
A Swarm Intelligence Approach
to Flexible Job-Shop Scheduling Problem

with No-Wait Constraint in Remanufacturing

Shyam Sundar1, P.N. Suganthan1, and T.J. Chua2

1 School of Electrical & Electronic Engineering,
Nanyang Technological University Singapore,

639798, Singapore
{ssundar,epnsugan}@ntu.edu.sg

2 Singapore Institute of Manufacturing Technology,
71, Nanyang Drive Singapore,

638075, Singapore
tjchua@simtech.a-star.edu.sg

Abstract. This paper addresses a flexible job-shop scheduling problem
with no-wait constraint (FJSPNW) which combines features of two well-
known combinatorial optimization problems – flexible job-shop schedul-
ing problem and no-wait job-shop scheduling problem. To solve FJSPNW
with the objective of minimizing the makespan, an artificial bee colony
(ABC) algorithm is proposed. This problem finds application in reman-
ufacturing scheduling systems. ABC algorithm is a recently developed
swarm intelligence technique based on intelligent foraging behavior of
honey bee swarm. Since its inception, it has shown promising perfor-
mance for the solution of numerous hard optimization problems. Numer-
ical experiments have been performed on a set of standard benchmark
instances in order to demonstrate the effectiveness of ABC algorithm.

Keywords: Swarm Intelligence, Artificial Bee Colony Algorithm, No-
wait, Flexible Job-shop, Scheduling.

1 Introduction

In recent years, various scheduling problems have been studied extensively due
to their theoretical and practical applications in the planning and manufacturing
systems. Job-shop scheduling problem (JSP) is one among them. JSP is a well-
known NP-Hard problem [1] combinatorial optimization problem which seeks
to schedule n jobs on m machines with some criteria. Each job consists of a
predetermined sequence of non-preemptable operations and each operation needs
a machine to process. Flexible job-shop scheduling problem (FJSP) [2–5] and
no-wait job-shop scheduling problem (NWJSP) [6–10] are also two well-known
hard combinatorial optimization problems which are generalization of JSP. FJSP
allows an operation to be processed by any machine out of a set of machines,
whereas NWJSP doesnot allow waiting time between operations associated with
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a job, i.e., all operations associated with a job must be processed continuously
one by one without any interruption.

In this paper, we consider a generalized problem called flexible job-shop
scheduling problem with no-wait constraint (FJSPNW) which combines both
features of FJSP and NWJSP. This problem finds application in remanufactur-
ing scheduling systems. In FJSPNW, a set of n jobs J1, J2, . . . , Jn and a set of m
machines M1, M2, . . . , Mm are given. Each job Ji has a predetermined sequence
of non-preemptable Ni operations {Oi1, Oi2, . . . , OiNi}. Each operation Oij can
be processed by any machine from a predetermined set of machines. Pijk is the
processing time of operation Oij on machine k. All jobs and machines are avail-
able at time 0. At a given time, each machine can process at most one operation.
No waiting time is allowed between operations associated with a job. In other
words, all operations associated with a job must be processed continuously one
by one without any interruption. Thus, FJSPNW aims to assign each operation
to an appropriate machine and to find out a sequence of jobs with no-wait con-
straint in such a way that some objective is met. This paper addresses FJSPNW
with the objective of minimizing the makespan.

To the best of our knowledge, there is no reported work for FJSPNW in the
literature. Since FJSPNW is a generalization of FJSP and JSPNW, therefore,
FJSPNW is more complex problem than FJSP and JSPNW. In such a condition,
metaheuristic techniques can be effective techniques in finding high quality solu-
tions in a reasonable time. It has been seen in recent years that swarm intelligence
techniques characterized by the collective behavior and self-organized behavior
of swarms have been applied effectively to solve numerous hard optimization
problems. Artificial bee colony (ABC) algorithm inspired by intelligent foraging
behavior of honey bee swarm [11] is one among them. Since its inception, it has
shown promising performance and competitiveness with other state-of-the-art
metaheuristic techniques. Initially, it was designed for optimization problems in
continuous domain. Later, it was further carried out for discrete optimization
problems [12–15]. A detailed survey of the applications of ABC algorithm can
be studied in [16]. This paper presents an ABC algorithm for the solution of
FJSPNW and the performance of ABC algorithm is tested on a set of standard
benchmark instances.

The rest of this paper is organized as follows: Section 2 outlines a brief in-
troduction to ABC algorithm. Section 3 presents ABC algorithm for FJSPNW
which will be referred to as ABC_FJSPNW. Section 4 demonstrates computa-
tional results, whereas Section 5 concludes the proposed work.

