G’ coincide on the
inputs permitted for A, then A’/S/G’ is a refinement of A/S/G.

A typical example is an extension by a new event, after which the system may
behave in a completely different way. This notion of refinement is for instance
used in [I] when new events are added, but also in [7, [15], even though different
formalisms are used. The main limitation here is that no guarantees hold after a
new event occurs. In detail, an extension may add new events and the assump-
tions A do not apply for any input which contains new elements. In the lock
example, an assumption predicate over the base SD only considers set and off
as input events, not lock. Furthermore, this is only a notion of refinement and
does not give any statement when the extended SD is defined.

3.2 Trace Eliminations for Added Features

In the following, we detail our approach to eliminate the behavior of the newly
added features. This is used for our notion of behavioral refinement in the
following sections. We first discuss important restrictions on SD extensions to
determine suitable eliminations and to define the refinement relation. Then,

Assume-Guarantee Specifications of SDs for Behavioral Refinement 37

in the subsections below, we define the eliminations and refinement relations
precisely.

We determine eliminations of added features on the behavioral level, i.e. on
traces. For this, we assume that the new features are triggered by an entry event
from I and return to the original SD with an exit event. In the case of the
lock feature, the entry event is the lock event, and the exit event is the unlock
event. Then eliminations shall remove all sequences of the form entryFvent : - - - :
exitFvent. We call this trace-based eliminations.

For traces over such an extended SD S’ over S with extension E, we define
eliminations based on entry and exit events. We say that an extension E is
entry-exit triggered, if there are some entry events E.,,, which do not occur
in S. Furthermore, for each entry event e € E,, there is a set of exit events
E¢z,c. This means that the states and transitions in E are only reached via some
entry transition with an event e € F.,. Furthermore, for each such entry point
with e, it must be ensured that the extension returns to the original SD S if and
only if an event from E,; . occurs. Furthermore, we assume that it returns to
the same state in S where the entry event occurs. This state is also called join
state, similar to join points in aspect-oriented languages.

We define eliminations based on the entry and exit events as follows. Assuming
E, S, and S’ as above, an elimination el removes all trace segments of the form

(ilz"':inaolz"':on)v

where i1 € Eep, iy € Eegy, and i; ¢ Eepy, for 1 < j < n. Furthermore, an
infinite trace segment (i1 :: i,0) is eliminated if i1 € F., and no element from
Eey i, occurs in (4, 0).

In other words, if the extension does not return, we cut off the complete,
infinite part after the entry. Then, we define el(tr) for a trace tr, where the
elimination function el is applied from left to right over the full trace ¢r. This
results in a finite trace if there is an entry event without a corresponding exit
event.

Note that we use an elimination el in two forms. For input and output traces,
we write el(i,0) = (i, 0"). We also write el(i) = i’ which yields an input stream.

As an example, we continue with the above trace T for the alarm
SD in Figure The goal is to eliminate the effect of the new
Snooze feature. The corresponding traversal through the old SD is
T = (SetAl : TimerEvent : ALOff,

setTimer : StartAlarm : StopAlarm).

In this example, we have eliminated the trace segment Snooze : TimerFEvent
and {StopAlarm, setTimer} : Start Alarm which corresponds to the new behav-
ior which the new feature adds. Then, we can show that the original behavior of
the SD is preserved by the extended SD ”modulo” the elimination.

3.3 Weak Elimination-Based Refinement

We now consider extensions which add behavior temporarily, but then return to
existing, old behavior (unless they diverge). For such a case, we use eliminations

38 C. Prehofer

to define a refinement relation. Elimination is used to compare the input/output
traces of the original and the extended SDs. It is a generalization of the typical
notions of refinement which remove added behavior by removing the new events.
We first define the refinement notion and then discuss its utility.

Assume S over (I, 0) is extended to S’ with some extension E over (Ig, Op).
The extended system A’/S’ is a weak elimination-based refinement of A/S,
if the following hold:

(i) for any stream i over I, A(i) = A’(3) and S(i) = S’(q).
(ii) for any stream i over I U Ig, if A’(i) holds, then el(¢) is a stream over I,
A(el(i)) and further el(i, S'(2)) = (el(7), S(el(7))).

For this notion of refinement, we require that the extended SD, S’, behaves as
S under an elimination. We assume that for any permitted input i for S’ (i.e.
A’ holds), the elimination on i results in a syntactically correct input for S and
A holds. Otherwise, A may not be defined for el(). In other words, A’ allows
more input, even over an extended input event set, but additional traces must
correspond to a trace of the original SD. This is enforced by the restriction that
el(i) is a stream over I. A possible case when an elimination may not remove all
new elements not in I is when an exit event occurs before an entry event.

The notion of weak refinement essentially says that an SD behaves as before
unless a new feature is traversed. It will behave as before after multiple use of a
new feature, if the new features return to the original SD. Regarding properties
of SDs, we can use this notion of refinement to establish safety properties as
follows. Safety properties usually state that some "bad” events do not occur.
If an SD S does not produce a "bad” output event b under some assumptions
A and an extension F also does not produce b (possible under assumptions),
then the combined system also does not produce the bad event b. A more basic,
but important question is when an extended SD is defined. To establish our
refinement we need to fix assumptions under which the extended SD S’ is defined,
considering both assumptions for the base SD S and the extension E. This will
be covered in Section @l

Compared to the analysis of different kinds of aspects considered in [5], this
case is similar to observers with possible non-termination in the extension. In
[5], there is also the notion of observers with abortion, i.e. termination of the
program. This concept is not sufficient for our setting of SDs as traversals may
remain infinitely long in an extension. Instead, we consider possible divergence
and termination of the extension by assumptions, as covered in the next section.

3.4 Strong Elimination-Based Refinement

In the above notion of weak elimination-based refinement, we have assumed that
the extended SD behaves as the original one under the elimination. We did not
require that a traversal through the extension terminates. In case an extension
of an SD is entered but the SD does not return from the extension, we only
compare the finite parts of the execution. In the following, we define and discuss

Assume-Guarantee Specifications of SDs for Behavioral Refinement 39

a stronger notion of refinement, which requires termination for any traversal of
the extension.

Assume S over (I, 0) is extended to S’ with some extension E over (Ig,Op).
The extended system A’/S’ is a strong elimination-based refinement of
A/S if for a stream i over I U Ig A’(3) implies the following:

(i) for any stream i over I, A(i) = A’(3) and S(i) = 5’(i).

(ii) for any stream ¢ over I U Ig, if A’(7) holds, then el(i) is a stream over
I, A(el(i)) and further el(i, S’(i)) = (el(i), S(el(i))). Furthermore, if ¢ is
infinite, then el(¢) is also infinite.

With the last clause in the definition, which is the only difference to the notion
of weak refinement, we ensure that a possible extension does not diverge when
entered. Clearly, this definition is only sensible if we consider infinite traces which
can express divergence.

As strong elimination-based refinement entails weak elimination-based refine-
ment, it can be used to show safety properties as above. As extensions terminate,
also many liveness properties are preserved. A typical liveness property is that
some (output) event o eventually occurs in all possible executions. In case this
holds for the base SD, this is preserved by strong refinement. In this case, an
extension may produce extra o events, but it will return to the original SD which
eventually produces the o event.

4 Establishing Elimination-Based Refinements

In the following, we aim to establish refinement relations for a given base SD S
with an extension E. Based on assumptions for S and E, we show that there
exist specific assumptions under which an extension E is an elimination-based
refinement. This also serves to reason modularly about extensions of SDs based
on properties and assumptions for the SD and the extension. As discussed above,
weak elimination-based refinement is suitable for safety properties, while strong
elimination-based refinement can also be used for liveness properties.

So far, we have defined assumptions for the inputs of a normal SD. Next
we define assumptions specifically for extensions of an SD, which only cover the
input events when traversing the added transitions and states in an extension. In
other words, we restrict the input while the SD is in the traversal of an extension.

For this purpose, we first generalise assumptions to specific states of an SD.
We write A(s,) for A to hold at some state s with input ¢. Thus, the above A(%)
means that A(s,,7) for A to hold in the initial state.

Assume S’ is an entry-exit triggered extension of S by E. Then for a predicate
AF on inputs streams, we denote the definedness of an extension F under
AE as AE/E, to specify that traversals of E in S” are defined. Formally, for all
join states s of S’, i.e. where an entry event is defined, and some input stream 7,
where the first element of 7 is an entry element, and either the last element is the
first exit event in ¢, or no exit event occurs in ¢, we have: If AE(7) holds, then
here is a defined traversal (s, ,0) for some output sequence o. As the extension

40 C. Prehofer

is entry-exit triggered, the definition entails that F returns to a state in S for
any exit event.

Assume S with input events I is extended to S’ with some extension E with
entry events E., and exit events E.;. For A/S and AE/E, we define the ex-
tension assumptions FA(A, E) as follows: EA(A, E)(i) holds if

(i) el(%) is a stream over I and A(el(z)) holds and

(ii) for any occurrence of an entry event en € Ee, in i of the form ig :: en : e ::
ex, where ex € E., and e has no exit event, then S’ is defined for ¢ :: en
and AFE holds for en : e :: ex.

Intuitively, EA(A, E) has to ensure the following. First, under elimination
EA(A,E) has to hold if A holds. Secondly, for the traversal of the new ex-
tension, the assumptions for AE have to hold. Note that the first condition, i.e.
that el(i) is a trace over I, ensures that new segments in the trace with events
not in I are properly started with an entry event and terminated by an exit
event. Otherwise, the elimination results in a trace which has events not in I.

We define E to be a conservative extension of S if it does not modify
variables of S. In other words, the newly added transitions do not modify the
variables in S. For conservative extensions, we can show that they do not modify
behavior of the extended SD. It may still happen that the control flow does not
return from the extension to the original SD.

The following theorem shows that an extended SD is defined for the traces in
the extension assumptions FA(A, E).

Theorem 1. Assume S is extended to S’ with some conservative, entry-exit
triggered extension E. If A/S and AE/E, then EA(A,E)/S".

Proof. The proof proceeds by induction on input streams. Assume i is an input of
S’. The definedness of 8" under EA(A, E) follows from the cases as in the definition
of EA(A, E) as follows. In case the input only has elements from I, the case is
trivial. In case an entry event occurs in i with S being at a state s, we have to show
that S' is defined, which follows from the definition of EA(A, E). Then the traversal
in the extension is defined as AE holds for any state and any variable valuation.
In case the traversal returns by some exit event to s, we observe that the traversal
has not changed the variables of S as it is conservative. Hence the execution of S’
at state s continues as S would in this state. As A(el(i)) holds, we can infer that
also S’ is defined until the next occurrence of an entry event. In case the traversal
does not return, AE ensures definedness. O

For a property A over streams we say A is input-consistent, if A(¢) implies
A(3') for all prefixes i’ of i, i.e. there exists an ¢/ with ¢ = ¢’ :: ¢”’. This assumption
is needed for weak refinements, as non-termination may occur in an SD in an
extension. Consider an input ¢ which is permitted for the base SD. Then, in an
extension an entry event may occur at ¢/, which is a prefix of 7. The elimination
on the trace of the extended SD will cut off the trace after ¢’ in case of divergence.
For the refinement to hold, 7 must then also be permitted in the assumptions
for the base SD.

Assume-Guarantee Specifications of SDs for Behavioral Refinement 41

Theorem 2. Assume S is extended to S’ with some conservative and entry-exit
triggered extension E and A is an input-consistent property. If A/S and AE/E,
then EA(A,E)/S" is a weak refinement of S.

Proof. The proof proceeds by induction on the input stream i of S’ and follows
the proof of the above theorem. In case E has no entry events, the case is trivial.
We show el(i, S'(i)) = (el(7), S(el(7))) inductively over the stream of entry events
in i. Assuming it holds for a prefix of i, of i and i = ig : €entry @ ©'. As in the
above proof, we relate the execution in S’ with S under the elimination. In case a
traversal of the extension returns, S’ behaves as S as in the proof above after the
return, and we can show the equation easily. In case of divergence, there is no
exit event in i’ and we have el(i) =ig. Then also el(i, S'(i)) = (el(i), S(el(3))) =
(i0,S(i0)). Furthermore, we have to show A(el(7)) follows from A’(i). The critical
case here is when a trace diverges in an extension, as el will cut off after the last
entry event. Here, the assumption on input-consistency is needed to show that
A(el(i)) holds. O

This theorem shows that there exist assumptions, i.e. FA(A, E), for which an
extension (with conditions as above) is a weak elimination-based refinement.
Based on this, we can transfer safety properties of an SD to an extended SD as
discussed above.

Another issue is to compute EA(A, E) efficiently from the definition of
EA(A,E) in practice. The main problem for this is to determine all the in-
put sequences for which a join state can be reached. If this is possible in an
SD, we may also compute an effective representation of EA(A, E) by composing
input sequences. We illustrate this by the following example.

Consider the lock extension in Figure [l which adds a new locked state and
permits any input in the lock state. Let Set be the base SD, Lock the extension
and SetLock be the full SD with the extension as in Figure[ll Then we use regular
expressions to define assumption predicates, where the set of input sequences
defined by the regular expression defines when the predicate holds.

We define Age: =(set : off)* and Apocr = lock : (set,off,lock) * :: unlock. For
the extended SD with the lock, we define Agetrock = (set : (off :set)* :: (lock
o (set,off,lock) * :: unlock)J* :: off) . We use these sets to denote assumptions
predicates which hold for all streams in the corresponding set.

In this example, Agetrock 1S the extension assumption EA(Aget, ALock) for
Aget/Set and Apoer, based on the above definition. Applying the elimination
to AsetLock yields Age: and set : (off :set)* specifies the inputs leading to the
join points (here state B). Based on this, we have Agetrock/SetLock is a weak
refinement of Ag.;/Set.

Notice that we permit that a traversal remains infinitely long in the extension,
which we consider as divergence when viewed from a refinement perspective of
the base SD. Thus, for A} ., = ArockU(lock”), where lock” denotes the infinite
stream of lock events, we still have weak elimination-based refinement assuming
A%/ Lock (instead of Apoer/Lock).

If an extension terminates under specific assumptions, then we can show the
stronger property of simulations. For an entry-exit triggered extension E, we say

42 C. Prehofer

AE/E terminates if there is not infinite traversal through E which is permitted
by AE. For instance, in the lock example, there are possible traversals which
stay infinitely long in the extension if no unlock event occurs. This can however
be disallowed by the assumption AE.

Theorem 3. Assume S is extended to S’ with some conservative and entry-exit
triggered extension E. If A/S and AE/E, and further AE/E terminates, then
EA(A,E)/S" is a strong refinement of S.

The proof proceeds as the above result on weak refinement. Here, the proof is
easier as all traversals permitted for the extension terminate.

Following the example above, we have Agetrock/SetLock is also a strong
elimination-based refinement of Ag.;/Set with extension Ay, ,.r/Lock, as all per-
mitted input sequences in Ay, are finite and return to state B.

Recall that strong elimination-based refinement preserves liveness properties.
Here, an example is the property that o occurs eventually. This holds, based on
strong refinement for Ay,qcx/Lock. It does not hold assuming A} .. /Lock, as the
traversals may remain infinitely long at the lock state.

5 Related Work

In the following, we discuss related work on statechart refinement and related
concepts like UML state machines and other automata models.

Recently, the concept of eliminations was introduced with a focus on com-
patibility [I3], in a setting of non-deterministic SDs with chaos semantics. The
approach was also defining eliminations based on traversals of the feature ex-
tension, not purely on the trace level as done here. Based on an analysis of
the traversals and SD internal states, it was shown when such extensions are a
refinement in the sense presented here. Here, we are able to show results on de-
finedness and strong refinement, where the assumptions assure the termination
of the extension. This is not possible in prior approaches.

Earlier work on statechart refinement [16][7][15], which is using similar seman-
tic models of statecharts, has developed several rules for refinement. The work in
[14] develops a refinement calculus for statecharts as in [16] based on a mapping
to the Z language. The basic mechanism for these is also the elimination of new
input and output events, as discussed before. Refinement with the focus on step-
wise development and composition of services is covered in [3]. Other work on
UML in [19], which builds on concepts for object lifecycle modeling [I7], consid-
ers the problem of consistent inheritance and observation consistency, which are
similar to our notion of compatibility. In all of the above, refinement relations
are defined by simply removing the new events or ignoring behavior after new
events.

For related work on UML modeling, the concepts developed in [18] essentially
cover basic cases of refining a state into several ones, which is different and
not covered here. The work in [I1] focuses on modeling the added features as
independent and modular entities, modeled as statechart fragments.

Assume-Guarantee Specifications of SDs for Behavioral Refinement 43

Other work on modularity for model checking [2][I0] also considers the prob-
lem of extending automata models by new states and transitions. In these works,
composition of statecharts leads to proof obligations for specific properties to
maintain. These are in turn to be validated by a model checker. Hence, these
approaches are quite different from the work presented here. Specifically, they
require the specification and establishment of each individual property after the
extension. Similar goals have been pursed in the context of aspect-modeling for
state machines, as shown in [20].

There is also recent work on compatibility for interface automata [1l [4]. In
contrast to interface automata, we model the assumptions of an SD separately.
This is conceptually similar to the work on interface input/output automata in
[8], which also uses a separate model to describe the input assumptions. The
assumptions are modeled as interface automata, which is just a more specific
way to denote the input assumptions. However [8] does not focus on refinement
and modular reasoning about definedness. More recent work on modal interface
automata [9] 6] considers refinement more explicitly by modalities transitions
which describe the possible, later refinements. This is different from our work,
as we aim at adding behavior without requiring limitations on the SD to be
extended.

Compared to our approach of using simply predicates, the work in [8] is using
interfaces automata in a more specific way to denote the input assumptions.
Unlike [§], we focus more on semantic refinement and modular reasoning about
definedness.

6 Conclusions

In this paper, we have presented a new approach to reason about extensions
of state transition diagrams based on assume/guarantee specifications. We have
focused on extensions which only add new behavior, similar to observer aspects or
conservative extensions on a programming language level. A particular problem
is that new features may have additional input and output events, but may
also reuse existing events. This makes it difficult to reason for what input an
extended SD is defined and when it preserves the original behavior. Due to this,
existing notions of refinement do not apply. Here, we have developed a new
approach towards refinement which allows one to reason about such extended
state transition diagrams in a modular way.

In particular, we have developed new refinement concepts for weak and strong
refinements, based on an elimination of the newly added behavior on the trace
level. These eliminations can be seen as a generalization of typical abstractions,
which only remove new input/output events of an extension. Secondly, we have
presented an approach for compositional reasoning of such extended SDs using a
assume-guarantee calculus. Based on assumptions for the base SD and the exten-
sion, we can show when an SD is defined and property preserving after adding
the extension. In detail, we show when adding a new feature adds only addi-
tional behavior, possibly with divergence. Similar to the considerable work on

44 C. Prehofer

property preserving aspects and features on the programming language level, we
have captured typical extensions like observers also for state transition diagrams
in our new approach.

Our approach based on assumptions and guarantees can express various prop-
erties of such SDs. We have illustrated that our results can be used to preserve
safety and liveness properties when extending an SD. Further work is needed to
study in detail how to model and validate typical safety of liveness properties
in this form. Also, further work will address how to compute the assumptions
needed for an extended SD in an effective way.

Acknowledgements. The author would like to thank Peter Scholz, Martin
Wirsing, Sebastian Bauer and Rolf Hennicker for discussion and feedback on
this work.

References

[1] Alfaro, L., Henzinger, T.: Interface-based design. In: Broy, M., Griinbauer, J.,
Harel, D., Hoare, T. (eds.) Engineering Theories of Software Intensive Systems.
NATO Science Series, vol. 195, pp. 83-104. Springer, Netherlands (2005)

[2] Blundell, C., Fisler, K., Krishnamurthi, S., Van Hentenrvck, P.: Parameterized
interfaces for open system verification of product lines. In: Proceedings of the
19th International Conference on Automated Software Engineering, pp. 258-267
(September 2004)

[3] Broy, M.: Multifunctional software systems: Structured modeling and specification
of functional requirements. Sci. Comput. Program. 75, 1193-1214 (2010)

[4] David, A., Larsen, K.G., Legay, A., Nyman, U., Wasowski, A.: Timed I/O
automata: a complete specification theory for real-time systems. In: Proceedings
of the 13th ACM International Conference on Hybrid Systems: Computation and
Control, HSCC 2010, pp. 91-100. ACM, New York (2010)

[5] Djoko, S.D., Douence, R., Fradet, P.: Aspects preserving properties. In:
Proceedings of the 2008 ACM SIGPLAN Symposium on Partial Evalua-
tion and Semantics-Based Program Manipulation, PEPM 2008, pp. 135-145.
ACM, New York (2008)

[6] Fischbein, D., Uchitel, S., Braberman, V.: A foundation for behavioural confor-
mance in software product line architectures. In: Proceedings of the ISSTA 2006
Workshop on Role of Software Architecture for Testing and Analysis, ROSATEA
2006, pp. 39-48. ACM, New York (2006)

[7] Klein, C., Prehofer, C., Rumpe, B.: Feature specification and refinement with
state transition diagrams. In: Fourth IEEE Workshop on Feature Interactions in
Telecommunications Networks and Distributed, pp. 284-297. IOS Press (1997)

[8] Larsen, K.G., Nyman, U., Wasowski, A.: Interface input/output automata. In:
Misra, J., Nipkow, T., Sekerinski, E. (eds.) FM 2006. LNCS, vol. 4085, pp. 82-97.
Springer, Heidelberg (2006)

[9] Larsen, K.G., Nyman, U., Wasowski, A.: Modal I/O automata for interface and
product line theories. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421,
pp. 64-79. Springer, Heidelberg (2007)

[10] Liu, J., Basu, S., Lutz, R.: Compositional model checking of software prod-
uct lines using variation point obligations. Automated Software Engineering 18,
39-76 (2011)

[11]

[12]

[13]

[14]

[15]

[16]
[17]

[18]

[19]

[20]

Assume-Guarantee Specifications of SDs for Behavioral Refinement 45

Prehofer, C.: Plug-and-play composition of features and feature interactions with
statechart diagrams. Software and Systems Modeling 3, 221-234 (2004)
Prehofer, C.: Semantic reasoning about feature composition via multiple
aspect-weavings. In: Proceedings of the 5th International Conference on Genera-
tive Programming and Component Engineering, GPCE 2006, pp. 237-242. ACM,
New York (2006)

Prehofer, C.: Behavioral refinement and compatibility of statechart extensions.
In: Workshop on Formal Engineering approaches to Software Components and
Architectures. I Electronic Notes in Theoretical Computer Science (ENTCS)
(2012)

Reeve, G., Reeves, S.: Logic and refinement for charts. In: Proceedings of the
29th Australasian Computer Science Conference, ACSC 2006, vol. 48, pp. 13-23.
Australian Computer Society, Inc., Darlinghurst (2006)

Rumpe, B., Klein, C.: Automata describing object behavior. In: Specification
of Behavioral Semantics in Object-Oriented Information Modeling, pp. 265-286.
Kluwer Academic Publishers (1996)

Scholz, P.: Incremental design of statechart specifications. Science of Computer
Programming 40(1), 119-145 (2001)

Schrefl, M., Stumptner, M.: Behavior-consistent specialization of object life cycles.
ACM Trans. Softw. Eng. Methodol. 11, 92-148 (2002)

Simons, A.J.H., Stannett, M.P., Bogdanov, K.E., Holcombe, W.M.L.: W.M.1.: Plug
and play safely: Rules for behavioural compatibility. In: IProc. 6th IASTED Int.
Conf. Software Engineering and Applications, pp. 263-268 (2002)

Stumptner, M., Schrefl, M.: Behavior consistent inheritance in UML. In: Laender,
AH.F., Liddle, S.W., Storey, V.C. (eds.) ER 2000. LNCS, vol. 1920, pp. 527-542.
Springer, Heidelberg (2000)

Zhang, G., Holzl, M.: Hila: High-level aspects for uml state machines. In: Ghosh, S.
(ed.) MODELS 2009. LNCS, vol. 6002, pp. 104-118. Springer, Heidelberg (2010)

Translating VDM to Alloy

Kenneth Lausdahl

Department of Engineering, Aarhus University
Finlandsgade 24, DK-8200 Aarhus N, Denmark
lausdahl@cs.au.dk

Abstract. The Vienna Development Method is one of the longest established for-
mal methods. Initial software design is often best described using implicit speci-
fications but limited tool support exists to help with the difficult task of validating
that such specifications capture their intended meaning. Traditionally, theorem
provers are used to prove that specifications are correct but this process is highly
dependent on expert users. Alternatively, model finding has proved to be useful
for validation of specifications. The Alloy Analyzer is an automated model finder
for checking and visualising Alloy specifications. However, to take advantage of
the automated analysis of Alloy, the model-oriented VDM specifications must be
translated into a constraint-based Alloy specifications. We describe how a sub-
set of VDM can be translated into Alloy and how assertions can be expressed in
VDM and checked by the Alloy Analyzer.

1 Introduction

The Vienna Development Method (VDM) [142)3]] supports modelling and analysis at
various levels of abstraction, using a combination of implicit and explicit definitions
of functionality, and has a strong record of industrial application [4] for design and
specification of software systems. However, one of the limitations of the implicit VDM
specifications is the lack of tool support. Existing VDM tools, Overture [3] and VDM-
Tools [6], only provide limited help with the difficult task of validating that an implicit
VDM specification captures the intended meaning. The existing tools include standard
features like parsers and type checkers, but this only ensures that specifications are cor-
rect with regards to syntax and type constraints. The only tool support for semantic
validation is a proof obligation generator but this still leaves the difficult task of dis-
charging the proof obligations. Theorem provers such as [[7]] can be used to discharge
the generated proof obligations through an automates translation of VDM to HOL [89],
but using a theorem prover is usually complicated and requires an expert.

A different approach is to validate the specification through testing by running an in-
terpreter [[LO]. This is possible for explicit VDM specifications which can be interpreted
with actual values. The same approach can be used for implicit specifications through
the use of a tool that is able to automatically create explicit definitions of all functions
and operations based on their post-conditions, for a subset of the language, and then
validate the generated specification through the standard interpreter. This approach has
been taken for a subset of VDM that required post-conditions to follow a particular
template using conjunctions to separate constraints on the return value [[11412]. While

E.B. Johnsen and L. Petre (Eds.): IFM 2013, LNCS 7940, pp. 46-50] 2013.
(© Springer-Verlag Berlin Heidelberg 2013

Translating VDM to Alloy 47

this enables interpretation, it still requires user input, like test cases, whereas an alter-
native based on model checking requires less or no user input and still provides a larger
coverage than testing. Furthermore, such an approach enables easy detection of contra-
dictions in pre- and post-conditions when functions and operations are combined at a
system level.

The Alloy Analyzer is a bounded model finder that has proved to be useful for val-
idating specifications in the Alloy language [13]]. The analyzer can find instances of
Alloy specifications, as well as checking user defined assertions. The analyzer can pro-
vide immediate visual feedback when an instance is found or present a core containing
the top level formulas if no instance could be found.

In this paper, we present a translation of VDM to Alloy [13] thereby enabling VDM
specifications to be checked by the Alloy Analyzer. This enables users to get imme-
diate feedback both in the form of generated alloy instances, that can be visually dis-
played and from user-specified properties. We identify a subset of VDM that can be
automatically translated and checked in the Alloy Analyzer and give a preserving se-
mantics for the translation, thus identifying where a translation becomes infeasible.
Others have already shown that languages like Z, B, Event-B and UML can be trans-
lated [[14415016/17] to Alloy and benefit from the automated analysis the Alloy Analyzer
provides. The VDM language does not contain any direct way to capture system proper-
ties, also called validation conjectures [18| p. 191], which is equivalent to the assertions
used in model checking but we show a new way of using existing VDM expressions to
express such properties.

The structure of this paper is as follows. Section[2] describes the languages VDM and
Alloy and how they relate. Section[3] formally defines a subset of VDM and defines the
translation rules and the limitations of the translation. Section] describes how VDM
specifications can be checked using this translation. Section [3 describes the findings
discovered by applying the translation to a number of VDM specifications. Finally,
Section[7] discusses the contribution of this paper.

2 VDM Models and Alloy Instances

The Vienna Development Method is one of the longest established model-oriented for-
mal methods, and was originally developed at the IBM laboratories in Vienna in the
1970’s. The VDM Specification Language is a higher-order language which is standard-
ised by the International Organization for Standardization (ISO), and has a formally
defined syntax, and both static and dynamic semantics [19,20]. The VDM language
employs a three valued logic; values may be true, false or bottom (undefined), using
Logic of Partial Functions (LPF) where the order of the operands is unimportant[21]}.
Models in VDM are based on data type definitions built from simple abstract types
using booleans, natural numbers, characters and type constructors for record, product,
union, map, (finite) set and sequences. Type membership may be restricted by predicate
invariants. Persistent state is defined by means of typed variables, again restricted by in-
variants. Operations that may modify the state can be defined implicitly, using standard

! The existing VDM interpreter is, however, depended on the operand order.

48 K. Lausdahl

pre- and post-condition predicates, or explicitly, using imperative statements. Such op-
erations denote relations between inputs, outputs and states before and after execution.
Functions are defined in a similar way to operations, but may not refer to state variables.

The traditional approach is to start at a high abstraction level using implicit VDM
definitions [2] and then refine the model into an explicit executable model. This ap-
proach enables validation of the abstract design before a lot of detail is added. How-
ever, there is only limited tool support for validating such implicit VDM specifications
in contrast to explicit specifications which can be interpreted. The only semantic vali-
dation supported is generation of proof obligations that have to be proven manually or
with the help of a theorem prover.

The following is a subset of a VDM specification of a telephone system [22]] later
published as both a Z and B specification [23124]:

module telephone

Subscriber = token

Initiator = AT | WI | SI

Recipient = WR | SR

Status = FR | UN | Initiator | Recipient

state Exchange :: status : Subscriber — Status
calls : Subscriber < Subscriber
inv (mk-Exchange(s, ¢))AVi € dom ¢ -
(s(i) = WIAs(c(i)) = WR) v
(s(i) = SI A s(c(i)) = SR)

Lift (s: Subscriber)
ext wr status

pre s € dom (status > {FR})

post status = status t {s — Al}

ClearSpeak (i: Subscriber)

ext wr status
wr calls

pre s € dom (status > {SI})
post status = status 1 {i — FR, calls(i) — UN} A calls = {i} & calls

end telephone

The specification describes a telephone system in terms of communication between
Subscribers and controlled by a mapping from Subscriber to Status. The statuses are
free (FR), Unavailable (UN), Attempting- (AI), Waiting- (WI) and Speaking-initiator
(ST) and Waiting- (WR) and Speaking-recipient (SR). The Lift function only accepts

Translating VDM to Alloy 49

subscribers that have the FR status and requires the state after to overwrite the status to
Al for the given subscriber, it gives a frame condition stating that the only part of the
state that may be changed or read is status. The ClearSpeak operation only accepts a
subscriber with the status SI and requires the status of that subscriber to be set to FR
and the subscriber it was in a conversation with, represented by calls(i), to have the
status UN. It also requires that no call exists in the calls map for the given subscriber.

Alloy [13] is a declarative formal specification language for describing software ab-
stractions. Alloy enables fully automatic analysis that gives immediate feedback but,
unlike theorem proving, the analysis is not complete, and it only examines a finite space
of cases, which, due to recent advances in constraint-solving technology, usually is of-
ten vast and therefore offers a degree of coverage unattainable by testing. At the core,
Alloy is based on relations over atoms with a logic that is small, simple and expressive.
It is based on a relational logic that combines the quantifiers of first-order logic with
operators of relational calculus and easy to learn and understand if one already is famil-
iar with basic set theory. The Alloy language is more than just logic; it provides ways to
organise a model, build larger models based on smaller ones and a way to factor out com-
ponents for reuse. The language also provides a number of shorthand and declarations
needed to communicate with the Alloy Analyzer. And, finally, the language includes
modules, polymorphism, parametrized functions etc. but some features are unique to
Alloy including signatures and the notion of scope. Alloy modules consists of:

— Module header: Header identifying the module, enabling them to be opened and
reused by other modules.

Signature definitions: Each signature, labelled sig, represents a set of atoms and
may introduce fields that each represents a relation that relates atoms.

Constraint paragraphs: Various forms of constraints and expressions, labelled fact,
fun and pred.

Assertions: Records properties that are expected to hold and labelled assert.
Commands: Instructions to the analyzer to perform a particular analysis and
labelled run or check.

The following example illustrates an Alloy specification of the Telephone example. It
starts by defining a number of signatures TOKEN , Subscriber, - - -. Then two predi-
cates are specified including a run command. Predicates are just normal formulas, and
run commands are used to ask the Alloy Analyzer to find a satisfying assignment with
a given scope. The run command given in this example asks the Alloy Analyzer to find
a satisfying assigment with the default number of instances set to 3 and with two ad-
ditional constraints restricting the number of instances of Exchange to at most 2 and
Subscriber to at most 1 instance. The result can then be graphically represented as
shown in figure [Tl

module telephone

open util/relation

sig TOKEN({ }

sig Subscriber extends TOKEN{}
one sig AL SI, WL,SR, WR,FR, UN{}
sig Initiator in AI + SI + WI{}

50 K. Lausdahl

sig Recipient in SR + WR{}
sig Status in FR 4+ UN + Initiator + Recipient{ }
sig Exchange{

status: Subscriber —lone Status,

calls: Subscriber lone —lone Subscriber
H functional[status,Exchange] and

injective[calls,Exchange] and functional[calls,Exchange] and
all i : dom[calls] | (status[i] = WI and status[calls[i]]= WR) or
(' status[i] = SI and status[calls[i]] = SR)

}

pred Lift(e : Exchange, e’ : Exchange, s: Subscriber)
{ &’ -calls = e-calls

s in dom[e-status :>FR]

e’-status = e-status H s —Al

run Lift for 3 but 2 Exchange, 1 Subscriber

pred ClearSpeak(e : Exchange, e’ : Exchange, i: Subscriber)
{iin dom[e-status :>SI]
e’-status = e-status H (i —FR + e-calls[i] -UN)
e’-calls = univ -i <:e-calls
iin dom[e-calls]

}

The instance presented in figure [I] shows two Ezchange objects with a 0 and 1 index
and a label indicating which argument of Lift they represent. There are no indexes given
for the Subscriber, AI and FR since only a single object of each exists. The arrows
represent the relation Status, and the brackets indicate how respectively Al and FR
are related to the two exchange objects. It is important to notice that Alloy does not
differentiate between pre- and post-state like VDM; instead it is up to the modeller to
construct e.g. a predicate such that the pre- and post-state is represented which in this
case is done by two additional arguments e and e’.

Exchange0 Exchangel Subscriber
($Lift_e") (SLift_e) (SLift_s)
status [Subscriber] status [Subscriber]
Al FR
(this/Initiator, this/Status) (this/Status)

Fig. 1. An instance found by running the Alloy Analyzer on the Telephone with the lift predicate

Translating VDM to Alloy 51
3 Semantics Preserving Translation

Software abstractions are expressible in both VDM and Alloy while their foundation
is fundamentally different, with VDM being a higher-order, model-oriented language
and Alloy a first-order constraint bases language built on relations of atoms which are
primitive entities that are indivisible, immutable and uninterpreted. The basic building
blocks of VDM are type constructs that are used to capture system entities, and can be
arbitrary complex using cyclic dependencies and nesting through e.g. sets, sequences,
maps or records. Types can furthermore be annotated with invariants to record proper-
ties that must always hold between entities or entity fields. An Alloy signature is similar
to a VDM type but limited to only expressing relations between atoms and thus not able
to directly express e.g. sets of sets often used in VDM. However, by introducing extra
atoms and relations most VDM types can be translated including constraints defined by
invariants.

A translation from VDM to Alloy cannot always be done faithfully because VDM is
more expressive then Alloy. However, despite the large proportion of VDM specifica-
tions that are written with higher-order constructs most of them are not fundamentally
higher-order and can be expressed in a first-order way. If a VDM specification only uses
the definitions and types shown below, and the expressions presented in detail later, then
it can be translated into a semantically equivalent Alloy specification. The translation
is specified for a subset of VDM that excludes recursive functions and is restricted to
a two-value semantics of VDM. The subset shown below ensures that a VDM specifi-
cation can be directly represented in Alloy. The language consists of Modules which
are directly translatable to an Alloy module and thus not shown here. A module is a
container that contains a number of Definitions.

Definition = TypeDef | StateDef | OpDef | FunDef | ValueDef
TypeDef = Id x Type
Type = BasicType | Constructive Type

Constructive Type = InMap Type | MapType | NamedInvType | ProductType |
SeqType | SetType | UnionType

NamedInvType :: type : NamedType | Record Type
invpattern : Pattern
mv . Exp

TypeDef is a name type pair with a Type that either is a BasicType (Token,Quote,
Int), or a Constructive Type. Basic types translates easily to Alloy, shown here with
the abstract VDM representation on the left and the Alloy syntax on the right where []
denotes the meaning of the VDM component:

[Token Type] = sig Token{}
[QuoteType(tag)] = one sig tag{}

52 K. Lausdahl

Tokens translate directly to signatures with no fields where a quote type translates to a
one signature indicating that only a single instance can ever exist in the universe during
analysis. Signatures in Alloy can be used to express sub-typing relations. This enables
translation of named types in VDM, which are either record types or a named composite
type; the translation of NamedType is based on the enclosing type:

[NamedType(name, t)] = (¢t € BasicType — IntType V
t € ConstructedType — UnionType
= sig name extends [t]{})
A(t = IntType
= sig name in Int{})
A(t = UnionType(t1,t2)
= sig name in [T1] +[T2]{})

If the enclosing type of the NamedType is integer or union then a new signature is
created using the Alloy in notation to indicate that the signature is a sub-signature of
another signature of a union of signatures. The symbol — is used for set difference
restricting the types and + for set union creating a union of types in Alloy. The VDM
invariant type adds an invariant to a NamedType in the form of a boolean expression
that must hold for all instances of that type. This is representable by an Alloy fact using
a for-all expression quantifying over all objects that belong to the type:

NamedType(name, type),

= fact namelnv{
pattern, exp

) [Named Type(name, type)]
]
all [pattern]:name | [exp]}

[NamedInvType (

The behaviour is modelled around state in VDM, through operations and functions.
Functions frequently use recursion to manipulate sets, sequences or other data struc-
tures. Common to operations and functions is that they both declare pre- and post-
conditions which are essentially predicates. However, Alloy does not include any notion
of state and therefore additional arguments must be added to enable operations to refer
to pre- and post-states. The VDM state is easily representable by an Alloy signature:

name, o
[StateDefinition | fields, |)]= !et re.latzons =A{f: [[ﬁelds(f)]] t|f € dom fields}
i in sig name{relations}

{getInvs(fields) and [inv]}

note that unlike VDM, multiple instances can exist of this signature, multiple instances
are needed to present the pre- and post-state used for each operation invocation as op-
posed to VDM, where the pre-, post-states are implicitly handled and accessed through

the state field identifiers or old identifiers (id) as used in post-conditions. The function
getInvs is a utility function that adds the necessary constraints to a signature when any
of the fields represents a mapping in the VDM specification.

Translating VDM to Alloy 53

getInvs: (Id - Type) — AlloyExp-set
getInvs(fields)invs ==
let f € dom fields in
cases fields(f) of
Map — ({functionallf])} U getInvs({f} < -: fields)
InMap — ({functional[f]} U injectivelf]) A getInvs({f} < -: fields)
others { }
end

Functions: Implicit functions, only consisting of pre- and post-conditions, can be rep-
resented by Alloy predicates. Unless the return type is boolean, an additional argument
must be added to the predicate with the type and pattern. Explicit functions that ad-
ditionally declare a body resemble functions in Alloy. However, a direct translation
only preserves the semantics if the VDM function does not use or return any con-
structive expressions (mk-). The VDM semantics creates a new fresh object based
on the arguments of a mk-expression; whereas Alloy search the universe to find a
match. This can be illustrated by a VDM function returning a record Person with
two fields firstname and lastname with a body defined as mk-Person(first, last)
which always returns a person record. In Alloy, the function body could be written
like {pz Person | p.firstname = first and p.lastname = last}. This, however,
may return either a person or an empty set in the case where the universe does not in-
clude a person that matches the one requested. There are two solutions in these kind of
cases: a) create a generator fact that pre-populates the universe with all instances that
may ever be needed in the specification, or b) use a predicate with an additional argu-
ment representing the return value. The advantage with the latter solution is that it does
not create instances that may not be needed and thus slowing down the analysis; it also
avoids the difficult task of calculating exactly which instance is needed. An example of
the latter is illustrated below, showing how a VDM function returning a record, can be
expressed with a predicate in Alloy; note the extra argument p representing the return
value:

getPerson: Id x Id — Person pred getPerson(first,last : Id, p : Person]{
getPerson(first, last)p == p-firstname = first and
mk-Person(first, last) p-lastname = last}

Operations: Implicit operations are like implicit functions with the exception that pre-
and post-condition expressions are allowed to refer to state fields. Pre-conditions are
only allowed to refer pre-state by state field names. Post-conditions are allowed to refer

P
to pre-state by old state field names (id and to post-state by state field names. Like
implicit functions, a predicate is used to represent the operation but two additional ar-
guments are required to encode the notion of pre- and post-state. This is done by adding
arguments e.g. e, ¢’: Fxchange where we define the first e to be the pre-state and e’
the post-state. The pre-condition expression may have free variable references, that, in
VDM, will be bound to the state fields, but instead they must be joined with the pre-
state instance e in this case. The same applies for post-conditions with the exception

54 K. Lausdahl

that names without the old symbol must be joined to the post-state (¢’) and old names
(e) to the pre-state as illustrated:
[ImplOpDef (name, args, retld X type, pre, post, frame)] =
let StateDef (stateName, fields,-) = getGlobalState(),
args’ = addPrePostArgs(getArguments(args), stateName),
pre’ = updateStatelds(pre, fields, getPreName()),
post’ = updateStatelds(post, fields, getPostName()),
post” = updateOldStatelds(post’, fields, getPreName()),
frame’ = getExtConstraints(frame)
in
(type € B = pred name(args’){[pre’'] A [post”] A frame’})
N(type € B = let args” = appendArg(args’, retld, type) in
pred name(args”){[pre'] A [post”] A frame'})
Operations have implicit assumptions about when state is changed which is connected
to frame-conditions. If no frame-condition is given for a state identifier or a read clause
is specified then that identifier must remain constant and requires the addition of an
equality of post-state and pre-identifier identifier e.g. €’.calls = e.calls.

Expressions: Semantically most the VDM expressions included in this work have
equivalent expressions in Alloy but use a different concrete syntax. A subset of VDM
expressions has been chosen based on the case studies made and is only a subset of the
expressions which can be translated to Alloy:

Exp =
ApplyExp | BinExp | ExistsExp | FieldExp | ForallExp | IfExp | LetExp |
MapEnumFEzp | MapExp | MkExp | MkType | QuoteExp | SeqCompFEzxp |
SetCompFEzp | SetEnumEzp | TupleExp | UnaryExp | VarExp

where unary expressions includes the operators: dom, dunion, inverse, not, rng and
the binary operators are: A, V,=,#, = , &€, 1,U, >, <,N. The variable expression has
a special case where the variable identifier refers to a set of sets that is encoded as a
set of a signature with a field representing the second set. Thus, the inner set must be
returned if such an implicit signature is referred:

[VarEzp(id, type)] var = type = SetType(SetType(-)) = id.x

type # SetType(SetType(-)) = id

The semantics of relational join in Alloy differs from that of map application in VDM.
The difference is how application of keys outside the domain of a map is handled: in
VDM this results in an error whereas, in Alloy, it evaluates to an empty set because of
the join. The solution is to add a constraint to the join requiring the key to exist in the
domain of the map.

[ApplyEzp(root,)] = [i] in ([root]).univ and [root][[:]]

[ForallExp(bind, exp)] =
getFreeVars(bind) ={} = all [bind] bind | [exp]
getFreeVars(bind) #{} =
all getTypeBinds(bind) | [bind] in implies [exp]

Translating VDM to Alloy 55

[UnaryExp(exp, dunion)] = let ¢t = typeof (exp) in
t = SetType(RecordType(-)) = toSet[[exp]]
t = NamedInvType(Named Type(name,)y-y-) = [name].z
SetType(-)

3.1 Limitations

The semantics preserving translation given here does not cover undefindeness in VDM
or lambda functions and there are a few limitations to how VDM specifications may be
written and how the scope needs to be given while using the Alloy Analyzer.

Identifiers. The Alloy language treats identifiers differently from VDM, and as a result
of this the translation requires all argument identifiers for functions and predicates to be
disjoint from any field names used in signatures. If this is violated, the type checker in
Alloy cannot detect the correct type when the join operator is used, and this results in
type errors.

Scope — sequences. Sequences are an essential part of VDM, but sequences are not di-
rectly representable in Alloy. However, the Alloy Analyzer includes a standard library
that represents a sequence as a relation int- > univ mapping a number to an instance
and posing an ordering on the integers used. This solutions works well for VDM se-
quences but is hard to use since the scope used for the integers used in the domain
decides the maximal length of any sequence, and if exceeded, the sequence is silently
truncated. Moreover the only way the scope can be changed for the integers used as
index in sequences is by changing the default scope used by a command.

Values. The VDM values are a constant representation of an object of any type that
is used in specifications to compare calculated results against. While this works well
for all types in VDM it quickly makes analysis in Alloy unnecessary slow due to the
increased scope required. The values can be split into two categories: basic typed values
and values using constructive types. Basic typed values can be represented in Alloy as
one signatures and has only a small impact on the performance while the constructed
types requires a generator fact to populate the complex structure, essentially forcing all
required instances to exist. A cleaner and more abstract way to represent these values
are VDM functions, which can be represented by Alloy predicates.

The translation does not include recursion or statements used in operation bodies
because of limitations of the Alloy Analyzer. Both recursion and a subset of the VDM
statements are expressible in Alloy but the analyzer will only check recursive functions
for a depth of three which rarely is enough for most VDM specifications; thus the benefit
of a translation is limited. A similar problem exists if e.g. a for-statement loops over a
sequence and calculating whether or not a certain condition is reached for termination.
In this case the loop can be unfolded in Alloy to a predefined number of loops. However,
this dramatically slows down the analysis to hours instead of seconds.

56 K. Lausdahl

4 Checking Implicit VDM Specifications

The translation from VDM into Alloy extends the existing syntax and type checking
with the features of the Alloy Analyzer, which, unlike the VDM proof obligation gen-
erator, is fully automated and do not require any human intervention. The two main
features are:

1. Simulation: Finding instances of state or execution that satisfies certain properties.
2. Checking: Finding counterexamples — instances that violates a given property.

Simulation is similar to interpretation of explicit specifications, but instead of actual
values, symbolic values are used, which are limited to the size of the scope. The re-
sult of a simulation is any instance that respects the constraints (predicates, facts) of
the specification and thus non-deterministicly decided. If an instance is found, then its
structure can be graphically visualized, and examined through an evaluator; however,
if no instance is found, a core is given. A core is a collection of possibly contradict-
ing formulas that describe what prevents an instance from being found. If the core is
consistent, then there may just not exist any instance within the specified scope and
thus a larger scope may be needed. Enabling simulation of implicit specifications is a
simple way to verify that a desired instance can be obtained, which turned out not to be
the case for two of the specifications translated during this work. Both specifications,
Hotel [2513]] and Telephone [22]], had problems with the use of pre- and post-state ref-
erences and thus used a post-state where a pre-state should have been used resulting in
a core instead of an instance. Example of a post-condition in the Telephone example:

status = status t {calls(i) — FR} A

calls = {i} < calls

where ¢ is applies to the map calls while the second line states that the domain of calls
are restricted by ¢ and this ¢ cannot be in the domain.

While simulation searches for an instance that satisfies given properties it does not
guarantee that only instances that respect the properties exist. Checking is another tech-
nique where a model finder tries to find an instance which respects the specification but
violates a given property defined as an assertion. Model finding is more efficient than
testing, since the user only has to specify an assertion that has to always hold and the
model finder will search for an instance which violates this. The VDM language does
not contain any official way to capture assertions; however, the notion of validation
conjectures [18, p. 191] is mentioned in relation with proof techniques but suggested
to be written as part of the model documentation. Thus a high level informal assertion
for the telephone example may look like this:

Lift — Connect — Clear Wait
One way to interpret this informal assertion is that there is some relation between the

states and that the state before Lift and after ClearWait are equal. A conservative
translation of this can be expressed as follows as an Alloy assertion:

Translating VDM to Alloy 57

. assert liftConnectClearWait{

2 all e,e’,e’’,e’”” : Exchange, s1,s2 : Subscriber |
3 (free[e,s1] and Lift[e,e’,s1] and

4 Connect[e’,e’’,s1,s2] and

5 ClearWait[e’’,e’"’,s1]) implies eq[e.e’”’]}

where free and eq are utility functions that respectively sets up the initial state and
compare the final and first state. If an counterexample is found then the Alloy Analyzer
is able to visually display it like for any simulation.

Alternatively to expressing assertions over VDM specifications in different notations,
we propose to use the operation quotation [2] in VDM to express such assertions in the
VDM language. For each function or operation in VDM, two implicit boolean functions
pre- and post- representing the pre- and post-condition, exist. By utilizing this, the
above assertion can be written in the VDM notation as follows:

Ve, e',e”, e": Exchange, s1, s2: Subscriber -
(free(e, s1) A
pre-Lift(s1, e) A post-Lift(sl, e, e') A
pre-Connect(sl, s2, e') A post-Connect(sl, s2, ") A
pre-ClearWait(s1, e'’) A post-ClearWait(sl, e”,e")) = eq(e,e")

the free and eq functions are equal to the one used in Alloy and just represented as
simple boolean functions in VDM. The pre- functions take the same arguments as the
function they are guarding with the addition of the pre-state. The same applies for the
post-functions with the addition of the pre- and post-state. The assertion is conservative
in the sense that it only has to hold in the case, where all functions denoted by pre- and
post- are true, which does not allow cases where a post-condition is false but still implies
a valid pre-condition.

5 Case Studies

The translation has been applied to a number of implicit VDM specifications. The
intended outcome was to validate if the specifications could be represented in Al-
loy, and to check if any errors could be found in the specifications. The translation
rules have been incorporated in a prototype tool that outputs an Alloy specification for
the supported subset of VDM. The four most interesting specifications that have been
analysed are:

Telephone. The Telephone example [22] shown in Section [2] was originally written in
VDM [26/21]] and later translated into Z [23]] and B [24]. The analysis revealed that
two post-conditions contained contradictions, and thus resulted in a core instead of an
instance. The original post-condition of the ClearSpeak operation is defined as:

ClearSpeak (i: Subscriber)

post status = status t {i — FR, calls(i) — UN} A calls = {i} & calls

58 K. Lausdahl

This is represented in Alloy as shown below where lines 2 and 3 represent the VDM
post-condition shown above, and line 4 the extra constrains required by VDM map
application:

. pred ClearSpeak(e : Exchange, e’ : Exchange, i: Subscriber){

> e’-status = e-status H- (i— FR + e’-calls[i] —UN)

3 ¢e’-calls = (univ-i) <te-calls

4 iin dom[e’-calls]}

The Alloy Analyzer cannot find an instance for the this predicate, and thus returns a core
consisting of lines 3 and 4. The source of the error is in line 2 where ¢’. calls|i] refers to
the post-state, which is restricted to not include ¢ by line 3. The core does not contain
the source of the error (line 2), because the Alloy language allows such joint operations
resulting in an empty set. Therefore, the constraint ¢« in dom [e’.calls] must be added
during the translation of ¢’.calls[i], and therefore, it is easy to identify the source of the
error.

Hotel. The Hotel example included in the Software Abstractions book about Alloy [13]
did reveal a similar error in one of the post-conditions, preventing the Analyser from
finding an instance. The original Alloy assertions could be used on the specification
translated from VDM with only minor adjustments.

Tic Tac Toe. This example is a simple specification of the Tic tac toe game and is based
on values and includes a for-statement to control the user turns. To enable analysis
the complex values were converted to predicated removing the need for generators.
However, for a traditional 3x3 game analysis could not complete withing 5 hours but
for a board size of 2x2 analysis was possible.

Traffic. The Traffic light example was originally written as a Z specification [27]] and
later translated to VDM. The specification included values but they only served as test
input and could thus be left out of the translation. No errors were found but the visual-
ization of the specification made exploration of different instances easy.

6 Related Work

Various previous works have used the Alloy Analyzer to visualize or check properties
of specifications expressed in different languages. However, to the author’s knowledge
no such attempt has been made for VDM. The translations from both B and Event-B
to Alloy [15/16] both combined theorem proving with model checking and thus us-
ing Alloy to check properties. It is noted that Alloy does not have standard operations
for manipulating ordinary sets that result in unnecessary long specifications: however,
the current edition of Alloy includes a number of utility modules providing such fea-
tures which are utilized in this work. The translation of UML with OCL to Alloy [17]
identifies differences related to e.g. inheritance, collections and namespace. The latter
was also encountered in our work as mentioned in in Section 3.1 under Identifiers. The
translate of Z to Alloy [14] defines a semantics preserving translation for a subset of
the Z language that enables automatic syntactical translation to Alloy because of the
language similarities.

Translating VDM to Alloy 59
7 Conclusion Remarks

A key factor in applying formal methods in the software design process is automa-
tion. Automated analysis reduces errors introduced by humans and generally provides
much quicker results. In this paper we have presented one approach for checking im-
plicit VDM specifications with the Alloy Analyzer. The approach differs from earlier
attempts to validate such specifications through interpretation [11]. Translating a for-
mal language to Alloy to benefit from its analysis has been done before, but not for a
higher-order model-oriented language like VDM. We have described under which cir-
cumstances a translation becomes infeasible and described how this approach has been
applied to a number of specifications, and how basic errors in the specifications had
remained undiscovered for years. An observation made during this work suggests that
well formulated specifications at a high abstraction level tends to be easier to translate
to Alloy than specifications that use unnecessary complexity or a low level of abstrac-
tion. Finally, we described a way to write assertions in the VDM notation based on
expressions enabling VDM specifications to record system properties. We believe that
the same principles can be adapted for other languages that share the same properties
as VDM.

Acknowledgements. The author wishes to thank Daniel Jackson, Andrea Mocci, Eu-
nsuk Kang, Peter Gorm Larsen, Nick Battle and the Software Design Group at the
Computer Science and Artificial Intelligence Laboratory at Massachusetts Institute of
Technology for their valuable comments and support while carrying out this work. We
would also like to thank Aarhus University Forskningsfond and Fondationldella for
providing the funding that made this work possible.

References

1. Bjorner, D., Jones, C.B. (eds.): The Vienna Development Method: The Meta-Language.
LNCS, vol. 61. Springer, Heidelberg (1978)

2. Jones, C.B.: Systematic Software Development Using VDM, 2nd edn. Prentice-Hall
International, Englewood Cliffs (1990) ISBN 0-13-880733-7

3. Fitzgerald, J.S., Larsen, P.G., Verhoef, M.: Vienna Development Method. In: Wah, B. (ed.)
Wiley Encyclopedia of Computer Science and Engineering. John Wiley & Sons, Inc. (2008)

4. Larsen, P.G., Fitzgerald, J.: Recent Industrial Applications of VDM in Japan. In: Paul Boca,
J.B., Larsen, P.G. (eds.) FACS 2007 Christmas Workshop: Formal Methods in Industry.
Electronic Workshops in Computing, British Computer Society (December 2007)

5. Larsen, P.G., Battle, N., Ferreira, M., Fitzgerald, J., Lausdahl, K., Verhoef, M.: The Over-
ture Initiative — Integrating Tools for VDM. ACM Software Engineering Notes 35(1)
(January 2010)

6. Fitzgerald, J., Larsen, P.G., Sahara, S.: VDMTools: Advances in Support for Formal
Modeling in VDM. ACM Sigplan Notices 43(2), 3—-11 (2008)

7. Group, C.H.: The HOL System: Description (For HOL Kananaskis-4). University of
Cambridge (January 2007), http://hol.sourceforge.net/

8. Vermolen, S.: Automatically Discharging VDM Proof Obligations using HOL. Master’s
thesis, Radboud University Nijmegen, Computer Science Department (August 2007)

http://hol.sourceforge.net/

60

20.

21.

22.

23.

24.

25.

26.

27.

