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Abstract. Matrix factorization techniques have become extremely pop-
ular in the recommender systems. We show that this kind of methods
can also be applied in the domain of travel time estimation from histor-
ical data. We consider a large matrix of travel times in which the rows
correspond to short road segments and the columns to 15 minute time
slots of a week. Then, by applying matrix factorization technique we ob-
tain a sparse model of latent features in the form of two matrices which
product gives a low-rank approximation of the original matrix. Such a
model is characterized by several desired properties. We only need to
store the two low-rank matrices instead of the entire matrix. The esti-
mation of the travel time for a given segment and time slot is fast as
it only demands multiplication of the corresponding row and column
of the low-rank matrices. Moreover, the latent features discovered by
the matrix factorization may give an interesting insight to the analyzed
problem. In this paper, we introduce that kind of the model and design
a fast learning algorithm based on alternating least squares. We test this
model empirically on a large real-life data set and show its advantage
over several standard models for travel estimation.

1 Introduction

Travel time estimation is a fundamental and important part of many traffic-
related systems. For example, the online personal car navigation requires the
travel time estimates for all road segments in the traffic network for finding
the shortest, or better to say, the fastest path between any two points in the
network. Therefore, to get reasonable travel time estimates, we need to use a
source of data that is able to cover the entire traffic network, or at least a part
of it. The common approaches to travel time estimation are still based on loop
detectors [13] or some other stationary sensors [7], so the majority of the current
research focuses on single paths [13], freeways [12], or a subset of urban arterial
roads [2]. Thus, we have to rely on other sources of data such as GPS-devices
installed in the vehicles. The usage of GPS data in travel time prediction [4]
is still a novel approach. The GPS data have an advantage of covering a large
part of the traffic network, however, they are unfortunately sparse and unevenly
distributed, what makes the prediction and estimation much harder.
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Let us assume that our goal is to perform accurate estimates for each single
road segments and 15 minute time slots of a week. Different models can be
used for this task. The simplest method may rely on averaging the travel times
for a given road segment and a time slot. However, such an approach would
require a lot of observations to deliver reliable estimates and to store estimates
for each segment and time slot. A remedy for these problems is to use some more
general features of road segments and time slots or to compute estimates on less
grain level, for example, for a given road segment. There are also many other
statistical and learning methods that have already been considered for travel
time estimation from GPS data, like Kalman filters [8], ARIMA models [2],
linear regression [10], neural networks [13] and copula based estimation [14], to
mention just a few of them. In this paper, however, we follow another way.

We show that matrix factorization techniques that have become extremely
popular in recommender systems [11,9] can be successfully applied to the task of
the travel time estimation from historical data in a large traffic network. Typi-
cally, in the recommender system applications, the rows of the matrix correspond
to users, while the columns to products, movies, or songs. Such a matrix is sparse,
since it is rather unlikely that a given user would buy all possible products or
watch all the movies. This matrix is then approximated by a product of two
low-rank matrices that represent latent features of users and products. In travel
time estimation, the rows of the matrix may correspond to short road segments
and the columns to 15 minute time slots of a week. Then, by applying matrix
factorization techniques we obtain a sparse model in which the latent features
describe road segments and time slots. Such a model is characterized by several
desired properties. We only need to store the two low-rank matrices instead of
the entire matrix. The estimation of the travel time for a given segment and
time slot is fast as it only demands multiplication of the corresponding row and
column of the low-rank matrices. Moreover, the latent features discovered by the
matrix factorization may give an interesting insight to the analyzed problem. By
using a specific regularization over the time slots we can obtain smooth features
that represents time characteristics of segments.

In this paper, we introduce that kind of the model and design a fast learning
algorithm based on alternating least squares. We test this model empirically on
a large real-life data set and show its advantage over several standard models
for travel estimation.

2 Problem Statement

The goal is to predict a travel time yst for a given road segment s ∈ {1, . . . , S}
in a given time point t. The task is then to find a function f(s, t) that predicts
accurately the value of yst. The accuracy of a single prediction ŷst = f(s, t) is
measured by a loss function L(yst, ŷst) which determines the penalty for pre-
dicting ŷst when the true value is yst. We will use the squared error as the loss
function: L(yst, ŷst) = (yst − ŷst)

2. The set of historical data {(yi, si, ti)}Ni=1 is
used by a learning procedure to construct function f(s, t) in order to minimise
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loss over future data. We additionally assume that for each road segment s and
time point t, a vector of attributes is available: xst = (xst1, xst2, . . . , xstn). Thus
the data can be represented in regular tabular form {(yi,xi)}Ni=1. Exemplary
attributes include: segment id, type of the road, type of surrounding area, geo-
graphical information and segment length (which will be denoted as ls).

