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Abstract. Software engineers must contend with situations in which
they are exposed to an excess of information, cannot readily express the
kinds of information they need, or must make decisions where computa-
tion of the unequivocally correct answer is infeasible. Recommendation
systems have the potential to assist in such cases. This paper overviews
some recent developments in recommendation systems for software en-
gineering, and points out their similarities to and differences from more
typical, commercial applications of recommendation systems. The paper
focuses in particular on the problem of software reuse, and speculates
why the recently cancelled Google Code Search project was doomed to
failure as a general purpose tool.
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1 Introduction

At one time, the notion of a recommendation system for software engineering
(RSSE) would have been anathema: computers and software were all about
correctness and precision, while recommendations bespeak fuzziness and faith.
Unfortunately, many tasks that face the software engineer are inherently impre-
cise, staggeringly complex, and often infeasible to compute (or even formally
undecidable). The software engineer must bridge the gaps between: the messy,
changing needs of the real world; the interpersonal and organizational challenges
involved in collaborating with other people; and the inflexibility of the computer.
While correctness and precision have their place, a willingness to revert to “good
enough” answers can be the difference between success and failure in the real
world with its constraints on time and money.

Robillard et al. [14] have previously defined RSSEs as follows: “An RSSE is a
software application that provides information items estimated to be valuable for
a software engineering task in a given context.” A key word in that definition
is “estimated”, because if the correct answer can be faithfully returned in all
circumstances, the application is not making recommendations but computing
or finding the answer. For example, a search for all references to a particular
method within a software project is not a recommendation: there is a unique,
unequivocally correct set. In contrast, finding all locations in a system that
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should be changed when that method is changed will require recommendations,
due to the infeasibility of computing the correct answer in general.

Recommendations for a software engineer play much the same role as rec-
ommendations for any user. There is a problem or task at hand. There is (of-
ten highly structured) information available about potential solutions. Some
additional information about the specific task is often available—e.g., through
an integrated development environment (IDE)—as is information about what
other people have done in similar circumstances. The recommendation system’s
task is to infer the nature or details of the task, the needs and/or character-
istics of the context of the task and of the engineer, to construct one or more
recommendations according to some model of relevance, and to present these
recommendations in a manner conducive to their timely and efficient usage.

An analysis of the differences and similarities of different recommendation
systems can be facilitated by a classification scheme. Section 2 outlines three dif-
ferent schemes for classifying recommenders in general recommenders or RSSEs
in particular: the paradigmatic classification for general recommenders provided
by Jannach et al. [9], the multidimensional design classification that provided
by Robillard et al. [14] for RSSEs, and a novel problem-space classification.

Section 3 examines a small set of recent RSSEs, to illustrate the breadth of
applications that have been explored. Section 4 focuses more narrowly on soft-
ware reuse, being a cornerstone of the author’s research and a fundamental goal
that led to the field of software engineering. Section 5 points to some opportuni-
ties with RSSEs that the author has seen in his own work. Section 6 summarizes
and points out remaining challenges and opportunities in RSSE and potential
cross-fertilization with research in recommenders from other domains.

2 Categorizing RSSEs

Three categorization schemes are presented here: the paradigmatic classification
for general recommenders provided by Jannach et al. [9], the design-oriented
classification for RSSEs developed by Robillard et al. [14], and a novel problem-
space classification.

Jannach et al. [9] divide recommenders into four paradigms. Their stated
focus is personalized recommendations (i.e., ones reflective of the individual’s
tastes, needs, habits, or characteristics) rather than generic recommendations.
The archetypal example is of the online bookstore, where recommendations are
made to a customer about what books may be of interest to them.

1. Collaborative recommenders. A typical example is, if Alice has purchased
or viewed books that have been purchased or viewed by other customers,
additional books purchased or viewed by those other customers are also of
potential interest to Alice. Collaborative recommenders can thus be viewed
as operating through analogical reasoning over different users, and extrap-
olation from historical data, without resorting to detailed analysis of the
items being recommended.
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2. Content-based recommenders. Again, considering the online bookstore arche-
type, recommendations could be derived from the properties of the books
that Alice has purchased or viewed: the author, the genre, the publication
date, keywords in the title or synopsis, . . . all are potential signs of what Alice
cares about. Content-based recommenders then realize a similarity function
(which is also a form of analogical reasoning) that depends on a specific
model of the items being recommended and extrapolation from historical
data.