K. Lausdahl

. Agerholm, S., Sunesen, K.: Reasoning about VDM-SL Proof Obligations in HOL. Technical

report, IFAD (1999)

. Larsen, P.G., Lassen, P.B.: An Executable Subset of Meta-IV with Loose Specification. In:

Prehn, S., Toetenel, H. (eds.) VDM 1991. LNCS, vol. 552, Springer, Heidelberg (1991)

. Frohlich, B.: Program Generation based on Postconditions. In: Hmaza, M. (ed.) Software

Enginerring, SE 1997. IASTED, ACTA Press (November 1997)

. Frohlich, B.: Towards Executability of Implicit Definitions. PhD thesis, TU Graz, Institute

of Software Technology (September 1998)

. Jackson, D.: Software Abstractions: Logic, Language, and Analysis, 2nd edn. MIT Press,

Heyward Street (2012) ISBN-10: 0262017156

. Malik, P., Groves, L., Lenihan, C.: Translating Z to Alloy. In: Frappier, M., Glisser, U.,

Khurshid, S., Laleau, R., Reeves, S. (eds.) ABZ 2010. LNCS, vol. 5977, pp. 377-390.
Springer, Heidelberg (2010)

. Mikhailov, L., Butler, M.: An approach to combining B and alloy. In: Bert, D., Bowen, J.P.,

Henson, M.C., Robinson, K. (eds.) B 2002 and ZB 2002. LNCS, vol. 2272, pp. 140-161.
Springer, Heidelberg (2002)

. Matos, P.J., Marques-Silva, J.: Model Checking Event-B by Encoding into Alloy. In: Borger,

E., Butler, M., Bowen, J.P,, Boca, P. (eds.) ABZ 2008. LNCS, vol. 5238, pp. 346-346.
Springer, Heidelberg (2008)

. Anastasakis, K., Bordbar, B., Georg, G., et al.: On challenges of Model Transformation from

UML to Alloy. Software & Systems Modeling 9(1), 69-86 (2010)

. Fitzgerald, J., Larsen, P.G.: Modelling Systems — Practical Tools and Techniques in

Software Development. Cambridge University Press, The Edinburgh Building (1998)
ISBN 0-521-62348-0

. Plat, N., Larsen, P.G.: An Overview of the ISO/VDM-SL Standard. Sigplan Notices 27(8),

76-82 (1992)

Larsen, P.G., Pawlowski, W.: The Formal Semantics of ISO VDM-SL. Computer Standards
and Interfaces 17(5-6), 585-602 (1995)

Jones, C., Shaw, R.: Case Studies in Systematic Software Development. Prentice Hall
International (1990)

Aichernig, B.K.: A telephone exchange specification in VDM-SL. Technical Report
IST-TEC-98-04, Technical University Graz, Austria (1998)

Woodcock, J., Loomes, M.: Software engineering mathematics. SEI series in software
engineering. Pitman (1988) ISBN-13 9780201504248

Abrial, J.R.: The B Book — Assigning Programs to Meanings. Cambridge University Press
(August 1996)

Jackson, D.: Software Abstractions: Logic, Language, and Analysis. MIT Press, Heyward
Street (2006) ISBN-10: 0-262-10114-9

Fitzgerald, J., Jones, C.: Proof in the Validation of a Formal Model of a Tracking System for
a Nuclear Plant. In: Bicarregui, J. (ed.) Proof in VDM: Case Studies. FACIT Series. Springer
(1998)

Ammann, P.: A safety kernel for traffic light control. In: Haveraaen, M., Dahl, O.-]., Owe,
0. (eds.) Abstract Data Types 1995 and COMPASS 1995. LNCS, vol. 1130, pp. 71-81.
Springer, Heidelberg (1996)

Verification of EB? Specifications Using CADP

Dimitris Vekris™*, Frédéric Lang?, Catalin Dima', and Radu Mateescu?

! LACL, Université Paris-Est
61, av. du Général de Gaulle, F-94010 Créteil, France
{Dimitrios.Vekris,Catalin.Dima}@u-pec.fr
2 Inria Grenoble Rhéne-Alpes and LIG — CONVECS Team
655, av. de 'Europe, Montbonnot, F-38334 Saint Ismier, France
{Frederic.Lang,Radu.Mateescu}@inria.fr

Abstract. EB? is a specification language for information systems. The
core of the EB® language consists of process algebraic specifications de-
scribing the behaviour of the entities in a system, and attribute function
definitions describing the entity attributes. The verification of EB® spec-
ifications against temporal properties is of great interest to users of EB>.
In this paper, we propose a translation from EB* to LOTOS NT (LNT for
short), a value-passing concurrent language with classical process algebra
features. Our translation ensures the one-to-one correspondence between
states and transitions of the labelled transition systems corresponding to
the EB® and LNT specifications. We automated this translation with the
EB32LNT tool, thus equipping the EB®> method with the functional verifi-
cation features available in the CADP toolbox.

1 Introduction

The EB? method [10] is an event-based paradigm tailored for information systems
(ISs). EB® has been used in the research projects SELKIS [19] and EB®sEcC [17],
whose primary aim is the formal specification of ISs with security policies. In the
EB3SEC project, real banking industry case studies have been studied, describing
interaction with brokers, customers and external financial systems. The SELKIS
project deals with two case studies from the medical domain. The first one
draws data records from medical imaging devices. The access to these records
is done via web-based applications. The second one deals with availability and
confidentiality issues for medical emergency units evolving in a great mountain
range, like the Alps in that case.

A typical EB? specification defines entities, associations, and their respective
attributes. The process algebraic nature of EB3 enables the explicit definition
of intra-entity constraints, making them easy for the IS designer to review and
understand. Yet, its particular feature compared to classical process algebras,

* Partially supported by SELKIS ANR Project. The LACL group is grateful to
CONVECS for its warm welcome to INRIA Grenoble in 2012 and wishes to thank
all its members for useful advice and discussions.

E.B. Johnsen and L. Petre (Eds.): IFM 2013, LNCS 7940, pp. 61-/6] 2013.
(© Springer-Verlag Berlin Heidelberg 2013

62 D. Vekris et al.

such as CSP [I5], lies in the use of attribute functions, a special kind of recur-
sive functions evaluated on the system execution trace. Combined with guards,
attribute functions facilitate the definition of complex inter-entity constraints
involving the history of events. The use of attribute functions simplifies sys-
tem understanding, enhances code modularity, and streamlines maintenance.
However, given that ISs are complex systems involving data management and
concurrency, a rigorous design process based on formal specification using EB>
must be completed with effective formal verification features.

Existing attempts for verifying EB® specifications are based on translations
from EB® to other formal methods equipped with verification capabilities. A
first line of work [13/14] focused on devising translations from EB? attribute
functions and processes to the B method [2], which opened the way for proving
invariant properties of EB® specifications using tools like Atelier B [6]. Another
line of work concerned the verification of temporal logic properties of EB? spec-
ifications by means of model checking techniques. For this purpose, the formal
description and verification of an IS case-study using six model checkers was
undertaken in [95]. This study revealed the necessity of branching-time logics
for accurately characterizing properties of ISs, and also the fact that process al-
gebraic languages are suitable for describing the behaviour and synchronization
of IS entities. However, no attempt of providing a systematic translation from
EB? to a target language accepted as input by a model checker was made so far.

In this paper, we aim at filling this gap by proposing a translation from EB?3
to LNT [7], a new generation process algebraic specification language inspired
from E-LOTOS [16]. As far as we know, this is the first attempt to provide a
general translation from EB® to a classical value-passing process algebra. It is
worth noticing that CSP and LNT were already considered in [9] for describing
ISs, and identified as candidate target languages for translating EB3. Since our
primary objective was to provide temporal property verification features for EB3,
we focused our attention on LNT, which is one of the input languages accepted
by the CADP verification toolbox [11], and hence is equipped with on-the-fly
model checking for action-based, branching-time logics involving data.

At first sight, given that EB? has structured operational semantics based on
a labelled transition system (LTS) model, its translation to a process algebra
may seem straightforward. However, this exercise proved to be rather complex,
the main difficulty being to translate a history-based language to a process al-
gebra with standard LTS semantics. To overcome this difficulty, we considered
alternative memory-based semantics of EB® [20], which were shown to be equiva-
lent to the original trace-based semantics defined for finite-state systems in [10].
Another important ingredient of the translation was the multiway value-passing
rendezvous of LNT, which enabled to obtain a one-to-one correspondence be-
tween the transitions of the two LTSs underlying the EB* and LNT descriptions,
and hence to preserve strong bisimulation. The presence of array types and of
usual programming language constructs (e.g., loops and conditionals) in LNT
was also helpful for specifying the memory, the Kleene star-closure operators,
and the EB? guarded expressions containing attribute function calls. At last,

Verification of EB® Specifications Using CADP 63

EB3 = A1;...;An; S15...:5m
Au=f(T:T,y:T):T=match last (T) with
Livo loar(zi):vi | oo | ag(zq) :vg [I :vg41]
Su:=P(x)=FE
E:=X|aW)|Ei.Ex| E1| B2 | Eo™ | E1 ILAN Ez | |z:V:Ep |
[[AJlz:V:Ey |C = E|P(v)

Fig. 1. EB® syntax

the constructed data types and pattern-matching mechanisms of LNT enabled
a natural description of EB? data types and attribute functions.

We implemented our translation in the EB32LNT tool, thus making possible
the analysis of EB® specifications using all the state-of-the-art features of the
CADP toolbox, in particular the verification of data-based temporal properties
expressed in MCL [18] using the on-the-fly model checker EVALUATOR 4.0.

The paper is organized as follows. Sections @land Blgive an overview of the EB?
and LNT languages, respectively. Section @l presents our translation from EB? to
LNT, implemented by the EB32LNT translator. Section [Flshows how EB32LNT and
CADP can be used for verifying the correctness requirements of an IS. Finally,
Section [6] summarizes the results and draws up lines for future work.

2 The Language EB3

The £EB? method has been specially designed to specify the functional behaviour
of ISs. A standard EB? specification comprises (1) a class diagram representing
entity types and associations for the IS being specified, (2) a process algebra
specification, denoted by main, describing the IS, i.e., the valid traces of execu-
tion describing its behaviour, (3) a set of attribute function definitions, which
are recursive functions on the system execution trace, and (4) input/output rules
to specify outputs for input traces, or SQL expressions used to specify queries
on the class diagram. We limit the presentation to the process algebra and the
set of attribute functions. The EB3 syntax is presented in Figure [[l and the EB?
trace semantics Semy [10] are given in Figure 2] as a set of rules named T; to
T11. Both figures are commented below.

Process expressions. We write x,y,x1,Ts,... for variables and v, w, vy, v, ...
for data expressions over user-defined domains, such as integers, Booleans and
more complex domains that we do not give formally, for conciseness. Expressions
are built over variables, constants, and standard operations. We also use the
overlined notation as a shorthand notation for lists, e.g., = denotes a list of
variables 1, ..., z, of arbitrary length. An EB? specification consists of a set of
attribute function definitions Aq,..., A,, and of a set of process definitions of
the form “P (z) = E”, where P is a process name and F is a process expression.

Let Act be a set of actions written p,p1,pa,... and Lab be a set of labels
written «, aq, g, ... Each action p is either the internal action written A, or a

64 D. Vekris et al.

E. 5 E; E. % E)

(T1) (T7) in (p, A)
Py By ILA]l By & B/ I[A]l B,
B % B B % B ,
(TZ) ! P ! (T8) ! o 1 —\zn(p’A)
E\.Ey = E1.E» E1 ILA]l B2 2 B} ILA]l E»
Ex 2 B}
(T) 2772 (Ty) .
VB2 = By V1Al Y Sy
E1 5 E| Eo & E}
(Ty) 7% (T1o) R fe]]
E1|E2—>Ei C:>E0—>E6
Elz :=v] & E'
(T5) N (T11) [U}p P (m) = F
Ey* =/ P(v) > E
Eo % EY
(Te) ’ 0

Eo* & E}.Eo*

Fig. 2. £B% trace semantics SemT

”

visible action of the form “a(v)”, where aw € Lab. An action p is the simplest
process expression, whose semantics are given by rule T;. The symbol / (which
is not part of the user syntax) denotes successful execution. The ¢race T (implicit
in the presentation) of an EB® specification at a given moment consists of the
sequence of visible actions executed since the start of the system. (Note therefore
that A does not appear in the trace.) At system start, the trace is empty. If T
denotes the current trace and action p can be executed, then T.p denotes the
trace just after executing p.

EB? processes can be combined with classical process algebra operators such
as the sequence “Fy.Ey” (T2, T3), the choice “Ey | E3” (T4) and the Kleene clo-
sure “Fy*” (T5,Tg). Rules (T7 to Ty) define parallel composition “E; |[LA]l Ey”
of Fy, Es with synchronization on A C Lab. The condition “in (p, A)” is true iff
the label of p belongs to A. The symmetric rules for choice and parallel com-
position have been omitted for brevity. Expressions “E; ||| Es” and “F4 || Ey”
are equivalent respectively to “Ey |[(]] Ey” and “E; |[Labl| E3”.

The guarded expression process “C = Ey” (T19) can execute Ej if the Boolean
condition C' holds, which is denoted by the side condition “||C||”. Since C' may
contain calls to attribute functions, its evaluation depends on the trace obtained
up to the moment when the condition is evaluated. Note that the evaluation of
the guard C and the execution of the first action p in Ey are simultaneous, i.e., no
action is allowed in concurrent processes in the meantime. We call this property
the guard-action atomicity. This property is essential for consistency as, by side
effects, the occurrence of actions in concurrent processes could implicitly change
the value of C before the guarded action has been executed.

Verification of EB® Specifications Using CADP 65

Quantification is permitted for choice and parallel composition. If V' is a set of
expressions {v1,...,v,}, “lz:V:Ey” and “|[Allx:V : Ey” stand respectively for
“Eolr :=wv1] | ... | Ep[z :=v,]” and “Eplz := v1] [LA]l ... [[A]l Eolx :=v,]”,
where “E[x := v]” denotes the replacement of all occurrences of x by v in E. For
instance, “llz:{1,2,3}:a(z)” stands for “a (1) [l a(2) Il a (3)”. At last, named
processes can be instantiated as usual (T1;). Given an EB® process expression
E, we write vars (E) for the set of variables occurring free in E.

Attribute functions. Attribute function definitions are denoted by the symbol
A in the grammar of Figure [Il Attribute functions are defined recursively on
the current trace T representing the history of actions executed, with the aid
of functions last (T) which denotes the last action of the trace, and front (T)
which denotes the trace without its last action. The symbol L represents the
undefined value. In particular, both last (T) and front (T) match L when the
trace is empty. The symbol (wildcard) matches all actions not matched by
any of the preceding action patterns oy (x1),...,a4 (z4). Each v; (i € 0..n)
is an expression of the same type as f’s return type built over the variables
yUx;.

For defining formal semantics for attribute functions, the rule system of Fig-
ure [2] has to be expanded with trace and memory contexts for each process,
representing the sequence of actions executed since the process was initiated,
and the value of attribute functions for the current trace and any value for the
rest of their arguments, stored into process memory M. Due to space limitations,
we do not present the formal semantics here, but show how attribute functions
are evaluated on a concrete example. The formal trace-memory semantics for
attribute functions can be found in the companion paper [20].

Example. We give an example of how the trace-memory semantics work for a sim-
plified library management system, whose specification (processes and attribute
functions) in EB? is given in Figure Bl Process main is the parallel interleaving
between m instances of process book and p instances of process member. Process
book stands for a book acquisition followed by its eventual discard. The attribute
function “borrower (T, bId)” looks for actions of the form “Lend (mld, bld)” or
“Return (bId)” in the trace and returns the current borrower of book bId or L
if the book is not lent. In process book, action “Discard (bId)” is thus guarded
to guarantee that book bId cannot be discarded if it is currently lent. How the
use of attribute functions enhances expressiveness in the EB® specification of
Figure B is discussed in [20].

We illustrate how the EB? specification describing the library management
system is evaluated. The idea lies in the observation that attribute functions can
be turned into state variables (the memory M) carrying the effect of the system
trace on their corresponding values. This avoids keeping the (ever-growing) trace
leading to a finite state model. If f (T, 21 :T1,...,2;:T}) is an attribute function,
we construct |T1| X ... x |T}| state variables, where |T;| (i € 1..0) stands for T;’s
cardinality.

66 D. Vekris et al.

BID = {by, ... by}, MID = {my,...,mp}
book (bld : BID) =

Acquire (bId) . (borrower (T, bld) = L) = Discard (bId)
loan (mld : MID, bld : BID) =

(borrower (T, bId) = L) A (nbLoans (T, mId) < NbLoans) =

Lend (bld, mId) . Return (bld)

member (mld : MID) =

Register (mId) . (111bId : BID : loan (mld, bId)*) . Unregister (mld)

main =

(111bId : BID : book (bId)*) Il (11l mld : MID : member (mld)*)

nbLoans (T : T,mlId : MID) : Nat, = borrower (T : T,bld : BID) : MID, =
match last (T) with match last (T) with
11 11
| Lend (bId, mId) : | Lend (bld, mId): mld
nbLoans (front (T), mlId) + 1 | Return (bId): L
| Register (mlId): 0 | : borrower (front (T), bld)
| Unregister (mId): L end match
| Return (bId):

if mId = borrower (T, bld) then
nbLoans (front (T), mld) — 1
else nbLoans (front (T), mId) end if
| : nbLoans (front (T), mId)
end match

Fig. 3. EB® specification of a library management system

As an example, we set m = p = NbLoans = 2, i.e. we consider two books
b1 and by, and two members m; and msy. The memory has four cells: M =
(borrower [b11, borrower [ba], nbLoans [m11, nbLoans [ms]). The first two cells
keep the two values of the attribute function borrower (T,e) for a given trace
T, and the last two keep the values of nbLoans (T, e). After every step, the new
value of each cell can be calculated from the previous memory and the action
that has just been executed. The memory is initially set to (L, L, 1, 1). Af-
ter the trace “Acquire (by).Acquire (bs).Register (m1).Register (m2)” the mem-
ory contains (L, 1,0,0). If action “Lend (b1, m1)” is then executed, the new
memory is (mq, L, 1,0). For instance, the new value m; for borrower [b1] is ob-
tained from the rule “Lend (bId, mId) : mId” in the definition of the attribute
function borrower (see Fig. [B), and the new value 1 for nbLoans[m1] by the
rule “Lend (bld, mId) : nbLoans (front (T), mId) + 17 of the attribute function
nbLoans, where the value of nbLoans (front (T), m1) corresponds to the value of
nbLoans [m1] in the previous memory state (value 0).

Verification of EB® Specifications Using CADP 67

3 The Language LNT

LNT aims at providing the best features of imperative and functional program-
ming languages and value-passing process algebras. It has a user friendly syntax
and formal operational semantics defined in terms of labeled transition systems
(LTSs). LNT is supported by the LNT.OPEN tool of CADP, which allows the
on-the-fly exploration of the LTS corresponding to an LNT specification.

We present the fragment of LNT that serves as the target of our transla-
tion. Its syntax is given in Figure @l LNT terms denoted by B are built from
actions, choice (select), conditional (if), sequential composition (;), breakable
loop (loop and break) and parallel composition (par). Communication is car-
ried out by rendezvous on gates, written G, G1, ..., Gy, and may be guarded
using Boolean conditions on the received values (where clause). LNT allows
multiway rendezvous with bidirectional (send/receive) value exchange on the
same gate occurrence, each offer O being either a send offer (!) or a receive offer
(?), independently of the other offers. Expressions E are built from variables,
type constructors, function applications and constants. Labels L identify loops,
which can be escaped using “break L” from inside the loop body. Processes are
parameterized by gates and data variables. LNT semantics are formally defined
in SOS style in [7].

B :=stop |null | G (O1,...,0,) where E | By; B2

| if E then B else B: end if | var :T in B end var | z := E |

| loop L in B end loop | break L | select B1 [1 ... [1 B, end select
| par Gi,...,Grin Bi |l ... || B, end par | P[G1,...,Gn] (E1,...,Ep)

O:=1FE| 7z

Fig. 4. LNT syntax (limited to the fragment used in this paper)

4 Translation from EB3 to LNT

Principles. Our translation of EB? relies on the trace-memory semantics. Thus,
we explicitly model in LNT a memory, which stores the state variables corre-
sponding to attribute functions (we call these variables attribute variables) and
is modified each time an action is executed.

Assuming n attribute functions fi,..., f,, we model the memory as a pro-
cess M placed in parallel with the rest of the system (a common approach for
modeling global variables in process algebras), which manages for each attribute
function f; an attribute variable (also named f;) that encodes the function. To
read the values of these attribute variables (i.e., to evaluate the attribute func-
tions), processes need to communicate with the memory M, and every action
must have an immediate effect on the memory (so as to reflect the immediate
effect on the execution trace). To achieve this, the memory process synchronizes
with the rest of the system on every possible action of the system (including A,

68 D. Vekris et al.

to which we associate an LNT gate also written A in abstract syntax for con-
venience), and updates its attribute variables accordingly. The list of attribute
variables f = (f1,..., fn) is added as a supplementary offer on each EB® action
a (v), so that attribute variables can be directly accessed to evaluate the guard
associated to the action, wherever needed, while guaranteeing the guard-action
atomicity. Therefore, every action « (v) will be encoded in LNT as «a ('v, 7f),
and synchronized with an action of the form a (?z, ! f) in the memory process
M, thus taking benefit of bidirectional value exchange during the rendezvous.

Translation of attribute functions. To formalize the translation, we assume Lab =
{a,...,aq} (not including A), each a; has formal parameters z;, {f1,..., fn}
is the set of attribute functions, and each f; is uniquely defined by the set of
formal parameters y; and the set of data expressions w?, ... ,wi, such that:

fi (T,y;) = match last (T) with L :w) | ay (z1) :wp | ... | oy (z) : wf

We also assume that the attribute functions are ordered, so that for all h €
l.n,i € 1.n,j € 1..q, every function call of the form fj, (T,...) occurring in w]
satisfies h < i and every call of the form fj, (front (T),...) satisfies h > i. Such
an ordering can be constructed if the EB® specification does not contain circular
dependencies between function calls, which would potentially lead to infinite at-
tribute function evaluation. In particular, the definition of an attribute function
fi cannot contain recursive calls of the form “f; (T,...)”, but only recursive calls
of the form “f; (front (T),...)”. Note that this does not limit the expressiveness
of EB? attribute functions, because every recursive computation on data expres-
sions only (which keeps the trace unchanged) can be described using standard
functions and not attribute functions.

Ordering attribute functions in this way allows the memory to be updated
consistently, from f; to f, in turn. At every instant, already-updated values
correspond to calls of the form f5 (T,...) (the value of f, on the current trace),
whereas calls of the form fj (front (T),...) are replaced by accesses to a copy
f’ of the memory f, which was made before starting the update. This encoding
thus enables the trace parameter to be discharged from function calls, ensuring
that while updating f;, accesses to fp with h < i necessarily correspond to calls
with parameter T.

Process M is defined in Figure Bl It runs an infinite loop, which “listens” to
all possible actions «; of the system. Each attribute variable f; is an array with
l; dimensions, where I; is the arity of the attribute function f; minus 1 (because
the trace parameter is now discharged). Each dimension of the array f; thus
corresponds to one formal parameter in y;, so that f;[ord (v1)] ... [ord (v;,)]
encodes the current value of f; (T, v1,...,v;,), where ord (v) is a predefined LNT
function that denotes the ordinate of value v, i.e., a unique number between
1 and the cardinal of v’s type. For each type T we assume the existence of
functions first, that returns the first element of type 7', lastr that returns the
last element of type T, and nextr (x) that returns the successor of x in type T
(following the total order induced by ord). Such functions are available in LNT

Verification of EB® Specifications Using CADP 69

process M [a1,...,aq4,A: any] is
var f, ' : type (f),
y1:type (Y1), ..., Yn:type (yn), 1 : type (z1), ..., 24 :type (z4) in

updy; ... ; updy;

loop
/= f (= filord (v)] will encode f; (front (T),v) during memory update *)
select
a1 (Px1, L f); updy; ... updl
0o...0
aq (Paq, L f); updls ... 5 upd},
0 XY
end select

end loop

end var

end process
upd? = enum (ys, f; Lord (y:)] := mod (w?))
enum ([],B) =B
enum (x :: y, B) = x := firstp;
loop L, in
enum (y, B)
if © # lastr then z := neztr (z) else break L, end if
end loop where T = type (x)
vlord (y)1 =wvlord (v1)] ... lord (y:)1, ?y = (?y1,...,?y1), where y = (y1,...,y1)
mod (E) = E [f; (T,v;) := filord (v;)], fi (front (T),v;) := filord (v;)] | i € 1.n]

Fig.5. LNT code for the memory process implementing attribute functions

for all finite types. Function mod transforms an expression E by syntactically
replacing function calls by array accesses, while discharging the trace parameter
as explained above.

Upon synchronisation on action «; (?z;,!f) with the LNT process corre-
sponding to EB®’s main process (see translation of processes below), the values
of all attribute variables f; (i € 1..n) are updated using function upd?.

Translation of processes. We define a translation function ¢ from an EB® process
expression to an LNT process. Most EB? constructs are process algebra con-
structs with a direct correspondence in LNT. The main difficulty arises in the
translation of guarded process expressions of the form “C' = Ey” in a way that
guarantees the guard-action atomicity. This led us to consider a second param-
eter for the translation function ¢, namely the condition C', whose evaluation is
delayed until the first action occurring in the process expression Fy. The defini-
tion of ¢ (E, C) is given in Figure Bl An EB? specification Ey will then be trans-
lated into “par ai,...,aq, A in t (Eg, true) || M [aq,. .., a4, Al end par” and
every process definition of the form “P (z) = E” will be translated into the pro-
cess “process P [aq,...,aq, A any] (z : type (z)) is ¢ (E, true) end process”,
where {aq,...,aq} = Lab. The rules of Figure[d can be commented as follows:

70 D. Vekris et al.

t(X\,C) = X (?f) where mod (C) (1)
t(@(0),C) = a (v,7f) where mod (C) 2)
t(E1.Es, C) =t (E1, C); t(Ea, true) (3)
t(C' = Ey,C) =t (Eo,C andthen (") (4)
t(E1 | B2, C) =select t (E1,C) [1 t(E2,C) end select (5)
t(lz:V:Ey,C) = var x:=any V; t(Fo,C) end var (6)
t (Eo*,true) = loop Lg, in
select
A(?f); break Lg, [t(Fo,true)
end select
end loop (7)
t (E1 ILA]l Eg, true) = par A in t (E1,true) || t (E2,true) end par (8)
t (ILAllz:V : Ep, true) = par A in Ep[z :=v1] || ... || Eg[z := v,] end par
where V = {v1,...,vn} 9)
t (P (v),true) = P [ai,...,aq, Al (v) (10)
In all other cases:
if mod (C) then t (Ep, true) else stop end if
if C' does not use attribute functions
t(Eo,C) = par ai,...,qq, A in 11
(Eo, ©) t (Eo, true) (1)
Il pre Lag, ..., aq, Al (vars (C))
end par otherwise

Fig. 6. Translation from EB® process to LNT process

— Rule (1) translates the A action. Note that A cannot be translated to the
empty LNT statement null, because execution of A may depend on a guard
C, whose evaluation requires the memory to be read, so as to get attribute
variable values. This is done by the LNT communication action A (?f). The
guard C is evaluated after replacing calls to attribute functions (all of which

have the form f; (T, v;)) by the appropriate attribute variables, using func-
tion mod defined in Figure Bl Rule (2) is similar but handles visible actions.
— Rule (3) translates EB? sequential composition into LNT sequential compo-
sition, passing the evaluation of C to the first process expression.

— Rule (4) makes a conjunction between the guard of the current process ex-

pression with the guard already accumulated from the context.

— Rules (5) and (6) translate the choice and quantified choice operators of EB?
into their direct LNT counterpart.

— Rule (7) translates the Kleene closure into a combination of LNT loop and

select, following the identity Eo* = X | Eq.Ey*.

— Rule (8) translates EB® parallel composition into LNT parallel composition.

Verification of EB® Specifications Using CADP 71

— Rule (9) translates EB® quantified parallel composition into LNT parallel
composition by expanding the type V of the quantification variable, since
LNT does not have a quantified parallel composition operator.

— Rule (10) translates an EB® process call into the corresponding LNT process
call, which requires gates to be passed as parameters.

— Rules (7) to (10) only apply when the guard C is trivially true. In the other
cases, we must apply rule (11), which generates code implementing the guard.
If C does not use attribute functions, i.e., does not depend on the trace, then
it can be evaluated immediately without communicating with the memory
process (first case). Otherwise, the guard evaluation must be delayed until
the first action of the process expression Fy. When Fj is either a Kleene
closure, a parallel composition, or a process call, identifying its first action
syntactically is not obvious. One solution would consist in expanding FEjy
into a choice in which every branch has a fixed initial actiorﬂ to which the
guard would be added. We preferred an alternative solution that avoids the
potential combinatorial explosion of code due to static expansion. A process
pre (defined in Fig. [7) is placed in parallel to ¢ (Ep, true) and both processes
synchronize on all actions. Process pr~ imposes on t (Fp, true) the constraint
that the first executed action must satisfy the condition C' (then branch).
For subsequent actions, the condition is relaxed (else branch).

The following example illustrates and justifies the use of process pro as a
means to solve the guard-action atomicity problem. Consider the EB? system
“C' = Lend (b1, m1) Il Return (b2)”, where C' denotes the Boolean condition
“borrower (T, b1) = LAnbLoans (T, m1) < NbLoans” and Lab = {Lend, Return}.
The LNT code corresponding to this system is the following:

par Lend, Return, A in
par Lend, Return, A in
par Lend (b1, m1,7f) |l Return (b, ?f) end par
[l pro [Lend, Return, A] (b1, my)
end par
[l M [Lend, Return, \]
end par

The first action executed by this system may be either Lend or Return. We
consider the case where Lend is executed first. According to the LNT semantics,
it results from the multiway synchronization of the following three actions:

— “Lend (b1, m1,7f)” in the above expression,

— “Lend (7b,?m, ?f) where borrower[ord(b;)] = L A nbLoanslord(m;)] <
NbLoans” in process pr (at this moment, start is true, see Fig. [7), and

— “Lend (?b,7m, ! f)” in process M (see Fig. ().

Thus, in pro at synchronization time, f is an up-to-date copy of the memory
stored in M, b = by, and m = my. The only condition for the synchronization to

! Such a form, commonly called head normal form [3], is used principally in the context
of the process algebra ACP [4] to analyse the behaviour of recursive processes.

72 D. Vekris et al.

process pro [ag, ..., aq, A any] (vars (C) : type (vars (C))) is
var start : bool, z1:type (z1),...,zq:type (z4) in
start := true;
loop L in select
if start then
start := false;
select
a1 (?7z1,7f) where mod (C)
o...0
aq (724, 7f) where mod (C)
(1
A(?f) where mod (C)
end select

else
select
a1 (?Il, 7f)
m...10
aq (724, 7f)
1
Af)
end select
end if
[1 break L end select end loop
end var

end process
Fig. 7. Process prg

occur is the guard mod (C'), whose value is computed using the up-to-date copy f
of the memory. In case mod (C') evaluates to true, no other action (susceptible to
modifying f) can occur between the evaluation of mod (C') and the occurrence of
Lend as both happen synchronously, thus achieving the guard-action atomicity.
Once Lend has occurred, Return can occur without any condition, as the value
of start has now become false.

Theorem 1. Let E,E’ be EB® process expressions, T be the current trace, f be
the set of attribute functions, and p € Act. Then E pA@% E' if and only if:

t (B, true) L ¢ (B, true) A (Vi € f) (W) £ (T,0) = f; Lord(v)].

The proof strategy for Theorem 1 relies on the existence of a bisimulation be-
tween each EB? specification and its corresponding LNT translation. It works by
providing a match between the reduction rules of EB? [20] and the corresponding
LNT rules [1].

We developed an automatic translator tool from EB? specifications to LNT,
named EB®2LNT, implemented using the Ocaml Lex/Yacc compiler construction
technology. It consists of about 900 lines of OCaml code. We applied EB32LNT

Verification of EB® Specifications Using CADP 73

on a benchmark of EB? specifications, which includes variations of the library
management system (examined in its simplest version in Section 2l) and a bank
account management system.

We noticed that, for each EB? specification, the code size of the equivalent
LNT specification is twice as big. Part of this expansion is caused by the fact
that LNT is more structured than EB3: LNT requires more keywords and gates
have to be declared and passed as parameters to each process call. By looking
at the rules of Figure [6l we can see that the other causes of expansion are
rule (5), which duplicates the condition C, and rule (9), which duplicates the
body Ey of the quantified parallel composition operator “|[Allz :V : Ey” as
many times as there are elements in the set V. Both expansions are linear in the
size of the source EB? code. However, in the case of a nested parallel composition
“ULAIN 2y : Va oo ILALT 2y, 2 Vi 2 Ey”, the expansion factor is as high as the
product of the number of elements in the respective sets Vi, ..., V,, which may
be large. If Ey is a big process expression, the expansion can be limited by
encapsulating Ey in a parameterized process “Pg, (z1,...,z,)” and replacing
duplicated occurrences of Ey by appropriate instances of Pg,.

5 Case Study

We illustrate below the application of the EB>2LNT translator in conjunction
with CADP for analyzing an extended version of the IS library management
system, whose description in EB® can be found in Annex C of [12]. With respect
to the simplified version presented in Section 2 the IS enables e.g., members to
renew their loans and to reserve books, and their reservations to be cancelled or
transferred to other members on demand. The desired behaviour of this IS was
characterized in [9] as a set of 15 requirements expressed informally as follows:

R1. A book can always be acquired by the library when it is not currently acquired.
R2. A book cannot be acquired by the library if it is already acquired.
R3. An acquired book can be discarded only if it is neither borrowed nor reserved.
R4. A person must be a member of the library in order to borrow a book.
R5. A book can be reserved only if it has been borrowed or already reserved by some
member.
R6. A book cannot be reserved by the member who is borrowing it.
R7. A book cannot be reserved by a member who is reserving it.
R8. A book cannot be lent to a member if it is reserved.
R9. A member cannot renew a loan or give the book to another member if the book
is reserved.
R10. A member is allowed to take a reserved book only if he owns the oldest reserva-
tion.
R11. A book can be taken only if it is not borrowed.
R12. A member who has reserved a book can cancel the reservation at anytime before
he takes it.
R13. A member can relinquish library membership only when all his loans have been
returned and all his reservations have either been used or cancelled.
R14. Ultimately, there is always a procedure that enables a member to leave the
library.

74 D. Vekris et al.

R15. A member cannot borrow more than the loan limit defined at the system level
for all users.

We expressed all the above requirements using the property specification lan-
guage MCL [I8]. MCL is an extension of the alternation-free modal p-calculus [§]
with action predicates enabling value extraction, modalities containing extended
regular expressions on transition sequences, quantified variables and parame-
terized fixed point operators, programming language constructs, and fairness
operators encoding generalized Biichi automata. These features make possible
a concise and intuitive description of safety, liveness, and fairness properties
involving data, without sacrificing the efficiency of on-the-fly model checking,
which has a linear-time complexity for the dataless MCL formulas [18].

We show below the MCL formulation of two requirements from the list above,
which denote typical safety and liveness properties. Requirement R2 is expressed
in MCL as follows:

[true*.{ACQUIRE 7B : string}.(not {DISCARD ! B})*.{ACQUIRE !B}]| false

This formula uses the standard safety pattern “[3] false”, which forbids the
existence of transition sequences matching the regular formula (. Here the un-
desirable sequences are those containing two Acquire operations for the same
book B without a Discard operation for B in the meantime. The regular formula
true® matches a subsequence of (zero or more) transitions labeled by arbitrary
actions. Note the use of the construct “?B : string”, which matches any string
and extracts its value in the variable B used later in the formula. Therefore, the
above formula captures all occurrences of books carried by Acquire operations
in the model. Requirement R12 is formulated in MCL as follows:

[true*.{RESERVE 7 : string 7B : string}.
(not ({TAKE ! M 1B} or {TRANSFER ! M !B}))*]
((not ({TAKE ! M !B} or {TRANSFER ! M !B}))*. {CANCEL ! M !B}) true

This formula denotes a liveness property of the form “[81] (B2) true”, which
states that every transition sequence matching the regular formula £ (in this
case, book B has been reserved by member M and subsequently neither taken
nor transferred) ends in a state from which there exists a transition sequence
matching the regular formula B2 (in this case, the reservation can be cancelled
before being taken or transferred).

Using EB32LNT, we translated the EB? specification of the library manage-
ment system to LNT. The resulting specification was checked against all the 15
requirements, formulated in MCL, using the EVALUATOR 4.0 model checker
of CADP. The experiments were performed on an Intel(R) Core(TM) i7 CPU
880 at 3.07GHz. Table [l shows the results for several configurations of the IS,
obtained by instantiating the number of books (m) and members (p) in the IS.
All requirements were shown to be valid on the IS specification. The second and
third line of the table indicate the number of states and transitions of the LTS
corresponding to the LNT specification. The fourth line gives the time needed to

Verification of EB® Specifications Using CADP 75
Table 1. Model checking results for the library management system

(m,p) (3,2) (3,3) (3,4) (4,3)
states 1,002 182,266 8,269,754 27,204,016
trans. 5,732 1,782,348 105,481,364 330,988,232

time 1.9s 14.4s 31’39s 140°22s
R1 0.3s 1.8s 5’19s 20’13s
R2 0.2s 2.9s 9’26s 36’7s
R3 0.2s 9.4s 97°46s 26’47s
R4 0.2s 1.7s 5’158 18’40s
R5 0.2s 2.28 6’46s 21’52s
R6 0.2s 4.1s 38’30s 10’19s
R7 0.2s 7.4s 65’22s 24’33s
RS 0.2s 2.2s 6’528 22°27s
R9 0.2s 2.3s 6’38s 22’29s
R10 0.3s 13.3s 43’59s 62’°07s
R11 0.3s 2.5s 6’36s 22’14s
R12 0.3s 4.0s 10’47s 45°09s
R13 0.4s 4.3s 11°46s 1’07s
R14 0.3s 3.6s 10’41s 37'33s
R15 0.2s 2.8s 7’53s 28’568

generate the LTS and the other lines give the verification time for each require-
ment. Note that the number of states generated increases with the size of m and
p as EVALUATOR 4.0 applies explicit techniques for state space generation.

6 Conclusion

We proposed an approach for equipping the EB® method with formal verifi-
cation capabilities by reusing already available model checking technology. Our
approach relies upon a new translation from EB3 to LNT, which provides a direct
connection to all the state-of-the-art verification features of the CADP toolbox.
The translation, based on alternative memory semantics of EB® [20] instead of
the original trace semantics [10], was automated by the EB32LNT translator and
validated on several examples of typical ISs. So far, we experimented only the
model checking of MCL data-based temporal properties on EB? specifications.
However, CADP also provides extensive support for equivalence checking and
compositional LTS construction, which can be of interest to IS designers.

As future work, we plan to provide a formal proof of the translation from
EB3 to LNT, which could serve as reference for translating EB® to other pro-
cess algebras as well. We also plan to study abstraction techniques for verifying
properties regardless of the number of entity instances that participate in the
IS, following the approaches for parameterized model checking [I]. In particular,
we will observe how the insertion of new functionalities into an IS affects this
issue, and we will formalize this in the context of EB® specifications.

76 D. Vekris et al.
References
1. Abdulla, P.A., Bouajjani, A., Jonsson, B., Nilsson, M.: Handling Global Condi-

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

tions in Parameterized System Verification. In: Halbwachs, N., Peled, D.A. (eds.)
CAV 1999. LNCS, vol. 1633, pp. 134-145. Springer, Heidelberg (1999)

Abrial, J.-R.: The B-Book - Assigning programs to meanings. Cambridge
University Press (2005)

Bergstra, J.A., Ponse, A., Smolka, S.A.: Handbook of Process Algebra. Elsevier
2001

I(Bergslra, J.A., Klop, J.W.: Algebra of Communicating Processes with Abstraction.
TCS 37, 77-121 (1985)

Chossart, R.: Evaluation d’outils de vérification pour les spécifications de systemes
d’information. Master’s thesis, Université de Sherbrooke (2010)

ClearSy. Atelier B, http://www.atelierb.societe.com

Champelovier, D., Clerc, X., Garavel, H., Guerte, Y., McKinty, C., Powazny, V.,
Lang, F., Serwe, W., Smeding, G.: Reference Manual of the LOTOS NT to LOTOS
Translator - Version 5.4. In: INRIA/VASY (2011)

Allen Emerson, E., Lei, C.-L.: Efficient Model Checking in Fragments of the
Propositional Mu-Calculus. In: Proc. of LICS, pp. 267-278 (1986)

Frappier, M., Fraikin, B., Chossart, R., Chane-Yack-Fa, R., Ouenzar, M.:
Comparison of model checking tools for information systems. In: Dong, J.S., Zhu,
H. (eds.) ICFEM 2010. LNCS, vol. 6447, pp. 581-596. Springer, Heidelberg (2010)
Frappier, M., St.-Denis, R.: EB3: an entity-based black-box specification method
for information systems. Software and System Modeling 2(2), 134-149 (2003)
Garavel, H., Lang, F., Mateescu, R., Serwe, W.: CADP 2010: A toolbox for the
construction and analysis of distributed processes. In: Abdulla, P.A., Leino, K.R.M.
(eds.) TACAS 2011. LNCS, vol. 6605, pp. 372-387. Springer, Heidelberg (2011)
Gervais, F.: Combinaison de spécifications formelles pour la modélisation des
systémes d’information. PhD thesis, Université de Sherbrooke (2006)

Gervais, F., Frappier, M., Laleau, R.: Synthesizing B Specifications from EB?
Attribute Definitions. In: Romijn, J.M.T., Smith, G.P., van de Pol, J. (eds.)
IFM 2005. LNCS, vol. 3771, pp. 207-226. Springer, Heidelberg (2005)

Gervais, F., Frappier, M., Laleau, R.: Refinement of EB® Process Patterns into B
Specifications. In: Julliand, J., Kouchnarenko, O. (eds.) B 2007. LNCS, vol. 4355,
pp. 201-215. Springer, Heidelberg (2006)

Hoare, C.A.R.: Communicating Sequential Processes. Commun. ACM 21(8),
666677 (1978)

ISO/IEC. Enhancements to LOTOS (E-LOTOS). International Standard num-
ber 15437:2001, International Organization for Standardization — Information
Technology, Geneve (2001)

Jiague, M.E., Frappier, M., Gervais, F., Konopacki, P., Laleau, R., Milhau, J.,
St-Denis, R.: Model-Driven Engineering of Functional Security Policies. In: Proc.
of ICEIS, pp. 374-379 (2010)

Mateescu, R., Thivolle, D.: A model checking language for concurrent value-passing
systems. In: Cuellar, J., Sere, K. (eds.) FM 2008. LNCS, vol. 5014, pp. 148-164.
Springer, Heidelberg (2008)

Milhau, J., Idani, A., Laleau, R., Labiadh, M.A., Ledru, Y., Frappier, M.:
Combining UML, ASTD and B for the formal specification of an access control fil-
ter. Journal of Innovations in Systems and Software Engineering 7, 303-313 (2011)
Vekris, D., Dima, C.: Efficient Operational Semantics for EB® for Verification of
Temporal Properties. In: Proc. of FSEN. Springer (to appear, 2013)

http://www.atelierb.societe.com

Knowledge for the Distributed Implementation
of Constrained Systems
(Extended Abstract)

Susanne Graf! and Sophie Quinton?

' Université Joseph Fourier, VERIMAG
2 Institute of Computer and Network Engineering, TU Braunschweig

Abstract. Deriving distributed implementations from global specifications has
been extensively studied for different application domains, under different as-
sumptions and constraints. We explore here the knowledge perspective: a pro-
cess decides to take a local action when it has the knowledge to do so. We discuss
typical knowledge atoms that are useful for expressing local enabling conditions
with respect to different notions of correctness, as well as different means for
obtaining knowledge and for representing it locally in an efficient manner. Our
goal is to use such a knowledge-based representation of the distribution problem
for either deriving distributed implementations automatically from global spec-
ifications on which some constraint is enforced, or for improving the efficiency
of existing protocols by exploiting local knowledge. We also argue that such a
knowledge-based presentation helps achieving the necessary correctness proofs.

1 Introduction

Building correct distributed systems is a challenging issue where the complexity of
global verification is bound to be unmanageable. An interesting solution to this consists
in starting from a centralized specification of the system under construction, verifying
all properties of interest on this centralized specification — which has a much lower
complexity than the verification on a distributed implementation — and finally derive a
distributed implementation using some correct-by-construction approach. Note that this
topic is related to distributed control, where the objective is to enforce in a distributed
manner some global constraint on a plant. Deriving such a distributed controller directly
is difficult, and the correctness of the resulting controller is difficult to prove. A more
feasible approach in this context is to first construct a global controller, which then is
transformed into distributed one, again using some correct-by-construction approach.
In this paper, we consider a similar design methodology:

1. We suppose given a global (centralized) specification S of the system to be im-
plemented and a global constraint ¥ that has to be enforced. Our first issue is to
construct a global controller that enforces a controlled specification S¥.

2. As a second step, we may perform analysis on our global controlled specification
S¥ and make sure that it satisfies the required safety properties.

E.B. Johnsen and L. Petre (Eds.): IFM 2013, LNCS 7940, pp. 77-D3] 2013.
(© Springer-Verlag Berlin Heidelberg 2013

78 S. Graf and S. Quinton

3. Finally, we have to execute S in a distributed way. That is, we must decompose
the specification into k£ independent processes S1, . . ., Sy executing on a distributed
platform, either totally agnostic of each other or communicating — in a limited
way — through the communication system provided by this platform. The system
obtained as the composition of the local specifications S, .. ., Sk is denoted S ;5.
This distributed implementation must behave according to the global controlled
specification S¥. Note that here, the notion of correctness defining what it means
to behave according to a specification depends on the type of properties that we
verify in the second phase.

We use the concept of knowledge [[1] to express how a process can decide which of its
feasible transitions it should execute (if any) to satisfy the correctness criterion. In a se-
ries of recent papers [2/9/3110/15/4] it has been proposed to construct such knowledge
by means of a global analysis in order to distribute the controller enforcing constraint
¥, while relying for the distribution of the specification on some standard protocol such
as a-core [17]. In particular, global constraints defined by a priority order amongst
global transitions were considered. On the other hand, [11] proposed a protocol that is
similar to a-core but can handle global priorities directly, yet not exploiting knowledge
explicitly. This allows obtaining a distributed implementation of priority systems with-
out a prior global analysis. We argue here that the two approaches may be conveniently
combined by:

— applying a global static analysis in order to compute knowledge that is useful either
for the distributed implementation of .S or for achieving the control constraint ¥
(respectively directly for the distributed implementation of Sy);

— relying on a communication-based distribution strategy (i.e. a protocol) and then
using the knowledge obtained through static analysis in order to reduce the need
for communication.

Such an approach may facilitate the construction of distributed controllers achieving
reasonable performance at the implementation level (e.g., in terms of progress, or num-
ber of messages exchanged), and this for a larger class of systems.

The paper is structured as follows. In Section2] we give an overview of approaches
proposed for various application domains to achieve distributed control or distributed
implementations based on global specifications. In Section 3] we formalize the cen-
tralized control problem using (constrained) Petri nets. In Section d] we express the
problems related to the distribution of constrained Petri nets. We discuss the use of
static knowledge from the centralized specification and of communication for achiev-
ing distributed knowledge. In Section[5] we sketch a knowledge-based representation
of the distributed algorithm presented in [11] and discuss the potential of optimization.

2 Related Work

The problem of deriving distributed implementations from global specifications and
that of distributed control to enforce a global invariant have been studied intensively
since the eighties. We provide here an overview of some important results in these do-
mains, organized around three topics: The distributed implementation of synchronous

Knowledge for the Distributed Implementation of Constrained Systems 79

languages, the derivation of protocols from specifications, and distributed control, with
an emphasis on knowledge-based approaches. Other closely related areas are test and
analysis of distributed implementations which we do not discuss here.

Distributed Implementation of Synchronous Languages. In synchronous languages
[5], global specifications are given as a set of concurrent interacting components with
local data, similar to what is done in hardware description languages. However, in
the synchronous context, classical compilers do not generate a parallel implementation
but a unique sequential program which may be executed on simple hardware platforms
without any middleware. The need to distribute such a specification stems from the
fact that the physical hardware is actually distributed, and different components (as
defined at the specification level) run on different hardware units. The specification
generally represents some real-time control system with rather tight synchronization
constraints.

To derive distributed implementations in this context, the control flow is driven by
(local) clocks, and the data exchanged between locations are continuous flows. Most
synchronous languages define Kahn networks [[13]], that is, deterministic specifications
where each variable is written at most once in each computation step, and no circu-
lar dependencies exist amongst them. Therefore, according to [13]], achieving a cor-
rect distributed execution is straightforward on a platform with communication through
unbounded FIFO buffers. Such implementations are reliable, but uninteresting in the
context of real-time systems. Interesting applications require communication and com-
putation time to be bounded, such that bounded buffers are sufficient and real-time
constraints can be guaranteed [6].

Protocol Derivation. In the domain of telecommunications, automatic protocol gener-
ation from a global service specification was a hot topic in the eighties. Actions in the
global service specifications may represent (oriented) data transfer or genuine synchro-
nizations belonging to more than one physical location. Besides, specifications often
feature some non-determinism which represents detail abstraction of how decisions are
taken as well as some degree of openness of the design to be resolved later. However, a
closer look reveals that-non determinism is often used to mimic concurrency.

There has been a huge amount of work in the eighties on communicating finite state
machines [24/18] or formal specification languages such as LOTOS [21}14]] to mention
just a few. Some works propose methods for Petri nets with data transfer (through
registers). For example, [23]] presents an algorithm for generating, starting from a Petri
net, a message passing protocol by means of a set of message synthesis rules. This
line of work supposes that the control over interactions (that is, who is the initiator of
an interaction) is solved a priori based on the direction of data flow, and that conflicts
can always be solved locally. A more general method dealing also with conflicts and
multi-party synchronizations has been proposed by Bagrodia [[1]], taken up in [17] for
defining the a-core protocol — but note that it is not automatically derived.

Almost all the above-mentioned approaches aim at maximal progress, which is
only one among many possible refinement relations. Besides, only few papers pro-
vide correctness proofs. When these are given, they are written in an ad hoc man-
ner to establish the existence of a (bi-)simulation relation based on the introduced

80 S. Graf and S. Quinton

concepts. Knowledge-based reasoning offers exactly the right formalism to perform
such proofs and therefore revisiting protocol derivation using knowledge seems a
promising idea.

Distributed Control and its Knowledge-Based Formulations. The problem of
achieving distributed control of a plant with respect to a global specification is closely
related to the distribution problem. Here, for a given set of possible next actions sup-
ported by the plant, the aim is to allow in a distributed fashion one or more of them
to be executed, using a set of controllers with some partial vision on the present sit-
vation. This requires — as before — to find some enabled actions, and when there are
more than one, to detect whether there is conflict, making a choice amongst enabled
actions if needed. In this specific context, instead of initiating the local part of a global
action, local controllers provide a judgment on whether or not they propose the action
for execution (see e.g. [[L6/22]]).

We are here particularly interested in the methods presented in [[12/20/19] where a
knowledge-based presentation of the distributed control problem is proposed for sys-
tems, even if without the possibility of actual conflict situations. In [20] only negative
knowledge is used: a local controller knows locally when a cannot be executed if this
is due to its local protocol, and in order to forbid a at least one local protocol must
do so. In [[12] the notion of knowledge-based protocol is proposed as a means for rep-
resenting protocol specifications abstractly: the local action a; of P; is enabled if P,
knows this fact in its present state. Obviously, knowledge depends on the global system
and not just on the local state. Constructing a distributed protocol consists therefore in
transforming this external knowledge into an acquired knowledge which can be locally
exploited.

This knowledge-based approach has been taken up and generalized in [219/3110415/4]]
by suggesting the use of model checking for calculating knowledge properties in local
states. This is done for global service specifications given in terms of Petri net like
formalisms. The objective there is not maximal progress but deadlock preservation and
minimization of communication. A problem is that there may not exist enough knowl-
edge to take local decisions. In [9l3]] it is therefore proposed to enrich the specification
with some additional transitions representing temporary synchronizations. This work
relies on some distributed protocol such as a-core for achieving a real distributed im-
plementation, and for resolving conflicts. One limitation so far is that it is based on a
somewhat unrealistic notion of locality, which makes the basic fireability condition of
joint transitions local, but is not consistent with the underlying protocol. In [4] such
a priori knowledge computation is used to avoid actual conflicts by eliminating some
alternatives statically.

Our goal here is to integrate these approaches with the underlying protocol. In par-
ticular, we aim at simplifying the a-core protocol that was extended in [[L1] to handle
global priorities. We would like to propose a knowledge-based formulation of this al-
gorithm, in order to make it easier to verify and adapt to different notions of correctness
and to different platforms.

Knowledge for the Distributed Implementation of Constrained Systems 81

3 Centralized Controlled Specifications

In order to build a distributed implementation of a constrained system, we proceed
step by step, starting with a global (centralized) system specification, a constraint to
be enforced and some properties of interest, until an executable implementation for
a given distributed platform has been obtained. Our approach is particularly useful
when the global (possibly constrained) specification can be checked — with reasonable
complexity — for satisfaction of global properties whereas this is much more difficult
or even infeasible to obtain on the distributed implementation.

3.1 Petri Nets

We use one-safe Petri nets as a convenient generic formalism to represent global speci-
fications as well as distributed implementations. To simplify presentation, we suppose
here that global specifications contain no data. We rather focus on potentially complex
control structures: we consider symmetric multi-party synchronizations, allow arbitrary
conflict situations, and specify global constraints such as priorities between transitions.

Definition 1. A Petri net N is a tuple (P, T, E, sqo) where:

— P is a finite set of places. The set of states (markings) is defined as S = 2% .

— T is a finite set of transitions.

E C (P xT)U(T x P) is a bipartite relation between places and transitions.
— 59 C 27 is an initial state (initial marking).

For a transition ¢ € T, we define the set of input places *t as {p € P|(p, t) € E}, and
the set of output places t*as {p € P|(t, p) € E}.

Definition 2. A transition t is called enabled in a state s if *t C s and (t**t) N's = (.
We denote the fact that t is enabled from s by s[t). An event, corresponding to the firing
t, leads from state s to state s', which is denoted by s[t)s’, when t is enabled in s and
s =(s*t) Ut

A state s is in deadlock if there is no enabled transition from it.
Definition 3. Two transitions t1 and to are independent if (*¢1 Ut1®) N (*t2 Ut2®) = (.

That is, transitions are independent or concurrent if they do not influence each other.

We use the Petri net of Figure [Tl as a running example. As usually, transitions are
represented as segments, places as circles, and the relation F as a set of arrows from
transitions to places and from places to transitions. The Petri net has places named p;
and transitions named a, b, ..., g. We represent a state s by putting tokens inside the
places of s. In the example, the depicted initial state s is {p1, p2, p5}. The transitions
enabled in sy are a and b. Note that in our case there cannot be more than one token
in any place. Indeed, according to Definition 2] a transition ¢ is enabled in a state s
only if (after removing the tokens from the input places of ¢) there is no token in any of
the output places of ¢. That is, using usual vocabulary for Petri nets, our Petri nets are
one-safe by construction.

82 S. Graf and S. Quinton

P11

Fig. 1. A Petri net with initial state {p1, p2, p5}

Definition 4. An event trace is a maximal sequence of events sg[t1)s1 - s1[ta)sa - ...
with s the initial state of the Petri net, and any two consecutive events share their final,
respectively initial state in the obvious manner.

We denote the set of event traces of a Petri net N by ezec(NN). The set of prefixes
of the event traces in a set X is denoted by pref (X). A state is reachable in N if it
appears in at least one event trace of N. Our running example has 16 reachable states,
for instance {ps, p7, p11}- We denote the set of reachable states of N by reach(N).

3.2 Centralized Control
On top of the Petri net specification, we want to enforce some global (safety) constraint.

Definition 5. Given a Petrinet N = (P, T, E, so) with set of states S, a control safety
constraint W C S x T defines for each state s the set of transitions allowed in s.

Such a constraint ¥ has the potential effect of forbidding some transitions allowed in
N. We use this type of safety constraints as (1) they are trivially enforceable, and (2)
any enforceable safety constraint can be transformed into a constraint of this form.

Definition 6. An event trace of N constrained by W, called constrained event trace, is
a maximal prefix so[t1)s1 - s1[t2)s2 - ... of an event trace of N such that for each event
s[t)s’ in the sequence, (s,t) is in W.

We denote the set of constrained event traces of N with respect to ¥ by ezec(N,¥)
and the set of reachable states under constraint ¥ (that is, states that appear in at least
constrained event trace) as reach(N,¥). Note that these constrained event traces ex-
press the set of allowed behaviors of the constrained system but do not describe how to
enforce such behaviors.

As a running example of a constraint, we choose priority orders, similar
to [21903I10115]), used to discriminate between simultaneously enabled transitions in
N. Note that these transitions may be concurrent or not.

Knowledge for the Distributed Implementation of Constrained Systems 83

Definition 7. A priority order < is a partial order relation on the transitions T of N.
In a state s, transition t is said to be maximally enabled if it is enabled, and in s there
is no enabled transition t' with higher priority, that is, such that t < t'.

A priority order < can easily be encoded as a safety constraint W defined as the set
of pairs (s,t) € S x T such that ¢ is maximally enabled in s.

Example 1. Consider Petri net N of Figure[I] constrained by the priority order < de-
fined by {a < b,e < f, f < g}. The state {p2, p3,ps} is in reach(N) but not in
reach(N, W), because in the initial state a may not be fired before b.

We formally represent the control imposed on N to enforce ¥, by extending N with
variables, additional enabling conditions on transitions, and data transformations asso-
ciated with transitions so as to obtain an extended Petri net [8]] N’ whose event traces
are exactly exec(N,¥).

Definition 8. An extended Petri net N' consists of

— aPetrinet N = (P, T, E, sy) called the underlying Petri net of N';
— a finite set of variables V with given initial values V;
— for each transitiont € T,
e an enabling condition eny, i.e., a predicate on the variables in V
e some transformation predicate f; on variables in V

Definition 9. An execution of an extended Petri net is a maximal sequence of the form
(80, Vo) - t1 - (s1,V1) - ta - (s2,V2) ... such that for all i > 0 we have: 8;[ti+1)Si+1,
V; E eny, and Vi1 = fi,(Vi). The corresponding eventtrace is obtained by projecting
out the variables of the execution and representing the sequence as a sequence of events.

