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1 Introduction

Cloud database services, such as Amazon Relational Database Service (RDS) and
Microsoft SQL Azure, are attractive for companies to outsource their databases.
In cloud database services, a shared platform (e.g., database server hardware and
software) is provided to host multiple outsourced databases. By using cloud database
services, a client can deploy databases quickly without making the large upfront
investment on proprietary hardware and software. Hence, the cloud database services
can help companies reduce the total cost of ownership on their database management.
Moreover, due to the scalability and elasticity of cloud database services, an enterprise
can dynamically increase or decrease the cloud resources allocated to its databases
according to its business requirements.

For databases deployed into a cloud database service, the service providers have
the privilege to access the databases, since the underlying hardware and software are
under their physical control. Hence, the databases in the cloud might be accessed
improperly by the service providers accidentally or intentionally. The potential of
such improper accesses causes the concern of users about the privacy of their out-
sourced databases. On the other hand, the underlying software of cloud database
services (e.g., hypervisors, operating systems and DBMSs) might be compromised
by attackers. At this case, the privacy of the outsourced databases is also at risk of
being breached. Though attractive, cloud database services may not be fully exploited
if the problem of data privacy cannot be satisfyingly addressed [2].

To protect data in cloud databases, a straightforward approach is to encrypt data
before they are stored. By this way, the service providers or attackers can access
only meaningless ciphertexts. However, after encryption, the databases may not be
efficiently queried. It is not acceptable to decrypt the entire databases before executing
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a query. If a database is large, decrypting the entire database will be unacceptably
slow. In addition, if the decryption is done in the cloud, the encrypted database again
becomes insecure. Ideally, a query should be executed directly over the encrypted
database, producing the encrypted query result, which can only be decrypted by
users.

There have been some encryption schemes and systems proposed to facilitate the
encryption of databases and their queries [3, 7, 9, 16]. In the following, we describe
several requirements for database encryption and query. These requirements are
identified according to the role of databases in information systems. In an information
system, a database may run for a very long period of time. During this period, the
number of records in the database and the stored values may change dramatically. For
example, a table containing staff personal information may contain only a few of staff
records initially and then thousands of records after several years. And moreover, the
staff salaries may increase from a few hundred dollars per week to a few thousand
dollars per week.

R1: The native operations in DBMSs, such as SUM and AVG, should be used
to support the operations on encrypted data, instead of using user-defined functions,
since user-defined functions may not be optimized well by the DBMSs.

R2: The relational data model should be taken to manage encrypted data, and thus
the existing DBMSs can be applied without worrying about their physical implemen-
tations (e.g., column-oriented DBMSs or row-oriented DBMSs).

R3: The providers of cloud database services should not need encryption keys.
Otherwise, the database privacy is not protected against untrusted cloud database
services.

R4: The maximum sum of values in one table column should not be predetermined,
since it is hard to determine for a long-standing database.

R5: The number and range of values should not be required, since they may
increase dramatically when a database runs for a long period of time.
As to be discussed in the next section, the existing works do not satisfy all the
requirements. After discussing the exiting works, we will present an approach that
satisfies all the above requirements.

2 Related Works

In this section, we introduce the security mechanisms deployed in the cloud database
services, and the schemes of querying encrypted databases.

2.1 Security Mechanisms in Cloud Database Services

All cloud database services provide mechanisms to address the security concern of
service users. The basic security scheme in cloud database services is access control
[4]. Since a cloud database service is shared by multiple users, users must correctly
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authenticate themselves to the service to access their own databases. However, the
access control mechanisms cannot completely remove the security concern since
users have to trust the cloud service providers to correctly implement the access
control mechanisms and not to access the databases improperly. In addition, each
cloud database service may provide its specific security scheme, as discussed below.

In the Oracle Database Cloud [14], all data are stored by using Oracle’s Trans-
parent Data Encryption scheme, which encrypts data stored on disk and in backups.
The encryption and decryption of data is performed in the Oracle Database Cloud
and transparent to users. The benefit is that users do not have to do extra work to
encrypt their databases. However, the encryption keys are managed in the Oracle
Cloud, so users must trust the service provider not to decrypt their data improperly.
In the system presented later, the keys are managed by users themselves, so the cloud
service providers cannot decrypt their data at any time.

The Amazon Relational Database Service (Amazon RDS) provides security mech-
anisms at the network level [1]. A user can control network access to his database
by configuring firewall settings. Moreover, Amazon RDS allows database server
instances to run in Amazon Virtual Private Cloud (Amazon VPC), which helps the
isolation of database server instances. The databases in Amazon VPC can be accessed
by the existing IT infrastructure of an enterprise through encrypted IPsec link.

Similarly, the Microsoft SQL Azure service [13] also controls network access to
databases by configuring the SQL Database firewall. The firewall can be configured
at the server level or at the database level. The server level firewall controls machines
which can build connections with the virtual database servers. The database level
firewall controls accesses to certain database instances in the virtual database servers.
The communication with the Microsoft SQL Azure service is encrypted with SSL.

2.2 Related Schemes of Encrypting Database

The CryptDB [16] is a system supporting SQL queries over encrypted databases. This
system needs the extension of existing DBMSs to support homomorphic operations
like SUM and AVG, because the exploited homomorphic encryption scheme [15]
performs multiplication on ciphertexts to get the sum of corresponding plaintexts.
The existing DBMSs cannot natively support multiplication of values in one table
column.

In Ref. [7], a mechanism of supporting aggregate queries is proposed, which is
designed only for column-based databases by encrypting multiple values in one table
column into one ciphertext. Hence, the mechanism in Ref. [7] is not flexible for data
insertion and deletion, since the data to be updated is always packed together with
other data not to be updated.