3. Knowledge-based recommenders. When Alice can express properties of the
books she is interested in or some of her individual properties (e.g., age, gen-
der), the need for historical data about Alice might be avoidable. Knowledge-
based recommenders also realize a similarity function that depends on a
specific model of the items being recommended. The key difference from
content-based recommenders is the avoidance of historical data.

4. Hybrid recommenders. Since each of the above approaches has advantages
and disadvantages, a good combination of them would draw on their strengths
while cancelling their weaknesses. Of course, a bad combination would do
the opposite.

Robillard et al. provide a table of the design dimensions for RSSEs, reproduced
in Table 1. The major dimensions focus on three issues. The context consists of
the situation-specific information to be used by the recommender, in the form
of implicit input garnered by observing the developer, explicit input provided
by the developer, or some hybrid of the two. To construct its recommendations,
the recommendation engine analyzes the context plus additional sources of data,
such as the source code of a project being operated on (beyond an explicit input),
a repository of change history information, or websites containing developer con-
versations. While the majority of RSSEs rank their results, not all do so. The
output involves two aspects: the mode of the recommendations may be via push,
where the developer has not actually asked for help, or via pull, where an ex-
plicit request was made; the presentation style may insert the recommendations
within another source of information, like the developer’s standard views in an
IDE, or all at once in a special-purpose display. Rationales (or explanations)
for the recommendations vary in nature and detail a great deal, and involve an
interplay between the recommendation engine itself and the output. And finally,
all manner of developer feedback can potential be accepted to refine or to change
the recommendations, involving an individual’s feedback affecting just their local
view or everyone’s.

A software engineer encounters three kinds of situations in which recommen-
dations could potentially be beneficial.1 (1) In the presence of too much infor-
mation, recommendations of the most relevant cases can save time and prevent
those cases from being overlooked—the information overload situation. (2) In
the absence of specific knowledge about what information to seek or how to ex-
press it, recommendations can draw on the current context (of the engineer) and

1 Note that this categorization is not derived from a systematic analysis of RSSEs, so
there may be other cases that do not fit here, but these three cases do occur.
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Table 1. Design dimensions of RSSEs according to Robillard et al. [14]

Context nature
Recommendation

engine
Output form

Input:
explicit, implicit,

hybrid

Data:
source, change, bug
reports, mailing lists,
interaction history,

peers’ actions

Mode:
push, pull

Ranking:
yes, no

Presentation:
batch, inline

Explanations: from none to detailed

User feedback:
none, locally adjustable, individually adaptive, globally adaptive

the past experiences of others—the navigation confusion situation. (3) When the
correct answer to a problem is too complex to compute, a set of heuristically-
based answers or approximations can still help the engineer to make a rational
decision—the infeasible computation situation.

3 Sampling Recent RSSE Approaches

RSSEs have been realized for most activities within software engineering, from
assisting with implementations, to pointing out high-risk code, to recommending
people as experts, to helping plan out staged releases of features. Three specific
examples are examined here.

In requirements elicitation, the problem is to discover each stakeholder’s
needs, preferences, and wishes in a form that can be compared and contrasted. A
negotiation process then proceeds in order to resolve conflicts and ambiguities,
and to reach agreement on rationales and priorities. Performing such activities in
a distributed development environment is particularly challenging; in large sys-
tems, much time can be wasted involving individuals in negotiations on issues
not relevant to them. The approach of Castro-Herrera et al. [2] seeks to ana-
lyze natural language descriptions of stakeholder’s perspectives, in order to help
clarify those perspectives and to cluster the stakeholders into specific themes for
discussion. They utilize data describing the stakeholders for this purpose as well,
and user feedback is used to improve the clustering process. This is a hybrid ap-
proach, involving elements of collaborative recommenders and knowledge-based
recommenders. It can be seen as coping with an information overload problem
(the need to read and understand the ideas of a large set of stakeholders) and a
navigation confusion problem (the need to determine which stakeholders must
focus on individual issues). The input context is explicit; the data source is
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stakeholder profiles; the output mode is pull; the presentation is batch; no ex-
planations are provided; and the user feedback is individually adaptive, altering
each user’s own profile.