As previously for non extended Petri nets, we denote the set of event traces of N’ by
exec(N'). Note that an event trace of N’ is a prefix of an event trace of the underlying
Petri net as N’ can only restrict the event traces of its underlying Petri net N, not
generate new ones. It may however introduce deadlocks, and more generally, affect the
progress properties of N. Formally, this means that exec(N') C pref (ezec(N)).

Coming back to our control problem, we now define one possible criterion for defin-
ing the notion of correctness of an implementation of a constrained Petri net. We then
show how a Petri net IV can be extended to enforce a constraint &. One of the challenges
in the remainder of this paper is to distribute this controller.

Definition 10. An extended Petri net N’ implements a Petri net N constrained by W if
exec(N') C exec(N,).

Note that this is a quite restricted definition of correct implementation as it forces the
use of the same state structure, but it is sufficient for the illustrative purpose of this pa-
per. More importantly, this definition forbids N to introduce new deadlocks compared
to N constrained by ¥. It does not require any stronger progress, meaning that the
only properties which are preserved by this definition are safety and deadlock-freedom.
Quite clearly, other definitions are possible here.

84 S. Graf and S. Quinton

Proposition 1. Given a Petri net N and a constraint ¥ on N, the extended Petri net
N/ = (Pa T7 Ea S0, ‘/7 {ent}t€T7 {ft}tET) where

— the underlying Petrinetis N = (P, T, E, s¢)
— V = {v} where v encodes the state of N
— for each transition t € T, eny holds if and only if (v,t) € ¥
— for each transition t €, fy updates v to the new state
is such that N' implements N constrained by W.

We say that {V, {ent }rer, { ft }1eT} defines a controller for N enforcing W and we call
the event traces of N’ controlled event traces of N.

Proof. Any event trace of N’ is clearly also a constrained event trace with respect to ¥.
In fact, in this centralized context we even have the stronger property that exec(N') =
exec(N,¥). Indeed, our controller allows all transitions permitted by ¥.

We already mentioned the need to verify global properties of interest at a high level
of abstraction whenever possible so as to avoid the state-space explosion problem —
remember that our goal is to provide a distributed implementation of the constrained
Petri net. As the event traces of (N, ¥) are also event traces of N, all the safety prop-
erties proven on N hold on (IV,¥). For progress however, the situation is different,
as ¥ may block some transitions allowed by the original Petri net. This means that
one must either prove progress directly on the constrained system, or use a correct-by-
construction approach. This issue will reappear for the relation between the event traces
of the distributed implementation and those in ezec(N,¥).

4 Distributed Implementations and Control

We want to use Petri nets to specify and analyze the global behavior of a distributed sys-
tem. In practice, the system consists of a set of concurrently executing and temporarily
synchronizing processes. Such a distributed implementation supposes a platform in
which each process has access only to its local view of the system execution but may
communicate with other processes using some mechanisms provided by the platform.

In this section, we proceed as follows: we first focus on the definitions related to
the implementation of distributed systems with constraints. Then, we formalize our
solution for controlling such systems using knowledge and communication.

4.1 Distributed Petri Nets

First, we define a Petri net as a distributed system of processes. There are sev-
eral options for defining the notion of process in Petri nets: we choose to consider
place sets.

Definition 11. A process 7 of a Petri net N is a subset of the places of N (i.e., m C P)
such that there is always exactly one token in 7.

Definition 12. A distributed Petri net is a pair (N,II) where N is a Petri net as in
Definition[lland 11 a set of processes of N defining a partition of the set of places of N.

Knowledge for the Distributed Implementation of Constrained Systems 85

From now on, we assume a distributed Petri net (N,II). Figure [2] illustrates as an
example a possible distribution of the Petri net of Figure [l In the sequel, we keep
the priority order of Example [Il For each transition ¢, we denote proc(t) the set of
processes which have at least one place in *t. Note that, because we consider only
sequential processes here, this set is exactly the set of processes which have at least one
place in ¢*, and furthermore, the processes in proc(t) have exactly one place in *¢ and ¢°,
denoted respectively *¢, and t°; (we reuse this notation for corresponding singletons).

Fig. 2. A distributed Petri net with priority order {a < b,e < f, f < g}

Definition 13. The local state of a process w in a (global) state s € S is defined as
S|z = sN . Alocal state s of w is part of a global state s € S if and only if 8| = 5.

That is, the local state of a process 7 in a global state s is the projection of s onto the
places of 7. It describes what 7 can see based on its limited view of the system.

We now define the notations related to the local execution of = which we define as
the execution depending only the local view of 7. E.g., a transition ¢ may not be enabled
in a state s but still be enabled in a local 5.

Definition 14. A local event for m, corresponding to the firing of a transition t such that
m € proc(t), leads from local state s, to local state s.., which is denoted by s.[t)s’,
when t is locally enabled in s, — that is, s; has one token in *t, (and therefore no token
int®)—and s, = (s7*tx) Ut%. A local event trace of 7 is a maximal sequence of
local events sf[t1)sT - sT[t2)sh - ... as before.

We denote local enabledness of ¢ in s, by [t™). Now we define a distributed event trace
as an arbitrary interleaving of local event traces which we represent here simply as the
set of local traces.

Definition 15. A distributed event trace is a tuple (¢™ ...0™) of local event traces
which contains one local event trace per process in 11, and possibly a precedence rela-
tion < relating events of different processes. < restricts the allowed interleaved event
traces oLl

! Here, we say in the implementation relations defined in the next section how < is defined.

86 S. Graf and S. Quinton

Clearly, even for a very relaxed notion of correct distributed implementation, the dis-
tributed Petri net obtained by duplicating transitions shared by several processes does in
general not behave according to the (centralized) Petri net N, even without considering
the constraint ¥. We need to control the system, in order to enforce a correct imple-
mentation of both N and ¥. Again, this is represented by an extended Petri net, where
each process has a disjoint set of local variables.

Definition 16. A distributed controller for a distributed Petri net (N, I1) is defined by a
set of triples {V™, {en] Yrer, { fT }ter}, one for each process m in IL

Definition 17. A controlled distributed event trace of (N, II) by a controller is a tuple
(o™ ...0™) of controlled local event traces and a precedence relation <" such that
(o™ ...0™) corresponds to a prefix of a local trace as in the centralized controlled
case and <’ restricts <.

Note that (IV, IT) may be controlled by either a centralized or a distributed controller,
but our goal is of course to find a distributed one. The challenge is then to find the
right enabling conditions to control the distributed execution in order to ensure that
the distributed system implements its global specification — according to the chosen
criterion — while satisfying also the control invariant ¥. This will be addressed in
Section 4.3l But before that, let us discuss possible options to define what it means for
a distributed Petri net to implement a (centralized) Petri net.

4.2 Correctness Criteria for Distributed Implementation of Petri Nets

Let us consider first a very weak implementation relation which guarantees only se-
quential consistency, that is, no relation < relating events of different processes:

(1) transition correctness which ensures that the local order of transitions is preserved.
(2) atomicity which requires, in case of a conflict situation, that all involved processes
take the same decision.

All the upcoming definitions apply not only to distributed Petri nets but also to con-
trolled distributed Petri nets (traces in the definitions are then controlled).

Definition 18. Given a distributed Petri net (N, II), the projection of a trace o of
exec(N) (or exec(N, W) if the system is constrained) on a process € 1lis a local trace
obtained from o by keeping only events which involve transitions t such m € proc(t)
and projecting all states s onto the corresponding local state s|. That is, we through
away all non local ordering constraints.

Definition 19. A distributed Petri net (N, IT) implements N constrained by W with re-
spect to =noSyne, if for every distributed event trace (o1, . . . 0,,), there exists a (central-
ized) controlled event trace o € exec(N, W) such that for all processes ; the projection
of o on w; matches the corresponding local trace ;.

This relation is not necessarily implementable, as it may require unbounded buffering.
But usually, an implementation includes also two other types of constraints:

Knowledge for the Distributed Implementation of Constrained Systems 87

(3) synchronization constraints, which restrict the allowed interleavings of local events.
For example, when synchronizations represent an asymmetric situation, like a write
and corresponding reads, on may restrict the order amongst local events corre-
sponding to the same (global) event. But we do not necessarily want to impose
such causality constraints a priori, in order to be able to model out of order execu-
tions, prefetches, which “apparently violate causality”.

(4) progress constraints, which range from absence of global or local deadlock to max-
imal progress, meaning that for each event trace of N there must exist a distributed
event trace of (N, II).

We now present the implementation relation for the fully synchronized case.

Definition 20. A distributed Petri net (N, IT) implements a Petri net N constrained by
Y according 10 = puisync, if (1) the condition of Definition is satisfied, and (2) all
interleaved event traces o of (N, II) satisfy the following synchronization condition:
whenever for two non-independent events a, b, a occurs before b in the global trace o™
for o, then all events a in o occur before all events b.:.

This is a very strong correctness criterion, which in practice is rarely necessary, and
rarely implemented this way. We consider instead another implementation relation <
that is widely used in protocols, e.g. for a-core and [[11]]. This relation requires pro-
cesses to synchronize before the execution of a transition, but not on termination.

Definition 21. = is defined as = juiisync except that condition (2) only requires that all
events a, in o occur before all events b, for the processes 7, 7' contributing to b.

It is essential to note here that for each of these relations, a correct implementation may
reach states which are not in reach (N, ¥). For example, in the fully synchronized case,
such states correspond to intermediate states during the firing of a transition. Note that,
e.g. in pipelined executions, the distributed implementation may never reach any state
of the centralized execution, but all implementation relations require that by executing
the transitions “lagging behind” a state of the original Petri net is reached. A fact that
is used in the domain of hardware verification.

4.3 Using Knowledge and Communication for Distributed Control

We now focus on the question of how to build a correct distributed implementation of
the constrained Petri net. Remember that we need, for each process, a set of variables,
and for each transition an enabling condition and an update function. Consider first the
relation = u115ync, Which is the closest to the centralized Petri net. To simplify notation,
we suppose that the Petri net has no loop (if needed it can be unfolded to an infinite state
Petri net) so that each transition may be fired at most once. This allows us to define a
property done; that holds exactly when a process 7 has already fired transition ¢.

We can define a centralized controller for (N, IT) enforcing ¥ by
- V = {vx }ven where v, encodes the local state of process ;
— for each transition ¢, en] is as defined below;

— for each transition ¢, fJ* updates v, to the new local state.

88 S. Graf and S. Quinton

A process m may locally fire a transition ¢ in a (global) state s if and only if s satisfies
the enabling condition en{ defined as the conjunction of the following properties:

1. t is either globally enabled or already partially executed, that is
ready, = V' € proc(t) . ([t) V done])
2. the transitions ¢’ executed previously in 7 are all terminated (in all processes)
vt (donel, = doney) where doney = V' €t . donel,

3. t has maximal priority@ — denoted max;

4. t has no unresolved conflict, meaning that all processes involved in ¢t —i.e. ™ &
proc(t) — will indeed fire ¢ if they have not already done so. We express that
there is no unresolved conflict by a property selected; which expresses this conflict
resolution by guaranteeing that for any transition ¢’ potentially in conflict with ¢,
—selectedys holds.

These conditions guarantee the properties required by <y,;1sync. The first and the sec-
ond one guarantee transition correctness (only legal transitions can be executed), the
third one guarantees atomicity, and the synchronization constraint is guaranteed by
the first (which guarantees the rendezvous on the input state) and the second (which
guarantees the rendezvous on the output state).

The enabling condition en] for the loosely synchronized relation < is the same,
except that the second condition may be dropped, as < does precisely not require a
synchronization on the termination of a transition.

Notice, that these enabling conditions for local transitions depend all on the global
state and therefore this controller is not distributed. It requires visibility on the entire
state for deciding whether ¢ can be executed. We want to use the notion of knowledge
[7] to solve this issue. The knowledge of a process 7 in a local state s, is the set of
reachable states s which project onto s, i.e., such that s|; = .

Definition 22. A process knows a property ¢ is a local state s, denoted s, |= K, if
and only if ¢ holds in all the reachable (global) states s such that s\, = 5.

For example, in pg of Figure 2l process 71 knows that 73 is in local state ps as ¢ and d
may not both have been fired. We sometimes denote this by pg knows ps.

Regarding our local enabling conditions, this means that processes must know that
the global enabling condition holds, i.e., that it must hold in all global states the local
state s, cannot distinguish. In other words, by replacing en] by K en] we obtain a
distributed controller.

A second important point is, that calculating knowledge at the level of the centralized
Petri net is a priori not sufficient. The enabling conditions en] defined earlier must
be known at the level of the distributed system. That is, in Definition the set of
reachable states is that of the distributed system and must include interleavings. As it
is obviously much more interesting to calculate the knowledge of N, we study next the
preservation of knowledge properties for IV in the distributed implementation.

2 In the general case, ¢ is enabled with respect to ¥.

Knowledge for the Distributed Implementation of Constrained Systems 89

Exploiting the Knowledge of the Centralized Petri Net. We address here the fol-
lowing question: which of the knowledge properties that we have computed on the
centralized Petri net N can be exploited in the enabling conditions of local processes?
To answer this question, we can use an obvious closure property of knowledge sets.

Proposition 2. If a state s is in the knowledge set of a local state s, then so are all
states reachable via the execution of transitions t in which w is not involved.

In a centralized execution, the partners of a transition ¢ move jointly, and therefore the
states before and after ¢ in processes 7’ in proc(t) are in disjoint knowledge sets. On
the other hand, in a decentralized computation, the participants in ¢ execute their local
t independently. This means that the knowledge set of *¢, (and t°;) contains *t,/ and
t®: of such processes. Thus, the looser the implementation relation (that is, the more
desynchronized local processes may be), the weaker the knowledge that a process has
in a given local state. Note however that looser implementation relations require weaker
enabling conditions on local transitions.

Let us have a look at the example of Figure 2l to see whether there is some useful
knowledge that is preserved, for example when the implementation relation is <. In
the centralized execution ps knows p4 (b has higher priority than a). Thus, it knows
en. as c is not dominated by any transition of higher priority. In a distributed execution
according to =<, p3 only knows py V p7 V p1g which — together with the information
selected . — still implies en’. As we have already stated, selected.. is not a knowledge
that can be present in IV in a conflict situation, the decentralized implementation needs
some additional decision mechanism. Besides, as f < g, in N, p7 knows —ps which is
sufficient to execute f. This holds also in an implementation according to <.

Indeed, we can characterize the transformation of knowledge of the centralized sys-
tem into knowledge of the distributed system as follows.

Proposition 3. Whenever a local state s, knows a local predicate p, concerning pro-
cess 7' in the Petri net N, then it knows in (any of) the distributed semantics the property
past[-sync(m,)| (par)V AF [msync(m, ©)|(pr+), which is a CTL formula expressing
the fact that p,+ has been true in a past after the last synchronization with w, now, or in
the future before the next synchronization with .

The last and next synchronizations mentioned above depend on the synchronization
points defined by the preordelﬁ. But, one can rely on the synchronization points im-
posed by the preorder only for synchronization points that lie strictly in the past or
strictly in the future, not for realizing a rendezvous now. Only a property that is closed
in this sense with respect to past and future is preserved. These are in particular prop-
erties stating that a neighbor cannot be, or must be, before or beyond a certain point.
The enabledness condition for implementation relations <, and =,;15yn. are not of this
nature, and therefore not preserved by construction.

The obvious conclusion is that, although useful, knowledge is in general not suffi-
cient to achieve a distributed implementation without additional communication. In the
next section we study how knowledge can be used jointly with communication.

3 They obviously also depend on the additional synchronization points actually achieved in the
distributed implementation under study.

90 S. Graf and S. Quinton

Increasing Knowledge by Communication. Let us first note that communication is
in principle only required for achieving progress. Otherwise, eliminating transitions for
which we do not have sufficient knowledge is a safe way of proceeding, and moreover
this increases knowledge. Of course, in most cases this is not an acceptable option. Our
goal here is not to determine a particular, optimal communication strategy but rather
to provide some insight into how knowledge can be used to analyze and optimize for
example a given distribution protocol such as a-core or the one in [[L1].

Remember that a process 7 needs in a local state s, the knowledge of the following
enabling conditions to execute transition ¢: (1) ready,, i.e. global readiness (2) mazx,
i.e. maximal priority (3) selected,, i.e. absence of unresolved conflict.

A local state s, does in general not know the conjunction of these properties, and
communication via the distributed platform can be used towards it. Semantically, the
information conveyed by the communication reduces the set of global states consistent
with s, (meaning that 5|, = s). And fewer states means stronger knowledge.

Knowledge concerning readiness and maximal priority can be obtained by collect-
ing information on local enabledness in other processes. The platform will (asyn-
chronously) interact with processes 7 and 7’ to inform 7’ that in 7w “¢ was locally
enabled” or t' guaranteed to be not enabled before t" in a previous global state that
is consistent with the local state of 7’. Now, local enabledness is not a stable prop-
erty. It may be the case that when 7’ synchronizes with the platform to obtain that
information, 7 is no longer enabled. This, however, is taken care for in the knowledge
property. In other words, such communication delivers additional information, which
allows eliminating “states of the past” from the knowledge set of s,.. As already stated
earlier, knowledge properties are stable with respect to invisible evolution, and mean 7’
is already beyond that point. On the other hand, the protocol may force 7’ to wait in
certain situations, which provides knowledge of the form «’ is not yet beyond that other
point. This allows synchronization.

Example 2. In local state {p;} of our running example of Figure 2] 7; cannot fire a
because its local state is consistent with {p1, p2, ps} in which b is enabled and therefore
a may not have maximal priority. On the other hand, if 1 knows that c has been locally
enabled in the past of 7o, then {p1, p2, ps} is no longer a possible current state and
therefore 1 knows that it may fire a.

Note however, that the third part of the enabling condition en], the condition selected
is satisfied in the original Petri net only if there is a unique enabled transition in s, which
is then the selected one. The choice between conflicting transitions requires additional
information which may be of static nature, that is, consist in modifying N or dynamic,
that is, the protocol needs to include a distributed arbitration protocol. The algorithms
of [17U11]] include such arbitration protocols. Most other solutions from the literature
simply forbid conflicts.

5 Discussion Based on the Protocol of [11]

Let us now discuss the added value of the reasoning presented in the previous sections
on an example. In [11], an algorithm is presented which builds a distributed imple-
mentation of a prioritized specification for systems with binary synchronizations. It

Knowledge for the Distributed Implementation of Constrained Systems 91

is inspired by a-core but differs from it by the fact that it handles specifications with
(global) priorities and implements a less static conflict resolution. In both algorithms,
the platform is assumed to ensure reliable and order-preserving transmission of mes-
sages. The precise organization of the protocol of [[11] is beyond the scope of this paper,
but an abstract general view of the main steps of the communication phase is shown in
Figure Bl This protocol takes place in each local state of each process, that is, all the
states represented in the diagram correspond to the same place in the centralized Petri
net. The transition in the diagram labeled 7 corresponds to the start of the execution
of a local transition (which takes place in the Busy state). Other transitions represent
sending and receiving of messages expressing information about local enabledness of
transitions, as well as commitment of a process to a given transition ¢ — the last step
before achieving selectedy, unless the other process rejects t.

Fig. 3. State diagram of the algorithm presented in [11]

We can use the results of Sectiond]in two ways here. First, we now have a generic
formal support for proving the correctness of the algorithm under consideration. In-
deed, transition correctness, atomicity and synchronization as defined in Section
are satisfied if and only if a process m may take transition 7, that is, fire locally a tran-
sition ¢ of the original Petri net, only when it has the required knowledge for it. For
example, selected; holds in that case because both processes 7 and 7’ have committed
to it. The protocol obliges 7’ to wait for the consent of 7, and 7 therefore knows that 7’
cannot fire any other transition than ¢. In other words, in all the global states consistent
with the local view of 7 in this local state, selected; holds.

Second, once formalized the knowledge properties associated with each local
state, we can use them in combination with the properties obtained by static analy-
sis of the centralized Petri net. That is, for a local state s, of m, all states of the
associated communication protocol are enriched with (preserved) local knowledge of
7 in s;. Based on this, 7 may not have to wait for all messages to arrive before pro-
gressing, as it now has enough knowledge to fire a transition without them. In addition,
if messages are clearly identified as questions and answers — as is often the case in

92 S. Graf and S. Quinton

such protocols — then 7 may in such case omit some questions messages as it does
not require them. However, this forbids the analysis of progress properties to rely on
question messages.

Such a clear separation between the generic protocol and its implementation for a
given centralized Petri net seems promising, as it is scalable (the distributed system as
a whole is never analyzed) and still understandable: centralized Petri net and protocol
are analyzed separately, then used together in a correct-by-construction manner.

6 Conclusion

In this paper, we have discussed a knowledge-based representation of the distribution
problem which then can be used for either deriving distributed implementations auto-
matically from global specifications on which a given constraint is to be enforced, or
for the optimization of existing protocols by exploiting pre-calculated knowledge. Our
intention was not to provide an exhaustive treatment of this topic — which has been
already studied quite extensively in the past, for various needs and from different per-
spectives. We hope however, to have illustrated that such a knowledge-based approach
provides the right level of abstraction for solving the distribution problem depending on
the notion of refinement required and the distributed platform at hand.

We have discussed different types of knowledge properties that may be required to
take a decision globally or locally and how such knowledge can be obtained statically,
or dynamically, or by mixing both approaches. In particular, we have illustrated that
expressing refinement and local enabledness as a conjunction of smaller properties has
several advantages, namely that of breaking down the verification of correctness.

What we did not consider at all in this paper, is dataflow, which introduces addi-
tional ordering, and how this may fit into the proposed framework. Similarly, we have
not mentioned timed specifications, although it happens frequently that the distributed
a system must satisfy time constraints under some timing assumptions — where the
first add additional order constraints and the second may be useful for achieving them
locally.

References

1. Bagrodia, R.: Process synchronization: Design and performance evaluation of distributed
algorithms. IEEE Trans. Software Eng. 15(9), 1053-1065 (1989)

2. Basu, A., Bensalem, S., Peled, D., Sifakis, J.: Priority scheduling of distributed systems
based on model checking. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643,
pp- 79-93. Springer, Heidelberg (2009)

3. Bensalem, S., Bozga, M., Graf, S., Peled, D., Quinton, S.: Methods for knowledge based
controlling of distributed systems. In: Bouajjani, A., Chin, W.-N. (eds.) ATVA 2010. LNCS,
vol. 6252, pp. 52-66. Springer, Heidelberg (2010)

4. Bensalem, S., Bozga, M., Quilbeuf, J., Sifakis, J.: Knowledge-based distributed conflict
resolution for multiparty interactions and priorities. In: Giese, H., Rosu, G. (eds.) FORTE
2012 and FMOODS 2012. LNCS, vol. 7273, pp. 118-134. Springer, Heidelberg (2012)

5. Benveniste, A., Caspi, P., Edwards, S., Halbwachs, N., Le Guernic, P., de Simone, R.:
The synchronous languages twelve years later. Proceedings of the IEEE 91(1) (January 2003)

15.

16.

19.

20.

21.

22.

23.

24.

Knowledge for the Distributed Implementation of Constrained Systems 93

. Caspi, P, Girault, A.: Execution of distributed reactive systems. In: Haridi, S., Ali, K.,

Magnusson, P. (eds.) Euro-Par 1995. LNCS, vol. 966, pp. 15-26. Springer, Heidelberg (1995)

. Fagin, R., Halpern, J.Y., Vardi, M.Y., Moses, Y.: Reasoning about knowledge. MIT Press,

Cambridge (1995)

. Genrich, H.J., Lautenbach, K.: System modelling with high-level petri nets. Theor. Comput.

Sci. 13, 109-136 (1981)

. Graf, S., Peled, D., Quinton, S.: Achieving distributed control through model checking. In:

Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 396-409. Springer,
Heidelberg (2010)

. Graf, S., Peled, D., Quinton, S.: Monitoring distributed systems using knowledge. In:

Bruni, R., Dingel, J. (eds.) FORTE 2011 and FMOODS 2011. LNCS, vol. 6722,
pp. 183-197. Springer, Heidelberg (2011)

. Ben Hafaiedh, 1., Graf, S., Quinton, S.: Building distributed controllers for systems with

priorities. J. Log. Algebr. Program. 80(3-5), 194-218 (2011)

. Halpern, J.Y., Fagin, R.: Modelling knowledge and action in distributed systems. Distributed

Computing 3(4), 159-177 (1989)

. Kahn, G.: The semantics of simple language for parallel programming. In: IFIP Congress,

pp. 471-475 (1974)

. Kant, C., Higashino, T., von Bochmann, G.: Deriving protocol specifications from service

specifications written in LOTOS. Distributed Computing 10(1), 29-47 (1996)

Katz, G., Peled, D., Schewe, S.: Synthesis of distributed control through knowledge accumu-
lation. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 510-525.
Springer, Heidelberg (2011)

Lin, F., Wonham, W.M.: Decentralized supervisory control of discrete-event systems. Inf.
Sci. 44(3), 199-224 (1988)

. Pérez, J.A., Corchuelo, R., Toro, M.: An order-based algorithm for implementing multiparty

synchronization. Concurrency — Practice and Experience 16(12), 1173-1206 (2004)

. Probert, R.L., Saleh, K.: Synthesis of communication protocols: Survey and assessment.

IEEE Trans. Computers 40(4), 468-476 (1991)

Ricker, S.L., Rudie, K.: Knowledge is a terrible thing to waste: Using inference in discrete-
event control problems. IEEE Trans. Automat. Contr. 52(3), 428-441 (2007)

Rudie, K., Ricker, S.L.: Know means no: Incorporating knowledge into discrete-event
control systems. IEEE Transactions on Automatic Control 45(9), 1656-1668 (2000)

von Bochmann, G., Gotzhein, R.: Deriving protocol specifications from service specifica-
tions. In: Proceedings of SIGCOMM 1986, pp. 148-156. ACM (1986)

Wong, K.C., Wonham, W.M.: Modular control and coordination of discrete-event systems.
Discrete Event Dynamic Systems 8(3), 247-297 (1998)

Yamaguchi, H., El-Fakih, K., von Bochmann, G., Higashino, T.: Deriving protocol
specifications from service specifications written as predicate/transition-nets. Computer
Networks 51(1), 258-284 (2007)

Zafiropulo, P., West, C.H., Rudin, H., Cowan, D.D., Brand, D.: Towards analyzing and
synthesizingprotocols. IEEE Transactions on Communications 28(4), 651-661 (1980)

Automated Anonymity Verification
of the ThreeBallot Voting System

Murat Moran*, James Heather, and Steve Schneider

University of Surrey, Guildford, UK
m.moran@surrey.ac.uk

Abstract. Inrecent years, alarge number of secure voting protocols have
been proposed in the literature. Often these protocols contain flaws, but
because they are complex protocols, rigorous formal analysis has proven
hard to come by.

Rivest’s ThreeBallot voting system is important because it aims to pro-
vide security (voter anonymity and voter verifiability) without requiring
cryptography. In this paper, we construct a CSP model of ThreeBallot,
and use it to produce the first automated formal analysis of its anonymity
property.

Along the way, we discover that one of the crucial assumptions under
which ThreeBallot (and many other voting systems) operates—the Short
Ballot Assumption—is highly ambiguous in the literature. We give various
plausible precise interpretations, and discover that in each case, the inter-
pretation either is unrealistically strong, or else fails to ensure anonymity.
Therefore, we give a version of the Short Ballot Assumption for ThreeBal-
lot that is realistic but still provides a guarantee of anonymity.

Keywords: Formal Methods, Voting Systems, FDR2, CSP, Anonymity,
Automatic Verification, ThreeBallot.

1 Introduction

Recent years have seen a large number of end-to-end voting systems proposed
in the literature [1l 2 [3 [4] [5]. Typically these systems aim to provide a proof of
correctness of the election tally, but also some guarantee of privacy for the voter;
and cryptography is usually employed to achieve these goals. Rivest’s ThreeBal-
lot voting system [5] is particularly interesting because it uses no cryptogra-
phy, but nevertheless still aims to provide anonymity, integrity of the election,
verifiability and incoercibility.

One of the most critical properties of voting systems is anonymity, which
essentially requires that the link between voters and votes be broken. Anonymity
is important for voter privacy as well as it is essential for preventing coercion
and vote buying. This paper considers the anonymity property as it relates to
the ThreeBallot voting system.

* Corresponding author. His work is sponsored by The Ministry of Education Republic
of Turkey.

E.B. Johnsen and L. Petre (Eds.): IFM 2013, LNCS 7940, pp. 94-{[08] 2013.
(© Springer-Verlag Berlin Heidelberg 2013

Automated Anonymity Verification of ThreeBallot Voting System 95

ThreeBallot relies heavily on the short ballot assumption (SBA) to assist in
providing its anonymity guarantee. Roughly speaking, this assumption states
that the information content of a ballot should be low. However, the phrasing
of this assumption in the description of ThreeBallot is vague, and open to a
number of radically different interpretations. We consider the various possibilities
here. Some turn out to be unrealistically strong; some seem to be too weak to
guarantee anonymity.

In the process, we construct a formal model of ThreeBallot in Communi-
cating Sequential Processes (CSP) [6], and use the Failures-Divergences Re-
finement (FDR2) model checker [7] to produce an automated analysis of the
model. Some other voting systems have been at least partially verified auto-
matically against privacy-related properties (for example, Civitas [3] in [§] with
hand-proofs, FOO [2] in [9] with a compiler, and Prét & Voter [I0] in [I1]); but
the ThreeBallot voting system has not yet been subjected to automated formal
verification.

The paper is constructed as follows. In the remainder of this section, we give
an outline of ThreeBallot, and discuss related work. In Section B we model
ThreeBallot as a parallel composition of agents: voters, an authority, and a bul-
letin board. Then, using an anonymity definition given in [I1], in Section Bl
we analyse our model against an adversary who can observe all public channels.
Initially, our model drops the SBA entirely, and we discover that FDR, leads us
to several attacks on vote anonymity. Section [3.2] then discusses the Short Ballot
Assumption in its various guises, and shows that in each case the assumption is
either too strong to be realistic or too weak to be secure; we then propose a dif-
ferent short ballot assumption that is both reasonable and demonstrably strong
enough to provide anonymity. In the Section we analyse the other versions
of ThreeBallot, and demonstrate that with the modifications, ThreeBallot pro-
vides guaranteed anonymity. Finally, the Section M concludes this paper with a
summary of findings and present limitations.

1.1 Voting with ThreeBallot

In this section, we briefly introduce the original ThreeBallot voting system and
the short ballot assumption given by Rivest and Smith [12].

Voting in ThreeBallot proceeds as follows. Initially, the (authenticated) voter
receives a multi-ballot form from a pollworker, which consists of three mini-ballot
forms (see Table[Il). The mini-ballots are all identical except for the IDs or serial
numbers, located at the bottom of the mini-ballots. These serial numbers are all
unique, and are not meaningful. In particular, there is no way of determining
what mini-ballot serial numbers go together to make up a multi-ballot.

The voter fills two bubbles in total for the chosen candidate, and only one
bubble for each other candidate. The completed multi-ballot is inserted into a
checker, which confirms that it has been correctly completed.

Finally, the voter chooses one of the mini-ballots, and receives a duplicate of
that mini-ballot as her receipt. She then separates the three mini-ballots, and
casts them all individually into a ballot box.

96 M. Moran, J. Heather, and S. Schneider

Table 1. A ThreeBallot multi-ballot, filled as a vote for Alice

Alice [Alice [Alice @)
Bob O Bob [Bob O
56248 04578 31489

After the election, all mini-ballots are published on a web bulletin board,
along with a list of everyone who voted. The voter may then verify that the
mini-ballot for which she has a receipt appears unaltered on the bulletin board
(BB); if it does not, she can produce the receipt as evidence of foul play. The
number of votes for each candidate is counted as usual. However, as each voter
fills in exactly two bubbles for the chosen candidate and one bubble for the other
candidates, the number of voters is subtracted from each candidate’s final tally
to find the correct number of votes for each candidate. Since all the mini-ballots
are posted on the bulletin board, the final tally can be verified by anyone.

ThreeBallot is claimed in [12] to be secure under the short ballot assumption
(SBA). Rivest and Smith in [12] define the SBA as the assumption that

the ballot is short—there are many more voters in an election than ways
to fill out an individual ballot [...] It is reasonable to assume under the
SBA that each possible ballot is likely to be cast by several voters.

The ambiguities arise from the terms “possible ballots” (mini-ballots or multi-
ballots?) and “several voters” (how many?).

Looking elsewhere for clarification bears little fruit. According to [I3] the
SBA assumes that “the list of candidates on a ballot is short enough in order to
guarantee security”; we read in [I4] that “the length of the ballots must be kept
small (possibly by splitting them into several parts)”.

Because ThreeBallot is claimed to guarantee voter anonymity under the SBA,
analysis of ThreeBallot is not possible without a clear and unambiguous reading
of the assumption. We give here three possible interpretations; we will analyse
ThreeBallot under each of these readings in Section

In each case, the intention is that the assumption will be guaranteed proba-
bilistically; that is, that the number of voters, candidates, etc., will be sufficient
to ensure that the assumption is broken with only negligible probability. In what
follows, serial numbers will be ignored; that is, two mini-ballots will be consid-
ered the same if they contain the same marks apart from the serial numbers.

Assumption 1 (SBA-multi). Every possible multi-ballot will be cast at least
once.

The formulation of the SBA given in Assumption [Il requires that every possible
way of completing a multi-ballot should be adopted by at least one voter. For
small numbers of candidates, this is not implausible. For even moderate numbers,
though, the assumption quickly becomes hard to stomach.

Note that once one has chosen a candidate, there are then exactly three ways
of completing each row: for the chosen candidate’s row, one must choose a bubble
to leave empty, and for each other row, one must choose a bubble to fill. There

Automated Anonymity Verification of ThreeBallot Voting System 97

are thus c-3°¢ distinct multi-ballots, where ¢ is the number of candidates standing
in the election.

It is not feasible to calculate the number of voters required to make this
reasonable, because it depends on the probability distribution of multi-ballots:
voters do not cast multi-ballots randomly (one hopes). A full calculation would
require a realistic model of how voters cast their ballots. However, the best
case scenario is when voters cast their multi-ballots randomly; so by assuming a
uniform distribution, we can determine a lower bound on the number of voters
required.

With a uniform distribution, the expected number of voters needed to cover all
possible multi-ballots is n~2?=1 1 where n = ¢- 3¢, the number of possible multi-
ballots. For five candidates, this comes out at 9331 voters; for ten candidates,
we need 8.1 million voters; for fifteen candidates, the number exceeds 4 billion.

For n possible multi-ballots, and a uniform distribution, we can calculate the
number of voters required to ensure that the probability of covering every multi-
ballot at least once exceeds a given threshold. Since the security of ThreeBallot
relies on the SBA, we would need confidence that (the correct interpretation of)
the SBA is satisfied; we can, therefore, for a given probability level, ask how
many voters are required to give this level of confidence that the SBA will be
satisfied.

For n multi-ballots, and v voters, the probability that the v voters will cover
all of the n possibilities is

)y

Jj=1

This sum is difficult to calculate precisely but easy to calculate approximately
because the first few terms dominate for large v.

For five candidates, to reach 95% probability of full coverage, we need around
12,250 voters. Six candidates need around 50,000 voters; by the time we reach
ten candidates, 9.6 million voters are required to give 95% confidence that every
multi-ballot turns up at least once. Note that these figures are rather conservative
lower bounds: the distribution will not in fact be uniform, which will lower the
probability; and in any case 95% confidence is perhaps insufficient for a critical
security assumption.

These numbers are very high, and we consider them to be unrealistic. This
version of the short ballot assumption is suitable only for a very small number
of candidates or extremely large numbers of voters; it will not be considered
further in this paper.

Assumption 2 (SBA-mini). Every possible mini-ballot will be cast at least
once.

Under Assumption Pl we require only that each mini-ballot, rather than each
multi-ballot, be cast. Clearly this is more likely to be satisfied than Assumption[dl
For ¢ candidates, there are only 2¢ distinct mini-ballots, against ¢ - 3¢ distinct

98 M. Moran, J. Heather, and S. Schneider

multi-ballots. For ten candidates, we therefore need coverage of only 1024 mini-
ballots, rather than nearly 600,000 multi-ballots.

We will show later that this interpretation of the SBA is insufficient to pre-
vent attacks on ThreeBallot. Since it is not a worthwhile formulation of the
assumption, we need not calculate the likelihood that it will be satisfied.

Assumption 3 (SBA-mini-n). FEvery possible mini-ballot will be cast at least
n times (for some suitably chosen n).

A slightly stronger interpretation in Assumption [l requires each mini-ballot to
turn up at least a certain number of times. This, of course, requires more voters
than Assumption 2

However, we will show later that this formulation is also insecure, regardless
of the value of n.

1.2 Related Work

The ThreeBallot voting system has been subjected to analysis of one sort or
another many times since its publication [I5] [16, 17, [I8, [14] 19, 13} 20} [21].
Perhaps the earliest analysis was conducted by Strauss [15] [16], who established
the success probabilities of attacks for various numbers of candidates and vot-
ers with multiple races. Various attacks against the system, and in particular,
reconstruction and pattern request attacks, were considered. The experiments
were coded in Python, and modelled elections with a number of races on a single
multi-ballot form. Clark et al. [I7] also investigated ThreeBallot, and pointed
out that the multi-ballot reveals information that can compromise voter privacy.
A simulation-based analysis of the system was made by de Marneffe et al. [14]
using the universally composable security framework [22]. Additionally, a mod-
ified system protocol in which a voter chooses her receipt before expressing her
preference was proposed in [I4]. This protocol was shown to guarantee election
fairness, at the cost of some noise in the final tally, with the SBA assumption,
and an additional assumption that most of the receipts are not known to the
adversary. One drawback, however, is that the voter cannot express her prefer-
ence on the mini-ballot that she has chosen as her receipt, which makes voting
more complicated. Statistical results about the relation between the number of
candidates in an election and the privacy level of the system were provided by
Cichoni et al. [13] as well as a critique on the effectiveness of Strauss’ attacks.
Cichon et al. claim that it is impossible to reconstruct voters’ preferences in a
single election run with two candidates with a ‘reasonable number of voters’.
However, the definition of weak anonymity used in [13] is much different from
ours given in [I1I]. Considering that an individual mini-ballot can be used to
construct two different multi-ballots cast for the same candidate, their definition
seems necessary, but not sufficient. Hence, the observer would notice that one of
the voters is not able to vote for that candidate.

A more theoretical work was carried out by Henry et al. [20], who
focused on a two-candidates race, and determined secure ballot sizes against

Automated Anonymity Verification of ThreeBallot Voting System 99

reconstruction and pattern requesting attacks. Finally, Kiisters et al. [21] compu-
tationally analysed the level of privacy offered by the ThreeBallot voting system
and the proposed system by de Marneffe et al. [14], and concluded that the latter
provides better privacy than the original.

2 DModelling the ThreeBallot Voting System

In this section, we model the ThreeBallot voting system using CSP. We assume
that the reader is familiar with CSP notation; for details see Roscoe’s book [23].

2.1 Data-Types, Functions and Sets

We treat the multi-ballot of the ThreeBallot voting system as a board with co-
ordinates. Here, a co-ordinate (¢, j) defines a bubble on a mini-ballot, which is to
be filled in. Thus, we have exactly three columns representing three mini-ballots,
and a number of rows, which is one more than the number of candidates (the last
row is allocated just for serial numbers). The size of the board is determined by
these parameters: the number of voters, VTRS, and the number of candidates,
CNDS. These parameters define the sets of voters, candidates and serial numbers.
The data-types for voters, candidates and serial numbers are defined as v.i, c.j
and s.k respectively.

We need several functions, which return a specific part of the board. For in-
stance, Row(7) returns the ith row of a multi-ballot form and Col(j) is the set of
bubbles on the jth column of a multi-ballot. Likewise, some functions call back the
neighbouring bubbles of a given coordinate. For example, the function adjR(i,)
returns the coordinates adjacent to (7, j) in the same row, similarly adjC(i, j) re-
turns the coordinates adjacent to (i,7) in the same column, and nhdAll(i, j) re-
turns all the neighbours of (4, j) in the current multi-ballot coordinates.

2.2 Processes and Channels

In this section, we define how the ThreeBallot voting system model works, and
explain what information is carried on each channel. The overall system model
is a parallel composition of the processes detailed below. Fig [illustrates the
network for the ThreeBallot CSP model.

auth.id place.id.*
e--TTTTTTTTT - - >
AUTHORITY > VOTER B.BOARD
_____________ - -~
alloc.id.serial . * receipt.id.serial. *

Fig. 1. ThreeBallot CSP Model Communication Channels ((--+)private channel)

100 M. Moran, J. Heather, and S. Schneider

Voter Process. The voter chooses the candidate that she wants to vote for
before the election is open. She then authorises herself with the election author-
ity, and collects her multi-ballot with the alloc events. In the booth, the voter
fills out two bubbles for the chosen candidate with the place events and one for
the other candidates. Afterwards, she gets her receipt by choosing one of the
mini-ballots allocated to her on the channel receipt, and leaves the booth before
the election is closed.

The VOTER() process does place events in an efficient way; first a bubble
from the first or second column is chosen for the candidate the voter wants to
vote for then the second bubble is chosen from the other columns in a right to left
fashion. Afterwards the process does one place event from top to bottom manner
for the other candidates. The set nhdAll(i, j)\ (Row(i) U Row(CNDS)) is the set
of bubbles left that can be filled in, and CNDS is the number of candidates,
which also identifies the number of rows.

VOTER(id) =[] chooselid.c.x — openFElection — authlid —

c.xEcandidates

alloc.id?s1?(i1, j1) — alloc.id?s27(i2, j2) — alloc.id?s37(i3,j3) —

17 17 i
enter Boothlid — ﬂ(i’j)eRow(Iin\Cal@)place‘zd.(z,]) —

o _placelid.(i1,51) —
(i1,j1)€adjR(3,5)
VOTER!(id, nhdAll(i, j)\ (Row(i) U Row(CNDS)), {s1, 2, s3}, CNDS — 1)

VOTER!(id,aSet, setsers,0) =[| receipt.id.rcp?(i, j) — leave Boothlid —

rcpEsetsers

closeElection — STOP

VOTER!(id,aSet, setsers, cntr) = place.id?(k,1) —
VOTER' (id,aSet\ Row(k), setsers, cntr — 1)

Thus the process representing all voters is described by the parallel composition
of the voters as:

VOTERS = ;0 VOTER(id)

Election Authority Process. The election official in the polling station is
responsible for authenticating voters with the events auth and assigning the
pre-printed multi-ballots (three unique serial numbers for each voter) to the
voters with an alloc event. The authority process is defined as follows:

AUTHORITY = openElection — AUTHORITY (serials)

AUTHORITY (setSrls) = auth?id — [] lesetsml alloc.id.srl.(CNDS,0) —
AUTHORITY" (id, (CNDS, 0), setSris\{srl})

AUTHORITY" (id, coord,®) = closeElection — STOP
AUTHORITY" (id, (CNDS, 2), setSerials) = AUTHORITY (setSerials)
AUTHORITY" (id, (CNDS, i), setSerials) =

[alloc.id.srl.(CNDS, i+ 1) —

srl€setSerials

AUTHORITY" (id, (CNDS, i + 1), setSerials\ {srl})

Automated Anonymity Verification of ThreeBallot Voting System 101

The authority opens the election, authorizes the voters, and assigns serial num-
bers to each mini-ballot with the alloc events. After the election, the authority
performs closeFElection, after which no more ballots can be allocated.

The Bulletin Board Process. The process B BOARD operates as a bulletin
board where the cast mini-ballots are published. The votes are collected while
the voters cast their mini-ballots. Thus, the process keeps a record of the serial
numbers and the bubbles that are filled in the set Bag. The mini-ballots are
published with the pub event after the election is closed.

BOARD(srl) = alloc?id!srl?(i, j) — BOARD' (0, srl, (4, 7))

BOARD'(Bayg, srl, (i,7))= place.id?(m,n) : Col(j) — BOARD'(Bag U {m}, srl, (i, 7))
O receipt?idlsrl.Bag — BOARD" (srl, Bag)
0O BOARD' (srl, Bag)

BOARD" (srl, Bag) = closeElection — pub.srl.Bag — bagempty — STOP

B BOARD = openElection — ||seriais BOARD(serials)

Counter Process. The other important system process is COUNTERS. This
works as an election authority, which counts the votes that are published on
the bulletin board. The process keeps record of place events for each candidate.
When all of the place events have occurred, it performs a bagempty event on
which all COUNTERS processes synchronise. With the total event the number
of total votes for each candidate is published.

COUNTER(cand,r)= place?id? (i, j) — COUNTER(cand,r + 1)
O bagempty — totallcand!r — STOP

COUNTERS = ||candidates COUNTER(cand, 0)

System Process. The ThreeBallot voting system model is the parallel compo-
sition of the processes defined previously. Hence, the composition is defined as
follows:

SYSTEM = VOTERS || AUTHORITY || BOOTH || B BOARD || COUNTERS

3 Automated Anonymity Verification

Our analysis of ThreeBallot uses the formal anonymity definition given in [11].
The definition of anonymity for the voting systems, also called weak anonymity,
is based on observational equivalence and expressed as follows:

Definition 1. The process P is weakly anonymous on a set of channels C' of

type T if:
P[e%d2)4z ca |z € T = P (1)

for any c,d e C

102 M. Moran, J. Heather, and S. Schneider

That is, when the two channels c.x and d.xz are swapped over for all values of
x, if the resulting process is indistinguishable from the original process, P, from
an observer’s point of view, then the process provides anonymity.

It is over channel choose that the voter determines a choice of candidate;
consequently, the channels that need to be swapped over are: choose.v.1l.c.x and
choose.w.2.c.x for c.x € candidates. Therefore, the anonymity specification for
ThreeBallot CSP model (SYSTEM) is checked by the trace equivalence:

SYSTEM][[choose.v.1.c.x, choose.v.2.c.x | choose.v.2.c.x, choose.w.1.c.x]| = SYSTEM

As the anonymity property of the system is checked from an observer’s point of
view, the observer’s inability to see sensitive information is extremely important.
He is able to see all the public channels, but not the private channels: alloc and
place. Therefore, these private channels need to be hidden.

ABS SYS= SYSTEM \ {|alloc, place |}

As can be seen above, the normal system is ABS SYS, and the system where
we swap two votes is SPEC. Therefore, if the two systems are observationally
equivalent then the system provides anonymity.

SPEC = ABS Sygﬂchoose.v‘l.c.x, Choose‘”'2‘C‘$/choose.v.2.c.m, choose.v.1.c.x]

We assume that the adversary in our model is able to see all receipt events; i.e.,
he can see all the receipts taken in an election. (This is a strong assumption;
however, if the system is secure under this assumption, it will also be secure with
an adversary who sees only some receipts.)

3.1 Results for the ThreeBallot Model with No SBA

Unsurprisingly, the refinement SPEC =1 ABS SYS does not hold for our Three-
Ballot voting system model. This is because there are situations in which a re-
construction attack is possible: that is, a coercer who has seen receipts for vq
and vo can infer that they voted respectively for ¢; and ¢y because there is no
way of constructing a complete set of valid multi-ballots in which v; and v, vote
for co and ¢p respectively. Whether the election run provides anonymity entirely
depends on how the voters fill their multi-ballots, and also on which mini-ballots
they choose as receipts.

The following counter-examples from different voting scenarios give useful
intuition about in what situations anonymity is not satisfied.

Examples of Privacy Violations of ThreeBallot

Ezample 1. The first counter-example is taken from a protocol run with two
voters, v1 and vg, and two candidates, ¢; and c3. The FDR2 model checker
returns several counter-examples which violate anonymity. We examine one of
these traces here, illustrating the receipts taken by the voters and the mini-
ballots displayed on the bulletin board. The following illustrated examples are
the election runs from the observer’s point of view.

Automated Anonymity Verification of ThreeBallot Voting System 103

The counter-example trace shows that in a voting scenario as in Table [2]
where v; chooses to vote for ¢;, and vy votes for cg, if the voters take s and
s3 respectively as their receipts, the observer is able to reconstruct the multi-
ballots from the public mini-ballots on the bulletin board. There is no possible
reconstruction where the votes were cast the other way round. Therefore, the
observer is able to say who voted for whom in this ThreeBallot election run.

Table 2. Voting scenario 1 Table 3. Reconstruction attack 1
Receipts Mini-ballots on BB choose.v.1l.c.1 choose.v.2.c.2
[) (@) O [J [(@) [J [(@) O (@) [
[[(@) O [O [O (@) [J O [
S2 S3 S0 S1 S4 S5 S2 S1 S5 S3 S0 S4

With the public information shown on the bulletin board and the receipts that
the voters share with the coercer, the only way of reconstructing these votes is
illustrated in Table Bl The mini-ballots sg and s5 can be swapped. However, it
does not affect the way the voters have voted.

Ezxample 2. In an election with three voters and two candidates, as depicted in
Table @, when voter v; votes for ¢, voter vy votes for co, and voter vs votes for
c1, with the receipts s1, so and sg respectively, voter v; can be seen not to have
voted for co. Table Bl shows the only possible reconstruction.

Table 4. Example 2. voting scenario

Receipts Mini-ballots on the BB

[O O [] @) O [[[
O [[[O [O O O
S1 S2 S0 S3 S4 S5 S6 S7 S8

Table 5. Example 2. reconstruction attack

choose.v.1.c.1 choose.v.2.c.2 choose.v.3.c.1
[) [) O O O [] O [] []
O o O o o O o O O

S1 S3 S4 S2 S5 S6 S0 ST S8

104 M. Moran, J. Heather, and S. Schneider

3.2 Short Ballot Assumption

We now analyse the ThreeBallot voting system under two of the three possi-
ble interpretations of the SBA that were given earlier: Assumptions 2l and [l
(Recall that Assumption [I] seemed implausible unless there were only very few
candidates.)

Analysis Under the SBA-Mini. Suppose we adopt Assumption 2] under all
possible mini-ballots are assumed to appear on the bulletin board at least once
at the end of the election. We give here a simple counter-example to show that
ThreeBallot does not provide anonymity. In the example in Table [6 receipt sqg
has two possible completions: it could be combined with s and s4 or sg (as
depicted in Table [[), or with s; and s7. But in either case, it represents a vote
for the third candidate.

Table 6. An example voting scenario: all possible mini-ballots appear on the bulletin
board

Receipts Mini-ballots on the BB
O [] [] [] @) O O [J @)
O O [] [] O [J [J O O
[J O O [] O O [J [J O
So S3 S1 S92 S4 S5 S6 S7 S8
Table 7. Reconstruction attack

choose.v.1.c.3 choose.v.2.c.2 choose.v.3.c.1

O [] O [] O O [] [J O

@) [] O @) [] [J [] O O

[] [] O @) @) [J @) [J O

S0 S2 S4 S3 S5 S6 S1 S7 S8

Analysis Under SBA-Mini-n. Suppose now that we adopt Assumption [3]
which ensures that every possible mini-ballot will appear on the bulletin board
at least n times for some suitable value of n. We show here that this is insufficient
regardless of the value of n.

We start by observing that a fully filled mini-ballot can be combined only with
an empty mini-ballot and a singleton. Additionally, any possible mini-ballot m
that is not empty, fully filled or a singleton can be turned into a completed
multi-ballot that does not contain a fully filled mini-ballot or a singleton. This
can be done by combining it with another mini-ballot that is the complement
of m but with one extra bubble, and an empty mini-ballot.

We can reach a bulletin board that displays at least n copies of every possible
mini-ballot in the following way. For each possible mini-ballot that is not empty,

Automated Anonymity Verification of ThreeBallot Voting System 105

fully filled or a singleton, we turn it into a multi-ballot as described above, and
add it to the board. This gives us at least n copies of everything except singletons
and fully filled mini-ballots.

Now each possible singleton should be combined with a fully filled mini-ballot
and an empty mini-ballot. We add n copies of each such multi-ballot to the
board. This means that every possible mini-ballot now appears at least n times.

However, any voter taking a singleton as a receipt will have no anonymity.
The number of fully filled mini-ballots is the same as the number of singletons;
and since each fully filled ballot must be combined with a singleton and a blank,
it follows that the voter’s receipt must have been part of such a multi-ballot.
But in that case the mini-ballot reveals the candidate that the voter selected.

Hence no value of n is sufficient to guarantee anonymity in ThreeBallot.

SBA-Pro: A Better Formulation. We have seen that the interpretations of
the SBA given so far are either not enough or unrealistic. We now give a much
more plausible short ballot assumption that is demonstrably strong enough for
ThreeBallot.

Assumption 4 (SBA-pro). Let M be the set of all mini-ballots cast during
the election; R C M is the set of all receipts that are known to the adversary.
We introduce a partial function vote such that vote(mq, ma, ms) = ¢ whenever
the three mini-ballots my, mo and ms together form a wvalid multi-ballot that
represents a vote for c. Additionally, for any two mini-ballots m1 and mo, we
say that my1 ~ meo if and only if they contain the same sequence of vote marks
(that is, m1 = mgq except possibly for the serial numbers).

For every r € R and every candidate c, there was a vote cast consisting of
three (unordered) mini-ballots my, ma, ms such that

1. r~mq;
2. vote(my,ma,m3) = ¢;
3. mo,m3 € M \ R.

Informally, this interpretation says that for every receipt known to the adversary,
there was an equivalent one used in a multi-ballot for each of the candidates in
the election.

Theorem 1. Assumption []] is strong enough to prevent reconstruction attacks
in ThreeBallot.

Proof. The key to the proof is the observation that if m ~ m’ then we must
have vote(m, ma, mg) = vote(m’,ma,m3). This is clear from the fact that m
and m’ can differ only in serial number, and the serial numbers are not relevant
for determining which candidate received the vote cast by a multi-ballot.
Suppose that r € R, and the adversary wishes to determine which candidate
received the vote cast that included r. We can see that any candidate is possible.
Suppose that r did in fact occur in a multi-ballot along with m; and ms, as a
vote for c. For any other candidate ¢/, there was a multi-ballot cast containing

106 M. Moran, J. Heather, and S. Schneider

ms, Mg, ms such that vote(ms, ma, msz) = ¢’ and r ~ ms, and with m4 and ms
not known to the adversary.
But this means that the adversary cannot distinguish the following two pos-
sibilities:
1. a ballot of (r,m1, ms) for ¢, and a ballot of (msg,m4, ms) for ¢;
2. a ballot of (ms, m1, m2) for ¢, and a ballot of (r, m4, ms) for ¢'.

In each case, the set of mini-ballots used by this partial reconstruction is the
same, so it cannot affect further reconstruction of the remaining mini-ballots. In
one case, r was used to vote for ¢, and in another case, for ¢’; and since ¢’ was
arbitrarily chosen, we conclude that r could equally have been used to vote for
any candidate.

To see the improved plausibility of this interpretation, suppose the adversary
has knowledge of r receipts in an election run with n candidates. The SBA-pro
requires at least n - r multi-ballots of the right type to have been cast to protect
anonymity. By contrast, the SBA-multi requires at least n - 3™ other appropriate
multi-ballots. As long as r is small, the SBA-pro is much less demanding com-
pared with the SBA-multi. For instance, in an election with 10 candidates, the
SBA-multi needs at least 590,490 multi-ballots. Unless the adversary has seen
somewhere in the order of 59,000 receipts, the SBA-pro is much more likely to
be satisfied.

This efficiency argument is not absolute: to formalise it would require a full
voter model; that is, it would need a probability distribution over multi-ballots
cast in the election. Producing such a model is probably unrealistic, since it would
be affected by the prevailing political landscape at the time of the election; it is
in any case outside the scope of this paper.

3.3 Verified Privacy Cases

Apart from the short-ballot assumption, several slight modifications of Three-
Ballot have been proposed to help the system provide absolute anonymity. Using
FDR we were able to verify these modified systems against reconstruction at-
tacks. We have automatically verified a ThreeBallot model that allows voters to
exchange their receipts; and we analyse the system with an additional constraint
that voters must fill in at least one bubble in every column.

Floating/Exchanging Receipts. Rivest [5] suggests a possible improvement
to the original ThreeBallot scheme with the idea of exchanging receipts in the
polling station. Each voter puts her receipt in a box, and takes someone else’s
receipt. Indeed, this idea can be used in any paper-based election system. If we
let voters take a random receipt from the box in the polling station, then this
eliminates reconstruction attacks as well as pattern-matching (Italian) attacks
because the adversary does not have any knowledge of any part of the voter’s
ballot. Although the adversary may be able to reconstruct valid multi-ballots,
he cannot link them to voters. We have verified using FDR that the modified
scheme, where the voters are allowed to exchange their receipts.

Automated Anonymity Verification of ThreeBallot Voting System 107

No Single Mini-Ballot Left Blank. We here add a condition that voters
must fill out at least one bubble on each mini-ballot. For the two candidate case,
there are only two ways of filling a mini-ballot, and thus only two different receipt
that can be taken by voters. We have modified our model to provide automatic
verification that this condition is sufficient to guarantee anonymity with two
candidates. However, in an election where there are more candidates than two,
although intuitively the system provides better probabilistic anonymity than the
original, it cannot guarantee voter anonymity.