2 ABC Algorithm

ABC algorithm developed by Karaboga [11] is a swarm intelligence technique
based on intelligent foraging behavior of honey bee swarm. The colony of real
bees is classified into three groups – Scout, employed and onlooker bees. Scout
bees are those bees that are searching new food sources in the vicinity of the hive.
When the search of discovering a food source is successful, scout bee becomes
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employed bee. Employed bees are those bees that are currently exploiting food
sources. After exploiting, they carry loads of nectar from the food sources to the
hive and participate in communicating information about their food sources to
the onlooker bees by means of dancing. The nature and duration of the dance
performed by the dancing bee depend on the richness of the food source. On-
looker bees are those bees that are waiting for the employed bees. After arrival
of employed bees, onlooker bees watch numerous dances of employed bees and
then, they select a food source with a probability which is directly proportional
to the nectar content of that food source. It helps in attracting more and more
number of onlooker bees towards a good quality of a food source. As soon as, an
onlooker bee selects a food source, it becomes an employed bee. If a food source
is exploited completely, then this food source is abandoned by those employed
bees that associate with this food source and all these employed bees become
either scouts or onlookers.

In ABC algorithm [11], artificial bees are also classified into three groups –
scout, employed and onlooker bees. Each food source represents a feasible solu-
tion to the problem under consideration, whereas its nectar content represents
the fitness of the solution. Since in ABC algorithm, each food source is associated
with an employed bee. So, the number of food sources is equal to the number
of employed bees. ABC algorithm begins with initializing a fixed number of so-
lutions randomly. Then, a search process that includes two following phases is
carried out repeatedly until the termination criterion is satisfied.

1. Employed Bee Phase: Each employed bee determines a new food source (so-
lution) in the neighborhood of its associated food source. If the new food
source is better than its currently associated solution based on fitness, then
it moves to the new neighboring food source, otherwise it continues with the
old one. If a food source doesnot improve for limit number of trials (itera-
tions), then it is presumed that this solution is exploited completely. In such
a situation, employed bee that associates with this food source abandons its
food source and becomes a scout bee. As soon as, this scout bee generates a
new solution (food source) randomly, it again becomes an employed bee.

2. Onlooker Bee Phase: All employed bees participate in communicating infor-
mation about their fitnesses with onlooker bees. With the help of probability
based selection method which biases towards the good quality of solutions
(food sources) over the bad ones, each onlooker bee selects a solution. A
good solution will be selected by more and more number of onlooker bees.
All onlooker bees, similar to employed bee phase, also determine new food
sources in the neighborhood of its selected food source. After that, among all
new neighboring food sources determined by onlookers that associate with
a particular food source k and food source k itself, the best solution will be
assigned to the position of kth food source. This phase is completed when
the new positions of all food sources are determined.
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3 ABC_FJSPNW

Main characteristics of ABC_FJSPNW are described as follows:

3.1 Solution Encoding

Since FJSPNW is characterized by two things – sequence of jobs with no-wait
constraint and assignment of operations to machines, therefore, in order to en-
code (represent) a solution, a list called job_list is used to maintain the sequence
of jobs. In addition, for each job i in job_list, another list called machine_list of
all selected machines used for processing their operations ∈ i is used. It is to be
noted that each index of machine_list represents the operation number of the
corresponding job.

3.2 Initialization

In order to maintain a balance between diversity and quality in the population,
an iterative procedure which consists of random and greedy strategies is applied
to generate each initial solution S of the population. Initially, S is an empty
solution and all jobs are added to a set called U . A job i is selected uniformly
at random from U . This selected job i is added to the first empty position of
job_list of S. Hereafter, in order to process each operation j of this selected
job i, i.e., Oij without violating no-wait constraint, iteratively a machine k is
selected for Oij from its predefined set. Selection of a machine k for Oij from
its predefined set is done either randomly or greedily. With probability Pr , a
machine is selected uniformly at random from its predefined set, otherwise a
machine having minimum processing time is selected with probability 1 - Pr.
Pr is an empirical parameter. This machine k for Oij is added to jth index of
machine_list of the selected job i. This whole iterative procedure continues until
assignment of all operations ∈ i to their machines is completed. Selected job i
is deleted from U . This whole iterative procedure continues until U becomes
empty.

To ensure the feasibility of a solution after the generation of a solution, a
solution decoding procedure is applied to decode the solution which is explained
in the next subsection.

3.3 Solution Decoding

Since FJSPNW is a generalization of NWJSP, therefore, solution decoding pro-
cedure for NWJSP can also be applied for FJSPNW. The procedure for solution
decoding [18] is described as follows:

Step 1. Initially, each machine is allotted with zero to infinity idle time interval.
Step 2. Select a job in the sequence of the schedule (solution), then find all

matching among idle time intervals of machines and the processing times of
all operations of the current job without violating no-wait constraint.



