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Abstract. This paper considers AI problems concerning reasoning in
multi-agent environment. We introduce and study multi-agents’ non-
linear temporal logic TS4U

Kn
based on arbitrary (in particular, non-

linear, finite or infinite) frames with reflexive and transitive accessibility
relations, and individual symmetric accessibility relations Ri for agents.
Main accent of our paper is modeling of logical uncertainty for statements
via interaction of agents (passing knowledge). Conception of interacting
agents is implemented via arbitrary finite paths of transitions by agents
accessibility relations. We address problems decidability and satisfiability
for TS4U

Kn
. It is proved that TS4U

Kn
is decidable (and, in particular, the

satisfiability problem for it is also decidable). We suggest an algorithm
for checking satisfiability based on computation possibility of refutation
special inference rues in finite models of effectively bounded size.

Keywords: multi-agents’ logic, interacting agents, temporal logic, non-
linear temporal logic.

1 Introduction

Basically a multi-agent system (MAS) is a system composed of multiple in-
teracting intelligent agents within certain environment. Study of MASs (with
autonomous or interacting, say competitive) agents is an active area in modern
AI. Technique and research outputs are various, diverse and work well in many
contemporary areas (though, it seems, most popular area is applications in IT,
– cf. Nguyen et al [17–19], Arisha et al [1], Avouris [2], Hendler [11]). Area of
modeling reasoning (initially, – an individual human reasoning) is an old branch
of AI, which now includes technique for modeling multi-agents reasoning. These
techniques use a logical language for reasoning about agents’ knowledge and
properties (e.g. various technique of mathematical (symbolic) logic is widely used
(cf. [10, 12, 13])); in particular, multi-agent modal logics were implemented.
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Historically, multi-agent epistemic logics have found various applications in
fields ranging from AI domains such as robotics, planning, and motivation anal-
ysis in natural language, to negotiation and game theory in economics, to dis-
tributed systems analysis and protocol authentication in computer security. Abil-
ity of intelligent agents to reason about knowledge is an essential feature of those
applications. For instance, technique of non-classical logic (as modal, tempo-
ral or epistemic) gives inference capabilities to deduce implicit knowledge from
the explicitly represented facts. This approach allows to describe the properties
(specifications) with explicit, mathematically preciseness, which simplifies iden-
tification. Historically, usage of logical language in knowledge representation is
known since reasonably long ago (cf. Brachman and Schmolze (1985, [7]), Moses
and Shoham (1993, [14]), Nebel (1990, [15]). It also had some applications in
industry Rychtycki (1996, [30]).

To represent knowledge and to specify it, the question what is a shared knowl-
edge and what is a common knowledge for all agents has been risen. It seems, first
ideas concerning this specification appeared in Barwise (1988, [8]), Niegerand
and Tuttle (1993, [16]), Dvorek and Moses (1990, [9]). Modern approach to com-
mon knowledge logics was suggested in the book Fagin R., Halpern J., Moses Y.,
Vardi M. (1995, [10]). This book contains a series of theorems on completeness
for various common knowledge logics w.r.t. possible worlds models.

In study of multi-agents’ reasoning, an essential point is how to represent in-
teraction of agents, exchange of information (cf. e.g., Sakama et al [20]). Study
of multi-modal agents logics and temporal agents-logics, representing these fea-
tures, were undertaken in a series of works by V.Rybakov. A kernel part in these
works was a representation the case when the logics describe interacting agents.
In Rybakov, 2009, [26] some technique to handle interactions was found, and, as
a consequence, it was proved that the multi-agent Linear Temporal Logic (with
UNTIL and NEXT and with interacting agents, or dually, common knowledge)
is decidable, that the satisfiability problem for this logic is also decidable, and
some algorithms solving the problem were found (cf. also Rybakov [25]). Be-
sides, research of just multi-agent logics (as modal and temporal) with aim to
find solution of satisfiability problem (and decidability corresponding logics) was
earlier undertaken in Rybakov [27, 28], Babenyshev and Rybakov [3–6].

