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Introduction

After 13 years, the International Conference on Reliable Software Technologies,
Ada-Europe, returned once again to Germany. In its 18th incarnation as a con-
ference addressing software reliability issues, research, and experience, it is one
of the premier conferences on this subject whose importance and actuality re-
main unbroken. It was also the 33rd annual Ada-Europe conference, with Ada
being one of the foremost technologies that have focused specifically on software
reliability. Editions of the conference with its focus on reliability were held in
Switzerland (Montreux 1996 and Geneva 2007), the United Kingdom (London
1997, York 2005 and Edinburgh 2011), Sweden (Uppsala 1998 and Stockholm
2012), Spain (Santander 1999, Palma de Mallorca 2004 and Valencia 2010), Bel-
gium (Leuven 2001), Austria (Vienna 2002), France (Toulouse 2003 and Brest
2009), Portugal (Porto 2006), Italy (Venice 2008), and Germany (Potsdam 2000
and now Berlin-Dahlem 2013).

Organized by Ada Deutschland e.V. and its scientific counterpart, the special
interest group Ada of the Gesellschaft für Informatik (GI), the conference was
sponsored by Ada-Europe, the European federation of national Ada societies,
in cooperation with GI, ACM SIGAda, SIGBED, and SIGPLAN. We gratefully
acknowledge additional sponsorship by DFG, the German Research Foundation.
The conference took place in Berlin-Dahlem during June 11–15, 2013, at the
Seminaris Conference Center Dahlem Cube. Before and after the conference,
three ISO Working or Rapporteur Groups conducted their meetings at the con-
ference location.

Thirteen years ago, we noted in the foreword of the proceedings of the con-
ference in Potsdam: “It is not an overstatement to note that our daily life is
beginning to literally depend on the reliability of the software embedded in prod-
ucts. Yet such reliability does not come about by accident. It needs to be infused
into the software and the processes of the software life cycle by the application
of appropriate techniques and technologies.” These statements still hold true to-
day, except that entrusting our lives and fortunes to software-based systems is
no longer a vision of the future but daily reality as we drive in our cars, fly in
airplanes, bank online, or are screened or operated upon by medical equipment
with fascinating new capabilities most of which are the result of software support
of ever-increasing complexity.

An added dimension in today’s world is the advent of multi-core technologies
or, to put it in software terms, the forced departure from fully deterministic
execution models and the advent of systems in which computations occur in
a non-deterministic parallel order. Design principles that for decades were ap-
plied to ensure certain reliability aspects in safety-critical software are no longer
applicable when parallel executions become feasible and necessary.
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The paper contributions to the conference mirrored these long-range issues
as well as solutions to near-term problems.

Once again, the conference attracted submissions from around the world.
Submissions were received from authors residing in Canada, China, Denmark,
France, Germany, India, Israel, Italy, Macedonia, Mauritius, Portugal, Spain,
Switzerland, Taiwan, Thailand, UK, and the USA. A total of 11 papers were
accepted for the proceedings and five additional industry contributions were
accepted for presentation at the conference. The overall acceptance rate was 38%.
Two conference sessions were reserved for presentations by vendors of products
supporting the development and management of reliable software.

As in past years, the conference comprised a three-day technical program
at which the papers contained in these proceedings were presented, along with
shorter presentations on related topics. The technical program was bracketed by
two tutorial days when attendees had an opportunity to catch up on a variety of
topics interesting to the field, at both introductory and advanced levels. Further,
the conference was accompanied by an exhibition where vendors presented their
reliability-related products.

Each conference day opened with a keynote presentation. The keynote speak-
ers and their themes were:

• Bruce Powel Douglass, Chief Evangelist IBM Rational: Model-Based Ada
Development for DO-178B/C and the Application of Agile Methods

• Jack G. Ganssle, The Ganssle Group: The Way Ahead in Software Engineer-
ing: Replacing Artists with Disciplined Grownups

• Giorgio C. Buttazzo, Scuola Superiore Sant’Anna of Pisa, Italy: Research
Challenges in Exploiting Multi-Core Platforms for Real-Time Applications

In addition, Tucker Taft, the principal designer of Ada95, gave an invited
overview of the new features of Ada 2012, the latest standard for Ada announced
by ISO in December 2012.

We would like to express our sincere gratitude to these distinguished speakers,
well known to the community, for sharing their insights and information with
the audience.

The tutorial program featured international experts presenting introductory
and advanced material on a variety of subjects relevant to software engineers:

• “Multicore programming using divide-and-conquer and work stealing,”
Tucker Taft

• “Designing and checking coding standards for Ada,” Jean-Pierre Rosen
• “Effective requirements development practices and their role in effective de-

sign,” William Bail
• “Understanding dynamic memory management in safety critical Java,”

Kelvin Nilsen
• “Developing code analysis applications with ASIS,” Jean-Pierre Rosen
• “Verification and validation techniques for dependable systems,” William

Bail
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• “Design of multitask software: The entity-life modelling approach,” Bo
Sanden

• “Testing real-time software,” Ian Broster
• “Service-oriented architecture and enterprise service bus,” Rick Sward
• “Developing high-integrity systems with GNAT GPL and the Ravenscar

profile,” Juan de la Puente
• “Maximize your application potential,” David Sauvage

Many people contributed to the success of the conference. The Program Com-
mittee spent part of their Christmas vacation carefully reviewing all submitted
papers and providing detailed evaluations. The Industrial Committee reviewed
all proposals for experience reports submitted by industry. A subcommittee com-
prising Johann Blieberger, Jørgen Bundgaard, Hubert B. Keller, Ahlan Marriott,
Jürgen Mottok, and Erhard Plödereder, met on a weekend in early February to
compose the program based on the reviews.

We thank the committees for their dedication and hard work to get the
reviews done in time. A significant help in organizing the paper review was the
EasyChair system.

The Organizing Committee deserves special mention. Peter Dencker put to-
gether the exhibition where vendors presented their tools or services to make
software more reliable and its production easier. Jürgen Mottok composed the
attractive tutorial program. Jørgen Bundgaard dedicated extraordinary effort to
soliciting contributions for the industrial sessions of the conference and coordi-
nating their review. Erhard Plödereder organized the technical program together
with Hubert Keller, who also put together the Preliminary and Final Program
of the conference, along with the materials for the web presence. Dirk Craeynest
did his usual best in contributing to the public relation material and in dis-
tributing the electronic calls for papers, contributions, and participation. Raúl
Rochas helped with the local arrangements in Berlin. We also would like to
thank Christine Harms who handled the registration and the local organization
at Berlin.

Foremost, however, we wish to express our appreciation to the authors of
the papers submitted to the conference, and to the participants who came to
exchange their ideas and results. Without you, there would be no conference.
We hope that you were satisfied by the technical program of the conference
and enjoyed the social events of this 18th International Conference on Reliable
Software Technologies.

April 2013 Hubert Keller
Erhard Plödereder
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Jérôme Hugues
Hubert Keller
Pascal Leroy
Albert Llemośı
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Experience with the Integration of Distribution 
Middleware into Partitioned Systems∗

 

Héctor Pérez and J. Javier Gutiérrez 

Computers and Real-Time Group 
Universidad de Cantabria, 39005 - Santander, Spain 

{perezh,gutierjj}@unican.es 
http://www.ctr.unican.es/ 

Abstract. This paper proposes an architecture to enable the use of distribution 
middleware in partitioned systems based on a hypervisor. Partitioning is a 
widespread technique used in the development of high-integrity systems. In this 
kind of critical systems, software has to be as simple as possible in order to ease 
certification, and as the use of distribution middleware increases complexity, it 
has been avoided by developers. However, partitioning allows applications with 
different levels of criticality (mixed-criticality) to be executed in the same sys-
tem. We propose the use of distribution middleware for the development of 
those applications with lower level of criticality, and present an experience in 
porting middleware based on CORBA and Ada DSA (Distributed Systems An-
nex) standards to the hypervisor XtratuM. 

Keywords: distribution middleware, partitioned systems, CORBA, Ada DSA, 
real-time, communications. 

1 Introduction 

The traditional cyclic executive used mainly in high-integrity or safety-critical 
systems has evolved in the last years to a more sophisticated paradigm called 
partitioning or partitioned systems. In this kind of systems, the operating system 
manages a set of protected time frames called partitions, and also provides memory 
isolation. Each partition can contain one or more time windows that define the 
intervals during which the application allocated to that partition may execute. High-
integrity software must pass a certification process that certifies compliance with 
certain requirements imposed by a regulatory authority (e.g., DO-178B for avionics 
[1]). Thanks to this time and space isolation, a set of applications can be certified all 
together even if they have been developed by different companies. As an example of 
partitioned system, ARINC-653 [2] is a standard for avionics systems which defines 
the interface of a partition-based operating system that allows multiple applications to 
execute in the same hardware platform, while maintaining time and space isolation 
among them. 
                                                           
∗  This work has been funded in part by the Spanish Government and FEDER funds under 

grant number TIN2011-28567-C03-02 (HIPARTES). 
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Distributed systems based on this sort of partitions are built interconnecting two or 
more monoprocessor partitioned systems through special purpose networks (e.g., 
AFDX [3] or SpaceWire [4]). Each processor is controlled by an operating system 
that supports partitioning (e.g., POK [5] for an ARINC-653 specification). Partitions 
execute simple activities in order to facilitate certification, and the use of distribution 
middleware is simply inconceivable. However, there are other approaches to 
partitioned systems that envisage the possibility of using distribution middleware; 
those based on a hypervisor, which is a layer of software that enables several 
independent execution environments to be run in a single computer. The hypervisor 
provides the basis of partitioning through a thin layer with a low overhead for 
switching between partitions. In this approach, each partition can execute a complete 
operating system providing a second level of scheduling in which applications with 
different tasks can be scheduled. Thus, a hypervisor can support partitions with 
different levels of criticality, which could be built on the top of operating systems 
with different purposes. 

Our concern is that distributed applications with a low level of criticality can take 
advantage of common distribution middleware. This kind of application, possibly 
having real-time requirements, can be developed using common real-time operating 
systems, and may be executed together with other applications having a higher level 
of criticality in a partitioned system based on a hypervisor. Thus, distribution 
middleware can facilitate communication between subsystems, with the abstraction of 
complexity of network services, transparent management of communications, and 
interoperability [6]. Examples of distribution middleware standards that support 
different distribution paradigms are: CORBA [7] for object distribution, Ada DSA 
(Distributed Systems Annex) [8] for object distribution and RPCs (Remote Procedure 
Call), and DDS [9] for data-based distribution. 

This paper deals with the use of distribution middleware technology in partitioned 
systems through the integration of communication middleware based on standards 
within XtratuM [10], which is an ARINC-653-like hypervisor especially designed for 
real-time embedded systems. The objective is to propose an architecture that enables 
partitioned distributed systems to be developed using distribution middleware on the 
top of the native communication services provided by XtratuM. This architecture will 
allow not only the communication of partitions in different processors through 
communication networks, but also the communication of those partitions allocated in 
different cores in a multicore processor. Additionally, a prototype has been developed 
in order to demonstrate the validity of the approach. It has been developed as a proof 
of concept over an x86 hardware, chosen due to availability of all the required 
technology for this architecture. This prototype enables XtratuM partitions, which 
communicate through distribution middleware following CORBA and Ada DSA 
standards, to be built on top of a real-time operating system. 

The document is organized as follows. Section 2 presents the motivation of this 
research along with related work. In Section 3, the hypervisor XtratuM is introduced 
and relevant details of its architecture are described. Our proposal for the integration 
of distribution middleware with XtratuM is presented in Section 4. Section 5 deals 
with the implementation details of the proposed architecture for a specific middleware 
based on CORBA and Ada DSA, as well as an evaluation of the performance. Finally, 
Section 6 draws the conclusions and considers future work. 
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2 Motivation and Related Work 

Using middleware technology in partitioned systems would have the following 
benefits: 

• It would enable a transparent invocation of services allocated in partitions, 
independently of whether they are in the same processors (or core) or in a different 
one. On the one hand, middleware abstracts network services which allows the 
application code to be simplified while maintaining it independent from the 
communication subsystem. On the other hand, it facilitates the interoperability 
between two or more heterogeneous partitions, e.g., with different levels of 
criticality or using different data representations (e.g., endianness). 

• We could schedule a multicore or a multiprocessor system as if it were distributed. 
This approach is reinforced by the fact that this kind of applications or partitions 
are statically allocated to the processors (migration is not allowed), and scheduling 
parameters are also fixed in advance. 

Some works related to the integration of distribution middleware into high-integrity 
applications have been published in the last years, showing that this topic is attracting 
a high degree of interest, although research in this field is still in an early stage. One 
of the most notable efforts in this line is the work presented in [11], which proposes 
the integration of PolyORB-HI middleware into the TASTE framework [12]. 
PolyORB-HI is a minimal middleware that provides basic distribution services such 
as data marshalling/unmarshalling, request dispatching and network transport. Instead 
of following any distribution standard, this approach is based on the automatic 
generation of source code from architectural descriptions (i.e. system models). In  
this context, PolyORB-HI produces high-integrity code following the Ravenscar  
profile [13]. 

Regarding distribution standards, the use of CORBA [7] in high-integrity 
applications has previously been addressed in [14] and [15]. The former presents a 
real-time framework that uses ARINC-653 as the underlying platform, but extending 
the CORBA Component Model (CCM) [16] instead of relying on the standard real-
time facilities. The latter is a European research project that defines an avionics 
platform using Java and CORBA (to communicate partitions) as the core technologies 
to reduce times and costs in software development. 

There are other works for safety and security [17][18] based on the MILS 
(Multiple Independent Levels of Security) [19] architecture. It proposes the use of a 
separation kernel (guaranteeing the control of information flow and data isolation) 
with specific middleware to provide services to applications (e.g., interpartition 
communications, access to the network or system services). 

One of the most important challenges that distribution standards should overcome 
to be used in high-integrity applications is complexity. This has motivated the attempt 
of distribution standards (1) to evolve towards safety-critical subsets of their full 
distribution facilities, such as the definition of a safety-critical profile for  
DDS (currently under discussion at OMG meetings), or (2) to adapt current  
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Fig. 1. XtratuM architecture 

single-processor safety-critical profiles to distributed systems, as in the case of the 
Ada Ravenscar profile [20][21][22] or Safety Critical Java [23][24]. All these 
facilities are currently being investigated and will constitute a notable research field in 
the next years. 

3 An Introduction to XtratuM 

XtratuM [10] is an open source hypervisor designed for real-time embedded and high 
integrity systems. Although it does not follow a specific standard, its design is based 
on ARINC-653 so it provides the applications executing on top of it with time and 
space isolation. In XtratuM, the term guest or partition is used to reference a complete 
application which can be based on different operating systems, e.g., a general purpose 
OS (Linux), a real-time OS (MaRTE OS [25]), or an ARINC-653 OS (LithOS [26]). 
The general architecture of a system using XtratuM is shown in Fig. 1. Besides time 
and space isolation, XtratuM provides other facilities such as for example the 
virtualization of the basic resources of the system (clocks, timers, memory 
management, interrupts management, etc.), the static configuration of these resources, 
or specific communication services to enable the communication between two or 
more partitions. 

Partitions are able to communicate by sending or receiving messages through the 
use of ports. A port can be configured to either send or receive messages, but not 
both. As in the case of the ARINC-653 standard, two types of ports are defined by 
XtratuM:  

• Sampling ports, which provides sufficient storage for a single message so queuing 
is not required. The message remains available in the port until it is overwritten. 
This kind of port provides non-blocking communications and supports unicast, 
multicast and broadcast messages. 

• Queuing ports, which provides sufficient storage for a fixed number of messages 
that are managed on a FIFO basis. Messages are buffered in the port until they are 
delivered. This kind of port provides non-blocking communications and only 
supports unicast messages. 
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As can be seen, any operation on a receiving port is non-blocking in XtratuM. 
Therefore, it is the partition’s responsibility to retry the read/receive operation when 
the receiving buffer is empty.  

Ports are virtually connected by channels, which represent a logical path between 
one sending port and one or more receiving ports. However, receiving ports can only 
receive messages from a single source at most (i.e., the source of messages is always 
known and fixed). A channel can connect ports that belong to partitions executing on 
the same core module (a hardware platform with one or more processors or cores). 
Channels, ports and queue properties are defined through a configuration file and so 
they cannot be changed at run-time.  

Regarding the management of devices, partitions can access hardware by using 
specific XtratuM services to access the I/O ports. As in the case of the previous 
communication entities, partitions should be configured to access specific I/O ports 
before run-time. I/O ports can belong to only one partition, which means that specific 
I/O partitions should be created when more than one partition needs to access a 
particular device. Furthermore, I/O partitions are responsible for implementing the 
device drivers so devices shared among several partitions should be managed in a 
special way, as described in the next section. 

4 Proposed Architecture 

Our proposal will focus on the use of distribution middleware in partitioned systems 
in which a hypervisor is used to manage the hardware that could be formed by one 
processor with multiple cores. For this purpose, we perform an analysis to explore the 
various possible architectures for integrating a communication middleware within 
systems running on XtratuM. This analysis is divided into two levels: first, 
communications between core modules via the communications network, and 
secondly, communications between partitions through the communication services 
provided by XtratuM. 

4.1 Communications between Core Modules and Middleware 

Among the services offered by XtratuM are the virtualization of certain hardware 
components such as clocks or timers. However, XtratuM does not implement drivers 
at the hypervisor level, so sharing a device among multiple partitions should focus on 
handling the contention in order not to compromise the advantages of a partitioned 
system. In a distributed system, for example, multiple partitions may require access to 
the network card. A common strategy is the use of an I/O partition that has exclusive 
access to the network card. Under this approach, if one partition needs to 
communicate with another partition allocated in another processor, it must 
communicate with the I/O partition first, which will be responsible for redirecting 
messages to the communications network. Communication between an I/O partition 
and the other partitions in the same processor are performed through communication 
services provided by XtratuM as illustrated in Fig. 2. 
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Fig. 2. XtratuM and the I/O partition 

Since the main function of the I/O partition is redirecting messages, it can be 
designed by following two strategies: 

• Considering the use of distribution middleware in this I/O partition, thus 
middleware will be responsible for performing routing transparently. In this case, 
messages are not opaque and can be processed by the I/O partition. 

• Designing an I/O partition exclusively aimed at forwarding messages. In this case, 
messages are opaque to the I/O partition, and they would be routed through   
statically established connections. Therefore, each partition should know the 
destination of each of the remote requests beforehand. 

4.2 Communications between Partitions and Middleware 

Given the characteristics of the distribution middleware and the communication 
services provided by XtratuM, we have identified two aspects affecting the use of 
middleware: 

• A receiving port can only receive messages from a sending port. Therefore, 
middleware must abandon the traditional concept of a shared port for listening to 
requests, since all communications have set the source and destination of the 
messages as static. This behaviour is similar to other approaches for real-time 
middleware [27]. 

• Asynchronous communication among ports; therefore, restricting the use of 
synchronous remote calls by middleware. 

Considering both aspects, there are two possible configurations for communication 
between partitions. Without losing generality, we consider communication between 
the I/O partition and the remaining partitions as follows: 

• A receiving port in the I/O partition for each partition in the core module. From a 
real-time perspective, this configuration serializes processing messages coming 
from a partition, regardless of the priorities assigned to each of the messages. 

• Several receive ports in the I/O partition for each partition in the core module. That 
is, we define several communication channels between the I/O partition and the 
destination partition to enable the processing of messages according to their 
scheduling parameters (e.g., assigning the processing of messages coming from a 
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communication channel to a particular task). This configuration requires more 
system resources, but can respect the order of priorities by setting an appropriate 
configuration of the communications driver. 

4.3 Discussion 

From a communications perspective, the configuration of a partitioned distributed 
system using the hypervisor XtratuM should specify: (1) the assignment of partitions 
to each of the core modules of the distributed system, (2) the number and the type of 
ports (sampling or queuing, sending or receiving) of each partition, and (3) the 
communication channels between partitions within and outside the same core module, 
including the associated source and destination ports. The setting of these parameters 
is performed at two levels: 

• The configuration of communications at partition level, so that they are 
independent with respect to the location of the source and destination partition. 
Specifically, at this level the number and type of sending and receiving ports 
available in each partition is set. More details are given in the appendix. 

• The configuration of the communication channels at the level of the core module, 
within the same core module or between core modules. In this case, it is necessary 
to explicitly configure the source and destination of the messages (i.e., source and 
destination ports). When the communication is between core modules, it is also 
necessary to map communication ports to the underlying transport (see appendix). 

Another important issue to be configured is the length of the time windows allocated 
to each partition. This is not a trivial problem, and it is even harder with inter-
partitions dependencies as in the case of the I/O partition which should be executed 
with sufficient regularity to fulfil the I/O requirements of other partitions. This 
complexity can be reduced through the use of specialized tools such as Xoncrete [28]. 
The configuration of communications and time windows deserves a more detailed 
discussion that is beyond the scope of this paper. 

Given the static nature of communications in this kind of partitioned systems, the 
use of middleware in the I/O partition is not strictly necessary. It would suffice that 
this partition routes received messages according to a previously generated 
configuration table. Furthermore, this approach may ease the certification process as 
the I/O partition should be certified at the same level as the highest level of criticality 
required by the partitions that use these I/O services.  

From the point of view of minimizing the response time of remote calls, using 
multiple communication channels between two partitions prevents serialization of 
message processing by creating handling tasks with different scheduling parameters. 
However, a common strategy within distribution middleware lies in the definition of a 
single receiving port, where middleware initially deals with all requests coming from 
remote calls or from an automatic discovery of entities in the distributed system. Both 
aspects must be incorporated into distribution middleware for high-integrity systems, 
since the discovery of entities should be static, and for example, in the case of  
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Fig. 3. Proposed architecture for integrating middleware with XtratuM 

ARINC-like, communications between multiple sending ports and a single receiving 
port are not allowed. 

Using synchronous remote calls in non-partitioned high-integrity systems has been 
discussed by several authors from several perspectives [20][21][22]. In the case of 
partitioned systems, it should be noted that a remote call could potentially be blocked 
and then it would create execution dependencies between partitions, i.e., an error in 
one partition may influence the behaviour of another partition. However, the ARINC-
653-p1 standard does not preclude the use of synchronous communications if they are 
provided by the underlying system, as long as the partitioning is not violated. 
Therefore, this aspect is implementation dependent. 

Finally, Fig. 3 shows an example of the proposed architecture for integrating 
distribution middleware with a partitioned system using XtratuM. The example 
consists of a distributed system comprising three core modules. Communications 
between partitions, belonging or not to the same core module, are performed via a 
communication middleware. In this case, we have defined three communication 
channels: channel N to interconnect a partition in core module # 1 with a partition in 
core module # 2, channel M to interconnect a partition in core module # 3 with a 
partition in core module # 1, and channel T to interconnect a partition in core module 
# 1 with a partition in core module # 3. As can be seen in the figure, each core module 
has an I/O partition, with exclusive access to the network card, that is responsible for 
routing the messages received by the underlying communications network. 

5 Case Study 

This section aims to validate the system architecture proposed in the previous section 
by integrating a specific distribution middleware in XtratuM. To this end, we will 
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retrieve a distributed real-time platform previously developed [29] which consists of 
several software components: (1) PolyORB [30] as distribution middleware, (2) 
MaRTE OS [25] as the operating system and (3) RT-EP [31] as the real-time network. 
The integration of this platform with XtratuM is not straightforward and requires 
some extensions which are briefly described next. 

5.1 Distributed Real-Time Platform Overview 

PolyORB is introduced as middleware that can support different distribution 
standards such as CORBA, DSA or Web Services. It is distributed with the GNAT 
compiler and, in principle, it is envisaged for applications programmed in Ada. The 
architecture of PolyORB is divided into three separate layers: the application layer 
(referred to as application personality), the neutral layer or microkernel and the 
protocol layer (called protocol personality).  

Since the proposed approach uses the ARINC-like communication services 
provided by XtratuM, a new protocol personality called ICMC (Intra Core Module 
Communication) has been developed in PolyORB. This new protocol personality 
allows the transparent use of XtratuM services for inter-partition communications. 
Furthermore, the XtratuM API is written in C so the corresponding Ada bindings have 
also been developed in order to call it from Ada applications.  

Regarding concurrency patterns, PolyORB has been configured to create a handler 
task for each reception port defined in the partition. As XtratuM does not include 
blocking calls to listen for incoming messages, each handler task performs a periodic 
polling on the targeted receiving port.  

To enable the communication among core modules, the previous platform relied on 
the RT-EP protocol [31], which is based on a token-passing scheme. However, this 
kind of networks could not fit well in partitioned systems as it demands intense 
processing times to manage the token and perform the scheduling, and partitioning 
increases the token rotation time excessively. This may require a significant increase 
of the slot time assigned to the I/O operations which can influence the overall 
performance. To better focus on middleware and hypervisor incurred overheads, we 
decided to use point-to-point communications for this case study. 

5.2 Evaluation Scenario: Video-Surveillance 

Performance and interoperability capabilities are evaluated by applying it to a 
simulated video-surveillance example, where multiple display monitors may request 
video captures from the recording application. A key feature for this kind of systems 
resides in the reliability of the recording application, as it must keep recording data 
continuously, so it can benefit from strong isolation capabilities and can be executed 
together with local display monitors or other third-party applications. The architecture 
for the proposed system is depicted in Fig. 4 and it is composed of: 

• One node or core module with two partitions called “Video_Recorder” and 
“IO_Server”: the first partition is responsible for obtaining data from the attached 
video cameras and serving the requested video captures to other partitions; the  
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Fig. 4. Scheme of a video-surveillance example 

second partition is in charge of routing the request/replies from/to other core 
modules spread across the distributed system.  

• A variable number of nodes N or core modules representing the remote clients that 
may request the current live video stream or a previous recording. These nodes or 
core modules may or may not be partitioned systems. In our example remote 
clients will not be partitioned. 

The hardware platform consists of two 800 MHz embedded nodes connected through 
a 100 Mbps Ethernet. The software platform was previously developed and integrates 
PolyORB (the CORBA personality), MaRTE OS, XtratuM and direct 
communications over Ethernet, as can be seen in Fig. 4. 

We have carried out a test in this scenario to quantify the overhead introduced by 
using the hypervisor and the proposed architecture with respect to the non-partitioned 
case. The test will measure the execution time of a remote operation that sends the 
requested video frames. This evaluation has a twofold objective: on the one hand, it 
provides a rough idea about the overhead introduced by the hypervisor; on the other 
hand, it proves the interoperability between partitioned and non-partitioned 
distributed systems by using the same distributed real-time software platform 
developed in [29]. 

As mentioned in Section 4, the optimal configuration of partitions to meet their 
deadlines and maximize the processor’s utilization is a complex problem, especially 
in the case of the I/O partition. In our example, it is expected that the execution time 
of middleware operations will be much greater than the ones associated with the 
routing operations. Therefore, the length of the time window allocated to the 
IO_Server should be enough to execute all its operations in one go in order to 
minimize idle times in the middleware partition. To this end, a set of measurements 
have been taken to estimate this length, which results in times below 90μs. Hence, the 
video-surveillance application has been configured to have a dedicated time window 
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of 100μs for the IO_Server, and 400μs for the Video_Recorder partition, resulting in 
a scheduling plan repeated every 500μs (this is the major frame). 

We measure the operation carried out from the time when the request of a video 
capture is made until the image is returned. This operation is executed 1000 times, 
and the average, maximum, and minimum times are estimated, together with the 
standard deviation and the 90th percentile (i.e., the value below which 90 percent of 
the measurements are found). To avoid additional overheads in the measurements, the 
test is executed without requiring network fragmentation (the payload is bounded to 1 
kilobyte). We have also estimated the temporal cost of using the network 
(transmitting and receiving a message) by implementing the test over Ethernet in 
isolation.  

Table 1. Performance metrics for the video-surveillance example 

 
 

Table 1 shows the results for the measurements taken for the test. As can be seen, 
the network provides a communication link with sufficiently low dispersion to allow a 
suitable evaluation. The distributed operation takes less than 6 ms for both the non-
partitioned (without using the hypervisor) and the single partition (using the 
hypervisor without the I/O partition) scenarios. In this case, XtratuM adds a minimum 
overhead to the non-partitioned scenario. Under the proposed system architecture 
(partitioned scenario), the operation takes less than 8 ms. On average, the 
performance decrease of the partitioned system is around 29%: 25% is inherent to the 
selected partition configuration, i.e., an extra time of 100μs is added every 400μs of 
the execution of the Video_Recorder partition; and the remaining 4% can be 
explained by different overheads (e.g., context switches between partitions, the use of 
ARINC-like communication ports or the intermediate routing performed).  

The maximum time found in the partitioned system can be explained by the extra 
delay that the IO_Server partition can undergo when: (1) the message is received but 
cannot be processed immediately because the Video_Recorder partition is executing, 
or (2) the message is sent by the Video_Recorder partition at the beginning of its time 
window. Both cases could add a worst-case delay of 400μs each. Finally, it is worth 
noting that most of the measurements are closer to the minimum value for the 
partitioned system, as can be deduced from the 90th percentile, while the rest of the 
measures remain in the same range as the maximum. 

As a consequence of the response times obtained in the case study, it can be 
observed that the overhead of using middleware together with a partitioned system 
could be reasonable for the kind of applications we have in mind, although a 

MAX. AVG. MIN. STD. DEV. PER90

NETWORK 321 305 298 2 308

NON-PARTITIONED 5728 5691 5689 2 5694

SINGLE PARTITION 5862 5740 5716 36 5790

PARTITIONED 7944 7334 7130 184 7282
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significant improvement is expected when using less complex middleware. In any 
case, our approach presents a low standard deviation as expected for this scenario.  

6 Conclusions and Future Work 

This work has explored the integration of standard distribution middleware into 
partitioned systems. This integration does not only enable a transparent 
communication among partitions in different processors through communication 
networks, but it also allows partitions allocated in the same core or in different cores 
in a multicore processor to communicate. Furthermore, it eases the interconnection 
between partitioned and non-partitioned distributed systems. 

Our research has addressed the potential communication issues of this integration 
at two different levels: the first one dealt with the communication among core 
modules while the second refers to the inter-partition communication. For the former, 
the design of XtratuM imposes the creation of an I/O partition in charge of handling 
all the incoming/outcoming network messages. Hence, whether this partition may or 
may not include middleware depends on the nature of the distributed application (i.e. 
static or dynamic) and the certification requirements. For the inter-partition 
communication level, the use of middleware would be restricted to using 
asynchronous communications and to having as many reception ports as there are 
possible senders.  

Mixed-criticality distributed applications can take advantage of the proposed 
system architecture. As partitions have space and temporal isolation capabilities, their 
determinism can only be jeopardized by the sharing of I/O services. In our approach, 
the I/O partition has been kept simple and it is exclusively aimed at forwarding 
messages, although other approaches could be explored.  

Although this integration can facilitate the use of partitioned systems within a 
distributed environment, further investigation is required to fully determine which 
features of distribution standards can be applied, i.e., the suitability of distribution 
models or the applicability of some QoS configurations. Furthermore, other 
approaches could also be explored, e.g., middleware could benefit from having a 
virtual network card available in each partition. This approach would avoid the 
required modification of middleware to use the ARINC communication services, as 
the complexity of these services can be abstracted by a virtual network which 
interconnects the I/O server with the other partitions. 
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Appendix 

This appendix describes the way to configure communication channels using the 
XML configuration scheme followed by XtratuM. Fig. 5 shows the symbols that are 
used in the XML diagrams and their interpretation: 

 

Fig. 5. Symbols used in the XML diagrams 

Partition Level Configuration 

At the partition level configuration, ARINC-like communications are based on the 
independence of (1) the underlying transport mechanism used and (2) the 
source/destination of messages.  
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Fig. 6. Partition level configuration of ports 

Each partition is configured independently by specifying the number of available 
ports (Fig. 6-A). Additionally, the name, type (i.e., sampling or queuing) and direction 
(i.e., source or destination) of each port are set (see Fig. 6-B).  

Core-Module Level Configuration 

At the core module level, the configuration of ARINC-like communications requires 
the specification of the number and type of channels. Each channel describes a route 
connecting one source port to one or several destination ports through intermediate 
ports. For instance, Fig. 7 shows the attributes required to configure a sampling 
channel whose source, destination or intermediate ports are defined by a pair of 
values (partitionId, portName). Furthermore, extra port attributes may be specified to 
map them to the underlying transport mechanism by means of the input and output 
transport links, as described in Fig. 8. 

 

Fig. 7. Core-module level configuration of a sampling channel 
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Fig. 8. Core-module level configuration of the underlying transport mechanism 
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Abstract. The widespread use of multi-CPU computers is challenging pro-
gramming languages, which need to adapt to be able to express potential paral-
lelism at the language level. In this paper we propose a new model for fine 
grained parallelism in Ada, putting forward a syntax based on aspects, and the 
corresponding semantics to integrate this model with the existing Ada tasking 
capabilities. We also propose a standard interface and show how it can be ex-
tended by the user or library writers to implement their own parallelization 
strategies. 

1 Introduction 

The development of ubiquitous multi-CPU computers has led to a more pressing need 
to be able to express parallel computational algorithms effectively in general purpose 
programming languages.  

The development of programs that capture concurrent properties of algorithms has 
been a focus of many research papers (since [1, 2]) and has been implemented in op-
erating systems, such as DEC RT-11, HP, Unix, POSIX and Microsoft Windows, and 
programming languages concurrent Pascal [1], Ada [3] and Java [4]. Most approaches 
focused either on concurrency in the small (a few of threads or interrupts) or specia-
lized processor domains, such as SIMD (Single Instruction Multiple Data) environ-
ments. Recently, other languages, such as C# and C++ have added or are investigating 
methods of implementing fine grained concurrency, which is the subject of this paper. 
We are ignoring much of the work for SIMD machines for now as they use specia-
lized toolsets and techniques.  

Unfortunately, the perception of the general threading or tasking environment is that 
the threads or tasks are too expensive in resource usage, cumbersome (in terms of be-
ing easy to use by average programmers), not easily mapped to the physical resources 
at hand at the time of program execution, and divergent from the problem space when 
attempting to apply concurrency to computationally intensive activities [5, 6]. 

Arguably, the Ada tasking model with its first-class task types and well defined 
syntax/semantics for inter-task interactions [7] simplifies the expression of many 
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concurrent properties and solutions. However, other models, such as loop-level paral-
lelism or parallel subprogram execution are not easily expressed in the current Ada 
model. In addition, the resource consumption issues and cost of dynamic task creation 
and destruction of Ada tasks when used in undisciplined ways still begs for a better 
approach to map the concurrency power available at the hardware level to algorithms 
written at the below-subprogram level.  

Parallel programming in Ada was considered several years ago ([8,9,10]). Mayer 
and Jahnichen [8] introduce a parallel keyword, which applies to for loops, al-
lowing a specific compiler to optimize loop iterations, targeted to a multiprocessor 
platform. Hind and Schonberg [9] also targeted the optimization of parallel loops, 
introducing the concept of lightweight (mini) tasks, to reduce the overhead of using 
tasks for parallelism. Thornley [10] proposes two extension keywords to standard 
Ada: parallel and single, where parallel is used for declaring that a block 
or a for loop will be executed in parallel.  

More recent proposals have been made to extend Ada's capabilities by using gener-
ics [11], pragmas [11], and language constructs [12]. This work builds upon these to 
present a more unified proposal. 

In this paper we address these issues as they relate to the Ada programming lan-
guage; propose syntax for Ada that more closely matches the  need for fine grain 
concurrency than exists at present; and propose semantics for the syntax presented 
that seamlessly integrates the existing Ada tasking capabilities and the new fine grain 
concurrency. 

2 Problem Analysis 

Concurrency as a discipline has been the subject of intense research from the days of 
Per Brinch Hansen [13]. The most common usage was to handle external events, to 
manage the progression of work and to ensure that work was scheduled according to 
the importance (priority) of the work. For the majority of systems there was a single 
CPU that was the resource to be scheduled, and for the rest there were a few CPUs 
that were shared between many more tasks.  

As long as CPU speed was increasing exponentially, the pressure to increase 
throughput by increasing CPU count was overwhelmed by that speed increase. When 
maximum CPU speed became capped in the mid-2000's, the pressure to increase per-
formance by adding cores became overwhelming. We now stand on the threshold of 
“too many cores”, where chip manufacturers prepare to deliver hundreds or thousands 
of cores, each with tens or hundreds of “lanes” for parallel work. 

With these changes, there will be many more cores than tasks ready to execute at 
any one time. These cores are available to subdivide heavy calculations when the 
algorithms can be effectively parallelized. 

There is an apparent belief that we can create lightweight threads and that a program 
can detect how many cores are available at any one time and allocate the lightweight 
threads to cores to execute a parallel algorithm. This belief ignores the fact that the op-
erating system schedules all resources, memory, threads, and cores. A program cannot 
schedule cores without scheduling the threads that could be using them.     
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An approach institutionalized by MIT [14, 15] and now commercialized by Intel 
[16] and being used by ParaSail [17], Intel's Threading Building Blocks [18], Java 
Fork/Join [19], OpenMP [20], Microsoft's Task Parallel Library [21], is to put 
lightweight “tasks” on top of thread pools. This is a promising approach that we in-
vestigate further to implement the model that we develop here. 

Another issue that must be addressed for such distribution is the nature of the algo-
rithm being distributed.  Any algorithm that is a candidate for parallel execution must 
calculate a deterministic result independently of the order in which the fragments are 
combined. This is simple if there is only a single operation (such as “+” or “*”) and 
the operation is commutative, but may not be trivial for non-commutative operations 
such as “-” or for more complex combinations of such functions or operations.  

Often, the algorithm must be rewritten to add partial temporary accumulator va-
riables and to combine these temporary variables correctly to produce the correct 
result. In some cases, the compiler may be able to perform such rewrites, but it is 
ultimately the programmers’ responsibility to be aware of such issues and to ensure 
that when parallelism is applied to a programming construct, the algorithm as written 
will not be incorrect when executed in parallel. 

3 Semantic Model 

In order to effectively describe the new concurrent behavior, we introduce a unit of 
concurrency called a “tasklette”. Unlike tasks, tasklettes are not nameable or directly 
visible in a program. A tasklette carries the execution of a subprogram or of a code 
fragment in parallel with other tasklettes executing the same code fragment (with 
different variables) and possibly in parallel with other tasklettes executing code frag-
ments from other Ada tasks. 

Tasklettes come in two types. The first type is invisible to the programmer and is 
created by the compiler when it can determine that an operation can be parallelized 
and submitted to multiple CPUs. Example of such usage could be the default initiali-
zation or assignment of values to arrays of records or the copy of a large structure 
using the Ada assignment operator. 

The second tasklette type is the subject of this paper and requires the programmer 
to use explicit syntax to guide the compiler and runtime. This syntax will include the 
use of aspects on subprograms or on loops. This syntax will be specified in the next 
section, followed by examples. 

