
Modified Merge Sort Algorithm

for Large Scale Data Sets

Marcin Woźniak1, Zbigniew Marsza�lek1,
Marcin Gabryel2, and Robert K. Nowicki2

1 Institute of Mathematics, Silesian University of Technology,
ul. Kaszubska 23, 44-100 Gliwice, Poland

2 Institute of Computational Intelligence, Czestochowa University of Technology,
Al. Armii Krajowej 36, 42-200 Czestochowa, Poland
{Marcin.Wozniak,Zbigniew.Marszalek}@polsl.pl,
{Marcin.Gabryel,Robert.Nowicki}@iisi.pcz.pl

Abstract. Sorting algorithms find their application in many fields. One
of their main uses is to organize databases. Classical applications of sort-
ing algorithms often can not cope satisfactorily with large data sets or
with unfavorable poses of sorted strings. Typically, in such situations,
we try to use other methods or apply sorting process to reshuffled input
data. Unfortunately, this approach complicates sorting process and often
results in significant prolongation of the time. In this paper, the authors
examined an algorithm dedicated to the problem of sorting large scale
data sets. In the literature, there are no studies of such examples. These
studies will allow to describe the properties of sorting methods for large
scale data sets. Performed tests have shown superior performance of the
examined algorithm, especially for large scale data sets. Changes sped
up sorting of data with any arrangement of the input elements.

Keywords: computer algorithm, data mining, data sorting, analysis of
computer algorithms.

1 Introduction

In the literature [4, 11, 12, 24] are shown classic versions of the merge sort
algorithm which are using recursion operation. The classic solution is not op-
timal and many researchers have proposed modifications and extensions of the
basic sorting algorithms. The authors of [3, 6, 9, 10] presented the possibility
of multi-threading sort algorithms. However, the authors of [2, 7, 13] presented
a comparison of properties of different algorithms. The works [14, 15, 18, 21]
described the impact of the algorithm on memory resources. In the paper [23]
authors showed the ability to create hybrid algorithms and their implementa-
tions. The authors of the papers [8, 25–27] described the possibilities of a special
matching merge algorithm. The results of the optimization algorithm for large
data sets are described by the authors of [6, 21]. Recursive solutions have some
limitations. The use of recursion increases time-consuming operations due to

L. Rutkowski et al. (Eds.): ICAISC 2013, Part II, LNAI 7895, pp. 612–622, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



Modified Merge Sort Algorithm for Large Scale Data Sets 613

the need to operate on the stack. Processing of large collections is related to the
high number of levels of recursion, which can lead to an internal stack overflow.
The authors of the present study examined the merge sort algorithm for large
data sets. Presented method performs the sorting process without using recur-
sion, which increases stability and reduces the execution time. In the examined
method recursive procedure for the construction of the stack was replaced by
smart stacking elements into a sequence.

1.1 Classic Merge Sort Algorithm

First versions of the merge sort algorithm were published by the authors of
[1, 12]. Classical algorithm known also from the literature [4, 24] splits the input
string into two substrings, sorts them recursively and then merges. It uses an
additional array in which are put further substrings of numbers. The procedure
merges two sequences of numbers ap ≤ . . . ≤ aq and aq+1 ≤ . . . ≤ ar stored
in the array a from index p to q and from q + 1 to r. Merging of substrings
starts at the element with index

⌊
p+r
2

⌋
. Unfortunately, recursive methods, while

operating on the system stack, use significantly system resources and prevent
proper assessment of actual computational complexity. Moreover, in practice, for
very large input strings, system stack overflow occurs frequently which leads to
the suspension of the program. The solution is to use hybrid methods described
in the literature, for example in [23]. However more effective solution is to use
the directly acting method, which is the topic of this paper.