In Ref. [6, 12], a homomorphic encryption scheme is proposed to be efficient and
practical. But it needs users to determine the maximum sum of plaintexts, which
should not be bigger than the modulus. Otherwise, the scheme is not homomorphic.
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That is, if it is used to encrypt values in a table column, the maximum sum of such
values must be predetermined and it cannot be bigger than the modulus.

An order preserving encryption scheme has been proposed in Ref. [3]. In this
scheme, the ith value in the plaintext domain is mapped to the ith value in the cipher-
text domain, such that the order between plaintexts is preserved between ciphertexts.
The scheme [3] can only deal with plaintexts in a finite domain. That is, the number
of values in the plaintext domain must be known before using the scheme. The cryp-
tographic analysis of the order preserving encryption scheme is performed in Ref.
[5].

The work [2] shows a way of building order preserving polynomials, which are
based on the polynomials proposed by Shamir for secret sharing [17]. In this mech-
anism, the number and range of plaintexts are needed to determine the range of
random coefficients in a polynomial. On the other hand, the evaluation results of
order preserving polynomials may reveal the distribution of plaintexts, since similar
plaintexts are transformed with similar polynomials.

In Ref. [9], an indexing mechanism for range queries is proposed. This mechanism
is not strictly order preserving since two different values may be mapped into the
same bucket, which is used when checking query conditions. The mechanism can
lead to inaccuracy of query results and hence some post-processing is needed to
remove unexpected query results.

3 An Architecture of Managing Encrypted Databases

As discussed before, it is desirable that when protecting databases with encryption,
the existing DBMSs should be applied without change. For this purpose, we describe
an architecture of managing encrypted databases, as shown Fig. 1. In this architecture,
enterprise applications are supposed to be built over databases, which are outsourced
to a public cloud. Since the public cloud cannot be trusted, the outsourced databases
are encrypted for data privacy. Therefore, the database service providers can only
access meaningless ciphertexts. Between the encrypted databases and applications
is a query proxy, which mediates their communication.

When an application issues a database query, the proxy translates it into a new one
that is to be executed over the encrypted database in the cloud. When the query results
are returned from the cloud, the query proxy decrypts them and then forwards the
decrypted results to the application. For the application, the query result is the same as
it directly accesses an unencrypted database. Each query is translated independently
by the proxy. Hence, an enterprise can deploy multiple query proxies to process
queries in parallel, though there is only one query proxy depicted in Fig. 1.

The query proxy maintains some meta data to perform query translation. The
meta data might include databases schemas, encryption keys, and other specific
information needed by cryptographic schemes and system management. Encryption
keys are surely needed for encrypting or decrypting data. Database schemas are
needed when determining the attribute names that are not given explicitly in a query
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Fig. 1 Architecture of man-
aging encrypted databases

statement, as in the query “select * from a staff table”. The order-preserving indexing
scheme to be introduced later needs the sensitivity of input values to be stored in the
query proxy.

The architecture takes a threat model, in which the proxy is deployed into the
administrative boundary of the enterprise. Hence, the untrusted database service
providers cannot access keys and database schemas maintained in the query proxy.
Moreover, the thread model does not allow untrusted service providers to perform
plaintext-chosen attacks, since they do not control the query proxy. The prevention
of plaintext-chosen attacks at the architecture level is required by order-preserving
encryption or indexing schemes [3, 5, 11], since these schemes used for process-
ing range queries leaks order information of plaintexts and hence are vulnerable to
plaintext-chosen attacks.

4 Overview: An Approach with Good Usability

We will introduce an approach of managing encrypted databases. This approach
comprises an order-preserving indexing scheme, a homomorphic encryption scheme,
and how to apply them to encrypt databases and query encrypted databases. The
schemes in this approach satisfy all five requirements discussed in the first section, so
this approach has good usability in protecting databases in the cloud. In the following,
we discuss several types of database queries. The order-preserving indexing scheme
and the homomorphic encryption scheme are applied to deal with different query
types.
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A database query can be an equality query, a range query, an aggregate query or
their combinations. An equality query uses the equality comparison as the filtering
predicate. For example, the query “select staffs whose room number is 405” needs
to compare whether the room number of a staff is equal to 405. A range query filters
records with inequality comparisons, such as the query “select staffs who join the
company from year 2000 to 2012”. An aggregate query generates a value from a set
of data. For example, the query “select salary average of all staffs” is an aggregate
query. These queries can be combined to perform complex query operations. For
example, we can query “select salary average of staffs who join the company from
year 2000 to 2012”.

To support the above query types, the approach encrypts a value (e.g., a field
in a record) with different cryptographic schemes. For supporting equality queries,
a secure hash scheme (e.g., HMAC-SHA1) is used to encrypt the value, such that
the ciphertexts of equal values are still equal. To deal with range queries and the
aggregate queries using MIN and MAX, the order-preserving indexing scheme is
applied. Since this scheme preserves the order of plaintexts, the comparison of two
ciphertexts can determine the order of their corresponding plaintexts. For aggregate
queries of using SUM and AVG operations, the homomorphic encryption scheme
is used to encrypt the value. As a result, the sum or average of ciphertexts can be
decrypted to obtain the sum or average of corresponding plaintext values. Note that
if a column does not support range queries (e.g., a Boolean column), then the order-
preserving indexes of values in this column do not need to be produced; if a column
cannot be summed, instead of using the homomorphic encryption scheme, we can
use AES to encrypt values in this column.

In addition, database schemas may also contain sensitive information. In the
approach, the schemas are anonymised by hashing table names and attribute names
when creating an encrypted database. Since a field in a record can be encrypted into
multiple ciphertexts, the encrypted records have more fields than the corresponding
plaintext records.

5 Order-Preserving Indexing

The order-preserving indexing scheme is used to answer range queries and the aggre-
gate queries using Min and Max over encrypted data. The order-preserving indexing
scheme described in this section is proposed in [11].

