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Abstract. In the artice, problem of the cost optimization of the
GI/M/1/N-type queue with finite buffer and a single vacation policy is
analyzed. Basing on the explicit representation for the joint transform of
the first busy period, first idle time and the number of packets transmitted
during the first busy period and fixed values of unit costs of the server’s
functioning an optimal set of system parameters is found for exponen-
tially distributed vacation period and 2-Erlang distribution of inter arrival
times. The problem of optimization is solved using genetic algorithm. Dif-
ferent variants of the load of the system are considered as well.

Keywords: Busy period, finite-buffer queue, genetic algorithm, idle time,
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1 Introduction

Finite-buffer queues are being intensively studied nowadays due to their numer-
ous applications in different real-life problems occurring in technical and eco-
nomical sciences. They are used, first of all, in modelling of telecommunication
and computer networks (ATM switches, IP routers etc.), however they can also
be helpful in the investigation of manufacturing processes and in some problems
occurring in logistics and transport.

From the observation follows that the stream of IP packets incoming to the
Internet router or cells arriving into the ATM switch rather rarely can be de-
scribed by a Poisson process. Moreover, due to permanent changing intensity
of the traffic and some sophisticated phenomena characterizing the traffic, like
the self-similarity or burstiness, the “classical” analysis limited to the stationary
state of the system, is not sufficient for a thorough description of the system’s
operation. These arguments motivate the transient analysis of the system’s op-
eration basing on the non-Poisson process describing the input flow of packets.
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An extension of the class of finite-buffer queues are models with server’s va-
cation, where the server takes a randomly distributed time during which the
service process is blocked. Finite systems with server vacations can be used in
modelling of SVC (switched virtual connection) networks, where the vacation
period can be considered as a time needed for the server to release one SVC or
the time for setting up any next SVC (see [11]).

In the paper we investigate the GI/M/1-type finite-buffer queuing system
with single vacation policy and exhaustive service. Basing on the explicit rep-
resentation for the joint transform of the first busy period, first idle time and
the number of packets transmitted during the first busy period, and fixed values
of unit costs of the server’s functioning during the service and being idle, we
find an optimal set of system parameters for exponentially distributed vacation
period and 2-Erlang distribution of inter arrival times. In fact, we obtain results
for different variants of the load of the system. The problem of optimization is
solved using genetic algorithms.

Results for vacation queuing models can be found in monographs [14], [18] and
e.g. in papers [2], [3], [11] and [12] and [15]. A batch-arrival GI/G/1-type system
with infinite buffer and exponentially distributed single vacations is considered
in [6] on the first vacation cycle, using the approach based on Wiener-Hopf-type
factorization. Transient characteristics of the system with single vacations with
Poisson arrivals and generally distributed service times are analyzed in [7], [8]
and [9].

In [16] the classical linear cost structure is introduced in the queuing model.
The problem of cost optimization is also investigated e.g. in [4]. In [10] the
problem of the existence of the optimal vacation policy is solved. In [17] the
formula for the total expected cost per unit time in the finite-buffer M/G/1-type
system with removable server, working in the stationary regime, is obtained.

This paper presents an innovative application of genetic algorithms for posi-
tioning queuing systems. The authors of [1] and [19] presented other interesting
applications of genetic algorithms to simulate examined objects. Built genetic
simulation system helped to calculate optimal cost for modeled queuing sys-
tem. Presented research describe system positioning in some possible scenarios,
but described genetic method makes it also possible evaluate optimal values of
system variables in other conditions.

1.1 Queuing Model

In the paper we study a finite-buffer GI/M/1/N -type queuing system with in-
ter arrival times with generally distributed random variables with a distribution
function F (·), and exponential service times with mean μ−1. The system capac-
ity equals N i.e. we have the (N−1)-places in buffer and one place in service. We
assume that the system starts working at t = 0 with at least one packet present.
After each busy period the server takes a single vacation, with a general type
distribution function V (·), during which the service process is stopped. If at the
end of the vacation there is no packet in the buffer queue, the server is being ac-
tivated (is on standby) and waits for the first arrival to start the service process.
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If the system is not empty at the vacation completion epoch, then the service
process is being initialized immediately and the new busy period begins.

