
Dirk Beyer
Michele Boreale (Eds.)

 123

LN
CS

 7
89

2

Joint IFIP WG 6.1 International Conference, FMOODS/FORTE 2013
Held as Part of the 8th International Federated Conference
on Distributed Computing Techniques, DisCoTec 2013
Florence, Italy, June 2013, Proceedings

Formal Techniques
for Distributed Systems

Lecture Notes in Computer Science 7892
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Dirk Beyer Michele Boreale (Eds.)

Formal Techniques
for Distributed Systems
Joint IFIP WG 6.1 International Conference
FMOODS/FORTE 2013
Held as Part of the 8th International Federated Conference
on Distributed Computing Techniques, DisCoTec 2013
Florence, Italy, June 3-5, 2013, Proceedings

13

Volume Editors

Dirk Beyer
University of Passau
Department of Computer Science and Mathematics
Innstraße 31, 94032, Passau, Germany

Michele Boreale
Università di Firenze
Dipartimento di Statistica, Informatica, Applicazioni (DiSIA)
Viale Morgagni, 65, 50134 Florence, Italy

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-38591-9 e-ISBN 978-3-642-38592-6
DOI 10.1007/978-3-642-38592-6
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2013938531

CR Subject Classification (1998): F.3, D.2.4, F.1, D.2, F.4, I.2.2-3, D.3, C.2, C.3

LNCS Sublibrary: SL 2 – Programming and Software Engineering

© IFIP International Federation for Information Processing 2013

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Foreword

In 2013, the 8th International Federated Conference on Distributed Computing
Techniques (DisCoTec) took place in Florence, Italy, during June 3–6. They
were hosted and organized by the Università di Firenze. The DisCoTec series of
federated conferences, one of the major events sponsored by the International
Federation for Information processing (IFIP), included three conferences:

– The 15th International Conference on Coordination Models and Languages
(Coordination)

– The 13th IFIP International Conference on Distributed Applications and
Interoperable Systems (DAIS)

– The 2013 IFIP Joint International Conference on Formal Techniques for
Distributed Systems (33rd FORTE/15th FMOODS)

Together, these conferences cover the complete spectrum of distributed com-
puting subjects ranging from theoretical foundations to formal specification tech-
niques to systems research issues.

Each of the first three days of the federated event began with a plenary
speaker nominated by one of the conferences. The three invited speakers were:
Tevfik Bultan, Department of Computer Science at the University of California,
Santa Barbara, USA; Gian Pietro Picco, Department of Information Engineering
and Computer Science at the University of Trento, Italy; and Roberto Baldoni,
Department of Computer, Control and Management Engineering “Antonio Ru-
berti”, Università degli Studi di Roma “La Sapienza”, Italy. In addition, on the
second day, there was a joint technical session consisting of one paper from each
of the conferences. There were also three satellite events:

1. The 4th International Workshop on Interactions Between Computer Science
and Biology (CS2BIO) with keynote talks by Giuseppe Longo (ENS Paris,
France) and Mario Rasetti (ISI Foundation, Italy)

2. The 6th Workshop on Interaction and Concurrency Experience (ICE) with
keynote lectures by Davide Sangiorgi (Università di Bologna, Italy) and
Damien Pous (ENS Lyon, France)

3. The 9th International Workshop on Automated Specification and Verifica-
tion of Web Systems (WWV) with keynote talks by Gerhard Friedrich (Uni-
versität Klagenfurt, Austria) and François Täıani (Université de Rennes 1,
France)

I believe that this program offered each participant an interesting and stim-
ulating event. I would like to thank the Program Committee Chairs of each
conference and workshop for their effort. Moreover, organizing DisCoTec 2013

VI Foreword

was only possible thanks to the dedicated work of the Publicity Chair Francesco
Tiezzi (IMT Lucca, Italy), the Workshop Chair Rosario Pugliese (Università di
Firenze, Italy), and the members of the Organizing Committee from Università
di Firenze: Luca Cesari, Andrea Margheri, Massimiliano Masi, Simona Rinaldi,
and Betti Venneri. To conclude I want to thank the International Federation for
Information Processing (IFIP) and Università di Firenze for their sponsorship.

June 2013 Michele Loreti

Preface

This volume contains the proceedings of the 2013 IFIP Joint International
Conference on Formal Techniques for Distributed Systems (33rd FORTE/15th

FMOODS). The joint conference is the result of merging the two international
conferences Formal Techniques for Networked and Distributed Systems (FORTE)
and Formal Methods for Open Object-Based Distributed Systems (FMOODS).
The city of Florence, Italy, was selected as the conference venue, taking place
during June 3–5, 2013. This edition of the conference was organized as part of the
8th International Federated Conference on Distributed Computing Techniques
(DisCoTec).

The FORTE/FMOODS conference series represents a forum for fundamental
research on theory, models, tools, and applications for distributed systems. The
conference encourages contributions that combine theory and practice, and that
exploit formal methods and theoretical foundations to present novel solutions to
problems arising from the development of distributed systems. FORTE/FMOODS

covers distributed computing models and formal specification, testing, and veri-
fication methods. The application domains include all kinds of application-level
distributed systems, telecommunication services, Internet, embedded and real-
time systems, as well as networking and communication security and reliability.

We received a total of 49 full paper submissions for review (10 were with-
drawn before review). Each submission was reviewed by at least three members
of the Program Committee (papers that were co-authored by a PC member re-
ceived four reviews). Based on high-quality reviews, and a thorough (electronic)
discussion by the Program Committee, we selected 20 papers for presentation at
the conference and for publication in this volume.

Tevfik Bultan, University of California, Santa Barbara (USA), was the keynote
speaker of FORTE/FMOODS 2013. He is well-known in our community for his
work on dependability of Web-service-based systems and their automated
verification. Tevfik Bultan’s keynote, entitled “Analyzing Interactions of Asyn-
chronously Communicating Software Components,” gave an overview of “chore-
ography” specifications and their realizability; an abstract of the keynote is
included in this proceedings volume.

We would like to thank all who contributed to making FORTE/FMOOD 2013
a successful event: first of all, the authors, for submitting their fine research re-
sults; the Program Committee, for an efficient discussion and a fair selection pro-
cess; the invited speaker; and of course the attendees ofFORTE/FMOODS 2013!We
are also grateful to the DisCoTec general chair, Michele Loreti, and all members
of his local-organization team at the Università di Firenze. Thank you!

June 2013 Dirk Beyer
Michele Boreale

Organization

Program Committee

Sven Apel University of Passau, Germany
Saddek Bensalem VERIMAG, France
Dirk Beyer University of Passau, Germany
Michele Boreale Università di Firenze, Italy
Tevfik Bultan University of California at Santa Barbara, USA
Luis Caires Universidade Nova de Lisboa, Portugal
Mariangiola

Dezani-Ciancaglini Università di Torino, Italy
Juergen Dingel Queen’s University, Canada
Simon Gay University of Glasgow, UK
Holger Giese University of Potsdam, Germany
Kim Guldstrand Larsen Aalborg University, Denmark
Arie Gurfinkel Software Engineering Institute, USA
Matthew Hennessy Trinity College Dublin, Ireland
Paola Inverardi Università dell’Aquila, Italy
Alan Jeffrey Bell Labs, USA
Joost-Pieter Katoen RWTH Aachen University, Germany
Vladimir Klebanov Karlsruhe Institute of Technology, Germany
Axel Legay IRISA/INRIA at Rennes, France
Matteo Maffei Saarland University, Germany
Uwe Nestmann TU Berlin, Germany
Mauro Pezz University of Lugano, Italy
Corneliu Popeea TU Munich, Germany
Sophie Quinton TU Braunschweig, Germany
Jan Rutten CWI, The Netherlands
Geoffrey Smith Florida International University, USA
Jaco Van De Pol University of Twente, The Netherlands
Helmut Veith Vienna University of Technology, Austria
Martin Wirsing Ludwig Maximilians University of Munich,

Germany
Nobuko Yoshida Imperial College London, UK
Gianluigi Zavattaro Università di Bologna, Italy

X Organization

Additional Reviewers

Ancona, Davide
Autili, Marco
Berger, Martin
Bocchi, Laura
Bravetti, Mario
Cerone, Andrea
Combaz, Jacques
Delahaye, Benoit
Delange, Julien
Di Giusto, Cinzia
Di Pierro, Alessandra
Dyck, Johannes
Elrakaiby, Yehia
Fahrenberg, Uli
Fossati, Luca
Ghafari, Naghmeh
Giachino, Elena
Graf, Susanne
Jansen, Christina
Jongmans, Sung-Shik T. Q.
Kammueller, Florian
Koutavas, Vasileios
Kroiß, Christian

Lanese, Ivan
Ledesma-Garza, Ruslan
Loreti, Michele
Neumann, Stefan
Noll, Thomas
Nouri, Ayoub
Padovani, Luca
Peters, Kirstin
Posse, Ernesto
Pous, Damien
Proenca, Jose
Pérez, Jorge A.
Rensink, Arend
Schneider, Sven
Spaccasassi, Carlo
Tivoli, Massimo
Trefler, Richard
V. Gleissenthall, Klaus
Vigliotti, Maria
Vogel, Thomas
Volpato, Michele
Wong, Peter
Wätzoldt, Sebastian

Steering Committee

Jean-Bernard Stefani (Chair, elected member)
Frank de Boer (Elected member)
Einar Broch Johnsen (Elected member)
Heike Wehrheim (Elected member)
John Hatcliff (Rotating member, 2010–2013)
Elena Zucca (Rotating member, 2010–2013)
Roberto Bruni (Rotating member, 2011–2014)
Juergen Dingel (Rotating member, 2011–2014)
Holger Giese (Rotating member, 2012–2015)
Grigore Rosu (Rotating member, 2012–2015)

Table of Contents

Invited Talk

Analyzing Interactions of Asynchronously Communicating Software
Components . 1

Tevfik Bultan

Session 1: Verification

Formal Analysis of a Distributed Algorithm for Tracking Progress 5
Mart́ın Abadi, Frank McSherry, Derek G. Murray, and
Thomas L. Rodeheffer

A Case Study in Formal Verification Using Multiple Explicit Heaps 20
Wojciech Mostowski

Parameterized Verification of Track Topology Aggregation Protocols 35
Sergio Feo-Arenis and Bernd Westphal

Session 2: Types

Monitoring Networks through Multiparty Session Types 50
Laura Bocchi, Tzu-Chun Chen, Romain Demangeon,
Kohei Honda, and Nobuko Yoshida

Semantic Subtyping for Objects and Classes . 66
Ornela Dardha, Daniele Gorla, and Daniele Varacca

Polymorphic Types for Leak Detection in a Session-Oriented Functional
Language . 83

Viviana Bono, Luca Padovani, and Andrea Tosatto

Session 3: Testing

Passive Testing with Asynchronous Communications 99
Robert M. Hierons, Mercedes G. Merayo, and Manuel Núñez

Input-Output Conformance Simulation (iocos) for Model Based
Testing . 114

Carlos Gregorio-Rodŕıguez, Luis Llana, and Rafael Mart́ınez-Torres

XII Table of Contents

Session 4: DisCoTec Joint Session

Model Checking Distributed Systems against Temporal-Epistemic
Specifications . 130

Andreas Griesmayer and Alessio Lomuscio

Session 5: Model Checking

Formal Verification of Distributed Branching Multiway Synchronization
Protocols . 146

Hugues Evrard and Frédéric Lang

An Abstract Framework for Deadlock Prevention in BIP 161
Paul C. Attie, Saddek Bensalem, Marius Bozga, Mohamad Jaber,
Joseph Sifakis, and Fadi A. Zaraket

Bounded Model Checking of Graph Transformation Systems via SMT
Solving . 178

Tobias Isenberg, Dominik Steenken, and Heike Wehrheim

Session 6: Automata

Verification of Directed Acyclic Ad Hoc Networks . 193
Parosh Aziz Abdulla, Mohamed Faouzi Atig, and Othmane Rezine

Transducer-Based Algorithmic Verification of Retransmission Protocols
over Noisy Channels . 209

Jay Thakkar, Aditya Kanade, and Rajeev Alur

Asynchronously Communicating Visibly Pushdown Systems 225
Domagoj Babić and Zvonimir Rakamarić

Session 7: Distribution and Concurrency

A Timed Component Algebra for Services . 242
Benôıt Delahaye, José Luiz Fiadeiro, Axel Legay, and Antónia Lopes

Probabilistic Analysis of the Quality Calculus . 258
Hanne Riis Nielson and Flemming Nielson

May-Happen-in-Parallel Based Deadlock Analysis for Concurrent
Objects . 273

Antonio E. Flores-Montoya, Elvira Albert, and Samir Genaim

Session 8: Security

Lintent: Towards Security Type-Checking of Android Applications 289
Michele Bugliesi, Stefano Calzavara, and Alvise Spanò

Table of Contents XIII

Honesty by Typing . 305
Massimo Bartoletti, Alceste Scalas, Emilio Tuosto, and
Roberto Zunino

Author Index . 321

Analyzing Interactions of Asynchronously

Communicating Software Components

(Invited Paper)

Tevfik Bultan

Department of Computer Science
University of California, Santa Barbara

bultan@cs.ucsb.edu

Abstract. Since software systems are becoming increasingly more con-
current and distributed, modeling and analysis of interactions among
their components is a crucial problem. In several application domains,
message-based communication is used as the interaction mechanism, and
the communication contract among the components of the system is
specified semantically as a state machine. In the service-oriented com-
puting domain this type of message-based communication contracts are
called “choreography” specifications. A choreography specification iden-
tifies allowable ordering of message exchanges in a distributed system. A
fundamental question about a choreography specification is determining
its realizability, i.e., given a choreography specification, is it possible to
build a distributed system that communicates exactly as the choreogra-
phy specifies? In this short paper we give an overview of this problem,
summarize some of the recent results and discuss its application to web
service choreographies, Singularity OS channel contracts, and UML col-
laboration (communication) diagrams.

1 Introduction

Nowadays, many software systems consist of multiple components that execute
concurrently on different machines that are physically distributed, and interact
with each other through computer networks. Moreover, new trends in comput-
ing, such as service-oriented architecture, cloud computing, multi-core hardware,
wearable computing, all point to even more concurrency and distribution among
the components of software systems in the future. Concurrent and distributed
software systems are increasingly used in every aspect of society and in some
cases provide safety critical services. Hence, it is very important to develop tech-
niques that guarantee that these software systems behave according to their
specifications.

A crucial problem in dependability of concurrent and distributed software
systems is the coordination of different components that form the whole system.
In order to complete a task, components of a software system have to coordinate
their executions by interacting with each other. One fundamental question is,

D. Beyer and M. Boreale (Eds.): FMOODS/FORTE 2013, LNCS 7892, pp. 1–4, 2013.
c© IFIP International Federation for Information Processing 2013

2 T. Bultan

what should be the interaction mechanism given the trend for increased level of
concurrency and distribution in computing? One emerging paradigm is message-
based communication [2,7,10,8], where components interact with each other by
sending and receiving messages. Given these trends, we conclude that analyzing
message-based interactions among software components is a timely and signifi-
cant research problem.

2 Specification of Message-Based Interactions

Specification and analysis of message-based interactions has been an active re-
search area studied in several application domains including coordination in
service-oriented computing [7,12], interactions in distributed programs [1] and
process isolation at the OS level [8].

Service oriented computing provides technologies that enable multiple organi-
zations to integrate their businesses over the Internet. Typical execution behavior
in this type of distributed systems involves a set of autonomous peers interacting
with each other through messages. Modeling and analysis of interactions among
the peers is a crucial problem in this domain due to following reasons: 1) Orga-
nizations may not want to share the internal details of the services they provide
to other organizations. In order to achieve decoupling among different peers, it is
necessary to specify the interactions among different services without referring to
the details of their local implementations. 2) Modeling and analyzing the global
behavior of this type of distributed systems is particularly challenging since no
single party has access to the internal states of all the participating peers. De-
sired behaviors have to be specified as constraints on the interactions among
different peers since the interactions are the only observable global behavior.
Moreover, for this type of distributed systems, it might be worthwhile to specify
the interactions among different peers before the services are implemented. Such
a top-down design strategy may help different organizations to better coordinate
their development efforts.

Choreography languages enable specification of such interactions. A choreog-
raphy specification corresponds to a global ordering of the message exchange
events among the peers participating to a composite service, i.e., a choreogra-
phy specification identifies the set of allowable message sequences for a composite
web service.

3 Choreography Analysis

Specification of interactions in a software system as a choreography leads to
several interesting research problems [6]:

– Realizability: Given a choreography specification, determining if there exists
a set of components that generate precisely the set of message sequences
specified by the choreography specification.

Analyzing Interactions of Asynchronously Communicating Software 3

– Synthesis: Given a choreography specification, synthesizing a set of compo-
nents that generate precisely the set of message sequences specified by the
choreography specification.

– Conformance: Determining if a set of given components adhere to a given
choreography specification.

– Synchronizability: Determining if the set of interactions generated by a given
set of components remain the same under asynchronous and synchronous
communication.

Some formalizations of these questions lead to unsolvable problems. For example,
choreography conformance problem is undecidable when asynchronous communi-
cation is used. This is because, systems where peers communicate asynchronously
with unbounded FIFO message queues can simulate Turing Machines [5].

It is important to note that the choreography analysis problem is not isolated
to the area of service-oriented computing. It is a fundamental problem that
appears in any area where message-based communication is used to coordinate
interactions of multiple concurrent or distributed components. For example, re-
cently, earlier results on choreography analysis have been applied to analysis
of Singularity channel contracts [11]. Singularity is an experimental operating
system developed by Microsoft Research in order to improve the dependabil-
ity of software systems [9]. In the Singularity operating system all inter-process
communication is done via messages sent through asynchronous communication
channels. Each channel is governed by a channel contract [8]. A channel contract
is basically a state machine that specifies the allowable ordering of messages be-
tween the client and the server. Hence, channel contracts serve the same purpose
that choreography specifications serve in service oriented computing.

4 Recent Results

There has been some recent progress in addressing these research problems.
It has been shown that synchronizability checking is decidable [3]. It can be
solved by comparing the behavior of a system with synchronous communication
to the behavior of the same system with bounded asynchronous communica-
tion where the queue sizes are limited to one. This result also leads to effective
approaches to choreography conformance checking. Although choreography con-
formance problem is undecidable in general, synchronizability analysis identifies
a class of systems for which choreography conformance can be checked using syn-
chronous communication instead of asynchronous communication. This means
that message queues can be removed during the conformance analysis, signifi-
cantly reducing the state space of the analyzed system.

More recently, it has been shown that choreography realizability problem is de-
cidable for systems communicating with asynchronousmessages using unbounded
FIFO message queues [4]. This also means that for realizable choreography spec-
ifications, synthesis problem can be solved by projecting the given choreography
specification to each component that participates to the choreography.

4 T. Bultan

References

1. Armstrong, J.: Getting Erlang to Talk to the Outside World. In: Proc. ACM SIG-
PLAN Work. on Erlang, pp. 64–72 (2002)

2. Banavar, G., Chandra, T., Strom, R., Sturman, D.: A Case for Message Oriented
Middleware. In: Jayanti, P. (ed.) DISC 1999. LNCS, vol. 1693, pp. 1–17. Springer,
Heidelberg (1999)

3. Basu, S., Bultan, T.: Choreography Conformance via Synchronizability. In: Proc.
20th Int. World Wide Web Conf. (2011)

4. Basu, S., Bultan, T., Ouederni, M.: Deciding Choreography Realizability. In: Proc.
39th Symp. Principles of Programming Languages (2012)

5. Brand, D., Zafiropulo, P.: On communicating finite-state machines. Journal of the
ACM 30(2), 323–342 (1983)

6. Bultan, T., Fu, X., Su, J.: Analyzing conversations: Realizability, synchronizabil-
ity, and verification. In: Baresi, L., Di Nitto, E. (eds.) Test and Analysis of Web
Services, pp. 57–85. Springer (2007)

7. Carbone, M., Honda, K., Yoshida, N., Milner, R., Brown, G., Ross-Talbot, S.:
A Theoretical Basis of Communication-Centred Concurrent Programming, W3C
Note (October 2006),
http://www.w3.org/2002/ws/chor/edcopies/theory/note.pdf

8. Fähndrich, M., Aiken, M., Hawblitzel, C., Hodson, O., Hunt, G.C., Larus, J.R.,
Levi, S.: Language support for fast and reliable message-based communication in
singularity os. In: Proc. 2006 EuroSys Conf., pp. 177–190 (2006)

9. Hunt, G.C., Larus, J.R.: Singularity: rethinking the software stack. Operating Sys-
tems Review 41(2), 37–49 (2007)

10. Menascé, D.A.: Mom vs. rpc: Communication models for distributed applications.
IEEE Internet Computing 9(2), 90–93 (2005)

11. Stengel, Z., Bultan, T.: Analyzing Singularity Channel Contracts. In: Proceedings
of the 18th International Symposium on Software Testing and Analysis, pp. 13–24
(2009)

12. Web Service Choreography Description Language (WS-CDL) (2005),
http://www.w3.org/TR/ws-cdl-10/

http://www.w3.org/2002/ws/chor/edcopies/theory/note.pdf
http://www.w3.org/TR/ws-cdl-10/

Formal Analysis of a Distributed Algorithm

for Tracking Progress

Mart́ın Abadi1,2, Frank McSherry1,
Derek G. Murray1, and Thomas L. Rodeheffer1

1 Microsoft Research Silicon Valley
2 University of California, Santa Cruz

Abstract. Tracking the progress of computations can be both impor-
tant and delicate in distributed systems. In a recent distributed algorithm
for this purpose, each processor maintains a delayed view of the pending
work, which is represented in terms of points in virtual time. This paper
presents a formal specification of that algorithm in the temporal logic
TLA, and describes a mechanically verified correctness proof of its main
properties.

1 Introduction

In distributed systems, it is often useful and non-trivial to know how far a com-
putation has progressed. In particular, the problem of termination detection is
classic and remains important. More generally, distributed systems often need
to detect progress—not just complete termination—for the sake of correctness
and efficiency. For example, knowing that a broadcast message has reached all
participants in a protocol enables the sender to reclaim memory and other re-
sources associated with the message; similarly, establishing that a certain phase
of a computation has completed can contribute to resource management, can
inform scheduling decisions, and also enables speculative computation steps to
commit and to result in visible output. For such tasks, protocols need to aggre-
gate and share the local views of the system components. Those protocols may
operate continuously (“on-the-fly”), or be triggered from time to time by the
need to reclaim resources or by external events. In either case, they are often
interesting, delicate, crucial for correctness, and worthy of careful design and
analysis.

We are presently engaged in research on large-scale, data-parallel distributed
computation, and on the development of a system for this purpose, called Na-
iad [9]. This research explores a declarative dataflow model that supports incre-
mental and iterative computations, with a generalization of the notion of virtual
time [5]. According to its original definition, virtual time is

a global, one-dimensional, temporal coordinate system imposed on a dis-
tributed computation; it is used to measure progress and to define syn-
chronization. It may or may not have a connection with real time.

D. Beyer and M. Boreale (Eds.): FMOODS/FORTE 2013, LNCS 7892, pp. 5–19, 2013.
c© IFIP International Federation for Information Processing 2013

6 M. Abadi et al.

Naiad relaxes this notion by allowing the temporal coordinate system to be
based on a partial order, rather than a one-dimensional linear order, as already
suggested in passing by Jefferson [5, p407]. Thus, inputs and other pieces of data
are associated with time points in this partial order. The use of a partial order
avoids unnecessary constraints (false dependencies) that can hinder the progress
of computations.

As in prior work on virtual time (e.g., [12]), progress detection is essential to
Naiad. Accordingly, the research on Naiad to date includes the design and imple-
mentation of a new distributed algorithm for progress detection. This algorithm
relies on out-of-band communication (rather than on punctuation within mes-
sage streams; cf. [2], [13]) for continuously tracking the progress of a computation
with respect to partially ordered virtual time (cf. [12]).

For the present purposes, the significance of these characteristics is less im-
portant than the fact that we are interested in a new distributed algorithm for
progress detection, that a system depends on it, and that we therefore wish to
understand it as well as possible. The goal of this paper is to develop a rigorous
specification and analysis of the algorithm. The paper presents a formal specifi-
cation of the algorithm and its properties. Furthermore, it describes a complete,
mechanically verified correctness proof for the algorithm. This proof is quite
long, as we explain below. So we do not describe all its steps in this paper,
but we summarize its main definitions and lemmas, and we briefly describe our
approach and experience doing the proof.

We use TLA [7], a well established linear-time temporal logic, and its associ-
ated tools [4], [6]. The choice of a linear-time formalism is not in contradiction
with the study of a notion of virtual time that relies on a partial order, as this
work illustrates. TLA enables a concise and general description of the algorithm.
Through its tools, TLA also enables the mechanical verification of our proof.

We believe that this work has a number of benefits.

– As intended, our study has increased confidence in the algorithm, its prop-
erties, and its suitability for Naiad.

– This study has also resulted in a detailed, rigorous, and abstract explanation
of the algorithm. The generality of the formulation of the algorithm enables
us to contemplate other applications, in other systems or even in Naiad as
this system evolves. For example, we can identify the essential properties
of the algorithm related to the partial order, without making unnecessary
assumptions (for example, that the partial order is well-founded, that it is
a lattice, or that it is a product of linear orders) which might hold only in
particular circumstances.

– Finally, since this study constitutes one of the largest and most difficult
applications of TLA to distributed algorithms to date, it has led to new
experience with TLA and to detailed feedback to the TLA developers (for
instance, on libraries and on performance issues in the TLA proof tools).
Some of this feedback has already resulted in improvements to the TLA
Toolbox [6].

Formal Analysis of a Distributed Algorithm for Tracking Progress 7

The next section contains a brief review of TLA. Section 3 describes the algo-
rithm and its main properties. Section 4 presents our proof. Section 5 concludes.
A companion technical report contains complete details of the formal specifica-
tion and proof [11].

2 A Brief Review of TLA

TLA (the Temporal Logic of Actions) [7] combines first-order predicate logic, set
theory, and linear-time temporal operators. Figure 1 reviews the TLA notations
used in the formulas in this paper.

The TLA Toolbox [6] is an integrated development environment for writing
and checking TLA specifications. Specification can include theorems along with
their proofs. Proofs are written as sequences of proof steps. The Toolbox in-
cludes the TLA Proof System [4], which checks proofs: it mechanically verifies
each proof step by constructing proof obligations and discharging them via a
number of back-end provers. The Toolbox also includes a standard library of
definitions about natural numbers, integers, sequences, and finite sets, along
with fundamental theorems about induction over natural numbers.

3 The Algorithm

In this section, we describe our algorithm, first informally and then in TLA. We
also state its main safety property.

3.1 Informal Description

Our progress-detection algorithm oversees a computation. Each state of this
computation includes a multiset of records, and the computation consists of
a sequence of operations that act on this multiset: each operation atomically
consumes some of the existing records and replaces them with some output
records. The operations and the ordering of the computation as a whole may
be non-deterministic. In particular, in a dataflow system such as Naiad, the
records contain data, they flow through a graph, and the nodes in the graph
asynchronously perform the operations.

In any state of a computation, the existing records may correspond to different
stages in the logical progress of the computation. As an example, let us consider
a computation that consumes records that contain images, and that processes
each image by sequentially applying two functions f1 and f2. In an intermediate
state of the computation, an input record x that has not yet been processed at
all may coexist with the result f1(y) of applying f1 to another input record y,
and with the result f2(f1(z)) of applying both f1 and f2 to a third input record
z . One may think of the records as corresponding to different points in virtual
time. These points in virtual time indicate the progress of the computation. In
this case, three linearly ordered points will suffice. In general, as in this example,

8 M. Abadi et al.

Comments in TLA appear shaded like this. Declarations of symbols must appear before
the symbols are used, and most of the notation resembles that of ordinary mathematics.

Top-level declarations appear at the beginning of a line and can be used subsequently.

constant con the constant con
variable var the state variable var
zerop

Δ
= formula an operator that takes no arguments

monop(a)
Δ
= formula using a an operator that takes one argument

a ⊕ b
Δ
= formula using a and b an infix operator of two arguments

A let in formula creates a declaration that can be used within its subformula.

let op
Δ
= op-def-formula in subformula using op

TLA uses the ordinary symbols of set theory ∈ /∈ ∪ ∩ { }
and of propositional logic ∧ ∨ ¬ ⇒ = 	= with first-order quantifiers ∀ ∃
and the common programming syntax if then else

and has standard libraries for natural numbers and integers + − < ≤ ≥ > Nat Int .

∧ subformula-1
∧ subformula-2...
∧ subformula-n

A conjunction can be written on a series of lines that all begin with
∧ in the same column. A subformula can extend over multiple lines
provided it does not intrude on the column used by its leading ∧. The
same syntax works for a disjunction with ∨.

TLA has syntax for sets and for functions that map one set to another.

subset A the set of all subsets of A (powerset)
{a ∈ A : P(a)} the set of all a ∈ A such that P(a)
choose a ∈ A : P(a) the arbitrary choice of some a ∈ A such that P(a)
[A → B] the set of all functions that map A to B
[a ∈ A �→ G(a)] the function that maps each a ∈ A to G(a)
[M except ! [d] = F] the function the same as M except that d maps to F
M [a] the result of applying M to a
domain M the domain of the function M

It is possible to declare a recursive function.

let M [a ∈ A]
Δ
= def using M and a in subformula using M

A sequence in TLA is a function that maps 1..n to the elements of some set, where n ∈ Nat
is the length of the sequence.

〈 〉 the empty sequence
Seq(D) the set of all sequences of D
Len(Q) the length of the sequence Q
Append(Q , d) the result of appending d to the sequence Q
Tail(Q) the result of removing the first element from the sequence Q

TLA has several temporal operators, of which we use two.

�P P is true now and at all times in the future.
F ′ the value of F in the next time step

Fig. 1. Brief review of TLA

we assume a set of points of virtual time, with a partial order, and associate each
record with a point in virtual time, but the set of points need not be finite, and
the partial order need not be linear.

We do require that, if an operation produces a record at one point in virtual
time, then the operation has consumed at least one record at a strictly lower

Formal Analysis of a Distributed Algorithm for Tracking Progress 9

a b

c d

processor

message queue

record

virtual
time

point

partial order

occupancy
 vector

Fig. 2. Overall structure: each processor locally accumulates a delayed view of the
occupancy vector

point according to the partial order. Therefore, as a computation proceeds, the
population of records will migrate away from lower points. Should a downward-
closed set of points become vacant, this set will always thereafter remain vacant,
as any operation that might produce a record associated with a point in the set
would need to consume such a record as well. (See the safety property Safe2 in
Sect. 4.) This monotonically increasing set of permanently vacant points repre-
sents the progress that we wish to track.

We envision that a distributed collection of processors will perform the oper-
ations. In such a distributed system, each processor will not be able to observe,
directly, the full, exact contents of the set of records in order to measure progress.
Processors must instead communicate with one another, as they perform opera-
tions, exchanging information about the records that those operations consume
and produce. With this information, each processor can maintain a possibly de-
layed but always safe approximation to the set of permanently vacant points in
virtual time.

More concretely, in our algorithm, each processor maintains a local occupancy
vector that maps each point to the processor’s view of the number of records
at that point, depicted in Fig. 2. At the start of a computation, this vector
is defined from the initial set of records in the system. A processor tracks the
changes in occupancy due to the operations that it performs. When convenient,
the processor broadcasts incremental updates to all processors, sending updates
about points with net production of records before those about points with net
consumption of records. (Section 3.3 describes the exact ordering requirement.)
When a processor receives one of these updates, it adjusts its local occupancy
vector accordingly. We assume that communication channels between processors
are reliable and completely ordered, so that updates are neither dropped nor
delivered out of order, and similarly we assume that the processors themselves
are reliable; standard communication protocols and fault-tolerance techniques
can provide these guarantees.

The intent of this approach is that, once a downward-closed set of points
becomes vacant in the local occupancy vector of some processor, that same set

10 M. Abadi et al.

constant Point set of points
constant Proc set of processors
constant � partial order on Point

CountVec
Δ
= [Point → Nat] count vectors

DeltaVec
Δ
= [Point → Int] delta vectors

Z
Δ
= [t ∈ Point �→ 0] everywhere zero

a ⊕ b
Δ
= [t ∈ Point �→ a[t] + b[t]] component-wise addition

a � b
Δ
= [t ∈ Point �→ a[t]− b[t]] component-wise subtraction

s ≺ t
Δ
= s � t ∧ s 	= t strictly lower

IsVacantUpto(a, t)
Δ
= ∀ s ∈ Point : s � t ⇒ a[s] = 0

IsNonposUpto(a, t)
Δ
= ∀ s ∈ Point : s � t ⇒ a[s] ≤ 0

IsSupported(a, t)
Δ
= ∃ s ∈ Point : s ≺ t ∧ a[s] < 0 ∧ IsNonposUpto(a, s)

IsUpright(a)
Δ
= ∀ t ∈ Point : a[t] > 0 ⇒ IsSupported(a, t)

variable nrec ∈ CountVec
variable temp ∈ [Proc → DeltaVec]
variable msg ∈ [Proc → [Proc → Seq(DeltaVec)]]
variable glob ∈ [Proc → DeltaVec]

Fig. 3. Basic definitions

of points is in fact vacant thereafter in the global set of records. (We state this
safety property formally in Sect. 3.4.) Although the local occupancy vector can
be a delayed view of the true occupancy vector, it is a safe approximation, so
it allows each processor to report correct results from completed parts of the
computation to external observers; it is also a useful input to each processor’s
memory management and scheduling decisions.

3.2 Basic Definitions

The formal specification of the progress-detection algorithm starts with the basic
definitions shown in Fig. 3.

Those definitions introduce three constants: Point is the set of points, Proc is
the set of processors, and � is a partial order on Point . There is no requirement
that either Point or Proc be finite.

According to the definitions, a count vector maps each point to a natural
number, which represents a count of the number of records at that point. Sim-
ilarly, a delta vector represents a change in record counts per point. We use Z
to designate the delta vector that is everywhere zero and ⊕ and � to indicate
component-wise addition and subtraction.

We say that a point t in a delta vector a is negative iff a[t] < 0, and positive iff
a[t] > 0. Describing the relative locations of positive and negative points in delta
vectors is essential to our proof, so we define several predicates for this purpose.
A delta vector a is vacant up t iff a[s] = 0 for all s � t ; it is non-positive up t
iff a[s] ≤ 0 for all s � t . A delta vector a is supported at point t iff there exists
a negative point s ≺ t such that a is non-positive up to s . We then say that s
supports t . A delta vector is upright iff all of its positive points are supported.

Formal Analysis of a Distributed Algorithm for Tracking Progress 11

This definition of upright delta vectors arises because we use delta vectors
to describe the changes in record counts that operations cause. As indicated in
Sect. 3.1, we require that for any point t at which an operation causes a net
production of records there must be a lower point s at which the operation
causes a net consumption of records; this property explains why, in an upright
delta vector, for each positive point t there must exist a negative point s � t .
For s to support t , we further require that all points u � s be non-positive;
this property prevents cases of infinite descent. It yields, in particular, that the
sum of two upright delta vectors is upright. (In cases where � is well-founded,
infinite descent is impossible, so the further requirement becomes superfluous.)

Finally, we specify the state of the algorithm using four state variables: nrec,
temp, msg, and glob.

– nrec is the occupancy vector, which represents the number of records that
currently exist at each point.

– temp[p] is the local (temporary) change in the occupancy vector due to the
performance of operations at processor p. Note that the change at a given
point can be negative (net records consumed), positive (net records pro-
duced), or zero. We call it temporary because eventually the processor takes
the information from temp[p] and broadcasts it as an incremental update.

– msg[p][q] is the queue of updates from processor p to processor q. Each
update is a delta vector that is zero everywhere except at those points that
contain information about net changes. Implementations may of course limit
the number of non-zero points and represent updates in a compact form.

– glob[q] is the delayed view at processor q of the occupancy vector. It is a
delta vector, rather than a count vector, because glob[q][t] can be negative
for some point t . Such negative values can appear, for example, when one
processor p1 produces a record at point t , a second processor p2 consumes
it and, because of different queuing delays, processor q receives the update
from p2 before that from p1.

3.3 The Algorithm

Building on the definitions of Fig. 3, Fig. 4 gives the specification of the progress-
detection algorithm. It defines an initial condition Init , a next-state relation
Next , and then a complete specification Spec which states that Init must hold
and then forever each step must satisfy the Next relation.

Init states that nrec can be any mapping from Point to Nat ; this mapping
represents an arbitrary initial population of records. Initially, there are no unsent
changes, no unreceived updates, and each processor knows the initial population.

Each step from a current state to a next state is an action specified as a relation
between the values of the state variables in the current state (unprimed) and in
the next state (primed). The algorithm has three actions: NextPerformOpera-
tion, NextSendUpdate, and NextReceiveUpdate.

– In the NextPerformOperation action, processor p performs an operation that
consumes and produces some number of records at each point. The records

12 M. Abadi et al.

Init
Δ
=

∧ nrec ∈ CountVec any initial population of records
∧ temp = [p ∈ Proc �→ Z] no unsent changes
∧msg = [p ∈ Proc �→ [q ∈ Proc �→ 〈 〉]] no unreceived updates
∧ glob = [q ∈ Proc �→ nrec] each processor knows the initial nrec

NextPerformOperation
Δ
= ∃ p ∈ Proc, c ∈ CountVec, r ∈ CountVec :

let delta
Δ
= r � c in the net change in record population

∧ ∀ t ∈ Point : c[t] ≤ nrec[t] only consume what exists
∧ IsUpright(delta) net change must be upright
∧ nrec′ = nrec ⊕ delta
∧ temp′ = [temp except ! [p] = temp[p]⊕ delta]
∧ unchanged msg
∧ unchanged glob

NextSendUpdate
Δ
= ∃ p ∈ Proc, tt ∈ subset Point :

let gamma
Δ
= [t ∈ Point �→ if t ∈ tt then temp[p][t] else 0] in

∧ gamma 	= Z update must say something
∧ IsUpright(temp[p] � gamma) what is left must be upright
∧ unchanged nrec
∧ temp′ = [temp except ! [p] = temp[p]� gamma]
∧msg ′ = [msg except ! [p] = [q ∈ Proc �→ Append(msg [p][q], gamma)]]
∧ unchanged glob

NextReceiveUpdate
Δ
= ∃ p ∈ Proc, q ∈ Proc :

let kappa
Δ
= msg [p][q][1] in oldest unreceived update from p to q

∧msg [p][q] 	= 〈 〉 message queue must be non-empty
∧ unchanged nrec
∧ unchanged temp
∧msg ′ = [msg except ! [p][q] = Tail(msg [p][q])]
∧ glob′ = [glob except ! [q] = glob[q]⊕ kappa]

Next
Δ
= NextPerformOperation ∨NextSendUpdate ∨ NextReceiveUpdate

Spec
Δ
= Init ∧�Next

Fig. 4. Formal specification of the progress-detection algorithm

to be consumed must exist and the net change in records delta must be an
upright delta vector. The action adds delta to nrec and to temp[p].

– In the NextSendUpdate action, processor p selects a set of points tt and
broadcasts an update about its changes at those points. The update is
represented by gamma. The processor must choose tt in such a way that
temp[p]� gamma is upright. This requirement holds, in particular, when tt
consists of positive points in temp[p] if any exist, because temp[p] is always
upright, as we show in Sect. 4. The action subtracts gamma from temp[p]
and appends gamma to msg[p][q] for all q.

– In the NextReceiveUpdate action, processor q selects a processor p and re-
ceives the oldest update kappa on the message queue from p to q. For this
action to take place, the current message queuemsg[p][q] must be non-empty.
The action adds kappa to glob[q] and removes it from msg[p][q].

Formal Analysis of a Distributed Algorithm for Tracking Progress 13

For any point t and processor q , if glob[q] is vacant up to t , then, at this and all future
times, nrec is vacant up to t .

Safe
Δ
= ∀ t ∈ Point , q ∈ Proc : (IsVacantUpto(glob[q], t) ⇒ �IsVacantUpto(nrec, t))

An execution that obeys Spec is always Safe.

theorem Spec ⇒ �Safe

Fig. 5. Main safety property of the progress-detection algorithm

The next-state relation Next is simply the disjunction of the relations for these
three actions.

An implementation may refine this specification in many ways. In particular,
while each of the three actions in the specification is atomic, an implementa-
tion may perform smaller steps. An implementation may also exhibit less non-
determinism, for example by restricting the choice of tt in NextSendUpdate. As
usual, our results automatically carry over to all correct implementations of the
specification.

3.4 The Main Safety Property

The main goal of the progress-detection algorithm is to enable each processor q
to deduce global information about the present and future of nrec from current,
local information about glob[q], as explained in Sect. 3.1. Specifically, if glob[q]
is vacant up to t then nrec should also be vacant up to t at this and all future
times. The main correctness property of the algorithm is that this implication
always holds. Figure 5 expresses the implication as a TLA formula Safe. Our
main theorem is that �Safe holds in every execution that obeys Spec.

In addition to this safety property, the algorithm satisfies a liveness property:
if progress happens then it will eventually be known to all processors, under
suitable fairness assumptions on the transmission of updates and other actions.
We regard this liveness property as important but less crucial than the safety
property, and its treatment would require additional notations, definitions, and
arguments, so we do not consider it further in this paper.

4 Formal Verification (Summary)

In this section, we present our formal proof of the correctness of the progress-
detection algorithm, that is, of the theorem Spec ⇒ �Safe stated in Fig. 5.
As indicated in the Introduction, the proof is quite long, so we summarize it,
describing its argument and stating key auxiliary safety properties. We also
comment on various characteristics of the proof and on our experience.

4.1 Proof Summary

As usual, invariants are predicates on states that always hold in every execution
that obeys the specification, and we talk about “proving an invariant” when

14 M. Abadi et al.

For any point t , if nrec is vacant up to t , then it will be so at all future times.

Safe2
Δ
= ∀ t ∈ Point : (IsVacantUpto(nrec, t) ⇒ �IsVacantUpto(nrec, t))

For any point t and processor q , if glob[q] is vacant up to t , then so is nrec.

Inv1
Δ
= ∀ t ∈ Point , q ∈ Proc : (IsVacantUpto(glob[q], t) ⇒ IsVacantUpto(nrec, t))

Fig. 6. Auxiliary safety property and invariant

what we mean is proving that the state predicate in question is in fact an invari-
ant. To prove an invariant I , it suffices to show that the invariant holds in the
initial state (Init ⇒ I) and that every step that satisfies the next-state relation
maintains the invariant (I ∧ Next ⇒ I ′). It follows by induction that I is true
in every reachable state. Proving a general safety property is more complicated,
but similar deduction rules apply.

The safety property Safe follows from an auxiliary safety property Safe2 and
an invariant Inv1 defined in Fig. 6. Safe2 says that, whenever nrec is vacant up to
some point t , it will stay that way. This safety property is a simple consequence
of the two requirements ∀ t ∈ Point : c[t] ≤ nrec[t] and IsUpright(delta) in Next-
PerformOperation, which is the only action that changes nrec. Inv1 says that,
for any q, if glob[q] is vacant up to some point t , then so is nrec. We devote the
rest of this summary to explaining the proof of Inv1, which is much harder than
that of Safe2.

In order to prove Inv1, we consider the relation between nrec, glob[q], and
all of the information about changes to nrec that has not yet been incorporated
into glob[q]. For this purpose, we define Info(k , p, q) as the suffix of information
from processor p heading toward processor q that skips the k oldest unreceived
updates, andAllInfo(q) as the sum of all information heading toward processor q .
Figure 7 introduces the necessary definitions and a lemma, and Fig. 8 asserts
several additional auxiliary invariants. Next we discuss the lemma, the auxiliary
invariants, and the derivation of Inv1, summarizing informally the reasoning that
our proof makes formally:

– The lemma states that the sum of two upright delta vectors a and b is
upright. This lemma is proved by a case analysis on the location of positive
and negative points in the sum. A positive point t in a ⊕ b can occur only
where at least one of a or b is positive. Without loss of generality, let a[t] > 0.
Then, since a is upright, there must be a point s that supports t in a. It
follows that a[s] < 0 and a is non-positive up to s . If b is non-positive up
to s then s supports t in a ⊕ b. Otherwise, there is some u � s such that
b[u] > 0. Since b is upright, there must be a point v that supports u in b.
We can conclude that (a ⊕ b)[v] < 0 and a ⊕ b is non-positive up to v , so
v supports t in a ⊕ b. In either case, there exists a point that supports t in
a ⊕ b. Therefore, a ⊕ b is upright.

– Inv2 states that the sum of glob[q] plus all information heading toward q
is nrec. This predicate is trivially true in the initial state. NextPerform-
Operation transfers delta from nrec to temp[p]; NextSendUpdate transfers

Formal Analysis of a Distributed Algorithm for Tracking Progress 15

Sum of the sequence Q of delta vectors, skipping the first k . This operator is defined for
all k ∈ Nat ; the result is Z when k ≥ Len(Q). A recursive function computes the sum.

SumSeq(k ,Q)
Δ
=

let Elem(i)
Δ
= if k < i ∧ i ≤ Len(Q) then Q [i] else Z in

let Sumv [i ∈ Nat]
Δ
= if i = 0 then Z else Sumv [i − 1]⊕ Elem(i) in

Sumv [Len(Q)]

Given a finite set choose a sequence in which each element appears exactly once.

ExactSeqFor(D)
Δ
= choose Q ∈ Seq(D) :

∧ ∀ d ∈ D : ∃ i ∈ domain Q : Q [i] = d each element appears
∧ ∀ i , j ∈ domain Q : Q [i] = Q [j] ⇒ i = j there are no duplicates

Sum of the delta vectors in the range of F , assuming only finitely many are non-zero.

SumFun(F)
Δ
= let I

Δ
= ExactSeqFor({d ∈ domain F : F [d] 	= Z}) in

SumSeq(0, [i ∈ domain I �→ F [I [i]]])

The suffix of information from p heading toward q that skips the k oldest unreceived
updates. The sum includes temp[p], which is information that p knows but has not yet
sent.

Info(k , p, q)
Δ
= SumSeq(k , msg [p][q]) ⊕ temp[p]

All information heading toward q .

AllInfo(q)
Δ
= SumFun([p ∈ Proc �→ Info(0, p, q)])

The sum of upright delta vectors is upright.

lemma ∀ a, b ∈ DeltaVec : IsUpright(a) ∧ IsUpright(b) ⇒ IsUpright(a ⊕ b)

Fig. 7. Additional definitions and lemma

For any processor q , the sum of glob[q] plus all information heading toward q is nrec.

Inv2
Δ
= ∀ q ∈ Proc : nrec = glob[q]⊕AllInfo(q)

For any processor p, temp[p] is upright.

Inv3
Δ
= ∀ p ∈ Proc : IsUpright(temp[p])

For any processors p and q , any suffix of information from p heading toward q is upright.

Inv4
Δ
= ∀ k ∈ Nat , p ∈ Proc, q ∈ Proc : IsUpright(Info(k , p, q))

For any processor q , non-zero information is coming from only a finite set of processors.

Inv5
Δ
= ∀ q ∈ Proc : IsFiniteSet({p ∈ Proc : Info(0,p, q) 	= Z})

For any processor q , all information heading toward q is upright.

Inv6
Δ
= ∀ q ∈ Proc : IsUpright(AllInfo(q))

For any point t , nrec[t] ≥ 0.

Inv7
Δ
= ∀ t ∈ Point : nrec[t] ≥ 0

Fig. 8. Additional auxiliary invariants

For any point t , if glob[q] is vacant up to t , then it will be so at all future times.

Safe3
Δ
= ∀ q ∈ Proc, t ∈ Point : (IsVacantUpto(glob[q], t) ⇒ �IsVacantUpto(glob[q], t))

Fig. 9. An extra safety property proved in the full proof

16 M. Abadi et al.

gamma from temp[p] to msg[p][q]; and NextReceiveUpdate transfers kappa
from msg[p][q] to glob[q]. Each of these actions maintains Inv2.

– Inv3 states that temp[p] is upright. This predicate is true in the initial state
because IsUpright(Z) holds. NextPerformOperation adds an upright delta
vector to temp[p]; NextSendUpdate requires IsUpright(temp[p]′); and Next-
ReceiveUpdate has no effect on temp[p].

– Inv4 states that Info(k , p, q) is upright. This predicate is trivially true in
the initial state. NextPerformOperation increases Info(k , p, q) by an upright
delta vector. NextReceiveUpdate shifts everything one position forward in
message queue msg[p][q], resulting in Info(k , p, q)′ = Info(k + 1, p, q). Both
of these actions maintain Inv4. The only complicated case is that of Next-
SendUpdate, which transfers gamma from temp[p] to the end of msg[p][q].
For k ≤ Len(msg[p][q]), this action makes no change in Info(k , p, q). For
k > Len(msg[p][q]), it results in Info(k , p, q)′ = temp[p]′, so it maintains
Inv4 by Inv3.

– Inv5 states that the set of processors with non-zero information heading
toward processor q is finite. This predicate is trivially true in the initial
state and is clearly maintained by each action.

– Inv6 states that AllInfo(q) is upright. This invariant follows easily from Inv4
and Inv5.

– Inv7 states that nrec[t] ≥ 0 for all t . This predicate is trivially true in the
initial state and is maintained by the requirement c[t] ≤ nrec[t] in NextPer-
formOperation, which is the only action that changes nrec.

Finally, we derive Inv1 from Inv2, Inv6, and Inv7 via a proof by contradiction,
as follows. Given a point t such that glob[q] is vacant up to t , suppose that there
was a point s � t such that nrec[s] �= 0. By Inv7, we would have nrec[s] > 0.
By Inv2, we would have AllInfo(q)[s] > 0. By Inv6, AllInfo(q) is upright, so
there would be a point u � s such that AllInfo(q)[u] < 0. But then, by Inv2,
we would have nrec[u] < 0, which is impossible by Inv7. Hence there can be no
such point s .

4.2 Discussion

Our mechanically verified formal proof contains many more steps and much more
detail than the summary presented above. We also went on to prove an extra
safety property Safe3 (shown in Fig. 9), which states that whenever glob[q] is
vacant up to t it stays that way. The proof of Safe3 requires its own additional
set of supporting definitions and auxiliary properties.

The entire proof is quite long, requiring 208 pages. There are several reasons
for this length.

– We did not try to shorten the proof, e.g., by factoring out lemmas afterwards.
– We often had to decompose proof steps, manually, into several smaller steps

that could be verified by one of the proof system’s back-end provers.
– The proof contains material that logically should belong in general libraries.

Formal Analysis of a Distributed Algorithm for Tracking Progress 17

Table 1. Statistics of the formal proof

run time obligations proved by
modules theorems lines (sec) isabelle smt3 zenon

library 8 75 4848 1945 38 196 1391
specific 19 71 5895 2450 20 86 1258

Total 27 146 10743 4395 58 282 2649

The TLA proof system consists of a proof manager, which parses the TLA
files, constructs a set of proof obligations for each proof step, and then calls on
various back-end provers to verify each proof obligation. By default, the proof
manager first invokes Zenon [1], a tableau prover for classical first-order logic
with equality. Zenon is generally quick to solve simple problems, but tends to
fail on anything complicated. If Zenon fails, the proof manager then invokes
Isabelle [10] using a specialized TLA object logic that includes propositional
and first-order logic, elementary set theory, functions, and the construction of
natural numbers. Pragmas can be used to direct the proof manager to appeal
to other back-end provers. An entire category of provers based on Satisfiability
Modulo Theory (SMT) is especially good at some hard problems that involve
arithmetic, uninterpreted functions, and quantifiers. The back-end prover smt3
uses one such SMT prover [8].

In an early phase of our research, Leslie Lamport experimented with the use
of SMT provers for establishing properties of delta vectors. He obtained some
elegant, succinct proofs, which encouraged our effort. As our research progressed,
we generalized the specification and weakened the hypotheses; our arguments
became longer. In all, we spent about four man-months writing, revising, and
debugging the entire formal proof.

To enable the proof manager to deal with the total number of proof obliga-
tions, we divided the proof into separate modules. Table 1 gives some statistics.
We classify the modules into those that logically could be considered as general
library modules and those whose applicability is limited to this specific proof.
The entire proof can be checked in less than two hours on an 2.67 GHz Intel R©
CoreTM i7 with 4 GB of RAM. Zenon checks almost 90% of the proof obliga-
tions; this fact confirms the effectiveness of Zenon. Just over half of the proof
obligations appear in modules that could be considered as library modules.

It was particularly challenging to construct and to study the TLA definitions
of what it means to sum up the suffix of a sequence of delta vectors and of what
it means to sum up the delta vectors in the range of a function. For this purpose,
we had to introduce many theorems with formal proofs about these sums and
how they are affected by changes in the underlying sequence or function. For
example, given k ∈ Nat , Q ∈ Seq(DeltaVec), k ≤ Len(Q), and a ∈ DeltaVec,
we have

SumSeq(k ,Append(Q , a)) = SumSeq(k ,Q)⊕ a

Establishing such properties was quite tedious. To a human, on the other hand,
these properties are obvious consequences of the fact that ⊕ is a commutative

18 M. Abadi et al.

and associative operator with an identity and is closed over DeltaVec. In other
words, (DeltaVec,⊕) is a commutative monoid.

In fact, the definitions of SumSeq and SumFun and related theorems could
be written in a general form as a library with application to any commutative
monoid. We attempted to construct such a library, but soon discovered a per-
formance bug in the proof manager. The problem was that our desired library
of theorems created a collection of TLA modules with an exponential explo-
sion of paths through nested module dependencies. The proof manager ended
up spending an enormous amount of time exploring these paths to match proof
obligations against known facts.

We presented an example of such behavior to the implementors of the proof
manager. Eventually, Damien Doligez solved the performance problem, improv-
ing the TLA proof system so that it could handle the library structure we had
desired. However, by then, we had completed our proof using specialized SumSeq
and SumFun theorems in a linear chain of modules.

Another, more superficial limitation in the current TLA proof system is that
it does not directly capture temporal reasoning. Specifically, for an invariant I ,
the proof system can check proofs of Init ⇒ I and I ∧Next ⇒ I ′, but the trivial,
routine step from these formulas to Spec ⇒ �I remains manual.

Despite such difficulties, constructing a formal proof with the support of the
TLA tools enabled us to examine closely the details of the progress-detection
algorithm and to refine them. In particular, in our first attempt at the proof
we relied on a well-founded partial order. As our research advanced, we realized
that we could remove the requirement of well-foundedness from the partial order
and instead introduce the more liberal concept of uprightness for delta vectors.
Similarly, we originally had restrictive requirements on updates and on their
ordering. In the course of the proof, we realized that the essential requirement
is that temp[p] must always be upright. Such refinements enable a broad range
of useful implementations.

5 Conclusion

Formal specifications and correctness proofs are often beneficial in the study
of distributed algorithms; the work presented in this paper is not an exception
in this respect. Among the many other examples in this area, some pertain to
tasks related to progress detection. For instance, Chandy and Misra developed
a concise, manual correctness argument for an algorithm for termination detec-
tion, in Unity [3]. However, we are not aware of any work directly analogous to
ours. In particular, the early research on the Time Warp mechanism includes a
correctness argument for an algorithm for estimating a global virtual time (with
a linear order) [12]; that argument was relatively brief, not fully formal, and
manual.

Therefore, beyond its intrinsic results, we regard our analysis as an informative
datapoint on the use of formal specifications and proof tools. Although we might
wish that our work had been easier, we did complete it with reasonable effort.
Ongoing improvements in tools should simplify similar work in the future.

Formal Analysis of a Distributed Algorithm for Tracking Progress 19

Acknowledgments. We are grateful to Paul Barham, Damien Doligez, Rebecca
Isaacs, Michael Isard, Leslie Lamport, and Stephan Merz for discussions about
Naiad, the progress tracking protocol, and the TLA proof system.

References

1. Bonichon, R., Delahaye, D., Doligez, D.: Zenon: An extensible automated theo-
rem prover producing checkable proofs. In: Dershowitz, N., Voronkov, A. (eds.)
LPAR 2007. LNCS (LNAI), vol. 4790, pp. 151–165. Springer, Heidelberg (2007)

2. Chandramouli, B., Goldstein, J., Maier, D.: On-the-fly progress detection in iter-
ative stream queries. Proc. VLDB Endow. 2(1), 241–252 (2009)

3. Chandy, K.M., Misra, J.: Proofs of distributed algorithms: An exercise. In: Hoare,
C.A.R. (ed.) Developments in Concurrency and Communication, pp. 305–332.
Addison-Wesley, Boston (1990)

4. Chaudhuri, K., Doligez, D., Lamport, L., Merz, S.: Verifying safety properties
with the TLA+ proof system. In: Giesl, J., Hähnle, R. (eds.) IJCAR 2010. LNCS,
vol. 6173, pp. 142–148. Springer, Heidelberg (2010)

5. Jefferson, D.R.: Virtual time. ACM Trans. Program. Lang. Syst. 7(3), 404–425
(1985)

6. Lamport, L.: The TLA Toolbox,
http://research.microsoft.com/en-us/um/people/lamport/tla/toolbox.html

7. Lamport, L.: Specifying Systems: The TLA+ Language and Tools for Hardware
and Software Engineers. Addison-Wesley, Boston (2002)

8. Merz, S., Vanzetto, H.: Automatic verification of TLA+ proof obligations with
SMT solvers. In: Bjørner, N., Voronkov, A. (eds.) LPAR-18 2012. LNCS, vol. 7180,
pp. 289–303. Springer, Heidelberg (2012)

9. Naiad: Web page, http://research.microsoft.com/en-us/projects/naiad/
10. Paulson, L.C.: Isabelle: A Generic Theorem Prover. LNCS, vol. 828. Springer,

Heidelberg (1994)
11. Rodeheffer, T.L.: The Naiad clock protocol: Specification, model checking, and

correctness proof. Tech. Rep. MSR-TR-2013-20, Microsoft Research, Redmond
(February 2013), http://research.microsoft.com/apps/pubs/?id=183826

12. Samadi, B.: Distributed Simulation, Algorithms and Performancs Analysis. Ph.D.
thesis, University of California, Los Angeles (1985), Tech. Rep. CSD-850006,
http://ftp.cs.ucla.edu/tech-report/198_-reports/850006.pdf

13. Tucker, P.A., Maier, D., Sheard, T., Fegaras, L.: Exploiting punctuation semantics
in continuous data streams. IEEE Trans. Knowl. Data Eng. 15(3), 555–568 (2003)

http://research.microsoft.com/en-us/um/people/lamport/tla/toolbox.html
http://research.microsoft.com/en-us/projects/naiad/
http://research.microsoft.com/apps/pubs/?id=183826
http://ftp.cs.ucla.edu/tech-report/198_-reports/850006.pdf

A Case Study in Formal Verification
Using Multiple Explicit Heaps

Wojciech Mostowski

Formal Methods and Tools, University of Twente, The Netherlands
w.mostowski@utwente.nl

Abstract. In the context of the KeY program verifier and the associ-
ated Dynamic Logic for Java we discuss the first instance of applying a
generalised approach to the treatment of memory heaps in verification.
Namely, we allow verified programs to simultaneously modify several dif-
ferent, but possibly location sharing, heaps. In this paper we detail this
approach using the Java Card atomic transactions mechanism, the mod-
elling of which requires two heaps to be considered simultaneously – the
basic and the transaction backup heap. Other scenarios where multiple
heaps emerge are verification of real-time Java programs, verification of
distributed systems, modelling of multi-core systems, or modelling of per-
missions in concurrent reasoning that we currently investigate for KeY.
On the implementation side, we modified the KeY verifier to provide a
general framework for dealing with multiple heaps, and we used that
framework to implement the formalisation of Java Card atomic trans-
actions. Commonly, a formal specification language, such as JML, hides
the notion of the heap from the user. In our approach the heap becomes
a first class parameter (yet transparent in the default verification scenar-
ios) also on the level of specifications.

1 Introduction

In the formal verification of object-oriented programs the verification tools and
associated logics are constantly improved and developed to handle new verifi-
cation challenges and to deal with larger and more complex programs. Some
of these challenges are efficient reasoning about linked data structures [7,14] or
concurrent programs [11,15,1]. Central in all these efforts is the notion of the
object heap that is used in respective logics to represent the memory that pro-
grams operate on and to handle possible object aliasing. In particular, Separation
Logic [22], that some of the verification systems utilise, is strictly built around
the notion of the heap, rather than the program that operates on it.

In a similar spirit, the KeY system1 [2], an interactive verifier for Java pro-
grams, was recently redesigned and reimplemented to introduce explicit heap
representation to the Java Dynamic Logic [23]. Previously, the heap was rep-
resented in the KeY logic implicitly through special semantics of object field
1 http://www.key-project.org

D. Beyer and M. Boreale (Eds.): FMOODS/FORTE 2013, LNCS 7892, pp. 20–34, 2013.
c© IFIP International Federation for Information Processing 2013

http://www.key-project.org

A Case Study in Formal Verification Using Multiple Explicit Heaps 21

updates with complex built-in rewrite rules [2, Chap. 3]. In the new version
the heap is explicit, directly accessible through a dedicated program variable
heap. In particular, this change in heap treatment enables reasoning with dy-
namic frames [12] in KeY. To accommodate dynamic frames style of specifica-
tions KeY uses an extended version of the Java Modelling Language (JML) [4],
named JML*. In the proof obligation generation process the framing conditions
expressed in JML* are translated to Java Dynamic Logic by constructing ap-
propriate formulae over the heap program variable.

In the default scenario a Java program operates on just one main heap and
so does the reasoning system when such programs are verified. Any specifica-
tion elements, like the JML assignable clauses that express framing conditions,
implicitly refer to this one heap. For example, “assignable o.f, o.g;” states that
fields f and g of object o might be modified on the heap. There are, however,
scenarios with computation models that refer to more than one heap. The first
and the simplest example is in distributed programs, where some method may
modify a set of locations locally as well as remotely through a remote call. For
example, such a method could have this framing specification:

assignable_local o.f, o.g;
assignable_remote o.g, o.h;

stating that an object o that is stored both locally and remotely (by holding a
copy) is modified partly here and partly there. Note that this notion of multiple
heaps is different from Separation Logic, which also talks about several heaps.
In Separation Logic a heap can be split into two or more separate heaps with
disjoint locations. Here we consider heaps that may (but do not have to) share
common locations, i.e., one heap may be a (partial) copy of another. In particu-
lar, one location can be changed simultaneously on two or more heaps. Generally,
different heaps represent different memory sites, either real physical ones or ones
introduced to the reasoning system for modelling certain properties.

Our particular use case for considering more than one heap emerged during
the rework of the support for Java Card atomic transactions [25, Chap. 7] in KeY
to follow the new explicit heap model. The Java Card technology [6] provides a
platform to program smart cards with a considerably stripped off version of Java
with no concurrency, floating point numbers, or dynamic class loading. The lack
of these features along with the security sensitive application areas of smart cards
in the financial sector (bank cards), telecommunications (SIM cards), or identity
(e.g., electronic passports), used to make Java Card an ideal verification target
for many verification tools [24,16,5]. However, one complicating factor in Java
Card that was initially overseen by researchers is the said atomic transaction
mechanism. The KeY system was the first verification tool to fully formalise the
details of Java Card transactions and provide a working implementation [3,18].

In short, the transaction mechanism provides a way to group assignments into
atomic blocks to preserve the consistency of heap data, which by default in Java
Card physically resides in the permanent EEPROM memory. Furthermore, it
provides mechanisms to make exceptions to the transaction data roll-back rules
as well as to change the default target memory for heap data to reside in the

22 W. Mostowski

volatile RAM instead. The core of our formalisation of this in Java Dynamic
Logic is the simultaneous use of two heap variables in the computation model.
The first represents the regular heap. The second one is used to store the backup
copy of the heap for the case when the transaction needs to be aborted and the
contents of the heap restored. The assignment rules in the logic operate on both
heaps at the same time, raising the need to specify framing conditions for these
two heaps in JML*. In effect, the heap becomes a specification parameter, a
simple example for heap-parametric frame specification would be:

assignable[heap] o.f, o.g;
assignable[backupHeap] o.f;

In the remainder of the paper we explain these ideas using the formalisation of
the Java Card transaction mechanism in KeY as a case study. This consists of the
core formalisation discussed in Sect. 2 and the extensions necessary for modular
reasoning discussed in Sect. 3. The use of two heaps is not the only possible way
to formalise Java Card transactions. However, the solution with two heaps pro-
vides a very clean formalisation with little implementation overhead (discussed
in Sect. 4), especially compared to our previous work [3], and gives a uniform
framework to apply our ideas in other verification domains. We discuss this in
Sect. 5. Finally, we conclude the paper in Sect. 6. The rest of this section is the
relevant background information about Java Card [6,25] and the Java Dynamic
Logic [2,23].

Java Card. The Java Card technology provides means to program smart cards
with Java. The technology consists of a language specification, which defines the
subset of permissible Java in the context of smart cards, a Virtual Machine spec-
ification, which defines the semantics of the Java byte-code when run on a smart
card, and finally the API, which provides access to the specific routines usually
found on smart cards. The complicating feature of Java Card is that programs
directly operate on two memories built into the card chip. Any data allocated
in the EEPROM memory is persistent and kept between card sessions, the data
that resides in RAM is transient and always lost on card power-down. The mem-
ory allocation rules are: (i) all local variables are transient, (ii) all newly created
objects and arrays are by default persistent, and (iii) when allocated with a ded-
icated API call any array (but not an object) can be made transient. Note the
important difference between a reference to an object and the actual object con-
tents. While the object fields are stored in the persistent memory, the reference to
that object can be kept in a local variable and be transient itself.2 Any Java vari-
able, once allocated in its target memory, is transparent to the programmer from
the syntax point of view, and it is only the underlying Java Card VM that takes
appropriate actions according to the memory type associated with the object.

Objects allocated in EEPROM provide the only permanent storage to an
application. To maintain consistency of data in EEPROM, Java Card offers the
2 A garbage collector is not obligatory in Java Card either. Careless handling of ref-

erences actually leads to memory leaks, something that is often addressed in Java
Card programming guidelines [21].

A Case Study in Formal Verification Using Multiple Explicit Heaps 23

atomic transaction mechanism accessed through the API. The following is a brief,
but complete summary of the transaction rules. Updating a single object field or
array element is always atomic. Updates can be grouped into transaction blocks,
a static API call to beginTransaction opens such a block, which is ended by a
commitTransaction call, an explicit abortTransaction call, or an implicit abort
caused by an unexpected program termination (e.g., card power loss). A commit
guarantees that all the updates in the block are executed in one atomic step.
An abort reverts the contents of the persistent memory to the state before the
transaction was entered. Note that an explicit abort does not terminate the whole
application, only cancels out persistent updates from within the transaction and
the program continues its execution. Finally, the API provides so-called non-
atomic methods to bypass the transaction mechanism. A non-atomic update
of a persistent array element is never cancelled out by an abort, provided the
same array was not manipulated with regular assignments earlier in the same
transaction. We provide illustrative examples for these rules later in Sect. 2.

Java Dynamic Logic with Explicit Heap. The Java Dynamic Logic (JDL)
[2,23] of the KeY system is an instance of Dynamic Logic [8] tailored to Java.
Modalities 〈p〉φ and [p]φ represent the notion of total and partial correctness, re-
spectively, of program p w.r.t. property φ. Java programs are deterministic, hence
total correctness requires p’s termination, including the absence of top-level excep-
tions, for partial correctness termination is not required. Formula φ is built from
logic terms using the usual connectives. Terms contain references to logic variables
– rigid symbols whose valuation is independent of the program state, and program
variables – non-rigid symbols that are program state dependent.

The verification of Java programs in the KeY system is based on symbolic
execution realised through a sequent calculus. Program p in the modality is
transformed by dedicated calculus rules to progressively reduce the program p
into a description of the resulting program state. This description, denoted by
U , is called an update, and is essentially a set of canonical assignments of terms
to program variables. The following two rules are characteristic for JDL:

Γ, Ub |= U〈π p ω〉φ Γ, U !b |= U〈π q ω〉φ
Γ |= U〈π if(b){p}else{q} ω〉φ if Γ |= U{v := se}〈π ω〉φ

Γ |= U〈π v=se; ω〉φ assign

In these rules π denotes an inactive prefix of the program, e.g., a try{ block
opening, a label, or a logic-only description of the current method call stack.
The remaining statements of the verified program that the current rule does not
operate on are denoted with ω. The if rule unfolds the if-statement, which is
removed from the modality, and two proof branches are created, where the exe-
cution of the two if branches, resp. p and q, can continue. The branch condition
b is evaluated in the current state by applying the state update U to it. The
assign rule transforms an assignment of a simple expression se to a local variable
v into the update U .

A complete symbolic execution of a program results in an empty modality
and a set of updates that can be applied to the formula φ to check the validity
of the initial claim 〈p〉φ. If we consider U to be an operator on φ then it actually

24 W. Mostowski

is another modality, one that only accepts sequences of canonical assignments as
valid programs with the important property that the valuation of the formula φ
can be quickly performed with a sequence of one-way update simplification and
application rules, i.e., an equivalent of the weakest precondition calculus.

So far this covers only local Java variables, the need to reason about objects
and arrays introduces the notion of a heap into the logic. The heap is represented
as a dedicated program variable of a logic sort Heap and treated on equal grounds
with other program variables. In particular, references and updates to the heap
variable can directly appear in the set of updates U . The immutable terms of
the sort Heap are built using rigid function symbols select and store, that allow,
respectively, querying the heap for a value of a given location, and constructing
a new heap with some location updated to a new value w.r.t. some old heap.
In particular, the assignment rule for updating an object field f is the following
(fields are also first class citizens in JDL):

Γ |= U{heap := store(heap, o, f, se)}〈π ω〉φ
Γ |= U〈π o.f=se; ω〉φ assignField

For a specification language the KeY system employs JML*, an extension of
JML [4] to accommodate dynamic frames [12]. This extension introduces the
primitive type of location sets into JML and allows the assignable clauses to refer
to variables of such a type instead of static locations. Since dynamic frames are an
orthogonal issue to our formalisation of transactions, JML* is synonymous with
JML for the work we present here. Moreover, only very basic JML constructs,
that we assume the reader is familiar with, are discussed in the paper. In the
verification process the KeY system translates a single Java method to be verified
and the associated JML* specification into a JDL formula. In this process the
heap variable is treated in a special way – it is the properties over this variable
that need to be expressed to reflect any framing conditions specified in JML*.
A very similar process is applied with similar implications on the heap variable
when JML* specifications are used as axioms to replace method calls following
the modular verification principles.

The JDL offers other strong facilities for reasoning about Java programs,
e.g., the modelling of static initialisation, or comprehensive treatment of Java
arithmetic including overflow. However, the work we present in this paper neither
affects nor is affected by these other features of the logic. The KeY system itself
is a GUI based user-friendly interactive verifier for JDL with a high degree of
automation to minimise unnecessary interaction, often leading to fully automatic
proofs even for considerably complex programs and properties.

2 Java Card Transactions on Explicit Heaps

In the following, driven by examples, we gradually present the complete formal-
isation of the Java Card transaction semantics in the KeY JDL and show how
multiple heap variables are used. To start with, we introduce native transaction
statements to the Java syntax handled by the logic. That is, the logic should

A Case Study in Formal Verification Using Multiple Explicit Heaps 25

allow for the symbolic execution of #beginTr, #commitTr, and #abortTr that
define the transaction boundaries in the verified program. Bridging the actual
transaction calls from the API to these statements is a straightforward extension

int newBalance = 0;
#beginTr;
this.opCount++;
newBalance =

this.balance + change;
if(newBalance < 0) {

#abortTr;
}else{

this.balance = newBalance;
#commitTr;

}

of the verification system. Then, consider the
snapshot (slightly artificial on purpose) of a
Java Card program on the right, where the
fields balance and opCount of object this
are persistent, permanently storing the cur-
rent balance and operation count of some pay-
ment application. The local variables change
and newBalance are transient. Ignoring the
transaction statements for the moment, the
symbolic execution of this program results in
the following state updates:

newBalance := 0,
heap := store(heap, this, opCount, select(heap, this, opCount) + 1),
newBalance := select(heap, this, balance) + change,
heap := store(heap, this, balance, newBalance) (when newBalance ≥ 0)

The symbolic execution of the if statement splits the proof, so the last update
only appears on the else proof branch where newBalance ≥ 0 is assumed.

After further simplification, this set of state updates can be applied to evaluate
a property querying e.g., the value of operation count, which in the logic would
be the term select(heap, this, opCount). The result would indicate a one unit
increase w.r.t. the value stored on the heap before this code is executed.

Basic Transaction Roll-Back. Assuming a simplified Java Card definition,
updates to local variables should be kept, while the updates to persistent lo-
cations should be rolled back to the state before the transaction was started.
The persistent locations in the actual program are synonymous with the data
stored on the heap in the logic. Hence, in the first attempt it should be sufficient
to roll back the value of the whole heap. This can be done by introducing two
simple rules for transaction statements #beginTr and #abortTr that, respec-
tively, store and restore the value of the heap to and from a backup heap variable
bHeap:

Γ |= U{bHeap := heap}〈π ω〉φ
Γ |= U〈π #beginTr; ω〉φ begin Γ |= U{heap := bHeap}〈π ω〉φ

Γ |= U〈π #abortTr; ω〉φ abort

This can be done and works as expected because the heap variable as modelled
in KeY JDL has call by value characteristics. Now the set of state updates (on
the negative newBalance branch) of our example program is the following:

newBalance := 0,
bHeap := heap,
heap := store(heap, this, opCount, select(heap, this, opCount) + 1),
newBalance := select(heap, this, balance) + change,
heap := bHeap (when newBalance < 0)

26 W. Mostowski

Whatever terms referring to heap contents should be evaluated with this set of
updates, the result would be the values on the heap at the point where it was
saved in the bHeap variable. The commit statement needs no special handling
apart from silent stepping over this statement. In this case the saved value of
the heap in the bHeap variable is simply forgotten until a possible subsequent
new transaction where bHeap is freshly overwritten with a more recent heap.

For the very superficial treatment of transaction semantics this is enough to
model transactions in JDL. Note that, so far, no new or assignment rules of any
kind were introduced and the new heap variable bHeap is not modified in any
way apart from being initialised to hold a complete copy of the regular heap.

Transaction Marking and Balancing. The two rules we just introduced
do not enforce any order on the transaction statements, they allow to success-
fully verify malformed programs like “#abortTr; #beginTr;” or “#commitTr;
#commitTr;”. Furthermore, by Java Card specification, transactions cannot be
nested, i.e., the maximum allowed transaction depth is 1, attempts to exceed
this limit cause a run-time exception. On the other hand, the scope of a single
transaction is very liberal according to the specification – a transaction can be in
progress for as long as the card session is active, regardless of the stack of method
calls. To simplify our formalisation, we opt for enforcing a stronger requirement
– a transaction should be contained in one single Java method. That is, any
method that opens a transaction has to close it before the method terminates.
This does not exclude complete methods to be called during a transaction, but
it does exclude a transaction opening in one method, and closing in another one
that is eventually called later on. Our requirement is justified by Java Card se-
curity guidelines [21] that ban programs with transaction blocks spanning over
several methods (to prevent transaction buffer overruns).3 In practice, our for-
malisation not only relies on this requirement, but also enforces it, i.e., programs
not adhering to this requirement do not verify.

Consequently, our formalisation restricts the transaction scope in the follow-
ing way. A transaction marker TR attached to a modality indicates that the
current execution context of the verified program is an open transaction. Rules
for handling transaction opening and closing statements are now sensitive to
this marker and automatically enforce correct transaction balancing. Similarly,
rules for discharging empty modalities prevent closing proofs with a remaining
transaction marker. In turn, any transaction block has to appear in a single
verification context (modality), i.e., one method. Furthermore, the dedicated
rule for array assignments can be singled out for transaction contexts only. This
keeps verification of regular Java programs clear of any unnecessary transaction
3 Following a similar security rationale we disallow object allocation inside transac-

tions. Real Java Card programs cause serious security risks when objects are allo-
cated in transactions [20], while the formalisation to deal with the “shady” semantics
of object deallocation mandated by the Java Card specification [25] would require
modelling of explicit garbage collection, something that Java verification systems in
principle are not designed for.

A Case Study in Formal Verification Using Multiple Explicit Heaps 27

artefacts in the proofs. Finally, knowing that the current point in the symbolic
execution is a transaction context is important in modular verification for the
local interpretation of heap parametric specifications as explained later in Sect. 3.

The rules for transaction statements are the following. An explicit rule for the
commit statement is added, in which nothing happens to the heap variable, but
the transaction context is cancelled out by removing the TR marker:

Γ |= U{bHeap := heap}〈TRπ ω〉φ
Γ |= U〈π #beginTr; ω〉φ begin

Γ |= U{heap := bHeap}〈π ω〉φ
Γ |= U〈TRπ #abortTr; ω〉φ abort Γ |= U〈π ω〉φ

Γ |= U〈TRπ #commitTr; ω〉φ commit

Persistent and Transient Arrays. So far in our formalisation we roll back
the whole contents of the backup heap, i.e., we operate the bHeap variable as a
whole without changing single object locations on it. The separate transaction
treatment for the persistent and transient arrays in Java Card now requires also
selectively modifying the backup heap, as we describe in the following.4

The Java Card transaction rules require that the contents of transient arrays,
allocated by dedicated API methods, are never rolled back. Since in JDL all
arrays are stored on the heap, we somehow need to introduce a selective roll-back
mechanism. We achieve this with the following. Whenever an array element is
updated in a transaction we check for the persistency type of the array. The check
itself is done by introducing an additional implicit boolean field to all objects,
called <transient>, that maintains the information about the object’s persistency
type. Standard allocation rules set this field to false, while the dedicated API
methods for creating transient arrays specify this field to be true.

Then, when handling assignments, for persistent arrays we take no additional
action, for transient arrays we update the value on the heap and simultaneously
update the value on the backup heap bHeap. During an abort, the regular heap
is restored to the contents of the backup heap that now also includes updates
to transient arrays that were not supposed to be rolled back. The core of the
resulting assignment rule for arrays is the following:

Γ, U !a.<transient> |= U{heap := store(heap, a, i, se)}〈TRπ ω〉φ
Γ, Ua.<transient> |= U{heap := store(heap, a, i, se),

bHeap := store(bHeap, a, i, se)}〈TRπ ω〉φ
Γ |= U〈TRπ a[i] = se; ω〉φ arrayAssign

Assuming that arrays tr and ps are, respectively, transient and persistent, the
symbolic execution of this program:

tr[0] = ps[0] = 0; #beginTr; tr[0] = 1; ps[0] = 1; #abortTr;
results in the following sequence of state updates:
4 Only arrays can be made persistent or transient in Java Card, regular objects are

always persistent. Thus, we only discuss arrays in this context, but our formalisation
works for regular objects, too.

28 W. Mostowski

heap := store(heap, tr, 0, 0), heap := store(heap, ps, 0, 0),
bHeap := heap,
heap := store(heap, tr, 0, 1), bHeap := store(bHeap, tr, 0, 1),
heap := store(heap, ps, 0, 1),
heap := bHeap

With these updates, the valuation of select(heap, ps, 0) and select(heap, tr, 0)
results in resp. 0 and 1 as required by the Java Card transaction semantics.

Non-atomic Updates. The last complication in the transaction rules are the
so-called non-atomic updates of persistent array elements. Such updates by-
pass transaction handling, i.e., no roll-back of data updated non-atomically is
performed. Updates to transient arrays as defined by Java Card are in fact non-
atomic, as they are never rolled back either. We have just introduced a mecha-
nism that prevents the roll-back of transient arrays, by checking the <transient>
field of the array and providing corresponding state updates. To extend this
behaviour to persistent arrays, we allow for the implicit <transient> field of an
array to be mutable in our logic. In turn, we can temporarily change the assign-
ment semantics for an array by manipulating the <transient> field. Concretely,
a non-atomic assignment to a persistent array element can be modelled by first
setting the <transient> field to true, then performing the actual assignment,
and then changing the value of <transient> back to false. Hence, a non-atomic
assignment “a[i] = se;” to a persistent array a, is simply modelled as:

a.<transient> = true; a[i] = se; a.<transient> = false;
Then, the array assignment rule we provided above introduces the necessary
updates to the regular and backup heaps to achieve transaction bypass.

In Java Card the non-atomic updates are delegated to dedicated API meth-
ods, i.e., they are not part of the language syntax. Hence, the manipulation of
the <transient> field is delegated to the reference implementation of these API
methods, and this emulation of non-atomic assignments is easily achieved in the
actual Java Card programs to be verified by KeY.

a[0] = 0;
#beginTr;
a[0] #= 1; a[0] = 2;

#abortTr;

a[0] = 0;
#beginTr;
a[0] = 2; a[0] #= 1;

#abortTr;

Unfortunately, there is one more condition for non-
atomic updates that we need to check. A request for
a non-atomic update becomes effective only if the per-
sistent array in question has not been already updated
atomically (i.e., with a regular assignment) within the
same transaction. If such an update has been per-
formed, any subsequent updates to the array are al-
ways atomic within the same transaction and rolled
back upon transaction abort. We illustrate this with
two simple programs operating on a persistent array a above on the right, for
simplicity we mark non-atomic assignments with #= instead of quoting the
actual API call that does that. The top program results in a[0] equal to 1 (a
non-atomic update is in effect), the bottom program rolls a[0] back to 0, as the
regular assignment “a[0] = 2;” disables any subsequent non-atomic assignments,
and hence all transaction updates are reverted.

A Case Study in Formal Verification Using Multiple Explicit Heaps 29

To introduce this additional check in the logic, we employ one more implicit
field for array objects, <trUpdated>, that maintains information about atomic
updates. Set to true, it indicates that the array was already updated with a
regular assignment, false indicates no such updates and allows for non-atomic
updates in the same transaction still to be effective. The new assignment rule
for arrays needs to be altered to handle all these conditions and also to record
the changes to the <trUpdated> field itself. The saturated state updates to be
introduced under different conditions in the assignment rule for “a[i] = se;” are
the following:

Condition State update
Always heap := store(heap, a, i, se)
!a.<transient> bHeap := store(bHeap, a, <trUpdated>, TRUE)
a.<transient> and

!a.<trUpdated> bHeap := store(bHeap, a, i, se)

The updates to the <trUpdated> field are purposely stored on the backup heap
to ease the resetting of this field with each new transaction, because the backup
heap is freshly assigned with each new transaction while the regular heap is not.
Now, on transaction abort, the heap reverting update filters out any updates to
this field on the backup heap using the anonymisation function of the JDL:

heap := anon(bHeap, allObjects(<trUpdated>), heap)

Intuitively, this expresses the operation of copying the contents of heap bHeap to
heap, but retaining the value of the <trUpdated> field in all objects in heap. This
way all manipulations of <trUpdated> in proofs are local to a single transaction.

3 Heaps as Parameters in JML*

The previous section spelled out the details of formalising Java Card transactions
in JDL. The key point in this formalisation is the modified assignment rule in
the sequent calculus that now operates on two heap variables. In some sense,
assignment rules are always the core of the program logic – they give semantics
of state changes for the verified program. A specification language that describes
the program behaviour also deals in a large part with the corresponding state
changes (or lack thereof). Hence, one can say there is a special correspondence
between the assignment rules and the specification language.

This means that specifications for methods called in transactions should ad-
ditionally express properties about data on the backup heap together with the
framing conditions. To this end we introduced the following extensions. To redi-
rect any object field access o.f to a different heap one can use the \at operator,
e.g., accessing data on the backup heap is expressed with \at(backupHeap,o.f).
In this context, the plain field access o.f in fact means \at(heap,o.f). Then, for
framing specifications, the assignable clauses also take a heap parameter to bind
locations with a corresponding heap:

assignable[heap] o.f;
assignable[backupHeap] o.g;

30 W. Mostowski

/*@ public normal_behavior
requires len >= 0 && off >= 0 && off + len <= a.length;
ensures \result == off + len;
ensures (\forall int i; i>=0 && i<len; a[off + i] == v);
requires[backupHeap] JCSystem.getTransactionDepth() == 1;
requires[backupHeap] a.<transient> ==> !a.<trUpdated>;
ensures[backupHeap] (\forall int i; i>=0 && i<len;

\at(backupHeap, a[off + i]) ==
((!a.<transient> && \at(backupHeap, a.<trUpdated>) ?

\old(\at(backupHeap, a[off + i])) : v));
assignable[heap,backupHeap] a[off..off+len-1]; @*/

public static int arrayFillNonAtomic(byte[] a, int off, int len, byte v);

Fig. 1. Complete JML* specification for one of the Java Card API methods

Now it is possible to generate separate proof obligations for the framing condi-
tions for the two heaps and correctly apply method contracts in the presence of
two heaps.

We generalise this further. Any specification element in JML*, like a pre-
condition specified with the requires clause, receives a heap parameter. This
parameter specifies the applicability context of the given specification element.
In particular, specification elements defined for the backup heap are only con-
sidered in verification contexts of an open transaction, i.e., within the marked
〈TR·〉 modality. Specification elements not annotated with any heap apply to the
default heap that is always active. This way we achieve transparency – old style
specifications refer to the regular heap by default and retain their previous se-
mantics. An illustration for this is given in Fig. 1, where a complete specification
for the Java Card API method for updating chunks of arrays in a non-atomic
way is given for both the transaction and non-transaction contexts.

4 Implementation in KeY

Implementing the support for Java Card transactions in KeY was done in two
steps. The first step was to generalise the JML* interface to accept multiple
heaps and convey the information about them to the proof obligation generation
component and the modular reasoning component. This was simply done by
considering an arbitrary list of heaps in the corresponding modules rather than
referring to the one predefined heap. Until this point the extensions were fully
generic, i.e., not specific to the Java Card transaction mechanism in any way. In
particular, the generation of concrete formulae for framing conditions remained
the same, only now several ones for different heaps are created.

In the second step we added the core formalisation of Java Card transactions
to the KeY system. In KeY the logic rules are defined externally, using the so-
called taclet language [2, Chap. 4] for defining the corresponding rewrites. The
TR marker was added by simply declaring a new modality. Then a handful of

A Case Study in Formal Verification Using Multiple Explicit Heaps 31

new rules we discussed in Sect. 2 were added to the rule base. As an example, a
self-explanatory taclet for the #beginTr statement is the following in KeY:

beginJavaCardTransaction {
\find (==> \diamond{.. #beginTr; ...}\endmodality phi)
\replacewith(==> {backupHeap := heap}

\diamond_transaction{.. ...}\endmodality phi) };
Apart from this rule and the transaction specific rule for array assignments the
addition of the second heap variable backupHeap required only declaring it.
This declaration automatically tells the other components of the KeY system
to include it (considering the current verification context) in the correspond-
ing verification tasks, like proof obligation generation or modular application of
contracts.

To evaluate our work we revisited our earlier work on the fully verified ref-
erence implementation of the Java Card API [19]. We specified the Java Card
API methods following the extended JML* syntax (see again Fig. 1) and verified
both the reference implementation of the API as well as a handful of other Java
Card examples that make calls to the Java Card API.

The overall result of our work shows considerable improvements compared
to our old formalisation of transactions [3,18] back when the heap model in
JDL was not based on explicit heap access through a special program variable.
The complete set of changes to the logic and the calculus is now much smaller,
the implementation overhead of the new rules practically negligible, and finally
the resulting automatic proofs for Java Card programs much more readable. We
attribute these improvements to the use of multiple heaps, which was not possible
before. Previously, the semantics of state updates on the implicit heap had to be
heavily modified to include a notion of a forgetting update to model data roll-
back in the logic with deep implications for the calculus and the implementation.
Preliminary work in the area of concurrent verification provides another strong
case for the explicit use of multiple heaps as we briefly describe next.

5 New Applications for Multiple Heaps in Verification

In the introduction we mentioned distributed computing as an example where
multiple heaps should be considered in the computation model, with at least the
local and one remote heap. Another scenario is low level reasoning about systems
with (possibly multi-level) cache memory, where one heap would represent the
cache and one the main memory. Here the verification could concentrate on
the data dependencies and synchronisation between the cache and the main
memory. Going further, multi-core systems (like GPUs) could be also modelled
using multiple explicit heaps, each heap representing the local memory of a
single core. Finally, the real-time Java can be also considered in this context,
where programs access memories with different physical characteristics on one
embedded device [13].

32 W. Mostowski

In the context of the ongoing VerCors project5 [1] we currently concentrate
on extending the KeY logic to deal with permission based verification of concur-
rent programs. Permission accounting is a specification oriented methodology for
ensuring race freedom in concurrent programs that allows for efficient thread-
local reasoning. Similarly to the implementation of permissions in the Chalice
tool [15,22] we introduce a permission mask to the JDL to keep track of permis-
sions in the verified programs. From our point of view, this permission mask is
nothing more than a parallel heap-like structure that stores permission values
for each location instead of the actual values. In the first experimental attempt,
using the multiple heap framework that we discussed, we simply added a new
heap structure to the logic, represented with the program variable permissions,
to keep track of the permissions that the local Java thread owns. The location
assignment and access rules were amended to ensure, respectively, a write or
read permission to a given location. Now, using our heap-aware JML*, we can
give permission based specifications:

requires[permissions] \at(permissions, o.f) == 1;
assignable o.f;
assignable[permissions] o.f;

This states that we require a write permission to the location o.f, that this lo-
cation is changed on the actual heap (the regular assignable), and also that the
permission to the location may be modified, e.g., through permission transfer to
another thread. Disregarding any specification clauses associated with permis-
sions, in the example the first and the third line, transforms the specification into
a permission unaware specification. This can be useful for verifying permission
and functional properties separately. Very basic examples with permissions have
been already verified with an experimental version of KeY.

6 Conclusions

In this paper we discussed the use of multiple heaps in formal verification of
Java programs using the formalisation of Java Card atomic transactions fully
implemented in KeY as an example. We also took the opportunity to give full
details of this formalisation that were not yet published elsewhere. In the ongoing
work we apply the same methodology to introduce permission based reasoning
for concurrent Java programs in KeY. Few other applications in verification have
been named as possible directions for more future work.

It seems that none of the other verification systems that we are aware of try
to make heap or heap-like structures explicit on the level of the specification
language, although certainly some of them indeed use multiple heap or heap-like
structures internally. Most notably, the Chalice tool [15,22] works with two global
variables H and P , that, respectively, represent the heap and the permission
mask in the Boogie proof obligations. Not exposing the heap in the Separation
Logic specifications and associated tools [11,7] seems natural, however, applying
5 http://fmt.cs.utwente.nl/research/projects/VerCors/

http://fmt.cs.utwente.nl/research/projects/VerCors/

A Case Study in Formal Verification Using Multiple Explicit Heaps 33

them to new verification scenarios named in Sect. 5 becomes significantly more
difficult in our opinion.

When it comes to the formalisation of Java Card atomic transactions, only the
Krakatoa tool [17] also provides a sound formalisation and implementation of
the transaction roll-back that accounts for the specifics of non-atomic methods.
The Krakatoa formalisation relies on keeping extra copies of data to be rolled
back on the same heap as all the other data in dedicated backup fields associated
with regular fields, i.e., all data fields are backed-up separately instead of the
whole heap. This is very similar to our first formalisation of transactions [3],
which turns out to be very heavy-weight compared to our current work. We
believe that our current formalisation can be applied easily in other verification
systems, as long as such a system is capable of manipulating the heap variable as
we do in the KeY logic. A partial support for Java Card transactions has been
also recently reported for the VeriFast platform [10], however, the semantics
of the transaction roll-back has not been formalised there. Finally, Java Card
transactions have been considered to be formalised in the LOOP tool using
program transformation to explicitly model transaction recovery directly in the
Java code, but the ideas where never implemented in the tool [9].

Acknowledgements. The work of W. Mostowski is supported by ERC grant
258405 for the VerCors project. We would like to thank Richard Bubel for his
insights and invaluable help with the implementation.

References
1. Amighi, A., Blom, S.C., Huisman, M., Zaharieva-Stojanovski, M.: The VerCors

project: Setting up basecamp. In: 6th Workshop Programming Languages Meets
Program Verification, pp. 71–82. ACM (2012)

2. Beckert, B., Hähnle, R., Schmitt, P.H. (eds.): Verification of Object-Oriented Soft-
ware: The KeY Approach. LNCS (LNAI), vol. 4334. Springer, Heidelberg (2007)

3. Beckert, B., Mostowski, W.: A program logic for handling Java Card transaction
mechanism. In: Pezzé, M. (ed.) FASE 2003. LNCS, vol. 2621, pp. 246–260. Springer,
Heidelberg (2003)

4. Burdy, L., Cheon, Y., Cok, D., Ernst, M., Kiniry, J., Leavens, G., Leino, K.R.M.,
Poll, E.: An overview of JML tools and applications. In: Arts, T., Fokkink, W. (eds.)
8th Int’l Workshop on Formal Methods for Industrial Critical Systems. ENTCS,
vol. 80, pp. 73–89. Elsevier (2003)

5. Burdy, L., Requet, A., Lanet, J.-L.: Java applet correctness: A developer-oriented
approach. In: Araki, K., Gnesi, S., Mandrioli, D. (eds.) FME 2003. LNCS, vol. 2805,
pp. 422–439. Springer, Heidelberg (2003)

6. Chen, Z.: Java Card Technology for Smart Cards: Architecture and Programmer’s
Guide. Addison-Wesley (June 2000)

7. Distefano, D., Parkinson, M.J.: jStar: towards practical verification for Java.
SIGPLAN Notes 43, 213–226 (2008)

8. Harel, D., Kozen, D., Tiuryn, J.: Dynamic Logic. MIT Press (2000)
9. Hubbers, E., Poll, E.: Reasoning about card tears and transactions in Java Card.

In: Wermelinger, M., Margaria-Steffen, T. (eds.) FASE 2004. LNCS, vol. 2984,
pp. 114–128. Springer, Heidelberg (2004)

34 W. Mostowski

10. Jacobs, B., Smans, J., Philippaerts, P., Piessens, F.: The VeriFast program verifier
– a tutorial for Java Card developers. Technical report, Department of Computer
Science, Katholieke Universiteit Leuven, Belgium (September 2011)

11. Jacobs, B., Smans, J., Philippaerts, P., Vogels, F., Penninckx, W., Piessens, F.:
VeriFast: A powerful, sound, predictable, fast verifier for C and Java. In: Bobaru,
M., Havelund, K., Holzmann, G.J., Joshi, R. (eds.) NFM 2011. LNCS, vol. 6617,
pp. 41–55. Springer, Heidelberg (2011)

12. Kassios, I.T.: Dynamic frames: Support for framing, dependencies and sharing
without restrictions. In: Misra, J., Nipkow, T., Sekerinski, E. (eds.) FM 2006.
LNCS, vol. 4085, pp. 268–283. Springer, Heidelberg (2006)

13. Kwon, J., Wellings, A.J.: Memory management based on method invocation in
RTSJ. In: Meersman, R., Tari, Z., Corsaro, A. (eds.) OTM-WS 2004. LNCS,
vol. 3292, pp. 333–345. Springer, Heidelberg (2004)

14. Leino, K.R.M.: Dafny: An automatic program verifier for functional correctness.
In: Clarke, E.M., Voronkov, A. (eds.) LPAR-16. LNCS, vol. 6355, pp. 348–370.
Springer, Heidelberg (2010)

15. Leino, K.R.M., Müller, P., Smans, J.: Verification of concurrent programs with
Chalice. In: Aldini, A., Barthe, G., Gorrieri, R. (eds.) Foundations of Security
Analysis and Design, pp. 195–222. Springer (2009)

16. Marché, C., Paulin-Mohring, C., Urbain, X.: The Krakatoa tool for certification
of Java/Java Card programs annotated in JML. Journal of Logic and Algebraic
Programming 58(1-2), 89–106 (2004)

17. Marché, C., Rousset, N.: Verification of Java Card applets behavior with respect to
transactions and card tears. In: Hung, D.V., Pandya, P. (eds.) 4th IEEE Conference
on Software Engineering and Formal Methods. IEEE Press (2006)

18. Mostowski, W.: Formal reasoning about non-atomic Java Card methods in dynamic
logic. In: Misra, J., Nipkow, T., Sekerinski, E. (eds.) FM 2006. LNCS, vol. 4085,
pp. 444–459. Springer, Heidelberg (2006)

19. Mostowski, W.: Fully verified Java Card API reference implementation. In: Beckert,
B. (ed.) 4th Int’l Verification Workshop. CEUR WS, vol. 259 (2007)

20. Mostowski, W., Poll, E.: Malicious code on java card smartcards: Attacks and
countermeasures. In: Grimaud, G., Standaert, F.-X. (eds.) CARDIS 2008. LNCS,
vol. 5189, pp. 1–16. Springer, Heidelberg (2008)

21. Pallec, P.L., Saif, A., Briot, O., Bensimon, M., Devisme, J., Eznack, M.: NFC
cardlet development guidelines v2.2. Technical report, Association Française du
Sans Contact Mobile (2012)

22. Parkinson, M.J., Summers, A.J.: The relationship between separation logic and
implicit dynamic frames. In: Barthe, G. (ed.) ESOP 2011. LNCS, vol. 6602,
pp. 439–458. Springer, Heidelberg (2011)

23. Schmitt, P.H., Ulbrich, M., Weiß, B.: Dynamic frames in Java dynamic logic. In:
Beckert, B., Marché, C. (eds.) FoVeOOS 2010. LNCS, vol. 6528, pp. 138–152.
Springer, Heidelberg (2011)

24. Stenzel, K.: A formally verified calculus for full Java Card. In: Rattray, C., Maharaj,
S., Shankland, C. (eds.) AMAST 2004. LNCS, vol. 3116, pp. 491–505. Springer,
Heidelberg (2004)

25. Sun Microsystems, Inc., Java Card 2.2.2 Runtime Environment Specification
(March 2006), http://www.oracle.com

http://www.oracle.com

Parameterized Verification

of Track Topology Aggregation Protocols

Sergio Feo-Arenis and Bernd Westphal

Albert-Ludwigs-Universität Freiburg, Germany

Abstract. We present an approach for the verification aggregation pro-
tocols, which may be used to perform critical tasks and thus should be
verified. We formalize the class of track topology aggregation protocols
and provide a parameterized proof of correctness where the problem is
reduced to checking a property of the node’s aggregation algorithm. We
provide a verification rule based on our property and illustrate the ap-
proach by verifying a non-trivial aggregation protocol.

1 Introduction

We study the verification of aggregation protocols, which are often used in sensor
networks [7,12,13]. Such protocols compute an aggregation function in a dis-
tributed fashion. An aggregation function is a function of the data at sensor
nodes where the messages sent by a node are determined by messages received
from other nodes and the own data. Data is propagated from sensor nodes to-
wards specially designated sink nodes, where the result of the computation is
made available.

A simple example of an aggregation protocol is one where the maximum value
among the sensors’ data is calculated at a sink node. Here, if intermediate nodes
transmit only the maximum value among the received data as it is forwarded to
the sink, the utilization of resources can be improved. The reduced amount of
data packets can, e.g., reduce energy usage, reduce the use of available bandwidth
and increase the maximum data collection rate.

Sensor networks may use unreliable communication channels. In order to miti-
gate the problem of unreliable communications, sensor networks may take advan-
tage of the fact that broadcast transmissions may be received by multiple nodes.
In this way, they effectively provide multiple aggregation paths over which a
node’s data can be collected.

Some aggregation functions are, however, duplicate-sensitive. That is, obtain-
ing a correct result requires that sensor values are aggregated only once. This is
the case when, e.g., calculating the sum or the average of the sensor values.

Data aggregation protocols are correct in the presence of unreliable commu-
nications if, whenever an aggregation path is available from a node to the sink,
the sensor’s data is correctly aggregated at the sink. I.e., it is aggregated, but
exactly once if the function being calculated is duplicate-sensitive. This con-
cept of correctness is the strongest possible when unreliable communications are
employed. The failure of all aggregation paths cannot be completely ruled out.

D. Beyer and M. Boreale (Eds.): FMOODS/FORTE 2013, LNCS 7892, pp. 35–49, 2013.
c© IFIP International Federation for Information Processing 2013

36 S. Feo-Arenis and B. Westphal

Fig. 1. Track Topology

Our goal is to provide a method to (semi-)automatically verify correctness
of aggregation protocols given the implementation of the algorithm executed by
network nodes. As a first approach, we concentrate on track topologies, where
nodes are arranged in tracks according to their distance (in hops) to the sink, and
aggregation paths traverse consecutive track boundaries as shown in Figure 1.

We study aggregation protocols for topologies that have a reliable correction
infrastructure. I.e., nodes within tracks have reliable communication links that
can be used to correct communication errors. This is the case for, e.g., the use of
short-range directional antennas or aggregation systems where communication
units have multiple transceivers.

We additionally assume a schedule, i.e., the sequence in which nodes perform
their computations and transmit their data, such that the data from input nodes
is always available at the time of executing a node’s algorithm.

Even under those assumptions, verifying correctness of an aggregation proto-
col requires considering all possible topologies, with a possibly unbounded num-
ber of nodes. Aggregation protocols are parameterized systems and can thus not
be verified by explicitly verifying all instances. The problem of parameterized
verification is undecidable in general [1].

We approach the problem of verifying a specific class of aggregation protocols
in this work. We make the following contributions.

1. We identify the class of aggregation protocols for track topologies with reli-
able correction infrastructure and provide a formalization as a parameterized
verification problem, including the presence of link failures.

2. We provide a proof rule that reduces the parameterized verification problem
to checking a verification condition on the nodes’ algorithm and show its
soundness. We thus provide an inductive invariant for the verification of
track topology aggregation protocols.

3. We illustrate the utility of our results by applying the verification rule to a
non-trivial aggregation protocol.

This work illustrates the possibility of performing parameterized verification
for distributed systems with topologies that are not regular and with dynamic
aspects such as node or link failures. We are able to concentrate the effort of
verification on single nodes, without the need to consider topology or scheduling

Parameterized Verification of Track Topology Aggregation Protocols 37

issues. Our formalization could be used together with approaches such as [14] to
obtain parametric proofs for such systems. Formalizing link and node reliability
can provide the basis for deriving inductive invariants.

2 Track Topologies and Aggregation Protocols

We define the class of systems that are the subject of our verification effort.
Inspired by instances seen in wireless sensor networks [7], we develop the concept
of track topologies by establishing the properties that characterize them.

Definition 1. A track topology

T = (N,−→,�, V)

with domain D is a finite, node-labeled, acyclic graph with nodes N = {n1, . . . , nk},
edges −→ ∪�⊆ N ×N , and labeling function

V : N → D

which satisfies the following conditions:

– The set of nodes is partitioned into d ∈ N0 non-empty sets N0, . . . , Nd called
tracks. We call N0 the sink track and use track(n) to denote the number of
the track to which node n ∈ N belongs.
The number d is called the depth of the topology, denoted by depth(T).

– The relation −→ is called aggregation relation and connects nodes in a track
with nodes in the track immediately before, i.e.,

∀ (n, n′) ∈−→ • track (n) = track(n′) + 1 (1)

For (n, n′) ∈−→, n′ is called aggregator for n. A path from a node n to a
node n′ ∈ N0 is called aggregation path.

– The relation −→ consists of two disjoint relations, the primary aggregation
relation PA and the secondary aggregation relation SA, such that (N,PA)
constitutes a forest and (N, SA) is a directed, acyclic graph.
For (n, n′) ∈ PA (SA), n′ is called primary parent (secondary parent) of n.
We introduce the abbreviation SA(n) = {n′ | (n′, n) ∈ SA} to denote the set
of secondary children of n.

– The relation � is disjoint from −→ and called correction relation. It con-
nects the primary parent of a node with all of its backup parents, i.e.

∀ (n, n′) ∈ PA ∃n0, n1, . . . , nm •
n0 = n′ ∧ ∀ 0 ≤ i < m • ni � ni+1 ∧ SA(n) ⊆ {n0, . . . , nm}.

(2)

Note that due to the restriction that the aggregation relation connects only
adjacent tracks, � always connects nodes in the same track.

k is called the size of T , denoted by |T |.

38 S. Feo-Arenis and B. Westphal

An example of a track topology with primary, secondary and correction relations
can be seen in Figure 2.

For our inductive proof, we require track topologies to be closed under re-
moval of single nodes in the sink track. By allowing to remove only nodes in the
sink track without outgoing correction edges, it is ensured that no correction
path between a primary aggregator and the backup aggregators of some node is
broken, thus preserving the property (2).

Lemma 1. Let n0 ∈ N0 be a node from the sink track of a track topology T =
(N0,−→0,�0, V0) with domain D which does not have any outgoing edges in the
correction relation to any other node.

Then T \ {n0} := (N,−→,�, V) with

– N = N0 \ {n0}, V = V0|N ,
– −→= {(n, n′) ∈−→0| n′ �= n0}, �= {(n, n′) ∈�0| n′ �= n0},
– track(n) = track0(n)−1 if N00 = {n0}, and track(n) = track0(n) otherwise,

is a track topology with domain D.

Whenever aggregation is performed, nodes initiate a transmission round, each
transmitting their computed messages over the communication medium. In the
following, we formalize unreliable communication links. We introduce an edge
labeling function for the aggregation relation of a topology that indicates whether
communication is successful or not during a transmission round.

Definition 2. A communication function of a track topology T = (N,−→,�
, V) is an edge labeling

f : (−→)→ B

of the aggregation relation −→ of T where f(n, n′) = 1 if and only if the com-
munication was successful between the connected nodes n and n′. We use FT to
denote the set of communication functions of T , and n −→f n

′ if and only if
f(n, n′) = 1.

The value of node n is available at the sink track if and only if there exists a
−→-path from n to a node in the sink track such that the communication along
the path was successful according to f . We use Vf (n) to denote the value of n if
the value is available at the sink track according to f and “◦” otherwise, i.e. Vf
is pointwise defined as

Vf (n) =

{
V (n) , if ∃n0 ∈ N0 • n −→∗

f n0,

◦ , otherwise.
(3)

In the following, we present the formalization of aggregation protocols and their
correctness, which provides the framework necessary to develop a formal verifi-
cation approach.

We observe that an aggregation protocol can be formalized as a function that
maps a set of sensor values to a final aggregation value. For simplicity, and
without loss of generality, we assume that the domain of the sensor values and

Parameterized Verification of Track Topology Aggregation Protocols 39

that of the aggregation result are the same. In practice, complex functions may
utilize different domains.

We continue by defining correctness of an aggregation protocol in the presence
of unreliable communication links. For that, we formalize correctness relative to
the communication function f : whenever there is a working path from a node to
a sink, the data of the node should arrive (in aggregated form) at the sink.

The assumption that the correction infrastructure is reliable plays an im-
portant role. If the correction links were not reliable, then one would have to
define correctness not only for working aggregation paths but also for working
correction paths. We restrict our analysis to a reliable correction infrastructure.
Extending it to unreliable correction links should work in a similar fashion and
is the subject of future work.

Definition 3. Let T be a set of track topologies with domain D and

P : T × FT → D,

a track topology aggregation protocol on T , where FT denotes the set of com-
munication functions of the track topologies in T .

Let A be a family of aggregation functions

Ak : Dk
◦ → D,

over domain D where k ∈ N0 and D◦ = D � {◦}.
The aggregation protocol P is called correct wrt. A if and only if, whenever

the value of a node n is available to the sink track, then the data transmitted by
n is aggregated exactly once by P, i.e. if

∀T = (N,−→,�, V) ∈ T , k = |N | ∀ f ∈ FT •
P(T, f) = Ak (Vf (n1), . . . , Vf (nk)) .

(4)

Now we formally characterize the aggregation protocols that are the subject of
this work. We formalize the distributed calculation of the aggregation function as
an equation system over local aggregation functions that map incoming messages
and additional parameters to outgoing messages. The most prominent require-
ment in our formalization is that correction requests are directly observable in
the network transmissions, thus allowing reasoning about the consistency of the
messages computed by the nodes.