5.1 Overview

The order-preserving indexing scheme preserves the order between two plaintext
values. Formally, the order-preserving index scheme is defined below.
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Definition (Order-Preserving Indexing) Suppose k is a secret key, and v1 and v2
are two values. If v1 < v2, then OPI(k, v1) < O P I (k, v2), where OPI(k, vi ) means
the order-preserving index of value vi under the secret key k.

That is, by comparing OPI(k, v1) and OPI(k, v2), we can know the order of
v1 and v2. Thus, when order-preserving indexes are stored in encrypted databases,
they can be compared by DBMSs when executing queries over encrypted data.

Unlike order-preserving encryption schemes [3, 5], our order-preserving indexing
scheme is one-way. That is, from indexes, the original values cannot be recovered
even if the key is known. As a result, the order-preserving indexing scheme is simpler
to design than order-preserving encryption schemes, since the decryption operation
over indexes does not need to be considered.

Our order-preserving indexing scheme is vulnerable to plaintext-chosen attacks,
similar to order-preserving encryption schemes. Suppose an adversary can access an
oracle to choose arbitrary plaintexts to index. Then, given an index i, the adversary
can approximate its plaintext value by the following steps (i.e., binary search).

Step 1: choose an arbitrary value to index
Step 2: compare the index with i

Step 2a: if greater, then choose a smaller value to index
Step 2b: otherwise, choose a bigger value to index;

Step 3: repeat Step 2 until the index is closest to i

To prevent plaintext-chosen attacks, as discussed before, the system architecture is
designed to deploy the query proxy in a trusted domain, where the query proxy
processes queries issued by database applications.

5.2 An Order-Preserving Indexing Scheme

Before introducing the order-preserving scheme [11], we first define the sensitivity
of plaintext values, which indicates the smallest difference between two plaintext
values.

Definition (Sensitivity of Plaintexts) Let V be the set of all plaintext values. The
sensitivity of V is the minimum element in the set {|v1 −v2||v1 ∈ V, v2 ∈ V and v1 �=
v2}.

By its definition, the sensitivity is always bigger than 0. Though in the above
definition, all plaintext values are needed to define their sensitivity. Actually, the
sensitivity can be determined by data types or application requirements. For example,
if a field contains integers, then the sensitivity is 1; if a field contains even numbers,
then the sensitivity can be 2; for a field containing salaries of the form d1d2d3 ·
d4d5, where di is a digit, the sensitivity can be 0.01.

The order-preserving scheme described in [11] is build over the expression
a∗ f (x)∗x + b + noise, where a and b are real numbers, f is a function that needs
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to be instantiated, and noise is a random number. For a value v, its index is then
computed by a∗ f (v)∗v + b + noise. Since noise is randomly sampled, the indexing
scheme is probabilistic. That is, indexing one value twice may generate two different
indexes.

To keep the order-preserving property, the following requirements should be sat-
isfied by parameters in the indexing expression a∗ f (x)∗x + b + noise.

• a > 0;
• noise is sampled from the range [0, a∗ f (v + sens)∗(v + sens) − a∗ f (v)∗(v)),

where sens is the sensitivity of plaintext values;
• f (x) > 0 for x �= 0;
• f (x1) ≥ f (x2) for x1 > x2 ≥ 0 or x1 < x2 ≤ 0.

Note that there is no requirement to plaintext values (i.e., their number, their range
and their distribution). The notation nindexsens

[a,b, f ](v) is used to represent the index of
value v, where a, b, f and sens are regarded as secret keys of the indexing scheme.
The following theorem ensures the order-preserving property of the indexing scheme.

Theorem (Order-Preserving Property) Given the sensitivity sens of input values
V, for all v1 ∈ V and v2 ∈ V, i f v1 > v2, then nindexsens

[a,b, f ](v1) > nindexsens
[a,b, f ](v2).

To use the indexing expression nindexsens
[a,b, f ], we need to specify the instances

of f, which must satisfy the parameter requirements to f. The following are several
instances defined and analyzed in [11].

• f (x) = |x |;
• f (x) = x2;
• f (x) = logc(d + e∗|x |), where c > 1, d > 1 and e > 0 .
• f(x) = c∗�|x |/π� + d∗cos(|x | % π + π) + e, where d > 0, c ≥ 2∗d, e ≥ d, and

�_� and % are the floor and modulo operators, respectively.

These instances of functions f (x) can be composed. For example, by composing the
third and fourth ones, we can get f (x) = logc(d + e∗|g∗�|x |/π� + h∗cos(|x |%π +
π) + i |), where c > 1, d > 1, e > 0, h > 0, g ≥ 2∗h, i ≥ h. Moreover, the
composite f (x) still satisfies the parameter requirements of the indexing scheme.

An example of order-preserving indexing is shown in Fig. 2. In the example, the
input values are integers from −10 to 10 with the sensitivity 1 and the indexing
expression is 16∗log7(10 + 18∗|x |)∗x + 317 + noise. We can check that the order
between input values is preserved among indexes.

The indexing scheme can be applied to index numeric values directly. To index
strings, we need to convert strings into the numeric values. A simple idea is that
a character in the string is converted into its ASCII encoding. For example, “BC”
is converted to 0x4243. However, this simple idea may not work since strings are
usually compared in the lexical order. For example, the string “BC” is greater than
“ABC”. If “BC” is converted to 0x4243 and “ABC” is converted to 0x414243, then
0x4243 is less than 0x414243, which is not correct. To index strings, our indexing
scheme needs to know the maximum length of strings that will be compared. If the
maximum length of input strings is l and a string has the length n, then (l − n) bytes
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Fig. 2 An Example of order-preserving indexes

of zeros will be padded to the end of the converted integer. For example, if l = 3,
then “BC” is converted to 0x424300. In addition, the sensitivity of input strings is 1
when they are converted into integers.