2 Examined Merge Sort Algorithm

The authors examined non recursive merge sort algorithm dedicated to large
collections of data. Performed tests showed that changes have improved the
algorithm stability measured as a reduction in dispersion (standard or average
deviation) of variability of the number of clock cycles during sorting of any
initial configuration of the input data. Recursive procedure for the construction
of the stack, known from the literature [11, 12], was replaced by stacking items
in the substrings queue. The examined algorithm has been designed to increase
the efficiency of sorting large scale data sets as the algorithm based on two
component algorithms. The first one is merging sorted items into the stack. The
second component is a merge sorting procedure. In the first step we compare
subsequent elements of the strings. As a result of the first step, we receive stacks
with a given number of elements. In the second step we merge received stacks.
The algorithm performs merging until there is only one present stack. Sorting
algorithm will perform the procedure a sufficient number of times until there is
a completely sorted input string.

2.1 Double Merge Sort Algorithm

The examined algorithm in the first step begins with a comparison of the ele-
ments in pairs of the input string a0, . . ., an−1. In this way we obtain a sequence



614 M. Woźniak et al.

of pairs of elements. In the second step we merge sequences received in the first
step. As a result of this operation we always receive strings containing double
number of the elements. We merge these until there is only one string. If the
initial string contains an odd number of elements it is sufficient to rewrite the
last element till the last step in the algorithm, as shown in Fig.1. In the last step
we merge this item with the string and receive completely sorted input data.
Merging method receives as the input two numerical sequences x0 ≤ . . . ≤ xm−1

Fig. 1. An example of merging with the examined algorithm

and y0 ≤ . . . ≤ ym−1 sorted in the previous step. It returns sorted sequence of
numbers z0 ≤ . . . ≤ z2m−1. In the following steps of the algorithm, the next
element of the output string is given by selecting the smallest element of merged
strings X and Y . If it happen to have the equal elements in both sequences X
and Y we assume that the next selected element is the one of the string X . Due
to the fact that X and Y are already sorted, we can perform merging with not
more than 2m−1 comparisons, where 2m is the sum of lengths of strings X and
Y . The examined algorithm is based on two components presented in Algorithm
1 and Algorithm 2.

2.2 Double Merge Sort Algorithm Time Complexity

Presented algorithm of double merge sorting has time complexity described on
the base of Theorem 1.



Modified Merge Sort Algorithm for Large Scale Data Sets 615

Begin
Load numerical sequences
Count the number of elements and write it in variables c1 i c2

1 if Strings contain elements then
if Element of the first string is smaller than the first element of second
string then

Write element of the first string into the sorted string
Cross out this item from the first string
Decrease the number of elements in the first string
Go to 1

else
Write element of the second string into the sorted string
Cross out this item from the second string
Decrease the number of elements in the second string
Go to 1

end

else
if The first string contains elements then

Write elements of the first string into the sorted string
Stop

else
Write elements of the second string into the sorted string
Stop

end

end
Algorithm 1: Algorithm to merge sequences

Theorem 1. Double merge sorting algorithm has time complexity

Tavg (n) = O (n · log2 n) . (1)

Proof. Suppose we want to sort string composed of n elements. Performing ex-
amined double merge sort algorithm we compare in each step sequences arranged
in the previous step. In the first step we merge 1-element sequences which we
compare in successive pairs. Thus, in this iteration, we make no more than n
comparisons. In the next iteration we merge strings from the first step. As a
result of the merge operation in step two we have in order strings of doubled
elements. Such an arrangement is obtained as a result of no more than n compar-
isons. Merging continues in subsequent iterations respectively comparing each
time strings of a double length, resulted from consolidation in the previous step.
If we compare two sequences of length m we will do no more than 2m− 1 com-
parisons. Every time by merging such two strings we obtain a double sequence.
To sort the input string we will do k merge steps in the algorithm, and in each
of them we do no more than n comparisons. Without loss of generality, we can



616 M. Woźniak et al.

Start
Load sorted string into a table a
Count number of elements and write it in the variable n
Set logical variable t of direction on true
Create space for array b with size of the number of sorted elements n
Set size of merged series as 1 and write it in a variable m

1 if Size of merged series is smaller than n then
Set index of first merged string as 0 and write it in variable i

2 if i is smaller than n then
Set index pb of merged string on i
Set index p1 of first merged string on i
Set index p2 of second merged string on i+m
if index of second string p2 is smaller or equal to n then

Set number of elements in first string c1 as m
Set number of elements in second string c2 as n− p2
if Number of elements in second string is bigger than m then