Definition 4. Let T be a set of track topologies with a domain D such that
(D◦,⊕, ◦) is a monoid. A track topology aggregation protocol P on T is called
distributed homogeneous if and only if

– there exists a family of sets Msgk of messages together with two families

A k : Msgkk → D
E k : Msgkk → 2IDk

40 S. Feo-Arenis and B. Westphal

of decoder functions, k ∈ N0, IDk = {1, . . . , k}.
Decoder function A k obtains the aggregation value encoded in a message and
E k : Msgkk → 2IDk extracts from a message the correction requests contained
in that message, i.e., the set of nodes encoded in the message for which a
corrective action should be taken if possible,

– there exists a family of local aggregation functions

aggrk : IDk ×D × (IDk �→ Msgk)→ Msgk, k ∈ N0,

such that, for track topology T = (N,−→,�, V) ∈ T and communication
function f ∈ FT , the aggregation result of the protocol P is the ⊕-sum of the
messages emitted by the sink track, i.e.

P(T, f) =
⊕

ni∈N0

A (τi) (5)

where message τi of node ni ∈ N in the track topology is defined by applying
the local aggregation function to the identity i of the node, its value, and the
set of messages relevant for ni which have successfully been communicated
according to f .
That is, the messages τ1, . . . , τk are the solution of the equation system

τ1 = aggrk(1, V n1,M1) M1 = {i �→ τi | (ni, n1) ∈ (−→f ∪�)}
τ2 = aggrk(2, V n2,M2) M2 = {i �→ τi | (ni, n2) ∈ (−→f ∪�)}
...

...

τk = aggrk(k, V nk,Mk) Mk = {i �→ τi | (ni, nk) ∈ (−→f ∪�)}.

Note 1. A distributed homogeneous track topology aggregation protocol P with
domain D is correct for track topologies with a single node in the sink track if
and only if

A (τ) = Ak (Vf (n1), . . . , Vf (nk)) (6)

where τ is the message emitted by the sink node.

Also note that we implicitly assume a computation sequence (or schedule) that
ensures data availability for all nodes. That is, whenever a node starts its compu-
tations, all the input data is available. Thus, we assume that all nodes connected
to a node n are scheduled to transmit their data before n.

3 Verification of Track Topology Aggregation Protocols

To be able to provide a parameterized proof of correctness as defined in the previ-
ous section, we require the aggregation function to be an associative operator over
the aggregation domain, so that there is a correspondence between the final ag-
gregated values and the partial values transmitted by intermediate nodes.We also
require the operator to provide a neutral element to be able to aggregate sensors
whose communication fails or do not have data available in a uniform fashion.

Parameterized Verification of Track Topology Aggregation Protocols 41

Definition 5. A family of aggregation functions Ak : Dk
◦ → D, k ∈ N0, over

domain D is called monoidal with respect to (D◦,⊕, ◦), if and only if (D◦,⊕, ◦)
is a monoid and

∀ v1, . . . , vk ∈ D◦ • Ak(v1, . . . , vk) = v1 ⊕ · · · ⊕ vk. (7)

Bringing together the use of correction links and the transmission of correction
requests, we introduce the concept of responsibility among nodes, defined as the
confluence of both the availability of another node’s data and of a correction
request for that node.

Definition 6. Let T = (N,−→,�, V) be a track topology and f ∈ FT a com-
munication function.

A node n′ ∈ N is called responsible for node n ∈ N , denoted by n −→g

n′, if and only if n′ is an aggregator of n, communication from n to n′ was
successful according to f , and communication from n to the predecessors of n′

in the correction relation was not successful according to f , i.e. if

n −→g n
′ :⇐⇒ n −→f n

′ ∧ ∀ (n′′, n) ∈�+ •f(n, n′′) = 0 (8)

We say a node n has a working aggregation path to node n′ ∈ N if and only if
there is a sequence of responsible nodes between them, i.e., if n −→∗

g n
′′.

Note that working aggregation paths are unique (if existent). Protocol correct-
ness can then be reformulated as the property that every node correctly aggre-
gates the data of those nodes with a working aggregation path to it.

Lemma 2. Let A be a monoidal aggregation function family with respect to
(D◦,⊕, ◦) and P a distributed homogeneous track topology aggregation protocol
on track topologies T with domain D.

If the message of a node n ∈ N encodes the ⊕-aggregation of the values of all
nodes n′ for which n is responsible, i.e. if

∀T ∈ T , f ∈ FT ∀ i ∈ IDk •A (τi) =
⊕

n−→∗
gni

V (n), (9)

then P is correct wrt. A.

Proof. Let T ∈ T be a topology of size k and f ∈ FT a communication function.
Let n ∈ N be a node with a working aggregation path to a node n′ ∈ N0 in

the sink layer, i.e. if n −→∗
g n

′, By Definition 6, there is a path from n to n′ with
successful communications, i.e. n −→∗

f n
′. Thus, by Definition 2, Vf (n) = V (n).

Let n ∈ N be a node with no working aggregation path to any node n′ ∈ N0

in the sink layer. Because such a path consists of primary and backup parents
which are, by Definition 1, connected by the correction relation �. Thus there
would exist a unique first parent for each track, and therefore n would have a
working aggregation path, thus the value of n is not available at the sink track.
Hence, by Definition 2, Vf (n) = ◦.

42 S. Feo-Arenis and B. Westphal

By Definition 4, the premise (9), and the premise thatA is monoidal we obtain

P(T, f) =
⊕

ni∈N0

⊕
n−→∗

gni

V (n) =
⊕
n∈N

Vf (n) = Ak(Vf (n1), . . . , Vf (nk)) (10)

thus P is correct. ��

Now that we stated a property local to every node in a network, we introduce an
abbreviation in the style of Hoare logic to denote the satisfaction of a postcondi-
tion given some precondition. We can in this form state the verification condition
that must be satisfied in order to show protocol correctness. We choose this no-
tation given that we intend to allow the verification of the implementation of the
local aggregation functions against this property using software model checking.

Definition 7. Let P be a distributed homogeneous track topology aggregation
protocol and let P k, Qk be families of formulae over id , v, Mid , and τid .

We write
{P} aggr {Q}

if and only if for for each k ∈ N0 and each valuation of id , v,Mid which satisfies
P k, that valuation extended by τid = aggrk(id , v,Mid) satisfies Q

k.

Having provided all the prerequisites, we can now state the main theorem of
this work, where we reduce protocol correctness to the verification of a local
node property. Assuming that all nodes in the network execute the same im-
plementation of the local aggregation function aggr , we claim that if the local
computation at a node ensures consistent aggregation up to that node, including
the transmission of consistent correction requests, then the protocol is correct.
We prove the soundness of this claim inductively.

Theorem 1. Let P be a distributed homogeneous track topology aggregation pro-
tocol for the set T of track topologies with domain D.

If {P} aggr {Q} with

P k ≡ id ∈ IDk ∧ v = V (nid)

and

Qk ≡ A (τid) = V (nid)⊕
⊕

τi∈Mid
∧((ni,nid)∈PA∨(i∈E (Mid)∧(ni,nid)∈SA))

A (τi)

∧ E (τid) = {i | τi �∈Mid ∧ (ni, nid) ∈ PA}
∪ {i | i ∈ E (Mid) ∧ (τi �∈Mid ∨ (ni, nid) �∈−→)}

then P is correct.

Proof (sketch). We show by double induction on the depth d of topologies and
the size � of their sink track that the set of messages emitted by the nodes
according to the protocol satisfy the following properties:

Parameterized Verification of Track Topology Aggregation Protocols 43

– (�): For each node n, the emitted message comprises the aggregation of all
nodes which n is (transitively) responsible for.

– (�): Correction for node nj is initially requested by a node ni if and only if
ni is the primary parent and there was no successful communication between
the two.

– (�): A correction request for node nj emitted by ni implies that no prede-
cessor of ni in the correction relation was able to provide a correction.

Formally, we show

∀ d ∈ N0, � ∈ N0 ∀T = (N,−→,�, V) ∈ T •
depth(T) = d ∧ |N0| = � =⇒

∀ni ∈ N •A (τi) =
⊕

n−→∗
gni

V (n) (�)

∧ ∀ j • j ∈ E (τi) \ E (Mi) ⇐⇒ (nj , ni) ∈ PA ∧ f(nj , ni) = 0 (�)
∧ ∀ j ∈ E (τi) =⇒ ∀ (n′, ni) ∈�∗ • nj −→ n′ =⇒ f(nj, n

′) = 0. (�)

Then (�) in particular implies (9), thus P is correct by Lemma 2. ��

Discussion. The theorem presented allows us to eliminate most sources of in-
finiteness from the parameterized correctness proof for the studied protocols.
Taking advantage of the fact that nodes have only local knowledge of the state
of the system and the topology, we are able to implicitly profit from the resulting
local symmetry of irregular networks.

The resulting verification problem is one where the system parameter k re-
mains as a variable, and can thus be treated symbolically by verification tools.
Alternatively, even a bounded correctness proof (up to some maximum size) can
be provided by explicit model checking, provided that the data types used in the
implementation are finite.

Developers of aggregation protocols can profit from the inductive proof
provided. They can concentrate on verifying their particular implementations
against our verification condition; a process that is less involved than providing
a complete proof.

Some implicit assumptions were taken into account. We considered a single ag-
gregation round, where nodes transmit only once. We thus assume that nodes are
memoryless between aggregation rounds. This has, nonetheless, an advantage:
systems are allowed to dynamically change their topology between aggregation
rounds.

4 Case Study

We analyze the ridesharing protocol [9,10], proposed for use in DARPA’s satel-
lite cluster system F6 [3]. Nodes are arranged in tracks and reliability in the
presence of failing communication links is improved by coordinating corrective

44 S. Feo-Arenis and B. Westphal

Fig. 2. Ridesharing topology

actions between nodes. We concentrate on a variant of the ridesharing proto-
col with reliable correction links. An initial attempt of the verification of the
ridesharing protocol without considering the aggregation function, but the par-
ticipation vector is presented in [8], for self-containment, we recall the protocol
description here.

The goal of the protocol is to aggregate the readings of sensor arranged in
a track graph towards a single, specially designated node called sink. Except
from the sink, every node has one assigned parent (the main parent), which is
responsible for aggregating its data. Additionally, other nodes in communication
range are designated as fail-over aggregators (the backup parents) in case the
communication between a node and its main parent fails.

The possible data paths from sensors to the sink form a directed, acyclic graph
(DAG) with multiple paths through the track graph (See Fig. 2). Primary and
backup edges are between adjacent tracks. There are also side edges within the
same track. A side edge points to a node from its side parent. The main edges
form a spanning tree with the sink as root.

Main parents transmit correction requests if the communication to their chil-
dren fails. Those requests are relayed by the track nodes towards the backup par-
ents connected to them using the reliable side links. If a backup parent receives
a correction request for a backup child, and the data is available, it aggregates
the data and stops propagating the error correction request.

We show the aggregation algorithm as proposed in [10] (see Algorithm 1). Each
node in a given ridesharing topology has a unique identity. Input id gives the
identity of the node and PC , BC , SP are the sets of primary children, backup
children, and side parents of the node respectively. Input v gives the current
sensor reading and rcv the messages received by id . The algorithm computes
the message to be sent by id , given v and rcv .

Nodes transmit triples 〈A,P,E〉 with the accumulated sensor value A and two
control boolean vectors of length |N |. The participation vector P indicates for
each node whether its value is included in A and the error vector E indicates at
each position, whether correction is required for the node at that position.

Aggregation starts by initializing A with zero and P and E with all zeroes.
If node id has sensor data, it is aggregated to A and P is updated accordingly.
We use rcv [SP] to denote the bit-wise disjunction of the error vectors received

Parameterized Verification of Track Topology Aggregation Protocols 45

Algorithm 1. The ridesharing aggregation algorithm. [10]
input: id , PC , BC , SP , v, rcv
A := 0; P := 0̄; E := 0̄;
if v
= NULL then { A := A + v; P [id] := 1 } ; // Aggregate local sensor reading
E := rcv[SP];
foreach c ∈ PC ∪ BC do

if rcv[c]
= undefined then
if c ∈ PA ∨ (c ∈ SA ∧ E[c] = 1) then // Aggregate received values

(Ac, Pc) := rcv[c]; A := A + Ac; P := P | Pc; E[c] := 0;
end

else if c ∈ PC then // Request error correction
E[c] := 1;

end

end
return (A,P,E);

from id ’s side parents. Then, E comprises all requests for corrections. In the
loop, the received messages from id ’s children are processed: if id received the
message from c and if c is a primary child or a backup child with a pending
request for correction in E then c’s data is aggregated, i.e. A is updated and
the P vector becomes the disjunction of the incoming P vectors. If id did not
receive the message from primary child c, it flags a request for the correction of
c and leaves A and P unchanged.

4.1 Verification of the Ridesharing Protocol

We show how the ridesharing protocol fits into the framework presented in Sec-
tion 2. First, we show that the topologies used are track topologies.

– The set of nodes N = {n1, . . . , nk} is the set of nodes present in a ridesharing
topology, there is a single sink node in the sink track N0 = {nk},

– The main parent relation is the primary aggregation relation PA. It connects
nodes between adjacent tracks and forms a tree with nk as root.

– The backup parent relation is the secondary aggregation relation SA. It forms
an acyclic directed graph (N, SA).

– The side parent relation is the correction relation �. It connects nodes
sequentially.

– The track function can be defined with respect to PA since it forms a span-
ning tree:

track(n) =

{
0 iff � (n, n′) ∈ PA
track(n′) + 1 iff ∃ (n, n′) ∈ PA

– each node ni has access to its sensor value vi from the domain D of bounded
integers, if the sensor does not have a value, vi = 0 is used. Thus the labeling
function is defined as: V = {ni �→ vi | 1 ≤ i ≤ k}.

Second, we show that the protocol is distributed homogeneous.

– The domain is the type of the sensor readings, we assume it to be bounded
integer numbers: D = {−2n, . . . , 2n − 1} for some positive integer n.

46 S. Feo-Arenis and B. Westphal

– The aggregation operator is the sum operator. I.e., ⊕ = +.
– The domain, aggregation operator and neutral element (D,+, 0) form a

monoid. Thus the aggregation function Ak(v1, . . . , vk) = v1 + · · · + vk is
monoidal.

– The set of messages is the set of transmissions of the nodes τi = 〈Ai, Pi, Ei〉
where Ai, Pi, Ei are the values calculated by ridesharing at node i. Thus,
Msgk = D × Bk × Bk.

– The value decoder function reads the aggregation value directly from a mes-
sage, i.e., A (τi) = Ai. The correction requests can also be read directly from
the transmitted messages: E (τi) = {j ∈ IDk | Ei[j] = 1}.

– The local aggregation function is Algorithm 1. I.e.,

aggrk(i, v,M) = ridesharing (i,PA(i), SA(i), SP(i), v,M)

where PA(i) = {j ∈ IDk | (j, i) ∈ PA}. SA(i) and SP(i) are defined anal-
ogously w.r.t. SA and �. M is defined with respect to a communication
function as in Def. 4.

We can thus apply the verification theorem to the ridesharing protocol. It is left
to verify whether the formula

{P} ridesharing(i,PA(i), SA(i),� (i), v,M) {Q}

is valid for P and Q as defined in Theorem 1.
To that end, we developed a model including our formalization from Sec. 2

using Boogie [2]. The topology and communication functions are represented
by axioms. Additional axioms represent the properties of the system analyzed.
The aggregation algorithm is input directly in imperative form by representing
boolean arrays as functions of type array : N → B. Instead of bounded inte-
gers, we used unbounded integers to simplify the model, thus introducing the
assumption that the actual data types used in an implementation are enough
to accommodate the aggregation values without overflowing. Simple invariants
for the loop in the algorithm were necessary: framing conditions for the loop
variables and the fact that consistency is preserved across iterations of the loop
was sufficient. P and Q were expressed in terms of the protocol variables and
used as pre- and postconditions of the algorithm respectively1.

The verification took 1.05 seconds to verify 35 partial verification conditions
(including sanity checks), while using approximately 13 MB of memory. Boogie
was able to show that the verifications conditions are all valid. We thus have
shown correctness of the ridesharing protocol with reliable side links.

Discussion. Due to the symbolic representation of the parametric set of nodes,
the theorem prover used by Boogie requires only a finite number of cases to show
the validity of the generated verification conditions fully automatically.

recall all assumptions

1 Model available at http://www.informatik.uni-freiburg.de/~arenis/forte13/

http://www.informatik.uni-freiburg.de/~arenis/forte13/

Parameterized Verification of Track Topology Aggregation Protocols 47

Thanks to the result that the ridesharing protocol is correct, in the sense
of Definition 3, a reliability measure can be simply computed from the failure
probability of the inter-track radio links as follows:

Let p(ni, nj) be the probability of node nj successfully receiving the trans-
mission of a connected node ni. The probability of the data of some node n
being successfully aggregated is then equal to the probability of all links in each
possible aggregation path failing:

1−
∏

π∈paths(n)

⎛⎝1−
∏

1≤j<|π|
p (π[j], π[j + 1])

⎞⎠
where paths(n) are the sequences π = n1, . . . , nm of nodes starting at node n,
connected by the aggregation relation and ending in the sink node. The length
|π| = m. The expression π[i] refers to the i-th node on the path π.

If all links have the same success probability p, then the probability of a node
n in track t successfully being aggregated at the sink simplifies to

1−
(
1− ptrack(n)

)|paths(n)|

assuming that link failures are independent.
These results thus reduce the need to use simulation tools to determine the

overall reliability of the ridesharing protocol.

5 Related Work

The parameterized analysis of safety properties is undecidable in the general
case [1]. The problem of verifying properties for parameterized systems has been
approached by several authors. We discuss a few that we feel are the closest to
our line of work.

We can best situate our work in the line of work of Namjoshi et al. [14] for
the verification of irregular networks. Although we concentrate on asynchronous
systems, the verification condition presented in this work can be viewed as a
particular case of an inductive, compositional invariant, though used in the con-
text of irregular networks with dynamic links. We ensure the local symmetry
of aggregation networks with redundancy by explicitly considering three types
of edges and restricting the analysis to systems where inter-node communica-
tion occurs after computation, without interleaving. We enrich the computation
model by explicitly including the network dynamic as part of the system state.

The particular problem of network dynamic in the form of link and node
failures has been the subject of recent efforts [5]. We present an instance of
verification of broadcast networks with link unreliability, which can simulate
node failures, for the special case of aggregation protocols.

The method of “network grammars” [4], where regular families of networks
are described using context-free grammars is used to verify parameterized sys-
tems by using abstraction. Several model checking problems are derived, which,

48 S. Feo-Arenis and B. Westphal

if solved, deliver a proof of correctness. We do not explicitly perform any kind
of abstraction on the states of the local aggregation programs, leaving that pos-
sibility open for the method used to establish the satisfaction of our verification
condition.

Similar methods rely on finding so called network invariants [11,15], overap-
proximations of the sets of reachable states of the systems, and proving that they
imply the property being verified. The focus lies on automatically finding those
invariants through model checking. We distance ourselves from the automatic
finding of invariants and perform explicit induction using a fixed invariant, deliv-
ering a proof rule for the class of aggregation protocols with irregular topology.
Explicit induction has been also used for the verification of regular networks [6].

The systems we consider in this work are asynchronous systems where com-
putation steps of network components are considered atomic. The systems could
be, however, considered as an instance of bounded-data parameterized systems
in the sense of [15].

This work is a follow-up of the initial analysis of the protocol from our case
study [8]. We improve the analysis by extending it to the use of arbitrary
duplicate-sensitive aggregation functions, eliminating the need for the explicit
transmission of a vector of aggregated nodes. Here, we provide a complete, for-
mal inductive proof and, as a result, simplify the resulting verification conditions.
The software model checking step of the verification is thus simplified, improving
the chances of obtaining a verification problem within the capabilities of current
software verification tools.

6 Conclusions

We have presented an inductive, parameterized proof of correctness for track
topology aggregation protocols. We reduce the problem to the verification of
a single verification consistency condition on the nodes’ aggregation algorithm,
which can be automatically checked using state of the art software verification
tools.

We identify a class of aggregation protocols that allows us to illustrate the fea-
sibility of reducing the verification of parameterized, asynchronous systems with
irregular topologies and dynamic link (and thus node) reliability to establishing
local consistency properties.

Possible directions for future work are the relaxation of the constraints for the
systems verified –to enlarge the class of systems covered–, such as the reliability
of the correction infrastructure and the acyclicity of some of the node connection
relations.

Additionally, the use of our verification conditions as a template for the auto-
matic generation of inductive node invariants can be explored, such that given de-
coding functions for a protocolmessages, the verification task is further automated.

Finally, criteria for the decidability of the resulting verification problem can
be studied. This would lead to the identification of a decidable class of parame-
terized systems.

Parameterized Verification of Track Topology Aggregation Protocols 49

References

1. Apt, K.R., Kozen, D.: Limits for automatic verification of finite-state concurrent
systems. Inf. Process. Lett. 22(6), 307–309 (1986)

2. Barnett, M., Chang, B.-Y.E., DeLine, R., Jacobs, B., Leino, K.R.M.: Boogie:
A modular reusable verifier for object-oriented programs. In: de Boer, F.S.,
Bonsangue, M.M., Graf, S., de Roever, W.P. (eds.) FMCO 2005. LNCS, vol. 4111,
pp. 364–387. Springer, Heidelberg (2006)

3. Brown, O., Eremenko, P.: The value proposition for Fractionated space architec-
tures. In: AIAA Space 2006. No. 7506. AIAA (2006)

4. Clarke, E.M., Grumberg, O., Jha, S.: Verifying parameterized networks. ACM
Trans. Program. Lang. Syst. 19(5), 726–750 (1997)

5. Delzanno, G., Sangnier, A., Zavattaro, G.: Verification of ad hoc networks with
node and communication failures. In: Giese, H., Rosu, G. (eds.) FORTE 2012 and
FMOODS 2012. LNCS, vol. 7273, pp. 235–250. Springer, Heidelberg (2012)

6. Emerson, E.A., Namjoshi, K.S.: On reasoning about rings. Int. J. Found. Comput.
Sci. 14(4), 527–550 (2003)

7. Feng, J., Eager, D.L., Makaroff, D.J.: Aggregation protocols for high rate, low delay
data collection in sensor networks. In: Fratta, L., Schulzrinne, H., Takahashi, Y.,
Spaniol, O. (eds.) NETWORKING 2009. LNCS, vol. 5550, pp. 26–39. Springer,
Heidelberg (2009)

8. Feo-Arenis, S., Westphal, B.: Formal verification of a parameterized data aggre-
gation protocol. In: Brat, G., Rungta, N., Venet, A. (eds.) NFM 2013. LNCS,
vol. 7871, pp. 428–434. Springer, Heidelberg (2013)

9. Gobriel, S., Khattab, S., Mossé, D., Brustoloni, J., Melhem, R.: Ridesharing: Fault
tolerant aggregation in sensor networks using corrective actions. In: IEEE Commu-
nications Society Conference on Sensor, Mesh and Ad Hoc Communications and
Networks, pp. 595–604 (2006)

10. Iskander, M.K., Lee, A.J., et al.: Privacy and robustness for data aggregation in
wireless sensor networks. In: 17th ACM Conference on Computer and Communi-
cations Security, pp. 699–701. ACM (2010)

11. Kesten, Y., Pnueli, A., Shahar, E., Zuck, L.D.: Network invariants in action. In:
Brim, L., Jančar, P., Křet́ınský, M., Kučera, A. (eds.) CONCUR 2002. LNCS,
vol. 2421, pp. 101–115. Springer, Heidelberg (2002)

12. Liu, M., Gong, H.G., Mao, Y.C., Chen, L.J., Xie, L.: A distributed energy-efficient
data gathering and aggregation protocol for wireless sensor networks. Journal of
Software 16(12), 2106–2116 (2005)

13. Montresor, A., Jelasity, M., Babaoglu, O.: Robust aggregation protocols for large-
scale overlay networks. In: 2004 International Conference on Dependable Systems
and Networks, pp. 19–28. IEEE (2004)

14. Namjoshi, K.S., Trefler, R.J.: Uncovering symmetries in irregular process networks.
In: Giacobazzi, R., Berdine, J., Mastroeni, I. (eds.) VMCAI 2013. LNCS, vol. 7737,
pp. 496–514. Springer, Heidelberg (2013)

15. Pnueli, A., Ruah, S., Zuck, L.D.: Automatic deductive verification with invisi-
ble invariants. In: Margaria, T., Yi, W. (eds.) TACAS 2001. LNCS, vol. 2031,
pp. 82–97. Springer, Heidelberg (2001)

Monitoring Networks through Multiparty

Session Types�

Laura Bocchi1, Tzu-Chun Chen2, Romain Demangeon2,
Kohei Honda2, and Nobuko Yoshida3

1 University of Leicester
2 Queen Mary, University of London

3 Imperial College London

Abstract. In large-scale distributed infrastructures, applications are re-
alised through communications among distributed components. The need
for methods for assuring safe interactions in such environments is recog-
nized, however the existing frameworks, relying on centralised verification
or restricted specification methods, have limited applicability. This paper
proposes a new theory of monitored π-calculus with dynamic usage of
multiparty session types (MPST), offering a rigorous foundation for safety
assurance of distributed components which asynchronously communi-
cate through multiparty sessions. Our theory establishes a framework
for semantically precise decentralised run-time enforcement and provides
reasoning principles over monitored distributed applications, which com-
plement existing static analysis techniques. We introduce asynchrony
through the means of explicit routers and global queues, and propose
novel equivalences between networks, that capture the notion of interface
equivalence, i.e. equating networks offering the same services to a user.
We illustrate our static-dynamic analysis system with an ATM protocol
as a running example and justify our theory with results: satisfaction
equivalence, local/global safety and transparency, and session fidelity.

1 Introduction

One of the main engineering challenges for distributed systems is the comprehen-
sive verification of distributed software without relying on ad-hoc and expensive
testing techniques.Multiparty session types (MPST) is a typing discipline for com-
munication programming, originally developed in the π-calculus [15,1,3,11,12,7]
towards tackling this challenge.The idea is that applications are built starting from
units of design called sessions. Each type of session, involvingmultiple roles, is first
modelled froma global perspective (global type) and then projected onto local types,
one for each role involved.As a verificationmethod, the existingMPST systems fo-
cus on static type checking of endpoint processes against local types. The standard

� This work has been partially sponsored by the project Leverhulme Trust Award
Tracing Networks, Ocean Observatories Initiative and EPSRC EP/K011715/1,
EP/G015635/1 and EP/G015481/1.

D. Beyer and M. Boreale (Eds.): FMOODS/FORTE 2013, LNCS 7892, pp. 50–65, 2013.
c© IFIP International Federation for Information Processing 2013

Monitoring Networks through Multiparty Session Types 51

properties enjoyed bywell-typed processes are communication safety (all processes
conform to globally agreed communicationprotocols) and freedom fromdeadlocks.

The direct application of the theoretical MPST techniques to the current
practice, however, presents a few obstacles. Firstly, the existing type systems
are targeted at calculi with first class primitives for linear communication chan-
nels and communication-oriented control flow; the majority of mainstream en-
gineering languages would need to be extended in this sense to be suitable for
syntactic session type checking. Unfortunately, it is not always straightforward
to add these features to the specific host languages (e.g. linear resource typing
for a very liberal language like C). Furthermore, the executable processes in
a distributed system may be implemented in different languages. Secondly, for
domains where dynamically typed or untyped languages are popular (e.g., Web
programming), or in multi-organizational scenarios, the introduction of static
typing infrastructure to support MPST may not be realistic.

This paper proposes a theoretical system addressing the above issues by en-
abling both static and dynamic verification of communicating processes. The
aim is to capture the decentralised nature of distributed application develop-
ment, providing better support for heterogeneous distributed systems by allow-
ing components to be independently implemented, using different languages,
libraries and programming techniques, as well as being independently verified,
either statically or dynamically, while retaining the strong global safety proper-
ties of statically verified homogeneous systems.

This work is motivated in part by our ongoing collaboration with the Ocean
Observatories Initiative (OOI) [17], a project to establish cyberinfrastructure for
the delivery, management and analysis of scientific data from a large network
of ocean sensor systems. Their architecture relies on the combination of high-
level protocol specifications (to express how the infrastructure services should
be used) and distributed run-time monitoring to regulate the behaviour of third-
party applications in the system.

A Formal Theory for Static/Dynamic Verification. Our framework is based on
the idea that, if each endpoint is independently verified (statically or dynami-
cally) to conform to their local protocols, then the global protocol is respected as
a whole. To this goal, we propose a new formal model and bisimulation theories
of heterogeneous networks of monitored and unmonitored processes.

For the first time, we make explicit the routing mechanism implicitly present
inside the MPST framework: in a session, messages are sent to abstract roles (e.g.
to a Seller) and the router, a dynamically updated component of the network,
translates these roles into actual addresses.

By taking this feature into account when designing novel equivalences, our
formal model can relate networks built in different ways (through different dis-
tributions or relocations of services) but offering the same interface to an external
observer. The router, being in charge of associating roles with principals, hides
to an external user the internal composition of a network: what distinguishes
two networks is not their structure but the services they are able to perform, or
more precisely, the local types they offer to the outside.

52 L. Bocchi et al.

We formally define a satisfaction relation to express when the behaviour of
a network conforms to a global specification and we prove a number of prop-
erties of our model. Local safety states that a monitored process respects its
local protocol, i.e. that dynamic verification by monitoring is sound, while lo-
cal transparency states that a monitored process has equivalent behaviour to an
unmonitored but well-behaved process, e.g. statically verified against the same
local protocol. Global safety states that a system satisfies the global protocol,
provided that each participant behaves as if monitored, while global transparency
states that a fully monitored network has equivalent behaviour to an unmoni-
tored but well-behaved network, i.e. in which all local processes are well-behaved
against the same local protocols. Session fidelity states that, as all message flows
of a network satisfy global specifications, whenever the network changes because
some local processes take actions, all message flows continue to satisfy global
specifications. Together, these properties justify our framework for decentralised
verification by allowing monitored and unmonitored processes to be safely mixed
while preserving protocol conformance for the entire network. Technically, these
properties also ensure the coherence of our theory, by relating the satisfaction
relations with the semantics and static validation procedures.

Paper Summary and Contributions. § 2 introduces the formalisms for protocol
specifications (§ 2.1) and networks (§ 2.2) used to provide a formal framework
for monitored networks based on π-calculus processes and protocol-based run-
time enforcement through monitors. § 3 introduces: a semantics for specifications
(§ 3.1), a novel behavioural theory for compositional reasoning over monitored
networks through the use of equivalences (bisimilarity and barbed congruence)
and the satisfaction relation (§ 3.2). § 3.4 establishes key properties of monitored
networks, namely local/global safety, transparency, and session fidelity. We dis-
cuss future and related work in § 4. The proofs can be found in [2].

2 Types, Processes and Networks: A Formal Presentation

This section and the next one provide a theoretical basis for protocol-centred
safety assurance. We first summarise the syntax of MPSTs (multiparty session
types) annotated with logical assertions [3]. We then introduce a novel moni-
tored session calculus as a variant of the π-calculus, modelling distributed dy-
namic components (whose behaviours are realised by processes) and monitors,
all residing in global networks.

2.1 Multiparty Session Types with Assertions

Multiparty session types with assertions [3] are abstract descriptions of the struc-
ture of interactions among the participants of a multiparty session, specifying
potential flows of messages, the conditions under which these interactions may
be done, and the constraints on the communicated values. In this framework,
global types with assertions, or just global types, describe multiparty sessions

Monitoring Networks through Multiparty Session Types 53

from a network perspective. From global types one can derive, through endpoint
projection, local types with assertions, or just local types, describing the protocol
from the perspective of a single endpoint.

A ::= tt | ff | e1 = e2 | e1 < e2 | ¬A | A1 ∧ A2 | A1 ∨A2

e ::= v | e1 + e2 | e1 − e2 | e1 ∗ e2 | e1 mod e2 S::=bool | int | string

G ::= r1→r2 : {li(xi :Si){Ai}.Gi}i∈I | G1 | G2 | G1;G2 | μt.G | t | ε | end

T ::= r!{li(xi :Si){Ai}.Ti}i∈I | r?{li(xi :Si){Ai}.Ti}i∈I | T1 | T2 | T1;T2 |
μt.T | t | ε | end

The syntax of the global types (G,G′, . . .) and local types (T, T ′, . . .) is given
above. The grammar is based on [3,12] extended with parallel threads, which also
require sequential composition to merge parallel threads as in [19]. We let values
v, v′, . . . range over boolean constants, numerals and strings, and e, e′, . . . range
over first-order expressions. For expressing constraints, we use logical predicates,
or assertions, ranged over by A,A′, . . ., following the grammar given above,
although other decidable logics could be used.1 The sorts of exchanged values
(S, S′, . . .) consists of atomic types.

Global Types with Assertions. r1→ r2 : {li(xi :Si){Ai}.Gi}i∈I models an
interaction where role r1 sends role r2 one of the branch labels li, as well as a
value denoted by an interaction variable xi of sort Si. Interaction variable xi
binds its occurrences in Ai and Gi. Ai is the assertion which needs to hold for r1
to select li, and which may constrain the values instantiating xi. G1 | G2 specifies
two parallel sessions, and G1;G2 denotes sequential composition (assuming that
G1 does not include end). μt.G is a recursive type, where t is guarded in G in
the standard way, ε is the inaction for absence of communication, and end ends
the session.

Example 1 (ATM: the global type). We present global type GATM that specifies
an ATM scenario. Each session of ATM involves three roles: a client (C), the
payment server (S) and a separate authenticator (A).

GATM = C → A : { Login(xi : string){tt}.
A → S : { LoginOK(){tt}. A → C : {LoginOK(){tt}. GLoop},

LoginFail(){tt}. A → C : {LoginFail(){tt}. end}}}
GLoop = μ LOOP.

S → C : { Account(xb : int){xb ≥ 0}.
C → S : { Withdraw(xp : int){xp > 0 ∧ xb − xp ≥ 0}. LOOP,

Deposit(xd : int){xd > 0}. LOOP,
Quit(){tt}.end}}

At the start of the session C sends its login details xi to A, then A informs S

and C whether the authentication is successful, by choosing either the branch

1 We use a logic without quantifiers, contrary to [3], to simplify the presentation and
because monitorability, defined later in this section, makes them unnecessary.

54 L. Bocchi et al.

with label LoginOK or LoginFail. In the former case C and S enter a transaction
loop specified by GLoop. In each iteration S sends C the amount xb available in
the account, which must be non negative. Next, C has three choices: Withdraw
withdraws an amount xp (xp must be positive and not exceed the current amount
xb) and repeats the loop, Deposit deposits a positive amount xd in the account
and repeats the loop, and Quit ends the session.

We consider global types that satisfy the consistency conditions defined in [11,3,12]
which rule out, for instance, protocols where interactions have causal relations
that cannot be enforced (e.g., we write rA → rB : l1(){tt} | rC → rD : l2(){tt}
instead of rA → rB : l1(){tt}.rC → rD : l2(){tt}). In addition we assume mon-
itorability requiring that in all the interactions of the form r→ r′ : l(x : S){A}
occurring in a global type G both r and r′ know (i.e., have sent or received in a
previous or in this interaction) the free variables in A.

Local Types with Assertions. Each local type T is associated with a role
taking part in a session. Local type r!{li(xi :Si){Ai}.Ti}i∈I models an interaction
where the role under consideration sends r a branch label li and a message
denoted by an interaction variable xi of sort Si. Its dual is the receive interaction
r?{li(xi :Si){Ai}.Ti}i∈I . The other local types are similar to the global types.

One can derive a set of local types Ti from a global type G by endpoint
projection, defined as in [3]. We write G � r for the projection ofG onto role r. We
illustrate the main projection rule, which is for projecting a global type modelling
an interaction. Let G be (r → r′ : {li(xi : Si){Ai}.Gi}i∈I); the projection of
G on r is r′!{li(xi : Si){Ai}.(Gi � r)}i∈I , and the projection of G on r′ is
r?{li(xi : Si){Ai}.(Gi � r′)}i∈I . The other rules are homomorphic, following the
grammar of global types inductively.

Example 2 (ATM: the local type of C). We present the local type TC obtained by
projecting GATM on role C.

TC = A!{Login(xi : string){tt}.
A?{LoginOK(){tt}. TLoop

LoginFail(){tt}. end}}

TLoop = μ LOOP.
S?{Account(xb : int){xb ≥ 0}.
S!{Withdraw(xp : int){xp > 0 ∧ xb − xp ≥ 0}.

LOOP,
Deposit(xd : int){xd > 0}.LOOP,
Quit(){tt}.end}}

TC specifies the behaviour that C should follow to meet the contract of global
type GATM . TC states that C should first authenticate with A, then receive the
Account message from S, and then has the choice of sending Withdraw (and enact
the recursion), or Deposit (and enact the recursion) or Quit (and end the session).

2.2 Formal Framework of Processes and Networks

In our formal framework, each distributed application consists of one or more
sessions among principals. A principal with behaviour P and name α is repre-
sented as [P]α. A network is a set of principals together with a (unique) global

Monitoring Networks through Multiparty Session Types 55

transport, which abstractly represents the communication functionality of a dis-
tributed system. The syntax of processes, principals and networks is given below,
building on the multiparty session π-calculus from [1].

P ::= a〈s[r] : T 〉 | a(y[r] :T).P | k[r1, r2]!l〈e〉 | k[r1, r2]?{li(xi).Pi}i∈I |
if e then P else Q | P | Q | 0 | μX.P | X | P ;Q | (νa) P | (νs)P

N ::= [P]α | N1 | N2 | 0 | (νa)N | (νs)N | 〈r ; h〉
r ::= a �→ α | s[r] �→ α h ::= m · h | ∅ m ::= a〈s[r] : T 〉 | s〈r1, r2, l〈v〉〉

r, r1, . . . roles s, s′, . . . session names X,Y, . . . process variables
a, b, . . . shared names x, y, . . . variables P,Q, . . . processes
α, β, . . . principal names N,N ′, . . . networks

Processes. Processes are ranged over by P, P ′, . . . and communicate using two
types of channel: shared channels (or shared names) used by processes for sending
and receiving invitations to participate in sessions, and session channels (or
session names) used for communication within established sessions. One may
consider session names as e.g., URLs or service names.

The session invitation a〈s[r] : T 〉 invites, through a shared name a, another
process to play r in a session s. The session accept a(y[r] : T).P receives a
session invitation and, after instantiating y with the received session name, be-
haves in its continuation P as specified by local type T for role r. The selection
k[r1, r2]!l〈e〉 sends, through session channel k (of an established session), and
as a sender r1 and to a receiver r2, an expression e with label l. The branching
k[r1, r2]?{li(xi).Pi}i∈I is ready to receive one of the labels and a value, then be-
haves as Pi after instantiating xi with the received value. We omit labels when I
is a singleton. The conditional, parallel and inaction are standard. The recursion
μX.P defines X as P . Processes (νa)P and (νs)P hide shared names and session
names, respectively.

Principals and Network. A principal [P]α, with its process P and name α,
represents a unit of behaviour (hence verification) in a distributed system. A
network N is a collection of principals with a unique global transport.

A global transport 〈r ; h〉 is a pair of a routing table which delivers messages
to principals, and a global queue. Messages between two parties inside a single
session are ordered (as in a TCP connection), otherwise unordered. More pre-
cisely, in 〈r ; h〉, h is a global queue, which is a sequence of messages a〈s[r] : T 〉
or s〈r1, r2, l〈v〉〉, ranged over by m. These m represent messages-in-transit, i.e.
those messages which have been sent from some principals but have not yet been
delivered. The routing table r is a finite map from session-roles and shared names
to principals. If, for instance, s[r] �→ α ∈ r then a message for r in session s will
be delivered to principal α.

Let n, n′, . . . range over shared and session channels. A network N which
satisfies the following conditions is well-formed: (1) N contains at most one

56 L. Bocchi et al.

global transport; (2) two principals in N never have the same principal name;
and (3) if N ≡ (νñ)(

∏
i[Pi]αi |〈r ; h〉), each free shared or session name in Pi

and h occurs in ñ (we use
∏

i Pi to denote P1 | P2 · · · | Pn).

Semantics. The reduction relation for dynamic networks is generated from the
rules below, which model the interactions of principals with the global queue.

[a〈s[r] : T 〉]α | 〈r ; h〉 −→ [0]α | 〈r ; h · a〈s[r] : T 〉〉 �req�
[a(y[r] : T).P]α | 〈r ; a〈s[r] : T 〉 · h〉 −→ [P [s/y]]α | 〈r ·s[r] �→ α ; h〉 † �acc�

[s[r1, r2]!lj〈v〉]α | 〈r ; h〉 −→ [0]α | 〈r ; h · s〈r1, r2, lj〈v〉〉〉 †† �sel�
[s[r1, r2]?{li(xi).Pi}i]α | 〈r ; s〈r1, r2, lj〈v〉〉 · h〉 −→ [Pj [v/xj]]α | 〈r ; h〉 ††† �bra�

[if tt then P else Q]α −→ [P]α [if ff then P else Q]α −→ [Q]α �cnd�
[P]α | N −→ [P ′]α | N ′

[E(P)]α | N −→ [E(P ′)]α | N ′
e −→ e′

[E(e)]α −→ [E(e′)]α
N −→ N ′

E(N) −→ E(N ′)
�ctx�

† : r(a) = α †† : r(s[r2]) �= α † †† : r(s[r2]) = α

E ::= () | E | P | (νs)E | (νa)E | E ;P | E | N | if E then P else Q | s[r1, r2]!l〈E〉
Rule �req� places an invitation in the global queue. Dually, in �acc�, a process
receives an invitation on a shared name from the global queue, assuming a mes-
sage on a is to be routed to α. As a result, the routing table adds s[r] �→ α in
the entry for s. Rule �sel� puts in the queue a message sent from r1 to r2, which
selects label lj and carries v, if it is not going to be routed to α (i.e. sent to
self). Dually, �bra� gets a message with label lj from the global queue, so that
the j-th process Pj receives value v. The reduction is also defined modulo the
structural congruence ≡ defined by the standard laws over processes/networks,
the unfolding of recursion (μX.P ≡ P [μX.P/X]) and the associativity and com-
mutativity and the rules of message permutation in the queue [15,11]. The other
rules are standard.

Example 3 (ATM: an implementation). We now illustrate the processes imple-
menting the client role of the ATM protocol. We let PC be the process imple-
menting TC (from Example 2) and communicating on session channel s.

PC = s[C, A]!Login(alice pwd123);
s[A, C]?{LoginOK();μX.P ′

C , LoginFail().0}
P ′
C = s[S, C]?Account(xb);P

′′
C

P ′′
C = if getmore()∧ (xb ≥ 10)

then s[C, S]!Withdraw(10);X
else s[C, S]!Quit();0

Note that PC selects only two of the possible branches (i.e., Withdraw and Quit)
and Deposit is never selected. One can think of PC as an ATM machine that
only allows to withdraw a number of £10 banknotes, until the amount exceeds
the current balance. This ATM machine does not allow deposits. We assume
getmore() to be a local function to the principal running PC that returns tt if
more notes are required (ff otherwise). PS below implements the server role:

PS = s[A, S]?{LoginOK();μX.P ′
S , LoginFail().0}

P ′
S = s[S, C]!Account(getBalance());P ′′

S

P ′′
S = s[C, S]?{Withdraw(xp).X,

Deposit(xd).X,
Quit().0 }

Monitoring Networks through Multiparty Session Types 57

where getBalance() is a local function to the principal running PS that syn-
chronously returns the current balance of the client.

3 Theory of Dynamic Safety Assurance

In this section we formalise the specifications (based on local types) used to
guard the runtime behaviour of the principals in a network. These specifications
can be embedded into system monitors, each wrapping a principal to ensure
that the ongoing communication conforms to the given specification. Then, we
present a behavioural theory for monitored networks and its safety properties.

3.1 Semantics of Global Specifications

The specification of the (correct) behaviour of a principal consists of an assertion
environment 〈Γ ;Δ〉, where Γ is the shared environment describing the behaviour
on shared channels, and Δ is the session environment representing the behaviour
on session channels (i.e., describing the sessions that the principal is currently
participating in). The syntax of Γ and Δ is given by:

Γ ::= ∅ | Γ, a : I(T [r]) | Γ, a : O(T [r]) Δ ::= ∅ | Δ, s[r] :T
In Γ , the assignment a : I(T [r]) (resp. a : O(T [r])) states that the principal can,
through a, receive (resp. send) invitations to play role r in a session instance
specified by T . In Δ, we write s[r] : T when the principal is playing role r of
session s specified by T . Networks are monitored with respect to collections of
specifications (or just specifications) one for each principal in the network. A
specification Σ,Σ′, . . . is a finite map from principals to assertion environments:

Σ ::= ∅ | Σ,α :〈Γ ;Δ〉
The semantics of Σ is defined using the following labels:

� ::= a〈s[r] :T 〉 | a〈s[r] :T 〉 | s[r1, r2]!l〈v〉 | s[r1, r2]?l〈v〉 | τ

The first two labels are for invitation actions, the first is for requesting and
the second is for accepting. Labels with s[r1, r2] indicate interaction actions for
sending (!) or receiving (?) messages within sessions. The labelled transition
relation for specification is defined by the rules below.

α :〈Γ, a : O(T [r]);Δ〉 a〈s[r]:T〉−−−−−→ α :〈Γ, a : O(T [r]);Δ〉 [Req]

s 	∈ dom(Δ)

α :〈Γ, a : I(T [r]);Δ〉 a〈s[r]:T〉−−−−−→ α :〈Γ, a : I(T [r]);Δ, s[r] :T 〉
[Acc]

Γ � v :Sj , Aj [v/xj] ↓ tt, j∈I

α :〈Γ ;Δ, s[r2] :r1?{li(xi :Si){Ai}.T ′
i }i∈I〉 s[r1,r2]?lj〈v〉−−−−−−−−→ α :〈Γ ;Δ, s[r2] :T

′
j [v/xj]〉

[Bra]

Γ �v :Sj , Aj [v/xj] ↓ tt, j∈I

α :〈Γ ;Δ, s[r1] :r2!{li(xi :Si){Ai}.T ′
i}i∈I〉 s[r1,r2]!lj〈v〉−−−−−−−−→ α :〈Γ ;Δ, s[r1] :T

′
j [v/xj]〉

[Sel]

α :〈Γ1;Δ1〉 �−→ α :〈Γ ′
1;Δ

′
1〉

α :〈Γ1;Δ1|Δ2〉 �−→ α :〈Γ ′
1;Δ

′
1|Δ2〉

Σ
τ−→ Σ Σ1

�−→ Σ2

Σ1, Σ3
�−→ Σ2, Σ3

[Spl,Tau,Par]

58 L. Bocchi et al.

Rule [Req] allows α to send an invitation on a properly typed shared channel a
(i.e., given that the shared environment maps a to T [r]). Rule [Acc] allows α to
receive an invitation to be role r in a new session s, on a properly typed shared
channel a. Rule [Bra] allows α, participating to sessions s as r2, to receive a
message with label lj from r1, given that Aj is satisfied after replacing xj with
the received value v. After the application of this rule the specification is Tj .
Rule [Sel] is the symmetric (output) counterpart of [Bra]. We use ↓ to denote
the evaluation of a logical assertion. [Spl] is the parallel composition of two
session environments where Δ1|Δ2 composes two local types: Δ1|Δ2 = {s[r] :
(T1 | T2) | Ti = Δi(s[r]), s[r] ∈ dom(Δ1) ∩ dom(Δ2)} ∪ dom(Δ1)/dom(Δ2) ∪
dom(Δ2)/dom(Δ1). [Tau] says that the specification should be invariant under
reduction of principals. [Par] says if Σ1 andΣ3 are composable, after Σ1 becomes
as Σ2, they are still composable.

3.2 Semantics of Dynamic Monitoring

The endpoint monitor M,M′, ... for principal α is a specification α : 〈Γ ;Δ〉 used
to dynamically ensure that the messages to and from α are legal with respect to
Γ and Δ. A monitored network N is a network N with monitors, obtained by
extending the syntax of networks as:

N ::= N | M | N | N | (νs)N | (νa)N

The reduction rules for monitored networks are given below and use, in the
premises, the labelled transitions of monitors. The labelled transitions of a mon-
itor are the labelled transitions of its corresponding specification (given in § 3.1).

�Req� M
a〈s[r]:T〉−−−−−→ M′

[a〈s[r] : T 〉]α | M | 〈r ; h〉 −→ [0]α | M′ | 〈r ; h · a〈s[r] : T 〉〉

�Acc� M
a〈s[r]:T〉−−−−−→ M′ r(a) = α

[a(y[r] : T).P]α | M | 〈r ; a〈s[r] : T 〉 · h〉 −→ [P [s/y]]α | M′ | 〈r ·s[r] �→ α ; h〉

�Bra� M
s[r1,r2]?lj〈v〉−−−−−−−−→ M′ r(s[r2]) = α

[s[r1, r2]?{li(xi).Pi}i]α | M | 〈r ; s〈r1, r2, lj〈v〉〉 · h〉 −→ [Pj [v/xj]]α | M′ | 〈r ; h〉

�Sel� M
s[r1,r2]!l〈v〉−−−−−−−→ M′ r(s[r2]) 	= α

[s[r1, r2]!l〈v〉]α | M | 〈r ; h〉 −→ [0]α | M′ | 〈r ; h · s〈r1, r2, l〈v〉〉〉

�ReqEr� M 	a〈s[r]:T〉−−−−−→
[a〈s[r] : T 〉]α | M | 〈r ; h〉 −→ [0]α | M | 〈r ; h〉

�AccEr� M 	a〈s[r]:T〉−−−−−→
[a(y[r] : T).P]α | M | 〈r ; a〈s[r] : T 〉 · h〉 −→ [a(y[r] : T).P]α | M | 〈r ; h〉

�SelEr� M 	s[r1,r2]!l〈v〉−−−−−−−→
[s[r1, r2]!l〈v〉]α | M | 〈r ; h〉 −→ [0]α | M | 〈r ; h〉

The first four rules model reductions that are allowed by the monitor (i.e., in
the premise). Rule �Req� inserts an invitation in the global queue. Rule �Acc�
is symmetric and updates the router so that all messages for role r in session

Monitoring Networks through Multiparty Session Types 59

s will be routed to α. Similarly, �Bra� (resp. �Sel�) extracts (resp. introduces)
messages from (resp. in) the global queue. The error cases for �Req� and �Sel�,
namely �ReqEr� and �SelEr�, ‘skip’ the current action (removing it from the
process), do not modify the queue, the router nor the state of the monitor.
The error cases for �Acc� and �Bra�, namely �AccEr� and �BraEr� (the latter
omitted for space constraint), do not affect the process, which remains ready to
perform the action, and remove the violating message from the queue.

Example 4 (ATM: a monitored network). We illustrate the monitored networks
for the ATM scenario, where the routing table is defined as

r = a �→ α, b �→ β, c �→ γ, s[S] �→ α, s[C] �→ β, s[A] �→ γ

We consider the fragment of session where the authentication has occurred, the
process of C (resp. S) is P ′

C (resp. P ′
S) from Example 3, and the process of A is 0.

NS = [P ′
S]α | MS = [s[S, C]! Account(100);P ′′

S]α | MS (assuming getBalance() = 100)
NC = [P ′

C]β | MC = [s[S, C]? Account(xb).P
′′
C]β | MC

NA = [0]γ | γ : 〈c : TA[A] ; s[A] : end〉
where MS = α : 〈a : TS[S] ; s[S] : C! Account(xb : int){xb ≥ 0}.T ′

S〉 and MC is dual.

N1 = [s[S, C]! Account(100);P ′
S]α | MS | [s[S, C]? Account(xb).P

′
C]β | MC | NA | 〈r ; ∅〉

−→−→ [P ′
S]α | M′

S | [P ′
C [100/xb]]β | M′

C | NA | 〈r ; ∅〉
where M′

S = α : 〈a :TS[S] ; s[S] : T ′
S〉 and M′

C = β : 〈b : TC[C] ; s[C] : T ′
C〉

Above, xb ≥ 0 is satisfied since xb = 100. If the server tried to communicate e.g.,
value −100 for xb, the monitoring (by rule �SelEr�) would drop the message.

3.3 Network Satisfaction and Equivalences

Based on the formal representations of monitored networks, we now introduce the
key formal tools for analysing their behaviour. First, we introduce bisimulation
and barbed congruence over networks, and develop the notion of interface. Then
we define the satisfaction relation |= N : M, used in § 3.4 to prove the properties
of our framework.

Bisimulations. We useM,M ′, ... for a partial network, that is a network which
does not contain a global transport, hence enabling the global observation of
interactions. The labelled transition relation for processes and partial networks
M is defined below.

(Req) [a〈s[r] : T 〉;P]α
a〈s[r]:T〉−−−−−→ [0]α (Acc) [a(y[r] : T).P]α

a〈s[r]:T〉−−−−−→ [P [s/y]]α

(Bra) [s[r1, r2]?{li(xi :Si).Pi}i]α s[r1,r2]?lj〈v〉−−−−−−−−→ [Pj [v/xj]]α

(Sel) [s[r1, r2]!lj〈v〉]α s[r1,r2]!lj〈v〉−−−−−−−−→ [0]α (ctx)
[P]α

�−→ [P ′]α n(�) ∩ bn(E)=∅
[E(P)]α

�−→ [E(P ′)]α

(tau) M −→ M ′

M
τ−→ M ′ (res)

M
�−→ M ′ a 	∈ sbj(�)

(νa)M
�\a−−→ (νa)M ′

(str)M ≡ M0
�−→ M ′

0 ≡ M ′

M
�−→ M ′

60 L. Bocchi et al.

In (ctx), n(�) indicates the names occurring in � while bn(E) indicates binding E
induces. In (res), sbj(�) denotes the subject of �. In (tau) the axiom is obtained
either from the reduction rules for dynamic networks given in § 2.2 (only those
not involving the global transport), or from the corresponding rules for monitored
networks (which have been omitted in § 3.2).

Hereafter we write =⇒ for
τ−→

∗
,

�
=⇒ for =⇒ �−→=⇒, and

�̂
=⇒ for =⇒ if � = τ

and
�

=⇒ otherwise.

Definition 1 (Bisimulation over partial networks). A binary relation R
over partial networks is a weak bisimulation when M1RM2 implies: whenever

M1
�−→M ′

1 such that bn(�)∩ fn(M2) = ∅, we haveM2
�̂

=⇒M ′
2 such thatM ′

1RM ′
2,

and the symmetric case. We write M1 ≈ M2 if (M1,M2) are in a weak bisimu-
lation.

Interface. We want to build a model where two different implementations of
the same service are related. Bisimilarity is too strong for this aim (as shown in
Example 5). We use instead a contextual congruence (barbed reduction-closed
congruence [14]) ∼= for networks. Intuitively, two networks are barbed-congruent
when they are indistinguishable for any principal that connects to them. In
this case we say they propose the same interface to the exterior. Formally, two
networks are related with ∼= when, composed with the same third network, they
offer the same barbs (the messages to external principals in the respective global
queues are on the same channels) and this property is preserved under reduction.

We say that a messagem is routed for α in N ifN = (νñ)(M0 | 〈r ; h〉),m ∈ h,
either m = a〈s[r] : T 〉 and r(a) = α or m = s[r1, r2]!l〈e〉 and r(s[r2]) = α.

Definition 2 (Barb). We write N ↓a when the global queue of N contains a
message m to free a and m is routed for a principal not in N . We write N ⇓a if
N −→∗ N ′ ↓a.
We denote P(N) for a set of principals in N , P(

∏
[Pi]αi) = {α1, ..., αn}. We say

N1 and N2 are composable when P(N1) ∩P(N2) = ∅, the union of their routing
tables remains a function, and their free session names are disjoint. If N1 and
N2 are composable, we define N1 !N2 = (νñ1, ñ2)(M1 |M2 | 〈r1 ∪ r2 ; h1 · h2〉)
where Ni = (νñi)(Mi | 〈ri ; hi〉) (i = 1, 2). Notice that both equivalences are
compositional, as proved in Proposition § 4.

Definition 3 (Barbed reduction-closed congruence). A relationR on net-
works with the same principals is a barbed r.c. congruence [14] if the following
holds: whenever N1RN2 we have: (1) for each composable N , N !N1RN !N2;
(2) N1 −→ N ′

1 implies N2 −→∗ N ′
2 s.t. N ′

1RN ′
2 again, and the symmetric case;

(3) N1 ⇓a iff N2 ⇓a. We write N1
∼= N2 when they are related by a barbed r.c.

congruence.

The following result states that composing two bisimilar partial networks with
the same network – implying the same router and global transport – yields two
undistinguishable networks.

Monitoring Networks through Multiparty Session Types 61

Proposition 4 (Congruency). IfM1 ≈M2, then (1)M1|M ≈M2|M for each
composable partial M ; and (2) M1|N ∼=M2|N for each composable N .

Example 5 (ATM: an example of behavioural equivalence). We use an example
to illustrate our notion of interface. As our verification by monitors is done sep-
arately for each endpoint, one can safely modify a global specification as long
as its projection on the public roles stays the same. The barbed congruence
we introduce takes this into account: two networks proposing the same service,
but organised in different ways, are equated even if the two networks corre-
spond to different global specifications. As an example, consider global type
G2

ATM defined as GATM where G2
Loop is used in place of GLoop from Example 3.

G2
Loop involves a fourth party, the transaction agent B: S sends a query to B

which gives back a one-use transaction identifier. Then, the protocol proceeds
as the original one. Notably, GATM and G2

ATM have the same interfaces for the
client (resp. the authenticator), as their projections of on C (resp. A) are equal.
G2

Loop = μ LOOP.
S → B : { Query(){true}.
B → S : { Answer(xt : int){true}.
S → C : { Account(xb : int){xb ≥ 0}.
C → S : { Withdraw(xp : int){xp ≥ 0 ∧ xb − xp ≥ 0}. LOOP,

Deposit(xd : int){xd > 0}. LOOP,
Quit(){true}.end }}}}

We define P 2
S as PS in Example 3 but replacing the occurrence of P ′

S in PS by

s[S, B]!Query〈〉; s[B, S]?Answer(xt).P ′
S

and alsoN2
S = [P 2

S]α andNB = [μX.s[S, B]?Query〈〉; s[B, S]!Answer〈getT rans()〉]δ.
By definition, the two following networks are barbed-congruent:

(NS | 〈∅ ; s[S] �→ α, s[C] �→ β, s[A] �→ γ〉) ∼=
(N2

S | NB | 〈∅ ; s[S] �→ α, s[C] �→ β, s[A] �→ γ, s[B] �→ δ〉)

even if the first one implements the original ATM protocol while the second one
implements its variant. Indeed, composed with any tester, such as NC | NA =
[PC]β | [PA]γ these two networks will produce the same interactions.

However, the corresponding partial networks N2
S | NB and NS are not bisim-

ilar: the former is able to perform a transition labelled s[S, B]!Query〈〉 while the
latter is not. This difference in behaviour is not visible to the barbed congruence,
as it takes into account the router which prevents the messages s[S, B]!Query〈〉
to be caught by a tester. As an example of network bisimilar to NS, consider:

N1 = (νk) ([PS | PS[k/s]]α | [PC[k/s]]δ)

In this partial network, principal α plays both S in public session s (as in NS)
and S in the private session k. Principal δ plays C in the latter. As k is private, N1

offers the same observable behaviour than NS (no action on k can be observed),
and we have N1 ≈ NS.

62 L. Bocchi et al.

Satisfaction. We present a satisfaction relation for partial networks, which
include local principals. If M is a partial network, |= M : Σ s.t. dom(Σ) =
P(M), means that the specification allows all outputs from the network; that
the network is ready to receive all the inputs indicated by the specification; and
that this is preserved by transition.

Definition 5 (Satisfaction). Let sbj(�) denote the subject of � �= τ . A relation
R from partial networks to specifications is a satisfaction when MRΣ implies:

1. If Σ
�−→ Σ′ for an input � and M has an input at sbj(�), then M

�−→ M ′ s.t.
M ′RΣ′.

2. If M
�−→M ′ for an output at �, then Σ

�−→ Σ′ s.t. M ′RΣ′.
3. If M

τ−→M ′, then Σ
τ−→ Σ′ s.t. M ′RΣ′ (i.e. M ′RΣ since Σ

τ−→ Σ always).

WhenMRΣ for a satisfaction relation R, we sayM satisfies Σ, denoted |=M :
Σ. By Definition 5 and Proposition 4 we obtain:

Proposition 6. If M1
∼=M2 and |=M1 : Σ then |=M2 : Σ.

3.4 Safety Assurance and Session Fidelity

In this section, we present the properties underpinning safety assurance in the
proposed framework from different perspectives.

Theorem 7 shows local safety/transparency, and global safety/transparency
for fully monitored networks. A network N is fully monitored wrt Σ when all its
principals are monitored and the collection of the monitors is congruent to Σ.

Theorem 7 (Safety and Transparency)

1. (Local Safety) |= [P]α | M : α : 〈Γ ;Δ〉 with M = α :〈Γ ;Δ〉.
2. (Local Transparency) If |= [P]α : α : 〈Γ ;Δ〉, then [P]α ≈ ([P]α | M)

with M = α : 〈Γ ;Δ〉.
3. (Global Safety) If N is fully monitored w.r.t. Σ, then |= N : Σ.
4. (Global Transparency) Assum N and N have the same global transport

〈r ; h〉. If N is fully monitored w.r.t. Σ and N =M | 〈r ; h〉 is unmonitored
but |=M : Σ, then we have N ∼ N .

Local safety (7.1) states that a monitored process always behaves well with re-
spect to the specification. Local transparency (7.2) states that a monitored pro-
cess behaves as an unmonitored process when the latter is well-behaved (e.g.,
it is statically checked). Global safety (7.3) states that a fully monitored net-
work behaves well with respect to the given global specification. This property is
closely related to session fidelity, introduced later in Theorem 11. Global trans-
parency (7.4) states that a monitored network and an unmonitored network have
equivalent behaviour when the latter is well-behaved with respect to the same
(collection of) specifications.

By Proposition 4 and (7.2), we derive Corollary 8 stating that weakly bisimilar
static networks combined with the same global transport are congruent.

Corollary 8 (Local transparency). If |= [P]α : α : 〈Γ ;Δ〉, then for any
〈r ; h〉, we have ([P]α | 〈r ; h〉) ∼= ([P]α | M | 〈r ; h〉) with M = α :〈Γ ;Δ〉.

Monitoring Networks through Multiparty Session Types 63

By Theorem 7, we can mix unmonitored principals with monitored principals
still obtaining the desired safety assurances.

In the following, we refer to a pair Σ; 〈r ; h〉 of a specification and a global
transport as a configuration. The labelled transition relation for configurations,

denoted by
�−→g, is relegated to [2]. Here it is sufficient to notice that the tran-

sitions of a configuration define the correct behaviours (with respect to Σ) in
terms of the observation of inputs and outputs from/to the global transport
〈r ; h〉. We write that a configuration Σ; 〈r ; h〉 is configurationally consistent if
all of its multi-step input transition derivatives are receivable and the resulting
specifications Σ is consistent.

We also use
�−→g to model globally visible transitions of networks (i.e., those

locally visible transitions of a network that can be observed by its global trans-
port). Below, we state that a message emitted by a valid output action is always
receivable.

Lemma 9. Assume a network N ≡M |〈r ; h〉 conforming to Σ; 〈r ; h〉 which is

configurationally consistent, ifN
�−→g N

′ such that � is an output andΣ; 〈r ; h〉 �−→g

Σ′; 〈r ; h·m〉 then h ·m is receivable to Σ′.

Also, we state that, as N ≡ M | H and |= M : Σ, the satisfaction relation of
M and Σ is preserved by transitions.

Lemma 10. Assume N ≡ M | H and |= M : Σ. If N
�−→g N

′ ≡ M ′ | H ′ and

Σ
�−→ Σ′, then |=M ′ : Σ′.

Theorem 11 (Session Fidelity). Assume configuration Σ; 〈r ; h〉 is config-
urationally consistent, and network N ≡ M |〈r ; h〉 conforms to configuration

Σ; 〈r ; h〉. For any �, whenever we have N �−→g N
′ s.t. Σ; 〈r ; h〉 �−→g Σ

′; 〈r′ ; h′〉,
it holds that Σ′; 〈r′ ; h′〉 is configurationally consistent and N ′ conforms to
Σ′; 〈r′ ; h′〉.

By session fidelity, if all session message exchanges in a monitored/unmonitored
network behave well with respect to the specifications (as communications oc-
cur), then this network exactly follows the original global specifications.

4 Conclusion and Future Work

We proposed a new formal safety assurance framework to specify and enforce the
global safety for distributed systems, through the use of static and dynamic ver-
ification. We formally proved the correctness (with respect to distributed princi-
pals) of our architectural framework through a π-calculus based theory, identified
in two key properties of dynamic network: global transparency and safety. We
introduced a behavioural theory over monitored networks which allows compo-
sitional reasoning over trusted and untrusted (but monitored) components.

Implementation. As a part of our collaboration with the Ocean Observatories Ini-
tiative [17], our theoretical framework is currently realised by an implementation,

64 L. Bocchi et al.

in which each monitor supports all well-formed protocols and is automatically
self-configured, via session initiation messages, for all sessions that the endpoint
participates in. Our implementation of the framework automates distributed
monitoring by generating FSM from the local protocol projections. In this im-
plementation, the global protocol serves as the key abstraction that helps unify
the aspects of specification, implementation and verification (both static and dy-
namic) of distributed application development. Our experience has shown that
the specification framework can accommodate diverse practical use cases, in-
cluding real-world communication patterns used in the distributed services of
the OOI cyberinfrastructure [17].

Future Work. Our objectives include the incorporation in the implementation of
more elaborate handling of error cases into monitor functionality, such as halting
all local sessions or coercing to valid actions [18,16]. In order to reach this goal,
we need to combine a simplification of [5] and nested sessions [10] to handle
an exception inside MPSTs. We aim to construct a simple and reliable way to
raise and catch exceptions in asynchronous networks. Our work is motivated by
ongoing collaborations with the Savara2 and Scribble3 projects and OOI [17].
We are continuing the development of Scribble, its toolsuite and associated en-
vironments towards a full integration of sessions into the OOI infrastructure.

4.1 Related Work

Our work features a located, distributed process calculus to model monitored
networks. Due to space limitations, we focus on the key differences with related
work on dynamic monitoring.

The work in [13] proposes an ambient-based run-time monitoring formalism,
called guardians, targeted at access control rights for network processes, and
Klaim [9] advocates a hybrid (dynamic and static) approach for access control
against capabilities (policies) to support static checking integrated within a dy-
namic access-control procedure. These works address specific forms of access
control for mobility, while our more general approach aims at ensuring correct
behaviour in sessions through a combination of static or run-time verification.

The work in [4] presents a monitor-based information-flow analysis in multi-
party sessions. The monitors in [4] are inline (according to [6]) and control the
information-flow by tagging each message with security levels. Our monitors are
outline and aim at the application to distributed systems.

An informal approach to monitoring based on MPSTs, and an outline of
monitors are presented in [8]. However, [8] only gives an overview of the desired
properties, and requires all local processes to be dynamically verified through
the protections of system monitors. In this paper, instead, we integrate statically
and dynamically verified local processes into one network, and formally state the
properties of this combination.

In summary, compared to these related works, our contribution focuses on the
enforcement of global safety, with protocols specified as multiparty session types

2 http://www.jboss.org/savara
3 http://www.scribble.org

http://www.jboss.org/savara
http://www.scribble.org

Monitoring Networks through Multiparty Session Types 65

with assertions. It also provides formalisms and theorems for decentralised run-
time monitoring, targeting interaction between components written in multiple
(e.g., statically and dynamically typed) programming languages.

References

1. Bettini, L., Coppo, M., D’Antoni, L., De Luca, M., Dezani-Ciancaglini, M., Yoshida,
N.: Global progress in dynamically interleaved multiparty sessions. In: van Breugel,
F., Chechik, M. (eds.) CONCUR 2008. LNCS, vol. 5201, pp. 418–433. Springer,
Heidelberg (2008)

2. Bocchi, L., Chen, T.-C., Demangeon, R., Honda, K., Yoshida, N.: Monitoring net-
works through multiparty session types. Technical Report 2013/3, Department of
Computing, Imperial College London (2013)

3. Bocchi, L., Honda, K., Tuosto, E., Yoshida, N.: A theory of design-by-contract
for distributed multiparty interactions. In: Gastin, P., Laroussinie, F. (eds.)
CONCUR 2010. LNCS, vol. 6269, pp. 162–176. Springer, Heidelberg (2010)

4. Capecchi, S., Castellani, I., Dezani-Ciancaglini, M.: Information flow safety in mul-
tiparty sessions. In: EXPRESS. EPTCS, vol. 64, pp. 16–30 (2011)

5. Capecchi, S., Giachino, E., Yoshida, N.: Global escape in multiparty session. In:
FSTTCS 2010. LIPICS, vol. 8, pp. 338–351 (2010)

6. Chen, F., Rosu, G.: MOP:An Efficient and Generic Runtime Verification Frame-
work. In: OOPSLA, pp. 569–588 (2007)

7. Chen, T.-C.: Theories for Session-based Governance for Large-Scale Distributed
Systems. PhD thesis, Queen Mary, University of London (to appear, 2013)

8. Chen, T.-C., Bocchi, L., Deniélou, P.-M., Honda, K., Yoshida, N.: Asynchronous
distributed monitoring for multiparty session enforcement. In: Bruni, R., Sassone,
V. (eds.) TGC 2011. LNCS, vol. 7173, pp. 25–45. Springer, Heidelberg (2012)

9. De Nicola, R., Ferrari, G., Pugliese, R.: Klaim: a kernel language for agents inter-
action and mobility. IEEE Trans. Softw. Eng. 24, 315–330 (1998)

10. Demangeon, R., Honda, K.: Nested protocols in session types. In: Koutny, M.,
Ulidowski, I. (eds.) CONCUR 2012. LNCS, vol. 7454, pp. 272–286. Springer,
Heidelberg (2012)

11. Deniélou, P.-M., Yoshida, N.: Dynamic multirole session types. In: POPL,
pp. 435–446 (2011)

12. Deniélou, P.-M., Yoshida, N.: Multiparty session types meet communicating au-
tomata. In: Seidl, H. (ed.) ESOP 2012. LNCS, vol. 7211, pp. 194–213. Springer,
Heidelberg (2012)

13. Ferrari, G., Moggi, E., Pugliese, R.: Guardians for ambient-based monitoring. In:
F-WAN, pp. 141–202. Elsevier (2002)

14. Honda, K., Yoshida, N.: On reduction-based process semantics. TCS 151(2),
437–486 (1995)

15. Honda, K., Yoshida, N., Carbone, M.: Multiparty Asynchronous Session Types. In:
POPL 2008, pp. 273–284. ACM (2008)

16. Ligatti, J., Bauer, L., Walker, D.: Run-time enforcement of nonsafety policies. ACM
Trans. Inf. Syst. Secur. 12, 19:1–19:41 (2009)

17. OOI, http://www.oceanobservatories.org/
18. Schneider, F.B.: Enforceable security policies. ACM Trans. Inf. Syst. Secur. 3,

30–50 (2000)
19. Yoshida, N., Deniélou, P.-M., Bejleri, A., Hu, R.: Parameterised multiparty session

types. In: Ong, L. (ed.) FOSSACS 2010. LNCS, vol. 6014, pp. 128–145. Springer,
Heidelberg (2010)

http://www.oceanobservatories.org/

Semantic Subtyping for Objects and Classes

Ornela Dardha1, Daniele Gorla2, and Daniele Varacca3

1 INRIA Focus Team / Università di Bologna, Italy
2 Dip. di Informatica, “Sapienza” Università di Roma, Italy

3 PPS - Université Paris Diderot & CNRS, France

Abstract. We propose an integration of structural subtyping with
boolean connectives and semantic subtyping to define a Java-like pro-
gramming language that exploits the benefits of both techniques. Se-
mantic subtyping is an approach to defining subtyping relation based on
set-theoretic models, rather than syntactic rules. On the one hand, this
approach involves some non trivial mathematical machinery in the back-
ground. On the other hand, final users of the language need not know
this machinery and the resulting subtyping relation is very powerful and
intuitive. While semantic subtyping is naturally linked to the structural
one, we show how the framework can also accommodate the nominal
subtyping. Several examples show the expressivity and the practical ad-
vantages of our proposal.

1 Introduction

Type systems for programming languages are often based on a subtyping re-
lation on types. There are two main approaches for defining the subtyping re-
lation: the syntactic approach and the semantic one. The syntactic approach
is more common: the subtyping relation is defined by means of a formal sys-
tem of deductive rules. One proceeds as follows: first define the language, then
the set of syntactic types and finally the subtyping relation by inference rules.
In the semantic approach, instead, one starts from a model of the language
and an interpretation of types as subsets of the model. The subtyping rela-
tion is then defined as inclusion of sets denoting types. This approach has re-
ceived less attention than the syntactic one as it is more technical and con-
straining: it is not trivial to define the interpretation of types as subsets of
a model. On the other hand, it presents several advantages: it allows a nat-
ural definition of boolean operators, also the meaning of types is more intu-
itive for the programmer, who need not be aware of the theory behind the
curtain.

The first use of the semantic approach goes back to two decades ago [3,10].
More recently, Hosoya and Pierce [15,16] have adopted this approach to define
XDuce, an XML-oriented language which transforms XML documents into other
XML documents, satisfying certain properties. Subtyping relation is established
as inclusion of sets of values, the latter being fragments of XML documents.
Castagna et al [8,13] extend the XDuce with first-class functions and arrow

D. Beyer and M. Boreale (Eds.): FMOODS/FORTE 2013, LNCS 7892, pp. 66–82, 2013.
c© IFIP International Federation for Information Processing 2013

Semantic Subtyping for Objects and Classes 67

types defining a higher-order language, named CDuce, and adopting the seman-
tic approach to subtyping. The starting point of their framework is a higher-
order λ−calculus with pairs and projections. The set of types is extended with
intersection, union and negation types interpreted in a set-theoretic way. This
approach can also be applied to π-calculus [25]. Castagna et al. [9] defined the
Cπ language, a variant of the asynchronous π-calculus where channel types are
augmented with boolean connectives. Finally, semantic subtyping is adopted
in a flow-typing calculus [23]. Flow-typing allows a variable to have different
types in different parts of a program and thus is more flexible than the standard
static typing. Type systems for flow-typing incorporate intersection, union and
negation types in order to typecheck terms, like for example, if-then-else state-
ments. Consequently, semantic subtyping is naturally defined on top of these
systems.

In the present paper, we address the semantic subtyping approach by ap-
plying it to an object-oriented core language. Our starting point is Feather-
weight Java (FJ) [17], which is a functional fragment of Java. From a
technical point of view the development is challenging. It follows [13], but with
the difference that we do not have higher-order values. Therefore, we cannot
directly reuse their results. Instead, we define from scratch the semantic model
that induces the subtyping relation, and we prove some important theoreti-
cal results. The mathematical technicalities, however, are transparent to the
final user. Thus, the overheads are hidden to the programmer. The benefits
reside in that the programmer now has a language with no additional complex-
ity (w.r.t. standard Java) but with an easier-to-write, more expressive set of
types. There are several other reasons and benefits that make semantic sub-
typing very appealing in an object-oriented setting. For example, it allows us
to very easily handle powerful boolean type constructors and model both struc-
tural and nominal subtyping. The importance, both from the theoretical and
the practical side, of boolean type constructors is widely known in several set-
tings, e.g. in the λ-calculus. Below, we show two examples where the advan-
tages of using boolean connectives in an object-oriented language become
apparent.

Boolean Constructors for Modeling Multimethods. Featherweight Java [17] is a
core language, so several features of full Java are not included in it; in particular,
an important missing feature is the possibility of overloading methods, both in
the same class or along the class hierarchy. By using boolean constructors, the
type of an overloaded method can be expressed in a very compact and elegant
way, and this modeling comes for free after having defined the semantic subtyping
machinery. Actually, what we are going to model is not Java’s overloading (where
the static type of the argument is considered for resolving method invocations)
but multimethods (where the dynamic type is considered). To be precise, we
implement the form of multimethods used, e.g., in [5,7]; according to [6], this
form of multimethods is “very clean and easy to understand [...] it would be the
best solution for a brand new language”.

68 O. Dardha, D. Gorla, and D. Varacca

As an example, consider the following class declarations:1

class A extends Object { class B extends A {
.
int length (string s){ . . . } int length (int n){ . . . }

} }

As expected, method length ofA has type string → int. However, such a method
in B has type (string → int)∧∧∧(int→ int),2 which can be simplified as (string∨∨∨
int)→ int.

The Use of Negation Types. Negation types can be used by the compiler for
typechecking terms of a language. But they can also be used directly by the
programmer. Suppose we want to represent an inhabitant of Christiania, that
does not want to use money and does not want to deal with anything that can be
given a price. In this scenario, we have a collection of objects, some of which may
have a getValue method that tells their value in �. We want to implement a class
Hippy which has a method barter that is intended to be applied only to objects
that do not have the method getValue. This is very difficult to represent in a
language with only nominal subtyping; but also in a language with structural
subtyping, it is not clear how to express the fact that a method is not present.

In our framework we offer an elegant solution by assigning to objects that
have the method getValue the type denoted by

[getValue : void→ real]

Within the class Hippy, we can now define a method with signature

void barter(¬¬¬[getValue : void→ real] x)

that takes in input only objects x that do not have a price, i.e., a method
named getValue. One could argue that it is difficult to statically know that
an object does not have method getValue and thus no reasonable application
of method barter can be well typed. However, it is not difficult to explicitly
build a collection of objects that do not have method getValue, by dynamically
checking the presence of the method. This is possible thanks to the instanceof
construction (described in Section 5.3). Method barter can now be applied to
any object of that list, and the application will be well typed.

In the case of a language with nominal subtyping, one can enforce the pol-
icy that objects with a price implement the interface ValuedObject. Then, the
method barter would take as input only objects of type ¬¬¬ValuedObject .

While the example is quite simple, we believe it exemplifies the situations in
which we want to statically refer to a portion of a given class hierarchy and

1 Here and in the rest of the paper we use ‘. . .’ to avoid writing the useless part of a
class, e.g. constructors or irrelevant fields/methods.

2 To be precise, the actual type is ((string∧∧∧¬¬¬int) → int)∧∧∧ (int → int) but string∧∧∧
¬¬¬int � string, where � denotes ≤ ∩ ≤−1 and ≤ is the (semantic) subtyping
relation.

Semantic Subtyping for Objects and Classes 69

exclude the remainder. The approach we propose is more elegant and straight-
forward than the classical solution offered by an object-oriented paradigm.

Structural Subtyping. An orthogonal issue, typical of object-oriented languages,
is the nominal vs. structural subtyping question. In a language where subtyping
is nominal, A is a subtype of B if and only if it is declared to be so, meaning if
class A extends (or implements) class (or interface) B; these relations must be
defined by the programmer and are based on the names of classes and interfaces
declared. Java programmers are used to nominal subtyping, but other languages
[12,14,18,19,20,22,24] are based on the structural approach. In the latter, sub-
typing relation is established only by analyzing the structure of a class, i.e. its
fields and methods: a class A is a subtype of a class B if and only if the fields and
methods of A are a superset of the fields and methods of B, and their types in
A are subtypes of their types in B. Even though the syntactic subtyping is more
naturally linked to the nominal one, the former can also be adapted to support
the structural one, as shown in [14,19]. In this paper we follow the reverse di-
rection and give another contribution. The definition of structural subtyping as
inclusion of sets fits perfectly the definition of semantic subtyping. So, we inte-
grate both approaches in the same framework. In addition to that, with minor
modifications, it is also possible to include in the framework the choice of using
nominal subtyping without changing the underlying theory. Thus, since both
nominal and structural subtyping are thoroughly used and have their benefits,
in our work, we can have them both and so it becomes a programmer’s decision
on what subtyping to adopt.

Plan of the Paper. In Section 2 we present the syntax of types and terms. In
Section 3 we define type models, semantic subtyping relation and present also
the typing rules. In Section 4 we present the operational semantics and the
soundness of the type system. Proofs of theorems and auxiliary lemmas can be
found in [11]. Section 5 gives a discussion on the calculus and Section 6 concludes
the paper.

2 The Calculus

In this section, we present the syntax of the calculus, starting first with the types
and then the language terms, which are substantially the ones in FJ.

2.1 Types

Our types are defined by properly restricting the type terms inductively defined
by the following grammar:

τ ::= α | μ Type term

α ::= 0 | B | [l̃ : τ] | α∧∧∧ α | ¬¬¬α Object type (α-type)

μ ::= α→ α | μ∧∧∧ μ | ¬¬¬μ Method type (μ-type)

70 O. Dardha, D. Gorla, and D. Varacca

Types can be of two kinds: α-types (used for declaring fields and, in particular,
objects) and μ-types (used for declaring methods). Arrow types are needed to
type the methods of our calculus. Since our language is first-order and methods
are not first-class values, arrow types are introduced by a separate syntactic
category, viz. μ. Type 0 denotes the empty type. Type B denotes the basic

types: integers, booleans, void, etc. Type [l̃ : τ] denotes a record type, where

l̃ : τ indicates the sequence l1 : τ1, . . . , lk : τk, for some k ≥ 0. Labels l range
over an infinite countable set L. When necessary, we will write a record type as
[ã : α, m̃ : μ] to emphasize the fields of the record, denoted by the labels ã, and
the methods of the record, denoted by m̃. Given a type ρ = [ã : α, m̃ : μ], ρ(ai)
is the type assigned to the field ai and ρ(mj) is the type assigned to the method
mj . In each record type ai �= aj for i �= j and mh �= mk for h �= k. To simplify
the presentation, we are modeling a form of multimethods where at most one
definition for every method name is present in every class. However, the general
form of multimethods can be recovered by exploiting the simple encoding of
Section 5.2. The boolean connectives ∧∧∧ and ¬¬¬ have their intuitive set-theoretic
meaning. We use 1 to denote the type ¬¬¬0 that corresponds to the universal type.
We use the abbreviation α\\\α′ to denote α∧∧∧¬¬¬α′ and α∨∨∨α′ to denote ¬¬¬(¬¬¬α∧∧∧¬¬¬α′).
The same holds for the μ-types.

Definition 1 (Types). The pre-types are the regular trees (i.e., the trees with
a finite number of non-isomorphic subtrees) produced by the syntax of type terms.

The set of types, denoted by T , is the largest set of well-formed pre-types, i.e.
the ones for which the binary relation � defined as

τ1 ∧∧∧ τ2 � τ1 τ1 ∧∧∧ τ2 � τ2 ¬¬¬τ � τ

does not contain infinite chains.

Notice that every finite tree obtained by the grammar of types is both regular
and well formed; so, it is a type. Problems can arise with infinite trees, which
leads us to restrict them to the regular and the well-formed ones. Indeed, if a
tree is not-regular, then it is difficult to write it down in a finite way; since
we want our types to be usable in practice, we require regular trees that can
be easily written down, e.g. by using recursive type equations. Moreover, as
we want types to denote sets, we impose some restrictions to avoid ill-formed
types. For example, the solution to α = α ∧∧∧ α contains no information about
the set denoted by α; or α = ¬¬¬α does not admit any solution. Such situations
are problematic when we define the model. To rule them out, we only consider
infinite trees whose branches always contain an atom, where atoms are the basic

types B, the record types [l̃ : τ] and the arrow types α → α. This intuition is
what the definition of relation � formalizes. The restriction to well-formed types
is required to avoid meaningless types; the same choice is used in [13]. A different
restriction, called contractiveness, is used for instance in [4], where non-regular
types are also allowed.

Semantic Subtyping for Objects and Classes 71

2.2 Terms

Our calculus is based on FJ [17] rather than, for example, the object-oriented
calculus in [1], because of the widespread diffusion of Java. There is a correspon-
dence between FJ and the pure functional fragment of Java, in a sense that any
program in FJ is an executable program in Java. Our syntax is essentially the
same as [17], apart from the absence of the cast construct and the presence of
the rnd primitive. We have left out the first construct for the sake of simplic-
ity; it is orthogonal to the aim of the current work and it can be added to the
language without any major issue. The second construct is a nondeterministic
choice operator. This operator is technically necessary to obtain a complete-
ness result. Indeed, we interpret method types not as function but as relations,
following the same line of [13]; thus, a nondeterministic construct is needed to
account for this feature. In addition, rnd can be used to model side-effects. We
assume a countable set of names, among which there are some key names: Object
that indicates the root class, this that indicates the current object, and super
that indicates the parent object. We will use the letters A,B,C, . . . for indicating
classes, a, b, . . . for fields, m,n, . . . for methods and x, y, z, . . . for variables. K will
denote the set of constants of the language and we will use the meta-variable
c to range over K. Generally, to make examples clearer, we will use mnemonic
names to indicate classes, methods, etc.; for example, Point, print, etc.

The syntax of the language is given by the following grammar:

Class declaration L ::= class C extends C { α̃ a; K; M̃ }

Constructor K ::= C (β̃ b; α̃ a) { super(̃b); t̃his.a = ã; }
Method declaration M ::= α m (α a) { return e; }
Expressions e ::= x | c | e.a | e.m(e) | new C(ẽ) | rnd(α)

A program is a pair (L̃, e) consisting of a sequence of class declarations (inducing

a class hierarchy, as specified by the inheritance relation) L̃ where the expression
e is evaluated. A class declaration L provides the name of the class, the name of
the parent class it extends, its fields (each equipped with a type specification),
the constructorK and its method declarationsM . The constructor initializes the
fields of the object by assigning values to the fields inherited by the super-class
and to the fields declared in the present class. A method is declared by specifying
the return type, the name of the method, the formal parameter (made up by a
type specification given to a symbolic name) and a return expression, i.e. the
body of the method. For simplicity, we use unary methods without compromising
the expressivity of the language: passing tuples of arguments can be modeled by
passing an object that instantiates a class, defined in an ad-hoc way for having
as fields all the arguments needed. On the other hand, we exploit this simpli-
fication in the theoretical development of our framework. Finally, expressions e
are variables, constants, field accesses, method invocations, object creations and
random choices among values of a given type. In this work we assume that L̃ is
well-defined, in the sense that “it is not possible that a class A extends a class

72 O. Dardha, D. Gorla, and D. Varacca

B and class B extends class A”, or “a constructor called B cannot be declared
in a class A” and other obvious rules like these. All these kinds of checks could
be carried out in the type system, but we prefer to assume them to focus our
attention on the new features of our framework. The same sanity checks are
assumed also in FJ [17].

3 Semantic Subtyping

3.1 Models

Having defined the raw syntax, we should now introduce the typing rules. They
would typically involve a subsumption rule, that invokes a notion of subtyping.
It is therefore necessary to define subtyping, As we have already said, in the
semantic approach τ1 is a subtype of τ2 if all the τ1-values are also τ2-values, i.e.,
if the set of values of type τ1 is a subset of the set of values of type τ2. However,
in this way, subtyping is defined by relying on the notion of well-typed values;
hence, we need the typing relation to determine typing judgments for values;
but the typing rules use the subtyping relation which we are going to define. So,
there is a circularity. To break this circle, we follow the path of [13] and adapt it
to our framework. The idea is to first interpret types as subsets of some abstract
“model” and then establish subtyping as set-inclusion. By using this abstract
notion of subtyping, we can then define the typing rules. Having now a notion
of well-typed value, we can define the “real” interpretation of types as sets of
values. This interpretation can be used to define another notion of subtyping.
But if the abstract model is chosen carefully, then the real subtyping relation
coincides with the abstract one, and the circle is closed. A model consists of a
set D and an interpretation function � �D : T → P(D). Such a function should
interpret boolean connectives in the expected way (conjunction corresponds to
intersection and negation corresponds to complement) and should capture the
meaning of type constructors. Notice that there can be several models and it
is not guaranteed that they all induces the same subtyping relation. For our
purposes, we only need to find one suitable model that we shall call bootstrap
model � �B. The construction of this model is beyond the scope of this paper,
and for a detailed presentation we refer the reader to [11]. Then, set inclusion in
the bootstrap model induces a subtyping relation: τ1 ≤B τ2 ⇐⇒ �τ1�B ⊆ �τ2�B.

3.2 Typing Terms

In the typing rules for our language we use the subtyping relation just defined
to derive typing judgments Γ "B e : τ . In particular, this means to use ≤B in
the subsumption rule. In the following we just write ≤ instead of ≤B. Let us
assume a sequence of class declarations L̃. First of all, we have to determine
the (structural) type of every class C in L̃. To this aim, we have to take into

account the inheritance relation specified in the class declarations in L̃. We write
“a ∈ C” to mean that there is a field declaration of name a in class C within the

Semantic Subtyping for Objects and Classes 73

Table 1. Definition of function type()

– type(Object) = [];
– type(C) = ρ, provided that:

• C extends D in L̃;
• type(D) = ρ′;
• for any field name a

∗ if ρ′(a) is undefined and a /∈ C, then ρ(a) is undefined;
∗ if ρ′(a) is undefined and a ∈ C with type α′′, then ρ(a) = α′′;
∗ if ρ′(a) is defined and a /∈ C, then ρ(a) = ρ′(a);
∗ if ρ′(a) is defined, a ∈ C with type α′′ and α′′ ≤ ρ′(a), then ρ(a) = α′′.

We assume that all the fields defined in ρ′ and not declared in C appear at the
beginning of ρ, having the same order as in ρ′; the fields declared in C then
follow, respecting their declaration order in C.

• for any method name m:
∗ if ρ′(m) is undefined and m /∈ C, then ρ(m) is undefined;
∗ if ρ′(m) is undefined and m ∈ C with type α → β, then ρ(m) = α → β;
∗ if ρ′(m) is defined and m /∈ C, then ρ(m) = ρ′(m);
∗ if ρ′(m) =

∧n
i=1 αi → βi, m ∈ C with type α → β and

μ = α → β ∧∧∧∧n
i=1 αi \ α → βi ≤ ρ′(m), then ρ(m) = μ.

type(C) is undefined, otherwise.

hierarchy L̃. Similarly, we write “a ∈ C with type α” to also specify the declared
type α. Similar notations also hold for method names m.

Table 1 inductively defines the partial function type(C) on the class hierarchy

L̃ (of course this induction is well-founded since L̃ is finite); when defined, it
returns a record type. In particular, the type of a method is a boolean combina-
tion of arrow types declared in the current and in the parent classes. This follows
the same line as [13] in order to deal with habitability of types. The condition
ρ(m) ≤ ρ′(m) imposed in the method declaration is mandatory to assure that
the type of C is a subtype of the type of D; without such a condition, it would
be possible to have a class whose type is not a subtype of the parent class. If it
were the case, type soundness would fail, as the following example shows.

class C extends Object { class D extends C {
.
real m(real x) {return x} compl m(int x) {return x× i}
real F () {return this.m(3)} real G() {return this.F ()}

} }

As usual int ≤ real ≤ compl. At run time, the function G returns a complex
number, instead of a real. The example shows that, when the method m is over-
loaded, we have to be sure that the return type is a subtype of the original type.
Otherwise, due to the dynamic instantiation of this, there may be a type error.
A similar argument justifies the condition α′′ ≤ ρ′(a) imposed for calculating
function type for field names.

74 O. Dardha, D. Gorla, and D. Varacca

Table 2. Typing Rules

Typing Expressions :

(subsum)
Γ � e : α1 α1 ≤ α2

Γ � e : α2

(const)
c ∈ V alB

Γ � c : B

(var)
Γ (x) = α

Γ � x : α
(field)

Γ � e : [a : α]

Γ � e.a : α

(m-inv)
Γ � e2 : [m : α1 → α2] Γ � e1 : α1

Γ � e2.m(e1) : α2

(rnd)
Γ � rnd(α) : α

(new)

type(C) = [ã : α, m̃ : μ] Γ � ẽ : β̃ β̃ ≤ α̃

ρ = [ã : β, m̃ : μ]∧∧∧∧
i ¬[a′

i : α
′
i]∧∧∧

∧
j ¬[m′

j : μ′
j] ρ 	� 0

Γ � new C(ẽ) : ρ

Typing Method Declarations :

(m-decl)
x : α1, this : type(C) � e : α2

�C α2 m (α1 x){return e}

Typing Class Declarations :

(class)
type(D) = [b̃ : β, m̃ : μ] K = C(β̃ b; α̃ a){super(̃b); t̃his.a = ã} �C M̃

� class C extends D {α̃ a K M̃}

Typing Programs :

(prog)
� L̃ � e : α

� (L̃, e)

Let us now consider the typing rules given in Table 2. We assume Γ to be
a typing environment, i.e., a finite sequence of α-type assignments to variables.
Most rules are very intuitive. Rule (subsum) permits to derive for an expression e
of type α1 also a type α2, if α1 is a subtype of α2. Notice that, for the moment,
the subtyping relation used in this rule is the one induced by the bootstrap
model. In rule (const), we assume that, for any basic type B, there exists a
fixed set of constants V alB ⊆ K such that the elements of this set have type
B. Notice that, for any two basic types B1 and B2, the sets V alBi may have a
non empty intersection. Rule (var) derives that x has type α, if x is assigned
type α in Γ . Let us now concentrate on rules (field) and (m-inv). Notice that
in these two rules the record types are singletons, as it is enough that inside
the record type there is just the field or the method that we want to access
or invoke. If the record type is more specific (having other fields or methods),

Semantic Subtyping for Objects and Classes 75

we can still get the singleton record by using the subsumption rule. The rules
m-inv models methods as invariant in their arguments. This is not restrictive, as
we can always use subsumption to promote the type of the argument to match
the declared type of the method. For rule (new), an object creation can be typed
by recording the actual type of the arguments passed to the constructor, since
we are confining ourselves to the functional fragment of the language. Moreover,
like in [13], we can extend the type of the object, by adding any record type that
cannot be assigned to it - as long as this does not lead to a contradiction, i.e.
a type semantically equivalent to 0. This possibility of adding negative record
types is not really necessary for programming purposes: it is only needed to
ensure that every non-zero type has at least one value of that type. This property
guarantees that the interpretation of types as sets of values induces the same
subtyping relation as the bootstrap model. Rule (rnd) states that rnd(α) is of
type α. Finally, rule (m-decl) checks when a method declaration is acceptable
for a class C; this can only happen if type(C) is defined. Rules (class) and (prog)
check when a class declaration and a program are well-typed and are similar to
the ones in FJ.

3.3 Closing the Circle

To close the circle, one should now interpret types as sets of values. In our calcu-
lus, a natural notion of value includes the constants and the objects initialized
by only passing values to their constructor.

However, as the classes in L̃ are finite, with these values we are able to inhabit
just a finite number of record types. Also, since we have not higher-order values,
the μ-types would not be inhabited. This is a major technical difference w.r.t.
[13].

To overcome this problem we use the more general notion of pseudo-value. A
pseudo-value is a closed, well-typed expression that cannot reduce further. The
interpretation of an α-type is the set of pseudo-values of that type For μ-types,
we interpret an arrow type as a set of pairs (α,w) such that it is possible to
assign to the normal form w the return type of μ whenever the input argument
of the method is assigned input type of μ i.e., type α, which “closes” the normal
form w. The details can be found in [11].

Using the above intuitions, we define the interpretation function �·�V and,
consequently, the subtyping relation ≤V . A priori, the new relation ≤V could be
different from ≤B. However, since the definitions of the model, of the language
and of the typing rules have been carefully chosen, the two subtyping relations
coincide. Hence, we can prove the following result, the proof of which can be
found in [11].

Theorem 1. The bootstrap model �·�B induces the same subtyping relation as
�·�V .

76 O. Dardha, D. Gorla, and D. Varacca

Table 3. Operational semantics

(f-ax)
type(C) = [ã : α, m̃ : μ]

(new C(ũ)).ai → ui

(f-red)
e → e′

e.a → e′.a

(r-ax)
� e : α

rnd(α) → e
(m-ax)

body(m,u,C) = λx.e

(new C(ũ′)).m(u) → e[u/x ,new C(˜u′)/this]

(m-red1)
e′ → e′′

e′.m(e) → e′′.m(e)
(m-red2)

e′ → e′′

e.m(e′) → e.m(e′′)

(n-red)
ei → e′i

new C(e1, . . . , ei, . . . , ek) → new C(e1, . . . , e
′
i, . . . , ek)

4 Operational Semantics and Soundness of the Type
System

The operational semantics is defined through the transition rules of Table 3;
these are essentially the same as in FJ. There are only two notable differences:
we use function type to extract the fields of an object, instead of defining an ad-
hoc function; function body also depends on the (type of the) method argument,
necessary for finding the appropriate declaration when we have multimethods.

We fix the set of class declarations L̃ and define the operational semantics
as a binary relation on the expressions of the calculus e → e′, called reduction
relation. The axiom for field access (f-ax) states that, if we try to access the i-th
field of an object, we just return the i-th argument passed to the constructor of
that object. We have used the premise type(C) = [ã : α, m̃ : μ] as we want all the
fields of the object instantiating class C: function type(C) provides them in the
right order (i.e., the order in which the constructor of class C expects them to
be). The axiom for method invocation (m-ax) tries to match the argument of a
method in the current class and, if a proper type match is not found, it looks up
in the hierarchy; these tasks are carried out by function body , whose definition
is in the following and the if cases are to be considered in order:

body(m,u,C) =

⎧⎨⎩
λx.e if C contains β m(α x){return e} and � u : α,

body(m,u,D) if C extends D in L̃,
UNDEF otherwise.

Notice that method resolution is performed at runtime, by keeping into account
the dynamic type of the argument; this is called multimethods and is different
from what happens in Java, where method resolution is performed at compile
time by keeping into account the static type of the argument. A more traditional
modeling of overloading is possible and easy to model.

Soundness of the Type System. Theorem 1 does not automatically imply that
the definitions put forward in Sections 3 and 4 are “valid” in any formal sense,

Semantic Subtyping for Objects and Classes 77

only that they are mutually coherent. To complete the theoretical treatment, we
need to check type soundness, stated by the following theorems. The full proofs
can be found in [11].

Theorem 2 (Subject reduction). If " e : α and e→ e′, then " e′ : α′ where
α′ ≤ α.
Proof. The proof is by induction on the length of e→ e′.

Theorem 3 (Progress). If " e : α where e is a closed expression, then e is a
value or there exists e′ such that e→ e′.

Proof. The proof is by induction on the structure of e.

5 Discussion on the Calculus

5.1 Recursive Class Definitions

It is possible to write recursive class definitions by assuming a special basic value
null and a corresponding basic type unit, having null as its only value. In Java,
it is assumed that null belongs to every class type; here, because of the complex
types we are working with (mainly, because of negations), this assumption cannot
be done. This, however, enables us to specify when a field can/cannot be null;
this is similar to what happens in database systems. In particular, lists of integers
can now be defined as:

LintList = class intList extends Object {
int val ;
(α∨∨∨ unit) succ;
intList (int x, (α∨∨∨ unit) y){this.val = x; this.succ = y}
. . .

}

α being the solution of the recursive equation α = [val : int, succ : (α∨∨∨ unit)].
Now, we can create the list 〈1, 2〉 by writing new intList(1,new intList(2,null)).

5.2 Implementing Standard Multimethods

Usually in object oriented languages, multimethods can be defined within a single
class. For simplicity, we have defined a language where at most one definition
can be given for a method name in a class.

It is however possible to partially encode multimethods by adding one aux-
iliary subclass for every method definition. For instance, suppose we want to
define twice a multimethod m within class A:

class A extends Object {
. . .
α1 m (β1 x){return e1}
α2 m (β2 x){return e2}

}

78 O. Dardha, D. Gorla, and D. Varacca

We then replace it with the following declarations:

class A1 extends Object { class A extends A1 {
.
α1 m (β1 x){return e1} α2 m (β2 x){return e2}

} }

Introducing subclasses is something that must be done with care. Indeed, it is
not guaranteed, in general, that the restrictions for the definition of function
type (see Table 1) are always satisfied. So, in principle, the encoding described
above could turn a class hierarchy where the function type is well-defined into a
hierarchy where it is not. However, this situation never arises if different bodies of
a multimethod are defined for inputs of mutually disjoint types, as we normally
do. Also, it is not difficult to add to the language a typecase construct, similar
to the one of CDuce, that would allow more expressivity. We did not pursue this
approach in the present paper to simplify the presentation.

5.3 Implementing Typical Java-Like Constructs

We now briefly show how we can implement in our framework traditional pro-
gramming constructs like if-then-else and (a structural form of) instanceof. Other
constructs, like exceptions, sequential composition and loops, can also be defined.

The expression if e then e1 else e2 can be implemented by adding to the
program the class definition:

class Test extends Object {
α m ({true} x){return e1}
α m ({false} x){return e2}

}

where {true} and {false} are the singleton types containing only values true
and false, respectively, and α is the type of e1 and e2. Then, if e then e1 else e2
can be simulated by (new Test()).m(e). Notice that this term typechecks, since
test has type [m : ({true} → α)∧∧∧ ({false} → α)] # [m : ({true} ∨∨∨ {false}) →
α] # [m : bool → α]. Indeed, in [13] it is proved that (α1 → α) ∧∧∧ (α2 → α) #
(α1 ∨∨∨ α2)→ α and, trivially, {true}∨∨∨ {false} # bool.

The construct e instanceof α checks whether e is typeable at α and can be
implemented in a way similar to the if-then-else:

class InstOf extends Object {
bool mα1(α1 x){return true}
bool mα1(¬¬¬α1 x){return false}
· · ·
bool mαk

(αk x){return true}
bool mαk

(¬¬¬αk x){return false}
}

where α1, . . . , αk are the types occurring as arguments of an instanceof in the
program. Then, e instanceof α can be simulated by (new InstOf ()).mα(e).

Semantic Subtyping for Objects and Classes 79

5.4 Nominal Subtyping vs. Structural Subtyping

The semantic subtyping is a way to allow programmers use powerful typing
disciplines, but we do not want to bother them with the task of explicitly writing
structural types. Thus, we can introduce aliases. We could write

L′
intList = class intList extends Object {

int val ;
(intList ∨ unit) succ;
intList (int x, (intList ∨ unit) y){this.val = x; this.succ = y}
. . .

}

instead of LintList in Section 5.1. Any sequence of class declarations written in
this extended syntax can be then compiled into the standard syntax in two steps:

– First, extract from the sequence of class declarations a system of (mutu-
ally recursive) type declarations; in doing this, every class name should be
considered as a type identifier. Then, solve such a system of equations.

– Second, replace every occurrence of every class name occurring in a type
position (i.e., not in a class header nor as the name of a constructor) with
the corresponding solution of the system.

For example, the system of equations (actually, made up of only one equation)
associated with L′

intList is intList = [val : int, succ : (intList ∨ unit)]; if we
assume that α denotes the solution of such an equation, the class declaration
resulting at the end of the compilation is exactly LintList in Section 5.1.

But nominal types can be more powerful than just shorthands. When using
structural subtyping, we can interchangeably use two different classes having the
very same structure but different names. However, there can be programming
scenarios where also the name of the class (and not only its structure) could be
needed. A typical example is the use of exceptions, where one usually extends
class Exception without changing its structure. In such cases, nominal subtyping
can be used to enforce a stricter discipline.

We can integrate this form of nominal subtyping in our semantic framework.
To do that, we add to each class a hidden field that represents all the nominal
hierarchy that can be generated by that class. If we want to be nominal, we will
consider also this hidden field while checking subtyping. In practice, the (seman-
tic) ‘nominal’ type of a class is the set of qualified names of all its subclasses;
this will enable us to say that C is a ‘nominal’ subtype of D if and only if C’s
subclasses form a subset of D’s ones. Notice that working with subsets is the
key feature of our semantic approach to subtyping. This is the reason why we
need types as sets and, e.g., cannot simply add to objects a field with the class
they are instance of.

It remains to describe how we can use nominal subtyping in place of the
structural one. We propose two ways. In declaring a class or a field, or in the
return type of a method, we could add the keyword nominal, to indicate to
the compiler that nominal subtyping should always be used with it. However,

80 O. Dardha, D. Gorla, and D. Varacca

the only place where subtyping is used is in function body , i.e. when deciding
which body of an overloaded method we have to activate on a given sequence of
actual values. Therefore, we could be even more flexible, and use the keyword
nominal in method declarations, to specify which method arguments have to
be checked nominally and which ones structurally. For example, consider the
following class declaration:

class A extends Object { . . .
int m (C x, nominal C y){ return 0; }

}

Here, every invocation of method m will check the type of the first argument
structurally and the type of the second one nominally. Thus, if we consider the
following class declarations

class C extends Object ; { } class D extends Object { }

the expressions (new A()).m(new C(),new C()), (new A()).m(new D(),
new C()) and (new A()).m(new Object(),new C()) typecheck, whereas
(new A()).m(new C(),new D()) and (new A()).m(new C(),new Object())
do not.

6 Conclusions and Future Work

We have presented a Java-like programming framework that integrates structural
subtyping, boolean connectives and semantic subtyping to exploit and combine
the benefits of such approaches. There is still work to do in this research line.

This paper lays out the foundations for a concrete implementation of our
framework. First of all, a concrete implementation calls for algorithms to decide
the subtyping relation; then, decidability of subtyping is exploited to define a
typechecking algorithm for our type system. This can be achieved by adding
algorithms similar to those in [13]. A preliminary formal development can be
found in the first author’s M.S thesis [11]. These are intermediate steps towards
a prototype programming environment where writing and evaluating the perfor-
mances of code written in the new formalism.

Another direction for future research is the enhancement of the language
considered. For example, one can consider the extension of FJ with assignments;
this is an important aspect because mutable values are crucial for modeling the
heap, a key feature in object oriented programming. We think that having a
state would complicate the issue of typing, because of the difference between
the declared and the actual type of an object. Some ideas on how to implement
the mutable state can come from the choice made in the implementation of
CDuce. The fact that we have assumed nondeterministic methods can also help
in modeling a mutable state: as we have said, the input-output behavior of a
function can be seen as nondeterministic since, besides its input, the function
has access to the state.

Semantic Subtyping for Objects and Classes 81

Another possibility for enhancing the language is the introduction of higher-
order values, in the same vein as the Scala programming language [21]; since
the framework of [13] is designed for a higher-order language, the theoretical
machinery developed therein should be easily adapted to the new formalism.