4 Conclusion

In this paper, we have demonstrated that the ThreeBallot voting system is vul-
nerable to privacy-related attacks, especially reconstruction attacks, even under
some plausible interpretations of the short ballot assumption.

In our analysis, we have used an abstracted CSP model of ThreeBallot, which
is defined as the parallel composition of agents in the system. We model the
adversary in the analysis as an outsider/observer, who can see all the public
channels, including what each voter takes as a receipt. We have given a number
of examples for different voting scenarios, demonstrating that ThreeBallot does
not provide anonymity under various formulations of the short ballot assumption.
We have in addition given a reasonable and plausible interpretation of the short
ballot assumption that does in fact prevent reconstruction attacks.

Finally, we have considered two different versions of ThreeBallot that we were
able to analyse automatically using FDR; namely, exchanging receipts and no
single mini-ballot left blank.

Because of the state space limitation that all model checking tools suffer from,
we were able to analyse the models with a limited number of agents. In most
cases, the restriction did not affect the analysis of the systems and assumptions;
however, as the short-ballot assumptions require a large number of mini-ballots,
we were not able to demonstrate automatic verification in such cases; however, we
have supplied hand proofs where appropriate. Table®| illustrates the ThreeBallot
verification times (“—" means no result is produced in a reasonable time).

Table 8. FDR verification times for ThreeBallot versions

Original No mini-ballot empty All mini-ballots appear

States Time States Time States Time
2 vtrs 2 cnds 239,905 7.8 56, 841 5.3/ 240, 055 7.0’
2 vtrs 3 cnds 4,139, 347 1741.8" 1,435,926 38.3 4,165, 428 1740.1
3 vtrs 2 cnds — — 67,409,391 22749.3' — —

References

[1] Chaum, D.: Untraceable electronic mail, return addresses, and digital
pseu-donyms. Communications of the ACM 24, 84-90 (1981)

108

2]

[10]

[11]

[12]

[13]

M. Moran, J. Heather, and S. Schneider

Fujioka, A., Okamoto, T., Ohta, K.: A practical secret voting scheme for large
scale elections. In: Zheng, Y., Seberry, J. (eds.) AUSCRYPT 1992. LNCS, vol. 718,
pp. 244-251. Springer, Heidelberg (1993)

Juels, A., Catalano, D., Jakobsson, M.: Coercion-resistant electronic elections.
TACR Cryptology ePrint Archive 2002, 165 (2002)

Chaum, D., Ryan, P.Y.A., Schneider, S.: A practical voter-verifiable election
scheme. In: De Capitani di Vimercati, S., Syverson, P.F., Gollmann, D. (eds.)
ESORICS 2005. LNCS, vol. 3679, pp. 118-139. Springer, Heidelberg (2005)
Rivest, R.L.: The ThreeBallot voting system (2006)

Hoare, C.A.R.: Communicating Sequential Processes. Communications of the
ACM 21, 666-677 (1978)

Gardiner, P., Goldsmith, M., Hulance, J., Jackson, D., Roscoe, B., Scattergood,
B., Armstrong, B.: FDR2 user manual

Backes, M., Hritcu, C., Maffei, M.: Automated verification of remote electronic
voting protocols in the applied pi-calculus. In: CSF, pp. 195-209 (2008)

Smyth, B.: Formal verification of cryptographic protocols with automated reason-
ing. PhD thesis, School of Computer Science, University of Birmingham (2011)
Ryan, P.Y.A., Schneider, S.A.: Prét a Voter with re-encryption mixes. In:
Gollmann, D., Meier, J., Sabelfeld, A. (eds.) ESORICS 2006. LNCS, vol. 4189,
pp. 313-326. Springer, Heidelberg (2006)

Moran, M., Heather, J., Schneider, S.: Verifying anonymity in voting systems using
CSP. Formal Aspects of Computing, 1-36 (2012)

Rivest, R.L., Smith, W.D.: Three voting protocols: ThreeBallot, VAV, and Twin. In:
Proceedings of USENIX/ACCURATE Electronic Voting Technology (EVT). Press
(2007

Cicho)ﬁ, J., Kutylowski, M., Weglorz, B.: Short ballot assumption and threeballot
voting protocol. In: Geffert, V., Karhumaki, J., Bertoni, A., Preneel, B., Navrat,
P., Bielikovd, M. (eds.) SOFSEM 2008. LNCS, vol. 4910, pp. 585-598. Springer,
Heidelberg (2008)

de Marneffe, O., Pereira, O., Quisquater, J.-J.: Simulation-based analysis of E2E
voting systems. In: Alkassar, A., Volkamer, M. (eds.) VOTE-ID 2007. LNCS,
vol. 4896, pp. 137-149. Springer, Heidelberg (2007)

Strauss, C.: The trouble with triples: A critical review of the triple ballot (3ballot)
scheme partl (2006)

Strauss, C.: A critical review of the triple ballot voting system, part2: Crack- ing
the triple ballot encryption (2006)

Clark, J., Essex, A., Adams, C.: On the security of ballot receipts in E2E voting
systems. In: IAVoSS Workshop On Trustworthy Elections (WOTE) (July 2007)
Appel, A W.: How to defeat Rivest’s ThreeBallot voting system (2007)
Tjastheim, T., Peacock, T., Ryan, P.Y.A.: A case study in system-based analysis:
The ThreeBallot voting system and Prét & Voter. In: VoComp (2007)

Henry, K., Stinson, D.R., Sui, J.: The effectiveness of receipt-based attacks on
ThreeBallot. Trans. Info. For. Sec. 4(4), 699-707 (2009)

Kiisters, R., Truderung, T, Vogt, A.: Verifiability, privacy, and coercion-resistance:
New insights from a case study. In: 2011 IEEE Symposium on Security and Privacy
(SP), pp. 538-553 (May 2011)

Canetti, R.: Universally composable security: a new paradigm for crypto-
graphic protocols. In: Proc. 42nd IEEE Symp. Foundations of Computer Science,
pp. 136-145 (2001)

Roscoe, A.W.: Understanding Concurrent Systems, 1st edn. Springer-Verlag
New York, Inc., New York (2010)

Compositional Verification
of Software Product Lines

Jean-Vivien Millo!'2, S. Ramesh?, Shankara Narayanan Krishna?,
and Ganesh Khandu Narwane*

! EPI AOSTE, INRIA Sophia-Antipolis, France
2 Global General Motors R&D, TCI Bangalore, India
3 Department of CSE, IIT Bombay, Mumbai, India
4 Homi Bhabha National Institute, Mumbai, India

Abstract. This paper presents a novel approach to the design verifica-
tion of Software Product Lines (SPL). The proposed approach assumes
that the requirements and designs at the feature level are modeled as
finite state machines with variability information. The variability infor-
mation at the requirement and design levels are expressed differently
and at different levels of abstraction. Also the proposed approach sup-
ports verification of SPL in which new features and variability may be
added incrementally. Given the design and requirements of an SPL, the
proposed design verification method ensures that every product at the
design level behaviourally conforms to a product at the requirement level.
The conformance procedure is compositional in the sense that the ver-
ification of an entire SPL consisting of multiple features is reduced to
the verification of the individual features. The method has been imple-
mented and demonstrated in a prototype tool SPLEnD (SPL Engine for
Design Verification) on a couple of fairly large case studies.

1 Introduction

Large industrial software systems are often developed as Software Product Line
(SPL) with a common core set of features which are developed once and reused
across all the products. The products in an SPL differ on a small set of fea-
tures which are specified using wvariation points. The focus of this paper is on
modeling and analysis of SPLs which have drawn the attention of researchers
recently [1213]. Many approaches have been proposed to describe SPLs, the
most prominent one being feature diagrams. These approaches seem to assume a
global view of SPL as they start with a complete list of features and the variation
points using a single vocabulary. All the subsequent SPL assets, like requirement
documents, design models, source codes, test cases, documentations, share the
same definition and vocabulary [AJ5]. However, the assumption of a single ho-
mogeneous and global view of variability description is inapplicable in many
practical settings, where there is no top level complete description of features
and variabilities. They often evolve during the long lifetime of an SPL as new
features and variabilities are added during the evolution. Further, SPL develop-
ers tend to use different representations and vocabulary of variability at different

E.B. Johnsen and L. Petre (Eds.): IFM 2013, LNCS 7940, pp. 109-[[23] 2013.
(© Springer-Verlag Berlin Heidelberg 2013

110 J.-V. Millo et al.

stages of development: at the requirement level, a more abstract and intuitive
description of variation points are used, while at the design level, the efficiency of
implementation of variation points is of primary concern. For example, consider
the case of an automotive SPL, where one variation point is the region of sales
(eg. Asia Pacific, Europe, North America etc). At the requirement level, this
variation point is expressed directly as an enumeration variable assuming one
value for every region. Whereas, at the design level, the variation point is ex-
pressed using two or three boolean variables; by setting the values of the boolean
variable appropriately, the behaviour specific to a region is selected at the time
of deployment.

We present a design verification approach that is more suited to the above
kind of evolving SPLs in which different representation of variabilities would
be used at the requirement and design level. One natural and unique problem
that arises in this context is to relate formally the variation points expressed
at different levels of abstractions. Another challenge is the analysis complexity:
the number of products is exponential in the number of variation points and
hence product centric analyses are not scalable. We propose a compositional
approach in which every feature of the SPL is first analyzed independently;
the per-feature analysis results are then combined to get the analysis result for
the whole SPL. For capturing variability in the behaviour of an SPL, we have
extended the standard finite state machine model, which we call Finite State
Machines with Variability, in short, F'SMv. The behaviour and variability of a
feature at the requirement and design level can be modeled using FSMv. We
define a conformance relation between FSMvs to relate the requirement and
design models. This relation is based upon the standard language containment
of state machines. One unique feature of FSMyv is that it provides a compositional
operator for composing the feature state machines to obtain a model for an SPL.
This operator thus enables incremental addition of features and variabilities. The
proposed verification approach exploits the compositional structure of the SPL
models to contain the analysis complexity.

Figure [0l summarizes the proposed approach. It shows an SPL composed of
features f1 to f,. Each feature has an FSMv model of its requirements (called

| SPL Requirement level |

Extractionﬂ_ ExtractionJ_L Extraction
FSMr FSMr
-~
53 £ f = f
< (@] &)
L 5 1 5 n
~

FSMd FSMd FSMd
y
| Abstraction Abstraction Abstraction

SPL Design level |

Fig. 1. The proposed verification approach

Compositional Verification of Software Product Lines 111

FSMr) and an FSMv model derived from its design (called FSMd). The pro-
posed analysis method checks whether the FSMd of every feature conforms to
its FSMr (1% check). The output of this first step is a conformance relation ®;
between each pair of FSMr; and FSMd;. The obtained conformance relations
®q,...,P, are then used to check whether the actual behaviour of the entire SPL
conforms to the expected one (2" check). The 2"¢ check is done by synthesizing
a Quantified Boolean Formula (QBF) and answering its satisfiability. There is
no need to build the entire behavioural model of the SPL in the second step.
We have built a prototype tool SPLEnD based upon this approach. This tool
performs the first check using SPIN [6] while the well-known QBF SAT solver
CirQit [7] is used for the second step. We have experimented with the tool using
modest industrial size examples with very encouraging results.

1.1 Related Work

In this section, we survey related work in five broad themes : Feature Based
Analysis, Behavioural Conformance, Compositional Verification, SAT Solving
and SPL Tools.

Feature Based Analysis: [§] explores feature-aware verification to automatically
detect feature interactions in a software product line. For this, a language is de-
veloped to specify individual features in separate and composable units; based on
these feature-local specifications, feature interactions are detected in a product
line by either (i) generating all the products and checking them one by one, or
(ii) by generating one product that contains all the features. The email product
line with 10 features and 40 products, with 27 feature interactions was checked.
A programming language oriented approach is presented in [9], where, a core
calculus for feature composition is developed. The features may contain various
kinds of software artefacts, like source code in various languages, models and
documents. The composition is done uniformly across features with different ar-
tifacts in a type-safe way. In a third approach, Fisler et al [10] view features
as state machines, and CTL model checking is used to verify properties of in-
dividual features. Compositional verification of features is done by checking the
consistency of interface labels assigned by the CTL model checking algorithm at
the feature level.

Behavioural Conformance: [I1] proposes the use of modal transition systems
(MTS) over labelled transition systems for modelling and analysis of product
line architectural behaviour. MTS can model optional and required behaviour
via may and must transitions. A conformance algorithm for MTS is then pre-
sented: a fixed point algorithm that computes cartesian product of states, and
eliminates pairs that are invalid according to the relation. A second line of work
is FTST, proposed in [2] that has some similarities with FSMv, but has a mo-
tivational difference. The aim of FTS™ is to model the entire SPL and hence
there is a single global machine with a single global vocabulary for expressing
variabilities; the variability information represents the presence/absence of fea-
tures in the SPL. In contrast, our approach is based upon a different view of

112 J.-V. Millo et al.

SPL: a feature with variability is an increment in functionality and an SPL is
a collection of features. We use a single FSMv to model a feature and a whole
SPL is modeled as a parallel composition of FSMv machines. The difference in
viewpoint has another consequence: FT'ST models, since they model the entire
SPL, tend to be large and hence has high analysis complexity; some abstrac-
tion techniques are hence used [3]. Whereas, each FSMv models a fraction of
functionality and hence can be analysed easily. Further, the entire SPL can be
modeled as composition of FSMvs and can be efficiently analysed using com-
position techniques. In a third approach, [I2] uses MTS for modelling product
behaviour and use the logic MHML for model checking. The approaches in [12]
as well as [2] use transition systems for expressing system behaviour; feature
variability constraints are expressed using feature diagrams in [2], while in [12],
MHML is used to do this. [2] needs an extra component, a logic for checking
properties, while in the case of [12], the MTS+MHML framework is sufficient.

Compositional Verification: [13] proposes compositional verification for hierachi-
cal SPLs. Here, Simple Hierarchical Variability Models (SHVM) are used to
specify the variability of product artifacts. However, in an SHVM, the number
of derivable products is restricted by the fact that there is no means of defining
constraints between variation points. On an experimetal setup, [14] uses Event-B
composition techniques for feature based product line development. A feature is
considered as a basic modular unit in the Rodin tool, and two case studies have
been evaluated.

SAT Solving: [15] was the first to propose the use of propositional logic for ex-
pressing relationships between requirements in a product line model. Using this,
a product line model can be represented as a logical expression; this can be in-
stantiated by the selected requirements. Further, it can be chcked if the selected
set is valid or not. Further, [I6] explores the fundamental connection between
feature diagrams, grammars and propositional logic formulae. This connection
paved the way for the use of SAT solvers that provide automated support to
debug feature models.

Other Approaches and SPL Tools: Many other behavioural models have also been
proposed [I7JI8IT9)20] which are usually coupled with a variability model such
as OVM [B], the Czarnecki feature model [4], or VPM [2]] to attain a fair level of
variability expressibility. Unlike all these approaches, FSMv capture the variabil-
ity in an explicit way which we find more intuitive. The Variation Point Model
(VPM) of Hassan Gomaa [21] distinguishes between variability at the require-
ment and design levels but no design verification approach has been presented.
In a recent paper, Jorges et al. [22] present a constraint based approach for
variability modeling. Here, architectural as well as behavioural constraints are
captured by using temporal logics; synthesis algorithms are then used to com-
pute solutions. Kathrin Berg et al. [23] proposes a model for variability handling
throughout the life cycle of the SPL. Andreas Metzger et al [24] and Riebisch M.
et al [25] provide a similar approach but they do not consider the behavioural as-
pect. In our proposed approach, we extract the relation between requirement and

Compositional Verification of Software Product Lines 113

design level variability from a behavioural analysis. [26] present a tool VMC, for
the modeling and analysis of product lines. The product family is represented as
an MTS, along with extra variability constraints, and all the valid products are
automatically generated. The tool implements the algorithm presented in [12].
A demonstration of the main features of VMC can be seen in [27]. Kathi Fisler
et al [28] have developed an analysis based on three-valued model checking of
automata defined using step-wise refinement. Later on, Jing Liu et al. [29] have
revisited Fisler’s approach to provide a much more efficient method. Recently,
Maxime Cordy et al. have extended Fisler’s approach to LTL formula [30]. Kim
Lauenroth et al. [31] as well as Andreas Classen et al. [23], and Gruler et al.
[32] have developed model checking methods for SPL behaviour. These methods
are based on the verification of LTL/CTL/modal p calculus formula.

All these verification methods assume a global view of variability and hence the
representation of variability information is identical in both specification and the
design. By contrast, in our work the specification and design involve variability
information at different levels of abstraction and hence one needs mapping infor-
mation between the two levels. Furthermore, our formalism allows incremental
addition of functionality and variability and enables compositional verification.

2 Design Verification of a Single Feature

An SPL, in general consists of multiple features, each feature having different func-
tionality and variability. A typical body control software of an automotive system
is an SPL that has several features such as door lock, lighting, seat control etc.
Each of these features has a distinct function and variability. For example, the
locking behaviour of a door lock function has a variation point called transmission
type. If the transmission type is manual then the door is locked after the speed of
the vehicle exceeds a certain threshold value; for automatic transmission, the door
is locked when the gear position is shifted out of park. In this section we will focus
on modeling and relating the design of a single feature to its requirement.

2.1 FSMv and Language Refinement

Finite State Machines with Variability (FSMv) is an extension of finite state
machines, to represent all possible behaviours of a feature. Let Var be a finite set
of variables, each taking a value ranging over a finite set of values. Let x € Var,
and let Dom/(x) denote the set of values x can assume. The set of atomic formulae
we consider are x = a, x # a, for a € Dom(z), and z =y, x # y for z,y € Var.
Let Ay g, denote the set of atomic formulae over Var. Let a represent a typical
element of Ayqy. Define A:i=a | A | ANA| AV A|A = A to be the set of
all well formed predicates over Var.

Definition 1 (FSMv). An FSMv is a tuple A= (Q, qo, X, Var, E, p) where:
(1) Q is a finite set of states; qo is the initial state; (2) X is a finite set of
events; (8) Var is a finite set of variables; (4) E C Q x A x X' x @ gives the

114 J.-V. Millo et al.

set of transitions. A transition t = (s, g,a,s’) represents a transition from state
s to state s’ on event a; the predicate g is called a guard of the transition t; g
is consistent and defines the variability domain of the transition; (5) p € A is a
consistent predicate called the global predicate.

The variables in Var determine the variability allowed in the feature with each
possible valuation of the variables corresponding to a variant. The allowed values
of the variables are constrained by the global predicate p. For example, if p is
((x=1)V (x=2))A(x =y — 1), then the allowed variants are those for which
the values for the pairs (z,y) are (1,2),(2,3). The predicate in a transition
determines the variants to which the transition is applicable. While drawing a
transition ¢t = (s, g,a,s’), the edge connecting s to s’ is decorated with ¢ : a.
When g is true, we simply write a on the edge.

Definition 2 (Configuration). A configuration, denoted by m, is an assign-
ment of values to the variables in Var. The set of all configurations is denoted
by Iy or, or II, when Var is clear from the context. Define II(p) = {m | 7 |= p}
to be the set of all those configurations that satisfy p. The elements of II(p)
are called valid configurations. Given a valid configuration ™ and a transition
t=(s,g,a,s), we say that t is enabled by 7w if 7 = g.

DL_Enable: {Enable,Disable}
Transmission,: {Auto,Manual}
DL_User_Pref: {Speed, Park}

Disable: *
S

o)
2%

B T\

[|

L N |

%o, /
Gto,

f/’aq,

.
Sh

LOCkI
_— —__Unlock|

—

Manual->Speed

o/

Fig. 2. The FSMv of the feature Door lock

As a concrete example of an FSMv, consider the feature Door lock in automotive
SPL which controls the locking of the doors when the vehicle starts. The expected
behaviour of this feature is modeled using the FSMv Regqg; described pictorially
in Figure Pl In the initial state, this feature becomes active when all the doors
are closed. The doors are locked when either the speed of the vehicle exceeds a
predefined value or the gear is shifted out of park. An unlock event reactivates the
feature. There are four configurations for this feature all of which are described
using the three variables: DL Enable, Transmissiong and DL User Pref. The
top box denotes the values that these variables can assume, and the bottom box
gives the global predicate (p) associated with the machine. p ensures that in
every valid configuration, the variable Transmissiong having the value Manual
implies that DL User Pref takes the value Speed. This captures the fact that in
manual transmission, there is no park position on the gearbox. To avoid clutter,
we have replaced guards of the form x = ¢ with ¢ in the figure. So, the self loop
Disable : x stands for DL Enable = Disable : x. It means that when DL Enable
assumes the value Disable, it stalls on any event.

Compositional Verification of Software Product Lines 115

Requirement against Design. In the requirement of a product line, the vari-
ability is usually discussed in terms of variation points, which are at a high
level of abstraction and focused on clarity and expressibility. The restriction of
the possible configurations is expressed as general constraints on these variation
points, e.g., the global predicate Manual = Speed in the Door lock example.
In contrast, in a design, the variability description is constrained by efficiency,
implementability, ease of reconfiguration and deployment considerations. For in-
stance, in the automotive applications, one often finds calibration parameters
ranging over a set of boolean values. Further, the constraint on the calibration
parameters (p) takes the special form of the list of the possible configurations of
the calibration parameters in order to easily configure the design.

FSMyv can capture both the design as well as the requirements of a feature.
We distinguish the requirement and design models by denoting them FSMr and
FSMd respectively. Figure 2 presents the FSMr, Reqg;, of the feature Door lock.
The FSMd, Desg;, of the feature Door lock is presented in Figure[Bl The structure
of Desy; is similar to Reqq; except that the top elliptical shaped state in Figure
is split into two states (the top and the bottom elliptical shaped states) in
Figure Bl The top state is for auto-transmission whereas the bottom one is for
manual transmission as can be seen from the configuration label of the two
transitions going from the initial state. Two variables Cpl and C'p2 encode the
possible configurations in the FSMd. The box in Figure Bl depicts the set of
possible values of these. Cpl = Auto corresponds to the configuration in which
the transmission is Auto whereas C'pl = Mof f corresponds to either the manual
transmission or the case when Cpl is disabled; similarly, Cp2 = Speed means
that the user preference is set on Speed, while Cp2 = Pof f means either Park
or the case when Cp2 is disabled.

_ ShiftOutOfPark

Moff:Unlock

Fig. 3. Desq;: the FSMd abstracted from the design of the feature Door lock

2.2 Variants of FSMv and Conformance

Having described the design and requirement behaviour of a feature f using
FSMd and FSMr respectively, we now define the notions of variants and con-
formance. A variant of an FSMv corresponds to one of the several possible be-
haviours of the feature (at the design, requirement level respectively). Given a

116 J.-V. Millo et al.

feature f, and a (FSMd, FSMr) pair corresponding to f, we say that the design
of f conforms to the requirements of f, iff every variant of the FSMd has a
corresponding FSMr variant.

Definition 3 (Variant of an FSMv). Let A = (Q,qo, X, Var, E,p) be an
FSMv and © € II(p) be a valid configuration of A. A variant of A is an FSM
obtained by retaining only transitions t = (s, g,a,s’), and states s,s’ such that
m |= g. Once the relevant states and transitions are identified, we remove the
guards g from all the transitions; p is also removed. The resultant FSM is
denoted A | .

In the example of FSMr for the feature Door lock, the variant Reqq; | (Enable,
Auto, Park) does not contain the transitions with the event Speed > n and *.
We compare the FSMd and FSMr of a feature f using their variants. Given an
FSMv A, we associate with each configuration 7 of A the language of the FSM
A | 7, denoted by L(A | 7). We say that an FSMd A4 conforms to an FSMr A,
if and only if the behaviour of every variant of A, is contained in the behaviour
of some variant of A,..

Definition 4 (The conformance mapping ®@). Let A, and Aq be a pair of
FSMr and FSMd respectively with global predicates p" and p®. Let Ilg, II, be
the set of all design, requirement configurations. Then Agq conforms to A, if
there exists a mapping ® : Iq(p?) — 20°") as follows: For any mq € Hy(p?),
D(ng) = {mr € HI.(p") | L(Aq | ma) € L(A, | 7.)}. D is called the conformance
mapping, and the conformance via & is denoted Ayg <¢ A,

In the feature Door lock, ({Mof f, Speed)) contains (Enable, M anual, Speed)
and (Enable, Auto, Speed).

2.3 Checking the Conformance

Let f be a feature with FSMr Req; and FSMd Desy. Then the conformance
checking problem is to compute a mapping ¢ such that Des; < Regqy.

The conformance mapping is computed by comparing every variant of Desy
with every variant of Reqy. Algorithm 1, given below, presents a possible im-
plementation using the standard automata containment algorithm [33], as im-
plemented in the SPIN model checker [6]. Algorithm 1 runs the full verification
algorithm of SPIN for every pair (74, 7,) of design and requirement configura-
tions. SPIN(i.e. pan(.exe)) returns the list of pairs for which the conformance
condition is violated. Every other pair is added to the conformance mapping @.

It must be noted that even though we are exhaustively checking whether every
variant of the design conforms to some variant of the requirement, we are doing
it only at the feature level, and not at the product level. Typically, the number of
variants per feature is much smaller than the number of variants in the products.
Our experimental results (see Section []) shows that our approach scales well.

Compositional Verification of Software Product Lines 117

Algorithm 1. implements the conformance checking using SPIN.
Input : Desy, Req;y.
Output : The mapping @ when Desy <o Reqy
1. Generate a Promela file which contains Reqs, Desy, the environment, the confor-
mance condition expressed as a mever claim, and the initialization sequence.
2. Launch the full verification algorithm of SPIN
3. Build the mapping @ from the output of SPIN.
4. Conclude whether the design conforms to the requirement
if Vg € H(pd), @(TI’d) ;é @ then
return true along with (P)
else
return false along with (mq) {where 74 has no correspondence through &}
end if

3 Design Verification of SPL

In the previous section, we looked at individual features in an SPL and provided a
method for comparing the design and requirements of a feature, both containing
variabilities. In this section, we extend this method to verify a whole SPL design
against its requirements. An SPL is essentially a composition of multiple features
satisfying certain constraints. We define a parallel composition operator over
FSMv to model an SPL. The features in an SPL can interact and we follow
one of the standard methods of allowing the composed FSMv models to share
some common events, which correspond to two-party handshake communication
events. A distinguishing aspect of the proposed parallel operator is that it takes
into account the constraints across the composed machines.

Definition 5 (Parallel composition of FSMv)
Let Ay = (Qqz,q%, Xy, Vary, Ez, pg), © € {1,2} be two FSMv’s with Vary N
Vary = 0. Let H = X1 N Xy be the set of handshaking events. Let p1a be a
predicate over Vary U Vars, such that pia A p1 A p2 is consistent. pio is the
composition predicate capturing the possible constraints between the variabilities
of the two composed features. Let p = p12 A p1 N p2.

The parallel composition of A1 and As denoted by A = Ay || Az is a tuple
(Q1xQa,(qd,q3), ¥1UXs, VariUVary, E, p) with transitions defined as follows:
Consider a state (s1,82) € Q1 X Q2, and transitions (s1,91,a1,8;) € F1 and
(82,92, a2,85) € Es.

(1) If a1 = aa = a € H, define ((s1,82),91 A g2,a,(s},85)) € E, if 1 A\ g2 is
consistent. This transition is enabled under a valid configuration © € II(p), such
that ™ = g1 A ga.

(2) If a; € X1\H, define ((s1,52), 91, a1, (s}, s2)) € E. This transition is enabled
under valid configurations ™ such that m = g1.

(3) If az € Xo\H, define ((s1, $2), g2, a2, (51, 85)) € E. This transition is enabled
under valid configurations ™ such that m = go.

For illustration, consider the feature Door unlock which automates the unlocking
of the doors in a vehicle. Figure[dla gives the FSMr of the feature extracted from

118 J.-V. Millo et al.

the requirements. From the initial state, the feature becomes active when the
event Lock happens. As soon as either the key is removed from ignition or the
gear is shifted to park position, the doors get unlocked and the feature Door
unlock becomes inactive. Figure @b presents the FSMd of the feature Door
unlock. It is quite similar to the requirement except that the active state is split
in two: the feature reacts to the ignition Off event in one state, and to the
Shift Into Park event in another state. Let us consider the composition of the
two FSMr’s of the features Door lock and Door unlock. The handshake events
between the two features are Lock and Unlock. In the composition, we introduce
the following composition predicate: (DU Enable = Enable < DL Enable =
Enable) A Transmissiong = Transmissiong,, which brings out the natural
constraints that Door lock feature is enabled if and only if Door unlock is also
enabled and the transmission status has to be the same. The valid configurations
after composition are restricted by the composition predicate. We provide a few
definitions to define composite valid configurations.

Disable:* I_:N Lock MoffAPoff:* |:|\V
DU_Enable:{Enable, Disable} p——
Transmissiong,:{Auto, Manual} 'U“|0Ck Cp :((;ff uto} Unlock
DU_User_Pref:{Key, Park} @) p4:{PoffKey} o
Manual->Key

Key:Lock
¥207:440d

Fig. 4. a) Reqqu: Door unlock FSMr and b) Desgy: Door unlock FSMd

Definition 6 (Composing Configurations). Let A; =(Q:, g4, X, Vars, E;, pi)
be two FSMv’s, i = 1,2, and let A = Ay || Az be as given by Definition [3. Let
p = p12 A p1 A p2 be the global predicate of A. Consider two valid configurations
m € II(p1) and mo € II(p2) of A1 and Az. The compostion of 71,72 denoted
71 + 72 is a configuration over Vary UVary such that (i) w1 + mo agrees with m
over Vary, agrees with o over Vary, and (ii) m + w2 = p.

Lemma 7. Let Ay and As be two FSMuv’s. For each wvalid configuration
of A1 || Az, there are valid configurations m of A1 and ma of As such that
T =T + 2.

Due to lack of space, proofs have been omitted. Proofs of all the results can be
found in [34].

In the example of feature Door Lock, the configuration (Enable, Auto, Speed)
from Regqq can be composed with (Enable, Auto, Key) from Reqq, because

Compositional Verification of Software Product Lines 119

the transmission is Auto in both (which is specified in the composition pred-
icate (DU Enable = Enable & DL Enable = Enable) A Transmissiong =
Transmissiong,). (Enable, Auto, Speed, Enable, Auto, Key) is a configuration
of the parallel composition of Reqq with Reqg,. The parallel composition of
FSMv’s is such that each variant of the composition of two FSMv’s is equal to
the composition of variants of the individual FSMv’s.

Lemma 8 (Variants of a composed FSMv). Let A; and Ay be two FSMu’s.
Let 7 be a valid configuration of Ay || Az. Then L([Ay || A2] L 7) = L(A1 | m) ||
L(Ay | 7).

Refinement and Parallel Composition. The definition of parallel compo-
sition naturally lends itself to a notion of addition of conformance mappings
between design and requirement pairs. Consider FSMr’s R, Rs corresponding
to two features fi, fo. Let D1, D2 be the corresponding FSMd’s. Let pf, p5 be
the global predicates of Ry, Ro, and let p{, p be the global predicates of Dy, Dy
respectively. Assume that Dy <, R; and Dy <g, Ra. Let p" = piy A p] A ph
be the global predicate of R; || Ry; likewise, let p? = pfy A p¢ A pd be the global
predicate of Dy || Da. We now want to ask if Dy || Dy conforms to Ry || Re. This
amounts to computing a conformance mapping between Dy || Dy and Ry || R2
given @1, P,. Consider any valid configuration 7¢ of Dy || De. By Lemma [0
we can write 7% as 7 + 74, where 7, ¢ are valid configurations of Dy, Dy re-
spectively. Since D; <g, R1 and Do <g, Ra, there exists valid configurations
77 € @1(rl) and 75 € Po(7d) in Ry, Ra respectively. Given this, the addition of
@1, Dy is defined as follows:

Definition 9 (Addition of conformance mappings). The addition of con-
formance mappings @1, P2 is defined to be a mapping ® = @1 + P2 as follows.
For every valid configuration 7¢ = 7¢ + ¢ of Dy || D2,

&(n?) = {n" | 7" is a valid configuration of Ry || Ry, 7" = m} + 7}

for valid configurations 7} € &1(n), 75 € Bo(nd)}

Note that by Definition @ @ could be empty: Consider a valid configuration
7¢ = 1 + ¢ of Dy || Da. If there is no valid configuration 7" of Ry || Rz which
is a composition of valid configurations 7 € @ (7{), 75 € ®o(ng), then @ is
empty (or there is no conformance mapping @ between Dy || D2 and Ry || R2).
If @ exists, then we can say the following;:

Lemma 10 (Conformance of composition). Let Ry and Ry be two FSMrs
corresponding to features f1, fo, and let D1 and D5y be the corresponding FSMds.
Let D1 <g, R1 and Dy <g, Ry. Let ® = &1 + P2 and 74 be a valid configuration
of D1 || Da. Then, ¥r" € ®&(n?), L([(D1 || Do) 4 7)) C L([(R1 || R2) 4 7).

! The right hand side || refers to the standard communicating finite state machine
composition.

120 J.-V. Millo et al.

Considering the example, in the FSMr Reqq || Reqdy with p, : DL Enable =
DU FEnable N\ Transmissiong, = Transmissiong,, any configuration having
DL Enable=Enable and DU Enable = Disable is invalid. However, &((Auto,
Speed)) contains only configurations where DL Enable = Enable, &' ({(Mof f,
Pof f)) contains only configurations where DU Enable = Disable and (Auto,
Speed) + (Mof f, Pof f) is a valid configuration of Desg; || Desgy. So the design
does not conform to the requirement. However, if we consider the composition
predicate pg : Cpl = Mof fACp2 = Poff < Cp3 = MoffACpd = Poff, then
(Auto, Speed) and (Mof f, Pof f) are not compatible anymore and as a result
the design conforms to the requirement.

3.1 Conformance Checking

Consider the case when we have n features fi,..., f,, with FSMds D,..., D,
and FSMrs Ry, ... R, such that D; <g, R; for 1 <i <n. When can we say that
Dy || -+ || Dy conforms to Ry || --- || Rn? For all valid design configurations
Dy |-||Dn Of D1 || -+ || Dn, we check the existence of a configuration g, ...z,
of Ry || -+ || Ry such that g, ... g, is a composition of valid requirement con-
figurations computed via @q,...,P,. We then say D; || --- | D, conforms to
Ry || - || Rn via a conformance mapping @. It can be observed that & is nothing
but @1 + - - - + &,,. We now formulate the existence of a conformance mapping &
using a QBF.

QBF Formulation. Given FSMd’s Dy,..., D, and FSMr’s Ry,..., R,,

(1) Let Var(D;) = {x,...,2q;} be the set of variables of design D;, and
Var(R;) = {yi1, - - -, Yir, }, the set of variables of requirement R;. Let 7 : (x;; =
ai,...,Tiq, = aq;) be a configuration of D;. We denote this by 7¢(zi1, ..., Ti,),
Which is the conjunction /\7;1(%‘1 =ay);

(2) Given n FSMd’s and n FSMr’s check if D; conforms to R; for all 1 <i<n
using Algorithm 1 This gives the map @;. Assume D; has m distinct configu-
rations 7y, ..., . For 1 < j < m, let &;(n) = {n; ..., 7 }, where each

of 7wl T. are conﬁguratlons of R;, that have been mapped by @; to some

s Wm
configuration ¢ i of D;. &; (md ;) can be written as the formula 77, V.-V .
(3) The conformance mappmg ®; between D; and R; then has the form
/\;.n=1 @Z—(wfj). (4) Let cp‘ij = p? A pd A pf and o7 ; = p" A pj A p} represent re-
spectively the propositional formulae which ensure the consistency of the global
predicates of D;, D; and R;, R; along with the compositional predicates p¢ and
p". Given a set S C {1,2,...,n}, p% and ¢ can be appropriately written.

The QBF for conformance checking is given by

d
U= VJ,‘H ce o T1d,X21 -+ - X2dy -+ - Tl - - - Tnd,y, [@1727___% =

Hyll Y1 Y21 - Y20 oo Ynd - Ynry, (@1 VANEREIAN ¢n AN ()071"’2"“’”4)]

The theorem below asserts that the QBF ¥ is true iff a conformance mapping
& exists such that Dy || -+ || Dp, <g R1 || -+ || Rn-

Compositional Verification of Software Product Lines 121

Theorem 1. Given an SPL, let {f1,..., fn} be the set of features in a chosen
product. Let D;, R; be the FSMd and FSMr for feature f;. Then Dy || -+ || Dn
conforms to Ry || -+ || R, iff ¥, as defined above, holds.

4 Implementation and Case Studies

Our prototype tool SPLEnD, takes as input pairs of XML files corresponding to
FSMd, FSMr and outputs a PROMELA file. The latter is fed to SPIN, which
returns the conformance mappings, or declares non-conformance. On the given
conformance mapping, the tool computes a QBF ¥ which is fed to CirQit. The
experiments were run on a 2.24 GHz i3 processor machine with 3GB RAM.

Features PL& LDCL PCU DL DU AL TSL
Design Variants 8 3 4 7 3 8
SPIN Time (Sec) 0.436 0.031 0.046 0.109 0.015 0.218

Fig. 5. Execution time of FSMv-Verifier on Algorithm 1 for ECPL

Features(Design Variants) Time(ms) Features(Design Variants) Time(ms)
Userlnterface(6) 2 CheckingBalance(3) 3
WithdrawMoney (8) 27 DepositMoney (2) 2
PrintingStatement(3) 2 Login(1) 1
ATMLogin(1) 1 ChangeAccountPassword (2) 3
PayBills(2) 3 PrintingBalanceA fterWithdraw(2) 3
CheckingMoneyExchangeRate(2) 3 MoneyExchange(2) 4
International Transfer(2) 6 LocalTransferToOtherBank(1) 4
LanguageSelection(2) 1 MobileTopUp(2) 2
ChangeMaxLimitForWithdrawal(1) 3 LocalTransferToSameBank(3) 3
AddBeneficiary(1) 2 RemoveBeneficiary(1) 2
CreateDemandDraft(2) 3 ChequeClearance(1) 3
FastWithdrawal(1) 2 CreditCardPayment(2) 2
UpdateContactDetails(2) 4 RegisterMobileNoForBanking(2) 2
OpenAccount(8) 30 CloseAccount(2) 5
ActivateAccount(2) 4 ReactivateAccount(2) 4

Fig. 6. Execution time of SPLEnD on Algorithm 1 for BSPL

We considered two real case studies for our experimentation: Entry Control
Product Line, ECPL having 7 features and Banking Software Product Line,
BSPL, composed of 30 features. In an earlier study [34], we considered BSPL
with 25 features; in this paper, we consider an enhanced version of BSPL by
adding 5 more features. The FSMr, FSMd models of each feature contain less
than 15 states. The analysis results for the two case studies are summarized in
Figures Bl and [6] which gives the times taken by Algorithm 1. The number of

122

J.-V. Millo et al.

variants per feature is at most 8 in both cases. In the case of ECPL, a non-
conformance was found in the feature Door Lock [A. For BSPL, the second step
using the QBF approach and CirQit took just 0.022 seconds. Encouraged by this
result, we are currently looking at some large industrial case studies.

References

10.

11.

12.

13.

14.

15.

16.

. Benavides, D., Segura, S., Cortés, A.R.: Automated analysis of feature models

20 years later: A literature review. Inf. Syst. 35(6), 615-636 (2010)

. Classen, A., Heymans, P., Schobbens, P.Y., Legay, A.: Symbolic model checking

of software product lines. In: ICSE, pp. 321-330 (2011)

. Cordy, M., Classen, A., Perrouin, G., Schobbens, P.Y., Heymans, P., Legay, A.:

Simulation-based abstractions for software product-line model checking. In: ICSE,
pp. 672-682 (2012)

. Czarnecki, K., Eisenecker, U.W.: Generative programming - methods, tools and

applications. Addison-Wesley (2000)

. Metzger, A., Pohl, K.: Variability management in software product line engineer-

ing. In: ICSE Companion, pp. 186-187 (2007)

. Holzmann, G.J.: The SPIN Model Checker: Primer and Reference Manual.

Addison-Wesley Professional (2003)

. Goultiaeva, A., Bacchus, F.: Exploiting gbf duality on a circuit representation.

In: AAAT (2010)

. Apel, S., Speidel, H., Wendler, P., Rhein, A., Beyer, D.: Detection of feature

interactions using feature-aware verification. In: ASE, pp. 372-375 (2011)

. Apel, S., Hutchins, D.: A calculus for uniform feature composition. ACM Trans.

Program. Lang. Syst. 32(5) (2010)

Harry, C., Li, S.K., Fisler, K.: Verifying cross-cutting features as open systems. In:
Daemen, J., Rijmen, V. (eds.) FSE 2002. LNCS, vol. 2365, pp. 89-98. Springer,
Heidelberg (2002)

Fischbein, D., Uchitel, S., Braberman, V.: A foundation for behavioural confor-
mance in software product line architectures. In: ROSATEA, pp. 3948 (2006)
Asirelli, P., Maurice, H., terBeek, S.G., Fantechi, A.: Formal description of
variability in product line families. In: SPLC, pp. 130-139 (2011)

Schaefer, 1., Gurov, D., Soleimanifard, S.: Compositional algorithmic verification
of software product lines. In: Aichernig, B.K., de Boer, F.S., Bonsangue, M.M.
(eds.) FMCO 2010. LNCS, vol. 6957, pp. 184-203. Springer, Heidelberg (2011)
Gondal, A., Poppleton, M., Butler, M.: Composing event-b specifications - case
study experience. In: Apel, S., Jackson, E. (eds.) SC 2011. LNCS, vol. 6708,
pp. 100-115. Springer, Heidelberg (2011)

Mannion, M.: Using first-order logic for product line model validation. In:
Chastek, G.J. (ed.) SPLC 2002. LNCS, vol. 2379, pp. 176-187. Springer,
Heidelberg (2002)

Batory, D.: Feature models, grammars, and propositional formulas. In: Obbink,
H., Pohl, K. (eds.) SPLC 2005. LNCS, vol. 3714, pp. 7-20. Springer, Heidelberg
(2005)

2 In Desg;, the transition from the middle elliptical state to the round state labeled
with Poff : ShiftOutO fPark is incorrect; ®({Auto, Pof f)) = 0. Removing this
transition fixes the bug.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

Compositional Verification of Software Product Lines 123

Larsen, K.G., Nyman, U., Wasowski, A.: Modal I/O automata for interface and
product line theories. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421,
pp. 64-79. Springer, Heidelberg (2007)

Raclet, J.B., Badouel, E., Benveniste, A., Caillaud, B., Legay, A., Passerone,
R.: Modal interfaces: unifying interface automata and modal specifications. In:
EMSOFT, pp. 87-96 (2009)

Fantechi, A., Gnesi, S.: Formal modeling for product families engineering. In:
SPLC 2008, pp. 193-202. IEEE Computer Society (2008)

Gruler, A., Leucker, M., Scheidemann, K.: Calculating and modeling common
parts of software product lines. In: SPLC, pp. 203—212 (2008)

Gomaa, H., Olimpiew, E.M.: Managing variability in reusable requirement mod-
els for software product lines. In: Mei, H. (ed.) ICSR 2008. LNCS, vol. 5030,
pp. 182-185. Springer, Heidelberg (2008)

Jorges, S., Lamprecht, A.L., Margaria, T., Schaefer, 1., Steffen, B.: A constraint-
based variability modeling framework. In: STTT, vol. 14(5), pp. 511-530 (2012)
Berg, K., Bishop, J., Muthig, D.: Tracing software product line variability: from
problem to solution space. In: Proceedings of the 2005 Annual Research Confer-
ence on IT Research in Developing Countries, SAICSIT 2005, pp. 182-191 (2005)
Metzger, A., Heymans, P., Pohl, K., Schobbens, P.Y., Saval, G.: Disambiguat-
ing the documentation of variability in software product lines: A separation of
concerns, formalization and automated analysis. In: RE, pp. 243-253 (2007)
Riebisch, M., Brcina, R.: Optimizing design for variability using traceability links.
In: ECBS, pp. 235-244 (2008)

ter Beek, M.H., Mazzanti, F., Sulova, A.: VMC: A Tool for product variability
analysis. In: Giannakopoulou, D., Méry, D. (eds.) FM 2012. LNCS, vol. 7436,
pp. 450-454. Springer, Heidelberg (2012)

ter Beek, M.H., Gnesi, S., Mazzanti, F.: Demonstration of a model checker for
the analysis of product variability. In: SPLC, pp. 242-245 (2012)
Krishnamurthi, S., Fisler, K.: Foundations of incremental aspect model-checking.
ACM Trans. Softw. Eng. Methodol. 16(2) (2007)

Liu, J., Basu, S., Lutz, R.R.: Compositional model checking of software product
lines using variation point obligations. Autom. Softw. Eng. 18(1), 39-76 (2011)
Cordy, M., Schobbens, P.Y., Heymans, P., Legay, A.: Behavioural modelling and
verification of real-time software product lines. In: SPLC, vol. 1, pp. 6675 (2012)
Lauenroth, K., Metzger, A., Pohl, K.: Quality assurance in the presence of vari-
ability. Technical report, SSE, Institut fur Informatik und Wirtschaftsinformatik,
univertitat Duisburg Essen (2011)

Gruler, A., Leucker, M., Scheidemann, K.: Modeling and model checking software
product lines. In: Proceedings of the 10th IFIP WG 6.1 International Conference
on Formal Methods for Open Object-Based Distributed Systems (2008)

Vardi, M.Y., Wolper, P.: An automata-theoretic approach to automatic program
verification. In: Proceedings of LICS 1986, pp. 322-331 (1986)

Millo, J.V., Ramesh, S., Krishna, S.N., Narwane, G.K.: Compositional verification
of evolving software product lines. CoRR abs/1212.4258 (2012)

Deductive Verification of State-Space Algorithms

Frédéric Gava, Jean Fortin, and Michael Gued]

Laboratory of Algorithms, Complexity and Logic (LACL), University of Paris-East
{frederic.gava, jean.fortin,michael.guedj}@univ-paris-est.fr

Abstract. As any software, model-checkers are subject to bugs. They
can thus report false negatives or validate a model that they should
not. Different methods, such as theorem provers or Proof-Carrying Code,
have been used to gain more confidence in the results of model-checkers.
In this paper, we focus on using a verification condition generator that
takes annotated algorithms and ensures their termination and correct-
ness. We study four algorithms (three sequential and one distributed)
of state-space construction as a first step towards mechanically-assisted
deductive verification of model-checkers.

Keywords: BSP, Model-checking, Deductive verification, State-space.

1 Introduction

Motivation. Model-checkers (MCs for short) are often used to verify safety-
critical systems. The correctness of their answers is thus vital: many MCs pro-
duce the answer “yes” or generate a counterexample computation (if a property
of the model fails), which forces, in the two cases, to assume that the algorithm
and its implementation are both correct.

But MCs, like any software are subject to bugs and there exist surprisingly
few attempts to prove them correct. Three main reasons can explain this fact
[13]: (1) MCs involve complicated logics, algorithms and sophisticated state re-
duction techniques; (2) because efficiency is essential, MCs are often highly op-
timised, which implies that they may not be designed to be proved correct;
(3) MCs are often updated. But there is a more and more pressing need from
the industrial community, as well as from national authorities, to get not just
a boolean answer, but also a formal proof — which could be checked by an
established tool such as the theorem prover Coq. This is required in Com-
mon Criteria certification of computer products at the highest assurance level
EAL 7 —http://www. commoncriteriaportal.org/. And hand proofs are not suf-
ficient for EAL 7, mechanical proofs are needed. The author of [I8] resumes
the problem: Quis custodiet ipsos custodes ¢ (Who will watch the watchmen?
that is, who will verify the verifier?). We want to be able to trust the results of
model-checkers with a high degree of confidence.

Different Solutions for Verifying Model-Checkers. For verifying model-
checkers, different solutions have been proposed. The first one is to prove MCs

E.B. Johnsen and L. Petre (Eds.): IFM 2013, LNCS 7940, pp. 124-[[38] 2013.
(© Springer-Verlag Berlin Heidelberg 2013

http://www.commoncriteriaportal.org/

Deductive Verification of State-Space Algorithms 125

inside theorem provers and use the extraction facilities to get pure functional
machine-checked programs such as in the works of [20] and [6]. The second and
more common approach, in the spirit of Proof-Carrying Code [14] (PCC for
short), is to generate a “certificate” during the execution of the MC that can
be checked later or on-the-fly by a dedicated tool or a theorem prover. This is
the so-called “certifying model-checking” [13]. In this way, users can re-execute
the certificate/trace and have some safety guarantees because even if the MC is
buggy, its results can be checked by a trustworthy tool.

But, any explicit MC may enumerate a very large state-spaces (the famous
state-space explosion problem), and mimicking this enumeration with proof rules
inside any theorem prover (or with PCCs) would be foolish even if specific tech-
niques and optimisations of the abstract machine of theorem provers [I] are used.
Note that this problem does not arise when finding a refutation of the logical
formula (the trace is generally short) but when the answer is “yes” since the
entire explicit state-space (or at least a symbolic representation) needs to verify
the checked properties. In this way, certificate generation could also hamstring
both the functionality and the efficiency of the automation that can be built
from theorem provers (functional programs can be too memory consuming) and
PCC tools (too big certificates) [I§]. Only efficient, imperative and distributed
programs can override the state-space explosion problem.

Another solution, proposed in [22] for a MC call PAT, is to use coding as-
sumptions directly in the source code. They indeed use Spec# and a check
of the object invariants (the contracts) is generated. Nevertheless, they cannot
completely verify the correctness of PAT and they thus focus on some safety
properties (as no overflows, no deadlocks) of the underlying data structures of
PAT (which can run on a multi-core architecture) and check if some options may
conflict with each other.

The Proposed Solution and Outline. Our contribution follows the approach
of [22] but by using the “verification condition generator” (VCG for short) WHY
[7] and by extending the verification to the correctness of the final result: has
the full state-space been well computed without adding unknown states?

Since the language of WHY is not immediately executable but a higher-level
algorithmic language, we only focus on algorithms. We can thus focus on which
formal properties need to be preserved and not be obstructed by problems spe-
cific to a particular programming language. Even if most of the bugs in MCs
will not be due to wrong algorithms but rather due to subtle errors in the imple-
mentation of some complex data structures and bad interactions between these
structures and compression aspects, we must first check the algorithms to get
an idea of the amount of work necessary to verify a true model-checker.

Our goal is then a mechanically-assisted proof that these annotated algorithms
terminate and indeed compute the expected finite state-space. This is an inter-
esting first step before verifying MCs themselves: it allows to test if this approach
is doable or not. This is also challenging due to the nature of model-checking
(critical system) and to the algorithmic complexity. The main contribution of

126 F. Gava, J. Fortin, and M. Gued;j

this paper is to demonstrate the ability of a VCG such as WHY to tackle the
wide range of verification issues involved in the proof of correctness of imperative
codes of MCs.

The remainder of this paper is structured as follows. The VCG WHY is pre-
sented in Section [Z] then the full state-space if formally defined in Section 2.2
we consider also verifying different algorithms formally: three sequential ones
(which correspond to those mainly used in explicit MCs; described in Section 2.3}
verified in Section 24]) and one distributed — mainly used in explicit distributed
MCs; described in Section 3.3} verified in Section B4l The first three are rela-
tively simple to prove correct: it is thus a good basis for correctness of MCs.
For the last, we use our own extension of WHY called BSP-WHY [9], which
is presented in Section Section [discusses some related work and finally,
Section Bl concludes the paper and gives a brief outlook to future work.

2 Verification of Sequential State-Space Algorithms

We now introduce the VCG WHY, describe how we model the state space, and
present the verification of 3 well-known algorithms. The annotated source codes
are available at http://lacl.fr/gava/cert-mc.tar.gz.

2.1 Deductive Verification of Algorithms Using WHY

WHY [7] is a framework for the verification of algorithms. Basically, it is com-
posed of two parts: a logical language with an infrastructure to translate it
to existing theorem provers; and an intermediate verification programming lan-
guage called WhyML with a VCG for deductive verification. The logic of WHY is
a polymorphic first-order logic with logical declarations: definitions and axioms.
The examples of the standard library propose finite sets of data and several op-
erations with their axiomatisation (which can be proved using Coq): a constant
empty set; functions add, remove, union, inter, diff, cardinal; a predicate for
emptiness, equality, subset, extensionality, etc. In the logical formula, xQ is the
notation for the value of x in the pre-state, i.e. at the precondition point and
x@label for the value of x at a certain point (marked by a label) of the algorithm.

WhyML is a first-order language with an ML flavored syntax and it provides
the usual constructs of imperative programming. All symbols from the logic can
be used in the algorithms. Mutable data types can be introduced, by means
of polymorphic references: a reference r to a value of type o has type ref o,
is created with the function ref, is accessed with !r, and assigned with r <e.
Algorithms are annotated using pre- and post-conditions, loop invariants, and
variants to ensure termination. Verification conditions are computed using a
weakest precondition (wp) calculus and then passed to the back-end of Why
to be sent to provers. Notice that in WHY, sets are immutable (manipulated
only with purely functional routines) and thus only a reference on a set can be
modified and assigned to another set.

http://lacl.fr/gava/cert-mc.tar.gz

Deductive Verification of State-Space Algorithms 127

1 let normal () = 1 let main dfs () =

. 2 let known = ref () in
2 let known = ref () in .
s 3 let rec dfs (s:state) : unit =
3 let todo = ref {s0} in .
; 4 known<—!known & s;
4 while todo # 0 do .
o . 5 let current = ref (succ(s) \ 'known) in
5 let s = pick todo in "
) 6 while current # () do
6 known<—!known & s; E .
7 todo<!todo U (succ(s) \ !'known) 7 let new s = pick current in
o ’ 8 if (new s ¢ known) then dfs(new s)
8 done;
9 lknown 9 done;
-no 10 in dfs(s0); 'known

Fig. 1. Sequential WhyML algorithms

2.2 Definition of the Finite State-Space

Let us recall that the finite state-space construction problem is computing the
explicit graph representation (also known as Kripke structure) of a given model
from the implicit one. This graph is constructed by exploring all the states reach-
able through a successor function succ (which returns a set of states) from an
initial state sg. Generally, during this operation, all the explored states must be
kept in memory in order to avoid multiple explorations of a same state.

In this paper, all algorithms only compute the state-space, noted StSpace.
This is done without loss of generality and it is a trivial extension to compute
the full Kripke structure — usually preferred for checking temporal logic for-
mulas. To represent StSpace in the logic of WHY, we used the following axiom
contain state space (for consistency, it has been proved in Coq using an inductive
definition of the state-space, also available in the source code):

1 logic sO: state logic succ: state — state set logic StSpace: state set
2 axiom contain state space: Vss:state set. StSpace C ss <>
3 (sO € ss and (V s:state. s € ss — s € StSpace — succ(s) C ss))

i.e. defines which sets can contain the state-space. Now ss is the state-space
(ss=StSpace) if and only if, the two following properties holds: (A) ss C StSpace
and (B) StSpace C ss; that is equality of sets using extensionality. Note that us-
ing this first-order definition makes the automatic (mainly SMT) solvers prove
more proof obligations than using an inductive definition for the state-space.

2.3 Sequential Algorithms for State-Space Construction

Fig. [gives two common algorithms in WhyML using an appropriate syntax
for set operations — a “Breadth-first” algorithm is also fully available in the
source code but not presented here due to lack of space. All computations in
these programs are set operations where a set call known contains all the states
that have been processed and would finally contain StSpace.

The first one, called “Normal”, corresponds to the usual sequential construc-
tion of a state-space —random walk. It involves a set of states todo that is used
to hold all the states whose successors have not been constructed yet; each state
s from todo is processed in turn (lines 4 — 5) and added to known (line 6) while
its successors are added to todo unless they are known already — line 7.

The second one is the standard recursive algorithm “Dfs”. At each call of
dfs(s), the state s is added (side-effect) to known (line 3) and dfs is then

128 F. Gava, J. Fortin, and M. Gued;j

recursively called (lines 5 — 8) for all the successors of s unless they are al-
ready known — which is an optimization since these states would anyway be
filtered out later on. Note the use of a conditional (line 8) within this loop: this
is due to the fact that during the exploration of the successors of s, known can
be increased and thus this prevents the re-exploration of these states

Note that the “Normal” algorithm can be made strictly depth-first by choosing
the most-recently discovered state (i.e. todo as a stack), and breadth-first by
choosing the least-recently discovered state. This has not been studied here.

2.4 Verification of These Algorithms

For correctness, the previously presented codes need three properties: (1) they
do not fail (no rule of reduction); (2) they indeed compute the state-space; (3)
and they terminate. The first property is immediate since the only operation
that could fail is pick (where the precondition is “not take any element from an
empty set”) and this is assured by the guard of the while loop. Let us now focus
on the specification of the above algorithms.

Annotations. Fig. [gives the full annotated code of the “Dfs” algorithm
and “Normal” needs only adding the following invariants in the loop (and final
post-condition {result=StSpace}):

1 invariant (1) (known U todo) C StSpace

2 and (2) (known N todo)=0

3 and (3) sO €(known U todo)

4 and (4) (V e:state. e €known — succ(e) C (known U todo))
5 variant |StSpace \ known|

These four invariants are: (1) known and todo are subsets of StSpace; at the end,
(3) and (4) known is a subset of StSpace and has the “same” inductive property;
and when todo will be empty, then known contains StSpace — property (B).