Set number of elements of second string c2 as m
Go to 3

else
Go to 3

end
3 if Check if logical variable t is set on true then

Proceed Algorithm to merge sequences from array a and
write them into array b
Increase index i of first string by 2 ∗m
Go to 2

else
Proceed Algorithm to merge sequences from array b and
write them into array a
Increase index i of the first string by 2 ∗m
Go to 2

end

else
Increase index i of the first string by 2 ∗m
Go to 2

end

else
Change logical variable t of direction to opposite
Double size of merged series
Go to 1

end

else
if Negation of direction variable is set on true then

Copy elements from array b to array a
Stop

else
Stop

end

end
Algorithm 2: Algorithm of merge sorting



Modified Merge Sort Algorithm for Large Scale Data Sets 617

assume that the sorted sequence of n elements has approximately 2k compared
elements. Thus, it is reasonable to estimate the following

min
k∈N

2k ≥ n. (2)

Logarithms both sides (2) we obtain

min
k∈N

log2 2k ≥ log2 n. (3)

Thus, on the basis of a logarithmic function we obtain the following inequality

min
k∈N

k · log2 2 ≥ log2 n. (4)

Finally, we can assume that the number of operations performed by sorting the
string will be

k = �log2 n� . (5)

So time complexity is

Tavg (n) = n · k = n · log2 n, (6)

which completes our discussion. ��

2.3 Results of Egzaminations

The examined algorithm for sorting by double merging has been tested to eval-
uate it’s performance for large scale data sets. The method was programmed
using standard CLR in MS Visual Studio 2010 Ultimate. To tests were taken
random samples of 100 series in each class of frequencies, including unfavorable
positioning. Tests were carried out on processor i7 series. During performed tests
were analyzed CPU clock cycles. Statistical analysis of the results is presented
in Table 1. The speed of performed operations depends on the initial arrange-
ment of the input data. It is also affected by the number of changes made at
a constant number of comparisons. In this study, the authors have examined
the values shown in Table 1. Experiments were performed for a sorted string,
inversely sorted string and other numerical sequences taken at random. Table
1 shows statistical study of the CPU clock cycles during the tests of the algo-
rithm described in Section 2.1. Results presented in Table 1 were plotted. On
the charts are also plotted results of similar experiments carried out for the base
algorithm. The aim of the analysis and comparison is to verify the thesis that
the changes improved large scale data sets sorting. In the examinations and tests
were compared the characteristics of the examined algorithm with the version
known from the literature [4, 11, 12, 24]. The analysis of Figure 2 shows that
the examined method behaves similarly to the classic version of the algorithm.
Size of the average number of CPU clock cycles shown in Figure 2 is related to
the standard deviation shown in Figure 3. Charts shown in Figure 3 show the
comparison of the characteristics of the standard deviation of CPU clock cycles.



618 M. Woźniak et al.

Table 1. Table of CPU clock cycles of the examined double merge sorting algorithm

cpu tics Number of sorted elements
[ti] 100 1000 10000 100000

avg 2298, 4 2987, 6 8631, 2 32754, 4

std deviation 801, 397 265, 39 2619, 49 10721, 64

avg deviation 472, 16 215, 52 2139, 44 9266, 08

coef. of variation 0, 35 0, 09 0, 30 0, 33

var. area upper end 1497 2722, 21 6011, 71 22032, 76

var. area lower end 3099, 8 3252, 99 11250, 69 43476, 04

1000000 10000000 100000000

avg 363782, 8 4353284 48195771, 8

std deviation 125670, 76 1384543, 28 15067068, 72

avg deviation 110078, 16 1211305, 2 13203157, 76

coef. of variation 0, 34 0, 32 0, 31

var. area upper end 238112, 04 2968740, 72 33128703, 08

var. area lower end 489453, 56 5737827, 28 63262840, 52

Fig. 2. Comparing the values of the characteristics of CPU clock cycles

Graphs shown in Figure 3 show that the examined method has a positive influ-
ence on sorting large scale data sets. At the same time the algorithm described in
Section 2.1 is characterized by increased stability. Coefficients of variation were
approximied by polynomial approximation, which is shown in Figure 4. The re-
sulting curves characterize variability of characteristics of merge sort algorithm.
An analysis of the chart shown in Figure 5 shows that classical form is efficient
only for series smaller than 1000 elements. Above this number of items, described
in Section 2.1 algorithm runs about 40% faster than the classic version. At the
same time a comparison of the values shown in Figure 3 shows that it is working
with more stability than the classic version. Figure 5 shows that the examined