This paper studies the multi-agents’ non-linear temporal logic TS4U
Kn

based
on arbitrary (in particular, non-linear, finite or infinite) frames with reflexive
and transitive accessibility relations, and individual symmetric accessibility re-
lations Ri for agents. The impellent aim of our paper is how to represent logical
uncertainty in multi-agent reasoning. We suggest to model logical uncertainty
for statements via interaction of agents (passing knowledge).

Conception of interacting agents is implemented via arbitrary finite paths of
transitions by agents accessibility relations. This approach uses technique de-
veloped by V.Rybakov in the mentioned above papers, it essentially uses [26],
and the current paper extends results from [29] in order to handle logical uncer-
tainty via interaction of agents. Main computational problems we dealing with
are problems of decidability and satisfiability for TS4U

Kn
. We show that TS4U

Kn
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is decidable (in particular, the satisfiability problem for it is also decidable). An
algorithm for checking satisfiability based on computation truth values of special
inference rues in finite models of effectively bounded size is constructed. Paper
contains some preliminary information for understanding obtained results.

2 Basic Notation, Definitions, Known Facts

We start from recalling notation and known facts concerning modal, multi-modal
and temporal logics (so, some familiarity with these areas is assumed, though
we give below the definitions to follow the paper). First, we the need special
Kripke/Hintikka-like frames F defined as follows: F := 〈W,R,R1, . . . , Rn〉, where
W is a set of states (symbols of states, modeling web sites), R is a binary relation
on W (modeling, for example, web connections, or runs of computations): aRb
means that there is a connection from state a to state b (e.g. by clicking link
buttons, some amount of steps in a computational procedure, etc.).

Relation R is assumed to be reflexive and transitive (which corresponds well
to understanding time in a run of a computation, and models transitions in runs
of computations, passing via web connections, etc). Thus, the following holds:
∀a ∈ W, aRa; ∀a, b, c ∈ W, aRb & bRc ⇒ aRc. States (worlds) in F –
symbols from W – form with respect to R clusters. A cluster C(a) generated by
a ∈W is the set {b | b ∈W,aRb & bRa }.

Any relation Ri (agent i accessibility relation) is reflexive, transitive and sym-
metric relation (i.e. aRib ⇒ bRia) on C(a) for any a ∈ W . An interpretation of
such approach to model agents’ relation via internet connections is as follows:
being logged at web-site a, i-agent may access by Ri some web sites from C(a)
(in accordance with possession of access rules/passwords) - and switch between
sites in its disposal freely, back and forth. Yet i cannot jump to another sites
outside C(a) without permitting (convoy) from administrator.

For computational runs the interpretation is similar: there are several compu-
tational threads imitated as relations Ri – any thread is a computational agent,
relation R holds a cluster of local computations around an time tick. We would
like to built a framework for description multi agent reasoning based at such
sematic approach.

Our approach is based at a hybrid of a non-linear temporal logic and some
knowledge multi-agent logic. Language of our logic consists of standard language
of Boolean logic extended with temporal and agent knowledge operations. So, it
contains potentially infinite set of propositional letters P ; the logical operations
include usual Boolean logical operations and usual unary agent knowledge op-
erations Ki, 1 ≤ i ≤ m; also it contains the operation for knowledge via agents’
interaction KnI (this operation may be expressed as a dual counterpart of the
common knowledge operation introduced, e.g. in Fagin et al [10]), and the unary
logical operation U with meaning ‘uncertain’.

Temporal unary operations are �+ (with meaning ‘possible in future’ by a
sequence of computational steps) and �− (with meaning possible, so to say
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in past, – by a sequence of backtracks). The formation rules for formulas are
standard: any propositional letter is a formula,

(i) if α and β are formulas, then α ∧ β is a formula;

(ii) if α and β are formulas, then α ∨ β is a formula;

(iii) if α and β are formulas, then α→ β is a formula;

(iv) if α is a formula, then �+α is a formula;

(v) if α is a formula, then �−α is a formula;

(vi) if α is a formula, then for any i Kiα is a formula;

(vii) if α is a formula, then KnIα is a formula;

(vii) if α is a formula, then Uα is a formula.

Intuitive meaning of this operations is as follows.