A major impetus behind making tasklettes not declarable is to separate the pro-
grammer from the implementation of the parallel constructs 1. Programmers will dec-
lare an intent that code fragments be executable in parallel, but need not concern 
themselves with the details of the parallelism itself. Tasklettes are meant to augment, 
not replace tasks as the visible unit of concurrency. 

                                                           
1  This is the opposite of tasks, where the decision was to make the parallel computation ob-

vious, since tasks are used to express concurrent activities while tasklettes are used to map 
the application to the underlying platform. 
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Tasklettes behave as if each one is executed by a single Ada task that is explicitly 
created for the execution of the tasklettes and terminated immediately after execution 
of the code fragment. Instead of attempting to map tasklettes to cores, we map them to 
tasks and use the Ada tasking model to express the concurrency since tasks in Ada 
already have a computationally sound model that addresses priority and scheduling on 
multicore platforms. To not base this concurrency on tasks could mean extreme diffi-
culty in using tasks and tasklettes in the same partition. 

Any such tasks that execute the tasklettes are usually hidden from the programmer, 
and the only interface that the compiler exposes (even if we create our own task pool) 
is a set of packages and generics to let the pool provide the service. This interface is 
specified in section 5.  

At the present time we are working to extend the model to include real-time beha-
viors, task priorities, and the Ravenscar tasking model. To date we have found no 
fundamental limitations that would prevent this extension. 
 

 

Fig. 1. The proposed model 

We propose a runtime model where the execution of code fragments executed by 
multiple tasklettes is restricted to producing the same result as would happen if ex-
ecuted sequentially. This has some obvious constraints on the user code: 

⎯ Parallel code fragments must not update any non-atomic variable read by 
another code fragment that is executed in parallel, without making special 
language measures to protect the variable 2. 

⎯ Program execution must not proceed beyond the parallelized code until 
tasklettes executing that fragment have completed and delivered their results. 

                                                           
2  If the underlying implementation does not use tasks, then protected operations and potential-

ly blocking operations cannot be called directly from user code. As the proposed model is 
based on mapping tasklettes to tasks this restriction is not needed. 
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Our proposal includes an Ada interface to implement the semantic model provided in 
this paper. Compilers and runtimes would be free to provide an implementation that 
does not use the interface as long as the execution of the tasklettes has the same se-
mantic effect given here. However, if a task pool is provided for the default, then it 
must be used as specified here. Figure 1 provides an overview of the proposed model. 

4 Syntax 

In this section we present the addition of parallelization abilities to subprograms and 
loops 3. The most relevant addition to the language is the introduction of the Paral-
lel aspect, which, when applied to a specific construct instructs the implementation 
that parallelization should be provided. 

It is important to note that the programmer must also be able to specify the under-
lying behavior of the runtime, both controlling the scheduling of tasklettes and the 
parameters of the task pool. This is achieved through the programmer being able to 
interact with the underlying library as will be detailed in Section 5.  

4.1 Parallel Subprograms 

Subprograms are a natural candidate for parallelization, in particular for the case of 
pure functions, which are not intended to present side effects. Nevertheless, even 
subprograms that operate on shared data can be parallelized as it may be possible for 
the programmer to control contention, to verify that contention is controlled, or to 
verify that parallel access is on non-overlapping areas of data 4.   

Two possibilities are provided for the placement of the aspect specification. One is 
to place with Parallel in the specification of the subprogram, and the second is 
for the syntax to be placed in the actual call.  

The first method (on the subprogram specification) can be used to create default 
behavior and make the parallel nature visible to callers. The second approach supports 
legacy libraries, and allows the programmer to have a fine-grained control of the pa-
rallel behavior (at the time of call, e.g. due to different execution conditions).  

In its simple form, if the programmer accepts the default behavior of the underly-
ing task pool and tasklette scheduling, she just needs to include the Parallel aspect in 
the call to the subprogram:  

 Ret := Call (Parameters)  
     with Parallel => True;  

                                                           
3  We also considered the parallelization of blocks, but after analyzing we found that the  

syntax required to make them effective would be similar to declaration of “anonymous” 
subprograms, e.g. with in and out parameters, so we decided to propose that programmers 
specify parallel subprograms in these cases. 

4  Access even on non-overlapping areas of data may cause contention as a write into a varia-
ble may cause a cache line to be invalidated, thus impacting on variables in the same line. 
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Note that, in accordance to the rules for aspects [22], the => true can be omitted. In 
case with Parallel is not included the value of the aspect is false, so the subpro-
gram cannot be executed asynchronously.   

In order for the return of the parallel call to be “safe”, and so that no waiting needs 
to be implemented explicitly by the programmer, the asynchronous call waits either 
on (what comes first): 

─ Access to the variable holding the call result, or 
─ The end of the enclosing scope of the call.  

This restriction implements fully-strict parallelism [23], and guarantees that the asyn-
chronous subprogram has access to the stack frame of the enclosing scope of the call 
in its execution, a similar approach as determined for Cilk, and which has been pro-
posed for C++ [24]. An example for instance is a parallel solution for the Fibonacci 
series, which could be written as 5:  

 function Fibonacci(N: Natural) return Natural is 
  function Sequential_Fibonacci (N: Natural)  
    return Natural is 
   ... -- Some implementation of iterative fibonacci 
  end  Sequential_Fibonacci; 
 begin 
  if N < Cut then -- to stop parallelism (efficiency) 
   return Sequential_Fibonacci(N); 
  else 
   return  
    Fibonacci (N-1) with Parallel => True 
    + Fibonacci (N-2) with Parallel => False; 
  end if; 
 end Fibonacci;  

We also considered that a way to control parallel actions is necessary, including (i) 
“select”ing on multiple alternative parallel actions, continuing after getting the first 
result, and (ii) directly requesting the abort of all tasklettes still pending in the current 
scope (for scope exit). We have identified this as future work. 

4.2 Parallel Loops 

Parallelizing loops is one of the best known examples of the advantages of parallel 
execution. A simple loop that can be parallelized is: 

 for I in 1 .. N  
  with Parallel => True  
 loop --... end loop; 

                                                           
5  To increase efficiency this solution parallelizes one of the branches, since the existing task 

can do the N-2 branch, and stops parallelization when it is more efficient to go sequentially.  
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In the simple case the compiler could create N tasklette objects, one per iteration, 
which would be placed in the queue of the default task pool. This approach is only 
appropriate if each iteration is computationally intensive (e.g. ray tracing). In most 
cases, the advantages of parallelization are only obtained if some partitioning is used.  

This partitioning could be performed by the compiler, dividing the range in P 
“chunks” (even with variable or varying dimensions), with P < N, e.g. based on the 
number of available cores.  

Nevertheless, in most cases loop iterations are not independent, and some sort of 
reduction may be required. As an example, if the loop was calculating a sum, then 
each chunk would produce a partial value which would need to be reduced to one 
result. Generalizing, for some code: 

 X : User_Type := Some_Default; 
 for I in 1 .. N loop 
  X := Func(X, I); 
 end loop; 

the programmer could express the loop in terms of a formal parallel model, being able 
to identify to the compiler the reduction operation, the variable which will be partially 
calculated in each chunk of iterations and then accumulated (or reduced), and the 
identity value, which is used to initialize each partial result: 

 function G (Accumulator, Iteration_Result: User_Type)  
   return User_Type is  
  ... -- some function 
begin 
 X : User_Type := Some_Default; 
 for I in 1 .. N  
   with  Parallel => True, Reduction => G, 
      Accumulator => X,  
         Identity => Some_Identity_Value  
 loop 
  X := Func(X, I); 
 end loop; 
end; 

Nevertheless, for the general case, the compiler may not be able to parallelize a se-
quential loop without the help of the programmer (e.g. even in simple aggregation 
loops, if the operation is not associative). One approach would be for the programmer 
to rewrite the loop in terms of the associative operation. For instance: 

for I in 1 .. N loop  
 Sub := Sub - Buffer(I); 
end loop; 
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could be rewritten in order to have an associative operation being performed 
(Sub := Sub + (-Buffer(I)) 6 . This would nevertheless require the pro-
grammer to change the code. Instead, our proposal allows for the programmer to di-
rectly identify reduction and identity: 

for I in 1 .. N  
 with  Parallel => True, Reduction => ”+”,  
    Accumulator => Sub, Identity => 0 
loop 
 Sub := Sub - Buffer(I); 
end loop; 

4.3 Explicit Control of Partitioning 

For the cases that the partitioning is not easy to understand or the reduction operation 
is not as simple to identify (or the programmer prefers to explicitly handle it in the 
loop), we also allow for the explicit control of partitioning.  

In its simple form, the programmer may partition the loop into “chunks”, using a 
sequential iteration in each chunk. For example (for simplicity assuming that N is 
divisible by Chunk_Size): 

for I in 1 .. N/Chunk_Size with Parallel => True  
loop 
 for J in I*Chunk_Size .. (I+1)*Chunk_Size-1  
                with Parallel => False loop 
   --... 
 end loop; 
end loop; 

The Parallel => False in the inner loop is not necessary, but can be given for 
higher clarity. Chunk_Size can be a constant, a user variable (e.g. the user queries 
the number of cores in the platform) or even a function supplied by the task pool (e.g. 
how many tasks in the task pool are available). 

The chunk policy can also be provided as an aspect of the loop. This allows more 
advanced partitioning approaches, with variable chunk sizes depending on the system 
load, dynamically managed by the underlying runtime. In this case, the start and finish 
of the chunk is obtained using attributes on the appropriate loop control variable:    

for I in 1 .. N  
       with Parallel => True,  
            Chunk_Size => [N_Core | auto | dynamic]  
loop 
 for J in I’Chunk_First .. I’Chunk_Last loop  

                                                           
6  Compilers may eventually be able to perform many automatic parallelizations in these sim-

ple examples being shown. Nevertheless the model is for the general case. 
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    -- Other attributes could give size and range 
    -- No aspect in the inner loop so it is sequential 
 end loop; 
end loop; 

Dependencies and reduction can be supported by declaring local variables inside the 
loop 7,  and aggregating the result in a global variable (would need to be protected). 

Sub := ...; 
for I in 1 .. N loop  
 Sub := Sub - Buffer(I); 
end loop; 

could become: 

Sub := ...; 
for I in 1 .. N with Parallel => True,         
                     Accumulator => Sub  
loop 
 declare 
  Local_Sub : Integer := 0; 
 begin 
  for J in I’Chunk_First .. I’Chunk_Last loop  
     Local_Sub := Local_Sub – Buffer(I); 
  end loop; 
  Sub := Sub + Local_Sub; 
 end; 
end loop; 

The Sub variable can now be updated in parallel. Therefore, the Accumulator 
aspect in the loop also signals the compiler that Sub must be protected.  

A more complex case is when the code presents a loop-carried dependency, where 
subsequent iteration of a loop requires the computed value of the previous iteration: 

Cumulative(1) := Histogram(1); 
for I in 2 .. N loop  
 Cumulative (I) := Cumulative (I-1) + Histogram(I); 
end loop; 

This code cannot be automatically converted into a parallel loop. It can nevertheless 
be parallelized using a prefix-sum algorithm [25], since the operation is associative. 

The proposed approach also considers another level of abstraction, where the pro-
grammer is able to specify and control the underlying scheduling, manipulating more 
directly the operations being performed by the runtime. To support this control, an 

                                                           
7  This could also allow the compiler to optimize the placement of variables in Non Uniform 

Memory Architectures (NUMA), as these variables will only be used in one core. 
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aspect Parallel_Manager is used, to specify the object that controls parallelism. 
This is presented in the next section.  

5 Interface to the Runtime  

The goal of the parallel runtime is to define an interface that provides flexibility to the 
application programmer, yet minimizes the implementation burden for the compiler 
writer. The desire is also to provide an interface that could be standardized so that a 
parallel library writer could plug in different parallelism strategies and allow the ap-
plication programmer to have fine-grained control over the parallelism. The runtime 
consists of the task pool interface and the parallelism generics. 

5.1 Task Pool Interface 

We define an interface (partly shown below) to a task pool facility that provides the 
abstraction of managing a set of tasks as general purpose workers where a worker can 
be dispatched to a tasklette. The parallelism strategy implemented by a library writer 
interacts with the task pool. The model is that the parallelism manager offers work 
(procedure Offer_Work) to the task pool in the form of a work plan object defined 
by the library writer. The task pool releases a worker which calls the Engage method 
of the plan to perform the work. The Engage call is essentially the tasklette code that 
is executed, which ultimately calls out to execute the users’ parallel algorithm. 

package Ada.Parallel.Task_Pools is    
  -- A Work Plan defines the work strategy 
   type Work_Plan is limited interface; 
 
   procedure Engage (Plan : Work_Plan) is abstract; 
   -- When a worker starts executing, it engages the  
   -- work plan. This call represents the tasklette 
   -- code. Engage executes the plan. Upon returning, 
   -- the Worker returns to the task pool 
 
   type Task_Pool_Interface is limited interface; 
 
   procedure Offer_Work 
     (Pool : in out Task_Pool_Interface; 
      Item : aliased in out Work_Plan’Class; 
      Worker_Count : Positive_Worker_Count)  
   is abstract; 
   -- Allows a work plan to request workers from the  
   -- task pool. The Work plan is offered to the task  
   -- pool, which is then engaged by each worker 
end Ada.Parallel.Task_Pools; 
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The task pool interface shown above can be implemented by extending the interface 
by any number of implementations that could be provided by library writers. Some 
possible candidates are unbounded task pools, where the number of workers can dy-
namically increase to accommodate the load, bounded task pools where the number of 
worker tasks is statically defined, and Ravenscar tasks pools that are compatible with 
the Ravenscar profile tasking restrictions. 

5.2 Parallelism Control 

Having presented the task pool interface, we now consider the parallelism generics 
that interact with the task pool. We have identified a need for two forms of paral-
lelism in an application; non-recursive parallel subprograms, and divide and conquer 
parallelism, which covers both parallel loops and recursive subprograms. 

5.3 Non-recursive Subprograms 

The non-recursive subprogram case is perhaps the simplest, since there is only one 
call involved and thus there is no need for a parallelism strategy such as work-sharing, 
work-seeking, or work-stealing 8, nor is there a need for reduction. In addition, there 
are no specific restrictions on the parameter profile of the subprogram, and the compi-
ler writer can implement the calls without the need for library support 9. For example, 
the compiler can create a wrapper for each non-recursive subprogram to be called in 
parallel. The wrapper declares a tasklette which obtains a worker task from a task 
pool, and then invokes the real call from the context of the worker task. Since the 
tasklette is declared within the stack frame of the wrapper, it can issue the call to the 
real subprogram simply passing the parameters passed to the wrapper straight through 
to the real subprogram. The parallel non-recursive call is simple enough that it war-
rants no further discussion. 

5.4 Divide and Conquer Parallelism 

The other types of parallelism in our proposal are parallel loops and parallel recur-
sion. These apply parallelism by utilizing a divide and conquer strategy. There are 
several possible sub-strategies. For instance, a load balancing sub-strategy might be 
utilized if the effort to process items in the loop varies through the iteration or if the 
recursion is unbalanced. Work-sharing might be chosen if the work can be divided 
more evenly. Regardless of the sub-strategy chosen, reduction may be needed if the 
parallelism produces a result. For these forms of parallelism, a library approach is 
proposed. Such a library implemented in Ada would involve generics, since the data 
types, loop iteration index types, and result types are user-defined and may range 
from simple elementary types such as Integer and Float, to complex user-defined 
record structures and tagged types.  

                                                           
8  More details on these strategies can be found in [26]. 
9  If a library for this strategy is provided, the compiler will implement the calls to this library. 
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The runtime library model for divide and conquer parallelism consists of a hie-
rarchy of packages that can be selected for specific purposes. These libraries provide 
the parallelism, while the compiler performs a transformation from the syntax features 
described above. 

The run time interface consists of a three stage generic instantiation (shown later): 
⎯ Stage 1  =>   Reduction primitives 
⎯ Stage 2  =>  Work type + Strategy Interface 
⎯ Stage 3  =>  Parallelism Strategy 

The first instantiation allows the application programmer to specify the result type, 
the reducing function, and the identity value for the result type. 

The second instantiation defines the data type describing the work to be processed 
in parallel, and defines the interface to be implemented by library writers for the third 
level instantiation. There are two possibilities here. If the parallelism is a parallel 
loop, then the work type is the iteration index type.  This may be any user-defined 
scalar type. If the parallelism is for a recursive subprogram, then the work type is the 
data type that represents the work to be performed. 

The third instantiation defines the parallelism strategy and how the work is to be 
performed in parallel. While the first two stages establish the parallelism framework 
and are proposed for standardization, the third level libraries implement the level 2 
interface and may be provided by third-party library writers. 
 
Level one Instantiation Interface 

generic 
 type Result_Type is private; 
 with function Reducer (Left, Right : Result_Type) 
             return Result_Type; 
 Identity_Value : Result_Type; 
 
package Ada.Parallel.Functional_Reduction is 
end Ada.Parallel.Functional_Reduction; 

As can be seen, the first instantiation is trivial, defines no operations, and requires no 
body 10. This instantiation is only used if a result is to be generated, and allows a 
programmer to specify the reducing operation needed for the parallelism opportunity. 
 
Level two Generic Interface for Parallel Loops 

generic 
   type Iteration_Index_Type is (<>); 
package Ada.Parallel.Functional_Reduction.Loops is 
 
    type Parallelism_Manager is limited interface; 

                                                           
10  More complex situations, such as where the reducers are of different type from the result 

value, can be handled by other generics, with more parameters. 
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    procedure Execute_Parallel_Loop 
       (Manager : Parallelism_Manager; 
        From    : Iteration_Index_Type  
            := Iteration_Index_Type'First; 
        To      : Iteration_Index_Type 
            := Iteration_Index_Type'Last;   
        Process : not null access procedure 
            (Start, Finish : Iteration_Index_Type; 
             Item : in out Result_Type); 
        Result : in out Result_Type) 
    is abstract; 
 
end Ada.Parallel.Functional_Reduction.Loops; 

The level two instantiation for parallel loops is a child package of the Function-
al_Reduction package of level 1. This package allows the programmer to specify 
the data type associated with the loop index as the Iteration_Index_Type. The 
manager type defines the interface to be implemented by the library writer for the 
level 3 instantiation. The library writer must also provide a constructor function called 
Create (with defaulted parameters) that returns a Manager object 11.  
 
Level two Generic Interface for Recursive Subprograms 

generic  
   type Work_Type is private;  
   --  Data type to be processed recursively  
  
package Ada.Parallel.Functional_Reduction.Recursion is  
  
   type Parallelism_Manager is limited interface;  
  
   function Execute_Parallel_Subprogram  
     (Manager : in out Parallelism_Manager;  
      Item : Work_Type;  
      Worker_Count : Worker_Count_Type :=  
                            Default_Worker_Count;  
      --  Top level item to process recursively  
      Process : not null access function ( 
          Item : Work_Type) return Result_Type)  
      return Result_Type  
   is abstract;  
end Ada.Parallel.Functional_Reduction.Recursion; 

                                                           
11  This function is to be used by the compiler to create a manager object for each parallelism 

opportunity. The function must provide the parameters to match the aspects specified at the 
parallelism opportunity. 
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Similarly, the level 2 instantiation for recursive subprograms defines the interface that 
the library writer needs to implement and is proposed for standardization. The Ex-
ecute_Parallel_Subprogram is invoked by a wrapper function generated by 
the compiler, which manages the parallelism opportunity. As before, a Create 
constructor function returns a manager object, which is called by compiler generated 
code to initialize an object declared in the declaration section of the wrapper function 
for the programmers’ code. 

5.5 Example: Parallel Loops  

To demonstrate the 3 stage process, consider the earlier example to calculate the sum 
of integers from 1 to N. 

The first stage generic instantiation sets up the reduction needed for Integer addi-
tion. 

with Ada.Parallel.Functional_Reduction; 
package Integer_Addition is new  
   Ada.Parallel.Functional_Reduction  
      (Result_Type => Integer, 
       Reducer => “+”, 
       Identity_Value => 0); 

For the second phase instantiation, we need to decide if the parallelism applies to a 
loop or to a recursive subprogram. In this case, we are interested in a loop. The pack-
age instantiation from the first phase is used to create the parallel loop generic. 

with Integer_Addition; 
with Ada.Parallel.Functional_Reduction.Loops; 
package Integer_Addition_Loops is new  
     Integer_Addition.Loops  
        (Iteration_Index_Type => Integer); 

For the third and final phase instantiation, we need to specify the parallelism strategy. 
For this phase, we can instantiate a generic library provided by a library writer, which 
may be a third party developer, a library provided by the compiler vendor, or a library 
written by the application programmer.  

Assuming that a work sharing library is of interest for this loop, one might instan-
tiate the third phase at library level to look something like: 

with Integer_Addition_Loops; 
with Ada.Parallel.Functional_Reduction.Loops. 
                                         Work_Sharing; 
package Work_Sharing_Integer_Addition_Loops is new 
   Integer_Addition_Loops.Work_Sharing; 

Now that the parallelism package has been fully instantiated, it can be used in an ap-
plication program, to generate the parallelism. 
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with Work_Sharing_Integer_Addition_Loops; 
with Ada.Parallel.Task_Pools.Bounded; 
use Ada.Parallel; 
package WSIA renames  
                 Work_Sharing_Integer_Addition_Loops; 
-- ... 
 declare 
    Sum : Integer := 0; 
 begin 

 for I in 1 .. N  
  with Parallel => True, Worker_Count => 4, 
      Task_Pool => Task_Pools.Bounded.Default_Pool, 
     Parallel_Manager => WSIA.Parallelism_Manager, 
     Accumulator => Sum 

   loop 
       Sum := Sum + I; 
   end loop; 
  -- ... 

Another example is provided in Appendix, illustrating how one might instantiate the 
parallelism generics to solve the parallel fibonacci problem recursively in parallel. 

6 Conclusion and Future Work 

We have shown a powerful model that permits fine grained concurrency to be added 
to Ada and is consistent with the Ada tasking model, which we intend to propose to 
the Ada standardization committee as an extension of Ada.  

Our research indicates that we can not only add a fine-grained concurrency me-
chanism to Ada, as shown in this paper, but this fine grained concurrency can be spe-
cialized to behave correctly in situations where Ada must meet difficult constraints, 
such as in hard real-time systems. These additional capabilities are being refined and 
will be presented in other works (an initial model is provided in [27]). 

The programmer should also have the ability to control execution of parallel tas-
klettes, aborting loop iterations that are no longer necessary (e.g. in a search opera-
tion). This will be further investigated. Other constructs that can be provided with 
parallelism annotations are select statements, which are identified as future work. 
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Appendix - Parallel Recursive Subprogram Example 

In the main part of the paper, an example was provided that illustrated the approach 
for fine grained parallelism control for parallel loops. This appendix provides a simi-
lar example that is intended to show the recursive subprogram case. 

Once again a three state generic instantiation can be applied if the recursion needs 
to generate a result.  Here we consider the recursive Fibonacci example. 
  As with the parallel loop example, the reducing operation is integer addition, there-
fore the first stage instantiation from the loop example can be reused. 

For the second stage instantiation, the recursive subprogram generic needs to be in-
stantiated. In this case, the work type, Integer, is the type of the top level work 
item to be processed, which corresponds to the Value parameter of the Fibonacci 
function. We can then provide the following instantiation for the second phase. 

with Integer_Addition; -- from Section 5 
with Ada.Parallel.Functional_Reduction.Recursion; 
package Integer_Addition_Recursion is new  
     Integer_Addition.Recursion (Work_Type => Integer); 

For the third phase, we will assume that a parallel library writer has provided a work-
seeking library for recursion. As with the parallel loop case, the instantiation is 
straightforward, since there are no formal parameters to the generic. 

with Integer_Addition_Recursion; 
with Ada.Parallel.Functional_Reduction. 
                            Recursion.Work_Seeking; 
package Work_Seeking_Integer_Addition_Recursion is new 
   Integer_Addition_Recursion.Work_Seeking; 

Now that the third phase instantiation exists, the application programmer can rewrite 
the Fibonacci example as follows to obtain a parallel result with fine-grained control 
of the parallelism. 

with Work_Seeking_Integer_Addition_Recursion; 
with Ada.Parallel.Task_Pools.Bounded; 
package WSeIA renames 
               Work_Seeking_Integer_Addition_Recursion; 
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function Fibonacci (Value : Natural) return Natural  
   with Parallel => True, Worker_Count => 4,  
    Parallel_Manager => WSeIA.Parallelism_Manager, 
        Task_Pool => Parallel.Task_Pools.Default_Pool; 
         

As seen, the Parallel_Manager aspect can be provided in the spec (or body) of 
the subprogram, but can be overridden by the caller code. It specifies a manager to be 
used when the subprogram is called with Parallel => True. 

The body of Fibonacci can be written in very much the same style as it would have 
been for the sequential case. In this case, the implementer of the Work-seeking ab-
straction declares an atomic boolean variable [26], Seeking_Work, which is refe-
renced from the users’ code to see if there are idle workers looking for more work. 
Note that an attribute must be provided that permits access to the parallelism manager 
object for the local scope. 

function Fibonacci (Value : Natural) return Natural is 
Sequential_Cutoff : constant Integer := 22; 

begin 
   if Value < 2 then 
      return Value; 
   elsif  Parallel’Manager.Seeking_Work and then 
        Value > Sequential_Cutoff then 
      return 
        Parallel_Fibonacci (Value - 2)  
           with Parallel => True  
     + Parallel_Fibonacci (Value – 1); 
   else 
      return  Fibonacci (Value - 2) + 
         Fibonacci (Value - 1); 
   end if; 
end Fibonacci; 
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Abstract. A variety of complex spacecraft applications, such as au-
tonomous maneuvers based on image recognition, can benefit from the
increased performance of multicore processors. On the other hand the
redundant cores can also be used for fault-tolerance. Spacecraft mis-
sions more and more require a balanced trade-off between power, per-
formance and reliability. Finding an optimal trade-off for each mission
phase leads to new engineering challenges, especially regarding the effi-
cient and safe deployment of software applications to hardware resources.
We propose a model-based approach for the construction of software de-
ployment schemes, and apply it to a spacecraft use case with two differ-
ent mission phases to illustrate the benefits of such model-based software
deployment.

Keywords: avionics, deployment, multicore, model-based engineering.

1 Introduction

After being widely adopted in the server, desktop and hand held markets, multi-
core processors now start to appear in the domain of safety-critical and mission-
critical embedded systems. At the same time an ongoing trend to integrate
functionality on shared platforms becomes apparent from initiatives such as In-
tegrated Modular Avionics (IMA) [26,25] and AUTOSAR [2].

Similar ideas slowly start to emerge in the domain of spacecraft avionics. A
holistic engineering approach to combine the two trends and exploit the full
potential of multicores is required for the successful adoption of such processors.
At the same time there is a significant increase in complexity that threatens
the system reliability, and poses the challenge of managing this complexity to
system architects, system engineers and software developers. In this work we
propose a model-based systems engineering approach with software architecture
deployment at its center.

In Section 2 we present the motivation for the use of multicore processors in
spacecraft avionics and describe our own use case: a multicore based computing
platform for space applications. Section 3 then describes the challenges that
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arise by the use of multicore processors in complex space applications, and why
existing engineering methods are at their limits. In Section 4 we describe our
approach to model-based deployment, and present a first implementation that
we apply to an example mission with two phases in Section 5.

Related Work
Recently the use of multicore processors in safety-critical domains has received
much attention [11,23,12]. Of particular interest for these domains is the
improvement of reliability by using the available parallelism [6,17]. Real-time
scheduling has been an active research domain for decades, and recently several
approaches to dynamic [4] and static [7,3] scheduling of mixed-criticality soft-
ware tasks on multicores have been proposed. In the deployment process however
the hardware usage and runtime scheduling are affected by the allocation and
mapping of tasks [24,9]. Therefore these should be addressed in a unified sys-
tems engineering methodology in order to arrive at an integrated result in which
the key properties are balanced [21,18]. Model-driven systems engineering of-
fers the appropriate mechanisms to address these challenges [10]. Apart from
that, partitioning is indispensable to guarantee the absence of interference be-
tween applications in the deployment of safety-critical systems [27,22]. One way
to achieve this which currently receives much attention is by virtualization of
resources [19,20,13,12].

2 Multicore Processors for Spacecraft Avionics

2.1 Space Mission Requirements

We recognize that the complexity of spacecraft applications in modern space
missions has risen significantly over the last years. The widespread use of high-
resolution sensors leads to the generation of large amounts of data. There is
a clear trend to process these data on board in order to relieve the pressure
on space-to-ground communications. In the imaging domain we see applications
such as hyperspectral imaging, earth observation and synthetic-aperture radar
systems. In communication, antennae arrays and broadband communication can
benefit from advanced encoding algorithms. Another cluster of applications are
solutions for autonomous Entry, Descent and Landing (EDL) or docking maneu-
vers in space. These can be based on advanced imaging processing algorithms.
All these applications need a significant amount of computational power.

State-of-the-art systems often use highly specialized FPGA or DSP solu-
tions. These are costly and limited to a relatively low functional complexity,
and cannot be reconfigured easily once in flight. Such benefits are only offered
by software-defined systems, which can execute complex dissimilar workloads
and offer a flexibility that can be used to balance power, performance and fault
tolerance. While specialized single-core processors are currently used in space-
craft avionics, their performance and energy consumption lags behind that of
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commercially available processors. Especially multicore processors provide an in-
crease in processing power by exploiting the parallelism that is inherent to many
applications, while combining energy-efficient semiconductor technologies, mod-
erate clock rates and advanced power management functions. Such processors
provide a major increase in versatility besides power and performance benefits.
In the following sections we focus on the benefits and challenges of the use of
multicore processors for space applications.

2.2 The MUSE Platform

As an answer to the increasing demand for computing power in space appli-
cations, we developed a satellite payload computer that builds on COTS mul-
ticore technology in the context of the MUSE project [5]. We employed the
Freescale QorIQ P4080 processor, which features eight PowerPC e500 cores op-
erating at 1.5GHz. An additional advantage is the use of power saving silicon-on-
insulator technology, which is less susceptible to single-event upsets that are due
to the background radiation in space applications. Especially when using COTS
components, the high reliability and availability demands for space computing
can only be guaranteed when sufficient redundancy is provided on the system
level.

The MUSE platform consists of two P4080 nodes on separate boards, con-
nected by an additional I/O board that also contains the logic and connectors
to other instruments. Thus a dual redundant symmetric 1-out-of-2 setup with
several high-speed I/O channels is achieved (see Figure 1).

Each processing board furthermore contains DDR3 memory, radiation toler-
ant flash memory, and an FPGA that together with its symmetrical counterpart
controls the worker/monitor configuration of the boards. The two FPGA’s are
connected to the processors over the Enhanced Local Bus (ELB) and implement
watchdog functionality to monitor the status of the processor, as well as a syn-
chronizing voter to generate reliable control outputs. Because the FPGA’s are
radiation tolerant and their logic is triple-mode redundant, the implementation
as a whole is radiation-hardened. All large memory areas such as the DRAM,
L3 and L2 caches are protected by error correction logic. Thus a design with
multiple complementary mechanisms for fault-tolerance is achieved, with the ul-
timate safety net of a node switch where the monitor becomes worker if a fault
in the latter can not be handled locally.

We implemented the software for the mission that was previously discussed
in Section 2.1, namely that of autonomous EDL, which builds on an advanced
image processing algorithm called MoonDetect [5]. Using a pre-loaded map of
the moon’s surface, the landing zone is recognized with help of one or more
high-resolution cameras. The application was implemented on top of a standard
embedded operating system and uses the redundant cores of the multi-core pro-
cessor not only to maximize computing power, but also to increase fault tolerance
by the redundant execution of critical functions.
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Fig. 1. The architecture of the MUSE platform with one I/O board and two redundant
processing nodes

3 Emerging Engineering Challenges

3.1 Dynamic Mission Requirements

The increasing functional requirements that we described in Section 2.1 translate
to novel and more complex resource requirements for space missions. Mission
requirements especially become more dynamic, there are three main drivers for
this.

Firstly, missions become more and more complex and thus include multiple
applications with different criticality levels that each have unique requirements
regarding power, performance and reliability. The engineering process must en-
sure that the tasks of each application are mapped and scheduled so that there
is no unintended interference during simultaneous execution. We will elaborate
on this in Section 3.2.

Secondly, deep-space and planet exploration missions usually consist of dif-
ferent phases. To execute multiple functions with different criticality levels in
each phase of the mission, the deployment of software-based platforms must be
dynamically reconfigured.

Thirdly, support for online software updates is desirable for both maintenance
and configuration changes caused by a revision of the mission targets. This again
requires dynamic reconfiguration, we focus on this subject in Section 3.3.
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3.2 Multi-function Integration within a Mission Phase

The requirements for the spacecraft missions that we previously described have
a complexity that requires an implementation based on multiple applications.
In our example, an image recognition algorithm is executed in parallel with a
camera driver and a control task that monitors the system status. As these
applications have different requirements, we are dealing with mixed criticality
software for which the use of time and space partitioning is indispensable, as
described in [29]. This publication also mentions a reduced integration effort,
hardware savings, fault containment and increased security between applications
as additional advantages of a partitioning approach. Partitioning in time assures
that the execution of a software application in one partition does not affect
timely behaviour of a software application in another partition.

Partitioning in space on the other hand protects the data and private devices
of partitions by exclusively allocating memory and other hardware resources
such as busses and I/O interfaces. Thus partitioning isolates applications from
each other. This functionality is usually provided by the operating system [27].
Correct partitioning can however not be achieved with mere isolation, as safety
requirements such as redundancy also impose constraints on the deployment. A
deployment only based on safety requirements however would lead to inefficient
resource usage, because simultaneous access to shared resources will be blocked
by the isolation mechanism. Therefore we propose a method for optimizing the
deployment according to the changing resource requirements.

3.3 Dynamic Reconfiguration between Multiple Mission Phases

A spacecraft mission comprises multiple phases which are executed over time
during the mission. Each phase has different requirements so that the resource
utilization trade-off between power, performance and reliability may need to be
re-balanced at run-time. Dynamic reconfiguration allows to exploit the flexibility
of multicore processors to switch from one phase to another. These transitions re-
quire a change and perhaps transformation of partitions, which is not accounted
for in classical time and space partitioning. Thus an extension of these concepts
is required in order to deal with data integrity and security, and to minimize and
control the disruption of service. The phase-based (“mode-based”) partitioning
that we proposed in [16] is a first step in this direction. A reconfiguration mech-
anism furthermore simplifies maintenance and allows online software updates.

We conclude that the versatility of multicore processors can be exploited with
existing methods such as partitioning, but enhancements are necessary to deal
with the extended spatial dimension and to better support varying requirements
of multiple mission phases as well as online updates.

4 Model-Based Software Deployment

Software deployment refers to the assignment of hardware resources, such as
CPU time, memory, and I/O access to software tasks. This assignment process
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results in a deployment scheme. We distinguish between spatial and temporal
deployment. The former leads to the mapping of a task to a set of hardware
resources, such as a processor or electronic control unit. The latter concerns the
execution schedule of each hardware resource in time. A deployment is correct if
the proper type and amount of resources is assigned to all tasks at the right time.
The operating system must ensure that the temporal deployment is properly
executed at runtime.

There are two prerequisites for successful deployment: software must be dis-
tributable and isolatable. The trend towards function-oriented development en-
sures the dependencies between software and hardware are dissolving. This is
enabled by standardized interfaces such as described in the ARINC 653 Apex
[1] and integrated modular avionics (IMA) [26,25] for the avionics domain, and
in AUTOSAR [2] for the automotive domain. The ability to distribute tasks
on its own however is not sufficient for building cost-effective mission-critical
embedded systems, this capability must be complemented with time and space
isolation. There are commercially available hypervisors and tools that provide
such isolation on modern multicore architectures.

The correctness of a software deployment scheme has a direct impact on the
extra-functional requirements of embedded software, such as real-time behaviour
and reliability. Furthermore the deployment scheme determines the amount of
resources that are required, and thus its efficiency has a significant influence on
the hardware costs for a system. Because the trend towards integrating software
from different vendors on one electronic control unit increases, a deployment
scheme is the central asset and synchronization point for different development
teams during the system integration phase. Therefore we address these issues by
exploring an automated deployment approach based on models.

4.1 Engineering Methodology

Traditional engineering methodologies for software-based systems require a high
number of development iterations and prototypes, and the correctness of the
system is often primarily assured by observing the system behaviour after it has
been built [21]. This becomes more and more difficult as the complexity of the
system and software architecture increases, and analytical approaches to assure
correct timing behaviour do not suffice for modern multicore processors [28].

In our research we explore an alternative engineering methodology, which is
rooted in the “Correctness by Construction” (CbyC) principle. CbyC is based on
the observation that the correctness of a complex system should be argued “in
terms of the manner in which it had been produced, rather than just observing
operational behaviour” [8,14].

We applied this approach to the construction of software deployment schemes.
In order to assure correctness, we use models to capture deployment requirements
as well as architectural properties and capabilities in a clear and unambiguous
way. The explicit distinction between problem statement, solution construction
strategy and solution proves to be beneficial to achieve optimized, re-usable
architectures.
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Our approach for the construction of a deployment scheme is depicted in
Fig. 2a. Due to the complexity of the solution space, the spatial and temporal de-
ployment are addressed consecutively. Therefore our methodology comprises two
steps that distinctly focus on the spatial (“mapping”) and temporal deployment
(“scheduling”). Within each step, different types of deployment requirements
and engineering constraints are addressed. Several iterations between these two
steps may be required before valid a deployment scheme is obtained.

However, in order to account for the knowledge of experts, we distinguish
between valid and desired solutions (see Fig. 2b). Valid solutions are all those
that are correct with regard to the specified requirements. This set might be
very large. The desired solutions on the other hand are valid, but also optimal
with respect to certain optimization criteria provided by a domain expert. Thus
we achieve solutions that are not only formally correct, but also incorporate
valuable knowledge and experiences from those experts.

Software 
Resource 

Requirements

Hardware 
Resource Supply

Safety 
Requirements

Construction of a spatial deployment
„mapping“

Construction of a temporal deployment
„schedule“

Deployment scheme 

(a) Engineering Methodology

All solutions

Valid solutions

Desired 
solutions

(b) Valid and Desired Solutions

Fig. 2. Engineering methodology and types of solutions

This methodology was implemented in a prototype tool suite (see Section 5). It
allows us to automatically construct a correct and optimized deployment scheme
for our use-case within minutes.

4.2 Construction of Mappings

Where spatial deployment could be performed manually for a handful of single-
core processors, it is not viable for complex systems with hundreds of cores spread
over dozens of processors. This is especially true when we consider the need for
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a safe dynamic reconfiguration to optimize the resource utilization. Besides, the
mapping of safety-critical systems does not only depend on the schedulability,
but also on the satisfaction of other safety-related criteria, such as redundancy,
dissimilarity and independence.