Modified Merge Sort Algorithm for Large Scale Data Sets 619

Fig. 3. Comparing the values of standard deviation of CPU clock cycles

Table 2. Comparative table of CPU clock cycles variations of the classic and the
examined algorithm

cpu tics Number of sorted elements
[ti] 100 1000 10000 100000 1000000 10000000 100000000

classic 0, 05 0, 25 0, 24 0, 18 0, 36 0, 2 0, 19

merge2 0, 35 0, 09 0, 3 0, 33 0, 34 0, 32 0, 31

double merge sort can effectively sort any set of elements. Simultaneously, as
shown by the earlier analysis, it has greater stability. The analysis and compar-
ison of charts in Figure 5 shows that the examined method can sort efficiently
any set of elements, which confirms previous conclusions. Described in Section
2.1 algorithm behaves more stable and sort quickly any collection of large data
regardless of the orientation of sorted items.

3 Final Remarks

In conclusion, presented double merge sort algorithm has a good stability for
large scale data sets. It is also a fast version for sorting large input data of any
arrangement of the elements. For described in Section 2.1 algorithm, during the
experiments there were no difficulties in sorting adverse poses of elements in the
input series. The presented method allows sorting any data sets and increases
the stability in comparison to the classical form. This effect is mainly due to
the lack of handling the return stack. Thus, the examined algorithm appears
to be appropriate for use for large scale data sets. However authors consider
whether it is possible to increase the efficiency of sorting large data sets. Further
research and work will focus on improving the speed and stability. In further



620 M. Woźniak et al.

work on increasing the efficiency the authors plan to focus on building and
improving multiple merging algorithm. An important change may be to abandon
the classical method ‘divide and conquer‘ for increased distribution of the stack.

Fig. 4. Comparing the values of expected variability of CPU clock cycles

Fig. 5. Illustration of the percentage difference of CPU clock cycles between classic
version and examined algorithm

Described in Section 2.1 double merge sort algorithm is a stable method,
especially for collections of over 10000 elements, as shown in Figure 4. The
question is, what is the difference between the classic version and described in
Section 2.1 algorithm. Comparison of the characteristics is illustrated in Figure
5. As the reference method is chosen classic algorithm.



Modified Merge Sort Algorithm for Large Scale Data Sets 621

References

1. Aho, I.A., Hopcroft, J., Ullman, J.: The design and analysis of computer algo-
rithms. Addison-Wesley Publishing Company, USA (1975)

2. Blelloch, G.E., Leiserson, C.E., Maggs, B.M., Plaxton, C.G., Smith, S.J., Zagha,
M.: A comparison of sorting algorithms for the connection machine CM-2. In:
Proceedings of the 3rd Annual ACM Symposium on Parallel Algorithms and Ar-
chitectures (SPAA 1991), Hilton Head, South Carolina, pp. 3–16 (July 1991)

3. Cole, R.: Parallel merge sort. SIAM J. Comput. 17, 770–785 (1988)

4. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to algorithms.
The MIT Press and McGraw-Hill Book Company, Cambridge (2001)

5. Crescenzi, P., Grossi, R., Italiano, G.F.: Search data structures for skewed strings.
Experimental and Efficient Algorithms, Second International Workshop, WEA
2003, Ascona, Switzerland. In: Jansen, K., Margraf, M., Mastrolli, M., Rolim,
J.D.P. (eds.) WEA 2003. LNCS, vol. 2647, pp. 81–96. Springer, Heidelberg (2003)

6. Dlekmann, R., Gehring, J., Luling, R., Monien, B., Nubel, M., Wanka, R.: Sorting
large data sets on a massively parallel system. In: Proceedings of the 6th Sympo-
sium on Parallel and Distributed Processing, pp. 2–9. IEEE, Los Alamitos (1994)