“Dfs” is more subtle. We need to introduce ghost code, notably a set nofinish
(line 3) which has the following rule: each state s in nofinish has been processed
by the dfs function but not completely that is, s is in known and not all its
direct successors have been processed by dfs — in the loop. It is used in the
pre-condition (lines 8-9) and post-condition (lines 31-34) of dfs since not all the
direct successors have been processed since it is a depth-first algorithm.

Also nofinish is a subset of known since all the time, each state s will be finally
completely processed. That also forces us to add this fact in pre- and post-
conditions. The post-conditions (1) and (2) are used for (A) and (B). Note the
use of nofinish since some states can not be fully processed but nofinish is empty
at the end of the computation, ensuring (B). The two post-conditions (5) and
(7) say that nofinish is the same before and after dfs (thus empty when s0 is fully
processed) but known was able to increase.

Now the invariants (lines 18 —22) of the loop are the following: (1) and (2) as in
“Normal”, the set known is a subset of StSpace (current is the set succ(s)—known

! Additional codes not participating in the computation but accessing the program
data and allowing the verification of the original code.

Deductive Verification of State-Space Algorithms 129

1 let main dfs () =

2 let known = ref @) in

3 let nofinish = ref @ in (* ghost *)

4 let rec dfs (s:state) : unit

5 variant |Stspace \ known|

6 =

7

8 (1) s €StSpace and (2) known C StSpace and (3) s & known and (4) s & nofinish
9 and (5) (V e:state. e €known— —(e €nofinish)— succ(e) C known) and (6) nofinish C known
10

11 known<—!known @ s;

12 nofinish<—!nofinish @ s;

13 let current = ref (succ(s) \ 'known) in

14 let ghost diff=ref) in

15 L:while current # () do

16

17 invariant

18 (1) (known U current) C StSpace

19 and (2) (V e:state. e €known— —(e €nofinish)— succ(e) C known)
20 and (3) succ(s) C (known U current) and (4) known@L C known
5)

21 and (5) current®@L= (ghost diff U current) and (6) (ghost diff N current)=0
22 and (7) nofinish=nofinish@L and (8) nofinish C known

23 variant |current|

24 }

25 let new s = pick current in

26 ghost diff<—!ghost diff & new s;

27 if (new s ¢ known) then dfs(new s)

28 done;

29 nofinish<—!nofinish © s

30

31 (1) known C StSpace

32 and (2) (V e:state. e €known — —(e €nofinish) — succ(e) C known)
33 and (3) s €known and (4) s & nofinish and (5) nofinish=nofinish@

34 and (6) known®@ C known and (7) nofinish C known

36 in dfs(s0); 'known {result=StSpace}

Fig. 2. “Dfs” sequential annoted algorithm

used in the foreach statement) and known works as StSpace; (3) all the direct
successors of s are in known or are currently processed; (4) known can increase;
(5—6) current works well as an iteration over a set using a ghost set which ensures
that no elements are lost during the iteration; (7) nofinish is not modified by the
loop but before the loop (and the post-condition ensures that it returns as in
the beginning of dfs); (8) nofinish remains a subset of known.

Termination. For all the algorithms, termination is ensured by the following
variants: |StSpace \ known| and by |current| when an iteration on each state of
a set is performed. Each algorithm ensures this first variant at every step using
the following properties:

“Normal” only adds a new state s since (known N todo)=0;

“Dfs” only recursively adds a new state (line 29) since the pre-condition of
the function is s ¢ known (line 8) and the boolean condition of the conditional
is new s ¢ known in the loop for the successors;

130 F. Gava, J. Fortin, and M. Gued;j

Mechanical Proof. All the obligations produced by the VCG of WHY are
automatically discharged by a combination of automatic provers: CVC3, Z3,
Simplify, Alt-Ergo, Yices and Vampire. For each prover, we give a timeout of
10 seconds — otherwise some obligations are not proved. In the following table,
for each algorithm, we give the number of generated obligations (column Total)
and then how many are discharged by the provers:

algo/Solvers Total Alt-Ergo Simplify Z3 CVC3 Yices Vampire

Normal 11 2 10 117 3 3
Breadth 31 9 31 28 21 10 10
Dfs 49 22 48 47 40 23 26

One could notice that the SMT solvers Simplify and Z3 give the best results. In
practice, we mostly used them. Simplify is the faster and Z3 sometime verified
some obligations that had not be discharged by Simplify. We also have worked
with the provers as black-boxes and we have thus no explanation for this fact.
It also took few days for the first author to annotate all the algorithms. Proof
obligations are as usual when working with a VCG such as WHY.

3 Verification of a Distributed State-Space Algorithm

Parallelize the construction of the state-space on several machines is a standard
method [2ITI]. In this section, we give an example of how to verify a parallel
algorithm and show that it is more challenging but feasible. We first present our
model of parallel computation called BSP then our own extension of WHY for
BSP algorithms and finally the verification of a BSP state-space algorithm.

3.1 The Bulk-Synchronous Parallel (BSP) Model

In the BSP model, a computer is a set of uniform processor-memory pairs and a
communication network allowing the inter-processor delivery of messages [L9/4].

A BSP program is executed as a sequence of super-steps, each one divided
into three successive disjoint phases: each processor only uses its local data to
perform sequential computations and to request data transfers to other nodes;
the network delivers the requested data; a global synchronisation barrier oc-
curs, making the transferred data available for the next super-step. The BSP
model considers communications en masse — as MPI’s collective operations,
Message Passing Interface http://www.mpi-forum.org/. This is less flexible than
asynchronous messages, but easier to debug and prove since interactions of si-
multaneous communication actions are typically complex.

3.2 Deductive Verification of BSP Algorithms

Our tool BSP-WHY extends the syntax of WhyML with BSP primitives (mes-
sage passing and synchronisation) and definitions of collective operations. BSP-
WhyML codes are written in a Single Program Multiple Data (SPMD) fashion.
We used the WhyML language as a back-end of our own BSP- WhyML language.

http://www.mpi-forum.org/

Deductive Verification of State-Space Algorithms 131

il; il;
i2; i2; Block 1
while b1 do i3; while bl do i3;
i4; i4;
sync; —>
if b2 then i5 else i6; - . —
i7; if b2 theri\7|.5 else i6; Block 2
sync; !

Fig. 3. Example of the BSP- WHY’s block decomposition of a BSP code

In this way, BSP- WhyML programs are transformed into WhyML ones and then
the VCG of WHY is used to generated the appropriate conditions for the de-
ductive verification of the BSP algorithm.

A special constant nprocs (equal to p the number of processors) and a special
variable bsp pid (with range 0, ..., p—1) were also added to WhyML expressions.
A special syntax for BSP annotations is also provided which is simple to use and
seems sufficient to express conditions in most practical programs: we add the
construct ¢ <i> which denotes the value of a term ¢ at processor id i, and
<z > denotes a p-value x (represented by fparray, purely applicative arrays
of constant size p) that is a value on each processor as opposed to the simple
notation z which means the value of z on the current processor.

The transformation of BSP- WhyML codes into WhyML ones is based on the
fact that, for each super-step, if we execute sequentially the code for each pro-
cessor and then perform the simulation of the communications by copying the
data, we have the same results as in really truly doing it in parallel.

The first step of the transformation is a decomposition of the program into
blocks of sequential instructions — Fig.[Bl Once that is done for each code block,
we create a “for” loop to execute sequentially the block. That is the block is ex-
ecuted p times, once for each processor. Finally, we generate invariants to keep
track of which variables are modified: since we are using arrays to represent the
variables local to every processor and programs are run in a SPMD fashion,
it is necessary to say that we only modify a variable on the current processor
and that the rest of the array stays unchanged. Also, when transforming a if
or while structure, there is a risk that a global synchronous instruction (a col-
lective operation) might be executed on a processor and not on the other. We
generate an assertion to forbid this case, ensuring that the condition associated
with the instruction will always be true on every processor at the same time —
thus forbidding deadlocks. The details and some examples are available in [9].
The trustworthiness of this tool is discussed in the conclusion.

3.3 BSP State-Space Construction

Algorithm “Normal” can be easily parallelised using a partition function cpu

that returns for each state a processor id, i.e., the processor numbered cpu(s) is
W . logic cpu: state — int axiom cpu range: Vs:state. 0< cpu(s)<nprocs

the owner of s: logi i i v 0<

132 F. Gava, J. Fortin, and M. Gued;j

1 let local successors (...) =

2 let tosend = ref (init send @) in
3 while todo # 0 do

4 let s = pick todo in

1 let naive state space () =
2 let total = ref 1 in

3 let known = ref () in

4 let todo = ref () in

5 let pastsend = ref () in
6
7
8

5 known<—lknown @ s;
. . 6 let new states = ref ((succ s 'known \ !pastsend) in
if cpu(s0) = bsp pid then " (()\ \ ')
7 while new states # () do
todo<—!todo P s0; K .
. 8 let new s = pick new states in
while total>0 do .
9 let tgt=cpu(new s) in
9 let tosend = (local successors . .
. 10 if tgt=bsp pid
10 known todo pastsend) in
11 then todo<—!todo @ new s
11 exchange todo total 'known
12 else tosend <tgt><—tosend<tgt> @ new s
12 pastsend !tosend
13 done
13 done;
14 done;
14 known
15 Itosend

Fig. 4. Parallel (distributed) BSP- WhyML algorithm for state-space construction

The idea is that each process computes the successors for only the states it
owns. This is rendered as the BSP algorithm of Fig. [l Sets known and todo are
still used but become local to each processor and thus provide only a partial
view on the ongoing computation.

Function local successors computes the successors of the states in todo where
each computed state that is not owned by the local processor is recorded in a
set tosend together with its owner number. The set pastsend contains all the
states that have been sent during the past super-steps — the past exchanges.
This prevents returning a state already sent by the processor: this feature is not
necessary for correctness and consumes more memory but it is generally more
efficient mostly when the state-space contains many cycles.

Function exchange is responsible for performing the actual communications:
it returns the set of received states that are not yet known locally together with
the new value of total — it is essentially the MPI’s alltoall primitive.

To ensure termination of the algorithm, we use the additional variable total
in which we count the total number of sent states. We have thus not used any
complicated methods as the ones presented in [2]. It can be noted that the value
of total may be greater than the intended count of states in todo sets. Indeed,
it may happen that two processors compute a same state owned by a third
processor, in which case two states are exchanged but then only one is kept
upon reception. In the worst case, the termination requires one more super-step
during which all the processors will process an empty todo, resulting in an empty
exchange and thus total = 0 on every processor, yielding the termination.

3.4 Verification of the Parallel Algorithm

For lack of space, we only present the verification of the parallel part of this
algorithm and not the sequential local successors (similar to “Normal” but with
many additional invariants on states to send) nor exchange — which is more
technical and without really interesting properties and still available in the source
code: the exchange procedure is only a permutation of the states that is, from
a global point of view, only states in arrays have moved and there is no loss of

Deductive Verification of State-Space Algorithms 133

states and a state has not magically appeared during the communications. Fig.
gives the annotated parallel algorithm. We also use the following predicates:

— isproc(i) is defined what is a valid processor’s id that is 0< i<nprocs;
U(<p set>) is the union of the sets of the p-value p set that is | J_,p set<i>;
GoodPart(<p set>) is used to indicate that each processor only contains the
states it owns that is Vi:int. isproc(i) — Vs:state. s €p set<i> — cpu(s)=i;
— comm send i(s,j) is the set of sent states from processor i to processor j.

As before, we need to prove that (1) the code does not fail; (2) indeed computes
the entire state-space and (3) terminates. The first property follows immediately
since only the routine pick is used as before; and to also prove that the code is
deadlock free (the loop contains exchange which implies a global synchronisation
of all the processors), we can easily maintain that total (which gives the condi-
tion for termination) has the same value on all the processors during the entire
execution of the algorithm. Let us now focus on the two other properties.

Correctness of the Parallel Loop (Fig. [B]). The invariants (lines 9 — 18) of
the main parallel loop work as follows: (1) as in “Normal”, we need to maintain
that known (even distributed) is a subset of StSpace which finally ensures (A)
when todo is empty; (2) as usual, the states to be treated are not already known;
(3) our sets are well distributed (there is no duplicate state that is, each state
is only kept in a unique processor); (4) total is a global variable, we thus ensure
that it has the same value on each processor; (5) ensures that no state remains
in todo (to be treated) when leaving the loop since total is at least as big as the
cardinality of todo, total is an over-approximation of the number of sent states;
(6-8), as usual, ensure property (B); (9) past sending states are in the state-
space; (10) pastsend only contains states that are not owned by the processor and
(11) all these states, that were sent, are finally received and stored by a processor.

In the post-condition (line 26), we can also ensures that the result is well
distributed: the state-space is complete and each processor only contains the
states it owns according to the function “cpu”.

Termination (Fig.[Bl). For the local computations, the termination is ensured
as in the “Normal” algorithm since known can only grow when entering the loop.

The main loop is more subtle: total is an over-approximation and thus could
be greater to 0 whereas todo is empty. This happens when all the received states
are already in known. The termination has thus two cases: (a) in general the set
known globally (that is, from a global point of view, of all processors) grows and
we have thus the cardinality of StSpace minus known which is strictly decreasing;
(b) if there is no state in any todo of a processor (case of the last super-step),
no new states would be computed and thus total would be equal to 0 in the last
stage of the main loop.

We thus used a lexicographic order (this is well-founded ensuring termination)
on the two values: sum of known across all processors; and total (which is the
same on all processors) when no new states are computed and thus when no state

134 F. Gava, J. Fortin, and M. Gued;j

1 let naive state space () =

2 let known = ref () in let todo = ref () in
3 let pastsend = ref) in let total = ref 1 in
4 if cpu(s0) = bsp pid then

5 todo <—s0 & !todo;

6 while total>0 do

7
8

invariant

9 (1) U(<known>) U [J(<todo>) C StSpace

10 and (2) (U(<known>) N J(<todo>))=0

11 and (3) GoodPart(<known>) and GoodPartt(<todo>)

12 and (4) (V ij:int. isproc(i) — isproc(j) — total<i> = total<j>)

13 and (5) total<0> > ||J(<todo>)|

14 and (6) sO €(J(<known>) U |J(<todo>))

15 and (7) (V estate. e €(J(<known>) — succ(e) C (U(<known>) U [J(<todo>)))
16 and (8) (V e:state. Vi:int. isproc(i) — e €known<i> — succ(e) C (known<i> U pastsend<i>))
17 and (9) J(<pastsend>) C StSpace

18 and (10) (V itint. |sproc() — Ve:state. e Epastsend<i> — cpu(e)# i)

19 and (11) |J(<pastsend>) C (J(<known>) U |J(<todo>))

20 variant pair(total<0>,| S \ [J(known) |) for lexico order

21

22 let tosend=(local successors known todo pastsend) in

23 exchange todo total 'known !tosend

24 done;

25 Tknown

26 {StSpace=|J(<result>) and GoodPart(<result>)}

Fig. 5. Parallel annotated algorithm

would be sent during the next super-step. At least, one processor cannot received
any state during a super-step. We thus need an invariant in the local successors
for maintaining the fact that the set known potentially grows with at least the
states of todo. We also maintain that if todo is empty then no state would be
sent (in local successors) and received, making total equal to 0 — in exchange.

Mechanical Proof. With some obvious axioms on the above predicates (such
as [J<0,...,0>=0) so that solvers can handle the predicates, all the produced
obligations are automatically discharged by a combination of the solvers. In the
following table, for each part of the parallel algorithm, we give the number of
obligations and how many are discharged by the provers (some proof obligations
require long timeouts e.g. 10 mins):

part/Solvers Total Alt-Ergo Simplify Z3 CVC3 Yices Vampire

main 106 74 98 101 0 54 78
successor 46 16 42 41 24 14 32
exchange 24 20 22 23 0 16 15

Now the combination of all provers is needed since none of them is able to prove
all the obligations. This is certainly due to their different heuristics. We also
note that Simplify and Z3 remain the most efficient. Some obligations are hard
to follow due to the parallel computations. But reading them carefully, we can
find the good annotations. An interesting point is that the first author with
the help of an undergraduate student was able to perform the job (annotate this
parallel algorithm) in three months. Based on this fact, it seems conceivable that

Deductive Verification of State-Space Algorithms 135

Model Checkers I > pcc
:
I notations 22 and our work T Proof of correctness

E treat with a VCG SMT solvers [7] = Work we do not know

2006 E[l:s,m,z;s]
2] 7

2] 8
A\ 4

D R

Theorem provers

O
“,, Y
N o
(e e
RLLTTPTTTTL LA

7 3]

Fig. 6. Different ways for proving model-checking algorithms

a more seasoned team in formal methods can tackle more substantial algorithms
(of model-checking) in a real programming language.

4 Related Work

Other Methods for Proving the Correctness of Model-Checkers. Fig.
summarises different methods that have been used for verifying MCs where each
arrow corresponds to a proof of correctness (using a theorem prover or a PCC
approach) and the papers related to the work.

The state-space explosion can be a problem for MCs extracted from theorem
provers. They are pure functional programs such as the ones of [20/6]. They
certainly would be too slow for big models even if there work on obtaining
imperative programs from extracted (pure) functional programs.

The “certifying model-checking” is an established research field [I523]. But,
the performance issue of PCC is discussed in [26] and [I6] where the authors
present developments (and model-checking benchmarks) of BDDs and tree au-
tomata using theorem provers: BDDs are common data-structures used by MCs
and tree automata is an approach for having a formal successor function. PCC
only focuses on the generation of independently-checkable evidences as the com-
piled code satisfies a simple behavioural specification such as memory safety;
the evidence can then be checked efficiently. Using PCC for state-space is the
same as computing it a “second time”. In fact, the drawback of proof certificates
is that verification tools have to be instrumented to generate them, and the
size of fully expanded proofs may be too large. Authors of [26/16] conclude that
PCCs are here inadequate and we can conclude that MCs themselves need to be
proved. It is also the conclusion of [8] where the authors note that “to avoid the
inefficiency of fully expansive proof generations, a number of researchers have
advocated the verification of decision procedures”.

Using annotations in source codes (programs or algorithms) and a VCG has
the advantage that realistic and efficient codes (mainly imperative ones) may be
verified which could be difficult using theorem provers. And it will not be worth
checking all the execution results of the MCs (which can take time) as in the
PCC approach because the results will be guaranteed.

136 F. Gava, J. Fortin, and M. Gued;j

In our work, we also only use automatic solvers for proving the generated
goals of the VCG WHY and thus we do not use any “elaborate” theorem prover
such as Coq. The correctness of our results depends on the correctness of (1)
the WHY tool (correct generation of goals) and (2) the results of the solvers.
Relying on modules like SMT solvers has the advantage that these tools would
certainly be verified in a close future. The work of [12] is a first approach for (1)
and the work of [5] is a PCC approach for (2). Moreover, a SMT solver has been
proved using a theorem prover [21]. In a close future, we can hope to achieve
the same confidence in our codes as the MCs extracted from [20[6], as well as
better performances since our codes are realistic imperative codes — and not
functional ones from theorem provers. Finally, we think that using annotations
(and a VCG tool) has the advantage of being “easy”. And we can prove the
correctness of programs or limit the work to some safety properties if the full
correctness is too difficult to obtain. And it extends to parallel programs which
is not easy using PCCs or theorem provers.

Other Various Works. There are also interesting examples of verified algo-
rithms on WHY’s web page: Dijkstra shortest path, sorting, Knuth-Morris-Pratt
string searching, etc. A mechanically assisted proof using Isabelle of how LTL
formulae can be transformed into Biichi automata is presented in [I7]. CTL*
temporal logic is also available in Coq [24]. All these works are interesting since
logical theories may be axiomatised in WHY.

Model compilation is one of the numerous techniques to speedup model-
checking: it relies on generating source code (then compiled into machine code) to
produce a high-performance implementation of the state-space exploration prim-
itives, mainly the successor function. In [I0], authors propose a way to prove the
correctness of such an approach. More precisely, they focus on generated Low-
Level Virtual Machine (LLVM) code from high-level Petri nets and manually
prove that the object computed by its execution is a representation of the com-
piled model. If such a work can be redone using a theorem prover, we will have
a machine-checked successor function which is currently axiomatised in WHY.

5 Conclusion

Model checkers are specialised software, using sophisticated algorithms, whose
correctness is vital. In this work, we focus on correctness of well-known sequential
algorithms for finite state-space construction (which is the basis for explicit
model-checking) and on a distributed one designed by the authors. We annotated
the algorithms for finite sets operations (available in Coq) and used the VCG
WHY (certifying in Coq [12]) to obtain goals that were entirely checked by
automatic solvers. These goals ensure the termination of the algorithms as well
as their correctness for any successor function — assumed correct and generating
a finite state-space. We thus gained more confidence in the code. We also hope to
have convinced the reader that this approach is humanly feasible and applicable
to real (parallel or sequential) model-checking algorithms.

Deductive Verification of State-Space Algorithms 137

Future goals are clear. First, adapt this work for true MC algorithms — as
those for LTL/CTL* mostly Tarjan/NDFS like algorithms. This is challenging in
general but using an appropriate VCG, we believe that a team can “quickly” do
it. Second, we are currently proving algorithms and not real codes. Regarding the
code structure, this is not really an issue and translating the resulting proof into a
verification tool for true programs should be straightforward, mostly if high level
data-structures are used: the WHY framework allows a user to generate WhyML
code from Java using a tool call Krakatoa. Third, the successor function (compu-
tation of the transitions of the state-space) is currently an abstract function. We
think to prove (mechanically) the work of [10] to compensate for this deficiency.
Fourth, compressions aspects (symmetry, partial order, etc.) must be studied.
The work of [25] which uses the B method could be a good basis. And to finish,
the transformation of BSP- WhyML into WhyML is potentially not correct. The
second author is working on this. The effort for all these works and thus verifying
the whole stack of Fig. [f]is not at all within the reach of a single team. But our
guess is that each of these stages is largely feasible. Also, machine-checked MCs
would certainly be less efficient than traditional ones. But they could be used
in addition when it comes to giving greater confidence in the results. We also
believe that another interesting application of a verified tool (such as we are envi-
sioning) would be to serve as a reference implementation that is used to compare
the results of an efficient implementation over a set of benchmark problems.

References

1. Armand, M., Grégoire, B., Spiwack, A., Théry, L.: Extending Coq with imperative
features and its application to SAT verification. In: Kaufmann, M., Paulson, L.C.
(eds.) ITP 2010. LNCS, vol. 6172, pp. 83-98. Springer, Heidelberg (2010)

2. Barnat, J.: Distributed Memory LTL Model Checking. PhD thesis, Faculty of

Informatics Masaryk University Brno (2004)

Barras, B., Werner, B.: Coq in Coq. Technical report, INRIA (1997)

4. Bisseling, R.H.: Parallel scientific computation. A structured approach using
BSP and MPI. Oxford University Press (2004)

5. Bohme, S., Weber, T.: Fast LCF-style proof reconstruction for Z3. In:
Kaufmann, M., Paulson, L.C. (eds.) ITP 2010. LNCS, vol. 6172, pp. 179-194.
Springer,

Heidelberg (2010)

6. Esparza, J., Lammich, P., Neumann, R., Nipkow, T., Schimpf, A., Smaus, J.-G.:
A fully verified executable LTL model checker. In: Computer Aided Verification,
CAV (to appear, 2013)

7. Filliatre, J.-C.: Verifying two lines of C with why3: An exercise in program verifi-
cation. In: Joshi, R., Miiller, P., Podelski, A. (eds.) VSTTE 2012. LNCS, vol. 7152,
pp. 83-97. Springer, Heidelberg (2012)

8. Ford, J., Shankar, N.: Formal verification of a combination decision procedure. In:
Voronkov, A. (ed.) CADE 2002. LNCS (LNAI), vol. 2392, pp. 347-362. Springer,
Heidelberg (2002)

9. Fortin, J., Gava, F.: BSP-WHY: an intermediate language for deductive verification
of BSP programs. In: High-Level Parallel Programming and Applications (HLPP),
pp. 35-44. ACM (2010)

w

138

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

F. Gava, J. Fortin, and M. Gued;j

Fronc, L., Pommereau, F.: Towards a certified Petri net model-checker. In:
Yang, H. (ed.) APLAS 2011. LNCS, vol. 7078, pp. 322-336. Springer, Heidelberg
(2011)

Garavel, H., Mateescu, R., Smarandache, [.M.: Parallel state space construction for
model-checking. In: Dwyer, M.B. (ed.) SPIN 2001. LNCS, vol. 2057, pp. 217-234.
Springer, Heidelberg (2001)

Herms, P.: Certification of a chain for deductive program verification. In:
Bertot, Y. (ed.) 2nd Coq Workshop, Satellite of ITP 2010 (2010)

Namjoshi, K.S.: Certifying model checkers. In: Berry, G., Comon, H., Finkel, A.
(eds.) CAV 2001. LNCS, vol. 2102, pp. 2-13. Springer, Heidelberg (2001)

Necula, G.C.: Proof-carrying code. In: Principles of Programming Languages
(POPL), pp. 106-119. ACM (1997)

Peled, D., Pnueli, A., Zuck, L.D.: From falsification to verification. In: Hariharan,
R., Mukund, M., Vinay, V. (eds.) FSTTCS 2001. LNCS, vol. 2245, pp. 292-304.
Springer, Heidelberg (2001)

Rival, X., Goubault-Larrecq, J.: Experiments with finite tree automata in Coq. In:
Boulton, R.J., Jackson, P.B. (eds.) TPHOLs 2001. LNCS, vol. 2152, pp. 362-377.
Springer, Heidelberg (2001)

Schimpf, A., Merz, S., Smaus, J.-G.: Construction of Biichi Automata for LTL
Model Checking Verified in Isabelle/HOL. In: Berghofer, S., Nipkow, T., Urban,
C., Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol. 5674, pp. 424-439. Springer,
Heidelberg (2009)

Shankar, N.: Trust and automation in verification tools. In: Cha, S(S.), Choi, J.-Y.,
Kim, M., Lee, L., Viswanathan, M. (eds.) ATVA 2008. LNCS, vol. 5311, pp. 4-17.
Springer, Heidelberg (2008)

Skillicorn, D.B., Hill, J.M.D., McColl, W.F.: Questions and answers about BSP.
Scientific Programming 6(3), 249-274 (1997)

Sprenger, C.: A verified model checker for the modal p-calculus in coq. In: Steffen,
B. (ed.) TACAS 1998. LNCS, vol. 1384, pp. 167-183. Springer, Heidelberg (1998)
Stump, A., Oe, D., Reynolds, A., Hadarean, L., Tinelli, C.: SMT proof checking
using a logical framework. Formal Methods in System Design 42(1), 91-118 (2013)
Sun, J., Liu, Y., Cheng, B.: Model checking a model checker: A code contract
combined approach. In: Dong, J.S., Zhu, H. (eds.) ICFEM 2010. LNCS, vol. 6447,
pp. 518-533. Springer, Heidelberg (2010)

Tan, L., Cleaveland, W.R.: Evidence-based model checking. In: Brinksma,
E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 455-470. Springer,
Heidelberg (2002)

Tsai, M.-H., Wang, B.-Y.: Formalization of ¢TL* in calculus of inductive construc-
tions. In: Okada, M., Satoh, I. (eds.) ASTAN 2006. LNCS, vol. 4435, pp. 316-330.
Springer, Heidelberg (2008)

Turner, E., Butler, M., Leuschel, M.: A refinement-based correctness proof of
symmetry reduced model checking. In: Frappier, M., Glésser, U., Khurshid, S.,
Laleau, R., Reeves, S. (eds.) ABZ 2010. LNCS, vol. 5977, pp. 231-244. Springer,
Heidelberg (2010)

Verma, K.N., Goubault-Larrecq, J., Prasad, S., Arun-Kumar, S.: Reflecting BDDs
in Coq. In: Kleinberg, R.D., Sato, M. (eds.) ASIAN 2000. LNCS, vol. 1961,
pp. 162-181. Springer, Heidelberg (2000)

Inductive Verification of Hybrid Automata
with Strongest Postcondition Calculus

Daisuke Ishii’, Guillaume Melquiond?, and Shin Nakajima!

! National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo, Japan
dsksh@acm.org, nkjm@nii.ac. jp

2 INRIA Saclayfile—de—France, LRI, bat 650, Université Paris Sud 11, Orsay, France
guillaume.melquiond@inria.fr

Abstract. Safety verification of hybrid systems is a key technique in de-
veloping embedded systems that have a strong coupling with the physical
environment. We propose an automated logical analytic method for ver-
ifying a class of hybrid automata. The problems are more general than
those solved by the existing model checkers: our method can verify mod-
els with symbolic parameters and nonlinear equations as well. First, we
encode the execution trace of a hybrid automaton as an imperative pro-
gram. Its safety property is then translated into proof obligations by
strongest postcondition calculus. Finally, these logic formulas are dis-
charged by state-of-the-art arithmetic solvers (e.g., Mathematica). Our
proposed algorithm efficiently performs inductive reasoning by unrolling
the execution for some steps and generating loop invariants from verifi-
cation failures. Our experimental results along with examples taken from
the literature show that the proposed approach is feasible.

1 Introduction

Hybrid systems, transition systems with continuous dynamics, are a good model
for embedded systems that have a strong coupling with the physical environment.
Achieving the desired reliability levels of such systems has brought a challenging
and important problem in formal methods research.

To date, verification of hybrid systems has been extensively studied with two
prominent approaches: model checking and logical analysis. The model-checking
approach has been successfully applied to practical examples with tools such
as HyTech [12], PHAVer [§], and HybridSAL [22]. The approach is said algo-
rithmic: tools numerically over-approximate a certain class of hybrid automata
(HA) to have piecewise-linear systems, and apply model-checking methods [4].
The second approach is based on logical analysis [16]. While the theory of logical
analysis has been studied extensively, there are few practical tools. A notable
and successful exception is KeYmaera [18]. The logical analytic approach can be
applied to the class of hybrid programs which generalize the automata handled
by model checking. Indeed, this class includes systems with symbolic parame-
ters and nonlinear dynamics. There is, however, a major drawback: the larger the
class of systems is, the less automatic its verification becomes. Engineers thus

E.B. Johnsen and L. Petre (Eds.): IFM 2013, LNCS 7940, pp. 139-[[53] 2013.
(© Springer-Verlag Berlin Heidelberg 2013

140 D. Ishii, G. Melquiond, and S. Nakajima

have to apply some proof strategies during the interactive verification process,
which requires understanding the target model.

In this paper, we propose a partly automated tool for the logical analysis of HA
that makes heavy use of state-of-the-art arithmetic solvers. Our goal is to prove
safety properties. First, our method encodes executions of HA into straight-line
imperative programs. This formalism allows us to construct a lasso-shaped struc-
ture based on induction: after exhibiting at most m steps of continuous evolution
and discrete transition, any execution of the system forms a loop with a length
of at most n steps between some specific regions of the state space. Then, the
imperative program is transformed into a conjunction of verification conditions
as a result of strongest postcondition (SP) calculus. The resulting logic formula
involves real-arithmetic predicates and ordinary differential equations (ODEs).
The generated conditions can be discharged using solvers such as Mathematica
for some nonlinear HA.

The contribution of this work is as follows. The use of an imperative language
and SP calculus gives a straightforward justification of the soundness of our
method for generating the finite-length verification conditions from HA. The
algorithm we propose realizes an automated verification process, although some
user interactions are needed to determine efficiently (a) correct numbers m and
n of steps to unroll the execution and (b) the loop invariant that represents the
initial region of the loop. Computer algebra techniques, however, are employed
to automate most of the work in generating loop invariants.

This paper is organized as follows. Section Plintroduces the class of hybrid au-
tomata. Section Bl describes a simple imperative language for simulating HA and
the corresponding SP calculus. In Section] we present the concept of induction
and loop unrolling, and describe an algorithm for automated verification. Sec-
tion [describes an implementation using Mathematica. Section [f] reports how
our implementation behaves on several examples and provides a comparison of
the results with existing tools. Section [describes some related studies.

2 Hybrid Automata

In this paper, we model hybrid systems as hybrid automata (HA) [I1].

Definition 1. A hybrid automaton is a tuple HA = (L, V, Init,G, R, F,I) that
consists of the following components:

A finite set L ={l1,...,1,} of locations.

— A finite set V. = {x1,...,24} of real-valued variables. RV is the set of all of
the valuations of the system.

An initial condition Init in LxRY that specifies the initial states.

— A family G = {G1y hienver of guard conditions Gy in RY .

— A family R = {Riy hierver of reset functions Ry : RV — RV,

— A family F = {F;}1er, of vector fields F; : RV — RV.

A family T = {I;}1e1, of location invariants I; in RV .

Inductive Verification of HA with Strongest Postcondition Calculus 141

t>0 ¢(0)=v VtE[O t] 4 = F AL[p(#)] Gu .1l v2=Ri,(n1) Iiylve]
(Lv)y 5 (1, o(t)) (L, v1) = (l2,va)

Fig. 1. Operational semantics of HA

A (finite or infinite) execution of HA is a sequence oy b, o1 L2y -+, for which
0; € LxRY and Init[og] holds, and = is either a continuous evolution phase 5N

wheret > 0 or a discrete transition phase 5 and is given by the rules in Figure[dl.
In the first rule, ¢ dt = F} is an abbreviation of d(z’(t = Fi(¢(t)). We say that an

0 ¢ 0
execution is length-k canonical when of the form 0o b, 01 = 09 =% -+ = Top;
that alternates continuous and discrete phases.

In this paper, we assume that multiple discrete transitions do not occur in an
instant. We also assume that no discrete transition occurs initially. Thus, any ex-
ecution can be expressed as a canonical execution. Verification of non-canonical
executions can be considered as future work. Infinite-length canonical executions
are supported; yet in presence of Zeno points (infinite number of transitions in
finite time), HA executions are handled only up to the first point.

Ezample 1. Water-level monitor (WLM) [315]. A controlled water tank is mod-
eled as a four-location constant-rate HA, as illustrated in Figure 2l It supplies
water at a constant rate rate,,t, whereby, in location off (and sw-on), the water
level y decreases as diy = rateou:. In location on (and sw-off), the system pumps
water to refill the tank, which results in the water level changing as djty = rate;,.
A sensor observes y and switches between the locations on and off when the
level reaches the thresholds low or high. However, it takes delay seconds for
switching, hence the locations sw-on and sw-off. In this paper, we constrain the
values for the constant parameters as follows:

min < low A high < maz A low < high A delay > 0 A
max > high + rate;, - delay N\ min < low + rateyy: - delay. (1)

Because the discrete transition edges in the automaton form a single cycle, the
trace of locations that were reached is the same for all of the executions.

Definition 2. A safety property (or an inductive invariance) is expressed by
a formula OP, where P is a predicate on LxRY. HA = OP denotes that HA
satisfies P, that is, predicate P holds initially and is preserved by every discrete
transition and continuous evolution.

Ezxample 2. In the following sections, we will prove that the level stays between
a lower and an upper limit, which is expressed by the following safety property:

O(min <y < maz).

142 D. Ishii, G. Melquiond, and S. Nakajima

on y = high,z' =0 sw-off

y=low —| U = rate;, T =1,y = rate;,
y < high | l 0 <z < delay

x = delay x = delay

(o

Yy = rateout
y > low

Sw-on

T =1,9 = rateout
0 <z < delay

y=low, 2’ =0
Fig. 2. Water-level monitor

3 Modeling HA Executions with Programs

In this section, we introduce the theoretical foundation of our method. It analyzes
finite and infinite executions of a HA by reusing traditional tools in program veri-
fication. We first introduce a simple imperative language in which the statements
simply sketch the executions of the HA (Section[3]). Then, we provide a notion
of strongest postcondition for each program statement given a precondition, and
we prove that this calculus derives the safety of the HA (Section [B:2).

3.1 Imperative Language

Given a HA, we define an untyped imperative language Imp 4. This language
is basic, since it does not even provide loops. For the purpose of this work, it has
only sequences and the commands evolve and trans. The command evolve
expresses a continuous evolution of the HA for a given duration, while trans
expresses a discrete transition.

Definition 3. The language Imp 4 is given by the following syntax:
su=skip|s; s|evolvet | trans

Definition 4. A program state (denoted S or S;) is a map from variable names
to program wvalues. A special variable x5 is associated to the “current” state
(€ L x RY) of the HA execution. For the sake of readability, pseudo-variables
are introduced to access part of the HA state as follows: xs = {xy,) = (-, x,) =
(-, (@1, iy ..., q)). We assume this equivalence is always maintained auto-
matically when a new value is assigned to a pseudo-variable.

Figure Bl describes the operational semantics of the language. [e] s denotes the
term obtained by replacing each free variable of an expression e by its associated
value in the program state S. S{x — v} denotes the program state obtained by
adding to S that variable z is associated to the value v. The rules for skip and
sequence are the usual ones. The rules for evolve and trans are derived from
the operational semantics of a HA execution. Note that we allow the statement
evolve 0, so that the theorems presented in this paper have a simple way to
check the safety property for the initial state or after a discrete transition.

Inductive Verification of HA with Strongest Postcondition Calculus 143

Sl, 81 ~ SQ, 52
S, (skip; s) ~ S, s S1, (s1; 83) ~ Sa, (s2; s3) S,evolve 0 ~ S, skip

[2:]s o [£s]s 2 o
S, evolve t ~» S{zs — o},skip S, trans ~ S{zs — o}, skip

Fig. 3. Operational semantics of Imp,

Lemma 1. For any execution oy h, o1 O Iy ooip—1 of the HA, assuming
that o = o holds for the initial program state, there is an execution of the
following Imp 4 program that does not block (that is, it reduces to skip) and
such that the final program state satisfies Ts = oog—1.

evolve t1; trans; ---; evolve fg

Note that this program might also have either blocking executions or executions
that end on a different HA state; the former are made irrelevant by our SP-based
approach, while the latter are expected due to the non-deterministic nature of
HA. For the programs above, the execution is canonical only for the first k — 1
continuous steps; the last duration t; can be arbitrarily short. It can also be
arbitrarily large, if the HA stays infinitely long in that continuous evolution.

Since we can now express any partial execution of a HA as a program, we
can state the safety property of the HA as a property that every non-blocking
program must satisfy in its final state.

Lemma 2. If, for all non-blocking programs of Imp 4 of the above form start-
ing from an initial program state o € Init, property P holds in the final program
state, then P is a safety property for the HA (up to the first Zeno point, if any).

3.2 Strongest Postconditions

In this section, we instantiate the principles of program verification [I37] with
Imp 4. We are not interested in manual verification, so we will skip over the
definition of Hoare triples and directly go to the topic of verification conditions
(VCs). Moreover, since we are not dealing with reachability but only safety, we
do not have to prove that programs are non-blocking, we can just assume they
are. Therefore, weakest preconditions (WPs) and strongest postconditions (SPs)
are dual from each other for our purpose. Should we have to perform backward
reachability analysis, WP computation would be better suited. This is not the
case though, so we choose SP, so as to follow the direction of time.

Lemma 3 (Soundness of SP). For any program s in Imp,, if the initial
state satisfies a given property P, the final state satisfies SP(P, s) (assuming s
terminates) with SP inductively defined as follows

! P[x + €] denotes the substitution of all the occurrences of variable z in P with e.

144 D. Ishii, G. Melquiond, and S. Nakajima

SP(P,skip) := P SP(P,s1; s2) := SP(SP(P,s1), s2)
SP(P,evolve t) := 3¢ Plx, + ¢(0)] A p(t) =z, A (VEE€[0,t] % =F,, AL, [¢(1)])
SP(P,trans) := (', z)) Plrs< (', 2)]| AN Gr 2 [0)]) A xy =Ry 2, (2h) A L, [0]

v
Proof. Let us assume that there are S and S’ such that [P]s holds and S, s ~*
S’, skip. We just have to prove that [SP(P, s)]s: holds. The proof is performed
inductively on the structure of the statement s by checking that every case of
SP is implied by the operational semantics of Imp ;4. This is a consequence of
the operational semantics of HA given on Figure Il O

Example 3. Let us prove that, if the HA of Figure [is in a state satisfying
x; = on Ay = low, then any continuous evolution of duration t leads to a
state satisfying y < maz. By Lemmas [2] and [3] it is sufficient to prove that the
following implication holds in any program state:

SP((z; = on Ay = low), evolve t) = y < maz.

Let us assume that we are in program state such the left-hand side holds, and
we prove that y < maz holds. From the definition of SP, we know that there
exists a function ¢ such that

(21 = on A 6,(0) = low) A 6(t) = (z,y) A (FEE[0,] % = Fyy A L, [6(D))

As a consequence, we have y = low + rate;, -t (by solving the ODE) and y < high
(by unfolding the location invariant I,;,). The latter property, in conjunction with
Constraint (Il) of Example [l proves the goal y < maz by linear arithmetic.

Remark 1. As we will later pass the verification conditions to automated tools,
it is important to eliminate as many quantifiers as possible beforehand. For in-
stance, SP(P,trans) has the form 3!’ Q[I’]. This is equivalent to the disjunction
QL] V...VQIlp] with I1,...,1, all the locations. In the case of SP(P, evolve t),
Example [3 shows how one can get rid of 3¢ if the ODE admits a closed form.

4 Inductive Verification Method

4.1 Induction Strategy

We now present an algorithm derived from Lemma 2l that performs safety verifi-
cation of a HA. The statement of Lemma[2lis unpractical, as it requires verifying
infinitely-many programs. This section describes how we can build weaker yet
more practical variants of it, by only considering a bounded number of programs.
The approach is as follows. Let us assume that there is a predicate P+ such that
Pt = P and

— from an initial state, any execution of HA reaches a state satisfying PT after
alternating at most m continuous evolutions and m discrete transitions,

Inductive Verification of HA with Strongest Postcondition Calculus 145

— from any state satisfying PT, any execution of HA reaches a state satis-
fying PT after alternating at most n continuous evolutions and n discrete
transitions.

Verifying the safety property is therefore simple:

— For the initial m-step execution, we check that every intermediate state is
safe and that the execution finally reaches the region represented by predicate
P* (base case).

— TFor the n-step execution from the region PT, we check that every interme-
diate state is safe and that the execution finally reaches the region PT.

The success of our approach depends on whether we can exhibit some lengths
m and n and some predicate PT for a given HA.

We first show the simplest case (m = 0 and n = 1): the base case is the
verification of the initial states, and the induction is performed on a continuous
phase followed by a discrete phase.

Theorem 1 (Simplest case). Given a predicate Pt such that PT = P holds
in any state, the following inference rule is correct:
VO, :Vt >0 SP(P*,evolve t) = P
VCy : Init = PT VC_y:Vt >0 SP(P*,evolve t; trans) = PT
HA =0OP
Proof. VCy checks that the initial states satisfy the property P*. VC_; induc-
tively verifies that all of the possible two consecutive continuous and discrete

t; . .
phases o; L Oit1 9, 0i+2 evolve for the arbitrary duration ¢, from a state
o; that satisfies PT to a state o;42 that again satisfies PT. V(i ensures that
the safety property was not broken during the continuous phase. O

We now extend the above induction to a more generic case.

Theorem 2 (Unrolled case).

SPy = SP(Init N\—P*, evolve t;) VC; : Vt; > 08P, =P
SP, = SP(SP(SP;,trans) A —=PT, evolve ts)

VCsy : th,t2205P2:>P

SP,, = SP(SP(SP,,_1,trans) A =Pt evolve t,,)

ve,, :Vti...t,,>0S8P,,= P
SP() ESP(SPm,trans) VC() :th...tmZOSP():>.PJr
SPni1 = SP(PT,evolve t1) VCman - Vt; >0 SPy,1 = P

SPtn = SP(SP(SPyptn—1,trans) A =PT evolve t,)
VComin: Vi oty > 0 SPoyn = P
SP_1 = SP(SPy,4n,trans) VC_1 :Vt...t, >08P_, = P™*
HA = 0P

146 D. Ishii, G. Melquiond, and S. Nakajima

Proof. This theorem is an extension of Theorem [Il Tt verifies that a state satis-
fying PT can be reached in at most m steps initially (from VC;p to VCy), and
then inductively that Pt can always be reached again in at most n steps (from
VC g1 to VO _1). O

Remark 2. Only VCq and VC_; check that P™ holds after an execution; all
the other VCs check the safety property P only. Moreover, except for VC,,41,
all these other conditions compute the SP by assuming that P™ does not hold.
Indeed, there might be less than n transitions before reaching again a state
satisfying PT (or m transitions initially).

4.2 Verification Algorithm

Given a HA, a safety property OOP, and the maximal numbers m 4, and 7,44
of steps to unroll, the algorithm in Figure [tries to check that all the hy-
potheses of Theorem [2] hold, and thus that HA = OP holds toold The algo-
rithm performs the inductive verification with every m < M, and n < ngpeq
(line 1). It iteratively computes the base case (line 4) and then the induction step
(line 7). Procedure Validate returns true if the given logic formula holds, false if
it cannot conclude. The verification succeeds if all the verification conditions are
successfully validated (line 10).

When the verification fails during the induction step, we strengthen the loop
invariant (line 8) so that the failing condition holds, and we perform the verifi-
cation anew. Possibly, procedure Learn strengthened the invariant so much that
we detect it is now useless (line 3). In this case, we leave from the inner recursion
and try the verification with another m and n, or otherwise return false.

Note that the algorithm does not specify how to enumerate m and n. Typi-
cally, we enumerate from m = 0 and n = 1, but for certain models, we can guess
the values, e.g., from the size of a lasso-shaped automaton. In the algorithm,
the verification of the base case (lines 4-6, named BaseCase) and the induction
step (lines 7-11, named Induction) are independent, thus we can also reverse the
order of the two verification processes.

4.3 Loop Invariant Generation

In the following, we present the loop invariant generation method implemented
in procedure Learn. Let us assume that the verification of a condition VC; =
Vty...t; >0 SP(PT,s) = P has failed in the induction step. Then, Learn(V()
generates a lemma @ from the failed verification. Specifically, Learn generates a
formula @ such that VC; becomes valid after we update the loop invariant as
Pt := PT AQ. Basically, Learn searches for @ such that SP(Q,s) = VC,; holds
by applying algebraic transformations to VC;. Note that all the occurrences of
variable zs (the current state) in @ refer to the time PT holds, while the ones in
VC; refer to the state at the end of the execution of s. To fix this discrepancy,

2 A failure of the algorithm does not imply that the safety property is invalid.

Inductive Verification of HA with Strongest Postcondition Calculus 147

Input: HA; P; Myez € N>o; Nynaz € Nog
Output: true: HA = OP; false: cannot decide 0P within my,e. + Nmas Steps

1: form e {0,...,Mmaz}; n € {1, , Nymaz dO
2. Pt.=pP

3: while P # false do

4: if =Vi € {0,...,m} Validate(VC,;) then
5: break

6: end if

7: if 3j e {m+1,...,m+n,—1} —Validate(VC}) then
8: Pt := PT ALearn(VC})

9: else
10: return true
11: end if
12: end while
13: end for
14: return false

Fig. 4. Algorithm for inductive verification

Learn computes @ by using a quantifier elimination (QE) method, such as the
Resolve procedure of Mathematica:

Q = QE(Vo vty ... t; (SP((PT Axg = 25),8) = P))[xo + 4.

To simplify the loop invariant, the other local variables in VC;, i.e., ¢,1,1', 2/,
introduced in the SP calculus in Lemma [3] and ¢; introduced in Theorem [2]
should also be removed. Unfortunately, QE with mixed quantifiers and function
quantifiers is a hard problem in general. See Remark [Il and the next section for
details on how we perform this simplification.

The formula computed for @ is often a large disjunctive formula that is un-
usable as a loop invariant. For instance, some sub-formulas of @) describe states
that are never accepted by the HA. Such sub-formulas are not only useless but
make the verification process expensive. So we strengthen @ according to the
following strategies:

— Lemma separation. We split Q) at the (top-most) disjunction operators and
employ one (or several) of the resulting sub-formulas.

— Location disabling. When we remove a sub-formula of @) that is related to
some location [, we insert the constraint z; # [. The resulting loop invariant
might be effective when combined with loop unrolling.

5 Implementation

We have implemented the method presented in the previous sections using Math-
ematica 8.0.4@, which can perform the computations in a fully symbolic manner.

3http://www.wolfram.com/mathematica/

http://www.wolfram.com/mathematica/

148 D. Ishii, G. Melquiond, and S. Nakajima

Note that the loop invariant generation by Learn (line 8) is not automatic but
guided by the user so as to apply the strategies described in Section 3l Validate
is implemented in three different ways by using the built-in procedures of Math-
ematica, FullSimplify, Reduce, and FindInstance. We also rely on Mathematica’s
DSolve to find closed form of ODEs whenever possible.

In the implementation of BaseCase and Induction, we optimize the computa-
tion in two ways. First, we do not validate each VC; separately but try to reuse
the common assumptions. When validating VC;, the algorithm computes SP;
which axiomatizes the state after executing the corresponding program s;, and
then validates SP; = P/P™. If we perform the validation of VCs in ascending
order, we can compute SP; from SP;_; efficiently. Second, we perform location-
wise validation of VCs to avoid the inefficiency that occurs when the execution
of program s spans multiple locations. So we replicate the SP and instantiate
each copy with a different location (cf. Remark[I]). Throughout the computation,
we manage the set of the copies instead of the original SP. Although it causes
Validate to be called more often, the computation is more efficient in general.

Ezample 4. We verify the safety property of Example 2l for the HA in Example[I]
with this implementation. Following the main algorithm, we first compute with
m = 0 and n = 1. We run BaseCase to check that Init entails P* = P, and
it returns true. Next, we simulate a continuous and discrete change by running
Induction. It computes the SP separately for each of the locations, on, sw-off, off,
and sw-on, and validates VCs. For V('1, the validation for locations on and off
succeeds but the validation for sw-off and sw-on fails. Procedure Learn generates
the following lemmas for these two locations.

Qsw-off = min + x - ratey, <y + delay - ratey, < mazr + - rate, V
r = delay V y + delay - rate;, < low + x - rate;,,

Qsw-on = min + x - rateyys < y + delay - rateyys < max + - rateyy V
x = delay V high + x - rate,ys < y + delay - rategy:.

Here, we can use either of the two presented strategies for improving the loop
invariant. For instance, location disabling appends

Q1 = x; # sw-off \ x; # sw-on

to PT. The VCs are then successfully validated with m = 0 and n = 2.

The lemma-separation strategy makes use of the additional lemmas generated
by Learn. Here, we divide each lemma into three parts at the top-most disjunction
operator. Then, the first part of each lemma (denoted Qsw-of1 and Qsw-on,1)
makes the verification successful. More precisely, if we append

Q2 := (71 = sw-off = Qsuw-of.1) N (71 = sw-on = Qsu-on,1)
to PT, the validation succeeds with m = 0 and n = 1.
6 Experiments

To confirm the feasibility of our method and to compare it with existing tools,
we applied it to several examples taken from the literature. We also verified the

Inductive Verification of HA with Strongest Postcondition Calculus 149

Table 1. Experimental results.

example locs vars unroll lemmas Mathematica MC tool KeYmaera
WLM (Ex.) 4 2 0/1 2 0.85s - 1.8s
LGB 2 3 4/2 3 2.22s 0.004s (H) -
temp. control 4 3 1/1 4 2.82s 0.012s (H) -
bouncing ball 1 2 0/1 1 0.49s - 0.9s
ETCS 2 3 0/1 1 4.48s - 3.1s
highway 9 10 9 0/2 1 0.22s 0.22s (P) -
highway 19 20 19 0/2 1 3.64s - -

examples using the existing tools, HyTech, PHAVer, and KeYmaera, for compar-
ison. The encoded models for the implementation is available at http://www.
ueda.info.waseda.ac.jp/~ishii/pub/mathybrid/. Table[llreports the results
of verifying the examples using our implementations. The columns are: the num-
ber of locations; the number of variables; the way loops are unrolled (i.e., m/n);
how many times PT had to be improved by the main algorithm; the computa-
tional time taken by the BaseCase and Induction procedures implemented in Math-
ematica; the time taken by HyTech (version 1.04f, indicated by “H”) or PHAVer
(version 0.38, indicated by “P”); and the time taken by KeYmaera (version 3.0).
The notation “~” means that the verification failed. The experiments were run on
a 3.4GHz Intel Xeon processor with 4GB of RAM. Note that the computational
time for our method only measures the process after we found the loop invariants,
since their generation requires some human interaction.

6.1 Considered Examples

WLM. Example [l could be verified with our proposed method in a reasonable
time, as explained in Example @ In [15], the same instance was handled by
using a mathematical solver manually, whereas our Mathematica implementation
verified the instance by simply following the algorithm. The model-checking
(MC) tools could not handle this instance because of the nonlinear terms caused
by the parameterized flow rate. KeYmaera verified this example but the model
had to be given a loop invariant beforehand [17].

Leaking gas burner (LGB) [3]. Our implementation verified this rectangular
HA consisting of two locations L = {leaking, non-leaking} as follows: Induction
failed in the verification of the first continuous evolution in the two locations.
The lemma generated for leaking was successful. For non-leaking though, we had
to resort to our location-disabling strategy. Then, the verification succeeded with
m = 4 and n = 2. This model was verified efficiently by the MC tools. KeYmaera
could not verify the model, even with the loop invariant.

Temperature control [3]. Our implementation verified this problem after some
preliminary transformations. First, we verified that location shutdown of the
HA is never reached. In order to get a loop invariant, we strengthened the safety
property by appending the negation of the guard condition of the transition edge

http://www.ueda.info.waseda.ac.jp/~ishii/pub/mathybrid/
http://www.ueda.info.waseda.ac.jp/~ishii/pub/mathybrid/

150 D. Ishii, G. Melquiond, and S. Nakajima

to shutdown. The failure of Induction led to a lemma of the form Q1 V Q2 V @3,
but setting each sub-lemma as a loop invariant did not make the verification
successful. After some trials, we found that the lemma Q1 A (Q2 V Q3) was a
necessary loop invariant. Finally, the verification succeeded for m = 1 and n = 1.
This model was also verified efficiently by the MC tools. KeYmaera could not
verify the model, even with the loop invariant we had found.

Bouncing ball. This simple nonlinear HA describes a ball with a constant
acceleration. As exemplified in [I6], we verified that the height of the ball never
exceeds the initial energy level of the ball, assuming that the reflection coefficient
is smaller than 1. We first attempted the verification under a simple constraint
that specified only the sign of each parameter and generated a lemma equivalent
to the energy consumption constraint in [I6]. We succeeded by setting this lemma
as the initial condition and the loop invariant. KeYmaera verified the model given
the energy consumption constraint as the initial condition.

European train control system (ETCS) [16/T0J2]. The simple model borrowed
from [16] is about a train at a position z that should not exceed a limit m.
The original model does not have guard conditions so we set them manually
based on the analysis in [2]. We attempted to verify the safety property Oz <
m by running the algorithm with m = 0 and n = 1. Verification succeeded
after we obtained a loop invariant from the failure in the validation of V(.
This model was also verified in [T6/I0] by using several strategies for the model
transformation and loop invariant generation. MC tools could not verify the
model because of the nonlinear constraints. KeYmaera verified the model by
setting a specific parameter constraint as described in [10].

Highway [14]. This model concerns an autonomous highway with n vehicles.
We solved instances for n = 9 and n = 19, which were also computed by the
specific method in [I4]. PHAVer verified the instance of n = 9 but the compu-
tation for n = 19 failed after consuming the available memory. KeYmaera could
not verify this example.

6.2 Discussions

The MC tools verified three examples quite efficiently. However, our method was
better for the other examples. First, it can handle uncertain parameters. Exam-
ple[linvolves such parameters, as described in Equation (). In the bouncing ball
example, the initial height, velocity, and reflection coefficient are parameterized.
Although HyTech and PHAVer verify the same problems with constant values
given to the parameters, they cannot verify the instances that involve uncertain
parameters. Second, our method scales better: for the highway example, PHAVer
can handle only the instances up to n = 15 [14].

Although KeYmaera handles various hybrid programs automatically, it did
not succeed on most hybrid programs that were translated from hybrid au-
tomata. Users often need to annotate models with a loop invariant that might
be difficult to extract from the original problem [I7]. Otherwise, users need to
interact with the underlying theorem prover to investigate the correct deriva-
tion tree with various deduction rules. Our approach is limited in verification

Inductive Verification of HA with Strongest Postcondition Calculus 151

strategies, i.e., induction and loop unrolling, but the results show that the
approach is effective for various examples in practice.

Although our method requires that the executions are lasso shaped (from
the point of view of the loop invariant P¥), many examples in the literature
can be handled. It, however, requires other verification strategies for the case of
compositional and distributed hybrid automata.

7 Related Work

Various tools for the logical analysis of hybrid systems have been proposed.
These methods translate hybrid systems into an underlying verification frame-
work, such as STeP [15], PVS [1], SAL [9], Fluctuat [5], and Event-B [2121].
However, neither the translation nor the verification is fully automated, because
some invariants must be added manually, and the theorem provers require some
interactions.

Another tool, KeYmaera [I8/16], developed by Platzer et al., has been success-
ful in recent years. This tool supports hybrid programs that are annotated using
differential (algebraic) dynamic logic. A dedicated theorem prover verifies the
programs by using a set of proof strategies [16]. With its imperative language,
which is more expressive than HA, and its corresponding logic (which depends
on 141 inference rules [I§]), KeYmaera is able to perform various logical analysis
through a variety of strategies, including induction, and can serve as a basis for
a complete verification framework [16]. In contrast, our framework consists of a
light imperative language that is sufficiently expressive to encode HA executions
and a logical framework that is introduced to pursue automated verification with
the induction strategy.