Below, we first discuss simple granular models and Bayesian averaging of them
as two baseline models. Then, we introduce the variant of matrix factorization
suited for travel time estimation.

3 Granular Models

The granular model is based on averaging over specified granulation of data. A
granule can be defined by a conjunctive rule Gm:

Gm(x) =

n∏

j=1

�xj ∈ Sj�

where Sj is a subset of a domain of j-th attribute, and �P � is 1 if predicate P
is satisfied, 0 otherwise. In other words, Gm(x) indicates whether x belongs to
the granule being the intersection of conditions xj ∈ Sj . All granules {Gm}M1
are disjoint and cover the entire feature space, i.e., for any x there exists only
and exactly one m for which Gm(x) = 1. The prediction is computed as:

f(xst) = ls

M∑

m=1

αmGm(xst), αm =

∑N
i=1 yiGm(xi)∑N
i=1 liGm(xi)

(1)

where M is number of granules and αm is an estimate of a travel time for a length
unit computed as an average over training observations belonging to the m-th
granule. The main problem is to determine the right granulation, to achieve the
desired bias-variance trade-off, with coarse granules yielding biased predictions,
while fine granules may yield high variance. In this work we use several simple
groupings of attribute values for granules.

One can notice that formula (1) resembles prediction function used in decision
tree [3] and rule models [6,5]. The main difference is that functions Gm are not
directly induced, but given a priori and based on simple grouping of attribute
values. Since in the considered case, there are only few attributes available and
some of them are of specific kind like road segment id (a nominal attribute with
a huge number of values) such an approach seems to be reasonable.

4 Bayesian Averaging

Bayesian averaging allows combining two models built on different levels of gran-
ulation, based on the variance and the number of observations in the granules.
Let fs1 and fs2 be two granular models. The first model fs1 is assumed to be
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computed on coarse granules and can be treated as a prior expectation for a
predicted value. In turn, fs2 gives a fine-grain prediction. Bayesian averaging is
then defined by

fs(x) = (1 − λ)fs1(x) + λfs2(x),

where λ might be tuned empirically. However, we can determine λ using the
Bayesian analysis as follows. Let μ0 be the mean travel time within the coarse
granule m1. We assume that the mean travel time μ for each fine granule m2

within coarse granule m1 is drawn from a Gaussian distribution with mean μ0.
Then, the observations yi in the fine granule m2 are drawn from a Gaussian dis-
tribution with mean value μ. If the parameters of the distributions are estimated
from the data, one can show [1], that the Bayesian posterior would lead to the
following value of λ:

λ =
σ̂2
m1

σ̂2
m1

+ σ̂2
m2

/nm2

, (2)

where σ̂2
m1

is the variance of all observations within the coarse granule Gm1 ,
while σ̂2

m2
is the variance of observations within the fine granule Gm2 , and nm2 is

number of observations in granule Gm2 . If the term σ̂2
m2

/nm2 is small comparing
to σ̂2

m1
(many observations and/or large variance within the coarse granule),

then fs2 tends to dominate the final prediction, whereas if the term is high, then
the overall predictions is strongly shrunk towards the coarse-grained model fs1.

5 Matrix Factorization

Let us consider a matrix Y , which rows correspond to road segments and columns
to 15 minute time slots defined over a week (672 time slots in total). The task is
to find a compressed (storage efficient) an approximation of Y that also has all
of the missing values from Y supplemented (which may be many due to sparsity
of the data).

The approximation of Y can be given by a product of two low-rank matrices:
Y � Ŷ = UMT where U is an S ×K and M is a J ×K matrix, where S is the
number of road segments, and J the number of time slots. K defines a rank of
Ŷ and can be seen as a number of latent features describing road segments and
time slots.

The elements ysj of matrix Y are mapped from training observations
{(yi, si, ti)}Ni=1, in such a way that a time point ti is transformed to a corre-
sponding time slot j. We will use i �→ sj to express this mapping. Let us also
note that elements of Y may, in fact, contain more than one entry, and many of
the elements will contain no entry at all.

Formally, we try to find optimal matrices U∗ = [usk] and M∗ = [mjk], which
are the solution of:
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(U∗,M∗) = arg min
(U,M)

L(Y, UMT ),

where

L(Y, UMT ) =
∑

i�→sj

(ysj −
K∑

k=1

uskmjk)2.