Applications that belong to two redundant partitions for instance are usually
not allowed to be mapped on the same core or processor, because that would
violate safety requirements. Some safety critical applications contain partitions
that feature a dissimilar implementation of the same functionality. Depending
on the criticality level, these partitions may need to be mapped onto dissimilar
processors and configured to use dissimilar communication channels to account
for undetected design errors.

Our prototype tool generates all valid mappings of software components onto
processor cores. It matches the resources offered by the underlying hardware
architectures to the resource requirements of the applications.

Currently the following matching criteria are implemented:

– type of processors, cores and I/O interfaces;
– capacity of processors, cores and I/O interfaces;
– safety relations between applications (redundancy or dissimilarity);
– communication intensity between applications, in order to express proximity.

The first three criteria are used to specify valid spatial deployments, where the
correct type, amount and the independence of resources for critical software
components has to be guaranteed.

Metrics and optimization strategies for a desired spatial deployment on the
other hand are based on criteria such as minimizing average communication
distances and equal load distribution.

Note that our tool only generates solutions with significant difference. De-
ployment schemes which only differ in the location of identical tasks of the same
parallel application are treated as being equal. This reduces the complexity of
the solution space for applications with parallel tasks.

4.3 Construction of Schedules

Our model-based approach for the construction of static operating system sched-
ules for multicores is based on the following assumptions. To achieve predictable
and deterministic real-time behaviour for a system that relies only on periodical
tasks with known periods, the following information (or at least an estimation)
must be available at design time:

1. timing characteristics such as the worst case execution time (WCET), period
and jitter, of all tasks within an application;

2. dependencies between tasks;
3. the access patterns of external resources of all applications.

A key aspect of static scheduling is that all conflicts that may appear at run-time
and lead to unpredictable timing are resolved at design time. Our approach aims
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to construct and optimize the schedule beforehand to avoid cumbersome timing
analysis afterwards.

For this we developed a prototype scheduling tool [15]. It automatically gener-
ates a valid static schedule that satisfies the timing characteristics of a given set
of applications on a given hardware architecture. As the underlying problem is
NP-hard, there are many solutions and the user can adjust the generated sched-
ules for specific needs and purposes. Our scheduler ensures that no constraints
are violated during the adjustment process.

Based on constraint-solving strategies specifically tuned for the problem, our
scheduler constructs a schedule that satisfies the constraints defined in the input
model. This model and the problem specifications have been developed to suit
the needs of the safety-critical aerospace domain. All execution times for software
tasks should be based on a worst-case analysis.

The resulting schedule is input for a time-triggered OS dispatcher that exe-
cutes the tasks at run-time. External resources can be separately modelled and
incorporated in the schedule construction process. After being approved by the
certification authority, the schedule is used in the final configuration of the op-
erating system.

5 Use-Case: Spacecraft Software Deployment
on the MUSE Platform

In this section we describe our use-case, a real mission consisting of two phases
to show our approach to model-based software deployment on the fault-tolerant
MUSE hardware platform.

5.1 Mission Description

We implemented one of the previously discussed missions, namely that of au-
tonomous EDL based on images provided by a Camera Driver (CamDr). An
optimal performance can be achieved if MoonDetect (MD), our image recogni-
tion application, is executed on eight cores in parallel, as depicted on the left
hand side of Figure 3. Here, one instance of MoonDetect is executed, its result
are saved with triple redundancy and checked for plausibility by independent
tasks (Plausibility Check, PC). The ELB driver (ELBDr) collects these results
and transfers them shifted in time after which they are voted in the FPGA, our
radiation hardened component.

Furthermore we consider the supervisor system application, which consists of
two redundant tasks in a worker/monitor configuration (SVWorker/SVmonitor).
This application has a higher criticality than MoonDetect, and thus we are
dealing with mixed-criticality as discussed in Section 3.2.

The main goal in this phase is to recognize the landing area from a great
distance, for which high performance is necessary because of the large area that
must be covered. At a resolution of 800x600 pixels we achieved a frame rate of
23 fps when MoonDetect was executed on eight cores.
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In the second phase the spacecraft descends for landing, and reliability be-
comes more important because a fault might lead to loss of the spacecraft. The
frame rate can however be reduced because the target area is already recognized
and the algorithm is only used for course alterations that are performed every
few seconds or so. Thus in this phase an architecture such as depicted on the
right hand side of Figure 3 is more suitable. Here two cameras are used, there
are two (possibly dissimilar) instances of MoonDetect on four cores each, and
the data path of each instance still has triple-mode redundancy. We expect that
in this case the overhead will reduce the frame rate to less than half than that of
the eight-core solution, and indeed we measured 11 fps at 800x600 in the actual
setup.
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Fig. 3. Two mission phases: on the left an eight-core solution with triple redundant
datapath is shown, the solution on the right features two redundant instances of the
algorithm that use four cores each

Our example mission consists of two phases. Both contain mission-critical
applications and the phases must be dynamically switched over time. The mission
thus contains the challenges we initially described in Section 3. In the remainder
of this section we will describe our approach to automatically deploy these two
phases on the MUSE hardware. As the software on both processors is identical in
this mission, we will show the workflow for one processor only. Our tools however
can handle multiple (distributed) processors with dissimilar workloads as well.

5.2 Spatial Deployment - “Mapping”

As described in Section 4.2, the generation of correct mappings requires mod-
elling the resources provided by the hardware architecture and the demands of
software components. In our use-case, we employ an eight core processor (see
Section 2.2).
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Although all cores on the P4080 are physically connected to all I/O inter-
faces, we imposed additional access constraints on I/O interfaces for reliability
purposes. Therefore Ethernet connections are allowed on core 1 and 2 only, and
ELB connections only on core 3. The resulting hardware model is contained in
Listing 1.1. The computational capacity and I/O access capabilities are specified
for each core within a processor.

1 Hardware {
2 Processor QorIQ P4080 {
3 Core C1 {
4 Capacity = 100;
5 Provides IO access = Ethernet ;
6 } ;
7

8 [ . . . ]
9

10 Core C3 {
11 Capacity = 100;
12 Provides IO access = EnhancedLocalBus ;
13 } ;
14

15 [ . . . ]
16 }
17 }

Listing 1.1. Modelling the QorIQ P4080 hardware architecture

The software architecture is modelled similarly (see Listing 1.2). Applications
are modelled per task, thus each “Application” is mapped onto a single core. An
“Application” requires a certain amount of computational capacity, as well as
access to specific I/O interfaces.

1 Software {
2 Application CamDr {
3 Core Utilization = 2;
4 Requires IO access = Ethernet ;
5 } ;
6

7 Application ELBDr {
8 Core Utilization = 2;
9 Requires IO access = EnhancedLocalBus ;

10 } ;
11

12 Application MD a {
13 Core Utilization = 90 ;
14 } ;
15

16 Application MD b {
17 Core Utilization = 90 ;
18 } ;
19

20 [ . . . ]
21

22 Application PC a {
23 Core Utilization = 1;
24 } ;
25

26 [ . . . ]
27 }

Listing 1.2. Modelling the software architecture
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In addition to the matching of resource supply and demand, the correctness
of a mapping depends on reliability criteria. Using independent resources is a
significant prerequisite for robustness and reliability.

In our use-case we limit our focus to independence on the core level, which
means that two redundant applications are not allowed to be deployed on the
same core. These redundancy requirements are specified in Listing 1.3.

1 Relations {
2 MD a, MD b, MD c , MD d, MD e , MD f , MD g, MD h redundant ;
3 SVWorker , SVMonitor , CamDr, ELBDr redundant ;
4 PC a , PC b , PC c redundant ;
5 }

Listing 1.3. Modelling reliability relations for spatial deployment (phase 1)

With this modelling approach we generated mappings for both phases. The
results for each phase are shown in Table 1. The generation process took about
1 second on a standard laptop.

Table 1. Result of the spatial deployment for phase 1 (upper half) and 2 (lower half)

Phase Cores
C1 C2 C3 C4 C5 C6 C7 C8

1
MD a CamDr ELBDr MD d MD e MD f MD g MD h
PC a MD b MD c SVMonitor
SVworker PC b PC c

2
MD 1a MD 1b MD 1c MD 1d MD 2a MD 2b MD 2c MD 2d
PC1a PC1b PC1c SVMonitor SVWorker PC2a PC2b PC2c
CamDr1 CamDr2 ELBDr

5.3 Temporal Deployment - “Static Scheduling”

In order to initiate the scheduling process, several input parameters are required.
Global parameters include the hyperperiod duration and switching time between
applications (OS overhead), which we fixed at 0.5 milliseconds. Then the pro-
cessor is modelled as follows:

1 def processor
2 id ( ’ 1 ’ ) ,
3 name( ’ P4080 ’ ) ,
4 cores ( 8 ) .

Listing 1.4. The processor model

For the modelling of applications timing information is needed, the execution
time of MoonDetect can be deduced from the frame rate. Although we mea-
sured that the camera and ELB drivers, the supervisor and the plausibility checks
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have execution times in the order of microseconds, we will model them all with
1 millisecond to be able to depict them on the same scale. An application model
looks as follows:

1 def application
2 id (CamDr) ,
3 processor ( ’ 1 ’ ) ,
4 cores possible ( 3 ) ,
5 period ( 500 ) ,
6 duration ( 1 0 ) .

Listing 1.5. The model of the CamDriver application

We see that this process is only allowed to be executed on core C3, which is
the result of the mapping process. Finally the dependencies that are needed for
the scheduling must be specified. They are implied by Figure 3. Such dependen-
cies may be specified in the following way.

1 def after
2 id1 (CamDr) ,
3 id2 ( moondetect ) ,
4 distance ( 0 , 1 0 ) .

Listing 1.6. Specifying a dependency

Figure 4 shows the schedules of one execution period of each phase. The first
phase is shown in the upper eight horizontal bars, time is on the horizontal axis.
We see that MoonDetect, as expected, requires the bulk of the processing power.
Shorter tasks are executed in parallel to each other whenever possible.

In the second phase depicted in the lower eight bars we see that two instances
of MoonDetect are executed in parallel and subsequently have a longer execution
time, and that there are six instances of the plausibility check task instead of
three. Because of the parallel instances of MoonDetect the frame rate deterio-
rates. In the first phase it is 20 fps (or a hyperperiod of 50 ms), in the second
we achieve 10.4 fps (hyperperiod is 96 ms).

Fig. 4. The schedule of one period of phase 1 (upper eight bars) and 2 (lower eight bars).
The horizontal axis represents time, on the bottom the task identifiers are indexed.
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Between the two phases dynamic reconfiguration is necessary as both the
mapping and scheduling change because tasks are started and migrated. Startup
and migration times in our system are negligible with these execution times, and
thus a phase switch can take place without noticeable disruption of service. A
switch could however also be modeled as separate phase in which the startup
and migration times are precisely indicated.

While our example is somewhat simplified and the final deployment scheme
could have been produced manually, the benefit of using a model-based approach
becomes especially apparent when more tasks and more resources have to be
incorporated. With the advent of manycore processors comes the likelihood that
the system complexity will significantly rise in the near future. At this point,
manual processing of problems with such orders of magnitudes is costly, error
prone and inefficient. Our automated approach completes in mere seconds, its
result is correct by construction and a new iteration can be started with one
click. Furthermore, optimization criteria can be easily modified so that existing
models can be efficiently re-used.

6 Conclusions

In this paper we discussed the advantages of using multicore processors in space-
craft avionics, and recognized that many missions can benefit from the increased
computing power. We introduced our MUSE hardware platform that comprises
two eight-core processors and focused on the engineering challenges that come
with increasingly diverse mission requirements. Multicore processors seem a
future-proof platform for space applications as they offer the flexibility to sup-
port these requirements. The push towards multi-function integration leads to
new challenges that are created by applications with different criticality levels.

Safe integration requires the operating system to offer time and space par-
titioning extended to support multicores, in concert with correct deployment.
Comprehensive mission requirements result in multiple mission phases and cor-
responding mode-switches that must be accounted for. Such dynamic reconfigu-
ration furthermore allows online software updates.

Exploiting the potential of multicores in spacecraft avionics requires an engi-
neering method that efficiently builds optimized system configurations for each
phase of a mission. The challenge to profit from the available flexibility be-
comes apparent in the software deployment. A correct deployment of software
components relies on spatial and temporal resource assignment. We presented
a model-based engineering method that automates the construction of deploy-
ments. It facilitates the efficient design of complex software architectures and
has a result that is “Correct by Construction”.

Finally we presented an example mission consisting of two phases which con-
tain mixed-criticality applications. We deployed these phases onto the MUSE
hardware platform and showed the advantages of our engineering approach,
namely that, once a phase is modelled, a correct deployment scheme can be
generated almost instantly. This allows quick feedback and easy balancing of



Model-Based Deployment of Spacecraft Applications on Multicore Processors 49

parameters in the development process. In concert with the operating system,
isolated execution of mission-critical applications along with non-critical appli-
cations and can be handled. Multiple deployment schemes allow multi-phase
missions provided that mode-switches are well-defined.
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Abstract. With software’s increasing role in safety-critical and secu-
rity sensitive infrastructure it is of paramount importance to educate
the next generation of software engineers in the use of high integrity
development methods. In this paper we discuss our experience training
undergraduate students in the use of SPARK toward the construction of
a mission-critical embedded system. In particular the students designed
and implemented the control program for a CubeSat nano-satellite that
will orbit the Earth as the first step toward the ultimate goal of building
a prototype CubeSat that will go to the Moon. Our work shows that
inexperienced undergraduates can learn to use SPARK to produce more
robust software than might otherwise be the case, even in the environ-
ment of a volatile student project.

Keywords: SPARK, student project, CubeSat.

1 Introduction

We received a 2009 NASA Consortium Development Grant for work on pro-
totyping and analyzing technologies for a self propelled CubeSat to the Moon
that will orbit or land on it. No CubeSat has yet left low earth orbit. The Con-
sortium Development Grant is to have several institutions work together on a
project with cooperation with one or more NASA centers. Carl Brandon, as the
Scientific Principal Investigator, is leading the project from Vermont Technical
College (VTC), with groups at the University of Vermont, Norwich University,
and students from St. Michaels College. The construction of the CubeSat and the
production of the control software and translation of the navigation software are
begin done at Vermont Technical College at both our Randolph Center (main)
and Williston campuses. This software work is being done mostly by students
under the direction of Peter Chapin. The star tracker camera analysis of near
body images is being done at Norwich University by students under the direction
of Danner Friend and Jacques Beneat. The analysis of low energy transfer paths
to the Moon and radiation exposure analysis is being done at the University of
Vermont with students under the direction of Jun Yu.

The eventual goal of the project is to build and get launched a triple CubeSat
which will be self propelled to the Moon. Two paths are being investigated. Both
will start with a piggy-back ride on a geosynchronous communications satellite
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launch. One option will be for a double CubeSat “booster” with four mono-
propellant (hydroxyl ammonium nitrate – methanol (HAN)) thrusters carrying
a single CubeSat lander (also with four mono-propellant thrusters) from the
apogee of the geosynchronous transfer ellipse on a direct Hohmann transfer orbit
to the Moon, à la the Apollo missions. The booster would then insert into a Lunar
orbit with the lander after a trip of about a week. The lander would then separate
from the booster and use its own thrusters for a descent and soft landing on the
Moon.

The second option, and more likely due to the hazard of flammable chemical
propellants on an expensive communication satellite launch, would be for a xenon
ion drive. It would contain 0.5–0.75 kg of xenon in a carbon fiber tank at 200–
300 atmospheres. This triple CubeSat would also get a ride to a geosynchronous
transfer ellipse, but would stay in the ellipse with a burn of the xenon ion engine
near perigee during each orbit of the Earth. This would gradually increase the
size of the ellipse over a period of about 10 months when the apogee would reach
the Lagrange point, L1, about three quarters of the way to the Moon. The ellipse
would then be “flipped” to an orbit about the Moon, and the xenon ion drive
would burn at perilune during each orbit over a period of about 6 months until
the final, relatively low orbit is obtained.

We were selected by NASA for a test flight as part of the ELaNa IV (Edu-
cational Launch of Nano-satellites) mission. We will be testing the navigation
and other systems that would be used on a Lunar mission. The test spacecraft,
a single CubeSat (10 cm x 10 cm x 10 cm, 1.33 kg) will be launched in October,
2013, into a 500km orbit, as a secondary payload on the U. S. Air Force ORS-3
(Office of Responsive Space) mission on a Minotaur 1 [10] launch vehicle from
Wallops Island, Virginia. The navigation portion will use the NASA Goddard
Space Flight Center developed GEONS (Goddard Enhanced Onboard Naviga-
tion System) software package. We have started to rewrite that C program in
SPARK, which would be completed for the Lunar mission. If we are successful
in obtaining additional funding, the Lunar flight would follow the test flight by
about six years.

The control program for the ELaNa IV CubeSat is being written in SPARK
for greatly increased reliability over the C language software used in almost all
CubeSats to date. Most CubeSat failures are believed to be software related.
The success of the fairly complicated software on the ELaNa CubeSat will give
us confidence for the much more complicated and expensive Lunar mission.

2 System Overview

The CubeSat system has several components that are controlled by software,
either running on their own hardware or by the overall control software running
on the main MSP430 processor. There are components of the control program
described in Section 3.3 that interact with each of the hardware components of
the CubeSat. The CubeSat requires a power system consisting of photovoltaic
cells on all six sides of the CubeSat and the Electrical Power System (EPS)
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which controls the charging of the batteries from the photovoltaic cells, gen-
erates the required system voltages, and protects the batteries from over and
under voltage. The motherboard mounts the Pluggable Processor Module with
the CPU. The radio board contains a receiver and transmitter for satellite com-
munications. There are deployable antennas for transmitter and receiver. The
Position and Time Board (PTB) mounts the GPS board, whose CPU we use
to run the GEONS navigation software and there is a patch antenna for the
GPS. Finally, there is the Inertial Measurement Unit (IMU) and camera board
which mounts them and the hysteresis rods for magnetic damping. The CubeSat
Kit structure, which mounts everything also has magnets for passive magnetic
stabilization along the Earth’s magnetic field lines. Figure 1 shows a photograph
of our completed CubeSat.

Fig. 1. Photograph of our CubeSat

2.1 Structure, Motherboard and CPU

The CubeSat structure is an aluminum frame made by CubeSat Kit [6]. It
contains their Motherboard (MB) and Pluggable Processor Module (PPM).
Our PPM contains a Texas Instruments MSP430F2618 16-bit micro-controller
(MCU) with 116KB program memory, 8KB on-chip SRAM, 2 USCI, 8-channel
12-bit ADC, 2-channel 12-bit DAC, 16-bit Timer, 3-channel DMA and on-chip
comparator. The motherboard also contains a 2GB SD card for storage of GPS,
IMU, GEONS and camera data prior to transmission to our ground station.
In each corner of the structure, we are epoxying Alnico V magnets for passive
magnetic stabilization of the CubeSat which will align itself with the earth’s
magnetic field.

2.2 GPS and Position and Time Board

The primary purpose of testing the navigation system will make use of a Novatel
OEMV-1 GPS board, previously used on the University of Michigan RAX triple
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CubeSats[12], which has had the CoCom speed and altitude limits removed so it
can be used in orbit. We also have the Novatel API activated, which allows us to
run software on the GPS board’s ARM processor. It is mounted on a University
of Michigan designed RAX Position and Time Board (PTB) [13] which allows
GPS board access through an SPI bus and the real time clock through an I2C
bus. The board also supplies a variety of telemetry items about the GPS power,
temperature, etc., over the I2C bus. The PTB access of the GPS will allow
communication with the GEONS software running on the GPS ARM CPU. The
GPS receiver gets the GPS satellite signals via an Antcom 1.5G15A3F-XT-1
GPS patch antenna [1] with a built in 33 dB gain low noise amplifier (LNA).

2.3 Radio

Communication with the CubeSat will be done from our ground station to the
Astrodev Helium-100 transceiver [7] on the CubeSat. This radio has a 2m band
receiver and 70 cm band transmitter with a power of 2.8W. We have frequen-
cies assigned by the International Amateur Radio Union (IARU) which does
frequency coordination for non governmental satellites. These frequencies are
145.960MHz for our uplink, and 437.305MHz for our downlink. We will send
commands to the satellite via the uplink, and receive data (images, GPS output,
inertial measurement unit (IMU) output, system state telemetry and GEONS
output) via the downlink. We will have a ground station with 2m circularly
polarized crossed Yagi and 70 cm circularly polarized crossed Yagi antennas
mounted on altitude and azimuth rotors on top of a 50 foot tower. Our ground
station radio is an Icom IC-910H satellite radio with 2m, 70 cm and 25 cm
transceivers controlled by SatPC32 software [14]. The radio will use a proto-
col described below that will ensure non corrupted data. The data will have first
been stored on the on-board SD card.

2.4 Antennas

Our CubeSat will have deployable antennas for both the 2m and 70 cm bands.
The ISIS AntS antenna system [8] has dual microprocessors and can supply
telemetry data as to its state, and receive commands to first arm the antenna,
and then to deploy the antennas. The four spring elements are coiled up behind
spring hinged doors, held closed by nylon thread which passes over surface mount
resistors internally. When the deploy command is received over the I2C interface,
the resistors are heated up to melt the thread and release all four antenna ele-
ments. The elements on opposite sides of the CubeSat make up a dipole antenna,
and the two antennas are perpendicular to each other. The antenna module is
mounted on the bottom of the satellite, just outside the internal motherboard.

2.5 Electrical Power System

Electrical Power for the CubeSat is supplied by high efficiency photo-voltaic
cells (28.3% efficient) made by Spectrolab [16]. These 1W cells are arranged
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with two cells on three sides and the bottom of the CubeSat, and one cell on the
top, leaving room for the GPS patch antenna and an aperture for our camera,
and one cell on one of the sides leaving room for a charging port, USB port
and remove before flight pin. Power from the cells goes to the Clyde Space
1U Electrical Power system board [4]. This board controls the charging of the
attached 10Wh 8.2V lithium polymer battery. The board also has regulated
voltage outputs of 3.3V and 5.0V as well as the unregulated battery voltage
(used in the power amplifier of the radio transmitter). It has protection circuitry
for the battery and provides telemetry data as to battery voltage, current and
temperature over I2C. It also controls a battery heater to maintain the battery
temperature above 0◦ C.

2.6 Camera and Inertial Measurement Unit Board

This board has various capabilities not contained on the other commercial boards
above. The second part of the magnetic stabilization consists of two HyMu 80
hysteresis rods, perpendicular to each other on this board and the corner Alnico
magnets on the main structure. There is a Microstrain 3DM-GX3-25 miniature
Attitude Heading Reference System (IMU) [9], utilizing MEMS sensor technol-
ogy. It combines a triaxial accelerometer, triaxial gyro, triaxial magnetometer,
temperature sensors, and an on-board processor running a sophisticated sensor
fusion algorithm to provide static and dynamic orientation, and inertial mea-
surements. The C329 color VGA camera module [3] with an f6.0mm F1.6 lens
which performs JPEG compression and communicates via an SPI interface. The
images of stars and near bodies (sun, earth and moon) will be downloaded for
navigation analysis by the GEONS software.

3 Project Description

In this section we describe the organization of the project including the tool
chain we used, the system architecture, and our approach to testing.

3.1 SPARK

SPARK is an annotated sub-language of Ada designed for the development of
high integrity software [17]. It has been used successfully in industry to construct
mission-critical systems [18].

SPARK is a sub-language of Ada in the sense that it omits numerous Ada
features that are not amenable to static analysis. The major omitted features
include exception handling, access types, dynamic memory allocation, dynamic
dispatch, and recursion. SPARK also restricts Ada in numerous additional ways
to ensure that programs have fully specified, unambiguous semantics.

SPARK extends Ada with annotations embedded in comments that enrich in-
terfaces with declarations of information flow and with pre- and post-conditions.
The main SPARK tool, the Examiner, uses the annotations, together with the
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code itself, to statically check that no uninitialized data is used and that all
results computed by the program are consumed in some way. Furthermore the
Examiner generates verification conditions stating conjectures about the runtime
checks and the pre- and post-conditions used in the program. These verification
conditions are discharged by an automatic theorem prover, the Simplifier, some-
times with human assistance. This provides static assurance that in all cases no
runtime checks will fail and that pre- and post-conditions will be honored.

In our project SPARK was used by undergraduate student workers. Although
undergraduate use of SPARK has been documented previously [20], this project
differs from that earlier work in that here the students are building a “real life”
system that will actually fly in space and not just a carefully managed class
project.

Our policy was to keep the code submitted to our version control repository
examinable at all times with full information flow analysis enabled. Exceptions
to this policy were made so that incomplete stubs could be committed in order
to facilitate testing. Proofs of freedom from runtime errors were deferred until a
particular package was deemed to be stable enough to justify the effort involved
in discharging all verification conditions associated with that package.

3.2 Tool Chain

The tool chain we used was largely the same as described in [19]. For convenience
we briefly summarize the tool chain in Figure 2.

Ada source files were first analyzed using SPARK and then compiled to stan-
dard C with an Ada to C translator [15]. The C was then compiled, along with
hand written low level C modules, using a commercial C compiler for our target
platform [5]. This approach allowed us to develop SPARK programs for targets
on which Ada is not otherwise well supported.

One important disadvantage of our approach is that the underlying C com-
piler is now a source of potential errors in our system. Although compilers are
generally robust, silent mis-compilation of correct source code is certainly possi-
ble. In our system this concern is particularly acute since the Ada to C translator
relies on a human generated configuration file describing the characteristics of
the underlying C compiler.

For example, the underlying C compiler for our MSP430 target uses 16 bit
integers. We made this known to the Ada to C translator by way of its configu-
ration file so that the Ada type Integer was also taken to be 16 bits. In addition,
the SPARK configuration file was used to convey this information to the SPARK
tools. A mistake in either level of configuration could result in an undetected
error reaching the object code.

We dealt with this problem in part by being cautious; the configuration files
are small and amenable to careful review. We also wrote several small programs
that exercised some of the issues covered by the configuration files. By manu-
ally examining the assembly language produced by the underlying C compiler we
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Ada to C

C Main C to Object C Low Level
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Fig. 2. Tool Chain

were able to verify that our configuration was appropriate, at least in those cases.
We hoped that any remaining configuration errors would manifest themselves
during testing.

Because we used SPARK to prove freedom from runtime errors we compiled
our code base with runtime checks disabled. This resulted in higher execution
performance in terms of both space and time.

We also made no use of the Ada runtime system. This was feasible because
SPARK prohibits many Ada constructs requiring runtime support [19] and be-
cause we eliminated unnecessary runtime checks. We also imposed several ad-
ditional, minor restrictions on our programming style to avoid unnecessary use
of the runtime system. For example, on the MSP430 target the mod operator
entailed a call to a runtime support function to properly handle negative ar-
guments. Since we only used mod on positive values, we avoided the runtime
system reference by simply using the rem operator instead. The rem operator
was directly translated into C’s % operator.

Removing the runtime system reduced the memory footprint of our software,
which was important in our constrained environment. It also reduced the size of
the trusted code base executing on the spacecraft, compensating somewhat for
the added risk incurred by injecting an additional compiler into the tool chain.

Since our system consists of two largely independent programs, one running
on an MSP430 micro-controller and the other on an ARM architecture processor,
we used two independent instances of our tool chain, one for each target.
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3.3 Design

No formal specification method nor design methodology was used in the devel-
opment of our software. Instead the design was done by students, with guidance
from faculty, in an informal manner.

The development of the software followed a roughly agile approach with an
emphasis on pair-programming and frequent testing. Although we did not use
a high integrity development process, the approach used was familiar to the
students from their classwork. SPARK augmented the development process in a
useful way as describe further in Section 3.4.

Our focus since the summer of 2011 has been on preparing the software for
a low Earth orbiting test flight where we intend to exercise several critical sub-
systems. The software was divided into a main control program responsible for
coordinating the general activity of the spacecraft and a navigation program re-
sponsible for interacting with the NASA provided GEONS navigation software.
The control program executes on a Texas Instruments MSP430F2618 micro-
controller [11] mounted on the main processor board of the CubeSat Kit [6].
The navigation program executes on an ARM architecture Intel XScale auxil-
iary processor on-board the Novatel OEMV-1 GPS receiver.

The control program uses several interfacing technologies to communicate
with the various subsystems. Table 1 lists the subsystems used in the test flight
and the interfacing method used to interact with that subsystem.

Table 1. Subsystems Used in Test Flight

Subsystem Interfacing

Antenna I2C

Radio RS-232

Camera SPI

Power Supply I2C

Inertial Measurement Unit RS-232

GPS & GEONS SPI

Each interfacing technology has an associated package that allows SPARK
programs to access that interface. Because the Ada compiler we used was un-
aware of certain low level details of our platform, such as how interrupts are
handled, the lowest levels of the interface access code were written in platform
specific C compiled directly by our underlying C compiler. However, every at-
tempt was made to to keep the C components of the system trivial so as much
application logic as possible could be exposed to SPARK’s analysis.

Each subsystem includes a driver package that exposes the basic functionality
of that subsystem. These packages interact with the subsystem’s hardware via
the appropriate interfacing package and were entirely written in SPARK. The
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driver packages are intended to be general and not tied to any specific applica-
tion. We hope to reuse the driver packages in later flights.

On top of each driver package is a “handler” package that encodes the flight-
specific logic of how that subsystem is to be used. For example the antenna
handler concerns itself with deploying the antenna at a suitable time after the
satellite itself is deployed. To do this it calls subprograms in the antenna driver
package to query the deployment status and to start the deployment process.
Those subprograms in turn use subprograms in the I2C interfacing package to
communicate with the antenna hardware.

The main program consists of a polling executive loop that periodically exe-
cutes a “work unit” procedure in each handler package. This gives each subsys-
tem an unpreemptable slice of processor time in which it can do its work. After
each subsystem is polled in this way the main loop sleeps until the next cycle,
putting the processor into a low power mode to conserve energy.

This design makes no use of tasks and thus does not require RavenSPARK.
This reduced the runtime support needed, simplified the programming, and made
the software more approachable for first time undergraduate SPARK program-
mers. However, our design does create potentially long delays between when a
subsystem relinquishes control and then later regains control. We felt this was
acceptable because our system does not have any critical timing requirements. If
a subsystem wishes to perform a time sensitive operation, such as reading bulk
data from the inertial measurement unit, it can simply retain control until the
operation is complete.

Although it is important that the work unit procedures do not execute in an
unbounded way, there is no concern of scheduling overruns since there is no par-
ticular schedule that must be kept. All the computations done by the work unit
procedures are short, and potentially blocking operations are all programmed to
time out after a reasonable delay.

In addition to the hardware drivers and their handlers, our system includes
several supporting packages. The components of the system communicate using
a message passing discipline enabled by a message queue package. Subsystems
can thus send commands to each other as necessary.

Figure 3 summarizes the information flow in the system. Commands arrive
from the ground station via the radio or are generated in the scheduler. These
commands are processed by their respective subsystems when each subsystem
is energized by the main loop. In some cases, data produced by a subsystem is
saved to storage as a file on the SD card where it is later transferred to Earth.

Commands from the ground station are filtered and potentially handled by a
Command Handler package. This package is also responsible for handling data
file transfers from the satellite to the ground station. Commands intended for
hardware subsystems are forwarded to the message queue for distribution.

Finally a scheduler, implemented as part of the message queue package, gen-
erates commands periodically to allow routine operations to be performed even
in the common case when the satellite is out of communication with its ground
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Fig. 3. Control Program Architecture

station. This design centralizes the control logic of the program to the scheduler
with potential overrides from the ground station when it is available.

3.4 Testing

In addition to SPARK information flow analysis and proofs of freedom from
runtime error, we also made use of traditional testing techniques. We considered
this essential not only to cover correctness properties not explored by SPARK
proofs, but also to help cover undischarged verification conditions and, most
importantly, to verify proper interfacing with the physical hardware.

Testing was done at three levels.
At the lowest level unit testing was done for components admitting reasonable

unit tests. We used the AUnit framework [2] for this purpose.
In addition a mock system was created that provided software simulations

of the hardware. The interface to the mock hardware was the same as for the
real hardware so that essentially all of the SPARK code was identical between
the mock system and the real system. This allowed us to compile the control
program as, for example, a Windows executable using the GNAT Ada compiler
from AdaCore, and then observe its logged output behavior when driven with
suitable test scripts.

The intent of the mock system was to allow meaning behavioral and integra-
tion testing without using any physical hardware. Since the student development
team was split across two campuses, not all developers had access to the hard-
ware for test purposes, making the mock system essential.

Finally integration and interfacing tests against the physical hardware were
done using a CubeSatKit development board [6]. These tests verified proper
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operation of the system against the components that would be used in space.
Once our spacecraft was assembled these tests were then executed again on the
actual spacecraft, with some adjustments to account for the lab environment.

If SPARK had not been used our test plan would likely have been the same.
SPARK was used in our project to supplement the testing and to find faults not
easily explored by testing. Although we did not follow a high integrity develop-
ment process, SPARK was useful in keeping our software in a reasonably self-
consistent state. For example, significant refactoring was needed several times as
our understanding of the hardware and system requirements changed. SPARK’s
analysis caught many errors during these refactorings that might have otherwise
gone unnoticed.

A continuing problem for us has been limited time and personnel resources
allocated to this project. Student workers turn over quickly, and by the time
a student has reached a level where he or she can contribute significantly that
student is often ready to graduate. We feel that the rigor imposed by SPARK on
our otherwise turbulent environment has significantly enhanced the reliability of
our final product.

4 Student Participation

Over the months since the project’s inception several students have been involved
in software development. Table 2 summarizes the number of students involved
with notes about their areas of focus.

Table 2. Student Participation

Time Students Notes

Summer 2011 2 Design & impl. of radio and interfacing subsystems

AY 2011-2012 0 Small enhancements

Summer 2012 1 Completed impl. of most subsystems

Fall 2012 4 File transfer, integration, navigation program

A total of six students have been actively involved in software development.
Of these six three had previously taken VTC’s High Integrity Programming
course where SPARK was introduced in a manner similar to described in [20].
The other three either learned SPARK while working on the project or, in one
case, focused exclusively on the C aspects of the project.

The students involved during the summer months worked on the project full
time for nine weeks. The students involved during the academic semesters worked
on the project part time in addition to their other class obligations. Two of the
students in the Fall 2012 semester used the project to fulfill their Senior Projects
course requirements.
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All students participated by invitation. Some students were self-selected in the
sense that they initiated contact with the project coordinators. Other students
knew nothing about the project until they were contacted.

As with many student projects, turnover was a significant problem. Most
students only worked on the project for one summer or one semester. Only the
student involved during the summer of 2012 continued his involvement into the
following semester.

4.1 Observations

The number of students involved with the project was not large enough to obtain
any meaningful statistical results. However, several informal observations can
nevertheless be made.

In general the students involved in the project were able to use SPARK ef-
fectively to perform information flow analysis and to produce proofs of freedom
from runtime errors. No attempt was made to formally demonstrate higher level
correctness properties. Instead high level behavior was verified using traditional
testing as described in Section 3.4.

As one might expect, the students who took VTC’s High Integrity Program-
ming course were much more comfortable with SPARK, and more immediately
productive than those who had not taken the course. There was one notable
exception: one remarkable student learned SPARK largely on his own, and yet
was nevertheless able to use make good use of the tools almost right away.

Contrary to expectation the students were accepting of the rigors of SPARK
programming and did not object to the restrictions imposed by the language
nor to the work involved in creating and managing annotations or discharging
verification conditions.

In fact several students, both in this project and in VTC’s High Integrity
Programming course, expressed appreciation for SPARK’s restrictions saying
that they were happy not to have to worry about confusing features such as access
types or dynamic dispatch. The SPARK kernel language is relatively simple and
allowed the students to focus on program organization and correctness rather
than on finding a way to use the latest fashionable features.

There was a tendency for students to postpone SPARK examination of a
package or subsystem until after that package or subsystem was “finished” and
ready for testing. Although not universal, some students treated SPARK as a
kind of testing tool to be used once the code was believed, via code review, to
be functional.

Unfortunately the application of SPARK after the fact was more difficult than
the students expected. Often the restrictions imposed by SPARK necessitated
significant refactoring of the pre-SPARK implementation. As the students gained
experience they came to realize the importance of using SPARK early and of at
least bringing the code into an examinable state as soon as possible.

The requirements and subsequent design of the system changed several times
during development. As mentioned in Section 3.4 SPARK was useful at keeping
the code base organized and self-consistent even in the face of these changes.
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Students were not always timely in updating design documents, but the simple
requirement of keeping the software examinable at all times helped to control
what might have otherwise been chaotic evolution. In this respect the discipline
of SPARK helped inexperienced students produce higher quality software than
they might have otherwise.

5 Conclusion

We have described the design of a CubeSat and its corresponding control pro-
gram that we intend to use in our upcoming low Earth orbiting test flight. The
software design and implementation in SPARK has been driven by a small col-
lection of undergraduate students with varying abilities and backgrounds.

Although the students have been remarkably successfully at using SPARK in
this project to find information flow errors and to prove freedom from runtime
errors, we have also faced some challenges. In addition to educating the students
about SPARK and about software engineering in general, we also experienced
a high turnover rate of student workers and difficulties associated with coordi-
nating students on two campuses. SPARK helped our development process by
imposing a level of discipline on it that was easy for students to understand
and accept. As a result we feel that it is feasible for motivated undergraduate
students to use SPARK effectively on a realistically scaled project.

At the time of this writing we are finalizing our integration tests and proofs
of freedom from runtime error. Our current spacecraft has passed thermal and
vibration testing. In the longer term we intend to cultivate our team by recruiting
second year students to the project who will hopefully be able to stay involved
for several years. After the summer of 2013 we will start focusing on the more
challenging problem of designing a CubeSat that can reach the moon.
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Abstract. There is no universal agreement on the order in which the
successive bytes constituting a scalar value are stored. Some machines
(so-called big-endian architectures) store the most significant byte first,
while others (little-endian architectures) adopt the opposite convention.
When porting an application across platforms that use different conven-
tions, programmers need to convert data to the appropriate convention,
and this may cause difficulties when exact memory layouts need to be
preserved (e.g. for communication with legacy systems).

This paper describes the features of the Ada language that help sup-
porting programmers in these situations, identifies some of their short-
comings, and introduces two novel solutions: a code generation approach
based on data representation modeling, and a new representation at-
tribute Scalar Storage Order , allowing the byte order convention to be
specified for a given composite data structure.

Keywords: endianness, retargeting, code generation.

1 Introduction

As Gulliver landed on Lilliput, he discovered the fierce war raging between little
endians — whose soft boiled eggs they would always eat starting with the little
end — and the big endians who furiously defended the exact opposite standpoint,
and ended up in exile on the nearby island of Blefuscu [10].