Recently, a logical analysis tool based on the framework of Hoare logic and
relying on infinitesimal variables was proposed [10]. Although its verification
scheme comes with several strategies and an invariant generation technique, its
practical uses are still unclear.

There are techniques for hybrid systems that generate polynomial invariants
by analyzing the executions of a HA via Grébner basis manipulations [20/19].
These methods could be integrated in the Learn procedure of our framework.

The proposed method also relates to BMC methods. BMC of infinite exe-
cutions based on induction has been proposed (e.g., [6]), but this approach is
applied to discrete systems with continuous states. Most of the BMC tools for
hybrid systems handle only finite executions. This is not the case for Hybrid SAL
Relational Abstracter [22]. This tool is a translator from hybrid systems to dis-
crete systems with a specific abstraction method. Our method directly handles
HA without the abstraction.

8 Conclusions

This paper presents a tool for logical analysis of safety properties of HA, which
is able to deal with a large class of linear and nonlinear HA, in contrast with the
model-checking approach found in major existing tools.

152 D. Ishii, G. Melquiond, and S. Nakajima

Rather than introducing various derivation rules to automatically verify HA,
we are using a simple process inspired from deductive program verification:
strongest postcondition calculus. It allows us to compute logical formulas that,
once proved, guarantee the safety of the HA. Our experiments show that our
method succeeds in a reasonable time on some example HA from literature,
including some that were not solvable with existing tools. The verification pro-
cess amounts to finding loop invariants, as is the case for program verification.
This search for sufficient invariants is guided by the responses from the decision
procedures assisted by Mathematica.

A limitation of our approach is that the invariant generation process still
requires some human interaction. Efficient automated search of invariant gener-
ations is the next challenge for us to tackle. Another direction for further research
would be to explore the relation between our approach and some methods from
model checking, e.g., verification of an over-approximated model [4].

Acknowledgments. The authors are indebted to the anonymous referees for
their helpful comments. This work was partially funded by JSPS (KAKENHI
23-3810).

References

1. Abrahdm-Mumm, E., Steffen, M., Hannemann, U.: Verification of hybrid systems:
Formalization and proof rules in PVS. In: ICECCS, pp. 48-57 (2001)

2. Abrial, J.-R., Su, W., Zhu, H.: Formalizing hybrid systems with Event-B. In:
Derrick, J., Fitzgerald, J., Gnesi, S., Khurshid, S., Leuschel, M., Reeves, S.,
Riccobene, E. (eds.) ABZ 2012. LNCS, vol. 7316, pp. 178-193. Springer, Heidelberg
(2012)

3. Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger, T.A., Ho, P.H., Nicollin,
X., Olivero, A., Sifakis, J., Yovine, S.: The algorithmic analysis of hybrid systems.
Theoretical Computer Science 138(1), 3-34 (1995)

4. Alur, R., Henzinger, T.A., Lafferriere, G., Pappas, G.J.: Discrete abstractions of
hybrid systems. Proc. of the IEEE 88, 971-984 (2000)

5. Bouissou, O., Goubault, E., Putot, S., Tekkal, K., Vedrine, F.: HybridFluctuat:
A static analyzer of numerical programs within a continuous environment. In:
Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 620-626. Springer,
Heidelberg (2009)

6. de Moura, L., Rue}; H., Sorea, M.: Bounded model checking and induction: From
refutation to verification. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS,
vol. 2725, pp. 14-26. Springer, Heidelberg (2003)

7. Dijkstra, E.W.: Guarded commands, nondeterminacy and formal derivation of
programs. Communications of the ACM 18(8), 453-457 (1975)

8. Frehse, G.: PHAVer: Algorithmic verification of hybrid systems past HyTech.
International Journal on Software Tools for Technology Transfer (STTT) 10(3),
263-279 (2008)

9. Ghosh, R., Tiwari, A., Tomlin, C.J.: Automated symbolic reachability analysis;
with application to delta-notch signaling automata. In: Maler, O., Pnueli, A. (eds.)
HSCC 2003. LNCS, vol. 2623, pp. 233-248. Springer, Heidelberg (2003)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Inductive Verification of HA with Strongest Postcondition Calculus 153

Hasuo, 1., Suenaga, K.: Exercises in nonstandard static analysis of hybrid systems.
In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 462-478.
Springer, Heidelberg (2012)

Henzinger, T.A.: The theory of hybrid automata. Verification of Digital and
Hybrid Systems (NATO ASI Series F: Computer and Systems Sciences) 170,
265-292 (2000)

Henzinger, T.A., Ho, P.H., Wong-Toi, H.: HyTech: A model checker for hybrid
systems. STTT 1, 110-122 (1997)

Hoare, C.A.R.: An axiomatic basis for computer programming. Communications
of the ACM 12(10), 576-580, 583 (1969)

Jha, S.K., Krogh, B.H., Weimer, J.E., Clarke, E.M.: Reachability for linear hy-
brid automata using iterative relaxation abstraction. In: Bemporad, A., Bicchi, A.,
Buttazzo, G. (eds.) HSCC 2007. LNCS, vol. 4416, pp. 287-300. Springer,
Heidelberg (2007)

Manna, Z., Sipma, H.: Deductive verification of hybrid systems using STeP. In:
Henzinger, T.A., Sastry, S.S. (eds.) HSCC 1998. LNCS, vol. 1386, pp. 305-318.
Springer, Heidelberg (1998)

Platzer, A.: Logical Analysis of Hybrid Systems. Springer (2010)

Platzer, A.: Guide for KeYmaera hybrid systems verification tool (2012),
http://symbolaris.com/info/KeYmaera-guide.html| (accessed January 1, 2013)
Platzer, A., Quesel, J.-D.: KeYmaera: A hybrid theorem prover for hybrid systems
(System description). In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJICAR
2008. LNCS (LNATI), vol. 5195, pp. 171-178. Springer, Heidelberg (2008)
Rodriguez-Carbonell, E., Tiwari, A.: Generating polynomial invariants for
hybrid systems. In: Morari, M., Thiele, L. (eds.) HSCC 2005. LNCS, vol. 3414,
pp. 590-605. Springer, Heidelberg (2005)

Sankaranarayanan, S., Sipma, H.B., Manna, Z.: Constructing invariants for
hybrid systems. In: Alur, R., Pappas, G.J. (eds.) HSCC 2004. LNCS, vol. 2993,
pp. 539-554. Springer, Heidelberg (2004)

Su, W., Abrial, J.-R., Zhu, H.: Complementary methodologies for developing
hybrid systems with event-B. In: Aoki, T., Taguchi, K. (eds.) ICFEM 2012. LNCS,
vol. 7635, pp. 230-248. Springer, Heidelberg (2012)

Tiwari, A.: HybridSAL relational abstracter. In: Madhusudan, P., Seshia, S.A.
(eds.) CAV 2012. LNCS, vol. 7358, pp. 725-731. Springer, Heidelberg (2012)

http://symbolaris.com/info/KeYmaera-guide.html

Priced Timed Automata
and Statistical Model Checking*

Kim Guldstrand Larsen

Computer Science, Aalborg University, Denmark

Abstract. The notions of priced timed automata (PTA) and energy
games (EG) provide useful modeling formalisms for energy-aware and
energy-harvesting embedded systems. We review these formalisms and
a range of associated decision problems covering cost-optimal reachabil-
ity, model-checking and cost-bounded infinite strategies. Decidability of
several of these problems require tight bounds on the number of clocks
and cost variables. Thus, we turn to statistical model checking (SMC),
which has emerged as a highly scalable simulation-based “approximate”
validation technique. In a series of recent work we have developed a nat-
ural stochastic semantics for PTAs allowing for statistical model check-
ing to be performed. The resulting techniques have been implemented
in UrPPAAL-smc, and applied to the performance analysis of a number
of systems ranging from real-time scheduling, mixed criticality systems,
sensor networks, energy aware systems and systems biology.

1 Introduction

The model of timed automata, introduced by Alur and Dill [2I3], has by now
established itself as a classical formalism for describing the behaviour of real-time
systems. A number of important properties has been shown decidable, including
reachability, model checking and several behavioural equivalences and preorders.

By now, real-time model checking tools such as UppaaL [950] and
KRronNos [30] are based on the timed automata formalism and on the substantial
body of research on this model that has been targeted towards transforming the
early results into practically efficient algorithms — e.g. [RIT4I7/T2] — and data
structures — e.g.[4948T3|T3].

More recently, model-checking tools in general and UPPAAL in particular have
been applied to solve realistic scheduling problems by a reformulation as reach-
ability problems — e.g. [A2/43[TI54]. Aiming at optimal scheduling, priced timed
automata [T0J6] have emerged as a useful formalism for formulating and solving a
broad range of resource allocation problems of importance in applications areas
such as, e.g., embedded systems.

* Work partially supported by the VKR Centre of Excellence MT-LAB, the
Sino-Danish Basic Research Center IDEA4CPS.

E.B. Johnsen and L. Petre (Eds.): IFM 2013, LNCS 7940, pp. 154-[[61] 2013.
© Springer-Verlag Berlin Heidelberg 2013

Priced Timed Automata and Statistical Model Checking 155
2 Priced Timed Automata

Within the model of priced timed automata, the cost variables serve purely as
evaluation functions or observers, i.e., the behaviour of the underlying timed au-
tomatoa may in no way depend on the cost variables. As a consequence of this
restriction — and in contrast to the related models of constant slope and linear
hybrid automata — a number of optimization problems have been shown de-
cidable for priced timed automata including minimun-cost reachability [TO/5I20],
optimal (minimum and maximum cost) reachability in multi-priced settings [52].

Dually, computability of cost-optimal infinite schedules have been established
covering optimal infinite schedules in terms of minimal (or maximal) cost per
time ratio in the limit have been obtained in [21122] and optimal infinite schedules
in terms of minimal (or maximal) discounted total cost [41].

In terms of tool support UpPPAAL Cora [46/I5/T6U57] provides an efficient
method for computing cost-optimal or near-optimal solutions to reachability
questions, implementing a symbolic A* algorithm based on a new data strucutre
(so-called priced zones) allowing for efficient symbolic state-representation with
additional cost-information.

Cost-extended versions of temporal logics such as CTL (branching-time) and
LTL (linear-time) appear as a natural “generalizations” of the above optimiza-
tion problems. Just as TCTL and MTL provide extensions of CTL and LTL
with time-constrained modalities, WCTL and WMTL are extensions with cost-
constrained modalities interpreted with respect to priced timed automata. Un-
fortunately, the addition of cost now turns out to come with a price: whereas
the model-checking problems for timed automata with respect to TCTL and
MTL are decidable, it has been shown in [31] that model-checking with respect
to WCTL is undecidable for priced timed automata with three clocks or more.
In contrast [26127] shows that model checking with respect to WCTL is decid-
able under the single clock assumption. Decidability of WCTL for priced timed
automata with two clocks is still an open (and hard) problem.

3 Energy Games

In [25] we began the study of a new class of resource scheduling problems,
namely that of constructing infinite schedules or strategies subject to bound-
ary constraints on the accumulation of resources, so-called energy-games or
enerqgy-schedules.

More specifically, we consider priced timed automata with positive as well as
negative price-rates. This extension allows for the modelling of systems where
resources are not only consumed but also occasionally produced or regained.
In [25] three infinite scheduling problems was considered: lower-bound where the
energy level never must go below zero, interval-bound where energy level must
be maintained within a given interval, and weak upper bound, which does not
prevent energy-increasing behaviour from proceeding once the upper bound is
reached but merely maintains the energy level at the upper bound.

156 K. Guldstrand Larsen

For one-clock priced timed automata both the lower-bound and the lower-
weak-upper-bound problems are shown decidable (in polynomial time) [25],
whereas the interval-bound problem is proved to be undecidable in a game set-
ting. Decidability of the interval-bound problem for one-clock priced timed au-
tomata as well as decidability of all of the considered scheduling problems for
priced timed automata with two or more clocks are still unsettled.

More recently in [24] the decidability of [25] for the lower-bound problem has
been extended to the setting of “1;” priced timed automata and with prices
growing either linearly (i.e. p = k) or exponentially (i.e. p = kp) [23]. By “1;—
clock” priced timed automata we refer to one-clock priced timed automata aug-
mented with discontinuous (discrete) updates (i.e., p := p + ¢) of the price on
edges: discrete updates can easily be encoded using a second clock but do not
provide the full expressive power of two clocks. Surprisingly, the presence of
discrete updates makes the lower-bound problem significantly more intricate.
In particular, whereas region-stable strategies suffice in the search for infinite
lower-bound schedules for one-clock priced timed automata, this is no longer the
case when discrete updates are permitted. Not being able to rely on the classical
region construction, the key to our decidability result is the notion of an energy
function providing an abstraction of a path in the priced timed automaton.

In contrast, the existence of interval-constrained infinite runs — where a simple
energy-maximizing strategy does not suffice — have recently been proven unde-
cidable for weighted timed automata with varying numbers of clocks and weight
variables: e.g. two clocks and two weight variables [56] one clock and two weight
variables [40], and two clocks and one weight variable [55]. Also, the interval-
constrained problem is undecidable for weighted timed automata with one clock
and one weight variable in the game setting [25].

Still, the general problem of existence of infinite lowerbound runs for weighted
timed automata has remained unsettled since [25] until the recent paper [28],
which close the problem by proving undecidability undecidable for weighted
timed automata with four or more clocks. The same paper also considers
the variant where only the existence of time-bounded runs are required. In
particular it is shown that this restriction makes the problem decidable and
NEXPTIME-complete

4 Statistical Model Checking

Statistical Model Checking (SMC) [63/45/58/59)44] is an approach that has
recently been proposed as new validation technique for large-scale, complex
systems. The core idea of SMC is to conduct some simulations of the system,
monitor them, and then use statistical methods (including sequential
hypothesis testing or Monte Carlo simulation) in order to decide with some de-
gree of confidence whether the system satisfies the property or not. By nature,
SMC is a compromise between testing and classical formal method techniques.
Simulation-based methods are known to be far less memory and time intensive
than exhaustive ones, and are some times the only option.

Priced Timed Automata and Statistical Model Checking 157

In a series of recent works[39)38], we have investigated the problem of
Statistical Model Checking for networks of Priced Timed Automata (PTAs),
being timed automata, whose clocks can evolve with different rates, while [be-
ing used with no restrictions in guards and invariants. In [38], we have proposed a
natural stochastic semantics for such automata, which allows to perform statisti-
cal model checking. Our work has been implemented in UPPAAL-SMC, providing
a new statistical model checking engine for the tool UPPAAL. UPPAAL-SMC relies
on a series of extensions of the statistical model checking approach generalized
to handle real-time systems and estimate undecidable problems. UPPAAL-SMC
comes together with a rich modeling and specification language [33I32], as well
as a friendly user interface that allows a user to specify complex problems in an
efficient manner as well as to get feedback in the form of probability distribu-
tions and compare probabilities to analyze performance aspects of systems. Also,
distributed implementations of the various statistical model checking algorithms
has been given with demonstrated linear speed-up [34].

Most recently, we have extended UPPAAL-SMC to networks of stochastic hybrid
automata, allowing clock rates to depend not only on values of discrete variables
but also on the value of other clocks, effectively amounting to ordinary differental
equations. In particular our original race-based stochastic semantics extends to
this setting with the use of Dirac’s delta-functions, to allow for the co-existence of
(time-wise) stochastic and determinstic components. This extension of UPPAAL-
SMC has already been applied to a wide range of hybrid systems example from
real-time scheduling and mixed criticality systems [36], energy aware systems [35]
and systems biology [37].

Based on the real-time scheduling problem of [36], we have shown how statis-
tical model checking may serve as an indispensable tool for exhibiting concrete
(rare) counter examples witnessing non-schedulability in the setting of stop-
watch automata, where the UPPAAL verification engine is over-approximate.

The UPPAAL-CORA branch [A7T7I57] offers an efficient, agent-based and sym-
bolic engine for solving a large range of optimization problems given their model
as priced timed automata [I1]. However, the tool is restricted to models with a
single cost-variable (though extensions have been proposed [51]), with — for de-
cidability — crucial assumption that the cost-variable is only used as an observer
(thus cannot be used in guards or invariants). This assumption is lifted slightly
in the a sequence of recent work on energy timed automata [2524)29], where the
cost-variable is required to be within given bounds. However, in order to achieve
decidability strong restrictions on the number of clocks and cost variables are
required. We demonstrate how he new SMC engine may provide a competitive
and scalable method opening the possibility for optimization to a wider range
of models.

! In contrast to the usual restriction of priced timed automata [T1J4].

158

K. Guldstrand Larsen

References

10.

11.

12.

13.

14.

15.

16.

17.

Abdeddaim, Y., Kerbaa, A., Maler, O.: Task graph scheduling using timed
automata. In: IPDPS, p. 237. IEEE Computer Society (2003)

Alur, R., Dill, D.L.: Automata for modeling real-time systems. In: Paterson, M.
(ed.) ICALP 1990. LNCS, vol. 443, pp. 322-335. Springer, Heidelberg (1990)
Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2),
183-235 (1994)

Alur, R., La Torre, S., Pappas, G.: Optimal paths in weighted timed automata.
In: Di Benedetto, M.D., Sangiovanni-Vincentelli, A.L. (eds.) HSCC 2001. LNCS,
vol. 2034, pp. 49-62. Springer, Heidelberg (2001)

Alur, R., La Torre, S., Pappas, G.J.: Optimal paths in weighted timed automata.
In: Di Benedetto, M.D., Sangiovanni-Vincentelli, A.L. (eds.) HSCC 2001. LNCS,
vol. 2034, pp. 49-62. Springer, Heidelberg (2001)

Alur, R., Torre, S.L., Pappas, G.J.: Optimal paths in weighted timed automata.
In: Benedetto, Sangiovanni-Vincentelli [18], pp. 49-62.

Behrmann, G., Bengtsson, J., David, A., Larsen, K.G., Pettersson, P., Yi, W.:
Uppaal implementation secrets. In: Damm, W., Olderog, E.-R. (eds.) FTRTFT
2002. LNCS, vol. 2469, pp. 3—22. Springer, Heidelberg (2002)

Behrmann, G., Bouyer, P., Larsen, K.G., Peldnek, R.: Lower and upper bounds
in zone based abstractions of timed automata. In: Jensen, K., Podelski, A. (eds.)
TACAS 2004. LNCS, vol. 2988, pp. 312-326. Springer, Heidelberg (2004)
Behrmann, G., David, A., Larsen, K.G.: A tutorial on UPPAAL. In: Bernardo,
M., Corradini, F. (eds.) SFM-RT 2004. LNCS, vol. 3185, pp. 200-236. Springer,
Heidelberg (2004)

Behrmann, G., Fehnker, A., Hune, T., Larsen, K.G., Pettersson, P., Romijn,
J., Vaandrager, F.W.: Minimum-cost reachability for priced timed automata. In:
Benedetto, Sangiovanni-Vincentelli [18], pp. 147-161.

Behrmann, G., Fehnker, A., Hune, T., Larsen, K.G., Pettersson, P., Romijn,
J., Vaandrager, F.: Minimum-cost reachability for priced timed automata. In:
Di Benedetto, M.D., Sangiovanni-Vincentelli, A.L. (eds.) HSCC 2001. LNCS,
vol. 2034, pp. 147-161. Springer, Heidelberg (2001)

Behrmann, G., Hune, T., Vaandrager, F.W.: Distributing timed model checking
- how the search order matters. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000.
LNCS, vol. 1855, pp. 216-231. Springer, Heidelberg (2000)

Behrmann, G., Larsen, K.G., Pearson, J., Weise, C., Yi, W.: Efficient timed reach-
ability analysis using clock difference diagrams. In: Halbwachs, N.; Peled, D.A.
(eds.) CAV 1999. LNCS, vol. 1633, pp. 341-353. Springer, Heidelberg (1999)
Behrmann, G., Larsen, K.G., Peldnek, R.: To store or not to store. In: Hunt Jr.,
W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 433-445. Springer,
Heidelberg (2003)

Behrmann, G., Larsen, K.G., Rasmussen, J.I.: Priced timed automata: Algorithms
and applications. In: de Boer, F.S., Bonsangue, M.M., Graf, S., de Roever, W.-P.
(eds.) FMCO 2004. LNCS, vol. 3657, pp. 162-182. Springer, Heidelberg (2005)
Behrmann, G., Larsen, K.G., Rasmussen, J.I.: Optimal scheduling using priced
timed automata. SIGMETRICS Performance Evaluation Review 32(4), 34-40
(2005)

Behrmann, G., Larsen, K.G., Rasmussen, J.I.: Optimal scheduling using priced
timed automata. SIGMETRICS Performance Evaluation Review 32(4), 34-40
(2005)

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

Priced Timed Automata and Statistical Model Checking 159

Di Benedetto, M.D., Sangiovanni-Vincentelli, A.L. (eds.): 4th International Work-
shop on Hybrid Systems: Computation and Control, HSCC 2001. LNCS, vol. 2034.
Springer, Heidelberg (2001)

Berry, G., Comon, H., Finkel, A. (eds.): 13th International Conference on Computer
Aided Verification, CAV 2001. LNCS, vol. 2102. Springer, Heidelberg (2001)
Bouyer, P., Brihaye, T., Bruyere, V., Raskin, J.-F.: On the optimal reachability
problem on weighted timed automata. Formal Methods in System Design 31(2),
135-175 (2007)

Bouyer, P., Brinksma, E., Larsen, K.G.: Staying alive as cheaply as possible. In:
Alur, R., Pappas, G.J. (eds.) HSCC 2004. LNCS, vol. 2993, pp. 203-218. Springer,
Heidelberg (2004)

Bouyer, P., Brinksma, E., Larsen, K.G.: Optimal infinite scheduling for multi-priced
timed automata. Formal Methods in System Design 32(1), 2-23 (2008)

Bouyer, P., Fahrenberg, U., Larsen, K.G., Markey, N.: Timed automata with
observers under energy constraints (2009) (under submission)

Bouyer, P., Fahrenberg, U., Larsen, K.G., Markey, N.: Timed automata with
observers under energy constraints. In: Johansson, K.H., Yi, W. (eds.) HSCC,
pp. 61-70. ACM (2010)

Bouyer, P., Fahrenberg, U., Larsen, K.G., Markey, N., Srba, J.: Infinite runs in
weighted timed automata with energy constraints. In: Cassez, F., Jard, C. (eds.)
FORMATS 2008. LNCS, vol. 5215, pp. 33-47. Springer, Heidelberg (2008)
Bouyer, P., Larsen, K.G., Markey, N.: Model-checking one-clock priced timed
automata. In: Seidl, H. (ed.) FOSSACS 2007. LNCS, vol. 4423, pp. 108-122.
Springer, Heidelberg (2007)

Bouyer, P., Larsen, K.G., Markey, N.: Model checking one-clock priced timed au-
tomata. Logical Methods in Computer Science 4(2:9) (June 2008)

Bouyer, P., Larsen, K.G., Markey, N.: Lower-bound constrained runs in weighted
timed automata. In: QEST, pp. 128-137. IEEE Computer Society (2012)

Bouyer, P., Larsen, K.G., Markey, N.: Lower-bound constrained runs in weighted
timed automata. In: Proceedings of the 9th International Conference on Quanti-
tative Evaluation of Systems, QEST 2012. IEEE Computer Society Press, London
(September 2012) (to appear)

Bozga, M., Daws, C., Maler, O., Olivero, A., Tripakis, S., Yovine, S.: Kronos: A
model-checking tool for real-time systems. In: Vardi, M.Y. (ed.) CAV 1998. LNCS,
vol. 1427, pp. 546-550. Springer, Heidelberg (1998)

Brihaye, T., Bruyére, V., Raskin, J.-F.: Model-checking for weighted timed au-
tomata. In: Lakhnech, Y., Yovine, S. (eds.) FORMATS 2004/FTRTFT 2004.
LNCS, vol. 3253, pp. 277-292. Springer, Heidelberg (2004)

Bulychev, P., David, A., Larsen, K., Legay, A., Li, G., Poulsen, D.: Rewrite-based
statistical model checking of wmtl (under submission)

Bulychev, P., David, A., Guldstrand Larsen, K., Legay, A., Li, G., Bagsted Poulsen,
D., Stainer, A.: Monitor-based statistical model checking for weighted metric tem-
poral logic. In: Bjgrner, N., Voronkov, A. (eds.) LPAR-18 2012. LNCS, vol. 7180,
pp. 168-182. Springer, Heidelberg (2012)

Bulychev, P.E., David, A., Larsen, K.G., Mikucionis, M., Legay, A.: Distributed
parametric and statistical model checking. In: Barnat, J., Heljanko, K. (eds.)
PDMC. EPTCS, vol. 72, pp. 3042 (2011)

David, A., Du, D., Larsen, K.G., Miku¢ionis, M., Skou, A.: An evaluation frame-
work for energy aware buildings using statistical model checking. Science China,
Information Sciences (2012) (submitted)

160

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

K. Guldstrand Larsen

David, A., Larsen, K.G., Legay, A., Mikucionis, M.: Schedulability of herschel-
planck revisited using statistical model checking. In: Margaria, T., Steffen, B. (eds.)
ISoLA 2012, Part II. LNCS, vol. 7610, pp. 293-307. Springer, Heidelberg (2012)
David, A., Larsen, K.G., Legay, A., Miku¢ionis, M., Poulsen, D.B., Sedwards,
S.: Runtime verification of biological systems. In: Margaria, T., Steffen, B. (eds.)
ISoLA 2012, Part 1. LNCS, vol. 7609, pp. 388-404. Springer, Heidelberg (2012)
David, A., Larsen, K.G., Legay, A., Mikucionis, M., Poulsen, D.B., van Vliet, J.,
Wang, Z.: Statistical model checking for networks of priced timed automata. In:
Fahrenberg, U., Tripakis, S. (eds.) FORMATS 2011. LNCS, vol. 6919, pp. 80-96.
Springer, Heidelberg (2011)

David, A., Larsen, K.G., Legay, A., Mikuéionis, M., Wang, Z.: Time for statistical
model checking of real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.)
CAV 2011. LNCS, vol. 6806, pp. 349-355. Springer, Heidelberg (2011)
Fahrenberg, U., Juhl, L., Larsen, K.G., Srba, J.: Energy games in multiweighted
automata. In: Cerone, A., Pihlajasaari, P. (eds.) ICTAC 2011. LNCS, vol. 6916,
pp. 95-115. Springer, Heidelberg (2011)

Fahrenberg, U., Larsen, K.G.: Discount-optimal infinite runs in priced timed au-
tomata. Electr. Notes Theor. Comput. Sci. (2008) (to be published)

Fehnker, A.: Scheduling a steel plant with timed automata. In: RTCSA,
pp. 280-286. IEEE Computer Society (1999)

Hune, T., Larsen, K.G., Pettersson, P.: Guided synthesis of control programs using
uppaal. Nord. J. Comput. 8(1), 43-64 (2001)

Katoen, J.-P., Zapreev, 1.S., Hahn, E.M., Hermanns, H., Jansen, D.N.: The ins and
outs of the probabilistic model checker mrmc. Perform. Eval. 68(2), 90-104 (2011)
Laplante, S., Lassaigne, R., Magniez, F., Peyronnet, S., de Rougemont, M.:
Probabilistic abstraction for model checking: An approach based on property
testing. ACM TCS 8(4) (2007)

Larsen, K.G., Behrmann, G., Brinksma, E., Fehnker, A., Hune, T., Pettersson,
P., Romijn, J.: As cheap as possible: Efficient cost-optimal reachability for priced
timed automata. In: Berry, et al. (eds.) [19], pp. 493-505.

Larsen, K.G., Behrmann, G., Brinksma, E., Fehnker, A.; Hune, T., Pettersson,
P., Romijn, J.: As cheap as possible: Efficient cost-optimal reachability for priced
timed automata. In: Berry, et al. (eds.) [19], pp. 493-505.

Larsen, K.G., Larsson, F., Pettersson, P., Yi, W.: Efficient verification of real-time
systems: compact data structure and state-space reduction. In: IEEE Real-Time
Systems Symposium, pp. 14-24. IEEE Computer Society (1997)

Larsen, K.G., Pearson, J., Weise, C., Yi, W.: Clock difference diagrams. Nord. J.
Comput. 6(3), 271-298 (1999)

Larsen, K.G., Pettersson, P., Yi, W.: Uppaal in a nutshell. STTT 1(1-2), 134-152
(1997)

Larsen, K.G., Rasmussen, J.I.: Optimal conditional reachability for multi-priced
timed automata. In: Sassone, V. (ed.) FOSSACS 2005. LNCS, vol. 3441,
pp. 234-249. Springer, Heidelberg (2005)

Larsen, K.G., Rasmussen, J.I.: Optimal reachability for multi-priced timed au-
tomata. Theor. Comput. Sci. 390(2-3), 197-213 (2008)

Legay, A., Delahaye, B., Bensalem, S.: Statistical model checking: An overview.
In: Barringer, H., et al. (eds.) RV 2010. LNCS, vol. 6418, pp. 122-135. Springer,
Heidelberg (2010)

Maler, O.: Timed automata as an underlying model for planning and scheduling.
In: Fox, M., Coddington, A.M. (eds.) AIPS Workshop on Planning for Temporal
Domains, pp. 67-70 (2002)

55.

56.

57.

58.

59.

Priced Timed Automata and Statistical Model Checking 161

Markey, N.: Verification of Embedded Systems — Algorithms and Complexity. PhD
thesis, Ecole Normale Superieure de Chachan (2011)

Quaas, K.: On the interval-bound problem for weighted timed automata. In:
Dediu, A.-H., Inenaga, S., Martin-Vide, C. (eds.) LATA 2011. LNCS, vol. 6638,
pp. 452-464. Springer, Heidelberg (2011)

Rasmussen, J.I., Behrmann, G., Larsen, K.G.: Complexity in simplicity:
Flexible agent-based state space exploration. In: Grumberg, O., Huth, M. (eds.)
TACAS 2007. LNCS, vol. 4424, pp. 231-245. Springer, Heidelberg (2007)

Sen, K., Viswanathan, M., Agha, G.: Statistical model checking of black-box prob-
abilistic systems. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114,
pp. 202-215. Springer, Heidelberg (2004)

Younes, H.L.S., Simmons, R.G.: Probabilistic verification of discrete event systems
using acceptance sampling. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS,
vol. 2404, pp. 223-235. Springer, Heidelberg (2002)

Improved Reachability Analysis in DTMC
via Divide and Conquer

Songzheng Song!, Lin Gui!, Jun Sun?, Yang Liu?, and Jin Song Dong!

1 National University of Singapore
{songsongzheng, lin. gui}@nus .edu.sg, dongjs@comp.nus.edu.sg
2 Singapore University of Technology and Design
sunjun@sutd.edu.sg
3 Nanyang Technological University
vangliu@ntu.edu.sg

Abstract. Discrete Time Markov Chains (DTMCs) are widely used to model
probabilistic systems in many domains, such as biology, network and commu-
nication protocols. There are two main approaches for probability reachability
analysis of DTMCs, i.e., solving linear equations or using value iteration. How-
ever, both approaches have drawbacks. On one hand, solving linear equations
can generate accurate results, but it can be only applied to relatively small mod-
els. On the other hand, value iteration is more scalable, but often suffers from
slow convergence. Furthermore, it is unclear how to parallelize (i.e., taking ad-
vantage of multi-cores or distributed computers) these two approaches. In this
work, we propose a divide-and-conquer approach to eliminate loops in DTMC
and hereby speed up probabilistic reachability analysis. A DTMC is separated
into several partitions according to our proposed cutting criteria. Each partition
is then solved by Gauss-Jordan elimination effectively and the state space is re-
duced afterwards. This divide and conquer algorithm will continue until there is
no loop existing in the system. Experiments are conducted to demonstrate that
our approach can generate accurate results, avoid the slow convergence problems
and handle larger models.

1 Introduction

As an automatic verification technique, model checking [[7] has been applied to a vari-
ety of domains from hardware to software, and from concurrent systems to probabilis-
tic systems. Different from traditional concurrent systems, probabilistic systems have
stochastic characteristics in their behaviors, which means some behaviors follow spe-
cific probabilistic distributions. This kind of systems widely exist in many domains,
from communication protocols to biology systems. For example, in the randomized
leader election protocol [9], multiple processes want to elect one leader. Each process
will first randomly choose a natural number from a specific range as its id. The process
with a unique highest id will be elected as a leader. If several processes have the same
highest id, the selection procedure will repeat. Therefore uniform distribution is neces-
sary in this system. As a result, model checking probabilistic systems is an important
topic in formal verification.

E.B. Johnsen and L. Petre (Eds.): IFM 2013, LNCS 7940, pp. 162-[[76] 2013.
(© Springer-Verlag Berlin Heidelberg 2013

Improved Reachability Analysis in DTMC via Divide and Conquer 163

Discrete Time Markov Chain (DTMC) is a widely used formalism in probabilis-
tic model checking. The difference between DTMC and traditional Labeled Transition
System (LTS) is that non-determinism in LTS is replaced by probabilistic choices in
DTMC. In a DTMC, at each step the transition from one state to another must fol-
low specific probability distributions, and for each state there is exactly one proba-
bility distribution for the successor states. Reachability analysis plays a key role in
DTMC verification, e.g., it is used to decide the probability of reaching certain disas-
trous state. Verification of properties such as Probabilistic Computational Tree Logic
(PCTL) and Linear Temporal Logic (LTL) can be reduced to the reachability analy-
sis problem [3]. E.g., for LTL properties a product construction with a deterministic
Rabin/Muller-automaton is needed to obtain the target states. Therefore in this work we
focus on improving reachability analysis in DTMC verification.

Given the transition relation of a DTMC, the transition probability matrix from one
state to another can be built. After the target states are decided, each state in the matrix
can be represented by a variable, which means the probability of reaching the target
states from this state. Next, there are mainly two approaches to calculate the proba-
bility from initial states to the targets. One is solving linear equations directly. In this
method, variables representing intermediate states (which are not target or initial) are
eliminated gradually through equations operation, and finally variables representing the
initial states’ probability of reaching targets can be solved. The other approach is using
value iteration method, which works by finding a better approximation iteratively until
certain stopping criteria are satisfied. The approach based on solving linear equations
is straightforward to understand and it guarantees to deliver accurate result. However,
since we need one variable for each state in the system, a lot of variables are needed
for large systems whereas state-of-the-art linear solvers are limited to thousands of vari-
ables only. Therefore the applicability of this approach is limited to small-scale systems.
On the other hand, the value iteration method tries to find fix-points iteratively, and it
has relatively better performance in handling systems with a large number of states.
Therefore it is more popular in probabilistic model checkers such as PRISM [12]] and
MRMC [10411]]. However, this approach also has its drawback: slow convergence, i.e.,
it may take a large number of iterations before the approximations converge to a cer-
tain value. The phenomenon exists when there are complicated loops existing in the
probabilistic systems, although the state space of such systems may not be very huge.
The number of iterations is related to the subdominant eigenvalue of the probability
transition matrix [|18].

To tackle the above-mentioned problems, in this work we propose a new approach
to verify DTMC models, especially for the ones with loops using a divide-and-conquer
strategy. Instead of directly calculating the probability from initial states to targets, we
divide the whole state space into several partitions, and solve them individually to elimi-
nate loops. Afterwards, the remaining acyclic DTMC can be solved efficiently via value
iteration method.

As we mentioned above, the slow convergence problem in value iteration comes from
loops. Therefore, the first step of our approach is finding Strongly Connected Compo-
nents (SCCs). This SCC-based approach is similar to previous work such as [3l6/1113].
However, instead of using SCC’s topology order [6413], we solve each SCC indepen-
dently by calculating the new transition probability from input states to output states of

164 S. Song et al.

the SCC, which is similar to work [3!1]]. These new transitions are denoted as abstract
transitions since SCCs are abstracted by transitions from input states to output states.
However, [l1] focuses on counterexample generation and abstracts SCCs via iteratively
finding the smallest SCCs. On the contrary, we divide each SCC having a large number
of states to several smaller partitions. For each partition, abstract transitions from its
input to output are calculated via solving linear equations. Here we use Gauss-Jordan
elimination [2]]. Further, the states in each partition which are not input states will be
removed, and thus the states in the SCC can be reduced. Afterwards, the new SCC
is ready for next iteration of divide and conquer. This procedure for each SCC will
be done iteratively until any of the following three criteria is satisfied. First, there is
no more loop in the reduced SCC. Then this part will be left alone since it is already
acyclic. Second, the number of remaining states in reduced SCC is small enough to be
solved via a linear solver. Third, the last iteration does not reduce any states. In the sec-
ond and third scenarios, the final SCC will be solved via linear equation again, and final
abstract transitions will be generated. After all loops in SCCs are resolved, the whole
DTMC becomes acyclic, and value iteration is used to calculate the probability from
initial states to targets. Since the abstract transitions from each partition’s input states to
output states are determined by the partition itself and independent to other partitions,
multi-cores or distributed computers can be straightforwardly used here to solve each
partition simultaneously, which makes the verification faster.

Contributions Compared with previous work, our contribution is threefold, as we sum-
marize below.

1. A new divide-and-conquer approach for DTMC reachability analysis is proposed,
which combines solving linear equations and value iteration methods together and
tackles the problem that huge loops make the DTMC verification inefficient.

2. Based on the fact that each SCC and even each group in one SCC is independent
from others, we use parallel computation to further speed up the verification.

3. The new approach has been implemented into our model checking framework PAT,
and several representative experiments are conducted to show the effectiveness of
our approach.

Organization The paper is structured as follows. SectionPlrecalls relative background.
In Section 3 we introduce our algorithm in details. The evaluation is reported in Sec-
tion[l Section[3surveys related work and concludes the paper.

2 Preliminaries
In this section, we recall some background knowledge, which is relevant in the rest of

this paper.

2.1 Discrete Time Markov Chains

Discrete Time Markov Chains (DTMCs) are widely used in modeling stochastic sys-
tems. Meanwhile, time requirement in DTMC is discrete. Without loss of generality,

Improved Reachability Analysis in DTMC via Divide and Conquer 165

1
0.5
0.5 0.5 1
0.5
0.5
<) 1
0.5
Fig. 1. An Example of SCC

we have the following two assumptions in this work. 1) There is only one initial state in
the whole system and 2) DTMC is deadlock free. It is known that a deadlock state in a
DTMC can add a self-loop having probability 1 without affecting the calculation result.
The formal definition of DTMC is as follows.

Definition 1. A Discrete Time Markov Chain is a tuple M = (S, Sinit, Tr; AP, L) where
S is a set of states; Sinit € S is the initial state of the system; Tr : S x S — [0, 1] is the
probability transition relation between states, which satisfiesV's € S, X csTr(s,s’) =

1; AP is a set of atomic propositions and L: S — 2T is a labeling function.
An infinite or a finite path in M is defined as a sequence of states m = (sg, $1,---) or
m = (S0, 81, ,Sn) respectively, such that ¥i < 0 (for finite paths, ¢ € [0,n — 1]),

Tr(s;, Si+1) > 0. The probability of exhibiting 7 in M is Pa(mw) = Tr(so, 1) X
Tr(s1,82)xTr(s2,83)x---.Givenasetof paths IT of M, Py(IT) = ;7 Pm().

A set of states C C S is called connected in M iff Vs, s’ € C, there is a finite
path m = (s, s1,- -, $p) satisfying s = s A's, = s’ AVi € [0,n],s; € C. Strongly
Connecte Components (SCCs) are those maximal sets of states which are mutually
connected. An SCC is called trivial if it just has one state without a self-loop. An SCC
is nontrivial iff it is not trivial. A DTMC is acyclic iff it only has trivial SCCs. Note
that one state can only be in one SCC. In other words, SCCs are disjoint. In addition, we
define an adjacent group (AG) D C S suchthat 3s € D,Vs' € D A s’ # s, there is a
finite path m = (sg, $1, -+ , S,,) satisfying so = sA s, = s'AVi € [0,n],s; € D, and s
is called root state in D. In the following, we refer to adjacent groups simply as groups.
The difference between these conceptions is illustrated by the example in Figure[l

In Figure[T] {s1, 52}, {51, s2, 83} are connected; {so}, {sa}, {s5} and {s1, s2, 53}
are the SCC's in the model; AGs are more complex, for example, {so, s1,$2} and
{s1, 82, s5} are AGs and there are other possible combinations. Note that a set of states
like {sg, s1,s4} is not a valid AG because there is no root state. Connected sub-
graphs are AGs but the reverse is not always true, e.g., {so, $1, S2} is an AG but not
a connected subgraph.

Similar to [3/1]], in a DTMC M = (S, sinit, T, AP, L), given a group of states D C
S, the input states of D are defined as the states in D having incoming transitions from
states outside D; the output states of D are defined as states outside D which have
incoming transitions from states in D. Formal definitions are as follows.

166 S. Song et al.

Po=D1
p1 =05 X p2+ 0.5 X p3

1
0.5 0.5 1 p2 =0.5 xp1 + 0.5 X ps
0.5 p3 = 0.5 x p2 + 0.5 % P4
0.5 ps = 1
() 1 o3 1)
0.5

ps =0

Fig. 2. Reachability Analysis

Inp(D)={s' € D|3s € S\D.Tr(s,s') > O}
Out(D)={s' € S\D | 3s € D.Tr(s,s') > 0}

2.2 Reachability Analysis

One critical question for quantitative analysis of DMTC models is to compute the prob-
ability of reaching a certain set of target states G from the initial state. Here OG is used
to denote the event of reaching G, and Paq(sinit = OG) represents the probability that
G can be reached from initial state in a DTMC M. Here P can be written as P if M
is clear. Let m = (sg, 1, - - , Sn,) represent any finite path in M. Then we have

P(Sm,’t ': <>G) = P({ﬂ' | S0 = Sinst N1 € [On],sZ S G/\V] S [OZ — 1],8j ¢ G})

Given the transition relation T'r of M, there are two approaches to calculate P(s;nit =
OG). One is solving linear equations, while the other is using value iteration. We use
p; to represent the probability from state s; to the targets. In the following we use the
example in Figure 2l to show how these two approaches work. Note that state s, is the
only target state, denoted by double cycles.

Solving Linear Equations From the model, the transition matrix between states can
be built. For example, p; = 0.5 X pa + 0.5 X p3 and py = p;. Since sy is target, py
= 1. s5 cannot reach target obviously, therefore ps = 0. From these equations, each
p; can be solved through matrix operations. Although this approach can get accurate
result, it has drawbacks. Because each state is represented by a variable, there may be a
huge number of variables in large scale systems. The state-of-the-art linear solvers are
limited to handle thousands of variables, therefore linear equation approach may not be
scalable.

Using Value Iterations In this approach, p; is calculated iteratively. Assume p¥ is an
approximation of p; after the k-th iteration. Starting from the target state s4, in k-th
iteration we update the probability of states which could reach s, in exactly k steps.
Obviously, Vi € [0, 3], p? = 0. As p§ = 1 and p = 0 for any k, k is ignored in these two
states. In the first iteration, p3 can be updated, and p} = {0.5 x pJ+ 0.5 x p4} = 0.5;in

VIf Sinit € D, then sini¢ € Inp(D).

Improved Reachability Analysis in DTMC via Divide and Conquer 167

the second iteration, p; is updated since s; reaches s3 in one step. It is trivial to show
p? ={0.5 x p} +0.5 x p}} = 0.25. In the third iteration, both py and p, can be updated
since they can reach s; in one step. Afterwards, p3 is updated again because of the
update of ps. Iteratively, p; in the long run can be calculated. A user-defined threshold
is usually necessary to terminate the calculation, according to the desired precision. The
result of p; will be approximated gradually. This approach has better scalability than the
linear equations method, so it is more popular in existing model checkers. However, the
existence of loops may make the convergence slow. The probability of each state in
SCCs will be updated many times, which means a large number of iterations may be
needed before the results satisfy the terminating criteria.

2.3 States Abstraction and Gauss-Jordan Elimination

Here we follow the idea of [1]]. Given a DTMC M = (S, s;nit, T'r, AP, L) and a group
of states D C S, D can be abstracted by calculating the transition probability from
Inp(D) to Out(D). According to the proof in [1]], the abstraction of any arbitrary
set of states is independent from others, and the abstract transitions do not affect the
probability of reaching target states G.

One example of the abstraction is in Figure Bl Figure B (a) is the original DTMC,
which has one SCC D = {s1, $2,53}. Inp(D) = {s1} and Out(D) = {s4, 55}
In order to abstract TH, the probability from Inp(D) to each state s,y € Out(D)
should be calculated. Theoretically, the calculation from an SCC’s inputs to outputs
can be solved via linear equations or value iteration approachesﬁ. However, for value
iteration approach, since there could be several output states in Out(D), we have to
separately calculate the probability from input states to each output state. If there are
many output states, this method could be inefficient. In addition, the existence of loops
still causes slow convergence issue. Furthermore, using value iteration, there will be
some errors because of the user-defined precision, but there is no way to know the error
bounds. Therefore, we use a specific linear equation solving technique: Gauss-Jordan
elimination [2]] to do the abstraction.

Gauss-Jordan elimination is an algorithm for getting matrices in reduced row echelon
form that placing zeros above and below each pivot [2]]. Here, we briefly introduce how
it works in our setting.

Assume there are m states in a set of states, say D, and |Out(D)| = n. Then two
matrices A and B, containing linear equations information of all transitions in D, are
first introduced as follows.

1, if i =

—T'r(i, j), otherwise. B(i, k) = =Tr(i, k).

Ati.d) = {
Here, A is an m xm square matrix. A(4, j) is a negative value of probability of transition
from ‘" state to j** state in D if i # j. The diagonal elements of A are filled by 1.

2 Here we take an SCC as an example. Actually this abstraction can be applied to arbitrary set
of states, according to [1].

3 Different from our previous discussion which focuses the calculation from the initial state to
targets, here we discuss the probability from input states to every output state of an SCC.

168 S. Song et al.

1

(a) Before Abstraction (b) After Abstraction

Fig. 3. States Abstraction via Gauss-Jordan Elimination

This records the transition relationship within D. B is an m X n matrix to record the
transition relationship from D to Out(D). k represents the k'" state in Out (D).

Next, augmenting the square matrix A with matrix B, we will have [A | B|. Gauss-
Jordan elimination on [A | B] will then produces [I | C]. Here, I is the identity matrix
with 1s on the main diagonal and Os elsewhere. The new transition probability e.g.,
Tr'(i, k), stores the transition probability from i‘" state in D and k*" state in Out(D),
which is actually —C/(, k). Now take Figure[3](a) as an example. Its [A | B] and result-
ing [I | C] are listed as follows. In this example, A(%, j) corresponds to T'r(s;41, Sj+1)
and B(i, k) indicates T7(8;+1, Sk+4)-

1-05-0,5/ 0 0 100| —0.4 —0.6
[AB]=]0 1 —05| 0 —05|;[C]=|010] -02-08
0-05 1 | -05 0 001] —0.6 0.4

Here the transitions from all the states in D to Out(D) are obtained. Note that those
states which are not in Inp(D) will be removed. Therefore we are just interested in the
new transitions from Inp(D) to Out(D), which are

Tr'(s1,84) = 0.4; Tr'(s1,s5) = 0.6;

We can obtain that p; = 0.4 X p4 + 0.6 X ps in the abstracted DTMC, which is shown
in Figure 3] (b). Given a group of states D, this abstraction procedure is defined as a
method Abs(D).

Note that in practice, most transition matrices in probabilistic model checking have a
very sparse structure that contains a large number of zeros. We adopt a compressed-row
representation [[14] as a data structure for matrices in Gauss-Jordan elimination.

3 Divide and Conquer Approach

From the analysis in Section[2] for a large DTMC with complicated loop structure, both
linear equations and value iteration method are ineffective, even unworkable. In this
section, we propose a divide and conquer approach which tackles the above-mentioned
problem. Our main idea is similar to work [3l1], which transfers the original DTMC to
an acyclic one by abstracting SCCs recursively so as to reduce the number of state and
loops.

Improved Reachability Analysis in DTMC via Divide and Conquer 169

Algorithm 1. Divide and Conquer Approach
input : A DTMC M = (S, Sinit, I'r, AP, L), target states G C S and a Bound B
output: P(sinit = OG)

1 Let C be the set of all nontrivial SCCs in M;

2 while |C| > 0 do

3 LetD € C;

4 if |D < B|V Out(D) < 1 then

5 Abs(D) and C + C\D

6 else

7 Divide D into a set of AGs denoted as A;

3 for each £ € Ado Abs(E);

9 Let D’ be the set of remaining states in D;

10 if | D'| < BV |D'| = |D| then

11 Abs(D')and C + C\D

12 else

13 Let Cp/ be the set of all nontrivial SCCs in D’;
14 C + (C\D)UCps;

15 return VI(M, G);

Intuitively, our approach divides large SCCs into smaller partitions, each of which
will be solved via Gauss-Jordan elimination independently. Through this approach,
loops will be eliminated. Afterwards, value iteration method is used to decide the final
probability of reaching targets. In the following, we introduce our algorithm in details.

3.1 Opverall Algorithm

Given a DTMC M (S, Sinit, Tr, AP, L) and target states G C S, the probability of
reaching G, denoted as P(s;ni: = OG), can be solved by Algorithm [l Note that B
is an input parameter, which indicates SCCs having more than B states should be di-
vided. Abs(K) is defined in Section[2.3l VI(M, G) indicates calculating the probabil-
ity of reaching G via value iteration. The procedure of the algorithm is explained in the
following.

— The first step is to find all SCCs C in M by Tarjan’s approach [[17]], and their input
and output states are recorded as well. This is captured by Line 1.

— For each SCC D € C, we will first check whether |D| exceeds B or whether
|Out(D)| > 1.If not, Abs(D) will be executed directly. States in D but not in
Inp(D) will be removed. Afterwards D will be removed from C, as shown in Lines
4-5. The reason why we directly abstract cases |Out(D)| < 1 is as follows.

e If |Out(D)| = 0, D has no outgoing transitions, then no matter whether D has
target states or not, we do not need to solve D. If DN G = ¢, it is obvious that
all states in D has probability O to reach G; otherwise, it is trivial to show that
all states in D has probability 1 to reach G.

170

1 |

(a) Before Abstraction (b) After Abstraction

Fig. 4. Destruction of SCC during Abstraction

o If |Out(D)| = 1, assume S,y is the output state. All paths entering D will
leave it eventually. Therefore, for every s; € Inp(D), the probability of paths
entering D via s;, staying in D and exiting D to S, should be 1. So D can be
abstracted directly.

Lines 7-14 describe the case when D needs to be divided, i.e., when the SCC has
more than B states. First we divide D into several groups based on some heuristics,
each of which has a reasonably small number of state, i.e., less than B. Therefore,
for each group £ we use Abs(E) to get the abstraction. Here we choose AG as
the structure of each partition, because the existence of the root state, say s,, may
remove the most states after abstraction. In the extreme case where Inp(&) = {s,},
all states in £ except s, can be removed.

By removing the states which are not input states of any £, the number of states in
D is often (not always) reduced. Line 10 checks two situations. 1) the size of D’ is
smaller than or equal to B, and 2) there is no reduction for D in this iteration. If 1)
is true, then there is no need to divide D’ again, and Abs(D’) is executed directly. If
2) is true, i.e., no state is reduced after divide and conquer, the main reason should
be that each state in D has a lot of pre-states. Therefore every state in one group
is an input state and cannot be removed. In this case, D’ should also be abstracted.
Afterwards, D is removed from C. If 1) and 2) are both false, Lines 13-14 will be
executed.

Because of the abstraction, D may not be an SCC now. An example is shown in
Figure @l On the left hand side, D = {s1, s2, s3}; if we group s; and ss together,
then s3 is this group’s output. It is easy to get the abstract transitions between them,
as shown in right hand side. Because both s; and s» are input states, no state is
removed. However, it is obvious that D’ = {sq1, s2,s3} is not an SCC anymore.
Tarjan’s algorithm is used again to find new SCCs in the D’, captured by Line 13.
New SCCs will be added to C for another iteration.

When the iteration terminates, there is only trivial SCCs in M now; in other words,
M is acyclic. Value iteration approach can be used to calculate the probability from
the initial state to targets efficiently, and this is captured by Line 15.

As we mentioned in Section[2.3] the iterative abstraction will not affect the final result
of the probability calculation. The following theorem establishes that the algorithm is
always terminating.

Theorem 1. Given a finite state DTMC M, Algorithm[Ill always terminates.

Improved Reachability Analysis in DTMC via Divide and Conquer 171

Proof. We assume S = Ypec |D|, in other words, S is the total number of states in C.
Then the theorem can be proved by showing (1) S is finite at the beginning, and (2) S
monotonically decreases after each iteration.

(1) is obviously true because M has finite number of states, and S < |S| where S is
the set of states of M.

Given an SCC D € C, if it satisfies the condition in Line 4, then D will be removed
from C, thus S is reduced. Otherwise, from Line 6, there are two possible outputs. (i)
3€ € A, Abs(€) reduces its number of states, or (i) VE € A, Abs(E) does not reduce

its number of states. If (i) is true, then S is also reduced. If (ii) is true, then |D’| = DI
According to Line 8, D will be abstracted directly and be removed from C. Thus S is
still reduced. Therefore (2) is true, and the theorem holds. a

3.2 Dividing Strategies

Although the divide-and-conquer approach is correct and terminating, its efficiency is
highly dependent on how an SCC is divided. Assume A is the set of partitions after
dividing an SCC, then a suitable partition, say £ € A, should satisfy the following
conditions.

1. £ should not have too many states, since each partition is abstracted using Gauss-
Jordan elimination which is limited to a relatively small number of states;

2. & should not have too few states as well, otherwise there will be too many partitions
to be solved, and the states reduction for £ is inefficient;

3. The smaller |Out(€)] is, the better reduction is achieved. Too many output states
will make the input states of £ have too many abstract transitions, which makes
the remaining structure complicated, and affects the efficiency of the following
abstraction.

As a result, the remaining issue is that given an SCC D, is there any optimal strategy
to divide it into suitable AGs? In practice, the structure of D could be arbitrary. This
increases the difficulty of finding a general strategy for all cases.

The simplest division method is to try to set each AG to have the same number of
states. Assume each AG should have N states. Then starting from one input state of
D, depth first search (DFS) or breadth first search (BFS) can be used to group every
N states together. Afterwards, each AG can be abstracted, and the remaining states
are combined together to do the next iteration. The advantage of this strategy is that
the number of states in each partition is easily controlled. It can be very efficient in
cases where the states in D has few transitions. However, this method cannot control
the number of output states of each partition, and a predefined N may not be suitable
for D’s structure.

Therefore, another improved strategy is used to automatically decide the number of
states in each AG. Instead of picking a constant N in the beginning, we set a lower
bound By, and an upper bound By for each partition. Thus the number of states in
each partition should be between By, and By. At first, By, states will be grouped into
&, and |Out(&)] is recorded. Afterwards, some states in Out(&) are added into &, and
|Out(€)| is updated. If |Out(£)| keeps unchanged or even becomes smaller after the
update, we will try to add more states into £ again. If |Out(€)]| is increased but the

172 S. Song et al.

increase is not significant, a few states will be added into £ but the number should be
small. Otherwise € is confirmed and ready for Abs(E). Note the number of states in £
should be always below By;. This strategy guarantees
1. the number of states in & is under control. By, and By guarantee that the size of £
should not be too large or too small.
2. the outputs of £ are also manageable. This guarantees the states structure after
abstraction is not too complicated, and is suitable for next iteration.
Parameters B, N, By, and By can be adjusted according to the specific DTMC to get
the optimal efficiency.

3.3 Parallel Computation

Previous work such as [6/13]] depends on the topological order between different SCCs.
Therefore, parallel computation is not so easy to use in their setting. On the contrary,
our algorithm eliminates loops via abstracting every SCC one by one, without consider-
ing their order. The independence between different SCCs can be proved following the
proof in [[1]. What is more, even each AG in one SCC is also independent from others,
and the proof actually follows the same idea of SCC’s independence. Thus, paralleliza-
tion is suitable in our setting in order to solve different AGs simultaneously.

In details, after finding all SCCs, they are stored with their input and output states.
For each SCC, a spare thread can be used to solve it. Therefore, Lines 2-14 in Al-
gorithm [I] can be solved via parallel computation. In addition, whenever an AG is
grouped, another spare thread, if there is any, can be used to abstract it. Thus Line 8
in Algorithm [Tl can also be handled in parallel.

4 Implementation and Evaluation

We have implemented the algorithm into our model checking framework PAT [15],
which supports explicit probabilistic model checking [[L6] and can be freely downloaded
athttp://www.patroot.com

In the following, several experiments are conducted to show the efficiency of our
new approach. Note that we show the improvement via comparing to PAT itself, which
was based on value iteration method previously. Since the only difference between these
two versions is the algorithm of reachability analysis, it is fair to check the effectiveness
of the new method. Besides, several cases used in our experiment have dynamically
updated probabilistic distributions, and the modeling of them by other model checkers
is highly nontrivial.

In these experiments, we use the improved dividing strategy, and B, By, By are
set to be 300, 100, 150 respectively. In other words, an SCC with more than 300 states
should be divided; each group has states between 100 and 150. These parameters are
manually selected based on our experimental experience, i.e., generally these param-
eters have better performance compared with others. The testbed is a server running
Windows Server 2008 64 Bit with Intel Xeon 4-Core CPU %2 and 32 GB memory.