References

1. Abadi, M., Cardelli, L.: A Theory of Primitive Objects - Untyped and First-
Order Systems. In: Hagiya, M., Mitchell, J.C. (eds.) TACS 1994. LNCS, vol. 789,
pp. 296–320. Springer, Heidelberg (1994)

2. Agrawal, R., de Michiel, L.G., Lindsay, B.G.: Static type checking of multimethods.
In: Proc. of OOPSLA, pp. 113–128. ACM Press (1991)

3. Aiken, A., Wimmers, E.L.: Type inclusion constraints and type inference. In: Proc.
of FPCA, pp. 31–41. ACM (1993)

4. Ancona, D., Lagorio, G.: Coinductive type systems for object-oriented languages.
In: Drossopoulou, S. (ed.) ECOOP 2009. LNCS, vol. 5653, pp. 2–26. Springer,
Heidelberg (2009)

5. Boyland, J., Castagna, G.: Type-safe compilation of covariant specialization: A
practical case. In: Cointe, P. (ed.) ECOOP 1996. LNCS, vol. 1098, pp. 3–25.
Springer, Heidelberg (1996)

6. Boyland, J.T., Castagna, G.: Parasitic Methods: an implementation of multi-
methods for Java. In: Proc. of OOPSLA. ACM Press (1997)

7. Castagna, G.: Object-oriented programming: a unified foundation. Progress in The-
oretical Computer Science series. Birkäuser, Boston (1997)

8. Castagna, G.: Semantic subtyping: Challenges, perspectives, and open problems.
In: Coppo, M., Lodi, E., Pinna, G.M. (eds.) ICTCS 2005. LNCS, vol. 3701,
pp. 1–20. Springer, Heidelberg (2005)

9. Castagna, G., De Nicola, R., Varacca, D.: Semantic subtyping for the pi-calculus.
Theoretical Computer Science 398(1-3), 217–242 (2008)

10. Damm, F.M.: Subtyping with union types, intersection types and recursive types.
In: Hagiya, M., Mitchell, J.C. (eds.) TACS 1994. LNCS, vol. 789, pp. 687–706.
Springer, Heidelberg (1994)

11. Dardha, O.: Sottotipaggio semantico per linguaggi ad oggetti. MS thesis, Dip.
Informatica, “Sapienza” Univ. di Roma,
http://www.dsi.uniroma1.it/~gorla/TesiDardha.pdf

12. Findler, R.B., Flatt, M., Felleisen, M.: Semantic casts: Contracts and structural
subtyping in a nominal world. In: Odersky, M. (ed.) ECOOP 2004. LNCS, vol. 3086,
pp. 365–389. Springer, Heidelberg (2004)

13. Frisch, A., Castagna, G., Benzaken, V.: Semantic subtyping: Dealing set-
theoretically with function, union, intersection, and negation types. Journal of the
ACM 55(4), 1–64 (2008)

14. Gil, J., Maman, I.: Whiteoak: introducing structural typing into Java. In: Proc. of
OOPSLA, pp. 73–90. ACM (2008)

15. Hosoya, H., Pierce, B.C.: Regular expression pattern matching for XML. SIGPLAN
Notices 36(3), 67–80 (2001)

16. Hosoya, H., Pierce, B.C.: Xduce: A statically typed XML processing language.
ACM Transactions on Internet Technology 3(2), 117–148 (2003)

17. Igarashi, A., Pierce, B.C., Wadler, P.: Featherweight Java: a minimal core cal-
culus for Java and GJ. ACM Transactions on Programming Languages and Sys-
tems 23(3), 396–450 (2001)

http://www.dsi.uniroma1.it/~gorla/TesiDardha.pdf

82 O. Dardha, D. Gorla, and D. Varacca

18. Leroy, X., Doligez, D., Garrigue, J., Rémy, D., Vouillon, J.: The Objective Caml
system, release 3.11 (2008)

19. Malayeri, D., Aldrich, J.: Integrating nominal and structural subtyping. In: Vitek, J.
(ed.) ECOOP 2008. LNCS, vol. 5142, pp. 260–284. Springer, Heidelberg (2008)

20. Malayeri, D., Aldrich, J.: Is structural subtyping useful? An empirical study. In:
Castagna, G. (ed.) ESOP 2009. LNCS, vol. 5502, pp. 95–111. Springer, Heidelberg
(2009)

21. Odersky, M., Micheloud, S., Mihaylov, N., Schinz, M., Stenman, E., Zenger, M.:
An overview of the Scala programming language. Technical report (2004)

22. Ostermann, K.: Nominal and structural subtyping in component-based program-
ming. Journal of Object Technology 7(1), 121–145 (2008)

23. Pearce, D.J.: Sound and complete flow typing with unions, intersections and nega-
tions. In: Giacobazzi, R., Berdine, J., Mastroeni, I. (eds.) VMCAI 2013. LNCS,
vol. 7737, pp. 335–354. Springer, Heidelberg (2013)

24. Rémy, D., Vouillon, J.: Objective ML: A simple object-oriented extension of ML.
In: Proc. of POPL, pp. 40–53. ACM (1997)

25. Sangiorgi, D., Walker, D.: The Pi-Calculus: A Theory of Mobile Processes.
Cambridge University Press, New York (2003)

Polymorphic Types for Leak Detection

in a Session-Oriented Functional Language

Viviana Bono, Luca Padovani, and Andrea Tosatto

Dipartimento di Informatica, Università di Torino, Italy

Abstract. Copyless message passing is a communication paradigm in
which only pointers are exchanged between sender and receiver processes.
Because of its nature, this paradigm requires that messages are treated
as linear resources. Yet, even linear type systems leave room for scenarios
where apparently well-typed programs may leak memory. In this work
we develop a polymorphic type system for leak-free copyless messaging in
a functional setting, where first-class functions can be used as messages.

1 Introduction

When communicating processes can access a shared address space, it is sensible
to consider a copyless form of communication whereby only pointers to mes-
sages (instead of the messages themselves) are copied from senders to receivers.
The Singularity Operating System [9,10] is a notable example of system mak-
ing pervasive use of copyless communication. In Singularity, messages live in a
shared area called exchange heap that, for practical reasons, cannot be garbage
collected: data in this area must be explicitly allocated and deallocated. Mes-
sages travel through channels that are represented as pairs of peer endpoints :
a message sent over one endpoint is received from the corresponding peer. Be-
cause channel endpoints can be sent as messages, they are also allocated in the
exchange heap and explicitly managed.

Explicit memory management is a well-known source of hard-to-trace bugs.
For this reason, it calls for the development of static analysis techniques meant
to spot dangerous code. In [1,2] we have developed a type system for a language
of processes that interact through copyless messaging: well-typed processes are
guaranteed to be free from memory faults, memory leaks, and communication
errors. The type system associates channel endpoints with endpoint types rem-
iniscent of session types [7,8]. The present work extends the results of [2] to a
language with first-class functions. For example,

g
def
= λc.λx.let f, c′ = receive c in close c′; (f x)

is a function that, when applied to a channel endpoint c and a value x, trans-
forms x through a function received from c. The receive c application evaluates
to a pair consisting of the message received from c and c itself, the let decon-
structs such pair and binds its components to the local variables f and c′, and

D. Beyer and M. Boreale (Eds.): FMOODS/FORTE 2013, LNCS 7892, pp. 83–98, 2013.
c© IFIP International Federation for Information Processing 2013

84 V. Bono, L. Padovani, and A. Tosatto

close c′ deallocates c′. The explicit re-binding of c enables the type system to
keep track of resource allocation and to spot violations in the memory manage-
ment. Indeed, endpoints are linear resources that are consumed when used in
a function application (like c and c′ in receive c and close c′) and acquired
when obtained as result of a function application (like for f and c′ returned by
receive). In addition, the re-binding allows to assign different types to the same
channel endpoint according to how the code uses it: the above function can be
typed with the assignments c : ?(Int� Int).end and c′ : end where the type of
c denotes the fact that it can be used for receiving a message of type Int� Int

(a linear function from integers to integers) and the type end of c′ is the residual
of c’s type after receiving this message; end indicates that c′ can be deallocated.

In [2] it was observed that it is possible to write apparently correct code
that yields memory leaks, whereby an allocated region of the heap becomes
inaccessible. This phenomenon manifests itself in the program

let a, b = open unit in close (send b a)

which creates a new channel represented as the two peer endpoints a and b and
sends b over its own peer a. This code fragment can be typed using the assignment
{a : T1, b : S1} where T1 = !S1.end and S1 is the recursive type satisfying the
equation S1 = ?S1.end. Note that in this code fragment every resource that is
acquired is also consumed. Yet, after the execution of this code only endpoint a
is actually deallocated, while endpoint b has become inaccessible because stored
within its own queue. In [2] we rule out code like this by restricting the values that
can be sent as messages depending on their type. The idea consists in looking
at types for estimating the length of the chains of pointers originating from
values with that type – we call such measure type weight – and then restricting
messages to values whose type has a bounded weight. For example, the queue of
an endpoint of type S1 may contain a message of type S1, therefore the weight
of S1 is unbounded, whereas the weight of T1 is zero because a can only be used
for sending messages, so its queue will never contain a message.

It turns out that the same technique does not work “out of the box” in a
language with first-class functions. The problem is that arrow types only tell
us what a function accepts and produces, but not which other (heap-allocated)
values the function may use, while this information is essential for determining
the weight of an arrow type. To illustrate the issue, consider the code fragment

let a, b = open unit in close (send (g b) a)

which is a little twist from the previous one. According to the definition of g,
(g b) is a message that contains b. This code fragment can be typed with the
assignment {a : T2, b : S2}, where T2 = !(Int� Int).end and S2 = ?(Int�
Int).end. As before, this closed code fragment yields a memory leak due to b
not being deallocated, but in this case the type Int� Int of the message in S2
does not provide much information: we only know that (g b) is a function that
may make use of a linear value, but the type of such linear value, which is key
in order to assess the weight of Int� Int, is unknown. The solution we put

Polymorphic Types for Leak Detection in a Functional Language 85

forward consists in decorating linear arrow types with an explicit weight, as in
Intw�Int, to keep track of this information. In the above example, the weight
of S2 should be strictly greater than w, because endpoint b carries messages of
type Intw�Int. At the same time, w should not be smaller than the weight of
S2, because (g b) contains b. From this train of thoughts, one infers that there is
no finite bound for w, and consequently that (g b) cannot be safely sent over a.

Polymorphism adds another dimension to the problem and forces us to con-
sider a more structured representation of type weights. For example, the function

forward
def
= λx.λy.let m,x′ = receive x in (x′, send m y)

which forwards a message from an endpoint x to another endpoint y, can be given
the polymorphic type ?a.A → !a.B w� A ⊗ B. The issue is how to determine
the weight w, given that x occurs free in the function λy · · · and that it has the
partially specified type ?a.A. The actual weight of ?a.A depends on the weight of
the types with which a and A are instantiated. In particular, it is the maximum
between the weight of A and the weight of a plus 1 (because the queue for x
may contain a value of type a). We keep track of this dependency by letting
w = {a,A}+ 1.

In the rest of the paper we formalize all the notions sketched so far. We be-
gin by defining syntax and reduction semantics of a core functional language
equipped with session-oriented communication primitives (Section 2). We also
provide a precise definition of “correct” programs as those that are free from
memory faults, memory leaks, and communication errors. We proceed by pre-
senting the type language (Section 3), the type system and its soundness results
(Section 4). Related work (Section 5) and a few concluding remarks (Section 6)
end the main body of the paper. Proofs of the results can be found in the long
version of the paper [3].

2 Language

The syntax of our language is described in Table 1, where we use the following
syntactic categories: x, y range over an infinite set of variables ; p, q range over an
infinite set Pointers of pointers ; u ranges over names, which are either variables
or pointers, and U, V over sets of names; E ranges over expressions and v over
values ; we write ṽ to denote queues, namely finite sequences of values; k ranges
over constants from the set {unit, fix, fork, open, close, send, receive}; P , Q
range over processes ; μ ranges over heaps. The sub-language of expressions is
almost standard, except for the let construct which deconstructs pairs and
binds their components to two variables. As usual, λx.E binds x in E and
let x, y = E1 in E2 binds x and y in E2, therefore, bound and free names
are defined in the usual way. We will sometimes write let x = E1 in E2 in
place of let x, y = (E1, unit) in E2 where y is some fresh variable. Processes
are parallel compositions of expressions, each expression representing a thread
of execution. We identify processes modulo commutativity and associativity of ‖.

86 V. Bono, L. Padovani, and A. Tosatto

Table 1. Syntax of expressions, processes, values, and heaps

E ::= Expression
v (value)

| x (variable)
| (E,E) (pair)
| EE (application)
| let x, y = E in E (pattern match)

P ::= Process
〈E〉 (thread)

| P ‖ P (composition)

v ::= Value
p (pointer)

| k (constant)
| λx.E (abstraction)
| (v, v) (pair)

μ ::= Heap
∅ (empty heap)

| p �→ [q; ṽ] (endpoint)
| μ, μ (composition)

We write fn(E) and fn(P) for denoting the set of free names occurring in E and
P .

In order to express the operational semantics of processes, we need an explicit
representation of heaps as finite maps from pointers to endpoint structures [p, ṽ],
which, in turn, are a pair containing a pointer and a queue of values, representing
the messages received at that endpoint. The set of pointers to allocated endpoint
structures is dom(μ), and we assume that the composition μ1, μ2 is defined only
when dom(μ1)∩dom(μ2) = ∅. A system is a pair μ �P of a heap μ and a process
P .

Table 2 defines the reduction semantics of expressions and of systems. Expres-
sions reduce according to a conventional call-by-value semantics extended with
pattern matching over pairs. Systems reduce as a consequence of expressions
that are evaluated in threads and of primitive functions forking new threads and
implementing the communication operations. Rule (R-Thread) performs a step
of computation within a thread. The evaluation context E [12,6] is an expres-
sion with a hole, denoted by [], where computation in a thread happens next.
Evaluation contexts are defined by

E ::= [] | (E , E) | (v, E) | EE | vE | let x, y = E in E | let x, y = v in E

and E [E] denotes the result of filling the hole in E with the expression E.
Rule (R-Par) singles out threads running in parallel. Rule (R-Fork) spawns a

new thread. Rule (R-Open) creates a channel as a pair of peer endpoints, by allo-
cating two endpoint structures in the heap which point to each other and initially
have an empty queue (ε denotes the empty sequence of values). Rule (R-Send)

inserts a value v on the queue of the peer endpoint of p. Rule (R-Receive) ex-
tracts the head value from the queue associated with the endpoint pointed to
by p. In both send and receive, the operation evaluates to the endpoint being
used for communication, which is thus available for further operations. In the
following we write =⇒ for the reflexive, transitive closure of −→ and we write
μ � P �−→ if there exist no μ′ and P ′ such that μ � P −→ μ′ � P ′.

In this work, as in [2], we focus on three properties of systems: we wish ev-
ery system to be fault free, where a fault is an attempt to use a pointer not

Polymorphic Types for Leak Detection in a Functional Language 87

Table 2. Reduction semantics of expressions and systems

Reduction of expressions

(λx.E)v −→v E{v/x} fix(λx.E) −→v E{fix(λx.E)/x}

let x, y = (v, w) in E −→v E{v, w/x, y}

Reduction of systems

(R-Thread)

E −→v E
′

μ � 〈E [E]〉 −→ μ � 〈E [E′]〉
(R-Fork)

μ � 〈E [fork E]〉 −→ μ � 〈E [unit]〉 ‖ 〈E〉

(R-Par)

μ � P1 −→ μ′ � P ′
1

μ � P1 ‖ P2 −→ μ′ � P ′
1 ‖ P2

(R-Open)

μ � 〈E [open unit]〉 −→ μ, p �→ [q; ε], q �→ [p; ε] � 〈E [(p,q)]〉

(R-Send)

μ, p �→ [q;Q], q �→ [p;Q′] � 〈E [send (v, p)]〉 −→ μ, p �→ [q;Q], q �→ [p;Q′v] � 〈E [p]〉

(R-Receive)

μ, p �→ [q; vQ] � 〈E [receive p]〉 −→ μ, p �→ [q;Q] � 〈E [(v,p)]〉

corresponding to an allocated endpoint; we wish every system to be leak free,
where a leak is an endpoint that becomes unreachable because no reference to it
is directly or indirectly available to the processes in the system; finally, we wish
every system to avoid communication errors, by enjoying (a limited form of)
progress, meaning that no process in the system should get stuck while reading
messages from a non-empty queue. We conclude this section by making these
properties precise. In order to do so, we need to formalize the reachability of a
heap object with respect to a set of root pointers. Intuitively, a process P may
directly reach any object located at some pointer in the set fn(P) (we can think
of the pointers in fn(P) as of the local variables of the process stored in its stack);
from these pointers, the process may reach transitively other heap objects by
reading messages from the queue of the endpoints it can reach.

Definition 2.1 (reachable pointers). We say that p is reachable from q in
μ (written p ≺μ q) if q �→ [r; w̃vw̃′] ∈ μ and p ∈ fn(v). We write �μ for the
reflexive and transitive closure of ≺μ. The pointers reachable from U in μ are
defined as μ-reach(U) = {p ∈ Pointers | ∃q ∈ U : p �μ q}.

We are now ready to define formally well-behaved processes.

Definition 2.2 (well-behaved process). We say that P is well behaved if
for every possible reduction ∅ � P ⇒ μ �Q the following properties hold:

88 V. Bono, L. Padovani, and A. Tosatto

Table 3. Syntax of types

σ ::= Type Scheme
t (monomorphic type)

| ∀α :: ρ.σ (polymorphic type)

t ::= Type
Unit (unit type)

| a (variable)
| T (endpoint type)
| t⊗ t (linear pair)
| t → t (function)
| t w� t (linear function)

T ::= Endpoint Type
end (termination)

| A (variable)
| A (dualized variable)
| ?t.T (input)
| !t.T (output)
| rec A.T (recursion)

w ::= Weight
∞ (unbounded weight)

| X + n (bounded weight)

1. dom(μ) = μ-reach(fn(Q)).
2. if Q = P1 ‖ P2, then μ-reach(fn(P1)) ∩ μ-reach(fn(P2)) = ∅.
3. if Q = 〈E〉 ‖Q′ and μ � 〈E〉 �−→, then either E = unit, or E = E [receive p]

and q �→ [p; ε] ∈ μ, or E = E [close p] and p �→ [q; ε] ∈ μ.

Conditions (1) and (2) ask for the absence of faults and leaks. In detail, con-
dition (1) states that every allocated pointer in the heap is reachable by one
process, and that every reachable pointer corresponds to an object allocated
in the heap. Condition (2) states that processes are isolated, namely that no
pointer is reachable from two or more processes. Since expressions of the form
close p are persistent (they do not reduce), this condition rules out memory
faults whereby the same endpoint is deallocated multiple times. Condition (3)
requires the absence of communication errors, namely that if μ �Q is stuck (no
reduction is possible), then it is because every non-terminated process in Q is
waiting for a message on an endpoint having an empty queue. This configuration
corresponds to a genuine deadlock where every process in some set is waiting for
a message that is to be sent by another process in the same set. Condition (3)
also ensures the absence of so-called orphan messages : no message accumulates
in the queue of closed endpoints.

3 Types

Table 3 gives the syntax of types using the following syntactic categories: m, n
range over natural numbers; A, B, . . . range over an infinite set of endpoint type
variables ; a, b, . . . range over an infinite set of value type variables ; α, β range
over type variables, which are either endpoint or value type variables without
distinction; X , Y range over finite sets of type variables; ρ ranges over qualifiers,
which are elements of {any, fin}; w ranges over weights ; t, s range over types ;
σ range over type schemes ; T , S range over endpoint types.

Endpoint types denote pointers to channel endpoints; they are fairly standard
session types with input/output prefixes ?t/!t, recursion, and a terminal state

Polymorphic Types for Leak Detection in a Functional Language 89

end. Endpoint type variables A can occur in dualized form A, as in [4]. This is
necessary for typing some functions, beside simplifying the definition of duality.
For simplicity we omit choices and branches; they can be added without posing
substantial problems. Types include the conventional constructs of functional
languages à la ML, comprising a Unit type (other data types can be added as
needed), linear functions, and linear pairs. The linear types are necessary to
denote objects (functions, pairs) that contain channel endpoints and that, for
this reason, must be owned and used linearly. In particular, the linear arrow
type t w� s denotes a function whose body may contain pointers and has an
explicit decoration w determining its weight. A weight is a term representing the
length of a chain of pointers in the program heap. It can be either ∞, denoting
an unbound length, or X + n denoting a length that is bound by the weight
of the types that will instantiate the type variables in X plus the value of the
constant n. We will often write X instead of X + 0 and n instead of ∅ + n.
Type schemes are almost standard, except that polymorphic type variables are
associated with a qualifier ρ: if the qualifier is any, then there is no constrain
as to which types may instantiate the type variable; if the qualifier is fin, then
only finite-weight types may instantiate the type variable. We will write t̃ for
denoting sequences t1, . . . , tn of types and we will often write ∀α̃ :: ρ̃.t in place
of ∀α1 :: ρ1 · · · ∀αn :: ρn.t for some n.

A type is well formed if none of its endpoint type variables bound by a rec

occurs in a weight. For example, both Unit{A}�Unit and ∀A :: any.Unit{A}�
Unit are well formed, but rec A.!(Unit {A}� Unit).end is not. From now on
we implicitly assume to work with well-formed types.

The predicate lin(σ) identifies linear types :

lin(α) lin(T) lin(t1 ⊗ t2) lin(t1 w� t2)
lin(t)

lin(∀α̃ :: ρ̃.t)

We say that σ is unlimited, notation un(σ), if not lin(σ). Note that a type variable
is always considered linear because it may be instantiated by a linear type. A
full-fledged type system might distinguish between linear and unlimited type
variables for better precision; we leave this as a straightforward extension for
the sake of simplicity.

There are three crucial notions regarding types that we need to define next,
namely duality, type weight, substitution. It turns out that these notions are mu-
tually dependent on one another and their formal definition requires a carefully
ordered sequence of intermediate steps that relies on type well formedness. Here
we only present the “final” definitions and highlight peculiarities and pitfalls of
each, while the detailed development can be found in [3].

Duality. Communication errors are prevented by associating peer endpoints with
dual endpoint types, so that when one endpoint type allows sending a message of
type t, the dual endpoint type allows receiving messages of type t and when one
endpoint should be closed the other endpoint should be closed as well. Roughly,
the dual of an endpoint type T , denoted by T , is obtained from T by swapping

90 V. Bono, L. Padovani, and A. Tosatto

?’s with !’s so that, for example, the dual of ?t.!s.end is !t.?s.end. In practice,
things are a little more complicated because of recursive behaviors. For example,
the dual of T = rec A.!A.end is not S = rec A.?A.end. Indeed, in T the
recursion variable occurs within a prefix, denoting the fact that an endpoint of
type T carries messages which have themselves type T . That is, T = !T.end. By
contrast, we have S = ?S.end, hence from an endpoint of type S we can receive
another endpoint having type S. In fact, we have T = ?T.end �= S.

The dual of an endpoint type is inductively defined by the equations:

end = end A = A ?t.T = !t.T

rec A.T = rec A.T {A/A} A = A !t.T = ?t.T

where T {A/A} denotes the endpoint type T where free occurrences of A have
been replaced by its dualized form and free occurrences of A by A. For example,

we have rec A.!A.end = rec A.!A.end = rec A.?A.end.

Weight. The weight of a type (scheme) gives information about the length of
the chains of pointers originating from values having that type (scheme). For
example, the weight of end is 0, because the queue of an endpoint of type end

will never contain any message, hence no chains of pointers can originate from an
endpoint of this type. On the contrary, an endpoint of type ?end.endmay contain
a pointer to another endpoint of type end, therefore its weight is 1. Because types
may contain type variables, in general the weight of a type depends on how these
type variables are instantiated. In order to compute the weight of a type, we must
be able to compare weights:

Definition 3.1 (weight order). We define the relation ≤ over weights as the
least partial order such that w ≤ ∞ and X +m ≤ Y + n if X ⊆ Y and m ≤ n.

Observe that, if W is the set of all weights, then (W ,≤) is a complete lattice
with least element ∅+0 and greatest element ∞. In what follows we will use the
operators ∨ and ∧ to respectively compute the join and meet of possibly infinite
sets of weights.

Definition 3.2 (weight). Let ↓ be the largest relation such that t ↓ w implies
either

– w =∞, or
– t = Unit or t = t1 → t2 or t = end or t = !s.T , or
– t = α and w = (X ∪ {α}) + n, or
– t = t1 ⊗ t2 and t1 ↓ w and t2 ↓ w, or
– t = ?s.T and w = X + (n+ 1) and s ↓ (X + n) and T ↓ w, or
– t = t1 w

′� t2 and w′ ≤ w.

The weight of a type t, denoted ‖t‖, is defined as ‖t‖ def
=

∧
t↓w w.

Intuitively, the relation t ↓ w says that w is an upper bound for the length of
the chains of pointers originating from values of type t, and ‖t‖ is the least of

Polymorphic Types for Leak Detection in a Functional Language 91

such upperbounds. It is easy to see that every unlimited type has a null weight
(a value with unlimited type cannot contain any pointer) and that, for instance,
‖α‖ = {α} and ‖t⊗s‖ = ‖t‖∨‖s‖. Also, endpoints with type end or !t.T have null
weight because their queues must be empty (this property will be enforced by the
type system in Section 4). However, we have that ‖?a.end‖ = {a} + 1 because
an endpoint of such type may contain a value of type a, so the length of the
longest chain of pointers originating from such an endpoint is 1 plus the length
of longest chain of pointers originating from a value with type that instantiates
a. In general, we have ‖?t.T ‖ = (‖t‖ + 1) ∨ ‖T ‖. If we take the endpoint type
S1 = rec A.?A.end from Section 1 we have ‖S1‖ = ∞ because S1 has no finite
upperbound. Finally, note that ‖A‖ = ∞. This is because, in general, there is
no relationship between the weight of an endpoint type and that of its dual. For
instance, we have ‖!S1.end‖ = 0 but ‖!S1.end‖ = ‖?S1.end‖ = ∞. It would
be possible to allow dualized type variables in the syntax of weights, but since
such variables occur seldom in types we leave this extension out of our formal
treatment and conservatively approximate their weight to ∞.

Substitution. Intuitively, a substitution t{s/α} represents the type obtained by
replacing the occurrences of α in t with s. This notion is standard, except for two
features that are specific of our type language. The first feature is the presence
of dualized endpoint type variables A. The idea is that, when A is replaced by an
endpoint type T , A is replaced by T , namely by the dual endpoint type of T that
we have just introduced. The second feature is the presence of type variables
in weights which decorate linear function types. In particular, a substitution
(t1 w� t2){s/α} may need to update w = X + n if α ∈ X . Formally, we define
a weight substitution operation w{w′/α} such that

w{w′/α} def
=

{
((X \ {α}) ∨ w′) + n if w = X + n and α ∈ X
w otherwise

where we define a meta operator w+n such that∞+n =∞ and (X+m)+n =
X + (m+ n). Then t{s/α} is defined in the standard way except that

A{T/A} = T and (t1 w� t2){s/α} = t1{s/α}w{‖s‖/α}� t2{s/α}

Finally, we generalize the notion of weight to type schemes so that ‖∀α̃ :: ρ̃.t‖ def
=∨

‖t{s̃/α̃}‖. Note that we do not worry about instantiating fin-qualified type
variables with infinite-weight types, since such type variables can be instantiated
with types having arbitrarily large weight anyway. Therefore, if the weight of t
depends in any way from one of the αi, the overall weight of the type scheme
will be ∞, no matter what.

We identify types modulo folding/unfolding of recursions. That is, rec A.T =
T {rec A.T/A} (we have already used this property in Definition 3.2).

4 Type System

We give the types of the constants in Table 4. The types in the l.h.s. of the table
are unremarkable. The open primitive returns a pair of peer channel endpoints

92 V. Bono, L. Padovani, and A. Tosatto

Table 4. Type of constants

unit : Unit
fix : ∀a :: any.(a → a) → a

fork : Unit → Unit

open : ∀A :: any.Unit → (A⊗ A)
close : end → Unit

send : ∀a :: fin.∀A :: any.(a⊗ !a.A) → A
receive : ∀a :: fin.∀A :: any.?a.A → (a⊗ A)

when applied to the unit value. For this reason, the resulting type is a pair of
dual endpoint types. Because open is polymorphic, this can only be expressed
using a dualized endpoint type variable. Note how open is an example of resource-
producing function, accepting an unlimited value unit and returning a linear
pair. The close primitive accepts an endpoint provided that it has type end

and deallocates it. Being the converse of open, close is an example of resource-
consuming function, accepting a linear value and not returning it. The send and
receive constants implement the communication primitives: send accepts a
message of type a, an endpoint of type !a.A that allows sending such a message,
and returns the same endpoint with the residual type A; receive accepts an
endpoint of type ?a.A, reads a message of type a from such an endpoint, and
returns the pair consisting of the received message and the endpoint with the
residual type A. Observe that, in both send and receive, the value type variable
a is qualified by fin, meaning that only values with finite-weight type can be sent
and received. On the contrary, no constraint is imposed on A. In the following
we write TypeOf(k) for the type scheme associated with k according to Table 4.

Judgments of the type system depend on two finite maps: the type variable
environment Σ = {αi :: ρi}i∈I associates type variables with qualifiers, while the
name environment Γ = {ui : σi}i∈I associates names with type schemes. In both
cases we use dom(·) for denoting the set of type variables/names for which there is
an association in the environment. We also write Σ, α :: ρ (respectively, Γ , u : σ)
to extend the environment whenever α �∈ dom(Σ) (respectively, u �∈ dom(Γ)).
Finally, we write Γ |U for the restriction of Γ to the names in U. Because name
environments may contain linear entities (pointers) as well as unlimited ones, it
is convenient to define also a more flexible (partial) operator + for extending
them. As in [5], we let

Γ + u : σ =

⎧⎪⎨⎪⎩
Γ if u : σ ∈ Γ and un(σ)

Γ , u : σ if u �∈ dom(Γ)

undefined otherwise

and we extend + to pairs of environments Γ1+Γ2 by induction on Γ2 in the natural
way. We write lin(Γ) if lin(Γ(u)) for some u ∈ dom(Γ) and un(Γ) otherwise.

Sometimes we will need to reason on the finiteness of a weight which contains
type variables. In such cases, we use the information contained in a type variable
environment for determining whether a weight is finite or not. More precisely,
we write Σ " X + n <∞ whenever α :: fin ∈ Σ for every α ∈ X .

Polymorphic Types for Leak Detection in a Functional Language 93

Table 5. Typing rules for processes and expressions

(T-Thread)

∅; Γ � E : Unit

Γ � 〈E〉

(T-Par)

Γ1 � P1 Γ2 � P2

Γ1 + Γ2 � P1 ‖ P2

(T-Const)

un(Γ) Σ � TypeOf(k) # t

Σ; Γ � k : t

(T-Name)

un(Γ) Σ � σ # t

Σ; Γ , u : σ � u : t

(T-Let 1)

Σ, α̃ :: ρ̃; Γ1 � E1 : t1 Σ; Γ2, x : ∀α̃ :: ρ̃.t1 � E2 : t2

Σ; Γ1 + Γ2 � let x = E1 in E2 : t2

(T-Pair)

∀i ∈ {1, 2} : Σ; Γi � Ei : ti

Σ; Γ1 + Γ2 � (E1, E2) : t1 ⊗ t2

(T-Let 2)

Σ; Γ1 � E1 : t1 ⊗ t2 Σ; Γ2, x : t1, y : t2 � E2 : t

Σ; Γ1 + Γ2 � let x, y = E1 in E2 : t

(T-Arrow)

Σ; Γ , x : t � E : s un(Γ)

Σ; Γ � λx.E : t → s

(T-Arrow Lin)

Σ; Γ , x : t � E : s
∨

u∈dom(Γ) ‖Γ(u)‖ ≤ w

Σ; Γ � λx.E : t w� s

(T-App)

Σ; Γ1 � E1 : t → s Σ; Γ2 � E2 : t

Σ; Γ1 + Γ2 � E1E2 : s

(T-App Lin)

Σ; Γ1 � E1 : t w� s Σ; Γ2 � E2 : t

Σ; Γ1 + Γ2 � E1E2 : s

A type scheme ∀α̃ :: ρ̃.t denotes the family of types obtained from t by in-
stantiating each type variable αi with a type whose weight respects the qualifier
ρi. This is formally expressed by an instantiation relation Σ " σ ' t defined by
the rule

ρi = fin⇒ Σ " ‖si‖ <∞ (i=1..n)

Σ " ∀α̃ :: ρ̃.t ' t{s̃/α̃}
For example, if we consider once again the endpoint types T1 = rec A.!S1.end
and S1 = rec A.?A.end from Section 1 we have " TypeOf(send) '
(T1, !T1.end) → end because T1 has finite weight so it can instantiate the type
variable a in TypeOf(send). On the contrary, " TypeOf(send) �' (S1, !S1.end) →
end because ‖S1‖ =∞. Therefore, it is forbidden to send endpoints of type S1.

The typing rules make use of two judgments, Γ " P stating that the process P
is well typed in the name environment Γ , and Σ; Γ " E : t stating that E is well
typed and has type t in the type variable environment Σ and name environment
Γ . A judgment Γ " P is well formed if dom(Γ) ⊆ Pointers and Γ(p) is a closed type
for every p ∈ dom(Γ) and a judgment Σ; Γ " E is well formed if all type variables
occurring free in Γ are in dom(Σ). Table 5 defines the typing rules for processes
and expressions. Rule (T-Thread) and (T-Par) say that a process is well typed
if so is each thread in it. Note that linear names are distributed linearly among
threads by definition of Γ1 + Γ2. Rule (T-Const) instantiates the type of a con-
stant, while rule (T-Name) retrieves and possibly instantiates the type of a name
from the name environment. In both rules the unused part of the name envi-
ronment must not contain linear resources. Rule (T-Let 1) is a linearity-aware

94 V. Bono, L. Padovani, and A. Tosatto

version of the rule to have let-polymorphism à la ML. The name environment is
split between E1 and E2 knowing that, if lin(t1), then x must occur in E2. Note
that, by well formedness of Σ, α̃ :: ρ̃, none of the type variables in α̃ can be in
dom(Σ) and hence can occur free in Γ2. Therefore, they can be safely generalized
when typing E2. Overall, this treatment of universal polymorphism is borrowed
from [12]: generalization and instantiation are embedded, respectively, in rule
(T-Let 1), and in rules (T-Const) and (T-Name). Rules (T-Pair) and (T-Let 2)

are, respectively, the construction and the de-construction (via pattern match-
ing) of linear pairs. Rules (T-Arrow) and (T-App) are the standard ways of
introducing and eliminating (unlimited) arrow types. The rule for arrow intro-
duction requires the side condition un(Γ), meaning that the body of the function
does not make use of any pointer. Finally, rules (T-Arrow Lin) and (T-App Lin)

introduce and eliminate linear arrow types. In (T-Arrow Lin), the weight w that
annotates the linear arrow is chosen in such a way that it is an upper bound for
the weights of the types of all names occurring in E.

Example 4.1. The following derivation, where we omit Σ = a :: fin, A :: any, B ::
any and we let w = ‖?a.A‖ = {a,A}+1, shows that the function forward defined
at the end of Section 1 is well typed.

x : ?a.A � receive x : a⊗ A

x′ : A � x′ : A y : !a.B,m : a � send m y : B

y : !a.B,m : a, x′ : A � (x′, send m y) : A⊗B

x : ?a.A, y : !a.B � let m,x′ = receive x in (x′, send m y) : A⊗B

x : ?a.A � λy.let m,x′ = receive x in (x′, send m y) : !a.B w�A⊗B

� λx.λy.let m,x′ = receive x in (x′, send m y) : ?a.A → !a.B w�A⊗B

Note that w is the smallest weight allowable in this derivation. Therefore, the
obtained type is also the most precise and general one for forward . �

Example 4.2. In a functional language, multi-argument functions are commonly
represented in curried form, whereby such functions accept their arguments
one at a time. On the contrary, the send constant is uncurried, because it ac-
cepts both its arguments at once in a pair. The curry combinator transforms
an uncurried binary function into its curried form and is defined as curry =
λf.λx.λy.f (x, y). Below is the derivation showing that curry is well typed,
where we let Σ = a :: any, b :: any, c :: any.

Σ; f : (a⊗ b)→ c " f : (a⊗ b)→ c

Σ;x : a " x : a Σ; y : b " y : b
Σ;x : a, y : b " (x, y) : a⊗ b

Σ; f : (a⊗ b)→ c, x : a, y : b " f (x, y) : c

Σ; f : (a⊗ b)→ c, x : a " λy.f (x, y) : b {a}� c

Σ; f : (a⊗ b)→ c " λx.λy.f (x, y) : a→ b {a}� c

Σ; ∅ " λf.λx.λy.f (x, y) : ((a⊗ b)→ c) → a→ b {a}� c

Polymorphic Types for Leak Detection in a Functional Language 95

Observe that the function returned by curry has type a→ b {a}� c, where the
linear arrow type has been decorated with the weight {a}. Indeed, the function
λy.f (x, y) with this type has two free variables, f having an unlimited type with
null weight, and x having type a. We can now obtain the curried form of send
as curry send which can be given the polymorphic type ∀a :: fin.∀A :: any.a→
!a.A {a}� A. �
Example 4.3. The curry function in Example 4.2 can only be applied to functions
with unlimited type. It makes sense to consider also a linear variant lcurry of
curry which has the same implementation of curry but can be used for currying
linear functions (observe that the definition of curry uses its first argument f
exactly once). Using a derivation very similar to that shown in Example 4.2,
lcurry could be given the type

∀a :: any.∀b :: any.∀c :: any.((a⊗ b) w� c)→ a w� b (w ∨ {a})� c

except that this type depends on the weight w of the linear function being
curried. This means that, in principle, we actually need a whole family lcurryw

of combinators, one for each possible weight of the linear function to be curried.
However, by combining polymorphism and explicit weight annotations in linear
arrow types, we can provide lcurry with the most general type. The idea is to
introduce another type variable, say d, which does not correspond to any actual
argument of the function, but which represents an arbitrary weight, and to let
w = {d}. This way we can give lcurry the type

∀a :: any.∀b :: any.∀c :: any.∀d :: any.((a⊗ b) {d}� c)→ a {d}� b {a, d}� c

where we can instantiate d with a type having exactly the weight of the linear
function to be curried. For example, suppose we wish to apply lcurry to some
function f : (a⊗ b) n� c. Then it is enough to instantiate the d variable in the
type of lcurry with the type T[n] defined by

T[0] = end T[m+1] = ?T[m].end

and obtain lcurry f : a n� b ({a}+ n)� c as expected. �

Properties. In order to show that every well-typed process is well behaved (Def-
inition 2.2) we need, as usual, a subject reduction result showing that well-
typedness is preserved under reductions. Since in our language processes allocate
and modify the heap, we need to define a concept of well-typed heap just as we
have defined a concept of well-typed process. Intuitively, a heap μ is well typed
with respect to an environment Γ if the endpoints allocated in μ are consistent
with their type in Γ . In particular, we want that whenever a message is inserted
into the queue of an endpoint, the type of the message is consistent with the type
of endpoint. To this aim, we define a function tail(T, t̃) that, given an endpoint
type T and a sequence of types t̃ of messages, computes the residual of T after
all the messages have been received:

tail(T, ε) = T
tail(T, s̃) = S

tail(?t.T, ts̃) = S

96 V. Bono, L. Padovani, and A. Tosatto

Note that tail(T, s̃) is undefined if s̃ is not empty and T does not begin with
input actions: only endpoints whose type begins with input actions can have
messages in their queue. The weight of end and output endpoint types is zero
because of this property (Definition 3.2).

The notion of well-typed heap is relative to a pair Γ0; Γ of disjoint name
environments: the overall environment Γ0, Γ determines the type of all the ob-
jects allocated in the heap; the sub-environment Γ distinguishes the roots of the
heap (the pointers that are not reachable from any other pointer) from the sub-
environment Γ0 of the pointers that are stored within other structures in the
heap and that are reachable from some root.

Definition 4.1 (well-typed heap). Let dom(Γ)∩dom(Γ0) = ∅. We say that μ
is well typed in Γ0; Γ , written Γ0; Γ � μ, if all of the following properties hold:

1. For every p �→ [q; ṽ] ∈ μ we have p �→ [q; w̃] ∈ μ and either ṽ = ε or w̃ = ε.

2. For every p �→ [q; ṽ] ∈ μ we have tail(T, s̃) = S where p : T ∈ Γ0, Γ and
Γ0|fn(vi) " vi : si and ‖si‖ <∞ and q �→ [p; ε] ∈ μ then q : S ∈ Γ0, Γ .

3. dom(μ) = dom(Γ0, Γ) = μ-reach(dom(Γ)).

4. For every U, V ⊆ dom(Γ) with U∩ V = ∅ we have μ-reach(U)∩μ-reach(V) = ∅.

In words, condition (1) states that in any pair of peer endpoints, one queue is al-
ways empty. This condition corresponds to half-duplex communication, whereby
it is not possible to send messages over one endpoint before all pending messages
from that endpoint have been read. Condition (2) states that the content of the
queue associated with an endpoint is consistent with the type of the endpoint,
that all messages in a queue have a type with finite weight, and that the residual
type of an endpoint after all of the enqueued messages are received is dual of the
type of its peer. Condition (3) states that all objects in the heap are reachable
from the roots. Since the root pointers will be distributed linearly among the
processes in the system, this means that there are no leaks. Finally, condition (4)
says that every object in the heap is reachable from exactly one root, ensuring
process isolation. Now we formalize the notion of well-typed system.

Definition 4.2 (well-typed system). We say that the system μ � P is well
typed under Γ0; Γ , written Γ0; Γ " μ � P , if Γ0; Γ � μ and Γ " P .

We conclude this section by stating the two main results: well-typedness of sys-
tems is preserved by reductions and well-typed processes are well behaved. The
proof of Theorem 4.1 relies on the finite-weight restriction on the type of mes-
sages for ensuring that no cycles are generated in the heap.

Theorem 4.1 (subject reduction). Let Γ0; Γ " μ � P and μ � P −→ μ′ � P ′.
Then Γ ′0; Γ

′ " μ′ � P ′ for some Γ ′0 and Γ ′.

Theorem 4.2 (soundness). If " P then P is well behaved.

Polymorphic Types for Leak Detection in a Functional Language 97

5 Related Work

This work is the convergence point of several lines of research, including the
study and development of Singularity OS [9,10], the formalization of copyless
messaging as a communication paradigm [1,2], the development of type systems
for session-oriented functional languages [6], and polymorphic session types [4].
The fact that a linear type system is insufficient for preventing memory leaks in
copyless messaging was first pointed out in [1,11]. In particular, in [1] and later
in [2] we have put forward the idea of type weight as the characteristic quantity
that allows us to discriminate between safe and unsafe messages. The main limit
of the notion of type weight in [1,2] is that it is defined for endpoint types only,
for which the weight is entirely determined by the structure of types. In this work
we have shown that this is not always the case. Our motivation for studying the
extension of the technique developed in [1,2] to a functional language is twofold:
first of all, [6] already presents an elegant type system for such a language, even
though [6] does not consider explicit memory management. Second, the Sing#

programming language used for the development of Singularity OS includes fea-
tures such as first-class and anonymous functions, which are commonly found
in functional languages. In this setting, the idea of having functions as messages
turns out to be a natural one. Another major difference between the present
work and [6] is that we develop a truly polymorphic type system in the style
of [12], while [6] only considers monomorphic types except for communication
primitives which benefit from a form of ad hoc polymorphism. In this sense,
the present work constitutes also a smooth extension of the type system in [6]
with ML-style polymorphism. Interestingly, the polymorphic type of the open

primitive crucially relies on dualized endpoint type variables, which were intro-
duced in [4] for totally different reasons. Note also that [6] introduces a notion
of “size” for session types that may be easily confused with out notion of type
weight. In [6], the size estimates the maximum number of enqueued messages
in an endpoint and it is used for efficient, static allocation of endpoints with
finite-size type. Our weights are unrelated to the size of queues and concern the
length of chains of pointers involving queues.

6 Conclusions and Future Work

The type language we have developed is a relatively simple variant of that re-
quired for ML-style functional languages. Many features that are practically rel-
evant can be added without posing substantial issues. For instance, it is feasible
to devise a subtyping relation it in the style of [6] whereby unlimited functions
can be used in place of linear ones (t → s ≤ t w� s). Subtyping can also take
into account weights, in the sense that it is safe to use a “lighter” function where
a “heavier” function is expected (t w� s ≤ t w′� s if w ≤ w′). It is also easy
to equip endpoint types with the dual constructs T ⊕ S and T + S for denoting
internal and external choices driven by boolean values.

The finite-weight restriction on the type of messages prevents the formation
of cycles in the heap. In the context of Singularity OS, this restriction seems

98 V. Bono, L. Padovani, and A. Tosatto

to be reasonable since objects allocated in the exchange heap are managed by
means of reference counting which cannot handle cyclic structures.

The type system we have presented (Table 5) is not syntax-directed and there-
fore leaves room for a fair amount of “guessing”, in particular with respect to the
introduction of type variables in types and weights. An open question is whether
it is feasible to devise a fully automated type and weight inference algorithm that
is capable of inferring the most general type of arbitrary expressions.

Acknowledgments. This work has been partially supported by MIUR PRIN
2010-2011 CINA. The authors are grateful to the anonymous referees for their
comments.

References

1. Bono, V., Messa, C., Padovani, L.: Typing Copyless Message Passing. In: Barthe, G.
(ed.) ESOP 2011. LNCS, vol. 6602, pp. 57–76. Springer, Heidelberg (2011)

2. Bono, V., Padovani, L.: Typing Copyless Message Passing. Logical Methods in
Computer Science 8, 1–50 (2012)

3. Bono, V., Padovani, L., Tosatto, A.: Polymorphic Types for Leak Detection in a
Session-Oriented Functional Language (2013),
http://www.di.unito.it/~padovani/Papers/BonoPadovaniTosatto13.pdf

4. Gay, S.: Bounded Polymorphism in Session Types. Mathematical Structures in
Computer Science 18(5), 895–930 (2008)

5. Gay, S., Hole, M.: Subtyping for Session Types in the π-calculus. Acta Informat-
ica 42(2-3), 191–225 (2005)

6. Gay, S., Vasconcelos, V.T.: Linear Type Theory for Asynchronous Session Types.
Journal of Functional Programming 20(01), 19–50 (2010)

7. Honda, K.: Types for Dyadic Interaction. In: Best, E. (ed.) CONCUR 1993. LNCS,
vol. 715, pp. 509–523. Springer, Heidelberg (1993)

8. Honda, K., Vasconcelos, V.T., Kubo, M.: Language Primitives and Type Disci-
plines for Structured Communication-based Programming. In: Hankin, C. (ed.)
ESOP 1998. LNCS, vol. 1381, pp. 122–138. Springer, Heidelberg (1998)

9. Hunt, G., Larus, J., Abadi, M., Aiken, M., Barham, P., Fähndrich, M., Hawblitzel,
C., Hodson, O., Levi, S., Murphy, N., Steensgaard, B., Tarditi, D., Wobber, T., Zill,
B.: An Overview of the Singularity Project. Technical Report MSR-TR-2005-135,
Microsoft Research (2005)

10. Hunt, G.C., Larus, J.R.: Singularity: Rethinking the Software Stack. SIGOPS Op-
erating Systems Review 41, 37–49 (2007)

11. Villard, J.: Heaps and Hops. PhD thesis, Laboratoire Spécification et Vérification,
ENS Cachan, France (2011)

12. Wright, A.K., Felleisen, M.: A syntactic approach to type soundness. Information
and Computation 115(1), 38–94 (1994)

http://www.di.unito.it/~padovani/Papers/BonoPadovaniTosatto13.pdf

Passive Testing

with Asynchronous Communications�

Robert M. Hierons1, Mercedes G. Merayo2, and Manuel Núñez2

1 Department of Information Systems and Computing, Brunel University
Uxbridge, Middlesex, UB8 3PH United Kingdom

rob.hierons@brunel.ac.uk
2 Departamento de Sistemas Informáticos y Computación

Universidad Complutense de Madrid, Madrid, Spain
mgmerayo@fdi.ucm.es, mn@sip.ucm.es

Abstract. Testing is usually understood to involve the tester interact-
ing with the studied system by supplying input and observing output.
However, sometimes this active interaction is not possible and testing be-
comes more passive. In this setting, passive testing can be considered to
be the process of checking that the observations made regarding the sys-
tem satisfy certain required properties. In this paper we study a formal
passive testing framework for systems where there is an asynchronous
communications channel between the tester and the system. We con-
sider a syntactic definition of a class of properties and provide a semantic
representation, as automata, that take into account the different obser-
vations that we can expect due to the assumption of asynchrony. Our
solution checks properties against traces in polynomial time, with a low
need for storage. Therefore, our proposal is very suitable for real-time
passive testing.

1 Introduction

Testing is widely used to increase the reliability of complex systems. Tradition-
ally, testing of software had a weak formal basis, in contrast with testing of
hardware systems where different formalisms and formal notations were used
from the beginning [23,10]. However, it has been recognised that formalising the
different aspects of testing of software is very beneficial [7]. The combination of
formal methods and testing is currently well understood, tools to automate test-
ing activities are widely available, there are several surveys on the field [14,13],
and industry is becoming aware of the importance of using formal approaches [8].

Usually, testing consists of applying stimuli (inputs) to the system and decid-
ing whether the observed reactions (outputs) are those expected. However, we
might be required to assess a particular system but without having access to it.
The reasons for these limitations might be due to security issues or because the

� Research partially supported by the Spanish projects TESIS and ESTuDIo
(TIN2009-14312-C02 and TIN2012-36812-C02) and the UK EPSRC project Test-
ing of Probabilistic and Stochastic Systems (EP/G032572/1).

D. Beyer and M. Boreale (Eds.): FMOODS/FORTE 2013, LNCS 7892, pp. 99–113, 2013.
c© IFIP International Federation for Information Processing 2013

100 R.M. Hierons, M.G. Merayo, and M. Núñez

system is running 24/7 and our interaction might produce undesirable changes in
the associated data. In these situations, testing can still play a role, but becomes
more passive since interaction will be replaced by observation. Formal passive
testing is already a well established line of research and extensions of the original
frameworks [21,4,2] have dealt with issues such as security and time [24,22,1].
Essentially, in passive testing we have a property and we check that the trace
being observed satisfies that property. Ideally, we want the process of checking
whether the property is satisfied to be quick and to take very little storage since
this can allow passive testing to occur in real-time. The application of passive
testing in real-time has an important benefit: a detected error can be notified to
the operators of the system almost immediately and they can then take appro-
priate measures. If the trace needs to be saved and processed off-line, then the
time between the detection of the error and the corresponding notification will
significantly increase.

One possible approach to work with properties and traces is to represent the
property P as an automatonM(P) such that a trace satisfies P if and only if it is
not a member of the language defined by M(P): it does not reach a final (error)
state of M(P). If M(P) is deterministic then the process of checking whether
a trace satisfies P takes linear time and is an incremental process: every time
we observe a new input or output we simply update the state of M(P). Even
if M(P) is non-deterministic, the process of checking whether a trace satisfies
P takes time that is linear in the size of M(P) and the length of the trace and
the process is still incremental. This makes such an automaton based approach
desirable if we can find efficient ways of mapping properties to automata.

Previous work on passive testing has assumed that the monitor that observes
and checks the behaviour of the System Under Test (SUT) observes the actual
trace produced. However, the monitor might not directly observe the interface of
the SUT and instead there may be an asynchronous channel/network between
the monitor and the SUT. Where this is the case, the trace observed by the
monitor might not be the one produced by the SUT: input is observed before
it is received by the SUT and output is observed after it is sent by the SUT.
Suppose, for example, that the monitor observes the trace ?i?i!o in which ?i is
an input and !o is an output. In this case it is possible that the SUT actually
produced either ?i!o?i or !o?i?i and that the observation of ?i?i!o was due to the
delaying of output. Thus, if we have properties that the SUT should satisfy and
we directly apply them in such a context then we may obtain false positives or
false negatives. We therefore require new approaches to passive testing in such
circumstances and in this paper we focus on the case where the asynchronous
channels are first in first out (FIFO).

There are several ways of applying passive testing when observations are
through FIFO channels. One approach creates a model of our property and
adds queues to this. However, the addition of queues can lead to the model re-
quiring more storage space. In particular, if the queues are not bounded then it
leads to there being an infinite number of states while if there is a bound on the
queue length then the number of states increases exponentially with this bound.

Passive Testing with Asynchronous Communications 101

An alternative is to transform the trace ρ observed to form an automaton Mρ

that represents all traces that might lead to ρ being observed where there is asyn-
chronous communications. However, under this approach we have to analyse the
entire, potentially very long, trace that has been observed and the monitor has
to store this. This approach thus mitigates against real-time uses since it can
significantly increase the storage and processing requirements. In this paper we
explore a third alternative, in which for a property P we produce an automaton
A(P) such that we check whether a trace ρ observed is a member of the language
defined by A(P).

We are not aware of previous work on passive testing where there is an asyn-
chronous communications channel between the system and the monitor. In con-
trast, there has been some work on active testing and several approaches have
appeared in the literature for models where there is a distinction between in-
puts and outputs [11,20,25,12]. Passive testing is a monitoring technique and as
such it is related to runtime verification since they share the same goal, checking
the correctness of a system without interacting with it, but use different for-
malisms and methodologies. In runtime verification it is not usual to distinguish
between inputs and outputs, since their observation makes them events of the
same nature, and therefore it is difficult to compare the work from that area
with ours. While some work has investigated asynchronous runtime monitoring,
the problems considered in this context are different: this line of work does not
distinguish between input and output and does not explore potential reorderings
of traces. Instead, it looks at the situation in which the monitor and system do
not synchronise on actions: actions engaged in by the system might instead be
recorded and analysed later, with a compensation phase being used to undo any
later actions if an error is found [5].

The rest of the paper is structured as follows. In Section 2 we introduce
notation to define systems and traces that will be used throughout the paper.
Section 3 introduces the notion of an ideal that will be used in creating automata
from observations. Section 4 is the bulk of the paper and presents how properties
can be translated into automata and provides our theory to check traces against
properties. Finally, in Section 5 we present our conclusions and provide some
lines for future work.

2 Preliminaries: Systems and Observations

In this section we introduce the basic notion used in this paper to define systems
as well as concepts associated with the traces that a system can perform and
with the traces that a monitor can actually observe in an asynchronous setting.

Definition 1. An input-output transition system (IOTS) M = (Q, I,O, T, qin)
is a tuple in which Q is a countable set of states, qin ∈ Q is the initial state, I is
a countable set of inputs, O is a countable set of outputs, and T ⊆ Q×(I∪O)×Q
is the transition relation. A transition (q, a, q′) ∈ T means that from state q it is
possible to move to state q′ with action a ∈ I ∪O. We use the following notation
concerning the performance of (sequences of) actions.

102 R.M. Hierons, M.G. Merayo, and M. Núñez

– Act = I ∪O is the set of actions.
– If (q, a, q′) ∈ T , for a ∈ Act, then we write q a−−→ q′ and q a−−→ .

– We write q
σ

==⇒ q′ for σ = a1 . . . am ∈ Act∗, with m ≥ 0, if there exist
q0, . . . , qm, q = q0, q

′ = qm such that for all 0 ≤ i < m we have that

qi
ai+1−−−−→ qi+1. Note that q

ε
==⇒ q, where ε is the empty sequence.

– If there exists q′ such that qin
σ

==⇒ q′ then we say that σ is a trace of M
and we write M

σ
==⇒ . We let L(M) denote the set of traces of M .

We have an asynchronous setting and, therefore, we do not have to consider only
the traces that can be performed by a system but also how these traces can be
observed. Intuitively, if a system performs a certain trace then we can observe
a variation of this trace where the outputs appear later than they were actually
performed. Next we formally define this idea and given a system M and a trace
σ we let L(σ) denote the set of traces that might be observed by a monitor if
M produces trace σ and communications between the monitor and the SUT are
asynchronous and FIFO.

Definition 2. Let I and O be sets of inputs and outputs, respectively, and σ, σ′ ∈
Act∗ be sequences of actions. We say that σ′ is an observation of σ, denoted by
σ � σ′, if there exist sequences σ1, σ2 ∈ Act∗, !o ∈ O and ?i ∈ I such that
σ = σ1!o?iσ2 and σ′ = σ1?i!oσ2. We let L(σ) denote the set of traces that can
be formed from σ through sequences of transformations of the form �, that is,
L(σ) = {σ′|σ �∗ σ′}, where �∗ represents the repeated application of �. We
overload this to say that given an IOTS M , L(M) = ∪σ∈L(M)L(σ) is the set
of traces that might be observed when interacting with M through asynchronous
FIFO channels.

Example 1. Assume that the SUT has produced the trace σ =?i1!o1!o2?i2!o1.
Due to the asynchronous nature of the system, the monitor might observe any
of the traces in the set L(σ) = {?i1!o1!o2?i2!o1, ?i1!o1?i2!o2!o1, ?i1?i2!o1!o2!o1}.

3 Sets of Events from Observations and Ideals

In line with previous work in formal passive testing [2], we will consider properties
of the form (σ,Oσ) for σ ∈ Act∗ and Oσ ⊆ O. Such a property says that if the
SUT produces the sequence σ then the next output must from the set Oσ. It is
straightforward to devise an automaton M(P) that accepts only the traces that
do not satisfy such a property P : we defineM(P) such that it accepts the regular
language Act∗{σ}(Act\Oσ)Act∗. It is easy to check thatM(P) accepts a trace ρ
if and only if ρ does not satisfy this property: ρ contains a subsequence that has
σ followed by an action that is not in Oσ. It is well known that an automaton
that represents a regular expression can be produced in quadratic time [3]. This
process can be further improved to achieve sub-quadratic complexity and can be
efficiently parallelised to work in O(log(|σ|)) time [9]. Such an automatonM(P)
has O(|σ|) states and O(|σ| · log(|σ|)2) transitions [18]. In the next section we
adapt the above approach for the case where communications are asynchronous.

Passive Testing with Asynchronous Communications 103

�������	

?i

��
�������	

!o

��

?i ���������	 ?i��

Fig. 1. An IOTS M such that L(M) is not regular

Before outlining our solution, we briefly comment on some alternatives. Pre-
vious work has described a delay operator that takes a trace σ of an IOTS and
returns the set of traces that might be observed if the SUT produces σ and inter-
acts asynchronously through FIFO channels with its environment [19]. However,
the delay operator cannot be applied directly since it applies to a single trace
rather than an automaton M(P). While it has been shown how a test purpose
can be adapted to incorporate the delay into the verdict [25], this approach as-
sumes that the tester waits for output before sending the next input and so does
not apply input in a state where output can be produced. Since the input is not
supplied by the tester in passive testing, we cannot make such an assumption.
We might instead aim to define a general method that takes an IOTS M (with
finite sets of states and transitions) and produces IOTS M ′ (with finite sets of
states and transitions) with L(M ′) = L(M). If we can achieve this then M ′ can
be used. However, the following shows that there is no such general method.

Proposition 1. Given an IOTS M with finite sets of states and transitions,
there may be no IOTS M ′ with finite sets of states and transitions such that
L(M ′) = L(M).

Proof. An IOTS with finite sets of states and transitions defines a regular lan-
guage so it is sufficient to find some such M where L(M) is not a regular lan-
guage. Let M be the IOTS with three states shown in Figure 1 (the initial state
is represented by the leftmost vertex). We will use proof by contradiction, as-
suming that L(M) is a regular language. Thus, since L(M) is regular and I∗O∗

is regular we have that L(M)∩ (I∗O∗) is regular. However, L(M)∩ (I∗O∗) con-
tains all sequences of the form of n inputs followed by n or fewer outputs and
this is not a regular language. This provides a contradiction as required.

While this result shows that there is no general method that takes a property P
defined by an IOTS M(P) with finite sets of states and transitions and returns
a suitable property for use when communications are asynchronous, we will see
in the next section that we can take advantage of the structure of the properties
we consider. First we will show how, for trace σ, we can produce an automaton
AT (σ) that gives the set of traces that might be observed if the SUT produces σ.
Since we are applying passive testing, a trace σ of interest might not be the start
of the overall trace observed and so we will then adapt AT (σ) to produce the
automaton A(σ,Oσ) that will be used.

104 R.M. Hierons, M.G. Merayo, and M. Núñez

Given a sequence σ, we will define a partial order(on the inputs and outputs
in σ to represent which actions must be performed before other ones if the SUT
produces σ. In order to distinguish between repeated actions in the trace, events
are constructed from actions by labelling each action in σ with the occurrence
of the symbol in the trace.

Definition 3. Let σ = a1 . . . an ∈ Act∗ be a sequence of actions. We let E(σ)
denote the set of events of σ, where e = (ai, k) belongs to E(σ) if and only if
there are exactly k − 1 occurrences of ai in a1 . . . ai−1. This says that the ith
element of σ is the kth instance of ai in σ.

Example 2. Consider the trace σ =?i1!o1!o2?i2!o1. The corresponding set of
events is E(σ) = {(?i1, 1), (!o1, 1), (!o2, 1), (?i2, 1), (!o1, 2)}.

Definition 4. Let σ ∈ Act∗ be a sequence of actions. Given two events ei =
(ai, ki) and ej = (aj , kj) belonging to E(σ), we write ei (ej if either i = j or
i < j and one of the following conditions hold: ai and aj are inputs, or ai and
aj are outputs, or ai is an input and aj is an output.

The first two cases in the definition of (result from channels being FIFO. The
last case results from the observation of outputs being delayed, while an input
is observed before it is received by the SUT. Essentially, (ai, ki) ((aj , kj) does
not hold for i < j if ai is an output and aj is an input since in this case it is
possible that the observation of output ai is delayed until after input aj has been
sent. Given a trace σ ∈ Act∗ it is straightforward to prove that (E(σ),() is a
partially ordered set. Next we introduce the notions of an ideal and anti-chains
of a set of events.

Definition 5. Let σ ∈ Act∗ be a sequence of actions and E(σ) be the set of its
events, possibly annotated to avoid repetitions. A set I ⊆ E(σ) is said to be an
ideal of (E(σ),() if for all ei, ej ∈ E(σ), if ei (ej and ej ∈ I then ei ∈ I.
An ideal I is a principal ideal if there is some ej such that I contains only ej
and all elements below it under (, that is, I = {ei ∈ E(σ)|ei (ej}. Finally,
a set E′ ⊆ E(σ) is an anti-chain if no two different elements of E′ are related
under (.

The essential idea is that if the SUT produces σ and ei is a maximal element of
ideal I, then I includes all events that must be observed before ei is observed
by the monitor.

Example 3. Consider again the trace σ =?i1!o1!o2?i2!o1. We have that the fol-
lowing sets of events I1 = {(?i1, 1), (!o1, 1), (!o2, 1)}, I2 = {(?i1, 1), (?i2, 1)} and
I3 = {(?i1, 1), (!o1, 1), (?i2, 1)} are ideals of (E(σ),(). However, only I1 and I2
are principal ideals. The ideal I3 contains the events (!o1, 1) and (?i2, 1) that
are not related under (, therefore, I3 is not a principal ideal. Finally, the sets
E1 = {(!o1, 1), (?i2, 1)} and E2 = {(!o2, 1), (?i2, 1)} are anti-chains of (E(σ),().

Next we present an alternative characterisation of the notion of ideal that shows
that an ideal is defined by its maximal (under () elements.

Passive Testing with Asynchronous Communications 105

Lemma 1. Let σ ∈ Act∗ be a sequence of actions. We have that I ⊆ E(σ) is
an ideal if and only if one of the following conditions holds:

– I contains an input ai and all earlier inputs;
– I contains an output aj and all earlier inputs and outputs; or
– I contains an input ai, an output aj, all inputs before ai, and all inputs and

outputs before aj.

The following classical result [6] relates ideals and anti-chains.

Proposition 2. The set of ideals is isomorphic to the set of anti-chains, by
associating with every anti-chain E′ the ideal which is the union of the principal
ideals generated by the elements of E′. Vice versa, the anti-chain corresponding
to a given ideal I is the set of maximal elements of I.

The following result provides a measure, in the worst case, on the number of
ideals contained in a set of events. This result will be relevant since it will be
used to calculate the complexity of the algorithm that computes the automaton
associated with a certain property P .

Proposition 3. Let σ ∈ Act∗ be a sequence of actions with length m. There are
O(m2) ideals in E(σ).

Proof. By Proposition 2 we know that the number of ideals is the same as the
number of anti-chains. However, we also know that any two inputs in E(σ) are
related under (. Similarly, any two outputs in E(σ) are related under (. Thus,
an anti-chain can have at most two elements (one input and one output) and so
there are O(m2) anti-chains. The result therefore holds.

An ideal I is a set of elements from E(σ) such that all ‘earlier’ elements, under
(, are contained in I. Ideal I of (E(σ),() is therefore one possible set of
events that might be observed, as the prefix of a trace from L(σ), if the SUT
produces σ. Thus, an ideal I defines a set of events in one or more prefixes of a
trace from L(σ). Similarly, the events in a prefix of a trace from L(σ) form an
ideal of E(σ,(). As a result, we can reason about prefixes of traces in L(σ) by
considering the ideals of (E(σ),().

4 Creating Automata for Properties

In this section we show how the ideals associated with a certain trace can be used
to construct appropriate automata. More specifically, given a sequence of actions
σ, we will use the ideals of (E(σ),() to represent states of a finite automaton
AT (σ) that accepts the set of sequences in L(σ). We will study properties of
these automata and the time complexity of using them in passive testing.

Definition 6. Given non-empty σ ∈ Act∗ we let AT (σ) denote the finite au-
tomaton with state set S that is equal to the set of ideals of (E(σ),(), alpha-
bet Act, initial state {} and the following set of transitions: given ideal I and
a ∈ Act, there is a transition t = (I, a, I ′) for ideal I ′ if and only if I ′ = I∪{a}.
In addition, AT (σ) has one final state, which is the ideal E(σ).

106 R.M. Hierons, M.G. Merayo, and M. Núñez

I0

I1 I2 I5

I3 I4 I6 I7

?i1

?i2 !o1

!o2?i2

!o2 ?i2 !o3

!o1

I0 = {}
I1 = {?i1}
I2 = {?i1, ?i2}
I3 = {?i1, !o1}
I4 = {?i1, !o1, !o2}
I5 = {?i1, !o1, ?i2}
I6 = {?i1, !o1, !o2, ?i2}
I7 = {?i1, !o1, !o2, ?i2, !o3}

Fig. 2. Automaton AT (σ) for the trace σ =?i1!o1!o2?i2!o3

A finite automaton A is essentially an IOTS with finite sets of states, inputs
and outputs and a set of final states. Then A defines the regular language L(A)
of labels of walks from the initial state of A to final states of A. Note that an
IOTS with finite sets of states and actions can be seen as a finite automaton
where all the states are final.

Example 4. Let σ =?i1!o1!o2?i2!o3 be a trace. Figure 2 depicts the automaton
AT (σ) that accepts the set of sequences in L(σ).

We have that AT (σ) defines the set of behaviours, L(σ), that can be observed
if the SUT produces σ.

Proposition 4. Given σ ∈ Act∗ we have that L(AT (σ)) = L(σ).

Proof. We will prove a slightly stronger result, which is that ρ labels a walk from
the initial state of AT (σ) if and only if ρ is a prefix of a sequence in L(σ).

We first prove the left to right implication by induction on the length of ρ.
The result clearly holds for the base case in which ρ is the empty sequence. Now
assume that it holds for all sequences of length less than k, k ≥ 1, and ρ has
length k. Thus, ρ = ρ1a for some a ∈ I∪O. By the inductive hypothesis we have
that ρ1 is a prefix of a sequence in L(σ). In addition, by the definition of AT (σ),
we have that the set of events in ρ1 forms an ideal I1 and I1 ∪ {a} is an ideal.
Thus, since I1 ∪ {a} is an ideal, there does not exist b ∈ E(σ) \ (I1 ∪ {a}) such
that b(a. By the definition of L(σ) we have that ρ1 can be followed by a and
so ρ1a is a prefix of a sequence in L(σ) as required.

We now prove the right to left implication, again, by induction on the length
of ρ. The result clearly holds for the base case in which ρ is the empty sequence.
Now assume that it holds for all sequences of length less than k, k ≥ 1, and ρ has
length k. Thus, ρ = ρ1a for some a ∈ I∪O. By the inductive hypothesis we have
that ρ1 is the label of a walk of AT (σ) and assume that this walk reaches a state
representing ideal I1. By the definition of L(σ) there cannot exist an action in
σ that is not in ρ1 and that must be observed before a and so precedes a under(.

Passive Testing with Asynchronous Communications 107

Algorithm 1. Producing A(σ,Oσ)

1: Input (σ,Oσ).
2: Let A(σ, Oσ) = AT (σ), let s0 denote the initial state of A(σ, Oσ), and let sf denote

the final state of A(σ, Oσ).
3: For all a ∈ Act add the transition (s0, a, s0). These transitions ensure that we are

considering all possible starting points in a trace ρ′ observed.
4: For every state s of A(σ, Oσ) that represents an ideal that does not contain output

and for all !o ∈ O, add the transition (s, !o, s). These transitions correspond to the
possibility of earlier output being observed after input from σ.

5: For every state s of A(σ, Oσ) that represents an ideal that contains all of the input
from σ and for all ?i ∈ I , add the transition (s, ?i, s). These transitions correspond
to the possibility of later input being observed before some of the output from σ.

6: Add a new state se to A(σ,Oσ) and for all !o ∈ O\Oσ add the transition (sf , !o, se).
If we have observed the input and output from σ and the next output is not from
Oσ then go to the final (error) state.

7: Make se the only final state of A(σ, Oσ).
8: Complete A: if there is no transition from a state s 	= se with label a ∈ Act then

add the transition (s, a, s0).
9: Output A(σ, Oσ).

Thus, I2 = I1 ∪ {a} is an ideal and so AT (σ) contains a transition from the
state representing I1 to the state representing I2 with label a, concluding that
ρ = ρ1a is the label of a walk of AT (σ) as required. The result therefore follows.

We now have to adapt AT (σ) to take into account two points: σ might be pre-
ceded by other actions and the observation of earlier outputs might be delayed;
and σ might be followed by later actions and the outputs from σ might not be
observed until after later inputs. Algorithm 1 achieves this.

Example 5. Let σ =?i1!o1!o2?i2!o3 and consider the automaton AT (σ) depicted
in Figure 2. Given a set of outputs Oσ, Figure 3 shows the automaton A(σ,Oσ)
constructed by using Algorithm 1.

Before proving that Algorithm 1 returns the correct result, we define what it
means for an automaton A to be sound: if the SUT produces a trace that does
not satisfy property P then the trace observed by the monitor is in L(A).

Definition 7. Let P be a property and A be a finite automaton. We say that A
is sound for P if and only if whenever the SUT produces a trace σ1 that does not
satisfy property P and the trace σ′1 ∈ L(σ1) is observed we have that σ′1 ∈ L(A).

This essentially corresponds to the automaton not being able to produce false
positives: if the SUT fails property P , then the automaton will produce an
‘alarm’. The automaton produced by Algorithm 1 is sound.

Theorem 1. Given property P = (σ,Oσ), the automaton A(P) returned by
Algorithm 1 when given P is sound for P .

108 R.M. Hierons, M.G. Merayo, and M. Núñez

s0

I1 I2 I5

I3 I4 I6

se I7

Act

?i1

O

Act

?i2 !o1

!o2?i2

!o2 ?i2

!o3

!o1

I

I

I

O \Oσ

I\{?i2}

O\{!o2}

Act\{?i2, !o2}

O\{!o3}

Oσ

Act\{?i2}

Fig. 3. Automaton A(σ, Oσ) for the trace σ =?i1!o1!o2?i2!o3 and a set of outputs Oσ

Proof. Recall that we label actions using their occurrence, if necessary, so that
they are unique and this labelling is preserved by the delay of output. We assume
that the SUT has produced a trace σ1 that does not satisfy P , that this led to
the observation of the trace σ′1 ∈ L(σ1) and we are required to prove that
σ′1 ∈ L(A(σ,Oσ)). Since σ1 does not satisfy P we have that σ1 = σ2σaσ3 for
some a ∈ O\Oσ. Since σ

′
1 ∈ L(σ1) we have that σ′1 = σ′2σ

′aσ′2 for some σ′, σ′2, σ
′
3

such that σ′ satisfies the following.

– σ′ starts with the first action of σ′1 that is from σ;
– σ′ may contain outputs not in σ (delayed from σ2);
– σ′ may contain inputs not in σ (due to outputs from σ or a being delayed

past inputs from σ3); and
– σ′ can have outputs from σ being delayed past inputs from σ.

By the definition of A(σ,Oσ) we have that the state of A(σ,Oσ) after σ′1 can
be the initial state of A(σ,Oσ). Further, by Proposition 4 we know that σ′ with
the extra initial outputs and final inputs removed can take A(σ,Oσ) to the final
state sf . Consider the corresponding path ρ of A(σ,Oσ).

The additional outputs in σ′ that are not in σ (and so come from σ2) are all
before the first output in σ′ that was from σ and so, by construction, we can
define a path ρ′ that includes these by adding self-loops to ρ.

Passive Testing with Asynchronous Communications 109

Similarly, the additional inputs in σ′ that are not in σ (and so come from σ3)
are all after the last input in σ′ that was from σ and so we can define a path
ρ′′ that includes these by adding self-loops to ρ′. Path ρ′′ thus takes A(σ,Oσ)
to state sf and has label σ′. The result now follows from observing that a takes
A(σ,Oσ) from state sf to the final state and this final state cannot be left.

An automaton A being sound for P denotes an absence of false positives. How-
ever, we might also want the absence of false negatives: if the SUT produces a
trace and the resultant observation is in L(A) then the trace produced by the
SUT must not have satisfied P . This is captured by the notion of exact.

Definition 8. Let P be a property and A be a finite automaton. We say that A
is exact for P if and only if whenever the SUT produces some trace σ1 and the
observed trace σ′1 ∈ L(σ1) is such that σ′1 ∈ L(A) we must have that σ1 does not
satisfy P .

The automaton A(σ,Oσ), produced by our algorithm, need not be exact for
(σ,Oσ) as the following example shows.

Example 6. Consider the property P = (?i, {!o}) and the observed trace σ′1 =
?i!o′!o which is in the language defined by the automaton A(?i, {!o}). We can
consider two examples for the trace σ1 produced by the SUT.

– σ1 =!o′?i!o and so σ1 satisfies P .
– σ1 =?i!o′!o and so σ1 does not satisfy P .

The above shows that an observation made might be consistent with both traces
that satisfy P and traces that do not. Therefore, our automata might not be
exact. Note that this is not a drawback of our theory, but a consequence of
working within a framework where the available information does not allow us
to reconstruct the trace that was originally performed by the system. Similar
situations appear in other frameworks such as when testing systems with dis-
tributed interfaces [15,16]. We are currently working on approaches that allow
us to make stronger statements regarding the failure of a property. We discuss
our preliminary ideas in the part of the next section devoted to future work.

Even though we cannot expect exactitude, we should be able to ensure that
if the observed trace is one that might have resulted from a trace of the SUT
that does not satisfy the property P then the observed trace is in L(A). This is
captured by the following notion.

Definition 9. Let P be a property and A be a finite automaton. We say that A
is precise for P if and only if whenever a trace σ′1 is in L(A) there is some trace
σ1 that does not satisfy P such that σ′1 ∈ L(σ1).

The following result shows that Algorithm 1 returns an automaton that is precise
for the considered property.

Theorem 2. Given property P = (σ,Oσ), the automaton A(P) returned by
Algorithm 1 when given P is precise for P .

110 R.M. Hierons, M.G. Merayo, and M. Núñez

Proof. Suppose that trace σ′1 is in L(A(σ,Oσ)). By definition it is sufficient to
prove that there exists some trace σ1 that does not satisfy P such that σ′1 ∈
L(σ1). Note that σ1 does not satisfy P if and only if it has a prefix that ends in
σa for some a ∈ O \Oσ.

By the construction of A(σ,Oσ), since σ
′
1 ∈ L(A(σ,Oσ)), we have that σ

′
1 has

prefix σ′2σ
′
3a such that σ′3 takes A(σ,Oσ) from state s0 to sf and a ∈ O \Oσ. In

addition, we must have that σ′3 differs from σ in only three ways:

– the addition of outputs before the outputs of σ, through self-loops in states
that correspond to ideals that contain no output;

– the addition of inputs after the inputs of σ, through self-loops in states that
correspond to ideals that contain all of the inputs from σ; and

– the delay in output from σ.

Thus, the input projection of σ′3 is the input projection of σ followed by some
sequence σ′I of inputs and the output projection of σ′3 is some sequence σ′O of
outputs followed by the output projection of σ. As a result, σ′3a ∈ L(σ′Oσσ′Ia).
Thus, σ′1 has prefix σ′2σ

′
3a such that σ′2σ

′
3a ∈ L(σ′2σ′Oσσ′Ia) for some a ∈ O \Oσ.

By definition, since σ′I contains only inputs and a is an output, we have that
L(σ′2σ′Oσσ′Ia) ⊆ L(σ′2σ′Oσaσ′I). Therefore σ′1 has prefix σ′2σ

′
3a such that σ′2σ

′
3a ∈

L(σ′2σ′Oσaσ′I) for some a ∈ O \ Oσ. Since σ
′
2σ

′
Oσaσ

′
I does not satisfy property

P , we can set σ′1 = σ′2σ
′
Oσaσ

′
I and the result follows.

By Proposition 3 we know that A(σ,Oσ) has O(|σ|2) states. In addition, we can
construct the relation(and the set of anti-chains in O(|σ|2) time. The following
is therefore clear.

Proposition 5. Given property (σ,Oσ), the process of generating the automata
A(σ,Oσ) takes O(|σ|2) time.

In passive testing we can update the current state of A(σ,Oσ) whenever we make
a new observation and thus the complexity of applying passive testing is linear in
the length of the trace that the SUT is producing. The following shows that the
process is polynomial in the length of σ, which suggests that it can be applied
in real-time since properties, and so |σ|, are usually relatively small.

Proposition 6. Given property (σ,Oσ), the process of updating the state of
A(σ,Oσ) takes O(|σ|4) time when a new input or output is observed.

Proof. At each point in the process of simulating A(σ,Oσ) with a trace we have
a current set of states. Consider that a new action a is observed and the set of
states before this is S′. We know that A(σ,Oσ) has O(|σ|2) states. Assume that
we have a list of transitions sorted by label. Using a binary search we can locate
the start of the transitions with label a in time that is of order of the logarithm
of the number of transitions and so in O(log |σ|) time. We can then determine
the set of states after a by including those that are reached from states in S′

by transitions with label a. We can find the transitions that leave states in S′

in O(|σ|2) time and for each such state we can determine in O(|σ|2) time which
states can be reached by a. Thus, the overall time complexity is of O(|σ|4) time.

Passive Testing with Asynchronous Communications 111

5 Conclusions and Future Work

Testing is widely used to increase the confidence regarding the correctness of a
system. Testing activities can be formalised when the tester has a formal defini-
tion of the properties that the system must have. Testing is usually interactive:
the tester provides inputs to the SUT, receives outputs, and determines whether
the outputs match the expected result. However, in some situations the tester
cannot interact with the SUT and testing becomes passive. In this case, passive
testing techniques replace classical (active) testing ones. In this paper we studied
a formal methodology to passively test systems where communication is asyn-
chronous. This is a topic that, as far as we know, has received little attention in
the formal passive testing community.

In order to use our methodology in real-time, increasing performance and
decreasing the needs for storage, we transform properties into automata that
approximately capture the original property. We proved that in general an asyn-
chronous framework it is not possible to construct a finite automata that ac-
cepts only the traces matching the original property. In order to construct our
automata we used a classical mathematical structure, called ideals, so that the
observation of an action changes the current state of the automaton from one of
the associated ideals to another. We proved that the main operations, updating
automata and checking traces, can be done in polynomial time, reinforcing the
suitability of our methodology for use in real-time. We also defined notions of
soundness and precision. The automaton A is sound for property P if whenever
the SUT produces a trace that does not satisfy P , the observation made leads
the automaton A to a final state (indicating a failure). The automaton A is
precise for property P if whenever the observation made leads the automaton
A to a final state (indicating a failure) we must have that the observation was
one that could be made by the SUT failing to satisfy P . It transpired that our
approach returned an automaton that is sound and precise.

This paper is the first step towards a complete theory of formal passive testing
of systems with asynchronous communication. A first line to continue our work
consists in drawing stronger conclusions from our observations. As we previously
said, we are working on two lines. The first one considers different classes of prop-
erties. We have started to define simple properties that refer only to sequences
of inputs or only to sequences of outputs and ignore the other observations. For
example, “if we see !o then the next output must be !o′.” Other types of prop-
erties, inspired by classical work on temporal logics, are “a sequence eventually
happens”, “a sequence never happens” and “if a sequence happens, then we
shouldn’t observe a certain action”.

A second line of work considers the inclusion of time information taking as
initial step our work on testing in the distributed architecture with time informa-
tion [17]. As discussed above, in general we cannot be certain that a particular
sequence σ was produced by the SUT even if we observe a trace in L(σ). How-
ever, suppose that we know that there can be at most time tm between an output
being produced and it being observed and between an input being observed and
it being received by the SUT. Further, suppose that if the SUT is in a state

112 R.M. Hierons, M.G. Merayo, and M. Núñez

where it can produce output (possibly after a sequence of internal transitions)
and it does so then this is within time to. Then, if time 2tm + to passes without
any observations being made then we know that the SUT must have reached a
quiescent state: one from which it cannot produce output without first receiving
input. If quiescence is observable then sometimes we can know that a property
(σ,Oσ) has not been satisfied. There is additional scope to strengthen the con-
clusions that can be made. For example, if we have property P = (σ,Oσ) where
σ is an input sequence and we observe σσ′!o for input sequence σ′ and output
!o �∈ Oσ then we can conclude that the SUT failed P if there is a sufficient gap
between the sending of the last input in σ and the output !o being observed.

A third line of work considers more sophisticated mechanisms to improve
the framework. First, we could have probabilities associated with swapping the
order of actions and reasoning about how likely it is that an observation resulted
from a property failing. Another improvement would be to consider stochastic
information regarding delays. That is, probability distributions, rather than fix
bounds, would be used to decide when we should expect that an action will not
be observed in the future.

Finally, we would like to create a tool to support our theory and analyse
realistic use cases to assess the applicability and usefulness of our framework.

Acknowledgements. We would like to thank the reviewers of the paper for
the careful reading.

References

1. Andrés, C., Merayo, M.G., Núñez, M.: Formal passive testing of timed systems:
Theory and tools. Software Testing, Verification and Reliability 22(6), 365–405
(2012)

2. Bayse, E., Cavalli, A., Núñez, M., Zäıdi, F.: A passive testing approach based on
invariants: Application to the WAP. Computer Networks 48(2), 247–266 (2005)

3. Berry, G., Sethi, R.: From regular expressions to deterministic automata. Theoret-
ical Computer Science 48(3), 117–126 (1986)

4. Cavalli, A., Gervy, C., Prokopenko, S.: New approaches for passive testing using
an extended finite state machine specification. Information and Software Technol-
ogy 45(12), 837–852 (2003)

5. Colombo, C., Pace, G.J., Abela, P.: Safer asynchronous runtime monitoring using
compensations. Formal Methods in System Design 41(3), 269–294 (2012)

6. Dilworth, R.P.: A decomposition theorem for partially ordered sets. Annals of
Mathematics 51(1), 161–166 (1950)

7. Gaudel, M.-C.: Testing can be formal, too! In: Mosses, P.D., Nielsen, M. (eds.)
TAPSOFT 1995. LNCS, vol. 915, pp. 82–96. Springer, Heidelberg (1995)

8. Grieskamp, W., Kicillof, N., Stobie, K., Braberman, V.: Model-based quality as-
surance of protocol documentation: tools and methodology. Software Testing, Ver-
ification and Reliability 21(1), 55–71 (2011)

9. Hagenah, C., Muscholl, A.: Computing epsilon-free NFA from regular expressions in
O(n · log(n)2) time. Informatique Théorique et Applications 34(4), 257–278 (2000)

Passive Testing with Asynchronous Communications 113

10. Hennie, F.C.: Fault-detecting experiments for sequential circuits. In: 5th Annual
Symposium on Switching Circuit Theory and Logical Design, pp. 95–110. IEEE
Computer Society (1964)

11. Henniger, O.: On test case generation from asynchronously communicating
state machines. In: 10th Int. Workshop on Testing of Communicating Systems,
IWTCS 1997, pp. 255–271. Chapman & Hall (1997)

12. Hierons, R.M.: The complexity of asynchronous model based testing. Theoretical
Computer Science 451, 70–82 (2012)

13. Hierons, R.M., Bogdanov, K., Bowen, J.P., Cleaveland, R., Derrick, J., Dick, J.,
Gheorghe, M., Harman, M., Kapoor, K., Krause, P., Luettgen, G., Simons, A.J.H.,
Vilkomir, S., Woodward, M.R., Zedan, H.: Using formal specifications to support
testing. ACM Computing Surveys 41(2) (2009)

14. Hierons, R.M., Bowen, J.P., Harman, M. (eds.): Formal Methods and Testing.
LNCS, vol. 4949. Springer, Heidelberg (2008)

15. Hierons, R.M., Merayo, M.G., Núñez, M.: Scenarios-based testing of systems with
distributed ports. Software - Practice and Experience 41(10), 999–1026 (2011)

16. Hierons, R.M., Merayo, M.G., Núñez, M.: Implementation relations and test gener-
ation for systems with distributed interfaces. Distributed Computing 25(1), 35–62
(2012)

17. Hierons, R.M., Merayo, M.G., Núñez, M.: Using time to add order to distributed
testing. In: Giannakopoulou, D., Méry, D. (eds.) FM 2012. LNCS, vol. 7436,
pp. 232–246. Springer, Heidelberg (2012)

18. Hromkovic, J., Seibert, S., Wilke, T.: Translating regular expressions into small
ε-free nondeterministic finite automata. Journal of Computer Systems and Sci-
ence 62(4), 565–588 (2001)

19. Huo, J.L., Petrenko, A.: On testing partially specified IOTS through lossless
queues. In: Groz, R., Hierons, R.M. (eds.) TestCom 2004. LNCS, vol. 2978,
pp. 76–94. Springer, Heidelberg (2004)

20. Huo, J., Petrenko, A.: Transition covering tests for systems with queues. Software
Testing, Verification and Reliability 19(1), 55–83 (2009)

21. Lee, D., Netravali, A.N., Sabnani, K.K., Sugla, B., John, A.: Passive testing and ap-
plications to network management. In: 5th IEEE Int. Conf. on Network Protocols,
ICNP 1997, pp. 113–122. IEEE Computer Society (1997)

22. Mammar, A., Cavalli, A., Jimenez, W., Mallouli, W., Montes de Oca, E.: Using
testing techniques for vulnerability detection in C programs. In: Wolff, B., Zäıdi,
F. (eds.) ICTSS 2011. LNCS, vol. 7019, pp. 80–96. Springer, Heidelberg (2011)

23. Mealy, G.H.: A method for synthesizing sequential circuits. Bell System Techical
Journal 34, 1045–1079 (1955)

24. Morales, G., Maag, S., Cavalli, A.R., Mallouli, W., Montes de Oca, E., Wehbi, B.:
Timed extended invariants for the passive testing of web services. In: 8th IEEE Int.
Conf. on Web Services, ICWS 2010, pp. 592–599. IEEE Computer Society (2010)

25. Simão, A., Petrenko, A.: Generating asynchronous test cases from test purposes.
Information and Software Technology 53(11), 1252–1262 (2011)

Input-Output Conformance Simulation (iocos)

for Model Based Testing�

Carlos Gregorio-Rodŕıguez, Luis Llana, and Rafael Mart́ınez-Torres

Departamento Sistemas Informáticos y Computación
Universidad Complutense de Madrid, Spain

cgr@sip.ucm.es, llana@ucm.es, rmartine@fdi.ucm.es

Abstract. A new model based testing theory built on simulation se-
mantics is presented. At the core of this theory there is an input-output
conformance simulation relation (iocos). As a branching semantics iocos
can naturally distinguish the context of local choices. We show iocos to
be a finer relation than the classic ioco conformance relation. It turns out
that iocos is a transitive relation and therefore it can be used both as
a conformance relation and a refinement preorder. An alternative char-
acterisation of iocos is provided in terms of testing semantics. Finally
we present an algorithm that produces a test suite for any specification.
The resulting test suite is sound and exhaustive for the given specifica-
tion with respect to iocos.

Keywords: Model Based Testing, Input Output Conformance Simula-
tion, Formal Methods.

1 Introduction and Related Work

Model-Based Testing (MBT) is an active research area whose goals are to in-
crease correctness and efficiency of the testing process and, at the same time,
reducing the costs, in a world of ever increasingly complex systems. From the
quite ad-hoc techniques used in seminal papers (see for instance [5]), the use
of formal methods in MBT and, in particular, behavioural models to describe
the system specification, has made it possible to develop theories, frameworks
and tools that automatically produce efficient set of test cases from a model.
This allows an effective automation of the testing process to assess whether the
system under test behaves as expected by its specification.

A key point at the core of any MBT theory is the implementation or con-
formance relation, stating whether an implementation is correct, in some sense,
with respect to a given specification. Tretmans’ input-output conformance rela-
tion (ioco) [19] is one of the most established ones. A whole MBT framework
has been developed around the ioco relation, from theory to tools [20,21,4].

� Research partially supported by the Spanish MEC projects TIN2009-14312-C02-01
and TIN2012-36812-C02-01.

D. Beyer and M. Boreale (Eds.): FMOODS/FORTE 2013, LNCS 7892, pp. 114–129, 2013.
c© IFIP International Federation for Information Processing 2013

Input-Output Conformance Simulation (iocos) for Model Based Testing 115

As a behavioural relation over labelled transition systems, ioco can be clas-
sified as a linear semantics [9], as most of the relations used in MBT are. That
means that they are essentially based on traces and that brings advantages and
drawbacks well known in process theory.

One of the disadvantages of linear semantics is the limitation to observe the
execution context, that is, the different available choices at a given point. The
simple behaviours in Figure 1 highlight this situation. 1 One of the goals guiding
our research is precisely to find a MBT theory capable of identifying the imple-
mentations conforming not only the trace executions, but also the choices in the
specification.

The starting point for our work has been inspired in basic results in process
theory: branching semantics [9] form a family of relations that can naturally
distinguish the execution context for a process. These semantics are essentially
based on simulation [13], they are easily defined by coinduction and thus coalge-
braic techniques can be applied in its study. Simulation can be characterised as
a game, there exist algorithms to compute it [16,10] and, together with bisim-
ulation [14], is a rather natural and pervasive concept that appears in many
different contexts in the literature.

However, there is not much work on MBT and simulation relations. As far
as we know the only related work is the one developed by a group at Microsoft
Research that has several publications on MBT (see for instance [24,23]). Their
framework is built on the alternating simulation relation [3,2] defined for inter-
face automata.

This paper is organized as follows: in Section 2, we introduce the formal
framework used to model behaviours and some technical definitions and nota-
tions used along the paper, including the classic ioco relation. Section 3 presents a
reasoned exposition of examples discussing what might and might not be consid-
ered a correct implementation of a given specification. This exposition highlights
differences and similarities between conformance relations based on linear and
branching semantics. These examples settle also the goals that we want to fulfil
with the formal definition of the iocos relation. We finish this section by prov-
ing iocos to be a refinement of ioco on input-output labelled transition systems.
Section 4 focuses on describing and proving the results that show iocos to be a
suitable relation for MBT. First, we provide a language for tests and formally
define the test execution of a behaviour or implementation. Then we show that
iocos can be characterised with a preorder defined in the classic style of testing
semantics [15,11]. Finally, we define an algorithm to automatically generate a
test suite from a given specification, we prove that the implementations that
pass this test suite are exactly those that are in iocos relation with the given
specification. Lastly, Section 5 summarises the goals achieved as well as some
future lines of research.

1 In Section 3 we thoroughly get into the details and use further examples to illustrate
the limitations of linear semantics.

116 C. Gregorio-Rodŕıguez, L. Llana, and R. Mart́ınez-Torres

2 Preliminaries

A common formalism used in MBT to represent not only the models but also
the implementations and even the tests are labelled transition systems. In order
to deal with input-output behaviours we are going to consider two disjoint finite
sets of actions: inputs I and outputs O. Output actions are those initiated by the
system, they will be annotated with an exclamation mark, a!, b!, x!, y! ∈ O. Input
actions are initiated by the environment and will be annotated with a question
mark, a?, b?, x?, y? ∈ I. In many cases we want to name actions in a general
sense, inputs and outputs indistinctly. We will consider the set L = I ∪ O and
we will omit the exclamation or question marks when naming generic actions,
a, b, x, y ∈ L.

A state with no output actions cannot autonomously proceed, such a state
is called quiescent. Quiescence is an essential component of the ioco theory. For
the sake of simplicity and without lost of generality (see for instance [20,18]), we
directly introduce the event of quiescence as a special action denoted by δ into
the definition of our models.

Definition 1. A labelled transition system with inputs and outputs is a 4-tuple
(S, I, O,−→) such that

– S is a set of states or behaviours.
– I and O are disjoint sets of input and output actions respectively.We define
L = I ∪O and consider a new symbol δ �∈ L for quiescence. We will consider
also the sets Lδ = L ∪ {δ} and Oδ = O ∪ {δ}.

– −→ ⊆ S × Lδ × S. As usual we write p a−−→ q instead of (p, a, q) ∈ −→ and
p a−−→ , for a ∈ Lδ, if there exists q ∈ S such that p a−−→ q. Analogously, we will
write p

a−−�→ , for a ∈ Lδ, if there is no q such that p a−−→ q. In order to allow
only coherent quiescent systems the set of transitions should also satisfy:

• if p δ−−→ p′ then p = p′. A quiescent transition is always reflexive.

• if p
o!−−−−�→ for any o! ∈ O, then p δ−−→ p. A state with no outputs is

quiescent.

• if there is o! ∈ O such that p o!−−→ , then p
δ−−�→ . A quiescent state performs

no output actions. ��

For the sake of simplicity, we will denote the set of labelled transition systems
with inputs and outputs just as LTS . In general we use p, q, p′, q′ . . . for states
or behaviours, but also i, i′, s and s′ when we want to emphasise the concrete
role of a behaviours as implementation or specification.

Without losing generality, we will consider implementations and specifications,
or, more in general, behaviours under study, as states of the same LTS 2. This
modification simplifies the coinductive definition we are going to present and the
reasoning in the proofs.

2 If we had two different LTSs , one for a specification and one for the implementation,
we could always consider the larger LTS that is the disjoint union of the original
LTSs .

Input-Output Conformance Simulation (iocos) for Model Based Testing 117

Traces play an important role gathering basic information for behaviours. A
trace is a finite sequence of symbols of Lδ. We will normally use the symbol
σ to denote traces, that is, σ ∈ L∗

δ. The empty trace is denoted by ε and we
juxtapose, σ1σ2, to indicate concatenation of traces. The transition relation of
labelled transition systems can naturally be extend using traces instead of single
actions.

Definition 2. Let (S, I, O,−→) ∈ LTS , p, q ∈ S and σ ∈ L∗
δ . We inductively

define p σ−−→ q as follows:

– p ε−−→ p
– p aσ−−→ q for a ∈ Lδ, σ ∈ L∗

δ and p′ ∈ S such that p a−−→ p′ and p′ σ−−→ q. ��

Next we introduce some definitions and notation that will be frequently used
along the paper.

Definition 3. Let (S, I, O,−→) ∈ LTS , and p ∈ S, S′ ⊆ S, and σ ∈ L∗
δ , we

define:

1. init(p) = {a | a ∈ Lδ, p
a−−→}, the set of initial actions of p.

2. traces(p) = {σ | σ ∈ L∗
δ , p

σ−−→}, the set of traces from p.
3. p after σ = {p′ | p′ ∈ S, p σ−−→ p′}, the set of reachable states from p after

the execution of trace σ.
4. outs(p) = {x | x ∈ Oδ, p

x−−→}, the set of outputs of a state p or the quiescent
symbol δ.

5. outs(S′) =
⋃

p∈S′ outs(p), the set of outputs of a set of states S′.

6. ins(p) = {x? | x? ∈ I, p x?−−→}, the set of inputs of a state p. ��

A classical requirement for the ioco relation in [20] is that implementations
should be input enabled, that means that the system is always prepared to per-
form any input action and therefore all inputs are enabled in all states. Although
this assumption maybe natural in some contexts is not so in others. For instance,
in a vending machine, a slot, for a credit card or parking ticket, can be only en-
abled if a card is not inserted; much alike, developers of graphical interfaces do
not need to consider any possible event on a window, they just code the response
for the interesting events, etc.

Moreover, in the ioco theory, while implementations must be input enabled,
specifications do not need to fulfil this requirement. So the original ioco relation is
defined between two different domains, general input-output labelled transition
systems for specifications and input enabled input-output labelled transition sys-
tems for implementations. Hence, the ioco relation is not transitive and cannot
be used as a refinement relation: once an implementation conforms a specifica-
tion, the implementation fixes all the behaviour regarding the input actions; so
there is little freedom, if any, to continue the refining process.

In our framework we do not require the implementations to be input enabled.
As usual in other testing frameworks, specifications and implementations are
expressed in the same formalism, in particular we are going to use LTSs for
both implementations and specifications.

118 C. Gregorio-Rodŕıguez, L. Llana, and R. Mart́ınez-Torres

In order to compare the original ioco relation with the conformance relation
we are going to define in next section, we have to adapt the ioco definition to
our framework.

Definition 4. Let (S, I, O,−→) ∈ LTS , the relation ioco ⊆ S × S is defined as
follows: i ioco s⇔def ∀σ ∈ traces(s) : outs(i after σ) ⊆ outs(s after σ) ��

The ioco relation we use keeps the spirit of the original in [20], but while the
original imposed implementations to be input enabled, our definition has been
extended to the more general domain of input-output labelled transition systems.
Also, the original definition used “suspension traces” (Definition 9 in [20]) while
we can consider just traces because the quiescence symbol has already been
introduced in the description of the behaviours.

3 Input-Output Conformance Simulation (IOCOS)

In this section we will present the alternative relation that we propose. We have
defined this relation according to the following criteria in mind: first, the ioco
relation is a well known and accepted relation, we want to find a refinement of
the original ioco relation while keeping as close as possible to it. Second, it should
be defined as a simulation relation, so we can benefit from the work in this field.
Finally, there should be a testing framework, similar to the ones in [1,20]. In
order to simplify the reading, we are going to mark the quiescent states as ,

these kind of nodes are shorthands for δ .

b?

x!

a?

c?

x!

a?

b? c?

x!

a?

i s

Fig. 1. i ioco s and i /iocos s

Next we are going to present some examples that motivate the definition
of iocos (Definition 5). The rationale behind the ioco definition is to serve as
an observation methodology to relate a specification and an implementation.
This methodology binds the environment to traces, the observations to output
signals, and comparison to set inclusion. Taking traces as environments prevent
to distinguish non-determinism. Looking at Figure 1, there are arguments to
discard i as a sound implementation of s: after the trace a?x!, s can react always

Input-Output Conformance Simulation (iocos) for Model Based Testing 119

to both signals b? and c?, while this is not true for i: depending on the selected
branch, i can only react to either b? or c? but not both. As we will see, simulation
tecniques provide us with necessary insight to solve this problem.

x!

a?

b?

x!

x!
y!

a?

z!

a?

b?

x! y!

i s

Fig. 2. i ioco s and i iocos s

There are two distinguised trends when dealing with specifications: the initial
semantics, where a specification sets a minimum that an implementation must
fit to be qualified as sound; and the final semantics, where specification stands
rather like a limit for implementation’s behaviour. Both are legitimate, but sub-
set relation ⊆ at Definition 4, unveils ioco clearly in this last category. We also
adopt this finality approach: any behaviour of a correct implementation must
be considered valid by the specification. Graphically, Figure 2, can summarize
this with the next idea: any subtree in the implementation is a subtree in the
specification.

x! y!

a?

x! y!

a?

z!

a?

x! y!

b?

i s

Fig. 3. i ioco s and i /iocos s

Traditionally, an objection is made to this approach: partial or even empty
implementations can be accepted as sound. In this sense we want to reach a
trade-off between the previous postulate, specification as limit, while avoid such
tricky implementations.

This subttle requirement can be formulated for input actions in the following
terms: at least one of each of input actions considered by the specification should
be implemented. In this way we can have arguments to discard i as a sound
implementation of s in Figure 3: the implementation cannot react to the input
action b?. However, limits on input actions should be applicable only to those
prompted by the specification. Beyond that, implementation should be free to
behave. This is the case of the input action b? in Figure 4.

120 C. Gregorio-Rodŕıguez, L. Llana, and R. Mart́ınez-Torres

a? x!

b?

x! y!

a?

x!

c?

x! y!

a?

x!

c?

i s

Fig. 4. i ioco s and i iocos s

Now we can give the formal definition of iocos. It reflects the ideas presented
in the examples above. Since it is a simulation relation, it cannot be defined
directly. So first we give the notion of an iocos-relation. Then the iocos relation
would be the union of all iocos-relations.

Definition 5. Let (S, I, O,−→) ∈ LTS , we say that a relation R ⊆ S × S is a
iocos-relation iff for any (p, q) ∈ R the following conditions hold

1. ins(q) ⊆ ins(p)

2. For all a? ∈ ins(q) such that p a?−−→ p′ there exists q′ ∈ S such that q a?−−→ q′

and (p′, q′) ∈ R. 3

3. For all x ∈ outs(p) such that p x−−→ p′ there exists q′ ∈ S such that q x−−→ q′

and (p′, q′) ∈ R.

We define the input-output conformance simulation as

iocos =
⋃
{R | R ⊆ S × S, R is a iocos-relation}

and we write p iocos q instead of (p, q) ∈ iocos. ��

Next technical results show that iocos is indeed a well defined preorder relation
on LTS , for this purpose we need the following lemma.

Lemma 1. Let (S, I, O,−→) ∈ LTS , the following properties hold:

– Id = S × S is a iocos-relation.
– Let R,R′ ⊆ S × S be two iocos-relations, then R ◦ R′ = {(p, r) | ∃q ∈ S :

(p, q) ∈ R ∧ (q, r) ∈ R′} is a iocos-relation. ��

Corollary 1. Let (S, I, O,−→) ∈ LTS , then iocos is a preorder. ��

The rest of this section is devoted to prove that iocos is a finer relation than
ioco. Let us start proving a simple lemma that is a direct consequence of the
definition of the function after.

3 Let us note that the Condition 2 does not imply Condition 1.

Input-Output Conformance Simulation (iocos) for Model Based Testing 121

Lemma 2. Let (S, I, O,−→) ∈ LTS , p ∈ S, a ∈ Lδ and σ′ ∈ L∗
δ, then

p after aσ′ =
⋃
{p′ after σ′|p a−−→ p′}

��

Theorem 1. Let (S, I, O,−→) ∈ LTS then iocos ⊆ ioco. That is, for any p, q ∈ S,
whenever we have p iocos q it is also true that p ioco q.

Proof. Let us consider p, q ∈ S such that p iocos q. According to Definition 4, it
suffices to prove

∀σ ∈ traces(q) : outs(p after σ) ⊆ outs(q after σ).

We will prove this by induction on length of trace σ.

Basis: σ = ε. First, outs(p after ε) = outs(p) and outs(q after ε) = outs(q), by
definition of the after function. Then outs(p) ⊆ outs(q), by Definition 5.3 of
iocos.

Induction: σ = aσ′, a ∈ Lδ . If p
a−−�→ then σ /∈ traces(p) and outs(pafterσ) = ∅.

So let us consider p′ such that p a−−→ p′. Since σ ∈ traces(q), q a−−→ . If a ∈ I
then a ∈ ins(q) and by Definition 5.2 there is q′ ∈ S such that q a−−→ q′ and
p′ iocosq′. If a ∈ Oδ, then by Definition 5.3 there is q′ ∈ S such that q a−−→ q′.
and p′ iocos q′. Hence, in any case there is q′ ∈ S such that q a−−→ q′ and
p′ iocos q′. By induction outs(p′ after σ′) ⊆ outs(q′ after σ′). Therefore:

outs(p after σ) = outs(p after aσ′) =
⋃
{outs(p′ after σ′) | p a−−→ p′} ⊆⋃

{outs(q′ after σ′) | p a−−→ p′, q a−−→ q′, p′ iocos q′} ⊆⋃
{outs(q′ after σ′) | q a−−→ q′} = outs(q after aσ′) = outs(q after σ) ��

Complementing the previous result, examples in Figures 1 and 3 show that iocos
is a strict refinement of ioco.

4 Testing Framework

After presenting the ideas behind the iocos relation and its essential basic prop-
erties, in this section, we show that iocos can indeed be a suitable relation for
MBT: for any specification a test suite can be automatically derived such that
an implementation would be correct (wrt iocos) if and only if it passes all the
tests in the test suite.

The technical approach we use to achieve these results is slightly different to
the one used by Tretmans for ioco. We first show iocos to have a characterisation
as a testing semantics, Definition 9, in the classic sense of De Nicola and Hen-
nessy. Then we define an algorithm, Definition 10, that for a given behaviour
generates a set of tests (test suite) that can discriminate the suitable imple-
mentations or refinements of that behaviour, Theorem 3. We use the testing
characterisation to prove this result.

122 C. Gregorio-Rodŕıguez, L. Llana, and R. Mart́ınez-Torres

4.1 Tests Definition and Execution

The kind of experiments we have to conduct on behaviours are called tests. Tests
would play the role of environments for the implementations.

There are two kind of choices in the tests: the one corresponding to the +
operator and the one corresponding to the ⊕ operator. The former is the usual
choice operator as in [20]. The latter, borrowed from [1], corresponds to an or
operator: in order p to pass T1⊕T2 it is enough that P passes either T1 or T2. As
in [1], the presence of these choice operators implies the ability of make copies
of the machine at intermediate points. Then it is necessary to perform the tests
on the copies, and finally to combine the results to obtain the outcome of the
overall test.

Definition 6. A test is a syntactical term defined by the following Backus-Naur
Form:

T = � | � | T1 ⊕ T2 | T1 + T2 | a;T where a ∈ Lδ

We denote the set of tests as T . ��

As usual in MBT, the environments we want to model with tests have some added
particularities that we need to consider. First, tests should be able to respond at
any moment to any possible output of the implementation under test. That is,
tests like a?;Ta? with a? ∈ I, will not be accepted as valid tests. These test should
be completed into tests like a?;Ta? +

∑
x∈Oδ

x;Tx. For the sake of simplicity we
use

∑
i∈{1,...,n} Ti as a shortcut for T1 + · · · + Tn. Analogously, o!;To! is not an

acceptable test, instead we need to consider the test o!;To! +
∑

x∈Oδ, x
=o! x;Tx.
All these conditions are reflected in the following definition.

Definition 7. Let T ∈ T be a test, T is valid iff it has one of the following
forms:

1. T = � or T = �.

2. T = a?;Ta?+
∑

x∈Oδ
x;Tx where x ∈ Oδ, a? ∈ I, and Ta?, Tx are valid tests.

3. T =
∑

x∈Oδ
x;Tx where Tx is a valid test for x ∈ Oδ.

4. T = T1 ⊕ T2 where T1 and T2 are valid tests.

We denote the set of valid tests as Tv. ��

So far we have a language for tests, and we have now to define how these tests
interacts with a behaviour and what will the result of the execution of that
experiment be. Following the ideas of Abramsky in [1] we use a predicate to
define the outcomes of the interaction between a test and the behaviour or
implementation being tested.

Input-Output Conformance Simulation (iocos) for Model Based Testing 123

Definition 8. Let (S, I, O,−→) ∈ LTS , we inductively define the predicate
pass ⊆ S × T as follows (let us assume that s ∈ S, a? ∈ I, and x ∈ Oδ)

s pass� = false
s pass� = true

s pass x;Tx =

{
true if x �∈ outs(s)∧
{s′ pass Tx|s x−−→ s′} otherwise

s pass a?;Ta? =

{
false if a? �∈ ins(s)∧
{s′ pass Ta?|s a?−−→ s′} otherwise

s pass T1 + T2 = s pass T1 ∧ s pass T2
s pass T1 ⊕ T2 = s pass T1 ∨ s pass T2

��
Let us note that for the sake of convenience the predicate pass is defined over
the whole set of tests, with a simpler structural formulation, while at the end
we will only be interested in valid tests.

Next let us show the tests that discriminate i and s in the previous examples
when i /iocoss. The test T = a?;x!; b?;� differentiates the behaviours in Figure 1.
It is passed by the specification s but not by the implementation i. Let us note
that this test is not valid. But its related valid test

T v = a?; (x!; (b?;� + x!;�+ δ;�) + δ;�) + x!;�+ δ;�

also differenciates i and s.
The next test is related to Figure 2. Since i iocos s, because of Theorem 2, we

cannot find a test that distinguishes i and s. Since the number of potential test
is infinite, it is not feasible to check all of them. In this case there is a maximal
test according to the algorithm in Definition 10. This test is the following one:

let
Ta1? = (x!� + y!;�+ z!;�+ δ;�)
Ta2? = (z!;�+ x!;� + y!;�+ δ;�)
Tb? = (b?�+ x!;�+ y!;�+ z!;�+ δ;�)

in
T = a?; (Ta1? ⊕ Ta2?) + x!;Tb? + y!;�+ z!;�+ δ;�

It is easy to check that both i pass T and s pass T . All other tests generated ac-
cording to Defintion 10 can be built from the previous test by pruning branches.