7. Estivill-Castro, V., Wood, D.: A Survey of Adaptive Sorting Algorithms. Comput-
ing Surveys 4(24), 441–475 (1992)

8. Gedigaa, G., Duntschb, I.: Approximation quality for sorting rules. Computational
Statistics & Data Analysis 40, 499–526 (2002)

9. Helman, D.R., Bader, D.A., JaJa, J.: A Randomized Parallel Sorting Algorithm
with an Experimental Study. Parllel and Dirtributed Computing 1(52), l-23 (1998)

10. Jeon, M.S., Kim, D.S.: Parallel Merge Sort with Load Balancing. International
Journal of Parallel Programming 1(31), 21–33 (2003)

11. Kruse, R.L., Ryba, A.J.: Data Structures and Program Design in C++, 2nd edn.
Pearson Education (1999)

12. Knuth, D.E.: Sorting and Searching, 2nd edn. The Art of Computer Programming,
vol. 3. Addison-Wesley, Reading (1998)

13. Larriba-Pey, J.: An Analysis of Superscalar Sorting Algorithms on an R8000 Pro-
cessor. In: Intl. Conf. of the Chilean Computing Society, Chile, pp. 125–134 (1997)

14. LaMarca, A., Ladner, R.E.: The influence of caches on the performance of sorting.
In: Proceedings of the 8th Annual ACM-SIAM Symposium on Discrete Algorithms,
New Orleans, Louisiana, January 5-7, pp. 370–379 (1997)

15. LaMarca, A., Ladner, R.E.: The Influence of Caches on the Performance of Sorting.
In: Proc. Eighth Ann. ACM-SIAM Symp. Discrete Algorithms (1997)

16. Larson, P.: External Sorting: Run Formation Revisited. IEEE Transactionson
Knowledge and Data Engineering 15(4), 961–972 (2003)

17. Shi, H., Schaeffer, J.: Parallel sorting by regular sampling. Journal of Parallel and
Distributed Computing 4(14), 361–372

18. Pai, V.S., Varman, P.J.: Prefetching with Multiple Disks for External Mergesort:
Simulation and Analysis. In: Proc. Int. Conf. Data Eng., pp. 273–282 (1992)

19. Raghaven, P.: Lecture Notes on Randomized Algorithms, tech. report, IBM Re-
search Division, Yorktown Heights, New York (1990)

20. Rashid, L., Hassanein, W.M., Hammad, M.A.: Analyzing and Enhancing the Par-
allel Sort Operation on Multithreaded Architectures. J. Supercomputer (2009)

21. Salzberg, B.: Merging Sorted Runs Using Large Main Memory. Acta Informat-
ica 27(3), 195–215 (1989)



622 M. Woźniak et al.

22. Sinha, R., Zobel, J.: Cache-conscious sorting of large sets of strings with dynamic
tries. J. Exp. Algorithmics 9, 1–5 (2004)

23. Trimananda, R., Haryanto, C.Y.: A Parallel Implementation of Hybridized Merge-
Quicksort Algorithm on MPICH. In: 2010 International Conference on Distributed
Framework for Multimedia Applications (DFmA)

24. Weiss, M.A.: Data Structure & Algorithm Analysis in C++, 2nd edn. Addison-
Wesley Longman (1999)

25. Zhang, W., Larson, P.A.: Dynamic Memory Adjustment for External Mergesort.
In: Proc. Very Large Data Bases Conf., pp. 376–385 (1997)

26. Zhang, W., Larson, P.A.: Buffering and Read-Ahead Strategies for External Merge-
sort. In: Proc. Very Large Data Bases Conf., pp. 523–533 (1998)

27. Zheng, L., Larson, P.A.: Speeding Up External Mergesort. IEEE Trans. Knowledge
and Data Eng. 8(2), 322–332 (1996)


	Modified Merge Sort Algorithmfor Large Scale Data Sets
	1 Introduction
	1.1 Classic Merge Sort Algorithm

	2 Examined Merge Sort Algorithm
	2.1 Double Merge Sort Algorithm
	2.2 Double Merge Sort Algorithm Time Complexity
	2.3 Results of Egzaminations

	3 FinalRemarks
	References