Nowadays’ software engineers, like the explorer of yore, are still finding them-
selves in the middle of the same battleground, where hardware interfaces, com-
munication protocols, or other external constraints require multi-byte values to
be stored and exchanged in either big-endian format (most significant digits
first), or little-endian (least significant digits first). The war has been raging for
decades [3], with rules imposed by standard interfaces, or stemming from the
requirement of interoperability with third party or legacy applications.

All is well as long as all components of a system happen to use the same
convention. Splitting any data structure into its elementary components is then
just a matter of masking and shifting bits. However, as soon as different conven-
tions must come into play, trouble arises: the order of the bytes constituting a

H.B. Keller et al. (Eds.): Ada-Europe 2013, LNCS 7896, pp. 65–80, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



66 T. Quinot and E. Botcazou

data structure (the endianness) then needs to be changed at strategic conversion
points, which may or may not be well identified in source code. It is up to the
application developer to identify appropriate swapping points and keep track of
whether or not a given value has been swapped at any given point in time. This
proves a significant hassle, with a costly distributed impact.

This situation specifically arises when applications that used to rely on legacy
big-endian computers, for example based on PowerPC or SPARC CPUs, are
retargeted to now ubiquitous Intel-based platforms, which are little-endian. In-
tegration with legacy components, and processing of stored data from existing
systems requires that exact data representations be preserved, and software must
compensate for the fact that the new platform assumes a different storage order.

Introducing explicit reordering (byte swapping) of scalar values throughout
software may prove a costly endeavour. The mere extraction of scalars cross-
ing byte boudaries in data structures requires extra shift and mask operations.
In addition, the need for explicit code handling endianness conversions hinders
maintainability as data structures themselves evolve. This paper discusses how
tools can provide valuable assistance to application developers in addressing en-
dianness conversion issues, alleviating the need for such “manual” byte swapping.

In section 2, we first give a summary of the data representation constructs
provided by Ada. These allow the explicit specification of a data structure’s lay-
out according to an external constraint. They can be used to provide endianness
independence to a limited extent. However, users are often disconcerted at first
by the exact semantics of these features, which indeed do not provide a fully
transparent and general solution to endianness conversion issues. In section 3,
we focus on explicit byte swapping approaches, and we present the Tranxgen
code generator, which affords automated support to produce endianness inde-
pendent accessors. In section 4, we then describe another solution, introducing
a new representation attribute providing transparent in-place access to data of
arbitrary endianness.

2 Composite Layout Specifications in Ada

In this section we discuss standard features of Ada that allow the layout of a
data structure to be specified according to an external constraint. We show how
these features support endianness independence to a limited extent.

2.1 Record Representation Clauses

Ada record representation clauses allow developers to specify, for each component
of a record:

– its starting position, i.e. the byte offset of the first underlying storage element
(the one with the lowest memory address)

– a bit range indicating its specific extent over the underlying storage elements.

An elementary example is given in listing 1.
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−− A two byte data s t r u c t u r e
type R i s record

X : Cha rac t e r ;
Y : Boolean ;
Z : I 7 ; −− type I 7 i s range 0 . . 127

end record ;
f o r R use record

X at 0 range 0 . . 7 ;
Y at 1 range 0 . . 0 ;
Z at 1 range 1 . . 7 ;

end record ;

Listing 1. Elementary record representation clause

These record declaration and record representation clause declare a data
structure occupying two storage elements (which are assumed to be 8-bit bytes
throughout this discussion) which is thus laid out:

– the first component, X, is an 8-bit character that fits exactly in the storage
element at offset 0

– the second and third components, a 1-bit Boolean value Y and a 7-bit integer
value Z, share space in the second storage element at offset 1. Y uses one bit
numbered “0”, and Z uses the remaining seven bits, numbered “1” thru “7”.

It is important to note that the semantics of this very simple fragment of code
in terms of data representation is different, depending on the bit numbering
convention used by a particular compiler:

Low order first High order first

X first byte of representation
Y Least sig. bit of 2nd byte Most sig. bit of 2nd byte
Z Shift Right (2nd byte, 1) 2nd byte and 2#0111 1111#

2.2 Endianness Neutral Representation Clauses

Tricks have been proposed to express such clauses in a neutral way, so that little
or no code modifications are required to obtain the same representation when
porting between a big-endian and a little-endian platform [4,8]. These essentially
consist in having an integer constant whose value reflects the endianness of the
platform, and expressing all component positions and bit ranges as arithmetic
expressions depending on this constant.

Ada 95 introduced an alternative to these tricks, in the form of the represen-
tation attribute Bit Order (Ada 95 Reference Manual section 13.5.3 [5]). When
this attribute is defined for some record type, a record representation clause
for the type is interpreted using the specified bit numbering convention. In the
above example, one can thus specify:
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f o r R’ B i t O rd e r use System . Low Ord e r F i r s t ;

The effect of this attribute definition clause is that the bit numbers in the record
representation clause will always be interpreted as on a little-endian machine.
The memory representation of objects of type R therefore becomes independent
of the machine endianness.

2.3 Crossing Byte Boundaries

The semantics of bit positions greater than the number of bits in a storage el-
ement is pretty clear when using the default (system) bit order. The situation
becomes more confused in the opposite case, and this caused a binding interpre-
tation of the Ada 95 standard to be issued [1] to clarify the meaning of a record
representation clause in that case.

The rule as clarified in Ada 2005 (and retrospectively in Ada 95 by virtue of
this binding interpretation) is that operations on record components can only
extract information from contiguous bit ranges taken from some machine in-
teger (what Ada 2005 calls “machine scalars”). This makes sense because this
reflects the requirement that extracting a record component is performed using
load, store, shift, and mask operations of the underlying machine architecture.
This constraint limits the spectrum of data layouts that can be specified in an
endianness independent way.

This limitation becomes clear when one considers the following data type,
together with its representation clause:

subtype Yr Type i s Natu ra l range 0 . . 127 ;
subtype Mo Type i s Natu ra l range 1 . . 1 2 ;
subtype Da Type i s Natu ra l range 1 . . 3 1 ;
subtype Ho Type i s Natu ra l range 0 . . 2 3 ;
subtype Mi Type i s Natu ra l range 0 . . 5 9 ;

subtype S2 Type i s Natu ra l range 0 . . 2 9 ;
−− Two seconds u n i t

type Date And Time i s record
Yea r s S i n c e 1 9 8 0 : Yr Type ;
−− B i t s Y0 (most s i g n i f i c a n n t )
−− to Y6 ( l e a s t s i g n i f i c a n t )

Month : Mo Type ;
−− B i t s M0 (most s i g n i f i c a n n t )
−− to M3 ( l e a s t s i g n i f i c a n t )

Day Of Month : Da Type ;
−− B i t s D0 (most s i g n i f i c a n n t )
−− to D4 ( l e a s t s i g n i f i c a n t )
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Hour : Ho Type ;
Minute : Mi Type ;
Two Second : S2 Type ;

end record ;

f o r Date And Time use record
Yea r s S i n c e 1 9 8 0 at 0 range 0 . . 6 ;
Month at 0 range 7 . . 1 0 ;
Day Of Month at 0 range 11 . . 1 5 ;
Hour at 2 range 0 . . 4 ;
Minute at 2 range 5 . . 1 0 ;
Two Second at 2 range 11 . . 1 5 ;

end record ;

Listing 2. Record with components crossing byte boudaries

The data for the first three components, as described by the above represen-
tation clause, is stored as two storage elements, as shown on figure 1.

Most sig. bit · · · Least sig. bit
Byte 0

Y0 Y1 Y2 Y3 Y4 Y5 Y6 M0

0 1 2 3 4 5 6 7

Byte 1
M1 M2 M3 D0 D1 D2 D3 D4

8 9 10 11 12 13 14 15

(a) Big-endian

Most sig. bit · · · Least sig. bit
Byte 0

M3 Y0 Y1 Y2 Y3 Y4 Y5 Y6

7 6 5 4 3 2 1 0

Byte 1
D0 D1 D2 D3 D4 M0 M1 M2

15 14 13 12 11 10 9 8

(b) Little-endian

Fig. 1. Date and time structure (first two bytes)

To extract components using shift and mask operations, this data must be
considered as a single (16-bit) integer value, whose bits are numbered from 0
(MSB) to 15 (LSB) or 0 (LSB) to 15 (MSB), depending on whether Bit Order
is High Order First or Low Order First (figure 2).

Byte 0 Byte 1

Y0 Y1 Y2 Y3 Y4 Y5 Y6 M0 M1 M2 M3 D0 D1 D2 D3 D4

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Byte 1 Byte 0

D0 D1 D2 D3 D4 M0 M1 M2 M3 Y0 Y1 Y2 Y3 Y4 Y5 Y6

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Fig. 2. Date and time structure as a 16-bit scalar (BE top, LE bottom)
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As an example, if the date is November 18, 2012, the values for the first
three components is (Years Since 1980 => 32, Month => 11, Day => 18),
and on a High Order First machine the bit pattern is as shown on figure 3. The
corresponding sequence of storage elements is (65, 114), and the corresponding
scalar value is 65× 256 + 114 = 16 754.

MSB(byte 0) .. LSB(byte 0) MSB(byte 1) .. LSB(byte 1)

Y0 Y1 Y2 Y3 Y4 Y5 Y6 M0 M1 M2 M3 D0 D1 D2 D3 D4

0 1 0 0 0 0 0 1 0 1 1 1 0 0 1 0

65 114

16 754

Fig. 3. Bit pattern for Nov. 18, 2012 on a big-endian machine

MSB(byte 1) .. LSB(byte 1) MSB(byte 0) .. LSB(byte 0)

Original data M1 M2 M3 D0 D1 D2 D3 D4 Y0 Y1 Y2 Y3 Y4 Y5 Y6 M0

Example bits 0 1 1 1 0 0 1 0 0 1 0 0 0 0 0 1
Byte values 114 65
Scalar value 29 249

Fig. 4. Bits of big-endian structure from fig. 3, as seen on a little-endian machine

Now if the same memory region is accessed on a little-endian machine as a
16-bit integer, the binary value now is as shown on figure 4. For our example
case the original bit pattern now translates to scalar value 114 × 256 + 65 =
29 249. It should be noted that the Month field is not contiguous anymore in
this representation: bit 0 ends up at position 0 (least significant bit), where as
bits 1 to 3 end up at positions 13 to 15. More generally, on big endian machines
the least significant bit of one storage element is adjacent to the most significant
bit of the next one when considering a machine scalar, whereas on a little endian
machine it is the most significant bit of the first byte that is adjacent with the
least significant bit of the following one.

As a result, no record component representation clause in standard Ada can
describe the LE layout on a BE platform.

The Bit Order attribute changes the way indices are assigned to bits (i.e. in
the above integer, in High Order First ordering the bits are denoted with indices
0 .. 15, whereas in Low Order First they are numbered 15 .. 0). In other words,
the only effect of setting Date And Time’ Bit Order to Low Order First is to
change the bit numbering from 0 · · · 15 to 15 · · · 0. This does not change
the order in which a CPU load operation takes bytes from memory to build an
integer value in a register, on which shift and mask operations are applied to
extract an individual component.
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Note that we arbitrarily chose to consider just the first three components,
and the corresponding underlying 16 bit scalar, but we could just as well have
considered the complete structure and the associated 32 bit scalar: the bits of
the Month component would have been separated in the same way.

This situation is encountered anytime a record component crosses a storage
element boundary. In this case no standard representation clause can be writ-
ten that will yield identical representations on big-endian and little-endian ma-
chines: additional work is then required to access such data structures. Several
approaches are discussed in the remainder of this paper.

3 Explicit Byte Reordering

3.1 Individual Component Swapping

If each component in a record type occupies an integral number of storage el-
ements, then the extraction of the component’s bits from the enclosing data
structure does not require any shifting and masking operation; the component’s
underlying storage itself is a machine scalar, and the only remaining issue when
accessing the components is the ordering of bytes within the component itself. In
other words, in this case storage elements can be reordered after extracting the
component from the struture according to a record representation clause, and
the reordering operation can be considered at the level of the value of a single
component. (In contrast with cases such as the example discussed above, where
components did not occupy integral storage elements, and reordering operations
were necessary even to just gather the bits constituting a single component).

This simple situation is encountered for example when writing code that binds
directly to the standard BSD sockets API, where all data structures are tradi-
tionally big-endian; byte-swapping functions htons/ntohs and htonl/ntohl are
provided by the standard API to perform byte swapping (respectively for short
and long integer values) when operating on little-endian platforms (these oper-
ations are nops on big-endian platforms).

The GNAT run-time library includes a set of generic procedures to perform
byte swapping in package GNAT.Byte Swapping. This package provides a set of
generic byte swapping subprograms for 16, 32, and 64-bit objects. These take
advantage of GCC builtins to perform byte swapping operations and which use
dedicated, efficient CPU instructions where available.

When using explicit byte swapping at the component level, care must be taken
by the programmer to identify whether a given value has been byte swapped or
not at any given point in time. This means a strict isolation is desirable between
the data types used for input/output (or interaction with standard library calls),
which require data in the externally mandated byte order, and data structures
used for internal processing (where components need to be in their correct native
order). When retargeting legacy code that was not written with portability in
mind in the first place, such isolation may be found wanting.
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3.2 Arithmetic Component Extraction

Another alternative is for the user to extract component values from storage
elements using explicit arithmetic operations on raw storage arrays. For example,
suppose that SE (0) and SE (1) are the first and second storage elements of
the date/time structure from listing 2 as stored on a big-endian machine. The
following expressions can be used to extract the Year and Month components in
a platform independent way:

Year := SE (0 ) / 2 ;
Month := (SE (0 ) and 1) ∗ 8 + SE (1 ) / 32
−− ˆˆˆ M0 ˆˆˆ ˆˆM1 . . M3ˆˆ

This way of expressing data layout is independent of endianness, and as such
ensures maximum portability. However it is a cumbersome notation, reducing
the legibility, and hence the maintainability, of application code. It also hinders
optimization by the code generator, by pushing detailed representation informa-
tion up to the highest levels of the intermediate representations handled by the
code generator. Moreover, in this case again there must be a strict separation
between the raw arrays of storage elements used for external operations, and the
native byte order data structures used internally by the software.

3.3 Wholesale Byte Reversal

An interesting solution has been proposed by R. Andress in [2], where he suggests
to revert the order of storage elements constituting a given data structure as
a whole, and to then construct a new record representation clause mapping
components on the reversed structure. He observes that when changing platform
endianness endianness, the complete reversal of byte order makes all components
that crossed byte boundaries contiguous again. One can then construct a new
representation clause that locates each component within the reversed structure.

This approach is elegant and expressive; it has the merit of minimal intru-
siveness on existing code. On the other hand it still requires an explicit byte
reordering operation, and the storage of data structures in two copies (one in
original order, and the other in reversed order). The representation clause for the
reversed structure also needs to be carefully written and maintained up-to-date
with respect to the original one.

3.4 Data Modeling Approaches

An important drawback of the manual byte reordering approaches discussed
above is the verbosity of notations for arithmetic component extraction or record
representation clauses. One way of alleviating such a concern is to replace man-
ually implemented code with code generated from a model.

In the context of endianness conversions, the model is a formal description
of the bit layout of some data structure, and the operations provided by the
generated code are accessors to the components of that structure.
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The idea is akin to that of the ASN.1 standard [6]. However in ASN.1 one
describes a data structure in an abstract semantics perspective. This description
can then be mapped to one (or more) concrete representations through some
standard encoding rules [7].

In the case of externally mandated data representations, on the contrary, the
model starts by describing the exact structure in terms of bits and bytes, and
from there describes how these elementary pieces of data must be interpreted to
form higher level values.

This is the approach we followed in Tranxgen, a code generation tool we
introduced while developing a portable, certifiable TCP/IP stack. A similar path
has been followed by existing tools for other languages [9].

Tranxgen accepts a data structure description description in the form of an
XML document, and produces a set of Ada (more specifically, SPARK 95) ac-
cessors for the data structure.

<package name=”Date And Time Pkg”>
<message name=”Date And Time”>
< f i e l d name=” Yea r s S i n c e 1 9 8 0” l e n g t h=”7” />
< f i e l d name=”Month” l e n g t h=”4” />
< f i e l d name=”Day Of Month” l e n g t h=”5” />
< f i e l d name=”Hour” l e n g t h=”5” />
< f i e l d name=”Minute” l e n g t h=”6” />
< f i e l d name=”Two Seconds” l e n g t h=”5” />

</message>
</package>

Listing 3. Tranxgen specification for date/time record

From this specification, Tranxgen produces a record type declaration with rep-
resentation clause, none of whose components crosses a byte boundary. Accessors
decompose and reconstruct component values using arithmetic expressions, fol-
lowing the method outlined in section 3.2, as seen in the following generated
code excerpt:

package Date And Time Pkg i s
type Date And Time i s record

Yea r s S i n c e 1 9 8 0 : U7 T ; −− 7 b i t s
Month 0 : B i t s 1 ; −− 1 b i t i n t e g e r
Month 1 : B i t s 3 ; −− 3 b i t s
Day Of Month : U5 T ; −− 5 b i t s
Hour : U5 T ; −− ””
Minute 0 : B i t s 3 ; −− 3 b i t s
Minute 1 : B i t s 3 ; −− ””
Two Seconds : U5 T ; −− 5 b i t s

end record ;

f o r Date And Time ’ Al ignment use 1 ;
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f o r Date And Time ’ B i t O rd e r
use System . H i g h O r d e r F i r s t ;

f o r Date And Time use record
Yea r s S i n c e 1 9 8 0 at 0 range 0 . . 6 ;
Month 0 at 0 range 7 . . 7 ;
Month 1 at 1 range 0 . . 2 ;
Day Of Month at 1 range 3 . . 7 ;
Hour at 2 range 0 . . 4 ;
Minute 0 at 2 range 5 . . 7 ;
Minute 1 at 3 range 0 . . 2 ;
Two Seconds at 3 range 3 . . 7 ;

end record ;

end Date And Time Pkg ;

package body Date And Time Pkg i s

−− [ . . . ]

funct ion Month (P : System . Addres s ) return U4 T i s
M : Date And Time ;
f o r M’ Addres s use P ;
pragma Impor t (Ada , M) ;

begin
return U4 T (M. Month 0 ) ∗ 2∗∗3 + U4 T (M. Month 1 ) ;

end Month ;

procedure Set Month (P : System . Addres s ; V : U4 T) i s
M : Date And Time ;
f o r M’ Addres s use P ;
pragma Impor t (Ada , M) ;

begin
M. Month 0 := B i t s 1 (V / 2∗∗3 ) ;
M. Month 1 := B i t s 3 (V mod 2∗∗3 ) ;

end Set Month ;

−− [ . . . ]

end Date And Time Pkg ;

4 The Scalar Storage Order Attribute

In this section we introduce the Scalar Storage Order attribute, which allows the
specification of the storage endianness for the components of a composite (record
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or array) type. Byte reordering is performed transparently by compiler generated
code upon access to elementary (scalar) components of the data structure.

4.1 Formal Definition

Scalar Storage Order is an implementation-defined attribute specified as follows
by the GNAT Reference Manual.

For every array or record type S, the representation attribute
Scalar Storage Order denotes the order in which storage elements that
make up scalar components are ordered within S. Other properties are
as for standard representation attribute Bit Order, as defined by Ada
RM 13.5.3(4). The default is System.Default Bit Order.
For a record type S, if S ’Scalar Storage Order is specified explicitly,
it shall be equal to S ’Bit Order.

This means that if a Scalar Storage Order attribute definition clause is not
confirming (that is, it specifies the opposite value to the default one, System.
Default Bit Order), then the type’s Bit Order shall be specified explicitly and
set to the same value. Also note that a scalar storage order clause can apply not
only to a record type (like the standard Bit Order attribute), but also to an
array type (of scalar elements, or of other composite elements).

If a component of S has itself a record or array type, then it shall also
have a Scalar Storage Order attribute definition clause. In addition,
if the component does not start on a byte boundary, then the scalar
storage order specified for S and for the nested component type shall be
identical.
No component of a type that has a Scalar Storage Order attribute
definition may be aliased.

These clauses ensure that endianness does not change except on a storage ele-
ment boundary, and that components of a composite with a Scalar Storage Order
attribute are never accessed indirectly through an access dereference (instead all
accesses are always through an indexed or selected component).

A confirming Scalar Storage Order attribute definition clause (i.e. with
a value equal to System.Default Bit Order) has no effect.
If the opposite storage order is specified, then whenever the value of a
scalar component of an object of type S is read, the storage elements
of the enclosing machine scalar are first reversed (before retrieving the
component value, possibly applying some shift and mask operatings on
the enclosing machine scalar), and the opposite operation is done for
writes.

This is where the new attribute introduces the byte reordering.
The following clause generalizes the notion of machine scalar to cover some

useful cases not taken into account by the original wording of the standard in
the definition of the underlying machine scalar of a given (scalar) component.
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In that case, the restrictions set forth in 13.5.1(10.3/2) for scalar com-
ponents are relaxed. Instead, the following rules apply:

– the underlying storage elements are those at
(position + first bit / SE size) .. (position + (last bit +

SE size - 1) / SE size)

– the sequence of underlying storage elements shall have a size no
greater than the largest machine scalar

– the enclosing machine scalar is defined as the smallest machine scalar
starting at a position no greater than
position + first bit / SE size and covering storage elements at
least up to position + (last bit + SE size - 1) / SE size

– the position of the component is interpreted relative to that machine
scalar.

4.2 Example Usage and Effect

Let us assume that the type declaration for the Date And Time structure in
listing 2 is from a legacy big-endian application, a component of which is now
being retargeted to a new little-endian board. Of course the underlying memory
representation must not be changed, as this board exchanges messages with a
legacy black-box module whose source code is unavailable. We will therefore
apply attribute definition clauses as follows as shown in listing 4.

f o r Date And Time ’ S c a l a r S t o r a g e O r d e r
use System . H i g h O r d e r F i r s t ;

f o r Date And Time ’ B i t O rd e r use System . H i g h O r d e r F i r s t ;
−− Bi t o r d e r and s c a l a r s t o r a g e o r d e r must be c o n s i s t e n t .

Listing 4. Attribute definition clauses for scalar storage order and bit order

The memory representation of an object of type Date And Time as created
on a big-endian machine is shown on figure 1. If we read the Month component
of an object of that type, we first load the underlying machine scalar. As noted
above, the storage elements have values 65 followed by 114, and on a little-endian
machine this represents the 16-bit scalar value 29 249.

But now by virtue of the Scalar Storage Order that has been defined for the
type as High Order First, since we are on a little-endian machine we reverse
the order of bytes within this machine scalar, which gives us back the original
value 16 754. The bit pattern of this scalar is now identical to the original one
from the big-endian specification, and thus shifting and masking operations will
yield the original component value.

The reverse byte swapping is performed upon write operations, after the com-
ponent value has been installed into a machine scalar, and prior to this machine
scalar being stored back to memory. This transformation is applied only for
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scalar components, so that nested records are handled correctly (i.e. no extra
swapping is introduced when accessing a subcomponent of a nested record).

4.3 Implementation

The implementation of the Scalar Storage Order attribute has been done in the
version of the GNAT compiler using the GCC back-end as the code generator.

Even if a growing number of processors have the capability to run either in
big-endian or in little-endian mode, the mode is generally selected once for all
at startup and cannot be changed afterwards. The compiler therefore needs to
generate explicit byte swapping operations.

The primary design decision to be considered is the level at which these byte
swapping operations are made explicit in the hierarchy of intermediate represen-
tations of the compiler. The GCC-based GNAT compiler has a 4-tiered hierarchy
of representations (the framed boxes):

source code

�
GNAT front-end processing

expanded code

�
GNAT-to-GNU translation

GENERIC

�
GIMPLification

GIMPLE

�
RTL expansion

RTL

�
code generation

machine code

The higher in the hierachy the byte swapping operations are made explicit,
the simpler the implementation is, but the less efficient the machine code will be
when run on the target. This is because the bulk of the compiler is parameterized
for the endianness of the target, and so explicit byte swapping operations act as
optimization barriers in the various intermediate representations.

The choice has been made to generate the byte swapping operations during
RTL expansion: the first intermediate representation in which they are explicitly
present is RTL (Register Transfer Language), which is a very low-level repre-
sentation. All high-level GIMPLE optimizations, which are the most powerful
ones, work without change on code requiring endianness conversions; only the
low-level RTL optimizations are affected.
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movzwl (%ecx), %eax
ro lw $8, %ax
shrw $5, %ax
and l $15, %eax

Listing 5. x86 assembly code generated for load of Month

The other major design decision pertains to the representation and the manip-
ulation of the storage order in the GIMPLE representation (the expanded code
and the GENERIC representation being essentially extremely verbose versions
of the source code, they do not need substantial adjustments; at these levels, the
scalar storage order is just another property of composite types, like packedness
or atomicity). Storage order could conceivably be tracked on a scalar-by-scalar
basis, i.e. with the finest possible granularity. With this approach, every scalar
gets a new property, the endianness, in addition to the usual properties, for ex-
ample the size and the bounds. However this would have required major surgery
in the high-level part of the code generator, and would have introduced an un-
desirable additional layer of complexity.

We therefore chose instead to consider storage order only as a property of
memory stored scalars (and specifically, only those scalars stored as part of an
enclosing composite object); all other scalars always have the default storage
order. Moreover, scalar values (considered outside of any object) are always in
the default endianness. This makes the implementation far simpler, because the
various transformations and optimizations applied to the intermediate represen-
tation need not take the endianness into account. They only have to preserve the
invariant that some particular scalars in memory must be accessed in a special
way.

It is also worth noting that, in a few specific cases, the GNAT front-end needs
to apply low-level transformations to the source code before passing it to the code
generator, which may depend on the storage order. In these cases, the front-end
may need to generate explicit byte swapping operations (for example to initial-
ize bit-packed arrays). The code generator therefore exposes its internal byte
swapping primitives as builtins that can be directly invoked by the front-end.
These are ultimately translated into explicit byte swapping operations during
RTL expansion.

The implementation is fully generic: it imposes no additional requirement on
the target architecture, such as availability of specific byte swapping or byte
manipulation instructions. However, the code generator will take advantage of
them if present, for example on the Intel x86 and IBM PowerPC architectures,
with a measurable performance gain in these cases.

Going back to the example of the Month component of an object of type
Date And Time, the assembly code generated on x86 to read the component is
shown on listing 5.

The first instruction movzwl loads the underlying machine scalar, i.e. the 16-
bit integer value at offset 0 in the record. The second instruction rolw $8 swaps
the bytes in this scalar. The remaining instructions extract the component.
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4.4 Performance Discussion

The introduction of the Scalar Storage Order attribute represents a significant
gain in terms of application development cost, in that in relieves developers from
the need to implement data conversions from one endianness to the other.

However the execution time cost of such conversions does not disappear: they
are still present, and if opposite-endianness data structures are frequently used,
they are liable to cause an unavoidable degradation in application performance
(compared to the same application using data structures in native endianness).
This is less likely when explicit data conversions are used, because in the latter
case conversion points are well identified, and internal processing in the appli-
cation is done efficiently on data structures that have native endianness.

It may therefore be advisable, even when relying on Scalar Storage Order to
perform data conversions, to apply this attribute to a derived type used for
external interfaces. Ada type conversions from the derived type to the ancestor
type (which has no representation attributes, and hence has the standard native
representation) can then be used to convert data from the external representation
(possibly using a different endianness than the native one) to the internal (native
endianness) representation, as show on listing 6.

type Date And Time i s record
. . .

end record ;
−− Nat ive , e f f i c i e n t r e p r e s e n t a t i o n

type Exte rna l Date And Time i s new Date And Time ;
f o r Exte rna l Date And Time use record

. . .
end record ;
f o r Exte rna l Date And Time ’ S c a l a r S t o r a g e O r d e r

use E x t e r n a l B i t O r d e r ;
f o r Exte rna l Date And Time ’ B i t S t o r a g e O rd e r

use E x t e r n a l B i t O r d e r ;

funct ion To I n t e r n a l
(DT : Exte rna l Date And Time ) return Date And Time

i s
begin

return Date And Time (DT) ;
−− Type c on v e r s i o n w i th change o f r e p r e s e n t a t i o n

end To I n t e r n a l ;

Listing 6. Setting scalar storage order on a derived type
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In this manner, developers retain the advantage of automated, transparent
generation of the code effecting the required representation change, while at
the same time avoiding the distributed overhead of pervasive byte swapping
throughout the application.

5 Conclusion and Future Directions

We have presented the issues posed by data representations with different endian-
ness in Ada applications. We have discussed the current Ada features supporting
record layout specification, and identified some of their limitations in conjunc-
tion with support for endianness conversions. We have introduced two separate
approaches to overcoming these limitations: a code generation tool Tranxgen
producing accessors from a data representation model, and a new representa-
tion Scalar Storage Order allowing transparent access to data structures of ar-
bitrary endianness. These tools allow application code to be written in a portable
way, guaranteeing consistent data representations between little-endian and big-
endian platforms without the need for explicit conversion operations.

Possible improvements to Tranxgen include support for a wider variety of data
structures, and using the Scalar Storage Order attribute in generated code. The
specification for the attribute will be proposed to the Ada Rapporteur Group
for inclusion in the next revision of the Ada language.
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1 Introduction 

DNS is a protocol essential to the proper functioning of the Internet. The two most 
common implementations of DNS are the free software version BIND and the imple-
mentations that come bundled with various versions of Windows. Unfortunately, 
despite their ubiquity and importance, these implementations suffer from security 
vulnerabilities and require frequent patching. As of this writing, according to the In-
ternet Systems Consortium’s web site, there are 51 known vulnerabilities in various 
versions of BIND [1]. Over the past five years, Microsoft has released at least 8 secu-
rity bulletins relating to vulnerabilities in Windows DNS. Since neither of these prod-
ucts have ever been, to our knowledge, formally validated, it is likely that further 
flaws remain for hackers to discover and exploit. 

The existence of security flaws in such a vital component of the Internet software 
suite is troubling, to say the least. These vulnerabilities permit not only bad-packet 
denial of service attacks to crash a DNS server, but in the worst case can actually lead 
to remote code execution exploits, giving the adversary control over the host machine. 

To address this problem, the authors have used formal methods and the SPARK 
tool set from Praxis Systems [2] to develop a high-performance version of DNS  
                                                           
∗ The rights of this work are transferred to the extent transferable according to title 17 U.S.C. 105. 
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that is provably exception-free. We first give a brief overview of DNS, and our  
implementation of it using the SPARK tools. We then describe our experimental test 
bed and the results we obtained. We conclude with lessons learned and directions for 
future work. 

2 Overview of DNS 

DNS is an abbreviation for the Internet’s Domain Name System. Theoretically it is a 
naming system for any resource connected to the Internet, but in practice it associates 
host names (www.cnn.com) with IP addresses (157.166.226.26). The DNS protocol 
was developed by Paul Mockapetris, first codified in IETF documents RFC 882 and 
RFC 883 and later superseded by RFC’s 1034 and 1035. Clients of a DNS server 
interact with it supplying queries of various types, with the server providing the an-
swers. Communication between a DNS client and server takes place at either the UDP 
or TCP layers of the Internet protocol stack. 

The distinguishing feature of DNS is its hierarchical and distributed nature. Be-
cause it is hierarchical, a single DNS server may not and need not know the answer to 
a client query. If it does not, it can query another DNS server at a higher level in the 
Internet domain name space for further information. This process may be repeated up 
to the root server, with further information then propagating back down to the original 
querying server.  

The system’s distributed nature means that there is no central DNS server. Hun-
dreds of thousands of implementations of DNS are all running at once, and because 
they all use the same protocols to communicate they all function correctly. 

Simple implementations of DNS may perform solely as authoritative name servers, 
responsible only for managing the IP addresses associated with a particular zone. To 
reduce the load on the root zone servers and to improve performance of applications 
that rely on nearby DNS servers, more complex implementations of DNS may cache 
query answers as well as fully implement the recursive query protocol described pre-
viously.  

The most popular implementation of DNS is the Berkeley Internet Name Domain 
server, or BIND. Originally written in 1984, it has been ported to a number of systems 
and compilers, and has been distributed as free software since its inception. Accord-
ing to the Wikipedia entry on DNS, it is the dominant name service software on the 
Internet. However, numerous alternatives remain available, including implementa-
tions bundled with Microsoft Windows. 

3 SPARK: A Tool For Creating Provably Correct Programs 

The SPARK language and toolset from Altran Praxis is used in the creation of soft-
ware systems with provable correctness and security properties. SPARK is a subset of 
Ada, augmented with special annotations. These annotations appear as ordinary 
comments to Ada compilers, but are parsed by SPARK’s pre-processing tools used to 
validate the software. SPARK is a fairly mature technology and has been used on 
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several projects [3-5]. Accordingly, given our prior institutional experience with Ada 
(see for example [6]), we chose SPARK and Ada as the platform for constructing 
DNS software that would not be subject to most of the vulnerabilites of BIND and 
Windows versions currently deployed around the globe. 

4 Overview of IRONSIDES 

IRONSIDES is an Ada/SPARK implementation of the DNS protocols. The 
IRONSIDES authoritative DNS server was described previously in [7]. Since that 
publication, off-line signed DNS records have been added to IRONSIDES using 
DNSSEC, the protocol that adds encryption to DNS transactions to further reduce 
vulnerability to spoofing and other attacks [8]. Below we describe the architecture of 
the IRONSIDES recursive service. In actual operation, both versions would be run-
ning concurrently.  

The high level structure of the IRONSIDES recursive service is shown in Figure 1: 

 

 

Fig. 1. High-level structure of IRONSIDES recursive service 
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The functions of these modules are as follows: 

• spark_dns_main: Top-level executable 
• udp_query_task: Concurrently executing task responsible for all incoming 

DNS traffic 
• udp_response_task: Concurrently executing task responsible for managing all 

responses from upstream servers 
• process_dns_request: Interprets incoming packet, queries DNS table, queues 

query if answer not found 
• wire_to_records: Builds DNS resource records from DNS packets on the wire 
• dns_network_rcv: SPARK wrapper for network traffic to guarantee no over-

flows 
• global_buffers: Query and response queues 
• protected_buffer: ADT for the query and response queues 
• buffer_pkg: ADT for a queue 
• dns_table: Cache of DNS resource records 
• rr_type: Top-level package for all DNS resource record types 
• dns_network: Handles low-level network IO 
• dns_types: Data types for working with DNS packets 
 

As a result of the software validation process, IRONSIDES code is known to be free 
of uninitialized values, data flow errors (e.g. writes that are never read or values de-
rived from incorrect sources), array bounds errors, and all runtime exceptions. This 
renders it invulnerable to single-packet denial of service attacks and all remote execu-
tion exploits. If IRONSIDES is properly compiled and configured, it cannot be taken 
over as a result of any external input, no matter when the input arrives and no matter 
how it is formatted. Also, it cannot be crashed and all its loops are guaranteed to ter-
minate, which renders it invulnerable to denial of service attacks that rely on badly 
formatted packets.  

Current statistics on the proof requirements and code size of IRONSIDES authori-
tative are shown in Tables 1 and 2. 

Table 1. Proof requirements of IRONSIDES authoritative 

Total Examiner Simplifier Victor 
  Assert/Post     3106 2209      884     13 
  Precondition     561    0      532    29 

           Check stmt.       12    0       12     0 
  Runtime check  3750    0    3704    46 

           Refinement. VC s  44  42        2     0  
           Inherit. VCs       0     0        0     0 

============================= 
Totals:         7473    2251    5134   88 

     %Totals:                30%     69%  1% 
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Table 2. IRONSIDES source lines 

Total Lines:              11598 
Blank Lines:                 871 
Non-blank non-comment lines:    7543 

       Lines of SPARK annotations:      133 
Semicolons:                5403 

 
A “Verification Condition”, or VC, is a theorem that must be proved in order for 

SPARK to consider the program as validated. Typical VC’s include assertions that 
integers do not overflow or wraparound, that array bounds are not exceeded, and so 
forth. Simpler VC’s are proved by the Spark Examiner. More complicated ones are 
proved by the Verifier. According to AdaCore Technologies [9], over 95% of VCs are 
proven automatically by the SPARK toolset. In our case, this was 99%. We were 
unwilling to allow any VCs to remain unproven, lest they be false and lead to a  
security vulnerability. Consequently, we used Victor, a wrapper for the advanced 
Satisfiability Modulo Theories (SMT) solver Alt-Ergo, developed at the University of 
Paris-Sud [10], to prove the final 1%. Readers interested in learning more about the 
SPARK tool set are referred to [2]. 

We see from Table 2 that the overhead of SPARK annotations in terms of code 
size and typing time is negligible, approximately ten percent of the total number of 
lines in the program. 

5 Experimental Results 

Having software that is crash-proof is valuable, but unless its performance is  
comparable to existing implementations it is not likely to be accepted by the user 
community. System administrators, if faced with the choice, might regard software 
vulnerabilities as acceptable risks if fixing them significantly impacts performance. 
Furthermore, from a computer security research perspective, it would be useful to 
understand the nature of the tradeoff between security and performance, or even better 
to discover that in at least some cases no such tradeoff is required. We present here 
the results of a case study performed to better understand these questions.  

Previous work [7] compared the performance of the IRONSIDES authoritative 
server to BIND running on a Linux system (Ubuntu 11.0).  We now present results 
comparing the performance of IRONSIDES authoritative with BIND and Windows 
DNS on Windows Server 2008. As in [7], we use the DNS stress testing tool 
‘dnsperf” [11]. Because IRONSIDES is still in development, it does not yet have the 
feature range of BIND or Window DNS (though we are continually adding more fea-
tures and the gap is rapidly closing). Any comparison should take these differences 
into account. Following the style of [12], we show a comparison of these three DNS 
packages below. Footnotes and parenthetical comments for BIND and Windows are 
omitted to save space. 
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Table 3a/3b. Comparison of BIND, Windows and IRONSIDES functionality 

Server Authoritative Recursive 
Recursion 

ACL 
Slave 
mode

Caching 

BIND Y Y Y Y Y 

Windows 
DNS 

Y Y N Y Y 

IRONSIDES Y* in progress N N in progress 

 
 
 

DNSSEC Server TSIG IPv6 Wildcard
Free 

Software 
split 

horizon 

Y BIND Y Y  Y  Y Y 

Y Windows 
DNS 

Y Y Y N N 

offline- 
signed 

IRONSIDES N Y N Y N 

 
 
*The following resource record types are currently supported: A, AAAA, CNAME,  
DNSKEY, MX, NS, NSEC, PTR, RRSIG, SOA. 
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Our experimental test bed is shown in Figure 3: 

 

Fig. 3. Experimental test bed for performance comparisons of DNS software 

‘dnsperf’ runs on a Backtrack 5.0 client virtual machine. A Windows Server 2008 
virtual machine is loaded as a server. Testing is done by starting up the DNS server to 
be tested under the server virtual machine, and then running dnsperf. Only one DNS 
server is active at a time. 

