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Abstract. Approximately Recurring Motif (ARM) discovery is the
problem of finding unknown patterns that appear frequently in real val-
ued timeseries. In this paper, we propose a novel algorithm for solving
this problem that can achieve performance comparable with the most ac-
curate algorithms to solve this problem with a speed comparable to the
fastest ones. The main idea behind the proposed algorithm is to convert
the problem of ARM discovery into a density estimation problem in the
single dimensionality shift-space (rather than in the original time-series
space). This makes the algorithm more robust to short noise bursts that
can dramatically affect the performance of most available algorithms.
The paper also reports the results of applying the proposed algorithm to
synthetic and real-world datasets.

1 Introduction

Consider a robot watching a human communicating with another using free
hand gestures to achieve some task [13]. The ability to automatically discover
recurring motion patterns allows the robot to learn important gestures related
to this domain. Consider an infant listening to the speech around it. The ability
to discover recurring speech patterns (words) can be of great value in learning
the vocabulary of language. In both of these cases, and in uncountable others,
the patterns do not recur exactly in the perceptual space of the learner. These
cases motivate our search for an unsupervised algorithm that can discover these
kinds of approximately recurring motifs (ARMs) in general time-series. Several
algorithms have been proposed for solving this problem [10] [7] [2],[15],[4] [6], [17].

In this paper we propose a novel algorithm for solving ARM discovery directly.
The proposed algorithm achieves high specificity in discovered ARMs and high
correct discovery rate and its time and space complexities can be adjusted as
needed by the application. The main insight of the proposed algorithm is to
convert the problem of subsequence density estimation which is multidimensional
in nature into a more manageable single dimensional shift density estimation.
This allows the algorithm to discover complete ARMs (with potential don’t-care
sections). The paper also reports a quantitative 6-dimensions evaluation criteria
for comparing ARM discovery algorithms.
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2 Problem Statement and Related Work

A time series x (t) is an ordered set of T real values. A subsequence xi,j =
[x (i) : x (j)] is a contiguous part of a time series x. Given two subsequences
αi,j and βk,l, a distance function D (., .) and a positive real value R, we say the
two subsequences match up to R if and only if D (xi,j , xk,l) < R. We call R the
range following [16]. In this paper, we assume that the distance function D (., .)
is normalized by length of its inputs. Moreover, our algorithm will only apply D
to pairs of subsequences of the same length. In most cases, the distance between
overlapping subsequences is considered to be infinitely high to avoid assuming
that two sequences are matching just because they are shifted versions of each
other (these are called trivial motifs [5]).

An approximately recurrent motif (ARM) or motif for short is a set of sub-
sequences that are similar in some sense. In most cases similarity between sub-
sequences is measured as the inverse of their distance [14]. Either the Euclidean
distance or dynamic time wrapping (DTW) could be used for this calculation.
Relying on these distance functions in the definition of a motif implies that a
predefined motif length must be given to the algorithm. Several algorithms were
suggested to discover distance based motifs [10] [7] [2] [15] [4] [6] [8] [17]. Many
of these algorithms are based on the PROJECTIONS algorithm proposed in [18]
which uses hashing of random projections to approximate the problem of com-
paring all pairwise distances between n subsequences to achieve linear rather
than quadratic space and time complexities. Because this algorithm works only
with discrete spaces, the time series must be discretized before applying any of
PROJECTIONS variants to it. A common discretization algorithm employed for
this purpose is SAX [6]. An unsupervised method for finding a sensible range pa-
rameter for these algorithms was proposed in [7]. The proposed algorithm differs
from all of these approaches (even with automatic range estimation) in requir-
ing no discretization step and being able to discover motifs in a range of lengths
rather than a single length. The proposed algorithm also has adjustable space
and time complexity and is linear in the worst case, while all PROJECTIONS
algorithms require good selection of the discretization process parameters to lead
to sparse collision matrices in order to avoid being quadratic.