In the above formulation, the rank K of matrix Ŷ plays a role of regulariser that
prevents overfitting of the model to training data. An additional regularisation is
usually introduced in this type of algorithms. For example, the Frobenius norm
of matrices U and M : ∑

sk

u2
sk,

∑

jk

m2
jk,

respectively, is usually minimised along with the error term. This prevents the
coefficients to have values far from zero.

The Frobenius regularisation for segments, however, requires some calibration
of the matrix entries to justify regularization to zero. In the following, we set up
the first vector of U to be equal to the original length of the segment: us1 = ls.
Values for mj1 can be then interpreted as average travel times for a length unit
(i.e., average inverse velocity).

In turn, for time slots we control the difference between consecutive time
slots, as the time slots close to each other should result in a similar prediction.
This can be achieved by smoothing a prediction over time slots using a specific
regularisation term of the following form:

∑

jk

(mjk −m(j−1)k)2 =
∑

jk

m2
jk + m2

(j−1)k − 2mjkm(j−1)k,

where we assume that if j = 1 then j − 1 = J , as also if j = J , then j + 1 = 1.
Thus, the function L to be minimised is given by:

L(Y, UMT ) =
∑

i�→sj

(ysj −
K∑

k=1

uskmjk)2 + λ1

∑

sk

u2
sk + λ2

∑

sk

(mjk −m(j−1)k)2

The parameters of the problem are then K, as also λ1 and λ2 that controls the
strength of regularisation.

The regularised learning problem is unfortunately non-convex, thus the min-
imisation of our objective L(Y, UMT ) requires a special method to solve. Our
method is iterative. We first set up us1 = ls for all s. Then, in each iteration
(k = 1, . . . ,K) we compute usk (except us1) and mjk, for all s and j, by min-
imising:

Lk =
∑

i�→sj

(Δysj − uskmkj)
2 + λ1

∑

s

u2
sk + λ2

∑

j

(mjk −m(j−1)k)2,

where

Δysj = ysj −
k−1∑

k′=1

usk′mjk′ .
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Minimising Lk is still hard and requires an iterative procedure, which is guaran-
teed to converge to a local minimum. In each iteration of the procedure, we first
find the optimal usk, for all s, given fixed mjk. Next, we fix new values of usk

and find the optimal mjk for all j. This process is repeated until convergence,
and usually only several iterations are sufficient to get a stable solution.

The solution for usk given fixed mjk can be obtained by taking the negative
gradient of Lk and setting it to 0:

− ∂L
∂usk

= 2
∑

j

(Δysj − uskmjk)mjk − 2λ1usk = 0 s = 1, . . . , S.

It is easy to see that the solution is given by:

usk =

∑
j Δysjmjk∑
j m

2
jk + λ1

s = 1, . . . , S. (3)

The penalty term for mjk is more complex and couples consecutive time slots.
The negative gradient is given by:

− ∂L
∂msj

= 2
∑

s

(Δysj − uskmjk)usk − 2λ2(2mjk + m(j−1)k + m(j+1)k),

where j = 1, . . . , J . By setting all negative gradients to 0 we end up with the
following system of linear equations:

mjk +
λ2(m(j−1)k + m(j+1)k)

2(
∑

s u
2
sk + λ2)

=

∑
s Δysjusk∑
s u

2
sk + λ2

j = 1, . . . , J. (4)

We solve this system of linear equation by using Gauss-Seidel method which
proceeds in an iterative way.

6 Experimental Results

6.1 Data and Methodology

Real GPS floating car data used in the experiment were delivered by NaviExpert,
a Polish car navigation company. The data consist of map-matched (projected to
road segments) travel time observations, associated with a time stamp and addi-
tional attributes such as the length of a road segment, road category (highway,
freeway, urban road, etc.), type of surrounding area (city, village, out-of-the-
city), geographical coefficients, etc.