5.3 Programmability

The order-preserving indexing scheme allows indexing expressions to be pro-
grammed into more complex indexing expressions. In [11], a formal syntax of pro-
gramming indexing expressions is given. Here, we give intuitive explanation on three
programming forms: summation, sequential composition and conditional composi-
tion.

• The summation of indexing expressions is represented as nindexsens
[a,b, f ](v) +

nindexsens
[a′,b′, f ′](v), which produces the index of v as the sum of nindexsens

[a,b, f ](v)

and nindexsens
[a′,b′, f ′](v).

• The sequential composition of indexing expressions is represented as
nindexsens′

[a′,b′, f ′](v); nindexsens
[a,b, f ](v),meaning that v is first indexed by nindexsens

[a,b, f ],
producing an intermediate index, which is then indexed by nindexsens′

[a′,b′, f ′], where
sens′ is the sensitivity of intermediate indexes.

• The conditional indexing expression can be composed in two ways:

– if v > c then nindexsens
[a,b, f ](v) else nindexsens

[a′,b′, f ′](v), where nindexsens
[a,b, f ](c) >

nindexsens
[a′,b′, f ′](c);

– if v < c then nindexs
[a,b, f ](v) else nindexsens

[a′,b′, f ′](v), where nindexsens
[a,b, f ](c) <

nindexsens
[a′,b′, f ′](c).



268 D. Liu

Fig. 3 Plaintexts in Gaussian distribution

The first way means that if v is greater than a constant c, then its index is
generated by using the expression nindexsens

[a,b, f ](v), and otherwise, generated
by using the expression nindexsens

[a′,b′, f ′](v). The condition nindexsens
[a,b, f ](c) >

nindexsens
[a′,b′, f ′](c) ensures that nindexsens

[a,b, f ](v1) always generates indexes greater
than nindexsens

[a′,b′, f ′](v2) when v1 > v2, so that the composite indexing expression
still satisfies the order-preserving property. Similarly, the second way means that
nindexsens

[a,b, f ](v) is used to index v if it is less than c; otherwise, nindexsens
[a′,b′, f ′](v)

is used.

Note that these three forms can be mixed in a composite indexing expression. For
example, the true branch of a condition indexing expression can be a summation
expression, while the false branch can be a sequential expression.

The composite indexing expression contains more secret parameters than its com-
ponents. Hence, the programmability of indexing expression increases the robustness
of the indexing scheme since the forms of indexing expressions are no longer fixed
and include more secrets. On the other hand, the programmability of the indexing
scheme gives users the capability to unlink the distributions of plaintext values and
indexes by indexing plaintexts in different ranges with different expressions. As
discussed in [3], it is not secure if the distribution of plaintexts is revealed by the
distribution of ciphertexts. In the following, an example borrowed from [11] is used
to illustrate how programmability is used to hide the distribution of plaintext values.

Suppose the plaintext values is selected from the range [−100, 100] and their
sensitivity is 1. An input value may have 10,000 duplicates. Figure 3 shows the input
values in the Gaussian distribution.

Then, the following indexing program is applied to index the plaintext values. By
using the conditional composition, the plaintext values are divided into 9 ranges, and
processed with different expressions. Figure 4 shows the distribution of the indexes,
which is different from the Gaussian distribution of plaintext values.
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if x > 70 then
7*(log7(621+12*|x |))*x+1*(*(log12(2030+3*|x |))*x+15683

else if x > 40 then
17*(log7(1265+8*|x |))*x+7*(log12(621+12*|x |))*x+11706

else if x > 20 then
25*(log7(6812+78*|x |))*x+17*(log12(1265+8*|x |))*x+8324

else if x => 0 then
30*(log7(9168+38*|x |))*x+25*(log12(6812+78*|x |))*x+6983

else if x > −20 then
25*(log7(7523+73*|x |))*x+30*(log12(9168+38*|x |))*x+6983

else if x > −40 then
20*(log7(8211+31*|x |))*x+25*(log12(7523+73*|x |))*x−6121

else if x > −60 then
12*(log7(4366+13*|x |))*x+20*(log12(8211+31*|x |))*x−3676

else if x > −80 then
5*(log7(6723+7*|x |))*x+12*(log12(4366+13*|x |))*x−93

else
1*(log7(2030+3*|x |))*x+5*(log12(6723+7*|x |))*x−3492

Fig. 4 Distribution of indexes

6 Homomorphic Encryption

Homomorphic encryption allows operations on plaintext values to be performed
through operations on ciphertexts. Thus, if table columns in a database are encrypted
homomorphically, then the aggregate queries of using SUM and AVG can be directly
performed over encrypted table columns by the existing DBMSs.

6.1 Homomorphism

A homomorphic encryption scheme can be fully homomorphic or partially homomor-
phic. In a fully homomorphic encryption scheme, both additions and multiplications
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can be performed over ciphertexts, while in a partially homomorphic encryption
scheme, only additions or multiplications can be performed over ciphertexts.

Fully homomorphic encryption is a dream of cryptographic research. Though
some fully homomorphic encryption schemes have been proposed [8], there is still
no work on the practical applications of these schemes. This is partially caused by the
gap between the cryptographic primitives and practical applications. For example,
in [18], the plaintext values can only be a bit 0 or 1, while the data in practical
applications usually consists of a sequence of bits (e.g., an integer of 32 bits). It is not
efficient to encrypt each bit separately. Consequently, the current fully homomorphic
encryption schemes are not practical enough to be applied to encrypt databases.

Partially homomorphic encryption can be practical. For example, the widely
used RSA is a multiplicatively homomorphic encryption scheme. That is, suppose
v′

1and v′
2 is the RSA encryption of two plaintexts v1 and v2 with the same public

key. Then, the decryption of v′
1

∗ v′
2 with the corresponding private key is the result

of v1
∗v2. However, multiplicatively homomorphic encryption is not useful for per-

forming aggregate queries of SUM and AVG, since these queries need the summa-
tion of plaintext values, not their multiplication. Instead, an additively homomorphic
encryption scheme is more useful for these aggregate queries.