Kiϕ can be read: agent i knows ϕ in the current state;

�+ϕ says that there is a state (web site) b accessible from the current state
a by a sequence of links, were the statement (formula) ϕ is true at b. So to say,
there is a state, accessible in future, where ϕ is true.

�−ϕ means that there is a state b accessible from the current state a by a
sequence of backtracks, were the statement (formula) ϕ is true at b.

KnIϕ means: in the current state, the statement ϕ may be known by interac-
tion between agents.

Uϕ has meaning the statement ϕ is uncertain (has uncertain truth value).

Next step of our construction are rules to compute truth values of formulas at
states of arbitrary frames (where some truth valuation for formulas’ letters is
given; such frames with given valuations we will call models). So, given a frame
F := 〈W,R,R1, . . . , Rn〉, and a set of propositional letters P , a valuation V of
P in F is a mapping of P into the set of all subsets of the set W , in symbols,
∀p ∈ P, V (p) ⊆W. If, for an element a ∈ W , a ∈ V (p) we say the fact p is true

in the state a. In the notation below (F, a) V ϕ is meant to say the formula
ϕ in true at the state a in the model F w.r.t. the valuation V . The rules for
computation of truth values of formulas are as follows:
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∀p ∈ P, ∀a ∈ W (F, a) V p ⇐⇒ a ∈ V (p);

(F, a) V ϕ ∧ ψ ⇐⇒ [(F, a) V ϕ and (F, a) V ψ];

(F, a) V ϕ ∨ ψ ⇐⇒ [(F, a) V ϕ or (F, a) V ψ];

(F, a) V ϕ→ ψ ⇐⇒ [not[(F, a) V ϕ] or (F, a) V ψ];

(F, a) V ¬ϕ ⇐⇒ not [(FC , a) V ϕ];

(F, a) VKiϕ ⇐⇒ ∀b ∈ W [(aRib) =⇒ (F, b) V ϕ];

(F, a) V �
+ϕ ⇐⇒ ∃b ∈ W [(aRb) and (F, b) V ϕ];

(F, a) V �
−ϕ ⇐⇒ ∃b ∈W [(aR−b) and (F, b) V ϕ];

(F, a) V KnIϕ ⇔ ∃ai1, ai2, . . . , aik ∈ W

[aRi1ai1Ri2ai2 . . . Rikaik]&(F, aik) V ϕ;

(F, a) V Uϕ ⇐⇒ [(F, a) V KnIϕ and (F, a) V KnI¬ϕ];
The latter one is an essential step in our approach. So, we assume that a state-
ment ϕ has uncertain truth value in the current world (state) if agents may,
passing to each other information, conclude that ϕ might be true in some state
of the current environment, but that ϕ can also be false in some state, and this
state is also achievable for agents trough a finite transition by agents’ accessibil-
ity relations.

Now we recall some definitions necessary for description technique applied in
the sequel. Given a model M := 〈F, V 〉 based at a frame F with a base set W
and a valuation V , and a formula ϕ,

(i) ϕ is satisfiable in M (denotation – M Satϕ) if there is a state

b of M (b ∈ W ) where ϕ is true: (F, b) V ϕ.

(ii) ϕ is valid in M (denotation – M ϕ) if, for any b of W , the formula ϕ

is true at b ((F, b) V ϕ) w.r.t. V .

For a frame F and a formula ϕ, ϕ is satisfiable in F (denotation F Satϕ) if

there is a valuation V in the frame F such that 〈F, V 〉 Satϕ. ϕ is valid in F

(notation F ϕ) if not(F Sat¬ϕ).
Definition 1. The logic TS4U

Kn
is the set of all formulas which are valid in all

frames F (i.e. valid at all frames w.r.t. all valuations). A formula ϕ is said to
be a theorem of TS4U

Kn
if ϕ ∈ TS4Kn .

We say a formula ϕ is satisfiable iff there is a valuation V in a Kripke frame F

which makes ϕ satisfiable: 〈F, V 〉 Satϕ. Clearly, a formula ϕ is satisfiable iff
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¬ϕ is not a theorem of TS4U
Kn

: ¬ϕ �∈ TS4U
Kn

, and vice versa, ϕ is a theorem of

TS4U
Kn

(ϕ ∈ TS4U
Kn

) if ¬ϕ is not satisfiable.