The observations cover the city of Warsaw, the capital of Poland, with sur-
roundings — a rectangular envelope with a side of about 85km around the centre
at 52.2391°N 21.0227°E, which constitutes an area of above 7000km2. The ob-
servations span from the 1st of September 2009 to the 31st of December 2009. In
total, the data set contains 6 808 061 observations that are sparse and unevenly
distributed in time and space.
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Table 1. RMSE for static models with varying size of training set: we used 6.25%,
12.5%, 25%, 50%, 100% of training instances. RMSE is given in percent ([%]) in com-
parison to the global mean model and in minutes ([min])

model 6.25%N 12.5%N 25%N 50%N 100%N

[%] [min] [%] [min] [%] [min] [%] [min] [%] [min]

GM 100.00 0.391 100.00 0.390 100.00 0.391 100.00 0.394 100.00 0.395
LLG 95.94 0.375 96.08 0.374 95.90 0.375 95.55 0.376 95.37 0.377
RSG 89.97 0.352 88.57 0.345 87.01 0.340 85.27 0.336 83.70 0.331
BA 89.42 0.349 88.45 0.345 87.06 0.340 85.43 0.336 84.00 0.332
MF 89.69 0.351 87.67 0.342 84.84 0.332 82.37 0.324 80.42 0.318

The models were trained and tuned on the training set. Then, the resulting
models were evaluated on the testing set. The training set covered the first three
months of data while the test set covered the whole month of December 2009.
As performance measure we used the root mean square error (RMSE).

6.2 Results

In the experiment we compared the following four models: low-level granular
(LLG) model, single road segment (SRG) model, Bayesian averaging (BA) of
two above models, and the matrix factorization (MF). All the results are related
to the simple global mean (GM) model, for which the average of travel times
was computed over all training observations.

LLG is a simple granular model in which a granule is built as a combina-
tion of values of the following attributes: time periods (possible values: morning,
noon, afternoon, nights-and-weekends), type of the road (possible values: high-
way, main road, normal), and type of surrounding area (possible values: town,
village, out-of-city). SRG is also a simple granular model which prediction is com-
puted as average travel time over all observations from a given road segment.
In case of a low traffic on a segment, the prediction may have a high variance,
which is the main drawback of this model. To overcome the above problem, we
used BA to combine LLG and SRG models with each other.

Obviously, MF is the most complex model used in this experiment that re-
quires tuning of additional parameters. In this regards, we isolated from the
training set a validation part that contained observations from November. How-
ever, computational costs of this algorithm are not very high. The single run of
the algorithm takes around 20 seconds on Inter Core2 2.4GHz machine with 2
GB of RAM. We computed up to K = 20 factors for matrices U and M . We
found the optimal value K = 10 on the validation set. Regularisation parameters
were also optimized on the validation set.

Table 1 shows the results given in plain RMSE (in minutes) and the percent-
age RMSE in relation to the GM model’s prediction error for different sizes of
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Fig. 1. Training and testing RMSE of MF model are given as a function of K, i.e.,
number of factors of matrices U and M

training set. We varied the size of training set by taking from 6.25% to 100% of
training instances. One can easily observe that the MF model performs the best.
In the case of small training set, BA has a small advantage over MF and SRG.
If the size of training size increases, then SRG and MF starts to outperform BA,
however, in the case of the latter the improvement is more pronounced. These
three models are significantly better than GM and LLG models. In Figure 1 we
show performance on training and testing set of MF with respect to number
of factors K. Significant improvement can be noticed up to 5 factors. For next
factors, RMSE computed on testing set does not decrease, however, no overfitting
occurs.

Let us also underline that the MF model has an additional advantage that
the latent features discovered by matrix factorization can be nicely interpreted.
Figure 2 shows the first 5 factors of matrix M and distribution of values on
the corresponding 5 factors of matrix U . The first factor (black) can be in-
terpreted as a average travel time for a length unit (inverse average velocity).
The next factors can be interpreted as changes in travel times depending on
a type of a road segment. The second factor (red) seems to indicate road seg-
ments that are sensitive for traffic congestion in morning and afternoon hours of
working days. The third (green) and fourth (blue) factor indicate in- and out-
of-city segments, while the fifth factor (light-blue) indicates “Friday afternoon
and weekend” roads.
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Fig. 2. From top: first five factors of matrix M that represents different characteristics
of road segments. A unit of x-axis corresponds to an interval of 15 minutes (thus, a
range of the x-axis is from 1 to 672). At bottom: box plot (with outliers) that shows
distribution of values on corresponding factors of matrix U .
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7 Conclusions

We shown that matrix factorization techniques can be successfully applied in
the context of travel time estimation for large traffic networks. In the exhaustive
experiment on real-world data the matrix factorization outperformed standard
approaches to this problem being still competitive in terms of computational
costs. Moreover, the latent features obtained as a by-product of the matrix fac-
torization give us further insight into the problem and can be valuable source
of information. There are also many possible directions for the future research.
The static model could be improved by treating some road segments separately.
Specific segments with dense data could also be modelled differently, e.g. by
kernel estimation methods or locally weighted regression.
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