Since the purpose of the experiment is to measure the computational performance 
of the server, both VMs are loaded on the same computer, in this case an ACE 2600 
Workstation with 8GB of RAM. Using the same computer for client and server elimi-
nates the effect of network latency. ‘dnsperf’ issues queries over the standard DNS 
port to whichever server is listening. The server in turn responds as appropriate. At 
the end of a run, the tool generates a performance report. 

We performed three test runs for three DNS implementations and then averaged 
the results, scaling them to queries per millisecond. The raw data are shown in Table 
4. Averaged results are shown in Figure 4: 

Table 4. Comparison of DNS software (queries per second for three test runs) 

BIND 
16478.3 16667.9 17020.0

IRONSIDES 

37329.1 37814.6 37024.4

Win DNS 

34188.0 35676.1 35089.3
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Fig. 4. Comparison of DNS software (queries per millisecond, averaged) 

The most important result of our experiment is that IRONSIDES not only has better 
security properties than the two most popular DNS servers, but outperforms them as 
well. On a Windows machine, IRONSIDES is 7% faster than Windows DNS and 
more than twice as fast as BIND. Given IRONSIDES superior security posture, we 
find these results significant. They show that one need not sacrifice security for per-
formance in software design. 

In fact, it should not be that surprising that there are at least some instances in 
which the use of formal methods can improve performance. Data flow analysis, for 
example, can identify redundant or ineffective statements that generate unnecessary 
code. Code that has been proven exception-free no longer needs run-time bounds 
checking, so that code can be eliminated as well.  

On the other hand, there are also cases where total reliance on formal methods ne-
gatively impacts performance. Allowing users to override formal proof requirements 
when appropriate is an important feature that we believe formal methods tools should 
continue to support.  In one case, performing this type of optimization in 
IRONSIDES led to a 14% improvement in performance on a Windows VM. Since 
such overriding is optional, users in environments where manual verification of 
source code is deemed too risky can revert to the original, formally verified source 
code at some cost in performance.  

IRONSIDES is invulnerable to denial of service attacks caused by badly formatted 
packets that raise exceptions. But terminating a server is not the only way to deny 
service. If the server can be thrown into an infinite loop, service is just as effectively 
denied. IRONSIDES is invulnerable to this form of service denial as well, because the 
tools employed help prove that all of its 85 loops terminate. This is accomplished by 
using loop invariant assertions to show that loop variables monotonically increase  
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and have an upper bound. This is not accomplished automatically by SPARK, but 
with appropriate loop assertion annotations added by the programmer SPARK can 
assist in showing these properties to be true. 

For example, consider the code below: 
 
-- Amount_Trimmed prevents infinite loop 
while Answer_Count=0 and Amount_Trimmed < RR_Type.WireStringType'Last   
and Natural(Character'Pos(Current_Name (Current_Name'First)))/=0 and 
Current_Qname_Location <= DNS_Types.QNAME_PTR_RANGE(Output_Bytes)loop 
--# assert Answer_Count=0 and Amount_Trimmed>=0 and   
--# Amount_Trimmed<RR_Type.WireStringType'Last 
--# and Output_Bytes <= DNS_Types.Packet_Length_Range'Last and 
--# Current_Qname_Location <=DNS_Types.QNAME_PTR_RANGE(Output_Bytes); 
     Trim_Name(Domainname => Current_Name, 
      Trimmed_Name    => Trimmed_Name, 
      Qname_Location   => Current_Qname_Location, 
      New_Qname_Location => New_Qname_Location); 
     Create_Response_SOA(Start_Byte => Start_Byte, 
      Domainname   => Trimmed_name, 
      Qname_Location => New_Qname_Location, 
      Output_Packet  => Output_Packet, 
      Answer_Count  => Answer_Count, 
      Output_Bytes  => Output_Bytes); 
     Current_Name := Trimmed_Name; 
     Current_Qname_Location := New_Qname_Location; 
     Amount_Trimmed := Amount_Trimmed +     
  Natural(Character'Pos(Domainname(Domainname'First))+1); 
   end loop; 

Fig. 5. Using loop invariants to prove termination 

SPARK annotations begin with “--#”. Here the annotations are loop invariants that 
serve as both a postcondition for one part of the loop and as preconditions for the 
next. In this case the tools prove that Amount_Trimmed is at all times both non-
negative and below a constant upper bound. Data flow analysis shows that 
Amount_Trimmed is not modified elsewhere in the loop. Given these properties and 
the last line of the loop, we can conclude that Amount_Trimmed is monotonically 
increasing, therefore the loop terminates. 

Note that without the use of this variable and the proof annotations, we could not 
prove loop termination. This would leave open the possibility for the other termina-
tion conditions to never be reached, something that could be exploited under the right 
circumstances to deny service through an infinite loop. 

6 Lessons in Humility 

The use of formal methods and the SPARK tools in particular produced results that 
were both impressive and humbling. Both the authors are experienced software engi-
neers, having written compilers, introductory programming environments, circuit 
emulators, and other non-trivial software systems. In addition to over 40 years com-
bined computer science teaching experience, we have consulted for both industry and 
government. Nonetheless, the formal methods tools we employed caught boundary 
conditions and potential problems. Some examples are shown below: 
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1) The use in a zone file of a domain name consisting of a single character: 

--SPARK caught possible exception if length=1, modified  
--by adding “length > 1 and then” 
if Name(1) = '.' or Name(1) = '-' or (length > 1 and then 
(Name(Length-1) = '.' or Name(Length-1) = '-')) then 
 RetVal := False; 

2) A resource record of length equal to the maximum line length allowed: 
--endIdx might be the maximum value possible, so must 
catch last character here. Caught by SPARK. 
 if Ctr = EndIdx and numSeparators <= REQ_NUM_SEPARATORS 
then 
 

3) Failure to account for erroneous input: 
 

if Query_Class /= IN_CLASS then  … 
elsif Query_Type = A then  … 
end if; 
--Forgot else to handle erroneous input! Caught by SPARK. 
 

4) Failure to check for subscript overflow: 
 

--copy name from packet to Domainname (null terminated) 
while Integer(Byte) < Integer(Input_Bytes) and then In-
put_Packet.Bytes( 
  Byte)/=0 loop 
--this could overflow Domainname array! Caught by SPARK. 
  Domainname(I) := Input_Packet.Bytes(Byte); 
  I := I + 1; 
  Byte := Byte + 1; 
end loop; 
Domainname(I) := ASCII.NUL; 

 
These are all problems we should and could have detected on our own, but did not. 
Had they gone undetected, they could have led to security holes exploitable by hack-
ers, particularly if they had access to source code. Our experience suggests the use of 
formal methods and tools is an essential part of improving the security properties of 
software.  Using experienced, security-conscious programmers is not enough. 

7 Hitting the Sweet Spot 

Much of the emphasis on applying formal reasoning to computer programs has fo-
cused on proofs program correctness. This has proven to be quite difficult. Correct-
ness properties for all but the most trivial programs are extremely complex, requiring 



92 B. Fagin and M. Carlisle 

 

elaborate formal models and axiomatic formulations that may be more difficult to 
construct than the original program. 

While we anticipate continued progress in the use of formal methods to prove 
program correctness, our results suggest that an exclusive focus on proofs of 
correctness may be causing researchers to miss a“sweet spot“ of opportunity: Proofs 
of security. 

On one end of the spectrum, correctness properties are useful to prove but very 
hard for most interesting programs: Existing tools and technology are not yet 
sufficiently sophisticated to complete them. On the other hand, there are properties of 
programs that are easy to prove (correctness of mathematical functions, small 
subroutines, and so forth), but are not particularly interesting or important. Security 
properties fall into that middle ground of things that are both important to prove and 
provable with existing technology. 

With the help of SPARK and the use of Ada, for example, we can formally prove 
the following security properties of the IRONSIDES DNS server: 

1) No classic buffer overflow 
2) No incorrect calculation of buffer size 
3) No improper initialization 
4) No ineffective statements 
5) No integer overflow/wraparound 
6) No information leakage 
7) All input validated 
8) No allocation w/o limits (no resource exhaustion) 
9) No improper array indexing 
10) No null pointer dereferencing 
11) No expired pointer dereferencing (use after free) 
12) No type confusion 
13) No race conditions 
14) No incorrect conversions 
15) No uncontrolled format strings 
16) All loops guaranteed to terminate 

Problems with all of the above have so vexed BIND that the US Defense Advanced 
Research Projects Agency is funding a program to crowd source it and other 
important software to achieve formal verification of security properties [13]. By 
contrast, because IRONSIDES is written in Ada, a language designed from the 
beginning with software engineering principles in mind, and because a commercially 
backed tool is available for formal analysis of Ada programs, we are able to achieve 
provably exception-free code despite being only two academic researchers employed 
at an undergraduate university. 

8 Conclusions and Future Work 

Our work indicates that the theory and practice of formal methods has progressed 
considerably in the past few years, to the point where formal verification of certain 
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desirable properties of software is now achievable at relatively little additional cost. 
Within less than a year, two academics whose primary duties are teaching were 
nonetheless able to produce a verifiably exception-free version of DNS. We did this 
despite having no prior familiarity with SPARK or indeed any formal language tools 
from industry. 

While overriding the requirements for explicit storage initialization does indeed 
permit software engineers to trade security for performance, our results show that in 
general no such tradeoff is required.  The IRONSIDES authoritative server runs 
significantly faster than either BIND or Windows DNS, and does so on a Windows 
“home court“ VM running Windows Server 2008. 

IRONSIDES is in the public domain, and is distributed free of charge at http:/ 
/ironsides.martincarlisle.com. Currently development focuses on the IRONSIDES 
recursive service. Future work could include testing under other operating systems, 
testing under actual network loading, online zone signing, GUI and web interfaces, 
and other more advanced features. Other implementations of Internet protocols that 
suffer from security flaws could also benefit from the approach described here. 

This work was funded by the US Defense Advanced Research Projects Agency, 
whose support is gratefully acknowledged. We thank AdaCore Technologies and 
Altran Praxis for providing technical support on using their tools. We also wish to 
thank the USAFA Department of Computer Science, the Academy’s Director of Re-
search, and the Academy Center for Cyberspace Research. 
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{irene.bicchierai,giacomo.bucci,carlo.nocentini,enrico.vicario}@unifi.it

Abstract. We present a systematic approach for the efficient manage-
ment of the data involved in the development process of safety critical
systems, illustrating how the activities performed during the life-cycle
can be integrated in a common framework. Information needed in these
activities reflects concepts that pertain to three different perspectives:
i) structural elements of design and implementation; ii) functional re-
quirements and quality attributes; iii) organization of the overall process.
The integration of these concepts may considerably improve the trade-
off between reward and effort spent in verification and quality-driven
activities.

We address the exploitation of ontological modeling and semantic
technologies so as to support cohesion across different stages of the de-
velopment life-cycle, attaching a machine-readable semantics to concepts
belonging to structural, functional and process perspectives. The formal-
ized conceptualization enables the implementation of a tool leveraging on
well established technologies aiding the accomplishment of crucial and
effort-expensive activities such as the identification of the associations
between requirements and the SW components implementing them.

Keywords: Ontologies, automated reasoning,TraceabilityRequirements,
SW Engineering, Reliability Availability Maintainability and Safety,
certification standards.

1 Introduction

In the development of safety-critical systems, verification and documentation
activities comprise a major component of the overall effort. While intended to
support quality assessment along the entire development process, they become
crucial in a more evident manner at the time of certification. In industrial en-
vironments the development life-cycle is generally tailored to the V-Model [4]
while Military Standard 498 (MIL-STD-498) [24] rules the documental process.
Furthermore, specific standards exist for different class of products, such as
CENELEC EN 50128 [5] for railways signalling, RTCA DO 178B [19] for air-
borne SW, ISO IEC 62304 [12] for medical devices.
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c© Springer-Verlag Berlin Heidelberg 2013



96 I. Bicchierai et al.

The inherent complexity of prescribed activities is largely exacerbated by
their dependency on information relative to the different stages of development.
Furthermore, these data are formalized in different documental artifacts, of-
ten contributed by different parties or units, and pertaining to three different
perspectives: structural elements of design and implementation, functional and
quality requirements, and organization of the overall process. Systematization of
the integration of these three perspectives may largely improve the trade-off be-
tween reward and effort spent in verification and quality-oriented activities, and
it may open the way to agile tailoring of the process model to the specific char-
acteristics of each project and organization. Ontological modeling and semantic
technologies provide a relatively recent yet mature basis that may support this
systematization aim. Ontologies are defined as an explicit specification of a con-
ceptualization [10], this means that they are used to formalize concepts involved
in any domain of interest. In [9], three ontological models are proposed to charac-
terize relations among components, functions and quality attributes in complex
embedded systems. In [26], a method and a system aiming at facilitating reuse of
knowledge, supporting complete and precise description of processes and prod-
ucts, is proposed. The semantic knowledge is hierarchically organized in form
of taxonomies, containing typical recurring technical knowledge about systems,
functions, failure modes and actions. In [15], an ontology-based model-driven
engineering process for compositional safety-analysis is introduced. The authors
elaborate a domain ontology allowing the integration of a reasoner and inference
rules to detect lack of model elements and inconsistent parts. In [6], an ontology
for the formalization of Fault Trees is proposed. In [3], we proposed an ontolog-
ical approach to support the automation of activities and the management of
information related to the SW Failure Modes and Effects Analysis (SW-FMEA)
process, showing the effectiveness of the methodology in the context of a space
project. In [2], we showed how the ontological model of the SW-FMEA process
can be integrated with SW metrics.

We further develop this approach, with a major advancement on the man-
agement of the overall process so as to enable the verification of required devel-
opment activities and to integrate them with the documental process. To this
end, we show how the conceptual model concerning with the structural and
functional perspectives is integrated with a third orthogonal process model. The
model provides a self-consistent representation of available information and arti-
facts required by applicable regulatory standards, so as to guarantee consistency
with the industrial practice. Furthermore, we add a practical technique based
on black box testing and aspect oriented code instrumentation, that supports
automated extraction of dependencies between structural components and re-
quirements. This allows the semi-automatic production of the data needed in
required documents and the validation of their completeness and consistency.
The proposed approach permits to preserve the coherence of the model across
the maintenance and the refactoring occurring during development.

This paper is organized as follows. In Sect. 2 we introduce three fragments
of the ontological model, each representing concepts of a different perspective.
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In Sect. 3 we describe the connections among the three perspectives, explaining
how the instances of concepts and associations establish the connections. In
Sect. 4 we introduce a tool integrating the ontological model and a pluggable
module implementing the Aspect Oriented Programming. Finally, in Sect. 5, we
draw conclusions about the proposed approach.

2 Applying Ontologies in Systematizing the Development
Process

The fundamental elements of an ontological model are classes and properties :
classes represent categories or sets of elements; properties specify the internal
structure of a class or the relations among classes. Classes and properties rep-
resent the intensional part of the ontology, while their instances represent the
extensional part: individuals are realizations of concepts described by classes
and attributes are realizations of properties. Ontological technologies comprise a
rich framework of integrating components, including ontological languages such
as OWL [14], query languages, such as SPARQL [17], and rule languages, such
as SWRL [11]; in addition, off-the-shelf reasoners are available [22]. In order
to provide a visual representation of the ontology elements, we use UML nota-
tion enriched with stereotypes for RDF and OWL concepts as standardized in
the Ontology Definition Metamodel (ODM) [16]. Ontological entities are repre-
sented as classes, datatype properties are represented as their attributes, and
object properties are represented as relations among classes.

In this section we describe how the formal characterization of concepts in-
volved in the development process and the automatic manipulation of their data
instances are supported by the ontological abstraction. These concepts belong
to three different perspectives: i) the structural perspective concerned with the
structural decomposition; ii) the functional perspective concerned with func-
tional requirements and quality attributes; iii) the process perspective concerned
with the phases of the development and the documents produced.

2.1 Structural Perspective

The structural perspective, shown in Fig. 1, comprises ontological concepts which
model structural SW elements. A generic structural element is represented by the
Item class. An item can be the entire Computer SW Configuration Item (CSCI)
(i.e. an aggregation of SW with an individual configuration), a SW Component,
a SW Module, or a Method. The model is hierarchically organized from the entire
CSCI to the method (i.e. the smallest SW part with precise functionalities). The
CSCI is made of SW components, which are physically organized in SW modules,
containing methods written in some programming language (e.g. C, Assembly).
Each Method is associated with Code Metrics which represent structural metrics
of the code. Examples of code metrics are number of Lines Of Code (LOC), level
of nesting, and cyclomatic complexity. Instances of code metrics are associated
with a method through an instance of the Code Metric Accountability association
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has

1..*

Fig. 1. The ontological concepts belonging to the structural perspective

class representing the value of the specific metric for that method. A structural
item is associated with the Faults that represent the structural defects of the
item itself.

2.2 Functional Perspective

The functional perspective comprises ontological concepts concerned with func-
tional and quality requirements. Fig. 2 shows the involved ontological concepts.
A Requirement can be either a Functional Requirement, if it refers to the func-
tionalities implemented by the CSCI or a RAMS Requirement, if it refers to
RAMS attributes (Reliability, Availability, Maintainability, and Safety). A Test,
associated with a requirement, verifies the correct implementation of it. A re-
quirement is associated also with Failure Events, that are the different ways
in which the delivered service deviates from the correct implementation of the
system function [1]. A failure event can be a Testing Failure or an Operational
Failure, whether the failure is discovered during the testing phase or during the
operational phase, respectively. A requirement is associated with the Assurance
Level which is defined depending on the risk associated with the implementa-
tion of the requirement itself. The assurance level must be satisfied in the de-
velopment of SW elements implementing the requirement. Regulatory standards
as [5,19] recommend to allocate assurance levels to requirements according to
consequences of failures in relation to dependability attributes (e.g. reliability,
availability, safety) relevant for the considered application [21].

2.3 Process Perspective

The process perspective comprises the ontological concepts concerned with the
development process such as activities and documents. Fig. 3 shows the involved
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Fig. 2. The ontological concepts belonging to the functional perspective

ontological concepts. Standards and regulation adopted in the specific context
(e.g. CENELEC EN 50128 [5], ISO IEC 62304 [12], RTCA DO 178B [19]) are
represented by the Applicable Regulation class. They prescribe to perform ac-
tivities represented by Development and Verification Activity class, and guide
the production of documents, represented by Document class, along the develop-
ment life-cycle. Examples of development and verification activities are testing,
Hazard Analysis, and FMEA.

We assume the adoption of the MIL-STD-498 [24] which defines several type of
documents fully describing their content. Each subclass of the Document class
models a different document: the Software Requirements Specification (SRS ),
the Software Design Description (SDD), and the Software Testing Description
(STD). Each of them contains information needed for the development. Follow-
ing the common practice, an SRS can be divided into two parts, one listing
the functional requirements, the other summing up the quality attributes. The
former part is modeled by a class labelled CSCI Capabilities Reqs. Section, the
latter is modeled by a class labelled Other Reqs. Section.
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Fig. 3. The ontological concepts belonging to the process perspective
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3 Connecting Different Perspectives

The proposed ontological formalization provides a systematic ground for the
integration of concepts concerned with the structural, functional and process
perspectives. In this section, we describe the connections between the three per-
spectives showing how instances of associations between concepts of different
perspectives can be obtained.

3.1 Finding Instances in Documents

The specific instances of some concepts are reported in documents produced
along the development life-cycle [24]. This enables the population of the ex-
tensional part of the ontological model while maintaining consistency with the
industrial practice and improves cohesion among the activities of the life-cycle
and the documents, enabling their automatic production.

Fig. 4 shows (in bold) the connections among the classes representing docu-
ments and the classes corresponding to the concepts reported in the documents.
Concepts belonging to the structural perspective addressing the SW structure
(i.e. Item class) are reported in the SDD. Concepts belonging to the functional
perspective addressing requirements (i.e. Requirement class) are contained in the
SRS. In particular, the former part of the SRS contains Functional Requirements
while the latter reports RAMS Requirements. Concepts representing tests (i.e.
Test class) are reported in the STD.
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Fig. 4. The connections among the three perspectives, established through the docu-
ments produced along the development life-cycle

3.2 Tracing Requirements

The association among structural and functional elements is important with re-
spect to maintainability, since it impacts on the ability of the system in isolating
or correcting a defect as well as on satisfaction of new requirements. In addition,
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the identification of SW components that implement a requirement is also rel-
evant to verify that the implementation is compliant with design specification.
As a matter of fact, the regulatory standards expressly require that documents,
such as SRS and SDD, contain the traceability matrix.

<<owlClass>>
 SW Component 

<<owlClass>>
 Functional Requirement

<<owlClass>>
Usage Degree

<<objectProperty>>
is_implemented_by
<<objectProperty>>y

has_used_component

1..*

<<owlClass>>
CSCI

<<objectProperty>>
has_FR

<<owlClass>>
 Requirement

<<owlClass>>
RAMS Requirement

<<owlClass>>
Item

<<objectProperty>>
is_part_of

<<owlClass>>
 Fault

<<objectProperty>>
has <<owlClass>>

 Failure Event

<<objectProperty>>
causes

1

1..* 1..*

<<objectProperty>>
has

1..*
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1..*

Functional Perspective

Structural Perspective

Fig. 5. The connections among the structural and the functional perspectives, estab-
lished through the associations between a SW component and the implemented re-
quirements and between a failure event and the faults causing it

Traceability of requirements has been addressed in various works [8,27]. In [8],
the identification of required computational units is performed through a tech-
nique that combines the extraction of the static dependency graph and the
dynamic execution of some features. In [27], three metrics are introduced to
quantitatively evaluate the association of a component with a feature: the con-
centration of a feature in a SW component, the dedication of a component to a
feature, and the disparity which measures the closeness between a feature and a
component.

In our case the objective of the analysis is the identification of instances of
the association between Requirement and SW Component(s) which is indirect
through the Usage Degree class, as shown in Fig. 5. The association between
Test and Requirement(s) exercised in the test is also shown.

Formally, let ri be a generic requirement and cj a generic SW component, we
look for the relation T ⊆ 2FR×2C where FR is the set of requirements and C is
the set of SW components. We define the generic element T ∈ T as < Tr, Tc >
where Tr ∈ 2FR and Tc ∈ 2C . In doing so, < Tr, Tc >∈ T means that a set of
SW components Tc are related to a set of requirements Tr. Abusing of terms,
we call a component ci necessary for a requirement rj if

∀T ∈ T : rj ∈ Tr ⇒ ci ∈ Tc,
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we call a component ci potential for a requirement rj if

∃T ′, T ′′ ∈ T : rj ∈ T ′
r ∧ rj ∈ T ′′

r ⇒ ci ∈ T ′
c ∧ ci 	∈ T ′′

c .

Instances of the association between a requirement and SW components are
obtained for each requirement extracting the components necessary for its im-
plementation. As in [7], we express a usage degree (UG) of a SW component ci
in the implementation of a requirement rj , accounting for how many methods
M of ci are executed in realizing rj :

UG(ci, rj) =
M(ci, rj)

M(ci)
.

To identify the relation T we perform a set of tests aimed at exercising one or
more requirements tracing the SW components implementing them. This has
been done resorting to Aspect Oriented Programming [13,23]. The associations
of each requirement with the SW components necessary for its implementation
(mediated by Usage Degree class in Fig. 5) are imported in the ontology, so as
to add the extensional part.

The connection between the functional and the structural perspectives is re-
alized also with the association between a Failure Event, which represents a
failure of the associated Requirement, and the Faults that model the causes of
the failure. The association between an Item and its Fault(s) cannot be com-
pletely automated. However, given a failure, thanks to the association of the
requirement with SW components implementing it, the analyst is led to find
those items that more likely contain a fault causing the failure.

3.3 Extracting Code Metrics for Assurance Verification

The three perspectives are connected also through the verification of the level of
assurance obtained in the development process. A requirement defines a required
level of assurance depending on the risk associated with the implementation of
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Fig. 6. The connections among the structural, functional and process perspectives,
established through the verification of the level of assurance
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the requirement itself. The development of SW components implementing the
requirement must satisfy the required level of assurance. For each level of assur-
ance, standards prescribe to execute activities and to develop SW with specific
values of code metrics. Therefore each level of assurance is associated with a
set of required predicates about code metrics and development and verification
activities [3,2].

A set of predicates for a requirement r has the form

Pr =
{
X1 � k1, . . . , Xn � kn, Y1 = s1, . . . , Ym = sm

}
with n,m ∈ N

where, referring to the fragment of the ontological model shown in Fig. 6, Xi

and Yj , with i = 1 . . . n and j = 1 . . .m, are instances of Code Metric and De-
velopment and Verification Activity classes, respectively, while ki and sj are in-
stances of Code Metrics Accountability and D&V Activity Accountability classes,
respectively. If all the SW components contributing to the realization of r are
implemented with values of Xi lower (greater) than ki and Yj equal to sj , then
r is considered rigorously implemented.

Predicates can be operatively verified by collecting values of code metrics and
information about executed activities. Several tools supporting static analysis
can be used to extract values of code metrics [25,18], while data regarding ac-
tivities can be extracted directly from the documentation. Once data relative to
metrics are available, the validation process for a requirement implementation
consists in checking whether each SW component implementing it satisfies the
predicates. This will be shown in Section 4.1.

4 Practical Experience

The ontological abstraction of the proposed methodology can be directly con-
verted into an advanced SW architecture incorporating the ontological model.
This has been done by implementing a web application, called RAMSES (Reli-
ability Availability Maintainability and Safety Engineering Semantics), built on
top of a stack of semantic web technologies and standards.

The web application architecture is shortly sketched in Fig. 7. The Object-
to-Ontology Mapping (OOM) Layer bridges the gap between the Domain Layer
and the Data Layer solving the impedance mismatch, i.e. the conceptual distance
between the object model and the ontological model. In so doing, the domain
logic is captured by the ontological model, enabling the generalization of the
application logic in order to adapt it to the evolution of concepts.

4.1 Tool Capabilities

The tool’s ontological architecture brings about a number of benefits in terms
of reusability, interoperability, and extensibility. First, since the extensional part
of the ontology that is built for any given development is represented in OWL,
it can be exported so as to be used in different developments, thus avoiding the



104 I. Bicchierai et al.

Ontological Application

Presentation Layer

Domain Layer

OOM Layer

Data Layer

POJO

Ontological Model

Fig. 7. Three-tier ontological architecture of a web application incorporating layers
interfacing to users (Presentation Layer), managing application logic (Domain Layer),
mapping between object model and data model (Object to Ontology Mapping Layer),
and realizing data representation and conceptualization (Data Layer). The Domain
Layer is implemented using Plain Old Java Object (POJO) and the Data Layer is
realized through an Ontological Model.

effort for its (re)construction. Second, the ontological model can be modified at
little cost in order to adapt the tool to different industrial contexts and specific
regulatory standards.

The tool exploits the inference capabilities of an ontological reasoner by means
of SPARQL query or predefined SWRL rules. The reasoning capability is cru-
cial for the verification of the level of assurance. As reported in Section 3.3, a
requirement is rigorously implemented if the related SW components satisfy a
predefined set of predicates. For instance, the SWRL rule of Listing 1.1 can be
used to verify a predicate (an instance of the general form shown at the end
of that section). Thanks to this kind of rules, RAMSES is able to recommend
appropriate actions to the analyst, taking advantage of the ontology.

ramses:FunctionalRequirement(?r) ∧
∧ ramses:isImplementedBy(?r,?ud) ∧
∧ ramses:hasUsedComponent(?ud ,?swc) ∧
∧ ramses:hasSWModule(?swc ,?swm) ∧
∧ ramses:hasMethod(?swm ,?m) ∧
∧ ramses:hasParamAcc(?m,?spa) ∧
∧ ramses:hasLinkedParameter(?spa, ?sp) ∧
∧ ramses:hasName (?sp,‘‘cyclomatic complexity ’’) ∧
∧ ramses:hasParamValue(?spa , ?pv) ∧
∧ swrlb:greaterThan(?pv, 5) ⇒
⇒ ramses:NotRigorous(?f)

Listing 1.1. SWRL rule verifying the satisfaction of a predicate: if there exists a SW
component ?swc which is implemented by a SW module ?swm containing a method ?m

having a McCabe’s cyclomatic complexity ?sp greater than 5 the predicate is violated
and the functional requirement is considered not rigorously implemented.
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RAMSES aids the analyst in the identification of failure events and supports
the accomplishment of testing activities. If a failure event is discovered during
the operational phase, the associations between failures, requirements and tests
permit to identify the tests that should have covered the failure. Once the an-
alyst has identified the faults that cause the failure and associated them with
structural items (i.e. SW components), other requirements that could be not
satisfied are identified by means of the association between SW components and
requirements.

The tool can also ease and improve the process of recertification. This can be
useful when some changes happen in the development process. These changes
may refer to the implementation of SW (i.e. the structural perspective), the re-
quirements (i.e. the functional perspective), or the adopted standard/regulation
(i.e. the process perspective). The ontological model reacts to these changes giv-
ing evidence of possible inconsistencies arisen among the data inserted in the
ontology. The tool also recommends the re-execution of tests or the accomplish-
ment of specific activities so as to conform with a specific standard.

Furthermore, pluggable modules, supporting specific activities, can be devised
to produce concepts and associations that, leveraging on OWL, can be integrated
in the ontology, assuring consistency and coherence with data already present.
For instance, appropriate plug-ins allow the automatic import of requirements
from specification documents.
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Fig. 8. UML Activity Diagram showing actions performed by RAMSES and the plug-in
module during the tracing of functional requirements
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4.2 Experimentation on a Scheduler of an Electromechanical
System

The major application of the tool has been in a space project for a star tracker
with more than 250 requirements, developed at the FinMeccanica site of Selex
Galileo in Florence. In the following we report on the application of the tool
to a smaller project concerning a scheduler of an electromechanical system for
immunoenzymatic analysis, manufactured by BioMérieux, a worldwide group
specialized in the field of in vitro diagnostics for medical and industrial appli-
cations. The scheduler [20] has been developed in the Software Technologies
Laboratory (University of Florence). The system executes multiple concurrent
analyses, the aim of the scheduler is to minimize the completion time for the
overall set of analyses, avoiding conflicts in the shared hardware. The scheduler
is composed of a single CSCI and has to satisfy 7 functional requirements; one
of them, called “Constraints loading”, imposes timing constraints to analyses
execution. The CSCI is made up of 10 SW components, 10 SW modules, and 76
methods.

In order to test our approach, a plug-in module implementing the process of
tracing requirements, described in Section 3.2, has been integrated in the tool
RAMSES. Fig. 8 shows an UML Activity Diagram describing actions performed
by the plug-in module and by RAMSES to obtain instances of the association
between requirements and SW components. This is used to verify information
contained in the traceability matrix reported in the SDD document. The plug-
in is implemented as a Java application which uses AspectC to instrument the
scheduler code so as to extract information about SW components executed. The
process follows the activities shown in Fig. 8; the result is an OWL file which
is imported in RAMSES to add to the ontology the instances of the association
between Requirements and SW Components (Fig. 5). Application of the plug-in
to the scheduler has shown that the functional requirement “Constraints loading”
is implemented by 5 SW components whose usage degrees are as follows:

SW Component Usage Degree (%)

block 100.00
matrix 42.86
problem 60.00

problem solver 10.00
startingjitter strategies 16.67

This particular result verifies that the actual implementation is compliant with
the traceability matrix reported in the documentation of the scheduler, thus
witnessing the goodness of the approach.

5 Conclusions

We proposed an ontological model formalizing concepts and data involved in the
development process of safety-critical systems, giving them a precise semantics,
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so as to integrate in a common framework the activities performed and the out-
comes produced during the whole life-cycle. We enhanced the work presented in
previous papers by adding the process perspective to the structural and func-
tional ones, capturing concepts involved in the regulation of industrial processes.
In this manner, we obtained a framework general enough to be adapted to any
given context. The framework can be tailored to different regulatory standards
leveraging on the extensibility and the manageability provided by the ontological
architecture.

The formalized model was integrated in a web application, called RAMSES,
built on top of well-established semantic-web technologies. We discussed the use
of plug-ins to supplement the ontology with concepts derived from specific activ-
ities. We have experimented the tool in a satellite star tracker and in a scheduler
of an electromechanical system performing biological analysis; we reported some
results from the latter. A specific plug-in was devised and the information gener-
ated by its execution has been integrated in the ontology to verify the consistency
of documents produced along the development life-cycle. The experimentation
has proved feasibility and effectiveness of both the ontological approach and the
tool, showing improvements over current practices.
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Abstract. The statistics captured during testing a faulty program are
the primary source of information for effective fault localization. A typi-
cal ranking metric estimates suspiciousness of executable statements and
ranks them according to the estimated scores. The coverage-based rank-
ing schemes, such as the metric used in Tarantula and Ochiai score, utilize
the execution profile of each test case, including code coverage and the
statistics associated with the number of failing and passing test cases.
Although the coverage-based fault localization metrics could be extended
to hypothesis testing and in particular to the chi-square test associated
with crosstab or known as contingency tables, not all contingency table
association metrics are explored and studied.

We introduce the odds ratio metric and its application to the fault
localization problem. The odds-ratio metric has been used extensively
in categorical data analysis and in measuring the association of depen-
dency between dichotomous variables. However, its application to fault
localization metric is new. Furthermore, we investigate the effectiveness
of conditional odds ratio metric for fault localization when there are
multiple faults in the programs. Our experimental results show that the
odds ratio metric performs better than the other ranking metrics studied
for single faults, whereas, the conditional odds ratio ranking scheme is
competitive when there are multiple faults in the software under test.

Keywords: testing, fault localization.

1 Introduction

Fault localization techniques use the information captured during program anal-
ysis to rank a program’s statements in decreasing order of suspiciousness. The
suspiciousness score is an uncertainty measure associated with the hypothesis
that the underlying statement is faulty. The information required to estimate the
suspiciousness is obtained through the execution profiles captured when running
a set of test cases.

Several fault localization metrics have been proposed based on the number
of passing and failing test cases and capturing the code coverage obtained by
the execution profiles. The most discussed fault localization metrics are the one
used in the Tarantula [1] tool and the Ochiai metric[2]. The Tarantula fault lo-
calization tool and Ochiai metric estimate suspiciousness of statements based on
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the number of passing or failing test cases exercising the underlying statements.
A statement is likely to be ranked as highly suspicious if more failing test cases
exercise the statement. Similarly, a statement is unlikely to be suspicious if more
failing test cases cover statements other than the underlying one.

Empirical studies show the effectiveness of the Tarantula fault localization tool
and the Ochiai metric [3] in estimating the suspiciousness of statements. Naish
et al. [4] report several ranking metrics in most of which the suspiciousness of
a statement has a direct relationship to the number of failing test cases that
exercise the underlying statements. Though the set of ranking metrics reported
in [4] is diverse enough, the performance of statistical-based ranking scores to
the fault localization problem still remains an open question.

The statistics required for estimating the suspiciousness of statements form a
2×2matrix or table, often called a contingency table, in which each cell represents
the frequency of events observed for two variables. A contingency table is a type
of matrix or table that displays the joint and marginal distributions of two
categorical variables. The main advantage of contingency table analysis is to
measure the association between the variables.

The measures developed by contingency table analysis have already been
adapted in many areas including machine learning and in particular feature
selection research. Wong et al. [5] have explored the statistically-driven rank-
ing metrics based on contingency tables and reported that these metrics were
competitive to the existing and traditional fault localization ranking metrics.
More specifically, Wong et al. discussed two statistical-based ranking metrics
known as Chi-square and Fisher score, both based on statistics used for analyz-
ing contingency tables. However, one of the most important statistically-driven
association metric known as odds-ratio has less or never been addressed in the
software testing literature.

This paper investigates the performance of the odds ratio scoring metric and
its variation the conditional odds ratio for the fault localization problem. The
odds ratio metric is a measure of effect size describing the strength of associ-
ation or dependency between two data values. The odds ratio ranking metric
is extensively used in many classification problems, including bioinformatics [6]
and text mining [7].

The case studies conducted in this paper show that the odds ratio ranking
metric outperforms the fault localization metrics based on Tarantula tool and
Ochiai as well as the other statistically-driven metrics such as Chi-square. More-
over, we report that in the case of multiple faults, the conditional odds ratio is
competitive to the existing ranking metrics.

The main contributions of this paper are as follows:

– Investigate the performance of the odds ratio metric as a new statistical-
based ranking metric for the fault localization problem;

– Introduce conditional odds ratio as a new statistical-based ranking metric
for the fault localization problem when multiple faults exist in the program;

– Report the outperformance of proposed ranking metrics compared to the
technique based on Tarantula, Ochiai, and chi-square metrics.
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The paper is organized as follows: Section 2 introduces the odds ratio and
explores its concept. An illustrative example is presented in Section 3. Section 4
reports the results of case studies and evaluates the performance of odds-ratio
metric in the context of the fault localization problem. The conditional odds
ratio and an analysis on multiple faults are reported in Section 5. The threats
to validities are discussed in Section 6. We review the literature in Section 7.
Section 8 concludes the new metrics we proposed.

2 Odds Ratio: A Metric for Associations

The odds ratio is a measure of effect size, describing the strength of association
between two binary (yes or no) data values. It is used as a measure to compare
the probability of a certain event for two groups. The odds ratio offers an idea of
how strongly a given variable is associated with other variables. The odds ratio
metric plays an important role in logistic regression where the goal is to measure
the strength of association between a predictor and the response variable.

There are numbers of ways to measure the association between two binary
variables in the contingency table. However, most of the measures focus on dif-
ferent aspects of associations. The concept of the odds ratio is better understood
by analyzing contingency tables. The contingency tables whose entries are the
frequencies or counts of some events display the frequency distribution of the
variables and are often used to analyze the relationship between categorical vari-
ables. The general form of a 2 × 2 contingency table is given in Table 1(a), in
which a sample of N (N=a+b+c+d) observations is classified with respect to
two qualitative variables X and Y . The categorical variable X has 2 categories,
i.e. X− and X+, whereas, the variable Y has 2 categories, i.e. Y− and Y+.
The notations are adapted from the categorical data analysis where “-” and
“+” represent the “low” and “high” values. There is a lot of information that
a contingency table can provide. One of the primary interests is investigating
the relationship between two variables X and Y and the contingency table can
identify how strong the relationship shown in the contingency table is. Wong et
al. [5] discuss the use of contingency table analysis or crosstab-based statistical
method for the fault localization problem. The categorical-based ranking metrics
based on contingency tables, as shown by Wong et al. [5], were χ2 and Fisher
score ranking metrics. However, the odds-ratio as one of the most important
metrics for analyzing contingency tables have not been taken into consideration
in [5].

