
Instance Selection in Logical Rule Extraction
for Regression Problems

Mirosław Kordos1, Szymon Białka1, and Marcin Blachnik2

1 University of Bielsko-Biala, Department of Mathematics and Computer Science,
Bielsko-Biała, Willowa 2, Poland
mkordos@ath.bielsko.pl

2 Silesian University of Technology, Department of Management and Informatics,
Katowice, Krasinskiego 8, Poland
marcin.blachnik@polsl.pl

Abstract. The paper presents three algorithms of instance selection for regres-
sion problems, which extend the capabilities of the CNN, ENN and CA algo-
rithms used for classification tasks. Various combinations of the algorithms are
experimentally evaluated as data preprocessing for regression tree induction. The
influence of the instance selection algorithms and their parameters on the accu-
racy and rules produced by regression trees is evaluated and compared to the
results obtained with tree pruning.

1 Introduction

1.1 Instance Selection in Classification Problems

The reasons for reducing the number of instance in the training set include: noise re-
duction by elimination outliers, reducing the data set size and improving generalization
by eliminating instances that are too similar to each other, faster training of the model
an a smaller dataset and faster prediction in of the model, especially in the case of lazy-
learning algorithms, as k-NN. The early research in that area of instance selection in
classification tasks lead to the Condensed Nearest Neighbor rule (CNN) [1] and Edited
Nearest Neighbor rule (ENN) [2]. Another algorithm called CA, which can be thought
of as an improved version of CNN was proposed by Chang [3]. In the following years,
other, more complex algorithms were developed, such as Drop1-5 [4], IB3, Gabriel
Editing (GE) and Relative Neighborhood Graph Editing (RNGE), Iterative Case Filter-
ing (ICF), ENRBF2, ELH, ELGrow and Explore [5]. A large survey including almost
70 different algorithms of instance selection for classification tasks can be found in [6].
An interesting idea was proposed by Jankowski and Grochowski in [7]; to use the algo-
rithms as instance filters for other machine learning algorithms like SVM, decision trees
etc. By filtering noisy and compacting redundant examples they were able to improve
the quality and speed of other classification algorithms.

1.2 Challenges in Regression Tasks

The instance selection issue for regression tasks is much more complex. In classifica-
tion tasks only the boundaries between classes must be determined, while in regression

L. Rutkowski et al. (Eds.): ICAISC 2013, Part II, LNAI 7895, pp. 167–175, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



168 M. Kordos, S. Białka, and M. Blachnik

tasks the output value must be assessed at each point of the input space. Moreover, in
classification tasks there are at most several different classes, while in regression tasks,
the output of the system is continuous, so there is an unlimited number of possible
values to be predicted by the system. That is the reason why the dataset compression
obtained by instance selection can be much higher in classification than in non-linear
regression problems. The decision about rejection of a given vector in classification
tasks can be made based on a right or wrong classification of the vector. In regression
problems, rather a threshold defining the difference between the predicted and the ac-
tual value should be set. Determining the threshold (which is rather a function than a
constant value) is an issue specific only to regression tasks. Another issue is the error
measure, which in classification tasks is very straightforward, while in regression tasks,
it can be defined in several ways and in practical solutions not always the simple error
definitions as the MSE (mean square error) work best [8]. Because of the challenges,
there were very few approaches in the literature to instance selection for regression
problems. Moreover, the approaches were verified only on artificial datasets generated
especially for the purpose of testing the algorithms. Zhang [9] presented a method to
select the input vectors while calculating the output with k-NN. Tolvi [10] presented a
genetic algorithm to perform feature and instance selection for linear regression mod-
els. In their works Guillen et al. [11] discussed the concept of mutual information used
for selection of prototypes in regression problems.

1.3 Decision Trees

Clear logical rules are crucial factors in some practical implementations, where the de-
cision must not only be made by the system but it also must be explained to humans
[8,12]. The advantage of regression trees is their ability to easily generate comprehen-
sive logical rules from data in a way easily to understand. For that reason in our practical
implementations of computational intelligence to technological process optimization
we always used a decision tree, usually as one of the components of a hybrid model. To
keep the logical rules simple we use a univariate tree in all non-terminal nodes. Only
the value assigned to the terminal leaves can be either a mean value of the vectors in the
leaf or a linear regression, which includes no more than three most significant features
in the leaf. Instance selection influence on classification trees were studied in [13] and
[14]. In the current work we study that in case of regression trees.