A Swarm Intelligence Approach to Flexible Job-Shop Scheduling Problem 597

Step 3. Update idle time interval of each machine.
Step 4. If all jobs are chosen, then the procedure stops. Otherwise goto Step 2.

It is to be noted according to [18] that if the processing time of any operation
of the current job doesnot succeed to match with its corresponding machine’s
idle time interval, then that operation is delayed until it finds a corresponding
idle time interval, and simultaneously every other operation of the same job is
also delayed by the same amount and also a re-check is done so that the process-
ing time of every operation of the current job matches with its corresponding
machine’s idle time interval without violating no-wait constraint. Basically, this
decoding procedure delays the start time of each job of the schedule so that the
processing times of its all operations fall in their corresponding machines’ idle
time interval and it also doesnot violate no-wait constraint.

Each candidate solution is uniquely associated with an employed bee. The
fitness (makespan) of each solution is calculated.

3.4 Probability of a Selecting a Food Source

Each onlooker bee selects a food source (solution) with the help of binary tour-
nament selection method which is a probability based selection method. In this
method, two different food sources are selected uniformly at random from the
population. With probability Pbt, best of them is selected, otherwise worse one
is selected. Pbt is an empirical parameter.

3.5 Determination of a Neighboring Food Source

In order to find a high quality solution (food source), the problem structure
must be exploited as much as possible. Since the problem structure of FJSPNW
is based on the sequence of jobs with no-wait constraint and assignment of
operations to machines, therefore, two different methods – multi-point insert
method [17] and perturbation method – are used in a mutually exclusive way for
determining a solution Y in the neighborhood of a solution X . Multi-point insert
method uses the concept of utilizing solution components from another solution
[12][17]. It is also based on this assumption that if a component is positioned
at right place in a good solution (schedule), then there is high possibility that
this component should be exactly at the same position or vicinity to the same
position in many other good solutions. Whereas, perturbation method perturbs
the sequence of jobs and assignment of operations to machines in order to avoid
the solution to be trapped in a local optima. With probability Pmpi, multi-
point insert method is applied, otherwise perturbation method is applied with
probability 1-Pmpi. Pmpi is an empirical parameter.

1. Multi-point Insert Method : In this method, an another solution Z which is
different from X is selected randomly from the population. Initially, Y is
an empty solution. After that, nrp different positions are selected randomly
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Algorithm 1. Pseudo-code of ABC_FJSPNW
Initialize EP solutions e1, e2, . . . , eEP ;
BEST ← Best solution ∈ {e1, e2, . . . , eEP};
while Termination criteria is not satisfied do

for l← 1 to EP do
enbr ← Nbring_Sol(el);
if enbr is better than el then

el ← enbr;
else if el has not improved for a predetermined number of iterations,
i.e., limit iterations then

Scout bee;

if el is better than BEST then
BEST ← el;

for l← 1 to OP do
Il ← Selection(e1, e2, . . . , eEP );
ol ← Nbring_Sol(eIl);
if ol is better than BEST then

BEST ← ol;

for l← 1 to OP do
if ol is better than eIl then

eIl ← ol;

from job_list of Z. All jobs corresponding to selected positions as well as
their associated machines in their machine_list are inserted into the same
positions of job_list and their machine_list of Y , respectively. The remain-
ing empty positions in job_list of Y are inserted with those jobs of X which
are not in Y according to the order in which they appear in X . At the same
time, all machines in machine_list associated with those jobs in X that
participate in Y for insertion are also inserted into the same machine_list
of their corresponding jobs in Y . It is to be noted that nrp is an empirical
parameter.

2. Perturbation Method : This method itself involves two strategies. First a copy,
say Y , of the solution X is created. Then both strategies are applied one by
one on the solution Y . In the first strategy, two different jobs are selected
randomly from job_list. After that these two selected jobs as well as their
associated machines in their machine_list are swapped. This swap strategy is
applied for nswp times, where nswp is the empirical parameter. Hereafter,
second strategy is applied. In this strategy, a job i is selected randomly
from job_list, then an index j of machine_list corresponding to the job
i is selected randomly. It should be noted that an index of machine_list
represents the operation number of the job i, i.e. Oij . After that the machine
k assigned for Oij is replaced with an another machine k′ which has the
minimum processing time in its machine set of Oij . It is to be noted that
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if the machine set of Oij has single machine, then this replacement strategy
starts afresh. In addition to this one, if the selected machine k′ is found to be
machine k, then a different machine is randomly selected from its machine
set of Oij which must be different from k. This strategy is applied for at
most nmc times, where nmc is an empirical parameter.

3.6 Other Features

An employed bee that associates with a food source (solution) becomes a scout
bee iff this solution doesnot improve for a predetermined number of trials called
limit parameter. When it takes place, this scout bee will generate a new solution
which is similar to initialization procedure (see subsection 3.2) for generating an
initial solution. As soon as a solution is generated, this scout bee again becomes
employed bee. The parameter limit plays a vital role in ABC algorithm as it
provides a balance between exploration and exploitation.