First, we use a simple example to show that our approach gets accurate results, re-
solves the slow convergence problem and results in huge speedup. Assume there are

Improved Reachability Analysis in DTMC via Divide and Conquer 173

start

0.005 /80\ 0.99 s 0.005 7

0.005 0.99 0.005
0.99

@ ob/s@ 0.005 @

Fig.5. A Simple Example: N = 3. s,, and sy are copied for better demonstration.

Table 1. Experiments: A Simple Example

System PAT (w) PAT (w/0)
Prob Time (s) Memory (MB) Prob Time (s) Memory (MB)
N=500 0.5 0.03 71 0.49987 0.5 24
N=5000 05 03 83 0.49987 5.5 63
N =50000 0.5 2.6 151 0.49987 125.2 111
N =500000 0.5 29.7 885 0.49987 1612.8 838

N + 2 states {sg, S1,..., SN—1, Su, Sf} existing in this example. Each state s;,i €
[0..N — 1], has probability 0.99 to reach s;;.1)%, and also has probability 0.005 to
reach s,, and s separately. The case N = 3 is shown in Figure[3] Obviously, all states
si,t € [0..N — 1] compose an SCC, and s,, and sy are this SCC’s outputs. We check
the probability from s to s,, and several experiments are executed based on different
value of NN as listed in Table [Tl

In Table[l columns Prob represents the probability returned by the model checking
algorithms. Columns PAT (w) (PAT (w/o)) show the experimental information taken
with (without) the new approach. Columns T'ime represent the total time cost in the
verification. For these cases, our new approach outperforms value iteration approach
dramatically by reducing the verification time to less than 10%. On the other hand, the
memory used in new approach is higher than that used in the previous method, which is
reasonable since solving linear equations consumes more memory than value iteration
approach. Through the manual analysis, we know that 0.5 is the accurate result while
0.4998 is only an approximation.

Next, we apply our approach to several more meaningful systems and demonstrate
that our approach can still improve the efficiency significantly.

In multi-agent systems, dispersion games [8] represent an important scenario, i.e.,
dispersion games are the generalization of anti-coordination games to an arbitrary num-
ber of players and actions. Here we use two strategies designed for dispersion games:
bisic simple strategy (BSS) and extend simple strategy (ESS). BSS assumes the number
of players and the number of actions are the same, while ESS does not have this as-
sumption. In each round of the game, every player chooses one action following specific
probabilistic distribution, which is updated roundly according to the output of last round.
There is a desired outcome in this game called Maximal Dispersion Outcome (MDO),
and one property is to calculate the probability that MDO can be achieved.

Another case used in our experiments is coin flipping protocol for polynomial ran-
domized consensus [4] (CS). This case focuses on modeling and verifying the shared

174 S. Song et al.

Table 2. Experiments: Benchmark Systems

System States Prob .. PAT (w) . PAT (w/0)
Time (s) BMR Memory (MB) Time (s) BMR Memory (MB)
BSS (4) 4196 1 1.3 923% 39 0.2 50% 35
BSS (5) 49572 1 3.5 943% 297 44 11.4% 142
BSS (6) 605890 1 414 72.7% 1297 105.3 6.7% 417
BSS (7) 7462639 1 1671 30.1% 6350 2073.1 4.1% 5039
ESS (6,4) 32662 1 1.4 92.8% 16.3 2.7 14.8% 5.6
ESS (6,5) 162945 1 6.7 91.1% 48.5 114 16.7% 13.9
ESS (7,5) 463460 1 279 84.9% 310 758 T7.1% 292
ESS (8,5) 1114480 1 70.5 74.7% 619 278.5 6.1% 643
ESS (8, 6) 6476524 1 438.0 68.5% 4209 1168.1 7.5% 3904
CS4,3) 4966 0.023 08 87.5% 45 24 83% 35
CS (6,3) 34529 0.023 15.7 81.5% 214 124.1 0.9% 108
CS (6,4) 45281 0.015 24.8 86.7% 324 243.8 0.6% 81
CS (6,5) 56033 0.012 38.6 91.2% 312 432.1 0.4% 104
CS(7,4) 99265 0.014 102.3 87.6% 1062 983.1 0.4% 97
CS (7,5) 122785 0.011 161.7 92.1% 1145 1384.8 0.3% 97
CS (7,6) 146305 0.01 2455 94.9% 1404 2409.5 0.2% 156

CS (8,4) 200083 0.013 585.1 93.4% 1974 - - -

coin protocol of the randomized consensus algorithm. CS is used as a benchmark sys-
tem in the state-of-the-art probabilistic model checker PRISM [12]. Here we use a safety
property in the system as our target.

The experiments based on these three models are listed in Table 2l BSS(N) indi-
cates there are N players (also N actions) in the game; ESS(N, K) means there are
N players and K actions; C'S(N, K) indicates there are N processes and K is a con-
stant used in the model. Here we are interested in the ratio of model building (BM) time
to the total time, which is denoted as BMR in the table. In PAT (w), BM means the
time for building acyclic DTMC, i.e., the overall time consumed by eliminating loops
in DTMC; in PAT (w/o), it indicates the time for building the whole system. In both
PAT versions, value iteration is used to get the final result after building the model.
‘-> indicates the verification takes more than 1 hour thus the result is not taken into
consideration. From the table, we have several observations.

1. For some small examples such as BS.S(4), our new approach is slower. This is due
to the overhead taken by the SCC searching algorithm, and value iteration approach
is efficient when loops are small.

2. As the examples become larger, the verification speed is increased by our proposed
approach. This improvement is obvious especially in large-scale systems such as
ESS(8,5), ESS(8,6) and C'S(8,4).

3. CS consumes more resource than BSS and £SS when they have similar size of
state space, such as C'S(7,6) and ESS(6,5). The reason is that C'S has more com-
plicated SCCs, and both our new approach and traditional value iteration method
have to use more time and memory to solve it. As a result, the SCCs’ structure
affects the verification efficiency to a large extent.

Improved Reachability Analysis in DTMC via Divide and Conquer 175

4. According to BMR, we can see that in the previous version of PAT, building the
model costs small portion of the overall verification time compared with the value
iteration procedure. The average value of BMR is less than 10%, which means slow
convergence indeed exists in systems having large SCCs. C'S has very small BMR
and this is consistent with the fact that C'S has complicated SCCs. In the new
approach, time is mainly used by abstractions, as average BMR is more than 80%.
It indicates that the efficiency of the divide and conquer strategy is critical in the
whole verification now, and optimal dividing strategy is worthy to explore.

On the other hand, we want to share some limitations of our approach according to the
experimental information. The efficiency of this approach is dependent on whether large
SCCs exist in the system. During our experiment, the new approach performs slower
than value iteration method in several cases. The main two reasons include 1) there is
no loops in the system, thus the SCC searching algorithm makes the whole verification
slow; 2) the system just has small SCCs while the whole state space is large, thus the
gain of the abstraction is limited.

5 Related Work and Conclusion

SCCs are an important structure in both concurrent and probabilistic verification. For
probability calculation, those loops in SCCs are one of the key factors affecting the
efficiency. Some previous work has been done based on SCC decomposition for prob-
abilistic systems, including DTMCs and Markov Decision Processes (MDPs) [5]], and
we are mainly inspired by this work.

To speed up the verification of MDP, the authors of [6] have proposed to decide the
topological order of all SCCs in the MDP, and value iteration method is used to solve the
SCCs from the bottom upwards. Based on this work, the authors of [13]] have used SCC
decomposition to handle the incremental quantitative verification of MDP. The topolog-
ical order between SCCs guarantees that some changes in one SCC will not affect those
SCCs after it. Compared to their work, ours does not consider the orders of SCCs via
treating each SCC independently. This makes parallel computation approach feasible.
In addition, Gaussian-Jordan elimination is used to remove loops. Different from value
iteration, which needs a user defined precision, our approach generates accurate result.

Besides, there are several work based on SCC focusing on probabilistic counter-
example generation, such as [3/1]]. Their idea of abstracting each SCC from its input to
output is the biggest inspiration of our work. Compared with these work, ours is more
focusing on improving reachability analysis in DTMC. Therefore, we divide SCCs into
smaller partitions and solve them directly.

Conclusion. In this work, we proposed a divide-and-conquer approach to speed up
reachability analysis of DTMCs. Because SCCs are one of main reasons that the prob-
ability calculation is slow, we focus on abstracting SCCs via calculating the transition
probability from their inputs to outputs. We divide every SCC, whose states exceed
some specific bound, into several AGs having reasonable number of states, and can be
solved efficiently via Gauss-Jordan elimination. We have implemented our approach in
PAT, and some benchmark systems are used to show its effectiveness and efficiency.

176 S. Song et al.

For future work, there are two possible directions. Currently, the parameters used in
the algorithm such as B, By, and By are mainly decided via experience, and are man-
ually defined before the experiments. Therefore, one topic is to find the more efficient
division strategies, which are automatic and suitable for general cases. Another direc-
tion is extending our approach to MDP. Concurrency also exists in many probabilistic
systems, so nondeterminism is unavoidable in some cases. SCCs in MDP can also be
eliminated via calculating the probability distributions from inputs to outputs. Due to
the nondeterminism in MDP, one challenge is that the number of resulting distributions
may be exponential, thus a suitable divide and conquer approach for MDP is needed.

References

1. Abrahém, E., Jansen, N., Wimmer, R., Katoen, J.-P., Becker, B.: DTMC Model Checking by
SCC Reduction. In: QEST, pp. 37-46 (2010)

2. Althoen, S.C., McLaughlin, R.: Gauss - Jordan reduction: a brief history. The American
Mathematical Monthly 94(2), 130-142 (1987)

3. Andrés, M.E., D’ Argenio, P., van Rossum, P.: Significant Diagnostic Counterexamples in
Probabilistic Model Checking. In: Chockler, H., Hu, A.J. (eds.) HVC 2008. LNCS, vol. 5394,
pp. 129-148. Springer, Heidelberg (2009)

4. Aspnes, J., Herlihy, M.: Fast Randomized Consensus Using Shared Memory. Journal of
Algorithms 15(1), 441-460 (1990)

5. Baier, C., Katoen, J.: Principles of Model Checking. The MIT Press (2008)

6. Ciesinski, F., Baier, C., Grofler, M., Klein, J.: Reduction Techniques for Model Checking
Markov Decision Processes. In: QEST, pp. 45-54 (2008)

7. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. The MIT Press (1999)

8. Grenager, T., Powers, R., Shoham, Y.: Dispersion Games: General Definitions and Some
Specific Learning Results. In: AAAI pp. 398-403 (2002)

9. Itai, A., Rodeh, M.: Symmetry Breaking in Distributed Networks. Information and
Computation 88, 150-158 (1981)

10. Katoen, J.-P., Khattri, M., Zapreev, [.S.: A Markov Reward Model Checker. In: QEST,
pp- 243-244 (2005)

11. Katoen, J.-P., Zapreev, 1.S., Hahn, E.M., Hermanns, H., Jansen, D.N.: The Ins and Outs of
The Probabilistic Model Checker MRMC. In: QEST, pp. 167-176 (2009)

12. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: Verification of Probabilistic Real-
Time Systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp.
585-591. Springer, Heidelberg (2011)

13. Kwiatkowska, M.Z., Parker, D., Qu, H.: Incremental Quantitative Verification for Markov
Decision Processes. In: DSN, pp. 359-370 (2011)

14. Stoer, J., Bulirsch, R.: Introduction to Numerical Analysis. Springer, Berlin (2002)

15. Sun, J., Liu, Y., Dong, J.S., Pang, J.: PAT: Towards Flexible Verification under Fairness.
In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 709-714. Springer,
Heidelberg (2009)

16. Sun, J., Song, S., Liu, Y.: Model Checking Hierarchical Probabilistic Systems. In: Dong, J.S.,
Zhu, H. (eds.) ICFEM 2010. LNCS, vol. 6447, pp. 388—403. Springer, Heidelberg (2010)

17. Tarjan, R.E.: Depth-First Search and Linear Graph Algorithms. SIAM J. Comput. 1(2),
146-160 (1972)

18. Younes, H.L.S., Clarke, E.M., Zuliani, P.: Statistical Verification of Probabilistic Properties
with Unbounded Until. In: Davies, J. (ed.) SBMF 2010. LNCS, vol. 6527, pp. 144-160.
Springer, Heidelberg (2011)

Solving Games Using Incremental Induction

Andreas Morgenstern, Manuel Gesell, and Klaus Schneider

Embedded Systems Group
Department of Computer Science
University of Kaiserslautern

Abstract. Recently, IC3 has been presented as a new algorithm for for-
mal verification. Based on incremental induction, it is often much faster
compared to otherwise used fixpoint-based model checking algorithms.
In this paper, we use the idea of incremental induction for solving two-
player concurrent games. While formal verification requires to prove that
a given system satisfies a given specification, game solving aims at auto-
matically synthesizing a system to satisfy the specification. This involves
both universal (player 1) and existential quantification (player 2) over
the formulas that represent state transitions. Hence, algorithms for solv-
ing games are usually implemented with BDD packages that offer both
kinds of quantification. In this paper, we show how to compute a solution
of games by using incremental induction.

1 Introduction

It is an old dream of computer science to automatically generate a system from a
formal specification or at least to automatically check whether a system is guar-
anteed to satisfy a specification. The second problem is known as the formal
verification problem and powerful tools exist to automatically check the correct-
ness of a system with respect to a given specification. Recently, a new symbolic
model checking algorithm called IC3 has been presented [4lJ5] that is based on in-
cremental induction instead of the otherwise used fixpoint computations. Other
researchers [6] talk about ‘Property Directed Reachability’ (PDR) in this con-
text, since this algorithm has a very targeted approach to check the reachability
of a state (violating a safety property). The newly developed algorithms often
outperform existing verification engines based on bounded model checking and
interpolation in practice.

The idea of synthesis or realizability [T4I3/T5] is to automatically construct a
functionally correct system from a declarative specification. The obvious ben-
efit is that we only have to give a list of desired behaviors and a synthesis
tool comes up with a state-based model that satisfies all given properties. If
no further constraints like limited use of memory or runtime requirements have
to be considered, automatic synthesis can completely avoid manual coding of
programs.

Synthesis can be viewed as a two-player game between an environment and a
system (also called the controller). The environment chooses the uncontrollable

E.B. Johnsen and L. Petre (Eds.): IFM 2013, LNCS 7940, pp. 177-[[0T] 2013.
(© Springer-Verlag Berlin Heidelberg 2013

178 A. Morgenstern, M. Gesell, and K. Schneider

inputs (as usual) and the controller responds by setting the controllable outputs
of the system in order to satisfy the given specification. Hence, for every input
given by the environment, the controller must choose some output so that the
resulting game does not violate a given specification. Hence, one has to solve
a quantified SAT (or QBF) problem involving a quantifier alternation. Most
algorithms to solve games therefore either employ BDDs [3I16] or other data
structures [7] that offer both universal and existential quantifications or replace
the universal quantification by conjunctions [15] (thus blowing up the formulae).

In this paper, we propose a different solution for solving reachability games:
our algorithm can be seen as a modification of PDR [6] where every SAT query
has been replaced by a QBF query (more precisely, a 2QBF query). Recent
results from the QBF community [10] indicate that a good way to implement a
QBF solver is to use two SAT solvers; roughly speaking, one solver for existential
quantification, and the other for universal quantification. For game solving, this
means that the two SAT solvers take the roles of the two players. This fits nicely
into our game setting, and therefore our implementation is based on ordinary
SAT solvers instead of dedicated QBF solvers (although our algorithm borrows
some ideas from that area). Our experiments moreover indicate that the removal
of the universal quantification can be implemented efficiently if one uses the
inductive generalization procedures mentioned in [41/6].

While synthesis in its most general form may be desirable, we consider here
only the problem of determining the winner of a game. This is enough for two
of the most promising application domains of synthesis. The first application
domain is to find errors in an early design phase, where only a part of the whole
system may be available [I3]. We can now consider the problem of constructing
a controller in a game that determines the outputs of the absent parts. If the
controller has no winning strategy, then the already constructed parts of the
system contain an error that has to be repaired before new components may be
added. Another promising application for synthesis is fault-localization in dis-
tributed designs [11]. Typically, modern systems are composed of many different
modules and determining the module that is responsible for an error is a tedious
and time consuming work. Using games, one can check whether the faulty part
can be replaced by a correct implementation. If this holds, chances are very high
that the thereby determined candidate is actually responsible for the fault.

2 Preliminaries

A cube over a set of Boolean variables () is a partial assignment of Boolean values
to some variables in). We often represent cubes as a conjunction or just a set
of literals (a literal is either a variable or the negation of a variable). If a cube
contains all variables of Vx UVy UV, it is called a minterm. If d C ¢ holds for a
cube ¢, then d is called a subcube of c. A clause is a disjunction of literals. Given
a cube s =11 Alg A+ Aly, its negation is a clause -s = =l V =l V -+ -V —l,.
We often write #(Y) to describe a property over the variables Y C Q.

A finite state transition system S = (Vy, Vx,®, dr) is given by a set of input
variables V7, a set of internal state variables Vy, and propositional formulas de-

Solving Games Using Incremental Induction 179

scribing the initial condition $;(Vx) and the transition relation @7 (Vr, Vx, V).
Given a formula @(Y) over a subset Y C Vx of state variables, we denote with
@' the formula that is obtained from @ by replacing each variable z with its
corresponding next-state variable z’.

A state of the system is a cube over Vx. An assignment s to all variables
of a formula @ either satisfies the formula, s = &, or falsifies it s £ &. If s is
interpreted as a state and s = @ holds, we say that s is a P-state. A formula @
implies another formula ¥, written @ = ¥, if every satisfying assignment of &
also satisfies ¥. A trace sg, s1,... (which may have finite or infinite length) of a
transition system S is a sequence of states such that sg = @; and for each pair
5i,8i+1 in the sequence, s;,5; | [= @7 holds. That is, a trace is the sequence of
assignments in an execution of the transition system. A state that appears in
some trace of the system is reachable and we denote the set of reachable states
by R. A safety property P(Vx) is a propositional formula over Vx that asserts
that only P-states are reachable.

3 Another Look at IC3: Computing Ranks of Fixpoints

In order to check the reachability of a bad state, i.e., one that violates a safety
property, one can compute the reachable states of a system as follows: starting
with the initial states, one adds successors of so-far reached states until no new
states are foundl:

Ro = D5
Riv1 =R; U SLIC%DT (RZ)

where suc?”(A) = {so | 3i € 21351 € 2V%. Bp(s1,i,85) A sy € A} are the
existential successors of a set of states A w.r.t. the transition relation @. Thus,
for any i, R; is the set of states reachable in at most i steps. Clearly, for a finite
transition system, this fixpoint iteration must terminate, and there must exist
a least number v € N (called the rank) such that R,11 = R, holds and the set
R, is then the set of reachable states. It is clear that a system satisfies a safety
property if and only if the intersection of R, with the states violating the safety
property is empty.

Traditional BDD-based model checkers implement the above fixpoint algo-
rithm, since BDDs are quite efficient in computing the set of all successors, but
they sometimes cannot represent the transition relation &1 as a single BDD (and
therefore consider often partitioned transition relations [I7]). SAT solvers do not
suffer from the latter problem. However, applying a SAT solver for computing all
solutions for image computations seems to be very inefficient [§]. Nevertheless,
SAT solvers played a crucial role in pushing model checkers ahead: combining
the ideas of bounded model checking [I] and interpolation [I2], very efficient
model checkers can be implemented using SAT solvers.

I The computation can also be terminated if a bad state is reached by some R;.

180 A. Morgenstern, M. Gesell, and K. Schneider

3.1 Applying Induction Incrementally

IC3/PDR follows a rather different way than traditional SAT-based model check-
ers: It can be viewed as computations of over-approximations of the reachable
states. To that end, the algorithm uses incremental induction as defined below:

Definition 1 ((Inductive) Invariants). A property p(Vx) is an invariant of
a system S (i.e., an S-invariant), if R, = ¢, i.e., if only @-states are reachable.
A property o(Vx) is an inductive invariant if &1 = ¢ and ¢ A Pr = ¢'.

If P is not invariant, then there exists a finite counterexample trace sg, s1,. .., Sk
such that sy & P. Induction need not be applied in a monolithic way. One can
construct a sequence of inductive assertions, each inductive relative to (a subset
of) the previous assertions. Note that the reachable states R is the least inductive
invariant and that there are invariants that are not inductive.

Definition 2 (Incremental Induction). A property ¢(Vx) is inductive rela-
tive to another condition ¥(Vx), if &1 = ¢ and o ANy AP = ¢’

PDR and IC3 use this idea of incremental induction: these algorithms incre-
mentally refine and extend a sequence of formulas Ry, Ry, ..., Ry that are over-
approximations of the sets of states reachable in at most 0,1,2,..., N stepsE. We
call this list of formulas a trace. While Ry = & always equals the set of initial
states, each R; is represented by a set of clauses that maintains the property that
R; C R;y1. Together with the trace, PDR maintains a set of proof obligations.
A proof obligation is a cube s together with a rank i where s represents a set of
states that are either bad or have a trace to a bad state. The rank k can be seen
as a position in a counterexample where s must be proved to be unreachable
or the proof obligation fails. To obtain new informations about the trace, PDR
poses the following SAT queries:

SAT?[Rk_l N QST N S/}

This query holds if a state in R;_1 has a successor in s'. If it is not satisfiable,
then the information about Ry_1 is strong enough to show the unreachability of
s within k steps. We then say that s is blocked at rank k, and we can add the
clause —s to Ry. Hence, s is inductive relative to Ry_1.

Otherwise, a new proof obligation (s, k — 1) is generated. If we can continue
until the rank becomes 0, we have reached the initial states, and we have gener-
ated a counterexample for the safety property. If the algorithm does not succeed
in generating a counterexample, at some point the informations obtained for
some R, are strong enough to capture all reachable states. At that point, no
new information is obtained and we conclude that the system is indeed safe.

2 Hence, each R; C R, the sets calculated by the fixpoint iteration.
3 Note that the rank is called frame in [6], but we prefer here rank due to the connection
with the fixpoint solutions.

Solving Games Using Incremental Induction 181

3.2 Model Checking by Backward Traversals

Instead of starting with the initial states and then computing new reachable
states until a fixpoint is reached, one can also work backwards to verify a safety
property: starting with the bad states (violating the safety property), compute
the predecessor (instead of successor) states until no new states are found. This
way, all states having a path to a bad state are finally computed. The system is
safe, if and only if the initial states do not intersect with the so-computed closure
of the bad states. PDR/IC3 can be modified to do the same: simply identify Ry
with the bad states; each R; is an over-approximation of the states having a
trace to bad states in at most ¢ steps. Proof obligations (s, k) now contain a
cube s representing a state known to be backwards-reachable from the bad state
and the SAT query changes to SAT?[s A &1 A R)._,], i.e. checking whether for
any state in Ri_1, there is a predecessor s. The solution of safety games we are
going to present is based on a similar predecessor computation.

4 Games

In the following sections, we describe how IC3 can be modified to solve the
following safety games:

Definition 3 (Games). A game G = (Vi, Ve, Vx, 50, P70 (Vx, Vi, Ve, Vy)) is
given by a set of uncontrollable variables V7, a set of controllable variables Vi, a
set of state variables Vx, a full cube sy over Vx describing the initial state of the
game, and a transition relation @p. The transition relation must be determinis-
tic, i.e., for every (s,u,c), there is exactly one s’ such that (s,u,c,s’) E @r.

Since @ is deterministic, we write in the following ®r(s,u,c) = s’ instead
of (s,u,c,s') E @ and we say that &r(s,u,c) is undefined, if there is no s
such that (s,u,c,s’) | &r holds. Intuitively, a game is a finite state transition
system where the inputs are partitioned into controllable and uncontrollable
input variables. As before, we consider a safety property P(Vx) over the set of
state variables. It is the goal of the controller to keep the game inside this safe
region while the environment tries to reach a state where =P holds. It is worth
pointing out that safety games are determined [9], hence either the controller or
the environment wins.

Given agame G = (Viy, Ve, Vx, s0, Pr(Vx, Vi, Ve, VX)), a (memoryless) strat-
egy for the controller is a function ¢ : 2V x2Vv — 92"c given by a propositional
formula over Vx, Vi and V. Intuitively, when the game is in a state s € 2¥= and
the environment chooses an uncontrollable input u € 2V, a strategy determines
a set of possible responses, i.e., a set {co,c1 ...} of possible assignments c; € 2"+
to the controllable variables. A play on G according to o is a finite or infinite se-
quence T = sg =% g, L% .. such that ¢; € o(siyu;) and (s;,u4, ¢y 8i41) |E P
Either the play is infinite, or there is a n such that o(s,, u,) = 0. A play is win-
ning according to the safety property P(Vx), if it is infinite, and each s; € P. A

182 A. Morgenstern, M. Gesell, and K. Schneider

strategy o is a winning strategy if all plays according to o on G are Winninéﬂ.
A state s is winning if there is a winning strategy starting in s. The set of all
winning states is the winning region. The game G is winning or won, if the initial
state s¢ is in the winning region.

It is our goal to develop an algorithm that determines whether a game is
winning for the controller. If the game is winning, our algorithm will also generate
a strategy for the controller. To that end, we will present in the following sections
the necessary modifications to the PDR algorithm.

5 Fixpoint Computations to Solve Games

In this section, we take the viewpoint of the environment. Hence we compute
the set of states from which the environment can force a visit to a —P-state, or
dually, the states from which the controller loses.

Definition 4. The set of states from which the environment can force a visit to
a state in A in one step is defined as

suct?(A) = {s € S| Fue 2V Ve e 2" vs' € 2VX'. &p(s,u,c,s') — s’ € A}.

A state s is in suc‘gvT (A), if the environment can choose an assignment u to the
uncontrollable inputs such that the controller has no chance to choose some ¢
to prevent a visit from A. As can be seen, in contrast to the model-checking
problem, we need existential (for the environment) and universal quantification
(for the controller) over variables.

It is well-known that for reachability games, the winning region of the envi-
ronment can be computed by the following fixpoint iteration [9]:

Ro = —P
Ri+1 = Ri U SUC?@ (Rz)

As for the corresponding fixpoint iteration used in model-checking, this fixpoint
iteration converges to a set R,,, containing the winning region of the environment.
For every s in the winning region of the environment, there is a minimal n such
that s € R,, holds and if s is not winning, it does not belong to some R,, (and
hence also not to R,). This leads to the following definition:

Definition 5 (Ranks of States). The rank p(s) of a state s with respect to
the above fixpoint iteration is defined as follows:

(s) = T ifVn e Ns € R,
P8I = min{n € N|s € R,} otherwise

4 Note that a strategy is typically nondeterministic, but our definition ensures that
we can easily select a deterministic strategy by choosing any particular assignment
from 2Y¢ for the controllable variables due to the fact that all plays according to o
must be winning.

Solving Games Using Incremental Induction 183

Intuitively, the rank of a state s denotes how far the environment is away from
reaching its goal: if p(s) = T, the environment cannot win. Otherwise, it can
drive the game to =P in at most p(s) steps.

6 Computing Ranks Using Incremental Induction

Our algorithm shares many similarities to the original IC3/PDR algorithm: it
computes over-approximinations of ranks of states of a fixpoint formula and uses
SAT queries for this purpose. Indeed, our algorithm is directly derived from the
re-implementation of IC3 (called the PDR algorithm) given in [6].

6.1 Proof Obligations

In order to compute the ranks, our algorithm maintains a trace [Ro, Ry, .. .], i.e.,
formulas representing state sets with the meaning that R; is an over-approximation
of states having rank less than i. Ry is special: it is simply identified with the
set ~P.

Together with this trace, it also maintains a list of proof obligations (s, k)
with the intended meaning to show that a state s has rank less than k. In order
to show this, the environment must force a visit to a state with rank less than
k — 1 in one step. Hence, we have to check whether the following holds:

Ju.Ve . Pr(s,u,c) € Rg—1

If we cannot find such an u-value, then the facts already known in Rjp_; are
strong enough to prove that s has a rank greater than k. Hence, we remove s
from Ry and we say that s is blocked at rank k.

However, if we find such a u-value, nothing can be said at that point about the
rank of s since Ri_; only over-approximates ranks. In order to give a definitive
answer, the ranks of all successor states {s’' | Je. Pr(s,u,c) = s’} have to be
probed for rank k — 1. For every such successor state s’, we therefore add a proof
obligation (s’,k — 1) to the list of proof-obligations. If we proceed this way, we
might obtain a proof obligation (s,1) such that the environment can force the
game into an (original) bad state in one step and prove that the game is losing
for the controller. Or we strengthen some Ry (remove states from Rj) to the
point where it is inductive in the sense that for every u there exists some c that
is inside of Ry. In that case, the game is winning for the controller.

In order to cope with the universal quantification over the c-variables, we
maintain a list of formulas [Up, Uy, Us,...] over state and uncontrollable vari-
ables. The intended meaning of U is the following: it is an over-approximation of
the set of pairs (s, u), such that every c-input leads to a R;;-state, or otherwise
spoken: if we identify that ' ¢ R;_1 and for some ¢, we have ®;(s,u,c) = s', then
(s,u) should be removed from U;. Finally, we also maintain a state set W, which
is an over-approximation of the states winning for the controller. Those two sets

184 A. Morgenstern, M. Gesell, and K. Schneider

(represented as formulas) help in getting rid of the universal quantification: The
query Ju.Ve. r(s,u,c) € Ri_1 is replaced by the query

SAT?[s AN ®dr A Rj,_4]

If the answer is unsat, then clearly, s is blocked at rank k. Otherwise, a successor
state s’ = &r(s,u,c) is computed for the inputs v and c. Instead of continuing
with the proof obligation (s’, k— 1), the controller might give a different control-
lable input ¢ with the corresponding successor t' = &r(s,u, c)ﬁ. However, this
successor state has to be a potential winning state. Hence, we probe

SAT?[s ANuANPp ANW]

If the query is unsat, then clearly s is a losing state for the controller and
we remove it from W. If s is the (losing) initial state, we can skip the rest
of our calculation and terminate with the result that the game is losing for the
controller. Otherwise, if the computed successor state t’ ¢ Ry_1, we remove (s, u)
from U; and continue with the proof obligation (s, k). Otherwise, we continue
with the proof obligation (¢, k — 1), but keep the proof obligation (s, k) in the
list of open obligations. Proceeding this way, we either find that sy is a losing
state (for the controller) or we strengthen some Ry, so that it is inductive in the
above sense.

The precise properties of the sets R;, U;, and W are:

— All R;,U; except Ry, Uy are conjunctions of clauses

— Ry =Uy=—Pp

- R, = RZ‘+1

— The clauses of R;;;1 are a subset of the clauses of R; for ¢ > 0.

— The clauses of U; 1 are a subset of the clauses of U; for i > 0.

— R;41 is an over-approximation of the pre-image of R;, hence R; 11 AP = R].

— U;41 is an over-approximation of the pre-image of R; for all c-combinations,
hence, /\0622 (Uit1 ANc NP7 = RY).

— R; = —sp, except for the last element Ry of the trace.

— W is a conjunction of clauses that is an over-approximation of the winning
positions for the controller. Hence W = P.

6.2 Notation

Let @ be a predicate over the game variables, let ¥ be a predicate over (next)-
state variables and let &1 denote the encoding of the transition relation. Given
cubes sg, ug over state and uncontrollable input variables, a call to the underlying
SAT solver will be expressed similarly as in [6]:

(isSat, s,u,c,t') < SAT?[so Aug AP NP ANP']

® Due to efficiency reasons, this probing for an alternative successor is only done if s’
is a state outside of W, i.e., a state known to be losing for the controller.

Solving Games Using Incremental Induction 185

This query asks whether the environment can choose an uncontrollable input
up in a state where sy and (a formula) @ holds, so that a state where ¥ holds
is reached in one step, i.e., can the system choose a controllable assignment to
make the game reach a state where ¥ holds?

The answer to this question is put into the Boolean variable isSat. If the an-
swer is positive, the satisfying assignment is put into (s, u, ¢,t’) with the obvious
meaning: s denotes the assignment to the state variables, u to the uncontrol-
lable variables, ¢ to the controllable variables, and ' to the next-state variables.
Modern SAT solvers not only compute a solution to SAT problems in case of
success, but also produce reasons for a failed SAT call. If the aforementioned
SAT-call fails, we assume that the SAT-solver computes subcubes s C sg and
u C ug of the given assumptions sp and ug (t’ contains no value in that case).

6.3 Auxiliary Functions

In order to present our algorithm, we need some auxiliary functions that are used
to update the sets R;, U; and W. Note that the only updates to one of those
sets is the removal of states which can be readily implemented using cubes and
clauses: Given a cube s representing a set of states or transitions, the clause —s
represents all states, resp. transitions outside of s. Hence, the implementation of
the following auxiliary functions are straightforward@:

— addLose(s) adds s as a losing state, i.e., updates W < W A —s

— addBlockedState(s, k) updates Ry < Ry A —s. Due to the syntactic contain-
ment restriction, we have to update also R; < R; A —s for every 0 < ¢ < k.

— addBlockedTransition(s, u, k) updates U; < U; A —s for every 0 < i < k.

— isLose(s) checks whether s is a losing state

— isBlocked(s, k) checks whether s is blocked at rank k

6.4 Recursively Blocking Cubes

In this section, we discuss the function recBlockCube given in Listing [Tl Given
a proof obligation (s, ko), this function checks whether the rank of s is greater
than kg, i.e., if sg is blocked at rank kg. The main internal data structure of this
function is a priority queue @ that stores open proof obligations that are needed
to decide (sg, ko). The following lemma states that the invariants about R;, U,
and W are maintained by our algorithm:

Lemma 1. If (s,k) is the minimal element of Q and the invariants of R;, U;
and W hold, then one of the following situations may occur:

1. s is correctly identified as blocking at rank k

5 For an efficient implementation of the algorithm, it is important that the functions
addLose, addBlockedState and addBlocked Transition learn strong facts, meaning small
clauses. For addBlockedState, we use the same literal removal procedure as given
in [6] while for addBlockedTransition, we use ternary simulation minimization, also
described in [6].

186 A. Morgenstern, M. Gesell, and K. Schneider

2. s is correctly identified as losing

3. For some u, (s,u) is correctly identified as a blocking transition at rank k
and (s, k) is again added as a proof obligation.

4. k>1, (s,k) and (t',k — 1) are added to Q for some successor t' of s

Listing 1.1. Recursively Blocking a Cube

1 recBlockCube (ProofObligation (so,ko)) {

2 PrioQ<ProofObligation> Q; — order from low to high ranks
3 Q.add((s,k));

4 while (Q.size()>0){

5 (s, k) + Q.popMin() ;

6 if (isLose(s))

7 if(s == sp) return isLose

8 else if (not isBlocked(s,k)) {

9 (isSat, s,u, c,t') « SAT?[s AU, A Pr A Rj_4]
10 if (isSat){
11 if((k == 1)or(isLose(t'))){
12 (isSat, s, u,c,t') + SAT?[s ANu A P AN W]
13 if (isSat){

14 if((k == 1)or(isBlocked(t', k — 1)))
15 addBlocked Transition(s,u,k) ;

16 else

17 Q.add(t',k — 1, Some(s,u,c));
18 Q.add(s, k,pre);

19
20 else
21 addLose(s) ;
22 if (s ==sp) return isLose;
23 }
24 else
25 Q.add(t',k — 1, Some(s, u,c))
26 Q.add(s, k, pre)
27 }
28 else
29 addBlockedState(s,k) ;
30
31 }
32 return ISGREATER

Proof. Let us first consider the case k = 1. In that case, Rx_1 = Ry = ~®p,
hence Rj_; represents the bad states. That means that if the SAT query in
line @ SAT?[s A Uy A D1 A R},_,] yields ‘not satisfiable’, then s is correctly
identified as blocking in line Otherwise, if it yields ‘satisfiable’, then state s
has a successor in the bad states, hence in the next line, isLose is true . If the
controller cannot avoid a losing position in line [2] SAT?[s Au A &7 A W'], then
clearly s is a losing position which is identified in line ZIl Otherwise, (s,u) is
correctly identified as a blocking transition in line Hence, for k = 1, one of
the first three cases occurs. Now assume that k£ > 1 holds. Clearly, if the checks
in line [or line 8 succeed, either case [M or B applies. Otherwise, the algorithm
proceeds to line @, and we can make the following case distinctions referring to
the situations of the above lemma:

Solving Games Using Incremental Induction 187

— Case[occurs, if the SAT query in line @ yields ‘not satisfiable’. Correctness
follows from the invariance of R; and U;.

— Case @] occurs, if the SAT query in line [0 yields ‘satisfiable’, ¢’ is a losing
position (line [[1l) and the SAT query in line [[2 yields ‘not satisfiable’. Cor-
rectness follows from the invariance of R; (for query in line [[2) and W (for
query in line [[2)).

— Case[loccurs, if the SAT query in line @ yields ‘satisfiable’, ¢’ is a losing po-
sition (line [[d]), and the SAT query in line [[2 yields ‘satisfiable’. Correctness
follows from the invariance of R;, since we have identified for (s, u) some ¢
such that the successor ¢’ is blocked at rank k — 1.

— Cased can occur if the SAT query in line [yields ‘satisfiable’ and if one of
the following cases occur:

e ¢’ is a losing position (line [[I]) and the SAT query in line [[2] yields ‘not
satisfiable’
e t’ is no losing position (line [IT))

The correctness of the algorithm is stated in the following theorem:

Theorem 1. Given a proof obligation (so, ko) for some ko > 0, the function
recBlockCube(sg, ko) returns ISGREATER, if the rank of s is greater than k
and isLose, if sg is a losing position for the controller. Function recBlockCube
moreover updates Ry, Uy and W such that this new information is stored, but
keeps the invariants of all sets R;,U; and W.

Proof. If the function returns through lines [or B2, we know that the invariants
of the sets are kept, so that sq is a losing position. Now note that the following
holds: @ cannot grow arbitrarily: We can prove by induction on k that the
following holds: If (s, k) is chosen as the minimal element of @, then one of the
first three cases of the previous lemma are encountered after a finite number of
steps. The base case k = 1 is already handled by the previous lemma. For the
induction step k — k + 1, note that if we have got a proof obligation (s,k +
1), then s has only a finite number of successor states ¢’ that may be added
as a proof obligation (¥,k) to Q. For all (#,k), we can apply the induction
hypothesis. Moreover, if we have processed all successor states (computed the
rank or identified some of them as losing), we can determine the rank of s or
show that s is losing. If the procedure returns with ISGREATER at the end,
previously @ must be emptied. Now note that the following holds: whenever
(80, ko) is chosen as the minimal element, it is either identified as losing or as
blocking, or added again as a proof obligation. Hence, if the while-loop is left,
the if-condition in line [§] must fail. O

6.5 Main Function

Our main function is given in Listing [[L2} It first checks whether the initial state
is a bad state. If so, it returns FALSE. Otherwise, our internal data structures
are initialized. It then recursively probes for kK = 1... whether the rank of the

188 A. Morgenstern, M. Gesell, and K. Schneider

Listing 1.2. Main Function

1 bool main() {

2 (isSat, , , ,)+ SAT?[so A —P]

3 if (isSat) return FALSE;

4 Rp < —P

5 R;+ 1, for all i>0 — meaning: R; =2"X

6 Uy < P for all $i>0$

7 U;1, for all i>0 — meaning : UiHZ(VXUVU)

8 clauses(L) < 0, for all i>0 — meaning : L« 2¥X
9 for (k=1 ..) do {

10 if (recBlockCube((sop,k) == isLose)) return FALSE
11 propagateBlockedStates (k) ;

12 if (clauses(R;)=clauses(R;+1)) for 1<i<k return TRUE
13 1

14}

initial state equals k. If this is the case, then clearly the controller loses the
game. Otherwise, the function propagateBlockedStates is called: if a state s was
identified as blocked at rank 4, but it is also blocked at rank i + 1, then the
corresponding clause —s is also added to R;4+1. Finally, as in the original IC3 [4]
or PDR algorithm [6], if we find that some adjacent levels R; and R;;1 share all
clauses, then R; is an inductive strengthening of —sg, hence the initial state is
not backwards reachable from the bad states. This is captured by the following
theorem:

Theorem 2. The function main given in listing [L.2 computes a solution of the
game: it returns TRUE if and only if the controller has a winning strategy.

Proof (sketch). Clearly, if the procedure returns FALSE, due to the correctness
of recBlockCube, we have shown that the initial state has a finite rank and
hence is a losing position. Otherwise, if it returns TRUE, then for some k, we
have R = Ry4+1 and since Ry is an over-approximation of the set computed
in the fixpoint iteration, the game is indeed safe. Finally, can k grow infinitely?
Clearly, if the check in the last line of main would be done semantically, then this
clearly could not happen. Ry11 would have to block at least one state less than
Ry;. Suppose therefore that Ry = Ry holds, but clauses(Ry)—-clauses(Ryt1).
During the propagation phase in propagateBlockedStates, all clauses of Ry will
be moved into Rx41 and they become syntactically equivalent. a

7 Experiments

We have implemented a prototype of our algorithm, called IC3G, in Microsoft’s
new language F# with an interface to Minisat 2.2 and evaluated different case
studies. We have also implemented a safety game algorithm with an interface to
the popular BDD-package CUDD in our framework. Unfortunately, the latter
performed so poorlyﬂ that we decided to rather compare with a tool from the

" It could solve only the smallest benchmarks AMBA2 and GenBuf2 with a space limit
of 2 GB, while the SAT-algorithm uses only a few MB.

Solving Games Using Incremental Induction 189

Listing 1.3. Propagating Blocked States

1 void propagateBlockedStates () {

2 for i =1 .. k

3 for each -s € clauses(R;) — s is blocked at rank k
4 (isSat, y s s)(—SAT?[S/\R,’L-+1/\U.5+1 /\@T]

5 if (not isSat) {

6 — s is also blocked at rank k+1

7 Ri+1 = Ri+1 AE]

8 }

9 }

literature. We therefore use the tool Marduk [2] which is a BDD-based imple-
mentation of the algorithm described in [3] for so-called GR(1)-specificationsd.
It is implemented in Python with an interface to the BDD-package CUDD.

The first case study is the GenBuf example which consists of a family of
buffers. The task is to generate a controller that handles in/output for those
buffers. The second example is ARM’s Advanced Microcontroller Bus Architec-
ture (AMBA) which defines the Advanced High performance Bus (AHB), an on-
chip communication standard that connects devices like processor cores, caches
and DMA arbiters. Here, we want to synthesize an arbiter for the bus. Both case
studies can be seen as standard benchmarks that have been used before to eval-
uate game solving algorithms [3I7/16] and can be parametrized by a parameter
that represents the number of clients served.

In [3], temporal logic specifications as well as deterministic w-automata are
given for these benchmarks. The games we build are obtained as the automaton
product of the deterministic automata, hence they contain fairness constraints.
To obtain a safety-game, we use a (simplified) version of the bounded approach
to synthesis described in [7JI5].

Model Marduk IC3G Model Marduk IC3G
GenBuf 2 0.08 0.5 Amba2 0.7 0.9
GenBuf4 0.15 1.3 Amba4 2.8 1.6
GenBuf8 1.22 2.5 Amba8 43.1 2.7
GenBufl6 1.68 4.1 Ambal6 92.5 7.2

Fig. 1. Experimental Results: Running time in seconds for computing the winner

All experiments have been run on an Intel Core 2 Duo with 2.66 Ghz, the IC3G
algorithm under Windows 7 and Marduk under Ubuntu Linux. The results of
our experiments are summarized in Figure [I] where we have listed the runtimes
in seconds of our tool IC3G and Marduk. On the GenBuf example, that can
be solved by both algorithms in a couple of seconds, our tool is slightly slower

® GR(1) specifications have the form A, p; — A; s with fairness constraints ¢, ;.
9 The runtime for Marduk only contains the time needed for strategy generation; the
output function generation is not counted.

190 A. Morgenstern, M. Gesell, and K. Schneider

than the BDD-based algorithm. This changes when we consider the AMBA case
study, which contains much more state variables than the GenBuf example. Here,
our algorithm is significantly faster. This is no surprise, since on big examples
with many variables, BDDs often suffer from memory requirements so that they
can no longer be efficiently handled.

The experiments we performed do however only consider one part of game
solving: we only compute the winner of a game, but we have not looked at
the problem of actually computing a winning strategy. Computing the winning
region of the controller is the first step in generating a winning strategy in
each algorithm for controller synthesis. Known (BDD-based) algorithms can be
easily adjusted to compute from the winning region a winning strategy. For
safety-games one can obtain a simple winning strategy from controller’s winning
region: all we have to do is to forbid every transition that leads from a winning
position to a non-winning position. However, since we only compute an over-
approximation for the winning states, our algorithm is not able to construct
a winning strategy in that straightforward way. However, we expect that it is
possible to modify our algorithm for that purpose so that we can also obtain a
winning strategy using incremental induction. This would then solve also the last
application domain we sketched for game solving: automatically constructing a
system from a temporal logic specification.

8 Conclusions

In the past, many improvements have been suggested to increase the performance
of model checking tools. Starting with symbolic model checking based on BDDs,
bounded model checking based on SAT solvers was used, and then interpolation-
based model checking even allowed to use SAT solvers for unbounded model
checking. Recently, incremental induction has been proposed as an alternative
to the so-far used fixpoint-based methods and it turned out to be much more ef-
ficient for model checking. Controller synthesis or equivalent problems like game
solving are similar to model checking, but have to face the additional problem
of alternating quantifiers which is no problem for BDD-based approaches, but
requires QBF solvers instead of SAT solvers otherwise. In this paper, we have
shown how we can use a simple SAT solver for game solving by following the
ideas of the recently introduced incremental induction procedures, and we expe-
rienced similar improvements concerning the efficiency of our tools. While the
experiments are still quite preliminary, they indicate that incremental induction
may be as useful for game solving as for model-checking.

Solving Games Using Incremental Induction 191

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic model checking without BDDs.
In: Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, pp. 193-207. Springer,
Heidelberg (1999)

Bloem, R., Cimatti, A., Greimel, K., Hofferek, G., Konighofer, R., Roveri, M.,
Schuppan, V., Seeber, R.: RATSY — A new requirements analysis tool with syn-
thesis. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174,
pp. 425-429. Springer, Heidelberg (2010)

Bloem, R., Galler, S., Jobstmann, B., Piterman, N., Pnueli, A., Weiglhofer,
M.: Specify, compile, run: Hardware from PSL. Electronic Notes in Theoretical
Computer Science (ENTCS), vol. 190, pp. 3-16 (2007)

Bradley, A.R.: SAT-based model checking without unrolling. In: Jhala, R.,
Schmidt, D. (eds.) VMCAI 2011. LNCS, vol. 6538, pp. 70-87. Springer,
Heidelberg (2011)

Bradley, A.R.: IC3 and beyond: Incremental, inductive verification. In:
Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 4-4. Springer,
Heidelberg (2012)

Eén, N., Mishchenko, A., Brayton, R.: Efficient implementation of property directed
reachability. In: Bjesse, P., Slobodov4, A. (eds.) Formal Methods in Computer-Aided
Design (FMCAD), pp. 125-134. IEEE Computer Society, Austin (2011)

Filiot, E., Jin, N., Raskin, J.-F.: Compositional algorithms for LTL synthesis. In:
Bouajjani, A., Chin, W.-N. (eds.) ATVA 2010. LNCS, vol. 6252, pp. 112-127.
Springer, Heidelberg (2010)

Grumberg, O., Schuster, A., Yadgar, A.: Memory efficient all-solutions SAT solver
and its application for reachability analysis. In: Hu, A.J., Martin, A.K. (eds.)
FMCAD 2004. LNCS, vol. 3312, pp. 275-289. Springer, Heidelberg (2004)
Gradel, E., Thomas, W., Wilke, T. (eds.): Automata, Logics, and Infinite Games.
LNCS, vol. 2500. Springer, Heidelberg (2002)

Janota, M., Marques-Silva, J.: Abstraction-based algorithm for 2QBF. In: Sakallah,
K.A., Simon, L. (eds.) SAT 2011. LNCS, vol. 6695, pp. 230-244. Springer,
Heidelberg (2011)

Jobstmann, B.: Applications and Optimizations for LTL Synthesis. PhD thesis,
IST — Institute for Software Technology, TU Graz, Graz, Austria (February 2007)
McMillan, K.L.: Interpolation and SAT-based model checking. In: Hunt Jr., W.A_,
Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 1-13. Springer, Heidelberg
(2003)

Nopper, T., Scholl, C.: Approximate symbolic model checking for incomplete
designs. In: Hu, A.J.,, Martin, A.K. (eds.) FMCAD 2004. LNCS, vol. 3312,
pp. 290-305. Springer, Heidelberg (2004)

Rosner, R.: Modular Synthesis of Reactive Systems. PhD thesis, The Weizmann
Institute of Science, Israel, Rehovot, Israel (1992)

Schewe, S., Finkbeiner, B.: Bounded synthesis. In: Namjoshi, K.S., Yoneda, T.,
Higashino, T., Okamura, Y. (eds.) ATVA 2007. LNCS, vol. 4762, pp. 474-488.
Springer, Heidelberg (2007)

Sohail, S., Somenzi, F., Ravi, K.: A hybrid algorithm for LTL games. In:
Logozzo, F., Peled, D.A., Zuck, L.D. (eds.) VMCAI 2008. LNCS, vol. 4905,
pp. 309-323. Springer, Heidelberg (2008)

Somenzi, F.: Binary decision diagrams. In: Broy, M., Steinbriiggen, R. (eds.)
Calculational System Design. NATO Science Series F: Computer and Systems
Sciences, vol. 173, pp. 303-366. IOS Press (1999)

Model-Checking Software Library API Usage Rules*

Fu Song and Tayssir Touili

LIAFA, CNRS and Univ. Paris Diderot, France
{song, touili}@liafa.univ-paris-diderot.fr

Abstract. Modern software increasingly relies on using libraries which are ac-
cessed via Application Programming Interfaces (APIs). Libraries usually impose
constraints on how API functions can be used (API usage rules) and programmers
have to obey these API usage rules. However, API usage rules often are not well-
documented or documented informally. In this work, we show how to use the
SCTPL logic to precisely specify API usage rules in libraries, where SCTPL can
be seen as an extension of the branching-time temporal logic CTL with variables,
quantifiers, and predicates over the stack. This allows library providers to for-
mally describe API usage rules without knowing how their libraries will be used
by programmers. We also propose an approach to automatically check whether
programs using libraries violate or not the corresponding API usage rules. Our ap-
proach consists in modeling programs as pushdown systems (PDSs), and check-
ing API usage rules on programs using SCTPL model checking for PDSs. To
make the model-checking procedure more efficient, we propose an abstraction
that reduces drastically the size of the program model. Moreover, we characterize
a sub-logic rSCTPL of SCTPL preserved by the abstraction. rSCTPL is sufficient
to precisely specify all the API usage rules we met. We implemented our tech-
niques in a tool and applied it to check several API usage rules. Our tool detected
several previously unknown errors in well-known programs, such as Nssl, Verbs,
Acacia+, Walksat and Getafix. Our experimental results are encouraging.

1 Introduction

Most modern software increasingly relies on using libraries and frameworks provided
by organizations in order to shorten time to market. Libraries or frameworks are ac-
cessed via Application Programming Interfaces (APIs) which are sets of library func-
tions (called API functions) and usually impose constraints (API usage rules) on how
API functions can be used. Programmers have to obey these constraints when calling
API functions. However, most of API usage rules are not well-documented or docu-
mented informally in the API documentation. It is easy to introduce bugs using API
functions. So, it is important to formally describe and automatically check API usage
rules.

Many works addressed this problem [15[19,1222412611281130,132H36.138.144./45.47]].
However, their approaches either cannot describe API usage rules in a precise manner
or cannot automatically check API usage rules. In this paper, we propose a novel tech-
nique to specify and check API usage rules without knowing how API functions will be

* Work partially funded by ANR grant ANR-08-SEGI-006.

E.B. Johnsen and L. Petre (Eds.): IFM 2013, LNCS 7940, pp. 192-07] 2013.
(© Springer-Verlag Berlin Heidelberg 2013

Model-Checking Software Library API Usage Rules 193

used by programmers. Our approach consists of (1) modeling programs as pushdown
systems (PDSs), since PDSs are a natural model of sequential programs [23] (the stack
of PDSs stores the calling procedures which allows us to check context-sensitive API
usage rules), (2) specifying in a precise manner API usage rules in the Stack Computa-
tion Tree Predicate Logic (SCTPL) [41] (indeed, SCTPL can describe several API usage
rules that cannot be expressed by the existing works), and (3) automatically checking
whether programs violate or not API usage rules by SCTPL model checking for PDSs.
SCTPL can be seen as an extension of the CTPL logic with predicates over the stack
content. CTPL [29] is an extension of the Computation Tree Logic (CTL) with vari-
ables and quantifiers. In CTPL, propositions can be predicates of the form p(x, ..., x,),
where the x;’s are free variables or constants. Free variables can get their values from
a finite domain and be universally or existentially quantified. CTPL can specify API
usage rules without knowing how API functions will
be used by programmers. E.g., consider the file opera- |n, : FILE* f;=fopen(“t1”,“w”);
tion API usage rule “The file should be closed by call- |72 : FILE* fo=fopen(*t2”,“w”);
ing the API function fclose whenever this file is opened 23 E%JI“E)*H{ Z:fol)ell("t37’ W)
by calling fopen”. Closing opened files is important. In- ni fcllose()
deed, long time running programs, such as web servers, |ng : fclose(fs);
will use many resources if opened files are not closed.
This API usage rule can be expressed in CTL as ¢ =
AG(fopen = EF fclose) (note that the formula | = AG(fopen = AF fclose) is
incorrect, if fopen returns a null file pointer, then fclose should not be called). However,
¥ cannot detect the bug in Figure 2] where the file pointed to by f> is never closed.
This is due to the fact that we cannot specify the relation between the return value of
fopen and the parameter of fclose. To detect this bug, we have to specify this rule as
Yo = AG(/\?:](f,- = fopen = EF fclose(f;))). However, this formula is too special to
specify this rule in library, since e.g., replacing the variable fi by f] breaks i,. Using
CTPL, we can specify this rule as 3 = VxVyVz AG(x = fopen(y, z) = EF fclose(x))
stating that whenever a file is opened and pointed to by some variable x, it should be

closed in the future.
However, CTPL cannot specify properties about the calling procedures. Being able

to express such properties is important. E.g., consider an API usage rule expressing
that “Calling a function proc; in some procedure proc must be followed by a call to
the function proc, before the procedure proc returns”. This API usage rule cannot be
specified in CTPL. To overcome this problem, we use the SCTPL logic [40,41] to
precisely describe API usage rules. SCTPL extends CTPL by predicates over the stack.
Such predicates are given by regular expressions over the stack alphabet and some free

Fig. 2. File Operations

! Note that i3 cannot express the point that fclose is only called when fopen returns a pointer to
the file. Indeed, fopen returns a null pointer when the file does not exist. In this case, calling
fclose(f3) induces an error. To express such a point, we introduce an additional predicate Test(x)
which holds at some control point n iff x is tested at the control point n. Now, we can refine the
rule into Yy, = VxVyVz AG(x = fopen(y, z7) = AF(Test(x) ANEXAF fclose(x))). Y, states that
whenever x = fopen is made, one has to check the return value x (i.e., Test(x)). After this, the
file has to be closed in all the future paths. The motivation of using Test(x) is that we cannot
know how the return value will be checked. Thus, we coarsely specify that the return value is
checked.

194 F. Song and T. Touili

variables (which can also be existentially and universally quantified). Using SCTPL, the
above rule can be specified as YI AG((proc; A T'll™*) = AF(procy A I'*IT™)), where
[Ir* and IT'*Ir* are regular predicates. The subformula (proc, A I'll™) expresses that
proc is called inside some procedure proc whose return address is / (since the return
addresses of the called procedures are put into the stack when executing the program.).
The above formula states that whenever proc is called in some procedure proc whose
return address is [(ensured by I'lI™*), a function call to proc, should be made where
the return address [is still in the stack, i.e., before the procedure proc returns (this is
ensured by I""II™*). Note that, in our modeling, the topmost symbol of the stack of the
PDS stores the current control point, the rest of the stack stores the return addresses of
the calling procedures, i.e., the procedures that have not returned yet.

It is shown in [41] that SCTPL model checking for PDSs is decidable. Thus, we
can automatically check whether a program violates or not API usage rules by SCTPL
model-checking for PDSs. To make the verification of API usage rules more efficient,
we introduce the procedure-cutting abstraction, which is an abstraction that drastically
reduces the size of the program model by removing some procedures that do not use
the API functions specified in the SCTPL formula. We also consider rSCTPL, a sub-
logic of SCTPL and show that the procedure-cutting abstraction preserves all rSCTPL
formulas when the removed procedures are infinite execution free. rSCTPL is sufficient
to express all the API usage rules we met. Moreover, rSCTPL can describe all API usage
rules we met. Our abstraction allowed us to apply our techniques to large programs.

The main contributions of this paper are:

1. We propose a novel approach to precisely specify API usage rules using SCTPL.
SCTPL allows library providers to formally describe API usage rules when imple-
menting the libraries.

2. We can automatically check programs against API usage rules by SCTPL model-
checking. Our techniques also allow program developers to automatically verify
API usage rules of their programs without any additional inputs nor environment
abstractions.