2 Instance Selection Algorithms

2.1 ENN, CNN and CA Instance Selection Algorithms for Classification
Problems

The CNN (Condensed Nearest Neighbor) algorithm was proposed by Hart [1]. The
purpose of CNN is to reject these instances, which do not bring any additional informa-
tion into the classification process. The algorithm starts with only one randomly chosen
instance from the original dataset T. And this instance is added to the new dataset P.
Then each remaining instance from T is classified with the k-NN algorithm, using the



Instance Selection in Logical Rule Extraction for Regression Problems 169

k nearest neighbors from the dataset P. Only if the classification is wrong - the instance
is added to P. The ENN (Edited Nearest Neighbor) algorithm was created by Wilson
[2]. ENN works as a noise filter. The main idea of the algorithm is to remove a given
instance if its class is different than the majority class of its neighbors. ENN starts with
the whole original training set T. Each instance, which is wrongly classified by its k
nearest neighbors is removed from the dataset, as it is supposed to be an outlier. In
repeated ENN, the process of ENN is iteratively repeated as long as there are any in-
stances wrongly classified. In all k-NN algorithm, the ENN is repeated for all k from
k = 1 to kmax. The CA algorithm [3] works in a similar way to CNN. However, in-
stead of rejecting one example, it replaces two closest examples of the same class by a
single example situated in the middle of them. If this does not decrease the classifica-
tion accuracy, the change is kept, otherwise it is rejected. Then the next pair of closest
examples is considered. The algorithm works iteratively as long as there are no more
examples to merge without affecting the classification accuracy.

2.2 RegENN, RegCNN and RegCA Instance Selection Algorithms for
Regression Problems

Algorithm 1. RegENN algorithm
Require: T

m← sizeof(T);
for i = 1 . . .m do

Ȳ (xi) =NN((T \ xi),xi);
S ←Model(T,xi)
θ = α · std (Y (XS))
if
∣
∣Y (xi)− Ȳ (xi)

∣
∣ > θ then

T← T \ xi

end if
end for
P← T
return P

Algorithm 2. RegCNN algorithm
Require: T

m← sizeof(T)
P = ∅
P← P ∪ x1;
for i = 2 . . .m do

Ȳ (xi) =NN(P,xi)
S ←Model(T,xi)
θ = α · std (Y (XS))
if
∣
∣Y (xi)− Ȳ (xi)

∣
∣ > θ then

P← P ∪ xi;
T← T \ xi

end if
end for
return P

As the prediction algorithm for instance selection we use a weighted k-NN with
k = 9, where the weight wi exponentially decreases with the distance di between the
given vector and its i-th neighbor xi. The predicted output y is given by eq. 1.

y =

∑k
i=1 wiyi

∑k
i=1 wi

(1)

where wi = 2−0.2di . We use Euclidean distance measure and a threshold Θ, which ex-
presses the maximum difference between the output values of two vectors to consider
them similar. Using Θ proportional to the standard deviation of k nearest neighbors of
the vector xi reflects the speed of changes of the output around xi and allows adjusting
the threshold to that local landscape, what, as the experiments showed, allows for higher



170 M. Kordos, S. Białka, and M. Blachnik

compression of the dataset. As the regression model to predict the output Y(xi) we use
k-NN with k = 9 as the Model(T,xi) (k = 9 usually produced good results [15]). To
adjust the CNN, ENN and CA algorithms to regression tasks the wrong/correct classifi-
cation decision is replaced with a distance measure and a similarity threshold, to decide
if a given vector can be considered as similar to its neighbors. Additionally in the CA
algorithm, we define a regression counterpart of "the same class" by replacing it with
"the output values being close enough". Thus, we have to find a pair of vectors, which
are both: close in the input space (as in the original CA) and close in the output space.
We merge these two vectors, for which the weighed sum D of the distances in the input
and output space takes the smallest value:

D = dinput +
√
numfeatures · doutput (2)

The above formula requires the input and output values to be standardized. The distance
in the output space is multiplied by the square root of the number of features to make
the weight of it equal to the weight of the distance in the input space. If the priority
is to obtain small dataset and thus make it easier to obtain simple logical rules from a
regression tree built with the dataset, we can further modify the RegCA algorithm to
allow for merging two closest vectors even if that slightly decreases the accuracy.