3 Decidability of TS4U
Kn

In this section we study computational problems for TS4U
Kn

and describe main
technical result of this paper: solution of the decidability and the satisfiability
problems for TS4U

Kn
. Actually we will use the technique and the scheme of

solution used already earlier in our work [29], and the current paper just extend
the latter one to handle uncertainty via interaction of agents. Here, as earlier,
for technical reason (which makes all constructions much shorter and efficient)
we will use transformation or formulas to simple inference rules. Most gain from
this transformation is that we will then consider only very simple and uniform
formulas - formulas without nested operations (this simplifies the proofs and
allows to avoid the necessity to consider nested operations, and hence proofs by
induction over formula complexity). First we recall some technical definitions. A
(sequential) (inference) rule is an expression (statement)

r :=
ϕ1(x1, . . . , xn), . . . , ϕl(x1, . . . , xn)

ψ(x1, . . . , xn)
,

where ϕ1(x1, . . . , xn), . . . , ϕl(x1, . . . , xn) and ψ(x1, . . . , xn) are formulas con-
structed out of letters x1, . . . , xn. The letters x1, . . . , xn are the variables of
r, we use the notation xi ∈ V ar(r). A meaning of a rule r is that the statement
(formula) ψ(x1, . . . , xn) (which is called conclusion) follows from statements (for-
mulas) ϕ1(x1, . . . , xn), . . . , ϕl(x1, . . . , xn) which are called premisses.

Definition 2. A rule r is said to be valid in a Kripke model 〈F, V 〉 (notation

F V r) if [∀a ((F, a) V

∧
1≤i≤l ϕi)] ⇒ ∀a ((F, a) V ψ). Otherwise we say r

is refuted in F, or refuted in F by V , and write F�� V r. A rule r is valid in

a frame F (notation F r) if, for any valuation V , F V r

Given a formula ϕ we can convert it into the rule x → x/ϕ and employ a
technique of reduced normal forms for inference rules as follows. Evidently,

Lemma 1. A formula ϕ is a theorem of TS4U
Kn

iff the rule (x→ x/ϕ) is valid
in any frame F.

A rule r is said to be in reduced normal form if r = ε/x1 where

ε :=
∨

1≤j≤l

(
∧

1≤i,k≤n,i�=k

[x
t(j,i,0)
i ∧ (�+xi)

t(j,i,1) ∧ (�−xi)t(j,i,2)∧
∧

1≤q≤n

(¬Kq¬xi)t(j,i,q,1) ∧KnIx
t(j,i,3)
i ∧ (Uxi)

t(j,i,4)]),

all xs are certain letters (variables), t(j, i, z), t(j, i, k, z) ∈ {0, 1} and, for any
formula α above, α0 := α, α1 := ¬α.
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Definition 3. Given a rule rnf in reduced normal form, rnf is said to be a

normal reduced form for a rule r iff, for any frame F, F r ⇔ F rnf .

Reasoning by the same scheme of proof as in Lemma 3.1.3 and Theorem 3.1.11
from [22] we obtain

Theorem 1. There exists an algorithm running in (single) exponential time,
which, for any given rule r, constructs its normal reduced form rnf .

For readers interested in details of this technique we put below a draft of proof
for Theorem 1. Actually we shall specify the general algorithm described in
Lemma 3.1.3 and Theorem 3.1.11 [22] to the language of our logic.

Assume we are given with a rule

r =
ϕ1(x1, ..., xn), ..., ϕm(x1, ..., xn)

ψ(x1, ..., xn)

It is evident that r is equivalent to the rule

r0 =
ϕ1(x1, ..., xn) ∧ ... ∧ ϕm(x1, ..., xn) ∧ xc ≡ ψ(x1, ..., xn)

xc

where xc is a new variable. Therefore we can restrict the case to the rules in the
form c = ϕ(x1, ..., xn)/xc.

If ϕ = α ◦ β, where ◦ is a binary logical operation and both formulas α and β
are not simply variables or unary logical operations applied to variables (which
both we call final formulas), take two new variables xα and xβ and the rule

r1 := (xα ◦ xβ) ∧ (xα ≡ α) ∧ (xβ ≡ β)/xc.