For an additively homomorphic encryption scheme, it is desirable for queries
that the sum of plaintext values can be decrypted from the sum of corresponding
ciphertexts. Thus, in order to get the sum of one table column, the values in the
encrypted column can be added by the existing DBMSs. Some additively homomor-
phic encryption schemes do not satisfy this requirement. For example, in the homo-
morphic encryption scheme [15], the sum of plaintext values is obtained through
the multiplication of ciphertexts. This encryption scheme is used by the database
encryption systems [7, 16], where the existing DBMSs have to be extended to deal
with aggregate queries involving SUM.

The modern encryption algorithms are usually built over finite algebraic structures
enforced by using the modulo operation. However, this finiteness requirement is
harmful for homomorphic encryption over databases. For example, an additively
homomorphic encryption scheme is proposed in [12]; in this scheme, if the sum
of plaintexts is greater than the modulus, then scheme is no longer homomorphic.
Consequently, it is hard to use this scheme in database encryption, since it is hard
to determine the maximum sum of values in a table column for a long-standing
database.

6.2 A Homomorphic Encryption Scheme Without Modulus

We have proposed a generic scheme of defining homomorphic encryption without
using modulo operations [10]. The scheme supports both additive and multiplicative
homomorphism and allows values from an infinite algebraic structure to be encrypted.
Here, we introduce one instance of this scheme.
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Let Enc be the encrypting operation, Dec the decrypting operation and K(n) the
key. Then, given a value v, the encryption Enc(K(n), v) will generate a ciphertext
(c1, . . ., cn), which consists of n subciphertexts c1, . . ., and cn . The parameter n in
a key indicates the number of subciphertexts to be generated. In decryption, the
operation Dec(K(n), (c1, . . ., cn)) will return v. Given another value v′, let Enc(K(n),
v′) = (c1

′, . . ., cn
′). Then, the scheme ensures Dec(K(n), (c1 + c1

′, . . ., cn + cn
′)) =

v + v′ for additive homomorphism.
The multiplication of v and v′ can be decrypted in two steps from the outer product

of (c1, . . ., cn) and (c1
′, . . ., cn

′), which is represented as (c1
∗ c1

′, . . ., cn
∗ c1

′, . . .,
c1

∗cn
′, . . ., cn

∗ cn
′). At the first step, we perform the decryption Dec(K(n), (c1

∗ ci
′,

. . ., cn
∗ci

′)) for i ≤ 1 ≤ n to produce the intermediate ciphertext (v∗c1
′, . . ., v∗cn

′).
At the second step, we get v ∗ v′ from Dec(K(n), (v ∗ c1

′, . . ., v ∗ cn
′)). Specially,

given a real number h, we have Dec(K(n), (h∗c1, . . ., h∗cn)) = h∗v.

In this instance, the key K(n) is a list of n tuples of real numbers, [(k1, s1, t1), . . .,
(kn, sn, tn)], where n ≥ 3, ti �= 0(1 ≤ i ≤ n−1),

∑n−2
i=1 ki �= 0, and kn +sn +tn �=

0. The operation Enc encrypts v into (c1, . . ., cn) by the following steps.

• Let r1, . . ., rn−1 be n − 1 random numbers;
• ci = t∗i ki

∗v + si
∗rn−1 + ti ∗ri for 1 ≤ i ≤ n − 2;

• cn−1 = kn−1
∗ tn−1

∗ ∑n−2
i=1 ri + sn−1

∗ rn−1;
• cn = (kn + tn + sn)

∗rn−1.

The operation Dec decrypts the ciphertext (c1, …, cn) into v by the steps below.
If the keys are correct, we can see the random noises in each subciphertexts are
counteracted, and hence the correct value v is returned. Unlike the methods in [6,
12], we do not use the modulo operation to remove noises, so the presented encryption
scheme can be applied to infinite data ranges.

• L = ∑n−2
i=1 ki ;

• S = cn/(kn + tn + sn);
• I = cn−1 − S∗sn−1;
• v = ∑n−2

i=1 (ci − S ∗ si )/(L ∗ ti ) − I/(L ∗k∗
n−1 ∗ tn−1).

The last step of decryption divides different ci − S * si (1 ≤ i ≤ n − 2) with different
secret values L ∗ ti . Thus, if an adversary wants to recover v from ciphertexts in
brute-force, then he needs to guess ti (1 ≤ i ≤ n − 2) for each subciphertexts, in
addition to guessing other secrets si (1 ≤ i ≤ n − 1), L, kn−1

∗ tn−1, and kn + tn + sn .

6.3 Composition of Homomorphic Encryption

The generic scheme in [10] allows multiple instances to be defined. These instances
can be composed into new instances, which are still homomorphic. Briefly, the com-
position can be achieved by encrypting each subcipertext from one instance again
by using the same or another instance.
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Suppose there are two homomorphic encryption instances. The first one has the
key K1(n), the encryption operation Enc1, and the decryption operation Dec1, and
the second one has the key K2(m), the encryption operation Enc2, and the decryption
operation Dec2. For the composition of the first and second instances, a value v will
be encrypted into m*n subciphertexts, as shown below.

• Enc1(K1(n), v) = (c1, …, cn);
• Enc2(K2(m), ci ) = (ci1, …, cim) for 1 ≤ i ≤ n;
• The final ciphertext is (c11, …, c1m,...,cn1, …, cnm).

To decrypt the ciphertext (c11, …, c1m,...,cn1, …, cnm), the following steps are taken.