3 Regression Tree

A univariate regression tree is used with splitting of the data into nodes is based on
variance minimization. The algorithms searches for all possible split points p of each
feature f , as shown in the pseudo-code. The value optimized value is v and v0 is the
value at the previous iteration. Multiplying the variances of child nodes vL, vR by the
number of vectors in the same nodes pL, pR causes that the splits are more symmet-
rical. Otherwise, it would be frequently only a few, or even one, vectors in one child
node and all the other vectors in the other node. Such an unsymmetrical tree would
have poor performance [16]. In our experiments the exponents n =1 and m = 1. To
further improve the results, at the entrance of the tree the data can be transposed by a
hyperbolic tangent to obtain rather uniform than Gaussian distribution [16]. One of the
simplest forms of pruning is reduced error pruning. Starting at the leaves, each node is
replaced with the average value of all vectors in the node and its subnodes. If the pre-
diction accuracy does not decrease then the change is kept. There are two other possible
ways to reduce the size of the tree. One of them is to use stopping criteria, such as min-
imal variance in the node. Once the minimal variance in the node is reached the node
becomes a leaf. Another criterion that can be used together with the minimal variance is
the minimal number of vectors in the node. If any node already reached that number of
vectors if becomes a leaf. However, the problem with the stopping criteria is that their
optimal value is unknown during building the tree and what is even more difficult, the
optimal stopping criteria can be different for various nodes. Thus, the third discussed
way to reduce the tree size is to reduce the training set size. If the training set is re-
duced with instance selection methods, the most representative instances remain in the
dataset, allowing for building a smaller tree with better prediction ability. In regression
problems there are several parameters that can be tuned in the RegENN, RegCNN and



Instance Selection in Logical Rule Extraction for Regression Problems 171

RegCA algorithms. Depending on how the parameters are set more or fewer instances
remain in the training set. If the parameters are set so that only few instances remain
in the training set, then we can build the decision tree without any pruning or stopping
criteria with a single instance in each leaf. Also any combinations are possible with
either more intensive instance selection or more intensive pruning. The combinations
are experimentally evaluated in the experimental section of the paper.

Algorithm 3. Tree optimization pseudo-code
Require: F = [f1, f2, . . . , fs]
Ensure: ∀

i=1:s
sizeof(fi)← p

for i = 1 . . . s do
fi = SortFeatureElements(fi)
for j = 1 . . . p do

pL = j/p
pR = (p− j)/p
v = v0 − pmL · vnL − pmR · vnR
if v ≥ q then

q = v
s0 = j
f0 = fi

end if
end for

end for
return s0, f0

4 Numerical Experiments

We implemented the instance selection algorithms in Java as RapidMiner Extensions
and used RapidMiner [17] for the whole process. The decision tree was created in C#
as a WPF application with graphical visualization and it is invoked in the ExecutePro-
gram module (fig. 1.) as well in the training as in the test part of the validation process.
All the source codes, executable files and datasets used in the experiments can be down-
loaded from [18]. The whole process in different configurations was run in a 10-fold
crossvalidation loop. Inside each crossvalidation run first he instance selection was per-
formed and then the regression tree was created on the training dataset. The MSE was
measured on the test dataset. The Training and Testing (the two lower windows in fig.1)
constitute together a single run of the 10-fold crossvalidation (represented by the Val-
idation module in the upper window in fig. 1). In the testing part, first the instance
selection is made in various ways (in fig. 1. RegENN followed by RegCA is shown)
then the selected examples (prototypes) are written to a CSV file and the ExecutePro-
gram module run the regression tree in the training mode as the external program. The
tree reads the CSV dataset and builds the tree. In the Testing block, the tree is invoked
from the ExecuteProgram module and it reads the structure of the decision tree (which
was saved to a file in the Training block) and tests the tree on the test data, (the data
was saved to a file by the WriteCSV(2) module). The ReadCSV(2) module reads the



172 M. Kordos, S. Białka, and M. Blachnik

prediction results of the tree and the Performance module calculates the MSE on the
data. The Log module in the MainProcess block calculates the MSE and its standard
deviation over the whole crossvalidation.