Odds are the ratio of the probability or frequency that an event will occur
versus the event will not occur. For example, given a random variable X whose
probability distribution is known, written as P (X = x) = p(x), the odds for x

occurring is p(x)
1−p(x) . In fact, the odds ratio refers to the ratio of the odds of an

event occurring in the one control group versus its treatment group. In a typical
2 × 2 contingency table as illustrated in Table 1, the odds for row Y− are a

b ,
whereas, the odds for row Y+ are c

d . The odds ratio (OR) is then simply the
ratio of the two odds and is expressed by Expression 1:
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Table 1. 2× 2 contingency tables

(a) Frequentist

X− X+

Y− a b

Y+ c d

(b) Probabilistic

X− X+

Y− a
a+b

b
a+b

Y+ c
c+d

d
c+d

Odds Ratio =
a
b
c
d

=
a× d

c× b
(1)

The odds ratio can also be defined in terms of the conditional probability dis-
tribution. We still utilize the two binary random variables X and Y as shown
in Table 1(a). The conditional probability distribution of variables X under the
condition of Y is shown in Table 1(b), which can be deducted from the following
expression:

P (X − |Y−) =
P (X−, Y−)

P (Y−)
=

a
a+b+c+d

a+b
a+b+c+d

=
a

a+ b

where P (X−, Y−) is the joint probability distribution of the two variables X
and Y . Therefore, the odds for X− within the two sub-populations, i.e. Y− and

Y+, can be written as a/(a+b)
b/(a+b) . Similarly the odds for X+ is c/(c+d)

d/(c+d) . Hence, the

odds ratio is defined in terms of the conditional probabilities, as shown in the
following expression:

Odds Ratio =

a
a+b
b

a+b
c

c+d
d

c+d

=
a× d

c× b

Since the odds ratio is a measure of effect size, then the question is about the
relationship between the odds ratio scores to statistical independence. To illus-
trate the relationship between the odds ratio and statistical independence, we
assume X and Y are independent as shown in in Table 1(a), and the marginal
probabilities of X− and Y− are p(x) and p(y). Thus the joint probabilities can
be expressed in terms of the product of their marginal probabilities as shown in
Table 2. Through simple calculation based on Expression 1, we conclude that
the odds ratio is equal to one in this case. The odds ratio can only be equal
to 1 if the joint probabilities can be factored in this way. Thus the odds ratio
equals 1 if and only if X and Y are independent. Furthermore, we can easily
conclude that an odds ratio of 1 implies that the event X− is equally likely in
the both treatment and control groups, i.e. Y− and Y+. Accordingly, an odds
ratio greater than one implies that the event X− is more likely to occur in the
first group, i.e. Y−. In an analogous way, an odds ratio less than one implies that
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Table 2. Joint probability distribution of two variables

X− X+ Total

Y− p(x)p(y) (1− p(x))p(y) p(y)

Y+ p(x)(1− p(y)) (1− p(x))(1− p(y)) 1− p(y)

Total p(x) 1− p(x)

the event X− is less likely to occur in the first group Y−. In other words, an
odds ratio greater than 1 implies that there exists a strong dependence between
X− and Y−. The greater odds ratio score is, the stronger the dependence is.
Conversely, the odds ratio less than 1 is an indication of a strong dependence
between X− and Y+.

We use the conceptualization of the fault localization problem and ranking
metrics based on contingency table analysis as introduced by Wong et al. [5].
We develop a set of notations for the fault localization problem. Table 3 repre-
sents an adapted 2× 2 contingency table that we make for each statement in a
given program. The problem of fault localization is then expressed in terms of
analysis of the contingency tables made for statements and computing a ranking
based on these tables. We investigate the performance of the odds ratio as a
fault localization metric compared to those discussed by Wong et al. [5]. More
specifically, we define:

– nef : The number of test cases exercising the underlying statement and failed;
– nef : The number of test cases exercising the underlying statement and not

failed;
– nef : The number of test cases not exercising the underlying statement but

failed;
– nef : The number of test cases not exercising the underlying statement and

not failed;
– ne: The total number of test cases exercising the underlying statement;
– ne: The total number of test cases not exercising the underlying statement;
– nf : The total number of failing test cases;
– nf : The total number of passing test cases;
– N : The total number of test cases.

In terms of notations developed for fault localization, the odds ratio measures
the odds of a block (statement) i executed by the failing test cases divided by
the odds of a block (statement) not exercised by the passing test cases; the odds
ratio is then measured by Expression 2:

Odds Ratio(s) =

nef+0.1
ne+0.1 /

nef+0.1

ne+0.1

nef+0.1
ne+0.1 /

nef+0.1

ne+0.1

(2)

where the constant 0.1 is added to avoid division by zero and computational
problems as suggested by in the book written by Liu and Motoda [7]. Similarly,
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Table 3. A two-way contingency table for each statement in a given program

e e Total

f nef nef nf

f nef nef nf

Total ne ne N

an odds ratio of 1 implies that the event is equally likely to happen in the
both treatment and control groups. In other words, the odds ratio is equal to
1 if and only if the two variables are independent in the table. In terms of
the fault localization context, the greater odds ratio scores are the indications of
statements being more suspicious. We use Expression 2 for further computations
in the experimentations reported in this paper.

3 An Illustrative Example

To have better insights of the mechanism of computing the odds ratio and the
other metrics, we present an example. The program listed in Figure 1 presents
an illustrative example, a bonus program, where the sum of three input numbers
is calculated. A negative input value causes the program to add one, as bonus,
to the sum computed. The code is composed of 10 lines with a fault on the line
three. The program is exercised with eight test cases of which two have failed.
Figure 1 also demonstrates the statement coverage achieved by each test case.

Table 4 shows the suspiciousness score calculated using the given ranking
metrics, including existing metrics such as the metric used in Tarantula [1],
Ochiai [2], and χ2 [5], in addition to the odds ratio metric. These metrics are
computable as following where s represents the underlying statement for which
the statistics are collected:

Tarantula(s) =

nef

nef+nef

nef

nef+nef
+

nef

nef+nef

Ochiai(s) =
nef√

(nef + nef )(nef + nef )

χ2(s) =
N × (nef × nef − nef × nef )

2

ne × nf × ne × nf

Similar to the other researchers [8], we compute the fault localization cost by
measuring the percentage of statements in the program that must be examined
before reaching the first faulty statement in the code. More precisely, we define
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bonus()  { 
 int x, y, z, b; 
 read(x, y, z); 
 while (x < 0) { 
    x = x + 1; } 
 if (y < 0) { 
    y = y + 1; } 
 if (z < 0) { 
    z = z + 1; } 
 b = x + y + z; 
 return b; 
} 
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Fig. 1. An illustrative example

Table 4. The suspiciousness of statements for the illustrative example

Statistics Metrics
Statement nef nef nef nef Tarantula Ochiai Chi-Square Odds Ratio

1 2 0 6 0 0.5 0.5 0 0.3
2 2 0 6 0 0.5 0.5 0 0.3
*3* 2 0 6 0 0.5 0.5 0 0.3
4 2 0 2 4 0.8 0.7 2.7 4
5 2 0 6 0 0.5 0.5 0 0.3
6 1 1 3 3 0.5 0.4 0 1
7 2 0 6 0 0.5 0.5 0 0.3
8 1 1 3 3 0.5 0.4 0 1
9 2 0 6 0 0.5 0.5 0 0.3
10 2 0 6 0 0.5 0.5 0 0.3
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cost for localizing faults as the total number of statements exercised before reach-
ing (examining) the first statement containing faults over the total number of
statements in the program under test. More specifically, the cost is defined as the
proportion of the program to be inspected before inspecting a faulty statement.

It may be possible that some statements rank equally, i.e. tie ranking scores. In
calculating the overall fault localization cost when some non–faulty statements are
ranked tie with a faulty statement, we took into computation exercising all those
statements that were ranked tie with the faulty statement, i.e. the worst casewhere
the debugger inspects all non-faulty and faulty statements with equal ranks.

4 Evaluation and Case Studies

This section evaluates the fault localization ranking metrics based on the odds
ratio introduced in the paper through a number of case studies including versions
with single fault and synthesized versions with multiple faults where single faults
are incorporated simultaneously. First, we describe the experimental setup. Then
we report the results of the analysis.

Subject Programs. Table 5 lists the subject programs used for experimen-
tations. We obtained these Java programs from two sources. First, We stud-
ied some extensively used Java programs, including two releases of NanoXML,
two releases of XMLsec, two releases of Jmeter, and three releases of Jtopas,
from the Software Infrastructure Repository (SIR) [9]. The faults for these pro-
grams are hand-seeded by the other researchers. Second, we selected some other
Java programs from Java standard libraries, including Bitset, RE, Math and
FilteredRowSetImpl. We then used MuJava tool [10] to generate some mu-
tants and randomly selected 10 mutants from the pool of mutants generated by
all mutation operators implemented by MuJava. The test cases for these pro-
grams were generated by some graduate students, majoring in computer sciences
and software engineering, using JUnit framework based on the specifications pro-
vided for each program. We excluded the faults or mutants for which no available
test cases failed.

Experimental Setup. In order to obtain the required statistics for each fault,
we instrumented the code manually by adding print command into each block
of statements, i.e. a series of statements with only one entry point and one exit
point, and capturing the statement coverage and the other statistics. We ran
each test case for each single fault, recorded the test status (i.e. passing/failing)
and computed the required statistics for each block in the source code including
(i.e. nef , nef , nef and nef ). We then calculated the suspiciousness score for each
block and ranked it according to the odds ratio calculated. As we pointed out
earlier in Section 3, we measured the fault localization cost as the percentage of
statement in the program that must be examined before reaching the first faulty
statement [8].

Data Analysis and Results. Table 6 reports the performance of the fault lo-
calization metrics including the odds ratio. The average cost of fault localization
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Table 5. Subject programs

Program (version) Description LOC Class Tests Faults

NanoXML(v1) XML parser 7646 24 214 7
NanoXML(v2) XML parser 7646 24 214 7
XMLsec(v1) XML encryption 21,613 143 92 1
XMLsec(v2) XML encryption 21,613 143 92 2
Jmeter (v1) Load tester 43,400 389 78 1
Jmeter (v3) Load tester 43,400 389 78 5
Jtopas (v1) Text parser 5400 50 54 10
Jtopas (v2) Text parser 5400 50 126 1
Jtopas (v3) Text parser 5400 50 140 1

Bitset (v1) Bits vector 565 1 24 10
FilteredRowSetImpl (v1) Row set filter 615 1 28 10
Math (v1) Basic numeric operations 384 1 116 10
RE (v1) Expression evaluator 974 1 27 10

using metric introduced by Tarantula, Ochiai, and χ2 metrics is 14.32%, 14.05%,
and 12.69%, respectively. The average cost of debugging as required by the odds
ratio is 11.92%, outperforming the other fault localization metrics. In most cases,
the cost associated with fault localization is similar for the four metrics. How-
ever, for Jemeter, NanoXML, Bitset and FilteredRowSetImpl programs, the
odds ratio metric performs significantly better.

5 Discussion

In practice, there exist many faults in a program under test. The existence of
multiple faults in a given code may introduce some interactions among multiple
faults. The presence of multiple faults and their interactions in a given code
raise the concerns of whether the coverage-based fault localization technique is
still effective in debugging programs. This section first introduces and discusses
the significance of the application of the conditional odds ratio to the fault
localization problem in the presence of multiple faults in the given code. Second,
it provides further analyses related to the performance of the conditional odds
ratio for debugging programs with multiple faults.

5.1 Conditional Odds Ratio

We introduce the concept of probabilistic odds ratio known as the conditional
odds ratio and demonstrate that conditional odds ratio better formulate the
fault localization problem when multiple faults exist in a given program.

The traditional odds ratio follows that each sample can be classified accord-
ing to the values of the binary responses from two parameters or factors. For
instance, under the context of fault localization whether: a) a statement is ex-
ercised, b) the test cases failed. The results of N samples can be expressed in a
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Table 6. Fault localization costs

Cost%
Program Version Tarantula Ochiai Chi-Square Odds Ratio

Jemeter v1 17.00 17.00 17.00 17.00
Jemeter v3 4.44 4.44 4.44 4.44
XMLSec v1 6.90 6.90 6.90 6.90
XMLSec v2 7.85 5.88 5.88 5.88
NanoXML v1 21.88 21.88 18.49 16.93
NanoXML v2 41.95 43.39 41.75 37.31
Jtopas v1 2.00 1.33 1.33 1.33
Jtopas v2 8.82 8.82 8.82 8.82
Jtopas v3 17.24 17.24 17.24 17.24

Bitset v1 6.33 6.83 5.83 4.50
FilteredRowSetImpl v1 26.13 26.13 25.25 22.13
math v1 3.50 3.50 3.50 3.50
RE v1 17.50 15.33 10.00 12.67

Average 14.32 14.05 12.69 11.92

2×2 table as shown in Table 3 where N is the number of observations. However,
if more than two factors are received at the same time, we would extend the
concept of odds ratio to multi-dimensional contingency tables where the third
dimension accounts for the third factor added to the analysis and so forth. A
possible way to analyze multi-dimensional contingency tables is to exploit the
notion of conditional odds ratio. Consider a 3-way contingency table with three
variables (X , Y , Z). It is possible to utilize the odds ratio in order to measure
the association between X and Y conditioned on the fixed categories of Z = z.
This is the conditional odds ratio of X and Y conditioned on Z = z and is
denoted as COR(X,Y |Z = z).

The concept of conditional odds ratio can be expressed in terms of higher di-
mensional contingency tables. For instance, the associations among three factors
can be represented by a 3-way (three dimensional) contingency table. Figure 2(a)
illustrates a 3-way contingency table X × Y × Z where the association among
three variables X,Y and Z is of interest. The conditional odds ratio for mea-
suring the associations among these three variables is defined by fixing the level
of one variable and computing the ordinary (traditional) odds ratio between the
other two variables. More precisely, the conditional odds ratio is the odds ratio
between two variables for fixed level l of the third variable [11, 12].

The procedure results in making a series of 2-way contingency tables and
computing ordinary odds ratio for these tables. The 2-way contingency tables are
called “partial tables.” The conditional odds ratio are thus computable using the
partial tables, and sometimes are referred to as measures of partial associations
[11, 12]. The computation of conditional odds ratio then yields:

– K frontal planes or XY for each level of Z.
– J Vertical planes or XZ for each level of Y .
– I Horizontal planes or Y Z for each level of X .
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Fig. 2. Three-dimensional contingency tables

For the fixed level of Z, the conditional XY association with binary responses
where the given k–th level of Z is measurable through Expression 3 which is
quite similar to Expression 1:

Conditional Odds RatioXY (k) = θXY (k) =
n11kn22k

n12kn21k
(3)

where nijk is the observed frequency in the (i, j, k)th cell. There might be some
cases where the exact number of observations in a given cell is unknown and
therefore the expected frequency needs to be estimated. The estimation of the
expected frequency is then possible through utilization of marginal values in the
tables as expressed in the following expression [11, 12]:

Conditional Odds RatioXY (k) = θXY (k) =
μ11kμ22k

μ12kμ21k

where μijk is the expected frequency in the (i, j, k)th cell and it is defined as:

μijk = N.πijk = N.
Grand total for the (i, j, k)th cell

Sample Size

where N is the total number of observations and πijk is the sample proportion
of the (i, j, k)th cell. If θXY (k) 	= 1, then variables X and Y are conditionally
associated. In other words, conditional independence means that θXY (k) = 1 for
all k = 1, ...,K, whereas, the conditional dependence means that θXY (k) 	= 1 for
at least one k = 1, ...,K.

The conditional odds ratio can formulate the causality and association be-
tween program statements or blocks, i.e. a series of statements with only one
entry and one exit point. It is a common practice that test practitioners of-
ten debug their programs through inspecting whether exercising two blocks of
statements together would cause the exposition of failures.

Assume that a test practitioner is interested in inspecting whether exercis-
ing two blocks of statements might cause exhibition of faulty behavior. In terms



120 X. Xue and A. Siami Namin

of the fault localization domain, we make a 3-dimensional contingency table
with three factors i.e. X , Y , Z where factor X represents the current block i
of the program, factor Y represents the test cases and their status (i.e. failing
or passing), and factor Z represents the other already executed block j of the
program. We can formulate the problem by exploiting the conditional odds ratio
where the first variable is the current block of execution, the second variable is
the test cases and their status, i.e. failed or passed, and the third variable is the
already exercised block of code. More specifically, as Figure 2(b) demonstrates,
for the fault localization context the three dimensions are defined as:

Current Block × Test Cases×Already Executed Block

The purpose of exploiting the conditional odds ratio is to study the relationship
between an executed block i and failing test cases under the condition that other
block j is also exercised. We believe that this definition addressed the causality
between blocks i and j.

In our experiments, we computed all possible odds ratios by fixing the “Al-
ready Executed Block” and calculating the ordinary odds ratio for each level of
the other two variables, i.e. current block and test cases. For instance, assuming
that there are 100 blocks of statements, we considered all 100 ∗ 99 possible cases
for each block then made 100 ∗ 99 partial contingency tables and calculated the
odds ratio for each table.

5.2 Experiments on Multiple Faults

Similar to the fault localization problem with single fault, the cost of debugging
a program with multiple faults is defined as the percentage of statements in the
program that must be examined before reaching the first faulty statement. In
this section, we investigate the effectiveness of coverage-based fault localization
when the program under test contains multiple faults.

We reused the same subject programs we studied in the first experiment.
We generated faulty versions of each program containing multiple faults by re–
introducing (re–injecting) the existing single faults from different faulty versions.
We generated faulty instances of 1 up to 10 faults for each program when number
of faults allowed, i.e. some of the programs studied have only a few number of
hand-seeded faults. We ran each test case for each newly generated faulty version
with multiple faults, recorded the test status, and collected the statistics for each
block of the program in the source code including nef , nef , nef , and nef . Finally,
we calculated the fault localization cost as defined inspecting the proportion of
programs inspected before reaching the first faulty block in the faulty version
containing multiple faults.

Table 7 reports the average of the fault localization cost for the metrics studied
including the conditional odds ratio for multiple faults. On average, the cost of
fault localization based on the conditional odds ratio metric is 4.65%; whereas,
the cost of debugging for the Tarantula, Ochiai, Chi-square, odds ratio metrics
are 10.31%, 5.24%, 5.20% and 5.11%, respectively.
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Fig. 3. The average cost of localizing each fault quantity per subject



122 X. Xue and A. Siami Namin

Table 7. The average computed fault localization cost for all programs

Cost%
Conditional

#Faults Tarantula Ochiai Chi-Square Odds Ratio Odds Ratio

1 14.32 14.05 12.69 11.92 17.85
2 11.48 9.60 9.06 9.13 9.08
3 10.56 7.25 7.15 6.91 6.30
4 9.58 4.96 4.98 5.01 4.30
5 9.81 4.18 4.27 4.35 3.69
6 10.54 4.03 4.03 3.97 3.56
7 11.63 4.11 4.11 3.98 3.64
8 8.13 7.34 7.28 6.06 5.25
9 12.45 4.79 4.44 4.01 3.66
10 14.00 4.94 4.28 3.78 2.97

Average 10.31 5.24 5.20 5.11 4.65

The results indicate that on average the odds ratio and the conditional odds
ratio outperform the other fault localization metrics. The conditional odds ratio
underperforms for programs with single fault (17.85%) compared to the Taran-
tula, Ochiai, chi-square, and the traditional odds-ratios (14.32%, 14.05%, 12.96%
and 11.92%, respectively). However, the results for multiple faults strongly in-
dicate the outperformance of the conditional odds ratio when more than three
faults exist in the program. Our controlled experiments indicate that when the
program under testing contains more than three faults, the conditional odds ra-
tio offers better estimation of location of faults. Furthermore, the improvement
obtained through the conditional odds ratio seems to be significant compared to
the other ranking metrics, i.e. approximately 0.5%.

For the faulty versions with two faults, the conditional odds ratio metric is
still competitive compared to the other metrics and the difference is small. For
the programs with two faults, the most accurate metric is the chi-square metric
(9.06%), whereas the cost based on the condition odds ratio metric is 9.08%.
However, for programs with greater number of faults, the odds ratio and its
conditional variation performs better than Tarantula and Ochiai metrics (11.48%
and 9.60%). We also noticed that the condition odds ratio metric performs worst
for programs with single fault and its effectiveness increases with the increase of
the number of faults.

A notable observation is that the results vary for different subject programs.
Figures 3(a)–3(h) provide detailed views of the fault localization cost calculated
for each program. Figure 3(a) illustrates the reduction in cost for the conditional
odds ratio metric when the quantity of fault increases for the Jmeter-V3 pro-
gram. The cost calculated through the conditional odds ratio is the lowest value
when program contains five faults and it is the most effective compared to the
other metrics. However, when the quantity of faults is between 1 and 4, the odds
ratio, chi-square and Ochiai metrics perform better than the conditional odds
ratio metric and localization effort requires less cost.
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The NanoXML-V1 program (Figure 3(b)) exhibits a consistent result compared
to the Jemeter-V3 program in that the cost decreases when the quantity of
faults increases with a minor exception that the cost increases slightly when
the quantity of faults is three. For the NanoXML-V2 program (Figure 3(c)), the
conditional odds ratio metric demonstrates the best performance regardless of
the number of faults. A slight increase in the cost based on the conditional odds
ratio is observable when the number of faults increases to five.

For the Jtopas-V1 program (Figure 3(d)), except the metric used in the
Tarantula fault localization, the other metrics perform similarly. The metric
used in Tarantula exhibits very poor performance compared to the other met-
rics. The poor performance is more noticeable for programs with greater number
of faults. For the FilterRowSetImpl program (Figure 3(e)), we observed the ef-
fectiveness of all 5 metrics increase with the increase of number of faults with
minor exception, and the conditional odds ratio metric provides better perfor-
mance.

The remaining subject programs Bitset-V1, Math-V1, and RE-V1 exhibit sim-
ilar results indicating the better performance obtained through the conditional
odds ratio metric. They are all consistent with FilterRowSetImpl except the
metric used in Tarantula, whose effectiveness decreases with the increase of the
number of faults.

6 Threats to Validity

Similar to any empirical studies in software engineering, the quasi experimenta-
tions reported in this paper are also controlled [13] and thus prone to possible
experimental threats. By quasi-experiments we mean experiments that lack ran-
dom assignments to conditions and the selection is performed by means of self-
selection and employing certain methods of control. The quasi-experimentations
usually are designed for measuring causal inferences between dependent and
independent variables where the conditions are controlled for.

The subject programs used in this paper are Java applications with hand-
seeded faults and mutants. Other programs written in various programming
languages may behave differently and thus the results may not carry over to
other similar cases. In particular, As pointed out by Andrews et al. [14] hand-
seeded faults may not exhibit the characteristics of real faults and thus the
metrics discussed may exhibit varying performances.

The purpose of code instrumentation is to capture the execution flow of the
programs under different test cases. Since the location and the number of code
instrumentations has been chosen randomly, no systematic bias has been intro-
duced in the experimental procedure as reported in this paper.

We utilized and computed fault localization cost as introduced and used by
other researchers. Different fault localization cost metrics may yield different re-
sults. Additionally, we implemented the Tarantula, Ochiai, and chi-square met-
rics by developing our own Java scripts. We double checked the accuracy of our
implementation on different programs as reported in literature.



124 X. Xue and A. Siami Namin

7 Related Work

Debugging is one of the most time consuming parts of software development
activities. Many fault localization techniques and metrics have been developed
to localize the cause of failures and accelerate the debugging activities. Delta-
debugging [15, 16], dynamic program slicing [17–19], interactive fault localization
[20], machine learning approaches [21], and probabilistic reasoning [22–24] are
some of the techniques introduced in the literature.

In a typical machine learning technique a learning model is developed which
provides a means to define proper ranking or classification schemes. Briand et al.
[25, 21] discuss the RUBAR method, a rule-based statement ranking mechanism
to identify suspicious statements, using decision trees to learn various failure
conditions with respect to execution profiles.

Statistical learning and probabilistic reasoning are the other approaches for
ranking statements [22–24]. A common practice is to develop a probabilistic
model capable of learning from execution profiles of test cases. Baah et al. [23]
discuss the application of causal inference for statistical fault localization. The
causal graphs are probabilistic representations of structural causal models. The
causal graphs are based on program dependency graphs, an intermediate repre-
sentation that explicitly identifies data and control dependencies for each oper-
ation in a program. Zimmermann and Nagappan [26] report an application of
dependency graph for predicting defects in code. Similarly, the statistical debug-
ging method discussed by Liblit et al. [22], the universal probability model [24]
and the causal dependency-based fault localization methods learn a probabilistic
model to rank the suspiciousness of statements.

The most widely discussed fault localization approach is the use of proper met-
rics to rank statements in terms of their suspiciousness also known as coverage-
based fault localization. A common practice for localizing faults is to execute the
test suite on the faulty program and calculate some statistics similar to those
discussed in Section 2 about each statement. The computed statistics for each
statement are then combined to estimate the suspiciousness of the underlying
statement. Hence, the effectiveness of the fault localization techniques relies on
the ranking metric employed to combine the statistics computed. Metrics such
as the one used in Tarantula fault localization tool [1] and Ochiai [2] are two pre-
dominant ranking metrics. Similarly a crosstab-based statistical method based
on Chi-Square was proposed by [5].

Empirical studies show that these ranking metrics outperform other fault
localization metrics in reducing the debugging cost [3, 2] where cost is defined
as the percentage of statements in the program that must be examined before
reaching the first faulty statement [8]. DiGiuseppe and Jones report that the
fault localization metrics such as Ochiai are still effective even in the presence
of multiple faults [27].

Lucia et al. [28] report an empirical study in which the performance of the
association metrics including the odds ratio is compared to the metric used in
Tarantula and Ochiai. The small scale experiment conducted by Lucia et al.
on the Siemens C program shows that both Ochiai metric and the metric used
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in Tarantula are more effective than the association metrics and even the odds
ratio metric. However, our experiment on larger programs developed in the Java
programing language show that the odds ratio metric outperforms the metric
used in Tarantula as well as the Ochiai metric significantly.

8 Concluding Remarks

The Odds ratio metric is the most widely used association metric by which
the strength of the association between categorical variables is measured. We
introduced the odds ratio metric and its variation the conditional odds ratio
to be exploited and used for localizing faults based on the contingency table
analysis.

In this paper, we showed that the ranking metrics offered by contingency table
analysis and in particular the odds ratio could be effectively apply to the fault
localization problem. We discussed the odds ratio metric as a new ranking met-
rics and investigated its effectiveness compared to the existing ranking metrics.
The results of our empirical studies showed that the odds ratio ranking met-
ric outperformed the other ranking metrics studied in this paper including the
metric used in the Tarantula tool, Ochiai, and even statistically-driven ranking
metrics such as Chi-square.

We also introduced the conditional odds ratio ranking metric as a probabilistic-
based ranking metric and showed its effectivenessin the presence of multiple
faults in a given program. In particular, we observed that the conditional rank-
ing metric outperformed the other metrics when the number of faults in a given
program under test was greater than two. As we discussed in this paper, the
conditional odds ratio metric can be exploited as a fault localization technique
to identify the causality or interaction of faults.
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Abstract. This paper describes an MDE framework for real-time sys-
tems with safety requirements. The framework is based on industry
standards, such as UML 2.2, MARTE, and the Ada Ravenscar profile.
It integrates pre-existing technology with newly developed tools. Special
care has been taken to ensure consistency between models and final code.
Temporal analysis is integrated in the framework in order to ensure that
the real-time behaviour of the models and the final code is consistent
and according to the specification.

Automatic code generation from high-level models is performed based
on the Ravenscar computational model. The tools generate Ravenscar-
compliant Ada code using a reduced set of code stereotypes.

A case study is described for a subsystem of the on-board software of
UPMSat2, a university micro-satellite project.
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1 Introduction

Model-driven engineering (MDE) is a software development approach that allows
engineers to raise the abstraction level of the languages and tools used in the
development process [17]. It also helps designers isolate the information and
processing logic from implementation and platform aspects. A basic objective of
MDE is to put the model concept on the critical path of software development.
This notion changes the previous situation, turning the role of models from
contemplative to productive.

Models provide support for different types of problems: i) description of con-
cepts, ii) validation of these concepts based on checking and analysis techniques,
iii) transformation of models and generation of code, configurations, and docu-
mentation. Separation of concerns avoids confusion raised by the combination of
different types of concepts. Model-driven approaches introduce solutions for the
specialization of the models for specific concerns, as well as the interconnection
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of concerns based on models transformations. It improves communication be-
tween stakeholders using the models to support the interchange of information.
But the separation of concerns often requires specialized modelling languages for
the description of specific concerns.

This paper describes an MDE framework for the development of real-time
high-integrity systems. The functional part of the system is modelled using the
Unified Modeling Language (UML2) [12]). Real-time and platform properties are
added to functional models by means of annotations, using the UML profile for
Modelling and Analysis of Real-Time and Embedded Systems (MARTE) [13]).
An analysis model for verifying the temporal behaviour of the system using
MAST1 [6] is automatically generated from the MARTE model. Finally, Ada
code skeletons are generated, based on the system model and the results of
response time analysis. Code generation is based on the Ravenscar computational
model [3], and generates Ravenscar-compliant code [18, D.13.1].

Related work includes the Ada code generator in IBM Rhapsody2 [5], which
generates complex Ada code but does not support MARTE or the Ravenscar
profile. Papyrus3 [9], on the other hand, supports functional Ada code genera-
tion from UML models, but cannot generate Ravenscar code and does not fully
integrate temporal analysis with system models.

The tools developed in ASSERT4 follow a closer approach. Two sets of tools
were developed in this project, one based on HRT-UML [10,14,2], and the other
one on AADL5 [7,8], which later evolved to the current TASTE6 toolset [15].
Both can generate Ravenscar Ada code and include timing analysis with MAST.

The main differences between these toolsets and the framework presented here
are: i) This framework uses up-to date industrial standards such as UML2 and
MARTE, instead of ad-hoc adaptions of UML; ii) the transformation tools in
this framework have been built with standard languages; iii) the extensive use
of standards in this framework makes it possible to use it with different design
environments, without being tied to a specific development platform.

The rest of the paper is organised as follows: Section 2 reviews the use of
MARTE stereotypes in the framework. Section 3 describes the logical architec-
ture of the framework and the different models that are used in it. Section 4
describes the techniques that are used to generate Ravenscar Ada code. It also
includes as a case study some examples from UPMSat2, an experimental micro-
satellite project which is being carried out at Universidad Politécnica de Madrid
(UPM). Finally, some conclusions of the work are drawn in section 5.

1 Modelling an Analysis Suite for Real-Time Applications, mast.unican.es
2 www.ibm.com/developerworks/rational/products/rhapsody
3 www.papyrusuml.org
4 Automated proof-based System and Software Engineering for Real-Time systems,
www.assert-project.net/

5 Architecture Analysis Description Language, http://www.aadl.info
6 The ASSERT Set of Tools for Engineering, www.assert-project.net/-TASTE-

mast.unican.es
www.ibm.com/developerworks/rational/products/rhapsody
www.papyrusuml.org
www.assert-project.net/
http://www.aadl.info
www.assert-project.net/-TASTE-
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2 Modelling Real-Time Systems with MARTE

MARTE is a UML2 profile aimed at providing support for modelling and anal-
ysis of real-time and embedded systems [13]. It includes several packages for
describing non-functional properties of embedded systems, as well as some sec-
ondary profiles for different kinds of systems. This makes MARTE a rather big
standard. However, since the framework is aimed at real-time high-integrity sys-
tems, only those parts of the MARTE specification that are relevant for this kind
of systems are used. The main requirement is to be able to model systems with
a predictable behaviour that can be analysed against their specified temporal
properties. Such models must be transformed into implementations running on a
predictable platform. The Ravenscar computational model [4] is a suitable basis
for this purpose.

The modelling elements to be considered are:

– Input events describing the patterns for the activation of computations (se-
quences of actions) in the system, e.g. periodic or sporadic activation pat-
terns.

– Actions that have to be executed in response to input events.
– Precedence constraints and deadlines for the actions to be executed as a re-

sponse to an event. Precedence constraints define end-to-end flows of compu-
tation that have to be executed within the interval defined by the activation
event and the deadline.

– Resources needed to execute the actions of the system. Resources can be
grouped into active resources (e.g. CPUs and networks), and passive re-
sources (e.g. shared data). Access to shared resources has to be scheduled in
order to guarantee the required temporal properties of the system.

These elements can be described in MARTE using some of its specialized sub-
profiles. The GQAM (Generic Quantitative Analysis Modelling) profile, which
is part of the MARTE analysis model, defines common modelling abstractions
for real-time systems. For example, the GaWorkloadEvent stereotype can be used
to model input events and the associated timing constraints, and the GaScenario
and GaStep stereotypes can be used to specify the response to an event in terms
of flows and actions. The SAM (Scheduling Analysis Modelling) profile defines
additional abstractions and constraints to build analysable models, including a
refined notion of an end-to-end flow.

The resources available for execution can be described using the GQAM::
GaResourcesPlatform stereotype, together with other stereotypes in the GQAM
and SAM profiles. Examples of the latter are SaExecHost, SaComm Host, and
SharedResource. Scheduling resources are defined with the Scheduler and Sec-
ondaryScheduler stereotypes.
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Fig. 1. Architecture of the real-time safety systems development framework

3 A Model-Based Framework

3.1 Overview

A model-based framework has been designed in order to provide support for the
development of high-integrity real-time systems based on the MDE principles
and using UML/MARTE as the main modelling formalism. The overall archi-
tecture of the framework is shown in figure 1. Its main elements are four kinds
of models:

– System Model: This is the model that the developer creates using UML
and the MARTE profile. It starts as a Platform Independent Model (PIM)
that uses MARTE stereotypes to represent the load of the system and the as-
sociated real-time attributes (activation patterns, deadlines, etc.). Resources
are then incorporated using the appropriate stereotypes to get a platform-
specific model (PSM). The model is initially populated with estimates of
time attributes, such as blocking times or worst case execution times. Later
on, when the actual code is available, these values can be replaced with real
measurements, and accurate temporal analysis can be carried out. If the es-
timates of time attributes are used as requirements for the implementation
phase, the results of preliminary analysis based on them should still be valid.

– Analysis Model: This model is aimed at performing temporal analysis on
the system. MAST [6] has been selected as the analysis tool to be used in
the framework, as it covers many different situations and analysis methods.
The tool can check if the specified time requirements are met, and thus
can be used to validate the temporal behaviour of the system early in the
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development cycle. Since more accurate execution time measurements are
available as the system development advances, the analysis can be repeated
as many times as needed.

The analysis model is described using the MAST notation. It is automat-
ically generated from the system model using a transformation tool. The
results of the analysis are fed back to the system model by means of another
tool, so that the developer can modify the model as needed if the temporal
requirements are not met.

– Neutral Model: This model is intended to simplify code generation for
different platforms and programming languages. The model is automatically
generated from the system model by transformation tools that have been
developed to this purpose, and it is not intended to be read or modified by
the user.

The neutral model is described in plain UML, and has a lower abstraction
level than the system model.

– Implementation Model: The source code for the system is automatically
generated from the neutral model. Generator tools for Ada 2005 with the
Ravenscar profile and Real-Time Java (RTSJ) have been developed. The Ada
generator is further described in section 4. The work on RTSJ is explained
in reference [11].

The transformation tools between the above models have been developed by the
research team using QVT7 and MTL.8

A more detailed description of the models follows.

3.2 System Model

The system model is incrementally built by the developer using UML classes
and relations to model the system architecture and its components. MARTE
stereotypes are used to define the real-time properties of the relevant classes.
Depending on how a class is stereotyped, it can be categorized as a particular
real time archetype. The framework recognizes four class archetypes, based on
the Ravenscar computational model:

– Periodic. Instances of a periodic class execute an action cyclically, with a
given period. An offset may be specified for the first execution. Each execu-
tion has a fixed deadline with respect to its activation time.

– Sporadic. Sporadic objects execute an activity on each occurrence of some
activation event. As above, a deadline is defined relative to the activation
time.

Periodic and sporadic classes are active classes. Their activation patterns
and deadlines are defined using the GQAM::GaWorkloadEvent stereotype with
a periodic/sporadic arrival pattern and a deadline. Scheduling details are

7 Query/View/Transformation, www.omg.org/spec/QVT/
8 Model to Text Transformation Language, http://www.omg.org/spec/MOFM2T/1.0/

www.omg.org/spec/QVT/
http://www.omg.org/spec/MOFM2T/1.0/


132 E. Salazar et al.

defined when appropriate in the design process using the GRM::Schedulable-
Resource stereotype. A fixed-priority preemptive scheduling policy is as-
sumed by default.

– Protected. Protected objects encapsulate shared data that is accessed in
mutual exclusion. A protected class is defined with the GRM::MutualExclusion
Resource stereotype.

– Passive. Passive objects have no real-time properties and are not used by
more than one active object. Classes without any MARTE stereotypes are
characterized as passive.

3.3 Analysis Model

The GRM, GQAM and SAM MARTE profiles are designed for the automatic
generation of schedulability analysis models. These models can be generated
and analysed at early modelling phases, so that design decisions can be made
depending on the temporal behaviour of the system.

The MARTE analysis annotations are represented with UML extensions. In
practice, the analysis model only depends on the UML specification of sequence
behaviours. These extensions include references between them, and all together
define an analysis model. A UML model may include as many analysis scenarios
as SAM::SaAnalysisContext stereotype applications.

Figure 2 shows some relations between analysis stereotypes that summarize
the general structure of the models. The root is the analysis context (typically a
package or a model; alternative solutions can include several analysis contexts).
It identifies the set of workload behaviours and platform resources.

SaAnalysisContextInstance: 
SaAnalysisContext

GaWorkloadBehaviorInstance: 
GaWorkloadBehavior

GaResourcesPlatformInstance: 
GaResourcesPlatform

GaWorkloadEventInstance: 
GaWorkloadEvent

SaStepInstance: SaStep

SaExecHostInstance: SaExecHost
SaSharedResourceInstance: 

SaSharedResource

SaSchedulableResourceInstance: 
SaSchedulableResource

+workload

+demand

+effect

+steps

+resources

+platforms

+resources

+resources

+host

+virtualProcessingUnits

+concurrentRes

+sharedRes

Fig. 2. General structure of an analysis model
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A workload behaviour is associated to a workload event and to the sequence
of steps and scenarios that are executed when the event occurs. Notice that
sub-scenarios can also be specified as an effect of a workload event. Steps are
associated to schedulable resources.

Platform resources include schedulable resources, executable resources, and
mutual exclusion resources. Schedulable resources define a flow of execution of
steps. They are associated with a processor and a scheduler.

In summary, the analysis model is based on four basic concepts:

– Specification of load events in the system. These are the sources of load in the
system. The arrival pattern of events must be specified in order to analyse
the temporal behaviour of the system.

– Event responses. A sequence of steps defining behaviour associated to event
occurrences. The required information includes the precedence relations be-
tween events and the resources needed to execute them, including timing
data (e.g. execution time budgets).