• Dec2(K2(m), (ci1, …, cim)) = ci for 1 ≤ i ≤ n;
• Dec1(K1(n), (c1, …, cn)) = v.

A composed homomorphic encryption scheme is more robust than its component
instances. Suppose an adversary wants to recover a plaintext from a ciphertext gener-
ated by a composed scheme. Then, in addition to breaking each component instance,
he needs to guess how to split subciphertexts, so that each subgroup of subciphertexts
can be correctly decrypted by using Dec2 into correct intermediate subciphertexts,
which are then decrypted by Dec1.

In the architecture of managing encrypted databases, the database service providers
cannot know whether a ciphertext is generated by a composed homomorphic encryp-
tion scheme, since they cannot access the query proxy. This increases the difficulty
for them to perform brute force attacks on stored ciphertexts.

6.4 Examples of Homomorphic Encryption

We use examples to illustrate the homomorphic encryption instance. The following
key is supposed to be used.

[(6.03,74.99,94.17), (−56.60,13.07,32.45),

(76.11,71.69,34.48), (29.87,32.70,92.80)]

This key consists of four tuples, meaning that a value will be encrypted into a cipher-
text that has four subciphertexts. A key component can be either a positive real or
a negative real. The plaintext values in this example are five reals: 1,384.4, 1,384.4,
345.3, 9,233.9 and 563.21. Using the thomomorphic encryption instance, we get five
ciphertexts listed in Table 1, with each having four subciphertexts.

Note that the first two values are encrypted into different ciphertexts, though they
are the same. The noises used in the encryption are listed in Table 2, with each row
containing the noises for encrypting the corresponding value. They can be used to
verify the correctness of the encryption operation.
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Table 1 Example of ciphertexts

(858839.59014, −2536268.23010, 2119402.922028, 14817.6369)

(848724.37914, −2511656.80840, 3298624.388448, 41558.3676)

(309553.73793, −600157.07450, 4945540.441476, 49011.4665)

(5331366.24729, −16941668.30340, 3738747.931116, 8301.4191)

(407243.945071, −1005986.464300, 2392536.630136, 118441.6584)

Table 2 Example of noises

702.25 102.76 95.37

457.78 791.88 267.48

953.82 922.10 315.45

891.31 531.91 53.43

321.35 569.52 762.32

Applying the decryption operation to the ciphertexts, we can get the correct plain-
texts. Moreover, the sum of plaintext values 12,909.21 can be obtained by decrypting
the following sum of ciphertexts, which is obtained by adding the corresponding sub-
ciphertexts in each ciphertext.

(7755727.899571, −23595736.880700,16494852.313204,232130.5485)

The average of plaintexts 2,581.84 can also be correctly decrypted from the fol-
lowing average of ciphertexts, which is obtained by averaging the corresponding
subciphertexts in each ciphertext.

(1551145.579914, −4719147.376140,3298970.4626408,46426.1097)

7 Translation of SQL Queries

A database schema designed by application developers are created differently in an
encrypted database. We first describe the table structures in an encrypted database
and then introduce how to translate a query from an application into a query that can
be executed over the encrypted database.

7.1 Table Structures

A table designed by application developers may include multiple columns. In the
presented approach, each column is processed independently. Hence, we take a table



274 D. Liu

that contains only one column as the example to explain the change of table structures
in the encrypted database. Suppose a table Staff has been designed for an application
with one column Salary. When creating such a table in a database, the query proxy
hashes the table name, such that the table name is meaningless to the untrusted
database service providers.

For the column Salary, the proxy actually creates multiple columns in the
encrypted table. The number of columns depends on the number of subcipher-
texts generated by the homomorphic encryption scheme. Assume the homomorphic
encryption scheme is configured in the query proxy to generate n subciphertexts for
the Salary column. Then, there will be n + 2 corresponding columns created for the
Salary column. The names of these n + 2 columns are obtained by hashing names
SalaryEqIdx, SalaryRngIdx, SalaryEnc1, …., and SalaryEncn . In these names, EqIdx,
RngIdx and Enci are postfixes appended by the query proxy. Figure 5 shows the Staff
table structure designed by application developers and the table structure managed
by the cloud database service, where the notation Sta f f ′ represents the hash of the
name Staff, and similarly for other hashed names SalaryEq I dx ′, Salary RngI dx ′,
SalaryEnc′

1, . . ., and SalaryEnc′
n .

Note that the n subciphertexts SalaryEnc′
1, …, and SalaryEnc′

n can be stored
not necessarily in the order of subciphertexts generated from encryption. For exam-
ple, we can store the subcipertexts in the order SalaryEnc′

2, …, SalaryEnc′
n , and

finally Salar yEnc1′. Moreover, the subcipertexts of one value can be mixed with
the subcipertexts of another value in the same record. Thus, the adversary is hard to
know whether two subcipehrtexts come from the encryption of one value.

When a salary from the database application is being put into the encrypted table,
the proxy produces n + 2 values for the corresponding columns SalaryEq I dx ′,
Salary RngI dx ′, SalaryEnc′

1,…, and SalaryEncn ′, by using the hash algorithm
like HMAC-SHA1, the order-preserving indexing scheme and the homomorphic
encryption scheme. The columns SalaryEq I dx ′ and Salary RngI dx ′ are used to
process query conditions involving equality and range comparisons, and when the
query conditions are satisfied the values in the n columns SalaryEnc1′, …, and
SalaryEncn′ will be returned to decrypt. Note that if values in a column cannot be
added or averaged, we also can use other encryption schemes like AES to encrypt
this column.

Fig. 5 Change of table structures
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7.2 Query Translation

The query translation relies on some meta data. Assume the proxy has the key K(n)
for homomorphic encryption, a key k for secure hashing and indexing. An indexing
expression is denoted by Index(v, s), meaning that v is indexed by Index with the
sensitivity s. In the following, we assume the sensitivity is sens. Note that different
columns may use different keys and indexing expressions. The numerical and string
data types are represented by Num and String, respectively.