Fig. 1. The experimental process as implemented in Rapidminer

We performed the experiments on four datasets. First all the datasets were standard-
ized so that the mean value of each attribute is zero and the standard deviation is one
to make comparison of the results easy. Four datasets come the UCI Machine Learning
Repository [19]: Concrete Compression Strength (7 attributes, 1030 instances), Crime
and Communities (7 attr., 320 inst.), Housing (13 attr., 506 inst.). One dataset (Steel: 12
attr., 960 inst.) depicts the steel production process with the task to predict the amount of
carbon that must be added to the liquid steel in to obtain desired steel properties. We ex-
perimentally evaluated the optimal Θ (see section IIB) and we used Θ = (5÷7)·stddev
of 9 nearest neighbors for RegENN and Θ = (0.15÷ 0.25) · stddev of 9 nearest neigh-
bors for RegCNN and RegCA. Additionally each time the node variance=0.001 was
used as the stopping criteria.

Table 1. Experimental results for the Steel dataset

Regularization method MSE nodes vectors
node variance 0.23±0.07 77±10 864±0
tree pruning 0.20±0.07 62±8 864±0
ENN 0.23±0.07 70±8 776±2
CNN 0.20±0.06 68±8 746±8
CA 0.18±0.05 62±8 701±4
ENN+CNN 0.18±0.05 62±7 722±10
ENN+CA 0.17±0.04 56±6 687±5
ENN+CA+pruning 0.16±0.04 53±6 687±5



Instance Selection in Logical Rule Extraction for Regression Problems 173

Table 2. Experimental results for the Crime dataset

Regularization method MSE nodes vectors
node variance 0.68±0.09 85±10 288±0
tree pruning 0.63±0.08 72±9 288±0
ENN 0.68±0.08 77±8 210±2
CNN 0.66±0.06 79±8 243±2
CA 0.63±0.06 72±8 202±3
ENN+CNN 0.64±0.07 72±9 197±4
ENN+CA 0.60±0.06 67±8 187±2
ENN+CA+pruning 0.58±0.06 63±8 187±2

Table 3. Experimental results for the Concrete dataset

Regularization method MSE nodes vectors
node variance 0.88±0.08 167±26 927±0
tree pruning 0.85±0.07 125±22 927±0
ENN 0.92±0.08 72±9 277±5
CNN 0.96±0.09 142±22 786±6
CA 0.88±0.07 122±18 609±5
ENN+CNN 0.86±0.07 63±6 186±4
ENN+CA 0.83±0.06 56±6 180±4
ENN+CA+pruning 0.82±0.06 48±6 180±4

Table 4. Experimental results for the Housing dataset

Regularization method MSE nodes vectors
node variance 0.41±0.08 105±14 455±0
tree pruning 0.39±0.08 68±11 455±0
ENN 0.43±0.09 70±10 350±4
CNN 0.39±0.08 68±10 387±3
CA 0.39±0.08 68±10 379±3
ENN+CNN 0.39±0.08 63±9 339±5
ENN+CA 0.36±0.06 63±9 319±4
ENN+CA+pruning 0.34±0.06 58±8 319±4

5 Conclusions

We presented an extension of CNN, ENN and CA algorithms, called RegCNN, Re-
gENN and RegCA that can be applied to regression tasks and experimentally evaluated
the influence of the Θ parameter on the number or selected vectors and the size and pre-
diction accuracy of the regression tree. The best results were obtained when RegENN
was used together with RegCA. It always improved the properties of the regression tree
(smaller size and higher prediction accuracy), however after applying tree pruning in
several cases the results could still be improved. Although the parameter Θ must be
determined, the algorithms are not very sensitive to changes of the parameters and as
rule of thumb it can be set to 6 for RegENN and to 0.2 for RegCNN and RegCA for



174 M. Kordos, S. Białka, and M. Blachnik

standardized datasets. In some cases we were able to obtain slightly better results using
more complex algorithms (e.g. and MLP network), which were trained only on a part
of the dataset situated closest to the vector of interest (local experts). However, that in-
creases the time of instance selection by two or three orders of magnitude and make the
process more complex than the k-NN. So far we adjusted to regression only some of
the simplest instance selection methods and it would be worth to perform the study with
other methods as well. Although the instance selection in regression problems does not
reduce the dataset size so much as in classification tasks, it is worth performing not only
to compress the data but also to improve the prediction of the model.

Acknowledgment. The work was sponsored by the grant No. ATH/2/IV/GW/2011
from the University of Bielsko-Biala.