3. We propose a procedure-cutting abstraction. We show that this abstraction pre-
serves all rSCTPL formulas when the cut procedures are infinite execution free.
Our abstraction reduces drastically the size of the program model, which makes
API usage rules verification more efficient.

4. We implemented our techniques in a tool and applied it to check several API usage
rules on several open source programs. Our tool was able to find several unknown
bugs in some well-known open source programs, such as Nssl, Verbs, Acacia+,
Walksat and Getafix.

Outline. Section 2] gives a formal definition of PDSs. Section Bl recalls the definition
of SCTPL, and shows how to precisely specify API usage rules in SCTPL. Section
H] describes the procedure-cutting abstraction and the sub-logic rSCTPL of SCTPL.
Section Al discusses the experimental results. The related work is given in Section[6l

Model-Checking Software Library API Usage Rules 195

2 Formal Model: Pushdown Systems

In this section, we recall the definition of pushdown systems. We use the approach
of [23]] to model a sequential program as a pushdown system.

A Pushdown System (PDS) is a tuple P = (P, I, 4), where P is a finite set of control
locations, I is the stack alphabet, 4 C (P X I") X (PxI"*) is a finite set of transition rules.
A configuration {p, w) of P is an element of P x I'*. We write (p,y) — (g, w) instead
of ((p,7y),(g,w)) € 4. The successor relation ~»pC (P X I'*) X (P X I'") is defined as
follows: if (p,y) — (g, w), then (p, yw') ~p {q, ww'’) for every w’ € I'*. A path of the
PDS is a sequence of configurations cjc;... such that c;;| is an immediate successor of
the configuration ¢;, i.e., ¢; ~¢ ciy1, for every i > 1.

3 API Usage Rules Specification

In this section, we recall the definition of the Stack Computation Tree Predicate Logic
(SCTPL) [41], and show how to specify API usage rules in SCTPL.

3.1 Environments, Predicates and Regular Variable Expressions

Hereafter, we fix the following notations. Let X = {x|, x, ...} be a finite set of variables
ranging over a finite domain D. Let B : X U D — D be an environment function
that assigns a value v € D to each variable x € X and such that B(v) = v for every
v € D. B[x « v] denotes the environment function such that B[x <« v](x) = v and
B[x < v](y) = B(y) for every y # x. Let B be the set of all the environment functions.

Let AP be a finite set of atomic propositions, APy be a finite set of atomic predicates
in the form of a(ay, ..., @;,) such thata € AP, a; € X U D forevery 1 <i < m, and APy
be a finite set of atomic predicates of the form a(ay, ..., @) such that a € AP, a; € D
forevery 1 <i<m.

Given a PDS P = (P, I, 4), let R be a finite set of regular variable expressions over
XUTlgivenby:e::i=0 | € | ac XUI | e+e | e-e | €.

The language L(e) of a regular variable expression e is a subset of P X I"* x B defined
inductively as follows: L(0) = 0; L(e) = {({p,€),B) | p € P,B € B}; L(x), where x € X
is the set {({p,y),B) | p € P,y € I,B € B : B(x) = y}; L(y), where vy € I is the set
{(p,7),B) | p € P.B € B); L(e| + e3) = L(e1) U L(ez); Lley - e2) = {({p, wiw2), B) |
(p,w1),B) € L(e1); ({p,w2),B) € L(e2)}; and L(e*) = {({p,w),B) | B€ B andw =
W1 Wy, YL <0< m,((p,wi), B) € L(e)}. E.g., ({p,Y1Y2Y2), B) is an element of
L(y1x*) when B(x) = vy,.

3.2 Stack Computation Tree Predicate Logic

A SCTPL formula is a CTL formula where predicates and regular variable expres-
sions are used as atomic propositions and variables can be quantified. Regular variable
expressions are used to express predicates on the stack content of the PDS. More pre-
cisely, the set of SCTPL formulas is given by (where x € X, a(xy, ..., x,) € APx and
e eR):

pu=a(xy, .., xm)lel-pleAp|Vxe | EXe | EGy | E[¢Ug].

196 F. Song and T. Touili

Let ¢ be a SCTPL formula. The closure cl(¢) denotes the set of all the subformulas of
@ including ¢.

GivenaPDS P = (P, A)st. T C D, let 1 : APy — 2 be a labeling function that
assigns a set of stack symbols to a predicate. Let ¢ € P X I'* be a configuration of P.
P satisfies a SCTPL formula ¢ in ¢, denoted by ¢ |=, i, iff there exists an environment
Be8Bstc |=§ Y, where ¢ |=f i is defined by induction as follows:

- é B a(xy, ..., xp) iff n € Aa(B(xy), ..., B(x,))) and ¢ = (p, nw).

- é e iff (¢, B) € L(e).

- Q,D]/\lﬂzlffc':Blﬁ] andclz/l Y.

-c |=g Yxyiff Yve D, ¢ |=B[X‘_V] .

-c ':é - iff ¢ I;é/l W

- 4 EX ¢ iff there exists a successor ¢’ of ¢ s.t. ¢/ I:B v

- ¢ | E[y1Uy] iff there exists a path 7 = cocy... of P w1th co=cs.t.Ai >0, ¢; I:B
wzand\v’0<]<1 cj |=A Y.

- ¢ EB EGy iff there exists a path 7 = ¢ocy... of P with ¢o = ¢ s.t. Vi > 0: ¢; E5 .

Intuitively, ¢ |=§ ¥ holds iff the configuration c satisfies ¢ under the environment B.
We will freely use the following abbreviations: AXy = =EX(-y), EFy = E[trueUy],
AGY = —=EF (), AFy = =EG(—y), A[Y1 Uyl = =E[-U(=¢1 A=) | A —EG—y,
A[¢]R¢2] = _|E[_|¢]U_|¢2], E[Q,D]Rlﬂz] = ﬂA[“lﬁ]U“lﬂz], and 3)61,0 = —-Vx—up.

Theorem 1. [4]]] SCTPL model-checking for PDSs is decidable.

3.3 Extracting Predicates for API Specifications

API usage rules often state properties concerning the order of API function calls and
return value tests. Indeed, usually, after making a call to an API function, one has to
check whether the call was successful. For example, when fopen is called to open a
file ¢/, one has to make sure that the call was successful, i.e., that the file ¢/ exists
(as done in Figure Pl Line ny). Thus, to check API usage rules, we need to extract
predicates about API function calls and return value tests. To do this, for every API
function call y = f(py, ..., pm) at a control point n where y denotes the return value@ and
for every 1 < i < m, p; denotes the i” parameter of the function f, we add the predicate
f(p1s..., pm>y) to APg and associate this predicate to the control point n (i.e., we let
n € A(f(pi1,..., Pm»y)))- By abuse of notation, such predicates f(py, ..., pm,y) Will also
be denoted by y = f(p1, ..., Pm)-

For every boolean expression b in a conditional statement (e.g., if-then-else, switch-
case) at a control point z s.t. y is used in b and y is a return value of some function
call, we add the predicate Test(y) in APy and associate this predicate to n (i.e., we let
n € ATest(y))).

Intuitively, for every w € I'*, a configuration (sy, nw) satisfies the atomic predicate o
(.e.,oisy = f(pi1,..., pm) or Test(x)) iff o is associated to n (i.e., n € A(0)). W.lo.g.,
we suppose that the return value of some API function is immediately checked in the
same procedure where the API function is called. This assumption will not restrict the
usefulness of the libraries, and it is recommended to check the return value immediately
after the function call.

2 W.l.o.g., we assume that each function call has a return value assigned to some variable.

Model-Checking Software Library API Usage Rules 197

A(f1 = fopen(“t1”, “w”)) = {n1}|[(s0,n1) <= (S0, foonz)
A f2 = fopen(“ta”, “ ”)) = {na}||(s0,n2) = (s0, foons)
A fs = fopen(* f3 ’, “w”)) = {ns}||(s0,n3) = (so, foona)
)\(Test(fl)) ={n4} (s0,m4) = (s0,m5)

A fclose(f1)) = {ns} (s0,n5) <= (s0, fcone)
A (s0,n6) — §so,f(:0n7>

felose(fs)) = {ns}
(a)
Fig. 2. (a) The labeling function A and (b) Transition rules 4

3.4 An Illustrating Example

To illustrate our approach, we show how to specify the API usage rules for the GNU
socket library.

Description of the Socket Library The socket library implements a generalized in-
terprocess communication channel. It provides TCP and UDP Protocols. As shown in
Figure[3] a server-side program using the TCP Protocol should first create a socket s by
calling socket with SOCK STREAM as second parameter, then bind s to some address
by calling bind and listen to the address by calling listen. When the server receives a
connection request, it will create a new socket ns by calling accept. Then, the server
can communicate with the client by calling send and recv via the socket ns. Finally, s
and ns should be destroyed by calling close.

Figure [shows a typical application of the TCP Protocol at the client-side. It con-
nects to a server by calling connect after creating the socket s. Then, it can communicate
with the server by calling send and recv via the socket s. Finally, s should be destroyed
by calling close.

The server-side program using the UDP Protocol should create a socket s by calling
socket with SOCK DGRAM as second parameter as shown in Figure 3l After that, it
should bind s to some address by calling bind. Then, it can communicate with a client
by calling recvfrom and sendto via s. Finally, the socket s should be closed by calling
close. The client-side program using the UDP Protocol can communicate with a server
by calling recvfrom and sendto via a socket s after its creation. Figure [6] is a typical
implementation of the UDP Protocol at the client-side.

1 int s, ¢, ns;
if ((s=socket(AF INET,SOCK STREAM,0))==-1)
return ;
if (bind(s,&s addr,len)==-1)

2
3

4

5 {close(s); return;} int s;
6

7

8

1
if(listen(s,5)==—1){close(s); return;} 2 if ((s=socket(AF INET,SOCK STREAM,
while (1){ 3 0))==-1)

ns=accept(s,&c addr, &size); 4 return ;
9 do{ 5 ...
10 recv(ns,data ,256,0); 6 connect(s,&s addr,len)
1 7 do{
12 send(ns,data ,256,0); 8 send (s, data ,256,0);
13 if (condl){close(ns); return;} 9
14 }while (cond2) 10 recv(s,data ,256,0);
15 } 11 }while (cond3)
16 close(s); 12 close(s);

Fig. 3. TCP Server-side Fig. 4. TCP Client-side

198 F. Song and T. Touili

1 1nt s; int s;
if ((s=socket(AF INET, SOCK DGRAM,0))==-1) if ((s=socket(AF INET,SOCK DGRAM,
return ; 0))==-1)
if (bind (s,&s addr,sizeof(s addr))==-1) return ;
{ close(s); return; } do(1){

do{
recvfrom (s, data ,256,0,&c addr, len);
sendto (s, data,256,0,&c addr,len);

9 }while (cond4)

10 close(s);

Fig. 5. UDP Server-side Fig. 6. UDP Client-side

sendto (s, data ,256,0,&addr, len);

0 N U AW

recvfrom (s, data ,256,0,&addr, len);
}while (cond5)
close(s);

S © ® a9 U AW —

Specifying the Socket Library API Usage Rules in SCTPL. Table [1l shows some
SCTPL formulas describing some API usage rules of the socket library. Let us consider
the API usage rule “The return value of socket should be checked immediately after the
call to socket is made, and after a socket is created, this socket should be destroyed in all
the future paths”. We can specify this rule by the SCTPL formula | as shown in Table
[l r, states that whenever the call to socket is made in a procedure proc whose return
address is [(the regular predicate I'l™* ensures that the return address of the procedure
proc is [), the return value stored in the variable y should be eventually checked in all
the future paths (i.e., Test(y)) inside this procedure (this is ensured by the fact that the
stack is still of the form I"II™* when the test of y is made). After this test, the socket y
should be eventually closed in all the future paths (this is ensured by EXAF close(y)).
The other rules in Table [l are explained as follows.

The formula r, states that whenever bind is called to bind the socket to some address
in a procedure whose return address is [/, the user has to check whether the binding is
correct before this procedure returns. r3 and r4 are similar to r,.

The formula rs specifies that a socket y should be created (y = socket(—, —, —)) prior
to binding the socket y to some address (bind(y, —, —)), where — matches any constant
(i.e., a variable quantified by V). r¢ is similar to rs.

The formula r; states that any occurrence of connect(y, —) should be preceded by an
occurrence of y = socket(—, S OCK STREAM, —) using the TCP Protocol.

Table 1. A set of API usage rules of the Socket Library extracted from the Socket library manual

No. Rule
r Vy VI AG ((y = socket(~,—, =) ATII™) = AF (Test(y) ATII* A EX AF close(y)))
r Yy Y1 AG (y = bind(-, —, =) ATl => AF (Test(y) A [Il™))
r3 Yy VI AG (y = listen(—, =) AT'lI™ = AF (Test(y) ATI™))
Ty Yy VI AG (y = connect(—, —, =) ATl = AF (Test(y) A ')
rs Yy Aly = socket(—, —,—) R =bind(y, —, -)]
re Yy Allisten(y, —) R —accept(y, —, -)]
7 Yy Aly = socket(—,S OCK STREAM,) R —connect(y, —,—)]
rs Yy A[(y = socket(—,S OCK STREAM,—) A A[bind(y, -, —) R —listen(y,—)]) R =listen(y, —)]
9 Yy Alconnect(y, —,—) V'y = accept(—,—,—) R =send(y, —, —, —)]
10 Vy Alconnect(y,—,—) V y = accept(—, —, =) R =recv(y,—, —,)]
ri AG Vy (y = accept(—,—,—) = AF close(y))
ri2 Yy Aly = socket(—,S OCK DGRAM, -) R —(sendto(y, —,—,—,—,—) V recvfrom(y,—,—,—,—, —))]

3 Yy Alsendto(y, —, —, —,—,—) V bind(y, —, —) R =recvfrom(y,—, —, —,—,)]

Model-Checking Software Library API Usage Rules 199

The formula rg specifies that any occurrence of listening to a socket y (listen(y, —))
should be preceded by an occurrence of creating the socket y using the TCP Proto-
col (y = socket(—,S OCK STREAM, —)), and the socket y should be bound to some
address (bind(y, —, —)) before listening.

The formula r9 states that before sending a data (send(y,—,—,—)) via a socket
v, the socket y should either be connected to the target server at the client-side (connect
(¥, —, —)) or y should be the socket created by y = accept(—, —, —) at the server-side. rg
is similar.

The formula | specifies that the new socket created by y = accept(—, —, —) should
be eventually closed (close(y)) in all the future paths.

The formula rj, states that the socket should be created using the UDP Protocol

(y = socket(—,S OCK DGRAM, —)) prior to sending (sendto(y, —, —, —, —)) or receiving
(recvfrom (y,—,—, —, —)) some data using the UDP Protocol.

The formula r3 specifies that before receiving (recvfrom(y, —, —, —, —)) some data
using the UDP Protocol, one has to send some data (sendto(y, —, —, —, —)) to the server at
the client-side or bind (bind(y, —, —)) the socket to some address at the server-side. Since

using the UDP protocol, no connection is created, the client sends data by specifying
the target address in the third parameter of the function sendto. After this, the client can
receive data from the server. The server can send data only after receiving the client
address from some client.

Checking the API Usage Rules. Consider the program in Figure Bl If cond! is true
(Fig. 3t line 13), the socket s will never be closed. The SCTPL formula r; can detect
this bug by model-checking the program against r;. Consider the program in Figure [l
if the client managed to connect to a server which only supports the UDP Protocol as
in Figure[3] the connection at line 5 of Figure [will fail, then sending (Figure @ line 7)
or receiving (Figure[4} line 9) some data via the socket s will induce an error. This error
can be detected by checking the SCTPL formula r4.

4 SCTPL and The Procedure-Cutting Abstraction

To make API usage rules verification more efficient, it is important to model programs
by PDSs having small size. We propose in this section to use the procedure-cutting
abstraction to drastically reduce the size of the program model. The procedure-cutting
abstraction removes all the procedures whose runs don’t call any API function specified
in the given SCTPL formula. We characterize a sub-logic rfSCTPL of SCTPL that is
sufficient to specify all the API usage rules that we met, and we show that the procedure-
cutting abstraction preserves all rSCTPL formulas.

4.1 Procedure-Cutting Abstraction

Let M be a program that consists of a finite set of procedures Proc = {proc; | 1 <
i < m}. Each procedure proc; will generate transition rules in the PDS model. Imagine
there exists some procedure proc; whose runs do not call any API function specified in
the given SCTPL formula y, then removing proc; will not change the satisfiability of

200 F. Song and T. Touili

. This means that the procedure proc; can be cut. Cutting such procedure proc; will
drastically reduce the size of the PDS model. We call this procedure-cutting abstraction.
From the PDS’s point of view, a function call statement y = procj(...) at a control
point n (suppose n’ is the next control point of n) is represented by the transition rule
o = (S0, 1)y — {50, epmcjn’) where e, denotes the entry control point of the procedure
proc;. Whenever the procedure proc; can be cut, we will add the transition rule p’ =
(s0,n) <= (sp,n’) instead of p. The transition rule p’ expresses that the run from n will
immediately move to n” without entering the procedure proc;. By doing the procedure-
cutting abstraction, the size of the stack alphabet and transition rules will be drastically
reduced.

Formally, to compute the abstracted program, we proceed as follows. Let M be a
program, a call graph of Mis a tuple G = (Proc, E, procy), where Proc is a finite set of
nodes denoting the procedure names of M; E C ProcX Proc is a finite set of edges such
that (proc;, proc;) € E, denoted by proc; — proc;, iff proc; is called in the procedure
proc;; procy € Proc is the initial node corresponding to the entry procedure (usually,
the main function) of M. A node proc; can reach the node proc; iff there exists a set
of edges procy, — procy,, ..., procy, — procy,,, in E such that k; = i and k41 = J.
Let Op(¥) = {proc € AP | Aproc(x,...,xn) € cl(¥) A proc # Test} denote the set
of atomic propositions (i.e., API function names) used in the SCTPL formula ¢ except
the additional atomic proposition 7est. The procedure-cutting abstraction computes the
abstracted program M’ by (1) removing all the procedures proc € Proc s.t. the node
proc cannot reach any node of Op(y) in G (i.e., the run of proc will not call any function
in Op(¥)), and (2) replacing each function call y = proc(py, ..., pn) by a skip statement,
i.e., no operation statement.

Proposition 1. Given a program M and a SCTPL formula , we can compute the
abstracted program M’ in linear time.

4.2 The rSCTPL Logic

The procedure-cutting abstraction can drastically reduce the size of the program model.
However, it cannot preserve all SCTPL formulas. Indeed, formulas using the X oper-
ator without any restriction are not preserved, since the procedure-cutting abstraction
removes procedures in the programs and replaces some function calls by skip. However,
formulas of the form a(xy, ..., x,,) A EX¢ and a(xy, ..., x,,) A AX¢ are preserved when
¢ is a regular predicate e or its negation —e or a SCTPL formula using the X operator
as in the above form. Indeed, if the predicate a(xy, ..., x,,) appearing in a SCTPL for-
mula (a function call or a return value test) is made in some procedure proc, then all
the procedures including proc whose runs can reach proc will not be removed by the
procedure-cutting abstraction. This implies that the next control point of a(x, ..., X,)
will not be removed and the stack content at the next control point in the abstracted
program M’ is the same as in M.

Moreover, formulas using regular variable expressions (e.g. e, —e) without any re-
striction are not preserved. Indeed, control points in M satisfying e or —e may be re-
moved by the procedure-cutting abstraction. Thus, the runs of M’ cannot reach these
control points. However, formulas of the form a(xy, ..., x,,) A e or a(xy, ..., X)) A —e

Model-Checking Software Library API Usage Rules 201

are preserved. Since all the procedures which can reach the procedure proc where
a(xy, ..., Xp) is made are not removed, each control point in M satisfying a(xy, ..., X,)
has the same calling procedures (i.e., stack content) as in M’. Then, a configuration of
M satisfies a(xy, ..., x,,) A e iff this configuration of M’ satisfies a(xy, ..., x,,) A e.

Based on the above observations, we define rSCTPL as follows (where a(xy, ..., X,,) €
APx,x€ X,and e € R):

@ i=a(xt, ..., X)) | malxt, . xm) @A @l Ve | Vx| Ax e
| AlpUy] | E[¢Ug] | AlpRy] | E[¢Re] | a(xy, ..., Xm) A
Y i=e|-e|EXe| AXe | EX-e | AX-e | EXp | AXp

Intuitively, rfSCTPL is a sub-logic of SCTPL, where (1) the next time operator X is
used only to specify that a rSCTPL formula i or a regular predicate e or its negation —e
holds immediately after an atomic predicate holds (i.e., an API function call is made or
a return value is tested), and (2) regular predicates and their negations are conjuncted
with atomic predicates. rSCTPL is sufficient to specify all the API usage rules we met.

However, the procedure-cutting abstraction does not preserve rSCTPL formulas when

a cut procedure has an infinite execution. For instance, let n; s n, be an edge s.t. stmt
is a function call y = f(py, ..., pn) and the procedure f has an infinite execution. Sup-
pose we replace this function call by skip. If n; and all the control locations of f don’t
satisfy the atomic predicate a (i.e., API function calls or return value test), while n,
satisfies a, then the configuration (sg, n;w) of M satisfies EG—a, but (s, njw) does not
satisfy EG—a in M’ due to the removal of the infinite execution. On the other hand, if n,
and all the control locations of f do not satisfy the atomic predicate a, while n, satisfies
the atomic predicate b, then the configuration (sg, njw) of M’ satisfies A[-aUb] due to
the removal of the infinite execution, while (sg, njw) does not satisfy A[-aUb] in M
(since b is never true in the infinite execution). We can show the following theorem.

Theorem 2. Let be a rSCTPL formula. Let M be a program and M’ be the program
obtained from M by applying the procedure-cutting abstraction. Let P (resp. P’) be the
PDS modeling the program M (resp. M’). If all the removed procedures are infinite
execution free, then P satisfies y iff P’ satisfies .

5 Experiments

We implemented our techniques in a tool for API usage rules verification. Given a
program M using some libraries which are equipped with the API usage rules specified
in rfSCTPL, our tool automatically answers either Yes or No, depending on whether the
program violates the API usage rules or not.

In our implementation, we use goto-cc [31]] to parse ANSI-C programs into goto-
cc binary programs. We implemented a translator translating goto-cc binary programs
into pushdown systems and outputs the required predicates as discussed in Section[3.3]
We use the SCTPL model-checker of [41]] as engine. In our experiments, we consider
several API usage rules: the socket library API usage rules and the file operation usage
rules. We checked several open-source C programs against these API usage rules. All
the experiments were run on a Linux platform (Fedora 13) with a 2.4GHz CPU and 2GB

202 F. Song and T. Touili

of memory. The time limit is fixed to 30 minutes. Our tool detected several previously
unknown errors in some well-known open source programs. The run time consists of
the time spent for parsing goto-cc binary programs and model-checking. It excludes
the time for translating ANSI-C programs into goto-cc binary programs. We also run
our tool without considering the procedure-cutting abstraction. We observed that the
procedure-cutting abstraction significantly speeds up the analysis.

5.1 Checking The Socket Library API Usage Rules

To check the socket library API usage rules shown in Table [Tl we checked seven open-
source programs from SourceForge [[12] which are written in C and use the socket
library, and four generic tutorial socket programs written by Seshadri [37].

The benchmark contains the following programs. Comserial is a program that helps
turn console application into a web based service, by reading from TCP connections
and providing commands from each connection to applications through a socket. Mr-
ChaTTY is a chat program that allows users to chat via UNIX terminals through sock-
ets. Mrhttpd is a web server. Nerv is a common socket server. Nssl is a netcat-like
program with SSL support. Pop3client is a mail client which reads mail in a console
and connects to servers using POP3 Protocol. Ser2nets is a program allowing network
connections to remote serial ports. TCPC, TCPS, UDPC and UDPS are a TCP client,
a TCP server, a UDP client and a UDP server tutorial programs, respectively.

Table [2] shows the results of checking the socket library API usage rules with the
procedure-cutting abstraction. The row #LOC gives the number of lines of the program.
For 1 <i < 13, the row r; depicts the results of checking the API usage rule r; against
these programs, where the rows Time(s) and Mem(M B) give the time consumption in
seconds and memory consumption in MB, respectively. The result Proved denotes that
the program satisfies the corresponding API usage rule, FA denotes false alarm and Bug
denotes a real bug. 0.0.m. (resp. 0.0.t.) means run out of memory (resp. time).

We can see from Table[2] there are 22 alarms including Bug and FA. We found that
12 of these alarms are real bugs and the others are false alarms. These false alarms arose
from the fact that we abstract away the data. We found 12 real errors in these programs.
For instance, the program Comserial does not call listen before calling accept in the
file passwdserver.c when argc is 1. Moveover, most of these programs will not close
the socket by calling close nor check the return values of socket in some paths. E.g.,
Comserial does not check the return value (i.e., socket) in the file comserver.c before it
is used. In the file main.c, when it fails in binding a socket to some address, Mrhttpd
will not close this socket before the program terminates.

5.2 Checking File Operation Usage Rules

File reading and writing are frequently used in programs. To read or write a file, a
user has to correctly open the file by calling fopen which returns a file pointer to the
file. Then the user can read from or write to that file. Finally the file pointer should be
closed by calling fclose.

For file operation API usage rules, we consider two rules from stdio.h: F; = AG VY y

(y = fopen(—-,-) = AF(Test(y)/\EXAchlose(y))) and F, = Yy Aly = fopen(—, —)

Model-Checking Software Library API Usage Rules 203

Table 2. Results of checking the socket library API usage rules with the procedure-cutting ab-

straction
Program Comserial MrChaTTY Mrhttpd Nerv Nssl Pop3client Ser2nets TCPC TCPS UDPC UDPS

#LOC 1.0k 1.2k 1.4k 1.1k 11k 1.6k 7.3k 70 92 50 60
Time(s) 0.08 0.26 0.29 794 124 0.41 70.53 0.01 0.01 0.01 0.01
ri Mem(MB) 0.24 0.44 0.66 594 144 0.58 11.63 0.09 013 0.06 0.06
Result Bug FA Bug FA Bug Bug Bug Bug Bug Bug Bug
Time(s) 0.01 0.09 0.01 0.04 023 0.01 8.72 0.01 0.01 0.01 0.01
r, Mem(MB) 0.06 0.35 0.07 024 036 0.01 2.04 0.01 0.01 0.01 0.01
Result Proved Proved Proved Proved Proved Proved Proved Proved Proved Proved Proved
Time(s) 0.01 0.09 0.01 003 0.11 0.01 957 001 002 0.01 0.01
r3 Mem(MB) 0.05 0.37 0.07 020 029 0.01 2.03 001 010 0.01 0.01
Result Proved Proved Proved Proved Proved Proved Proved Proved Proved Proved Proved
Time(s) 0.01 0.01 0.01 0.11 0.16 0.09 6.31 0.01 001 0.01 0.01
rs Mem(MB) 0.01 0.01 0.01 029 033 0.29 1.72 0.07 0.01 001 0.01
Result Proved Proved Proved Proved Proved Proved Proved Proved Proved Proved Proved
Time(s) 0.01 0.01 0.01 0.01 0.01 0.01 0.18 0.01 001 001 0.01
rs Mem(MB) 0.04 0.18 0.05 022 0.19 0.14 1.07 0.04 0.06 0.04 0.04
Result Proved Proved Proved Proved Proved Proved Proved Proved Proved Proved Proved
Time(s) 0.06 0.01 0.01 0.01 0.01 0.01 0.20 0.01 0.03 001 0.01
re Mem(MB) 0.15 0.18 0.05 0.19 0.01 0.01 1.12 0.01 0.10 0.01 0.01
Result Bug Proved Proved Proved FA Proved Proved Proved Proved Proved Proved
Time(s) 0.01 0.01 0.01 0.02 0.02 0.02 0.21 001 001 0.01 0.01
r; Mem(MB) 0.04 0.15 0.05 022 0.19 0.18 0.92 005 005 0.04 0.04
Result Proved Proved Proved Proved Bug FA Proved Proved Proved Proved Proved
Time(s) 0.01 0.07 0.01 0.09 0.07 0.03 1.03 001 0.01 0.01 0.01
rs Mem(MB) 0.07 0.47 0.08 054 0.44 0.30 2.86 007 012 0.05 0.05
Result Proved Proved Proved Proved FA Proved Proved Proved Proved Proved Proved
Time(s) 0.01 0.01 0.01 0.02 0.01 0.01 0.07 0.02 001 001 0.01
ro Mem(MB) 0.11 0.34 0.30 0.50 0.29 0.30 1.46 0.08 0.10 0.01 0.01
Result Proved FA Proved Proved Proved FA Proved Proved Proved Proved Proved
Time(s) 0.01 0.01 0.01 0.05 0.01 0.01 0.07 001 001 001 0.01
rio Mem(MB) 0.11 0.33 0.33 075 0.29 0.35 1.46 0.08 0.09 001 0.01
Result Proved FA Proved FA Proved FA Proved Proved Proved Proved Proved
Time(s) 0.10 0.56 0.32 - - 0.13 - 0.02 0.03 0.01 0.01
;1 Mem(MB) 0.47 1.97 1.50 o.0.m. o.0.m. 0.39 oo.m. 011 017 0.01 0.01
Result Bug Proved Proved - - Proved - Proved Proved Proved Proved
Time(s) 0.01 0.01 0.01 0.01 0.01 0.01 004 001 001 0.01 0.01
r1> Mem(MB) 0.04 0.15 0.05 0.18 0.15 0.14 0.71 0.04 005 005 0.04
Result Proved Proved Proved Proved Proved Proved Proved Proved Proved Proved Proved
Time(s) 0.01 0.01 0.01 0.01 0.01 0.01 0.07 0.01 003 0.01 0.01
ri3 Mem(MB) 0.05 0.31 0.07 0.17 0.30 0.01 1.46 0.01 010 0.05 0.05
Result Proved Proved Proved Proved Proved Proved Proved Proved Proved Proved Proved
R-(fread(—,—,—,y) Vv fwrite(—,—, —,y))]. F| states that whenever a file is opened by

calling fopen where y stores its return file pointer (i.e., y = fopen(—,—)), we need to
check whether the opening of the file is correct (i.e., Test(y)), and there exists a next
point after checking y such that the file is eventually closed (i.e., EX AF fclose(y)). F»
states that the user cannot read from or write to a file pointer y unless the file pointer y
points to some file (i.e., has already been opened).

To evaluate these two rules, we checked the following open source programs which
use file API functions from stdio.h. Verbs is a bounded model checker [10]. Getafix is a
symbolic model-checker for recursive boolean programs [3]]. Moped is a model-checker
for pushdown systems [[7]. Acacia+ is a tool for LTL realizability and synthesis [1].
Mist is a solver of the coverability problem for monotonic extensions of Petri nets [6].
Elastic is a translator from elastic specifications to hytech or uppaal language [2]. Mckit

204 F. Song and T. Touili

Table 3. Results of checking the API usage rules F; and F, with the procedure-cutting
abstraction

Program Verbs Getafix Moped Acacia+ Mist Elastic Mckit TSPASS MiniSat Walksat Ubcsat
#LOC 4.0k 11.5k 303k 8.0k 160k 154k 26.7k 62.3k 1.4k 1.4k 16.9k

Time(s) 0.96 0.18 992 0.05 001 145 - 0.25 0.01 0.06 216.88
Fy Mem(MB) 1.17 036 10.52 020 010 299 o.om. 0.67 0.08 028 1592
Result Bug Bug Proved Bug Proved Proved - Proved Proved Bug FA

Time(s) 0.08 029 9.67 0.01 026 0.89 23.60 0.01 0.01 0.01 0.06
F, Mem(MB) 0.50 084 1026 0.09 090 294 15.00 0.27 0.27 0.13 0.89
Result FA Proved FA Proved FA FA Proved Proved FA Proved Proved

is a model-checking Kit [4]. TSPASS is a fair automated theorem prover for monodic
first-order temporal logic with expanding domain semantics and propositional linear-
time temporal logic [8]]. Walksat, MiniSat and Ubcsat are three SAT solvers [5,9l[11].

Table [3] shows the results of checking these programs against F; and F, with the
procedure-cutting abstraction. As shown in Table B we found that Verbs, Getafix,
Acacia+ and MiniSat have real errors. E.g., in the file main.c, Verbs does not close
an opened file by calling fclose before the program terminates. Moreover, in the files
issat.c, main.c and util.c, a file pointer is used without checking whether it is NULL
or not (i.e., whether the file exists or not). Acacia+, Walksat and Getafix do not close
opened files which are opened in main.c, walksat.c, bpsuspend.y and bp.y, respectively.

6 Related Work

There has been a lot of works on API usage rules specification and checking [13H16l/19,
22,1241261128.1304132-364138L144-47]. However, all these works cannot specify context-
sensitive specifications, whereas our approach can.

Some tools dedicated to software model-checking were used to check API usage
rules for device drivers, such as DDVerify [46]. But, these tools can only check safety
properties. Other works on software model-checking, such as [17,[18.27,142./43]], could
be applied to check API usage rules. However, all these works cannot check full CTL
properties.

Model-checking is used to verify security-critical applications in which security vul-
nerabilities are expressed by safety properties over API functions [20,21]. However,
these works consider only safety properties.

Code contracts introduced in [24]] can specify pre/post-conditions and invariants for
each API function. Programmers have to make sure that a pre-condition (resp. post-
condition) holds at the entry (resp. exit) of each API function, and that invariants always
hold inside the API function. These code contracts can be verified via either runtime
checking or static checking at compile time. However, they cannot specify relations
between API functions which are often used in API usage rules.

Mining-based methods are proposed [13-154/194221125,26,(30,32/3311351138.145,47]] to
discover API usage rules from executing traces or source codes, where API usage rules
are represented by some patterns or finite automata. One can apply model-checking
techniques to check whether programs violate or not API usage rules represented by
patterns or finite automata. However, all these works cannot specify data dependencies

Model-Checking Software Library API Usage Rules 205

between API functions’ parameters and return values of API functions. This disallows
one to precisely express API usage rules. Variables are introduced into finite automata
to specify data dependencies between API functions in [[15,128]]. However, these works
cannot express CTL-like properties (e.g., the above file operation API usage rule), and
do not show how to check whether programs violate or not API usage rules represented
by finite automata equipped with variables.

A class of temporal properties, called QBEC, is used to specify API usage rules us-
ing at most one temporal operator [34]. We can show that SCTPL is more expressive
than QBEC. Indeed, all the temporal operators in QBEC can be expressed by SCTPL
formulas. Ramanathan et al propose a formalism in [36] to specify data-dependence be-
tween API functions. However, they only consider mining preconditions of API func-
tions rather than verification. CTL extended with variables is proposed to specify API
usage rules in [44]]. However, this work cannot specify context-sensitive specifications
which is important for API usage rules.

SCTPL is introduced in our previous work [41], in which SCTPL is used to ex-
press malicious behaviors and model-checking is applied to detect malware. Although,
SCTPL is as expressive as CTL with regular valuations [39]], in [41]], we have shown
that SCTPL model-checking is more efficient than CTL model-checking with regular
valuations.

References

. Acacia+, http://1it2.ulb.ac.be/acaciaplus/

. elastic, http://www.ulb.ac.be/di/ssd/madewulf/aasap/

Getafix, http://www.cs.uiuc.edu/madhu/getafix/

Mckit, http://www. fmi.uni-stuttgart.de/szs/tools/mckit/

. Minisat, C.: language version, http://minisat.se/MiniSat.html

. Mist2, http://software.imdea.org/pierreganty/software.html

Moped, http://www. fmi.uni-stuttgart.de/szs/tools/moped/

. Tspass,http://www.csc.liv.ac.uk/michel/software/tspass/

. Ubcsat, http://ubcsat.dtompkins.com/

. Verbs,http://lcs.ios.ac.cn/zwh/verbs/index.html

. Walksat, version 35, http://www.cs.rochester.edu/kautz/walksat/

. SourceForge (2012), http://sourceforge.net

. Acharya, M., Xie, T.: Mining API error-handling specifications from source code. In:

Chechik, M., Wirsing, M. (eds.) FASE 2009. LNCS, vol. 5503, pp. 370-384. Springer,
Heidelberg (2009)

14. Acharya, M., Xie, T., Pei, J., Xu, J.: Mining API patterns as partial orders from source code:
From usage scenarios to specifications. In: ESEC/FSE 2007 (2007)

15. Ammons, G., Bodik, R., Larus, J.R.: Mining specifications. In: POPL (2002)

16. Besson, F., Jensen, T.P., Métayer, D.L.: Model checking security properties of control flow
graphs. Journal of Computer Security (2001)

17. Beyer, D., Henzinger, T.A., Jhala, R., Majumdar, R.: The software model checker BLAST.
In: STTT (2007)

18. Chaki, S., Clarke, E.M., Groce, A., Jha, S., Veith, H.: Modular verification of software com-
ponents in C. IEEE Trans. Software Eng. 30(6) (2004)

19. Chen, F., Rosu, G.: Mining parametric state-based specifications from executions. Technical

report (2008)

O NN AW~

—
w N = O o

http://lit2.ulb.ac.be/acaciaplus/
http://www.ulb.ac.be/di/ssd/madewulf/aasap/
http://www.cs.uiuc.edu/madhu/getafix/
http://www.fmi.uni-stuttgart.de/szs/tools/mckit/
http://minisat.se/MiniSat.html
http://software.imdea.org/pierreganty/software.html
http://www.fmi.uni-stuttgart.de/szs/tools/moped/
http://www.csc.liv.ac.uk/michel/software/tspass/
http://ubcsat.dtompkins.com/
http://lcs.ios.ac.cn/zwh/verbs/index.html
http://www.cs.rochester.edu/kautz/walksat/
http://sourceforge.net

206

20.

21.

22.

23.

24.

25.

26.
217.

28.

29.

30.

31.
32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

F. Song and T. Touili

Chen, H., Dean, D., Wagner, D.: Model checking one million lines of C code. In: NDSS
(2004)

Chen, H., Wagner, D.: Mops: an infrastructure for examining security properties of software.
In: ACM Conference on Computer and Communications Security (2002)

Dallmeier, V., Lindig, C., Wasylkowski, A., Zeller, A.: Mining object behavior with ADABU.
In: WODA (2006)

Esparza, J., Hansel, D., Rossmanith, P., Schwoon, S.: Efficient algorithm for model check-
ing pushdown systems. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855,
Springer, Heidelberg (2000)

Féhndrich, M., Logozzo, F.: Static contract checking with abstract interpretation. In: Beckert,
B., Marché, C. (eds.) FoVeOOS 2010. LNCS, vol. 6528, pp. 10-30. Springer, Heidelberg
(2011)

Gabel, M., Su, Z.: Javert: fully automatic mining of general temporal properties from
dynamic traces. In: FSE (2008)

Gabel, M., Su, Z.: Symbolic mining of temporal specifications. In: ICSE (2008)

Godefroid, P.: Software model checking: The Verisoft approach. Formal Methods in System
Design 26 (2005)

Henzinger, T.A., Jhala, R., Majumdar, R.: Permissive interfaces. In: ESEC/SIGSOFT FSE
(2005)

Kinder, J., Katzenbeisser, S., Schallhart, C., Veith, H.: Detecting malicious code by model
checking. In: Julisch, K., Kruegel, C. (eds.) DIMVA 2005. LNCS, vol. 3548, pp. 174-187.
Springer, Heidelberg (2005)

Kremenek, T., Twohey, P., Back, G., Ng, A.Y., Engler, D.R.: From uncertainty to belief:
Inferring the specification within. In: OSDI (2006)

Kroening, D.: CBMC (2012), http: //www.cprover .org/cbmc

Liu, C., Ye, E., Richardson, D.J.: Software library usage pattern extraction using a software
model checker. In: ASE (2006)

Lo, D., Khoo, S.-C.: SMArTIC: towards building an accurate, robust and scalable specifica-
tion miner. In: FSE 2006 (2006)

Lo, D., Ramalingam, G., Ranganath, V.P., Vaswani, K.: Mining quantified temporal rules:
Formalism, algorithms, and evaluation. In: WCRE (2009)

Lorenzoli, D., Mariani, L., Pezze, M.: Automatic generation of software behavioral models.
In: ICSE 2008 (2008)

Ramanathan, M.K., Grama, A., Jagannathan, S.: Static specification inference using predi-
cate mining. In: PLDI (2007)

Seshadri, P.: Generic Socket Programming tutorial (2008), http://www.
prasannatech.net/2008/07/socket-programming-tutorial.html
Shoham, S., Yahav, E., Fink, S.J., Pistoia, M.: Static specification mining using automata-
based abstractions. IEEE Trans. Software Eng. (2008)

Song, F., Touili, T.. Efficient CTL model-checking for pushdown systems. In:
Katoen, J.-P., Konig, B. (eds.) CONCUR 2011. LNCS, vol. 6901, pp. 434-449. Springer,
Heidelberg (2011)

Song, E., Touili, T.: Efficient malware detection using model-checking. In: Giannakopoulou,
D., Méry, D. (eds.) FM 2012. LNCS, vol. 7436, pp. 418—433. Springer, Heidelberg (2012)
Song, F., Touili, T.: Pushdown model checking for malware detection. In: Flanagan, C.,
Konig, B. (eds.) TACAS 2012. LNCS, vol. 7214, pp. 110-125. Springer, Heidelberg (2012)
Visser, W., Havelund, K., Brat, G.P,, Park, S., Lerda, F.: Model checking programs. Autom.
Softw. Eng. (2003)

Visser, W., Mehlitz, P.C.: Model checking programs with java pathFinder. In: Godefroid, P.
(ed.) SPIN 2005. LNCS, vol. 3639, pp. 27-27. Springer, Heidelberg (2005)

http://www.cprover.org/cbmc
http://www.prasannatech.net/2008/07/socket-programming-tutorial.html
http://www.prasannatech.net/2008/07/socket-programming-tutorial.html

44.

45.

46.

47.

Model-Checking Software Library API Usage Rules 207

Wasylkowski, A., Zeller, A.: Mining temporal specifications from object usage. Autom.
Softw. Eng. (2011)

Wasylkowski, A., Zeller, A., Lindig, C.: Detecting object usage anomalies. In: ESEC/FSE
(2007)

Witkowski, T., Blanc, N., Kroening, D., Weissenbacher, G.: Model checking concurrent linux
device drivers. In: ASE (2007)

Yang, J., Evans, D., Bhardwaj, D., Bhat, T., Das, M.: Perracotta: mining temporal API rules
from imperfect traces. In: ICSE (2006)

Formal Modelling and Verification
of Population Protocols

Dominique Méry! and Michael Poppleton?®

! LORIA & Université de Lorraine, BP 70239,
F-54506 Vandoeuvre les Nancy, France
dominique.mery@loria.fr
2 School of Electronics and Computer Science,
University of Southampton, Highfield,
Southampton SO17 1BJ, UK
mrp@ecs.soton.ac.uk

Abstract. The population protocols of Angluin, Aspnes et al [3] provide a
theoretical framework for computability reasoning about algorithms for Mobile
Ad-Hoc Networks (MANETS) and Wireless Sensor Networks (WSNs). By devel-
oping two example protocols and proving convergence results using the Event-
B/RODIN [2] and TLA [11] frameworks, we explore the potential for formal
analysis of these protocols.

1 Introduction

The design of a wireless sensor or mobile ad-hoc network (WSN/MANET) [7] for a
given application requires demanding optimization against many parameters, e.g. node
power and transmission range limits, variable node and link reliability, message latency
and throughput [15]. A variety of energy-saving techniques and dynamic routing al-
gorithms have been proposed. The verification of such long-running, time-dependent
systems, with unreliable and dynamic substrate of computation/communication hard-
ware, remains very challenging. While simulation [10] is the dominant design tool for
these networks, formal methods are more recently beginning to be deployed.

A recent theoretical approach of interest is the population protocols of Angluin et
al [3]. Assuming a finite population of agents interacting pairwise from some initial
state, a class of protocols is defined that compute predicates over that state. Variants
and extensions of this basic model, bringing it closer to real applications, have been
proposed. The notion of global fairness - that interactions in these protocols are in-
finitely often enabled - is key to convergence arguments.

We discuss the formal development of two example population protocols. Experi-
mental modelling, analysis and proof in the Event-B formal language and its RODIN
toolkit [2] are straightforward. Event-B is a state-based formal specification language
in first-order logic (FOL), supported by the rich RODIN toolkit of provers, anima-
tor, model checkers, graphical modelling front-ends, and infrastructural support for
composition-decomposition in development. Functional and safety verification is pro-
vided by automatically generated proof obligations (PO) for invariant preservation and
refinement.

E.B. Johnsen and L. Petre (Eds.): IFM 2013, LNCS 7940, pp. 208-222] 2013.
(© Springer-Verlag Berlin Heidelberg 2013

Formal Modelling and Verification of Population Protocols 209

The interesting questions about these protocols concern liveness and convergence
properties and to what extent we can specify, reason about and prove such properties
formally. A first-order scheme like Event-B cannot explicitly support this; we turn to
Lamport’s Temporal Logic of Actions (TLA). In the two example protocols we prove
convergence properties using existing and new TLA fairness-based proof rules.

In the next section we give some background on population protocols, Event-B and
TLA respectively. Sections 3] and [overview Event-B developments for two example
protocols respectively; each shows a distinct style of reasoning about, and thus clarify-
ing convergence properties. In the first refinement of section[3] the always-enabled char-
acter of the inductive step - two nodes interacting - means that convergence is proved
inductively using the TLA weak fairness rule WF1. Further, the hypotheses of WF1 are
first-order, thus expressible and provable in Event-B/RODIN. We have done one such
proof, thus demonstrating an automated TLA-style proof of convergence. In the next
refinement we introduce a dynamic interaction graph structure, so that the inductive
step is no longer always enabled. This can be proved using the TLA strong fairness
rule SF1; we show how this proof can be reduced to a WF1 proof by observing that
the enablement of the inductive step is itself provable by WF1. The example suggests a
first-order convergence proof method for a certain class of protocols; this remains to be
investigated in future work.

Section [gives a more complex example and proposes a new notion of global fair-
ness to prove convergence. Here, there are two stages of convergence; the first is proved
using WF1 as before. We then overview two further proofs for the two alternate cases
for the second stage; these proofs are given in detail in the companion paper [12]. The
second stage proof requires the population protocol notion of global fairness [8]; we
define - and prove sound in [[12] - a new TLA proof rule GF1. Section [§ concludes.

2 Population Protocols, TLA and Event-B

211 The basic population protocol of Angluin et al [3]] is a model of passively mobile
simple devices with minimal storage. These agents are anonymous, and are passively
mobile in the sense that any two agents may interact at any time. Choice/ scheduling
of interacting pairs is outside the protocol. The interaction of any two agents is under a
global fairness assumption [8]], which expresses that an execution ¥ = Cy —Cy — - - -
is globally fair, when for every configuration C' and C’ such that C — C’,if C; = C
for infinitely many i, then C;;1 = C” for infinitely many i.

Initially, each agent reads a single input and takes a corresponding initial state, after
which no more input is read. The idea is for the protocol to compute a predicate over
the multiset of input states. The system stably converges when all computations con-
verge to a constant output vector. Note that the configuration of agent-states in such a
computation need not converge, just the output.

Formally, a population protocol comprises finite input and output alphabets X and
Y, a finite set () of possible states of an agent, an input function I : X — @, output
function O : @ —Y, atransition function é : Q@ X Q—Q X Q. A population P is a finite
set V' of agents with an irreflexive relation £ C V' x V which is the interaction graph.
For [3] E is the complete interaction graph. A population configuration is a function
C : V — (@ giving the state of each node.

210 D. Méry and M. Poppleton

In this scheme, the protocol description is independent of population size, and thus
storable on a small-memory device. Nodes have no identity, since that would increase
with population size. Assuming that interacting pairs are scheduled randomly, indepen-
dently and uniformly gives a conjugating automaton: this converges with probability 1,
with expected number of interactions O(n? log n). [4] shows that it is only Pressburge
predicates that are computable in the basic population protocol.

[4] proposes various extensions of the basic model replacing immediate two-way
interaction with one-way anonymous message-passing, immediate or delayed delivery,
recording of sent messages, and queuing of incoming messages. In [5]] the basic model is
extended to describe self-stabilizing systems, where the protocol acts on input streams;
the transition function becomes a relation ¢ : (Q x X) x (@ x X) — Q x Q.

212 Event-B is designed for long-running reactive hardware/software systems that re-
spond to stimuli from user and/or environment. The set-theoretic language in first-order
logic (FOL) takes as semantic model a transition system with guarded transitions be-
tween states. The correctness of a model is defined by an invariant property. The two
units of structuring are the machine of dynamic variables, events and their invariants,
and the context of static data of sets, constants and their axioms. Every machine sees at
least one context.

The unit of behaviour is the event. An event acting on (a list of) state variables v,
subject to enabling guard over local variable(s) ¢ and state-updating action, has the
following syntax and semantic model in a before-after predicate:

ANY ¢t WHERE Q(t,v) THEN v := F(t,v) END = 3t-(Q(t,v)A\v" = F(t,v))

This defines a ¢-indexed nondeterministic choice between those transitions v’ = F(t,v)
for which Q(¢, v) is true. t can be interpreted as either an input or an output to the event.

An event works in a model with constants ¢ and sets s subject to axioms P(s, ¢) and
an invariant I (s, ¢, v). Consistency proof obligations (POs) require that events are well-
defined, feasible and maintain invariants. The term refinement is overloaded, referring
both to the process of transforming models, and to the more concrete model which
refines the abstract one. When model N (w) refines M (v), it has a refinement relation,
or “gluing invariant” J(s, ¢, v, w). New events may be introduced in refinement to act
on new variables, effectively refining stuttering steps (called “skip” in Event-B). The
refinement POs enforce the standard forward simulation refinement rule [1]] that every
concrete (refining) step of a refining or new event reestablishes the gluing invariant
subject to some step of some abstract refined event, or skip.

A nondivergence PO requires that skip-refining (new) events do not take control
forever: this is modelled using a VARIANT predicate. Every new event must must be
proved to inductively reduce the variant, thus eventually disabling all such events.

213 Leslie Lamport’s TLA (Temporal Logic of Actions) [11] is designed for the spec-
ification and verification of reactive systems in terms of their actions and behaviours
(traces). It can be thought of as structured in four fiers [[L1]: (i) constants, and constant
formulas - functions and predicates - over these, (ii) state formulas for reasoning about

! Pressburger arithmetic is a restricted integer arithmetic comprising 0, 1, 4+ and <.

Formal Modelling and Verification of Population Protocols 211

states, expressed over variables as well as constants, (iii) transition or action formulas
for reasoning about (before-after) pairs of states, and (iv) temporal predicates for rea-
soning about behaviours, i.e. traces of states; these are constructed from the other tiers
and certain temporal operators.

An action formula expresses some fact or function about a system transition between
one state and its successor, as made available by some system action. An action predi-
cate is very like a before-after predicate in Event-B. A state formula is an action formula
where either all flexible variables are unprimed, or all are primed. A state predicate is
true in a behaviour iff it is true in the first state of that behaviour. If F, G are behaviour
predicates then so are =F, F'V G, F NG, F = G,0P, O P. The latter two are temporal
operators. We write OP - called “always P” - to mean P is always true over a given
behaviour, and define O P - called “eventually P - to be -0-P.

For action predicate A, list of state variables f, we define [A]; (called “square A sub
) to be true for states s,t iff s[A V f' = f]¢, that is, if either A defines a transition
from s to ¢, or all variables f remain unchanged from s to ¢. Dually we define (A)
(called “angle A sub f”) to be true for states s, ¢ iff s[A A f' # f]¢, thatis, A defines a
transition from s to ¢, and at least one variable in f changes from s to .

This logic enables us to specify the state-based temporal behaviour of a system, as
well as assert properties over that behaviour, in one notation and logic. In general we
wish to specify systems in the following form:

@D = Inite N D[N]f /\WFf(Fl) N SFf(Fz)

N = N; V Ny V ... is the disjunction of all system actions, i.e. the “next” transition,
denoting progress subject to possible stuttering. Stuttering is required to allow us to
specify and prove refinements. O/nv states an invariant safety property. The WF and SF
constraints are the weak and strong fairness constraints required by the system actions
in order to progress and I} and F5 are two combinations of actions. We say that action
A is weakly fair if, provided it is eventually always enabled, it is then guaranteed to fire
infinitely often. A is strongly fair if, provided it is infinitely often enabled, it is then
guaranteed to fire infinitely often. With the weaker antecedent in its implicative form,
SF is the stronger fairness property. Global fairness GF is defined consistently with [8]],
and is a specialization of strong fairness, with explicit pre and postconditions P, Q'
for A:

WFf(A) = ODEnabled<A>f = D<><A>f
SFf(A) = DOEnabled<A>f = D<><A>f
GFf(P, A, Q) = O0CFEnabled(PNANQ") ;= 0O0(PANANQ")y

Consideration of whether an action eventually stabilises to always-enabled or not, de-
termines the choice of a weak or strong fairness requirement in specification. This form
of fairness specification places requirements on the scheduler of system actions. If the
system environment is in scope its actions must be considered for fairness assump-
tions. Event-B - like other FOL model-based formalisms - does not express scheduling
requirements. The variant mechanism in Event-B - to prevent non-divergence of new
events in refinement - is relevant here. Such a variant eventually disables new events in

212 D. Méry and M. Poppleton

favour of abstract, potentially blocked events. Of course, this simply enables, but does
not guarantee, scheduling of a given abstract event.

Finally we define the leads to operator: P ~ @ = O(P = <(Q), meaning that
whenever P holds then () is guaranteed to hold at some later time.

Next we consider some of Lamport’s proof rules for simple TLA [LI].
LATTICE is an inductive proof rule for temporal reasoning: provided H. leads to either
the goal G or H, for some d strictly smaller than c then the induction is guaranteed to
converge to G.

WEF1 gives the conditions under which weak fairness of action A is enough to guar-
antee that P ~» (. A stuttering progress step produces either P or () in the next state,
nonstuttering action (A) 1 takes the inductive step to produce (), and under P, inductive
action (A); is always enabled. SF1 is the strong fairness equivalent to prove P ~» Q:
a strong fairness assumption on A is made and the same first two conditions hold as in
WF1. An elaborated third condition ensures that (A) s is eventually - rather than always
- enabled. F' may be required for expressing further fairness conditions.

LATTICE. > awell-founded partial order on a set S

FAceS=(H.~ (GV3deS-(c>d)NHyg))
F=((3ce S-H.)~ Q)

WFI1. SFI.

PA[N]f=(P'vQ) PA[N)y=(P'vVQ)
PA(NANAY=Q PA(NANAY=Q

P = Enabled(A) OP AD[N]y AOF = OEnabled(A) ¢
O[N] AWFf(A) = (P~ Q) O[N]f ASF;(A) AOF = (P~ Q)

3 Red and Green Lights

We present a simple population protocol model in Event-B and some refinements, in
order to demonstrate a temporal style of reasoning about convergence. Nodes [l are
coloured red or green (coded [l € V' —COLOURS where COLOURS = {green, red}).
In an interaction, if any two red nodes are adjacent - i.e. connected by the graph - then
one will turn green. The protocol terminates when only one red remains.

In the abstract model MO, the graph is complete - every node is connected to every
other. Nodes are initialised arbitrarily. In one shot, event conv nondeterministically as-
signs one node to red and all others to green.

MO0: EVENT conv

ANY ¢

WHERE i€V

THEN 1l := ((V \ {i}) x {green}) U {i — red}
END

In refinement M1, the new event iact pairwise switches one red node of an adjacent
red pair to green, subject to an obvious variant (the convergent keyword generates an

Formal Modelling and Verification of Population Protocols 213

inductive PO for iact). conv skips, marking convergence to a single red node. Event-B
refinement allows strengthening of guards, as long as the overall system guard is main-
tained; there are associated proof obligations.

M1: EVENT conv M1: EVENT iact convergent

REFINES conv ANY i j

ANY 1 WHERE

WHERE i€ VAJEV ANi#GANUGE) =red NU(j) = red
1 € VAU®G) =red THEN [l(7) := green
Aran(t 9ll) = {green} END

THEN skip

END VARIANT 1l 1> {red}

Convergence is proved using Lamport’s fairness proof rules - rather trivially, for only
one event apart from initialisation and termination. In M1, it is obvious that each in-
teraction iact reduces the problem and that [l > {red} is a suitable set-valued induc-
tive/variant expression. Using TLA we can be more explicit about the inductive process
of convergence than we can in Event-B - define:

P =1Invyi AR(n+1) Q = Inva A R(n)
Invy =11 € V — COLOURS R(n+1) = card(il” ' [{red}] =n + 1
N = jact V conv Ajqet = tact
Applying WF1 ...
PA[Nu=(P'vQ" progress
PA{(N A Asact)u = Q' inductive step
P = Enabled{Aiact)ui inductive action

O[NJu A WEy(Aiaet) = (P~ Q)

Inductive action A;q. establishes Q) = Invy,;; A R'(n). Thus assuming weak fairness
of ‘act we can prove R(n + 1) ~» R(n), and apply induction by LATTICE to prove
convergence to R(1). Weak fairness suffices for interaction to happen infinitely often
since iact is always enabled for n > 1. Note, in this simple example, that the three
hypotheses of WF1 contain no temporal operators and are thus all statements of first-
order logic. They are therefore expressible and provable in Event-B/RODIN; this we
have done for this M1 proof.

In refinements M2 and