– Resources. Steps are executed in the context of schedulable resources (e.g.
threads, processes or tasks). Scheduling parameters, such as priorities, must
be also defined.
Some additional resources may also be required. Examples of different kinds
of resources include computing resources (e.g. processors), communication
resources, synchronisation resources, and mutual exclusion resources. All of
them require some parameters to be defined for temporal analysis (e.g. ceiling
priorities for mutual exclusion resources).

– Schedulers. Schedulers define the rules for sharing resources among schedula-
ble resources. For example, fixed-priority is a well-known scheduling method
for computing resources.

All of these analysis elements can be modelled in MARTE, using the stereotypes
mentioned in section 2 above. The MARTE model is translated into the input
language of the MAST analysis toolset9 by means of a transformation tool. The
tools make use of different schedulability analysis methods to compute tempo-
ral data such as worst case response time for events and steps, occupation of
resources, and optimal protocol and scheduling parameters for resources.

The code generated in Ada generator must be consistent with the results of
the scheduling analysis results. To this purpose, the results are fed back to the
system model in order to fix any inconsistencies and provide a feasible description
of the system to the neutral model.

3.4 Neutral Model

In order to implement code generation in a flexible and efficient way, a neutral
model is used as an intermediate step between the system model and the final
code. Since the framework is focused on high-integrity systems, the code has to
be restricted according to appropriate profiles in order to ensure that it runs

9 See mast.unican.es for details on the analysis tools.

mast.unican.es
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in a predictable way and its timing behaviour complies with the specification.
The use of profiles simplifies code generation, which can be based on a common
notation independent of the programming language to be used.

The neutral model is defined in plain UML, without using any MARTE stereo-
types. Only information that is relevant for code generation is included in this
model. Language-dependent elements are avoided, in order to enable code gen-
eration for different implementation languages.

The driving principles in the generation of the neutral model are:

– Include only data that is needed for code generation, e.g. period, phase, pri-
ority. The system model may include other kinds of information, which are
not needed for this purpose. This rule simplifies the implementation of the
code generator, and increases its efficiency.

– Keep data types as simple as possible, in order to reduce the semantic gap
between UML and the implementation languages. The neutral model uses
mostly simple data types (e.g. natural, integer, string), and tries to avoid
the use of complex data types. In particular, custom MARTE data types,
which would be difficult to translate into a specific programming language,
are excluded.

– Keep the model independent of the target programming language. Indeed, the
main goal of using an intermediate model is to be able to generate code for
different programming languages.

– Support traceability between the system model and the final code and vice
versa, in order to make it possible to indicate which part of code corre-
sponds to which part of the system model at any time in the development
process. This also includes the temporal analysis results, which should also
be traceable in order to identify the source of scheduling-related constructs
in the code. In this way, if a problem arises in the final code, the original
model element that causes the error can be quickly identified and corrected
as needed.

The neutral model is built from a small number of common real-time patterns
matching the archetypes described in section 3.2 These patterns are represented
by UML plain classes with additional annotations including all the required data
coming from the original system model that cannot be expressed in UML.

The most relevant kinds of annotations include:

– WCET, for the worst-case execution time of an activity.

– Deadline error handler. Defines the user code to be executed when a deadline
overrun occurs.

– General exception handler. Defines the code to be executed when an excep-
tion is raised.

– Last chance exception handler. Defines the user code to be executed as “last
wishes routine”, before terminating a program.

– Task initialization. Defines some code to be executed at system start time
by a periodic or sporadic object.
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4 Ravenscar Ada Code Generation

4.1 Ada Generation Overview

This section describes the generation of Ada source code from the neutral model,
which only includes the necessary information for this purpose, in a language-
independent way. The neutral model can be used for generating code in Ada,
RTSJ, or any other language suitable for real-time systems.

The Ada code generator relies on international industrial standards. It has
been developed using QVT and MTL, as mentioned in 3.1 above. The neutral
model is described with plain standard UML 2.2, and the output is Ada 2005
with the Ravenscar Profile restrictions [18]. The generator produces Ada code
skeletons with a temporal behaviour consistent with the system model, includ-
ing the results of temporal analysis as previously described in section 3.3. This
approach facilitates the link with functional code.

Some aspects of the code generation process are illustrated with fragments of
the Attitude Determination and Control Subsystem (ADCS) subsystem of the
UPMSat2 on-board software system[1].

4.2 Code Generation for Components

The top level description of the system is based on UML components, which are
composed of a set of classes. UML components include an interface, and a set of
classes that implement the public operations and the component functionality.
The interface defines the component contract with the client, which specifies its
public functionality. It is mapped into an Ada package. Its specification includes
the signature of the operations that are exported from the interface of the UML
component. The corresponding body simply redirects the exported operation to
the corresponding internal package operation. This approach follows software
engineering principles, such as information hiding, loose coupling, and facilitates
code generation and maintenance for different execution platforms. Figure 3
shows the external view of the ADCS component, as well as its internal structure.

The internal classes of the component are mapped into private packages, as
described below, according to their real-time archetypes: periodic, sporadic, pro-
tected or passive activities. Hierarchical packages are used for representing the
structure modelled with the UML components.

The Ada code generated for the interface is shown in figure 4. This compo-
nent exports three methods that are mapped into Ada operations in the package
specification. In the body, these operations call the corresponding internal im-
plementation method.

Figure 5 shows a detailed view of the internal classes belonging to the ADCS
subsystem. It can be noticed that the MARTE stereotypes are printed in the
upper part of the corresponding classes.

The ADCS.AttitudeControl class implements the control algorithm for keep-
ing a given attitude for the satellite. It is a periodic entity, and its graphical
representation shows the annotations GRM::SchedulableResource and GQAM::
WorkloadEvent.
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«component»

ADCS

ADCSInterface

SetAttitudeReference ( )

NotifyModeChange ( )

SetControlParameters ( )

ADCS

attitudeControl : AttitudeControl

attitudeControlData : AttitudeControlData

localModeManager : LocalModeManager

aDCSInterface : ADCSInterface

AttitudeData

ModeManager

Fig. 3. Attitude Determination and Control Subsystem UML component

with ADCS.BasicTypes; use ADCS.BasicTypes;
package ADCS.Interfaces is

procedure NotifyModeChange (mode : in Mode_Type);
procedure SetAttitudeReference (ref : in Reference_Type);
procedure SetControlParameters (conf : in Configuration_Type);

end ADCS.Interfaces;

with ADCS.LocalModeManager;
with ADCS.AttitudeControlData;
package body ADCS.Interfaces is

procedure NotifyModeChange (mode : in Mode_Type) is
begin

ADCS.LocalModeManager.LocalModeManager.SetMode (mode);
end NotifyModeChange;

procedure SetAttitudeReference (ref : in Reference_Type) is
begin

ADCS.AttitudeControlData.AttitudeControl.SetActitudeReferece(ref);
end SetAttitudeReference;

procedure SetControlParameters (conf : in Configuration_Type) is
begin

ADCS.AttitudeControlData.AttitudeControl.SetControlParameters(conf);
end SetControlParameters;

end ADCS.Interfaces;

Fig. 4. Generated package for an UML component interface
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«MutualExclusionResource»

AttitudeControlData

internal_configuration : ModeType

internal_change : Boolean

GetControlParameters ( )

SetControlParameters ( )

SetAttitudeReference ( )

«MutualExclusionResource»

LocalModeManager

internal_mode : ModeType

GetMode ( )

SetMode ( )

WaitModeChage ( )

«interface»

ADCSInterface

SetAttitudeReference ( )

NotifyModeChange ( )

SetControlParameters ( )

«GaWorkloadEvent, SchedulableResource»

AttitudeControl

ControlAlgorithm ( )

«use»«use»

«use»«use»

Fig. 5. Design view of the ADCS classes

There are two protected entities, which are stereotyped with the GRM::Mutual
ExclusionResource annotation:ADCS.AttitudeControlData andADCS.LocalMode
Manager. One is in charge of keeping information for the control algorithm. The
other one is used for managing the operational mode of the component.

4.3 Code Generation for Classes

Code generation is based on a set of code templates, which are directly related
with the archetypes in the neutral model. As mentioned above, classes in this
model are annotated with its related archetype. Currently, four archetypes are
supported: Periodic, Sporadic, Protected, and Passive.

There are several suitable implementations of these archetypes in the litera-
ture. This work is based on the Ravenscar Ada generic packages defined in [16].
Some additional features have been added, for including issues such as deadline
overrun handling, WCET overrun handling, Ada standard exceptions handling,
user defined task initialization, or user-defined stack size. These features were
included in order to enable dealing with more general tasking models. In the
context of this work, some of them are disabled by default, as they are not
Ravenscar-compliant.

Each class in the neutral model is represented by an Ada package. The package
includes in its private part an instance of a generic package where the class
archetype is defined. All the required dependencies are included in the package
description.
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Class dependencies in the neutral model are converted into Ada with clauses.
There are three different types of dependencies:

– Explicit user-defined dependencies. These dependencies are explicitly defined
in the system model, and they are directly translated, without any additional
processing.

– Implicit dependencies due to attributes or parameter types. If an attribute
or a parameter is defined as a non-primitive type (e.g. attributes which are
instances of other classes), the generator automatically adds the required
dependencies.

– Implicit dependencies due to automatically generated code. Several Ada fea-
tures (e.g. last chance exception handler, etc.) have dependencies on other
Ada packages. They are also automatically added when they are required.

With respect to the internals of the package, the main action is the instantiation
of the generic package that corresponds to the class archetype, which is carried
out in the private part of the package. The parameters needed for the generic
instantiation depend on the type of the archetype. In the case of active classes,
the following parameters are required:

– Real-time parameters: priority, period or minimal inter-arrival time, and
initial offset.

– Functional code parameters: periodic or sporadic activity, and initialization
procedure.

– Error handling parameters: procedures for dealing with timing related ex-
ceptions and with Ada standard exceptions.

The code listed in figure 6 shows an example of a specification file generated
for a periodic activity. The instantiation call is located at the end of the private
part.

Protected classes, annotated as mutual exclusion resources, are translated into
a package that includes a protected object. The stereotype allows to define the
ceiling priority for the object, which is directly translated into the corresponding
parameter in Ada. The code generated for the ADCS.AttitudeControlData class
is shown in figure 7

Finally, the framework supports two types of passive classes, in order to pro-
vide additional flexibility to the developer:

– Singleton class: If the developer annotates an UML class as singleton, there
may only be one instance of it in the system. In this case, the code generator
produces a package with a public interface that is composed by a set of
operations.

– Standard passive class: Multiple instances of this classes are allowed. The
Ada code generator produces a package that implements an abstract data
type. The public interface includes the type definition and its primitive op-
erations.
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with Ada.Real_Time.Timing_Events;
use Ada.Real_Time.Timing_Events;
with GNAT.IO; use GNAT.IO;
with Ada.Exceptions; use Ada.Exceptions;
with uml2ada .exceptions; use uml2ada .exceptions;
with uml2ada .periodic_tasks;

package example .examplePlatform.subsystem1.OBDH.ADCS.PeriodicADCS is

PeriodicADCS_priority : constant := 8;
PeriodicADCS_period : constant := 9854;
PeriodicADCS_offset : constant := 234000000;

private

procedure Activity ;

procedure Activity_Initialization;

protected DeadlineHandler is
procedure DeadlineErrorHandler (Event : in out Timing_Event);

end DeadlineHandler;

procedure ConstraintErrorHandler (e : in Exception_Occurrence);

package PeriodicADCS_periodic_task is new
uml2ada .periodic_tasks (
Priority => PeriodicADCS_priority,
Period => PeriodicADCS_period,
Offset => PeriodicADCS_offset,
Periodic_Activity => Activity ,
Initialization => Activity_Initialization,
Deadline_Ovr_Handler => DeadlineHandler.DeadlineErrorHandler’Access ,
Constraint_Error_Handler => ConstraintErrorHandler’Access ,
Program_Error_Handler => Default_Exception_Handler,
Storage_Error_Handler => Default_Exception_Handler,
Tasking_Error_Handler => Default_Exception_Handler,
Other_Error_Handler => Default_Exception_Handler);

end example .examplePlatform.subsystem1.OBDH.ADCS.PeriodicADCS;

Fig. 6. Specification of a generic periodic archetype

with ADCS.BasicTypes; use ADCS.BasicTypes;
private package ADCS.AttitudeControlData is

protected AttitudeControl is
pragma Priority (10);

procedure SetActitudeReferece (reference : in Reference_Type);
procedure SetControlParameters (config : in Configuration_Type);
function GetControlParameters return Configuration_Type;

private
internal_configuration : Configuration_Type;
internal_reference : Reference_Type;

end AttitudeControl;
end ADCS.AttitudeControlData;

Fig. 7. Specification of a generated protected object
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4.4 Code Generation for Methods

The methods specified in classes of the neutral model are translated into Ada
subprograms according to the following rules:

a) Each UML method is translated into an Ada procedure or function:

– Methods with a return parameter are translated as functions.
– Methods without a return parameter are implemented as procedures.
– Parameters specified as in, out, and inout are translated into their Ada

equivalents.
– Methods that are declared as private in the neutral model are generated

in the private part of the Ada specification. Otherwise, they are placed in
the public part.

b) UML attributes and method parameter types are implemented as Ada types.

– Integer, Positive and Boolean primitive types are directly implemented by
the corresponding Ada types.

– The implementation of the String primitive type is a little more diffi-
cult since Ada strings must be constrained at compilation time. Un-
constrained string parameter types are thus translated into the library
Unbounded String type instead of the Ada String type. Consequently, a
dependence on the package Ada.Strings.Unbounded has to be added.

– Enumerations are translated into Ada enumeration types.

Parameters can also be defined as types of model-defined classes or as con-
strained arrays.

c) Initialization of primitive or enumeration type attributes is also supported.
An initialized string attribute results in an Ada String, since its length is
known at compilation time.

d) Standard Ada exceptions raised in the functional code are, by default, prop-
agated. Nevertheless, is possible to provide user-defined handlers for such
exceptions. A handler for user-defined exceptions can also be provided.

e) It is also possible to provide a user-defined last-chance exception handler in
order to execute a “last wishes” routine if the system unexpectedly termi-
nates.

f) By default, periodic activities raise a Program Error exception in case of a
deadline overrun. However, a user-defined routine can be specified to be ex-
ecuted instead.

5 Conclusions

Model-driven Engineering allows developers to raise the abstraction level of soft-
ware design, so making the development process safer and faster. At the imple-
mentation side, Ada and the Ravenscar profile provide excellent support for
building predictable real-time systems that can be statically analysed for a spec-
ified temporal behaviour. The work described in this paper has been directed at
combining the best of both worlds through the use of a specialised framework
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covering the design and implementation development phases of high-integrity
real-time systems.

The main contributions of the framework are its alignment with industrial
standards, specifically OMG standards and Ada, and the tight integration of
the system model with the analysis model. Moreover, the strict adherence to
UM2/MARTE standards and the use of standard tools make it possible to im-
plement the framework on a variety of tools, without depending on a particular
toolset. Most of the transformation tools described in the paper have been im-
plemented and tested on IBM RSA (Rational Software Architect), but migrating
to other environments (e.g. Eclipse) can be done with comparatively little effort.
The transformation tools are freely available at www.dit.upm.es/str.

The use of neutral model facilitates generating code for different programming
languages. Generators for Ada and Real-Time Java have been implemented and
can be found at the same location as the transformation tools.

Future work includes enhancing the transformations between the system
model and the analysis model, which are now at an early stage of development,
and adding support to include functional code generated from other tools (e.g.
Simulink) into the real-time skeletons generated by the framework.
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Abstract. Compositional approaches to the qualification of hard real-
time systems rest on the premise that the individual units of development
can be incrementally composed preserving the timing behaviour they had
in isolation. In practice, however, the assumption of time composability
is often wavering due to the inter-dependences stemming from inher-
ent nature of hardware and software. The operating system, mediator
between the applications and the underlying hardware, plays a critical
role in enabling time composability. This paper discusses the challenges
faced in the implementation of a truly time-composable operating system
based on ORK+, a Ravenscar-compliant real-time kernel.

Keywords: Time composability, Real-time operating system.

1 Introduction

The timing dimension plays a critical role in the development and qualification
of hard real-time systems: the correctness of such systems does not only rely on
the functional correctness but also on timely delivery of the results. Scheduling
analysis techniques are increasingly adopted by system engineers to attain trust-
worthy guarantees on the timing behaviour of a system. State-of-the-art analysis
frameworks rely on the assumption that the timing behaviour of a system can
be determined compositionally, as a combination of the worst-case execution
time (WCET) bounds of all the system activities [26]. Analogous assumptions
of composition stand at the base of incremental software development, where
at the top-down decomposition of the system design eventually corresponds a
bottom-up integration of the corresponding implementation artefacts.

The timing behaviour of the individual software units to which timing anal-
ysis is applied is generally assumed to be fully composable. In other words,
every individual software unit is expected to exhibit exactly the same timing
behaviour regardless of the nature, the activity and the interference caused by
other software units in the system. Unfortunately, time composability is not an
innate characteristic for a system and it is generally not guaranteed to hold.
The importance of time composability as a fundamental enabler to trustworthy
timing analysis has been only recently acknowledged in the literature [17, 18].
The authors of the cited works highlight the negative effects on time composabil-
ity caused by complex hardware features, with consequent serious threats to the
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soundness of schedulability analysis. Some issues along what we call hardware-to-
software axis of composition have been discussed for both single-processor [1,14]
and multi-processor [10] platforms.

Time composability, however, is not solely a hardware-level issue. It in fact
carries an equally important, albeit less studied, software-to-software dimension
of interest. The effect of the real-time operating system (RTOS) on time com-
posability should be studied on two accounts: the RTOS is a separate unit of
analysis itself, which must therefore be proven to comply with the premises of
time composability; moreover, a non-composable RTOS service would transi-
tively compromise the composability of each program that invokes it.

The provision of a time-composable RTOS is highly desirable in those contexts
where firm guarantees on the timing behaviour of a system should be provided.
In a recent work [4], we singled out those properties that a RTOS should exhibit
to be time-composable and to enable time composability vertically across the
execution stack. We also provided a concrete implementation of our approach
on a simple ARINC-653 compliant RTOS for use in avionics applications [3, 4].
The implementation therein provided, however, took much benefit from the sim-
plifying assumptions that could be derived from the essentially cyclic nature of
the underlying software architecture and ARINC-653 task model. Even though
the fundamentals of time composability should hold true regardless of the un-
derlying software architecture, it appeared to us that the actual implementation
of a time-composable RTOS is largely dependent on the task model of choice.
Those solutions that we proved to be effective on a restrictive ARINC-compliant
kernel are therefore not likely to allow an equally straightforward application in
less restrictive hence favourable task models.

We selected ORK+ [8, 23], a Ravenscar-compliant RTOS, as a more general
real-time reference kernel to study how far time composability could be attained
on a more general task model. Acknowledging that the base principles of timing
analysability that inspired ORK+ seem to naturally conform to the same objec-
tives of time composability [24], we still identified a few modifications that would
help improve the degree of time composability in ORK+. The results presented
in this paper should be understood as a step toward the final objective of the
implementation of a time-composable real-time operating system that supports
a general sporadic task model, restricted in accord with the Ravenscar Profile [6].

The remainder of this paper is organised as follows: in Section 2 we introduce
the concept and role of time composability in RTOS; in Section 3 we present how
we envision a time-composable RTOS, and then present ORK+, identifying the
set of kernel services that we looked at; in Section 4 we report on the experiments
we performed to assess the degree of time composability we attained with our
modifications of ORK+; in Section 5 we draw our conclusions.

2 Time-Composable RTOS

The idea of time composability, while being a fundamental assumption behind
common compositional schedulability analysis approaches, has only recently
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gained interest in the real-time community. A formalization attempt to define the
very concept of composability in the timing dimension has been in fact studied
in few recent works [10, 12, 14, 17, 18, 21].

Time composability is the property of a generic software component or task
to exhibit a timing behaviour that is independent of its actual context of exe-
cution [21]. In particular [17,18] jointly provide a valuable insight on the obsta-
cles that current hardware and software development approaches pose to time
composability and compositionality. Analogous observations on the difficulties
in guaranteeing time composability and predictability in cutting-edge platforms
motivates the adoption of simpler specialized hardware in [14]; a specular ap-
proach in [12] proposes a probabilistic method as a means to enable composabil-
ity by reducing dependence on execution history. Similar concerns apply, even
more significantly, to multicore systems, as suggested out by the work in [10].

All cited works mainly focused on the hardware-to-software axis of composi-
tion, thereby failing to account for the role of the underlying operating system
and its effects on time composability. This is not very surprising, as the con-
tribution of RTOS in the determination of the end-to-end timing behaviour of
a system has been traditionally dispensed with by classic timing analysis. This
simplifying assumption was justified by the optimistic claim that the incidence
of the RTOS on the granularity of interest to timing analysis is negligible and,
where necessary, could be easily treated as a simple additive factor. The fact is,
instead, that actual RTOS implementations fail this assumption quite badly.

The more services a RTOS is required to provide to a running application, the
larger its potential influence on the overall execution time. Although not explic-
itly labelling it as lack of time composability, it has been observed in [22] that the
potentially tight interdependence between the RTOS and the application implies
that their respective timing analysis cannot be performed in reciprocal isolation.
This is even more true in the presence of advanced hardware acceleration fea-
tures – like caches, complex pipelines, translation look-aside buffers, etc. – as
the execution of RTOS services may pollute their execution-history dependent
inner state, which their timing behaviour depends on. Interdependence between
user applications and operating system has obvious potential for wrecking the
very essence of time composability.

Moreover, from the timing analysis point of view, providing a clear separation
between RTOS services and user application can be still unsatisfactory. In fact,
the results of timing analysis are easily impaired by the existence of a large
extent of jitter in the execution time. An interesting study, reporting on an
attempt of analysing the timing behaviour of a complex real-time kernel [5],
has shown massive gaps between the observed execution time and the statically
computed WCET bounds for a set of operating system services. As suggested
by the authors, part of those gaps originates from the overestimation brought in
by the conservative assumptions of static WCET analysis; the remaining part,
however, is likely to stem from large execution time jitter, a typical side-effect of
the optimization-oriented way of programming. Jittery execution has detrimental
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effects on timing analysis and composition as we are conservatively forced to
always assume the worst case, no matter how much larger than the average case.

When it comes to operating systems, the definition of time composability
certainly includes the fact that the OS should exhibit the same timing behaviour
independently of the number and nature of other run-time entities in the system:
for example, the execution of the thread selection primitive should not vary with
the number of tasks in the system. In addition, as the operating system interacts
and consequently interferes with the user application, it should also avoid to
negatively concur to their execution time jitter: in the presence of hardware
features that exhibit history-dependent timing behaviour, the execution of an
OS service should not have disturbing effects on the application.

The multifaceted role of RTOS in determining the time composability of a
system is confirmed by the classic layered decomposition of the execution stack,
as in Figure 1, that clearly shows how the RTOS is deeply engaged in both the
hardware-to-software and software-to-software axes of composition. An appli-
cation program is in fact time-composable with the RTOS only if the WCET
estimate computed for that program is not affected by the underlying presence
and execution of the RTOS, and those RTOS services that are explicitly in-
voked by the application are known to contribute compositionally to the overall
WCET, without incurring any hardware- or software-related jitter.

Fig. 1. Layered decomposition of the execution stack

As we already observed in [4], in order for the RTOS to be time-composable
with respect to the application, it must pursuit the following principles.

Steady timing behaviour. RTOS services with jittery behaviour impair time com-
position with the application: the larger the jitter the greater the pessimism in
the WCET bound for the service itself and transitively for the caller. RTOS
whose services exhibit a constant (or at least near-constant) timing behaviour
will thus reduce the jitter to be accounted for in their response time. Timing
variability in the RTOS execution depends on the interaction of software and
hardware factors: the RTOS data structures and the algorithms used to access
them, as well as the hardware state retained by stateful hardware resources. On
the software side, timing variability can be only coped with by a re-engineering of
the RTOS internals without compromising the functional behaviour, in a similar
fashion as it was done with the O(1) Linux scheduler [15]. On the hardware side,
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the variability stemming from hardware resources, though much more difficult
to attenuate, is somehow overclouded by the symmetrical issue of hardware state
pollution, which is addressed by the next property.

Zero-disturbance. The RTOS may variably affect the response time of an appli-
cation because it may either interrupt or interleave with the user code. A time
composable RTOS should avoid or minimize both the frequency and the effects
of such disturbing events. This is even more evident in the presence of history-
sensitive hardware as the interference on the application timing is exacerbated
by the pollution (by the RTOS code) of the inner state of such resources. In this
case it is important to guarantee that the execution of any RTOS service cannot
cause hardware-related disturbance on application timing upon return from the
RTOS. This prescription requires isolating the application-related part of the
hardware state from any possible perturbation caused by the RTOS: techniques
analogous to cache partitioning [16] may serve that purpose, while at the same
time preserving the RTOS performance.

Finding the most effective implementation of the RTOS features that meet the
above goals is of course largely dependent on the target processor architecture
as well as the adopted task model. A periodic task model suffers less preemption
overheads than a sporadic one because periods can be made harmonic whereas
sporadic arrivals cannot. Analogously, tick scheduling is a very intrusive style of
servicing dispatching needs. It should be noted that in any case these properties
should not be pursued at the cost of performance loss: the overall performance,
although not the primary concern in hard real-time systems, should not be
penalised.

2.1 Characterization of a Time-Composable RTOS

Whereas steadiness and zero-disturbance are universally valid principles, the
practical means and the degree to which they are exhibited by a RTOS is depen-
dent on the underlying hardware platform, the architectural specification and
the task model assumed for the application. An extremely restrictive software ar-
chitecture resting on a simple periodic task model represents the most favourable
precondition for the implementation of a time-composable RTOS.

This clearly emerged during the RTOS refactoring on which we reported in
[3,4]. In that case, we took a rather simplified implementation of an ARINC-653 [2]
compliant operating system and evaluated the services it provided from the stand-
point of time composability, that is with respect to the steady timing behaviour
and zero disturbance properties. The ARINC-653 architectural specification al-
lowed us to introduce several simplifying assumptions: the reduction to a strictly
periodic task model was probably the most important one. Those assumptions, in
turn, gave us the opportunity to reimplement a number of RTOS services at both
kernel and ARINC-653 API level with time composability in mind. In that work
we succeeded redesigning a real-time partitioned kernel and provided experimen-
tal evidence that the degree of time composabilitymay greatly benefit from proper
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design choices in the implementation of the operating system, without giving up
performance.

Unfortunately the favourable assumptions on which we built that particular
solution do not hold in general: they are instead of scarce utility outside of the
restrictive domain of application of partitioned operating systems. We consider
the partitioned RTOS in [3,4] to be a first attempt to inject time composability
in a RTOS and the starting point towards the definition of a time-composable
RTOS that is more flexible and lends itself to a wider application.

From a more general standpoint, we identify a minimal set of desirable prop-
erties, hence potential areas of intervention, that cannot be disregarded in any
serious attempt to inject steadiness and zero-disturbance – hence time compos-
ability – on a full-fledge RTOS:

1. Non-intrusive time management: The way the progression of time is man-
aged by the operating system should have no side effects on the timing be-
haviour of the applications running on top of it. Intuitively tick-based time
management should be avoided in so far as it subjects the user applications to
unnecessary periodic interruptions. Moreover the tick-based approach usu-
ally implies an intrusive approach to task management where many activities
are performed at each tick to keep the ready queue updated.

2. Constant-time scheduling primitives: Most of the RTOS execution time is
typically spent on scheduling activities: either task state updates (activa-
tion, suspension, resumption) or actual dispatching. Reducing the variabil-
ity stemming from scheduling primitives is intuitively an essential enabler of
composable RTOS. In particular, those primitives whose execution time is
linearly dependent on the number of tasks in a system should be revised.

3. Flexible task model: Leaving aside exceptionally favourable circumstances
(e.g., the ARINC model), a realistic RTOS cannot limit itself to support pe-
riodic run-time entities only. Sporadic activations, low-level interrupts and
programmable timers (e.g., Ada timing events) make the quest for time com-
posability much more complicated. The introduction of more flexible run-
time entities breaks the fairly-predictable cyclic pattern of task interleaving,
otherwise exhibited by a system with periodic tasks only. Mechanisms to
reduce the jittery interference introduced by the incurred task preemptions
are required to protect time composability.

4. Composable inter-task communication: We intend the area of inter-task com-
munication to cover all kinds of interactions with bearing on hardware or
software resources, including I/O, communication and synchronization. From
this wider perspective, the problem of providing a time-composable commu-
nication subsystems largely intersects with the problem of providing con-
trolled access to shared resources. Uncontrolled forms of synchronization
and unbounded priority inversion manifestly clash with the steadiness and
zero-disturbance principles.

5. Selective hardware isolation: The very concept of zero-disturbance insists on
the opportunity of some form of isolation of the history-dependent hardware
state as a means to preventing RTOS-induced perturbations: the provided
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support may vary from partitioning approaches to plain disabling of hard-
ware resources. Clearly this is more a system-level or hardware issue than
a software one as not many solutions can be devised when the underlying
hardware platform does not support any form of isolation. When necessary,
however, the RTOS should be able to exploit the available features by means
of ad-hoc low-level interfaces (e.g., for advance cache management).

Although we would want our ideal time-composable RTOS to exhibit all the
above properties, we are also aware that implementing such a comprehensive
operating system from scratch is a challenging task. We therefore considered it
worthwhile to cast composability upon an existing RTOS, that would preferably
already exhibit nice properties from the analysability standpoint.

In this respect, the Open Ravenscar Kernel (ORK+ [23]), developed by the
Technical University of Madrid, represented the perfect candidate as reference
OS on which we can try to inject time composability. ORK+ is an open-source
real-time kernel of reduced size and complexity, especially suited for mission-
critical space applications, providing an environment which supports both Ada
2005 [11] and C applications.

As the namesake suggests, ORK+ also complies with the Ravenscar pro-
file [6,24], a standard subset of the Ada language that specifies a reduced tasking
model where all language constructs that are exposed to non-determinism or un-
bounded execution cost are strictly excluded1. As additional distinctive features,
the Ravenscar profile prescribes the use of a static memory model and forces task
communication and synchronization via protected objects under the ceiling lock-
ing protocol. Ravenscar-compliant systems are expected to be amenable to static
analysis by construction.

The design and implementation of a time-composable operating system of the
scale and completeness of ORK+ is not an easy target. Its extent and complex-
ity require to approach the final solution by successive approximations. In the
following sections we describe the first steps we took towards the definition of a
time composable RTOS: we describe and assess some preliminary modifications
we have made to the ORK+ in order to improve its behaviour with respect to
time composability.

3 Time-Composable ORK+

In the previous section we observed how injecting time composability within an
RTOS kernel is easier in the condition where the system architecture and the
supported task model restrict the allowable run-time entities and their interac-
tions. On the particularly favourable conditions in [4] time composability can be
greatly improved with modest effort. Unfortunately those conditions may prove
untenable for most applications. For this reason we now focus on understand-
ing how and to what extent time composability understood in terms of zero

1 ORK+ is therefore meant to support the restricted subset of the Ada 2005 standard,
as determined by the Ravenscar profile.
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disturbance and steady timing behaviour, can be achieved in a RTOS that sup-
ports a more general sporadic task model. The immediate challenge that leaving
the simpler periodic task model brings about is the absence of a-priori knowledge
on the release times of all tasks in the system.

We limited our scope of investigation to a more deterministic scenario where
the system analysability is favoured without compromising overall performance.
The Ada Ravenscar profile [6], of which ORK+ run-time provides a complete im-
plementation, perfectly suits our purpose as it defines a run-time infrastructure
following a fixed priority dispatching policy and supporting sporadic task acti-
vation and deadlock-free synchronization on protected resources. At the same
time, system analysability is guaranteed by enforcing staticness restrictions on
task creation, communication and synchronisation.

We attack the problem of injecting time composability into ORK+ in two
steps, incrementally addressing what we singled out in Section 2.1 as charac-
terizing properties for a time-composable RTOS. As a first step, reported in
Section 3.1, we focus on time management and scheduling primitives, under the
simplifying assumption of a simple periodic task model; then in Section 3.2, we
reason on whether and how our preliminary solution can be extended to also
cover the remaining properties within a more realistic task model.

3.1 Time Composability within a Simplified Task Model

In our attempt to concretely inject the zero-disturbance and steady timing be-
haviour principles in the ORK+ run-time we first made a set of simplifying as-
sumption on the task model. Although ORK+ provides full support for sporadic
tasks and interactions via protected objects, we decided to focus our attention to
the management of periodic tasks only, as their disciplined behaviour admittedly
makes the job much easier for us. We therefore excluded from our model spo-
radic task activations, interrupts and timing events, as well as shared resources
and the inter-task communication subsystem in general2. This simplified setting
however must be conceived as a stepping stone to extend our implementation to
support sporadic tasks as well.

In this restricted setting, we knew from [4] that the representation and man-
agement of time in the system and the scheduling routines defined to order and
dispatch processes (properties 1 and 2 in our enumeration in Section 2.1) are
among the most critical aspects with bearing on time composability in a RTOS.
As such they have been the primary concern of our investigation.

Non-intrusive Time Management. Keeping track of the passing of time
in the OS kernel is heavily dependent on the underlying hardware components
available to this purpose. In parallel to our effort of injecting time composability
within ORK+, we also committed ourselves to porting the run-time – which was
originally available for the LEON2 processor (i.e., SPARC architecture) – to the

2 As already observed, both communication and I/Os should be in principle handled
as access to shared resources.
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PowerPC 750 board in the PowerPC family [9]. The porting effort was motivated
by the poor support offered for time representation by the LEON platform,
which made a zero-disturbance implementation of time management very hard:
the SPARC platform does not offer any better than two 24-bit resolution timers,
which alone cannot provide the clock resolution required by Annex D of the Ada
Reference Manual [11]; the PowerPC 750 platform provides a 64-bit monotonic
time base register and a 32-bit programmable one-shot timer. ORK+ cleverly
copes with the LEON hardware limitation by complementing the 24-bit timer
by software to obtain the accuracy of a 64-bit register [28].

As observed in [4], time composability may be easily disrupted by tick-based
time management approaches that may inattentively interrupt and cause distur-
bance on the user application. Time composability instead is favoured where the
hardware platform provides accurate interval timers that operating system can
exploit to implement time management services with as less interference as pos-
sible. On the one hand, ORK+ embraces this principle by basing its scheduling
on a programmable interval timer, implemented as an ordered queue of alarms;
on the other hand, ORK+ is forced to use a periodic timer to handle the soft-
ware part of its interval timer. Although the tick frequency is not likely to incur
significant interference in the current ORK+ implementation we still prefer a
pure interval timer solution (i.e., with no periodic ticks) as it better fits our call
for zero disturbance and is facilitated by the PowerPC hardware.

Constant-Time Scheduling Primitives. Scheduling activities include
maintaining a list of active tasks and keeping it ordered according to the ap-
plicable dispatching policy: in the restricted periodic task model we are consid-
ering, scheduling decisions are taken according to the fixed-priority preemptive
scheduling policy and can occur only at task release and completion. In ORK+
an activation event is managed by programming a dedicated alarm to fire at
the time a task needs to be activated; ready tasks are then stored in a unique
priority queue, ordered by decreasing execution priority and activation, where
dispatching is performed by popping the head of such queue. At task termination
nothing more than dispatching the next ready task needs to be done.

Although common practice, such an implementation has the undesirable ef-
fect of incurring highly variable execution times on accesses and updates to the
involved data structures. In particular, having the alarm queue ordered by expi-
ration time makes the insertion of a new alarm highly dependent on the elements
already present in the queue (i.e. the number and value of the pending alarms
at the time of insertion). This behaviour clashes with the mentioned principle of
steady timing behaviour of OS primitives, with the risk for user applications to
be exposed to variable – and only pessimistically boundable – interference from
the execution of such primitives.

We re-designed the base ORK+ scheduling structures in a way to avoid this
kind of interference. As additional requirement we assume that tasks cannot
share the same priority level. Since in our initial setting periodic tasks are not
allowed to interact through protected objects, no priority inheritance mecha-
nism is needed, and thus a task can never change the priority level it has been
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assigned to at the time of declaration. Our constant-time scheduler performs
task management operations with fixed overhead, by leveraging on elementary
operations over bit-masks.

Fig. 2. Constant-time scheduling in ORK+

As shown in Figure 2, the two basic scheduling operations are (a) the task
insertion into the ready queue at the time of release, and (b) the election of the
next task to dispatch, which could either happen at the time of release of a higher
priority task or upon task completion. The only required data structure we need
to maintain is a 256-bit mask, where each bit corresponds to one of the priority
levels defined by ORK+: under the restriction that tasks should take distinct
priorities, a 1 in position n means that the task with priority n is eligible for
execution, 0 otherwise3. Our implementation consists of a 2-layered hierarchical
data structure: the bit-mask itself is represented as a collection of eight 32-bit
unsigned integers, and one additional 8-bit mask is required as root, in which a
1 is present in position k if the k -th child mask has at least one bit set to 1.

As a preliminary activity, during system start-up we initialize the alarms cor-
responding to all the task activations occurring during the hyper-period of the
task set. Besides the timestamp of an event, each alarm also tracks which tasks
need to be activated at that time, by keeping a mask with 1s set to the corre-
sponding positions. Alarms are then organized in a circular linked list, similarly
to [25], which will be looked up as execution time elapses to update the task
states and set the next alarm. As soon as one alarm fires to signal the activation
of a task, the following actions are performed:

(a) The mask corresponding to the fired alarm is bitwise OR-ed with the corre-
sponding child bit-mask: in this way a 1 is set in the position corresponding
to the task to be released.

(b) The task to be dispatched is identified by the most significant bit (MSB)
set in the complete 256-bit-wide mask: the corresponding child mask can be
identified in turn by looking at the most significant bit set in the root mask.

3 A value of 0 is assigned also in case task at priority level n has not been defined in
the considered task set.
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Performing step (b) above consists of finding the most significant bit within
the base-two representation of an integer, once for the root mask to identify
the leftmost non-empty child bit-mask and once to find the most significant
bit within the child mask. This can be easily done by applying the constant-
time deBruijn algorithm [13] to both masks, thus guaranteeing constant-time
latency in thread selection. At task completion nothing needs to be done for
the terminating task, since alarms for next activations have been set at system
initialization; the election of the next task to dispatch is performed similarly.

Single-level bit-mask structures have been previously exploited by the O(1)
scheduler [15] (in the Linux kernel up to version 2.6.23) to provide a constant-
time dispatcher. That solution, however, only applies to a strict time-slice model
that acutely clashes with our idea of zero disturbance. By exploiting bit-masks
also in the time model we are delivering a more generic constant-time task activa-
tion mechanism that can be in principle extended to handle sporadic activations.