We assume that sequences of successive inter arrival times, service times and
the single vacation duration are totally independent random variables.

Let us introduce the following notations:

• τ1 — the first busy period of the system (starting at t = 0);
• δ1 — the first idle time of the system (consisting of the first vacation time
v1 and the first server standby time q1);

• h(τ1) — the number of packets completely served during τ1;
• X(t) — the number of packets present in the system at time t.

1.2 Auxiliary Results

In [13] the explicit formula for the conditional joint characteristic function of
random variables τ1, δ1 and h(τ1) is derived.

Define

Bn(s, �, z) = E{e−sτ1−�δ1zh(τ1) |X(0) = n}, (1)

where 1 ≤ n ≤ N, s ≥ 0, � ≥ 0 and |z| ≤ 1.
Introduce the following functions:

f(s) =

∫ ∞

0

e−stdF (t), s > 0 (2)

and besides

an(s, z) =

∫ ∞

0

(zμt)n

n!
e−(μ+s)tdF (t), n ≥ 0, (3)

Ψn(s, �, z) = − (zμ)n

(n− 1)!

[∫ ∞

0

dF (t)

∫ t

0

xn−1e−(μ+s)x

×
(
e−�(t−x)V (t− x) +

∫ ∞

t−x

e−�ydV (y)
)
dx

]
. (4)

Moreover, basing on the sequence
(
an(s, z)

)
defined in Eq. (3), we defined re-

cursively the following sequence:

R0(s, z) = 0, R1(s, z) = a−1
0 (s, z),

Rn+1(s, z) = R1(s, z)(Rn(s, z)−
n∑

k=0

ak+1(s, z)Rn−k(s, z)). (5)

Finally, let

D(s, �, z) =

N−1∑
k=1

ak(s, z)

N−k+1∑
i=2

RN−k+1−i(s, z)Ψi(s, �, z), (6)

G(s, �, z) = ΨN (s, �, z) +
(
1− f(μ+ s)

) N∑
k=2

RN−k(s, z)Ψk(s, �, z) (7)
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and

H(s, z) =
(
1− f(μ+ s)

)
RN−1(s, z)−

N−1∑
k=1

ak(s, z)RN−k(s, z). (8)

The following theorem is true.

Theorem 1. For s ≥ 0, � ≥ 0 and |z| ≤ 1 the following formulae hold true:

B1(s, �, z) = E{e−sτ1−�δ1zh(τ1) |X(0) = 1}

=
D(s, �, z)−G(s, �, z)

H(s, z)
− Ψ1(s, �, z) (9)

and

Bn(s, �, z) = E{e−sτ1−�δ1zh(τ1) |X(0) = n}

=
D(s, �, z)−G(s, �, z)

H(s, z)
Rn−1(s, z)−

n∑
k=2

Rn−k(s, z)Ψk(s, �, z), 2 ≤ n ≤ N.

(10)

where n ≥ 1 and an(s, z), Ψn(s, �, z), D(s, �, z), G(s, �, z) and H(s, z) are defined
in (3), (4), (6), (7) and (8) respectively.

1.3 Cost Optimization Problem

In the paper we are interested in the solution of the following optimization
problem. Consider the following equation

Qn(c1) = r(τ1)Enτ1 + r(δ1)Enδ1, (11)

in which r(τ1) and r(δ1) denote, respectively, the fixed unit costs of the system’s
operation during the first busy period τ1 and the first idle time δ1, Enτ1 and
Enδ1 are, respectively, the means of the first busy period τ1 and the first idle
time δ1 on condition that the system starts evolution with n packets present.
Besides, Qn(c1) is the total cost of the operation of the system during the first
cycle c1 on condition that X(0) = n.

Of course the unit cost of the operation of the system during the first cycle
c1, on condition that the system contains exactly n packets at the opening, one
can expressed as

rn(c1) =
Qn(c1)

En(c1)
=

r(τ1)Enτ1 + r(δ1)Enδ1
Enτ1 +Enδ1

. (12)

Let us consider the system in which inter arrival times are exponentially dis-
tributed and the vacation period has 2-Erlang distribution. Namely, let us take

F (t) = 1− e−λt, λ > 0, t > 0, (13)
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and

V (t) = 1− e−αt(1 + αt), α > 0, t > 0. (14)

For such a system we use genetic optimization for finding the optimal set of
“input” system parameters λ, μ and α, to minimize the costs Qn(c1) and/or
rn(c1). In fact we will take into consideration different variants of the load of
the system: the case of under-load, critically load and overload.