The YooHoo tool [6] tackles the problem of information overload for a de-
veloper whose development depends on external projects undergoing parallel
development. At issue is the unpleasant surprise when one’s software breaks due
to an unexpected change event in an external project. While it is possible to
monitor a stream of change events arriving from the external project, these will
frequently be voluminous and mostly irrelevant. YooHoo attempts to classify
the changes into those most likely to be impactful on the individual developer’s
project, those unlikely to be impactful, and those that are almost certainly ir-
relevant. To create its recommendations, YooHoo is configured to receive the
relevant change event streams and analyzes the developer’s project for exter-
nal dependencies. The developer can also configure YooHoo to be more or less
restrictive for particular event streams. YooHoo obtains over 99% elimination
of events while maintaining a very high true positive rate. This approach deals
strictly with an information overload problem. It is a knowledge-based approach.
Its context is the preference settings of the developer; its other data sources are
the developer’s project and the external change event streams; its output is push
mode (or perhaps calling it a “delayed-pull” mode would be better, since the
developer has really asked for it) and batch; it does not use feedback.

Murphy-Hill et al. [12] have proposed a recommender for the unusual problem
of command discovery within a developer’s IDE. The issue is that modern IDEs
like Eclipse suffer from a feature bloat problem: too many commands available
for too much functionality. While feature-richness is important in an IDE, it can
lead to inefficiencies when developers are unaware of the existence of a useful
command, and they resort to more cumbersome combinations to achieve the
same effect; since they are unaware of the existence of the command, there is
no question of them searching for it. The approach operates atop a large repos-
itory of historical information about developers’ command usage; commonality
between the developer’s actions and those of other developers prior to them
learning about a command leads to the provision of a recommendation to use
that command. The approach deals strictly with a navigation confusion prob-
lem. It is a collaborative recommendation approach. Its context is implicit in
the actions of the developer; its other data source is the historical repository of
command invocation sequences; its output is push mode and in-line; it does not
use feedback.

4 RSSEs in Software Reuse

There have been many approaches over the years aimed at finding code for
the developer. Traditional approaches focused on precise query languages to
specify the desired semantics or other specific properties. The ultimate failure of
these approaches hinges on their impracticality: industrial developers will rarely
if ever be able or willing to spend the time crafting and debugging detailed,
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arcane specifications. The time required to do so is liable to outweigh the benefits
accrued from finding the functionality. Furthermore, such approaches are likely
to succeed in delivering relevant artifacts only in the simplest of cases; in others,
no perfectly matching artifacts are likely to exist. Recognizing these problems,
several researchers have followed the RSSE route to make progress.

4.1 Test-Driven Reuse

The test-driven development paradigm [1] argues that automated test cases
should be developed before the code-under-test is implemented. The supposed
benefits are: (1) automated test suites should be created anyways; (2) the devel-
oper will have a better understanding up-front of what that code ought to do;
and (3) since it is natural to build assumptions (sometimes false) into our code,
the developer will be less prone to also build those assumptions into their tests.

The idea of test-driven reuse is then to leverage these test cases in order to
find pre-existing artifacts that can then be reused, instead of implementing the
functionality from scratch. The core issue here falls into that of the infeasible
computation problem: an unequivocally correct answer would require arbitrary
transformations to arbitrary code that results in compilable versions of the ex-
amples that could then be run against the automated test cases; this is clearly
infeasible in the general case, so providing approximations and recommenda-
tions is a reasonable alternative. Three research groups have pursued this idea
[8, 10, 13]. Many of their ideas are essentially the same: extract a set of facts
from the test cases, use these to find similar artifacts in a database, and recom-
mend the most relevant artifacts to the developer—these are knowledge-based
recommendation systems. The approach of Reiss [13] is slightly different, in that
he also attempts some simple transformations of the located artifacts in order
to be able to run the test cases on the (transformed) artifacts.