For the specification s in Figure 3 there are two maximal tests according to
Defintion 10:

let
Ta1? = (x!� + y!;�+ z!;�+ δ;�)
Ta2? = (z!;�+ x!;�+ y!;�+ δ;�)
Tb? = (x!;� + y!;�+ z!;�+ δ;�)

in
T1 = a?; (Ta1? ⊕ Ta2?) + x!;�+ y!;�+ z!;�+ δ;�
T2 = b?;Tb? + x!;�+ y!;�+ z!;�+ δ;�

It is easy to check that T1 is passed by s and i, but T2 is only passed by s.

124 C. Gregorio-Rodŕıguez, L. Llana, and R. Mart́ınez-Torres

4.2 Testing Characterisation of iocos

Now we are going to prove that the iocos relation can be characterise in terms of
testing. With the pass predicate we have defined a notion of test execution. Upon
this notion it is easy to define a testing preorder (*T) in terms of how many
tests are passed: a behaviour will be better than other if the former passes more
tests than the latter. This section is devoted to prove that this testing preorder
is precisely the inverse of the iocos relation: iocos = *T

−1, (Theorem 2).

Definition 9. Let (S, I, O,−→) ∈ LTS and p, q ∈ S, we define the preorder

p*T q iff ∀T ∈ Tv : p pass T =⇒ q pass T

��

To improve the readability, the proof of Theorem 2 (iocos = *T
−1) has been

split into Proposition 1 (*T
−1 ⊆ iocos) and Proposition 2 (iocos ⊆ *T

−1).

Proposition 1. Let (S, I, O,−→) and p, q ∈ S, if q *T p then p iocos q.

Proof. In order to prove p iocos q we must find an iocos-relation R such that
(p, q) ∈ R. Let us define

R = {(p1, p2) | p1, p2 ∈ S, p2 *T p1}

It is clear that (p, q) ∈ R. We have to prove that R is an iocos-relation. We are
going to prove it by contradiction, that is, if there is (p1, p2) ∈ R that does not
satisfy one of the conditions of the definition of an ioco-relation (Definition 5),
then p2 /*T p1. So we must find a test T ∈ Tv such that p2 pass T but p1 /pass T .
Let us distinguish the cases according to the condition that the pair (p1, p2) does
not hold:

(p1, p2) does not hold 1 in Definition 5. So there is a? ∈ ins(p2) such that a? �∈
ins(p1). Let us consider the test:

T = a?�+
∑
x∈Oδ

x;�

It is clear that p1 /pass T but p2 pass T .
(p1, p2) does not hold 2 in Definition 5. We can assume that Definition 5.1 holds.

Then, there is a? ∈ ins(p1) and p
′
1 ∈ S such that p1

a?−−→ p′1 and (p′1, p
′
2) �∈ R

for any p′2 such that p2
a?−−→ p′2. Let us consider the set P = {p′2 | p2

a?−−→
p′2, (p

′
1, p

′
2) �∈ R}. Since Definition5.1 holds, P �= ∅. For any r ∈ P there is

a test Tr such that r pass T and p′1 /pass Tr. Then let us consider the test

T = a?;
⊕
r∈P

Tr +
∑
x∈Oδ

x;�

Then p2 pass T but p1 /pass T .

Input-Output Conformance Simulation (iocos) for Model Based Testing 125

(p1, p2) does not hold 3 in Definition 5. There is x ∈ outs(p1) ∪ {δ} such that
p1

x−−→ p′1 but (p′1, p
′
2) �∈ R for any p2 such that p2

x−−→ p′2. Let us consider
the set P = {p′2 | p2

x−−→ p′2, (p
′
1, p

′
2) �∈ R}. If P = ∅, let us consider the test

T = x;� +
∑

x
=y,y∈Oδ

y;�

Then p2 pass T and p1 /pass T .
So let us suppose P �= ∅. Then for any r ∈ P there is Tr such that r pass T
and p′1 /pass Tr. So let us consider the test

T = x;
⊕
r∈P

Tr +
∑

x
=y,y∈Oδ

y;�

Then p2 pass T and p1 /pass T . ��

Proposition 2. Le (S, I, O,−→) ∈ LTS and p, q ∈ S. If p iocos q then q *T p.

Proof. Let us consider a test T ∈ Tv such that q pass T . We have to prove that
p pass T . Let us prove by structural induction on T .

T = � or T = �. If T = � then q /pass T that is a contradiction. The test � is
passed for any p ∈ S.

T = T1 ⊕ T2. By definition of q pass T then either q pass T1 or q pass T2. Let
us assume q pass T1, the other case is symmetric. By induction p pass T1,
therefore p pass T1 ⊕ T2 = T .

T =
∑

x∈Oδ
x;Tx. Let us consider the set O′ = {x | x ∈ Oδ, ∃p′ : p x−−→ p′};

O′ �= ∅, by definition of LTS . In order to prove that p pass T we have to
prove that pxpassTx for any px ∈ S such that p x−−→ px. So let us consider any
of these px. By Definition 5.3, there is qx such that q x−−→ qx and px iocos qx.
Since q pass T , qx pass Tx. Then by induction, px pass Tx. Since this is true
for any x ∈ O′ and O′ �= ∅, p pass T .

T =
∑

x∈Oδ
x;Tx + a?Ta?. First a? ∈ ins(q) since q pass T . By Definition 5.1,

ins(q) ⊆ ins(p), therefore a? ∈ ins(p). Let us consider pa? ∈ S such that

p a?−−→ pa?. By Definition 5.2, there is qa? ∈ S such that q a?−−→ qa? and
pa? iocos qa?. Since q pass T , qa? pass Ta? and then, by induction, pa pass Ta?.
Like in the previous case let us consider the set O′ = {x | x ∈ Oδ, ∃p′ :
p x−−→ p′}. Reasoning like in the previous case we obtain that px pass Tx for
any px ∈ S and x ∈ O′ such that p x−−→ px.
So, we obtain:

– p a?−−→ .

– For any pa? ∈ S such that p a?−−→ pa? we obtain pa? pass Ta?.
– For any x ∈ Oδ such that p x−−→ px we obtain px pass Tx.

Therefore p pass T . ��

Theorem 2. (iocos = *T
−1) Let (S, I, O,−→) ∈ LTS and i, s ∈ S, then i iocos s

iff s*T i. ��

126 C. Gregorio-Rodŕıguez, L. Llana, and R. Mart́ınez-Torres

4.3 Test Generation

In Section 4.2 we have showed that i iocos s iff ∀T ∈ Tv : s pass T =⇒ i pass T .
This is a classic testing characterisation result that opens the door to testing
implementations for iocos-correctness. However, if we wanted to test s *T i we
would have to try all possible tests, since we do not know which are the tests
that s passes.

An essential characteristic for a MBT framework is to be able to automatically
produce a test suite from a model specification. For iocos we present this algo-
rithm in Definition 10 which is a variation from the algorithm shown in [20]. The
main difference in our algorithm is the inclusion of the ⊕ operator in tests. Let
us note that if we have a deterministic specification4then ⊕ operator is applied
to a singleton and therefore the resulting test does not really use such operator.

Definition 10. Let (S, I, O,−→) ∈ LTS and p ∈ S. We denote with T (p) the
set of valid tests from p by applying a finite number of recursive applications of
one of the following non-deterministic choices:

1. T = � ∈ T (p).
2. If a? ∈ ins(p), then T ∈ T (p) where

T = a?;
⊕

{Tpa?
| p a?−−→ pa?}+

∑
x∈outs(p)

x
=δ

x;
⊕

{Tpx | p x−−→ px} +

∑
x∈O,x
=δ
x
∈outs(p)

x;� + δ;Tδ(p)

3. If ins(p) = ∅ then T ∈ T (p) where

T =
∑

x∈outs(p)
x
=δ

x;
⊕

{Tpx | p
x−−→ px}+

∑
x∈O,x
=δ
x
∈outs(p)

x;�+ δ;Tδ(p)

In all cases the tests Tp are chosen non-deterministically from the set T (p),

Tδ(p) = � if p δ−−→ , and Tδ(p) = � otherwise. ��

The essential goal of the algorithm is to produce a test suite as tight as possible
to the given specification. The rest of this section is devoted to prove the com-
pleteness of the algorithm for the iocos relation. There are two basic properties
for the test suite: soundness (Proposition 3) and exhaustiveness (Proposition 4).
The most basic property is soundness, meaning all tests from the set T (p) to be
correct with respect p: p passes all tests in the set T (p).

Proposition 3. (Soundness)
Let (S, I, O,−→) ∈ LTS and p ∈ S. Then p pass T for any T ∈ T (p).

4 A behaviour is deterministic when for any x ∈ Lδ, if p
x−−→ p1 and p x−−→ p2 then

p1 = p2.

Input-Output Conformance Simulation (iocos) for Model Based Testing 127

Proof. by structural induction on the set of terms T (p). In base case, it trivially
holds, since p pass� for T = � . For recursive cases we have:

T = a?;
⊕
Tpa?

+
∑

x∈outs(p)
x
=δ

x;
⊕
Tpx +

∑
x∈O,x
=δ
x
∈outs(p)

x;�+ δ;Tδ(p). First let us

note that p pass δ;Tδ(p) trivially (Tδ(p) = � if p δ−−→). By definition of the
generator algorithm (Definition 10), a? ∈ ins(p) and Tpa?

∈ T (pa?) for any

pa? such that p a?−−→ pa? . By induction hipothesis pa? pass Tpa?
, therefore

p pass a?;
⊕
Tpa?

.
Similarly, if x ∈ outs(P), Tpx ∈ T (px) for any px such that p x−−→ px. By
induction hipothesis px pass Tpx , therefore p pass

∑
x∈outs(p) x;

⊕
Tpx . If x /∈

outs(p) then p
x−−�→ , so p pass

∑
x∈Oδ

x
∈outs(p)
x;�

Finally, since p passes all addends from test T , P pass T .
T =

∑
x∈outs(p)

x
=δ

x;
⊕
Tpx +

∑
x∈O,x
=δ
x
∈outs(p)

x;�+ δ;Tδ(p). This case is similar to the

previous one. We only have to take into account that outs(p) �= ∅. ��
Proposition 4. (Exhaustiveness) Let (S, I, O,−→) ∈ LTS and p, q ∈ S. If
∀T ∈ T (p) : q pass T then p*T q.

Proof. Let us prove the theorem by contradiction. Let us suppose p /*T q, then
there is a test T ∈ Tv such that p pass T and q /pass T . Let us prove that if there
is a test T such that p pass T and q /pass T there is a test Tp ∈ T (p) such that
q /pass Tp by induction on T . The base case is when T = � or T = �; but in
these cases there is nothing to prove since q pass� and p /pass�.

So let us consider the recursive cases.

T = T1 ⊕ T2. Then p pass T1 or p pass T2. In both cases we obtain the result by
induction.

T =
∑

x∈Oδ
x;Tx. For any x ∈ Oδ let us consider a test T ′

x as follows:

x = δ. If q δ−−→ then Tx = �, otherwise Tx = �.
x ∈ outs(q) ∩ outs(p). If qx pass Tx for any qx such that q x−−→ qx, let us

consider Tx = �. Otherwise there is qx such that q x−−→ qx and qx /passTx.
However, px pass Tx for any px such that p x−−→ px. So by induction, for
any of those px there is a test Tpx ∈ T (px) such that qx /pass Tpx . Then
let us consider T ′

x =
⊕
{Tpx | p x−−→ px}.

x ∈ outs(q), x �∈ outs(p). In this case T ′
x = �.

x �∈ outs(q), x ∈ outs(p). In this case T ′
x = �.

So the test Tp =
∑

x∈Oδ
x;T ′

x satisfies that Tp ∈ T (p) and q /pass Tp.
T = a?;Ta? +

∑
x∈Oδ

x;Tx. For x ∈ Oδ let us consider the test T ′
x as in the

previous case. Let us note that, since p pass T , a? ∈ ins(p). Let us consider
the test T ′

a? as follows:
a? ∈ ins(q). T ′

a? is build in a similar way as in the previous case when x ∈
outs(q) ∩ outs(p).

a? �∈ ins(q). T ′
a? = �.

So the test Tp = a?;T ′
a?+

∑
x∈Oδ

x;T ′
x satisfies that Tp ∈ T (p) and q /passTp.��

Theorem 3. (Completeness) Let (S, I, O,−→) ∈ LTS and p, q ∈ S, ∀T ∈
T (p) : q pass T iff p iocos q. ��

128 C. Gregorio-Rodŕıguez, L. Llana, and R. Mart́ınez-Torres

5 Conclusions and Future Work

MBT aims to offer a real and practical solution to effectively check the correct-
ness of a system implementation against the model provided by the specification.
At the core of any concrete MBT theory, framework or tool, it lies a conformance
relation to decide if a given implementation is correct for the proposed specifi-
cation.

For every concrete case study and industrial application, to select a suit-
able conformance relation is a decision that may depend on many ingredients:
costs of implementation, security considerations, performance, context of appli-
cation. . .We think it would be desirable to have a theory with the capacity to
express conformance at different levels.

The research we present in this paper is a humble step in that direction.
Instead of the classic approach based on linear semantics, we have used a con-
formance relation based on simulation semantics. The reason for this decision is
that some recent research on process theory has shown [8,7] that the family of
simulation semantics forms a backbone on the spectrum of semantics from which
a hierarchy of layers of linear semantics can be derived in a systematic way. To
further follow the applicability of this theoretical results, to the particular case
of MBT with input-output transition systems, is one of lines of research we are
currently working on.

Along the paper we have settled the basics results for a MBT theory based
on a conformance simulation relation: The definition of iocos as a conformance
relation has been motivated through examples; we have showed iocos to be an
strict refinement of classic ioco relation for input-output labelled transition sys-
tems; a testing characterisation of iocos has been provided and also a test suite
generation algorithm from specifications.

However, there are still well known issues in MBT that we need to address in
our proposal. Regarding applicability we are specially interested in test selection
and on-the-fly, or on-line, testing [22] which does not need to generate a priori
test suites, but instead try to check dynamically the implementation under test.

As for test selection we are interested in the use metrics [6], but we think
we can benefit from the new insights of recent works in the area (see for in-
stance [17]). Moreover, the coinductive definition of iocos and the well known
characterisations of simulations as games make our approach very suitable to
further research the use of on-line testing with iocos.

References

1. Abramsky, S.: Observational equivalence as a testing equivalence. Theoretical Com-
puter Science 53(3), 225–241 (1987)

2. de Alfaro, L.: Game models for open systems. In: Dershowitz, N. (ed.) Verification:
Theory and Practice. LNCS, vol. 2772, pp. 269–289. Springer, Heidelberg (2004)

3. Alur, R., Henzinger, T.A., Kupferman, O., Vardi, M.Y.: Alternating refinement
relations. In: Sangiorgi, D., de Simone, R. (eds.) CONCUR 1998. LNCS, vol. 1466,
pp. 163–178. Springer, Heidelberg (1998)

Input-Output Conformance Simulation (iocos) for Model Based Testing 129

4. Belinfante, A.: Jtorx: A tool for on-line model-driven test derivation and execution.
In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 266–270.
Springer, Heidelberg (2010)

5. Chow, T.S.: Testing software design modeled by finite-state machines. IEEE Trans.
Software Eng. 4(3), 178–187 (1978)

6. Feijs, L.M.G., Goga, N., Mauw, S., Tretmans, J.: Test selection, trace distance
and heuristics. In: Schieferdecker, I., König, H., Wolisz, A. (eds.) TestCom. IFIP
Conference Proceedings, vol. 210, pp. 267–282. Kluwer (2002)

7. de Frutos-Escrig, D., Gregorio-Rodŕıguez, C., Palomino, M.: On the unification of
process semantics: Equational semantics. Electronic Notes in Theoretical Computer
Science 249, 243–267 (2009)

8. de Frutos-Escrig, D., Gregorio-Rodŕıguez, C.: (Bi)simulations up-to characterise
process semantics. Information and Computation 207(2), 146–170 (2009)

9. van Glabbeek, R.J.: The Linear Time – Branching Time Spectrum I. In: Handbook
of Process Algebra, pp. 3–99. Elsevier (2001)

10. van Glabbeek, R.J., Ploeger, B.: Correcting a space-efficient simulation algorithm.
In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 517–529. Springer,
Heidelberg (2008)

11. Hennessy, M.: Algebraic Theory of Processes. MIT Press (1988)
12. Hierons, R.M., Bowen, J.P., Harman, M. (eds.): Formal Methods and Testing, An

Outcome of the FORTEST Network, Revised Selected Papers. LNCS, vol. 4949.
Springer, Heidelberg (2008)

13. Milner, R.: An algebraic definition of simulation between programs. In: Proceedings
2nd Joint Conference on Artificial Intelligence, pp. 481–489. BCS (1971)

14. Milner, R.: Communication and Concurrency. Prentice Hall (1989)
15. Nicola, R.D., Hennessy, M.: Testing equivalences for processes. Theoretical Com-

puter Science 34(1-2), 83–133 (1984),
http://www.sciencedirect.com/science/article/pii/0304397584901130

16. Ranzato, F., Tapparo, F.: A new efficient simulation equivalence algorithm. In:
LICS, pp. 171–180. IEEE Computer Society (2007)

17. Romero Hernández, D., de Frutos Escrig, D.: Defining distances for all process
semantics. In: Giese, H., Rosu, G. (eds.) FORTE 2012 and FMOODS 2012. LNCS,
vol. 7273, pp. 169–185. Springer, Heidelberg (2012)

18. Stokkink, G., Timmer, M., Stoelinga, M.: Talking quiescence: a rigorous the-
ory that supports parallel composition, action hiding and determinisation. In:
Petrenko, A.K., Schlingloff, H. (eds.) MBT. EPTCS, vol. 80, pp. 73–87 (2012)

19. Tretmans, J.: Test generation with inputs, outputs and repetitive quiescence. Soft-
ware - Concepts and Tools 17(3), 103–120 (1996)

20. Tretmans, J.: Model based testing with labelled transition systems. In: Hierons,
et al. (eds.) [12], pp. 1–38

21. Tretmans, J., Brinksma, E.: Torx: Automated model-based testing. In: Hartman,
A., Dussa-Ziegler, K. (eds.) First European Conference on Model-Driven Software
Engineering, pp. 31–43 (December 2003), http://doc.utwente.nl/66990/

22. Utting, M., Pretschner, A., Legeard, B.: A taxonomy of model-based testing ap-
proaches. Softw. Test., Verif. Reliab. 22(5), 297–312 (2012)

23. Veanes, M., Bjørner, N.: Alternating simulation and ioco. In: Petrenko, A., Simão,
A., Maldonado, J.C. (eds.) ICTSS 2010. LNCS, vol. 6435, pp. 47–62. Springer,
Heidelberg (2010)

24. Veanes, M., Campbell, C., Grieskamp, W., Schulte, W., Tillmann, N., Nachmanson,
L.: Model-based testing of object-oriented reactive systems with spec explorer. In:
Hierons et al, [12], pp. 39–76

http://www.sciencedirect.com/science/article/pii/0304397584901130
http://doc.utwente.nl/66990/

Model Checking Distributed Systems

against Temporal-Epistemic Specifications

Andreas Griesmayer1 and Alessio Lomuscio2

1 ARM, Cambridge, UK
2 Imperial College London, London, UK

Abstract. Concurrency and message reordering are two main causes
for the state-explosion in distributed systems with asynchronous com-
munication. We study this domain by analysing ABS, an executable
modelling language for object-based distributed systems and present a
symbolic model checking methodology for verifying ABS programs against
temporal-epistemic specifications. Specifically, we show how to map an
ABS program into an ISPL program for verification with MCMAS, a
model checker for multi-agent systems. We present a compiler imple-
menting the formal map, exemplify the methodology on a mesh network
use case and report experimental results.

1 Introduction

Significant advances have been made in the development of model checking tech-
niques [5] for a variety of high level programming languages for distributed sys-
tems. These techniques support many features of distributed systems including
concurrency, modularity and object-orientation. Much less attention has been
given so far to the exploration of symbolic verification for asynchronous message
passing using futures [1], a concept supported in modern programming languages
like Java, Scala, or the latest C++ standard C++11. By using futures, message
calls can be made without blocking the caller and messages may be delayed and
reach their destinations out of order.

The aim of this paper is to put forward a verification technique targeting
this specific class of systems. To make the investigation grounded in a con-
crete framework we base our analysis on ABS [10], an object-oriented modelling
language for distributed systems. Advanced concurrency and synchronisation
mechanisms, as well as a formally defined operational semantics and execution
environment make ABS an ideal language for the formal modelling and analysis
of distributed systems. A significant class of properties of distributed systems
concern the knowledge that components have about the system they inhabit. To
handle these specifications, we adopt techniques from verification of multi-agent
systems (MAS). MAS are distributed systems in which the underlying com-
ponents, or agents, interact with one another in order to maximise their own
design objectives. MCMAS [15] is a model checker supporting a wide-range of
specifications that commonly arise in MAS, including temporal-epistemic ones,

D. Beyer and M. Boreale (Eds.): FMOODS/FORTE 2013, LNCS 7892, pp. 130–145, 2013.
c© IFIP International Federation for Information Processing 2013

Model Checking Distributed Systems 131

and has been used successfully to verify a number of MAS scenarios, including
agent-based web-services [16]. To utilise these techniques we provide a formal
map from ABS to MAS, thus lifting the verification of temporal-epistemic MAS
specifications to executable models in ABS.

We briefly summarise ABS, MCMAS, and the specification languages em-
ployed in the verification of MAS in Section 2. In Section 3 we define a formal
map from a subset of ABS into ISPL and discuss how method invocation is han-
dled. Experimental results and the implementation are described in Section 4
before we conclude in Section 5.

1.1 Related Work

While model checking has traditionally targeted the verification of finite systems,
more recent work is concerned with constructs for software that lead to undecid-
able problems [19], including concurrency and recursion. These efforts have led
to verification approaches for different programming paradigms like large subsets
of C [4], Haskell [21], and Java [22]. Model checking is now routinely applied in
well defined domains like driver development [23,2]. Furthermore, dedicated lan-
guages for modelling and verifying component based systems [3], protocols [9],
etc., have been developed. Notwithstanding these important contributions, none
of these languages provides direct support for asynchronous message passing, a
fundamental feature in distributed systems. The semantics of ABS is formally
defined and executed by means of the rewriting engine Maude [6], resulting in a
well-defined semantics and enabling the user to access Maude’s model checking
capabilities. However, the interpretation of the semantic rules adds additional
complexity and restricts model checking ABS to small sub-goals. By mapping
ABS to MCMAS, we avoid some of this complexity and acquire the ability of
verifying epistemic specifications.

In the context of distributed systems, traditional languages provide an unnat-
ural transfer of control from the caller to the callee while waiting for the return
from a method call. Futures [1] provide a fundamentally different control flow
model that is centred on asynchronous message passing thereby enabling the call-
ing process to carry on with its activities. This is a model that is much closer to
Internet-based distributed systems. In this work we use ABS [10], a modelling
language based on objects encapsulating their own processor, to analyse such
systems. The models are executable, but because of their complexity, they can
currently only be evaluated by using test case generation and simulation [12].

We show an application of the approach by using AODV, a well-understood
protocol for ad-hoc message routing [18]. The AODV protocol has been anal-
ysed before through other model checkers [20,8] While these approaches can ex-
plore larger configurations than what we present here, their models are crafted
manually and not generated automatically from executable programs. Closer to
the approach we present here is CMC [17], which directly supports detailed,
event-driven implementations in C and can be used to detect safety proper-
ties, including receipt of invalid packets. In contrast to these approaches, we
here also present an automated translation from executable ABS programs into

132 A. Griesmayer and A. Lomuscio

(Asynch-Call)
v = �e�(a◦l) fresh(f)

ob(o, a, {l | x = ô!m(e); s}, q)
→ ob(o, a, {l | x = f ; s}, q)
invoc(ô, f,m, v) fut(f,⊥)

(Bind-Mtd)
p′ = bind(o, f,m, v, class(o))

ob(o, a, p, q) invoc(o, f,m, v)
→ ob(o, a, p, q ∪ p′)

Fig. 1. Semantics rules for message passing in ABS

MCMAS and consider the asynchronous and concurrent nature of the under-
lying distributed systems. Based on this mapping, we perform symbolic model
checking to verify temporal epistemic-properties, which requires the exploration
of the full state space, hence inherently more expensive than safety checks.

2 Preliminaries

We give a short introduction to the concepts and techniques for the specification
and verification framework of ABS. The semantic of the language is formally
defined using Structural Operational Semantics (SOS) rules, which are given in
rewrite logic and executable using the rewrite engine Maude [6]. We concentrate
on the executable core language [10] with concurrent objects, in particular we
give the details on the asynchronous message passing mechanisms. The behaviour
of the system is analysed using temporal epistemic logic.

2.1 The Modelling Language ABS

ABS [10] uses objects that maintain local sets of processes to model independent
communicating entities. Method calls are not accompanied with transfer of con-
trol to the called method. Instead, messages are transferred between caller and
callee and a future variable serves as placeholder that can be polled at a later
point in the execution to obtain the returned values. Messages received by the
callee trigger the creation of new processes, which are added to its process set.
ABS enforces strong data encapsulation, which means that variables can only be
accessed locally or via method calls. Furthermore, each object performs local co-
operative multitasking controlled by the await, suspend and return statements,
where return publishes its return values in the future and terminates the exe-
cution, suspend unconditionally suspends the execution and makes an entry in
a set of pending processes for a later resume, and await evaluates its condition
and suspends the process while the result is false.

We follow the operational semantics of [10], given as SOS (Structural Opera-
tional Semantics) rules (Fig. 1). A state is represented as a configuration (cn);
a set of objects, messages and future variables. An object is a term ob(o, a, p, q)
where o is the object’s identifier, a maps variable names (fields) to values, p is
the currently executing process and q a set of suspended processes. A process
consists of local variable bindings l and a list of statements s, denoted {l | s}.
The full variable context is denoted as a ◦ l, where variables in l hide variables

Model Checking Distributed Systems 133

in a if they have the same name. An invocation message invoc(o, f,m, v) is sent
to the callee o when the method m is called with parameters v. The return mes-
sage can be accessed via the future variable f . Variables can be combined with
the usual Boolean and arithmetic operators to form expressions e where �e�a
denotes its evaluation with values from a. The details for the semantic rules that
describe message passing are shown in Fig. 1 and described in the following:

(Asynch-Call) describes the execution of the statement x = ô!m(e), which is
on top of the statement list of the active process, followed by the statement
list s. The premise of the SOS rule sets up the environment and states,
where v = �e�(a◦l) is the evaluation of the arguments for the call in the
current context and f is a fresh variable. In the consequence of the rule
we find that the method call is removed from the statement list, and an
invocation message invoc(ô, f,m, v) and an empty future fut(f,⊥) is created
and assigned to the fresh variable f.

(Bind-Mtd) formalises the state change of the object receiving the invoc mes-
sage by adding a new process p′ to its idle set. bind(o, f,m, v, class(o)) creates
a new process to execute method m from object o with the parameters v.
The future variable f is assigned to a reserved local variable destiny, which
is accessed later by the return statement.

Similar rules (Return) and (Read-Fut) define the return message of a call and
access to the future variables.

2.2 Temporal-Epistemic Logic and Interpreted Systems

To reason about knowledge, we associate objects in ABS to agents in multi-agent
systems (MAS). A popular semantics in MAS is that of interpreted systems [7],
where agents interact with each other and their environment by means of actions.
We adhere to standard naming conventions and characterise each agent i ∈
{1, . . . , n} in the system by finite sets of local states Li and local actions Acti.
Actions are performed in compliance with a local protocol Pi : Li → 2Acti

specifying which actions may be performed in a given state. The environment in
which agents live is modelled by a special agent E with a set of local states LE ,
a set of local actions ActE , and a local protocol PE . A tuple g = (l1, . . . , ln, lE) ∈
L1 × . . .×Ln ×LE, where li ∈ Li for each agent i and each lE ∈ LE , is a global
state describing the system at a particular instant of time.

The evolution of the agents’ local states is described by a function ti : Li×LE×
Act1×. . .×Actn×ActE → Li which returns the next local state for agent i given
the current local state of the agent, the current action and state LE of the envi-
ronment as well as all the agents’ actions. Similarly, the evolution of the environ-
ment’s local states is described by a function tE : LE×Act1×. . .×Actn×ActE →
LE, returning the next environment state given the current round of actions. It
is assumed that in every state agents evolve simultaneously. The evolution of the
global states of the whole system is described by a function t : G × Act → G,
where G ⊆ L1× . . .×Ln×LE is the set of global states for the system reachable

134 A. Griesmayer and A. Lomuscio

from a set of initial global states I ⊆ G, and Act ⊆ Act1 × . . . × Actn × ActE
is the set of enabled joint actions. The function t is defined as t(g, a) = g′ if
and only if for all i, ti(li(g), a) = li(g

′) and tE(lE(g), a) = lE(g
′), where li(g)

denotes the i-th component of global state g (corresponding to the local state of
agent i). Finally, an interpreted system includes a set of atomic propositions AP
together with a valuation function V ⊆ AP ×G. Formally, an interpreted system
is defined as the tuple IS = 〈(Li, Acti, Pi, ti)i∈{1,...,n}, (LE , ActE , PE , tE), I, V 〉.

Temporal-Epistemic Logic. Interpreted systems provide a natural seman-
tics to epistemic logic, or logic of knowledge, which is routinely used to specify
MAS [7] like web-services [16]. We consider the following syntax defining our
specification language:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | EXϕ | EGϕ | E (ϕUϕ) | Kiϕ, i ∈ {1 , . . . ,n}

In the grammar above p ∈ AP is an atomic proposition, and we have the usual
negation and disjunction. Furthermore, EXϕ is read as there is a global next
state of computation in which ϕ holds ; EGϕ as there exists a sequences of global
states (or, runs) where ϕ holds in every state, and E (ϕUψ) as there exists a run
in which ϕ holds until ψ holds ; The knowledge operator Kiϕ is used to express
that agent i knows ϕ. Based on this operators, we can define further useful
operators to express often used properties. For instance, there exists a run where
ϕ is eventually true (EFϕ) can be written as E(true Uϕ) and ϕ holds on all
runs in every state (AGϕ) is equivalent to there is no run where ϕ does not hold
(¬EF¬ϕ).

Any interpreted system is associated to a modelMIS = (W ,Rt ,∼1 , . . . ,∼n ,L)
that can be used to interpret any formula ϕ. The set of possible worlds W is the
set G of reachable global states. The temporal relation Rt ⊆ W ×W relating
two worlds (i.e., two global states) is defined by considering the transition func-
tion t of the corresponding IS: two worlds w and w ′ are such that Rt(w ,w

′) if
and only if there exists a joint action a ∈ Act such that t(w , a) = w ′. The epis-
temic accessibility relations ∼i⊆ W ×W are defined by considering the equality
of the local components of the global states. Two worlds w ,w ′ ∈W are such that
w ∼i w

′ if and only if li(w) = li(w
′) (i.e., two worlds w and w ′ are related via

the epistemic relation ∼i when the local states of agent i in global states w and
w ′ are the same). The labelling relation L ⊆ AP ×W is defined in terms of the
valuation relation V .

We write (M ,w) 	 ϕ to represent that a formula ϕ is true at a world w in a
Kripke model M . Temporal formulae are interpreted in MIS as standard. For the
epistemic operator K we have: (M ,w) 	 Kiϕ iff for all w ′ ∈W w ∼i w

′ implies
(M ,w ′) 	 ϕ. We refer the reader to [7] for more details on this and related
epistemic concepts widely discussed in the epistemic logic literature.

Model Checking Distributed Systems 135

MCMAS [15] is a BDD-based model checker for the automatic verification of
multi-agent systems. It provides ISPL (Interpreted Systems Programming Lan-
guage) as an input language for modelling a MAS and expressing (amongst
others) temporal and epistemic formulae as specifications of the system. The
structure of an ISPL program allows the local states to be defined using Boolean,
bounded integer, and enumeration variables. ISPL programs are closely related
to interpreted systems; specifically, each ISPL program describes a unique inter-
preted system. MCMAS supports the verification for all formulae in the language
above as well as others.

3 Mapping ABS Programs into ISPL

We define a map from a core subset of ABS to ISPL to verify the key innovative
aspects of ABS. Given that any ISPL program uniquely defines an interpreted
system, our map alternatively can be seen as the definition of a transition-based
semantics for the subset of ABS we investigate.

To create a finite model for checking with MCMAS, we make a number of
typical restrictions on the models to check. Specifically, we assume finite data
types (Booleans, enumerations, bounded integers), introduce bounds on message
and process queues (which also restricts recursion), and restrict object creation to
an explicit main block. No new operator is used afterwards at run-time. Within
these limitations, we support standard control flow and assignment statements,
as well as the ABS-typical statements for local cooperative multitasking and
message passing including data and object references. We refer to this bounded
subset of the language as ABSB. Extension by abstraction and introduction of
parameterised techniques to handle infinite systems is left to future work.

The key correspondence we make is to associate objects in ABSB to agents
in ISPL and use the environment to handle message passing. Following this, we
map ABSB configurations to global states in interpreted systems and SOS rules
to transitions, respectively. Our modelling of assignments and local conditionals
follows the usual translation based on a current position in the control flow
graph and corresponding updates to the variables. For more details see, e.g., the
treatment of Boolean programs in [2]. We focus the discussion on message passing
mechanisms and show that the semantic rules of Fig. 1 are preserved. The key
element is the message buffer, which is encoded in the ISPL environment agent
E. The buffer provides a bounded storage for n invoc messages, whose index
also serves as value for future variables fut.

Definition 1 (Message Buffer). A message buffer for n pending message calls
in an ABSB program is mapped to the ISPL environment E with local states
LE ⊆ (B1×· · ·×Bn× f ×agt× tr). We write bi ∈ Bi for an entry in the buffer
that holds a single call. It consists of a set of variables bi.v and a status bi.stat,
which can be empty, o m to represent a call to method m in object o, wr while
waiting for a return, or pr while holding a return message. The remaining fields
are used for communication where f holds the index of the active entry, agt the
index of the connected agent, and tr the index of the next parameter to transfer.

136 A. Griesmayer and A. Lomuscio

As previously remarked, objects in ABSB are modelled as agents in ISPL, where
each agent contains a bounded number of execution slots for processes.

Definition 2 (Object Agent). Each object o in ABSB is mapped to a corre-
sponding agent in ISPL with local states Lo ⊆ S1×· · ·×Sk×stat× tr. We write
si ∈ Si for a process slot with a pointer sj .exec to the next statement to execute,
a reference sj .caller to the calling method buffer and local variables sj.v. The
state of the object is stored in stat and is either idle, initialising (init), or
executing the processes in slotk. The remaining variable tr holds the index of a
slot that is communicating with the environment, or is 0 otherwise.

We can give now the unique mapping between the ISPL model and the corre-
sponding constructs from the ABSB semantics. For a more succinct presentation,
we use indices and exponents instead of the dot notation above when the mean-
ing is clear from the context (e.g., we write statiE to refer to lE .b

i.stat).

Definition 3 (Mapping Relation). We define a mapping relation μ : cn ↔
LE×Lo between configurations and global states in the corresponding interpreted
systems as

μ(fresh(f)) ↔ stat
val(f)
E = empty

μ(fut(f,⊥))↔ stat
val(f)
E ∈ {o m, wr}

μ(fut(f, true))↔ stat
val(f)
E = pr

μ(invoc(o, f,m, v)) ↔ stat
val(f)
E = o m

μ(ob(o, a, p, q)) ↔ stato = slotid(p) ∧ execid(p)o �= 0 ∧ ∀j∈id(q)exec
j
o �= 0

where val(f) is the value of the future variable f and id(...) gives the (set of)
indices of the process slots running respective processes. We denote the inverse
as μ−1.

Example 1. Fig. 2 gives an example of ABS code from a class Node of the AODV
case study of Section 4 along with the relevant states of the control graph as-
sociated with the code. The special state 0 corresponds to an empty execution
slot, states 1 and 2 represent that the execution of the object entered the corre-
sponding method. The translation supports parameters, object references, global
and local variables, maps and the usual assign and control flow statements.

3.1 Temporal Progress

Object agents and the environment progress simultaneously, synchronised by
actions all participants need to agree on. We introduce the specific actions when
needed and give the temporal progress of the system as transition relation for
the object agent (to) and the environment (tE) of the form

to = {(lo, lE , aE , ao, l′o) | γ}
tE = {(lE, aE , ao, l′E) | γ}

Model Checking Distributed Systems 137

1 Unit RREP(Node origin, Node src, Node dest, Int count){...}
Unit RREQ(Node origin, Node src, Node dest, Int count){

3 if(src != this){
rmap = store(rmap, origin, origin);

5 dmap = store(dmap, origin, 1);
route = lookup(rmap, src);

7 if(route != null){
distance = lookup(dmap, src);

9 if (count < distance){
rmap = store(rmap, src, origin);

11 dmap = store(dmap, src, count);
}}else{

13 rmap = store(rmap, src, origin);
dmap = store(dmap, src, count);

15 }
if(dest == this)

17 origin!RREP(this, src, dest, 1);
else{

19 [...]
} } } } }

0

1 . .

2

3

4

5

6

7

8

9

10

11

12

13

14

15

24

Fig. 2. AODV implementation in ABS along with the locations used in execjo

where lo and lE are the current states of object agent and environment, aE and
ao are the actions that are executed, and l′o and l′E are the new states for the
object and the environment respectively. A transition only takes place if the
environment and object agent agree on their actions. Formula γ is an update
function that gives the values for the next state variables (primed) in terms of
the variables of the current state (unprimed). In what follows, we give details
on the update function γ representing message transfers involved in an ABS
asynchronous method call.

Recall from Section 2 that protocols are used to determine which actions are
enabled at a given state, whereas the local evolution function determines the
successor state given some joint action. Consequently, the protocol of an object
agent enables actions according to the exec pointer of the active execution slot,
while the evolution function implements the variable updates for an executed
action. For the message buffer, the protocol enables actions according to the
status of its buffer entries, while the evolution function performs the actual data
transfer and updates the variables.

To simplify the presentation, we give the temporal progress in the following
as a single transition relation that contains the protocol function implicitly by
defining that an action (and the corresponding transition) is only enabled if
the unprimed variables match the current state. Because all communication is
performed in one-to-one connections, we only describe the transitions concerned
with this communication. However, the rules are instantiated for all agent combi-
nations and agents not currently involved in a communication can perform local
steps. Finally, we assume inertia for the variables, i.e, variables that are not
explicitly changed by an assignment to their primed versions are held constant.

We give the transitions for sending a method call (SC) from the object to the
environment. This is the first of four steps for a method call, which is followed
by delivering the call (DC) from the environment to the callee, sending the return

138 A. Griesmayer and A. Lomuscio

to the environment (SR) and receiving the return by the caller (RR). We will
denote the caller object with o, the callee with ô, and the environment agent
with the buffers as usual with E.

Sending a Method Call. The transfer of a method call x := ô.m(v) from
object agent o is performed in three phases: 1) initiating the transfer (init), 2)
transferring the data (trf), and 3) closing the transfer (cls).

The environment can initiate a transfer if there is an empty buffer (statiE =
empty) and no transfer is already performed (trE = 0). If this is the case, the
action st oE is enabled. In the (init) step, the environment stores the object
agent it communicates with in agtE and the id of the buffer in fE ; trE is used
as index of the parameter to transfer. In the second phase (trf), action val xo
transfers a value x from the caller, which is stored by action rcE in the buffer
variable vi,kE = x, where k is the id of the transferred variable. Action ctE closes
the transfer, where stoo indicates that the object agent stores a future variable
for later reference (rretiE = T). If the object agent sends igno, no return value
is required and the buffer can be freed after submitting the call to the callee
(rretiE = F).

tSC
E = {(lE , st oE , ô mo, l

′
E) | statiE = empty∧ trE = 0 ∧ tr′E = 1 (init)

∧ statiE
′
= ô m ∧ agtE ′ = o ∧ f ′E = i}∪

{(lE , rcE , val xo, l
′
E) | agtE = o ∧ trE = k ∧ fE = i ∧ vi,kE = x (trf)

∧ tr′E = k + 1}∪
{(lE, ctE , stoo, l′E) | statiE = ô m ∧ fE = i ∧ f ′E = 0 (cls)

∧ tr′E = 0 ∧ agtE ′ = 0 ∧ rretiE = T}∪
{(lE, ctE , igno, l′E) | statiE = ô m ∧ fE = i ∧ f ′E = 0 (cls)

∧ tr′E = 0 ∧ agtE ′ = 0 ∧ rretiE = F}

The object agent o monitors the environment to signal the start of the commu-
nication with it by action st oE , the caller at the same time indicates the object
and method to call with ô mo. The clause stato = slotj ensures that the process
with the call is indeed currently executed and variable tro is set to j in the next
state to mark an ongoing transfer (note that (init) is not enabled if tro is not 0
in the first place). In the second phase (trf), action val xo transfers a value x
from the caller, which is acknowledged by the environment by action rcE . The
index of the variable to transfer is given by environment variable trE . When all
variables are transferred the transfer is closed in phase (cls) with the actions
ctE and stoo. In this step, object agent o stores fE in a future variable of its
local state and sets the execution pointer to the next statement.

Model Checking Distributed Systems 139

tSC
o = {(lo, lE, st oE, ô mo, l

′
o) | execjo = (x := ô.m(v)) ∧ tro = 0 (init)

∧ stato = slot
j ∧ tr′o = j}∪

{(lo, lE, rcE , val xo, l
′
o) | execjo = (x := ô.m(v)) ∧ tro = j ∧ vk = x (trf)

∧ stato = slot
j ∧ agtE = o ∧ trE = k}∪

{(lo, lE, ctE, stoo, l′o) | tro = j ∧ stato = slot
j (cls)

∧ xj
o
′
= fE ∧ execjo

′
= next() ∧ tro

′ = 0}

Method calls without assignment to a local variable (i.e. of the form ô.m(v))
do not store a reference to the future and therefore do not allow the caller to
access any return value. In such a case, the buffer in the environment can be
freed as soon as the callee is informed about the call. This is communicated to
the environment by performing the action igno in phase (cls) corresponds to
second (cls) rule of the environment, which sets the rret field to false.

tSC
o = {(lo, lE , st oE , ô mo, l

′
o) | execjo = (ô.m(v)) ∧ tro = 0 (init)

∧ stato = slotj ∧ tr′o = j}∪
{(lo, lE , rcE , val xo, l

′
o) | execjo = (ô.m(v)) ∧ tro = j ∧ vk = x (trf)

∧ stato = slotj ∧ agtE = o ∧ trE = k}∪
{(lo, lE, ctE , igno, l′o) | tro = j ∧ stato = slotj (cls)

∧ execjo
′
= next() ∧ tro′ = 0}

Note that variable agtE ensures the strict one to one connection for a transfer.
Similar protocols were defined for delivering the call to the callee, and sending

the return message back to the caller. Correct synchronisation between agent
and environment are essential for these operations. In contrast, ABS scheduling
statements like await, which suspends the current process if an required return
message has not arrived yet, does not require an action from the environment
and is therefore implemented as local transition.

Partial Orders. The operational semantics of ABS does not impose any con-
straints on the execution order of statements in different objects or on the de-
livery order of sent messages. A full examination of the state space therefore
involves the execution of all possible orders of the co-enabled statements, which
leads to a state space and execution path explosion that is hard to handle even
with succinct symbolic representations like BDDs. To reduce the data structures
to a manageable size we employ partial order reduction (POR), by identifying
partial orders of statements under which the same properties are fulfilled. For
epistemic logic, however, the partial orders of actions that change the state must
not be reduced even if the sequence of visible events is equivalent [14]. This is
because the knowledge operators of epistemic logic consider the reachable state

140 A. Griesmayer and A. Lomuscio

space to determine what an agent can know about the state of the other compo-
nents. A reduction of the reachable states thus wrongly increases the computed
knowledge of an agent.

To apply POR, we use the strong data encapsulation of ABS, which prevents
information from being exchanged during method execution, and evaluate the
epistemic properties over the full execution only at states where variables can
be accessed, resp. when the agent is idle and can receive method calls to read a
variable. This decision allows us to combine the statements of an execution block
into a macro step [11] and remove the interleavings that stem from concurrent
execution of methods from different agents. We furthermore treat the transitions
for message passing given above as atomic blocks.

3.2 Preservation of ABS Semantics

The attention in the rest of this section is given to showing that the mapping
preserves the semantics for the described bounded subset of the language ABSB.
An essential condition for that to happen is that the bounds on message buffers
and execution slots are not overrun. To monitor this we introduce a flag overrun
to the resulting ISPL file that is set to true when a buffer is requested but
none is free. Checking for sufficient buffer sizes now corresponds to checking for
AG¬overrun, which holds if the bounds suffice.

Theorem 1 (Preservation of ABS semantics). An ABSB program P sat-
isfies an epistemic specification φ iff μ(P) |= (φ ∧AG¬overrun), where μ(P) is
the interpreted system corresponding to the program P .

Proof (sketch). Given sufficiently high bounds for the execution slots and buffers,
executions in ISPL preserve the ABS semantics. This preservation can be shown
by following the construction in [13], that is by establishing a Galois connection
between the ABS operational semantics and ISPL transitions. We sketch the
proof for the semantic rules from Fig. 1. First, we show that for a configuration

c and an ISPL state u, c
(Asynch-Call)−−−−−−−−−→ μ−1(u) if and only if μ(c)

to◦tE−−−→ u.
From the premise and left hand side of (Asynch-Call) we get c = ob(o, a, {l |

x = ô!m(e); s}, q) with v = �e�(a◦l) and fresh(f). Using p := x = ô!m(e) and

Def. 3 gives μ(c) = (stato = slotid(p) ∧ execid(p)o = (x = ô.m(e)) ∧ next() =
s), which corresponds to the states enabling tSC

o and tSC
E . Thus, we have that

(Asynch-Call) is enabled if and only if tSC
o and tSC

E are enabled. The execution of

all stages in tSC
o and tSC

E results in u = (stat
val(f)
E = ô m∧vval(f)E = v∧xval(f)o =

val(f)). The result of (Asynch-Call) and a subsequent store of the future as local
variable gives ob(o, a, {x = f | s}, q) ∧ invoc(ô, f,m, v) ∧ fut(f,⊥). Def. 3 shows
that this result indeed is μ−1(u), which concludes the proof.

The connection for (Bind-Mtd) and transitions tDC
o ◦ tDC

E is analogous where
p′ = bind(o, f,m, v, class(o))) is the instantiation of a new process and corre-

sponds to exec
id(p′)
o = start(m) ∧ callerid(p

′)
o = val(f) ∧ vid(p

′)
o = v.

Model Checking Distributed Systems 141

Limitations. Observe that the bounds on message buffer and execution slots
may lead to delays in sending or receiving message calls. In particular, the free
and bind predicates from the premises of the (Asynch-Call) and (Bind-Mtd) rules
are not enabled when no buffer, or execution slot, respectively, is free. While this
limits the examined behaviour if the bounds cannot be increased, the checked
runs and any counterexample returned are still valid. This implies that checking
properties for existential formulae is sound but not complete if the bounds are
not sufficient.

4 Implementation and Experimental Results

We implemented the mapping from ABS to ISPL as a new back-end (ABSMC) to
the ABS compiler framework, which already provides the parsing, type checking
and generation of the abstract syntax tree. ABS programs have an explicit main
block to set up the model. The ABSMC back-end executes this block and creates
an agent with a unique name for each new statement, where arguments to the
constructor are evaluated and passed as constants to the agent to reduce the
state space.

The finite set of object names is used as enumerations to handle object refer-
ences. Further variable types are Boolean, bounded integer, and enumerations.
To allow generic variables in ISPL, the ABS variable types are mapped to integer
of appropriate size. ABS allows annotations to statements and classes to provide
additional information to the model. We use the annotations define the initial
instances of an object and to provide the specifications we want to verify. The
ISPL file generated by the ABSMC back-end is directly passed to the MCMAS
model checker, which computes the set of reachable states and evaluates the for-
mulae. MCMAS also can compute counterexamples and witnesses in a number
of cases. The experiments were performed on an Intel i5 machine with 3.5GHz
and 8GB RAM running Linux.

4.1 Verification of AODV Routing

To evaluate the applicability of the approach, we verified a distributed system
implementing the Ad-hoc On-Demand Distance Vector (AODV) routing algo-
rithm for mesh networks [18]. The purpose of the algorithm is to establish paths
between two nodes from a set of arbitrarily distributed nodes, where not all
nodes are within reach of each other. The algorithm is distributed in the sense
that there is no central node deciding the routes of the packets. Instead, every
node only knows the next hop to a given destination.

Initially no information about reachable nodes or routing is available to the
nodes. The nodes communicate using RREQ (route request) or RREP (route
reply) messages that carry the origin of the message, the source and the des-
tination of the route to establish, and a hop count for the length of the route.
The algorithm proceeds in two phases. First, an RREQ message is broadcast;
this is relayed by its recipients until the destination is reached. The route is
then established along the path of the RREQ messages using RREP messages.

142 A. Griesmayer and A. Lomuscio

1

2

3

4 5

Fig. 3. AODV messages to establish a
route between nodes 1 and 5

1 2 S

(a) AODV3

1 2 S

(b) AODVΔ

1

2

3

S

(c) AODV♦

1

2

3

S

(d) AODV∞

Fig. 4. Basic network topologies to verify
properties of AODV

This is illustrated in Fig. 3, where RREQ broadcast messages are represented
by straight grey lines, RREP by black curved lines, and dotted lines indicate the
range of a node. Note that, since messages can be delayed, the first route that
is established is not necessarily the shortest one. However, when several routes
are available, the shortest is selected using the hop count.

We modelled the protocol in ABS using maps to store the next hop and the
length of the route to a given node. Fig. 2 shows the ABS code executed at a
node when receiving an RREQ message1. Upon receipt, if the source node is
not the current node itself, the node first records that the origin of the message
is a direct neighbour (distance 1), then it stores the route to the source via
the origin unless there is already a shorter route known. If there is no route to
the requested destination, the broadcast is relayed with increased hop count.
Once a node with a route to the destination (or the actual destination itself)
is reached, the second stage of the algorithm is performed by sending RREP
messages towards the source of the route request. Otherwise, the message is
broadcasted to its neighbours (omitted in the listing).

In our experiments we set up the different topologies from Fig. 4 and initiated
the network by sending a request to node 1 (N1) to establish a route to node S.
The compiler duly produced the resulting ISPL code that was fed to MCMAS
as described earlier. We verified properties over the predicates rXY (representing
that node X has a route to node Y), rXZY (node X has a route via node Z to
node Y) and finish to denote that all messages have been delivered. We also
added specifications to verify that, in all cases, routes are eventually established
(represented as AF r1S) and that eventually the shortest route is found (AF
(finish → r1SS) for Fig. 4b), even if intermediate routes might be longer (EF
r12S in Fig. 4b).

Since MCMAS also supports an epistemic language we were further able to
add specifications representing the information the agents have. In this context,
we were able to check that when an agent sets a route, it knows that the next hop
has a route to the destination (AG (r12S -> K(N1, r2S))). The topologies in
Fig. 4c and Fig. 4d have different shortest routes. Which one is selected depends

1 The examples are available at http://www.doc.ic.ac.uk/~agriesma/ABSMC

http://www.doc.ic.ac.uk/~agriesma/ABSMC

Model Checking Distributed Systems 143

Table 1. Experimental results of the AODV case study

AODV3 | 250/24 | 20s | 50MB

AF r12S <1 T
AG (r12S -> K(N1, r2S)) <1 T

AODVΔ | 250/24 | 32s | 54MB

AF r1SS <1 T
AG (finish → r1SS) <1 T
AF r12S 10 F
EF r12S 2 T
AG (r12S -> K(N1, r2S)) <1 T
AG (r1SS -> (! K(N1, r2S)) 3 F
AG (lostRREP & r1SS

-> (! K(N1, r2S)) <1 T

AODV♦ | 430/30 | 220s | 84MB

AF r12S 64 F
EF r12S 19 T
AF r1S <1 T
AG (r12S -> K(N1, r2S)) <1 T
AG (r13S -> (! K(N1, r2S)) 36 F
AG (lostRREP & r13S

-> (! K(N1, r2S)) <1 T

AODV∞ | 430/30 | 2262s | 351MB

AF r12S 854 F
EF r12S 505 T
AF r1S <1 T
AG (r12S -> K(N1, r2S)) <1 T
AG (r13S -> (! K(N1, r2S)) 899 F

on the order in which the RREP messages arrive at the source. If one route is
selected, the initial node does not know about the node on the other route; that
is AG (r12S -> K(N1, r3S)) is false, as MCMAS confirmed.

In the two topologies above, we might expect AG (r12S -> !K(N1, r3S))

to hold. Our verification results showed, however, that this intuition is incor-
rect. The counterexample produced by MCMAS demonstrates that even in cases
where a route via N2 is selected, N1 knows that N3 has a valid route when it
receives its RREP message. In 4d there are cases where N1 can deduce some
information even when this RREP is not taken into account and when its route
goes via N2, namely the case when the route has 3 steps, in which case N2 must
route via N3 and thus N3 must have a route to S. Note that N1 can deduce this
knowledge solely from its local state and observations, and that they hold only
for some of the possible orders of the messages. Model checking and examina-
tion of the counterexamples greatly helps to find such corner cases. To check
for stability of the protocol, we added message loss to model 4a by allowing the
environment to drop messages (in which case the predicate lostRREP is set to
true). This corresponds to a change of topology where the corresponding con-
nection is temporarily lost. The results show that for topologies with multiple
routes, a route can be established even if one message is lost. We do, however,
lose the certainty of finding the shortest route.

The results are summarised in Table 1, where for each topology the number
of bits required for states/actions, the time for computing the reachable states,
and the used memory are given. For each formula the result and computation
time is given. We see that besides the number of nodes, which influences the
number of possible states in the model, the number of connections is the main
source of complexity. This is because the extra method calls from the additional
messages increase the order of method calls that have to be considered, and thus

144 A. Griesmayer and A. Lomuscio

the total number of reachable states. Note that the sizes of the checked systems
are comparable to other work on AODV [20,8,17], while the used logic is more
expressive and harder to check.

5 Conclusions

In this paper we presented a formal mapping between the modelling language
for distributed systems ABS and interpreted systems, a formalism for multi-
agent systems. We implemented the map into a compiler for the MCMAS model
checker and evaluated the performance of the approach by studying a well-known
networking protocol. While the approach requires us to provide bounds manu-
ally on the number of active processes, we were able to conclude the approach is
mathematically sound and reasonably efficient. We are not aware of comparable
literature on the subject as ABS models are currently only validated by simu-
lation and test case generation [12]. Besides optimisations to the integration of
the mapping with the model checker, our current direction of work in this line
consists in providing automatic estimations on the required bounds for building
the model as well as automatic abstraction techniques.

Acknowledgements. The authors would like to thank the members of the
HATS (FP7-231620) project, and in particular Rudolf Schlatte and Jan Schäfer,
for providing access and help to the ABS compiler framework.

The work reported in this paper was conducted at Imperial College Lon-
don while Andreas Griesmayer was supported by the Marie Curie Fellowship
“DiVerMAS” (FP7-PEOPLE-252184). Alessio Lomuscio acknowledges support
from the UK Engineering and Physical Sciences Research Council through the
Leadership Fellowship grant “Trusted Autonomous Systems” (EP/I00520X/1).

References

1. Baker Jr., H.C., Hewitt, C.: The incremental garbage collection of processes. In:
Proceedings of the 1977 Symposium on Artificial Intelligence and Programming
Languages, pp. 55–59 (1977)

2. Ball, T., Rajamani, S.K.: The SLAM toolkit. In: Berry, G., Comon, H., Finkel, A.
(eds.) CAV 2001. LNCS, vol. 2102, pp. 260–264. Springer, Heidelberg (2001)

3. Bensalem, S., Bozga, M., Sifakis, J., Nguyen, T.-H.: Compositional verification for
component-based systems and application. In: Cha, S(S.), Choi, J.-Y., Kim, M.,
Lee, I., Viswanathan, M. (eds.) ATVA 2008. LNCS, vol. 5311, pp. 64–79. Springer,
Heidelberg (2008)

4. Clarke, E., Kroning, D., Sharygina, N., Yorav, K.: SATABS: SAT-based predicate
abstraction for ANSI-C. In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS,
vol. 3440, pp. 570–574. Springer, Heidelberg (2005)

5. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. The MIT Press,
Cambridge (1999)

6. Clavel, M., Durán, F., Eker, S., Lincoln, P.,Mart́ı-Oliet, N.,Meseguer, J., Talcott, C.:
All about Maude - a high-performance logical framework: how to specify, program
and verify systems in rewriting logic. LNCS, vol. 4350. Springer, Heidelberg (2007)

Model Checking Distributed Systems 145

7. Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Reasoning about knowledge. The
MIT Press, Cambridge (1995)

8. Fehnker, A., van Glabbeek, R., Höfner, P., McIver, A., Portmann, M., Tan, W.L.:
Automated analysis of AODV using UPPAAL. In: Flanagan, C., König, B. (eds.)
TACAS 2012. LNCS, vol. 7214, pp. 173–187. Springer, Heidelberg (2012)

9. Holzmann, G.J.: The Spin Model Checker. Addison Wesley (2003)
10. Johnsen, E.B., Hähnle, R., Schäfer, J., Schlatte, R., Steffen, M.: ABS: A core

language for abstract behavioral specification. In: Aichernig, B.K., de Boer, F.S.,
Bonsangue, M.M. (eds.) FMCO 2010. LNCS, vol. 6957, pp. 142–164. Springer,
Heidelberg (2011)

11. Karmani, R.K., Shali, A., Agha, G.: Actor frameworks for the JVM platform: A
comparative analysis. In: PPPC 2009, pp. 11–20. ACM Press, New York (2009)

12. Leister, W., Bjørk, J., Schlatte, R., Griesmayer, A.: Verifying distributed algo-
rithms with executable Creol models. In: PESARO 2011, pp. 1–6. IARIA (2011)

13. Loiseaux, C., Graf, S., Sifakis, J., Bouajjani, A., Bensalem, S., Probst, D.: Property
preserving abstractions for the verification of concurrent systems. Formal Methods
in System Design 6(1), 11–44 (1995)

14. Lomuscio, A., Penczek, W., Qu, H.: Partial order reductions for model checking
temporal epistemic logics over interleaved multi-agent systems. Fundamenta Infor-
maticae 101(1), 71–90 (2010)

15. Lomuscio, A., Qu, H., Raimondi, F.: MCMAS: A model checker for the verifica-
tion of multi-agent systems. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS,
vol. 5643, pp. 682–688. Springer, Heidelberg (2009)

16. Lomuscio, A., Qu, H., Solanki, M.: Towards verifying contract regulated service
composition. Journal of Autonomous Agents and Multi-Agent Systems 24(3),
345–373 (2010)

17. Musuvathi, M., Park, D.Y.W., Chou, A., Engler, D.R., Dill, D.L.: CMC: A prag-
matic approach to model checking real code. SIGOPS Operating Systems Review,
36(SI), 75–88 (2002)

18. Perkins, C., Belding-Royer, E., Das, S.: Ad hoc On-Demand Distance Vector
(AODV) Routing. RFC 3561 (Experimental) (July 2003)

19. Ramalingam, G.: Context-sensitive synchronization-sensitive analysis is undecid-
able. ACMTransactions on Programming Languages and Systems (TOPLAS) 22(2),
416–430 (2000)

20. De Renesse, F., Aghvami, A.H.: Formal verification of ad-hoc routing protocols
using SPIN model checker. In: MELECON 2004, vol. 3, pp. 1177–1182. IEEE (2004)

21. Stolz, V., Huch, F.: Runtime verification of concurrent haskell programs. In:
RV 2004. ENTCS, vol. 113, pp. 201–216. Elsevier Science Publishers (2005)

22. Visser, W., Havelund, K., Brat, G., Park, S., Lerda, F.: Model checking programs.
Automated Software Engineering 10, 203–232 (2003)

23. Witkowski, T., Blanc, N., Kroening, D., Weissenbacher, G.: Model checking con-
current linux device drivers. In: ASE 2007, pp. 501–504. ACM (2007)

Formal Verification of Distributed Branching

Multiway Synchronization Protocols�

Hugues Evrard and Frédéric Lang

CONVECS Team, Inria Grenoble Rhône-Alpes and LIG
(Laboratoire d’Informatique de Grenoble), Montbonnot, France

Abstract. Distributed systems are hard to design, and formal methods
help to find bugs early. Yet, there may still remain a semantic gap be-
tween a formal model and the actual distributed implementation, which
is generally hand-written. Automated generation of distributed imple-
mentations requires an elaborate multiway synchronization protocol. In
this paper, we explore how to verify correctness of such protocols. We
generate formal models, written in the LNT language, of synchroniza-
tion scenarios for three protocols and we use the CADP toolbox for
automated formal verifications. We expose a bug leading to a deadlock
in one protocol, and we discuss protocol extensions.

1 Introduction

Concurrent systems are hard to design, in particular distributed systems whose
processes potentially run asynchronously, i.e., at independent speeds, possibly
on remote machines. Formal methods, applied to formal system specifications,
help to detect design flaws early in the development process. However, imple-
mentations are often hand-written, and a semantic gap may appear between
a specification and its implementation. This can be palliated by tools which
automatically generate a correct implementation from a formal specification.

We consider distributed systems consisting of several tasks that interact by
synchronization. The specification of such systems will describe each task behav-
ior as a nondeterministic process and the possible synchronizations between tasks
through a parallel composition operator. As a particular specification language,
we have in mind LOTOS NT (LNT for short) [5], a successor of LOTOS [16] and
a variant of the E-LOTOS standard [17]. LNT has a general parallel composition
operator [12] that enables multiway synchronization (also available in LOTOS),
where a set of two or more tasks can synchronize altogether, and m-among-n
synchronization (not available in LOTOS), where any subset of m tasks among
a set of n tasks can synchronize altogether.

LNT is already equipped with formal verification tools packaged in the CADP
toolbox [11]. In a close future, we would also like to automatically generate from

� This work was partly funded by the French Fonds national pour la Société Numérique
(FSN), Pôles Minalogic, Systematic and SCS (project OpenCloudware).

D. Beyer and M. Boreale (Eds.): FMOODS/FORTE 2013, LNCS 7892, pp. 146–160, 2013.
c© IFIP International Federation for Information Processing 2013

Formal Verification of Distributed Branching Multiway Synchronization 147

an LNT specification a distributed implementation consisting of one sequential
process per task plus a synchronization protocol, as much distributed as possible
to avoid the obvious bottleneck that a centralized synchronizer would represent
in large distributed systems. Preserving the semantics of the specification is of
major importance. We need elaborate protocols since classical synchronization
barriers [8] cannot handle branching synchronizations, i.e., the situation where
a task is ready to synchronize on several gates nondeterministically.

Several distributed synchronization protocols exist (see Section 2), many of
them handling branching multiway synchronization, but not m-among-n syn-
chronization. Some of these protocols have been proven correct either by demon-
strating by hand the satisfaction of some properties, or by verifying by hand
the behavior equivalence with an ideal synchronizer. To our knowledge, none of
them has been verified using computer-assisted tools yet. We explore how proto-
cols correctness can be verified using computer-assisted verification tools, which
would provide better confidence in their correctness.

The contribution of this paper is the following. We selected three protocols
that seemed most appropriate to handle LNT synchronization, respectively pro-
posed by Sjödin [27], Parrow & Sjödin [23] and Sisto, Ciminiera & Valenzano [26]
(respectively referred as Sjödin’s, Parrow’s and Sisto’s protocol for short). For
each of these three protocols, we generate formal specifications and use model
checking to verify absence of deadlocks and livelocks, and equivalence checking
to verify synchronization consistency and characterize precisely the semantic re-
lation between the specification and the implementation. We claim that, under
the hypotheses stated at the time of its publication, Parrow’s protocol can lead
to a deadlock, which we illustrate by an example and for which we propose a fix.
At last, we discuss the limitations of the three protocols to handle m-among-n
synchronization, and we propose some enhancements.

Paper Overview. Section 2 exposes the related work. Section 3 briefly presents the
CADP toolbox. Section 4 introduces the three protocols under study. Section 5
explains how we generate formal specifications of protocols, and Section 6 lists
the verifications we apply to these specifications. Section 7 discusses the results of
protocol verifications, and describes the bug found in Parrow’s protocol. Finally,
Section 8 gives concluding remarks and directions for future work.

2 Related Work

There is an analogy between multiway synchronization and the Committee Co-
ordination Problem [6] (CCP), where professors (tasks) may attend committees
(synchronizations). A professor may attend any committee, a committee needs a
predefined set of professors to be conveyed, and a professor can attend only one
committee at a time. Committees sharing professors must be in mutual exclusion,
and committees must be conveyed only if all professors are ready (readiness).

Chandy and Misra (C.&M.) propose a solution where the mutual exclusion is
solved by mapping the problem to the Dining (or Drinking) Philosophers prob-
lem, and readiness is guaranteed by a shuffle of tokens [6]. Bagrodia presents

148 H. Evrard and F. Lang

the Event Manager (EM) algorithm, which uses a unique token cycling among
committees to ensure mutual exclusion, and counters (of professors ready an-
nouncements and committee attendances) to guarantee readiness [1]. In the same
paper, Bagrodia also proposes the Modified Event Managers (MEM) algorithm
using the Dining Philosophers for mutual exclusion.

Bonakdarpour et al. address distributed implementations for the BIP frame-
work [2]. Multiway synchronization is handled by a software layer, in which the-
oretically any protocol can be fitted. Their implementations use either a central
synchronizer, a token-ring protocol (inspired by the EM algorithm of Bagrodia)
or a mapping to the Dining Philosophers. They discuss the correctness of the
derived implementation, but not of the protocols themselves.

LNT multiway synchronization differs slightly from the CCP in two ways.
First, a single committee may be conveyed with different sets of professors: this
is not a big deal, since we can declare new committees for every such set of pro-
fessors and fall back to the CCP. Note however that we might face combinatorial
explosion of committees, e.g. in the case of m-among-n synchronization. Second,
a professor may be ready on a different subset of committees, depending on its
current state. This extension to the CCP is addressed by C.&M. and Bagrodia:
professors alert only committees they are ready on, but these still require mutual
exclusion from all possible conflicting committees.

C.&M. and Bagrodia’s protocols are based on solutions for synchronization
in concurrency problems. At the same period, attempts to derive an implemen-
tation from a LOTOS specification lead to other solutions. Sisto et al. suggest a
synchronization-tree based protocol [26]. In his thesis, Sjödin introduces a solu-
tion where committees directly lock professors [27], and a few years later Parrow
& Sjödin propose a variation [23]. Although not in the framework of LOTOS,
Perez et al. explore a very similar approach more recently [25].

In this paper, our main focus is protocol correctness. The solutions of C.&M.,
Bagrodia, and Perez are proven correct by satisfaction of properties. Sisto et al.
discuss complexity but not correctness of their protocol. Sjödin demonstrates the
equivalence between an ideal coordinator and his distributed solution; Parrow &
Sjödin adopt the same approach but give only an overview of the proof. All these
verifications are manual. To our knowledge, there was no attempt at verifying
such protocols using automated verification tools.

We selected Sisto’s, Sjödin’s and Parrow’s protocols in our study because, as
they were designed to coordinate LOTOS synchronizations, they seemed most
appropriate to handle also the case of LNT synchronizations efficiently. Regard-
ing correctness, we verify not only the absence of livelocks and deadlocks, but
we also compare the protocols’ behavior with the expected reference behavior,
which is obtained using reliable verification tools of CADP.

3 The CADP Toolbox

CADP (Construction and Analysis of Distributed Processes) [11] is a toolbox
for modeling and verifying asynchronous systems. The CADP toolbox provides,
among others, the following languages, models, and tools.

Formal Verification of Distributed Branching Multiway Synchronization 149

High-level languages allow concurrent systems to be modeled as processes run-
ning asynchronously and communicating by rendezvous synchronization on com-
munication actions. Historically, LOTOS [16] was the main language of CADP.
It combines algebraic abstract data types to model types and functions in an
equational style, and a process algebra inheriting from CCS [21] and CSP [15]
to model processes. In recent years, LNT [5] was developed, providing an easier
syntax closer to mainstream imperative and functional programming languages.
Models written in LNT can be verified using CADP, via an automated transla-
tion into LOTOS. The semantics of a LOTOS or an LNT program are defined
as an LTS (Labeled Transition System) [21], that is a graph whose transitions
between states are labeled by actions denoting value-passing communications.

Intermediate-level models are representations of systems between high-level
languages and low-level models. As such, the EXP.OPEN 2.0 [18] language for
networks of communicating LTSs consists of LTSs composed using various op-
erators, including LOTOS and LNT parallel composition. EXP.OPEN 2.0 is a
key component of CADP for compositional verification.

Low-level models are representations of LTSs. CADP provides the BCG (Bi-
nary Coded Graph) format to represent an LTS explicitly (as a set of states and
transitions), and the OPEN/CÆSAR environment [9] to represent an LTS im-
plicitly (as a set of types and functions, including functions for enumerating the
successor transitions of a given state), for on-the-fly verification.

Temporal logics allow behavioral properties to be defined. The MCL lan-
guage [20] combines the alternation-free μ-calculus together with regular for-
mulas, primitives to handle data, and useful fairness operators of alternation 2.

Model checkers and equivalence checkers are also available in CADP. The
EVALUATOR 4.0 model checker [20] allows an MCL formula to be checked on
the fly on a system modeled in any language or format available in CADP,
through the OPEN/CÆSAR interface. The BISIMULATOR 2.0 equivalence
checker [19] allows the equivalence of two systems to be checked on the fly, mod-
ulo several equivalence relations, including strong [22], branching [29], safety [3]
or weak trace [4] equivalences.

At last, CADP allows complex verification scenarios to be described succinctly
using the intuitive language SVL (Script Verification Language) [10]. An SVL
script is translated by the SVL compiler into a Bourne Shell script, which invokes
the appropriate CADP tools automatically.

4 Overview of Synchronization Protocols

We consider a distributed system to be specified as several tasks which interact
with each others by synchronous rendezvous on gates. A task is defined by an LTS
of which transition labels are gate identifiers. A parallel composition expression
defines for each gate which sets of tasks are synchronizable on that gate. In this
paper, we also name a parallel composition of tasks a synchronization scenario.

Figure 1 illustrates a distributed system made of four tasks t1, t2, t3, and t4,
which synchronize on gates A, B and C. Each task is represented by an LTS, the

150 H. Evrard and F. Lang

A
B

A

t1 t3 t4C

B

C

B

t2

A B B

C

Fig. 1. A distributed system made of four tasks which synchronize on three gates

t1 t2 t3 t4

A B C

m2 m3 m4m1

t1 t2 t3 t4

A B C

m2 m3 m4m1

t1 t2 t3 t4

C

B

A

(a) (b) (c)

Fig. 2. Architecture of Sjödin’s (a), Parrow’s (b), and Sisto’s (c) protocol

black point denoting the initial state. Possible synchronizations are represented
by lines labeled with a gate identifier. For instance, a synchronization on B
involves either t2 and t3, or t2 and t4.

A synchronization protocol must guarantee mutual exclusion of synchroniza-
tions which involve common tasks, and that a synchronization happens only
when all involved tasks are actually ready on it. For instance in Figure 1, t2 may
synchronize on B with either t3 or t4, but cannot synchronize with both at the
same time. Once t2 has synchronized on A, it will never be ready to synchronize
on B again, so no other synchronization on B may occur.

In the sequel we briefly describe how the three protocols under study fulfill
these requirements. For a complete and detailed explanation of their internals,
we refer to original publications of the protocols [27,23,26]. Note that LNT also
enables data exchange during rendezvous on gates, and guards on data values.
We leave those aspects for future work, focusing here on synchronization. In ad-
dition, we assume that the composition of tasks is static, i.e., we do not consider
the dynamic creation and deletion of tasks.

Sjödin’s Protocol Overview. A mediator process is associated to each task,
and a port process is associated to each gate. Ready tasks send a message to their
mediator, which lets know the relevant ports. When a port has received enough
ready messages, it tries to lock all mediators involved in a synchronization. If it
succeeds, then the synchronization occurs and the port sends a confirmation to
all locked mediators, which announce to their task on which gate the synchro-
nization occurred. Otherwise, if one of the mediators has already been locked
and confirmed by another port, then negotiation is aborted and the port releases
all mediators it has locked so far. To avoid deadlocks, all ports lock mediators in
the same order [14]. Figure 2 (a) illustrates the architecture of Sjödin’s protocol
on the example of Figure 1.

Formal Verification of Distributed Branching Multiway Synchronization 151

Parrow’s Protocol Overview. Parrow’s protocol is based on Sjödin’s and
adopts almost the same architecture, see Figure 2 (b). The locking process is
different: a port starts by locking the first mediator, which is then responsible
for locking the next one, etc. When the last mediator is locked, it announces
synchronization success to the port and to other involved mediators, which in-
form their tasks. However, if a mediator refuses the lock, it directly informs the
port, and tells the list of locked mediators to release themselves. Compared to
Sjödin’s, Parrow’s protocol mediators communicate with each other, and the
locking process is less centralized.

Sisto’s Protocol Overview. The protocol is very tied to LOTOS since it
is structured as a composition tree obtained from a LOTOS expression. For
instance, the parallel composition of Figure 1 can be expressed as the LOTOS
expression “t1 |[A]| (t2 |[B]| (t3 |[C]| t4))”. Figure 2 (c) illustrates the
composition tree obtained, where leaves are tasks. Tasks announce which gates
they are ready on to their upper node. Nodes may control one or several gates, in
which case they collect ready announcements for these gates; for other gates they
propagate ready messages to their father node. If both children of a node are
ready on a gate controlled by the node, it starts to lock both subtrees down to
the tasks. If a synchronization already occurred in a subtree, then the lock refusal
is propagated upward. When the node which started the negotiation receives a
refusal, it aborts the negotiation and unlocks the other subtree. If both subtrees
accept the lock, then the node sends a confirmation message to both subtrees
and the synchronization is achieved.

In the example of Figure 1, if t2, t3 and t4 are all ready on B, then the B
node sends a lock to t2 and to the C node. Here the C node must choose if it
propagates the lock of B to either t3 or t4, but must not synchronize both of
them since t3 and t4 are interleaving on B. So each node is characterized by the
gates it controls (for which it starts negotiations), and the gates it synchronizes
(for which both children must be ready to propagate ready upward, and both
children must be locked). These two sets may be different, and a node always
synchronizes a gate it controls.

5 Formal Specification of Protocols

The three of the above protocols are made of protocol processes (namely nodes
for Sisto’s protocol, and mediators and ports for Sjödin’s and Parrow’s) which
interact with tasks. In this section, we explain how, from a synchronization
scenario, we automatically generate a formal specification of tasks, protocol pro-
cesses, and their interaction. Figure 3 gives an overview of our specification and
verification approach. The approach is generic, and may be used to verify other
synchronization protocols.

We assume that the high-level specification of a synchronization scenario con-
sists of an LTS stored in BCG format for each task, and of an EXP.OPEN
expression for the parallel composition of tasks. Because Sisto’s protocol is
tied to a LOTOS expression, for the time being we assume the composition

152 H. Evrard and F. Lang

Specification
Generate Protocol Equivalence

Checking

Synchronization Scenario

(BCG, EXP.OPEN)

Generate

Abstract
Protocol

State Space,

Internals

Rename
Successful

Synchronization
Labels

LTS Model of Protocol
Comparable with

(BCG)
Reference LTS Model

Model of

Protocol

(LNT)
Implementation

LTS Model of
Protocol

(BCG)
Implementation

State Space

Generation

Reference LTS

(BCG)

Model of Specification

DiagnosticDeadlock and Livelock Checking

L
ow

-L
ev
el

Diagnostic

H
ig
h
-L
ev
el

Fig. 3. Specification and verification steps in high and low level

expression uses only LOTOS parallel composition1. This is our input to generate
the low-level specification of the scenario, i.e., the model of the implementation
of protocol processes, which manage synchronizations, and of tasks, which inter-
act with protocol processes2. We write the low-level specification in LNT. We
generate an LNT module for each task and for each protocol process. Moreover,
a main module will compose tasks and protocol processes, along with LNT pro-
cesses modeling the underlying network used in communications between tasks
and protocol processes. Note that gates of high-level specification become data
of message exchanges in low-level specification, and LNT gates in the low-level
specification represent communication channels between low-level processes.

Low-Level Tasks. When a task is ready to synchronize on one or more gates,
it must exchange messages with some protocol processes until it receives the
confirmation of a successful synchronization. Therefore, a synchronization tran-
sition in the high-level specification becomes a sequence of messages exchanged
between task and protocol processes, as defined by the protocol interface. For
each protocol, and each task, a different low-level specification is generated de-
pending on the protocol interface. For instance, Figure 4 illustrates the low-level
specification of t2 for Parrow’s protocol interface. The task first sends a synchro-
nization request on gate M, along with the list of high-level gates it is ready on.
If a synchronization succeeds, then the synchronized gate is stored in variable
sync gate, and the state to go next is selected accordingly.

Protocol Processes. Each protocol process has a generic behavior which is
precisely described in the protocol’s original publication. We just transcript this
behavior in an LNT module, once for all. These modules take arguments to
specialize their behavior according to the synchronization scenario. For instance,

1 For instance, the EXP.OPEN composition expression corresponding to Figure 1 is:
"t1.bcg" |[A]| ("t2.bcg" |[B]| ("t3.bcg" |[C]| "t4.bcg")).

2 Note that there is no relationship between the high and low levels of protocol models
and the abstraction levels described in Section 3.

Formal Verification of Distributed Branching Multiway Synchronization 153

0

t2

B

1

A

module task_t2 (data_types) is

process task_t2 [M: msg_channel] is -- state 0
var sync_gate: gate in

M(request, {A, B}); -- send request to mediator
M(confirm, ?sync_gate); -- wait for confirmation

case sync_gate in
A -> task_t2_1[M] -- synchro on A, go to state 1

| B -> task_t2[M] -- synchro on B, go to state 0
end case

end var

end process

process task_t2_1 [M: msg_channel] is -- state 1
stop -- no outgoing transitions

end process

end module

Fig. 4. LNT code generated for a task using Parrow’s protocol interface

in Sisto’s protocol, arguments passed to nodes are the gates they control and the
gates they synchronize. Moreover, in Sisto’s protocol we introduce the top node

process which acts as a generic father for the root node.

Communications. The authors of the protocols assume that the underlying
communication network is reliable (no messages are lost), and that tasks and
protocol processes communicate via asynchronous message passing (i.e., send-
ing and receiving the message are two distinct actions). Since LNT rendezvous
is synchronous, we explicitly model communication buffers as LNT processes
synchronizing with tasks and protocol processes.

Task and Protocol Process Composition. Finally, the main LNT process
composes tasks, protocol processes and communication buffers in parallel. To
model communication in a real network, this parallel composition uses only
binary rendezvous between a communication buffer and either a task or a pro-
tocol process. Figure 5 illustrates the composition obtained from the example
of Figure 1 for Sisto’s protocol. For instance, a message from the top node goes
through a buffer via synchronization on F0U before reaching the destination node
via a synchronization on F0D.

Tracing Successful Synchronization on Gate EXT. In order to track which
high-level synchronizations are achieved using the protocol, we represent the
“external world” with a low-level gate called EXT. Protocol processes report
successful synchronization on a high-level gate by sending a message on EXT.

6 Verification of Protocols

Figure 3 and the SVL script of Figure 6 summarize our verification approach.
From the main module of the low-level specification, we generate a raw low-level
LTS. In this LTS, a transition is labeled by either a protocol message or a syn-
chronization announcement on gate EXT (e.g, “EXT !A” for a synchronization

154 H. Evrard and F. Lang

module main_sisto (data_types, top_node, node, buffer, task_t1, task_t2,
task_t3, task_t4) is

process main [EXT, F0U, F0D, F1U, F1D, F2U, F2D, F3U, F3D, F4U, F4D,
F5U, F5D, F6U, F6D: message] is

par
F0U -> top_node[EXT, F0U]

|| F0U, F0D -> buffer[F0U, F0D]
|| F0D, F1U, F2U -> node[EXT, F0D, F1U, F2U]({A}, nil of gate_set)
|| F1U, F1D -> buffer[F1U, F1D]

|| F2U, F2D -> buffer[F2U, F2D]
|| F1D -> task_t1[F1D]

|| F2D, F3U, F4U -> node[EXT, F2D, F3U, F4U]({B}, nil of gate_set)
|| F3U, F3D -> buffer[F3U, F3D]

|| F4U, F4D -> buffer[F4U, F4D]
|| F3D -> task_t2[F3D]
|| F4D, F5U, F6U -> node[EXT, F4D, F5U, F6U]({C}, nil of gate_set)

|| F5U, F5D -> buffer[F5U, F5D]
|| F6U, F6D -> buffer[F6U, F6D]

|| F5D -> task_t3[F5D]
|| F6D -> task_t4[F6D]
end par

end process -- main

end module

Fig. 5. Main LNT process of Sisto’s low-level specification for the example of Figure 1

on gate A). For a given synchronization scenario and a given protocol, any pos-
sible order of protocol message exchanges and synchronization announcements
is represented by a path in this LTS.

Our first transformation is hiding all internal protocol messages. In the low-
level LTS obtained, all protocol messages are now labeled “i”, which is the
convention label for internal actions in LNT. We then perform the following
verifications.

Livelock Detection. A livelock happens when low-level processes exchange
messages indefinitely without agreeing on a synchronization, i.e., there exists
somewhere in the low-level LTS a cycle of transitions which are only internal
actions. Since this is the classical definition of a livelock, SVL comes with a
built-in command to detect them (SVL actually calls the EVALUATOR4 tool
of CADP with a predefined MCL formula that matches livelocks). If a livelock
is detected, then a diagnostic, i.e., a path leading to a livelock, is stored in
diag live.bcg.

Deadlock Detection. Generally, a deadlock is defined by a state which has no
outgoing transitions. Note that this can be an expected behavior: for instance
in Figure 1 once t1 has synchronized on A, it reaches a deadlock. Such kind of
situations trigger deadlocks in the low-level LTS too, and these deadlocks are
not due to protocol errors.

Nonetheless, a protocol may get stuck into a deadlock while a synchroniza-
tion could have been reached. This is unacceptable as the protocol must be able
to offer a synchronization as long as one exists in the high-level model. In the
low-level LTS, such a situation is characterized by a state from which there exists

Formal Verification of Distributed Branching Multiway Synchronization 155

(* Generate low-level LTS *)
"raw_lowlevel.bcg" = generation of "main.lnt";
(* Hide protocol messages *)
"lowlevel.bcg" = hide all but "EXT.*" in "raw_lowlevel.bcg";

(* Model checking: livelock and deadlock *)
"diag_live.bcg" = livelock of "lowlevel.bcg";
"diag_dead.bcg" = verify "deadlock.mcl" in "lowlevel.bcg";

(* Generate reference LTS from high-level spec *)
"reference.bcg" = generation of "composition.exp";
(* Rename synchronization announcements *)
"renamed.bcg" = total rename "EXT !\(.*\)" -> "\1" in "lowlevel.bcg";

(* Equivalence checking: branching, safety, weaktrace *)
"diag_branching.bcg" = branching comparison "renamed.bcg" == "reference.bcg";
"diag_safety.bcg" = safety comparison "renamed.bcg" == "reference.bcg";
"diag_weaktrace.bcg" = weak trace comparison "renamed.bcg" == "reference.bcg";

Fig. 6. Generic SVL script for verification operations

both: a sequence of internal actions which leads to a deadlock state; and an-
other sequence which eventually contains a synchronization announcement. The
MCL formula falsified by such protocol deadlocks is “[true*] ((< "i"* > [true]

false) implies [true* . not("i")] false)”. MCL is a rich language, and for
the sake of brevity we do not explain the semantics of MCL constructions used
in this formula. For more details, please refer to [20].

This MCL formula is stored in file deadlock.mcl, and it is evaluated on the
low-level LTS (again, using EVALUATOR4 underneath). If a deadlock is found,
the diagnostic is stored in diag dead.bcg.

Synchronization Consistency. A synchronization protocol must not only be
deadlock and livelock free, but it must also synchronize tasks correctly, so we
finally have to verify synchronization consistency. We naturally use the high-level
LTS generated from the high-level specification (the EXP.OPEN and tasks’ BCG
files) as a reference, i.e., we consider this LTS to actually represent which syn-
chronizations are possible for this scenario, and we compare this high-level LTS
with the low-level LTS using equivalence checking. To do so, labels of high-level
and low-level LTS must be comparable. We rename low-level LTS labels using a
simple regular expression, such that for instance the label “EXT !A” is renamed
to “A”. Now both LTSs have the same labels for task synchronizations, and the
low-level one also contains internal actions representing protocol messages.

Several equivalence relations correspond to different ways of abstracting away
internal actions. We use, in decreasing order of strength, the branching [29],
safety [3] and weak trace [4] equivalence relations. The SVL script calls the
BISIMULATOR tool, which compares LTSs and, in case of differences, provides
a diagnostic showing a behavior possible in an LTS and not in the other.

7 Analysis of Protocol Verifications

The goal of model checking is finding bugs, rather than proving correctness. To
this aim, we wrote a bench of 51 synchronization scenarios, trying to cover a

156 H. Evrard and F. Lang

Med1 Med2CB

CBCB

Port G

CB = Comm Buffer

GG

Task2Task1

G G

lock1,2(G)

ready1,G
ready2,G

queryG,1

T = {}

T = {1, 2}
T = {2}

ready1,G

ready2,G

commit2,1(G)

T = {1, 2}
T = {}
T = {2}

Port GMed1 Med2

yes2,G

req1({G})

conf1(G)

req1({G})

req2({G})

conf2(G)

req2({G})

Task1 Task2

Fig. 7. Negotiation leading to a deadlock in Parrow’s protocol

wide range of parallel compositions rather than a wide range of task behaviors.
We thus focused on tasks containing up to no more than three states and ten
transitions and we varied the number of concurrent tasks (from two up to four),
the total number of gates (from zero up to four), the number of synchronized
gates (from zero up to four), the number of gates simultaneously available in
each task (from zero up to three), and the number of tasks synchronized on each
gate (from one up to three). We obtain low-level LTSs with up to 500, 000 states
and 1, 200, 000 transitions.

Identification of Deadlocks in Parrow’s Protocol. The test suite raised a
design error that can lead to deadlocks. Figure 7 illustrates a scenario with two
tasks Task1 and Task2 which synchronize two times on gate G. Figure 7 also
exposes a negotiation leading to a deadlock after a first synchronization on G,
whereas two synchronizations must occur. In the negotiation, we use the original
notations of [23] for communication channels and data set names.

Each task notifies its own mediator with a request message to declare that it
is ready on G. Mediators send ready messages to port G, which populates the
set, called T , of tasks that are ready. When the port detects that both tasks are
ready, it begins a negotiation by sending a query message to the mediator of
Task1, called Med1. Med1 accepts the lock and sends a lock request to Med2.
Med2 accepts the lock and sends a yes message to port G. We assume that this
yes message is delayed (dashed line in Fig. 7), i.e., stored in a communication
buffer and not consumed immediately.

Meanwhile, Med2 sends a commit message to Med1, and confirms successful
synchronization on G to Task2. Med1 confirms to its task, and then both me-
diators receive new request messages. Med1 sends a ready message to port G,
which accepts it. T is set to T ∪ {1}, which actually leaves T unmodified.

Once the yes message from Med2 is received by port G, the set T is emptied
so now T = {}. Med2 sends a ready notification, and T updates to {2}. In this
situation, port G does not start a negotiation because T is not enough populated.
However, ready requests of both mediators have already been received by the
port. So we reach a deadlock, where a synchronization that could be successful
(if the yes message had been received before the ready message of Med1) is not
negotiated, and all protocol processes have stopped to communicate.

Formal Verification of Distributed Branching Multiway Synchronization 157

B
A C

Task2

A B

Task1

A, B synchro: 1, 2
C synchro: 2

Synchronization Scenario Low-Level LTS

δA δB δC

B C A C A B
B

A C

High-Level LTS

Fig. 8. High and low-level LTSs are not branching bisimilar

Parrow’s protocol can be fixed by separating the set which stores ready an-
nouncements (let’s call it N) and the set which is used for a negotiation (we keep
T). Every time a ready message is received by a port, the corresponding task is
inserted in N . Before starting a negotiation, involved tasks are moved from N
to T . If a yes message is received, T is emptied (ready messages received before
the yes were stored in N). If a no message is received, the task refusing the lock
is removed from T , and remaining tasks of T are inserted back in N before T
is emptied. Using our test suite, we verified that this modification corrects the
design flaw without triggering new issues.

Equivalence of High and Low Level Models. Comparison between high-
level and low-level models gives information about their relations in terms of
execution trees and execution sequences, modulo a transitive closure of inter-
nal actions. Weak trace equivalence indicates that every execution sequence of
the high-level model is also an execution sequence in the low-level model, and
conversely. Stronger relations, such as safety equivalence and branching bisim-
ulation, give information about execution trees, i.e., not only about sequences
of executed actions, but also on the choices of alternative actions that can be
offered in the intermediate states.

In the three of these protocols, we observe that the models are equivalent
modulo safety equivalence3 (which obviously implies weak trace equivalence),
but are not branching bisimilar. This indicates that every execution tree of the
high-level model is also an execution tree of the low-level model, and conversely,
but that some execution subtrees of the low-level model may be strictly contained
in the high-level model.

This is illustrated by Figure 8: for the sake of brevity we consider synchro-
nizations involving only one task (here on gate C), which is a limit case of
synchronization. In the high-level LTS, the choice between all three possible
synchronizations is made from a single state. The low-level LTS contains inter-
leavings of protocol messages, represented by dashed arrows. During negotiation,
the next synchronization may require several messages to be progressively se-
lected, i.e., we may reach states where a synchronization on a particular gate
cannot occur anymore (the gate has been “discarded”, marked δ on the figure),
but the choice remains between other synchronizations. Such intermediate states,
grayed on the figure, have no bisimilar state in the high-level LTS.

3 In a manual proof, Sjödin and Parrow [24] use coupled simulation which, like safety
equivalence, is a double simulation relation. We use the close but more standard
safety equivalence, which is implemented in CADP.

158 H. Evrard and F. Lang

For instance, consider Parrow’s protocol on the scenario of Figure 8. If the
first lock to happen is port A querying Med1, we reach a state where: if Med1
locks Med2 for A then A wins; or if port C locks Med2 then C wins (because
both A and B need Med2, and C will not abort). Hence, we found a state where
B will never happen but the choice between A or C remains.

Protocol Extension: m-among-n Synchronizations. So far, we considered
high-level synchronizations to be specified by an EXP.OPEN expression using
exclusively LOTOS parallel composition. In this section, we investigate how the
protocols can manage m-among-n synchronizations offered by the LNT paral-
lel composition operator. For instance, we write “par A#2 in t1 || t2 || t3

end par” to say that any group of 2 tasks among t1, t2 and t3 can synchronize on
gate A. This cannot be directly expressed using LOTOS binary composition [12].
A way to implement this LNT operator is to flatten parallel composition by defin-
ing several sets of synchronizable tasks for each gate (synchronization vectors).

Sisto’s protocol is so much tied to the tree structure of LOTOS expressions
that it seems hard to make it manage m-among-n synchronizations without
major design modifications.

Sjödin’s protocol uses synchronization subtrees in its ready messages, and
ports compose subtrees received from mediators to determine possible synchro-
nizations. We replace these subtrees by simple lists of gates, and we give syn-
chronization vectors as an argument to ports. Ports record ready announcements,
and scan their synchronization vectors to detect possible synchronizations.

Parrow’s protocol directly uses gate lists in its messages. However, each port
is limited to only one synchronization vector, and in a locking sequence every
mediator refers to this globally known vector to know what is the next mediator
to lock. We extend port specifications to handle multiple synchronization vectors,
and to send the relevant vector along lock requests. We also modify mediators
to scan lock messages in order to know what is the next mediator to lock.

We verified that the modified versions of Sjödin’s and Parrow’s protocol still
successfully handle synchronization scenarios of our test suite, plus a few more
tests using m-among-n synchronizations.

Synchronization vectors are a direct and explicit way to express possible
synchronizations. However, with nested parallel composition operators and m-
among-n synchronizations, the number of synchronization vectors for a single
gate can easily explode. To avoid this, we could use an equivalently expressive
but more symbolic expression of possible synchronizations, such as the synchro-
nizers proposed in the ATLANTIF intermediate model [28].

8 Conclusion and Future Work

In this paper, we presented how, for a given synchronization scenario and a
given protocol, we can generate a formal LNT model of the implementation
with asynchronous communication. Using the CADP verification toolbox, we
spotted previously undetected deadlocks in Parrow’s protocol (illustrated by an
example), whereas we found no bug in Sjödin’s and Sisto’s protocols. To our

Formal Verification of Distributed Branching Multiway Synchronization 159

knowledge, this is the first attempt at verifying such synchronization protocols
using automated verification tools.

In their original formulation, the three protocols under study cannot handle
the full LNT synchronization semantics. We believe Sisto’s protocol cannot be
easily extended because its behavior is closely related to the binary nature of the
LOTOS parallel composition operator. On the other hand, we modified Sjödin’s
and Parrow’s protocols such that possible synchronizations are now specified by
synchronization vectors. These extended versions can handle the generality of
LNT synchronization, and we verified that no new bugs were introduced.

The formal models of protocols will help us to decide which protocol to use for
implementation. Nevertheless, before making our final decision, this work should
be continued in several directions. First, we will study how data exchanges can
be added to the protocols. Second, we could use the protocol models to precisely
measure how many messages are required in each protocol to agree on a synchro-
nization, depending on the number of tasks and the possible synchronizations
between them. Moreover, we could use the performance evaluation features of
CADP [7] to simulate communication latency between remote sites, and measure
protocol performances directly on the formal models.

Finally, we will be able to develop a stand-alone compiler to generate a proto-
type distributed implementation of an LNT composition of tasks, as a family of
remote task and protocol processes. The code for each task could be obtained by
extending the EXEC/CÆSAR framework [13] of CADP (which currently gen-
erates sequential code simulating a concurrent or sequential process) to make it
fit the synchronization protocol interface.

Acknowledgments. The authors warmly thank the Inria/CONVECS team
members for useful discussions.

References

1. Bagrodia, R.: Process synchronization: Design and performance evaluation of dis-
tributed algorithms. IEEE Trans. on Software Engineering 15(9), 1053–1065 (1989)

2. Bonakdarpour, B., Bozga, M., Jaber, M., Quilbeuf, J., Sifakis, J.: From high-level
component-based models to distributed implementations. In: Proc. of the 10th
ACM International Conference on Embedded Software, pp. 209–218 (2010)

3. Bouajjani, A., Fernandez, J.C., Graf, S., Rodŕıguez, C., Sifakis, J.: Safety for
Branching Time Semantics. In: Leach Albert, J., Monien, B., Rodŕıguez-Artalejo,
M. (eds.) ICALP 1991. LNCS, vol. 510, pp. 76–92. Springer, Heidelberg (1991)

4. Brookes, S.D., Hoare, C.A.R., Roscoe, A.W.: A Theory of Communicating Sequen-
tial Processes. Journal of the ACM 31(3), 560–599 (1984)

5. Champelovier, D., Clerc, X., Garavel, H., Guerte, Y., McKinty, C., Powazny, V.,
Lang, F., Serwe, W., Smeding, G.: Reference Manual of the LOTOS NT to LOTOS
Translator (Version 5.8). Inria/CONVECS (2013)

6. Chandy, K.M., Misra, J.: Parallel Program Design: A Foundation. Addison-Wesley
(1988)

7. Coste, N., Garavel, H., Hermanns, H., Lang, F., Mateescu, R., Serwe, W.: Ten Years
of Performance Evaluation for Concurrent Systems Using CADP. In: Margaria, T.,
Steffen, B. (eds.) ISoLA 2010, Part II. LNCS, vol. 6416, pp. 128–142. Springer,
Heidelberg (2010)

160 H. Evrard and F. Lang

8. Dijkstra, E.W.: The Structure of the “THE”-Multiprogramming System. Comm.
of the ACM (1968)

9. Garavel, H.: OPEN/CAESAR: An Open Software Architecture for Verification,
Simulation, and Testing. In: Steffen, B. (ed.) TACAS 1998. LNCS, vol. 1384,
pp. 68–84. Springer, Heidelberg (1998)

10. Garavel, H., Lang, F.: SVL: a Scripting Language for Compositional Verification.
In: Proc. of FORTE. Kluwer (2001)

11. Garavel, H., Lang, F., Mateescu, R., Serwe, W.: CADP 2011: A Toolbox for the
Construction and Analysis of Distributed Processes. STTT 15(2), 89–107 (2013)

12. Garavel, H., Sighireanu, M.: A Graphical Parallel Composition Operator for Pro-
cess Algebras. In: Proc. of FORTE/PSTV. Kluwer (1999)

13. Garavel, H., Viho, C., Zendri, M.: System Design of a CC-NUMA Multiprocessor
Architecture using Formal Specification, Model-Checking, Co-Simulation, and Test
Generation. STTT 3(3), 314–331 (2001)

14. Havender, J.W.: Avoiding deadlock in multitasking systems. IBM Systems Jour-
nal 7(2), 74–84 (1968)

15. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall (1985)
16. ISO/IEC. LOTOS — A Formal Description Technique Based on the Temporal

Ordering of Observational Behaviour. International Standard 8807, International
Organization for Standardization (1989)

17. ISO/IEC. Enhancements to LOTOS (E-LOTOS). International Standard
15437:2001, International Organization for Standardization (2001)

18. Lang, F.: EXP.OPEN 2.0: A Flexible Tool Integrating Partial Order, Composi-
tional, and On-the-fly Verification Methods. In: Romijn, J.M.T., Smith, G.P., van
de Pol, J. (eds.) IFM 2005. LNCS, vol. 3771, pp. 70–88. Springer, Heidelberg (2005)

19. Mateescu, R., Oudot, E.: Bisimulator 2.0: An On-the-Fly Equivalence Checker
based on Boolean Equation Systems. In: Proc. of MEMOCODE. IEEE (2008)

20. Mateescu, R., Thivolle, D.: A Model Checking Language for Concurrent Value-
Passing Systems. In: Cuellar, J., Sere, K. (eds.) FM 2008. LNCS, vol. 5014,
pp. 148–164. Springer, Heidelberg (2008)

21. Milner, R.: Communication and Concurrency. Prentice-Hall (1989)
22. Park, D.: Concurrency and Automata on Infinite Sequences. In: Deussen, P. (ed.)

GI-TCS 1981. LNCS, vol. 104, pp. 167–183. Springer, Heidelberg (1981)
23. Parrow, J., Sjödin, P.: Designing a multiway synchronization protocol. Computer

Communications 19(14), 1151–1160 (1996)
24. Parrow, J., Sjödin, P.: Multiway synchronization verified with coupled simulation.

In: Cleaveland, W.R. (ed.) CONCUR 1992. LNCS, vol. 630, pp. 518–533. Springer,
Heidelberg (1992)

25. Pérez, J.A., Corchuelo, R., Toro, M.: An order-based algorithm for implementing
multiparty synchronization. Concurrency and Computation: Practice and Experi-
ence 16(12), 1173–1206 (2004)

26. Sisto, R., Ciminiera, L., Valenzano, A.: A protocol for multirendezvous of LOTOS
processes. IEEE Trans. on Computers 40(4), 437–447 (1991)

27. Sjödin, P.: From LOTOS Specifications to Distributed Implementations. PhD the-
sis, Department of Computer Science, University of Uppsala, Sweden (1991)

28. Stöcker, J., Lang, F., Garavel, H.: Parallel Processes with Real-Time and Data:
The ATLANTIF Intermediate Format. In: Leuschel, M., Wehrheim, H. (eds.)
IFM 2009. LNCS, vol. 5423, pp. 88–102. Springer, Heidelberg (2009)

29. van Glabbeek, R.J., Weijland, W.P.: Branching-Time and Abstraction in Bisimu-
lation Semantics. In: Proc. of IFIP (1989)

An Abstract Framework

for Deadlock Prevention in BIP�

Paul C. Attie1, Saddek Bensalem2, Marius Bozga2, Mohamad Jaber1,
Joseph Sifakis3, and Fadi A. Zaraket4

1 Department of Computer Science, American University of Beirut, Beirut, Lebanon
2 UJF-Grenoble 1 / CNRS VERIMAG UMR 5104, Grenoble, F-38041, France

3 Rigorous System Design Laboratory, EPFL, Lausanne, Switzerland
4 Department of Electrical and Computer Engineering,

American University of Beirut, Beirut, Lebanon

Abstract. We present a sound but incomplete criterion for checking
deadlock freedom of finite state systems expressed in BIP: a component-
based framework for the construction of complex distributed systems.
Since deciding deadlock-freedom for finite-state concurrent systems is
PSPACE-complete, our criterion gives up completeness in return for
tractability of evaluation. Our criterion can be evaluated by model-
checking subsystems of the overall large system. The size of these sub-
systems depends only on the local topology of direct interaction between
components, and not on the number of components in the overall system.

We present two experiments, in which our method compares favorably
with existing approaches. For example, in verifying deadlock freedom of
dining philosphers, our method shows linear increase in computation time
with the number of philosophers, whereas other methods (even those that
use abstraction) show super-linear increase, due to state-explosion.

1 Introduction

Deadlock freedom is a crucial property of concurrent and distributed systems.
With increasing system complexity, the challenge of assuring deadlock freedom
and other correctness properties becomes even greater. In contrast to the alter-
natives of (1) deadlock detection and recovery, and (2) deadlock avoidance, we
advocate deadlock prevention: design the system so that deadlocks do not occur.

Deciding deadlock freedom of finite-state concurrent programs is PSPACE-
complete in general [15, chapter 19]. To achieve tractability, we can either make
our deadlock freedom check incomplete (sufficient but not necessary), or we can
restrict the systems that we check to special cases. We choose the first option: a
system meeting our condition is free of both local and global deadlocks, while a
system which fails to meet our condition may or may not be deadlock free.

� The research leading to these results has received funding from the European Com-
munity’s Seventh Framework Programme [FP7/2007-2013] under grant agreement
no. 288175 (CERTAINTY) and no 257414 (ASCENS).

D. Beyer and M. Boreale (Eds.): FMOODS/FORTE 2013, LNCS 7892, pp. 161–177, 2013.
c© IFIP International Federation for Information Processing 2013

162 P.C. Attie et al.

We generalize previous works [2–4] by removing the requirement that interac-
tion between processes be expressed pairwise, and also by applying to BIP [6], a
framework from which efficient distributed code can be generated. In contrast,
the model of concurrency in [2–4] requires shared memory read-modify-write
operations with a large grain of atomicity. The full paper, including proofs for
all theorems, is available on-line, as is our implementation of the method.

2 BIP – Behavior Interaction Priority

BIP is a component framework for constructing systems by superposing three
layers of modeling: Behavior, Interaction, and Priority. A technical treatment
of priority is beyond the scope of this paper. Adding priorities never introduces
a deadlock, since priority enforces a choice between possible transitions from
a state, and deadlock-freedom means that there is at least one transition from
every (reachable) state. Hence if a BIP system without priorities is deadlock-free,
then the same system with priorities added will also be deadlock-free.

Definition 1 (Atomic Component). An atomic component Bi is a labeled
transition system represented by a triple (Qi, Pi,→i) where Qi is a set of states,
Pi is a set of communication ports, and →i⊆ Qi × Pi ×Qi is a set of possible
transitions, each labeled by some port.

For states si, ti ∈ Qi and port pi ∈ Pi, write si
pi→i ti, iff (si, pi, ti) ∈→i. When

pi is irrelevant, write si →i ti. Similarly, si
pi→i means that there exists ti ∈ Qi

such that si
pi→i ti. In this case, pi is enabled in state si. Ports are used for

communication between different components, as discussed below.
In practice, we describe the transition system using some syntax, e.g., involv-

ing variables. We abstract away from issues of syntactic description since we are
only interested in enablement of ports and actions. We assume that enablement
of a port depends only on the local state of a component. In particular, it cannot
depend on the state of other components. This is a restriction on BIP, and we
defer to subsequent work how to lift this restriction. So, we assume the existence
of a predicate enbipi

that holds in state si of component Bi iff port pi is enabled

in si, i.e., si(enb
i
pi
) = true iff si

pi→i.
Figure 1(a) shows atomic components for a philospher P and a fork F in dining

philosophers. A philosopher P that is hungry (in state h) can eat by executing get
and moving to state e (eating). From e, P releases its forks by executing release
and moving back to h. Adding the thinking state does not change the deadlock
behaviour of the system, since the thinking to hungry transition is internal to
P , and so we omit it. A fork F is taken by either: (1) the left philosopher
(transition get l) and so moves to state ul (used by left philosopher), or (2)
the right philosopher (transition getr) and so moves to state ur (used by right
philosopher). From state ur (resp. ul), F is released by the right philosopher
(resp. left philosopher) and so moves back to state f (free).

An Abstract Framework for Deadlock Prevention in BIP 163

Fork F

Philosopher P

release

get

e h

release get

fur ul

user use l

free lfreer

user use l

freer
free l

(a) Philosopher P and fork F atomic
components.

ge
t

user

use l

re
le
as
e

release

get

get

release
release

get

use l

free l

user
freer

P0

P3

P2

P1

F0 F1

F2F3

use l
free l

freer
user

use l

user

free l

freer

freer

free l

(b) Dining philosophers composite com-
ponent with four philosophers.

Fig. 1. Dining philosophers

Definition 2 (Interaction). For a given system built from a set of n atomic
components {Bi = (Qi, Pi,→i)}ni=1, we require that their respective sets of ports
are pairwise disjoint, i.e., for all i, j such that i, j ∈ {1..n} ∧ i �= j, we have
Pi∩Pj = ∅. An interaction is a set of ports not containing two or more ports from
the same component. That is, for an interaction a we have a ⊆ P ∧(∀i ∈ {1..n} :
|a ∩ Pi| ≤ 1), where P =

⋃n
i=1 Pi is the set of all ports in the system. When we

write a = {pi}i∈I , we assume that pi ∈ Pi for all i ∈ I, where I ⊆ {1..n}.

Execution of an interaction a involves all the components which have ports in a.

Definition 3 (Composite Component). A composite component (or simply
component) B � γ(B1, . . . , Bn) is defined by a composition operator parameter-
ized by a set of interactions γ ⊆ 2P . B has a transition system (Q, γ,→), where
Q = Q1 × · · · ×Qn and →⊆ Q× γ ×Q is the least set of transitions satisfying
the rule

a = {pi}i∈I ∈ γ ∀i ∈ I : si
pi→i ti ∀i �∈ I : si = ti

〈〈〈s1, . . . , sn〉〉〉 a→ 〈〈〈t1, . . . , tn〉〉〉

This inference rule says that a composite component B = γ(B1, . . . , Bn) can
execute an interaction a ∈ γ, iff for each port pi ∈ a, the corresponding atomic
component Bi can execute a transition labeled with pi; the states of components
that do not participate in the interaction stay unchanged. Given an interaction
a = {pi}i∈I , we denote by Ca the set of atomic components participating in a,
formally: Ca = {Bi | pi ∈ a}. Figure 1(b) shows a composite component consist-
ing of four philosophers and the four forks between them. Each philosopher and

164 P.C. Attie et al.

its two neighboring forks share two interactions: Get = {get , usel, user} in which
the philosopher obtains the forks, and Rel = {release, freel, freer} in which the
philosopher releases the forks.

Definition 4 (Interaction enablement). An atomic component Bi =

(Qi, Pi,→i) enables interaction a in state si iff si
pi→i, where pi = Pi ∩ a is

the port of Bi involved in a. Let B = γ(B1, . . . , Bn) be a composite component,
and let s = 〈〈〈s1, . . . , sn〉〉〉 be a state of B. Then B enables a in s iff every Bi ∈ Ca

enables a in si.