7.2.1 Creation of Databases and Tables

To create a database and a table, the database application can issue the following two
statements.

create database dbname
create table tblname (colnm Type,... )

After receiving the above statements, the query proxy translates them into the follow-
ing ones, which will be executed by the cloud database service. The original schema
is recorded by the query proxy in its meta data, where Hash represents a secure hash
algorithm like HMACSHA1.

create database Hash(k,dbname)
create table Hash(k,tblname) (Hash(k, colnm+“EqIdx”) String,
Hash(k, colnm+“RngIdx”) Num,
Hash(k,colnm+“Enc1”) Num,..., Hash(k,colnm+“Encn”) Num,…)

The new columns have different data types. The column colnm+“EqIdx” have the
type String, since its values are always hexadecimal strings generated by the secure
hash function. The values of column colnm+“RngIdx” are generated by the index-
ing mechanism and have the numerical type. The columns colnm+“Enc1”,…, and
colnm+“Encn” for subciphertexts have the type Num, so that they can be summed or
averaged by the DBMSs. Strings can be converted into numeric values before using
the homomorphic encryption scheme, or they can be encrypted with other encryp-
tion schemes like AES, since it is not meaningful to perform addition operations over
strings.

7.2.2 Data Insertion

After a table is created, the database application can put a new record into the table
by using the following statement.

insert into tblname (colnm,... ) values (v,...)
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For this statement, the query proxy translates it into the following one. In the new
statement, the value v is hashed, indexed and encrypted before being stored into the
encrypted table. The encryption of v using the homomorphic encryption scheme with
the key K(n) produces n subciphertexts ci (1≤ i ≤n).

insert into Hash(k, tblname)(Hash(k, colnm + "EqIdx"), Hash(k, colnm + "RngIdx"),

Hash(k, colnm + "Enc1"), ..., Hash(k, colnm + "Encn"), . . .)

values (Hash(k, v), Index(v, sens), c1, ..., cn, . . .)

7.2.3 Queries of Data Selection

The data selection queries select one or more columns from a table. The following
two forms of query statements can be used to select the column colnm or all columns
(indicated by *) from the table tblname under the condition cond.

select colnm,... from tblname where cond
select * from tblname where cond

The second form can be changed into the first one by replacing * with all column
names according to the table schema maintained by the query proxy. For the first
form, the query proxy translates it into the following one, where the translation of
cond into cond ′ is discussed below.

select Hash(k, colnm + “Enc1′′), . . . , Hash(k, colnm + “Encn′′), . . .
from Hash(k, tblname) where cond′

In the new query, all subciphertexts must be selected, so that the query proxy can
perform the decryption. For the condition cond, it is defined over the primitive logical
forms colnm < c, colnm = c, colnm > c, where c is a constant from the domain of
the colnm column, by using the logical connectives. When translating the condition
cond, we replace each primitive logical form with a translated one, as defined below.

The condition colnm < c is translated into Hash(k,colnm+“RngIdx”) < Index(c,0).
Note that Index(c, 0) is the minimum index of c, since no noise is added. The condition
colnm=c is simply translated into Hash(k,colnm+“EqIdx”) = Hash(k,c). Assume the
sensitivity of values in the colnm column is sens. Then, c+sens is the next value
of c, and colnm > c is equivalent to the new condition colnm ≥ c + sens, which is
translated into Hash(k,colnm+“RngIdx”) ≥ Index(c+sens,0). Again, Index(c+sens,0)
is the minimum index of c+sens.

In addition, the keywords order by colnm and group by colnm might be used
in queries. They are translated into order by Hash(k,colnm+“RngIdx”) and group
by Hash(k,colnm+“EqIdx”), respectively. That is the ordering comparisons are per-
formed over the columns produced with the order-preserving indexing scheme, and
the grouping operation replies on the columns that support equality comparison.
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7.2.4 Aggregate Queries: SUM and AVG

The values in a table column can be calculated for their sum and average. The
following query statement can be used for this purpose.

select SUM(colnm),... from tblname where cond

select AVG(colnm),… from tblname where cond

In the homomorphic encryption scheme, the sum or average of ciphertexts are per-
formed on each subcipertexts. Hence, the above statements are translated into the
following ones.

select SUM(Hash(k,colnm+“Enc1”)),..., SUM(Hash(k,colnm+“Encn”)), …

from Hash(k,tblname) where cond ′

select AVG(Hash(k,colnm+“Enc1”)),..., AVG(Hash(k,colnm+“Encn”)), …

from Hash(k,tblname) where cond ′

After receiving the sum or average of subciphertexts, the query proxy can decrypt
them into the expected sum or average of values in the colnm column. The translation
of cond is the same as that in the data selection queries.

7.2.5 Aggregate Queries: MAX and MIN

The maximum or minimum value in a column might be queried by using the following
queries.

select MAX(colnm) from tblname where cond

select MIN(colnm) from tblname where cond

Each of the above queries is translated into two queries.

select MAX(Hash(k,colnm+“RngIdx”)) from Hash(k,tblname) where cond ′

select Hash(k,colnm+“Enc1”),..., Hash(k,colnm+“Encn”), …

from Hash(k,tblname) where cond ′ and Hash(k,colnm+“RngIdx”) = max

select MIN (Hash(k,colnm+“RngIdx”)) from Hash(k,tblname) where cond ′

select Hash(k,colnm+“Enc1”),..., Hash(k,colnm+“Encn”)), …

from Hash(k,tblname) where cond ′ and Hash(k,colnm+“RngIdx”) = min

The first queries determine the maximum index or the minimum index. After get-
ting the maximum index (max) or the minimum index (min), the query proxy then
constructs the second queries to get back the subciphertexts corresponding to max or
min. From the subciphertexts, the maximum or minimum values can be decrypted.
Note that we cannot get the maximum or minimum values from the maximum or
minimum indexes, since the order-preserving indexing scheme is one-way.
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8 Implementation and Evaluation

We implemented a prototype of querying encrypted databases with the SQL Server
2008 as the underlying DBMS. Since the query proxy communicates with the DBMS
in standard SQL queries, we can change to a cloud database service just by changing
the communication channel (e.g., the IP address of the cloud database science, the
port of TCP or UDP, and the secrets for being authenticated).