In unpublished research, all three techniques have been found to fail badly in
most realistic circumstances, as they expect the developer’s tests to use exactly
the names of types and methods that are found in the artifacts. Even Reiss’s
approach falls into this trap, as he uses a strictly pipelined approach to select
potential examples, only then transforming and running them, and it is the first
step that contains the most significant limitation. As this investigation aimed to
assess the relative strengths and weaknesses of the approaches, this resoundingly
negative outcome related to strong work by serious researchers is surprising!2

All three groups apparently viewed the task as a simple information retrieval
problem: extract words → search for words, where the only real question was
what model of similarity to use. There is little reason in general to expect that
the developer will use the same words to describe their intentions as were used
in the existing artifacts (the exception being in commonly recognized domains,
and even there, there will be some propensity for variation) since they would
not have already settled on any specific, existing frameworks.

2 In fairness, Lemos et al. [10] emphasize that their approach aims specifically at
locating “auxiliary functionality”, but this distinction is not particularly clear.
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Interestingly, commercial approaches to code search see much of the same
problem: the desire to ignore the syntax and semantics of the source code, to
treat it instead as just another kind of text. To be clear, this suffices for basic
searches like “find me examples of the use of IStatusLineManager” but not
“find me examples where there is a stack that ignores requests to insert the same
element more than once.” Google Code Search never overcame such limitations
and never made it out of its beta release before the project was killed, despite
years of incubation. This weakness could only have contributed to its downfall.

More generally, this issue points to important lessons for RSSEs. The research
failed to recognize the needs of the developer to whom the recommendations are
being given, and the nature of their task. It is important to remember the origi-
nal, concrete point and to evaluate that, rather than assume that an abstraction
maintains the significant properties.

4.2 Other Approaches for Finding Code

Other kinds of input have been used to help locate relevant artifacts for reuse.
The specific problems being targeted can have significant impact on the suit-
ability of a potential approach.

Strathcona. In some now-not-so-recent work, Holmes et al. [7] focused on the
problem of finding examples of the use of specific abstract programming inter-
faces (APIs) such as are provided by libraries and frameworks. The issue at hand
is one of information overload: real APIs are frequently large and complex, and
to utilize their functionality can sometimes involve intricate protocols that are
not always well documented. As a result, the developer can easily become lost
as they attempt to understand how to solve a task through the application of
an API. Examples are a common means for helping to overcome such issues,
but handcrafted examples are expensive to create and require someone to have
recognized a specific need.

Instead, the skeleton expressed by the developer (a partial and uncompilable
implementation), and a large repository of existing implementations, can be
leveraged. Note that, unlike in the case of test-driven reuse, it is reasonable
here to assume that the types and methods being expressed in the skeleton are
identical to those in the artifacts being leveraged: the developer is aware of which
API they are using. A set of structural facts (e.g., which types are referenced,
which methods are called) are extracted from the skeleton. A set of heuristics-
based agents each seeks examples that are similar to the extracted facts, from
the perspective of their individual approach. Examples that are ranked highly
by many agents are ranked highest overall, and presented first to the developer.

Strathcona is a knowledge-based recommendation system, as it requires ex-
plicit input from the developer about the properties of the items of interest and
leverages those properties to find potential examples. It does utilize an element
of historical data: it can only provide examples that someone else has implicitly
created in the past. It is not a collaborative recommendation system in the sense
of Jannach et al. since there is no comparison between the developers themselves.
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Strathcona addressed both the information overload problem and the navigation
confusion problem. A key property of Strathcona that was unusual at the time
was its provision of rationales for its recommendations: an explanation of which
properties of the skeleton were met by a given example.

Mining feature descriptions. The recent approach of McMillan et al. [11] aims
at supporting the rapid creation of prototypes: low-quality, partially-functional
software useful in the assessment of the requirements and feasibility of a full-scale
development effort. They argue that rapid prototyping consists of identification
of candidate features (horizontal prototyping) followed by implementation of a
subset of the feature set (vertical prototyping). Since the problem is really to
invest as little time and money as possible to derive a sufficient prototype for
stakeholders to tinker with, reusing existing software ought to reduce the cost
of the process while arriving at an acceptable artifact.