The definition of interaction enablement is a consequence of Definition 3. Inter-
action a being enabled in state s means that executing a is one of the possible
transitions that can be taken from s. Let enbia denote the enablement condition
for interaction a in component Bi. By definition, enbia = enbipi

where pi = a∩Pi.

Definition 5 (BIP System). Let B = γ(B1, . . . , Bn) be a composite compo-
nent with transition system (Q, γ,→), and let Q0 ⊆ Q be a set of initial states.
Then (B,Q0) is a BIP system.

Figure 1(b) gives a BIP-system with philosophers initially in state h (hungry)
and forks initially in state f (free).

Definition 6 (Execution). Let (B,Q0) be a BIP system with transition system
(Q, γ,→). Let ρ = s0a1s1 . . . si−1aisi . . . be an alternating sequence of states of
B and interactions of B. Then ρ is an execution of (B,Q0) iff (1) s0 ∈ Q0, and

(2) ∀i > 0 : si−1
ai→ si.

A state or transition that occurs in some execution is called reachable.

Definition 7 (State Projection). Let (B,Q0) be a BIP system where B =
γ(B1, . . . , Bn) and let s = 〈〈〈s1, . . . , sn〉〉〉 be a state of (B,Q0). Let
{Bj1 , . . . , Bjk} ⊆ {B1, . . . , Bn}. Then s�{Bj1 , . . . , Bjk} � 〈〈〈sj1 , . . . , sjk〉〉〉. For
a single Bi, we write s�Bi = si. We extend state projection to sets of states
element-wise.

Definition 8 (Subcomponent). Let B � γ(B1, . . . , Bn) be a composite com-
ponent, and let {Bj1 , . . . , Bjk} be a subset of {B1, . . . , Bn}. Let P ′ = Pj1 ∪ · · · ∪
Pjk , i.e., the union of the ports of {Bj1 , . . . , Bjk}. Then the subcomponent B′ of
B based on {Bj1 , . . . , Bjk} is as follows:

1. γ′ � {a ∩ P ′ | a ∈ γ ∧ a ∩ P ′ �= ∅}
2. B′ � γ′(Bj1 , . . . , Bjk)

That is, γ′ consists of those interactions in γ that have at least one partici-
pant in {Bj1 , . . . , Bjk}, and restricted to the participants in {Bj1 , . . . , Bjk}, i.e.,
participants not in {Bj1 , . . . , Bjk} are removed.

We write s�B′ to indicate state projection onto B′, and define s�B′ �
s�{Bj1 , . . . , Bjk}, where Bj1 , . . . , Bjk are the atomic components in B′.

An Abstract Framework for Deadlock Prevention in BIP 165

Definition 9 (Subsystem). Let (B,Q0) be a BIP system where B =
γ(B1, . . . , Bn), and let {Bj1 , . . . , Bjk} be a subset of {B1, . . . , Bn}. Then the
subsystem (B′, Q′

0) of (B,Q0) based on {Bj1 , . . . , Bjk} is as follows:

1. B′ is the subcomponent of B based on {Bj1 , . . . , Bjk}
2. Q′

0 = Q0�{Bj1 , . . . , Bjk}

Definition 10 (Execution Projection). Let (B,Q0) be a BIP system where
B = γ(B1, . . . , Bn), and let (B′, Q′

0), with B′ = γ′(Bj1 , . . . , Bjk) be the sub-
system of (B,Q0) based on {Bj1 , . . . , Bjk}. Let ρ = s0a1s1 . . . si−1aisi . . . be an
execution of (B,Q0). Then, ρ�(B′, Q′

0), the projection of ρ onto (B′, Q′
0), is the

sequence resulting from:

1. replacing each si by si�{Bj1 , . . . , Bjk}, i.e., replacing each state by its pro-
jection onto {Bj1 , . . . , Bjk}

2. removing all aisi where ai �∈ γ′

Proposition 1 (Execution Projection). Let (B,Q0) be a BIP system where
B = γ(B1, . . . , Bn), and let (B′, Q′

0), with B′ = γ′(Bj1 , . . . , Bjk) be the sub-
system of (B,Q0) based on {Bj1 , . . . , Bjk}. Let ρ = s0a1s1 . . . si−1aisi . . . be an
execution of (B,Q0). Then, ρ�(B′, Q′

0) is an execution of (B′, Q′
0).

Corollary 1. Let (B′, Q′
0) be a subsystem of (B,Q0). Let s be a reachable state

of (B,Q0). Then s�B′ is a reachable state of (B′, Q′
0). Let s

a→ t be a reachable

transition of (B,Q0), and let a be an interaction of (B′, Q′
0). Then s�B′ a→ t�B′

is a reachable transition of (B′, Q′
0).

To avoid tedious repetition, we fix, for the rest of the paper, an arbitrary BIP-
system (B,Q0), with B � γ(B1, . . . , Bn), and transition system (Q, γ,→).

3 Characterizing Deadlock-Freedom

Definition 11 (Deadlock-freedom). A BIP-system (B,Q0) is deadlock-free
iff in every reachable state s of (B,Q0), some interaction a is enabled.

We assume in the sequel that each individual component Bi is deadlock-free,
when considered in isolation, with respect to the set of initial states Q0�Bi.

3.1 Wait-For Graphs

The wait-for-graph for a state s is a directed bipartite and-or graph which con-
tains as nodes the atomic components B1, . . . , Bn, and all the interactions γ.
Edges in the wait-for-graph are from a Bi to all the interactions that Bi enables
(in s), and from an interaction a to all the components that participate in a and
which do not enable it (in s).

166 P.C. Attie et al.

Definition 12 (Wait-for-graph WB(s)). Let B = γ(B1, . . . , Bn) be a BIP
composite component, and let s = 〈〈〈s1, . . . , sn〉〉〉 be an arbitrary state of B. The
wait-for-graph WB(s) of s is a directed bipartite and-or graph, where

1. the nodes of WB(s) are as follows:

(a) the and-nodes are the atomic components Bi, i ∈ {1..n},
(b) the or-nodes are the interactions a ∈ γ,

2. there is an edge in WB(s) from Bi to every node a such that Bi ∈ Ca and
si(enb

i
a) = true, i.e., from Bi to every interaction which Bi enables in si,

3. there is an edge in WB(s) from a to every Bi such that Bi ∈ Ca and
si(enb

i
a) = false, i.e., from a to every component Bi which participates in a

but does not enable it, in state si.

A component Bi is an and-node since all of its successor actions (or-nodes)
must be disabled for Bi to be incapable of executing. An interaction a is an
or-node since it is disabled if any of its participant components do not enable
it. An edge (path) in a wait-for-graph is called a wait-for-edge (wait-for-path).
Write a → Bi (Bi → a respectively) for a wait-for-edge from a to Bi (Bi to a
respectively). We abuse notation by writing e ∈WB(s) to indicate that e (either
a → Bi or Bi → a) is an edge in WB(s). Also B → a → B′ ∈ WB(s) for
B → a ∈ WB(s) ∧ a → B′ ∈ WB(s), i.e., for a wait-for-path of length 2, and
similarly for longer wait-for-paths.

Consider the dining philosophers system given in Figure 1. Figure 2(a) shows
its wait-for-graph in its sole initial state. Figure 2(b) shows the wait-for-graph
after execution of get0. Edges from components to interactions are shown solid,
and edges from interactions to components are shown dashed.

Get3

Rel3

Get1

Rel1

F1

Get2

Get0

Rel2

Rel0

P3

F0

F2

P1

P2

P0

F3

(a) Wait-for-graph in initial state.

Get3

Rel3

Get1

Rel1

F1

Get2

Get0

Rel2

Rel0

P3

F0

F2

P1

P2

P0

F3

(b) Wait-for-graph after execution of get0.

Fig. 2. Example wait-for-graphs for dining philosophers system of Figure 1

An Abstract Framework for Deadlock Prevention in BIP 167

3.2 Supercycles and Deadlock-Freedom

We characterize a deadlock as the existence in the wait-for-graph of a graph-
theoretic construct that we call a supercycle:

Definition 13 (Supercycle). Let B = γ(B1, . . . , Bn) be a composite compo-
nent and s be a state of B. A subgraph SC of WB(s) is a supercycle in WB(s)
if and only if all of the following hold:

1. SC is nonempty, i.e., contains at least one node,
2. if Bi is a node in SC, then for all interactions a such that there is an edge
in WB(s) from Bi to a:

(a) a is a node in SC, and
(b) there is an edge in SC from Bi to a,

that is, Bi → a ∈WB(s) implies Bi → a ∈ SC,
3. if a is a node in SC, then there exists a Bj such that:

(a) Bj is a node in SC, and
(b) there is an edge from a to Bj in WB(s), and
(c) there is an edge from a to Bj in SC,

that is, a ∈ SC implies ∃Bj : a→ Bj ∈WB(s) ∧ a→ Bj ∈ SC,

where a ∈ SC means that a is a node in SC, etc. WB(s) is supercycle-free iff
there does not exist a supercycle SC in WB(s). In this case, say that state s is
supercycle-free.

Get3

Rel3

Get1

Rel1

F1

Get2

Get0

Rel2

Rel0

P3

F0

F2

P1

P2

P0

F3

Fig. 3. Example supercycle for dining philosophers system of Figure 1

Figure 3 shows an example supercycle (with boldened edges) for the dining
philosophers system of Figure 1. P0 waits for (enables) a single interaction, Get0.
Get0 waits for (is disabled by) fork F0, which waits for interaction Rel0. Rel0
in turn waits for P0. However, this supercycle occurs in a state where P0 is in h
and F0 is in ul. This state is not reachable from the initial state.

168 P.C. Attie et al.

The existence of a supercycle is sufficient and necessary for the occurrence of
a deadlock, and so checking for supercycles gives a sound and complete check for
deadlocks. Write SC ⊆ WB(s) when SC is a subgraph of WB(s). Proposition 2
states that the existence of a supercycle implies a local deadlock: all components
in the supercycle are blocked forever.

Proposition 2. Let s be a state of B. If SC ⊆WB(s) is a supercycle, then all
components Bi in SC cannot execute a transition in any state reachable from s,
including s itself.

Proof sketch. Every interaction a that Bi enables is not enabled by some par-
ticipant. By Defintion 4, a cannot be executed. Hence Bi cannot execute any
transition.

Proposition 3 states that the existence of a supercycle is necessary for a local
deadlock to occur: if a set of components, considered in isolation, are blocked,
then there exists a supercycle consisting of exactly those components, together
with the interactions that each component enables.

Proposition 3. Let B′ be a subcomponent of B, and let s be an arbitrary state
of B such that B′, when considered in isolation, has no enabled interaction in
state s�B′. Then, WB(s) contains a supercycle.

Proof sketch. Every atomic component Bi in B
′ is individually deadlock free, by

assumption, and so there is at least one interaction ai which Bi enables. Now ai
is not enabled in B′, by the antecedent of the proposition. Hence ai has some
outgoing wait-for-edge in WB(s). The subgraph of WB(s) induced by all the Bi

and all their (locally) enabled interactions is therefore a supercycle.
We consider subcomponent B′ in isolation to avoid other phenomena that

prevent interactions from executing, e.g., conspiracies [5]. Now the converse of
Proposition 3 is that absence of supercycles in WB(s) means there is no locally
deadlocked subsystem. Taking B′ = B, this implies that B is not deadlocked,
and so there is at least one interaction of B which is enabled in state s.

Corollary 2. If, for every reachable state s of (B,Q0), WB(s) is supercycle-
free, then (B,Q0) is deadlock-free.

Proof sketch. Immediate from Proposition 3 (with B′ = B) and Definition 11.

3.3 Structural Properties of Supercycles

We present some structural properties of supercycles, which are central to our
deadlock-freedom condition.

Definition 14 (Path, path length). Let G be a directed graph and v a vertex
in G. A path π in G is a finite sequence v1, v2, . . . , vn such that (vi, vi+1) is an
edge in G for all i ∈ {1, . . . , n− 1}. Write pathG(π) iff π is a path in G. Define
first(π) = v1 and last(π) = vn. Let |π| denote the length of π, which we define
as follows:

An Abstract Framework for Deadlock Prevention in BIP 169

– if π is simple, i.e., all vi, 1 ≤ i ≤ n, are distinct, then |π| = n− 1, i.e., the
number of edges in π

– if π contains a cycle, i.e., there exist vi, vj such that i �= j and vi = vj, then
|π| = ω (ω for “infinity”).

Definition 15 (In-depth, Out-depth). Let G be a directed graph and v a
vertex in G. Define the in-depth of v in G, notated as in depthG(v), as follows:

– if there exists a path π in G that contains a cycle and ends in v, i.e., |π| =
ω ∧ last(π) = v, then in depthG(v) = ω,

– otherwise, let π be a longest path ending in v. Then in depthG(v) = |π|.

Formally, in depthG(v) = (MAX π : pathG(π) ∧ last(π) = v : |π|).
Likewise define out depthG(v) = (MAX π : pathG(π) ∧ first(π) = v : |π|), the

out-depth of v in G, i.e., we consider paths starting (rather than ending) in v.

We use in depthB(v, s) for in depthWB(s)(v), and also out depthB(v, s) for
out depthWB(s)(v).

Proposition 4. A supercycle SC contains no nodes with finite out-depth.

Proof sketch. By contradiction. Let v be a node in SC with finite out-depth.
Hence all outgoing paths from v end in a sink node. By assumption, all atomic
components are individually deadlock-free, i.e., they always enable at least one
interaction. Hence these sink nodes are all interactions, and therefore they violate
clause 3 in Definition 13.

Proposition 5. Every supercycle SC contains at least one cycle.

Proof sketch. Suppose not. Then SC is an acyclic supercycle. Hence every node
in SC has finite out-depth, which contradicts Proposition 4.

Proposition 6. Let B = γ(B1, . . . , Bn) be a composite component and s a state
of B. Let SC be a supercycle in WB(s), and let SC′ be the graph obtained from
SC by removing all vertices of finite in-depth and their incident edges. Then SC′

is also a supercycle in WB(s).

Proof sketch. By Proposition 5, SC′ is nonempty. Thus SC′ satisfies clause (1) of
Definition 13. Let v be an arbitrary vertex of SC′. Hence v has infinite in-depth,
and therefore so do all of v’s sucessors in SC. Hence all of these successors are
in SC′. Hence every vertex v in SC′ has successors in SC′ that satisfy clauses
(2) and (3) of Definition 13.

4 A Global Condition for Deadlock Freedom

Consider a reachable transition s
a→ t of (B,Q0). Suppose that the execution of

this transition creates a supercycle SC, i.e., SC �⊆ WB(s) ∧ SC ⊆ WB(t). The
only components that can change state along this transition are the participants
of a, i.e., the Bi ∈ Ca, and so they are the only components that can cause a
supercycle to be created in going from s to t. There are three relevant possibilities
for each Bi ∈ Ca:

170 P.C. Attie et al.

1. Bi has finite in-depth in WB(t): then, if Bi ∈ SC, it can be removed and
still leave a supercycle SC′, by Proposition 6. Hence SC′ exists in WB(s),
and so Bi is not essential to the creation of a supercycle.

2. Bi has finite out-depth in WB(t): by Proposition 4, Bi cannot be part of a
supercycle, and so SC ⊆ WB(s).

3. Bi has infinite in-depth and infinite out-depth in WB(t): in this case, Bi is
possibly an essential part of SC, i.e., SC was created in going from s to t.

We thus impose a condition which guarantees that only case 1 or case 2 occur.

Definition 16 (DFC(a)). Let s
a→ t be a reachable transition of BIP-system

(B,Q0). Then, in t, the following holds. For every component Bi of Ca: either
Bi has finite in-depth, or finite out-depth, in WB(t). Formally,

∀Bi ∈ Ca : in depthB(Bi, t) < ω ∨ out depthB(Bi, t) < ω.

To proceed, we show that wait-for-edges not involving some interaction a and
its participants Bi ∈ Ca are unaffected by the execution of a. Say that edge e in
a wait-for-graph is Bi-incident iff Bi is one of the endpoints of e.

Proposition 7 (Wait-for-edge preservation). Let s
a→ t be a transition of

composite component B = γ(B1, . . . , Bn), and let e be a wait-for edge that is not
Bi-incident, for every Bi ∈ Ca. Then e ∈WB(s) iff e ∈WB(t).

Proof sketch. Components not involved in the execution of a do not change state
along s

a→ t. Hence the endpoint of e that is a component has the same state in
s as in t. The proposition then follows from Definition 12.

We show, by induction on the length of finite exeuctions, that every reachable
state is supercycle-free. Assume that every initial state is supercycle-free, for the
base case. Assuming DFC(a) for all a ∈ γ provides, by the above discussion, the
induction step.

Theorem 1 (Deadlock-freedom). If (1) for all s0 ∈ Q0, WB(s0) is supercycle-
free, and (2) for all interactions a of B (i.e., a ∈ γ), DFC(a) holds,
then for every reachable state u of (B,Q0): WB(u) is supercycle-free.

Proof. We only need show the induction step: for every reachable transition s
a→

t, WB(s) is supercycle-free implies that WB(t) is supercycle-free. We establish
the contrapositive: if WB(t) contains a supercycle, then so does WB(s).

Let SC be a supercycle in WB(t), and let SC′ be SC with all nodes of finite
in-depth removed. SC′ is a supercycle in WB(t) by Proposition 6. Let e be an
arbitrary edge in SC′. Hence e ∈ WB(t). Also, both nodes of e have infinite
in-depth (by construction of SC′) and infinite out-depth (by Proposition 4) in
WB(t). Let Bi be an arbitrary component in Ca. By DFC(a), Bi has finite in-
depth or finite out-depth in WB(t): in depthB(Bi, t) < ω ∨ out depthB(Bi, t) <
ω. Hence e is not Bi-incident. So, e ∈ WB(s), by Proposition 7. Hence SC′ ⊆
WB(s), and so WB(s) contains a supercycle.

An Abstract Framework for Deadlock Prevention in BIP 171

5 A Local Condition for Deadlock Freedom

Evaluating DFC(a) requires checking all reachable transitions of (B,Q0), which
is subject to state-explosion. We need a condition which implies DFC(a) and can
be checked efficiently. Observe that if in depthB(Bi, t) < ω∨out depthB(Bi, t) <
ω, then there is some finite � such that in depthB(Bi, t) = �∨out depthB(Bi, t) =
�. This can be verified in a subsystem whose size depends on �, as follows.

Definition 17 (Structure Graph GB, G
�
i , G

�
a). The structure graph GB of

composite component B = γ(B1, . . . , Bn) is a bipartite graph whose nodes are
the B1, . . . , Bn and all the a ∈ γ. There is an edge between Bi and interaction a
iff Bi participates in a, i.e., Bi ∈ Ca. Define the distance between two nodes to
be the number of edges in a shortest path between them. Let G�

i (G�
a respectively)

be the subgraph of GB that contains Bi (a respectively) and all nodes of GB that
have a distance to Bi (a respectively) less than or equal to �.

Then in depthB(Bi, t) = � ∨ out depthB(Bi, t) = � can be verified in the wait-
for-graph of G�+1

i , since we verify either that all wait-for-paths ending in Bi

have length ≤ �, or that all wait-for-paths starting in Bi have length ≤ �. These
conditions can be checked in G�+1

i , since G�+1
i contains every node in a wait-for-

path of length �+ 1 or less and which starts or ends in Bi. Since G�+1
i ⊆ G�+2

a

for Bi ∈ Ca, we use G�+2
a instead of the set of subsystems {G�+1

i : Bi ∈ Ca}.
We leave analysis of the tradeoff between using one larger system (G�+2

a) versus
several smaller ones (G�+1

i) to another paper. Define D�
a, the deadlock-checking

subsystem for interaction a and depth �, to be the subsystem of (B,Q0) based
on G�+2

a .

Definition 18 (LDFC(a, �)). Let sa
a→ ta be a reachable transition of D �

a.
Then, in ta, the following holds. For every component Bi of Ca: either Bi has
in-depth at most �, or out-depth at most �, in WD�

a
(ta). Formally,

∀Bi ∈ Ca : in depthD�
a
(Bi, ta) ≤ � ∨ out depthD�

a
(Bi, ta) ≤ �.

To infer deadlock-freedom in (B,Q0) by checking LDFC(a, �), we show that
wait-for behavior in B “projects down” to any subcomponent B′, and that wait-
for behavior in B′ “projects up” to B.

Proposition 8 (Wait-for-edge projection). Let (B′, Q′
0) be a subsystem of

(B,Q0). Let s be a state of (B,Q0), and s
′ = s�B′. Let a be an interaction of

(B′, Q′
0), and Bi ∈ Ca an atomic component of B′. Then (1) a → Bi ∈ WB(s)

iff a→ Bi ∈WB′(s′), and (2) Bi → a ∈WB(s) iff Bi → a ∈WB′(s′).

Proof sketch. Since s′ = s�B′, all port enablement conditions of components in
B′ have the same value in s and in s′. The proposition then follows by straight-
forward application of Definition 12.

Since wait-for-edges project up and down, it follows that wait-for-paths project
up and down, provided that the subsystem contains the entire wait-for-path.

172 P.C. Attie et al.

Proposition 9 (In-projection, Out-projection). Let � ≥ 0, let Bi be an
atomic component of B, and let (B′, Q′

0) be a subsystem of (B,Q0) which is
based on a superset of G�+1

i . Let s be a state of (B,Q0), and s
′ = s�B′. Then (1)

in depthB(Bi, s) ≤ � iff in depthB′(Bi, s
′) ≤ �, and (2) out depthB(Bi, s) ≤ �

iff out depthB′(Bi, s
′) ≤ �.

Proof sketch. Follows from Defintion 15, Proposition 8, and the observation that
WB′(s′) contains all wait-for-paths of length ≤ � that start or end in Bi.

We now show that LDFC(a, �) implies DFC(a), which in turn implies deadlock-
freedom.

Lemma 1. Let a be an interaction of B, i.e., a ∈ γ. If LDFC(a, �) holds for
some finite � ≥ 0, then DFC(a) holds.
Proof sketch. Let s

a→ t be a reachable transition of (B,Q0) and let sa = s�D�
a,

ta = t�D�
a. Then sa

a→ ta is a reachable transition of D�
a by Corollary 1. By

LDFC(a, �), in depthD�
a
(Bi, ta) ≤ � ∨ out depthD�

a
(Bi, ta) ≤ �. Hence by Propo-

sition 9, in depthB(Bi, t) ≤ � ∨ out depthB(Bi, t) ≤ �. So in depthB(Bi, t) <
ω ∨ out depthB(Bi, t) < ω. Hence DFC(a) holds.

Theorem 2 (Deadlock-freedom). If (1) for all s0 ∈ Q0, WB(s0) is supercycle-
free, and (2) for all interactions a of B (a ∈ γ), LDFC(a, �) holds for some � ≥ 0,
then for every reachable state u of (B,Q0): WB(u) is supercycle-free.

Proof sketch. Immediate from Lemma 1 and Theorem 1.

6 Implementation and Experimentation

LDFC-BIP, (∼ 1500 LOC Java) implements our method for finite-state BIP-
systems. Pseudocode for LDFC-BIP is shown in Figure 4. checkDF(B,Q0) iterates
over each interaction a of (B,Q0), and checks (∃� ≥ 0 : LDFC(a, �)) by starting
with � = 0 and incrementing � until either LDFC(a, �) is found to hold, or D�

a

has become the entire system and LDFC(a, �) does not hold. In the latter case,
LDFC(a, �) does not hold for any finite �, and, in practice, computation would
halt before D�

a had become the entire system, due to exhaustion of resources.
locLDFC(a, �) checks LDFC(a, �) by examining every reachable transition that

executes a, and checking that the final state satisfies Definition 18.
The running time of our implementation is O(Σa∈γ |D�a

a |), where �a is the
smallest value of � for which LDFC(a, �) holds, and where |D�a

a | denotes the size
of the transition system of D�a

a .

6.1 Experiment: Dining Philosophers

We consider n philosophers in a cycle, based on the components of Figure 1.
Figure 5(a) provides experimental results. The x axis gives the number n of
philosophers (and also the number of forks), and the y axis gives the verification
time (in milliseconds). We verified that LDFC(a, �) holds for � = 1 and all inter-
actions a. Hence dining philosophers is deadlock-free. We increase n and plot the

An Abstract Framework for Deadlock Prevention in BIP 173

checkDF(B,Q0), where B � γ(B1, . . . , Bn)
1. forall interactions a ∈ γ
2. //check (∃� ≥ 0 : LDFC(a, �))
3. � ← 0; //start with � = 0
4. while (true)
5. if (locLDFC(a, �) = true) break endif ; //success, so go on to next a
6. if (D�

a = γ(B1, . . . , Bn)) return(false) endif ;
7. � ← �+ 1 //increment � until success or intractable or failure
8. endwhile
9. endfor;
10. return(true) //return true if check succeeds for all a ∈ γ

locLDFC(a, �)

1. forall reachable transitions sa
a→ ta of D�

a

2. if (¬(∀Bi ∈ Ca : in depthD�
a
(Bi, ta) = � ∨ out depthD�

a
(Bi, ta) = �))

3. return(false) //check Definition 18
4. endfor;
5. return(true) //return true if check succeeds for all transitions

Fig. 4. Pseudocode for the implementation of our method

verification time for both LDFC-BIP and D-Finder 2 [8]. D-Finder 2 implements
a compositional and incremental method for the verification of BIP-systems. D-
Finder (the precursor of D-Finder 2) has been compared favorably with NuSmv
and SPIN, outperforming both NuSmv and SPIN on dining philosophers, and
outperforming NuSmv on the gas station example [7], treated next. Our results
show that LDFC-BIP has a linear increase of computation time with the system
size (n), and so outperforms D-Finder 2.

6.2 Experiment: Gas Station

A gas station [13] consists of an operator, a set of pumps, and a set of customers.
Before using a pump, a customer has to prepay. Then the customer uses the
pump, collects his change and starts a new transaction. Before being used by a
customer, a pump has to be activated by the operator. When a pump is shut
off, it can be re-activated for the next operation.

We verified LDFC(a, �) for � = 2 and all interactions a. Hence gas station is
deadlock-free. Figures 5(b), 5(c), and 5(d) present the verification times using
LDFC-BIP and D-Finder 2. We consider a system with 3 pumps and variable
number of customers. In these figures, the x axis gives the number n of cus-
tomers, and the y axis gives the verification time (in seconds). D-Finder 2 suf-
fers state-explosion at n = 1800, because we consider only three pumps, and so
the incremental method used by D-Finder 2 deteriorates. LDFC-BIP outperforms
D-Finder 2 as the number of customers increases.

174 P.C. Attie et al.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0 100 200 300 400 500 600 700 800 900 1000

T
im

e
(m

s)

Number of Philosophers

LDFC
DFinder

(a) Dining philosophers benchmark.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 50 100 150 200 250 300 350 400 450 500

T
im

e
(s

ec
on

ds
)

Number of Customers

LDFC
D-Finder

(b) Gas station benchmark 1.

 0

 100

 200

 300

 400

 500

 600

 0 100 200 300 400 500 600 700 800 900 1000

T
im

e
(s

ec
on

ds
)

Number of Customers

LDFC
D-Finder

(c) Gas station benchmark 2.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

T
im

e
(s

ec
on

ds
)

Number of Customers

LDFC
D-Finder

(d) Gas station benchmark 3.

Fig. 5. Benchmarks generated by our experiments

7 Discussion, Related Work, and Further Work

Related Work. The notions of wait-for-graph and supercycle [3, 4] were initially
defined for a shared memory program P = P1 ‖· · ·‖PK in pairwise normal form:
a binary symmettric relation I specifies the directly interacting pairs (“neigh-
bors”) {Pi, Pj}. If Pi has neighbors Pj and Pk, then the code in Pi that interacts
with Pj is expressed separately from the code in Pi that interacts with Pk. These
synchronization codes are executed synchronously and atomically, so the grain
of atomicity is proportional to the degree of I. Attie and Chockler [3] give two
polynomial time methods for deadlock freedom. The first checks subsystems con-
sisting of three processes. The second computes the wait-for-graphs of all pair
subsystems Pi ‖Pj , and takes their union, for all pairs and all reachable states
of each pair. The first method considers only wait-for-paths of length ≤ 2. The
second method is prone to false negatives, because wait-for edges generated by
different states are all merged together, which can result in spurious supercycles.

An Abstract Framework for Deadlock Prevention in BIP 175

Gössler and Sifakis [12] use a BIP-like formalism, Interaction Models. They
present a criterion for global deadlock freedom, based on an and-or graph with
components and constraints as the two sets of nodes. A constraint gives the con-
dition under which a component is blocked. Edges are labeled with conjuncts of
the constraints. Deadlock freedom is checked by traversing every cycle, taking
the conjunction of all the conditions labeling its edges, and verifying that this
conjunction is always false, i.e., verifying the absence of cyclical blocking. No
complexity bounds are given. Martens and Majster-Cederbaum [14] present a
polynomial time checkable deadlock freedom condition based on structural re-
strictions: “the communication structure between the components is given by a
tree.” This restriction allows them to analyze only pair systems. Brookes and
Roscoe [11] provide criteria for deadlock freedom of CSP programs based on
structural and behavioral restrictions combined with analysis of pair systems.
No implementation, or complexity bounds, are given. Aldini and Bernardo [1]
use a formalism based on process algebra. They check deadlock by analysing
cycles in the connections between software components, and claim scalability,
but no complexity bounds are given.

We compared our implementation LDFC-BIP to D-Finder 2 [8]. D-Finder 2
computes a finite-state abstraction for each component, which it uses to com-
pute a global invariant I. It then checks if I implies deadlock freedom. Unlike
LDFC-BIP, D-Finder 2 handles infinite state systems. However, LDFC-BIP had
superior running time for dining philosophers and gas station (both finite-state).

All the above methods verify global (and not local) deadlock-freedom. Our
method verifies both. Also, our approach makes no structural restriction at all
on the system being checked for deadlock.

Discussion. Our approach has the following advantages:

Local and Global Deadlock. Our method shows that no subset of processes
can be deadlocked, i.e., absence of both local and global deadlock.

Check Works for Realistic Formalism. By applying the approach to BIP,
we provide an efficient deadlock-freedom check within a formalism from
which efficient distributed implementations can be generated [9].

Locality. If a component Bi is modified, or is added to an existing system, then
LDFC(a, �) only has to be re-checked for Bi and components within distance
� of Bi. A condition whose evaluation considers the entire system at once,
e.g., [1, 8, 12] would have to be re-checked for the entire system.

Easily Parallelizable. Since the checking of each subsystem D�
a is independent

of the others, the checks can be carried out in parallel. Hence our method can
be easily parallelized and distributed, for speedup, if needed. Alternatively,
performing the checks sequentially minimizes the amount of memory needed.

Framework Aspect. Supercycles and in/out-depth provide a framework for
deadlock-freedom. Conditions more general and/or discriminating than the
one presented here should be devisable in this framework. This is a topic for
future work.

176 P.C. Attie et al.

Further Work. Our implementation uses explicit state enumeration. Using BDD’s
may improve the running time when LDFC(a, �) holds only for large �. An en-
abled port p enables all interactions containing p. Deadlock-freedom conditions
based on ports could exploit this interdepence among interaction enablement.
Our implementation should produce counterexamples when a system fails to sat-
isfy LDFC(a, �). Design rules for ensuring LDFC(a, �) will help users to produce
deadlock-free systems, and also to interpret counterexamples. A fault may create
a deadlock, i.e., a supercycle, by creating wait-for-edges that would not normally
arise. Tolerating a fault that creates up to f such spurious wait-for-edges requires
that there do not arise during normal (fault-free) operation subgraphs of WB(s)
that can be made into a supercycle by adding f edges. We will investigate criteria
for preventing formation of such subgraphs. Methods for evaluating LDFC(a, �)
on infinite state systems will be devised, e.g.,, by extracting proof obligations
and verifying using SMT solvers. We will extend our method to Dynamic BIP,
[10], where participants can add and remove interactions at run time.

References

1. Aldini, A., Bernardo, M.: A General Approach to Deadlock Freedom Verification
for Software Architectures. In: Araki, K., Gnesi, S., Mandrioli, D. (eds.) FME 2003.
LNCS, vol. 2805, pp. 658–677. Springer, Heidelberg (2003)

2. Attie, P.C.: Synthesis of large concurrent programs via pairwise composition. In:
Baeten, J.C.M., Mauw, S. (eds.) CONCUR 1999. LNCS, vol. 1664, pp. 130–145.
Springer, Heidelberg (1999)

3. Attie, P.C., Chockler, H.: Efficiently verifiable conditions for deadlock-freedom of
large concurrent programs. In: Cousot, R. (ed.) VMCAI 2005. LNCS, vol. 3385,
pp. 465–481. Springer, Heidelberg (2005)

4. Attie, P.C., Allen Emerson, E.: Synthesis of Concurrent Systems with Many Similar
Processes. TOPLAS 20(1), 51–115 (1998)

5. Attie, P.C., Francez, N., Grumberg, O.: Fairness and Hyperfairness in Multiparty
Interactions. Distributed Computing 6, 245–254 (1993)

6. Basu, A., Bozga, M., Sifakis, J.: Modeling Heterogeneous Real-time Components
in BIP. In: SEFM, pp. 3–12 (September 2006)

7. Bensalem, S., Bozga, M., Nguyen, T.H., Sifakis, J.: Compositional verification for
component-based systems and application. IET Software 4(3), 181–193 (2010)

8. Bensalem, S., Griesmayer, A., Legay, A., Nguyen, T.-H., Sifakis, J., Yan, R.:
D-finder 2: Towards efficient correctness of incremental design. In: Bobaru, M.,
Havelund, K., Holzmann, G.J., Joshi, R. (eds.) NFM 2011. LNCS, vol. 6617, pp.
453–458. Springer, Heidelberg (2011)

9. Bonakdarpour, B., Bozga, M., Jaber, M., Quilbeuf, J., Sifakis, J.: From High-
level Component-based Models to Distributed Implementations. In: EMSOFT,
pp. 209–218 (2010)

10. Bozga, M., Jaber, M., Maris, N., Sifakis, J.: Modeling Dynamic Architectures Using
Dy-BIP. In: Gschwind, T., De Paoli, F., Gruhn, V., Book, M. (eds.) SC 2012. LNCS,
vol. 7306, pp. 1–16. Springer, Heidelberg (2012)

An Abstract Framework for Deadlock Prevention in BIP 177

11. Brookes, S.D., Roscoe, A.W.: Deadlock analysis in networks of communicating
processes. Distributed Computing 4, 209–230 (1991)

12. Göler, G., Sifakis, J.: Component-based construction of deadlock-free systems.

In: Pandya, P.K., Radhakrishnan, J. (eds.) FSTTCS 2003. LNCS, vol. 2914,
pp. 420–433. Springer, Heidelberg (2003)

13. Heimbold, D., Luckham, D.: Debugging Ada tasking programs. IEEE Soft-
ware 2(2), 47–57 (1985)

14. Martens, M., Majster-Cederbaum, M.: Deadlock-freedom in component systems
with architectural constraints. FMSD 41, 129–177 (2012)

15. Papadimitriou, C.H.: Computational complexity. Addison-Wesley (1994)

Bounded Model Checking of Graph

Transformation Systems via SMT Solving

Tobias Isenberg, Dominik Steenken, and Heike Wehrheim

Universität Paderborn
Institut für Informatik

33098 Paderborn, Germany
{isenberg,dominik,wehrheim}@mail.upb.de

Abstract. Bounded model checking (BMC) complements classical model
checking by an efficient technique for checking error-freedom of bounded
system paths. Usually, BMC approaches reduce the verification problem
to propositional satisfiability. With the recent advances in SAT solving,
this has proven to be a fast analysis.

In this paper we develop a bounded model checking technique for
graph transformation systems. Graph transformation systems (GTSs)
provide an intuitive, visual way of specifying system models and their
structural changes. An analysis of such models – however – remains dif-
ficult since GTSs often give rise to infinite state spaces. In our BMC
technique we use first-order instead of propositional logic for encoding
complex graph structures and rules. Today’s off-the-shelf SMT solvers
can then readily be employed for satisfiability solving. The encoding
heavily employs the concept of uninterpreted function symbols for rep-
resenting edge labels. We have proven soundness of the encoding and
report on experiments with different case studies.

Keywords: verification, graph transformation systems, bounded model
checking, satisfiablility modulo theories.

1 Introduction

Graph transformation systems (GTSs) are an intuitive and powerful way of mod-
eling dynamic systems. They describe the states of a system as graphs and state
changes as graph transformation rules. This makes them particularly suitable for
modeling structural aspects of systems. GTSs have been applied in diverse ar-
eas, such as model transformation and refactorings [9], the modeling of dynamic
self-adaptive systems [6] or web services [14]. Some of these application areas
are safety critical, raising the need for formal verification of such systems. When
modeling these systems using GTSs, the analysis often suffers from the state
space explosion problem. A number of approaches aim at fighting this problem,
most often using abstraction techniques [25,2].

Bounded model checking [8] is a technique avoiding the state space explosion
problem by focusing on bounded paths. This technique is incomplete, and thus

D. Beyer and M. Boreale (Eds.): FMOODS/FORTE 2013, LNCS 7892, pp. 178–192, 2013.
c© IFIP International Federation for Information Processing 2013

Bounded Model Checking of Graph Transformation Systems via SMT 179

primarily used for finding errors, not for correctness proofs. This idea has been
adapted for the verification of GTSs [17,3], however, few of the existing solutions
directly utilizes the progress of SAT/SMT solvers seen in the last years. In
particular, none of the verification techniques for GTSs have proposed to reduce
the complete analysis directly to satisfiability checking. An encoding of GTS in
logical formulae is only used in [20], which however gives a SAT encoding and
uses the result to guide the state space exploration of a (non-SAT) analysis tool
for GTS.

In this paper we present a bounded model checking (BMC) technique for
GTSs using satisfiability checking of quantifier-free first-order logic with unin-
terpreted functions (QF UF). We transform the BMC instance over GTSs into
a satisfiability modulo theories (SMT) instance encoding only the initial graph
and the transformation rules, as well as the property to be checked.

In the present paper, the property will – for simplicity – always be a (for-
bidden) graph; thus we just aim at checking reachability of error states. Our
approach, detailed in [16], does however cover more general properties speci-
fied in LTL. The generated SMT formula describes bounded-length paths of the
GTS that exhibit the forbidden graph. The formula is given to an off-the-shelf
SMT solver which checks for satisfiability. A satisfying interpretation represents
a violating path and is used to display it.

We have implemented our approach and tested it with a number of SMT
solvers (MathSAT[12], SMTInterpol[11], veriT[10], Z3[21]). The performance of
the approach heavily depends on the structure of rules (e.g., number of nodes,
NACs), and only to a minor extent on the solver. We exemplify our technique
on the car platooning case study of the Transformation Tool Contest 2010 [1].

2 Background

We start by defining Graph Transformation Systems (GTSs) and the reachability
problem of a forbidden pattern in this context, while introducing the running
example. The definitions are similar to those in [13,15,22].

Definition 1 (Graph). Let LE be a set of edge labels and LN be a set of node
labels. A graph G = (NG, EG, UG) over LE and LN consists of a set NG of
nodes, a set EG ⊆ NG × LE ×NG of labeled edges and a set UG ⊆ LN ×NG of
unary edges labeling the nodes.

A graph is a set of nodes with edges between pairs of them and on individual
nodes. These edges are labeled over LE and LN respectively.

For illustration purposes, consider the car platooning GTS specified by Backes
and Reineke [1], modeling a protocol for cars to build a platoon, i.e., a connected
entity. Initially the cars are unconnected and in the state free agent(fa). During
the process of connecting there are several intermediate states, as described by
the protocol. However, the final states of a car are leader (ld) and follower (flw).
A platoon is structured such that there are a number of follower s following one
leader .

180 T. Isenberg, D. Steenken, and H. Wehrheim

fa fa

fa fa

S

n1 n2

n4n3

(a) Initial graph S

flw
flws

flw

Lerror

n1

n2

(b) Forbidden pattern

Fig. 1. Part of the car platooning GTS [1]

In our example this protocol is modeled as a GTS with an initial graph containing
four nodes labeled fa, modeling cars in state free agent(see Figure 1a). Note that
we model node labels as “unary” edges, i.e., edges with a target but without a
source. Additionally, a GTS has rules that describe possible changes and under
which conditions these can be applied. For these transformation rules and their
applicability consider the following definitions.

Definition 2. A total graph morphism f : G → G′ from graph G to graph G′

is a tuple f = 〈fN , fE, fU 〉 of total functions fN : NG → NG′ , fE : EG → EG′

and fU : UG → UG′ satisfying the following conditions:

fE (n1, l, n2) = (fN (n1) , l, fN (n2)) ∀ (n1, l, n2) ∈ EG

fU (l, n1) = (l, fN (n1)) ∀ (l, n1) ∈ UG

A partial graph morphism from graph G to graph G′ is a total graph morphism
of a subgraph S of G to G′. A total graph morphism specifies a mapping that
maintains the structure. Intuitively speaking, such a morphism exists, if a sub-
graph similar to G can be found in G′. This construct is fundamental for applying
graph transformation rules. Such a rule consists of a left hand side graph L and
a right hand side graph R, related by a partial graph morphism.

Definition 3 (Transformation Rule and Match). Let G be a graph, called
host graph. A graph transformation rule r = 〈L,R〉, described by a partial graph
morphism r : L → R, is applicable to G, if and only if there exists a total,
injective graph morphism m : L→ G, called a match.

For simplicity, in the following we assume r = idL∩R (i.e., L and R need not be
disjoint, e.g., see the nodes in Figure 2). Intuitively speaking, a match specifies
at which location in the graph a rule can be applied. This application itself is
done obeying the well known SPO-semantics [13] explained below.

Let G, r and m be as in Def. 3. We define Ndel := NL \ NR and Nadd as a
disjoint copy of NR \NL. By setting mN := m∪ idNadd

we extend m onto Nadd.
The following sets are useful in defining the effect of a rule application.

Bounded Model Checking of Graph Transformation Systems via SMT 181

Edel := {(mN (n1) , l,mN (n2)) | (n1, l, n2) ∈ EL \ ER ∨ n1 ∈ Ndel ∨ n2 ∈ Ndel}
Eadd := {(mN (n1) , l,mN (n2)) | (n1, l, n2) ∈ ER \ EL}

Corresponding sets Udel and Uadd for unary edges are defined analogously. Each
of these sets contains the objects deleted / added through the rule application.

Rule 1

fa hon
ldr

reqn1 n2 n1 n2

Fig. 2. Rule 1 of the car platooning GTS [1]

This gives rise to the following definition.

Definition 4 (Rule Application). Given a host graph G, a graph transfor-
mation rule r = 〈L,R〉 and a match m : L → G. The application of r to

graph G via the match m, written G
r,m
=⇒ H, creates a result graph H specified by

NH := NG\mN (Ndel)∪Nadd, EH := EG\Edel∪Eadd, and UH := UG\Udel∪Uadd.

The resulting graph is constructed such that the images (w.r.t. the match) of the
nodes and edges of the LHS, which are not part of the RHS have to be deleted.
Afterwards, new nodes and edges are added for the ones contained in the RHS
and not in the LHS. All dangling edges, i.e., edges that are left without a source-
or target node after application, are deleted.

Definition 5 (GTS). A graph transformation system G = (S, P) consists of a
start graph S and a set P = {r1, ..., rn} of graph transformation rules.

The car platooning GTS [1] consists of 14 rules. For simplicity we will only
present the encoding of two of them (Rules 1 and 13) illustrated in the next
section (see Figures 2,3). The LHS of Rule 1 requires two distinct nodes in
the host graph, one of which is labeled fa(free agent) and changes its state to
hon(hand over nothing). Additionally, two edges are added as shown in Fig. 2.
This rule models the initialization of a connection started by a free agent car.

For Rule 13, we will need an extension of the above formalism. We need to
allow Negative Application Conditions (NACs) within the rules [15]. A NAC
constrains the application of a rule, s.t. it is only applicable if the structures
described by the NAC are not present in the host graph.

Definition 6 (NAC). A negative application condition for a graph transfor-
mation rule r = 〈L,R〉 is a set C of total graph morphisms with domain L.

182 T. Isenberg, D. Steenken, and H. Wehrheim

hob hod

Rule 13

hob flws
NAC

n1 n1 n1n2

Fig. 3. Rule 13 of the car platooning GTS [1]

Let l : L→ L̂ be such a morphism and let m be a match of r to G. The application
of r with match m to the host graph G is allowed w.r.t. l, if and only if no match
n : L̂→ G exists with n ◦ l = m (concatenation operator ◦). A NAC allows the
application of r with match m to the host graph G, if and only if the application
is allowed w.r.t. all total graph morphisms of the NAC.

For simplicity, in the following we assume l to be an embedding, i.e., L ⊂ L̂.
Rule 13 (Figure 3) contains a NAC. It states that the match of the node n1 must
not have a flws-labeled edge to any other node. When two platoons join, one
leader hands over all his followers to the other leader. While having at least one
follower left, he is not allowed to proceed to the next step of the protocol, but
must finish the handover first. This is modeled by the NAC in Rule 13. Thus,
car n1 must not have a follower, when changing its state from hand over back to
hand over done. With this understanding of the application of rules, we define
the paths of a GTS and the reachability problem.

Definition 7. Given a GTS G = (S, P). A state of the GTS is a graph. Thus,
a path G0, G1, ... of G is a finite or infinite sequence of graphs starting with

the initial graph (G0 = S) such that we have Gi
ri,mi
=⇒ Gi+1 for all consecutive

graphs Gi,Gi+1. The state space of a GTS is the union of all of its paths, joined
at isomorphic graphs.

While usually, GTSs do not distinguish between isomorphic graphs, our encoding
does not have that capability. Thus, each isomorphic instance of a graph is
explored separately. In the following we state the reachability problem.

Definition 8. Given a GTS G and a graph F , called the forbidden pattern. The
pattern is reachable, if there exists a finite path G0, ..., Gk of G, such that F
matches Gk.

Intuitively speaking, reachability means the existence of a path containing a
graph in which the forbidden pattern can be found. Within the car platooning
protocol [1], no follower should ever follow a follower. This can be expressed as a
forbidden pattern (see Figure 1b). If that pattern would be reachable, the model
of the protocol would not meet the desired behavior.

We propose a BMC technique to check reachability of such a forbidden graph.
Our approach directly encodes the initial graph, the transformation rules and
the forbidden pattern as a satisfiability modulo theories (SMT) instance. SMT
describes the problem of searching for a satisfying interpretation of a first-order
logic formula with a background theory. Intuitively, a theory can be seen as con-
straints on the possible interpretations, as it describes a priori interpretations of

Bounded Model Checking of Graph Transformation Systems via SMT 183

functions. Our formulae use the theory of uninterpreted functions with equality,
i.e., only the equality sign has an a priori interpretation. This approach relocates
the computational complexity of exploring the bounded state space into solv-
ing an SMT formula, which can be a reasonable trade-off, as current research
continuously improves efficiency of SMT solvers (SMT-COMP [4]).

The technique presented here is subject to several restrictions, which we sum-
marize here for clarity.

1. we only allow simple, labeled graphs (no multigraphs, no hypergraphs)
2. we disallow node merging
3. we disallow non-injective matches
4. we only support reachability analysis

Restrictions 3 and 4 are removed in our full technique, detailed in [16]. In the
following, we will only give the definitions required for the restricted version.

3 Encoding of GTSs in First-Order Logic

In the following we describe our BMC technique, which encodes bounded paths
of a GTS (S, P) as an SMT formula to check the reachability of a forbidden
pattern in the bounded state space. The concept of BMC via SAT-solving was
originally introduced in 1999 [8]. In hardware verification it is a natural choice
to represent circuits as boolean formulas. This idea was then extended to check
error freedom of a bounded subset of the state space. The state space is only
examined up to a predefined number k of steps, called the bound. The initial
state, k transitions and the error are encoded as a boolean formula, that is
satisfiable if the error exists within the bounded state space.

Our approach likewise encodes the start graph, k transitions and a forbidden
pattern (or LTL formula). A transition in this context denotes the application
of one of the graph transformation rules of the GTS.

Let �S� be the encoding of the initial graph S = G0 and �T �1 to �T �k be the
encodings of the k transition steps. The complete formula is defined as �S� ∧
�T �1 ∧ ... ∧ �T �k ∧ �F � with �F � being the encoding of the forbidden pattern.

Below we describe the process in detail. Let LE be the set of all edge labels
occurring in the initial graph, the rules or the forbidden pattern and let LN

be the set of all node labels, respectively. For representing all edges with label
l ∈ LE of a graph Gi(i ∈ {0, ..., k}) along the path G0, ..., Gk we use binary
predicates li. For tagging the nodes with label l ∈ LN we use unary predicates,
respectively. Let U be the universe consisting of the nodes of the initial graph.
Unary predicates have domain U , binary ones have domain U × U .

Definition 9. Let LE,i = {li|l ∈ LE} and LN,i = {li|l ∈ LN} be the sets of
binary and unary predicates with index i. An i-interpretation Ii assigns a total
function with image true or false to every such predicate. Formally, Ii :

184 T. Isenberg, D. Steenken, and H. Wehrheim

– LE,i → {U × U → {true, false}}
– LN,i → {U → {true, false}}.

An i-interpretation Ii represents a graph Gi (written Ii(Gi)), iff:

– ∀l ∈ LE ∀n1, n2 ∈ NGi : Ii(li)(n1, n2) = true⇔ (n1, l, n2) ∈ EGi

– ∀l ∈ LN ∀n ∈ NGi : Ii(li)(n) = true⇔ (l, n) ∈ UGi .

This idea of how a satisfying interpretation represents a graph is used throughout
the complete encoding process.

Encoding of the Initial Graph. Given the initial graph S = G0 = (NG0 , EG0 , UG0),
we encode each edge (n1, l, n2) ∈ EG0 with a positive literal l0 (n1, n2) and
each nonexistent edge (n1, l, n2) ∈ (U × LE × U) \ EG0 with a negated literal
¬l0 (n1, n2). Unary edges are handled analogously. Furthermore, we include lit-
erals ¬ (ni = nj) for all pairings of distinct nodes ni, nj . This ensures that the
graph itself and not a smaller graph it would be homomorphic to is encoded, and
provides support for isolated nodes. These literals are combined via conjunction.

Example 1. Our example GTS has an initial graph as shown in Figure 1a and
two transformation rules. These can be seen in Figures 2 and 3. The sets of labels
in the example GTS are LE = {flws , ldr , req} and LN = {fa, hob, hod , hon,flw}.
U consists of the nodes from the start graph, called n1 to n4. The encoding of
the initial graph is straightforward as there are no binary edges in the initial
graph and the nodes are only labeled with fa:

�G0� =
4∧

i=1

fa0 (ni) ∧
∧

l∈LN
l
=fa

4∧
i=1

¬l0 (ni) ∧
4∧

i=1
j=1

∧
l∈LE

¬l0 (ni, nj) ∧
4∧

i=1
j=1
i
=j

¬ (ni = nj)

The following lemma states the correctness of this encoding.

Lemma 1. Given a graph G, �G� is satisfiable only with I0(G) representing G.

Encoding of a Transition. The i-th transition (i ∈ {1, ..., k}) can be caused by
the application of any of the graph transformation rules to the host graph Gi−1.
For a GTS with the set P = {r1, ..., rn} of rules, the i-th transition is encoded

as �T �i = �r1�i∨ ...∨�rn�i with �r�i = �r�Cond
i ∧�r�App

i . Thus, we have to encode
the applicability and the application of each rule for each transition step.

Encoding �r�Cond
i of the Applicability of a Transformation Rule r. We first en-

code the check whether a rule is applicable to a host graph Gj (Note that
j = i − 1 for the i-th transition). For each node n ∈ NL create a variable
mj

n, to which we want the SMT-Solver to assign a node from the universe U . In
general, SMT uses sorts with an unbounded number of members. Thus, we have
to assure that only nodes out of U are used. We do this with the disjunction
(mj

n = n1)∨ ...∨ (mj
n = n2) for U = {n1, ..., n2}. The assignment of the variables

Bounded Model Checking of Graph Transformation Systems via SMT 185

to the actual nodes in the universe represents the match. Since the match must
be injective, for each two distinct nodes n1, n2 ∈ NL the literal ¬

(
mj

n1
= mj

n2

)
is

added. In addition, each edge (n1, l, n2) ∈ EL of the LHS has to exist within the
matched nodes of Gj . This is encoded by the literal lj

(
mj

n1
,mj

n2

)
. The analog

holds true for the unary edges. Thus, we encode a unary edge (l, n1) ∈ UL by a
literal lj

(
mj

n1

)
. All these literals are combined via conjunction.

Encoding of a NAC. If the transformation rule has Negative Application Con-
ditions, these are encoded and added to the conjunction as well. Each total
graph morphism of the NAC is encoded separately and combined afterwards by
conjunction. Given such a morphism L → L̂, a variable mj

n is created for each
node n ∈ L̂ \ L. These new variables are bound by a universal quantifier and
have to be distinct from each other and the previously generated variables of
this rule. The quantified formula for an injective match is true if the negation
of the conjunction of literals representing the binary and unary edges specified
in L̂ \ L holds (lj

(
mj

n1
,mj

n2

)
for a given edge (n1, l, n2) ∈ EL̂ \ EL and lj

(
mj

n

)
for a unary edge (l, n) ∈ UL̂ \ UL). Within this negation we ensure an injective
match with the tests that each newly created variable is disjoint from all other
variables (mj

n1
= mj

n2
for n1 ∈ L̂ \ L and n2 ∈ L̂).

Example 2. We continue the example and choose k = 2. We encode the injective
applicability of both transformation rules (see Figures 2, 3) for the first transition
step. (The encoding for the second transition step only differs by the indices.)

�Rule1�Cond
1 =fa0

(
m0

n1

)
∧ ¬

(
m0

n1
= m0

n2

)
∧

∨
n∈U

(m0
n1

= n) ∧
∨
n∈U

(m0
n2

= n)

�Rule13�Cond
1 =hob0

(
m0

n1

)
∧

∨
n∈U

(m0
n1

= n)∧

∀m0
n2
∈ U : ¬

(
¬
(
m0

n2
= m0

n1

)
∧
(
flws0

(
m0

n1
,m0

n2

)))
Note that, while we use quantifiers here to make the presentation more concise,
these can be (and are) eliminated in the encoding by explicit enumeration of
their range, thus making the resulting formula quantifier-free.

Lemma 2. Given a graph transformation rule r = 〈L,R〉 and a host graph Gj.�r�Cond
j+1 is satisfiable with the interpretation Ij(Gj) representing Gj iff there

exists a match m : L → Gj and the assignment of the variables is according to
that match (mj

n = mN(n)).

In the following we describe the encoding of the actual application of a graph
transformation rule. Note, that we do not describe graph transformation rules
with node creation/deletion here to keep illustration simple. Nevertheless, at the
end of this section we briefly discuss these features.

Encoding �r�App
i of the Application of a Transformation Rule r. Let graphGj (j =

i− 1) be the host graph as before. We use the previously created variables. Added
binary edges (n1, l, n2) ∈ ER \ EL have to exist in the resulting graph, encoded

186 T. Isenberg, D. Steenken, and H. Wehrheim

by a literal lj+1

(
mj

n1
,mj

n2

)
. Analogously, added unary edges are encoded by the

corresponding positive unary literal. Similarly, deleted edges must not be present
in the resulting graph and are encoded via the corresponding negated literals.

All other edges, which are neither deleted, nor added, exist in the resulting
graph Gj+1 if and only if they exist in the host graph Gj . This is represented
by a universally quantified equivalence for each pair of two nodes from U from
which we exclude the changed edges. Let {(n1, l, n2) , ..., (n3, l, n4)} ⊆ (ER\EL∪
EL \ ER) be the set of changed edges with label l, which we need to exclude.
For each label l ∈ LE we encode as follows. (The same holds true analogously
for unchanged unary edges. All these parts are combined by conjunction.)

∀ns, nt ∈ U :(lj (ns, nt)⇔ lj+1 (ns, nt) same interpretation

∨
((
ns = mj

n1

)
∧
(
nt = m

j
n2

))
∨ ... except for all the

∨
((
ns = mj

n3

)
∧
(
nt = m

j
n4

))
). changed edges

Example 3. We continue the example. As mentioned before, the encodings for
the second transition step differs only by the indices.

�Rule1�App
1 =hon1

(
m0

n1

)
∧ ldr1

(
m0

n1
,m0

n2

)
∧ req1

(
m0

n1
,m0

n2

)
∧ ¬fa1

(
m0

n1

)
∧ ∀ns, nt ∈ U : (flws0 (ns, nt)⇔ flws1 (ns, nt))

∧ ∀ns, nt ∈ U : ((ldr0 (ns, nt)⇔ ldr1 (ns, nt))∨((
ns = m0

n1

)
∧
(
nt = m

0
n2

))
)

∧ ∀ns, nt ∈ U : ((req0 (ns, nt)⇔ req1 (ns, nt))∨((
ns = m0

n1

)
∧
(
nt = m

0
n2

))
)

∧ ∀n ∈ U :
(
(fa0 (n)⇔ fa1 (n)) ∨

(
n = m0

n1

))
∧ ∀n ∈ U : (hob0 (n)⇔ hob1 (n))

∧ ∀n ∈ U : (hod0 (n)⇔ hod1 (n))

∧ ∀n ∈ U :
(
(hon0 (n)⇔ hon1 (n)) ∨

(
n = m0

n1

))
∧ ∀n ∈ U : (flw0 (n)⇔ flw1 (n))

�Rule13�App
1 =¬hob1

(
m0

n1

)
∧ hod1

(
m0

n1

)
∧ ∀ns, nt ∈ U : (flws0 (ns, nt)⇔ flws1 (ns, nt))

∧ ∀ns, nt ∈ U : (ldr0 (ns, nt) ⇔ ldr1 (ns, nt))

∧ ∀ns, nt ∈ U : (req0 (ns, nt)⇔ req1 (ns, nt))

∧ ∀n ∈ U : (fa0 (n)⇔ fa1 (n))

∧ ∀n ∈ U :
(
(hob0 (n)⇔ hob1 (n)) ∨

(
n = m0

n1

))
∧ ∀n ∈ U :

(
(hod0 (n)⇔ hod1 (n)) ∨

(
n = m0

n1

))
∧ ∀n ∈ U : (hon0 (n)⇔ hon1 (n))

∧ ∀n ∈ U : (flw0 (n)⇔ flw1 (n))

Bounded Model Checking of Graph Transformation Systems via SMT 187

Lemma 3. Given a graph transformation rule r = 〈L,R〉 and a host graph Gj.

�r�Cond
j+1 ∧ �r�App

j+1 is satisfiable with an interpretation representing graphs Gj and

Gj+1 (i.e., Ij(Gj) and Ij+1(Gj+1)), iff Gj
r,m
=⇒ Gj+1 holds and the assignment

of the variables is according to that match (mj
n = mN (n)).

Encoding of the Forbidden Pattern. In order to check reachability of the forbid-
den pattern for our path of length k, we have to check its applicability to Gk.
Thus, we encode the reachability check for the pattern F by �F �Cond

k .

Dynamics of Nodes. For illustration purposes, we omitted the aspects of added
and deleted nodes. These are more difficult to handle, as they can have many
side effects. We summarize the additional encoding efforts necessary. Given that
we cannot handle a changing universe in our formula, we need a universe U that
can capture all possibilities. Thus, we search the transformation rule with the
highest number max of new nodes and add k ·max new nodes to U . This trick
enables us to apply k transitions without the need to change the universe.

Of course this introduces the new problem of having “potential” nodes in U
that do not actually belong to the graph. To solve this problem, we introduce
the dead-predicate, initially valued 1 for all potential nodes and 0 for all nodes in
the initial graph. The label set, the rules (including NACs) and their encodings
can be automatically adjusted in a fairly straightforward manner to emulate the
expected semantics of that predicate. In addition, one has to encode the deletion
of all edges adjacent to deleted nodes to ensure the non-existence of dangling
edges. For details, please refer to [16].

The central theorem of this paper states the correctness of our approach.

Theorem 1. Given a GTS G = (S, P), a forbidden pattern F and a bound k.
The encoding �S� ∧ �T �1 ∧ ... ∧ �T �k ∧ �F �Cond

k is satisfiable iff F is reachable
in G in k steps. The satisfying interpretation represents graphs G0 to Gk (i.e.,
Ii(Gi)) in a path G0, ..., Gk of G containing the forbidden pattern.

As the satisfying interpretation represents the graphs along a path with the
forbidden pattern, we can directly use this to present this path.

From Reachability to LTL. The version presented above of encoding paths of
length k of a graph transformation system lacks the ability of describing finite
paths of length smaller k. If a path has length i < k, then there is no trans-
formation rule applicable to host graph Gi. Thus, the encoding �T �i+1 of the
transition i + 1 is not satisfiable, which means the path cannot be found and
therefore not be checked for reachability. In consequence of this, we have to it-
eratively check all paths of length i with 1 ≤ i ≤ k. This however forces the
satisfiability checking of up to k instances, resulting in a long runtime. To over-
come this issue, we introduce a self-loop, which is only applicable, if and only
if no transformation rule is applicable. In order to encode this self-loop, we de-
veloped an encoding of the non-applicability of a rule. The self-loop enables a
path of length smaller than k to be represented by a path of length k. As strictly

188 T. Isenberg, D. Steenken, and H. Wehrheim

smaller paths are not checked separately, we adapt the encoding of the forbidden
pattern to �F �Cond

0 ∨ ... ∨ �F �Cond
k . Thus, we do not need to check for strictly

smaller paths. We will compare both approaches in the next section.
This self-loop and the encoding of the non-applicability allow us to completely

encode the BMC of LTL formulae. The semantics and the encoding of the LTL
formula are the same as for standard BMC of Kripke structures, except that
atomic propositions here mean the applicability of a pattern and negated atomic
propositions mean the non-applicability. In general, our technique is slightly
more expressive than LTL, as we can check whether a transformation rule ac-
tually was applied in a transition, not just its potential applicability to a host
graph.

Theorem 1 describes the iterative version for a forbidden pattern. All previ-
ously mentioned lemmata and a more general theorem for LTL formulae without
iterative checking are described and proved by Isenberg [16].

4 Implementation and Evaluation

In the following, we shortly describe our implementation and present results of
the evaluation of our technique.

We built a prototypical implementation of our BMC technique as an extension
to GROOVE [24], which can generate the encoding in two ways, the first of which
is described in this paper. The second encoding does not use different predicates
(numbering) to differentiate between the graphs in different steps of a path, but
different universes. A first result of the evaluation is that these encodings are
basically equally well suited; none can outperform the other. In both cases the
result of the encoding is an SMT formula written according to the SMT-Lib
v2.0 format [5], which is then fed into the SMT solver Z3 [21]. If a satisfiable
interpretation is found, the represented counterexample is displayed.

We tested our approach on several examples, including the car platooning
GTS [1]. The forbidden pattern used by this example is shown in Figure 1b
and does not occur within the state space of the original GTS. To check our
approach, we also created a faulty specification of car platooning, essentially by
omitting the NAC of rule 13 (Instance 1). With this rule modified, the graph
transformation system yields several paths containing the forbidden pattern. To
further increase the complexity of verification, we added a rule creating new cars
as to make the state space infinite and to have an instance with node dynamics
(Instance 2). These instances have 15, respectively 16 transformation rules.

On these two instances, we compare the iterative (it) reachability check and
the non-iterative one (nit) using the self-loop. For this, we use several initial
graphs with different numbers of nodes (see Figure 4b). In addition, we compared
both the iterative and non-iterative reachability check for different bounds using
Instance 1 with an initial graph consisting of 8 nodes (see Figure 4a). Note, that
the shortest path containing the forbidden pattern has length 9.

Our technique works most efficiently in its non-iterative version when the
guess of the bound is close to the size of the counterexample. If the bound is

Bounded Model Checking of Graph Transformation Systems via SMT 189

0

100

200

300

400

500

600

700

800

900

1 10 20 30 40 50 56

se
c

bound

non-iterative
iterative

(a) Instance 1 with 8 nodes in initial graph

1

10

100

1000

10000

3 4 5 6 7 8

se
c

number of nodes in initial graph

nit-Instance1
it-Instance1

nit-Instance2
it-Instance2

(b) Different Instances with bound 10

Fig. 4. Results of our experiments

chosen much higher than the length of the smallest counterexample, the iterative
can outrun the non-iterative version, as it only evaluates paths up to the length
of the smallest counterexample (see Figure 4a). One further observation gained
from looking at different case studies is that the order of the encodings of the
transformation rules matters (with respect to solving time), in particular when
having only one path containing the forbidden pattern in a huge set of paths.

We also compared our tool with GROOVE’s full state space exploration as
well as its BMC technique. The BMC technique in its version as online in March
2013 cannot (strangely) deal with the car platooning GTS of Instance 2 which
is infinite state. Unfortunately, we do not see the reason for this, and thus a
meaningful comparison is not possible. A comparison with GROOVE’s full state
space exploration shows that GROOVE is faster for the finite state Instance
1, but – because of the very nature of the exploration technique – cannot deal
with the infinite state Instance 2. The conclusion of our evaluation is thus that
our technique can be seen as a complement to existing approaches, especially
useful for bug finding in GTSs with infinite state spaces. We moreover think
that our approach will prove its strength in cases when the error path is already
approximately known, for instance when checking for spurious counterexamples.

5 Related Work

BMC [8] is a standard technique originally from the field of circuit verification.
It unfolds the transition relation up to a predefined boundary to check for errors.
One of its main concepts is the encoding of the problem as a SAT instance.

190 T. Isenberg, D. Steenken, and H. Wehrheim

While the encoding of problems as a SAT/SMT problem is a well known
standard technique in the field of planning [18,26], this is not the case for graph
transformation systems. However, there are some approaches transforming GTSs
into the planning language PDDL [29] to use recent progress in that field.

There is also research focusing on transformations into other target logics to
verify graph properties, e.g., using rewriting logic [30,7].

However, some approaches use only the concept of bounding the state space
without the encoding as a SAT problem. Kastenberg [17] constructs a Büchi
automaton on-the-fly and uses a nested-DFS algorithm to check non-emptiness
by iteratively searching the state space up to predefined boundaries.

Baresi [3] transforms a given GTS into Alloy, a simple structural modeling
language, which is then automatically transformed into a propositional formula.
The generated formula is afterwards fed into a SAT-solver. This approach, how-
ever, doesn’t utilize SAT-solving directly, but uses an intermediate tool.

Another approach using propositional formulae is the one presented by Kre-
owski [20], which is very similar to ours, but differs in some major points. We
use an encoding in first-order predicate logic, allowing us to represent the graph
transformation system in a more compact and readable manner. This can be
of great help with respect to planned future research, where we are interested
in interpolation. In addition, the representation as SMT-formula gives us the
ability to let the SMT-solver handle the matches itself. In contrast, Kreowski
enumerates all possible matches in his encoding. The overhead of using SMT
instead of SAT should be small for the used theory. Thus, our approach can be
fast if the solver is able to restrict the search space quickly.

Other approaches to solving the problem with state space explosion and in-
finite growth focus on overapproximation, rather than on bounded state spaces
(underapproximation). The upside to this is that positive results extend to the
entire state space, rather than just a small subset that has been examined. The
downside is that negative results might not be definite and there can be no
guarantee of termination without excluding some types of inputs.

Into this class of approaches falls the work by Barbara König et al. [19], which
uses a combined formalism of graphs and Petri nets. Other overapproximation
approaches, inspired by shape analysis [27], use a more direct encoding of ab-
straction. Examples are the work by Rensink and Zambon [23,31] as well as
Steenken, Wonisch and Wehrheim [28].

Another approach that performs a kind of overapproximation is given by
Giese, Beyer et al. [6]. Here the idea is to prove inductive invariants of GTS by
starting at the error pattern and working backwards.

6 Conclusion

In this paper, we presented a technique for BMC of graph transformation systems
via SMT solving. To this end we encoded the reachability problem of a forbidden
pattern in a GTS as an SMT formula. The presented approach can easily be
extended to cover properties specified in LTL, and we have already implemented
this extension as well.

Bounded Model Checking of Graph Transformation Systems via SMT 191

One idea for further research could be to optimize the way of handling new
nodes in transformation rules. In addition, one could try to find good heuristics
for arranging the encodings of the transformation rules to improve the speed
even further. Our main objective for the future is, however, the usage of this
approach for a fast counter example analysis in our shape analysis based verifi-
cation technique for GTS [28].

References

1. Backes, P., Reineke, J.: A graph transformation case study for the topology analysis
of dynamic communication system. In: Transformation Tool Contest 2010. CTIT
Workshop Proceedings, vol. WP10-03, pp. 107–118. University of Twente (2010)

2. Baldan, P., König, B., Rensink, A.: Summary 2: Graph grammar verification
through abstraction. In: König, B., Montanari, U., Gardner, P. (eds.) Graph Trans-
formations and Process Algebras for Modeling Distributed and Mobile Systems.
Dagstuhl Seminar Proceedings, vol. 04241 (2004)

3. Baresi, L., Spoletini, P.: On the use of Alloy to analyze graph transformation
systems. In: Corradini, A., Ehrig, H., Montanari, U., Ribeiro, L., Rozenberg, G.
(eds.) ICGT 2006. LNCS, vol. 4178, pp. 306–320. Springer, Heidelberg (2006)

4. Barrett, C., Deters, M., de Moura, L., Oliveras, A., Stump, A.: 6 Years of SMT-
COMP. Journal of Automated Reasoning, 1–35 (2012), 10.1007/s10817-012-9246-5

5. Barrett, C., Stump, A., Tinelli, C.: The SMT-LIB Standard: Version 2.0. In: Gupta,
A., Kroening, D. (eds.) Proceedings of the 8th International Workshop on Satisfi-
ability Modulo Theories, Edinburgh, UK (2010)

6. Becker, B., Beyer, D., Giese, H., Klein, F., Schilling, D.: Symbolic invariant verifica-
tion for systems with dynamic structural adaptation. In: Osterweil, L.J., Rombach,
H.D., Soffa, M.L. (eds.) ICSE, pp. 72–81. ACM (2006)

7. Bergmann, G., Boronat, A., Heckel, R., Torrini, P., Ráth, I., Varró, D.: Advances in
model transformations by graph transformation: Specification, execution and anal-
ysis. In: Wirsing, M., Hölzl, M. (eds.) SENSORIA. LNCS, vol. 6582, pp. 561–584.
Springer, Heidelberg (2011)

8. Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic model checking without bDDs.
In: Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, pp. 193–207. Springer,
Heidelberg (1999)

9. Bisztray, D., Heckel, R., Ehrig, H.: Verification of architectural refactorings by rule
extraction. In: Fiadeiro, J.L., Inverardi, P. (eds.) FASE 2008. LNCS, vol. 4961,
pp. 347–361. Springer, Heidelberg (2008)

10. Bouton, T., Caminha B. de Oliveira, D., Déharbe, D., Fontaine, P.: veriT: An open,
trustable and efficient smt-solver. In: Schmidt, R.A. (ed.) CADE 2009. LNCS,
vol. 5663, pp. 151–156. Springer, Heidelberg (2009)

11. Christ, J., Hoenicke, J., Nutz, A.: SMTInterpol: An Interpolating SMT Solver.
In: Donaldson, A., Parker, D. (eds.) SPIN 2012. LNCS, vol. 7385, pp. 248–254.
Springer, Heidelberg (2012)

12. Cimatti, A., Griggio, A., Schaafsma, B.J., Sebastiani, R.: The MathSAT5 SMT
Solver. In: Piterman, N., Smolka, S. (eds.) TACAS 2013. LNCS, vol. 7795,
pp. 93–107. Springer, Heidelberg (2013)

13. Ehrig, H., Heckel, R., Korff, M., Löwe, M., Ribeiro, L., Wagner, A., Corradini,
A.: Algebraic Approaches to Graph Transformation - Part II: Single Pushout Ap-
proach and Comparison with Double Pushout Approach. In: Rozenberg, G. (ed.)
Handbook of Graph Grammars, pp. 247–312. World Scientific (1997)

192 T. Isenberg, D. Steenken, and H. Wehrheim

14. Engels, G., Güldali, B., Soltenborn, C., Wehrheim, H.: Assuring consistency of
business process models and web services using visual contracts. In: Schürr, A.,
Nagl, M., Zündorf, A. (eds.) AGTIVE 2007. LNCS, vol. 5088, pp. 17–31. Springer,
Heidelberg (2008)

15. Habel, A., Heckel, R., Taentzer, G.: Graph grammars with negative application
conditions. Fundam. Inform. 26(3/4), 287–313 (1996)

16. Isenberg, T.: Bounded Model Checking für Graphtransformationssysteme als SMT-
Problem. Master’s thesis, University of Paderborn, Germany (2012)

17. Kastenberg, H.: Graph-based software specification and verification. Ph.D. thesis,
University of Twente, Enschede (October 2008)

18. Kautz, H.A., Selman, B.: Planning as satisfiability. In: ECAI, pp. 359–363 (1992)
19. König, B., Kozioura, V.: Augur 2 - a new version of a tool for the analysis of graph

transformation systems. Electronic Notes in Theoretical Computer Science 211(0),
201–210 (2008); Proceedings of the Fifth International Workshop on Graph Trans-
formation and Visual Modeling Techniques (GT-VMT 2006)

20. Kreowski, H.-J., Kuske, S., Wille, R.: Graph Transformation Units Guided by a SAT
Solver. In: Ehrig, H., Rensink, A., Rozenberg, G., Schürr, A. (eds.) ICGT 2010.
LNCS, vol. 6372, pp. 27–42. Springer, Heidelberg (2010)

21. de Moura, L., Bjørner, N.S.: Z3: An efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

22. Rensink, A.: The joys of graph transformation. Nieuwsbrief van de Nederlandse
Vereniging voor Theoretische Informatica 9 (2005)

23. Rensink, A., Zambon, E.: Neighbourhood abstraction in GROOVE. Electronic
Communications of the EASST 32 (2011)

24. Rensink, A.: The GROOVE simulator: A tool for state space generation. In: Pfaltz,
J.L., Nagl, M., Böhlen, B. (eds.) AGTIVE 2003. LNCS, vol. 3062, pp. 479–485.
Springer, Heidelberg (2004)

25. Rensink, A., Zambon, E.: Pattern-based graph abstraction. In: Ehrig, H., Engels, G.,
Kreowski, H.-J., Rozenberg, G. (eds.) ICGT 2012. LNCS, vol. 7562, pp. 66–80.
Springer, Heidelberg (2012)

26. Rintanen, J.: Planning and sat. In: Biere, A., Heule, M., van Maaren, H., Walsh, T.
(eds.) Handbook of Satisfiability. Frontiers in Artificial Intelligence and Applica-
tions, vol. 185, pp. 483–504. IOS Press (2009)

27. Sagiv, M., Reps, T., Wilhelm, R.: Parametric shape analysis via 3-valued logic.
ACM Trans. Program. Lang. Syst. 24(3), 217–298 (2002)

28. Steenken, D., Wehrheim, H., Wonisch, D.: Sound and Complete Abstract Graph
Transformation. In: Simao, A., Morgan, C. (eds.) SBMF 2011. LNCS, vol. 7021,
pp. 92–107. Springer, Heidelberg (2011)

29. Tichy, M., Klöpper, B.: Planning self-adaption with graph transformations. In:
Schürr, A., Varró, D., Varró, G. (eds.) AGTIVE 2011. LNCS, vol. 7233, pp. 137–152.
Springer, Heidelberg (2012)

30. Vandin, A., Lluch-Lafuente, A.: Towards a maude tool for model checking temporal
graph properties. ECEASST 41 (2011)

31. Zambon, E., Rensink, A.: Graph subsumption in abstract state space exploration.
arXiv preprint arXiv:1210.6413 (2012)

Verification of Directed Acyclic

Ad Hoc Networks

Parosh Aziz Abdulla, Mohamed Faouzi Atig, and Othmane Rezine

Uppsala University

Abstract. We study decision problems for parameterized verification of
a formal model of ad hoc networks. We consider a model in which the net-
work is composed of a set of processes connected to each other through
a directed acyclic graph. Vertices of the graph represent states of indi-
vidual processes. Adjacent vertices represent single-hop neighbors. The
processes are finite-state machines with local and synchronized broad-
cast transitions. Reception of a broadcast is restricted to the immedi-
ate neighbors of the sender process. The underlying connectivity graph
constrains communication pattern to only one direction. This allows to
model typical communication patterns where data is propagated from a
set of central nodes to the rest of the network, or alternatively collected
in the other direction. For this model, we consider decidability of the con-
trol state reachability (coverability) problem, defined over two classes of
architectures, namely the class of all acyclic networks (for which we show
undecidability) and that of acyclic networks with a bounded depth (for
which we show decidability). The decision problems are parameterized
both by the size and by the topology of the underlying network.

1 Introduction

The analysis and verification of models for wireless ad hoc networks have
attracted much interest in recent years [4,11,2,3,9,8,12,13,10]. Such networks
usually consist of arbitrary numbers of nodes that communicate wirelessly in
arbitrarily configured networks. Several features in their behaviors make them
both attractive and difficult from the point of view of verification. First, the net-
work infrastructure can be static or dynamic but is usually not a priori defined.
Also, the communication between nodes occurs via broadcast over the shared
radio channel medium. Messages broadcasted by a given node are only received
by nodes in its proximity, in contrast to classical broadcast communication in
which all processes of the system are able to receive the sent messages. Further-
more, since the systems may contain unbounded numbers of processes, and since
the protocols are supposed to work independently from specific configurations
of the network, we need to perform parameterized verification where we prove
correctness of the system regardless of the number of nodes or the topology of
the network.

Using a model similar to that proposed in [2], we view the network as a
graph of nodes, where each node runs an instance of a given finite-state process.

D. Beyer and M. Boreale (Eds.): FMOODS/FORTE 2013, LNCS 7892, pp. 193–208, 2013.
© IFIP International Federation for Information Processing 2013

194 P.A. Abdulla, M.F. Atig, and O. Rezine

The graph defines the underlying connectivity of the network, while a process
models the code of a given fixed protocol that runs on the node. For such net-
works, the behavior of a node can in general be specified in terms of a sequence of
states with transitions corresponding to local or to broadcast operations. Local
transitions are internal to a node and do not affect the states of the other nodes
in the network. Broadcast transitions on the other hand may have an impact
on other nodes in the network. More precisely, we consider selective broadcast
transitions that involve a sender (the broadcasting node), together with a set of
receivers composed of the nodes that are in the topological vicinity of the sender,
and that are willing to receive the broadcasted message. The vicinity of a node
is defined by the underlying communication graph of the network. The broad-
casting and the reception of the message happens synchronously for all involved
nodes, i.e., the sender and all potential receivers in its vicinity. The interleaving
semantics of our formalism does not take into account problems that could arise
at the physical and link layer, such us message collision for example. We are here
more interested in network and application layer protocols where these type of
problems are abstracted away.

As argued in [2,3], the control state reachability problem or the coverability
problem seems to be adequate for capturing several interesting properties that
arise in parameterized verification of ad hoc networks. The problem consists in
checking whether the system can start from a given initial configuration and
evolve to reach a configuration in which at least one of the processes is in a
given state. Since we are performing parameterized verification, the number of
nodes that has to be handled in the analysis is not a priori bounded. In other
words, we are dealing with the verification of an infinite-state system. Indeed, it
is shown in [2] that the coverability problem is undecidable in the general case.
Therefore, an important line of work has been done to identify classes of network
topologies for which algorithmic verification is at least theoretically possible [3].
This paper proposes one such a class of topologies where the underlying graph is
acyclic, and hence the communication from a node to another goes only through
one direction. Such patterns arise, for instance, in the context of Wireless Sensor
Networks (Wsn), where small wireless devices are distributed over an area in
order to perform different types of measurements (temperature, humidity, etc.).
In Wsn, it is common that the topology is static over time. Furthermore, it
is also common in Wsn that communication follows a specific direction; for
instance this is the case for flooding protocols at the network layer [7], and for
the optimized directed diffusion protocol [6].

From the verification point of view, we show that the coverability problem is
undecidable even in the case where the network topology is acyclic (section 5).
We show the undecidability result through a reduction from an undecidable
problem for finite-state transducers (section 4). Then, we consider a restricted
version of the problem where we assume that the depth of the acyclic graph
is bounded by a given natural number k. In fact, we are still dealing with an
infinite state-system since we may have an unbounded number of nodes, and an
unbounded in- and out-degrees for the nodes of the graph. For this case we show

Verification of Acyclic Direct Ad Hoc Networks 195

decidability of the coverability problem. The proof is carried out in several steps.
First we reduce the problem from the case of general acyclic graphs to that of
inverted forests (forests with all edges reversed) and then to the case of inverted
trees (section 6). For the case of inverted trees, we propose a novel symbolic
representation of infinite sets of configurations. This symbolic representation
amounts to having “higher-order multisets” in which a multiset of a certain order
contains multisets of lower orders (section 7). We show that this allows to define
a symbolic backward reachability analysis based on a non-trivial instantiation
of the the framework of well quasi-ordered transition systems [1].

2 Preliminaries

In this section, we introduce some basic definitions and notations that we will
use in the rest of the paper.

We use N and N�0 to denote the sets of natural numbers and positive natural
numbers, respectively. Given a finite set A, we use �A� to denote the number of
elements in A. We use A� to denote the set of finite multisets over A; and use A�

to denote the set of finite words over A. For words w1, w2 � A
� we use w1 �w2 to

denote the concatenation of w1 and w2. Sometimes, we write multisets as lists,
e.g., �a, a, b, b, b� is a multiset with two occurrences of a and three occurrences of
b. A quasi-ordering (ordering for short) � on a set A is a reflexive and transitive
binary relation over A (i.e. �� A � A, a � a and a � b, b � c � a � c for any
a, b, c � A). We extend the ordering � on A to an ordering �� on the set A�

of multisets over A such that �a1, . . . , am��
��b1, . . . , bn� if there is an injection

h : 	1, . . . ,m
 �� 	1, . . . , n
 with ai � bh�i� for all i : 1 i m. Given a function
f : A �� N, we define max�f� :� max	f �e��e � A
 to be the largest value taken
by f over A. For a function f : A �� B, we use f �a� b� to denote the function
f � such that f ��a� � b and f ��a�� � f�a�� if a� � a.

A (directed) graph is a pair G � �V,E� where V is a finite set of vertices
and E � V � V is the set of edges. Two graphs G1 � �V1, E1� and G2 �
�V2, E2� are said to be disjoint iff V1 � V2 � �. For vertices u, v � V , we use

u �G v to denote that �u, v� � E, use
�
�G to denote the reflexive transitive

closure of �G, and use
�
�G to denote the transitive closure of �G. A path

in G is a finite sequence π � v1v2 � � � vk where vi �G vi�1 for all i : 1

i � k. We define first �π� :� v1 and last �π� :� vk. Notice that u
�
�G v iff

there is a finite path in G with first �π� � u and last �π� � v. For a vertex
v � V , we define succG �v� :� 	u� v �G u
 to be its set of successor vertices, and
define predG �v� :� 	u� u�G v
 to be its set of predecessor vertices. For a graph
G � �V,E�, we define its transpose GTransp :�

�
V,ETransp

�
, where ETransp :�

	�v, u�� �u, v� � E
. In other words GTransp is G with all edges reversed. We say
that G is a Dag if there are no cycles in G, i.e., there are no vertices v � V with

v
�
�G v. Fix a Dag G � �V,E�. We define #G :� � 	v � V � �succG �v� � � 1
 �.

In other words, it is the number of vertices in the graph whose set of successors
contains more than one element. For a vertex v � V , we define heightG �v� :�
0 if succG �v� � �, and define heightG �v� :� 1 � maxu�succG�v��heightG �u��

196 P.A. Abdulla, M.F. Atig, and O. Rezine

otherwise. We define height �G� :� maxv�V heightG �v�, i.e., it is the length of
a longest path in G. We define depthG �v� :� 0 if predG �v� � �, and define
depthG �v� :� 1 �maxu�predG�v�

�depthG �u�� otherwise. We define depth �G� :�
maxv�V depthG �v�. A leaf ofG is a vertex v � V with height zero, i.e., succG �v� �
�. We use leaves �G� to denote the set of leaves of G. A forest is a Dag such
that for all distinct pairs of vertices v, u � V we have succG �v�� succG �u� � �.
A tree is a forest such that � 	v� predG �v� � �
 � � 1. We say that G is an
inverted forest/tree if GTransp is a forest/tree. The root of an inverted tree G is
the unique vertex v with succG �v� � �. Notice that a Dag G is an inverted
forest iff #G � 0, i.e., it does not contain any vertices with multiple successors.

3 Directed Acyclic Ad-Hoc Networks

A Directed Acyclic Ad-Hoc Network (Daahn) contains a finite (but arbitrary)
number of nodes that are organized in a Dag. The vertices of the Dag repre-
sent individual processes, while the Dag models the topology of the network.
The processes are modeled as finite-state automata that can perform both lo-
cal and synchronized broadcast transitions. The successors of a vertex are the
set of processes that are able to “hear” broadcast messages issued by the ver-
tex. Depending on its local state, a successor may participate in the broadcast
transition or not. Below, we describe the syntax and the operational semantics
of a Daahn, and then define two decision problems for the model related to
reachability properties.

Syntax. An Ad-Hoc Network (Ahn) consists of a pair N � �P,G� where
P is a finite-state automaton describing the behavior of each process, and
G � �V,E� is the communication graph between the processes. A pro-
cess P is a tuple �Q,Σ,Δ, qinit� where Q is a finite set of states, Σ is
a finite message alphabet, qinit � Q is the initial state, and Δ � Q �
�	τ
 � 	b �m�� m � Σ
 � 	r �m�� m � Σ
� � Q is the transition relation. Intu-
itively, τ represents a local (internal) transition of the process. The operation
b �m� corresponds to broadcasting a message m, while r �m� corresponds to re-
ceiving the message m. We say that N is a Daahn if G is a Dag.

Operational Semantics. We give the operational semantics by defining the tran-
sition system induced by N . A configuration c of N is a function c : V �� Q that
defines, for each vertex v � V (i.e., a process position), a state q � Q. We use
q � c to denote that there exists a vertex v � V such that c�v� � q. We use C to
denote the set of configurations of N , and define the initial configuration cinit
such that cinit �v� � qinit for all v � V . We define a transition relation ��N on

the set C by ��N :�
�

t�Δ
t��, where t�� describes the effect of performing the

transition t. Given two configurations c, c� � C, we have c t��N c
� if one of the

following conditions holds:

– Local Transition. There is a v � V such that t � �c�v�, τ, c��v�� � Δ and for
every v� � V � 	v
, we have that c��v�� � c�v��. A local transition modifies
only the state of the involved process.

Verification of Acyclic Direct Ad Hoc Networks 197

– Broadcast. There are v � V and m � Σ such that t � �c�v�, b �m� , c��v�� � Δ,
and for every v� � V �	v
 one of the following conditions holds:
� v �G v

� and �c�v��, r �m� , c��v��� � Δ.
� v �G v

�, �c�v��, r �m� , q� � Δ for any q � Q, and c��v�� � c�v��.
� v ��G v

� and c��v�� � c�v��.
In a broadcast transition, any successor of the sender process that can receive
the message m is obliged to participate in the transition.

For both types of transitions, the topology of the system is not affected. We
use

�
��N to denote the reflexive transitive closure of ��N . A (finite) run ρ of

N is a sequence c0c1 . . . cn of configurations such that c0 � cinit and ci��N ci�1

for i : 0 i � n. We use last �ρ� to denote cn. A configuration c is said to be
reachable in N if there is a run ρ of N such that last �ρ� � c (notice that this is

equivalent to cinit
�
��N c). A state q � Q is said to be reachable in N if q � c for

some reachable configuration c.

Decision Problems. The state reachability problem or coverability problem
Cover is defined by a process P � �Q,Σ,Δ, qinit� and a state target � Q. The
task is to check whether there is a Dag G such that target is reachable in the
Daahn N � �P,G�. The bounded state reachability problem Bounded-Cover

is defined by a process P � �Q,Σ,Δ, qinit�, a state target � Q, and a natural
number k � N. The task is to check whether there is aDag G with height �G� k
such that target is reachable in the Daahn N � �P,G�.

4 Transducers

We recall the standard definition of transducers and an undecidable problem
for them. A (finite-state) automaton is a tuple A � �Q,Σ,Δ, qinit , Qfinal� where
Q is a finite set of states, Σ is a finite alphabet, qinit � Q is the initial state,
Qfinal � Q is the set of final states, and Δ � Q � Σ � Q is the transition
relation. We define the language L �A� of A as usual. A (finite-state) transducer
T � �Q,Σ,Δ, qinit , Qfinal� is of the same form as a finite-state automaton except
that Δ � Q �Σ �Σ � Q. Thus, a member of L �T � is a word of pairs over Σ,

i.e., a member of
�
Σ2

��
. A transducer T induces a binary relation R �T � on the

set Σ� such that �a1 � � � an, b1 � � � bn� � R �T � if �a1, b1� � � � �an, bn� � L �T �. For
a word w � Σ�, we define T �w� :� 	v� �w, v� � R �T �
. For a set W of words,
we define T �W � :� �w�WT �w�. Given an automaton A and a transducer T
(with identical alphabets Σ) we define T �A� :� T �L �A��. For a natural number
i � N and a word w � Σ�, we define T i�w� inductively by T 0�w� :� 	w
 and
T i�1�w� :� T �T i�w��. In other words, it is the result of i applications of the
relation induced by T on w. We extend the definition of T i to sets of words in
the expected manner. For an automaton A, we define T i�A� :� T i�L �A��.

198 P.A. Abdulla, M.F. Atig, and O. Rezine

An instance of the problem Transd consists of two automata A and B, and
a transducer T , all with identical alphabets Σ. The task is to check whether
there is an i � N such that T i�A� � L �B� � �. It is straightforward to show
undecidability ofTransd through a reduction from a certain non-trivial problem
for Turing machines, namely whether a given Turing machine M will eventually
print a given symbol a on its tape. More precisely, we use L �A� to describe an
appropriate encoding of (i) an empty tape of M , and (ii) the initial position
of its head on the tape. The transducer T encodes one move of M , by non-
deterministically guessing the position of the head, and then (i) moving the head,
(ii) changing one symbol on the tape, and (iii) changing its state, according to
the transition relation of M . Finally, the automaton B accepts all words that
contains the symbol a.

5 Undecidability of Cover

In this section, we prove the following theorem.

Theorem 1. Cover is undecidable.

We show undecidability through a reduction from Transd to
Cover. Consider an instance of Transd defined by automata

A �
�
QA, ΣA, Δ

A, qAinit , Q
A
final

�
and B �

�
QB, ΣB, Δ

B, qBinit , Q
B
final

�
, and

transducer T �
�
QT , ΣT , Δ

T , qTinit , Q
T
final

�
(with ΣA � ΣB � ΣT). We define

a process P � �Q,Σ,Δ, qinit� and a state qaccept � Q such that there is a
Dag G with qaccept reachable in the Daahn N � �P,G� iff there is an i � N

such that T i�A� � L �B� � �. The manner in which we define process P
(see below) will allow it to simulate both automata A and B and transducer
T . The set Q of states of P is defined to be the union of four disjoint sets
Q :� 	qinit , qerror , qaccept
 � SA � SB � ST described below. The idea of the
simulation is that a group of processes in N tries to build a “chain” (of some
size, say i), where the root of the chain simulates A, the �i� 2� processes in the
middle of the chain simulate T , and the last process simulates B. We will refer
to such a chain as transduction chain below.

Simulating A. The states in SA are used by P to simulate the automaton
A. Each state q � QA in A has a copy �q�A in SA. At state qinit , the process
P may decide to simulate the automaton A (Figure 1), thus becoming the
first vertex in a potential transduction chain. It does this by performing
the transition

�
qinit , b �Astart � ,

�
qAinit

	
A

�
� Δ in which it moves to (the

copy of) of the initial state of A. At the same time, it issues a broadcast
message b �Astart � to notify its successor processes in G that it has started
the simulation of A. For each transition �q1, a, q2� � Δ

A in A there is a transition

Verification of Acyclic Direct Ad Hoc Networks 199

��q1�A , b �a� , �q2�A� � Δ in which P simulates changing of states in A and broad-
casts the symbol a to its successors. Finally, for each final state q � QA

final , there

is a transition
�
�q�A , b �mend � , q

A
end

�
� Δ in which P declares that it has ended

the simulation of A (by broadcasting the message mend), after which P stops
(there are no outgoing transition from qAend). Thus, in this mode, the process P
broadcasts a sequence of messages corresponding to a word in L �A� followed by
the end-marker mend .

qinit qtmp

�
qTinit

�
T

�
qAinit

�
A

�
qBinit

�
B

. . .

. . .

. . .

b �Astart�

r �Astart� ,

r �Tstart�

r �Astart� ,

r �Tstart�

b �Tstart �

SA

ST

SB

Fig. 1. Process P : initial choices

A :

T :

B :

Original: Encoding:

q1 q2
a

	q1
A 	q2
A qAend

b �a� b �mend �

q1 q2
a

	q1
B 	q2
B qaccept
r �a� r �mend �

q1 q2
t :

a1�a2

	q1
T 	q1

t
T

	q2
T

	q2

end
TqTend

r �a1� b �a2�

r �mend �

b �mend �

Fig. 2. Transition and accepting state encoding

Simulating T . The states in ST are used by P to simulate the transducer
T . Each state q � QT in T has several corresponding states in ST . More
precisely, it has one copy �q�T (as in the case of A above); together with one

temporary state �q�tT for each transition t � �q, a1, a2, q
�� � ΔT , i.e., for each

transition whose source state is q. At state qinit , if the process P receives a
message Astart or Tstart from one of its predecessors, then it may decide to
simulate the transducer T (Figure 1). It does so by (i) first performing one
of the transitions �qinit , r �Astart � , qtmp� � Δ and �qinit , r �Tstart� , qtmp� � Δ,
where qtmp � ST is a temporary state, followed by (ii) performing the transition�
qtmp , b �Tstart� ,

�
qTinit

	
T

�
� Δ in which it moves to the first copy of the initial

state of T . At the same time, it issues a broadcast message b �Tstart � to its
successors declaring that it has started the simulation of T . Intuitively, if
P has received Astart , it will be the second process in a transduction chain
(its predecessor will be the first since it simulates A), while if it has received
Tstart , it will be the �k � 1�-th process in the chain (its predecessor will be
the k-th process and the predecessor also simulates T). For each transition

t � �q1, a1, a2, q2� � Δ
T in T there are two transitions

�
�q1�T , r �a1� , �q1�

t
T

�
� Δ

and
�
�q1�

t
T , b �a2� , �q2�T

�
� Δ. Here, P receives the message a1 from its prede-

cessor (in the chain), and sends a2 to its successors. Although, a node may have
several predecessors, only one of them is allowed to act as the predecessor of the
current node in the chain. This is ensured by transitions �q, r �Astart � , qerror� � Δ

200 P.A. Abdulla, M.F. Atig, and O. Rezine

and �q, r �Tstart� , qerror� � Δ for each q � ST . In other words, if the current
process has already received a message from one predecessor (and thus moved
to a state in ST) then it moves to the state qerror if it later receives messages
from any of its other predecessors. The process P then immediately suspends
the simulation (there are no outgoing transition from qerror). Also, the process
is not allowed to be “disturbed” by its predecessor while it is in the temporary
state qtmp or in one of the temporary states of the form �q�tT . This is due to the
fact that the process in such a temporary state has not yet had time to perform
the next broadcast, and therefore it is not yet ready to receive the next message
form the predecessor (if this is not done, such a message will be lost in the
simulation). To encode this, we add extra transitions �q, r �a� , qerror� for each
temporary state q and each message a. Also, in order to discard any sequence of
received messages that do not correspond to a valid T input word, we add in Δ
the transition ��q�T , r �a� , qerror� for every state q of QT and for every message
a � ΣT such that there is no q� � QT such that �q, a, q�� � ΔT . Finally, for each

final state q � QT
final , there is a transition

�
�q�T , r �mend� , �q�

end
T

�
� Δ; and a

transition
�
�q�

end
T , b �mend � , q

T
end

�
� Δ (where �q�

end
T is a temporary state). If

the process happens to be in a final state, and it receives the end-marker from
its predecessor in the chain, then it ends its simulation by notifying its successor
and moving to the state qTend . Thus, in this mode, the process P receives a word
w from its predecessor and sends a word in T �w� to its successor.

SimulatingB. The states in SB are used by P to simulate the automatonB. Each
state q � QB in B has a copy �q�B in SB. At state qinit , if the process P receives a
message Astart or Tstart from one of its predecessors, then it may decide to simu-
late the automaton B (Figure 1). It does so by performing one of the transitions�
qinit , r �Astart � ,

�
qBinit

	
B

�
� Δ and

�
qinit , r �Tstart� ,

�
qBinit

	
B

�
� Δ. In either case,

it moves to the (copy of) the initial state ofB. For each transition �q1, a, q2� � Δ
B

in B there is a transition ��q1�B , r �a� , �q2�B� in which P simulates the chang-
ing of states in B and receives the symbol a from its predecessor. In a similar
manner to the case of T , we also add transitions �q, r �Astart � , qerror� � Δ and
�q, r �Tstart � , qerror� � Δ for each q � SB, and ��q�B , r �a� , qerror� � Δ for every
state q of B and for every message a � ΣB such that there is no q� � QB such
that �q, a, q�� � ΔB. Finally, for each final state q � QB

final , there is a transition
��q�B , r �mend � , qaccept� � Δ in which P ends the simulation of B. Thus, in this
mode, the process P receives a sequence of messages corresponding to a word in
L �B� followed by the end-marker mend . In such a case, the process moves to the
state qaccept whichmeans that the given instance ofCover has a positive solution.

Correctness. We show correctness of our reduction. Suppose that the given in-
stance ofTransd has a positive answer, i.e., there is an i � N and a wordw � L �A�
such that T i�w� � L �B�. We show that there is aDagG such that qaccept is reach-
able in the Daahn N � �G,P �, where P is defined as described above. We define
G :� �	v1, v2, . . . , vi�2
 , E�, where vj �G vk iff 1 j i� 1 and k � j � 1. In
other words, the graph forms a chain with i�2 nodes. The process at node 1 starts

Verification of Acyclic Direct Ad Hoc Networks 201

simulating A eventually broadcasting the word w followed by mend . The process
at node 2 starts simulating T receiving the wordw symbol by symbol, and eventu-
ally broadcasting the word T �w� followed bymend . In general, the process at node
j for j : 2 j i� 1 starts simulating T receiving the word T j�2�w� symbol by
symbol, and eventually broadcasting the word T j�1�w� followed bymend . Finally,
the process at node i� 2 starts simulating B receiving the word T i�w� symbol by
symbol, and eventually moving to the state qaccept .

Suppose that the given instance of Cover has a positive answer, i.e., there is
a Dag G such that qaccept is reachable in the Daahn N � �G,P �. We show that
there is an i � N and a word w � L �A� such that T i�w� � L �B�. We do this by
extracting a transduction chain. We extract the chain vertex by vertex starting by
identifying the process that simulates B, then identifying the ones that simulate
T , and finally identifying the one that simulates A. Recall that qaccept can only be
reached in a process that is simulatingB. Recall also that such a process can reach
qaccept if it receives the end-marker from a predecessor process. On the other hand,
it cannot receive start messages from two different predecessors before it reaches
qaccept since this would mean that it would move to the error state qerror from
which it cannot reach qaccept . This implies that the current process has a unique
predecessor. Recall that the predecessor, a sending process, must be either a pro-
cess simulating A or T . If the predecessor is simulating A then we can close the
chain, otherwise we have found the next transducer. In the latter case, we repeat
the reasoning and find the predecessor again. Let j be the length of the chain ob-
tained in this manner (j 2 since it contains at least two vertices simulating A
resp. B). Define i in the instance of Transd to be j � 2.

6 Forest Bounded Coverability

In this section, we show that the bounded coverability problem can be reduced
from the general case of Dags to the case where we assume the Dag to be an
inverted tree. We do that in two steps, namely by first reducing the problem to
the case of inverted forests and then to trees.

Forests. A Daahn N is said to be an inverted forest if the underlying graph is
an inverted forest. We consider a restricted version of Bounded-Cover, which
we call Forest-Bounded-Cover. In Forest-Bounded-Cover, we require
that the given Daahn is an inverted forest. We show the following theorem.

Theorem 2. Bounded-Cover is reducible to Forest-Bounded-Cover.

In order to prove this theorem, we first introduce a split operator over Dags.

0

1 2

3

0

01

013 012

0123

02

023

Consider a Dag G � �V,E�. The
split operator splits the nodes of G,
transforming it into an inverted forest.
We define an inverted forest G :�
�V , E� as follows. Each vertex v � V
induces a set v in V . A member of
v is an inverted path π in G with

202 P.A. Abdulla, M.F. Atig, and O. Rezine

first �π� � leaves �G� and last �π� � v. The set v is defined using induction on
the height of v as follows. If heightG �v� � 0 (i.e., v is a leaf) then v :� 	v
.
Otherwise, v :� 	π � v� !u. v�G u" π � u

. In other words, we split v into
a number of copies, each corresponding to a path starting from a successor
of v and ending in a leaf in G. We define E :� 	�π1, π2�� π1 � π2 � v
. No-
tice that heightG� �u� � heightG �v� for every v � V and u � v. Therefore,
height �G� � height �G�. Furthermore, by definition, any vertex in G has at
most one successor (no successors if it is of the form v � V , or the unique
successor π if is of the form π � v). This means that G is an inverted forest.

Consider an instance of Bounded-Cover defined by P � �Q,Σ,Δ, qinit�,
a state target � Q, and a natural number k � N. We claim that the instance
of Forest-Bounded-Cover defined by P � �Q,Σ,Δ, qinit�, target , and k is
equivalent. For a configuration c in N � �P,G�, we define c to be the configu-
ration of N � �P,G� such that c�π � v� � c�v�. The following lemma shows
that reachability is preserved by splitting.

Lemma 3. If c1��N c2 then c1
�
��N� c2.

From Lemma 3 and the fact that cinit
�π � v� � cinit �v� � qinit , we conclude the

following:

Lemma 4. If c is reachable in N then c is reachable in N.

Now, we are ready to prove Theorem 2. If the given instance of
Forest-Bounded-Cover has a positive answer, then the instance of
Bounded-Cover has trivially a positive answer (each inverted forest
is a Daahn). For the opposite direction, suppose that the instance of
Bounded-Cover has a positive answer, i.e., there is aDag G with height �G�
k such that target is reachable in the Daahn N � �P,G�. By Lemma 4, we know
that target is reachable in �P,G�. The result then follows since G is an inverted
forest and since height �G� � height �G� k.

Trees. We consider a yet more restricted version of Bounded-Cover, which we
call Tree-Bounded-Cover. In Tree-Bounded-Cover, we require that the
given Daahn is an inverted tree.

Theorem 5. Forest-Bounded-Cover is reducible to Tree-Bounded-

Cover.

The proof of Theorem 5 is straightforward. Since the nodes inside the tree of
a forest do not affect transitions of the nodes inside the other trees, we can
solve Tree-Bounded-Cover for each tree separately. The given instance of
Forest-Bounded-Cover has a positive answer iff Tree-Bounded-Cover

has a positive answer for any of the component trees.

7 Tree Bounded Coverability

In this section, we prove the following theorem.

Verification of Acyclic Direct Ad Hoc Networks 203

Theorem 6. Tree-Bounded-Cover is decidable.

We devote the section to the proof of Theorem 6. To do that, we instantiate the
framework of well quasi-ordered transition systems introduced in [1]. The main
ingredient of this framework is to show that the transition relation induced by
the system is monotonic wrt. a well quasi-ordering (wqo) on the set of configu-
rations. We define an ordering that we denote by � on configurations that are
inverted trees and show monotonicity of the system behavior wrt. this ordering.
Unfortunately, it is not possible to apply existing frameworks (such as the one
in [1]) to directly prove the wqo of � on inverted trees. Therefore, we introduce
a new ordering that we denote by �2 on a set of “higher-order multisets”. We
show that the ordering on higher-order multisets �2 is indeed a wqo and that
it is equivalent to the original ordering � on inverted trees, which proves that
� is itself a wqo. Then, we recall the basic concepts of the framework of well
quasi-ordered systems, and show how the framework can be instantiated to prove
Theorem 6.

7.1 Ordering

Assume a process P � �Q,Σ,Δ, qinit�. An extended configuration is a pair e �
�G, c� where G is an inverted tree, and c is a configuration of the Daahn �G,P �.
We use E to denote the set of extended configurations, and, for k 1, we use
Ek to denote the set of extended configurations �G, c� where the inverted tree G
is of height at most k. We define an ordering on E as follows. Consider extended
configurations e � �G, c� with G � �V,E� and e� � �G�, c�� with G� � �V �, E��.
For an injection α : V �� V �, we use e �α e� to denote that the following
two conditions hold for all v � V : (i) c�v� � c��α�v��, and (ii) If u �G v then
α�u��G� α�v�. We write e1 � e2 if e �α e� for some α. Intuitively, we can view
an extended configuration as an inverted tree that is unranked (a node may have
any number of predecessors) and unordered (the order in which the predecessors
occur is not relevant). The ordering e1 � e2 then means that the inverted tree
corresponding to e1 has a copy (an image) inside the inverted tree corresponding
to e2. In Figure 3, three extended configurations are depicted as inverted trees
e1, e2, e3. Here e1 � e2 � e3.

7.2 Monotonicity

Given a process P , we define a transition relation #� on E where �G, c� #�
�G�, c�� if G� � G, N � �P,G�, and c��N c

�. The following lemma shows mono-
tonicity of #� wrt. �. Assume that e1, e2, e3 are extended configurations.

Lemma 7. If e1 #� e2 and e1 � e3 then there is an e4 such that e3 #� e4 and
e2 � e4.

204 P.A. Abdulla, M.F. Atig, and O. Rezine

7.3 Higher-Order Multisets

For a finite set A and k 0, we define the set A�k inductively as fol-

lows: (i) A�0 :� A; and (ii) A�k�1 :� A�k �

A�

�
A�k

���
. In other

words, a higher-order multiset of order 0 is an element in A, while a mul-
tiset of order k � 1 is either a multiset of order k, or a pair consist-
ing of an element in A together with a multiset of multisets of order k.

a

b c

e1

a

b d c

a

e2 d

da

c d b

a

e3
�

�1

�

�2

Fig. 3. The extended configurations e1, e2, and
e3 correspond to the higher order multisets B1 �
�a, �b, c��, B2 � �a, ��b, �a�� , d, c��, and B3 �
�d, ��a, ��b, �a�� , d, c�� , d�� respectively

Intuitively, a higher-order
multiset defines an inverted
tree (corresponding to an ex-
tended configuration). More
precisely, a higher-order mul-
tiset of the form a represents
an inverted tree consisting
of a single node (labeled by
a), while the higher-order
multiset �a, �B1, . . . , Bk��
represents an inverted tree
with a root labeled a, and
where predecessors of the
root are themselves the roots
of the inverted subtrees represented by B1, . . . , Bk respectively (see Figure 3).
We define an ordering �2 on A�k in two steps. First, we define an ordering �1

on A�k such that

– a �1 a
� if a � a�; and a �1 �a

�, B� if a � a�.
– �a, �B1, . . . , Bk�� �1 �a

�, �B�
1, . . . , B

�
��� if a � a� and there is an injection

h : 	1, . . . , k
 �� 	1, . . . , �
 with Bi �1 B
�
h�i� for all i : 1 i k. Notice that

the second condition is equivalent to �B1, . . . , Bk��
�
1 �B

�
1, . . . , B

�
��.

Intuitively, B1 �1 B2 means that a copy of the inverted tree corresponding
to B1 occurs in the inverted tree corresponding to B2 starting from the root.
For instance, consider B1, B2, B3 in Figure 3. According to the definition of
�1, we have B1 �1 B2 while B1 ��1 B3. This is reflected in the inverted trees
corresponding to the extended configurations e1, e2, e3. Although copies of e1
occurs both in e2 and e3, the copy of e1 does not start from the root of e3. Now,
we define �2 as follows.