3.2 Envisaged Extensions

Modifying the kernel by addressing only a subset of the requirements we set on
the RTOS, as described in the previous section, is sufficient to enforce time com-
posability within the boundaries of a restricted periodic task model. Extending
the proposed solution to meet the remaining requirements is not straightforward
as a RTOS with support to sporadic run-time entities, programmable interrupts
and protected objects is much less prone to time composability. Those extension,
however, are definitely required for a comprehensive RTOS, and especially so for
Ravenscar compliant systems where, for example, shared resources are the only
permitted construct to provide task synchronization.

In the following we discuss the impending extensions that must be imple-
mented to comply with all the requirements we set for a time-composable RTOS,
and anticipate the problems we are expecting.

Flexible Task Model. Admitting sporadic task activations, the first natural
extension of the task model, is difficult to accommodate in a time-composable
manner. With the introduction of sporadic tasks, in fact, there is no longer static
knowledge on tasks’ activation time only a minimum inter-arrival time is known
for them. The static activation table determined at system start-up works well for
periodic tasks but can easily treat event-triggered sporadic activations by simply
allowing update operations on the ready task bit-mask. Nevertheless, sporadic
tasks need a prompt reaction (low latency) by the kernel when their release
event occurs: prompt acknowledgement of sporadic activation events cannot be
had without producing intrusive and disturbing effects on the user applications.

Besides acknowledgement, the fact that each sporadic task activation may
be followed by a task preemption runs against the concept of zero disturbance
as the effects of preemption on a task do not follow a (more predictable and
accountable) periodic pattern any more4. Although it is widely acknowledged

4 The same problem arises from low-level interrupts.
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that preemption allows in the general case to improve the feasibility of a task
set, we are interested in limiting its occurrence so as to minimize its negative
effects on composability. In fact, recent studies [7, 27] have demonstrated that
(carefully) limiting task preemption does not only preserve the task set feasibility
but may also improve it.

The deferred preemption framework in [27] provides the theoretical founda-
tions to the intuition that in certain circumstances it is possible – and actually
beneficial – to delay the activation of a higher priority task in favour of the
continuation of the currently running task, without compromising the feasibility
of the task set. In our case, this intuition perfectly applies to sporadic tasks,
whose release could be deferred as long as their statically-determined tolerance
allows, so that system feasibility is preserved. It is understood that deferring task
preemption by means of non-preemptive regions does not remove the source of
interference, as the preemption will eventually take place; its effects, however,
could be tempered as the number of preemptions would be significantly reduced
when not minimized.

Further complications may rise owing to the introduction of programmable
timing events. The programming abstraction of timing events in Ada allows to
explicitly define code to be executed at a specific time instant, without the need
to employ a dedicated task. They are permitted within a Ravenscar system with
the limitation of being declared at library level. At a closer look, the problems we
may expect from timing events are quite assimilable to those related to sporadic
tasks in terms of intrusive effects of the applications. In addition, timing events
are somehow assimilable to interrupts in that they have stringent requirements
in term of responsiveness, which can be hardly met within the deferred preemp-
tion framework. On the other hand, however, timing events are a lightweight
mechanism in so far as no dedicated thread or context switch is required to
execute an event handler: they are by definition short pieces of code that are
directly executed by the clock interrupt. Hence, whereas massive resorting to
timing events should be clearly discouraged, we may venture suggesting that
their limited disturbing effect could justify an occasional use, as long as they are
statically guaranteed not to exceed the available system slack.

Composable Inter-task Communication. The problem of providing a time-
composable communication resolves in providing a proper mechanism to control
the access to shared resources, either software or hardware (via software). Pro-
tected objects allow tasks to share resources. The Ravenscar Profile prescribes
the use of the ceiling locking protocol. This choice is motivated by the effec-
tiveness of the ceiling locking protocol in placing a strict bound on the longest
blocking suffered by tasks as well as in preventing deadlock by construction.
However, it requires using dynamic priorities, which in fact breaks our one-to-one
association between tasks and priority levels within our bit-masks. Fortunately,
our bit-mask solution can be easily extended beyond the current implementa-
tion to manage dynamic priorities by adopting an additional set of bit-masks to
distinguish between base and active priority, without compromising the sched-
uler complexity. A more lightweight approach would consist in enforcing distinct
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priorities for each task and/or shared resource as we would be able to exploit
the resource priority position in the bit-mask.

Further critical issues can arise from the combination of shared resource access
protocols and the deferred preemption approach we suggested as a practical
means to reduce the effects of inter-task interference. In this case in fact it is
not clear how non-preemptive regions and critical sections may coexist, whether
disjoint or in overlap. Although in principle limited preemptive approaches can
be automatically applied to dynamic priority schedulers, we should carefully
consider the implications it may have on mutual exclusion. The fine-grained
interaction between the access protocols and limited preemptive scheduling is
indeed part of our ongoing work.

Selective Hardware Isolation. Although the hardware-to-software axis of
composition is out of the scope of this paper, a mechanism to prevent the RTOS
execution from polluting the hardware state of the user applications is strongly
required by the zero-disturbance principle. With respect to caches, for example,
software partitioning [16] approaches may help in achieving isolation without
any requirement on the underlying platform. Again on caches, interestingly, an
advanced cache management API was already implemented in ORK+ for the
LEON2 platform and can be easily ported to any other target.

4 Experimental Results

In this work we focused our implementation efforts on the provision of non-
intrusive time management and constant-time scheduling primitives. To assess
the effectiveness of our approach, we performed a preliminary evaluation of the
modified kernel primitives against their original implementation in ORK+. It is
worth noting that although ORK+ was not designed with time composability
in mind, at least it has been inspired to timing analysability and predictability.
For this reason, the original ORK+ was already well-behaved with respect to
time composability and the effects of our modifications may not stand out as in
the case of less educated operating system [4].

We conducted our experiments through a set of measurements on well-design-
ed test cases running on top of a highly-configurable SocLib-based PowerPC
750 [9] simulation platform. As a common experimental set-up, we configured
the simulator to operate with 16 KB, 4-way set associative and 16 B line size
instruction and data caches and Least Recently Used (LRU) replacement policy,
in consideration of its predictable behaviour [20]. Since zero disturbance was
one of our guiding principles towards time composability, we generally took
advantage of an automatic cache disabling mechanism available in the simulator
as a quick workaround to isolate the effects of the RTOS on the user application
cache state. We are aware of the potential implications of this solution on the
overall performance and we are willing to implement and evaluate a limited form
of software-based cache partitioning approach to prevent that kind of side effects
by reserving a piece of cache for the RTOS.
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We exploited measurement-based timing analysis, despite its known limita-
tions, as we observe that the assessment of the steady timing behaviour and zero
disturbance properties can be more easily conducted by means of measuring a
small number of examples. On the contrary, we think that the use of a safer
static analysis tool would have made it more complicated to perceive the exe-
cution time jitter. We used RapiTime [19], a hybrid measurement-based timing
analysis tool from Rapita Systems Ltd., to collect and elaborate the timing infor-
mation from execution traces. We performed an exhaustive set of measurements
under different inputs or different workloads so as to highlight the weaknesses
of the RTOS services with respect to time composability.

We wanted to observe the timing behaviour of the task management primitives
in isolation as well as the disturbing effects that the latter may have on an end-
to-end run of the user applications. It is worth noting that no measurements have
been made on time management services in that, as observed in Section 3.1, both
implementations, though different, incur no interference.

Kernel Primitives. We focused our experiments on those kernel primitives
that are responsible for updating the ready queue in ORK+. The ready queue
is accessed by the Insert and Extract procedures that are respectively invoked
upon task activation and self-suspension (at the end of the current job). Task
selection, according to the FIFO within priority dispatching policy, is done by
exploiting a reference (thus trivially in constant time) that is constantly updated
to always point to next thread to execute.

The Insert and Extract procedures are also used to access the data struc-
tures involved in our modified implementation and are thus directly comparable
with their original version. In addition, thread selection in our implementation
does not consist any more in dereferencing a pointer but uses a dedicated proce-
dure Get First Thread to extract this information from a hierarchical bit-mask.
However it was not necessary to measure the Get First Thread in isolation as it
implements a constant-time perfect hashing function and its execution time is
included in the invocation of both the Insert and Extract procedure.

Figure 3 contrasts the timing behaviour of the scheduling primitives from
the original ORK+ (left) with that obtained from our modified implementation
(right). The jittery execution time of the Insert procedure in ORK+ stems from
the nature itself of the data structure: the position in the queue in which the
task will be inserted depends on the number and priority of the already enqueued
tasks. On the contrary, the implementation based on bit-wise operations exhibits
an inherently constant behaviour and a remarkably low execution bound.

The Extract procedure instead already exhibits a constant timing behaviour
in ORK+, as it simply consists in dereferencing a pointer. Our implementation,
again relying on a bit-mask structure, is still constant though slightly less per-
forming than its original counterpart. Yet, the performance loss is negligible in
our reference platform, as the constant-time operation takes less than 100 cycles.
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Fig. 3. Experimental results on scheduling primitives

Fig. 4. Execution time jitter as a function of the task set dimension

Application-Level Induced Jitter. When it comes to gauging the effects of
different implementations of kernel primitives on the application, we measured
the same synthetic application when executing under different workloads (form
2 to 32) of strictly periodic tasks, each performing though at different rates, an
identical set of constant-time operations. We measured the end-to-end execution
time needed to complete each task’s job and the scheduling operations, without
including the cost of the low-level context switch itself.



158 A. Baldovin, E. Mezzetti, and T. Vardanega

Results are shown in Figure 4, where each point in the graph represents the
difference between the maximum and minimum observed values along more than
1000 runs. The jitter, though bounded, in ORK+ grows proportionally to the
number of tasks in the system, as a consequence of the variable size of its data
structures, whereas our implementation performs in constant time regardless of
the workload. The jittery timing behaviour is explained by the variable execution
time of the insertion of a new alarm in the ordered alarm queue, which is required
to program the next activation of a periodic task.

5 Conclusion

Timing composability resembles the holy grail in the eyes of hard real-time
system engineers: although the state-of-the-art compositional approaches to the
software development and qualification silently rely on timing composability,
the latter seems to be hard to guarantee without placing exceedingly strong
restrictions on the system architecture (e.g., partitioned systems). The real-time
operating system appears to us as a key enabler of time composability: being
a natural mediator between user-level applications and between applications
themselves and the underlying hardware, it is the outpost from which the sources
of inter-dependences can be attenuated or even eliminated.

In this paper, we take a first move towards the adaptation of a comprehensive
real-time kernel with a view to bring it to conformance with the zero disturbance
and steady timing behaviour principles, which we identified as characterising fea-
tures of a time composable operating system. As expected our kernel of choice
(ORK+) seems to be already beneficial with respect to time composability, most
likely as a consequence of its compliance to the Ravenscar profile and its globally
wise design choices. The good quality of ORK+, however, still allow for some
improvements and did not prevent us from identifying some preliminary modifi-
cations, which we have experimentally proved to effectively improve the original
ORK+ in terms of time composability.

The work reported in this paper represents just a first step towards the defini-
tion of a comprehensive time-composable RTOS, with no restrictions other than
those imposed by the Ravenscar profile. Our immediate plan for future work is
thus to further extend our investigation by attacking the challenging problems
of managing sporadic task activations and timing events with no harm on time
composability.
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Abstract. The fundamental problem in building a system with hard
real–time characteristics is guaranteeing that it will deterministically
perform its required functionality within specified time constraints. De-
termining Worst–Case Execution Time (WCET) is key to predictability,
that is to ensure that temporal behaviour of the system is correct and
hence safe. Furthermore, it is an objective to meet by verification when
development of airborne software shall be compliant with DO–178B ob-
jectives. Different approaches to WCET analysis could be taken. This
paper presents the experience automating such analysis for a Fly–By–
Wire system by means of a hybrid approach aiming to combine features
of measurement and static analysis. Several challenges arise when inte-
grating the analysis workflow withing the software development process,
especially those regarding to instrumentation overhead. Control mecha-
nisms need to be developed to mitigate the drawbacks and achieve real-
istic WCET estimations to assess temporal correctness of the system.

Keywords: Airborne Software, Safety-Critical, ARINC 653, IMA, DO–
178B/C, Worst–Case Execution Time, Predictability, Verification, Hy-
brid Approach.

1 Introduction

This document is a summary of the return of the experience automating the
Worst–Case Execution Time (WCET) analysis by means of a hybrid approach
that aims to combine features of measurement and static analysis whilst avoid-
ing their pitfalls. It was used within the Fly–By–Wire system of the Advanced
Refuelling Boom System (ARBS) designed, developed and commercialized by
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Airbus Military. Such system has been successfully installed in the A330 Multi-
Role Transport Tanker (MRTT), which is a conversion of a basic airliner aircraft
into a tanker aircraft to transfer fuel in–flight from the main fuel tanks to re-
ceiver aircrafts. The ARBS consists of a telescopic mast or boom, attached to
the underside fuselage of the aircraft, and the relevant electronic and mechanical
systems, which make the mast deployment possible from the stowage position,
its extension and connection with the receiver aircraft, the supply of fuel and,
after the refuelling, the mast disconnection, retraction and stowage.

The document is organized as follows. Sect. 1 presents an overview of the sys-
tem and explains why timing analysis is required. Sect. 2 reviews the approach
to the WCET analysis that was initially used to verify temporal behaviour of an
airborne safety–critical software system. Sect. 3 gives a description of a WCET
analysis based on a hybrid approach implemented by an on–target verification
tool developed by Rapita Systems; the rationale of the approach, the character-
istics of the tool and its workflow are presented as well. In Sect. 4, the integration
of the analysis workflow within the software development process is presented.
The challenges related to the integration of the tool analysis workflow within
the airborne software system and the mechanisms developed to address them
are outlined in Sect. 5, together with the main results obtained during the anal-
ysis of a safety–critical airborne software performed onto the real aircraft target.
Finally, Sect. 6 draws the conclusions, pointing out the goals achieved, the lessons
learned and the future work lines envisaged.

1.1 System Overview

The core system of the ARBS is the Boom Control and Computing System
(BCCS); a redundant control/monitor architecture which comprises four com-
puters. The basic functionality of the BCCS is to receive inputs from the op-
erator, sensors and aircraft systems, to compute the flight control laws and to
determine the system operational mode, and to control and monitoring the ac-
tuators, which are mainly connected to the aerodynamic surfaces. Additionally,
the BCCS manages the control and monitoring of the extension/retraction sys-
tem and the control and monitoring of the hoist and uplock system for rais-
ing/lowering and locking/unlocking the boom. The BCCS is also in charge of
providing the failure detection, recording and isolation system and managing
the redundancy mechanisms. Instruction operations are also allowed using two
flight control sticks in order to provide training capabilities when the boom is in
flight.

The system architecture defined is a partitioning, ARINC 653 compliant ar-
chitecture [1] (see Fig. 1). It is based on a Real–Time Operating System (RTOS)
that supports the mentioned specification. ARINC 653 standard is widely used
for integrating avionics systems on modern aircrafts. It allows to host multiple
space and time isolated applications of software, even with different criticality
levels, onto the same hardware in the context of an Integrated Modular Avion-
ics (IMA) architecture. The major part of the application software included in
such partitions is manually implemented using Ada95, but there is also some C
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Fig. 1. The BCCS software architecture

code automatically generated from models. The safety assessment of the system
defined the Design Assurance Level (DAL) of the BCCS as Level A, so all the
development processes, the architecture, the implementation and the verification
must be performed in order to be compliant with the DO–178B [4] certification
standard for embedded software for avionics systems and all its objectives for
Level A software.

1.2 Why Timing Analysis Is Needed

Due to the safety–critical nature of the functions performed by the BCCS, it
is considered a Hard Real–Time (HRT) system and therefore, its correctness
relies not only on functional correctness but also on the timely delivery of the
computed results [2]. The control frequency of the system must be ensured at any
time. A failure in the punctuality of the BCCS response (even if it is functionally
correct) could result in fatal consequences, hence the need of a rigorous timing
analysis to verify that the temporal behaviour is exactly as expected. The timing
analysis relies on the determination of the WCET. Simply put, the WCET of a
computational task is the maximum length of time the task could take to execute
on a specific hardware platform. This excludes any time spent executing other
tasks or interrupts [3]. WCETs are typically used for schedulability analysis
and timing assurance in reliable real–time and embedded systems, especially in
safety–critical HRT systems. A very common use of WCET in avionics industry
and in IMA in particular (as it is the case presented in this paper), is to ensure
that the pre–allocated timing budgets in a partition–scheduled system are not
violated.
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Furthermore, as stated above, all the development and verification processes
for this project must be fully compliant with DO–178B objectives in order to
seek for certification credits to be presented to the Certification Authority (CA).
In particular, the focus of the following sections will be set on DO–178 objec-
tives related to WCET that need to be met during the verification process.
In DO-178B there is no single objective that is solely concerned with timing.
However, as explained below, two objectives include timing considerations. In
addition to verifying that the software requirements relating to timing have been
met, DO–178B states that the worst–case timing should be determined. Section
6.3.4f of DO–178B states that as part of meeting the verification objective of
the source code being accurate and consistent, the worst–case timing should be
determined by review and analysis for this Level A software. Besides, in Table
A–5 of DO–178B it is pointed out that the timing verification is a task con-
cerned with reviews and analysis of the source code and with requirement–based
hardware/software integration testing. It is also indicated that independence
in verification must be ensured. Finally, the results of this review and analy-
sis should be documented in the Software Accomplishment Summary (SAS) as
timing margins (Section 11.20d of DO–178B). In addition, it is important to
highlight that the WCET analysis and the establishment of the timing margins
of the software are required as well within last issue, that is DO–178C [5], which
in section 6.3.4f is considering the determination of the WCET and path, and
in section 11.20i is requiring the inclusion of the analysis results SAS. More ref-
erences to WCET analysis can be found in DO–248B [6], where it is stated that
the worst–case timing could be calculated by review and analysis of the source
code and architecture, but compiler and processor behaviour and its impact
also should be addressed. Timing measurements by themselves cannot be used
without an analyis demonstrating that the worst–case timing would be achieved.

As pointed out above, WCET is a key concept to deal with when addressing
timing analysis in the context of HRT systems development. It is also a criti-
cal objective to be met when developing safety–critical airborne software under
DO–178B.

2 Initial Situation

2.1 A Measurement–Based Approach to Timing Analysis

As stated in Sect. 1, the software architecture is based on a partitioning archi-
tecture compliant with the ARINC 653 standard, which offers space and time
partitioning in safety–critical RTOS. ARINC 653 defines a scheduler consisting
of a major frame comprised of a sequence of minor frames which specify the
execution time of an individual partition for a fixed duration; at the end of the
major frame the scheduler repeats. Therefore ARINC 653 scheduling implemen-
tation is deterministic, i.e. the next partition should start its execution at the
exact time predefined in the ARINC 653 scheduler. From the point of view of
the temporal behaviour analysis, the timing isolation caused by the time slot
scheduling of the partitions was fully taken into account. This feature allows
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to split the WCET analysis of the complete system into individual analyses for
each partition thanks to the determinism of the partitions scheduling. In other
words, the whole system timing behaviour and its WCET determination can be
performed statically when the different partitions analyses are completed. So the
focus of the temporal verification must be placed in the different partitions. Also
in terms of safety, given that the scheduler is preemptive, these violations of the
time slots are the only possible source of temporal failures.

At early stages of the project, in order to perform the verification process with
regard to worst–case execution timing, a manual, measurement–based approach
was initially followed. This approach aimed to ease the obtaining of execution time
measurements during the testing of the application software so that it could be
possible to quickly get an assessment of whether or not the pre–allocated timing
budgets assigned to each partition were violated at any activation. The WCET
determination process consisted on a very simple tracing system of the source code
execution. A small and fixed number of system calls were located within the source
code of every partition as a simple form of instrumentation. This mechanism was
able to collect timestamps during the execution of the code. At the end of the
partition root function, a procedure calcutated easily the time gap between these
timestamps and the whole execution time for the partition task(s).

The source code was estimulated by means of the high and low level test-
ing infrastructure. This infrastrucute is based on the target architecture, but in
the case of the Partition Testing infrastructure there are only two partitions:
one containing the test harness and other including the Partition under Test
(PuT). The mechanism was completely embedded in the source code, therefore
the only requirement to extract the timing information was to define new sig-
nals outputting both the partial times and the whole execution time through
the test harness infrastructure. It must be noted that, to meet with DO–178 ob-
jectives, a manual review of the source code attempting to identify worst–case
paths through the code were performed as well, which is an effort–intensive task.
Moreover, the set of test cases executed for the timing analysis achieved a 95%
of MC/DC structural coverage. A high structural coverage is a necessary but
not sufficient condition to be confident that the testing was able to estimulate
the worst scenario in temporal terms. So it was also necessary a final review
ensuring that the set of tests were driving the code through these paths. Fi-
nally, another important characteristic of the approach is the fact of keeping the
real–time during the execution of the tests.

2.2 Outcome of the Initial Solution

To summarize the main results with regard to the initial approach to WCET
analysis of the system, a list of advantages and disadvantages are presented next.

Advantages:

– A manual, measurement–based approach provides an initial indication of the
execution time performance of the software components to quickly assess the
correctness of the pre–allocated time slot for the partitions.
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– Execution time measurements are easy to obtain during testing with few
changes in the current testing infrastructure.

– The measurements are observations of the timing behaviour of the system
code running on the actual hardware, so there is no need for modeling the
processor and its advanced features.

Disadvantages:

– During testing, it is difficult to guarantee that the worst–case path has been
taken.

– It is also difficult to ensure that the functions and loops on a given path have
exhibited their WCETs simultaneously. Moreover, for complex software, run-
ning on advanced microprocessors, the longest observed end–to–end execu-
tion time is likely to be less than the actual worst–case time, which could
result in an optimistic WCET.

– Measurements alone are rarely sufficient to provide high levels of confidence
in the worst–case timing behaviour of the system and need effort–intensive
manual reviews of the code and the test cases which is, in many cases, an
unfeasible task in terms of time and/or budget.

3 Automating WCET Analysis Based on a Hybrid
Approach

Although a purely measurement–based approach to timing analysis is widely
used in avionic applications, the disadvantages (discussed above) led to other
approaches being considered.

Other approaches (i.e. not based on measurement) for timing analysis do exist,
for example, simulation or static analysis. These other approaches introduce
risks of providing timing data that do not accurately reflect reality. Possible
causes of this include an inaccurate model of the CPU, or a model that is not
configured in the same way as the target hardware. Furthermore, with these
approaches it is difficult to confirm the timing data against the real system –
unlike a measurement–based approach, where measurements taken are clearly
representative of actual hardware.

The approach that was selected for investigation was a hybrid approach, as
embodied by the RapiTime execution analysis tool.

3.1 Description of the Tool

In this approach a series of detailed measurements are made, and correlated with
a structural model of the source code. The measurements and structural model
allow an analysis to be made that:

– Predicts the path through the code which, if executed, results in the WCET.
– Identifies maximum loop iterations and maximum observed execution times

of code sections to be included in the WCET prediction.
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– Allows comparison between the predicted WCET and the longest observed
test case.

The two biggest challenges with a measurement–based approach are:

– How to construct a test case that represents the longest feasible path through
the code. In aerospace environments, a required practice is to identify WCET.
Indeed for civil aircraft, as seen, this is an objective of DO–178B and it
is commonly manually performed through engineering judgement and the
analysis of the possible operational or functional scenarios. Achieving a rea-
sonable level of confidence that something close to the WCET has been
demonstrated in testing is an extremely difficult task for any but the sim-
plest software.

– Minimising effort in finding the execution time. As implied above, identifying
the worst–case test case is time consuming. Another cause of effort being
spent is actually making the measurements: instrumenting the source code
and interpreting the results can be time consuming, particularly if any level
of detail is required from the measurements.

Based on the assessment of available solutions, RapiTime addresses the disad-
vantages identified for a purely measurement-based approach. The recommended
workflow for using RapiTime guides the user in creating tests that execute a
worst–case path through the code. Furthermore, RapiTime’s automated instru-
mentation of source code and analysis of the results makes a significant reduction
in the effort required for a comparable manual process.

3.2 Tool Analysis Workflow

When using RapiTime to support the construction of test cases following the
worst–case execution path, a particular process is recommended. This process is
based upon the use of two values that RapiTime will produce: the high water
mark (HWM) and the predicted WCET (both described below). Iteratively im-
proving testing and analysis leads to these two values converging, which in turn
results in the tests being constructed that result in the worst–case path being
executed.

As mentioned above, the two key values reported by RapiTime are:

High water mark: represents the longest observed end–to–end execution time
from testing. This is a property of an entire execution path, rather than a
single part of a path.

Predicted WCET: represents RapiTime’s prediction for the longest possible
execution time for this software. This prediction is based upon the combina-
tion of a structural model of the source code with measurements correspond-
ing to segments of source code. Combining these two values allows RapiTime
to perform an analysis roughly analogous to a critical path analysis. In addi-
tion to obtaining a predicted WCET, this approach also leads to RapiTime
being able to show the path taken through the code that leads to the WCET
value.
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Fig. 2. RapiTime’s build–execute workflow

RapiTime extends the traditional build-execute workflow by adding three auto-
mated activities (as depicted in Fig. 2):

– Instrumentation. As part of the building process, RapiTime will automat-
ically insert instrumentation points (Ipoint) into intermediate versions of
the application source code. The purpose of the instrumentation is to show
that specific points in the source code have been executed. When executed,
each Ipoint shows that the program has reached a particular location in the
code at a specific time. Although the most detailed results are obtained from
instrumenting every decision point, it is possible to configure other instru-
mentation policies, meaning for example that Ipoints could be placed less
frequently. As the instrumentation is performed, RapiTime also builds up a
model of the structure of the code, which is used in the analysis phase.

– Data collection. The executable is loaded onto the target and the tests are run
against the target. When the application is executed, the instrumentation
code will result in execution data being generated – this needs to be collected
for analysis at the next step.

– Analysis. Once the timing data and structural models are available, they can
be combined to provide WCET predictions and other information.

4 WCET Analysis Workflow Integration within the
Safety–Critical Software Development Process

4.1 Building Process

The integration of the timing analysis workflow within the BCCS Software ar-
chitecture was based on the incorporation of the timing analysis toolchain within
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the actual Partition Testing infrastructure. As seen in Sect. 2, this infrastrucu-
ture consists on an ARINC653–compliant architecture with two partitions, the
test harness and the partition under test (PuT). It allows the injection of test
vectors, the recording of results in real–time and the on–target tests execution.

From the point of view of the building process, some changes were required
in the makefiles of the software compilation to integrate the timing analysis.
The modifications aimed to automatically generate the preprocessed and the
instrumented source code and to generate the structural analysis during the
building process of the partition binary to be loaded on the target so that,
such binary included the instrumented source code. The integration pursued the
maintenance of a normal compilation mode, and the inclusion of a timing analysis
mode option. It must be noted that compilation options should be identical
in both modes to ensure a realistic analysis. Besides, both modes should be
compatible allowing to select between them in one single makefile.

Due to the target features, an approach based on a memory buffer was se-
lected. A shared memory region between the PuT and the test harness was
created in the configuration of the execution platform to be the mechanism used
to manage the timing information of the Ipoints during the execution of the
tests and, after the test execution finalization, to create the output trace file.
This shared memory region required an instrumentation library specifically de-
veloped for this purpose, jointly designed by Rapita and Airbus Military. This
library defines the required types and procedures to incorporate the Ipoints
mechanism into the software, as shown below.

-- RVS Ipoint declaration

type RVS_Ipoint_Type is record

time : Unsigned_32;

id : RVS_Ipoint_Id_Type;

end record;

pragma pack(RVS_Ipoint_Type);

-- RVS Ipoints Buffer declaration

type RVS_Ipoint_Buffer_Index_Type is

range 1 .. (RVS_Buffer_Bytes_Available / 6);

type RVS_Ipoint_Buffer_Type is

array ( RVS_Ipoint_Buffer_Index_Type ) of RVS_Ipoint_Type;

type RVS_Data_Type is record

Current_Buffer_Addr : System.Address;

Start_Buffer_Addr : System.Address;

RVS_Ipoint_Buffer : RVS_Ipoint_Buffer_Type;

end record;

-- RVS Ipoint routine

procedure RVS_Ipoint( I : RVS_Ipoint_Id_Type ) is

t : Unsigned_32;

Reserved_Addr : System.Address;

begin

System.Machine_Code.Asm
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("1:;" & -- label to retry if write fails

"lwarx %0,0,%2;" & -- load buffer pointer and reserve

"mfspr %1,<Performance Counter>;" & -- get timestamp

"addi 0,%0,6;" & -- calculate next position and store in r0

"stwcx. 0,0,%2;" & -- attempt to store next position

"bne- 1b", -- retry if write fails

Outputs => (System.Address’Asm_Output

("=&r",Reserved_Addr),

Unsigned_32’Asm_Output("=&r",t)),

Inputs => System.Address’Asm_Input

("r", RVS_Data.Current_Buffer_Addr’Address),

Clobber => "r0",

Volatile => True);

declare

Reserved_Buffer_Access : RVS_Ipoint_Type_Access :=

RVS_Ipoint_Type_Access

(Addr_To_Ipoint_Buffer_Access.To_Pointer

(Reserved_Addr));

begin

Reserved_Buffer_Access.all.time := t;

Reserved_Buffer_Access.all.id := I;

end;

end RVS_Ipoint;

4.2 Analysis Process

Once the integration of the analysis workflow within the build–execute process
is done, the timing analysis can be performed. It consists of the following steps
(explained in Sect. 3):

1. Instrument and build
2. Run tests
3. Analysis

The process combines the execution data with the structural model to derive
a HWM and a predicted WCET/worst–case path. If the HWM is significantly
less than the predicted WCET, there are two possible actions (not mutually
exclusive):

– RapiTime may have made assumptions about the execution that make the
predicted WCET pessimistic. For example, it may be that RapiTime indi-
cates that the worst–case path is executed if A and B are true. However, A
and B could be mutually exclusive. In this situation, it is possible to add
“analysis annotations”, which improve RapiTime’s prediction of the worst
case. Once annotations are added, the analysis can be rerun (it is not nec-
essary to execute the tests again).

– RapiTime will show the predicted worst–case path through the code. If the
test cases do not execute this path, it might be worth adjusting the test cases
to cause this path to be executed. The test cases will be executed again.
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In the ideal case, when the computed WCET path corresponds exactly to HWM
path, the process is complete. However, in general these paths will not correspond
and it will be important to identify and justify the reasons why.

5 Integration Process Challenges

5.1 Instrumentation Overhead

As stated in Sect. 4, important consequences must be faced because of the choice
of a tracing mechanism based on a shared memory region. The main issue caused
is the Ipoint routine overhead that it is inevitably included in the trace infor-
mation. Some actions shall be taken and some mechanisms shall be developed
in order to mitigate it.

The execution trace is created by calling an Ipoint routine at specific places in
the program execution. The time taken by this routine increases the measured
execution time for the function where the routine is called from. Although the
instrumentation library is optimized as much as possible, the writing of the time
information in memory during the routine execution implies a non negligible
overhead.

To account for this additional execution time, a constant deinstrumentation
parameter may be applied when processing the trace with the appropiate tool
of the analysis toolchain. This specifies an amount of time to remove from the
trace at each Ipoint in order to generate a more accurate timing information.
The process of determining the deinstrumentation parameter is known as “Ipoint
calibration” and involves three simple stages:

1. Creating a program that make successive calls to the Ipoint routine. Since
the integration was already established, a sequence of Ipoints is manually
inserted (by means of annotations) into the source code near the start of the
application main loop.

2. Measuring the execution of this program on target.
3. Calculate the Best–Case Execution Time (BCET) for the routine to be used

as deinstrumentation parameter. This was done by calculating the differences
between the Ipoints in the sequence.

This is not a complete solution to control the instrumentation overhead so it can
result in some overestimation for the WCET (all the variations of the Ipoints
execution time above the BCET will be present in the measured times); but it
is conservative in terms of safe timing margins.

5.2 Level of Instrumentation

Very tightly coupled with the last issue, there is also an effect related to the
number of Ipoints that are included into the source code, which represents the
level of instrumentation. The smaller the function instrumented is, the more
the instrumentation affects to the WCET estimation so it must be taken into
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account with utmost carefulness. It is not only a problem with the overhead
itself, but also with regard to the fact that these functions overhead is very high
compared to their execution time themselves. This problem appears especially
when the number of statements of the functions is very low (1-5 statements).

To deal with this situation, some modifications to the normally recommended
process need to be made. The following iterative process (summarized in Fig. 3)
based on the instrumentation profiles and annotations has been followed, aiming
to find a trade–off between the instrumentation overhead and the detail of such
instrumentation.

Firstly, an initial WCET estimation must be calculated according with the
process described in Sect. 3. To obtain this initial estimation, a standard instru-
mentation (START OF SCOPES profile) is used. This profile presents a good
balance between the detail of the instrumentation and the number of Ipoints
inserted (with their known overhead).

The main modifications made to the process are the actions to be taken after
the analysis of the report and the estimations.

– If the estimated WCET is over the pre–allocated Partition Time Slot (PTS),
it could be eventually be caused by issues related to instrumentation over-
head and so, a new instrumentation of the source code must be done, con-
trolling not to instrument the small functions. The process must be then
repeated from the generation of the instrumented binaries.

– On the contrary, if the estimation of the partition WCET is under the PTS,
the comparison between HWM and predicted WCET must be made.

• As stated in Sect. 4, in the ideal situation, HWM and WCET will cor-
respond. This means that the longest observed execution of the code,
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end to end, will be the same as the longest possible path as determined
from the intermediate measurements and so, the process ends. However,
for complex software, it is not always possible to execute the estimated
worst–case path. A threshold must be defined then to stop the process.
For this investigation, it has been considered that a HWM greater or
equal to the 80% of the predicted WCET is close enough and has ex-
ercised the worst–case path sufficiently. Therefore, if HWM surpasses
such threshold, the process ends as well and the remaining difference is
formally justified through reviews of the test and the code.

• If HWM is below the threshold, then the actions explained in Sect. 4
must be taken to improve the convergence between HWM and worst–
case paths.

Finally, as a demonstration of the impact of the instrumentation level, some
obtained results are presented in Table 1. It shows a huge gap between HWM
(which keeps quite unaffected by the number of Ipoints) and WCET for high
levels of instrumentation. For these levels, (almost) every function within the
source code is instrumented and the negative consequences of the overhead af-
fect deeply in the WCET calculation. This impact is especially important for the
small functions, as stated. Leaving the smallest functions out of the instrumen-
tation has, as shown in the data evolution within the table, positive effects in the
WCET calculation which converges with HWM as the number of instrumented
small functions decreases. Hence, it is not only a matter of Ipoints number but
also of the place where the IPoints are located.

Table 1. WCET estimations for different instrumentation levels

Ipoints(#) Ipoints Cov.(%) HWM WCET

836 98% 0,367ms 3,240ms

358 92% 0,340ms 2,471ms

189 89% 0,332ms 1,579ms

140 97% 0,332ms 1,197ms

66 98% 0,334ms 0,971ms

5.3 Interrupts Handling

In Sect. 1, it was stated that the WCET excludes any time spent executing
other tasks or interrupts. So another important challenge is the accounting for
the effects that an eventual interrupt during the code execution could be caused
in the measured execution time.

Due to the partitioning architecture, it is ensured that only the tasks of one
partition can execute. Furthermore, because of the determinism required by DO–
178B, each partition application software has been designed with only one task
in the majority of cases (just in one partition there are more than one task,
but keeping the determinism between them). However, it could happen that the
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Fig. 4. Execution times of a tight loop affected by an interrupt

Table 2. Impact of an interrupt during a tight loop execution

Min. ET Avg. ET HWM ET Max. ET WCET

0,880 µs 2,018 µs 1,962µs 15,597 µs 385,394 µs

execution of the application software is interfered by a kernel interrupt and it is
required to account for the time the interrupt handling routine takes to run.

The effects of this are depicted in Fig. 4, where it is shown a critical situation
where the execution times of a tight loop in the source code under analysis
are mostly grouped from 1μs to 4μs but there are some executions significantly
higher which are likely due to the presence of an interrupt.

Moreover, Table 2 contains the corresponding timing information. It shows
an average execution time (ET) for the loop of about 2μs. The HWM is very
close to such value as well, which suggests that when the longest end to end
execution of the code under analysis (the partition in this case) took place, the
loop execution time was not affected by any external effect. However, in one
or more executions, and probably due to the interference of an interrupt, the
execution time for the loop was unexpectedly high (see the difference between
average and maximum ET). Even if it happened only for a single part of the loop
code, this fact has obvious, direct consequences for the WCET estimation. In a
very simplified way, and regardless of any other factors affecting the estimation,
we can suppose that all the parts could be eventually affected the same.

A mechanism to distingish the time associated to the execution of the inter-
rupt handling routine from the time of the function that were running when
the interrupt took place is required. This mechanism is based on instrumenting
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such handling routines. This action would permit to take the time coming from
the routines into account and not to incorrectly increase the measured time for
the code. It is therefore necessary to modify some procedures within the Board
Support Package (BSP) interfacing the RTOS kernel and the hardware.

6 Conclusions

To summarize the main conclusions on this investigation, it can be stated that,
from the point of view of the required effort to perform the WCET analysis and
the confidence on the obtained results, the integration of a hybrid approach (as
it is the one implemented by RapiTime) means an important goal achieved. As
seen, the approach automates critical processes during the verification from in-
strumentation to data analysis. Another achievement is the workflow proposed
that is fully compliant with the particularities of the safety–critical airborne de-
velopment environment and offers a systematic, repeatable process for revealing
and explaining the execution time behaviour of the software. It also helps in the
design of specific temporal tests focused on estimulating the worst–case path.

The memory–based implementation selected for the tracing system presents
significant consequences in the instrumentation overhead that must be taken
into account with specific mechanisms. Also the eventual presence of interrupts
during the code execution must be controlled, as explained. Another critical
input in a timing analysis would be the loop bounds. However, it has been out
of this study scope due to the fundamentally sequential nature of the code and
the bounds static definition of the not many loops in the code.

A careful hardware selection allowing less–intrusive tracing mechanisms (i.e.
I/O ports, data buses) from the early stages of the project, would ease the
integration process of the WCET analysis workflow. It also impacts critically in
the control of the instrumentation overhead.

For future investigations, an unique, integrated timing analysis for a source
code composed of C and Ada code would be an achievement in terms of reduc-
tion of effort and quality of the obtained timing information. Also mechanisms
automating the instrumentation level by analysis of the functions sizes would be
very helpful in the overhead control and should be investigated.

Finally, for future projects, an important conclusion drawn is that the earlier
the WCET analysis is addressed in the software life cycle of HRT systems, the
more useful its results are, not only in terms of timing assurance but also in terms
of optimization of the source code implementation and the software design.
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