1.4 Genetic Cost Optimization

Very important phase in the process of designing queuing systems is positioning
for optimal costs of work. To perform this operation we must know possible mal-
functions and optimal work conditions. To do this we may apply the knowledge
that comes from human experts or our previous experience. In many projects
this is a main source which determines the prototypes. However, usually it is
insufficient. The best way is to test the system in practice or perform computer
simulations. First way may be vary long in time and cost a lot. Therefore best
solution is to use computer. The question is, which method to use? We would
like to present positioning of queuing system by the use of genetic algorithm.
Computational intelligence, especially genetic algorithms, are very effective. In
the literature [1] and [19] the authors described use of genetic algorithm to create
knowledge about technical systems. Presented use of computational intelligence
help to simulate the object states and build decision support systems. In this
paper we present possible way to use genetic to calculate and position queu-
ing system. However queuing systems have complicated mathematical models
therefore genetic calculation is still not easy. We present simulation results of
GI/M/1/N finite-buffer queue with a single vacation policy. We used standard
genetic algorithm to built a dedicated evolutionary simulation system based on
mathematical model described in Section 1.2. In the research we used formula
(12) to optimize cost of the system. Genetic simulation system was searching
for best values of GI/M/1/N queuing system variables that make it work with
lowest costs in the specified time unit. The research results provide type of knowl-
edge that describes examples of proper operation of the system in some possible
scenarios. This type of knowledge is necessary for its tuning and evaluating.

2 Research Results

In this section we will present research results for optimum values of the exam-
ined GI/M/1/N queue system. Based on the research results, we may predict
possible time of system response in each case and optimize cost of work rn(c1),
described in Eq. (12). In the research, we have examined the system for optimum
values in 100 samplings. Presented optimal results are average values. We will
determine time prediction based on the following assumptions:

• Average service time: Tservice = 1
μ ,
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• Average time between packages income into the system: Tincome = 2
λ ,• Average vacation time: Tvacation = 1

α ,• Examined system size: N = buffer size +1.

In Table 1 we present optimum values for all system parameters μ, λ and α.
However in the real environment we are able to set some values of the sys-

Table 1. Optimimal parameters μ, λ and α for lowest value of Eq.(12)

μ λ α

Average optimal value 2.104179284 0.049898874 13092.21989

optimal rn(c1) 0.011857087

Time Tservice Tincome Tvacation

[s] 0.475244675 40.08106516 7.63812E−05

tem we use. Therefore we have also tried to optimized values of parameters μ,
λ and α in few possible scenarios. Each scenario was defined and then, there
were optimized values of system parameters and cost of work according to given
assumptions. In each scenario there were 100 genetic optimization experiments
and the results are given as average value of optimization for all the experiments.

Scenario 1
In this scenario, to genetic cost optimization we have assumed that the system
handles incoming packets in a constant time what means that, average service
time: Tservice = 1

μ is constant. Therefore we have set the value of μ parameter
and optimized other system parameters. In this scenario all system parameters
were optimized for set values: μ = 100, μ = 1 or μ = 0.01. Research results are
shown in Table 2.
Scenario 2
In this scenario, to genetic cost optimization we have assumed that packets come
into the system with some regularity, time between packages income into the sys-
tem: Tincome = 2

λ is constant. Therefore we have set the value of λ parameter
and optimized other system parameters. In this scenario all system parameters
were optimized for set values: λ = 100, λ = 1 or λ = 0.01. Research results are
shown in Table 3.
Scenario 3
In this scenario, to genetic cost optimization we have assumed that system need
to stop serving packets with some regularity, vacation time: Tvacation = 1

α is
constant. Therefore we have set the value of α parameter and optimized other
system parameters. In this scenario all system parameters were optimized for
set values: α = 100, α = 1 or α = 0.01. Research results are shown in Ta-
ble 4. Moreover we have also analyzed some more complicated scenarios. In the
research were examined possible situations where service time, packets income
time or vacation time is set and cost of system work must be adequate.
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Table 2. Optimal parameters λ and α for set μ = 100, μ = 1, μ = 0.01 and lowest
cost value of Eq.(12)