– a �2 a
� if a � a�; and a �2 �a

�, B� if a � a� or a �2 B.
– �a, �B1, . . . , Bk�� �2 �a

�, �B�
1, . . . , B

�
��� if one of the following two cases is

satisfied:
� a � a� and there is an injection h : 	1, . . . , k
 �� 	1, . . . , �
 with Bi �1

B�
h�i� for all i : 1 i k.

� �a, �B1, . . . , Bk�� �2 B
�
i for some i : 1 i �.

Notice that �1��2. Intuitively, B1 �2 B2 means that a copy of the inverted
tree corresponding to e1 occur somewhere in the inverted tree corresponding to
B2 (not necessarily starting from the root). In Figure 3, B1 �2 B3 (and a copy
of e1 occurs in e3).

Verification of Acyclic Direct Ad Hoc Networks 205

7.4 Encoding

We define an encoding function # that translates each extended configuration to
a higher-order multiset. Formally, consider an extended configuration �G, c� with
G � �V,E�. First, we define # �v, c�, for v � V , by induction on depthG �v� as
follows:

– If depthG �v� � 0 then # �v, c� :� c�v�. In this case, the encoding is of order
0 (given by the state of the vertex).

– If depthG �v� � 0 then let predG �v� � 	v1, . . . , vn
. Then, # �v, c� :�
�c�v�, �# �v1, c� , . . . ,# �vn, c���. The encoding is of the same order as the
depth of the vertex; it consists of the state of the vertex itself together with
the multiset of the encodings of its predecessors.

We define #e :� # �v, c� where v is the root of G. Notice that the order of #e
is identical to the height of the inverted tree G. As an example, in Figure 3,
if we view an inverted tree ei, i � 1, 2, 3, as an extended configuration then
its encoding is given by Bi. The following lemma shows that the orderings on
extended configurations and higher-order multisets coincide. Let e1 and e2 be
two extended configurations.

Lemma 8. e1 � e2 iff #e1 �2 #e2.

7.5 Well Quasi-Orderings

Let A be a set and let � be a quasi-ordering on A. We say that � is well quasi-
ordering (wqo) if it satisfies the following property: for any infinite sequence
a0, a1, a2, . . . of elements in A, there are i � j with ai � aj. We will use the
following variant of Higman’s Lemma [5] for our purposes:

Lemma 9. If � is wqo on A then �� is a wqo on A�.

Now, we show that the ordering �2 is a wqo on A�k for any given k 0. To show
�2 is a wqo, we first show that �1 is a wqo on A

�k for any given k 0. We use in-
duction on k. The base case is trivial since it amounts to equality being a wqo on
a finite alphabet. Consider an infinite sequence �a0, D0� , �a1, D1� , �a2, D2� , . . .

of elements in A�k�1 (notice that Di �
�
A�k

��
). Since a0, a1, a2, . . . all belong

to the finite set A, there is an a � A and an infinite sequence i0 � i1 � � � �
such that aij � a for all j 0. Since �1 is a wqo on A�k by the induction

hypothesis, it follows by Lemma 9 that ��
1 is a wqo on

�
A�k

��
. By definition

of wqo, there are im � in with Dim�
�
1 Din . By definition of �1 we have that

�aim , Dim� �1 �ain , Din�.
We are now ready to show that �2 is a wqo. Consider an infinite sequence

as the one above. Since �aim , Dim� �1 �ain , Din� and �1��2 it follows that
�aim , Dim� �2 �ain , Din� which completes the proof for wqo of �2.

Lemma 8 implies that, for extended configurations e1, e2, we have that e1 � e2
iff #e1 �2 #e2. Also, recall that, for e � �G, c� the height of G is equal to the
order of #e. From this and the fact that �2 is a wqo on A�k for any given k 1,
we get the following lemma.

Lemma 10. For any k 1, the ordering � is a wqo on Ek.

206 P.A. Abdulla, M.F. Atig, and O. Rezine

7.6 Monotonic Transition Systems

A monotonic transition system (MTS) is a tuple �Γ, Γinit ,�,#�, U�, where

– Γ is a (potentially infinite) set of configurations.
– Γinit � Γ is a set of initial configurations.
– � is a computable ordering on Γ , i.e., for each γ1, γ2 � Γ , we can check

whether γ1 � γ2. Furthermore, � is a wqo.
– #� is a binary transition relation on Γ . Furthermore, #� is monotonic

with respect to �, i.e., given configurations γ1, γ2, γ3 such that γ1 #� γ2
and γ1 � γ3, there is a configuration γ4 such that γ3 #� γ4 and γ2 � γ4.

– U is defined as the upward closure Γ1 $ of a finite set Γ1 � Γ , where Γ1 $�
	γ� � Γ � !γ � Γ1. γ � γ

�
.

We use ��� to denote the reflexive transitive closure of #�. For sets Γ1, Γ2 � Γ ,
we say that Γ2 is reachable from Γ1 if there are γ1 � Γ1 and γ2 � Γ2 such
that γ1

�
�� γ2. In the reachability problem MTS-Reach we are given an MTS

�Γ, Γinit ,�,#�, U� and are asked the question whether U is reachable from
Γinit . The paper [1] gives sufficient conditions for decidability of MTS-Reach

as follows. For Γ1 � Γ , we define Pre�Γ1� :� 	γ� !γ1 � Γ1. γ #� γ1
. For Γ1 � Γ ,
we say that M � Γ1 is a minor set of Γ1 if

– For each γ1 � Γ1 there is γ2 �M such that γ2 � γ1.
– If γ1, γ2 �M and γ1 � γ2 then γ1 � γ2.

Since � is a wqo, it follows that each minor set is finite. However, in general,
the same set may have several minor sets. We use min to denote a function
which, given Γ1 � Γ , returns an arbitrary (but unique) minor set of Γ1. We use
minpre�γ� to denote the set min�Pre�	γ
$��.

It is shown in [1] that the following conditions are sufficient for decidability
of MTS-Reach.

Theorem 11. MTS-Reach is decidable if for each γ � Γ

– we can check whether γ � Γinit .
– the set minpre�γ� is finite and computable.

7.7 From Tree-Bounded-Cover to MTS-Reach

For a natural number k 1, a process P � �Q,Σ,Δ, qinit�, and a state target �

Q, we derive an MTS �Γ, Γinit ,�,#�, U� such that Γinit
���U iff there is a Dag

G which is an inverted tree with height �G� k such that target is reachable in
the Daahn N � �P,G�.

– Γ is the set Ek.
– Γinit is the set of pairs �G, cinit � � E

k and cinit is the initial configuration of
the Daahn �G,P �.

– � is defined on Ek as described above. The ordering � is obviously com-
putable. Well quasi-ordering of � on Γ is shown in Lemma 10.

Verification of Acyclic Direct Ad Hoc Networks 207

– The transition relation#� on Ek is defined as described above. Monotonicity
is shown in Lemma 7.

– U is defined as the upward closure of the singleton 	�G1, c1�
, where G1 �
�	v
 ,�� i.e., G1 contains a single vertex v and no edges, and furthermore
c1�v� � target . Notice that U characterizes all inverted trees that contain at
least one vertex labeled with target .

It is trivial to check whether a given configuration is initial (check whether all
vertices are labeled with qinit). The following lemma states that the induced
transition system also satisfies the second sufficient condition for decidability
(see Theorem 11).

Lemma 12. Consider the MTS defined above. Then, for each extended config-
uration e we can compute minpre�e� as a finite set of extended configurations.

Lemma 12, together with Theorem 11, proves Theorem 6.

8 Related Work

A fixed, generally small, number of processes has been considered when
model checking techniques have been applied to verify ad hoc network pro-
tocols [4,12]. In [11] Saksena et al. define a possibly non-terminating sym-
bolic procedure based on graph transformations to verify routing protocols
for Ad Hoc Networks. Delzanno et al. showed in [2] that the coverability
problem is undecidable in the general case of unbounded, possibly cyclic
and directed graphs. In particular, the same authors considered in [3] the
bounded-depth subclass of Ad Hoc Networks. Using the induced sub-graph re-
lation on bounded-depth graphs as a symbolic representation within the well
quasi-ordered transition systems framework, they proved the decidability of
the coverability problem. However, this result cannot be used in the context
of directed acyclic ad hoc networks because the induced sub-graph relation
is not a well quasi-order in the case of the bounded depth acyclic graphs.

0

1

2

g1

0

1

2

3

4

g2

0

1

2

3

4

5

6

g3

. . .

In fact, as shown in the figure,
the list of directed acyclic labeled
graphs of depth 2, g1, g2, g3, . . . is
an infinite sequence of extended
configurations of incomparable
elements.

9 Conclusions

We have considered parameterized verification of ad hoc networks where the
network topology is defined by an acyclic graph. We have considered the cov-
erability problem which, for a given process definition, asks whether there is a
graph and a reachable configuration where a process is in a given state. The

208 P.A. Abdulla, M.F. Atig, and O. Rezine

coverability problem is used to find violations generated by a fixed set of pro-
cesses independently from the global configuration. The problem turns out to
be undecidable in the general case, but decidable under the restriction that the
graph is of bounded depth (where the depth is bounded by a given k). Among
possible directions for future work is the study of the impact of richer broadcast
mechanisms such as those that allow processes to have local (unbounded) mail-
boxes, and to consider models augmented by timed and probabilistic transitions
in order to allow quantitative reasoning about network behaviors.

References

1. Abdulla, P.A., Cerans, K., Jonsson, B., Tsay, Y.: General decidability theorems for
infinite-state systems. In: LICS 1996, pp. 313–321. IEEE Computer Society (1996)

2. Delzanno, G., Sangnier, A., Zavattaro, G.: Parameterized verification of ad hoc
networks. In: Gastin, P., Laroussinie, F. (eds.) CONCUR 2010. LNCS, vol. 6269,
pp. 313–327. Springer, Heidelberg (2010)

3. Delzanno, G., Sangnier, A., Zavattaro, G.: On the power of cliques in the param-
eterized verification of ad hoc networks. In: Hofmann, M. (ed.) FOSSACS 2011.
LNCS, vol. 6604, pp. 441–455. Springer, Heidelberg (2011)

4. Fehnker, A., van Hoesel, L., Mader, A.: Modelling and verification of the LMAC
protocol for wireless sensor networks. In: Davies, J., Gibbons, J. (eds.) IFM 2007.
LNCS, vol. 4591, pp. 253–272. Springer, Heidelberg (2007)

5. Higman, G.: Ordering by divisibility in abstract algebras. Proc. London Math. Soc.
(3) 2(7), 326–336 (1952)

6. Intanagonwiwat, C., Govindan, R., Estrin, D., Heidemann, J., Silva, F.: Directed
diffusion for wireless sensor networking. IEEE/ACM Trans. Netw. 11(1), 2–16
(2003)

7. Levis, P., Patel, N., Culler, D.E., Shenker, S.: Trickle: A self-regulating algorithm
for code propagation and maintenance in wireless sensor networks. In: NSDI,
pp. 15–28 (2004)

8. Merro, M., Ballardin, F., Sibilio, E.: A timed calculus for wireless systems. Theor.
Comput. Sci. 412(47), 6585–6611 (2011)

9. Nanz, S., Hankin, C.: A framework for security analysis of mobile wireless networks.
Theor. Comput. Sci. 367(1-2), 203–227 (2006)

10. Prasad, K.V.S.: A calculus of broadcasting systems. Sci. Comput. Program.
25(2-3), 285–327 (1995)

11. Saksena, M., Wibling, O., Jonsson, B.: Graph Grammar Modeling and Verification
of AdHocRouting Protocols. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008.
LNCS, vol. 4963, pp. 18–32. Springer, Heidelberg (2008)

12. Singh, A., Ramakrishnan, C.R., Smolka, S.A.: Query-based model checking of
ad hoc network protocols. In: Bravetti, M., Zavattaro, G. (eds.) CONCUR 2009.
LNCS, vol. 5710, pp. 603–619. Springer, Heidelberg (2009)

13. Singh, A., Ramakrishnan, C.R., Smolka, S.A.: A process calculus for mobile ad hoc
networks. Sci. Comput. Program. 75(6), 440–469 (2010)

Transducer-Based Algorithmic Verification

of Retransmission Protocols over Noisy Channels

Jay Thakkar1, Aditya Kanade1, and Rajeev Alur2

1 Indian Institute of Science
2 University of Pennsylvania

Abstract. Unreliable communication channels are a practical reality.
They add to the complexity of protocol design and verification. In this pa-
per, we consider noisy channels which can corrupt messages. We present
an approach to model and verify protocols which combine error detection
and error control to provide reliable communication over noisy channels.
We call these protocols retransmission protocols as they achieve reliable
communication through repeated retransmissions of messages. These pro-
tocols typically use cyclic redundancy checks and sliding window proto-
cols for error detection and control respectively. We propose models of
these protocols as regular transducers operating on bit strings. Streaming
string transducers provide a natural way of modeling these protocols and
formalizing correctness requirements. The verification problem is posed
as functional equivalence between the protocol transducer and the speci-
fication transducer. Functional equivalence checking is decidable for this
class of transducers and this makes the transducer models amenable to
algorithmic verification. We present case studies based on TinyOS serial
communication and the HDLC retransmission protocol.

1 Introduction

Communication protocols play a foundational role in the design of distributed
systems. Model checking approaches (e.g. [25]) analyze protocols for concur-
rency bugs. The traditional approach here is to build a finite-state model which
abstracts message contents. Whether the communication channels between dis-
tributed components of a protocol deliver messages correctly or not is modeled
as a non-deterministic choice. In practice, the physical channels can give rise
to multiple types of faults, including message corruption, loss, and reordering.
The real-world protocols, that provide reliable communication over unreliable
channels, examine message contents to determine validity and semantics of mes-
sages [35]. An approach where message contents are abstracted by symbolic
constants may capture semantics of such protocols only partially.

A common approach to ensure reliable communication is to combine error
detection and error control mechanisms. The sender adds redundancy (checksum
bits) to the messages which is used by the receiver to detect errors in the received
messages. Upon receiving a corrupted message, the receiver requests the sender
for retransmission of the message. We call protocols which follow this scheme as

D. Beyer and M. Boreale (Eds.): FMOODS/FORTE 2013, LNCS 7892, pp. 209–224, 2013.
c© IFIP International Federation for Information Processing 2013

210 J. Thakkar, A. Kanade, and R. Alur

retransmission protocols for noisy channels. These protocols typically use cyclic
redundancy checks (CRC) [29] and sliding window protocols [14, 34] for error
detection and control respectively. By a noisy channel, we mean a channel that
can corrupt messages but not drop, re-order, or duplicate them. TinyOS serial
communication [1], high-level data link control (HDLC) [26], and transmission
control protocol (TCP) [2] are examples of widely used retransmission protocols
over noisy channels.

The objective of this paper is to devise a technique to model and verify such
protocols. We observe that, for accurate modeling of the protocols, we have to
encode messages as sequences of bits that are exchanged over channels. (In Sec-
tion 2, we show that a protocol model, in which messages are abstracted as
symbolic constants, can deliver a wrong sequence of messages.) However, verifi-
cation of finite-state machines communicating asynchronously over unbounded
FIFO channels is known to be undecidable [12].

In this paper, we present an algorithmic technique for verification of
retransmission protocols where messages, checksums, and acknowledgements are
treated as bit strings. In our models, the message strings and the number of
(re)transmission rounds can be unbounded. Our approach is based on the ob-
servation that the protocol components can be viewed as transductions over bit
strings. As an example, consider a sender which gets a message M from its
client. The sender transmits it and in return, gets an acknowledgement a from
the receiver. The combined input to the sender can be modeled as a string M�a
where � is the end-marker attached to the message. The semantics of the sender
is that if a is 0 (a negative acknowledgement) then it should retransmit the
message. This can be formalized as a transduction f defined as f(M�1) = M�
and f(M�0) = M�M�. We give such transducer-based semantics to protocol
components (sender and receiver) and obtain the protocol model by sequential
composition of its components. Our modeling approach thus differs from the
modeling of protocol components as asynchronously communicating finite-state
machines [12]. The correctness requirement here is that, in spite of message cor-
ruption, the receiver delivers only correct messages to its client and in the same
order as the sender’s client intended. We show that the specification can also be
modeled as a transducer. The verification problem is then reduced to checking
the functional equivalence of the protocol and the specification transducers.

In many cases, the transductions defined by the sender, the receiver, and
the specification of retransmission protocols are regular. Regular transducers are
closed under sequential composition [16] and equivalence checking is decidable
for them [22]. This makes these transducer models amenable to algorithmic ver-
ification. Even though sequential transducers also enjoy similar properties, they
are not expressive enough to model components of retransmission protocols. For
example, they cannot model the sender transduction f .

In this work, we use deterministic streaming string transducers (SSTs) [5, 6]
as finite-state descriptions of regular transductions. An SST is equipped with a
finite set of string variables to store strings over the output alphabet. The output
of an SST can be defined in terms of the string variables. As compared to equally

Transducer-Based Algorithmic Verification of Retransmission Protocols 211

expressive models of two-way transducers and MSO-definable transductions,
SSTs provide a more natural way of modeling retransmission protocols. In par-
ticular, the buffers used by the sliding window protocols for storing messages for
retransmission can be modeled directly as string variables of SSTs.

We have designed transducer models of TinyOS serial communication protocol
and HDLC with different CRC polynomials and have implemented a prototype
tool for their verification. The sliding window protocols are fairly complex and
are challenging even for manual proofs [24, 23]. Our approach proposes trans-
ducers for modeling only those aspects of these protocols that are relevant for
reliable communication over noisy channels and gives an algorithmic verification
technique. Some features of these protocols, such as timers and dynamic window
sizes, are neither relevant nor amenable to our approach.

In Section 2, we motivate transducer models of retransmission protocols with
an example. The modeling approach is presented in Section 3 and the verification
algorithm is discussed in Section 4. Section 5 describes case studies. The related
work is surveyed in Section 6. In Section 7, we sketch future work and conclude.

2 Motivating Example

Suppose we want to transmit two messages (bit strings) M0 and M1 over a
noisy channel. Following the usual procedure of abstraction, let us denote them
respectively by symbolic constants m0 and m1. In this example, we use the stop-
and-wait protocol for error control. In this protocol, the sender prepends one
bit sequence numbers to messages. This defines the space of valid encodings as
{0, 1} × {m0,m1}. Let ack0 and ack1 denote acknowledgements indicating that
the receiver expects a message with sequence number 0 or 1 next.

Consider a simple model of a noisy channel depicted in Fig. 1(a)–1(b). The
sender-to-receiver channel is called the forward channel and the opposite channel
is called the backward channel. The forward channel may corrupt the sequence
bit of the encoded message as shown in Fig. 1(a). The messages to the left of the
arrows are the original messages and those on the right indicate their possible
incarnations at the other end of the channel. A dashed arrow indicates message
corruption. The backward channel may corrupt ack0 to ack1 and vice versa.

The noisy channel can give rise to a sequence of message corruptions inducing
the receiver to deliver an incorrect sequence of messages to its client. Fig. 1(c)
shows such an example. The strings with Gray background indicate contents of
the sliding window buffers. The dashed arrows annotating message exchanges
indicate corruptions. In the first message transfer, the receiver cannot detect
that (1,m0) is corrupt since (1,m0) does belong to the space of valid messages.
It nevertheless discards it, as it is awaiting a message with sequence number
0. As ack1 belongs the space of valid acknowledgements, the sender too cannot
detect corruption and transmits the next message. Even after corruption, (0,m1)
is accepted by the receiver since it has the expected sequence number. Overall,
the sender believes that it has sent 〈m0,m1〉 but the receiver accepts 〈m1,m1〉.

212 J. Thakkar, A. Kanade, and R. Alur

(0,m0)
(0,m0)

(1,m0)

(1,m1)
(1,m1)

(0,m1)

(a) Foward channel

ack0
ack0

ack1

ack1
ack1

ack0

(b) Backward channel

Sender Receiver

(0, m0) (1, m0)m0

d
is
ca
rd

ed

(o
u
t-
o
f-
o
rd
er
)

ack0

ack1
ack1

(1, m1) (0, m1)m1

m1

ack1ack1

(1, m1)m1

m1

ack0ack0

Sender Receiver

(0, M0, c0)
ERR(0,M0,c0)

d
is
ca
rd

ed

(c
o
rr
u
p
t)

(Ack0, c2)

(Ack1, c2)

d
is
ca
re
d

(c
o
rr
u
p
t)

(0, M0, c0)(0,M0,c0)

M0

(Ack1, c3)Ack1

(1, M1, c1)(1,M1,c1)

M1

(Ack0, c2)Ack0

(c) Incorrect communication (d) Correct communication

Fig. 1. A noisy channel model and scenarios of correct and incorrect communication

The problem with this protocol model is that it is unable to detect corruption.
Our solution is to make the modeling more precise by treating messages, acknowl-
edgements, and checksums as bit strings. We represent a message encoding as a
triple (n,M, c) where n is the (fixed-length) bit encoding of a sequence number,
M is a message string (of an arbitrary length), and c is the (fixed-length) check-
sum over strings n and M . It is possible to build finite-state protocol models by
bounding the length of message strings. This could be useful for finding bugs
quickly. We are however interested in verification of retransmission protocols
without bounding the message length artificially.

We propose a transducer-based model that does not exhibit the incorrect
communication scenario discussed above. We view the input to the sender as a
sequence of messages and acknowledgements (protected by checksum). Consider
the following string of inputs to the sender according to our scenario:

M0 (Ack1, c2) (Ack1, c3)M1 (Ack0, c2)

The acknowledgement strings corresponding to ack0 and ack1 are denoted by
Ack0 and Ack1 respectively. Let the checksum be an even parity bit with c2 and
c3 as the correct checksums for strings Ack0 and Ack1 respectively.

Consider a sender transducer which scans the input string in a single left-
to-right pass. Here, it reads the message string M0, generates an encoding
(0,M0, c0), and stores it in a string variable corresponding to the sliding win-
dow buffer. It then looks ahead at the acknowledgement to determine its output
in the first round of transmission. It detects that (Ack1, c2) is an invalid/corrupt
acknowledgement string. It does not know whether the message was received cor-
rectly at the receiver or not. It conservatively assumes that it was not delivered
correctly. The sender sets its output to some string, say ERR, with an incorrect
checksum – modeling the effect of corruption to M0. Since (Ack1, c3) is a valid

Transducer-Based Algorithmic Verification of Retransmission Protocols 213

encoding, the sender sets its output in the second round to (0,M0, c0). Finally,
it reads and encodes M1. The encoding of M1 is appended to the output since
(Ack0, c2) indicates its correct delivery. The output string of the sender is thus:

ERR (0,M0, c0) (1,M1, c1)

We depict the message exchanges according the input/output of the sender trans-
ducer in Fig. 1(d). It differs from the corresponding scenario in Fig. 1(c) in the
output of the sender in the second round. The sender outputs (an encoding of)
message M0 instead of M1. Thus, this sender cannot be tricked into making an
incorrect transition on receiving a corrupt acknowledgement. The receiver too
can be modeled as a transducer. It takes the message triples, verifies the check-
sum, and accepts a message if the checksum agrees. In this example, it accepts
the correct message strings M0 and M1 and in the same order as that used by
the sender, in spite of corruptions of messages and acknowledgements.

3 Transducer Models of Retransmission Protocols

We use streaming string transducers for protocol modeling and start with a brief
introduction to them before giving the transducer constructions.

3.1 Streaming String Transducers

A deterministic streaming string transducer (SST) [5] makes a single left-to-
right pass over an input string to produce an output string. It uses a finite set
of string variables to store strings over the output alphabet. Upon reading an
input symbol, it may move to a new state and update all the string variables
using a parallel (simultaneous) copyless assignment where the right-hand side
expressions are concatenations of string variables and output symbols. A parallel
assignment is copyless if no string variable appears more than once in any of the
right-hand side expressions. For example, let a be an output symbol and X =
{x, y} be the set of variables. Then, [x = x.y, y = a] is a copyless assignment,
whereas, [x = x.y, y = y] is not because y occurs twice on the right-hand side.

Formally, an SST is an 8-tuple (Q,Σ1, Σ2, X, F, δ, γ, q0) machine, where Q is
a finite set of states, Σ1 and Σ2 are finite sets of input and output symbols
respectively, X is a finite set of string variables, F is a partial output function
from Q to (Σ2 ∪ X)∗ with the constraint of copyless assignment, δ is a state
transition function from (Q × Σ1) to Q, γ is a variable update function from
(Q × Σ1 × X) to (Σ2 ∪ X)∗ using copyless assignments and q0 ∈ Q is the ini-
tial state. The semantics of an SST is defined in terms of the summaries of a
computation of the SST. Summaries are of the form (q, s) where q is a state
and s is a valuation from X to Σ∗

2 which represents the effect of a sequence of
copyless assignments to the string variables. The second component can be ex-
tended to a valuation from (Σ2 ∪X)∗ to Σ∗

2 . In the initial configuration (q0, s0),
s0 maps each variable to the empty string. The transition function is defined by

214 J. Thakkar, A. Kanade, and R. Alur

ψ((q, s), a) = (δ(q, a), s′) where for each variable x ∈ X , s′(x) = s(γ(q, a, x)).
For an input string w ∈ Σ∗

1 , if ψ
∗((q0, s0), w) = (q, s), then if F (q) is defined,

the output string is s(F (q)) otherwise it is undefined.

Example. Let us consider the sender transduction f described in Section 1. This
can be implemented by an SST using four states, Q = {p0, p1, p2, p3} where p0 is

p0start p1

p2

p3

0→ [x1 = x1.0, x2 = x2.0]

1→ [x1 = x1.1, x2 = x2.1]

�→[
x1 = x1.�
x2 = x2.�

]

1 →[
x1 = x1

x2 = ε

]

0 →[
x1 = x1

x2 = x2

]

Fig. 2. An SST for the sender trans-
duction f described in Section 1

the initial state, as shown in Fig. 2. Here,
Σ1 = Σ2 = {0, 1, �}. A message, M is a
string over {0, 1} and � is the message end
marker. The SST for this example requires
two string variables, X = {x1, x2}, both of
which store a copy of the input message M .
On reading 0 (resp. 1) in p0, the SST remains
in state p0 and appends 0 (resp. 1) to both
x1 and x2. The state transitions and variable
updates are shown in Fig. 2. On reading the
end-marker � in state p0, the SST moves to
state p1 and appends � to both x1 and x2. In

state p1, there can be two input symbols, 0 (a negative acknowledgement) and 1
(a positive acknowledgement). Upon seeing 1, the SST moves from p1 to p2 and
frees x2. The output function in state p2 is defined to be x1, i.e., F (p2) = x1.
The contents of x1 here is M�. On reading 0, it goes from state p1 to state p3
whose output is x1.x2, i.e., F (p3) = x1.x2. This holds the output string M�M�.
The output function F is undefined for other states.

3.2 Construction of Sender and Receiver Transducers

We present the transducer constructions abstractly without fixing the window
sizes and CRC polynomials. An SST for a specific protocol configuration can be
obtained by fixing values of these parameters. Due to the space constraints, for
the sliding window logic, we consider only the go-back-n protocol. It is easy to
extend the construction to stop-and-wait and selective-repeat protocols.

Sender SST. Let W be the size of the sliding window of the sender. The sender
can store up to W outstanding messages in a set of buffers. As more than one
message can be in transit, to distinguish between them, the sender associates a
sequence number with each message. Let the set of sequence numbers that the
sender can use be 0, . . . , N − 1. As a noisy channel may corrupt a message, the
sender attaches a checksum with each of its outstanding messages.

In our setting, a sender receives a sequence of strings over {msg, acki, b ack}
where msg is a bit string that is provided to the sender by its client for trans-
mission, acki acknowledges the outstanding messages up to sequence number
i − 1, and b ack is an acknowledgement string with incorrect checksum – mod-
eling corruption in the backward channel. Each acknowledgement corresponds
to a (re)transmission round. If the receiver sees a corrupt message, it drops it
and resends acki where i is one plus the sequence number of the last message
received successfully. We call such repeated acknowledgements as retransmission

Transducer-Based Algorithmic Verification of Retransmission Protocols 215

requests. The corruptions in the forward channel are thus identified by presence
of retransmission requests in the sender’s input string. The sender treats a b ack
as a retransmission request for all outstanding messages.

The behavior of a noisy channel, that is, message corruption, is modeled in
the output function of the sender. The output of the sender is thus the sequence
of messages that the receiver sees at its end of the noisy channel. It is a sequence
of strings over {ERR,Emsg} where ERR is a string with incorrect checksum,
modeling a corrupt message. A string Emsg is an encoded message consisting of
concatenations of a sequence number n (represented by a bit string), the message
msg being transmitted, and the checksum crc. We require some meta-symbols
to separate the substrings of Emsg and to separate consecutive messages and
acknowledgements. For brevity, we omit them in this discussion.

For an outstanding message msg with sequence number i, the sender must
decide whether the receiver sees ERR or its valid encoding Emsg. The encod-
ing Emsg is emitted only if the subsequent acknowledgement is ackj where j
is the sequence number that follows i. Otherwise, ERR is emitted. Thus, the
sender must look ahead at the suffix of the string to determine its output. Since
there are only a finite number of acknowledgement strings, they form a regular
language. Thus, the sender can determine its output with a regular look-ahead.
The output function concatenates the encoded messages and ERR strings. An
encoded message is present in the output at most once, only when it is positively
acknowledged. For every retransmission request for a message, the fixed string
ERR is added to the output instead of the encoded message. Thus, the size
of the output string is a constant multiple of the size of the input string. This
ensures that the resulting transducer is regular.

Presently, we model the behavior of a noisy (forward) channel in the output
of the sender. The channel can also be modeled independently as a deterministic
SST. The sender can output an additional bit with a message to indicate whether
it is to be delivered uncorrupted or not, based on the regular look-ahead at the
acknowledgements. The channel SST could simply inspect this bit to determine
its output.

Sliding Window Management. We model each buffer of the sender by a string
variable. Let the set X of string variables of the sender SST be {x0, . . . , xW−1}.
We remember the sliding window configuration and the next unused sequence
number S in the states of the SST. A sliding window configuration is a pair of
numbers F and L representing the first and the last occupied buffers respectively.
Fig. 3 shows a snapshot of the abstract model of the sender SST. As a convention,
if a variable is unmodified, we do not show an assignment to it.

Given F , L, and S, it is straightforward to identify sequence numbers of the
outstanding messages. If the sender receives acki then the buffers containing the
messages with sequence numbers up to i − 1 are freed (by assigning ε to them).
The pointer F is updated to reflect this as indicated in the transition t3 in Fig. 3,
where OM is the set of sequence numbers of the outstanding messages and R is
the number of buffers that are to be freed. If ackS arrives then all outstanding
messages are delivered. The sliding window becomes empty (F = 0, L = −1).

216 J. Thakkar, A. Kanade, and R. Alur

F, L, S. . . F, (L+ 1)%W, (S + 1)%N

.
. . .

(F +R)%W,L, S

. . .

. . .

. . . 0,−1, S

. . .

. . .

. . .

s1

s2

s3 s4

t2 : msg →
[x(L+1)%W = enc(S,msg)]

t1 : b ack → [y = y.ERR]

t3 : acki, i ∈ OM →⎡⎢⎢⎢⎢⎣
y = y.T1.ERR

xF = ε
.
.

x(F+R−1)%W = ε

⎤⎥⎥⎥⎥⎦ t4 : ackS →

⎡⎢⎢⎢⎢⎣
y = y.T2

xF = ε
.
.

xL = ε

⎤⎥⎥⎥⎥⎦

Fig. 3. A snapshot of the abstract model of the sender transducer where T1 =
xF .x(F+1)%W . . . x(F+R−1)%W and T2 = xF .x(F+1)%W . . . xL

The transition t4 shows this behavior. If the sliding window is not full, then the
SST may read a message msg. It computes encoding of msg augmented with
the sequence number S and stores the encoded message in the next free buffer.
The transition t2 illustrates this. The function enc denotes a CRC computation.
We discuss it later in this section. A bad acknowledgement b ack does not affect
the state and variables of the SST as indicated by the transition t1.

Handling Retransmission Requests. The protocol runs in potentially unbounded
number of (re)transmission rounds. We wish to define the output of the sender
across all the rounds as a string. We accumulate the output in a string variable
y. The updates to y on every type of acknowledgement are shown in Fig. 3. If
ackS is received, all the outstanding messages are appended to y in the order
of their sequence numbers. The string T2 used in transition t4 is defined in the
caption of the figure. If acki is received then the messages that are acknowledged
positively are appended to y. For the messages that were transmitted but not
received correctly, we append ERR to y, as shown in both t1 and t3. The output
of the sender SST is set to y for every state in which message/acknowledgement
is read completely. In each of these transitions, a variable xk is used at most
once on the right-hand side of variable update γ. It is either unmodified (not
shown in the figure), or assigned to y and at the same time, is reset to ε. Thus,
the resulting assignments conform to the copyless restriction of SSTs. It is easy
to see that the sender SST is deterministic.

CRC Computation. We now explain the modeling of the CRC computation,
denoted by enc function in transition t2. A CRC computation is parameterized
with a generator polynomial p. If the degree of the polynomial is r, then it
appends an r-bit checksum to the input string. We model all possible values of
an r-bit checksum into states of the SST with the initial state corresponding to
checksum of zero. We require only a single string variable x to store a copy of the
input string. For a state q, representing a checksum value c, we define the output
to be x.#.c where # is a separator. We construct the transitions of the SST in

Transducer-Based Algorithmic Verification of Retransmission Protocols 217

such a way that if the SST ends up in a state q after reading the input string
w, then the checksum value c, represented by q, is the checksum of w under
polynomial p. The logic for constructing the state transitions follows from the
semantics of linear feedback shift register (LFSR) circuits used for implementing
CRC computations [20]. For want of space, we omit the details here.

The sender needs to verify checksum of the acknowledgement strings to clas-
sify them into acki or b ack. The construction of SST for CRC verification is
similar to that of CRC computation except for the variable update γ. From an
input string, only the bits corresponding to the message content are copied.

Receiver SST. The output from the sender (contents of variable y) forms the
input to the receiver. The input to the receiver is thus a sequence of strings over
{ERR,Emsg}. The output of the receiver is a sequence of strings over {msg}.
In the go-back-n logic, the receiver accepts messages only in order.

We observe that the output of the sender contains the valid encoding of a
message exactly once in its output. That is, there is no message duplication.
This is because whenever a variable xk is appended to y, it is also freed. Second,
the messages are always transmitted in the same order as the order in which they
are obtained from the client. Thus, there is no message reordering. These two
observations simplify the design of the receiver SST. In particular, the receiver
SST must only be able to distinguish between corrupt and correct messages.

The receiver SST therefore consists of only two string variables: a variable
x to store the current message contents and a variable y to accumulate the
output across all (re)transmission rounds. Upon receiving a message encoding,
the message content msg is extracted and stored in x. If the CRC verifies then x
is appended to y and freed. The output for any state of the SST is the variable
y. Clearly, the receiver SST is deterministic.

3.3 Sequential Composition of Sender and Receiver Transducers

The sender and receiver SSTs represent distributed components of the protocol
such that the output of the sender is the input to the receiver. These SSTs model
the checksum computations, message and acknowledgement encodings, and the
sliding window logic of a retransmission protocol. These are however internal
details of the protocol. Our goal is to analyze the end-to-end input/output rela-
tion implemented by the protocol where the input is a sequence of strings over
{msg, acki, b ack} (same as the sender) and the output is a sequence of strings
over {msg} (same as the receiver).

SSTs are known to be closed under sequential composition [5]. Thus, the
input/output relation implemented by the protocol can be represented as a pro-
tocol SST. Further, the protocol SST can be obtained algorithmically by the
sequential composition of the sender and the receiver SSTs. Consider an SST S2
to be composed with an SST S1. The number of string variables in the composed
SST is 2.|X2|.|Q2|.|X1|, where Q2 is the set of states in S2 and X1, X2 are the
sets of string variables in S1, S2 respectively. It is beyond the scope of this paper

218 J. Thakkar, A. Kanade, and R. Alur

to discuss the algorithm for sequential composition. We refer the reader to [5].
The sender and receiver SSTs are much simpler to define than the protocol SSTs.
Thus, the approach of modeling them individually and then composing is easier
than constructing the SST for a protocol directly.

4 Verification of Transducer Models

In our models, each acknowledgement b ack or acki corresponds to a separate
(re)transmission round. Since the input to the sender can contain an unbounded
number of acknowledgement strings, the number of (re)transmission rounds en-
coded in our models is unbounded. The number of messages received by the
sender from its client too is not bounded. Similarly, there is no bound on the
length of an individual message msg. Even with these sources of unboundedness,
the verification problem for our models is decidable. In this section, we present
the specification mechanism and the verification approach.

Specification SST. The key property of a retransmission protocol is that the
messages acknowledged by the receiver (across all rounds) are delivered to the
receiver’s client correctly and in the same order in which the client of the sender
handed them to the sender. This property can be specified as an SST. Similar
to the protocol SST, the input to the specification SST is a sequence of strings
over {msg, acki, b ack} and the output is a sequence of strings over {msg}. The
specification SST does not encode sequence numbers and checksums. It also does
not corrupt or retransmit messages. It mainly encodes the sliding window logic to
interpret the acknowledgement strings and determine which strings are supposed
to be delivered by the receiver to its client.

The specification SST has a similar set of states, transitions, string variables,
and output function as the sender transducer. The main difference between the
sender and the specification SSTs is in the variable update γ. We refer to Fig. 3
to describe the specification SST for the go-back-n protocol. The specification
transducer stores a message msg as it is in a string variable along transition t2.
It neither attaches a sequence number nor a checksum with it. Since the output
of the specification SST is the output of the receiver (and not that of the sender),
for transitions t1 and t3, it does not append a corrupt message to the output
string variable y. The transition t4 remains unchanged.

Verification Approach. The verification problem is to check equivalence be-
tween the protocol and the specification SSTs. Both these transducers are deter-
ministic. Thus, for every input string w, we want to check whether the output
of the protocol and the specification SSTs are same. The equivalence checking
problem for (deterministic) SSTs is decidable [6]. The input to the verification
algorithm consists of the sender and receiver SSTs and the specification SST as
shown in Fig. 4. As discussed in Section 3.3, the protocol SST is obtained by
sequential composition of the sender and the receiver SSTs.

Equivalence Checking. We briefly outline the steps involved in equivalence
checking of two SSTs. To check whether two SSTs, say S1 and S2, are equivalent,

Transducer-Based Algorithmic Verification of Retransmission Protocols 219

the equivalence checking algorithm generates a 1-counter automaton, M . The
objective is forM to determine whether there is an input string w and a position
p such that the output symbols of S1 and S2 on w differ at position p. This can be
generalized to infer whether (1) there is an input string w such that the output
is defined for only one of S1 or S2, or (2) the outputs are defined but the lengths
of the output strings differ.

Sequential
Composition

Equivalence
Checking

Sender
SST

Receiver
SST

Specification
SST

Protocol
SST

Yes No

Fig. 4. Verification
approach

The automaton M non-deterministically simulates S1
and S2 in parallel. For each of them, it guesses the position
p and uses its counter to check whether the guess matches
between S1 and S2. The complete details about the con-
figurations of the states and transitions between them is
available in [6]. A finite set, say F , of states of the automa-
ton are identified such that if any state in F is 0-reachable
in M , then the two transducers are not equivalent. Thus,
the equivalence checking problem is reduced to checking 0-
reachability in a 1-counter automaton. This problem is in
Nlogspace. The number of states in M is linear in the
number of states of S1 and S2, and exponential in the num-
ber of string variables of S1 and S2. Therefore, the SST
equivalence problem is in Pspace.

Decidable Extensions. Instead of emitting the error
string ERR for corrupt messages, the sender may resend
the messages themselves. In such a case, the receiver needs

to eliminate duplicates. However, for the sender to be a regular transducer, the
length of the output strings must be a constant times the length of the input
strings. This requirement can be satisfied by considering only a bounded number
of retransmissions and using different string variables for different rounds. Sev-
eral protocols like Philips Bounded Retransmission Protocol (BRP) fall in this
class of protocols [21].

Another extension can be to model the effect of a noisy channel with non-
determinism using the non-deterministic SSTs (NSSTs). NSSTs are closed un-
der sequential composition, but the equivalence problem for them is undecid-
able [7]. However, there is a subclass of NSSTs, called functional NSSTs, whose
equivalence checking problem is decidable. In the future, we plan to explore of
non-deterministic and bounded versions of retransmission protocols.

5 Case Studies

We model two practical protocols as case studies:

1. TinyOS: TinyOS is an open source real-time operating system for wireless
sensor networks. Serial communication is used for host-to-mote data transfer.
The SerialP [1] software module of TinyOS computes the checksum and uses
the stop-and-wait protocol in the host-to-mote direction.

2. HDLC: HDLC [26] is a bit-oriented protocol, that operates at data link
layer. The software implementation computes checksum and uses go-back-n.

220 J. Thakkar, A. Kanade, and R. Alur

Table 1. Case studies

Sender Receiver Protocol Specification

CRC
Protocol polynomial W |Q| |X| |Q| |X| |Q| |X| |Q| |X|
TinyOS z + 1 1 12 2 5 2 38 11 10 2
TinyOS z2 + 1 1 20 2 9 2 80 15 14 2
HDLC z + 1 2 83 3 7 2 153 24 72 3

Table 1 summarizes the three protocol configurations that we model. For each
protocol, we indicate the window size (W) and the CRC polynomials used. Real-
world implementations of these protocols may use polynomials of higher degree
in the CRC computation. The table also shows the number of states (|Q|) and
variables (|X |) required in our case studies for sender, receiver, specification and
protocol SSTs. The protocol SSTs are derived by our implementation of the
sequential composition algorithm.

Modeling. As an example, we present the sender and the receiver SSTs for the
first protocol configuration in Table 1 (see Fig. 5). We build these according to
the constructions described in Section 3. In these SSTs, if a variable update for
any string variable v is not mentioned, it means that v is not updated, that is v =
v. We use certain meta-symbols as separators: $ to separate consecutive messages
and acknowledgements, # to separate the message content from the checksum
and + to indicate the start of a message. Here, ack0 is encoded as 00, where
the first 0 indicates the acknowledgement number and the second 0 indicates
the checksum bit. Similarly, ack1 is encoded as 11, whereas b ack ∈ {01, 10}
is a bad acknowledgement. The sender uses two string variables: x to store an
encoding of the input message, and y to hold the output string. States q0 to q3
store the encoding of the input message in x, that is, [x = enc(0,msg)]. States q1
and q2 track the checksum value. State q0 represents the empty sliding window,
whereas q3 represents the full sliding window. In state q3, on receiving either ack0
or b ack, the SST appends a fixed error message, ERR (string 0.#.1.$), to y. On
receiving ack1, the SST appends x to y, frees x and moves to the initial state
for sequence number 1. The output function maps states q0 and q3 to y, and is
undefined for other states. The part of the SST modeling sequence number 1 is
similar (omitted from Fig. 5(a)).

The receiver SST shown in Fig. 5(b) needs two string variables: x to store
the current message contents, and y to store the output (sequence of correctly
received messages). Starting in r0, the receiver SST first validates the sequence
number but does not copy it. Then, the message content is extracted and stored
in x, in states r1 and r2. State r3 represents the checksum value 0 and state
r4 represents the checksum value 1. Thus r3 indicates that the received input
message encoding is not corrupt. So, after receiving the end symbol $ in r3, x is
appended to y, and x is freed. State r4 says that the received message is corrupt,
and leaves y unchanged on receiving $. The output function maps state r0 to y,

Transducer-Based Algorithmic Verification of Retransmission Protocols 221

q0start q1 q2

q3

q5q4
Sender for
seq. no. 1

+ →
[x = 0]

0 →
[x = x.0]

1 →
[x = x.1]

$ →
[x = x.#.0.$]

0 →
[x = x.0]

1 →
[x = x.1]

$ →
[x = x.#.1.$]

0 →
[x = x]

1 →
[x = x]

0, 1 →
[y = y.0.#.1.$]

0 →
[y = y.0.#.1.$]

1 →[
y = y.x
x = ε

]

ack0 →[
y = y.x
x = ε

]

r0start

r1 r2

r3 r4

0 →
[x = x]

1 →
[x = x]

0 →
[x = x.0]

1 →
[x = x.1]

→
[x = x]

0 →
[x = x.0]1 →

[x = x.1]

→
[x = x]

0 →
[x = x]

1 →
[x = x]

$ →[
x = ε

y = y.x.$

]

0 →
[x = x]

1 → [x = x]

$ →[
x = ε
y = y

]

(a) Sender SST (b) Receiver SST

Fig. 5. SSTs for the TinyOS SerialP protocol with CRC polynomial z + 1

and is undefined for other states. Note that all the variable updates are copyless
in both the SSTs.

Verification. We have implemented a prototype tool in OCaml to perform se-
quential composition and equivalence checking. For equivalence checking, our
tool constructs the 1-counter automaton and uses ARMC for reachability check-
ing [30]. The maximum time taken by sequential composition was 4s (for the
HDLC protocol). Our implementation successfully verified both variants of
TinyOS, but timed out on HDLC. The state space of 1-counter automata is
exponential in the number of string variables. For HDLC, this proved to be a
bottleneck. We aim to address scalability as part of the future work. One pos-
sibility is to explore minimization techniques for reducing the number of states
and string variables of the protocol SST.

6 Related Work

The undecidability of verification problems for finite-state machines communi-
cating asynchronously over unbounded perfect FIFO channels is shown in [12].
For some classes of systems and properties, decidability results are obtained
in [19, 32]. For unbounded lossy FIFO channels, reachability, safety of system
traces, and eventuality properties are decidable [4]. The semantics of lossy chan-
nels is orthogonal to our notion of noisy channels. For example, the scenario in
Section 2 is applicable to lossy channels as well. A lossy forward channel may
sometimes deliver corrupt messages to the receiver (and at other times, drop
them). If we model messages as symbolic constants then the receiver cannot de-
tect corruption and would deliver an incorrect sequence of messages to its client.
Further, unlike these approaches, our choice of formalism for protocol modeling
is transducers rather than communicating finite-state machines.

222 J. Thakkar, A. Kanade, and R. Alur

Sliding window protocols, being both complex and heavily used, are popular
targets of verification techniques. Several automated techniques handle them by
abstracting message contents. The work in [3] uses a class of regular expressions
to represent channel contents where each message comes from a finite alphabet.
In contrast, in our work, a message is treated as a finite bit string. The finite-
state models obtained by abstracting message contents (and other parameters)
are also verified by model checking (see survey [8]). Protocols with a fixed number
of retransmission rounds are verified algorithmically in both untimed and timed
cases in [17]. Our model does not impose bounds on the number of retransmission
rounds. However, modeling timing constraints is beyond the scope of our method.

A number of deductive or semi-automated techniques have been developed for
verification of sliding window protocols. The process-algebra framework LOTOS
is used in [28], whereas, I/O automata are used with Coq theorem prover in [24].
Deductive theorem proving is used for reducing the complexity of protocol mod-
els and to obtain simpler abstractions suitable for algorithmic verification [23, 33].
Higher-order logic specifications of the protocols in the language of PVS are
designed in [31]. Colored petri net models are used in [10] for modeling of stop-
and-wait protocols. In [15], timed state machines are used for modeling sliding
window protocols. Process algebra is also used in [9] to establish bi-similarity of
these protocols with a queue.

The assumptions on reliability of channels vary across approaches. Similar to
most of the above approaches, we consider non-duplicating FIFO channels. The
approaches [33, 10] permit channels to re-order messages, whereas, [28, 15] permit
both re-ordering and duplication. Most of the above approaches assume lossy
channels and do not model message contents. Noisy channels are modeled in π-
calculus through probabilistic semantics [38, 13]. A recent work [18] investigates
decidability of control state reachability for ad-hoc networks in the presence of
different types of node and communication failures.

Finite-state transducers are used in regular model checking for represent-
ing transition relations of systems whose configurations can be modeled as
words [27, 37, 11]. The set of reachable states of these systems are represented
by finite automata. However, in this context, the termination of fix-point compu-
tation is not guaranteed and the verification problem is in general undecidable.
In contrast, the verification problem for the transducer models of the protocols
presented by us, posed as functional equivalence checking, is decidable. Recently,
more expressive transducer models are being designed by researchers, leading to
new approaches to verification. SSTs have been introduced for pre/post verifica-
tion and equivalence checking of single-pass programs operating over lists [6].
Symbolic finite transducers are introduced to analyze web sanitization func-
tions [36].

7 Conclusions and Future Work

In this paper, we consider noisy communication channels that may corrupt mes-
sages. We show that for accurate modeling of the retransmission protocols, in

Transducer-Based Algorithmic Verification of Retransmission Protocols 223

the setting of noisy channels, the messages, checksums, and acknowledgements
must be modeled at the bit-level. We propose streaming string transducers as
a modeling framework for retransmission protocols. Even though the message
lengths and retransmission rounds are unbounded, we present an algorithm to
verify the protocol models. In future, we want to explore non-deterministic and
bounded versions of the retransmission protocol models.

Acknowledgements. The first two authors were partially supported by Robert
Bosch Centre for Cyber Physical Systems at the Indian Institute of Science.

References

1. http://www.tinyos.net/tinyos-2.x/doc/html/tep113.html

2. http://www.ietf.org/rfc/rfc793.txt

3. Abdulla, P.A., Annichini, A., Bouajjani, A.: Symbolic Verification of Lossy Chan-
nel Systems: Application to the Bounded Retransmission Protocol. In: Cleaveland,
W.R. (ed.) TACAS 1999. LNCS, vol. 1579, pp. 208–222. Springer, Heidelberg
(1999)

4. Abdulla, P.A., Jonsson, B.: Verifying Programs with Unreliable Channels. Inf. Com-
put. 127(2), 91–101 (1996)

5. Alur, R., Cerný, P.: Expressiveness of streaming string transducers. In: FSTTCS,
pp. 1–12 (2010)

6. Alur, R., Cerný, P.: Streaming Transducers for Algorithmic Verification of Single-
pass List-processing Programs. In: POPL, pp. 599–610 (2011)

7. Alur, R., Deshmukh, J.V.: Nondeterministic Streaming String Transducers. In:
Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011, Part II. LNCS, vol. 6756,
pp. 1–20. Springer, Heidelberg (2011)

8. Babich, F., Deotto, L.: Formal Methods for Specification and Analysis of Commu-
nication Protocols. IEEE Comm. Surveys and Tutorials 4(1), 2–20 (2002)

9. Badban, B., Fokkink, W., Groote, J., Pang, J., Pol, J.: Verification of a Sliding
Window Protocol in μCRL and PVS. Formal Asp. Comput. 17(3), 342–388 (2005)

10. Billington, J., Gallasch, G.E.: How Stop and Wait Protocols Can Fail over the
Internet. In: König, H., Heiner, M., Wolisz, A. (eds.) FORTE 2003. LNCS, vol. 2767,
pp. 209–223. Springer, Heidelberg (2003)

11. Bouajjani, A., Jonsson, B., Nilsson, M., Touili, T.: Regular Model Checking. In:
Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 403–418.
Springer, Heidelberg (2000)

12. Brand, D., Zafiropulo, P.: On Communicating Finite-State Machines. J.
ACM 30(2), 323–342 (1983)

13. Cao, Y.: Reliability of Mobile Processes with Noisy Channels. IEEE Trans. Com-
puters 61(9), 1217–1230 (2012)

14. Cerf, V., Kahn, R.: A Protocol for Packet Network Intercommunication. IEEE
Transactions on Communications 22(5), 637–648 (1974)

15. Chkliaev, D., Hooman, J., de Vink, E.P.: Verification and Improvement of the
Sliding Window Protocol. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS,
vol. 2619, pp. 113–127. Springer, Heidelberg (2003)

16. Chytil, M., Jákl, V.: Serial composition of 2-way finite-state transducers and sim-
ple programs on strings. In: Salomaa, A., Steinby, M. (eds.) ICALP 1977. LNCS,
vol. 52, pp. 135–147. Springer, Heidelberg (1977)

http://www.tinyos.net/tinyos-2.x/doc/html/tep113.html
http://www.ietf.org/rfc/rfc793.txt

224 J. Thakkar, A. Kanade, and R. Alur

17. D’Argenio, P.R., Katoen, J.P., Ruys, T.C., Tretmans, G.J.: The Bounded Retrans-
mission Protocol must be on time! In: Brinksma, E. (ed.) TACAS 1997. LNCS,
vol. 1217, pp. 416–431. Springer, Heidelberg (1997)

18. Delzanno, G., Sangnier, A., Zavattaro, G.: Verification of Ad Hoc Networks with
Node and Communication Failures. In: Giese, H., Rosu, G. (eds.) FORTE 2012
and FMOODS 2012. LNCS, vol. 7273, pp. 235–250. Springer, Heidelberg (2012)

19. Finkel, A.: Decidability of the termination problem for completely specified proto-
cols. Distrib. Comput. 7(3), 129–135 (1994)

20. Forouzan, B.: Data Communications and Networking. McGraw-Hill Companies
(2012)

21. Groote, J., Pol, J.: A Bounded Retransmission Protocol for Large Data Packets.
In: Nivat, M., Wirsing, M. (eds.) AMAST 1996. LNCS, vol. 1101, pp. 536–550.
Springer, Heidelberg (1996)

22. Gurari, E.: The equivalence problem for deterministic two-way sequential trans-
ducers is decidable. SIAM J. Comput. 11(3), 448–452 (1982)

23. Havelund, K., Shankar, N.: Experiments in Theorem Proving and Model Checking
for Protocol Verification. In: Gaudel, M.-C., Wing, J.M. (eds.) FME 1996. LNCS,
vol. 1051, pp. 662–681. Springer, Heidelberg (1996)

24. Helmink, L., Sellink, M.P.A., Vaandrager, F.W.: Proof-Checking a Data Link
Protocol. In: Barendregt, H., Nipkow, T. (eds.) TYPES 1993. LNCS, vol. 806,
pp. 127–165. Springer, Heidelberg (1994)

25. Holzmann, G.J.: The Model Checker SPIN. IEEE Trans. Software Eng. 23(5),
279–295 (1997)

26. ISO. Data Communication - HDLC Procedures - Elements of Procedure. Technical
Report ISO 4335, International Organization for Standardization (1979)

27. Kesten, Y., Maler, O., Marcus, M., Pnueli, A., Shahar, E.: Symbolic Model Check-
ing with Rich Assertional Languages. In: Grumberg, O. (ed.) CAV 1997. LNCS,
vol. 1254, pp. 424–435. Springer, Heidelberg (1997)

28. Madelaine, E., Vergamini, D.: Specification and Verification of a Sliding Window
Protocol in LOTOS. In: FORTE, pp. 495–510 (1991)

29. Peterson, W.W., Brown, D.T.: Cyclic Codes for Error Detection. In: IRE,
pp. 228–235 (1961)

30. Podelski, A., Rybalchenko, A.: ARMC: The Logical Choice for Software Model
Checking with Abstraction Refinement. In: Hanus, M. (ed.) PADL 2007. LNCS,
vol. 4354, pp. 245–259. Springer, Heidelberg (2007)

31. Rusu, V.: Verifying a Sliding Window Protocol using PVS. In: FORTE, pp. 251–268
(2001)

32. Sistla, A.P., Zuck, L.D.: Automatic Temporal Verification of Buffer Systems. In:
Larsen, K.G., Skou, A. (eds.) CAV 1991. LNCS, vol. 575, pp. 59–69. Springer,
Heidelberg (1992)

33. Smith, M.A., Klarlund, N.: Verification of a Sliding Window Protocol Using IOA
and MONA. In: FORTE, pp. 19–34 (2000)

34. Stenning, V.: A Data Transfer Protocol. Computer Networks 1, 99–110 (1976)
35. Tanenbaum, A.S., Wetherall, D.: Computer Networks. Pearson (2010)
36. Veanes, M., Hooimeijer, P., Livshits, B., Molnar, D., Bjørner, N.: Symbolic Finite

State Transducers: Algorithms and Applications. In: POPL, pp. 137–150 (2012)
37. Wolper, P., Boigelot, B.: Verifying Systems with Infinite but Regular State Spaces.

In: Vardi, M.Y. (ed.) CAV 1998. LNCS, vol. 1427, pp. 88–97. Springer, Heidelberg
(1998)

38. Ying, M.: π-calculus with noisy channels. Acta Inf 41(9), 525–593 (2005)

Asynchronously Communicating Visibly

Pushdown Systems

Domagoj Babić1 and Zvonimir Rakamarić2

1 Facebook, Inc., USA
babic.domagoj@gmail.com
2 University of Utah, USA
zvonimir@cs.utah.edu

Abstract. We introduce an automata-based formal model suitable for
specifying, modeling, analyzing, and verifying asynchronous task-based
and message-passing programs. Our model consists of visibly pushdown
automata communicating over unbounded reliable point-to-point first-
in-first-out queues. Such a combination unifies two branches of research,
one focused on task-based models, and the other on models of message-
passing programs. Our model generalizes previously proposed models
that have decidable reachability in several ways. Unlike task-based mod-
els of asynchronous programs, our model allows sending and receiving
of messages even when stacks are not empty, without imposing restric-
tions on the number of context-switches or communication topology. Our
model also generalizes the well-known communicating finite-state ma-
chines with recognizable channel property allowing (1) individual com-
ponents to be visibly pushdown automata, which are more suitable for
modeling (possibly recursive) programs, (2) the set of words (i.e., lan-
guages) of messages on queues to form a visibly pushdown language,
which permits modeling of remote procedure calls and simple forms of
counting, and (3) the relations formed by tuples of such languages to
be synchronized, which permits modeling of complex interactions among
processes. In spite of these generalizations, we prove that the compos-
ite configuration and control-state reachability are still decidable for our
model.

1 Introduction

The asynchronous message-passing programming paradigm is becoming a de
facto standard for parallel and distributed computing (e.g., cloud applications,
web services, scientific computing). Programming such asynchronous systems is,
however, difficult. In addition to having to reason about concurrency, program-
mers typically do not have full control over all the services they use. Therefore,
failures are rarely reproducible, rendering debugging all but impossible. In re-
sponse, programmers succumb to logging interesting events and gathering vari-
ous statistics, hoping that if something goes wrong the logs will reveal the source
of failure.

On the positive side, this is an opportunity for the scientific community to pro-
vide appropriate computationally tractable formalmodels, aswell as programming

D. Beyer and M. Boreale (Eds.): FMOODS/FORTE 2013, LNCS 7892, pp. 225–241, 2013.
c© IFIP International Federation for Information Processing 2013

226 D. Babić and Z. Rakamarić

paradigms, languages, and analysis tools based on such models. We propose
such a formal model for asynchronous message-passing programs. The model
generalizes several existing well-known models, but we prove that checking the
system’s safety properties is still decidable. More precisely, we propose an ab-
stract automata-based model, in which individual processes are modeled by
visibly pushdown automata (VPA) [2] that communicate via unbounded point-
to-point reliable first-in-first-out (FIFO) queues. VPA are single-stack pushdown
automata where all stack push and pop operations must be visible (i.e., explicit)
in the input language. Such automata are commonly used to represent abstrac-
tions (e.g., computed using predicate abstraction [16,4]) of possibly recursive
programs.

Unfortunately, reachability is undecidable even for finite-state machines com-
municating over unbounded queues (a.k.a. CFSMs) [10]. Researchers proposed
a number of restrictions to regain decidability: bounding the size of queues to
some fixed size, restricting the communication topology, and restricting the ex-
pressiveness of the languages representing the messages on queues. Pachl [22]
proved that if a CFSM has a recognizable channel property — all the queue lan-
guages are regular and all those languages form a recognizable relation,1 then
reachability is decidable.

Pachl’s restrictions are too restrictive in practice. Recognizable relations are
a very inexpressive class of relations that can model inter-dependencies among
queues only if languages describing the contents of each queue are finite. For
instance, if we have an invariant that there should be the same number of mes-
sages, say a and b, on two queues in some composite control state, the relation
representing the configuration of queues would be (an, bn), which is not a rec-
ognizable relation. Even simple systems, like a client sending some number of
requests and expecting the same number of responses, require queue relations
that allow inter-dependencies (i.e., synchronization) among individual queue
languages.

We relax Pachl’s restrictions by allowing (but not requiring!) queue (and
stack) configurations to form synchronized visibly pushdown relations, which
significantly broadens the applicability of our model. Although in our model the
two extensions, from regular to visibly pushdown languages and from recogniz-
able to synchronized relations, go hand-in-hand, it is worth noting that they are
orthogonal and each is valuable on its own. For instance, our relaxation from
recognizable to synchronized relations is applicable to other models as well —
a straightforward consequence of our results is that reachability of CFSMs with
synchronized channel property is decidable.

The main technical contribution of this paper is a proof that model checking
safety properties — global control state and global configuration reachability
— is decidable for the model we propose. The result is non-trivial as the in-
troduced model allows unbounded stacks and queues, arbitrary communication
topologies, as well as complex inter-dependencies of queue and stack languages.

1 Informally, a relation is recognizable if the concatenation of all the languages that
are elements of the relation tuple is a regular language (see Sec. 3.3).

Asynchronously Communicating Visibly Pushdown Systems 227

These extensions allow our model to capture the following distributed program-
ming patterns:

Remote Procedure Calls. Processes can (recursively) call procedures to be
executed on behalf of remote processes.

Message Counting. Processes can use their local stack to count the number
of messages and assure that the number of responses matches the number of
requests.

Asynchronous Communication. Processes send and receive messages asyn-
chronously. While we present the model with FIFO channels, bag-like (i.e.,
multiset-like) queues can be simulated by receiving each message (assum-
ing there are finitely many) on a separate queue. The receiver can non-
deterministically choose which queue to process next. These features allow
us to model both asynchronous communication often used for hiding latency
in web services as well as non-deterministic interleaving of messages from
different senders in publish-subscribe settings.

Synchronization. Often in practice, processes send multiple messages at once
to different receivers. CFSMs with recognizable channel property are unable
to model that behavior, as it creates dependencies among queues. Our gen-
eralization to synchronized relations allows us to handle non-trivial queue
dependencies.

We summarize the contributions of this paper as follows:

– A new formal model for asynchronous message-passing programs. It is a re-
laxation of known communication restrictions along two dimensions: from
regular to visibly pushdown languages, and from recognizable to synchro-
nized relations.

– A proof of decidability of control state and configuration reachability in our
model.

Our technical report [3] provides a more comprehensive coverage of this material.

2 Applications

In this section, we discuss the applications of the introduced model in the context
of two major asynchronous programming paradigms: the task-based and the
message-passing paradigm.

Asynchronous Task-Based Paradigm. The task-based programming
paradigm enables programmers to break up time-consuming operations into a
collection of shorter tasks. This adds reactivity to the system, and typically im-
proves responsiveness and performance of long-running programs. Tasks can be
either asynchronously posted for execution by other tasks, or triggered by events.
These two approaches (and their combination) have been successfully employed
in many domains: they form the basis of JavaScript and Silverlight (client-side)
web applications, and have been shown useful for building fast servers [23],
routers [19], and embedded sensor networks [18].

228 D. Babić and Z. Rakamarić

The formal system we propose can model this class of applications as follows.
Each task (and there is a finite number of them) is executed on a single VPA.
During execution, each task can change the state of its VPA and send messages
to other VPAs, which is sufficient for modeling the global shared state changes
that the task-based models can model. The task buffer is modeled as a FIFO
queue: posting a task amounts to sending an invocation message to the task
buffer queue.

Message-Passing Paradigm. The message-passing paradigm, in which pro-
cesses communicate exclusively by sending messages to each other, has been
implemented in a number of different ways: as an integral part of a program-
ming language (e.g., Erlang, Scala), as a message-passing API implemented as
a library (e.g., MPI, SOAP, Java Message Service, Microsoft Message Queu-
ing), or as a software as a service model (e.g., Amazon Simple Queue Service).
Message-passing applications can be viewed as a network of processes commu-
nicating over FIFO queues. It is straightforward to model such networks as a
system of CVPTs: each (recursive) process can be abstracted into a Boolean
program that sends and receives messages, and in turn the language of traces
such program generates is accepted by a visibly pushdown transducer. For exam-
ple, Erlang’s message send and receive operations (i.e., ! and receive) closely
match send and receive operations in our model. It is also natural to map ba-
sic MPI asynchronous blocking send and receive operations (i.e., MPI Send and
MPI Recv) to our model. Web services, another class of message-passing applica-
tions, are Internet-based applications that communicate and exchange data with
other available web services in order to implement required functionality. The
services typically communicate via asynchronous message-passing (e.g., SOAP,
Ajax), and therefore again fit into our model.

3 Background and Related Work

The research on abstract models of asynchronous computation has progressed
along two, mostly disjoint, paths. The first path stemmed from the classical
negative result of Ramalingam [26] stating that the reachability for stack-based
finite-data abstractions of concurrent programs with preemption is undecidable.
Further research focused on computationally more tractable models, like context-
bounded [24] and task-based non-preemptive models. The latter are more rel-
evant to this paper. The second path originated in the study of finite-state
machines communicating over reliable unbounded queues [10], known as CFSMs.
Reachability is undecidable for general CFSMs. Further research focused on re-
strictions of CFSMs, especially of queue relations, and development of model
checking algorithms exploiting such restrictions. In this paper, we unify the two
paths, proposing a model suitable for the same class of applications as the task-
based non-preemptive models, while significantly generalizing CFSMs with rec-
ognizable channel property, one of the more popular decidable restrictions. We
proceed by surveying the related work along both paths, and then providing
the necessary background on synchronized relations, which allow us to express
complex inter-dependencies among queues and stacks.

Asynchronously Communicating Visibly Pushdown Systems 229

3.1 Task-Based Models

The task-based model consists of a pushdown automaton and a task buffer for
storing asynchronous task invocations. After the currently executing task re-
turns, a scheduler takes another task from the task buffer and executes it on the
automaton. Tasks execute atomically and can change the global state (of the
automaton), but new tasks can start executing only when the stack is empty,
i.e., the model is non-preemptive. Tasks cannot send messages to each other and
communicate only by changing the global state. The model is suitable for mod-
eling event-based applications (e.g., JavaScript programs) and simple worker-
pool-based multithreaded applications (e.g., servers).

Sen and Viswanathan [28] proposed a task-based model where the task buffer
is modeled as a multiset (i.e., a bag) and showed that the state exploration prob-
lem is EXPSPACE-hard. Ganty and Majumdar [14] did a comprehensive study
of multiset task-based models, proving EXPSPACE-completeness of safety veri-
fication, and proposed a number of extensions. For instance, they show that the
configuration reachability problem for the task-based model with task cancella-
tion is undecidable. Our model does not allow message cancellation, but once
the execution starts on some automaton, it is possible to send an abort message,
which can change the course of execution.

La Torre et al. [20] studied a different set of trade-offs. Similarly to ours, their
model allows unbounded reliable queues instead of multisets, but either bounds
the number of allowed context-switches or restricts the communication topology
to assure computational tractability. Similarly to the multiset-based model, their
model can dequeue messages from queues only when the local stack is empty.
Each VPA in our model can both send and receive messages, independently
of the state of the local stack, as long as the languages of all the queues and
stacks in the system can be described by a synchronized relation. Furthermore,
we neither impose restrictions on the communication topology, nor require the
number of context-switches to be bounded.

3.2 Communicating Finite-State Machines

Another line of research on formal models of asynchronous computation focused
on CFSMs [10]. A CFSM is a system of finite-state machines operating in paral-
lel and sending messages to each other via unbounded FIFO queues. CFSMs can
model preemption, but finite-state machines are an overly coarse abstraction of
(possibly recursive) programs. As discussed earlier, reachability is undecidable
for CFSMs, in general. Basu et al. [5] show that a sub-class of asynchronous
CFSMs can be encoded into synchronous systems, where reachability can be
efficiently computed. They present an approach for deciding whether an asyn-
chronous system belongs to that sub-class. Pachl [21,22] found that if the lan-
guage of messages on each queue is regular and the tuple of such languages for
all queues is a recognizable relation, then the reachability problem is decidable
for CFSMs.

His work was followed by extensive research on, so called, regular model check-
ing (e.g., [6,9,30,8]), where queue contents are described using recognizable rela-

230 D. Babić and Z. Rakamarić

tions over words. Model checking is then done by computing (sometimes approx-
imations of) a transitive closure of the system’s transition relation, and checking
whether the image of the transitive closure is contained in the relation describ-
ing the queue contents. As the focus of this paper is on proposing a new formal
model for modeling asynchronously communicating programs, and proving that
the model has a decidable reachability problem, rather than on algorithms, we
omit an extensive account of the regular model checking work. Instead, we direct
an interested reader to a survey [1]. We suspect that techniques similar to the
ones developed for regular model checking, especially to those for regular tree
model checking (e.g., [7]), could be applied to model check the formal model we
propose.

We generalize Pachl’s results along two dimensions. First, the components of
our formal model are visibly pushdown transducers, which can closely model
the control flow of recursive programs. Therefore, they are a better candidate
for modeling asynchronously communicating programs (e.g., event-based pro-
grams, web services, cloud applications, scientific computing applications) than
the less powerful finite-state machines. Accordingly, we allow queue relations in
our model to be visibly pushdown [2], rather than just regular. This relaxation
enables us to support remote procedure calls and limited forms of unbounded
message counting. Second, we significantly relax the restrictions on queue rela-
tions, allowing more expressive communication patterns. More precisely, we show
that our model has a decidable reachability problem even when we move one step
up in the hierarchy of families of relations from the family used by Pachl. Such
more expressive relations allow us to model complex inter-dependencies among
queue and stack configurations.

3.3 Relations over Words and Trees

� � . .
Rec ⊂ Sync ⊂ DRat ⊂ Rat
[29] [12] [25] [25]

Fig. 1. Hierarchy of Relations
Over Words and Trees. The
checkmark (�) denotes the re-
lations for which inclusion is
decidable. Such relations when
used to describe the queue and
stack languages in our model
maintain the decidability of
reachability.

In this section, we give an overview of the main
results on relations over regular sets (of words
and trees) relevant to this paper. The properties
of those relations are the key to understanding
the presented contributions. A property that we
are particularly interested in is the decidability of
language inclusion (⊆), which we use in the proof
of the decidability of reachability in our formal
model. We start with the least expressive family
of relations (see Fig. 1).

Recognizable relations (Rec) [29] have the weak-
est expressive power of all families we discuss.
Each tape of an n-tape automaton operates in-
dependently of others and has its own memory. The relations accepted by such
automata can be represented as finite unions of cross-products of regular com-
ponent languages. Effectively, the component languages can be all concatenated
together and recognized by a 1-tape automaton. Pachl’s work, as well as most
work on regular model checking, focuses on this family of relations, which are
insufficiently expressive to describe complex inter-dependencies among queues.

Asynchronously Communicating Visibly Pushdown Systems 231

Synchronized relations (Sync) [12] are strictly more expressive than recogniz-
able relations. Synchronized n-tape automata over Σ∗× · · · ×Σ∗ can be seen as
the classical 1-tape automata over the alphabet that is a cross-product of alpha-
bets of all tapes, i.e., (Σ × · · · × Σ)∗. Such automata move all their tape heads
synchronously in lock-step, as if it is a single head reading a tuple of symbols.
Synchronized relations are sufficiently expressive to describe languages such as
(am, bm), which is useful for describing asynchronously communicating programs
in which processes can send multiple messages to different queues at the same
time. By adding a special padding symbol (#), synchronized relations can also
be used to describe languages such as (am, bk), where k > m. Synchronized rela-
tions have essentially the same properties as the 1-tape automata (closure under
union, intersection, etc.) and their inclusion can be efficiently checked.

Frougny and Sakarovitch [13] defined resynchronizable relations, which de-
scribe languages of n-tape automata whose tapes are not synchronized, but the
distance between tape heads is a-priori bounded. Such relations can be character-
ized as a finite union of the component-wise products of synchronized relations
by finite sets, which in turn means they can be reduced to synchronized relations.
For instance, (bmaabk, cmdk) is an example of a resynchronizable relation: after
reading (bm, cm), the first tape reads two more symbols (increasing the distance
between tape heads to two), and then both tapes can again move together in
sync. Relations like ((a∗b)m, cm) are not resynchronizable, as the distance be-
tween tape heads can become arbitrarily large. Our proof technique is applicable
to all families of relations reducible to synchronized relations.

Rabin and Scott [25] introduced a generalization of the finite automata op-
erating on words (single tape) to tuples of words (multiple tapes). Such au-
tomata realize regular transductions. The basic variants of such automata are
non-deterministic and deterministic, accepting rational relations (Rat) and de-
terministic rational relations (DRat), respectively. While the equivalence prob-
lem of DRat is decidable [17], inclusion is unfortunately undecidable for both
classes. Therefore, our proof technique cannot be used to prove decidability of
reachability in systems of CFSM or visibly pushdown transducers whose queue
languages form (deterministic) rational relations.

4 The Formal Model

In this section, we describe our formal model. We begin by describing the basic
component — a visibly pushdown transducer, continue with a definition of a
system of such transducers communicating over reliable unbounded queues, and
finish with a discussion of relations describing queue and stack configurations.

Notations and Terminology. We define disjoint union A ·∪B as the standard
set union A ∪ B, but with an implicit side-constraint that the sets A and B
are disjoint. Let I be a set. An I-indexed set A is defined as a disjoint union
of sets indexed by elements of I, i.e., A = ·∪i∈I Ai. We denote tuples by a
vector sign, e.g.,

#–
t . If

#–
t = (obj 1, . . . , obj n) is a tuple, n is called the size

of the tuple and denoted | #–t |. The cross-product of sets A1, . . . , An, denoted

232 D. Babić and Z. Rakamarić∏
1≤i≤n

Ai, is a set of n-tuples {(a1, . . . , an) | ai ∈ Ai}. The i-th element of a tuple

#–
t is denoted

#–
t |i. We write Sn for a set of n-tuples in which all elements are

from S. Let #–u and #–v be tuples of words such that | #–u | = | #–v |; the component-
wise product of #–u and #–v , denoted #–u · #–v , is a tuple of words

#–
t such that for

1 ≤ i ≤ | #–u |, #–
t |i = #–u |i · #–v |i. The power of a word w is defined recursively:

w0 = ε, wk+1 = w · wk. If A,B are languages, then their concatenation A · B
is the language {u · v | u ∈ A, v ∈ B}. If w is a word and A is a language, then
w · A = {w · u | u ∈ A}, A · w = {u · w | u ∈ A}. (Left) language quotient a−1A
is the language {u | a · u ∈ A}. Let u, v ∈ Σ∗ be words over Σ. The prefix order
≤ is defined as: u ≤ v iff there exists w ∈ Σ∗ such that v = u ·w. We say that a
set S is prefix-closed if u ≤ v ∧ v ∈ S ⇒ u ∈ S.

4.1 Visibly Pushdown Transducers

The individual processes receive and process words of input messages, and gen-
erate words of output messages. Thus, they can be modeled as transducers —
state machines translating one language into another. We introduce such a ma-
chine with a finite-state control, a single stack, and a finite set of unbounded
FIFO queues. On each step it can read a symbol from one queue and write to
another; if the symbol read is a call (resp. return), it can simultaneously push
to (resp. pop from) its stack.

Definition 1. A communicating visibly pushdown transducer (CVPT) is a tu-
ple T = (Σrcv , Σsnd , Q, S, I, F, Γ,Δ) of finite sets, where Σrcv is an input al-
phabet, Σsnd an output alphabet, Q a set of unbounded FIFO queues, S a set of
states, I ⊆ S a set of initial states, F ⊆ S a set of final states, Γ an alphabet
of stack symbols, and Δ a transition relation. The input alphabet Σrcv and the
output alphabet Σsnd are disjoint sets indexed by Q, which means that the set of
messages that can be sent to any qi ∈ Q is disjoint from messages that can be
sent to all other queues Q \ qi. Another way to partition the input alphabet is
Σrcv = Σc ·∪Σr ·∪Σi, where Σc is an alphabet of call symbols, Σr an alphabet of
return symbols, and Σi the internal alphabet. For each return in Σr there exists
a matching call in Σc, more formally: Σr = {c | c ∈ Σc} and |Σr| = |Σc|.2 The
set of queues Q contains a special symbol ⊥ ∈ Q used in transitions that do not
receive input from (or send output to) a queue.

A configuration C of a CVPT is a tuple (s, σ, #–�) = (s, σ, �1, . . . , �|Q|) ∈ S ×
Γ ∗ ×

∏
q ∈ Q

(Σsndq
∪Σrcvq

)∗, representing a control state, a word on the stack,

and contents (represented as words) of each of CVPT’s queues. For stacks, the
leftmost symbol of the word is the top of the stack. For queues, the leftmost
symbol of the word represents the next message to be processed (i.e., the old-
est yet unprocessed message), while the rightmost symbol represents the most
recently received message. To simplify the notation, we assume that �i repre-
sents the contents of queue qi ∈ Q and � the contents of queue q. We use the

2 We denote call symbols with overline (e.g., c), and return symbols with underline
(e.g., c).

Asynchronously Communicating Visibly Pushdown Systems 233

C[oldstate ← newstate] parallel substitution notation to represent incremental
modifications of configurations. For example, C[s1 ← s2, σ ← a · σ, �3 ← �3 · b]
denotes a configuration C modified so that the control state is changed from s1
to s2, message a is pushed on the stack, and message b is appended to queue q3;
C[m · �← �] denotes a configuration C modified so that message m is removed
from queue q. We define the transition relation of a CVPT as follows.

Definition 2 (CVPT Transition Relation). Let C be a configuration of a
CVPT T . If m ∈ Σsndq

, for some q ∈ Q, let q!m (resp. q?m) be an alias name
for message m sent to (resp. received from) queue q.3 If m = ε, then q = ⊥. The
transition relation Δ = δc ·∪δr ·∪δi, such that δc ⊆ S ×Σc× (Σsnd ∪ {ε})×Γ ×S,
δr ⊆ S×Σr ×Γ × (Σsnd ∪ {ε})×S, and δi ⊆ S× (Σi ∪ {ε})× (Σsnd ∪ {ε})× S,
is defined as follows (−→

x
is the infix notation for δx):

Call. If (s1, q1?m1, q2!m2, γ, s2) ∈ δc, then C
q1?m1/q2!m2,γ−−−−−−−−−−→

c
C[s1 ← s2, σ ←

γ · σ,m1 · �1 ← �1, �2 ← �2 ·m2];

Return. If (s1, q1?m1, γ, q2!m2, s2) ∈ δr, then C
q1?m1,γ/q2!m2−−−−−−−−−−→

r
C[s1 ← s2, γ ·

σ ← σ,m1 · �1 ← �1, �2 ← �2 ·m2];

Internal. If (s1, q1?m1, q2!m2, s2) ∈ δi, then C
q1?m1/q2!m2−−−−−−−−→

i
C[s1 ← s2,m1 ·

�1 ← �1, �2 ← �2 ·m2].

When we do not care about the exact type of a transition, we use−→ to represent
any of the −→

x
transitions defined above. A run of a CVPT on a word w =

a0 · · · an ∈ Σ∗
rcv from a configuration C is a finite sequence of configurations

C0, C1, . . . , Cn, such that C0 = C and for each 0 < i ≤ n there exist a transition
Ci−1 −→ Ci. An accepting run is a run in which Cn = (sn, σn,

#–� n) and sn ∈ F .
A word w ∈ Σ∗

rcv is accepted by a CVPT A if there is an accepting run of A on w.
The language of A, denoted L(A), is the set of words accepted by A. We extend

the infix notation, defined above for transitions, to words: C
w/p−→ C′ if there

exists a run on w from C to C′ yielding output word p. When we are interested
only in the input word, say w, we omit the output word, e.g., C1

w−→ C2. The
transitive closure of the −→ relation is denoted

∗−→. Let �T � be the transduction
induced by T : if there is a run (s0, ε,

#–ε)
w/p−→ (s, σ, #–�), where s0 ∈ I and #–ε is a

tuple of empty strings, then p ∈ �T �(w). We generalize the transduction �T � to
languages as usual, i.e., �T � (L) = {�T � (w) | w ∈ L}.

We use Definition 1 for two purposes. First, we use it to define individual
components of a system of asynchronously communicating processes. The set
of final states could be empty for such components, if we are interested in the
computation those components perform, rather than the language they accept.
Second, we use Definition 1 to define visibly pushdown languages (VPLs), which
in turn we use to define conditions under which reachability is still decidable for

3 Note that m = q!m = q?m for any q and m. The alias names are just a notational
convenience.

234 D. Babić and Z. Rakamarić

our model. When defining VPLs, the set of final states will be non-empty, but
the output alphabet Σsnd will be empty.

Definition 3. A CVPT with Σsnd = ∅ is a visibly pushdown automaton (VPA).
A language of finite words L ⊆ Σ∗

rcv is a visibly pushdown language (VPL) if
there exists a VPA A over Σrcv accepting the language, i.e., if ∃A.L(A) = L.
Let V be the set of all VPL languages.

We now sketch how to model a (possibly recursive) Boolean program P (i.e., a
program with a finite number of variables over a finite domain) as a CVPT T . We
choose a suitable alphabet of call, return, and internal symbols for representing
statements of P . Then, every call statement of P is mapped into a −→

c
transition

of T , and every return statement into a −→
r

transition. All other statements

are mapped into simple internal transitions. Furthermore, the model could be
extended with pre-initialized queues, with only one receiver and no senders,
initialized to the language describing the program to be executed on the receiving
automaton. However, such extensions significantly complicate the exposition,
without contributing to the expressiveness of our model.

4.2 Systems of CVPTs

We compose CVPTs into more complex systems as follows.

Definition 4 (Asynchronous System of CVPTs). An asynchronous sys-
tem of CVPTsM = (T1, . . . , Tn), where Ti = (Σrcvi

, Σsndi
, Qi, Si, Ii, Fi, Γi, Δi),

is a tuple of CVPTs, such that each FIFO queue has exactly one receiver and
one sender. Any pair of CVPTs, say Tj and Tk, can share one or more queues
q ∈

⋃
1≤i≤nQi such that sender’s Σsndjq

is equivalent4 to receiver’s Σrcvkq
.

Since each queue in the system has a single receiver, we introduce a convention
to avoid redundancy in specifying contents of the same queue: when we refer
to a CVPT Ti as a part of a system, we consider that #–� in Ti’s configuration
(s, σ, #–�) represents only the contents of Ti’s input queues, i.e., the queues are
considered to belong to the receiver.

A composite configuration is a tuple
#–
C = (C1, . . . , Cn). Let Ci = (si, σi,

#–� i)
represent the configuration of the i-th CVPT in the system. We define the com-
posite control state #–s of a system as a tuple of states (s1, . . . , sn), composite stack
configuration #–σ as a tuple of words (σ1, . . . , σn), and composite queue configu-
ration #–� as a tuple of words (�11, . . . , �1m1 , �21, . . . , �2m2 , . . . , �n1, . . . , �nmn),

where mi = | #–� i| and �ij = #–� i|j . For a configuration
#–
C , we write

#–
C.s,

#–
C.σ, and

#–
C.� for the composite control state #–s , composite stack configuration #–σ , and
composite queue configuration #–� .

We define the transition relation of a system in terms of transition relations of
its individual components. Let

#–

C0 =
∏

1≤i≤n

(si,
#–ε , #–ε), where si ∈ Ii, be an initial

4 Note we index Σ in three different ways: Σi is the alphabet of Ti, Σq is the alphabet
of the messages on queue q, and Σiq is Ti’s alphabet projected on the set of messages
allowed on q.

Asynchronously Communicating Visibly Pushdown Systems 235

composite configuration. A run of a system is a finite sequence
#–
C0 −→

#–
C1 −→

· · · −→ #–
Ck, where −→ is defined as in Definition 2, with a minor difference that

the output queues belong to another component, and not the one making the
transition.

Now, we have all the formal machinery needed to define the configuration
reachability problem for a system of CVPTs. Further discussion will focus on the
composite configuration reachability, but we show later that our results can be
somewhat generalized (e.g., to the composite control state reachability problem).

Problem 1. For a given composite configuration
#–
C of an asynchronous system

M of CVPTs, does there exist a run of M ending in
#–
C?

4.3 Relations Describing Configurations

For a given composite state #–s and a particular queue (resp. stack), we refer to
the set of all words over messages (resp. stack symbols) describing the possible
queue (resp. stack) contents in #–s as a queue (resp. stack) language. To define
relations among those languages, we introduce stack and queue relations:

Definition 5 (Stack and Queue Relations). Let M = (T1, . . . , Tn) be a sys-

tem of CVPTs. Let
#–
C0 be an initial composite configuration. We define the queue

relation Lq ⊆
∏

1≤i≤n

Si ×
∏
q∈Q

Σ∗
rcvq

as Lq (
#–s) =

{
#–
C.� | #–

C0
∗−→ #–
C ∧ #–

C.s = #–s
}
,

and the queue-stack relation Lqs ⊆
∏

1≤i≤n

Si×
∏
q∈Q

Σ∗
rcvq

×
∏

1≤i≤n

Γ ∗
i as Lqs (

#–s) ={
#–
C.�,

#–
C.σ | #–

C0
∗−→ #–
C ∧ #–

C.s = #–s
}
, where Q =

⋃
1≤i≤n

Qi is the set of all queues

in M .

In the next section, we introduce a family of synchronized tree relations, which
we use to relax Pachl’s restrictions (Sec. 3.2). Later, we prove that Problem 1 is
decidable, despite our relaxations.

5 Tree Relations

In this section, we first develop a connection between VPLs and regular tree
languages, building on top of prior work by Alur and Madhusudan [2]. We then
define synchronized tree relations, using the appropriate encoding operator [11,
p. 75].

5.1 Isomorphism between VPLs and
Stack-Tree Languages

f

g

a b

a h

b

1

11

111 112

12 13

131

Fig. 2. An Example of a Tree t and its Tree
Domain. D = {1, 11, 111, 112, 12, 13, 131}, F =
{f, g, h, a, b}, ‖ t ‖= 3, t(1) = f .

VPLs can be characterized in
terms of, so called, stack-tree lan-
guages. We use this characteriza-
tion to define the relations we are
interest in. We start by defining
trees and then develop the con-
nection to VPLs.

236 D. Babić and Z. Rakamarić

Definition 6 (Trees). Let N be the set of natural numbers. A tree domain is
a finite non-empty prefix-closed set D ⊂ N∗ satisfying the following property:
if u · n ∈ D then ∀1 ≤ j ≤ n . u · j ∈ D. A ranked alphabet is a finite set
F associated with a finite ranking relation arity ⊆ F × N. Define Fn as a set
{f ∈ F| (f, n) ∈ arity}. The set T (F) of terms over the ranked alphabet F is
the smallest set defined by:
1. F0 ⊆ T (F);
2. if n ≥ 1, f ∈ Fn, t1, . . . , tn ∈ T (F) then f(t1, . . . , tn) ∈ T (F).
Each term can be represented as a finite ordered tree t : D → F , which is a
mapping from a tree domain into the ranked alphabet such that ∀u ∈ D:
1. if t (u) ∈ Fn, n ≥ 1 then {j | u · j ∈ D} = {1, . . . , n};
2. if t (u) ∈ F0 then {j | u · j ∈ D} = ∅.
The height ‖ t ‖ of a tree t = f(t1, . . . , tk) is the number of symbols along the
longest branch in the tree, i.e., max (‖ t1 ‖, . . . , ‖ tk ‖) + 1.

Fig. 2 shows an example of a tree and its tree domain.
Given a word v ∈ Σ∗

rcv , we say that v has matched returns (resp. calls) if it is
a production of the grammar W ::= a | W ·W | V | U, V ::= a | V ·V | c ·V · c
such that U ::= c (resp. U ::= c), where a ∈ Σi, c ∈ Σc, c ∈ Σr. A word
is well-matched if it has both matched returns and calls. Following Alur and
Madhusudan [2], we define an injective map η : Σ∗

rcv → T(F), illustrated in
Fig. 3, that translates VPL words to stack-trees as follows:

η(ε) = #;
η(cw) = c(η(w),#), if there is no return c matching c in w;
η(cwcw′) = c(η(w), η(cw′)), assuming w is well-matched;
η(aw) = a(η(w)), if a ∈ Σi ∪Σr.

The ranked alphabet F = F0 ·∪F1 ·∪F2 used in the translation is defined as fol-
lows: F0 = {#}, where # is a special symbol, F1 = Σi ∪ Σr, and F2 = Σc.
Regular sets of stack-trees form stack-tree languages, which are isomorphic to
VPLs [2]. c1

c2

a2

c3

a3 c3

c2

a5

c4

a6 #
Fig. 3. Mapping
η for a Word: c1 ·
c2 ·a2 · c3 ·a3 · c3 ·
c2 · a5 · c4 · a6

We use the η(Σ∗
rcv) isomorphism to define, indirectly, VPL

relations. Such relations can, broadly, be classified into those
recognizable by various types of finite automata and those
that are not recognizable. For instance, (an, b2

n

) is an ex-
ample of a relation not recognizable by any finite-state ma-
chine. The Rec class of recognizable relations, introduced in
Sec. 3.3, can be extended to regular (stack-) tree languages,
in which case it correspond to relations that are finite unions
of cross-products of regular (stack-) tree languages, denoted
RecV . The RecV class is recognizable by a tree automaton,
but is insufficiently expressive. In particular, the languages
that are elements of the cross-product are independent and
cannot express relations like (an, bn). This means that if we
restricted the cross-product of queue languages to belong to
RecV , we could not express protocols that send n messages

Asynchronously Communicating Visibly Pushdown Systems 237

(say a) asynchronously and than expect the same number of acknowledgments
(say b). In other words, RecV does not allow us to express even simple forms of
counting and synchronization.

5.2 Synchronized Tree Relations

We define a more expressive class of recognizable relations using overlap encod-
ing [11, p. 75], inductively defined for a sequence of binary trees from T (F)
as

[t1, .., tn] =

⎧⎪⎪⎨⎪⎪⎩
t1(1) · · · tn(1) if arity (ti(1)) = 0
t1(1) · · · tn(1) ([t1(11), .., tn(11)]) if arity (ti(1)) ≤ 1
t1(1) · · · tn(1) ([t1(11), .., tn(11)] , otherwise
[t1(12), .., tn(12)])

where ti(1k) is equal to # if k > arity (ti(1)). An example of the overlap encoding
is shown in Fig. 4. Using the notion of the overlap encoding, we can define
synchronized tree relations as follows:

Definition 7 (Synchronized Tree Relations). SyncV is a family of relations
R ⊆ T(F ∪ {#})n such that {[t1, . . . , tn] | (t1, . . . , tn) ∈ R} is recognized by a
finite tree automaton over the alphabet (F ∪ {#})n.

SyncV inherits all the properties from regular tree languages: it is closed un-
der Boolean operations and both the equality and containment are decidable.
Furthermore, SyncV is known to be a strict superclass of RecV [11, p. 79] and
allows us to express limited forms of counting, e.g., (an, bn) ∈ SyncV . We use
the introduced family of relations, SyncV , to define sufficient conditions for the
decidability of reachability for a system of CVPTs in the next section.

6 Decidability of Reachability

In this section, we state and prove the main result of this paper. We begin by
introducing sufficient conditions for decidability of reachability of a system of
asynchronously communicating CVPTs, state the main theorem in Sec. 6.1, and
prove it in the end.

6.1 Sufficient Conditions for the Decidability of Reachability

As discussed in Sec. 3.2, reachability is undecidable even for CFSMs. However,
if relations representing queue configurations are restricted to regular and rec-
ognizable, reachability is decidable. In this section, we relax those restrictions,
while maintaining decidability. First, we allow the languages representing con-
tents of each queue to be visibly pushdown, rather than just regular. We require
CVPTs not to generate context-free outputs, to assure that CVPTs in a system
are composable. Second, we allow relations to be synchronized, rather than just
recognizable. These relaxations are orthogonal and each is valuable on its own,
but the combination is, of course, more powerful.

238 D. Babić and Z. Rakamarić

[[[
c1

c2

a2

c3

a3 c3

c2

a5

c4

a6 #

c5
]]]

c6

a7

a8

a9

c6

c7

a10

a11

c7

a12

c1 · c5

c2 · c6

a2 · a7

c3 · a8

a3 · a9 c3 ·#

c2 · c6

a5 · c7

c4 · a10

a6 · a11# ·#

· c7

· a12

·#

,,, ===

Fig. 4. An Example of the Overlap Encoding. The left (resp. middle) tree represents
the c1 · c2 ·a2 · c3 ·a3 · c3 · c2 ·a5 · c4 ·a6 (resp. c5 · c6 ·a7 ·a8 ·a9 · c6 · c7 ·a10 ·a11 · c7 ·a12)
VPL word.

CVPT Composition. CVPTs are, in general, not closed under composition.
As defined in Definition 1, CVPTs accept exactly VPLs. However, even for VPL
inputs, CVPTs can generate context-free outputs [27]. As context-free relations
do not have the properties we require (e.g., containment is undecidable), we
introduce the following requirement:

Property 1 (Composition Property). Let πX : Σ∗ → X∗ be a projection operator
that erases all symbols from a word that are not in set X . For instance, if
X = {a, b} then πX (a · d · d · b · d) = a · b. Let M = (T1, . . . , Tn) be a system
of CVPTs. A CVPT Tj is said to be composable if a projection of its output
language (i.e., a transduction of some VPL L) onto the input alphabet of any
Ti is a VPL. More formally: ∀1 ≤ i ≤ n . L ∈ V =⇒ πΣrcvi

(�Tj� (L)) ∈ V .

To understand the property better, suppose G is a graph representing a system
M , such that vertices represent component CVPTs and edges represent commu-
nication between CVPTs; there is a directed edge between two nodes Ti and Tj if
Ti sends messages to Tj . The above property assures that a non-VPL will never
be generated on any path in G. Further on, we shall assume that all CVPTs
have the composition property.

Synchronization. According to Property 1, the language representing the con-
tents of each queue is a VPL. Thus, the contents of queues can be described by
a cross-product of VPLs in every composite control state. Such VPL relations
can be recognizable, synchronized, or rational (see Fig. 1). We use the concept
of synchronized tree relations, introduced in Sec. 5.2, to define synchronized
VPL relations. As we prove later, if queue and stack relations in every reachable
composite control state are synchronized VPL relations, then the reachability is
decidable for our model.

Property 2 (Synchronized Configuration Property). We say that an asynchronous
system of CVPTs has the synchronized configuration property iff in every com-
posite control state #–s reachable from an initial configuration

#–

C0, the encoding

Asynchronously Communicating Visibly Pushdown Systems 239

[η (Lqs (
#–s))] is a synchronized tree relation, i.e.,

{[η(σ1), . . . , η(σn), η(�1), . . . , η(�k)] | (σ1, . . . , σn, �1, . . . , �k) ∈ Lqs (
#–s)} ∈

SyncV .

We now state the main result of this paper:

Theorem 1. Reachability is decidable for a system of composable CVPTs with
the synchronized configuration property.

For the proof, please see our technical report [3].

7 Conclusions

In this paper, we proposed a new formal model for asynchronously commu-
nicating message-passing programs. The model is composed of visibly push-
down transducers communicating over unbounded reliable point-to-point FIFO
queues. The proposed model is intended for specifying, modeling, analysis, and
verifying of asynchronous message-passing programs and makes it possible to
model (possibly recursive) programs and complex communication patterns. Our
results generalize the prior work on communicating finite state machines along
two directions — by allowing visibly pushdown languages on queues, and by al-
lowing complex inter-dependencies (i.e., synchronization) among stack and queue
languages. Our work also unifies two branches of research — one focused on
task-based and the other on queue-based message-passing models. The results
are non-trivial, because there are two sources of infiniteness: stacks and queues.

Acknowledgment. We would like to thank Brad Bingham, Jesse Bingham,
Matko Botinčan, Steven McCamant, Jan Pachl, Shaz Qadeer, and Serdar Tasiran
for their feedback on the early drafts of this document. The first author did this
work while he was at UC Berkeley, where his research was sponsored by LLNL.

References

1. Abdulla, P.A., Jonsson, B., Nilsson, M., Saksena, M.: A survey of regular model
checking. In: Gardner, P., Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170,
pp. 35–48. Springer, Heidelberg (2004)

2. Alur, R., Madhusudan, P.: Visibly pushdown languages. In: Annual ACM Symp. on
Theory of Computing (STOC), pp. 202–211 (2004)

3. Babić, D., Rakamarić, Z.: Asynchronously communicating visibly pushdown sys-
tems. Technical Report UCB/EECS-2011-108, University of California, Berkeley
(October 2011)

4. Ball, T., Majumdar, R., Millstein, T., Rajamani, S.K.: Automatic predicate ab-
straction of C programs. In: Conf. on Programming Language Design and Imple-
mentation (PLDI), pp. 203–213 (2001)

5. Basu, S., Bultan, T., Ouederni, M.: Synchronizability for verification of asyn-
chronously communicating systems. In: Kuncak, V., Rybalchenko, A. (eds.)
VMCAI 2012. LNCS, vol. 7148, pp. 56–71. Springer, Heidelberg (2012)

240 D. Babić and Z. Rakamarić

6. Boigelot, B., Godefroid, P., Willems, B., Wolper, P.: The power of QDDs. In: Van
Hentenryck, P. (ed.) SAS 1997. LNCS, vol. 1302, pp. 172–186. Springer, Heidelberg
(1997)

7. Bouajjani, A., Habermehl, P., Rogalewicz, A., Vojnar, T.: Abstract regular tree
model checking. Electronic Notes in Theoretical Computer Science 149, 37–48
(2006)

8. Bouajjani, A., Habermehl, P., Vojnar, T.: Abstract regular model checking. In:
Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 372–386. Springer,
Heidelberg (2004)

9. Bouajjani, A., Jonsson, B., Nilsson, M., Touili, T.: Regular model checking. In:
Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 403–418.
Springer, Heidelberg (2000)

10. Brand, D., Zafiropulo, P.: On communicating finite-state machines. Journal of
ACM 30, 323–342 (1983)

11. Comon, H., Dauchet, M., Gilleron, R., Löding, C., Jacquemard, F., Lugiez,
D., Tison, S., Tommasi, M.: Tree automata techniques and applications (2007),
http://tata.gforge.inria.fr/

12. Eilenberg, S., Elgot, C.C., Shepherdson, J.C.: Sets recognized by n-tape automata.
Journal of Algebra 13, 447–464 (1969)

13. Frougny, C., Sakarovitch, J.: Synchronized rational relations of finite and infinite
words. Theoretical Computer Science 108, 45–82 (1993)

14. Ganty, P., Majumdar, R.: Algorithmic verification of asynchronous programs. Com-
puting Research Repository (CoRR), abs/1011.0551 (2010)

15. Gold, E.M.: Language identication in the limit. Info. and Control 10(5), 447–474
(1967)

16. Graf, S., Säıdi, H.: Construction of abstract state graphs with PVS. In: Grumberg,
O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 72–83. Springer, Heidelberg (1997)

17. Harju, T., Karhumäki, J.: The equivalence problem of multitape finite automata.
Theoretical Computer Science 78, 347–355 (1991)

18. Hill, J.L., Szewczyk, R., Woo, A., Hollar, S., Culler, D.E., Pister, K.S.J.: System
architecture directions for networked sensors. In: Intl. Conf. on Architectural Sup-
port for Programming Languages and Operating Systems (ASPLOS), pp. 93–104
(2000)

19. Kohler, E., Morris, R., Chen, B., Jannotti, J., Kaashoek, M.F.: The Click modular
router. ACM Transactions on Computer Systems 18(3), 263–297 (2000)

20. La Torre, S., Madhusudan, P., Parlato, G.: Context-bounded analysis of concurrent
queue systems. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS,
vol. 4963, pp. 299–314. Springer, Heidelberg (2008)

21. Pachl, J.K.: Reachability problems for communicating finite state machines. Tech-
nical Report CS-82-12, Department of Computer Science, University of Waterloo
(1982)

22. Pachl, J.K.: Protocol description and analysis based on a state transition model
with channel expressions. In: Intl. Conf. on Protocol Specification, Testing and
Verification (PSTV), pp. 207–219 (1987)

23. Pai, V.S., Druschel, P., Zwaenepoel, W.: Flash: An efficient and portable Web
server. In: USENIX Annual Technical Conference, pp. 199–212 (1999)

24. Qadeer, S., Rehof, J.: Context-bounded model checking of concurrent software.
In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 93–107.
Springer, Heidelberg (2005)

25. Rabin, M.O., Scott, D.: Finite automata and their decision problems. IBM Journal
of Research and Development 3, 114–125 (1959)

http://tata.gforge.inria.fr/

Asynchronously Communicating Visibly Pushdown Systems 241

26. Ramalingam, G.: Context-sensitive synchronization-sensitive analysis is undecid-
able. ACM Transactions on Programming Languages and Systems 22, 416–430
(2000)

27. Raskin, J.-F., Servais, F.: Visibly pushdown transducers. In: Aceto, L., Damg̊ard,
I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.)
ICALP 2008, Part II. LNCS, vol. 5126, pp. 386–397. Springer, Heidelberg (2008)

28. Sen, K., Viswanathan, M.: Model checking multithreaded programs with asyn-
chronous atomic methods. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS,
vol. 4144, pp. 300–314. Springer, Heidelberg (2006)

29. Thomas, W.: On logical definability of trace languages. In: ASMICS Workshop,
Technical University of Munich, Report TUM-I9002, pp. 172–182 (1990)

30. Vardhan, A., Sen, K., Viswanathan, M., Agha, G.: Learning to verify safety proper-
ties. In: Davies, J., Schulte, W., Barnett, M. (eds.) ICFEM 2004. LNCS, vol. 3308,
pp. 274–289. Springer, Heidelberg (2004)

A Timed Component Algebra for Services

Benôıt Delahaye1, José Luiz Fiadeiro2, Axel Legay1, and Antónia Lopes3

1 INRIA/IRISA, Rennes, France
{benoit.delahaye,axel.legay}@irisa.fr

2 Dep. of Computer Science, Royal Holloway, University of London, UK
jose.fiadeiro@rhul.ac.uk

3 Dep. of Informatics, Faculty of Sciences, University of Lisbon, Portugal
mal@di.fc.ul.pt

Abstract. We present a component algebra for services that can guar-
antee time-related properties. The components of this algebra are
networks of processes that execute according to time constraints and
communicate asynchronously through channels that can delay messages.
We characterise a sub-class of consistent networks give sufficient con-
ditions for that class to be closed under composition. Finally, we show
how those conditions can be checked, at design time, over timed I/O
automata as orchestrations of services, thus ensuring that, when binding
a client with a supplier service at run time, the orchestrations of the two
services can work together as interconnected without further checks.

1 Introduction

In [9,10], we revisited the notions of interface and component algebra proposed
in [7] for component-based design and put forward elements of a corresponding
interface theory for service-oriented design in which service orchestrations are
networks of asynchronously communicating processes. That algebra is based on
an implicit model of time: the behaviour of processes and channels is captured
by infinite sequences of sets of actions, each action consisting of either the pub-
lication or the delivery of a message. However, such an implicit model of time is
not realistic for modelling numerous examples of timed behaviour, from session
timeouts to logical deadlines, and is not very effective for the analysis of prop-
erties. In this paper, we investigate an alternative model based on timed traces
[3]. Even if this model assumes a minimal granularity of time, time is no longer
implicit and, therefore, more realistic: we record the behaviour that is observed
only at those instants of time when networks are active, not at every instant.

In this setting, we study the problem of ensuring consistency of run-time
composition of orchestrations based on properties of processes and channels that
can be checked at design time. This is important because run-time binding is
an intrinsic feature of the service-oriented paradigm – one that distinguishes
it from distributed systems in general – and that checking for consistency by
actually calculating, at run time, the product of the automata that implement
the services being bound to each other and checking for the non-emptiness of
the resulting language is simply not realistic.

D. Beyer and M. Boreale (Eds.): FMOODS/FORTE 2013, LNCS 7892, pp. 242–257, 2013.
c© IFIP International Federation for Information Processing 2013

A Timed Component Algebra for Services 243

Not surprisingly, the results obtained in [10] for run-time composition under
the implicit-time model do not extend directly to timed traces because the two
spaces have different topological structures. Hence, one of our main contributions
is the identification of refinement and closure operators that can support the
composition of services that do not operate over the same time sequences.

The other main contribution results from adopting, as models of implementa-
tions of processes and channels, a variant of timed I/O automata (TIOA) that
permits clock invariants on locations and in which all locations are Büchi ac-
cepting (as in [12]). Although results on the consistency of the composition of
TIOA have been addressed in the literature they are based on a weaker notion
of consistency according to which a TIOA that does not accept any non-Zeno
timed sequence can still be consistent. In Sec. 5 we give an example of a situation
in which the composition of two TIOA can only produce Zeno sequences, which
is not acceptable as this would mean that joint behaviour would only be possible
by forcing actions to be executed over successively shorter delays to converge on
a deadline. The sub-algebra of TIOA that we characterise in Sec. 4 addresses this
problem, i.e., we identify properties that can be checked, at design time, over
networks of TIOA that ensure that, when binding a client with a supplier service,
their orchestrations can operate together without further run-time checks.

2 The Component Algebra

We start by recalling a few concepts related to traces and their Cantor topology.
Given a set A, a trace λ over A is an element of Aω , i.e., an infinite sequence
of elements of A. We denote by λ(i) the (i + 1)-th element of λ and by λi the
prefix of λ that ends at λ(i − 1) if i > 0, with λ0 being the empty sequence.
A segment π is an element of A∗, i.e., a finite sequence of elements of A, the
length of which we denote by |π|. We use π<λ to mean that the segment π is a
prefix of λ. Given a∈A, we denote by (π·a) the segment obtained by extending
π with a. A property Λ over A is a set of traces. For every property Λ, we define
Λf = {π : ∃λ∈Λ(π<λ)} — the segments that are prefixes of traces in Λ, also
called the downward closure of Λ — and Λ̄ = {λ : ∀π<λ(π∈Λf)} — the traces
whose prefixes are in Λf , also called the closure of Λ. A property Λ is said to be
closed iff Λ ⊇ Λ̄ (and, hence, Λ = Λ̄).

In this timed model, every trace consists of an infinite sequence of pairs of an
instant of time and a set of actions – the actions that are observed at that instant
of time. In order to be able to model networks of systems, we allow that set of
actions to be empty: on the one hand, this allows us to model finite behaviours,
i.e., systems that stop executing actions after a certain point in time while still
part of a network; on the other hand, it allows us to model observations that are
triggered by actions performed by components outside the system.

This time model falls under what is often known as a ‘point-based semantics’,
as opposed to an ‘interval-based semantics’ in which observations are made at
every instant of time – our systems of systems are discrete and, therefore, a
continuous observation model is not required. The advantages of the proposed

244 B. Delahaye et al.

model are that, on the one hand, it offers a natural extension of the trace-based
model adopted in [10] and, on the other hand, it has been recently studied from
the point of view of a number of decidability results [17].

Definition 1 (Timed traces). Let A be a set (of actions) and δ∈R>0.

– A time sequence τ is a trace over R≥0 for which there exists a sequence
(di∈N+)i∈N such that τ(0) = 0 and τ(i + 1) = τ(i) + di × δ for every i.

– An action sequence σ is a trace over 2Asuch that σ(0) = ∅.
– A timed trace over A is a pair λ = 〈σ, τ〉 of an action and a time sequence.

We denote by Λ(A) the set of timed traces over A.
– Given a timed property Λ ⊆ Λ(A), we define:

• For every time sequence τ , Λτ = {σ∈(2A)ω : 〈σ, τ〉∈Λ} — the action
property defined by Λ and τ .

• Λtime = {τ : ∃σ∈(2A)ω(〈σ, τ〉∈Λ)} — the time sequences involved in Λ.