Algorithm 1 explains the pseudo-code of ABC_FJSPNW, where EP and OP
denotes the number of employed and onlooker bees respectively. Nbring_Sol(e)
is a function that determines a solution in the neighborhood of the solution e
and returns this neighboring solution. Selection(e1, e2, . . . , eEP ) is an another
function used by an onlooker bee for selecting a solution from solutions e1, e2,
. . . , eEP . This function returns the index of selected solution.

4 Computational Results

ABC_FJSPNW has been implemented in C and executed on a Linux based
3.2 GHz × 4 i5 with 3.7 GB RAM system. Since to the best of our knowledge,
there is no reported work for FJSPNW in the literature. So, in order to test
ABC_FJSPNW we have used a set of standard benchmark instances – BRdata
set [3] – which are treated as FJSPNW instances. BRdata set contains 10 in-
stances. In this benchmark set, the number of jobs, i.e., n varies from 10 to 20,
while the number of machines, i.e., m varies from 6 to 15.

Since parameters used in ABC_FJSPNW play vital roles in the performance
of ABC_FJSPNW, therefore, their values are chosen carefully after a large num-
ber of experiments. Different-2 values for which parameters have been experi-
mented are described as follows: [50, 100, 150, 200] for the total number of
employed bees EP , [100, 150, 200, 250] for the total number of onlooker bees
OP , [25, 50, 100] for limit, [0.80, 0.85, 0.90] for Pbt, [0.40, 0.50, 0.60] for Pr, [0.85,
0.90, 0.95] for Pmpi, [0.1× n, 0.2× n, 0.3× n] for nrp, [0.1× n, 0.2× n, 0.3× n]
for nswp, [0.2 × nop, 0.3 × nop, 0.4 × nop] for nmc. nop is the total number of
operations for each instance. In experimentation, the value of a single param-
eter is tested while keeping the values of other parameters fixed. After a large
number of experimentation, it is observed that ABC_FJSPNW performs better
in most of the cases when EP = 100, OP = 200, limit = 50, Pbt = 0.85, Pr

= 0.5, Pmpi = 0.9, nrp = 0.2 × n, nswp = 0.2× n, nmc = 0.3 × nop. For each
instance, ABC_FJSPNW has been executed 10 times (runs) with a different
random seed. Total number of generations for each instance is n×m× 30.
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Table 1. Results of ABC_FJSPNW on BRdata instances

Instance n×m nop ABC_FJSPNW
Value Avrg. SD ATET

Mk01 10× 6 55 45 46.90 0.83 2.26
Mk02 10× 6 58 36 37.50 0.67 2.37
Mk03 15× 8 150 238 250.30 6.07 22.45
Mk04 15× 8 90 78 80.40 1.56 8.06
Mk05 15× 4 106 247 251.20 2.93 7.83
Mk06 10× 15 150 110 120.20 4.02 26.01
Mk07 20× 5 100 186 189.40 2.69 10.96
Mk08 20× 10 225 795 837.50 22.92 108.25
Mk09 20× 10 240 620 640.00 11.63 100.67
Mk10 20× 15 240 430 445.90 16.80 135.09

Experimental results of each instance obtained by ABC_FJSPNW is reported
in Table 1. In Table 1, Instance denotes the name of the instance, (n,m) denotes
the size of the instance, i.e., the number of jobs n and the number of machines
m, nop presents the total number of operations associated with the instance,
Value denotes the best value obtained, Avrg. denotes the average value over 10
runs, SD denotes the standard deviation, ATET represents the average total
execution time in second over 10 runs. The value of SD denotes the robustness
of ABC_FJSPNW for most of the instances.

Fig. 1. Convergence behavior of ABC_FJSPNW for Mk02 instance
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Fig. 1 depicts the convergence behavior of ABC_FJSPNW for the Mk02
instance. In this figure, average value over 10 runs according to the number of
generations is considered. This figure shows the improvement of average solution
quality of the Mk02 instance over the number of generations.

5 Conclusions

In this paper, an artificial bee colony (ABC) algorithm is proposed for a general-
ized problem called flexible job-shop scheduling problem with no-wait constraint
(FJSPNW) combining the features of flexible job-shop scheduling problem and
no-wait job-shop scheduling problem. The proposed approach has been tested on
a set of standard benchmark instances for FJSPNW. Experimental results as well
as convergence behavior of the proposed approach demonstrate its effectiveness.

To the best of our knowledge, there is no reported work for FJSPNW in
the literature. So, as a future work, we intend to propose other metaheuristic
techniques for this problem. The concepts used in this paper can also be applied
to other scheduling problems.
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