Their idea is then to leverage the cursory descriptions typically created dur-
ing horizontal prototyping to provide: (1) recommendations on the relevant fea-
tures detected in the description that have also been detected in a repository of
software components; and (2) recommendations on components providing those
features that are deemed to not be too difficult to reuse (because they contain
few external dependencies). Feedback to the feature recommendations are used
to update the component recommendations.

As with Strathcona, this approach makes use of an existing, developer-oriented
means of describing the entities of interest, rather than demanding that the de-
veloper conform to the needs of the software. Overall, this approach is a hybrid
recommendation system: the initial input involves a knowledge-based recom-
mender, but the resulting rating is a collaborative filtering approach. Using this
to refine the identified features in the repository would also lead to improved
results for other developers. As with Strathcona, the approach addresses both
the information overload problem (finding components in a big repository) and
the navigation confusion problem (who needs to talk to whom and about what).

5 Some Opportunities for RSSEs

The work in the Walker’s lab has not always focused on RSSEs. The desire to
compute the correct answer has often led to overlooking opportunities for more
completely involving the developer. Two cases are presented here.

Jigsaw. If one wishes to reuse a software artifact within a partially existing sys-
tem, the two will need to be integrated. The Jigsaw tool [5] largely automates
this process for individual methods by inferring correspondences between the
reused artifact’s method and the target system’s method and using these to guide
the transformation of the reused artifact. Naming differences, rearrangements of
lines, and different nesting of structures are largely coped with. However, since
computing functional equivalence is undecidable, the correct correspondence is
approximated by considering structural facts augmented with some simple se-
mantic details, and by utilizing heuristics. The result is that ambiguities can
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occur where the tool cannot decide on the best option; the developer is then
asked for input. The lost opportunity, at this point, is that Jigsaw can decide
that a correspondence exists where the developer does not agree, and yet, they
have no means to provide this feedback to adjust the integration.

DSketch. Many software change tasks involve first understanding the depen-
dencies between different parts of the system. The typical solution involves the
creation of tool support that understands the semantics of the programming
language involved, to at least indicate where an entity is declared and where it
is referenced. While this is well understood theoretically, developing non-trivial
tooling is difficult and expensive. This cost must be amortized in savings across
multiple usages of the tooling, but for domain-specific languages, minor language
variants, uncommon language combinations, and specialized bridging technology,
such amortization possibilities may not exist. DSketch [3] allowed the developer
to create imprecise grammars for the different parts of their software, cheaply.
DSketch informs the developer about matching dependencies that it has de-
tected as a result, and the developer can modify or add grammars until they are
satisfied. In the missed opportunity, the developer could have directly pointed
DSketch to false/missing matches, to have it automatically adjust the grammars.

6 Conclusion

Since software engineers must deal with issues of information overload, being
unable to find their way, or wanting the answer to infeasible computational
problems, recommendation systems play an increasingly key role in software
engineering research. For the sake of providing a simple means of understanding
recent research on RSSEs, three quite different classification schemes have been
outlined including a novel problem-based one for RSSEs. A few recent RSSEs
have been explored, with particular focus on the domain of software reuse.

The full gamut of possibilities is seen with respect to a problem-based and a
paradigm-based categorization. Some combinations of dimensions in the design-
based categorization were not shown in this paper; indeed some of these do
not apparently exist. A common RSSE weakness is a tendency to not utilize
developer feedback to improve recommendations, and especially not for other
developers. In fairness, many RSSE approaches assume external iteration in
cases where the developer is not satisfied, but there are potentially significant
opportunities for advancement in this dimension.

Similarly, there has been little realization of the infeasible computation prob-
lem in non-software engineering applications of recommenders. There exist cases
where one would like to have a more intelligent recommender, capable of dealing
with a multi-objective search problem plus a fuzzy and shifting fitness function.
Opportunities abound!

Going forward, one concern is the propensity of the software engineering com-
munity to remain at an “initial evaluation” stage of validation. As recently
demonstrated by Cossette and Walker [4], determining the ground truth—to
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know what should be recommended—is an expensive but crucial exercise in
evaluating the performance of an RSSE; otherwise, we remain at a level of myth
and opinion, which are both subject to bias and manipulation. Perhaps this is
less true of other domains, but scientific progress requires hard work and careful
analysis of the problems at hand, before we worry too much about “improving”
putative solutions that lack solid evidence.
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