The constant δ (fixed for the remainder of the paper) represents the minimal
interval between two time observations — the sequence (di)i∈N provides the
duration associated with each step i. This implies in particular that time pro-
gresses, i.e., the set {τ(i):i∈N} is unbounded. Working with such a constant is
realistic and endows the space of time sequences with topological properties that
are stronger than those of the more general space of non-Zeno sequences.

Functions between sets of actions (‘alphabet maps’) are useful for defining
relationships between processes and the networks in which they operate.

Definition 2 (Maps). Let f :A→B be a function (alphabet map).

– For every σ∈(2B)ω, we define σ|f∈(2A)ω pointwise as σ|f (i)=f−1(σ(i)) —
the projection of σ over A. If f is an inclusion, i.e., A⊆B, then we tend
to write |A instead of |f ; this is a function that, when applied to a trace,
forgets the actions of B that are not in A.

– For every timed trace λ=〈σ, τ〉 over B, we define its projection over A to be
λ|f=〈σ|f , τ〉, and for every timed property Λ over B, Λ|f={λ|f : λ∈Λ} —
the projection of Λ to A.

– For every timed property Λ over A, we define f(Λ)={〈σ, τ〉 : 〈σ|f , τ〉∈Λ} —
the translation of Λ to B.

We are particularly interested in translations defined by prefixing every element
of a set with a given symbol. Such translations are useful for identifying in
a network the process to which an action belongs — we do not assume that
processes have mutually disjoint alphabets. More precisely, given a set A and a
symbol p, we denote by (p.) the function that prefixes the elements of A with
‘p.’. Note that prefixing defines a bijection between A and its image p.A.

In our asynchronous model, interactions are based on the exchange of messages
that are transmitted through channels. We organise messages in sets that we call
ports: a port is a finite set (of messages). Ports are communication abstractions
that are convenient for organising networks of processes.

A Timed Component Algebra for Services 245

Every message belonging to a port has an associated polarity: − if it is an
outgoing message (published at the port) and + if it is incoming (delivered at the
port). Therefore, every portM has a partitionM−∪M+. The actions of sending
(publishing) or receiving (being delivered) a message m are denoted by m! and
m¡, respectively. More specifically, ifM is a port, we define AM−={m!:m∈M−},
AM+={m¡:m∈M+}, and AM=AM−∪AM+ — the set of actions associated with
M . Even if a process does not refuse the delivery of messages, it can discard them,
e.g., if they arrive outside the protocol expected by the process, and a channel
can accept the publication of every message but only deliver some published
messages to their destination (this is for instance the case of unreliable channels).

A process consists of a finite set γ of mutually disjoint ports — i.e., each
message that a process can exchange belongs to exactly one of its ports — and
a non-empty timed property Λ over Aγ =

⋃
M∈γ AM defining its behaviour.

Interactions are established through channels. A channel consists of a setM of
messages and a non-empty timed property Λ over AM={m!,m¡ :m∈M}. Chan-
nels connect processes through their ports. Given portsM1 andM2 and a channel
〈M,Λ〉, a connection between M1 and M2 via 〈M,Λ〉 consists of a pair of injec-
tive maps μi:M→Mi such that μ−1

i (M+
i) = μ−1

j (M−
j), {i, j}={1, 2} — i.e., a

connection establishes a correspondence between the two ports such that any two
messages that are connected have opposite polarities. Each μi is called the attach-
ment of M to Mi. We denote the connection by the triple 〈M1

μ1←− M μ2−→ M2, Λ〉.
Notice that every connection defines an injection 〈μ1, μ2〉 from AM to AM1∪AM2

as follows: for every m∈M and {i, j}={1, 2}, if μi(m)∈M−
i then 〈μ1, μ2〉(m!) =

μi(m)! and 〈μ1, μ2〉(m¡) = μj(m)¡.

Definition 3 (t-ARN). A timed asynchronous relational net consists of:

– A simple finite graph 〈P,C〉 where P is a set of nodes and C is a set of
edges. Note that each edge is an unordered pair {p, q} of nodes.

– A labelling function that assigns a process 〈γp, Λp〉 to every node p and a
connection 〈γc, Λc〉 to every edge c such that:
• If c={p, q} then γc is a pair of attachments 〈Mp

μp←− Mc
μq−→ Mq〉 for some

Mp∈γp and Mq∈γq.
• If γ{p,q}=〈Mp

μp←− M{p,q}
μq−→ Mq〉 and γ{p,q′}=〈M ′

p
μ′
p←− M{p,q′}

μ′
q′−→ M ′

q′〉
with q �= q′, then Mp �=M ′

p.

For every (t-ARN) α, we define the following sets and mappings:

– Aα =
⋃

p∈P p.Aγp is the language associated with α.
– For every p∈P , ιp is the function that maps Aγp to Aα, which prefixes the

actions of Aγp with p.
– For every c∈C, ιc is the function that maps AMc to Aα, which, assuming

that c = {p, q}, translates the actions of AMc through 〈p. ◦ μp, q. ◦ μq〉.
– Λα = {λ∈Λ(Aα) : ∀p∈P (λ|ιp∈Λp) ∧ ∀c∈C(λ|ιc∈Λc)}.

Note that, for every p∈P , (|ιp) first removes the actions that are not in the
language p.Ap and then removes the prefix p. Similarly, for every c={p, q}∈C,

246 B. Delahaye et al.

(|ιc) first removes the actions that are not in the language 〈p. ◦μp, q. ◦μq〉(AMc),
then removes the prefixes p and q, and then projects onto the language of Mc.

As an example, consider a bank portal that mediates the interactions between
clients and the bank in the context of different business operations such as a
credit card request. Fig. 1 depicts a t-ARN with two interconnected processes
that implement that business operation. Process Clerk is responsible for the in-
teraction with the environment and for making decisions on credit card requests,
for which it relies on the process CreditValidator that validates whether the re-
questers do not have bad credit (e.g., unpaid collections or recent offences). The
behavior of these processes and the channel used for communication are subject
to time-related constraints ensuring that the decision on a credit card request is
always issued within twenty time units since the reception of the request.

Λ wRc
CreditValidator

v

valReq
ok
nok

askVal
pos
neg

Lv
Clerk

cardReq

Λ c
denied
cardDet

Lc

Λ

Fig. 1. An example of a t-ARN with two processes connected through a channel

The graph of the t-ARN consists of two nodes c:Clerk and v:CreditValidator
and an edge {c, v}:wcv.

– Clerk is a process with two ports. In port Lc, the process receives messages
cardReq and sends cardDet (a message carrying the card details) and denied .
Port Rc has outgoing message askVal and incoming messages pos and neg.
The behaviour of Clerk is as follows. After the delivery of the first cardReq on
port Lc, Clerk may either simply deny the card request by publishing denied
or ask an external validation of the requester by publishing askVal on Rc.
In both cases, the outgoing message is published within five time units since
the reception of cardReq. Then, Clerk waits ten time units for the delivery
of pos or neg, upon which it publishes within three time units, respectively,
cardDet or denied . If none of these messages arrives by the deadline or both
arrive together, Clerk publishes denied on Lc.

– CreditValidator is a process with a single port (Lv) with incoming message
valReq and outgoing messages ok and nok . When the first valReq is delivered,
it takes no more than seven time units to publish either ok or nok .

– The port Rc of Clerk is connected with the port Le of CreditValidator
through wcv:〈Rc

μc←− {m,n, k} μv−→ Lv, Λw〉, with μc={m �→ askVal , n �→
pos , k �→ neg}, μe= {m �→ valReq , n �→ ok , k �→ nok}. The correspond-
ing channel is reliable and introduces at most a delay of five time units in
the transmission of messages: msg¡ follows within five time units the first
msg!, for msg∈{m,n, k}.

A Timed Component Algebra for Services 247

We often refer to the t-ARN through the quadruple 〈P,C, γ, Λ〉 where γ returns
the set of ports of the processes that label the nodes and the pair of attach-
ments of the connections that label the edges, and Λ returns the corresponding
properties. The fact that the graph is simple – undirected, without self-loops
or multiple edges – means that all interactions between two given processes are
supported by a single channel and that no process can interact with itself. The
graph is undirected because, as already mentioned, channels are bidirectional.
Furthermore, because of the second restriction on the labelling function, different
channels cannot share ports.

The alphabet of Aα is the union of the alphabets of the processes involved
translated by prefixing all actions with the node from which they originate (see
the definition of this translation after Def. 2). We take the set Λα to define the
set of possible traces observed on α – those traces over the alphabet of the t-
ARN that are projected to traces of all its processes and channels. Notice that

Λα =
⋂
p∈P

ιp(Λp) ∩
⋂
c∈C

ιc(Λc)

That is, the behaviour of the t-ARN is given by the intersection of the behaviour
of the processes and channels translated to the language of the t-ARN — this
corresponds to what one normally understands as a parallel composition. Notice
that the translations applied to set of traces effectively open the behaviour of
the processes and channels to actions in which they are not involved.

As in [9,10], two t-ARNs can be composed through the ports that are still
available for establishing further interconnections, i.e., not connected to any
other port, which we call interaction-points.

Definition 4 (Composition). Let α1 = 〈P1, C1, γ1, Λ1〉 and α2 =
〈P2, C2, γ2, Λ2〉 be t-ARNs such that P1 and P2 are disjoint, and a family

wi = 〈M i
1
μi
1←− M i μi

2−→ M i
2, Λ

i〉 (i = 1 . . . n) of connections for interaction-points
〈pi1,M i

1〉 of α1 and 〈pi2,M i
2〉 of α2 such that, for every i �= j: (1) pi1 �= pj1 or

pi2 �= pj2; (2) if pi1 = pj1 then M i
1 �= M j

1 ; (3) if pi2 = pj2 then M i
2 �= M j

2 . The
composition

α1

�i=1...n

〈pi
1,M

i
1〉,wi,〈pi

2,M
i
2〉
α2

is the t-ARN defined as follows:

– Its graph is 〈P1 ∪ P2, C1 ∪ C2 ∪
⋃

i=1...n{pi1, pi2}〉
– Its labelling function coincides with that of α1 and α2 on the corresponding

subgraphs, and assigns to the new edges {pi1, pi2} the label wi.

Fig. 1 also illustrates the composition of t-ARNs: the depicted t-ARN is the
composition of the two atomic t-ARNs defined by Clerk and CreditValidator .

3 Consistency

In this section, we investigate conditions under which we can prove that a given
t-ARN is consistent. Consistency is an important property of any component

248 B. Delahaye et al.

algebra [7]: in our setting, it establishes that the processes can work together
as interconnected via the channels. We also aim for conditions that are closed
under composition so that the consistency of a t-ARN can be derived from that
of its parts. Our conditions rely on closure properties and a generalisation of the
property of being ‘progress-enabled’ proposed in [10] for un-timed behaviour.

Definition 5 (Consistent t-ARN). A t-ARN α is consistent if Λα �= ∅.

In [10], we defined a sub-algebra of (un-timed) ARNs that are consistent and
closed under composition. The characterisation of this sub-algebra relied on the
closure operator induced by the Cantor topology over action sequences. The
same closure operator can be defined over timed traces but, for the purpose of
separating the properties required of the action sequences from those of the time
sequences and the way they can be checked over automata (which we do in Sec.
4), it is useful to consider other notions of closure.

We can use the Cantor topology over (2A)ω to define a notion of closure
relative to a fixed time sequence:

Definition 6 (Closure relative to time). We say that a timed property Λ is
closed relative to time or, simply, t-closed, iff, for every τ∈Λtime, Λτ is closed. A
t-closed process/channel is one whose property is t-closed. A t-closed t-ARN is
one in which all processes and channels are t-closed.

Processes and channels that are closed relative to time define safety properties in
the usual un-timed sense: over a fixed time sequence, which cannot be controlled
by the processes or channels, the violation of the property can be checked over
a finite trace. We consider now operations on time sequences.

Definition 7 (Time refinement). Let ρ:N→N be a monotonically increasing
function that satisfies ρ(0)=0.

– Let τ , τ ′ be two time sequences. We say that τ ′ refines τ through ρ, which we
denote by τ ′�ρτ , iff, for every i∈N, τ(i) = τ ′(ρ(i)). We say that τ ′ refines
τ , which we denote by τ ′�τ , iff τ ′�ρτ for some ρ.

– Let λ=〈σ, τ〉, λ′=〈σ′, τ ′〉 be two timed traces. We say that λ′ refines λ through
ρ — which we denote by λ′�ρλ — iff τ ′�ρτ and, for every i∈N, σ(i) =
σ′(ρ(i)) and, for every ρ(i)<j<ρ(i + 1), σ′(j) = ∅. We also say that λ′

refines λ — which we denote by λ′�λ — iff λ′�ρλ for some ρ.

– The r-closure of a set Λ of timed traces is Λr = {λ′ : ∃λ∈Λ(λ′�λ)}
– We say that Λ is closed under time refinement or, simply, r-closed, iff Λr⊆Λ.
– An r-closed process/channel is one whose property is r-closed. An r-closed

t-ARN is one in which all processes and channels are r-closed.

That is, a time sequence refines another if the former interleaves time obser-
vations between any two time observations of the latter. Refinement extends
to traces by requiring that no actions be observed in the finer trace between
two consecutive times of the coarser trace. Therefore, the r-closure of a process

A Timed Component Algebra for Services 249

adds all possible interleavings of empty observations to its traces, capturing its
behaviour in any possible environment. This is related to mechanisms such as
stuttering [1], which ensure that components do not constrain their environment.

It is not difficult to prove that the refinement relation is a complete meet semi-
lattice, the meet of two time sequences τ1 and τ2 being given by the recursion

τ(i + 1) = min({τ1(j) > τ(i), j ∈ N} ∪ {τ2(j) > τ(i), j ∈ N})
together with the base τ(0) = 0. It is also easy to prove that:

Proposition 8. If a t-ARN α is t-closed (resp., r-closed), then Λα is also t-
closed (resp., r-closed).

A property that was found to be relevant in [10] for characterising consistent (un-
timed) asynchronous relational nets concerns the ability to make joint progress.
In the timed version, we analyse progress in relation to given time sequences.

Definition 9 (Progress-enabled). For any t-ARN α and time sequence τ ,
let

Πατ = {π∈(2Aα)
∗
: ∀p∈P (π|ιp∈Λf

pτ
) ∧ ∀c∈C(π|ιc∈Λf

cτ)}
We say that α is progress-enabled in relation to τ iff

ε∈Πατ and ∀π∈Πατ (∃τ ′�τ∃A⊆Aα((π·A)∈Πατ′ ∧ τ ′|π|= τ|π|))

We say that α is progress-enabled iff there is a time sequence τ such that α is
progress-enabled in relation to every τ ′ � τ .
The set Πατ consists of all the segments that the processes and channels can
jointly engage in across the time sequence τ . Being progress-enabled relative to
τ means that, after any initial joint segment, the processes and channels can
make joint progress along a refinement of that time sequence. The reason for
using a refinement of τ is that progress may depend on the activities performed
at the interaction points of α. Note that, because the intersection of A with the
alphabet of any process or channel can be empty, being progress-enabled does
not require all parties to actually perform an action.

By itself, being progress-enabled does not guarantee that a t-ARN is con-
sistent: moving from finite to infinite behaviours requires the analysis of what
happens ‘at the limit’. However, if we work with t-closed and r-closed properties,
the limit behaviour will remain within the t-ARN:

Theorem 10. A t-ARN is consistent if it is t-closed, r-closed and progress-
enabled.

We now show how t-ARNs can be guaranteed to be progress-enabled by con-
struction. Every t-ARN that consists of a single node labelled with a process P is
progress-enabled in relation to at least a time sequence. This is because processes
are consistent. If we take the r-closure of P , then the t-ARN is progress-enabled.
In [10], we gave criteria for the composition of two (un-timed) progress-enabled
ARNs to be progress-enabled based on the ability of processes to buffer incoming
messages – being ‘delivery-enabled’ – and of channels to buffer published mes-
sages – being ‘publication-enabled’. In a timed domain, it becomes necessary to
identify time sequences across which all parties can work together.

250 B. Delahaye et al.

Definition 11 (Delivery-enabled). Let α=〈P,C, γ, Λ〉, 〈p,M〉∈Iα one of its
interaction-points, and D〈p,M〉={p.m¡: m∈M+}. We say that α is delivery-
enabled in relation to 〈p,M〉 if, for every τ∈Λtime, (π·A)∈Πατ and B⊆D〈p,M〉,
there exists τ ′�τ such that (π·B ∪ (A\D〈p,M〉))∈Πατ′ and τ ′|π|+1= τ|π|+1.

That is, being delivery-enabled at an interaction point requires that, for every
time sequence, any joint segment of the t-ARN over that sequence can be ex-
tended by any set of messages delivered at that interaction-point, after which it
will behave according to a refinement of the original trace. Note that this does
not interfere with the decision of the process to publish messages:B∪(A\D〈p,M〉)
retains all the publications in A.

Definition 12 (Publication-enabled). Let h=〈M,Λ〉 be a channel and Eh =
{m!:m∈M}. We say that h is publication-enabled iff, for every τ∈Λtime,

(π·A)∈Λf
τ and B⊆Eh, there exists τ ′�τ such that π·(B∪(A\Eh))∈Λf

τ ′ and
τ ′|π|+1= τ|π|+1.

The requirement here is that, for any time sequence and any segment of a trace
over that time sequence, the segment can be extended by the publication of any
set of messages, i.e., the channel should not prevent processes from publishing
messages when they are in a state in which they could do so. Notice that this does
not interfere with the decision of the channel to deliver messages: (B∪(A\Eh))
retains all the deliveries present in A.

Theorem 13. Let α be a composition of r-closed progress-enabled t-ARNs

through the connections wi = 〈M i
1
μi
1←− M i μi

2−→ M i
2, Λ

i〉, i = 1 . . . n, i.e.,

α = (α1

�i=1...n

〈pi
1,M

i
1〉,wi,〈pi

2,M
i
2〉
α2)

If, for i=1. . . n, α1 is delivery-enabled in relation to 〈pi1,M i
1〉, α2 is delivery-

enabled in relation to 〈pi2,M i
2〉 and hi=〈M i,Λi〉 is publication-enabled and r-

closed, then α is progress-enabled.

Therefore, the proof that an r-closed t-ARN is progress-enabled can be reduced
to checking that individual processes are delivery-enabled in relation to their
interaction points and that the channels used for composition are publication-
enabled. To guarantee that the t-ARN is consistent, it is sufficient to choose
processes and channels that are t-closed (implement safety properties). All the
checking can be done at design time, not at composition time (which, in the
service-oriented paradigm, is done at run time).

4 The Automata-Theoretic View

We now show how the properties introduced in the previous section can be
checked over orchestrations of services based on automata-based models of pro-
cesses and channels. We adopt Timed I/O Automata similar to those presented

A Timed Component Algebra for Services 251

in [6], except that we use discrete time and sets of actions instead of single
actions for transitions. As δ represents the minimal interval between two time
observations, all the durations in the automata are in N+

δ , the positive multiples
of δ. We will use Nδ to refer to N+

δ ∪ {0}.
Let C be a finite set (of clocks). A clock valuation over C is a mapping v:

C→ Nδ. Given d∈Nδ and a valuation v, we denote by v+d the valuation defined
by, for any clock c∈C, (v+d)(c) = v(c)+d. Given R ⊆ C and a clock valuation
v, we denote by vR the valuation where clocks from R are reset, i.e., such that
vR(c) = 0 if c∈R and vR(c) = v(c) otherwise. Let op be the set of relational
operators op = {≤,≥}. A guard over C is a finite conjunction of expressions of
the form c �� n with ��∈op and n∈N. We denote by B(C) the set of guards over
C.

Definition 14 (DTIOA). A Discrete Timed I/O Automaton (DTIOA) is a
tuple A = 〈Loc, q0,C, E,Act, Inv〉 where:

– Loc is a finite set of locations and q0∈Loc is the initial location;
– C is a finite set of clocks;
– Act = ActI ∪ ActO is a finite set of actions partitioned into inputs and

outputs;
– E ⊆ Loc× 2Act × B(C)× 2C × Loc is a finite set of edges;
– Inv: Loc→ B(C) associates an invariant with every location.

In addition, we impose that every DTIOA is r-closed: for all l∈Loc,
(l, ∅, φ, ∅, l)∈E for some valid φ in B(C).

Being r-closed means that, in every location, it must be possible to make an
empty observation without affecting the system. Intuitively, this reflects openness
to environments that are involved in the execution of actions not included in Act.

An execution starting in location l0 and clock valuation v0 is an alternating
sequence

(l0, v0, d0)
S0,R0−→ (l1, v1, d1)

S1,R1−→ . . .

where: for every i, li∈Loc, vi is a clock valuation over C, Si⊆Act and Ri⊆C;
d0∈Nδ and, for i>0, di∈N+

δ ; and, for every i: (1) Inv(li)(vi + t) holds for all
0 ≤ t ≤ di, (2) vi+1=(vi + di)

Ri and (3) there is (li, Si, C,Ri, li+1)∈E such
that C(vi + di) holds. The language of A, which we denote by ΛA, is the set of
executions such that l0=q0, v0(c) = 0, for all c∈C, and d0>0.

In deterministic DTIOAs, for every location l and valuation v such that
Inv(l)(v) holds and S ⊆ Act, there exists at most one edge (l, S, C, ,)∈E
such that C(v) holds. In this way, in these automata, the current state (l, v),
the duration d of the stay in l and the next symbol S determine the next state
(l′, v′) uniquely.

An execution in ΛA defines a timed trace λ=〈σ, τ〉 over ActI∪ActO where
σ(0)=∅, τ(0) = 0 and, for i ≥ 0, σ(i + 1)=Si and τ(i + 1)=τ(i)+di. We denote
by �A� the set of timed traces defined by the set of executions in ΛA, which
is r-closed in the sense of Def. 7. For example, the timed traces defined by

252 B. Delahaye et al.

the DTIOA in Fig. 2 are those in which either no input is ever received (in
which case the system is idle forever) or, after the delivery of the first valReq ,
it takes no more than seven time units for the system to publish either ok or
nok (after that, the system is open to inputs but does not publish anything
more). Those traces correspond to the property that defines the behaviour of
the process CreditValidator presented before.

A DTIOA A is consistent if ΛA �=∅ and has consistent states if, for every l
and v such that Inv(l)(v) holds, there exists an execution of A starting in (l, v).
Notice that a DTIOA that has consistent states is not necessarily consistent.
Indeed, although having consistent states implies that there is an infinite exe-
cution starting in the initial state, it could be the case that this execution has
an initial duration d0=0. Thus, in the following, we assume that DTIOA are
consistent and have consistent states.

An important class of DTIOAs are those that are able to receive any set of
inputs at all times (input-enabledness) and that, at each step, provide outputs
that do not depend on the received inputs (independence). One way to ensure
that DTIOA satisfy both requirements is to leverage the notions of delivery-
enabledness and publication-enabledness of T-ARNs to the automata setting:

Definition 15 (DP-enabled DTIOA). A DTIOA A = 〈Loc, q0,C, E,Act,
Inv〉 is DP-enabled if, for every B⊆ActI , clock valuation v, and edge
(l, A, C,R, l′)∈E such that the following properties hold — Inv(l)(v), C(v) and,
for all 0≤t≤δ, Inv(l′)(vR+ t) — there is an edge (l, B∪ (A\ActI), C′, R′, l′′)∈E
such that C′(v) holds and, for all 0 ≤ t ≤ δ, Inv(l′′)(vR′

+ t) also holds.

For a DTIOA to be input-enabled and independent, all edges need to be adapt-
able to accept any set of inputs without changing the associated outputs. Al-
though the target locations of edges and clock resets may be modified when
changing inputs, they are required to be enabled for execution at least in the
same situations as the original ones.

valReq¡
c:=0

true c≤7

ok!

nok! true

ok!, valReq¡

nok!, valReq¡

valReq¡

valReq¡∅

∅

∅

l s t
Act ={valReq¡}
Act ={ok!,nok!}

I
O

Fig. 2. An example of a DTIOA

Definition 16 (DTIOP). A DTIO process consists of a set γP={M1,...,Mn}
of mutually disjoint ports and a deterministic DP-enabled DTIOA AP that is
consistent, has consistent states and for which ActI=∪iAMi

+ and ActO=∪iAMi
− .

The inputs of a DTIOP are deliveries m¡ of incoming messages and outputs are
publications m! of outgoing messages at the ports. The language of a DTIOP is

A Timed Component Algebra for Services 253

that of its DTIOA, i.e., �P� = �AP�. For example, the port LV in Fig. 1 and the
DTIOA in Fig. 2 define a DTIOP provided we choose δ<1. The automaton is
obviously deterministic, has consistent states and, if δ<1, it is also DP-enabled.

As before, interconnection of DTIO processes is achieved through channel
implementations, also defined in terms of DTIOA.

Definition 17 (DTIOC). A DTIO channel (or DTIOC) consists of a set M
of messages and a deterministic DP-enabled DTIOA A that is consistent, has
consistent states and for which ActI={m!:m∈M} and ActO={m¡:m∈M}.

Notice that deliveries are outputs for channels (inputs for processes) and publi-
cations are inputs for channels (outputs for processes). This is because, messages
published by a process are delivered to another process through a channel: if a
process P1 is connected to a process P2 via a channel C, the publication of a
message m by P1 is an output for P1 and an input for C; the delivery of m is an
output for C and an input for P2.

Every DTIOP P defines a t-closed and r-closed process PP = 〈γP , �AP�〉
in the sense of Sec. 2. Similarly, every DTIOC C=〈M,A〉 defines a t-closed
and r-closed channel CC=〈M, �AM �〉. Most importantly, PP and CC meet the
conditions required for the application of Theo. 13.

Theorem 18. If P is a DTIOP, then PP is DP-enabled in relation to any of its
ports and is progress-enabled. If C is a DTIOC, then CC is publication-enabled.

A DTIO net (or DTION) is defined in the same way as a t-ARN except that
DTIOPs and DTIOCs are used instead of processes and channels, respectively.
Every DTION N defines the t-ARN αN obtained by replacing the DTIOPs and
DTIOCs with the corresponding processes and channels. By construction, αN is
t-closed and r-closed. The semantics of a DTION can be defined in terms of the
classical partially synchronized product of DTIOA, which we recall briefly.

Definition 19 (Product). Two DTIOA Ai = 〈Loci, qi0,Ci, Ei, Acti, Inv
i〉 are

compatible iff C1∩C2=ActI1∩ActI2=ActO1 ∩ActO2 =∅. The composition of two com-
patible DTIOA is A1‖A2=〈Loc1 × Loc2, (q10 , q20),C1 ∪ C2, E,Act, Inv〉 where:

– ActI = (ActI1\ActO2) ∪ (ActI2\ActO1)
– ActO = ActO1 ∪ActO2
– for all (q1, q2)∈Loc1×Loc2, Inv((q1, q2))=Inv1(q1)∧Inv2(q2)
– ((q1, q2), S, C,R, (q′1, q

′
2))∈E iff: (q1, S1, C1, R1, q

′
1)∈E1, (q2, S2, C2, R2, q

′
2)∈E2,

C = C1 ∧ C2, Si = S ∩ Acti for i = 1, 2, and R = R1 ∪R2.

Note that, by construction, when S∩Act1 �= ∅ and S∩Act2 �= ∅, all actions
on which A1 and A2 synchronize (i.e., actions in S∩Act1∩Act2) are necessarily
inputs on one side and outputs on the other. After composition these actions
become outputs. Furthermore, transitions such that S∩Acti = ∅, which are usu-
ally considered as non-synchronizing, are handled as synchronizing transitions
with underlying r-closure loops.

254 B. Delahaye et al.

Proposition 20. Given compatible DTIOA A1 and A2, �A1‖A2� = ι1(�A1�) ∩
ι2(�A2�), where ι1 and ι2 translate the local languages to that of the composition,
as in Def. 3.

In order to show that this notion of product can be used to capture the semantics
of DTIONs and that this semantics is compositional, consider the simple case
of a DTION N consisting of two nodes p1 and p2 labelled with P1 = 〈γ1,AP1〉
and P2 = 〈γ2,AP2〉, respectively, and an edge c between them labelled with the
connection C = 〈M1

μ1←− M μ2−→ M2,AM 〉 where 〈M,AM 〉 is a DTIOC. We use
prefixing as in Sec. 2, i.e., we denote by p.A the copy of A where all actions are
prefixed by p.

The connection C defines a DTIOA AC that is a copy of AM except that the
alphabet is renamed using the injection 〈p1. ◦μ1, p2. ◦μ2〉 defined as in Sec. 2 to
enforce synchronization of P1 and P2 on the ports M1 and M2: given a message
m∈M , the actionm¡ is renamed pi.m¡ if μi(m)∈M+

i and the actionm! is renamed
pi.m! if μi(m)∈M−

i . More precisely, ifAM = 〈LocM , qM0 ,CM , EM , ActM , InvM 〉,
then AC = 〈LocM , qM0 ,CM , EC , ActC , Inv

M 〉 where:

– ActOC = {p1.m¡ : m ∈M+
1 ∩ μ1(M)} ∪ {p2.m¡ : m ∈M+

2 ∩ μ2(M)}
– ActIC = {p1.m! : m ∈M−

1 ∩ μ1(M)} ∪ {p2.m! : m ∈M−
2 ∩ μ2(M)}

– EC = {(qc, 〈p1. ◦ μ1, p2. ◦ μ2〉(A), C,R, q′c) : (qc, A, C,R, q′c) ∈ EM}

We can now define the semantics of N as the product of p1.AP1 , p2.AP2 and AC .
Notice that, because of the renamings, the three DTIOA are compatible and AC
ensures that the synchronization only occurs between messages that are related
through the maps μ1 and μ2. In other words, given a message m∈M such that
μ1(m) = m1∈M−

1 and μ2(m) = m2∈M+
2 : the action m! from AM is renamed as

p1.m1! in AC (an input), and will thus synchronize with m1! of P1 (an output),
i.e., p1.μ1(m)! in the composition — P1 synchronizes with C to publish m1;
the action m¡ from AM is renamed as p2.m2¡ in AC (an output), and will thus
synchronize with m2¡ of P2 (an input), i.e., p2.μ2(m) in the composition — C
synchronizes with P2 to deliver the message. Because of the renaming of the
actions of P1 and P2 by prefixing them with p1 and p2, respectively, no other
synchronizations take place.

Theorem 21 (Compositional semantics). Given a DTION N as above,

�N � = �p1.AP1 ‖ AC ‖ p2.AP2� = ιp1(�P1�) ∩ ιc(�C�) ∩ ιp2(�P2�) = ΛαN

That is, the semantics of N is αN : the product of the DTIOAs that implement
the processes and connections of the net generates the set of timed traces ob-
tained through Def. 3 – the semantics of the corresponding t-ARN. The result
can be generalized to arbitrary DTIONs by calculating the products correspond-
ing to all interconnections.

5 Related Work

Several frameworks have been proposed for component/service-based software
systems that exhibit timed properties. Some, such as [15,16], adopt the π-calculus

A Timed Component Algebra for Services 255

to address subclasses of timing activities, e.g., timeouts and local urgency in web
transactions. Others adopt an algebraic framework: for example, [4] adopts timed
data streams for a channel-based coordination model, and [8,11,14,18] address
service choreography using timed automata, i.e., they focus on the modelling of
the (timed) conversation protocols that characterise the global behaviour of a
(fixed) number of peers that exchange services. One of the properties that the
latter analyse is compatibility – whether the conversation protocols (modelled as
timed automata) followed by the peers lead to deadlocks or time conflicts that
prevent them from completing (e.g., reaching final states).

Although compatibility relates to the notion of consistency that we address
in this paper, our emphasis is not on choreography but on orchestration: what
we are investigating is in what conditions we can guarantee that the orchestra-
tions of two services can work together when they bind to each other. This has
implications on the properties that are required of timed-automata in order to
guarantee consistency. Because we aim to support run-time binding and com-
position, those properties are different from those investigated for choreography
(where composition is analysed at design time). An example is the way time is
managed: in choreography, this is done globally for the (fixed) set of peers (in
the sense that clocks can be set or reset by all peers); in our approach, this needs
to be done locally at level of each process because composition is dynamic.

The interaction model is another key aspect of a theory of services. Most ser-
vice models are synchronous even if message-passing is more adequate for the
loosely-coupled operating environment of services [14]. An asynchronous timed
model is considered in [11], but only indirectly by simulating buffers in a syn-
chronous setting, which limits the properties that can be analysed.

The problem of guaranteeing the consistency of composition without having
to calculate the product of automata (or other models of orchestration) has
remained largely ignored in the literature (e.g., [5,6]) as its relevance comes
to the fore in service-oriented computing thanks to the crucial distinction that
needs to be made between design-time and run-time checks or operations.

Results on the consistency of the composition of Timed I/O Automata (TIOA)
are addressed in [6] for the restricted class of TIOA that are input-enabled and
allow independent progress, which are directly relevant for our paper. However,
their results are based on a weaker notion of consistency according to which a
TIOA that does not accept any non-Zeno timed sequence can still be consistent,
which is not sufficient to ensure that the composition of TIOA accepting non-
empty sets of timed traces is a TIOA that also accepts at least one timed trace.
Fig. 3 illustrates this situation: both automata allow independent progress, are
input-enabled, and can produce infinite timed traces; however, their composition
yields a TIOA that can only produce Zeno sequences.

The same class of TIOA is considered in [13], where their I/O feasibility is
investigated. Although this is richer than consistency because in this context
TIOA executions are also not necessarily time divergent. Hence, the results that
establish sufficient conditions for the composition of I/O feasible TIOA to be

256 B. Delahaye et al.

a!

b?

l s

x≤1

b?

true

a?

a?
y:=0

p q

y≤1

b!

y≤1b!

Fig. 3. Input and progress-enabled TIOA that do not generate any joint trace

I/O feasible (based on progressive and receptive TIOA) cannot be transposed
to the world of sets of timed traces.

6 Concluding Remarks

In this paper, we have investigated how a component algebra can be defined
over timed traces that addresses run-time composition of services. Services are
orchestrated by asynchronous networks of processes and can bind dynamically
to required services. Our results include the characterisation of a sub-algebra
over which the binding can be proved to be consistent using only design-time
properties of the orchestrations, i.e., without having to make further checks at
run time (which would undermine real-time operation). We showed how discrete
timed I/O automata provide a compositional implementation model for that
algebra and identified a class of DTIOA that conform to the properties that
ensure consistency of composition – those that are deterministic and DP-enabled.
These results extend the literature on TIOA, which so far had not addressed the
issues raised by run-time composition.

Our model uses a time unit (in the domain of the reals) for observations but
it is not discrete in the sense that, because clock valuations are not restricted to
the time unit, the behaviour of TIOA can be constrained by real-time guards.
However, this time granularity is shared by all processes. Although this is ade-
quate for service-level agreements in typical business transactions, a non-discrete
model would allow us to capture heterogeneity and address a more general class
of systems. However, non-Zeno models fail to satisfy the topological properties
over which we rely to ensure consistency of networks, namely that refinement
defines a complete meet semi-lattice, which could lead to situations in which
joint behaviour is only possible by forcing actions to be executed over succes-
sively shorter delays to converge on a deadline. We are currently investigating
intermediate models over more restricted structures of actions.

We are also investigating t-closure over DTIOA in relation to traditional
characterisations of safety properties over time sequences, e.g., nondetermin-
istic Büchi automata [2]. This will allow us to use logics such as Safety MTL
[17] to define an interface algebra for t-ARNs similar to [9,10] and investigate
the use of model-checking techniques for validating orchestrations in relation to
interfaces.

A Timed Component Algebra for Services 257

Acknowledgments. This work was partially supported by Fundação para a
Ciência e Tecnologia under contract (PTDC/EIA-EIA/103103/2008).

References

1. Abadi, M., Lamport, L.: The existence of refinement mappings. Theor. Comput.
Sci. 82(2), 253–284 (1991)

2. Alpern, B., Schneider, F.B.: Recognizing safety and liveness. Distributed Comput-
ing 2(3), 117–126 (1987)

3. Alur, R., Henzinger, T.A.: Logics and models of real time: A survey. In: Huizing, C.,
de Bakker, J.W., Rozenberg, G., de Roever, W.-P. (eds.) REX 1991. LNCS,
vol. 600, pp. 74–106. Springer, Heidelberg (1992)

4. Arbab, F., Rutten, J.J.M.M.: A coinductive calculus of component connectors. In:
Wirsing, M., Pattinson, D., Hennicker, R. (eds.) WADT 2003. LNCS, vol. 2755,
pp. 34–55. Springer, Heidelberg (2003)

5. Chilton, C., Kwiatkowska, M.Z., Wang, X.: Revisiting timed specification theories:
A linear-time perspective. In: Jurdziński, M., Ničković, D. (eds.) FORMATS 2012.
LNCS, vol. 7595, pp. 75–90. Springer, Heidelberg (2012)

6. David, A., Larsen, K.G., Legay, A., Nyman, U.,Wasowski, A.: Timed I/O automata:
a complete specification theory for real-time systems. In: HSCC, pp. 91–100. ACM
(2010)

7. de Alfaro, L., Henzinger, T.A.: Interface theories for component-based design. In:
Henzinger, T.A., Kirsch, C.M. (eds.) EMSOFT 2001. LNCS, vol. 2211, pp. 148–165.
Springer, Heidelberg (2001)

8. Dı́az, G., Pardo, J.J., Cambronero, M.-E., Valero, V., Cuartero, F.: Verification
of web services with timed automata. Electr. Notes Theor. Comput. Sci. 157(2),
19–34 (2006)

9. Fiadeiro, J.L., Lopes, A.: An interface theory for service-oriented design. In: Gian-
nakopoulou, D., Orejas, F. (eds.) FASE 2011. LNCS, vol. 6603, pp. 18–33. Springer,
Heidelberg (2011)

10. Fiadeiro, J.L., Lopes, A.: Consistency of service composition. In: de Lara, J., Zis-
man, A. (eds.) FASE 2012. LNCS, vol. 7212, pp. 63–77. Springer, Heidelberg (2012)

11. Guermouche, N., Godart, C.: Timed model checking based approach for web ser-
vices analysis. In: ICWS, pp. 213–221. IEEE (2009)

12. Henzinger, T.A., Nicollin, X., Sifakis, J., Yovine, S.: Symbolic model checking for
real-time systems. Inf. Comput. 111(2), 193–244 (1994)

13. Kaynar, D.K., Lynch, N., Segala, R., Vaandrager, F.: The Theory of Timed I/O
Automata. Morgan & Claypool Publishers (2006)

14. Kazhamiakin, R., Pandya, P.K., Pistore, M.: Representation, verification, and com-
putation of timed properties in web. In: ICWS, pp. 497–504. IEEE Computer So-
ciety (2006)

15. Laneve, C., Zavattaro, G.: Foundations of web transactions. In: Sassone, V. (ed.)
FOSSACS 2005. LNCS, vol. 3441, pp. 282–298. Springer, Heidelberg (2005)

16. Lapadula, A., Pugliese, R., Tiezzi, F.: C-clock-WS: A timed service-oriented cal-
culus. In: Jones, C.B., Liu, Z., Woodcock, J. (eds.) ICTAC 2007. LNCS, vol. 4711,
pp. 275–290. Springer, Heidelberg (2007)

17. Ouaknine, J., Worrell, J.: Safety metric temporal logic is fully decidable. In:
Hermanns, H., Palsberg, J. (eds.) TACAS 2006. LNCS, vol. 3920, pp. 411–425.
Springer, Heidelberg (2006)

18. Ponge, J., Benatallah, B., Casati, F., Toumani, F.: Analysis and applications of
timed service protocols. ACM Trans. Softw. Eng. Methodol. 19(4) (2010)

Probabilistic Analysis of the Quality Calculus

Hanne Riis Nielson and Flemming Nielson

DTU Compute, Technical University of Denmark, Denmark

{hrni,fnie}@dtu.dk

Abstract. We consider a fragment of the Quality Calculus, previously
introduced for defensive programming of software components such that
it becomes natural to plan for default behaviour in case the ideal be-
haviour fails due to unreliable communication.

This paper develops a probabilistically based trust analysis support-
ing the Quality Calculus. It uses information about the probabilities that
expected input will be absent in order to determine the trustworthiness
of the data used for controlling the distributed system; the main chal-
lenge is to take accord of the stochastic dependency between some of the
inputs. This takes the form of a relational static analysis dealing with
quantitative information.

1 Introduction

Motivation. Distributed systems often need to continue operating in a meaning-
ful way even when communication links become unreliable. This is particularly
important in embedded systems, control systems and systems providing criti-
cal infrastructure services. Such systems form key components of cyber physical
systems where the consequences of software malfunction may be disastrous. As
an example, if the engine control system of a car breaks down when the car is
driving at high speed, a crash might result.

Unreliability of communication links due to security attacks is relatively well
understood. There are numerous cryptographic protocols for ensuring the confi-
dentiality, integrity and authenticity of data communicated between components
of distributed systems. Also there are many state-of-the-art tools for finding and
eliminating security flaws in such protocols. As an example, forcing a car to
brake because the tyre sensors incorrectly report loss of pressure, can be avoided
using proper cryptographic protocols (although it would add to the cost of the
pressure sensors and transmitters).

Unreliability of communication links due to faults and denial of service attacks
is much harder to guard against. In a cyber physical system it seems hard to
avoid that the communication link can be flooded with irrelevant messages, that
there might be radio interference on the wireless frequency band, or that physical
antennas are shielded from receiving or transmitting their signals. This calls for
utilising programming notations that help to ensure that software systems are
hardened against such attacks on communication. As an example, the braking

D. Beyer and M. Boreale (Eds.): FMOODS/FORTE 2013, LNCS 7892, pp. 258–272, 2013.
c© IFIP International Federation for Information Processing 2013

Probabilistic Analysis of the Quality Calculus 259

system of a car should be designed such that some braking effect continues to
be applied even if no signals are received from the braking sensors about the
spinning (and potential blocking) of the wheels.

We consider here the Quality Calculus [7], that is a recent proposal for how to
enforce robustness considerations on software components executing in an open
and error prone environment: what should the behaviour be when communica-
tion links may have broken down. While this is a first step in this important
direction it is necessary to develop analyses to indicate the trust that we can
have in the overall robustness of the system.

In this paper we develop a novel analysis for supporting the Quality Calcu-
lus. It is a probabilistically based trust analysis that uses information about
the probabilities that expected input will be absent in order to determine the
trustworthiness of the data used for controlling the distributed system; the main
challenge is to take accord of the stochastic dependency between some of the
probabilities determined in the availability analysis.

Overview. A fragment of the Quality Calculus [7] is reviewed in Section 2. Its
distinguishing feature is a binder specifying the inputs to be performed before
continuing. In the simplest case it is an input guard t�?x describing that some
value should be received over the channel t and should be bound to the variable
x; data over t is assumed to have trustworthiness as given by an element � from
some finite lattice of trust values. Increasing in complexity there are binders
of the form &q(t

�1
1 ?x1, · · · , t�nn ?xn) indicating that several inputs are simulta-

neously active and with a quality predicate q that determines when sufficient
inputs have been received to continue. As a consequence, when continuing with
the process after the binder, some variables might not have obtained proper
values as the corresponding inputs have not been performed. To model this the
calculus distinguishes between data and optional data, much like the use of op-
tion data types in programming languages like Standard ML. The construct
case x of some(y) : P1 else P2 will evaluate the variable x; if it evaluates to
some(c) we will execute P1 with y bound to c; if it evaluates to none we will
execute P2.

The main motivating example, an intelligent smart meter, is discussed in Sec-
tion 3. It is a scenario inspired by [8] where a smart meter of a household com-
municates with a service provider to obtain a schedule for operating a number
of appliances taking pricing and availability of energy into account.

In Section 4 we show how to make use of information about the probabilities
that expected input will be absent. We develop a probabilistic trust analysis
associating probability distributions with all program points of interest where
the probabilities indicate the trust level of the optional data. This helps in pin-
pointing those parts of the code where there is a high risk of basing decisions on
less trustworthy data (like default data). The main challenge is to adequately
model when the probabilities are stochastically dependent and when they are
not; in the parlance of static analysis this means that we need to perform re-
lational rather than independent attribute analyses of the Quality Calculus [6]

260 H.R. Nielson and F. Nielson

Table 1. A fragment of the Quality Calculus

P ::= (νc�)P | P1 |P2 | 0 | b.P | t1!t2.P | A
| case x of some(y) : P1 else P2

b ::= &q(t
�1
1 ?x1, · · · , t�nn ?xn)

t ::= y | c | g(t1, · · · , tn)

and our development constitutes an extension of relational analyses to deal with
quantitative information. We conclude and present our outlook on future work
in Section 5.

2 Review of the Quality Calculus

A main purpose of process calculi is to focus on programming abstractions that
may provide insight into the development of distributed systems. The challenge
of concurrency was addressed in early process calculi like CCS [4] and the π-
calculus [5] whereas the challenge of Service Oriented Computation have been
addressed in calculi such as COWS [3], SOCK [2]and CaSPiS [1]. We consider
here a fragment of the Quality Calculus [7] that addresses the challenge of how
to ensure robustness of software systems that execute in an open environment,
that does not always live up to expectations — possibly because anticipated
communications do not take place due to faults or denial of service attacks.

Syntax. We now develop the syntax and semantics of a fragment of the Quality
Calculus by adapting the development of [7]. A system consists a number of
process definitions and a main process:

define A1 � P1; · · · ;An � Pn in P∗ using c�11 , · · · , c�mm

Here Ai is the name of a process, Pi is its body, P∗ is the main process and
c1, · · · , cm is a list of constants. The syntax of processes is given in Table 1. A
process can have the form (νc�)P introducing a new constant c and its scope P ,
it can be a parallel composition P1 |P2 of two processes P1 and P2 and it can be
an empty process denoted 0. An input process is written b.P where b is a binder
(explained below) specifying the inputs to be performed before continuing with
P . An output process has the form t1!t2.P specifying that the value t2 should
be communicated over the channel t1. A process can also be a call A to one of
the defined processes or a case construct (explained below). We shall feel free to
dispense with trailing occurrences of the process 0.

To indicate the trust level of data we use an element � from a finite trust
lattice L and we write ≤ for the ordering on L. As an example, we might use
L = ({l,m,h},≤) to denote that available data is classified into low (l), medium
(m) or high (h) trust and with the obvious linear ordering on these elements.
More refined examples may be obtained by adopting the lattices of Mandatory

Probabilistic Analysis of the Quality Calculus 261

Access Control Policies or the Decentralised Label Model. All constants are
annotated with an element from the trust lattice when they are introduced into
the system (either in the list c�11 , · · · , c�mm or using the syntax (νc�)P); these
annotations are performed by the programmers as part of a code review for
determining the quality of the code.

The main distinguishing feature of the Quality Calculus is the binder b spec-
ifying the inputs to be performed before continuing. In the simplest case it is an
input guard t�?x describing that some value should be received over the channel
t and it will be bound to the variable x; the trust element � indicates the amount
of trust to be placed in data received over this channel. Increasing in complexity
we may have binders of the form &q(t

�1
1 ?x1, · · · , t�nn ?xn) indicating that n inputs

are simultaneously active and a quality predicate q determines when sufficient
inputs have been received to continue.

As an example, q can be ∃ meaning that one input is required, or it can be ∀
meaning that all inputs are required; formally ∃(x1, · · · , xn)⇔ x1 ∨ · · · ∨xn and
∀(x1, · · · , xn) ⇔ x1 ∧ · · · ∧ xn. For more expressiveness we shall allow to write
e.g. [0 ∧ (1 ∨ 2)] for the quality predicate defined by [0 ∧ (1 ∨ 2)](x0, x1, x2) ⇔
x0 ∧ (x1 ∨ x2); this is particularly useful because unlike [7] we do not allow to
nest binders.

As a consequence, when continuing with the process P in b.P some variables
might not have obtained proper values as the corresponding inputs might not
have been performed. To model this we distinguish between data and optional
data, much like the use of option data types in programming languages like Stan-
dard ML. In the syntax we use constants c, functions g (taking data as arguments
and producing data as results), variables y and terms t to denote data and we
use variables x to denote optional data; in particular, the expression some(t)
signals the presence of some data t and none the absence of data. Returning to
the processes, the construct case x of some(y) : P1 else P2 will test whether x
evaluates to some data and if so, bind it to y and continue with P1 and otherwise
continue with P2.

We need to impose a few well-formedness constraints on systems. Names u are
divided into data constants c, data variables y, and optional data variables x.
For a system of the form displayed above we shall require that the main process
P∗ as well as the bodies Pi have no free variables (over data or over optional
data) and that their free constants are among c1, · · · , cm.

Semantics. The semantics consists of a structural congruence and a transition
relation [5]. The structural congruence P1 ≡ P2 is defined in Table 2 and ex-
presses when two processes, P1 and P2, are congruent to each other. It enforces
that processes constitute a monoid with respect to parallel composition and the
empty process and it takes care of the unfolding of calls of named processes
and scopes for constants; here fc(P) is the set of constants occurring free in P .
Finally, it allows replacement in contexts C given by:

C ::= [] | (νc�)C | C |P | P |C

262 H.R. Nielson and F. Nielson

Table 2. Structural congruence of the Quality Calculus

P ≡ P P1 ≡ P2 ⇒ P2 ≡ P1

P1 ≡ P2 ∧ P2 ≡ P3 ⇒ P1 ≡ P3 P |0 ≡ P

P1 |P2 ≡ P2 |P1 P1 |(P2 |P3) ≡ (P1 |P2) |P3

(νc�)P ≡ P if c /∈ fc(P) (νc�11) (νc�22)P ≡ (νc�22) (νc�11)P if c1 	= c2

A ≡ P if A � P (νc�) (P1 | P2) ≡ ((νc�)P1) | P2 if c /∈ fc(P2)

P1 ≡ P2 ⇒ C[P1] ≡ C[P2]

The transition relation
P −→ P ′

describes when a process P evaluates into another process P ′. It is parameterised
on a relation t c describing when a (closed) term t evaluates to a constant c;
the definition of this relation is straightforward and hence omitted. Furthermore,
we shall make use of two auxiliary relations

c1!c2 " b→ b′

for specifying the effect on the binder b of matching the output c1!c2, and

b ::v θ

for recording (in v ∈ {tt,ff}) whether or not all required inputs of b have been
performed as well as information about the composite substitution (θ) that has
been constructed. To formalise this we extend the syntax of binders to include
substitutions as well as individual inputs

b ::= &q(b
′
1, · · · , b′n) with b′ ::= [some(c)/x] | t�?x

where [some(c)/x] is the substitution that maps x to some(c) and leaves all other
variables unchanged. We shall write id for the identity substitution and θ2θ1 for
the composition of two substitutions, so (θ2θ1)(x) = θ2(θ1(x)) for all x.

The first part of Table 3 defines the transition relation P −→ P ′. The first
clause expresses that the original binder is replaced by a new binder recording
the output just performed; this transition is only possible when b ::ff θ holds,
meaning that more inputs are required before proceeding with the continuation
P2. The second clause considers the case where no further inputs are required;
this is expressed by the premise b ::tt θ. In this case the binding is performed by
applying the substitution θ to the continuation process — hence no further inputs
are allowed. The next clauses are straightforward; they define the semantics of
the case construct, how the structural congruence is embedded in the transition
relation and how transitions take place in contexts.

The next clause in Table 3 defines the auxiliary relation c1!c2 " b → b′; here
the idea is simply to record the binding of the value received in the appropriate
position.

Probabilistic Analysis of the Quality Calculus 263

Table 3. Transition rules of the Quality Calculus

t1 c1 t2 c2 c1!c2 � b → b′ b′ ::ff θ

t1!t2.P1 | b.P2 −→ P1 | b′.P2

t1 c1 t2 c2 c1!c2 � b → b′ b′ ::tt θ

t1!t2.P1 | b.P2 −→ P1 | P2θ

case some(c) of some(y) : P1 else P2 −→ P1[c/y]

case none of some(y) : P1 else P2 −→ P2

P1 ≡ P2 P2 −→ P3 P3 ≡ P4

P1 −→ P4

P1 −→ P2

C[P1] −→ C[P2]

t c1

c1!c2 � &q(b1, · · · , t�?x, · · · , bn) → &q(b1, · · · [some(c2)/x], · · · , bn)
t�?x ::ff [none/x] [some(c)/x] ::tt [some(c)/x]

b1 ::v1 θ1 · · · bn ::vn θn

&q(b1, · · · , bn) ::v θn · · · θ1
where v = q(v1, · · · , vn)

The auxiliary relation b ::v θ is defined in the final group of clauses in Table 3.
Here we perform a pass over the (extended) syntax of the binder b, evaluating
whether or not a sufficient number of inputs have been performed and recorded
in v, and computing the associated composite substitution θ.

3 Motivating Example

We now introduce our main motivating example for the analyses to be developed
subsequently. It is a scenario inspired by [8] where a smart meter SM of a house-
hold communicates with a service provider SP to obtain a schedule for operating
a number of appliances taking pricing and availability of energy into account.
Unfortunately, the service provider is subject to denial of service attacks and
therefore the smart meter is equipped with a local computer LC for computing a
schedule to be used whenever the service provider does not produce a schedule.
The schedule computed by the service provider is the preferred one so the smart
meter will use a clock CL to set a waiting time; only if no schedule is received

SP

CL SM LC

Fig. 1. The Smart Meter scenario

264 H.R. Nielson and F. Nielson

define SP � · · · (see text) · · ·
LC � · · · (see text) · · ·
CL � · · · (see text) · · ·
SM � · · · (see text) · · ·

in SP | LC | Clock | SM
using requesth, reqh, repl, seth, tickh, installh,�h

Fig. 2. The Smart Meter system

from the service provider within the waiting time, the smart meter will use the
locally computed schedule. The overall scenario is illustrated in Figures 1 and
2 and we shall now describe the individual processes in more detail; we shall
feel free to use a polyadic version of the calculus when it eases the presentation
and also to use basic actions delay and wait for indicating that time passes (as
explained below) but otherwise having no effect in the semantics.

The service provider SP is defined by:

SP � &∃(request
h?(xixr)). case xi of some(yi) :

case xr of some(yr) : delayg.yi!(global(yr)).SP
else SP

else SP

The service provider first obtains a request of xr resources from a smart meter
identifying itself as xi; the annotation h indicates that the channel request carries
information of high trust level. The next three lines express that SP after some
delay computes a schedule using the function global (taking data as input and
returning data) and sends it to the smart meter before recursing. The case
constructs ensure that the proper data is extracted and supplied to the function;
indeed the two else branches are not reachable.

The local computer LC is similar to the service provider except that it makes
use of the channels req and rep for obtaining the request and returning the reply:

LC � &∃(req
h?xr). case xr of some(yr) : delayl.rep!local(yr).LC else LC

It uses the function local (taking data as input and returning data) to compute
the schedule; once more the case construct is used to extract the actual request
and the else branch is in fact not reachable.

As already mentioned the smart meter will put a limit on how long time
it will wait for a schedule and the process CL below models a simple clock
communicating over the channels set and tick:

CL � &∃(set
h?xt). case xt of some(yt) : wait(c).tick!�.CL else CL

The idea is that the input on set starts the clock and the output of the constant
� on the channel tick indicates that the prescribed waiting time c has passed.

Probabilistic Analysis of the Quality Calculus 265

Finally, let us consider the main control process SM for the smart meter:

SM � (νimg) (νdh) request!(igd). req!d. set!�.
&[0∧(1∨2)](tick

h?xt, i
m
g ?xg, rep

l?xl).
case xg of some(yg) :

1install!yg.SM
else case xl of some(yl) :

2install!yl.SM
else 30

For later reference we have added labels to three subprocesses. The first line
issues two requests for a schedule, one to the service provider and one to the
local computer and it also starts the clock. The binder of the second line expresses
that the time must have passed and that at least one schedule must have been
received before continuing. Note that it is indeed possible for both schedules
to arrive before the time has passed and it is also possible that no schedule
has arrived when the time has passed in which case the smart meter continues
waiting. The third line will give priority to the global schedule (the process
labelled 1) whereas in the absence of a global schedule the fourth line will install
the local schedule before recursing (the process labelled 2). As in the previous
examples the case constructs are used to extract the required data and in fact
the final else branch (labelled 3) is not reachable.

Discussion. As an alternative we might use the binder

&[0∨(1∧2)](tick
h?xt, i

m

g ?xg, rep
l?xl)

in line 2. Then we will stop waiting for schedules when the time bound has been
met but in the case where both schedules have been received it is possible to
continue before the specified time has passed. Changing the binder to

&[0∨(1∨2)](tick
h?xt, i

m

g ?xg, rep
l?xl)

means that we proceed as soon as one of the schedules has arrived or the time
has passed; as we shall see later this is the least attractive of the three models
as concerns the robustness of the smart meter.

4 Trust Analysis

The Quality Calculus allows to describe which data is needed before continuing
but given the expressiveness of the quality predicates one cannot be sure what
data has actually been received. The subsequent process is able to determine
this by testing for whether given data has actually been received and decisions
can be made accordingly. Some of these decisions may have high trustworthiness
whereas others may have low trustworthiness. In order to evaluate the overall
system it is therefore important

– to be able to annotate the binders with information about the probability
distribution over the trustworthiness of data actually received, and

– to be able to propagate these trust annotations throughout the process.

266 H.R. Nielson and F. Nielson

Trust Annotations. To annotate the binders we change the syntax of binders
from &q(t

�1
1 ?x1, · · · , t�nn ?xn) to &π

q (t
�1
1 ?x1, · · · , t�nn ?xn). Here

π ∈ D({x1, · · · , xn} → L⊥)

is a probability distribution indicating the probability of the various inputs hav-
ing been received where ⊥ denotes the absence of input and L⊥ is the lifted
trust lattice obtained from L by adding ⊥ as the new least element. Note that
the distribution assigns probabilities to tuples of inputs rather than to individ-
ual inputs because the quality predicates may be such that the various inputs
are not stochastically independent — this is where our development will con-
stitute a generalisation of relational static analyses to take care of quantitative
information (in this case the probabilities).

One way to obtain the probability distribution is to run a given process for
a while and to sample the actual distribution of inputs at the binders. Another
way is to assume that the delays are governed by memoryless processes started
just before the binders and then to use stochastic techniques to estimate the
distributions. We shall illustrate the latter approach through a few examples.

Example 1. Let us consider the process SM of Section 3 and let us assume that
the processes computing the global and local schedules are exponentially dis-
tributed with rates λg and λl, respectively. We want to determine the distribu-
tion π that should be used in the following binder:

&π
[0∧(1∨2)](tick

h?xt, i
m

g ?xg, rep
l?xl)

Let us assume that λg = 0.2 and λl = 0.5 and that the waiting time (c) is 5 time
units. One can show that

π([xt �→ h, xg �→ m, xl �→ l]) = 0.580
π([xt �→ h, xg �→ m, xl �→ ⊥] = 0.061
π([xt �→ h, xg �→ ⊥, xl �→ l] = 0.359

and π(σ) = 0 in all other cases.

Example 2. Let us next consider the variant of SM using the binder

&π
[0∨(1∧2)](tick

h?xt, i
m

g ?xg, rep
l?xl)

and let us, as before, assume that the processes computing the global and local
schedules are exponentially distributed with rates λg and λl, respectively. Taking
λg = 0.2 and λl = 0.5 we get the following distribution when the waiting time
is 5 time units:

π([xt �→ ⊥, xg �→ m, xl �→ l]) = 0.580
π([xt �→ h, xg �→ m, xl �→ ⊥]) = 0.052
π([xt �→ h, xg �→ ⊥, xl �→ l]) = 0.338
π([xt �→ h, xg �→ ⊥, xl �→ ⊥]) = 0.030

and π(σ) = 0 in all other cases. As an example π([xt �→ h, xg �→ m, xl �→ l]) = 0
because it would correspond to the event that one of xg and xl is received before

Probabilistic Analysis of the Quality Calculus 267

Table 4. Trust Analysis of the Quality Calculus

� 1, π∗ @P∗ � 1, π∗ @P1 · · · � 1, π∗ @Pn

� p, π@(νc�)P

� p, (π|�{c})⊗ δ[c �→�]@P

� p, π@(P1 | P2)

� p, π@P1

� p, π@(P1 | P2)

� p, π@P2

� p, π@(b.P) � b � πb

� p, (π|�bv(b))⊗ πb @P

� p, π@(t1!t2.P)

� p, π@P

� p, π@(case x of some(y) : P1 else P2)

� p · π[x
=⊥], π↓[x
=⊥][y := x] @P1

if π[x
=⊥] 	= 0

� p, π@(case e of some(y) : P1 else P2)

� p · π[x=⊥], π↓[x=⊥]@P2

if π[x=⊥] 	= 0

time has passed and the other is received at the exact moment that time passes;
while this is a possible event it occurs with probability 0.

Example 3. Changing the binder to

&π
[0∨(1∨2)](tick

h?xt, i
m

g ?xg, rep
l?xl)

gives rise to the following distribution using the same parameters as above:

π([xt �→ ⊥, xg �→ m, xl �→ ⊥]) = 0.277
π([xt �→ ⊥, xg �→ ⊥, xl �→ l]) = 0.693
π([xt �→ h, xg �→ ⊥, xl �→ ⊥]) = 0.030

and π(σ) = 0 in all other cases.

We shall find it helpful to use the notation " &π
q (t

�1
1 ?x1, · · · , t�nn ?xn) � π in

order to extract the probability annotation from the binder.

Trust Propagation. We now consider how to propagate the trust information
from the binders throughout the entire system. The judgements of our analysis
of processes P take the form

" p, π@P

Here p is the probability that we will reach this occurrence of the process P and
π is a distribution from D(V → L⊥) where the free names of P are contained in
the set V (determined by the detailed definition of the analysis). The mappings
of V → L⊥ assign trust levels to the free names of P and the idea is that π
specifies the distribution of these mappings when P is reached. The mappings
σ : V → L⊥ will ensure that constants c and variables over data y only take
values in L.

268 H.R. Nielson and F. Nielson

A mapping σ : V → L⊥ gives rise to distribution δσ in D(V → L⊥), called
the Dirac distribution, by assigning it the probability 1 and all other mappings
the probability 0:

δσ(σ
′) =

{
1 if σ = σ′

0 otherwise

We shall need a number of operations on D(V → L⊥). The first is a projection
on a subset U ⊆ V of names, written π |U . Given a distribution π in D(V → L⊥)
it will return a distribution π |U in D(U → L⊥) and is defined by

(π |U)(σ) = Σ(σ′ s.t. σ=σ′|U)π(σ
′)

Here σ′ |U is the restriction of the mapping σ′ : V → L⊥ to the domain U and
we thus summarise all the probabilities associated with mappings that are equal
when projected on U . We shall write π|�U as a shorthand for π |V \U , that is for
projection on the complement of U :

(π|�U)(σ) = Σ(σ′ s.t. σ=σ′|V \U)π(σ
′)

In Table 4 we shall use this operator when binding new constants in (νc�)P and
new variables in b.P — the point being that old instances of these name will no
longer be in scope.

The next operation is a product operation; it takes two distributions π1 :
D(V1 → L⊥) and π2 : D(V2 → L⊥) defined over disjunct sets of names (so
V1∩V2 = ∅) as arguments and constructs a distribution π1⊗π2 in D((V1∪V2) →
L⊥). It is given by

(π1 ⊗ π2)(σ) = π1(σ |V1) · π2(σ |V2)

Thus we split the mapping into two parts and multiply the probabilities obtained
from the two distributions. We shall use this operation when combining two
stochastically independent distributions. For the construct (νc�)P we take the
product with the Dirac distribution δ[c �→�] and in the case of the input binder
b.P we take the product with the distribution πb obtained from the binder b
using the notation " &π

q (t
�1
1 ?x1, · · · , t�nn ?xn) � π.

The next operation is a simple lookup operation: given a distribution π :
D(V → L⊥), a name u and a trust level � we shall be interested in the probability
π[u=�] for u having the trust level �:

π[u=�] = Σ(σ s.t. σ(u)=�)π(σ)

In a similar way we can define π[u
=�] as the probability that u does not have the
trust level �:

π[u
=�] = Σ(σ s.t. σ(u)
=�)π(σ)

It is easy to see that π[u
=�] = 1−π[u=�]. These operations are used in the analysis
of the construct case x of some(y) : P1 else P2; here π[x
=⊥] is the probability that
the first branch is taken and similarly π[x=⊥] is the probability that the second
branch is taken.

Probabilistic Analysis of the Quality Calculus 269

We shall also introduce a selection operation that given a distribution π :
D(V → L⊥), a name u and a trust level � will construct a new distribution
π↓[u
=�] of D(V → L⊥) that gives 0 for all mappings σ with σ(u) = � and rescales
the remaining probabilities. The operation is only defined when π[u
=�] �= 0:

(π↓[u
=�])(σ) =

{
π(σ)
π[u�=�]

if σ(u) �= �
0 if σ(u) = �

In a similar way we can define the operation π↓[u=�] that gives 0 for all mappings
σ with σ(u) �= � and rescales the remaining probabilities. This operation is only
defined when π[u=�] �= 0:

(π↓[u=�])(σ) =

{
0 if σ(u) �= �
π(σ)
π[u=�]

if σ(u) = �

These operations are used for the construct case x of some(y) : P1 else P2. Here
the distribution for the first branch will be π↓[x
=⊥] assuming that it might be
taken, that is, that π[x
=⊥] �= 0. The distribution for the second branch is π↓[x=⊥],
again under the assumption that it might be taken, that is, that π[x=⊥] �= 0.

Finally, we need an operation for the extension of a distribution π : D(V →
L⊥) with a new name u′ /∈ V that is stochastically dependent on a name u ∈ V
in the sense that u and u′ have the same trust level. The resulting distribution
π[u′ := u] is in D((V ∪ {u′})→ L⊥) and it is defined by

(π[u′ := u])σ =

{
π(σ|�{u′}) if σ(u) = σ(u

′)

0 otherwise

This operation is used in the analysis of the case construct where the distribution
for the first branch needs to be extended with information about the variable y
being bound by the construct so the distribution will be (π↓[x
=⊥])[y := x].

We now have the machinery needed for the definition of " p, π@P in Table 4.
We analyse the main process and all bodies with the initial choice of p = 1 and
π = π∗ where the list of constants c�11 , · · · , c�mm in the system definition in Section
2 gives rise to defining π∗ = δ[c1 �→�1,···,cm �→�m]. The choice of p = 1 reflects that
all probabilities of reaching program points are conditional on the main process
being called as well as the bodies. The remaining clauses were explained when
introducing the auxiliary notation.

The analysis has been implemented using Standard ML. For the examples
shown here it suffices to represent distributions π as lists of pairs (σ, p) where
σ is a mapping and p is a non-zero probability. A number of improvements
are possible. We may use the fact that variables in the domain of distributions
are often stochastically independent (as when introduced in different binders)
and hence distributions could be represented as products of distributions over
disjoint domains. Also we may use symbolic techniques (like Binary Decision
Diagrams) to represent the distributions that cannot be split into the product
of distributions over simpler domains.

270 H.R. Nielson and F. Nielson

Querying the Analysis. We shall give two examples of how information about
outputs can be extracted from the analysis.

First let us consider an output of the form c!t and assume we are interested in
the trust levels of the values being communicated over the channel c. Furthermore
let us assume that the analysis gives us a probability p and a distribution π
satisfying " p, π@ c!t.P . This means that the program point of interest is reached
with probability p and furthermore, the distribution will be π. The trust levels
of the values being communicated over c can be represented as a distribution ξπ
in D(L) and it can be defined by:

ξπ(�) = Σ(σ s.t. σ(t)=�)π(σ)

Here σ(t) is the trust level of the term t; for constants and variable this is straight-
forward as the information is available in σ whereas for terms g(t1, · · · , tn) we
need to specify how to compute the resulting trust level from the trust levels of
the arguments. So we shall assume that we have interpretations

〈〈g〉〉 : L × · · · × L → L

specifying this; as an example we might take 〈〈g〉〉(�1, · · · , �n) = �1�· · ·� �n for �
being the greatest lower bound of the trust lattice L and reflecting that a result
is no more trustworthy than any of the arguments used to compute it.

Next let us consider all outputs of the form c!· and let us make two simplifying
assumptions. The first is that the constant c is always explicit (i.e. does not arise
in the form of some y!· where y is eventually replaced by c). The other is that
all occurrences of c!· occur in different branches of the case constructs and that
in particular no occurrence of c!· prefixes another. We may then calculate the
distribution Ξc in D(L⊥) of the trust levels of data communicated over c. For a
trust level � ∈ L we define

Ξc(�) = Σ�p,π@ c!t.P

(
Σσ s.t. σ(t)=�p · π(σ)

)
where the first sum is over all occurrences of " p, π@ c!t.P in the analysis of the
overall system of interest. For the trust level ⊥ we define

Ξc(⊥) = 1−Σ�∈LΞc(�)

so as to reflect the probability that no communication over c is taking place.

Analysing the Motivating Example. We have used our implementation to analyse
the smart meter example in various scenarios.

Let us first consider Example 1 where the binder used in the definition of
SM is &π

[0∧(1∨2)](tick
h?xt, i

m
g ?xg, rep

l?xl) and where the processes computing
the schedules are exponentially distributed with rates λg = 0.2 and λl = 0.5.
This corresponds to a scenario where the service provider is somewhat slower to
deliver a schedule than the local computer.

Using the trust analysis we can then compute the probability Ξinstall of the
smart meter installing a schedule computed by the service provider, a locally

Probabilistic Analysis of the Quality Calculus 271

computed schedule or no schedule at all; this corresponds to combining the
analysis results for the program points labelled 1, 2, and 3 in the process SM in
Section 3. The result is Ξinstall(h) = 0, Ξinstall(m) = 0.64, Ξinstall(l) = 0.36, and
Ξinstall(⊥) = 0. This shows that we are always sure to get a schedule installed
and in 64% of the cases it is the global schedule and in the remaining 36% it
is the local schedule. The information about Ξinstall(h), Ξinstall(m), and Ξinstall(l)
originate from the points labelled 1 and 2 in the code for SM in Section 3, whereas
the information about Ξinstall(⊥) originates from the point labelled 3.

Let us next consider Example 2 where the binder used in the definition of SM
is &π

[0∨(1∧2)](tick
h?xt, i

m
g ?xg, rep

l?xl) and let us repeat the experiments using

the same parameters as above. The result is Ξinstall(h) = 0, Ξinstall(m) = 0.63,
Ξinstall(l) = 0.34, and Ξinstall(⊥) = 0.03. This shows that we can no longer be
sure to get a schedule installed but that the global schedule is still much more
likely than the local schedule.

Finally, let us consider Example 3 where the binder used in the definition of SM
is &π

[0∨(1∨2)](tick
h?xt, i

m
g ?xg, rep

l?xl) and let us repeat the experiments using

the same parameters as above. The result is Ξinstall(h) = 0, Ξinstall(m) = 0.28,
Ξinstall(l) = 0.69, and Ξinstall(⊥) = 0.03. This shows that the risk of getting no
schedule has not changed but that it is much more likely to be the local schedule
than the global schedule.

5 Conclusion

Software is increasingly being used in malign rather than benign environments
and this calls for adopting a more defensive programming style. Existing security
errors are to a large extent due to an over-optimistic programming style where
programmers focus on giving the software as much functionality as possible. The
remedy is to adopt a more defensive programming style where programmers focus
on avoiding errors that can be caused by external components — in particular,
due to communication becoming unreliable.

There are numerous examples of software systems being developed in one
context and then ported to another. In this process the threat scenario might
change and changes to the software may be called for. As an example, the de-
struction of the Ariane 5 rocket on its maiden voyage was due to the reuse of
software from Ariane 4 that suddenly operated outside of the previous design
parameters, thereby causing a floating point overflow disrupting the safe control
of the rocket.

We believe that suitable programming notations form a key ingredient in mo-
tivating programmers to produce more robust code. We also believe that such
programming notations can be studied in a pure form, in the context of process
calculi, as done in the present paper. In this paper the focus has solely been
on the consequences of disruption to the communication links. This paves the
way for dialects of main stream programming languages enforcing such robust-
ness considerations and taking into account also the need to use cryptographic
communication protocols to ensure confidentiality, integrity and authenticity of
communication.

272 H.R. Nielson and F. Nielson

The main technical contribution of this paper is the development of a proba-
bilistic trust analysis able to identify the extent to which the robust programming
style has been adhered to.

The probabilistically based trust analysis indicates the places where decisions
are made based on data of limited trustworthiness. It amounts to propagating
the probability distributions from the binders throughout the program. This is
done in such a way that the stochastic dependence between input variables is
preserved and properly conditioned when passing through case statements. A
naive implementation of probability distributions may lead to state explosion;
more efficient methods may utilise symbolic data structures (like Binary Decision
Diagrams) and sparse array techniques similar to those used in model checkers
for Discrete Time Markov Chains.

In our view, this analysis forms the basis for supporting a new discipline
of robust programming. We believe that it will be able to address the risks
posed by porting software from one environment to another; by recalculating
the probabilities one can better determine whether or not the software continues
to deal appropriately with risks and threats in the new application environment.

Acknowledgement. The research has been supported by MT-LAB, a VKR
Centre of Excellence for the Modelling of Information Technology, and by
IDEA4CPS, funded by the Danish Foundation for Basic Research under grant
DNRF86-10.

References

1. Bruni, R.: Calculi for service-oriented computing. In: Bernardo, M., Padovani, L.,
Zavattaro, G. (eds.) SFM 2009. LNCS, vol. 5569, pp. 1–41. Springer, Heidelberg
(2009)

2. Guidi, C., Lucchi, R., Gorrieri, R., Busi, N., Zavattaro, G.: Sock: A calculus for
service oriented computing. In: Dan, A., Lamersdorf, W. (eds.) ICSOC 2006. LNCS,
vol. 4294, pp. 327–338. Springer, Heidelberg (2006)

3. Lapadula, A., Pugliese, R., Tiezzi, F.: A calculus for orchestration of web services.
In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 33–47. Springer, Heidelberg
(2007)

4. Milner, R.: A Calculus of Communication Systems. LNCS, vol. 92. Springer,
Heidelberg (1980)

5. Milner, R.: Communicating and Mobile Systems: the Pi-Calculus. Cambridge Uni-
versity Press (1999)

6. Nielson, F., Nielson, H.R., Hankin, C.: Principles of program analysis (2. corr. print).
Springer (2005)

7. Nielson, H.R., Nielson, F., Vigo, R.: A Calculus for Quality. In: Păsăreanu, C.S.,
Salaün, G. (eds.) FACS 2012. LNCS, vol. 7684, pp. 188–204. Springer, Heidelberg
(2013)

8. Wang, C., de Groot, M.: Managing end-user preferences in the smart grid. In: Pro-
ceedings of the 1st International Conference on Energy-Efficient Computing and
Networking, e-Energy 2010, pp. 105–114. ACM (2010)

May-Happen-in-Parallel Based Deadlock

Analysis for Concurrent Objects�

Antonio E. Flores-Montoya1, Elvira Albert2, and Samir Genaim2

1 Technische Universität Darmstadt (TUD), Germany
2 Complutense University of Madrid (UCM), Spain

Abstract. We present a novel deadlock analysis for concurrent objects
based on the results inferred by a points-to analysis and a may-happen-
in-parallel (MHP) analysis. Similarly to other analysis, we build a depen-
dency graph such that the absence of cycles in the graph ensures deadlock
freeness. An MHP analysis provides an over-approximation of the pairs
of program points that may be running in parallel. The crux of the
method is that the analysis integrates the MHP information within
the dependency graph in order to discard unfeasible cycles that oth-
erwise would lead to false positives. We argue that our analysis is more
precise and/or efficient than previous proposals for deadlock analysis of
concurrent objects. As regards accuracy, we are able to handle cases that
other analyses have pointed out as challenges. As regards efficiency, the
complexity of our deadlock analysis is polynomial.

1 Introduction

The actor-based paradigm [1] on which concurrent objects are based has evolved
as a powerful computational model for defining distributed and concurrent sys-
tems. In this paradigm, actors are the universal primitives of concurrent compu-
tation: in response to a message, an actor can make local decisions, create more
actors, send more messages, and determine how to respond to the next message
received. The underlying concurrency model of actor languages forms the basis
of the programming languages Erlang [3] and Scala [9] that have recently gained
in popularity, in part due to their support for scalable concurrency. There are
also implementations of actor libraries for Java.

Concurrent objects are actors which communicate via asynchronous method
calls. Each concurrent object is a monitor and allows at most one active task
to execute within the object. Scheduling among the tasks of an object is co-
operative (or non-preemptive) such that a task has to release the object lock
explicitly. Each object has an unbounded set of pending tasks. When the lock
of an object is free, any task in the set of pending tasks can grab the lock and

� This work was funded in part by the Information & Communication Technologies
program of the European Commission, Future and Emerging Technologies (FET),
under the ICT-231620 HATS project, and by the Spanish projects TIN2008-05624,
TIN2012-38137, PRI-AIBDE-2011-0900 and S2009TIC-1465 PROMETIDOS-CM.

D. Beyer and M. Boreale (Eds.): FMOODS/FORTE 2013, LNCS 7892, pp. 273–288, 2013.
c© IFIP International Federation for Information Processing 2013

274 A.E. Flores-Montoya, E. Albert, and S. Genaim

start to execute. The synchronization between the caller and the callee methods
is performed when the result is strictly necessary. So-called future variables are
used to decouple method invocation and returned value [6]. The access to values
of future variables may require blocking the object and waiting for the value
to be ready. Thus, blocking and non-blocking asynchronous calls coexist in our
framework.

In general, deadlock situations are produced when a concurrent program
reaches a state in which one or more tasks are waiting for each other termination
and none of them can make any progress. In the concurrent objects paradigm,
the combination of non-blocking and blocking mechanisms to access futures may
give rise to complex deadlock situations and a rigorous formal analysis is required
to ensure deadlock freeness. Similarly to other approaches, our analysis is based
on constructing a dependency graph which, if acyclic, guarantees that the pro-
gram is deadlock free. The construction of the graph is done by adding three
types of edges between tasks and objects: (1) task-task dependency: it indicates
that a task is waiting to get a future that another task has to calculate, (2)
task-object dependency: a task is waiting to get its object’s lock, (3) object-task
dependency: a task is waiting for a future while holding the lock of the object
and therefore, making the whole object wait. These dependencies capture all
possible deadlock situations that might occur in concurrent objects.

In order to construct the dependency graph, we first perform a points-to anal-
ysis [13] which identifies the set of objects and tasks created along any execution.
Given this information, the construction of the graph is done by a traversal of
the program in which we detect the above types of dependencies. However, with-
out further temporal information, our dependency graphs would be extremely
imprecise. The crux of our analysis is the use of a precise may-happen-in-parallel
(MHP) analysis [2]. Essentially, we label the dependency graph with the program
points of the synchronization instructions that introduce the dependencies and,
thus, that may potentially induce deadlocks. In a post-process, we discard un-
feasible cycles in which the synchronization instructions involved in the circular
dependency may not happen in parallel. We also describe several extensions to
the basic framework to: (1) improve the accuracy of programs that create objects
(or tasks) inside loops that are challenging for deadlock analysis, (2) handle con-
current object groups and (3) allow the use of future variables as fields. We have
implemented our analysis and applied it to formally prove deadlock freeness on
an industrial case study developed by Fredhopper R©.

2 Language

As in the actor-model, the main idea is that control and data are encapsulated
within the notion of concurrent object. This section presents the syntax and
semantics of the concurrent objects language, which is basically the same as
[11,8,4]. A program consists of a set of classes, each of them can define a set of
fields, and a set of methods. The notation T̄ is used as a shorthand for T1, ...Tn,
and similarly for other names. The set of types includes the classes and the set

May-Happen-in-Parallel Based Deadlock Analysis for Concurrent Objects 275

of future variable types fut(T). Primitive types and pure expressions pu are
omitted for simplicity. The abstract syntax of class declarations CL, method
declarations M , types T , variables V , and statements s is:

CL ::=class C {T̄ f̄ ; M̄} M ::=T m(T̄ x̄){s; return p; } V ::=x | this.f
s ::=s; s | x = e | V = x | await V ? | if p then s else s | while p do s
e ::=new C(V̄) | V !m(V̄) | V.get | pu T ::=C |fut(T) | Unit

Observe that each object encapsulates a local heap which is not accessible from
outside this object, i.e., fields are always accessed using the this object, and any
other object can only access such fields through method calls. We assume that
every method ends with a return instruction. We also assume that the program
includes a method called main without parameters, which does not belong to any
class and has no fields, from which the execution will start. The concurrency
model is as follows. Each object has a lock that is shared by all the tasks that
belong to the object. Data synchronization is by means of future variables: An
await y? instruction is used to synchronize with the result of executing task
y=x!m(z̄) such that the await y? is executed only when the future variable y is
available (i.e., the task is finished). In the meantime, the object’s lock can be
released and some other pending task on that object can take it. In contrast, the
expression y.get blocks the object (no other task of the same object can run)
until y is available, i.e., the execution of m(z̄) on x is finished.

W.l.o.g, we assume that all methods in a program have different names. As
notation, we use body(m) for the sequence of instructions defining method m.

2.1 Operational Semantics

A program state S is a set S = Ob ∪ T where Ob is the set of all created objects
and, and T is the set of tasks (including active, pending and finished tasks). The
associative and commutative union operator on states is denoted by white-space.
An object is a term ob(o, a, lk) where o is the object identifier, a is a mapping
from the object fields to their values, and lk the identifier of the active task that
holds the object’s lock or ⊥ if the object’s lock is free. Only one task can be
active (running) in each object and has its lock. All other tasks are pending to
be executed, or finished if they terminated and released the lock. A task is a
term tsk(t ,m, o, l, s) where t is a unique task identifier, m is the method name
executing in the task, o identifies the object to which the task belongs, l is
a mapping from local (possibly future) variables to their values, and s is the
sequence of instructions to be executed or s = ε(v) if the task has terminated
and the return value v is available. Created objects and tasks never disappear
from the state.

The execution of a program starts from the initial state S0 = {obj(0, f, 0)
tsk(0,main, 0, l, body(main))} where we have an initial object with identifier 0
executing task 0. f is an empty mapping (since main had no fields), and l maps
local reference and future variables to null (standard initialization). The exe-
cution proceeds from S0 by applying non-deterministically the semantic rules

276 A.E. Flores-Montoya, E. Albert, and S. Genaim

depicted in Fig. 1 (the execution of sequential instructions is standard and thus
omitted). The operational semantics is given in a rewriting-based style where a
step is a transition of the form a b → b ′ c in which: dotted underlining indicates
that term b is rewritten to b′; we look up the term a but do not modify it and
hence it is not included in the subsequent state; and term c is newly added to
the state. Transitions are applied according to the rules as follows.

New Object: an active task t in object o creates an object o′ of type B, its
fields are initialized with default values (init atts) and o′ is introduced to the
state with a free lock. Observe that as the previous object o is not modified, it
is not included in the resulting state. Activate: A non finished task can obtain
its object’s lock if it is free. Async Call: A method call creates a new task
(the initial state is created by buildLocals) with a fresh task identifier t1 which
is associated to the corresponding future variable y in l′. Await1: If the future
variable we are awaiting for points to a finished task, the await can be completed.
The finished task t1 is only looked up but it does not disappear from the state
as its return value may be needed later on. Await2: Otherwise, the task yields
the lock so that any other task of the same object can take it. Return: When
return is executed, the return value is stored in v so that it can be obtained by
the future variables that point to that task. Besides, the lock is released and will
never be taken again by that task. Consequently, that task is finished (marked
by adding the instruction ε(v)). Get: A x = y.get instruction waits for the future
variable but without yielding the lock. Then, it stores the value associated with
the future variable y in x.

3 The Notion of Deadlock

In this section, we formalize the notion of deadlock in concurrent objects in the
context of our language. Our notion of deadlock is equivalent to the extended
deadlock of [4], which corresponds to the classical definition of deadlock by [10].
As in [4], we distinguish two situations which are instrumental to define the
notion of deadlock: a waiting task which might be waiting to obtain the lock
of the object, or that it is waiting to read a future (using await or get) that
other task has to calculate, and a blocking task which is waiting to read a future
and holds the lock, i.e., using get. We refer to the object in which a blocking
task is executing as blocked object. Possible deadlocks will appear as different
combinations of the two synchronization primitives in our language, await y? and
y.get. Detecting deadlocks in a language using such mechanisms is challenging
because of potential inconsistencies between synchronization points in separate,
yet cooperating, methods, as we show in the following example.

Example 1. Fig. 2 defines several classes (A, B, C, Cl and Sr) with methods that
feature typical synchronization patterns. For simplicity, we omit local variables
declarations and, at some points, we do not assign the result of y.get or method
calls to any variable. We illustrate the following types of deadlock: Selflock
(main1). In this case, there is only object a which introduces a selflock. The call
at L3 to blk1 performs a call to empt on the same object a and gets blocked at

May-Happen-in-Parallel Based Deadlock Analysis for Concurrent Objects 277

(New-Object)

fresh(o′) , l′ = l[x → o′], a′ = init atts(B, z)

ob(o, a, t) tsk(t , m,o, l, {x = new B(z); s})
. .

→ tsk(t ,m, o, l, s)
.

ob(o′, a′,⊥)

(activate)

s 	= ε(v)

ob(o, a,⊥)
.

tsk(t ,m, o, l, s)

→ ob(o, a, t)
.

(Async-Call)

l(x) = o1, o1 	= null, fresh(t1), l′ = l[y → t1], l1 = buildLocals(z̄,m)

ob(o, a, t) tsk(t , m,o, l, {y = x!m1(z); s}). .
→ tsk(t ,m, o, l′, s)

.
tsk(t1,m1, o1, l1, body(m1))

(await1)

l(y) = t1
ob(o, a, t) tsk(t , m,o, l, {await y?; s})

. .
tsk(t1, m1, o1, l1, ε(v))
→ tsk(t ,m, o, l, s)

.

(await2)

l(y) = t1, s1 	= ε(v)

ob(o, a, t)
.

tsk(t ,m, o, l, {await y?; s})
tsk(t1, m1, o1, l1, s1))

→ ob(o, a,⊥)
.

(return)

v = l(x)

ob(o, a, t)
.

tsk(t ,m, o, l, {return x; s})
. .

→ ob(o, a,⊥)
.

tsk(t , m, o, l, ε(v))
.

(get)

l(y) = t1, l′ = l[x → v]

ob(o, a, t) tsk(t , m,o, l, {x=y.get; s})
. .

tsk(t1,m1, o1, l1, ε(v))
→ tsk(t ,m, o, l′, s)

.

Fig. 1. Summarized semantics of concurrent objects

L27 waiting for its result. The call to empt on a will never be executed. Here, task
blk1 is blocking, task empt is a waiting task, and the object a is blocked. Mutual
lock (main2). Two objects a and b are created. They both execute task blk1

which makes a call to the other object and waits for the result at L27 without
releasing the lock. If both tasks execute in parallel, there will be a deadlock (the
two tasks are blocking and the objects are blocked). Mutual indirect (main3).
Object a starts to execute blk2 and object b will execute blk3. In b, blk3 calls wait
on c. Then, b gets blocked until wait on c finishes. Now, wait on c calls empt on
a and waits for its termination without holding the lock of c (waiting task). If,
in the meantime, blk2 was executing in a and called empt on b blocking object a,
then empt will never start to execute as b is blocked in blk3. In summary, objects
a, b are blocked, tasks blk2 and blk3 are respectively responsible for blocking the
objects, task wait on c and task empt on a are waiting tasks.MHP (main4). There
is no deadlock in the execution of main4 since it is guaranteed that the execution
of acc in L66 will start only after the execution of go at L64 has finished. In
particular, when the execution of acc blocks the srv object at L57 waiting for
termination of rec it is guaranteed that srv is no longer blocked. We will see that
the inference of this information requires the enhancement of the analysis with
temporal MHP information.

The following state dependencies are equivalent to the notion of extended dead-
lock defined in [4] and classical deadlock [10], but adapted to our syntax.

278 A.E. Flores-Montoya, E. Albert, and S. Genaim

1 main1() {
2 a=new A();
3 a!blk1(a);
4 }
5 main2() {
6 a=new A();
7 b=new A();
8 a!blk1(b);
9 b!blk1(a);

10 }
11 main3() {
12 a=new A();
13 b=new B();
14 c=new C();
15 b!blk3(c,a);
16 a!blk2(b);
17 }

18

19 main4() {
20 Sr s=new Sr();
21 s!go();
22 }
23

24 class A {
25 Unit blk1(A a) {
26 f=a!empt();
27 f.get;
28 }
29 Unit blk2(B b) {
30 f=b!empt();
31 f.get;
32 }
33 Unit empt() {}
34 }

35 class B {
36 Unit blk3(C c,A a) {
37 f=c!wait(a);
38 f.get;
39 }
40 Unit empt() {}
41 }
42

43 class C {
44 Unit wait(A a) {
45 f=a!empt();
46 await f?;
47 }
48 }
49

50 class Cl {
51 Sr srv;

52 Unit go(Sr s) {
53 srv=s;
54 }
55 Unit acc() {
56 f=srv!rec("...");
57 f.get;
58 }
59 }
60 class Sr {
61 Unit rec(Str m){}
62 Unit go() {
63 c=new Cl();
64 f=c!go(this);
65 f.get;
66 c!acc();
67 }
68 }

Fig. 2. Simple examples featuring different types of deadlock

Definition 1 (state dependencies). Given a program state S = Ob ∪ T, we
define its dependency graph GS whose nodes are the existing object and task
identifiers and whose edges are defined as follows:

1. Object-Task: o → t2 iff there is an object obj(o, a, t) ∈ Ob and tasks
tsk(t ,m, o, l, {x = y.get; s}), tsk(t2,m, o2, l2, s2) ∈ T where l(y) = t2 and
s2 �= ε(v).

2. Task-Task: t1 → t2 iff there are two tasks tsk(t1,m1, o1, l1, {sync; s}),
tsk(t2,m2, o2, l2, s2) ∈ T where sync ∈ {x = y.get, await y?}, l1(y) = t2
and s2 �= ε(v).

3. Task-Object: t → o iff there is a task tsk(t ,m, o, l, s) ∈ T and an object
obj(o, a, lk) ∈ Ob with lk �= t and s �= ε(v).

The first type of dependency corresponds to the notion of blocking task and
blocked object and the other two to waiting tasks. Dependencies are created as
long as the task we are waiting for is not finished. Observe that a get instruction
will generate two dependencies, whereas an await will generate only a depen-
dency. Besides, every task without the object’s lock (which is not finished) has
a dependency to its object.

Example 2. Let us consider the final (deadlock) state for main3 described in
Ex. 1. Here, we denote by o:m a task executing method m on object o. We have
the following seven dependencies in this state which form a cycle:

d1 a → b:empt d3 a:empt → a d5 b → c:wait d7 c:wait → a:empt

d2 a:blk2 → b:empt d4 b:blk3 → c:wait d6 b:empt → b

Observe that in object a we have a blocking task a:blk2 executing a get which
induces dependencies d1 and d2 above, and a waiting task a:empt that induces

May-Happen-in-Parallel Based Deadlock Analysis for Concurrent Objects 279

d3. In b, we have the blocking task b:blk3 that adds d4 and d5 and a waiting
task b:empt that adds d6. In c, we have a waiting task c:wait that induces d7.

Definition 2 (deadlock). A program state S is deadlock iff its dependency
graph GS contains a cycle.

We are assuming that object fields cannot contain future variables. The removal
of this restriction will be discussed in Sec. 5.2. As a consequence, there cannot
be cycles involving only task-task dependencies. Intuitively, a cycle that involves
only task-task dependencies represents a task that is (possibly indirectly) waiting
for itself. Without future fields, a task t can only wait for: other tasks that
were created strictly before but did not call t (using futures as parameters);
or tasks that were called (possibly indirectly) by t itself. t has no access to
its future nor to any of these tasks. Consequently, at least one object must be
involved in a cyclic dependency. Additionally, await y? instructions only create
task-task dependencies. In order to have cycles, we need at least one object-task
dependency. Therefore, at least one y.get instruction must be involved.

4 Deadlock Analysis

In this section we describe our deadlock analysis which over-approximates the
notion of deadlock in Def. 1. If the analysis reports that a program is deadlock-
free, then there is no execution that reaches a deadlock state. When the analysis
reports a potential deadlock, it also provides hints on the program points in-
volved in this deadlock. Our analysis performs two steps: (1) We generate an
abstract dependency graph G that over-approximates the dependency graphs GS

of any reachable state S. This graph is obtained by abstracting objects and tasks
using points-to analysis. (2) We declare every cycle in G as a potential deadlock
scenario and, in a post-process, we eliminate unfeasible scenarios by discarding
those cycles whose involved program points cannot execute in parallel. For the
latter, we rely on an MHP analysis. In Sec. 4.1, we describe how points-to anal-
ysis is used to abstract objects and tasks. In Sec. 4.2, we present our notion of
abstract dependency graph.

4.1 Abstract Tasks and Abstract Objects

Abstracting objects is an extensively studied problem in program analysis. It is at
the heart of almost any static analysis for object oriented programs, and usually
is referred to as points-to analysis [13]. In principle, any points-to analysis can
be used to obtain the information we require. The choice, however, affects the
performance and precision of our deadlock analysis. In what follows, we explain
how we use object-sensitive [13] points-to analysis in order to abstract not only
objects, but also tasks. An analysis is object-sensitive if methods are analyzed
separately for the different (sets of) objects on which they are invoked. As objects
are the concurrency units, object-sensitive points-to analysis naturally suits our
setting since tasks are identified with the objects on which they execute.

280 A.E. Flores-Montoya, E. Albert, and S. Genaim

Following [13,15], objects are abstracted to syntactic constructions of the form
obij...pq, where all elements in ij . . . pq are allocation sites (the program points in
which objects are created). The abstract object obij...pq represents all run-time
objects that were created at q when the enclosing instance method was invoked
on an object represented by obij...p, which in turn was created at allocation
site p. As notation, we let A be the set of all allocation sites, P be the set of
program points, V be the set of variables and pp(s) be the program point where
statement s is. Given a constant k ≥ 1, the analysis computes (i) a finite set
of abstract object names O ⊆ {ob� | � ∈ A ∪ A2 ∪ · · · ∪ Ak}; and (ii) a partial
function A : O×P×V �→ ℘(O∪{null}), where A(ob, p, x) is the set of abstract
objects to which the reference variable xmight point to, when executing program
point p on the abstract object ob. Constant k defines the maximum length of
allocation sequences, and it allows controlling the precision of the analysis and
ensuring termination. Allocation sequences may have unbounded length and thus
it is sometimes necessary to approximate such sequences. This is done by just
keeping the k rightmost positions in sequences whose length is greater than k.

We also use the points-to information for task abstraction. Intuitively, we
let T = {ob.m | ob ∈ O, m is a method name} be the set of abstract task
identifiers, where ob.m ∈ T represents a task that executes the code of method
m on the abstract object ob. The points-to analysis is modified to track the values
of future variables (which are task identifiers). We distinguish two kinds of task
identifiers: normal tasks tk ∈ T , whose result might be available or not; and
ready tasks tkr ∈ Tr, whose result is guaranteed to be available (and therefore
will not cause any further waiting). Briefly, the significant changes are: (i) the
analysis of y = x!m(z̄), in which y is assigned the set of abstract task identifiers
tk that are induced by the abstract objects to which variable x points-to; and (ii)
the analysis of y.get and await y?, in which each tk ∈ A(ob, p, y) is substituted
by tkr. In order to use this information, we abuse notation and assume that
function A is extended to map future variables to elements of ℘(T ∪Tr). We use
function α to denote the mapping from concrete object and task identifiers to
corresponding abstract ones.

Example 3. Let us consider the analysis of method main2. The objects created at
L6 and L7 are abstracted to ob6 and ob7 respectively. Thus, the tasks spawned at
L8 and L9 are abstracted to ob6.blk1 and ob7.blk1, respectively. Within the two
executions of blk1, new tasks executing empt are spawned. They are executed on
the object that is passed as parameter. Hence, we keep two separate abstractions,
ob6.empt for the task executing on ob6, and ob7.empt for the one executing on
ob7. Next, the future variable f is assigned the abstract value of the tasks whose
termination is waiting for. Thus, the value of f is abstracted to ob7.empt for the
task executing on ob6 and to ob6.empt for the one executing on ob7. Note that
the use of object-sensitive information is fundamental for precision. Using object-
insensitive analysis, all calls to the methods blk1 and empt had been abstracted by
the same abstract task identifier (instead of keeping the two identifiers separate),
and thus had led to an utter lose of precision.

May-Happen-in-Parallel Based Deadlock Analysis for Concurrent Objects 281

G1

ob2

tk2:ob2.empt

tk1:ob2.blk2

G2

ob6

ob7

tk4:ob7.empt

tk3:ob6.blk2

tk2:ob6.empt

tk1:ob7.blk2

G3

ob12

ob13

ob14

tk5:ob13.blk4

tk4:ob14.wait

tk3:ob12.empt

tk2:ob13.empt

tk1:ob12.blk3

G4

ob63

ob20

tk4:ob20.go

tk3:ob63.go

tk2:ob20.rec

tk1:ob63.acc

61:tk
2

5
2
:t
k 3

65:tk4

57:
tk1

G5

cog

tk4:ob20.go

tk3:ob63.go

tk2:ob20.rec

tk1:ob63.acc

61:tk2

52:tk3

65
:tk 4

57:tk1

Fig. 3. (G1 −G4) abstract dependency graphs for main1-main4 of Fig. 2; (G5) Abstract
dependency graphs for main4 with COGs;

4.2 Abstract Dependency Graph

Given the object and task abstractions provided in Sec. 4.1, we can construct
an abstract dependency graph for the program as follows.

Definition 3 (abstract dependency graph). The abstract dependency graph
is a directed graph G, whose nodes are O ∪ T , and whose edges are:

1. Object-Task: ob
p:tk−−→ tk ′ iff there is an instruction x = y.get at program

point p ∈ P, tk , tk ′ ∈ T and ob ∈ O such that tk = ob.m and tk ′ ∈
A(ob, p, y).

2. Task-Task: tk
p:tk−−→ tk ′ iff there is an instruction x = y.get or await y? at

program point p ∈ P, tk , tk ′ ∈ T such that tk = ob.m and tk ′ ∈ A(ob, p, y).

3. Task-Object: tk
p:tk−−→ ob iff tk ∈ T and ob ∈ O such that tk = ob.m, where

p is the entry program point of m, or of an instruction await y? in m.

Observe that the construction follows exactly Def. 1, but we use abstract infor-
mation instead of the concrete one. The nodes are the abstract objects and tasks,
and the edges represent the following information: (1) the abstract object ob is
locked by the abstract task tk until task tk ′ finishes; (2) the abstract task tk is
waiting for the abstract task tk ′ to finish; and (3) the abstract task tk might be
waiting on the abstract object ob. The labels on the edges p:tk keep information
on the source of this edge, p is a program point in the task tk . These labels
will be used below. Roughly, the abstract dependency graph can be seen as an
abstraction of the graph that results from the union of all GS , where some nodes
are collapsed. Note that ready tasks tkr are ignored as they cannot involve any
waiting.

Example 4. Fig. 3 shows the abstract dependency graphs obtained from the
analysis of the four main methods in Fig. 2 (G5 will be explained later). Cycles
are marked with bold edges. The deadlocks informally described in Ex. 1 for the
first three main methods can be seen in the graphs. We have omitted the labels in

282 A.E. Flores-Montoya, E. Albert, and S. Genaim

these three graphs as they are not relevant. For instance, in G3, the cycle includes
the two blocked objects a (here ob12) and b (here ob13) and the three waiting
tasks as described in Ex. 1. An important point to note is that G4 contains a
cycle. However, as justified informally in Ex. 1, the program is deadlock free. The
problem is that the graph does not contain temporal information about whether
the instructions involved in the cycle may indeed happen in parallel.

The MHP analysis of [2] is adapted to infer a set of symmetric pairs M ⊆
((P × T) × (P × T)) with the following guarantee: for any reachable state S,
if tsk(t1,m1, o1, l1, s1) and tsk(t2,m2, o2, l2, s2) are two tasks of S available in
the state such that t1 �= t2, then (p1:tk1, p2:tk2) ∈ M where pi = pp(si) and
tk i = α(ti). Intuitively, if program points p1 and p2 might execute in parallel
within tasks t1 and t2, then M includes this information at the level of the
corresponding abstract tasks.

Example 5. As an example, the application of the MHP [2] to main2 gives, among
others, the MHP pair (27:tk3, 27:tk4) where tk3 and tk4 are shortcuts given in
Fig. 3 for ob6:blk1 and ob7:blk1, respectively. This pair indicates that objects ob6
and ob6 can be executing the get instruction at program point 27 in parallel.
Thus, a deadlock would occur. The MHP of main4 gives the following set of MHP
pairs {(61:tk2, 57:tk1), (65:tk4, 52:tk3)}. The important point to notice is that
instructions 65:tk4 and 57:tk1 cannot happen in parallel. This formally justifies
the intuition for deadlock freeness given in Ex. 1.

Definition 4 (feasible cycle). A cycle e1
p1:tk1−−−−→ e2

p2:tk2−−−−→ ...
pn:tkn−−−−→ e1 ∈ G

is feasible iff (pi:tk i, pj:tk j) ∈M for all 1 ≤ i < j ≤ n, and at least one ei is an
object identifier.

As we have mentioned before, a deadlock must involve at least one object which
is blocked. Also, all points that are involved in the considered cycle must happen
in parallel (this is the condition over-approximated by MHP). In the implemen-
tation, instead of first building the dependency graph and then checking the
feasibility of cycles, for each cycle, there is an interleaved construction such that
new dependencies are only added if they satisfy the MHP condition with respect
to the previous ones.

Example 6. The cycle in G5 is not feasible because (65 : tk4, 57 : tk1) does not
belong to the MHP pairs given in Ex. 5.

Our soundness theorem ensures that if there is a deadlock in the execution of
the concrete program, then the abstract graph contains a feasible cycle.

Theorem 1 (soundness). Let S be a reachable state. If there is a cycle e1 →
e2 → · · · → e1 in GS , then α(e1)

p1:tk1−−−−→ α(e2)
p2:tk2−−−−→ · · · pn:tkn−−−−→ α(e1) is a

feasible cycle of G.
The following corollary follows trivially from the above theorem.

Corollary 1 (deadlock-freeness). If there are no feasible cycles in G, then
the program is deadlock-free.

May-Happen-in-Parallel Based Deadlock Analysis for Concurrent Objects 283

69 main(Int n) {
70 c=new Factory();
71 f=c!createWorker(n);
72 await f?;
73 }

ob70

ob76

ob76.assignWork

ob70.createWorker

74 class Factory() {
75 Unit createWorker(Int n){
76 w = new Worker(this);
77 f=w!assignWork(n);
78 await f?;
79 }
80 }

81 class Worker(Factory fc) {
82 Unit assignWork(Int n) {
83 if(n>0) {
84 f=fc!createWorker(n−1);
85 f.get;
86 }
87 }
88 }

Fig. 4. Challenging example of [8] for handling objects created in loops

5 Extensions of the Basic Framework

In this section, we present several extensions of our analysis in order to improve
the precision on some challenging examples, as well as extensions to handle
advanced features such storing future variables in fields, and objects groups.

5.1 Creating Objects and Tasks Inside Loops

Programs that create objects (or tasks) inside loops are challenging for deadlock
analysis due to the fact that the created objects, whose amount usually depends
on an unknown input value, are abstracted to a finite set of abstract objects (or
tasks). This makes it difficult to distinguish their activities and leads to spurious
scenarios. The example in Fig. 4 is a program reported in [8] as challenging (they
failed prove it deadlock free). When calling main(n), the program creates n objects
of type Worker using a single Factory object. The first call createWorker(n) creates
one object of type Worker, calls its assignWork method, and waits until this call
finishes. Method assignWork in turn calls createWorker(n−1) in order to create the
remaining n−1 objects, and waits (blocking the current Worker object) until this
call finishes. This program is deadlock free, because every Worker object waits
(transitively) for a task that is running on a different Worker object. However, our
basic framework as described in Sec. 4 generates the abstract dependency graph
shown in the figure, which contains a cycle. Node ob76 represents all objects of
type Worker, and ob76.assignWork represents all tasks of method assignWork.

The cycle represents a scenario in which an object of type Worker (the source
object) is blocked waiting (transitively) for another task running on an object
of type Worker (the target object) to finish. Since both the source and target
objects are represented by the same abstract value ob76, we have to assume
the case in which they are equal, and thus create a deadlock. This, however, is
a spurious scenario that cannot actually happen. Our aim is to prove that this
cycle is unfeasible, in particular that the source and target objects cannot be the
same even if they are assigned the same abstract value. Consider the dependency
ob70.createWorker→ ob76.assignWork, and observe that whenever createWorker calls

284 A.E. Flores-Montoya, E. Albert, and S. Genaim

89 main() {
90 A a = new A();
91 a!run();
92 }

ob90

ob90.blk1

ob90.blk2

93 class A {
94 Fut<Unit> f;
95 Bool ready=False;
96 Unit run(){
97 ff=this!blk1();
98 f=this!blk2(ff);
99 ready=True;

100 }

101 Unit blk1(){
102 await ready==True;
103 await f?;
104 }
105 Unit blk2(Fut<Unit> ff){
106 await ff?;
107 }
108 }

Fig. 5. Deadlock Analysis for of Future Variables as Fields

assignWork it uses a fresh object, i.e., an object that has been created in its local
scope. Thus, it cannot be the case that assignWork belongs to the same object
that is blocked waiting for createWorker to finish. This simple information is
enough to discard this cycle. Our extension is based on identifying edges with
this freshness property, and then using them to discard cycles as the one above,
and several other cases. The appealing feature of the freshness property is that
it can inferred with almost no further overhead. Briefly, it is done by modifying
the points-to analysis to annotate abstract objects with a freshness flag, which
indicates that it represents a single object that has been recently created in the
current scope. Once objects escape from their local scope the corresponding flags
are discarded.

5.2 Future Variables as Fields

So far we have assumed that future variables are passed (by-value) between
methods only as parameters or return values. This restriction guarantees that
any deadlock must involve at least one object that is locked by one of its tasks
(using instruction y.get). In this section, we allow future variables to be defined
as fields. This is challenging because a task gains access to its identifier. Consider
the program in Fig. 5. It is easy to verify that, starting from method main, we can
reach a state in which tasks ob90.blk1 and ob90.blk2 are waiting for each other:
ob90.blk2 receives the task identifier of ob90.blk1 as parameter, while ob90.blk1
reads that of ob90.blk2 from a field. By applying our analysis, we get the graph
shown in Fig. 5, which does not have any cycle that goes through an object and
hence, according to Def. 4, we incorrectly conclude that it is deadlock free. The
reason is that we cannot ignore cycles that involve only task-task nodes. Thus,
Def. 4 should be modified to drop the requirement that the cycle includes at
least one object node.

This change only affects the latter part of the analysis where we explore the
abstract dependency graph and the rest of the analysis is still valid. However,
we can expect an increment on the number of false positives. Many recursive
methods will induce new cycles such as the example in Sec. 5.1: we have to
consider the cycle that only involves assignWork and createWorker. Fortunately,

May-Happen-in-Parallel Based Deadlock Analysis for Concurrent Objects 285

we can apply the notion of freshness described in Sec. 5.1 to tasks rather than to
objects and discard most of these new false positives. Briefly, the task-freshness
property can be used to prove that a task always waits for other (fresh) tasks
that have been created in its local scope, and thus it cannot be the case that a
task is transitively waiting for itself to finish.

5.3 Object Groups

Object groups extend the concurrent objects model to allow grouping objects
into concurrency units such that at most one task can be executing among all
objects in each group. At the programming language level, this feature is sup-
ported by the instruction new cog C(x̄) which creates a new object of type C
and, in addition, assigns it to a new group that includes this single object. The
instruction new C(x̄), in turn, creates a new object of type C and assigns it to
the group of its parent object (i.e, the object that executed the instruction). The
definition of deadlock in this setting is very similar to Defs. 1 and 2. The differ-
ence is that object nodes are replaced by group nodes, and the Object-Task and
Task-Object edges connect a task t with the node that corresponds to the group
of o. Then, a program deadlocks iff it reaches a state whose dependency graph
includes a cycle with at least one group node. Similarly, at the abstract level,
the deadlock property can be approximated as in Sec. 4, by replacing abstract
object nodes by abstract group nodes. This, however, requires inferring a set of
abstract groups and relating them to the set of abstract objects. In practice, we
infer this information by modifying the points-to analysis to track the (abstract)
group of each abstract object in a straightforward way. This modification has
negligible overhead.