μ λ α

Average optimal value 100 0.441648853 1.092121241

optimal rn(c1) 0.002208244

Time Tservice Tincome Tvacation

[s] 0.01 4.528484533 0.915649255

Average optimal value 1 0.185442954 1.456477569

optimal rn(c1) 0.092721477

Time Tservice Tincome Tvacation

[s] 1 10.78498781 0.686587985

Average optimal value 0.01 0.258147693 1.594055468

optimal rn(c1) 12.90738467

Time Tservice Tincome Tvacation

[s] 100 7.747502887 0.627330742

Table 3. Optimal parameters μ and α for set λ = 100, λ = 1, λ = 0.01 and lowest
cost value of Eq.(12)

μ λ α

Average optimal value 4.059353298 100 2.3177E−06

optimal rn(c1) 12.3172329

Time Tservice Tincome Tvacation

[s] 0.246344658 0.02 431462.2255

Average optimal value 27.30386864 1 0.000002924

optimal rn(c1) 0.018312423

Time Tservice Tincome Tvacation

[s] 0.036624847 2 341997.264

Average optimal value 1.356968521 0.01 1.503990611

optimal rn(c1) 0.003684684

Time Tservice Tincome Tvacation

[s] 0.736936771 200 0.664897768

Scenario 4
In this scenario, to genetic cost optimization we have assumed, similar to scenario
2, that service time: Tservice = 1

μ is constant. Therefore we have set the value of
μ parameter and optimized other system parameters. Moreover we have assumed
that cost of system work is rn(c1) is also defined in some way. In this scenario all
system parameters were optimized for set values: μ = 100, μ = 1 or μ = 0.01 and
rn(c1) < 1 or rn(c1) > 1. Research results are shown in Table 5 - Table 6. We have
also optimized cost of the system for set time of packets income an vacation.
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Table 4. Optimal parameters μ and λ for set α = 100, α = 1, α = 0.01 and lowest
cost value of Eq.(12)

μ λ α

Average optimal value 1.16928266 0.177362545 100

optimal rn(c1) 0.075842459

Time Tservice Tincome Tvacation

[s] 0.855225203 11.27633797 0.01

Average optimal value 1.247463554 0.172708087 1

optimal rn(c1) 0.069223701

Time Tservice Tincome Tvacation

[s] 0.801626626 11.58023365 1

Average optimal value 1.227674838 0.206532185 0.01

optimal rn(c1) 0.084115182

Time Tservice Tincome Tvacation

[s] 0.814547931 9.683720705 100

Table 5. Optimal parameters α and λ for set μ and lowest cost value of Eq.(12)< 1

μ λ α

Average optimal value 100 0.400070456 1.192386163

optimal rn(c1) < 1 0.002000352

Time Tservice Tincome Tvacation

[s] 0.01 4.999119455 0.838654482

Average optimal value 1 0.223777444 1.300852544

optimal rn(c1) < 1 0.111888722

Time Tservice Tincome Tvacation

[s] 1 8.937451265 0.768726636

Average optimal value 0.01 0.008013686 7.000048983

optimal rn(c1) < 1 0.4006843

Time Tservice Tincome Tvacation

[s] 100 249.5730429 0.142856143

Scenario 5
In this scenario, to genetic cost optimization we have assumed, similar to scenario
2, that time between packages income into the system: Tincome = 2

λ is constant.
Therefore we have set the value of λ parameter and optimized other system
parameters. Moreover we have assumed that cost of system work rn(c1) is also
defined in some way. In this scenario all system parameters were optimized for
set values: λ = 100, λ = 1 or λ = 0.01 and rn(c1) < 1 or rn(c1) > 1. Research
results are shown in Table 7 - Teble 8. Last scenario present research results on
optimized cost of the system for set vacation time.
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Table 6. Optimal parameters α and λ for set μ and lowest cost value of Eq.(12)> 1