References

1. Hart, P.E.: The condensed nearest neighbor rule. IEEE Transactions on Information The-
ory 14, 515–516 (1968)

2. Wilson, D.: Asymptotic properties of nearest neighbor rules using edited data. IEEE Trans-
actions on Systems, Man, and Cybernetics 2, 408–421 (1972)

3. Chang, C.L.: Finding prototypes for nearest neighbor classifiers. IEEE Transactions on Com-
puters 23, 1179–1184 (1974)

4. Wilson, D., Martinez, T.: Reduction techniques for instance-based learning algorithms. Ma-
chine Learning 38, 251–268 (2000)

5. Cameron-Jones, R.M.: Instance selection by encoding length heuristic with random muta-
tion hill climbing. In: The Eighth Australian Joint Conference on Artificial Intelligence,
pp. 99–106 (1995)

6. Salvador, G., Derrac, J., Ramon, C.: Prototype Selection for Nearest Neighbor Classifica-
tion: Taxonomy and Empirical Study. IEEE Transactions on Pattern Analysis and Machine
Intelligence 34, 417–435 (2012)

7. Jankowski, N., Grochowski, M.: Comparison of instances seletion algorithms I. Algorithms
survey. In: Rutkowski, L., Siekmann, J.H., Tadeusiewicz, R., Zadeh, L.A. (eds.) ICAISC 2004.
LNCS (LNAI), vol. 3070, pp. 598–603. Springer, Heidelberg (2004)

8. Kordos, M., Blachnik, M., Wieczorek, T.: Temperature Prediction in Electric Arc Furnace
ith Neural Network Tree. In: Honkela, T. (ed.) ICANN 2011, Part II. LNCS, vol. 6792,
pp. 71–78. Springer, Heidelberg (2011)

9. Zhang, J., et al.: Intelligent selection of instances for prediction functions in lazy learning
algorithms. Artifcial Intelligence Review 11, 175–191 (1997)

10. Tolvi, J.: Genetic algorithms for outlier detection and variable selection in linear regression
models. Soft Computing 8, 527–533 (2004)

11. Guillen, A., et al.: Applying Mutual Information for Prototype or Instance Selection in Re-
gression Problems. In: ESANN 2009 Proceedings (2009)

12. Duch, W., Setiono, R., Zurada, J.: Computational intelligence methods for understanding of
data. Proceedings of the IEEE 92(5), 771–805 (2008)

13. Wu, S.: Optimal instance selection for decision tree, PhD dissertation. Iowa State university
(2007)

14. Ramon Cano, J., Herrera, F., Lozano, M.: Evolutionary Stratified Training Set Selection for
Extracting Classification Rules with Trade off Precision-Interpretability. Data and Knowl-
edge Engineering 60, 90–108 (2006)



Instance Selection in Logical Rule Extraction for Regression Problems 175

15. Kordos, M., Blachnik, M., Strzempa, D.: Do We Need Whatever More Than k-NN? In:
Rutkowski, L., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2010,
Part I. LNCS (LNAI), vol. 6113, pp. 414–421. Springer, Heidelberg (2010)

16. Kordos, M., Blachnik, M., Perzyk, M., Kozłowski, J., Bystrzycki, O., Gródek, M., Byrdziak,
A., Motyka, Z.: A Hybrid System with Regression Trees in Steel-Making Process. In:
Corchado, E., Kurzyński, M., Woźniak, M. (eds.) HAIS 2011, Part I. LNCS, vol. 6678,
pp. 222–230. Springer, Heidelberg (2011)

17. http://www.rapid-i.com
18. http://www.ath.bielsko.pl/~mkordos/icann2013
19. Merz, C., Murphy, P.: UCI repository of machine learning databases,

http://www.ics.uci.edu/mlearn/MLRepository.html

http://www.rapid-i.com
http://www.ath.bielsko.pl/~mkordos/icann2013
http://www.ics.uci.edu/mlearn/MLRepository.html

	Instance Selection in Logical Rule Extractionfor Regression Problems
	1 Introduction
	1.1 Instance Selection in Classification Problems
	1.2 Challenges in Regression Tasks
	1.3 Decision Trees

	2 Instance Selection Algorithms
	2.1 ENN, CNN and CA Instance Selection Algorithms for ClassificationProblems
	2.2 RegENN, RegCNN and RegCA Instance Selection Algorithms forRegression Problems

	3 Regression Tree
	4 Numerical Experiments
	5 Conclusions
	References