Example 7. Assuming a concurrent object groups setting, method main5 is not
deadlock free any more. Our analysis infers that objects created at L20 and L63
belong to the same group. Then, it constructs the abstract dependency graph G6
depicted in Fig. 3. Note that G6 merges the two object nodes of G5 into a single
group node. Since G6 contains a cycle cog → ob63 → cog , and moreover 65:tk4

and 52:tk3 may execute in parallel, it reports a deadlock. By replacing new by
new cog the code would be deadlock free and detected as such by the analysis.

6 Experiments

We report on DECO1, a DEadlock analyzer for Concurrent Objects, which im-
plements the analysis described in the paper and the extensions for the complete
ABS language [11]. Given a program with a main procedure, the output of the
analysis is a description of the potential cycles (if any) so that the user can easily
find the causes of the deadlocks and discard false positives. This section aims at
experimentally evaluating the accuracy and performance of the DECO tool, and
comparing our results with those obtained by the SDA tool [7]. However, such

1 DECO can be tried online at http://costa.ls.fi.upm.es/costabs/deco

http://costa.ls.fi.upm.es/costabs/deco

286 A.E. Flores-Montoya, E. Albert, and S. Genaim

SDA Tool DECO Tool

Medium codes Lines Result T(sec) Result PtT(ms) MhpT(ms) DT(ms) T(sec)

Bookshop 418 × - � < 20 < 20 < 20 1.36
PeerToPeer 185 × - � 99 359 < 20 1.63
LeaderElection 63 × - � < 20 < 20 < 20 1.48
PingPong 66 × - � < 20 < 20 < 20 1.30
MultiPingPong 89 × - 18 < 20 < 20 < 20 1.43
BoundedBuffer 103 � 1.65 � < 20 < 20 < 20 1.26

Case Studies Lines Result T(sec) Result PtT(ms) MhpT(ms) DT(ms) T(sec)

TradingSystem 1466 × - � 79 491 < 20 3.15
FredHopper 2111 × - � 372 2456 351 6.62
Adpt Fredhopper 2081 � 65.30 � 136 1347 73 4.38

Fig. 6. Medium examples and case studies results

comparison is not always feasible because SDA does not handle complete ABS.
Basically, they have to adapt the programs to remove recursive object structures.
Otherwise, SDA fails to obtain any result. They also annotate await instructions
with boolean conditions to increase the precision. Await boolean conditions are
instructions of the form await e where e is a boolean expression. This instruc-
tion releases the object’s lock when the condition is not satisfied. This kind
of instructions can be used for internal synchronization within an object. Our
analysis supports recursive object structures naturally and we have developed an
improvement over the MHP analysis of [2] to take simple await instructions with
boolean conditions (without function calls) into account. More complex boolean
awaits are ignored without harming the soundness of the analysis.

Both tools have been tested on: 39 small examples (19 are taken from [7] and
20 are developed by us); on 6 medium-size programs written for benchmarking
purposes by ABS programmers; and two case studies developed by Fredhopper R©.
The source code of all examples can be found in the above website. All examples
were run with a constant k = 2 for the poinsto analysis. About the small ex-
amples, it is worth mentioning that our tool does not report any false positive,
while SDA gives 8 false positives (5 of them are on our examples and 3 are on
theirs) and fails to analyze 2 examples. The failures are due to the recursive ob-
ject structures limitation above. Out of the 8 false positives, one is due to their
treatment of loops over data structures and the remaining ones are correctly
discarded in our tool thanks to the extension described in Sec. 5.1.

Fig. 6 reports the results on the medium-size benchmarks and on the case
studies. The first column contains the name of the benchmarks and the second
one its size (number of lines). The leftmost set of columns are the results com-
puted by the SDA tool and the rightmost set by our implementation. In both
sets, the first column shows the result of the analysis: × means that the tool fails
to analyze it, �means that it proves deadlock freeness, and a positive number
meaning the number of cycles found. The next column shows the analysis time
in seconds (average of 10 runs). For DECO, we show first the analysis time of the
different phases of the analysis: (PtT) is points-to analysis time, (MhpT) is MHP
time, (DT) is the time spent on creating and exploring the abstract dependency

May-Happen-in-Parallel Based Deadlock Analysis for Concurrent Objects 287

graph. The rightmost column is the overall time. It can be seen that we have
proved deadlock freeness in all medium-size programs except for MultiPingPong
which reports 18 potential deadlocks. By executing the program step by step
we have checked that these potential deadlocks are indeed real deadlocks. SDA
was able to analyze only the BoundedBuffer example. Analyzing the remaining
examples would require rewriting them to avoid recursive object structures.

As regards the case studies, the first two ones are the original versions while
the last one is a modification of the second one to avoid the limitations of SDA
described above. Our tool can successfully analyze both the original and the
modified versions reporting deadlock freeness. As regards performance, all anal-
yses have been performed in an Ubuntu 12.04 64-bit with Intel core i7-3667U
2.00GHz x 4 and 8GiB of Memory. The total times for the two tools have been
externally measured, while partial times of our analysis have been measured in-
ternally. These times do not take compilation and program initialization into
account and thus they do not add to the total time. They also have a limited
precision and thus negligible times are often reported as 0. We present them as
< 20 in the table. We can see that, for BoundedBuffer, both tools have a similar
performance (1.65 secs and 1.26 secs). However, when it comes to analyze bigger
programs our approach is much more efficient (4.38 secs over 65.30 secs) which
seems to indicate that our techniques are more scalable.

7 Related Work and Conclusions

We have presented a novel deadlock analysis for languages with actor-based con-
currency based on a points-to analysis and an MHP analysis. We argue that our
technique outperforms previous proposals [8,5,4,7] in precision or efficiency and
it considers a more expressive language. Experiments suggest we achieve bet-
ter precision than [8,7] because our pointsto analysis keeps a more fine-grained
representation of objects and their dependencies than their contract-based ap-
proach. That, together with Sec. 5.1, gives precise results in examples pointed
out as challenging in [8,7]. Besides, our analysis does not suffer from any of the
restrictions mentioned in Sec. 6. The language used in [5] is very restrictive (e.g.,
it does not have an object creation instruction, nor synchronizations using await,
among other limitations). More recent work [4] improves the previous one, since
the use of Petri nets specifies the temporal behavior of the methods. However,
the language is again more restrictive than ours since it does not allow dealing
with objects stored in fields and does not treat while loops and object creation
explicitly. Even more importantly, our analysis is polynomial, while [4] requires
solving a reachability problem in Petri nets (which is EXPSPACE-hard). Note
that the complexity of the points-to analysis can vary depending on the precision,
it is almost linear in [16] and [13] has cubic worst-case complexity.

It is not the first time that an MHP analysis has been used to detect deadlocks.
Its use dates back to 1991 [12] where it was applied to detect deadlocks onAda pro-
grams. It has been also applied in [14] to thread-based programs. There are some
fundamental differences between [14] and our work due also in part to the differ-
ences between the underlying concurrency models. Their algorithm detects locks

288 A.E. Flores-Montoya, E. Albert, and S. Genaim

due to lock-based synchronization whereas wait-notify in Java is not covered. In
contrast, we treat wait-notify synchronization and in particular our treatment of
future variables (which represent the notify) is very powerful. In their case, the al-
gorithm detects deadlocks between two threads, while our technique does not have
this restriction and can detect deadlocks that involve any number of objects. On
the other hand, they propose some (unsound) treatment to non-guarded and non-
reentrant conditions that target Java programs but cannot happen in our frame-
work.

References

1. Agha, G.A.: Actors: A Model of Concurrent Computation in Distributed Systems.
MIT Press, Cambridge (1986)

2. Albert, E., Flores-Montoya, A.E., Genaim, S.: Analysis of May-Happen-in-
Parallel in Concurrent Objects. In: Giese, H., Rosu, G. (eds.) FORTE 2012 and
FMOODS 2012. LNCS, vol. 7273, pp. 35–51. Springer, Heidelberg (2012)

3. Armstrong, J., Virding, R., Wistrom, C., Williams, M.: Concurrent Programming
in Erlang. Prentice Hall (1996)

4. de Boer, F.S., Bravetti, M., Grabe, I., Lee, M., Steffen, M., Zavattaro, G.: A Petri
Net based Analysis of Deadlocks for Active Objects and Futures. In: Păsăreanu,
C.S., Salaün, G. (eds.) FACS 2012. LNCS, vol. 7684, pp. 110–127. Springer,
Heidelberg (2013)

5. de Boer, F.S., Grabe, I., Steffen, M.: Termination detection for active objects. J.
Log. Algebr. Program. 81(4), 541–557 (2012)

6. deBoer, F.S.,Clarke,D., Johnsen,E.B.:A complete guide to the future. In:DeNicola,
R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 316–330. Springer, Heidelberg (2007)

7. Giachino, E., Grazia, C.A., Laneve, C., Lienhardt, M., Wong, P.: Deadlock Analysis
of Concurrent Objects – Theory and Practice (2013)

8. Giachino, E., Laneve, C.: Analysis of Deadlocks in Object Groups. In: Bruni, R.,
Dingel, J. (eds.) FORTE 2011 and FMOODS 2011. LNCS, vol. 6722, pp. 168–182.
Springer, Heidelberg (2011)

9. Haller, P., Odersky, M.: Scala actors: Unifying thread-based and event-based pro-
gramming. Theor. Comput. Sci. 410(2-3), 202–220 (2009)

10. Holt, R.C.: Some Deadlock Properties of Computer Systems. ACM Comput.
Surv. 4(3), 179–196 (1972)

11. Johnsen, E.B., Hähnle, R., Schäfer, J., Schlatte, R., Steffen, M.: ABS: A Core
Language for Abstract Behavioral Specification. In: Aichernig, B.K., de Boer, F.S.,
Bonsangue, M.M. (eds.) FMCO 2010. LNCS, vol. 6957, pp. 142–164. Springer,
Heidelberg (2011)

12. Masticola, S.P., Ryder, B.G.: A Model of Ada Programs for Static Deadlock De-
tection in Polynomial Time. In: Parallel and Distributed Debugging, pp. 97–107.
ACM (1991)

13. Milanova, A., Rountev, A., Ryder, B.G.: Parameterized object sensitivity for
points-to analysis for java. ACM Trans. Softw. Eng. Methodol. 14, 1–41 (2005)

14. Naik, M., Park, C., Sen, K., Gay, D.: Effective static deadlock detection. In: Proc.
of ICSE, pp. 386–396. IEEE (2009)

15. Smaragdakis, Y., Bravenboer, M., Lhoták, O.: Pick your contexts well: understand-
ing object-sensitivity. In: POPL, pp. 17–30. ACM (2011)

16. Steensgaard, B.: Points-to analysis in almost linear time. In: Symposium on Prin-
ciples of Programming Languages, pp. 32–41 (1996)

Lintent: Towards Security Type-Checking
of Android Applications

Michele Bugliesi, Stefano Calzavara, and Alvise Spanò

Università Ca’ Foscari Venezia

Abstract. The widespread adoption of Android devices has attracted
the attention of a growing computer security audience. Fundamental
weaknesses and subtle design flaws of the Android architecture have been
identified, studied and fixed, mostly through techniques from data-flow
analysis, runtime protection mechanisms, or changes to the operating
system. This paper complements this research by developing a framework
for the analysis of Android applications based on typing techniques. We
introduce a formal calculus for reasoning on the Android inter-component
communication API and a type-and-effect system to statically prevent
privilege escalation attacks on well-typed components. Drawing on our
abstract framework, we develop a prototype implementation of Lintent,
a security type-checker for Android applications integrated with the An-
droid Development Tools suite. We finally discuss preliminary experien-
ces with our tool, which highlight real attacks on existing applications.

1 Introduction

Mobile phones have quickly evolved from simple devices intended for phone
calls and text messaging, to powerful handheld PDAs, hosting sophisticated
applications that manage personal data and interact on-line to share information
and access (security-sensitive) services. This evolution has attracted the interest
of a growing community of researchers on mobile phone security, and on Android
security in particular.

Fundamental weaknesses and subtle design flaws of the Android architec-
ture have been identified, studied and fixed. Originated with the seminal work
in [9], a series of papers have developed techniques to ensure various system-
level information-flow properties, by means of data-flow analysis [13], runtime
detection mechanisms [7] and changes to the operating system [12]. Other papers
have applied similar techniques to the study of the intent-based communication
model of Android and its interaction with the underlying permission system [5,2].
Somewhat surprisingly, typing techniques have instead received very limited at-
tention, with few notable exceptions to date ([3], and more recently [1]). As a
result, the potential extent and scope of type-based analysis has been so far left
largely unexplored. In the present paper we make a step towards filling this gap.

Contributions. Our analysis of the Android platform is targeted at the static de-
tection of privilege escalation attacks, a vulnerability which exposes the frame-
work to the risk of unauthorized permission usage by malicious applications.

D. Beyer and M. Boreale (Eds.): FMOODS/FORTE 2013, LNCS 7892, pp. 289–304, 2013.
c© IFIP International Federation for Information Processing 2013

290 M. Bugliesi, S. Calzavara, and A. Spanò

To carry out our study, we introduce π-Perms, a simple formal calculus for rea-
soning about inter-component interaction in Android (Section 3). Albeit small
and abstract, π-Perms captures the most relevant aspects of the Android mes-
sage passing architecture and its relationships with the underlying permission
system. Our formalization pays off, as it allows us to unveil subtle attack surfaces
to the current Android implementation that had not been evaluated before.

We tackle the problem of programmatically preventing privilege escalation at-
tacks inside π-Perms, by spelling out a formal definition of safety (Section 4) and
proposing a sound security type system which statically enforces such notion,
despite the best efforts of an opponent (Section 5). Providing the desired pro-
tection turns out to be challenging, since the inadvertent disclosure of sensitive
data may enable some typically overlooked privilege escalation scenarios.

Based on our formal framework, we then develop a prototype implementation
of Lintent, a type-based analyzer integrated with the Android Development
Tools suite (Section 6). Lintent integrates our typing technique for privilege
escalation detection within a full-fledged static analysis framework aimed at
supporting a robust and more reliable development process. Lintent is the first
type-based analyzer for Android applications and its implementation highlights
a number of engineering challenges which should likely be tackled by any other
type-based verification tool for Android. We discuss preliminary experiences with
our tool, which highlight real attacks on existing applications (Section 7).

Enhancing the Android development process is increasingly being recognized
as an urgent need [4,10,8,16,6]: Lintent represents a first step in that direction1.

2 Android Overview

Intents. Once installed on a device, Android applications run isolated from each
other in their own security sandbox. Data and functionality sharing among dif-
ferent applications is implemented through a message-passing paradigm built
on top of intents, i.e., asynchronous messages providing an abstract description
of an operation to be performed. Intents may be either explicit or implicit : the
former specify their intended receiver by name and are always securely delivered
to it; the latter, instead, do not mention any specific receiver and just require
delivery to any application that supports a given operation (an action).

Components. Intents are delivered to application components, the essential build-
ing blocks of Android applications. There are four different types of components.
An activity represents a screen with a user interface: activities are started with
an intent and possibly return a result upon termination. A service runs in the
background to perform long-running computations: services can either be started
with an intent, or expose a remote method invocation interface to a client by re-
turning it a binder object. A broadcast receiver waits for intents sent to multiple
applications. A content provider manages a shared set of persistent application
data. Content providers are not accessed through intents, but through a CRUD
(Create-Read-Update-Delete) interface reminiscent of SQL.
1 Technical report and Lintent at https://github.com/alvisespano/lintent

Lintent: Towards Security Type-Checking of Android Applications 291

Protection Mechanisms. The Android security model implements isolation and
privilege separation on top of a simple permission system. Android permissions
are identified by strings and can be defined by either the operating system or the
applications. Permissions are assigned at installation time and are shared by all
the components of the same application; if any of the requested permissions is not
granted by the user, the application is not installed. The Android communication
API offers various protection mechanisms to the different component types. In
particular, all components may declare permissions which must be owned by
other components requesting access to them; on the other hand, only broadcast
requests may specify a permission which a receiver must hold to get the message.
A limited form of permission delegation is implemented in Android by special
objects known as pending intents : we will return to this point later on.

3 π-Perms: A Calculus for Android Applications

We describe π-Perms, a simple formal calculus which captures the essence of
inter-component communication in Android. We detail the connections between
π-Perms and the Android platform in Section 3.2.

3.1 Syntax and Semantics

We presuppose disjoint collections of names m,n and variables x, y, z, and use
the meta-variables u, v to range over values, i.e., both names and variables. We
denote permissions with typewriter capital letters, as in PERMS, and assume they
form a complete lattice with partial order *, top and bottom elements 1 and ⊥
respectively, and join and meet operators � and � respectively.

An expression represents a sequential program, which runs with a given set
of assigned permissions and may return a value. As part of its computation, an
expression may perform function calls from a pool of function definitions. The
syntax of expressions is defined in Table 1.

Table 1. Syntax of π-Perms expressions

E ::= expressions D ::= definitions
D \E evaluation u(x � CALL).E function def.
u〈v � RECV〉 invocation D ∧D conjunction
let x = E in E′ let expr.
(νn)E restriction
[PERMS]E perm. assign.
v value

292 M. Bugliesi, S. Calzavara, and A. Spanò

The expression D \E runs E in the pool of function definitions D. An in-
vocation u〈v � RECV〉 tries to call function u, supplying v as an argument; the
invocation succeeds only if the callee has at least permissions RECV. A let ex-
pression let x = E in E′ evaluates E to a name n and then behaves as E′ with
x substituted by n. A restriction (νn)E creates a fresh name n and then be-
haves as E. The expression [PERMS]E represents E running with permissions
PERMS. A definition u(x � CALL).E introduces a function u; only callers with at
least permissions CALL can invoke this function, supplying an argument for x.
Multiple function definitions can be combined into a pool with the ∧ operator.
Function definitions, “let” and ν are binding operators for variables and names,
respectively: the notions of free names fn and free variables fv arise as expected.

Table 2. Reduction semantics for π-Perms

(R-Call)
CALL & PERMS RECV & PERMS

′

n(x � CALL).[PERMS′]E \ [PERMS]n〈m � RECV〉 → [PERMS′]E{m/x}

(R-Return)
let x = [PERMS]n in E → E{n/x}

(R-Context)
E → E′

C[E] → C[E′]

(R-Struct)
E �E1 → E2

�E′

E → E′

Reduction contexts: C[·] ::= · | let x = C[·] in E | (νn) C[·] | D \ C[·]

The formal semantics of π-Perms is given by the small-step reduction relation
E → E′ defined in Table 2.

Rule (R-Call) implements the security “cross-check” between caller and callee,
which we discussed earlier: if either the caller is not assigned permissions CALL,
or the callee is not granted permissions RECV, then the invocation fails. When-
ever the invocation is successful, the expression runs with the permissions of the
callee. The other rules are essentially standard, we just note that (R-Struct)
closes reduction under heating, an asymmetric variant of the standard structural
congruence relation. The heating relation E �

E′ allows to syntactically rear-
range E into E′, for instance by exchanging the order of the function definitions
and by extruding the scope of bound names (see the online technical report for
a complete definition of the heating relation).

3.2 π-Perms vs Android

Intents. π-Perms can encode both implicit and explicit intents. Communication
in π-Perms is non-deterministic, in that a function invocation n〈m � RECV〉 can
trigger any function definition n(x � CALL).E in the same scope, provided that
the permission checks are satisfied. Technically, this non-determinism is achieved
through the heating relation, which allows to liberally rearrange the pool of

Lintent: Towards Security Type-Checking of Android Applications 293

function definitions. Hence, communication in π-Perms naturally accounts for
implicit intents, which represent the most interesting aspect of Android commu-
nication. Explicit intents can be recovered by univocally assigning each function
definition with a distinct, unique permission: explicit communication is then
encoded by requiring the callee to possess (at least) such permission.

Components. All of Android’s intent-based component types are represented in
π-Perms by means of function definitions. Activities in Android may be started
by invoking the methods startActivity or startActivityForResult; in our
calculus we treat the two cases uniformly, by having functions always return a re-
sult. Services may either be started by startService or become the end-point of
a long-running connection with a client through an invocation to bindService.
The former behaviour is modelled directly in π-Perms by a function call, while
the latter is subtler and its encoding leads to some interesting findings (see
below). Broadcast communication can be captured by a sequence of function
invocations: this simple treatment suffices for our present security analysis.

Protection Mechanisms. π-Perms is defined around a generic complete lattice
of permissions. In Android this lattice is built over permission sets, with set in-
clusion as the underlying partial order. The Android communication API only
allows broadcast transmissions to be protected by permissions, namely requiring
receivers to be granted specific permissions to get the intent. Function invocation
in π-Perms accounts for the more general behaviour available to broadcast trans-
missions, since unprotected communication can be encoded simply by specifying
⊥ as the permission required to the callee, as in n〈m �⊥〉.

Binders. In Android a component can invoke the method bindService to es-
tablish a connection with a service and retrieve an IBinder object, which trans-
parently dispatches method calls from the client to the service. This behavior is
captured in π-Perms by relying on its provision for dynamic component creation.
To illustrate, let D contain the following service definition:

D � s(x � C).[P] (νb) (b(y �⊥).[P] a〈y �⊥〉 \ b) (1)

and consider the π-Perms encoding of a component binding to service s:

a(x � P).[P]E ∧D \ [C] let z = s〈n �⊥〉 in z〈n �⊥〉

Service s runs with permissions P and requires permissions C to establish a
connection. When a connection is successfully established, the service returns
a fresh binder b, encoded as a function granted the same permissions P as s;
later, the client can perform an invocation to b (bound to z) to get access to the
function a. The example unveils a potentially dangerous behaviour of the current
Android implementation of IBinder’s: notice in particular that the function b
may be invoked with no constraint, even though binding to s was protected by
permissions C. We find this implementation potentially dangerous, since it is
exposed to privilege escalation when binders are improperly disclosed.

294 M. Bugliesi, S. Calzavara, and A. Spanò

Pending Intents. π-Perms can naturally encode the simple form of permission
delegation enabled by pending intents: “by giving a PendingIntent to another
application, you are granting it the right to perform the operation you have
specified as if the other application was yourself (with the same permissions and
identity)” [15]. This informal description perfectly fits the previous encoding of
binders in π-Perms, in that any component exposed to the binder b is allowed
to invoke the corresponding function and let it run with permissions P. Hence,
pending intents can be modelled in the very same way as binders, and are exposed
to the same weaknesses whenever they are inadvertently disclosed.

4 Privilege Escalation (Formally)

Davi et al. first pointed out a conceptual weakness in the Android permission
system, showing that it is vulnerable to privilege escalation attacks [5]. To il-
lustrate, consider three applications A, B and C. Application A is granted no
permission; application B, instead, is granted permission P, which is needed to
access C. Apparently, data and requests from A should not be able to reach C;
on the other hand, if B can be freely accessed from A, then it may possibly act
as a proxy between A and C.

We formalize a notion of safety against privilege escalation based on the IPC
Inspection mechanism proposed by Felt et al. to dynamically prevent privilege
escalation attacks on Android [11]. The idea behind IPC Inspection is simple:
when an application receives a message from another application, a centralized
reference monitor lowers the privileges of the recipient to the intersection of
the privileges of the two interacting applications. A patched Android system
implementing IPC Inspection is therefore protected against privilege escalation
attacks “by design”: we then take such a system as a reference specification and
state a simulation-based notion of safety on top of it. As we discuss at the end of
this section, the resulting definition provides an effective proof technique for the
characterization of privilege escalation safety based on non-interference in [12].

To formalize the semantics of the IPC inspection mechanism, we first annotate
each function definition of a given expression with a distinct label � drawn from
a denumerable set L, disjoint from the set of values. The annotations make it
possible to univocally identify the function triggered in response to each call,
and hence trace the call chain. The IPC inspection semantics is then rendered
formally by the labelled reduction relation E α−→i E

′ in Table 3, where α ranges
uniformly over the set of annotation labels and the distinguished symbol · /∈ L.

Note that, while the labelled transitions help tracking the dynamics of the
call chains, the labels themselves do not have any import at runtime: in fact,
function invocations do not mention labels at all and the semantics is still non-
deterministic. We similarly label the original semantics in Table 2.

Let now E1 2 E2 denote two expressions that are syntactically equal but for
their granted permissions (see the online technical report for a formal definition).

Definition 1 (IPC-Simulation). A binary relation R contained in 2 is an
IPC-simulation if and only if whenever E1RE2 and E1

α−→ E′
1 there exists E′

2

Lintent: Towards Security Type-Checking of Android Applications 295

Table 3. Reduction semantics for π-Perms under IPC Inspection

(R-Call-IPC)
RECV & PERMS

′
CALL & PERMS

n�(x � CALL).[PERMS′]E \ [PERMS]n〈m � RECV〉 �−→i [PERMS ' PERMS
′]E{m/x}

(R-Return-IPC)
let x = [PERMS]n in E

·−→i E{n/x}

(R-Context-IPC)
E

α−→i E
′

C[E]
α−→i C[E′]

(R-Struct-IPC)
E �E1

α−→i E2

�E′

E
α−→i E

′

such that E2
α−→i E

′
2 with E′

1RE′
2. We say that E1 is IPC-simulated by E2

(written E1 �IPC E2) iff there exists an IPC-simulation R such that E1RE2.

The requirement E1 2 E2 guarantees that the labels that annotate the func-
tion definitions occurring in the two expressions are consistent (i.e., the same
function bears the same label in E1 and E2) while disregarding any difference in
the assigned permissions introduced upon reduction (cf. (R-Call) against (R-
Call-IPC)). Given the previous definition, our notion of safety is immediate:
an expression E is safe if and only if all its possible executions are oblivious to
IPC Inspection being enabled or not.

Definition 2 (Safety). An expression E is safe against privilege escalation if
and only if E �IPC E.

Though our definition is inspired by IPC Inspection, it reveals an important
aspect which was never discussed before. Namely, we notice that improper dis-
closure of some specific data, such as binders or pending intents, may lead to
the development of applications which are unsafe according to Definition 2. This
is precisely the case of example (1) where b exercises permissions P, but can be
disclosed to any component which is granted permissions C. A sample Android
application suffering of a similar flaw is given in the online technical report.

Our notion of safety is already a strong property, but we target a more am-
bitious goal: we desire protection despite the best efforts of an active opponent.
In our model an opponent is a malicious, but unprivileged, Android application
installed on the same device. Notice that the term “unprivileged” is loosely used
here: we are not assuming that the opponent is granted no permission at all, but
rather that it is not assigned any sensitive permission beforehand (in that case,
it would have no reason in escalating privileges). In a typical security analysis,
one can single out all the permissions under the control of the opponent (e.g.,
INTERNET) and identify the set of these permissions with ⊥.

Definition 3 (Opponent). A definition O is an opponent if and only if each
permission assignment in O is ⊥.

Definition 4 (Robust Safety). An expression E is robustly safe against pri-
vilege escalation if and only if O \E is safe for all opponents O.

296 M. Bugliesi, S. Calzavara, and A. Spanò

Privilege Escalation and Non-interference. As we anticipated, a recent paper by
Fragkaki et al. [12] proposes a definition of safety against privilege escalation in-
spired by the classic notion of non-interference for information flow control. Their
definition essentially demands that any call chain ending in a “high” (permission-
protected) component exists in a system only if it exists in a variant of same
system, where the “low” (unprivileged) components have been pruned away. We
can rephrase their notion in our setting and prove that our definition implies,
and hence may be employed as a proof technique for, theirs.

Let |E|� denote the expression obtained from E by erasing all the function
definitions labelled with �′ �= � and which are granted permissions P � CALL,
where CALL are the permissions required to invoke the function identified by �.

Definition 5 (NI-Safety). An expression E is NI-safe if and only if, for every
� occurring in E and for every reduction sequence E α1−→ . . .

αn−−→ En
�−→ En+1,

there exist E′
1, . . . , E

′
n+1 such that |E|�

α1−→ . . .
αn−−→ E′

n
�−→ E′

n+1.

Proposition 1 (Safety vs NI-safety). Safety implies NI-safety.

Proof. Let E �IPC E and assume E α1−→ E1
α2−→ . . .

αn−−→ En
�−→ En+1. Since

E �IPC E, we know that E α1−→i E
′
1

α2−→i . . .
αn−−→i E

′
n

�−→i E
′
n+1 for some

E′
1, . . . , E

′
n+1 such that E1 2 E′

1, . . . , En+1 2 E′
n+1. By definition of the seman-

tics α−→i, we know that all the functions invoked in the call chain identified by
α1, . . . , αn must be granted at least the permissions CALL needed to invoke �.
Hence, such function definitions are present also in |E|� and we can mimic the
very same trace there.

We can thus confirm that the IPC Inspection mechanism enforces a reasonable
semantic security property and justify further our choice of taking it as the
building block for our safety notion. With respect to NI-safety, our notion has
the important advantage of enabling a powerful form of coinductive reasoning,
which is central to proving our main result (Theorem 2 below).

A still open question is if the two notions of safety are actually equivalent. We
notice that for non-deterministic transition systems (bi)simulation-based equiv-
alences are typically finer than trace equivalences, but at the time of writing we
were not able to identify a counterexample in our setting.

5 Preventing Privilege Escalation by Types and Effects

Types and Typing Environments. A type τ may be either Un or a function
type Fun(CALL, τ → τ ′)SECR. Type Un is the base type, which is used both as
a building block for function types and to encompass all the data which are
under the control of the opponent. Types of the form Fun(CALL, τ → τ ′)SECR are
inhabited by functions which input arguments of type τ and return results of
type τ ′. Functions with this type can be invoked only by callers which are granted
at least permissions CALL, and should only be disclosed to components running

Lintent: Towards Security Type-Checking of Android Applications 297

with at least permissions SECR. We define the secrecy level of a type τ , written
S(τ), as expected, by having S(Un) = ⊥ and S(Fun(CALL, τ → τ ′)SECR) = SECR.
A typing environment Γ is a finite map from values to types. The domain of Γ ,
written dom(Γ), is the set of the values on which Γ is defined.

Typing Values. The typing rules for values are simple and given in Table 4.

Table 4. Typing rules for values

(T-Proj)
Γ (v) = τ

Γ � v : τ

(T-Pub)
Γ � v : τ S(τ) = ⊥

Γ � v : Un

Rule (T-Proj) is standard, while rule (T-Pub) makes it possible to treat all
public data as “untyped”, since they may possibly be disclosed to the opponent.

Typing Expressions. The typing rules for expressions are in Table 5. The main
judgement Γ "P E : τ � Q is read as: expression E, running with permissions P,
has type τ in Γ and exercises at most permissions Q throughout its execution.
We also define an auxiliary judgement Γ " D to be read as: definition D is
well-formed in Γ . The two judgement forms are mutually dependent.

We first notice that our effect system discriminates between granted and exer-
cised permissions. For instance, the expression a(x � ⊥).[P] b〈n � ⊥〉 \E could
either be well-typed or not, even though the function a is publicly known, but
is granted permissions P � ⊥. The crux here is if the permissions P must be
actually exercised or not to perform the invocation to b.

Apparently, we could enforce protection against privilege escalation by simply
checking for each function definition that the privileges exercised by the func-
tion body are at most equal to the privileges required to invoke the function.
However, since binders and pending intents allow indiscriminate access to poten-
tially privileged components, our type system must also assign an appropriate
secrecy level to these sensitive data and prevent their inadvertent disclosure. It
turns out that in rule (T-Def) we must actually check that the permissions Q

exercised by the function body must be at most equal to the join between the
permissions CALL, needed to pass the security runtime checks upon invocation,
and the permissions SECR, needed to learn the name of the function.

Interestingly, the opponent can play an active role in trying to get binders
and pending intents under its control. In particular, by using rules (T-Def-Un)
and (T-Call-Un), it can define arbitrary new functions and invoke existing
ones, completely disregarding the restrictions enforced by typing. Protecting
well-typed components requires then some care: for instance, in rule (T-Def)
we must type-check public functions under the additional assumption that their
input parameter is provided by the opponent with type Un; of course, in this case

298 M. Bugliesi, S. Calzavara, and A. Spanò

Table 5. Typing rules for definitions and expressions

(T-Def)
Γ � u : Fun(CALL, τ → τ ′)SECR

Γ, x : τ � E : τ ′ � Q Q & CALL (SECR

CALL (SECR = ⊥ ⇒ Γ, x : Un � E : Un � ⊥ x /∈ dom(Γ)

Γ � u(x � CALL).E

(T-Conj)
Γ � D1 Γ � D2

Γ � D1 ∧D2

(T-Eval)
Γ � D Γ �P E : τ � Q

Γ �P D \E : τ � Q

(T-Call)
Γ � u : Fun(CALL, τ → τ ′)SECR Γ � v : τ

⊥ � RECV (SECR CALL (SECR & P

Γ �P u〈v � RECV〉 : τ ′ � CALL (SECR

(T-Val)
Γ � v : τ

Γ �P v : τ � S(τ)

(T-Fail)
Γ � u : Fun(CALL, τ → τ ′)SECR

Γ � v : τ ′′

RECV (SECR = ⊥ ⇒ S(τ ′′) = ⊥
CALL 	& P

Γ �P u〈v � RECV〉 : Un � P

(T-Perms)
Γ �Q E : τ � R

Q & P

Γ �P [Q]E : τ � R

(T-Let)
Γ �P E : τ � Q

Γ, x : τ �P E
′ : τ ′ � R x /∈ dom(Γ)

Γ �P let x = E in E′ : τ ′ � Q (R

(T-Restr)
Γ, n : τ �P E : τ ′ � Q n /∈ dom(Γ)

Γ �P (νn)E : τ ′ � Q

(T-Def-Un)
Γ � u : Un

Γ, x : Un �⊥ E : Un � ⊥ x /∈ dom(Γ)

Γ � u(x � CALL).E

(T-Call-Un)
Γ � u : Un Γ � v : Un
Γ �⊥ u〈v � RECV〉 : Un � ⊥

no privilege must be exercised. Similarly, in rule (T-Call) we cannot trust the
return type of a function when the invocation can be dispatched to the opponent:
this justifies the third premise of the rule.

Rule (T-Fail) allows to provide an argument of arbitrary type to any function
which will never be invoked at runtime, since the caller is granted permissions
P, but the function requires permissions CALL �* P to be invoked. Again, the
information CALL in the function type can be trusted only when the function is
not defined by the opponent, hence some additional care is needed to prevent
secrecy violations in that case (see the third premise of the rule). Note that, due
to such a possible interaction with the opponent, the exercised permissions are
conservatively assumed to be P, i.e., all the permissions granted to the caller.

We conclude the description of the type system with an important remark
on expressiveness. Some of the constraints imposed by our typing rules are
rather restrictive for practical use, but are central to enforcing the conditions of

Lintent: Towards Security Type-Checking of Android Applications 299

Definition 2 and its robust variant. Our implementation, however, features a
number of escape hatches based on Java annotations to keep programming prac-
tical, much in the spirit of the declassification/endorsement constructs custom-
ary to the literature on information-flow control. We discuss this point further
in Section 6.

Example Type-Checking. We briefly discuss how example (1) is deemed as ill-
typed according to our type discipline. We first note that, since function a re-
quires permissions P to be called, the invocation a〈y �⊥〉 is assigned at least the
effect P by (T-Call). Hence, the only possible way to type-check the function
definition b(y�⊥).[P] a〈y�⊥〉 through (T-Def) is by assigning b a function type τ
such that S(τ) = P. Assuming that the service s is a public component, this im-
plies that the function definition s(x � C).[P] (νb) . . . \ b is ill-typed by (T-Def),
since the effect P assigned to the service body b by (T-Val) is not lesser or equal
to the permissions C required to invoke the service s.

Formal Results. The safety result below follows by a “simulation-aware” variant
of a standard Subject Reduction theorem for our type system, which captures
the step-by-step relationships between the standard semantics and our reference
semantics. The proof relies on a co-inductive argument enabled by the Subject
Reduction theorem: full details can be found in the online technical report.

Theorem 1 (Type Safety). If Γ "� E : τ � P for any P, then E �IPC E.

The next result states that our type system does not constrain the opponent.
Its proof follows by a simple structural induction.

Lemma 1 (Opponent Typability). Let O be an opponent and let Γ " u : Un
for all u ∈ fnfv(O), then Γ " O.

By combining the two previous results, we can prove our main theorem.

Theorem 2 (Robust Safety). Let S(τ) = ⊥ for every u such that Γ (u) = τ .
If Γ "� E : τ � P for any P, then E is robustly safe against privilege escalation.

6 Implementation

We have implemented the type system as a tool (Lintent) designed as a plug-in
for Android Lint, the widely popular utility distributed with Android’s ADT.

Lintent performs a number of static checks over permissions usage, analyz-
ing the application source code and the manifest permission declarations, and
eventually warning the developer in case of potential attack surfaces for privilege
escalation scenarios. As a byproduct of its analysis, Lintent is able to detect
over-privileged or under-privileged applications, and suggest fixes. Additionally,
Lintent infers and records the types of data injected into and extracted from in-
tents, while tracking the flow of inter-component message passing. This is needed

300 M. Bugliesi, S. Calzavara, and A. Spanò

to prevent privilege escalation attacks exploiting improper disclosure of binders
or pending intents, and at the same time proves very effective in detecting com-
mon programming errors related to misuse of intents [16].

Lintent analyzes Java source code: in principle, the same analysis could be
performed on the Java bytecode, though reasoning about types at the bytecode
level is arguably more demanding than at source level [14]. Below, we give a brief
overview of the main features of the tool and of the the main challenges we had
to face during its development.

Type Reconstruction. The hardest challenge for the implementation is related
to the widespread use of “untyped” coding patterns supported by the current
Android API. Consider, for instance, a simple scenario of intent usage with
multiple data types:

class SenderActivity extends Activity {
static class MySer implements Serializable { ... }

void mySenderMethod() {
Intent i = new Intent(this, ReceiverActivity.class);
i.putExtra("k1", 3);
i.putExtra("k2", "some_string");
i.putExtra("k3", new MySer());
startActivityForResult(i,0);

}
}

On the recipient side, intent “extras” are retrieved by freely accessing the intent
as if it was a dictionary, so the receiver may actually retrieve data of unexpected
type and fail at runtime, or disregard altogether some keys provided by the
sender [16].
class ReceiverActivity extends Activity {

static class WS implements Serializable { ... }

void onCreate(Bundle savedInstanceState) {
Intent i = getIntent();
String k1 = i.getStringExtra("k1"); // run-time type error!
WS o = (WS)i.getSerializableExtra("k3"); // dynamic cast fails!
// data associated to k2 is never extracted!

}
}

The example highlights a total lack of static control over standard intents manip-
ulation operations: with these premises, no type-based analysis can be soundly
performed. For this reason, intents are treated in Lintent as record types of the
form {k1 : T1, . . . , kn : Tn}, where each ki is a string constant and each Ti is
a Java type. This enforces a much stronger discipline on data passing between
components, which is consistent with our type system, where a function type
Fun(CALL, τ → τ ′)SECR constrains the caller in providing an argument of type τ

Lintent: Towards Security Type-Checking of Android Applications 301

and the callee in returning a result of type τ ′. A similar discipline is crucial in
Android applications to protect the secrecy of binders and pending intents.

Notice that, since the putExtra method is overloaded to different types, the
type of the second argument of each call must be reconstructed in order to keep
track of the actual type of the value bound to each key. As a valuable byproduct
of this analysis, Lintent is able to warn the user in case of intents misuse.

Partial Evaluation. As noted above, each piece of data put into an intent must
be bound to a key, hence an intent object can be seen as a dictionary of the
form {k1 �→ v1, . . . , kn �→ vn}. Unfortunately, the dictionary keys are run-time
(String) objects and therefore plain expressions in Java. Whether they happen
to be string literals or the result of complex method calls computing a String
object is irrelevant: in any case they belong to the run-time world. The very
same problem arises for result codes and Intent constructor invocations: both
the sender component and the recipient class object supplied as arguments could
be results of computations, and the same holds true for action strings in case of
implicit intent construction. Partial evaluation is required for reconstructing the
intent record type labels described above.

API Signatures and Permissions. Implementing the rules of the type system for
π-Perms requires a preliminary analysis to detect the corresponding patterns in
the Android source code. The analysis is far from trivial given the complexity
of the Android communication API, which offers several different patterns to
implement inter-component communication. Moreover, many Android API calls
require non-empty permission sets and must be detected and tracked by our
tool: Lintent retrieves a set of mappings between API method signatures and
permissions from a set of external files2, which are thus updatable with no need
to rebuild the tool. Finally, Lintent must perform type resolution for third-
party libraries: access to jar files must be granted to the tool to let it inspect
the contents of imported packages and classes through the javap disassembler.

Java Annotations Support. We rely on Java annotations to provide some escape
hatches from the tight discipline imposed by Lintent. Several privileged com-
ponents intentionally expose functionalities, thus we define annotations of the
form @priv{endorse="P"} to mark methods such as onCreate() with a set of
permissions P that the type-checker will disregard. More precisely, if the method
exercises the permissions set Q, the associated component is deemed well-typed as
long as it is protected with at least permissions Q\P. A similar treatment is imple-
mented for pending intents based on the annotation @priv{declassify="P"},
to lower the secrecy level of such objects computed by Lintent.

7 Lintent: Typing Experiments and Findings

At the time of writing Lintent is able to type-check activities, started services
and broadcast receivers. The current prototype should be considered in alpha
2 Currently such permission map files are those distributed with Stowaway [10].

302 M. Bugliesi, S. Calzavara, and A. Spanò

stage, as we are currently performing tests, fixing bugs and adding support for
some missing Java language features. Still, we were able to analyze some exist-
ing open-source applications from the Google Play store and identify previously
unknown privilege escalation attacks on them. In our case studies we performed
a code refactoring to avoid the usage of some Java features which are still unsup-
ported by Lintent, like reflective calls and nested classes. However, our findings
are confirmed by running the original applications on a Nexus device.

The first case study we consider is APN-Switch, a widget that allows to
enable and disable the device data connection with a click. Of course, these
network operations are sensitive, hence the application requires the permission
CHANGE_NETWORK_STATE to be installed. Unfortunately, APN-Switch is exposed
to privilege escalation attacks: an unprivileged malicious application can forge an
intent to the action string ch.blinkenlights.android.apnswitch.CLICK and
simulate a click of the user on the widget, thus enabling (or disabling) the device
data connection as if it were granted the CHANGE_NETWORK_STATE permission.

Our second case study is Wifi Fixer, a small application aimed at fixing
several problems with the Android wifi. Also Wifi Fixer suffers of privilege
escalation attacks, since it requires the permission CHANGE_WIFI_STATE to tog-
gle on and off the wifi connection, but any unprivileged application can send an
intent to the action string org.wahtod.wififixer.ACTION_WIFI_OFF to discon-
nect the wifi. Interestingly, the widget handling the wifi connection is declared
as an internal component, hence it cannot receive intents from third-party ap-
plications; however, a public broadcast receiver in the application can act as a
proxy to the widget, thus allowing to escalate privileges.

Both APN-Switch and Wifi Fixer are released on the official Google Play
store, hence available to a wide audience. We argue that Lintent can prove help-
ful not only in detecting malicious code lying within existing source programs,
but also in assisting well-meaning developers in identifying potential attack sur-
faces for privilege escalation and many other common programming mistakes,
way before their applications reach the Google Play store.

8 Related Work

The literature on Android application security is substantial, as reported in a
recent survey by Enck [6].

Android Permissions. Davi et al. [5] were the first to point out the weaknesses
of the Android permission system with respect to privilege escalation attacks.
Later, Felt et al. proposed IPC Inspection as a possible runtime protection mech-
anism [11]. Though effective, IPC Inspection may induce substantial performance
overhead, as it requires to keep track of different application instances to make
the protection mechanism precise. In a recent paper, Bugiel et al. describe a
sophisticated runtime framework for enforcing protection against privilege es-
calation attacks [2]. Notably, their solution comprises countermeasures against
colluding applications, an aspect which is neglected by both IPC Inspection and

Lintent: Towards Security Type-Checking of Android Applications 303

Lintent. Providing such guarantees, however, requires a centralized solution
built over the operating system. Our approach is complementary: runtime pro-
tection is useful against malicious applications which reach the Android market,
while static analysis techniques can prove helpful for well-meaning developers
who wish to assess the robustness of their applications. Finally, Felt et al. pro-
posed Stowaway, a tool for detecting overprivilege in Android applications [10].
In our implementation we take advantage of their permission map, which relates
API method calls to their required permissions.

Android Communication. Chin et al. [4] were the first to study the threats
related to the Android message-passing system. They provide also a tool, Com-
Droid, which is able to detect potential vulnerabilities in the usage of intents.
ComDroid does not provide any formal guarantee about the effectiveness of
the proposed secure communication guidelines; in our work, instead, we rea-
son about intents usage in a formal calculus and we are able to confirm many
previous observations as sound programming practices. ComDroid does not ad-
dress the problem of detecting privilege escalation attacks. The robustness of
inter-component communication in Android has been studied also by Maji et al.
through fuzzy testing techniques, exposing some interesting findings [16]. Their
empirical methodology, however, does not provide any clear understanding of
the correct programming patterns for communication.

Formal Models. π-Perms is partly inspired by a core formal language proposed
by Chaudhuri [3]. With respect to Chauduri’s model, π-Perms provides a more
thorough treatment of the Android system, including implicit communication,
runtime registration of new components, service binding and pending intents. In
later work, Fuchs et al. build on the calculus proposed by Chaudhuri to imple-
ment SCanDroid, a provably sound static checker of information-flow properties
of Android applications [13]. Another work by Fragkaki et al. discusses a number
of enhancements over the Android permission system and validates their effec-
tiveness in an abstract model [12] (cf. Section 4). The focus of the work remains
on runtime protection mechanisms, however, as opposed to static analysis. The
paper also discusses some issues related to controlled delegation, but it does it
independently from privilege escalation. Finally, Armando et al. proposed a for-
mal model of the Android operating system and a verification technique based
on history expressions [1]. However, any specific security analysis is left for future
work and no implementation is provided.

9 Conclusions

We have proposed a sound type-based analysis technique targeted at the static
detection of privilege escalation attacks on Android, and developed Lintent,
a prototype security type-checker which implements our analysis. Our tool ad-
dresses a number of engineering challenges which are central to the practical
development of any sound type-checker for Android applications. We showed
the effectiveness of our tool by unveiling real attacks on existing applications.

304 M. Bugliesi, S. Calzavara, and A. Spanò

As part of our future work, we want to focus on the study of robust declas-
sification and endorsement programming patterns in our formal framework, to
assess the impact on security of the Java annotations discussed in Section 6.
On the practical side, we want to further develop Lintent and add support for
many features of the Android platform which are still missing. We also plan to
integrate Lintent with a frontend to a decompiler as ded [8] to support the
analysis of third-party applications.
Acknowledgements. Work partially supported by MIUR PRIN Project “CINA:
Compositionality, Interaction, Negotiation and Autonomicity”, and conducted in
cooperation with SMC Treviso s.r.l. The third author was supported by a EU-
Regione Veneto funded fellowship within the POR FESR 2007 – 2013 Program,
Action 1.1.3.

References
1. Armando, A., Costa, G., Merlo, A.: Formal modeling and verification of the An-

droid security framework. In: TGC (2012)
2. Bugiel, S., Davi, L., Dmitrienko, A., Fischer, T., Sadeghi, A.R., Shastry, B.: To-

wards taming privilege-escalation attacks on Android. In: NDSS (2012)
3. Chaudhuri, A.: Language-based security on Android. In: PLAS, pp. 1–7 (2009)
4. Chin, E., Felt, A.P., Greenwood, K., Wagner, D.: Analyzing inter-application com-

munication in Android. In: MobiSys, pp. 239–252 (2011)
5. Davi, L., Dmitrienko, A., Sadeghi, A.-R., Winandy, M.: Privilege escalation attacks

on android. In: Burmester, M., Tsudik, G., Magliveras, S., Ilić, I. (eds.) ISC 2010.
LNCS, vol. 6531, pp. 346–360. Springer, Heidelberg (2011)

6. Enck, W.: Defending users against smartphone apps: Techniques and future di-
rections. In: Jajodia, S., Mazumdar, C. (eds.) ICISS 2011. LNCS, vol. 7093, pp.
49–70. Springer, Heidelberg (2011)

7. Enck, W., Gilbert, P., gon Chun, B., Cox, L.P., Jung, J., McDaniel, P., Sheth, A.:
Taintdroid: An information-flow tracking system for realtime privacy monitoring
on smartphones. In: OSDI, pp. 393–407 (2010)

8. Enck, W., Octeau, D., McDaniel, P., Chaudhuri, S.: A study of Android application
security. In: USENIX Security Symposium (2011)

9. Enck, W., Ongtang, M., McDaniel, P.D.: Understanding Android security. IEEE
Security & Privacy 7(1), 50–57 (2009)

10. Felt, A.P., Chin, E., Hanna, S., Song, D., Wagner, D.: Android permissions demys-
tified. In: CCS, pp. 627–638 (2011), http://www.android-permissions.org/

11. Felt, A.P., Wang, H.J., Moshchuk, A., Hanna, S., Chin, E.: Permission re-
delegation: Attacks and defenses. In: USENIX Security Symposium (2011)

12. Fragkaki, E., Bauer, L., Jia, L., Swasey, D.: Modeling and enhancing Android’s
permission system. In: Foresti, S., Yung, M., Martinelli, F. (eds.) ESORICS 2012.
LNCS, vol. 7459, pp. 1–18. Springer, Heidelberg (2012)

13. Fuchs, A.P., Chaudhuri, A., Foster, J.S.: Scandroid: Automated security certifica-
tion of Android applications, Technical report, University of Maryland (2009)

14. Gagnon, E.M., Hendren, L., Marceau, G.: Efficient inference of static types for java
bytecode. In: SAS 2000. LNCS, vol. 1824, pp. 199–220. Springer, Heidelberg (2000)

15. Google Inc: Reference documentation for android.app.PendingIntent,
http://developer.android.com/reference/android/app/PendingIntent.html

16. Maji, A.K., Arshad, F.A., Bagchi, S., Rellermeyer, J.S.: An empirical study of the
robustness of inter-component communication in Android. In: DSN (2012)

http://www.android-permissions.org/
http://developer.android.com/reference/android/app/PendingIntent.html

Honesty by Typing

Massimo Bartoletti1, Alceste Scalas1, Emilio Tuosto2, and Roberto Zunino3

1 Università degli Studi di Cagliari, Italy
{bart,alceste.scalas}@unica.it

2 University of Leicester, UK
emilio@mcs.le.ac.uk

3 Università degli Studi di Trento and COSBI, Italy
roberto.zunino@unitn.it

Abstract. We propose a type system for a calculus of contracting pro-
cesses. Processes may stipulate contracts, and then either behave hon-
estly, by keeping the promises made, or not. Type safety guarantees that
a typeable process is honest — that is, the process abides by the contract
it has stipulated in all possible contexts, even those containing dishonest
adversaries.

1 Introduction

Most approaches to the formal specification of concurrent systems typically as-
sume that components behave honestly, in that they always adhere to some
agreed specification (e.g., a behavioural type), under the assumption that the
static behaviour safely over-approximates the dynamic one. We argue that this
assumption is unrealistic in scenarios where competition prevails against coop-
eration. Indeed, in a competitive scenario components may act selfishly, and
diverge from the agreed specification.

We envision a contract-oriented computing paradigm [2], for the design of
distributed components which use contracts to discipline their interaction. In
CO2 [2], a process may advertise contracts; a session is established processes
advertising compliant contracts, similarly to other session-centric calculi. This
session dictates the actions needed to realise their contracts to processes. A
distinguished feature of CO2 is that processes are not supposed to respect their
contracts, nor are they bound to them by an enforcing mechanism.

More realistically, dishonest processes may avoid to perform some actions they
have promised in their contracts. This may happen either intentionally, e.g. a
malicious process trying to swindle the system, or unintentionally, e.g. because
of some implementation bug (possibly exploited by some adversary). In both
cases, the infrastructure can determine which process has caused the violation,
and adequately punish it. A crucial problem is how to guarantee that a process
will behave honestly, in all possible contexts. If such guarantee can be given, the
process is protected both against unintentional bugs, and against (apparently
honest) adversaries which try to make it sanctioned.

A negative result in [3] is that determining if a process is honest is an unde-
cidable problem for a relevant class of contracts (introduced in [10], and refined

D. Beyer and M. Boreale (Eds.): FMOODS/FORTE 2013, LNCS 7892, pp. 305–320, 2013.
c© IFIP International Federation for Information Processing 2013

306 M. Bartoletti et al.

in [11], for modelling WSDL and WSCL contracts). The problem is how to find
a computable approximation of honesty, which implies the dynamic one.

Example. Let us consider an on-line store (participant A), which sells apples (a)
and bottles of an expensive italian Brunello wine (b). Selling apples is quite easy:
once an order is placed,A accepts it (with the feedback ok) and waits for a payment
(pay) before shipping the goods (ship-a). However, if expensive bottles of Brunello
are ordered, the store is entitled to either decline the order (by answering no), or
accept it (and, as above, ship the item after the payment). Using external (+) and
internal (⊕) choice, the store contract can be modelled as

c = a.ok. pay.ship-a + b.
(
no ⊕ ok.pay.ship-b

)
External choice requires the other party to decide how to drive the contract
evolution; in this case, the customer chooses between apples a and bottles b.
Internal choice, instead, allows the advertising party to choose; in this case, the
store selects either ok or no.

Intuitively, contract compliance hinges on the duality between internal and
external choices. Hence, to sell its goods, the store needs to find an agreement
with a participant advertising a contract compliant with its contract c, such as:

d = b . (ok.pay.ship-b + no)

A buyer B advertising d wants to buy Brunello: she promises to select b (dual
of b in the store contract), and then offers an external choice that lets the store
choose between ok or no; in the first case, she promises to pay and wait for
shipment.

In CO2, the behaviour of each participant is a process capable of advertising
contracts and executing the actions required to honour them. For instance, the
store A can advertise its contract c by firing the prefix tellK ↓x c, where the index
x in ↓xc is the name of a channel of A, and K is the name of an external broker,
whom the contract is being advertised to. We shall not specify the behaviour of
K, and just assume that when it finds a contract compliant with c, a session is
established between A and another participant, say B. Technically, x is replaced
with a fresh session name s. Participants A and B will then use such session to
perform the actions required by their contracts.

A possible specification of the store A is e.g.:

PM = (x) (tellK↓x c . (dox a . XM (x) + dox b . XM (x)))

XM (x)
def
= dox ok . dox pay . askx ship-a? . dox ship-a

Here, A creates a private channel x, and advertises the contract c. Once a session
starts, PM can accept an order for a or b on x. This is modelled by the guards
dox a and dox b of the choice operator + (not to be confused with + of contracts).
In both cases, the processXM (x) is invoked. There,A accepts the transactionwith
ok, and waits for payment. Then A checks whether the contract requires to ship
apples: if the query askx ship-a? passes, the goods are shipped. Otherwise, when
the customer B orders Brunello, A maliciously gets stuck, and so B has paid for
nothing. This store is dishonest : it does not respect its own contract c.

Honesty by Typing 307

Consider now a non-malicious implementation of the store. Before accepting or-
ders, the store requires an insurance to cover shipment damages.With the contract
cp = payP .

(
cover⊕ cancel

)
, A promises to pay (payP) and then choose between

getting the coverage, or cancelling the request. The new store process is:

PN = (x, y)
(
tellC ↓y cp . doy payP . tellK ↓x c .(
dox a . dox ok . XN (x) + dox b . YN (x, y)

))
XN(x)

def
= dox pay .

(
askx ship-a? . dox ship-a+ askx ship-b? . dox ship-b

)
YN (x, y)

def
= doy cover .

(
dox ok . XN (x) + τ . dox no

)
The store A first requests an insurance by advertising cp to an insurance company
(say C); once C agrees, A pays the premium (on channel y), and then advertises c;
once an agreement with a customer B is reached,Awaits for a or b orders. If apples
are requested,A acknowledges (ok) and invokesXN (x); there,Awaits for payment,
checks which good has to be shipped, and actually ships it. Otherwise, if Brunello
is requested, YN (x, y) is invoked: there, A requests the insurance coverage paid
in advance; then, either the order is accepted and XN (x) is invoked for payment
and shipment (as above), or the transaction is declined after an internal action τ
(e.g. a wake up after a timeout).

This implementation is not malicious as the first attempt: it is keen to ship
the goods, but it is not honest either due to the interaction between A and the
insurance company. If C does not execute cover, A gets stuck on doy cover, unable
to honour c by providing the expected ok/no. Furthermore,A is dishonest w.r.t. cp:
the premium is paid in advance, but Amay never perform doy cover nor doy cancel
— e.g. if no agreement on c is found, or if the customer B is stuck, or if B simply
chooses to buy apples. Thus, due to implementation näıveties, A may be blamed
due to the unexpected (or malicious) behaviour of other participants.

Contributions. Our main contribution is a type discipline for statically ensuring
when a CO2 process is honest. The need for a static approximation is due to the
fact that honesty is an undecidable property [3]. Our type system associates be-
havioural types to process channels. Checking honesty on these abstractions is
decidable (Th. 1). We establish subject reduction (Th. 2) and progress (Th. 3),
which are then used to prove type safety: typeable processes are honest (Th. 4).

Due to space constraints, we publish the proofs and further examples in a sep-
arate report [1].

2 A Calculus of Contracting Processes

The calculus CO2 is parametric on the contract model, i.e. on the language of
contracts. Contract models for CO2 have been defined based e.g. on formulae of
Propositional Contract Logic [4], and on CCS processes [2]. In this paper we focus
on the two-party contracts of [11], as in [3]. Due to space limits, here we only give
the main definitions, and refer the reader to [1] for the full details.

We assume a set of participants A,B, . . ., and a set of atoms a, b, . . ., that repre-
sent the actions performed by participants.We use an involution ā, as in CCS, and

308 M. Bartoletti et al.

assume a distinguished atom e, modelling a successfully terminated participant,
such that e = ē.

A unilateral contract of [11] is a CCS-like process c which models the promised
behaviour of a single participant. An internal sum c =

⊕
i∈I ai ; ci requires a par-

ticipant (say, A) to choose one of the actions ai, do it, and then behave according
to its continuation ci. An external sum c =

∑
i∈I ai . ci requires A to offer a choice

among all the branches; if ai is chosen by the other participant, then A must con-
tinue according to ci. Finally, c = ready a.c′ models an obligation of A to do a,
and then to proceed as c′. We denote (guarded) recursive contracts with rec X . c,
and we let E = rec X . e ; X.

A bilateral contract γ = A says c | B says d combines the contracts of two
participants. Its behaviour is given in [3] as a LTS. Its main rules regulate the
interaction between the internal choices of A, and the external choices of B:

A says (ā ; c⊕ c′) | B says (a . d+ d′)
A says a−−−−−→→ A says c | B says ready a.d (1)

A says c | B says ready a. d
B says a−−−−−→→ A says c | B says d (2)

By (1), ifA chooses branch ā in her internal sum, thenB is committed to the branch
a in his external sum. We mark the selected branch with ready a, and discard the
others. This enables (2) whereB takes the marked branch.When an internal choice
is not matched by an action in the external choice of the partner, the contract gets
stuck. Intuitively, two contracts c, d are compliant, c �� d in symbols, when this
situation cannot occur. The formal definition of compliance builds upon that of
ready sets. For a contract c, the ready sets RS(c) are:

{{ready a}}, if c = ready a.c′ RS(c′), if c = rec X . c′

{{ai} | i ∈ I}, if c = ⊕
i∈I ai ; ci and I 	= ∅ {{ai | i ∈ I}}, if c =

∑
i∈I ai . ci

Then, the relation �� on contracts is the largest relation preserved by contract tran-
sitions such that, whenever c �� d,

∀X ∈ RS(c),Y ∈ RS(d).
(
{ā | a ∈ X}∩Y �= ∅ or ∃a. ready a ∈ (X∪Y)\(X ∩Y)

)
We now briefly review CO2 . Let V and N be disjoint sets of, respectively, session
variables x, y, . . . and session names s, t, Let u, v, . . . range overV∪N . Systems
S, processes P , prefixes π, and latent contracts K are defined below.

Definition 1 (CO2 syntax). The syntax of CO2 is given by:

P ::=
∑

i πi.Pi

∣∣ P |P
∣∣ ("u)P ∣∣X("u) π ::= τ

∣∣ tellA↓u c ∣∣ fuse ∣∣ doua ∣∣ askuφ
K ::= ↓u Asays c

∣∣ K |K S ::= 0
∣∣ A[P] ∣∣ A[K]

∣∣ s[γ] ∣∣ S |S ∣∣ ("u)S
Processes specify the behaviour of participants. A process can be a prefix-guarded
finite sum

∑
i πi.Pi, a parallel composition P | Q, a delimited process ("u)P , or a

constantX("u). We write 0 for
∑

∅ P , and π1.Q1 +P for
∑

i∈I∪{1} πi.Qi provided

Honesty by Typing 309

that P =
∑

i∈I πi.Qi and 1 �∈ I. We omit trailing occurrences of 0. We stipu-

late that each X has a unique defining equation X(u1, . . . , uj)
def
= P s.t. fv(P) ⊆

{u1, . . . , uj} ⊆ V , and each constant occurring in P is prefix-guarded.
Prefixes include the silent action τ , contract advertisement tellA ↓u c, contract

stipulation fuse, action execution dou a, and contract query asku φ. In each prefix
π �= τ , the identifier u refers to the target session involved in the execution of π.
As in [3], we leave the syntax of observables φ unspecified.

A latent contract ↓x A says c represents a contract c advertised by A but not
stipulated yet. The variable x will be instantiated to a fresh session name upon
stipulation. K simply stands for the parallel composition of latent contracts.

A system is composed of participantsA[P], sessions s[γ], sets of latent contracts
advertised to A (denoted by A[K]), and delimited systems ("u)S. Delimitation ("u)
binds session variables and names, both in processes and systems. Free variables
and names are defined as usual, and denoted by fv() and fn(). A system/process
is closed when it has no free variables. Each participant may have at most one pro-
cess, i.e. we forbid systems of the form A[P] | A[Q]. We say that S is A-free when it
does not contain the participant A[P], nor latent contracts of A, nor sessions with
A’s contracts. Note that sessions cannot contain latent contracts.

The semantics of CO2 is formalised by a reduction relation on systems (Def. 2).
This relies on a standard structural congruence relation — of which we just point
out that ("u)A[("v)P] ≡ ("u"v)A[P] allows to move delimitations between systems
and processes, while A[K] | A[K ′] ≡ A[K | K ′] allows A to collect latent contracts.

In order to define honesty in § 3, here we decorate transitions with labels, by

writing
A : π,σ−−−−→ for a reduction where participant A fires prefix π. Also, σ is a sub-

stitution which accounts for the instantiation of session variables upon a fuse.

Definition 2 (CO2 semantics). The relation
A : π,σ−−−−→ between systems (consid-

ered up-to structural congruence≡) is the smallest relation closed under the rules of
Fig. 1. The relation K σ γ holds iff (i) K has the form ↓x A says c | ↓y B says d,
(ii) c �� d, (iii) γ = A says c | B says d, and (iv) σ = {s/x,y} maps x, y ∈ V to
s ∈ N . The substitution σ
=u in rule [Del2] is defined as σ(v) for all v �= u, and it
is undefined on u.

The rules in Fig. 1 are a minor variation of those presented in [3]. Their intuitive
meaning is sketched in the introductory example (Sec. 1): [Tell] advertises a con-
tract c, [Fuse] creates a new session s upon contractual compliance, [Do] performs
a contractual action, [Ask] blocks until session s satisfies observable φ.

Example 1. A possible execution of S = A[(x)X(x)] | B[(y)Y (y)] | C[fuse],

where X(x)
def
= tellC ↓x (a ; E) . dox a and Y (y)

def
= tellC ↓y (a .E) . doy ā, is:

S
B : tellC ↓y ā,∅−−−−−−−−→ A[(x)X(x)] | C[fuse] | (y) (B[doy ā] | C[↓y B says ā .E])
A : tellC ↓xa,∅−−−−−−−−→(x)(A[dox a] | (y)(B[doy ā] | C[fuse] | C[↓xAsays a;E |↓yBsays ā.E]))
C : fuse,∅−−−−−→ (s) (A[dos a] | (y) (B[dos ā] | C[0] | s[A says a;E | B says ā.E]))
A : dos a,∅−−−−−−→ (s) (A[0] | B[dos ā] | s[A says E | B says ready ā .E])

310 M. Bartoletti et al.

A[τ.P + P ′ | Q]
A : τ,∅−−−−→ A[P | Q] [Tau]

S
A : π,σ−−−−→ S′ ran σ ∩ fn(S′′) = ∅
S | S′′ A : π,σ−−−−→ S′ | S′′σ

[Par]

A[tellB ↓u c.P + P ′ | Q]
A : tellB ↓uc,∅−−−−−−−−→ A[P | Q] | B[↓u A says c] [Tell]

K σ γ ran σ = {s} s fresh

A[fuse.P + P ′ | Q] | A[K]
A : fuse,σ−−−−−→ A[P | Q]σ | s[γ]

[Fuse]

γ
A says a−−−−−→→ γ′

A[dos a.P + P ′ | Q] | s[γ]
A : dos a,∅−−−−−−→ A[P | Q] | s[γ′]

[Do]

γ � φ

A[asks φ.P + P ′ | Q] | s[γ]
A : asks φ,∅−−−−−−−→ A[P | Q] | s[γ]

[Ask]

S
A : π,{s/x}−−−−−−−→ S′

(x)S
A : π,∅−−−−→ (s)S′

[Del1]

S
A : π,σ−−−−→ S′ u 	∈ ran σ σ
=u 	= ∅

(u)S
A : π,σ �=u−−−−−−→ (u)S′

[Del2]

X(�u)
def
= P A[P{�v/�u} | Q] | S A : π,σ−−−−→ S′

A[X(�v) | Q] | S A : π,σ−−−−→ S′ [Def]

Fig. 1. Reduction semantics of CO2

3 On Honesty

A participant A is honest when she realizes every contract she advertises, in every
session she may be engaged in. If a system S contains a session s with a contract
c advertised by A, such as A[P] | s[A says c | · · ·] | · · ·, then A must realize c,
even in a system populated by adversaries who play to cheat her. To realize c, A
must be “ready” to behave according to c. For instance, if A[P] has advertised a
contract c with an internal choice ci = a⊕ b, then P must be ready to do at least
one of the actions a, b. Instead, if c is an external choice ce = a+ b, then P must
be ready to do both the actions a and b.

Realizability requires the readiness property to be preserved by all transitions
of S. In other words, in any reduct of S containing a reduct P ′ of P and a reduct
c′ of c, the process P ′ must be ready for c′. To formalise when “P is ready for c”
we inspect the ready sets RS(c), which reveal whether c is exposing an internal or
an external choice. At the process level, we consider the reachable actions in P .

Example 2. Let ci = a ⊕ b, and let ce = a + b. Then, RS(ci) = {{a}, {b}}, and
RS(ce) = {{a, b}}. Consider now the following processes:

– P0 = dos a is ready for ci, because {a} ∈ RS(ci) and dos a is enabled in P0.
Instead, P0 is not ready for ce, since the ready set {a, b} of ce also contains
b, which is not enabled in P0.

– P1 = dos a+ dos b+ dos z is ready for both ci and ce. Indeed, P1 enables
dos a and dos b, thus covering the ready sets of ci and ce. The branch dos z
is immaterial: rule [Do] blocks actions not expected by the contract.

– P2 = τ.dos a + τ.dos b is ready for ci, because whatever branch is taken
by P2, it leads to an unguarded action which covers one of the ready sets in

Honesty by Typing 311

ci. Instead, P2 is not ready for ce, because after one of the two branches is
chosen, one of the two actions expected by ce is no longer available.

– P3 = dot w.dos a+ dot z.dos b is a bit more complex than the above cases.
Readiness w.r.t. ci depends on the context. If the context eventually enables
one of the dot, then either dos a or dos b will be enabled, hence P3 is ready
for ci. Otherwise, P3 is stuck, hence it is not ready for ci. Notice that P3 is
not ready for ce, regardless of the context.

To formalise readiness, we start by defining the set RDA
u(S) (for “Ready Do”),

which collects all the atoms with an unguarded action dou of A in a system S.

Definition 3 (Ready do). For all S, A and u, we define the set RDA
u(S) as:

RDA
u(S) = {a | ∃"v, P, P ′, Q, S′ . S ≡ ("v) (A[dou a.P + P ′ | Q] | S′) ∧ u �∈ "v}

As seen for P2 and P3, readiness may also hold when the actions expected in the
contract ready sets are not immediately enabled in the process. To check if A[P] is
ready for s (in a system S), we need to consider all actions which (1) are exposed
in P after some steps, taken by P itself or by the context, and (2) are not preceded
by other dos performed by A. These actions form the set WRDA

s (S).

Definition 4 (Weak ready do). We define the set of atoms WRDA
u(S) as:

WRDA
u(S) = {a | ∃S′ : S

=(A : dou)−−−−−−→∗ S′ and a ∈ RDA
u(S

′)}

where S

=(A : dou)−−−−−−→ S′ iff ∃B, π, σ. S B : π,σ−−−−→ S′ ∧ (B �= A ∨ ∀a. π �= dou a).

Example 3. For S = A[dox ā . doy b+ τ . doy a . doy c | (x) dox b̄], we have:

WRDA
x(S) = {ā} = RDA

x(S) WRDA
y (S) = {a} ⊇ RDA

y (S) = ∅

On channel y, the action a is weakly reachable through its τ prefix. Action b is
not weakly reachable, because guarded by a stuck dox. Action c is not weakly
reachable as well, because preceded by another do on the same channel.

Example 4. Let P3 as in Ex. 2, and consider the following system:

S = A[P3] | B[τ . dos ā . dos b̄] | C[dot w+ dot z̄+ τ]

| s[A says a+ b | B says ā⊕ b̄] | t[A says w+ z | C says w⊕ z̄]

In session t,A is immediately ready to do eitherw or z, so her ready do set coincides
with her weak ready do set in t. The same for C, with the dual atomsw and z̄. Thus:

WRDA
t (S) = RDA

t (S) = {w, z} WRDC
t (S) = RDC

t (S) = {w, z̄}

In session s, the ready do sets of both A and B are empty, because their actions
are not immediately enabled. Before they can be reached, the whole systemS must

312 M. Bartoletti et al.

first reduce, either with the contribution of C on session t (in the case of A), or
through a τ action (in the case of B). These reductions fall within the definition
of their weak ready do sets, which are accordingly non-empty.

WRDB
s (S) = {ā} ⊇ RDB

s (S) = ∅ WRDA
s (S) = {a, b} ⊇ RDA

s (S) = ∅

Notice that b̄ �∈ WRDB
s (S): in fact, b̄ is guarded by dos ā. Also, if C chooses to

perform τ , then the actions in WRDA
s (S) would not be reached. Indeed, Def. 4

requires that each element in the set becomes reachable at the end of a suitable
reduction trace — but it does not prevent S from reducing along other paths.

A participant A is ready in a system S with a session s[A says c | · · ·] iff A is
(weakly) ready to do all the actions in some ready set of c. Note that A is vacuously
ready in systems not containing sessions with A’s contracts.

Definition 5 (Honesty). We say that A is ready in S iff, whenever S ≡ ("u)S′

for some "u and S′ = s[A says c | · · ·] | S0,

∃X ∈ RS(c) . ∀a �=e .
(
a∈X ∨ ready a∈X =⇒ a∈WRDA

s (S
′)
)

A[P] is honest iff ∀ A-free S and ∀ S′ such that A[P] | S →∗ S′, A is ready in S′.

The A-freeness requirement in Def. 5 is used just to rule out those systems al-
ready carrying stipulated or latent contracts of A outside A[P], e.g. A[P] |
B[↓x A says pay | · · ·]. In the absence ofA-freeness, the system could triviallymake
A[P] dishonest.

Example 5. In the system below, A might look honest, although she is not.

S
def
= A[(x, y) (PA | fuse | fuse)] | B[PB] | C[PC]

PA
def
= tellA (↓x a .E) . tellA (↓y b ; E) . dox a . doy b

PB
def
= (z) (tellA (↓z b̄ .E) . doz b̄) PC

def
= (w) (tellA (↓w ā ; E) .0)

In fact, if we reduce S by performing all the tell and fuse actions, we obtain:

S′ = (s, t) (A[dot a . dos b] | B[dos b̄] | C[0] |
t[A says a .E | C says ā ; E] | s[A says b ; E | B says b̄ .E]

)
Here,S′ cannot reduce further:A is stuck, waiting for ā fromC, which (dishonestly)
avoids to do the required internal choice. So, A is dishonest, because she does not
perform the promised b. Formally, A is dishonest because RS(b ; E) = {{b}}, but
b �∈WRDA

s (S
′). Thus, A is not ready in S′, hence not honest in S.

Our definition of honesty subsumes a fair scheduler, eventually allowing partici-
pants to fire persistently (weakly) enabled do actions. For instance, let c = a⊕ b,
and let:

P
def
= (x)

(
tellA ↓x c . fuse . X(x)

)
where X(x)

def
= τ . X(x) + τ . dox a+ τ . dox b

LetS = A[P] | S0, and assume that the fuse inP passes. Under an unfair scheduler,
A could always take the first branch in X , while neglecting the others. Intuitively,
this would make A not respect her contract, which expects a or b. However, a fair
scheduler will eventually choose one of the other branches.

Honesty by Typing 313

4 A Type System for CO2

We now introduce a type system for CO2. The main result is type safety (estab-
lished in Th. 4), which guarantees that typeable participants are honest.

The type of a process P is a function f , which maps each channel to a channel
type. Channel types are behavioural types which essentially preserve the structure
of P , while abstracting the actual prefixes and delimitations. Mainly, the prefixes
of channel types distinguish between nonblocking and possibly blocking actions.

4.1 Channel Types

Channel types are Basic Parallel Processes (BPPs [14]) with standard semantics.
Their prefixes can be atoms (a, b, . . .), contract advertisement actions (〈c〉), non-
blocking (τ), possibly blocking (τ?), and conditional (τφ) silent actions.

Definition 6 (Channel types). Channel types T and prefixes α are:

T ::= 0
∣∣ α . T ∣∣ T + T

∣∣ T | T
∣∣ rec X . T ∣∣X α ::= a

∣∣ τ ∣∣ τ? ∣∣ τφ ∣∣ 〈c〉
Example 6. Let P = tellB ↓x ci |

(
tellB ↓y d . dox ā

)
, where ci = ā ⊕ b̄, and d is

immaterial.We anticipate that the channel types associated by our type system to
P on channels x and y are, respectively, Tx = 〈ci〉 | τ.ā, and Ty = τ | 〈d〉.τ?. Note
that the advertisement of ↓x ci is recorded in Tx, while that of ↓y d is abstracted
there as a τ . Instead, the τ? in Ty represents the fact that dox ā is not visible from
channel y, and may potentially block.

The execution of CO2 systems relies both on processes and contracts. Thus, we
use an abstraction of the contract/process interplay to define abstract processes.

Definition 7 (Abstract processes). An abstract process is a pair (C, T) or
(c, T), where C is a set of contracts, c is a contract, and T is a channel type.

An abstract process (C, T) represents a process abstracted by T on some channel x,
after the contracts in C have been advertised. Instead, (c, T) represents a process
abstracted by T on channel x, after the contract c has been stipulated.

The semantics of abstract processes is given in Fig. 2. The set C grows when
a channel type T in (C, T) performs a transition with label 〈c〉. After a contract
c ∈ C has been stipulated, the set is reduced to c. A label a models a do a action
performed by T , while rule ctx models an (unknown) action performed by the
context. Further advertisements after contract stipulation are neglected.

The relation −→→� abstracts the contract semantics −→→, by considering only the
contract advertised by P (instead of the whole bilateral contract). We leave the
relation −→→� unspecified (see [3] for a possible instantiation), and we just require
that −→→� is decidable, and for all γ = A says c | B says d such that c �� d,

γ
A says a−−−−−→→ A says c′ | B says d′ =⇒ c

a−→→� c
′

γ
B says b−−−−−→→ A says c′ | B says d′ =⇒ c

ctx−−→→� c
′

314 M. Bartoletti et al.

T
〈c〉−−−→ T ′

(C, T) → (C ∪ {c}, T ′)
T

〈d〉−−−→ T ′

(c, T) → (c, T ′)
c ∈ C

(C, T) → (c, T)

c
ctx−−→→ c

′

(c, T) → (c′, T)

T
α−−→ T ′ α ∈ {τ, τ?, τφ}
(C, T) → (C, T ′)

c
a−→→ c

′ T
a−−→ T ′

(c, T) → (c′, T ′)

T
α−−→ T ′ α ∈ {τ, τ?, τφ}
(c, T) → (c, T ′)

T
a−→ T ′

T
a

=⇒ T ′
T

τ−→ T ′′ a
=⇒ T ′

T
a

=⇒ T ′
T

〈d〉−−→ T ′′ a
=⇒ T ′

T
a

=⇒ T ′
T

τφ−→ T ′′ a
=⇒ T ′ c �A

 φ

T
a

=⇒ T ′

Fig. 2. Abstract processes semantics and channel type semantics

We now introduce the abstract counterpart of the dynamic notion of honesty in
§ 3. We shall follow the path outlined for concrete processes: first we define when
a channel type T is “ready for a contract”, and then when T is honest.

Weak transitions abstract the weak ready do. They are defined in Fig. 2 as a
labelled relation

a
=⇒c

A (simply written as
a

=⇒ when unambiguous). The first two
rules are standard: they just collapse the τ actions as usual. The third rule also
collapses contract advertisement actions, which are nonblocking as well. Possibly
blocking actions τ? are not collapsed, while τφ (which abstract asku φ prefixes) are
dealt with the last rule: they abstract the CO2 prefix asku φ, and they are collapsed
only if such ask is nonblocking. The relation "A

� safely (under-) approximates this

condition. We leave "A
� unspecified (just like " in § 2), and we only require that it

respects the constraint in Def. 8 below. Unlike in the concrete case, the context is
immaterial in determining weak transitions.

Definition 8 (Abstract observability). We write c "A
� φ for any decidable re-

lation satisfying: c "A
� φ =⇒ ∀B . ∀d . (c �� d =⇒ A says c | B says d " φ).

Below we relate the weak transitions of a channel type with the ready sets of a
contract, similarly to what we did in Def. 5 for CO2 processes. Weak transitions
under-approximate the weak ready do set. Thus, if an abstract process is honest
then also the concrete one will be such (while the vice versa is not always true).

Honesty of abstract processes is defined similarly to Def. 5. In order to be honest,
a process must keep itself (abstractly) ready upon transitions. Readiness must be
checked against all the contracts thatmay be stipulated along the abstract process
reductions.

Definition 9 (Abstract honesty). We say that channel type T is abstractly

ready for contract c iff ∃X ∈ RS(c).∀a �= e.
(
(a ∈ X ∨ ready a ∈ X) =⇒ T

a
=⇒

)
.

An abstract process (−, T) is honest iff, whenever (−, T) →∗ (c, T ′), then T ′ is
ready for c. A channel type T is honest iff (∅, T) is honest.

Example 7. Let Tx = 〈ci〉 | τ . a, and recall the contract ci = a⊕ b from Ex. 2. To
prove Tx is honest, we examine all the reducts of the abstract process (∅, Tx) to
check for readiness. We have the following cases:

Honesty by Typing 315

1. (∅, Tx). Nothing to check, because no contracts have been advertised yet.
2. (∅, 〈ci〉 | a). Similar to the previous case.
3. ({ci}, τ . a). Nothing to check, since no contracts have been stipulated yet.
4. ({ci}, a). Similar to the previous case.
5. (ci, τ .a). Here τ .a is ready for ci, as {a}∈RS(ci) = {{a}, {b}} and τ .a a

=⇒.
6. (ci, a). We have that a is ready for ci, similarly to the previous case.
7. (E,0). We have that 0 is vacuously ready for E.

Th. 1 below establishes that checking the honesty of a channel type T is decidable.
Indeed, abstract readiness and abstract dishonesty are reachability properties. Ab-
stract processes are the product of a finite state system (C and c only admit finitely
many states), and a BPP T . This product can be modelled as a Petri net. Decid-
ability follows since reachability is decidable for Petri nets [17].

Theorem 1. Abstract honesty is decidable.

4.2 Process Types

A CO2 process type associates session names/variables to channel types, thus ab-
stracting the behaviour of a process on all channels. Here, we introduce a “dummy”
channel ∗ �∈ N ∪ V , for collecting type information about unused channels. For-
mally, a process type is a function f from N ∪ V ∪ {∗} to channel types.

Our type system abstracts concrete prefixes of CO2 processes as actions of chan-
nel types. We observe the behaviour of a process P on each channel, say u. When
P performs an action on one of its channels, say v, we have two cases:

v �= u:we will only observe a silent action, either nonblocking (τ) or blocking
(τ?), depending on the concrete prefix fired.

v = u:we may observe more information, depending on the concrete prefix.

For instance, if P advertises a contract c with a tell ↓v c, then the action 〈c〉 will be
visible if v = u, while we shall just observe a τ if v �= u (because tell is nonblocking).
Similarly, if P performs dov a we shall observe the action a if v = u and τ? if v �= u
(because do is blocking). Finally, if P executes a query asku φ we shall observe the
conditional silent action τφ if v = u and τ? otherwise.

Definition 10 (Prefix abstraction). For all u ∈ N ∪ V ∪ {∗}, we define the
mapping [·]u from CO2 prefixes to channel type prefixes as follows:

[τ]u = τ [fuse]u = τ? [tellA ↓v c]u = if v = u then 〈c〉 else τ
[dov a]u = if v = u then a else τ? [askv φ]u = if v = u then τφ else τ?

The typing judgments for processes have the form Γ " P : f , where Γ is a typing
environment, giving types to processes of the form X("v).

Definition 11 (Typing environment). A typing environment Γ is a partial
function associating process types to constants X("v).

316 M. Bartoletti et al.

Γ � Pi : fi ∀i ∈ I

Γ � ∑
i∈I πi . Pi : λu .

∑
i∈I [πi]u . fi(u)

[T-Sum]

Γ � P : f Γ � Q : g

Γ � P | Q : λu . f(u) | g(u) [T-Par]

X(�u)
def
= P Γ{f/X(�v)} � P{�v/�u} : f

Γ � X(�v) : f
[T-Def]

Γ (X(�v)) = f

Γ � X(�v) : f
[T-Var]

Γ
=u � P : f f(u) honest

Γ � (u)P : f{f(∗)/u} [T-Del] where Γ
=�v(Y (�w)) =

{
Γ (Y (�w)) if �w ∩ �v = ∅
undefined otherwise

Fig. 3. Typing rules for processes

In Fig. 3 we introduce the typing rules for CO2 processes. Rule [T-Sum] abstracts
the prefixes which guard the branches of a summation, according to Def. 10. The
resulting process type is expressed through the usual λ-notation. The type of a
parallel composition is the pointwise parallel composition of the component types
(rule [T-Par]). Rules [T-Def] and [T-Var] are mostly standard. Rule [T-Var] retrieves
the type of a process variable from the typing environment, which is populated by
[T-Def]. The rule for typing delimitations ([T-Del]) is worth some comments. Assume
that P is typed with f . Since u in not free (u)P , the actions on channel umust not
be observable in the typing of (u)P . To do that, in the typing of (u)P we discard
the information on u, by replacing it with the typing information on the “dummy”
channel ∗. However, since this might hide a dishonest behaviour on u, the rule also
checks that f(u) is honest. Moreover, if the environment Γ has typing information
on channel u, this cannot be used while typing P . The typing environment Γ
=u,
which discards the information on u, is used to this purpose.

Example 8. Recall process P2 = τ .dos a+τ .dos b from Ex. 2. Its typing derivation
is:

� dos a : λu . [dos a]u = f1
[T-Sum] � dos b : λu . [dos b]u = f2

[T-Sum]

� P2 : f = λu . [τ]u . f1(u) + [τ]u . f2(u)
[T-Sum]

We have f(s) = τ . a + τ . b, and for all u �= s, f(u) = f(∗) = τ . τ? + τ . τ?. In
other words, the process type f performs some visible actions when observed at
channel s, while remaining “silent” on other channels.

The type system assigns the same type (up-to structural congruence) to all non-
free session names/variables, and to ∗; such type may only contain τ and τ?.

Lemma 1. For all P , " P : f =⇒ f(∗) only contains τ and τ? actions.

Lemma 2. z �∈ fnv(P) ∧ Γ " P : f =⇒ f(z) = f(∗)

A process type f takes a transition on a CO2 prefix π when all its points f(u) agree
to take a transition on the abstract prefix [π]u.

Definition 12. We write f
π−−→ f ′ whenever ∀u ∈ N ∪V∪{∗} .f(u) [π]u−−−→ f ′(u).

Honesty by Typing 317

Example 9. Recall P1 = dos a+ dos b+ dos z from Ex. 2. Its typing is " P1 : f =

λu . [dos a]u + [dos b]u + [dos z]u. Let f
′ = λu . 0. We have that f

dos a−−−−→ f ′, since:

– [dos a]s = a and f(s) = a+ b+ z
a−→ 0 = f ′(s);

– ∀v �= s . [dos a]v = τ? and f(v) = τ? + τ? + τ?
τ?−−→ 0 = f ′(v).

Note that, in this case, we also have f
dos b−−−−→ f ′ and f

dos z−−−−→ f ′.

If f is the type of some CO2 process (i.e., f is inhabited), and a single point f(u)
takes an abstract transition, then the whole f can take a transition.

Lemma 3. f(u)
α−→ T ′ ∧ f inhabited =⇒ ∃π, f ′ . [π]u=α∧ f ′(u)=T ′ ∧ f π−→ f ′.

Definition 13 (Type honesty). f is honest iff f(u) is honest, ∀u∈N∪V∪{∗}.
Note that, when " P : f , checking the honesty of f amounts to checking f(u) hon-
est only for each u ∈ fnv(P). In fact, f(v) = f(∗) when v �∈ fnv(P), and f(∗) is
trivially honest because it cannot advertise contracts.

4.3 System Typing

In this sectionwe establish type safety for CO2 processes: for any typeable closedP ,
A[P] is honest. To prove this result, we have to consider the transitions of a process
within a system. Hence, in order to construct an invariant of the system transitions
(i.e., proving subject reduction), we extend typing to systems.

Type judgments for systems are of two kinds. A judgment of the form "A S : f
guarantees that a participant A in S behaves according to f . Instead, a judgment
of the form "A S f means that A is not in S, and S is compatible with any
participant A behaving as f . Our notion of compatibility is liberal: intuitively, it
just checks that the context S does not contain forged contracts of A.

Definition 14 (System typing). The relations "A S : f and "A S f are the
smallest relations closed under the rules in Fig. 4.

Most rules in Fig. 4 are straightforward. Rules [T-SAFree*] tell that A-free systems
are compatible with all f . Rules [T-SFz*] state that an f -compatible context (where
f is the behaviour ofA) may contain latent contracts ofA if f realizes them. Rule [T-

SFused] is similar, but it deals with stipulated contracts ofA. Rule [T-SDel2] is similar
to [T-Del] for typing processes. Rule [T-SDel1] is dual: while in [T-SDel2] the type f
abstracts the behaviour of A within S, in [T-SDel1] it represents the behaviour of
A outside S. Note that if A[P] is typeable, then it can be inserted in any A-free
system, and the composed system will be typeable.

Example 10. Let S0 = B[Q] | C[↓x A says c], with B �= A (note that S0 is not
A-free). Assume that " P : f . Then, a typing derivation of S = A[P] | S0 is:

� P : f

�A A[P] : f
[T-SA]

B 	= A

�A B[Q] f
[T-SAFree1]

f(x) realizes c

�A C[↓x A says c] f
[T-SFz1]

�A B[Q] | C[↓x A says c] = S0 f
[T-SPar1]

�A A[P] | S0 = S : f
[T-SPar2]

Notice that S is typeable with f only if f(x) realizes A’s contract c.

318 M. Bartoletti et al.

�A 0 f
[T-SAFree0]

B 	= A

�A B[P] f
[T-SAFree1]

B 	= A

�A C[↓x B says c] f
[T-SAFree2]

γ A-free

�A s[γ] f
[T-SAFree3]

�A B[↓s A says c] f
[T-SFzS]

f(x) realizes c

�A B[↓x A says c] f
[T-SFz1]

�A B[K] f �A B[K′] f

�A B[K | K′] f
[T-SFz2]

∅ � P : f

�A A[P] : f
[T-SA]

�A S f{f(∗)/u}
�A (u)S f

[T-SDel1]

�A S : f f(u) honest

�A (u)S : f{f(∗)/u} [T-SDel2]

f(s) realizes c

�A s[A says c | · · ·] f
[T-SFused]

�A S f �A S′ f

�A S | S′ f
[T-SPar1]

�A S : f �A S′ f

�A S | S′ : f
[T-SPar2]

Fig. 4. Typing rules for systems. Symmetric rules wrt | for [T-SFused], [T-SPar2] omitted.

4.4 Type Safety

Subject reduction guarantees that typeability is preserved by transitions.We need
to distinguish two cases, according to which participant moves: either the partic-
ipant A under typing, or any other B. If the transition is done by A, then also its
process type must take a transition, otherwise the type is preserved.

The substitution induced when executing a fuse also affects the type of the
reduct system. For instance, consider A[P] | S, where " P : f and f(x) = T . As-
sume that S fires a fuse, with a substitution σ mapping x to a fresh session name
s. In the type, this is reflected by updating f according to σ, so to map s to T , and
x, which is no longer free, to f(∗). Technically, this is done as follows.
Definition 15. For a type f and a mapping {v/�u}, the partial operator • is:

f • {v/�u} =

{
f if ∀u0 ∈ "u . f(u0) = f(∗)
f{f(∗)/u0}{f(u0)/v} if ∃!u0 ∈ "u . f(u0) �= f(∗)

Theorem 2 (Subject reduction). If "A S : f with f honest, then:

S
A : π,σ−−−−→ S′ =⇒ ∃f ′ . f π−−→ f ′ ∧ "A S

′ : f ′ • σ

S
B : π,σ−−−−→ S′ =⇒ "A S

′ : f • σ (when B �= A)

Progress guarantees that if a typeable process has a “non-blocking” type, then it
can take a transition. More precisely, if the type of P on channel u can take a weak
transition with label a, then P will have a in its weak ready do set.

Theorem 3 (Progress). For all S ≡ s[A says c | · · ·] | S′, if "A S : f with f

honest, and f(s)
a
=⇒c

A, then a ∈ WRDA
s (S).

The main result of this paper is the type safety of CO2 processes. It ensures that
a participant A with a well-typed process P will always respect her contracts —
both those already advertised, and those that she will publish along her reductions.
Therefore, A will never be considered culpable in any context.

Theorem 4 (Type safety). ∀ A[P] with P closed, " P : f =⇒ A[P] is honest.

Honesty by Typing 319

5 Concluding Remarks and RelatedWork

We have given a type system for a calculus of contracting processes. Type safety
establishes honesty: typeable processes honour their contracts in all contexts.

In [3], A is considered “honest” when not definitely culpable (in any session),
i.e., A eventually performs the actions her contract prescribes. In Def. 5, honesty
is based on readiness, rather than culpability; we conjecture that the two notions
are equivalent. The main advantage of this new approach compared to [3] is that
it simplifies the proof of the correctness of the static analysis of honesty, by more
directly relating abstract transitions with concrete ones. Also, the new definition
helps in proving decidability of abstract honesty, which was left open in [3].

In [5] (multiparty) asserted global types are used to adapt design-by-contract
to distributed interactions. In our framework, a participant declares its contract
independently of the others; a CO2 primitive (fuse) tries then to combine adver-
tised contracts within a suitable agreement. In other words, one could think of our
approach as based on orchestration rather than choreography.

In [16] the progress property is checked only when participants engage at most
in one session at a time. Honesty is a sort of progress property, and our type system
allows participants to interleave many sessions as done in [15]. A crucial difference
with respect to [15] is that the typing discipline there requires the consistency of
the local types of any two participants interacting in a session. Namely, if in a
session s, A and B are typed as TA and TB respectively and they interact then the
projection of TA with respect to Bmust be dual of the projection of TB with respect
to A. In our type system instead, participants are typechecked ’in isolation’ and
to establish the honesty of a participant A our typing discipline only imposes that
the surrounding context is A-free.

Other approaches deal with safety, by generating monitors that check at run-
time the interactions of processes against their local contract (e.g.,[13,12]).

The problem of checking if a contract c, representing the behaviour of a service,
conforms to a role r of a choreographyH has been investigated in [6]. Conformance
of c is attained by establishing a should testing pre-order between c and the pro-
jection of H with respect to role r. Similar techniques have been used in [7] to
define contract-based service composition. A main difference w.r.t. our approach,
is that [6,7] do not consider conformance in the presence of dishonest participants.
Actually, they focus on matching a contract as a role within a choreography, while
we establish if a process abides by its own contracts, regardless of the context.

In [8,9], constraints are used to rule out “inconsistent” executions. This is or-
thogonal to our approach, since our aim is to blame participants that misbehave.

Acknowledgments. Work partially supported by Aut. Region of Sardinia un-
der grants L.R.7/2007 CRP-17285 (TRICS), P.I.A. 2010 Project “Social Glue”,
and by MIUR PRIN 2010-11 project “Security Horizons”, and by the Leverhulme
Trust Programme Award “Tracing Networks”, and by COST Action IC1201: Be-
havioural Types for Reliable Large-Scale Software Systems (BETTY), and by Eu-
ropean Union Seventh Framework Programme under grant agreement no. 295261
(MEALS).

320 M. Bartoletti et al.

References

1. Bartoletti, M., Scalas, A., Tuosto, E., Zunino, R.: Honesty by typing. Technical re-
port (2013), http://tcs.unica.it/publications

2. Bartoletti, M., Tuosto, E., Zunino, R.: Contract-oriented computing in CO2. Scien-
tific Annals in Computer Science 22(1), 5–60 (2012)

3. Bartoletti, M., Tuosto, E., Zunino, R.: On the realizability of contracts in dishonest
systems. In: Sirjani, M. (ed.) COORDINATION2012. LNCS, vol. 7274, pp. 245–260.
Springer, Heidelberg (2012)

4. Bartoletti, M., Zunino, R.: A calculus of contracting processes. In: LICS (2010)
5. Bocchi, L., Honda, K., Tuosto, E., Yoshida, N.: A theory of design-by-contract

for distributed multiparty interactions. In: Gastin, P., Laroussinie, F. (eds.)
CONCUR 2010. LNCS, vol. 6269, pp. 162–176. Springer, Heidelberg (2010)

6. Bravetti, M., Zavattaro, G.: Towards a unifying theory for choreography confor-
mance and contract compliance. In: Lumpe, M., Vanderperren, W. (eds.) SC 2007.
LNCS, vol. 4829, pp. 34–50. Springer, Heidelberg (2007)

7. Bravetti, M., Zavattaro, G.: Contract-based discovery and composition of web
services. In: Bernardo, M., Padovani, L., Zavattaro, G. (eds.) SFM 2009. LNCS,
vol. 5569, pp. 261–295. Springer, Heidelberg (2009)

8. Buscemi, M.G., Coppo, M., Dezani-Ciancaglini, M., Montanari, U.: Constraints for
service contracts. In: Bruni, R., Sassone, V. (eds.) TGC 2011. LNCS, vol. 7173,
pp. 104–120. Springer, Heidelberg (2012)

9. Buscemi, M.G., Montanari, U.: CC-pi: A constraint-based language for specify-
ing service level agreements. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421,
pp. 18–32. Springer, Heidelberg (2007)

10. Carpineti, S., Castagna, G., Laneve, C., Padovani, L.: A formal account of contracts
for web services. In: Bravetti, M., Núñez, M., Zavattaro, G. (eds.) WS-FM 2006.
LNCS, vol. 4184, pp. 148–162. Springer, Heidelberg (2006)

11. Castagna, G., Gesbert, N., Padovani, L.: A theory of contracts for web services.
ACM TOPLAS 31(5) (2009)

12. Chen, T.-C., Bocchi, L., Deniélou, P.-M., Honda, K., Yoshida, N.: Asynchronous
distributed monitoring for multiparty session enforcement. In: Bruni, R., Sassone,
V. (eds.) TGC 2011. LNCS, vol. 7173, pp. 25–45. Springer, Heidelberg (2012)

13. Chen, T.-C., Honda, K.: Specifying Stateful Asynchronous Properties for Dis-
tributed Programs. In: Koutny, M., Ulidowski, I. (eds.) CONCUR 2012. LNCS,
vol. 7454, pp. 209–224. Springer, Heidelberg (2012)

14. Christensen, S.: Decidability and Decomposition in Process Algebras. PhD thesis,
Edinburgh University (1993)

15. Coppo, M., Dezani-Ciancaglini, M., Yoshida, N., Padovani, L.: Global Progress for
Dynamically Interleaved Multiparty Sessions (2013),
http://www.di.unito.it/~padovani/Papers/CoppoDezaniYoshidaPadovani13.pdf

16. Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types. In:
POPL (2008)

17. Mayr, R.: Decidability and Complexity of Model Checking Problems for Infinite-
State Systems. PhD thesis, Technische Universität München (1998)

http://tcs.unica.it/publications
http://www.di.unito.it/~padovani/Papers/CoppoDezaniYoshidaPadovani13.pdf

Author Index

Abadi, Mart́ın 5
Abdulla, Parosh Aziz 193
Albert, Elvira 273
Alur, Rajeev 209
Atig, Mohamed Faouzi 193
Attie, Paul C. 161

Babić, Domagoj 225
Bartoletti, Massimo 305
Bensalem, Saddek 161
Bocchi, Laura 50
Bono, Viviana 83
Bozga, Marius 161
Bugliesi, Michele 289
Bultan, Tevfik 1

Calzavara, Stefano 289
Chen, Tzu-Chun 50

Dardha, Ornela 66
Delahaye, Benôıt 242
Demangeon, Romain 50

Evrard, Hugues 146

Feo-Arenis, Sergio 35
Fiadeiro, José Luiz 242
Flores-Montoya, Antonio E. 273

Genaim, Samir 273
Gorla, Daniele 66
Gregorio-Rodŕıguez, Carlos 114
Griesmayer, Andreas 130

Hierons, Robert M. 99
Honda, Kohei 50

Isenberg, Tobias 178

Jaber, Mohamad 161

Kanade, Aditya 209

Lang, Frédéric 146
Legay, Axel 242
Llana, Luis 114
Lomuscio, Alessio 130
Lopes, Antónia 242

Mart́ınez-Torres, Rafael 114
McSherry, Frank 5
Merayo, Mercedes G. 99
Mostowski, Wojciech 20
Murray, Derek G. 5

Nielson, Flemming 258
Nielson, Hanne Riis 258
Núñez, Manuel 99

Padovani, Luca 83

Rakamarić, Zvonimir 225
Rezine, Othmane 193
Rodeheffer, Thomas L. 5

Scalas, Alceste 305
Sifakis, Joseph 161
Spanò, Alvise 289
Steenken, Dominik 178

Thakkar, Jay 209
Tosatto, Andrea 83
Tuosto, Emilio 305

Varacca, Daniele 66

Wehrheim, Heike 178
Westphal, Bernd 35

Yoshida, Nobuko 50

Zaraket, Fadi A. 161
Zunino, Roberto 305

	Preface
	Organization
	Table of Contents
	Invited Talk
	Analyzing Interactions of AsynchronouslyCommunicating Software Components
	1 Introduction
	2 Specification of Message-Based Interactions
	3 Choreography Analysis
	4 Recent Results
	References

	Session 1: Verification
	Formal Analysis of a Distributed Algorithmfor Tracking Progress
	1 Introduction
	2 A Brief Review of TLA
	3 The Algorithm
	3.1 Informal Description
	3.2 Basic Definitions
	3.3 The Algorithm
	3.4 The Main Safety Property

	4 Formal Verification (Summary)
	4.1 Proof Summary
	4.2 Discussion

	5 Conclusion
	References

	A Case Study in Formal VerificationUsing Multiple Explicit Heaps
	1 Introduction
	2 Java Card Transactions on Explicit Heaps
	3 Heaps as Parameters in JML
	4 Implementation in KeY
	5 New Applications for Multiple Heaps in Verification
	6 Conclusions
	References

	Parameterized Verificationof Track Topology Aggregation Protocols
	1 Introduction
	2 Track Topologies and Aggregation Protocols
	3 Verification of Track Topology Aggregation Protocols
	4 Case Study
	4.1 Verification of the Ridesharing Protocol

	5 Related Work
	6 Conclusions
	References

	Session 2: Types
	Monitoring Networks through MultipartySession Types
	1 Introduction
	2 Types, Processes and Networks: A Formal Presentation
	2.1 Multiparty Session Types with Assertions
	2.2 Formal Framework of Processes and Networks

	3 Theory of Dynamic Safety Assurance
	3.1 Semantics of Global Specifications
	3.2 Semantics of Dynamic Monitoring
	3.3 Network Satisfaction and Equivalences
	3.4 Safety Assurance and Session Fidelity

	4 Conclusion and Future Work
	4.1 Related Work

	References

	Semantic Subtyping for Objects and Classes
	1 Introduction
	2 The Calculus
	2.1 Types
	2.2 Terms

	3 Semantic Subtyping
	3.1 Models
	3.2 Typing Terms
	3.3 Closing the Circle

	4 Operational Semantics and Soundness of the Type System
	5 Discussion on the Calculus
	5.1 Recursive Class Definitions
	5.2 Implementing Standard Multimethods
	5.3 Implementing Typical Java-Like Constructs
	5.4 Nominal Subtyping vs. Structural Subtyping

	6 Conclusions and Future Work
	References

	Polymorphic Types for Leak Detectionin a Session-Oriented Functional Language
	1 Introduction
	2 Language
	3 Types
	4 Type System
	5 Related Work
	6 Conclusions and Future Work
	References

	Session 3: Testing
	Passive Testingwith Asynchronous Communications
	1 Introduction
	2 Preliminaries: Systems and Observations
	3 Sets of Events from Observations and Ideals
	4 Creating Automata for Properties
	5 Conclusions and Future Work
	References

	Input-Output Conformance Simulation (iocos)for Model Based Testing
	1 Introduction and Related Work
	2 Preliminaries
	3 Input-Output Conformance Simulation (IOCOS)
	4 Testing Framework
	4.1 Tests Definition and Execution
	4.2 Testing Characterisation of
	4.3 Test Generation

	5 Conclusions and Future Work
	References

	Session 4: DisCoTec Joint Session
	Model Checking Distributed Systemsagainst Temporal-Epistemic Specifications
	1 Introduction
	1.1 Related Work

	2 Preliminaries
	2.1 The Modelling Language ABS
	2.2 Temporal-Epistemic Logic and Interpreted Systems

	3 Mapping ABS Programs into ISPL
	3.1 Temporal Progress
	3.2 Preservation of ABS Semantics

	4 Implementation and Experimental Results
	4.1 Verification of AODV Routing

	5 Conclusions
	References

	Session 5: Model Checking
	Formal Verification of Distributed BranchingMultiway Synchronization Protocols
	1 Introduction
	2 Related Work
	3 TheCADPToolbox
	4 Overview of Synchronization Protocols
	5 Formal Specification of Protocols
	6 Verification of Protocols
	7 Analysis of Protocol Verifications
	8 Conclusion and Future Work
	References

	An Abstract Frameworkfor Deadlock Prevention in BIP
	1 Introduction
	2 BIP – Behavior Interaction Priority
	3 Characterizing Deadlock-Freedom
	3.1 Wait-For Graphs
	3.2 Supercycles and Deadlock-Freedom
	3.3 Structural Properties of Supercycles

	4 A Global Condition for Deadlock Freedom
	5 A Local Condition for Deadlock Freedom
	6 Implementation and Experimentation
	6.1 Experiment: Dining Philosophers
	6.2 Experiment: Gas Station

	7 Discussion, Related Work, and Further Work
	References

	Bounded Model Checking of GraphTransformation Systems via SMT Solving
	1 Introduction
	2 Background
	3 Encoding of GTSs in First-Order Logic
	4 Implementation and Evaluation
	5 Related Work
	6 Conclusion
	References

	Session 6: Automata
	Verification of Directed AcyclicAd Hoc Networks
	1 Introduction
	2 Preliminaries
	3 Directed Acyclic Ad-Hoc Networks
	4 Transducers
	5 Undecidability of Cover
	6 Forest Bounded Coverability
	7 Tree Bounded Coverability
	7.1 Ordering
	7.2 Monotonicity
	7.3 Higher-Order Multisets
	7.4 Encoding
	7.5 Well Quasi-Orderings
	7.6 Monotonic Transition Systems
	7.7 From Tree-Bounded-Cover to MTS-Reach

	8 Related Work
	9 Conclusions
	References

	Transducer-Based Algorithmic Verificationof Retransmission Protocols over Noisy Channels
	1 Introduction
	2 Motivating Example
	3 Transducer Models of Retransmission Protocols
	3.1 Streaming String Transducers
	3.2 Construction of Sender and Receiver Transducers
	3.3 Sequential Composition of Sender and Receiver Transducers

	4 Verification of Transducer Models
	5 Case Studies
	6 Related Work
	7 Conclusions and Future Work
	References

	Asynchronously Communicating VisiblyPushdown Systems
	1 Introduction
	2 Applications
	3 Background and Related Work
	3.1 Task-Based Models
	3.2 Communicating Finite-State Machines
	3.3 Relations over Words and Trees

	4 The Formal Model
	4.1 Visibly Pushdown Transducers
	4.2 Systems of CVPTs
	4.3 Relations Describing Configurations

	5 TreeRelations
	5.1 Isomorphism between VPLs and
	5.2 Synchronized Tree Relations

	6 Decidability of Reachability
	6.1 Sufficient Conditions for the Decidability of Reachability

	7 Conclusions
	References

	Session 7: Distribution and Concurrency
	A Timed Component Algebra for Services
	1 Introduction
	2 The Component Algebra
	3 Consistency
	4 The Automata-Theoretic View
	5 Related Work
	6 Concluding Remarks
	References

	Probabilistic Analysis of the Quality Calculus
	1 Introduction
	2 Review of the Quality Calculus
	3 Motivating Example
	4 Trust Analysis
	5 Conclusion
	References

	May-Happen-in-Parallel Based DeadlockAnalysis for Concurrent Objects
	1 Introduction
	2 Language
	2.1 Operational Semantics

	3 The Notion of Deadlock
	4 Deadlock Analysis
	4.1 Abstract Tasks and Abstract Objects
	4.2 Abstract Dependency Graph

	5 Extensions of the Basic Framework
	5.1 Creating Objects and Tasks Inside Loops
	5.2 Future Variables as Fields
	5.3 Object Groups

	6 Experiments
	7 Related Work and Conclusions
	References

	Session 8: Security
	Lintent: Towards Security Type-Checkingof Android Applications
	1 Introduction
	2 Android Overview
	3 π-Perms: A Calculus for Android Applications
	3.1 Syntax and Semantics
	3.2 π-Perms vs Android

	4 Privilege Escalation (Formally)
	5 Preventing Privilege Escalation by Types and Effects
	6 Implementation
	7 Lintent: Typing Experiments and Findings
	8 Related Work
	9 Conclusions
	References

	Honesty by Typing
	1 Introduction
	2 A Calculus of Contracting Processes
	3 OnHonesty
	4 ATypeSystemforCO2
	4.1 Channel Types
	4.2 Process Types
	4.3 System Typing
	4.4 Type Safety

	5 Concluding Remarks and RelatedWork
	References

	Author Index