μ λ α

Average optimal value 100 1310.416361 0.000056554

optimal rn(c1) > 1 6.552081805

Time Tservice Tincome Tvacation

[s] 0.01 0.001526232 17682.21523

Average optimal value 1 16.55791579 0.000000459

optimal rn(c1) > 1 8.278957897

Time Tservice Tincome Tvacation

[s] 1 0.120788149 2178649.237

Average optimal value 0.01 0.232515381 1.47718659

optimal rn(c1) > 1 11.62576905

Time Tservice Tincome Tvacation

[s] 100 8.601581501 0.676962549

Table 7. Optimal parameters α and μ for set λ and lowest cost value of Eq.(12)< 1

μ λ α

Average optimal value 1598.611383 100 0.000278277

optimal rn(c1) < 1 0.031277145

Time Tservice Tincome Tvacation

[s] 0.000625543 0.02 3593.541687

Average optimal value 1.311446436 1 0.184496128

optimal rn(c1) < 1 0.070340703

Time Tservice Tincome Tvacation

[s] 0.762516846 2 10.8403359

Average optimal value 1.715058427 0.01 1.357447045

optimal rn(c1) < 1 0.002915353

Time Tservice Tincome Tvacation

[s] 0.583070515 200 0.736676988

Scenario 6
In this scenario, to genetic cost optimization we have assumed, similar to scenario
2, that vacation time: Tvacation = 1

α is constant. Therefore we have set the
value of α parameter and optimized other system parameters. Moreover we have
assumed that cost of system work rn(c1) is also defined in some way. In this
scenario all system parameters were optimized for set values: α = 100, α = 1 or
α = 0.01 and rn(c1) < 1 or rn(c1) > 1. Research results are shown in Table 9 -
Table 10.
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Table 8. Optimal parameters α and μ for set λ and lowest cost value of Eq.(12)> 1

μ λ α

Average optimal value 4.772254414 100 0.000003217

optimal rn(c1) > 1 10.47722851

Time Tservice Tincome Tvacation

[s] 0.20954457 0.02 310848.6167

Average optimal value 0.288431013 1 0.000006832

optimal rn(c1) > 1 1.733516777

Time Tservice Tincome Tvacation

[s] 3.467033554 2 146370.0234

Average optimal value 0.002060192 0.01 25.22387757

optimal rn(c1) > 1 2.426958264

Time Tservice Tincome Tvacation

[s] 485.3916528 200 0.039644975

Table 9. Optimal parameters λ and μ for set α and lowest cost value of Eq.(12)< 1

μ λ α

Average optimal value 1.416040912 0.216560935 100

optimal rn(c1) < 1 0.076467047

Time Tservice Tincome Tvacation

[s] 0.706194285 9.235275974 0.01

Average optimal value 1.737398608 0.115104772 1

optimal rn(c1) < 1 0.033125608

Time Tservice Tincome Tvacation

[s] 0.575573156 17.37547423 1

Average optimal value 1.34126515 0.180202828 0.01

optimal rn(c1) < 1 0.067176437

Time Tservice Tincome Tvacation

[s] 0.745564738 11.09860496 100

3 Final Remarks

In the article, we have proposed a new method for queuing systems positioning.
Genetic algorithms are useful in simulations or to generate a collection of repre-
sentative samples as presented by the authors of [1] and [19], which can be used
by decision support systems. They are also very effective for positioning queuing
systems. This method can be useful when we have a model of positioned object
and because of its complexity classical model calculations are merely feasible.
Conducted experiments confirm its usefulness to simulate examined object in
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Table 10. Optimal parameters λ and μ for set α and lowest cost value of Eq.(12)> 1

μ λ α

Average optimal value 0.129801621 0.448907478 100

optimal rn(c1) > 1 1.729205978

Time Tservice Tincome Tvacation

[s] 7.704064035 4.455261046 0.01

Average optimal value 0.153689121 0.479652145 1

optimal rn(c1) > 1 1.560462256

Time Tservice Tincome Tvacation

[s] 6.506641417 4.169688431 1

Average optimal value 0.10366026 0.462297133 0.01

optimal rn(c1) > 1 2.229866744

Time Tservice Tincome Tvacation

[s] 9.646898435 4.326221941 100

many possible scenarios. An important restriction is only to carry out a large
number of simulations to determine the best description of the simulated object.
It is therefore time-consuming procedure. Further work should be carried out in
the direction of reducing time-consuming solution, eg. by using some knowledge
prior to generating the initial population.
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