If one from formulas α or β is final and another one not, we apply this trans-
formation to the non-final formula. It is clear that r and r1 are equivalent w.r.t.
validity in frames.

If ϕ = ∗α, where ∗ is a unary logical operation and α is not a variable, take
a new variable xα and the rule

r1 := ∗xα ∧ (xα ≡ α)/xc.

Again r and r1 are equivalent. We continue this transformation over the resulting
rules

∧
j∈J1

γj ∧
∧

i∈I1
xαi ≡ αi

xc

until all formulas αi and γj in the premise of the resulting rules will be either
atomic formulas, i.e. logical operations applied to variables, or variables. Evi-
dently this transformation is polynomial. Further, we transform the premise of
the resulting rule in the disjunctive normal form and make disjunctive normal
form to be perfect (having the disjunctive members to be uniform length and
containing all the components required in the definition of reduced normal forms)
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and obtain as the result an equivalent rule r2. This transformation, as well as
all known ones for reduction of Boolean formulas to disjunctive normal forms,
is exponential in time. As the result the final rule rf has the required form. This
concludes the proof. �

Recall now that the decidability of our logic (in particular decidability of the
satisfiability problem) will follow (by this theorem) if we find an algorithm rec-
ognizing rules in reduced normal form which are valid in all frames F. As in
earlier works, most important starting point is to develop a technique to handle
interactions of agents. This technical step is carried out in the following lemma
(which, as earlier, might be proved using a tick similar to the one used in proof
of Lemma 8 in Rybakov [26]).

Lemma 2. A rule rnf in reduced normal form is refuted in a frame F if and
only if rnf can be refuted in a frame with time clusters of size square exponential
from rnf .

Based at this lemma, and applying then a technique developed from standard
filtration technique, we may prove

Lemma 3. A rule rnf in reduced normal form is refuted in a frame F iff rnf
can be refuted in a finite frame F1 by a special valuation V , where the size of
the frame F1 has effective upper bound computable from the size of rnf .

Using Theorem 1, Lemma 1 and Lemma 3 we derive our main result:

Theorem 2. The logic TS4U
Kn

is decidable; the satisfiability problem for TS4U
Kn

is decidable.

Possible Applications: The technique of this paper and obtained algorithm may
be applied in research analyzing statements about multi-agent reasoning. E.g.
verification ‘if a statement (specification) is consistent (i.e. satisfiable)’ may be
performed via suggested algorithm. Though computational complexity of this
algorithm is high, the verification yet might be (in many cases) done by direct
inspection via construction of a frame disproving a rule (satisfying the formula),
where the frame could have permissible size. Besides, suggested framework may
clarify essence of reasoning via analyzing interdependence of statements with
logically oriented substance.

4 Conclusion, Future Work

This paper constructs a framework to study logical properties of reasoning in
multi-agents’ environment and to construct tools for computation satisfiable and
valid statements. Main aim here is to model logical uncertainty via interaction of
agents. We suggest the logic TS4U

Kn
based at non-linear frames describing this

approach and show thatTS4U
Kn

is decidable (and hence the satisfiability problem
for this logic is also decidable). Suggested algorithms are based at computation
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refutability of rules in reduced from at special finite frames of effectively bounded
size. Developed approach is rather flexible and allows to work with a variety of
logics from AI and CS.

Future research in suggested line may include investigation of AI-logics de-
scribing reasoning modeled by frames based at non-transitive time, which may
reflect computations (transitions) with bounded introspection (to future and
past). Aiomatizability for TS4U

Kn
is an open problem, besides complexity issues

and possible ways of refining the complexity bounds in the suggested algorithm
are also interesting. Problems of decidability w.r.t. admissible inference rules for
TS4U

Kn
and similar logics are not investigated yet. Interesting direction is to

model logical uncertainty via different truth values of the statements in ‘neigh-
borhoods’ of a current state (but not merely in current time cluster, as in this
paper). For example, this might be actual in the case of intransitive logics, where
only ‘tomorrow’ and ‘yesterday’ clusters are taken to consideration.
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