In this prototype, the database application stores person information in an
encrypted database. The person table designed by the application developers has
the following schema.

person(id int, name varchar(64), gender varchar(8), birthdate bigint, income
numeric(10,2))

A fragment of the encrypted person table is shown in Figure 6 by using the Microsoft
SQL Server Management Studio. There are six columns in Figure 6, which are
generated from the processing of person incomes, corresponding to the hashes of
incomes, their order order-preserving indexes and four subcipehrtexts of encrypting
each income. The attribute names are hashed, as shown at the first row in Figure 6.
Thus, from this encrypted table, the untrusted database service provider cannot get
any meaningful information. For other attributes of the original person table (i.e.,
id, name, gender and birthdate), they are encrypted with AES, since they cannot
be meaningfully added or averaged with the SUM or AVG operations in a query.
In addition, the gender attribute can only be “Male” or “Female”, and there are no
meaningful range queries for this attribute. Hence, the order-preserving indexes are
not generated for this attribute.

The order-preserving indexing in the encrypted person table is performed with the
following expression. This expression is kept secret in the query proxy. Due to the
programmability of the order-preserving indexing scheme, the form of the following
indexing expression is not known. It brings difficulty for an adversary to effectively
guess the indexing expression even if the adversary happens to know some pairs of
plaintexts and indexes.

3754.3∗ log120.2(513.8 + 77543.32∗|(3187.2∗�|x |/π� + 196.2∗ cos(|x |%π + π)

+ 26867.3)|)∗x + 84648.87)

As described above, an income value is encrypted into 4 subciphertexts, so the key
should have the form [(k1, s1, t1), (k2, s2, t2), (k3, s3, t3), (k4, s4, t4)]. In this evaluation,
each ki or ti is allowed to have 4 digits, and each si to have 8 digits. Thus, the 4
subciphertexts of homomorphic encryption leads to a key space of size 1052 (i.e.,
1052=104*108*(108*104*108*104*108*104*104), which is the product of the space
sizes of L, S, s1, t1, s2, t2, s3, t3, k3). Other attributes other than income are encrypted
with AES 128, which has key space of size 2128.
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The performance of querying encrypted databases is tested with respect to data
insertion and query on a Dell Latitude E4310 laptop. To test the performance of
data insertion, we generate 10,000 person records and insert them into a plain data-
base (PlainDB), where data is not encrypted, and an encrypted database (EncDB),
respectively. Figure 7 shows the used time (milliseconds) after inserting every 2,000
records. Compared with the insertion to PlainDB, the insertion of 10,000 records to
EndDB takes about more 22.9 % time.

The insertion to EncDB involves four different cryptographic schemes: the hash
algorithm (HMACSHA1), the order-preserving indexing scheme, the AES encryp-
tion and the homomorphic encryption. Figure 8 shows the time taken by each of these
schemes. From this figure, we can see the HMACSHA1 algorithm takes more time
than the other three schemes in total. Actually, if we change the order-preserving
indexing scheme into a deterministic one by avoiding noises in indexes, then the
equality check can be carried out over the indexes, too. At this case, the values in
encrypted databases do not need to be hashed, and hence the performance of insertion
will be increased.

The query performance is tested on two types of queries. The first type is to select
records satisfying some conditions, while the second is an aggregate query using
the SUM operation. We use the query below to select records from the encrypted
database.

select ∗ from person where income > min and income < max

By changing min and max, we can get five different results, including correspondingly
2,000, 4,000, 6,000, 8,000 and 10,000 records. The time spent on querying PlainDB
and EncDB is shown in Fig. 9, from which we can see the performance overhead is
linearly increased with the increase of the number of records in the query result. This
increase of performance overhead is reasonable, since more records in the encrypted
query result need more time to decrypt.

The aggregate query is performed by the following statement, which sums the
income of persons satisfying the query conditions.

select ∗ SUM(income) from person where income > min and income < max

Fig. 6 A fragment of encrypted person table
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Fig. 7 Performance of insertion

Fig. 8 Performance of differ-
ent cryptographic schemes

We still let the query return five different results, corresponding to the income sums
of 2,000, 4,000, 6,000, 8,000 and 10,000 records. Figure 10 shows the performance
result. This result shows that the query time does not increase quickly as that in
the selection queries with the increase of records included in the query results. This
is because the result of the above aggregate query has only one value (the sum
of encrypted income in each person record satisfying the condition) to decrypt,
regardless of the number of aggregated records.
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Fig. 9 Query performance for different records number

Fig. 10 Performance of aggregate queries

9 Summary

In this chapter, we introduce an approach for database encryption and query. In
particular, we introduce an order-preserving indexing scheme and a homomorphic
encryption scheme. Compared with the existing order-preserving and homomor-
phic encryption schemes, the presented schemes are more suitable for long-standing
database, since they do not need users to predetermine the number and range of data
stored in databases and their maximum sums. We implement a prototype that uses
the exiting DBMS (i.e., Microsoft SQL Server 2008) and evaluate its performance.
The evaluation shows that the approach incurs acceptable performance overhead.
The approach cannot deal with all SQL queries. For example, it cannot support queries
that use conditions involving operations of several columns (e.g., number*rate>10).
It is an interesting problem of improving the system to make it support more types
of SQL queries in future.
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