Another approach for finding these motifs was proposed in [1] that uses ran-
dom sampling from the time series (without any disretization). This algorithm
requires an upper limit on the motif length and also is not guaranteed to dis-
cover any motifs or to discover them in order. An explicit assumption of this
algorithm is that the motifs are frequent enough that random sampling will
has a high probability of sampling two complete occurrences in candidate and
comparison windows of lengths just above the maximum motif length. The sam-
pling process was improved in MCFull [10] by utilizing a change point discovery
algorithm to guide the sampling process with reported significant increase in
discovery rate. Even though no clear definition of what is actually discovered
by these algorithms (other than being frequent), they actually discover ARMs.
The proposed algorithm has higher discovery rate than MCFull with comparable
speed as will be shown in section 4.
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The MK algorithm for discovering exact motifs was proposed in [14] and it
is the most cited motif discovery algorithm since its appearance. In MK, the
Euclidean distance between pairs of subsequences of length l is used to rank
motif candidates. This has the problem of requiring a predefined motif length
(while our approach requires only a motif length range). It is also sensitive to
short bursts of noise that can affect the distance. The main difference between
the proposed approach and this algorithm is that we rely on multiple distance
estimations between short subsequences rather than a single distance calculation
of the predefined motif length. This has three major advantages: First we need
not specify a specific length. Secondly, the distance function is not required to
be a metric (i.e. it is not required to satisfy the triangular inequality). Finally,
the proposed algorithm can ignore short bursts of noise inside the subsequences
(because of its multi-distance calculations) which is not possible if MK is di-
rectly used. Nevertheless, the MK algorithm can be used to speedup finding best
matches during shift-density estimation. This was not tried in this work but will
be compared with the current implementation in future work. Hereafter, we will
use the word motif and ARM interchangeably as long as the context is clear.

3 Proposed Algorithm

The algorithm uses three types of windows. The candidate window is a subse-
quence s that is being considered for similar subsequences in the time series.
The candidate window should be wide enough to contain a complete occurrence
of any ARM to be discovered. The length of this window is called w. The ran-
dom window is a time series of the same length as the candidate window and is
constructed by randomly selecting w values from the time-series. This window
is used by the algorithm to discover an upper limit of distances that can be
considered small during processing. The idea of using a random window for this
purpose can be found in [1]. The third type of windows is the comparison win-
dow. Comparison windows are subsequences of w points that are to be compared
to the current candidate window in search for ARM occurrences within them.

The algorithm proceeds in three major steps: firstly, candidate locations of
ARM occurrences are discovered using a change point discovery algorithm [11]
and candidate windows are sampled around these points. This set is called �
hereafter. Secondly, each one of these windows is compared with the rest of them
(acting as comparison windows) and best matching windows are found as well as
the best time-shifts in the best comparison windows to get it to best match the
candidate window. This is the core step of the algorithm and is the point at which
shift-density estimation is carried-out. Finally, the shifts required are analyzed
in order to remove partial ARM occurrences, multiple ARM occurrences, and
out-of-ARM parts of the candidate window and a new ARM is announced if a
long enough occurrence could be found at that stage. The following subsections
present the final two stages. For more details about the first stage please refer
to [10].
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3.1 Finding Best Matches

This step is the core of the proposed algorithm. Each member of � is treated as
a candidate window while the ones after it are treated as a comparison window
set until all members of � are considered. The current candidate window (c) is
divided into w− w̄ ordered overlapping subwindows ( xc(i) where w is the length
of the window, w̄ = ηlmin, 1 ≤ i ≤ w− w̄ and 0 < η < 1) The discovery accuracy
is not sensitive to the choice of η and we select η = 0.5 for the rest of this paper.
The same process is applied to every window in the current comparison set. The
following steps are then applied for each comparison window (j) for the same
candidate window (c):

Firstly, the distances between all candidate subwindows and comparison sub-
windows are calculated (D

(
xc(i), xj(k)

)
for i, k = 1 : w− w̄). The distance found

is then appended to the list of distances at the shift i − k which corresponds
to the shift to be applied to the comparison window in order to get its k-th
subwinodw to align with the i-th subwindow of the candidate window. By the
end of this process, we have a list of distances for each possible shift of the
comparison window. Our goal is then to find the best shift required to minimize
the summation of all subwindow distances between the comparison window and
the candidate window. Our main assumption is that the candidate and com-
parison windows are larger than the longest ARM occurrence to be discovered.
This means that some of the distances in every list are not between parts of the
ARM occurrences (even if an occurrence happens to exist in both the candidate
and comparison windows). For this reason we keep only the distances considered
small from each list. This can be achieved by keeping the smallest K distances
from the list (where K is a user-defined parameter). In this paper, we utilize a
different approach that was first proposed in [1]. The idea is to generate a win-
dow of length w from the time series by concatenating randomly selected samples
from it. This window which is called the random window, is then compared to
all the candidate windows and the mean distances between the w̄ subwindows
is then used as a measure of smallness. The algorithm also keeps track of the
comparison subwindow indices corresponding to these small distances.

Finally, the comparison windows are sorted according to their average dis-
tance to the candidate window, with the best shift of each of them recorded.
Comparison windows with an average distance greater than the small distance
limit (found as described in the previous paragraph) are removed from the list
to reduce the required processing time.

At the end of this process and after applying it to all candidate windows, we
have for each member of � a set of best matching members with the appropriate
shifts required to align the ARM occurrences in them (if any).

An important advantage of this technique over the one proposed in [1] is that
we need not have the complete ARM inside both the candidate and comparison
windows because even if a part of the ARM occurrence is contained in one of
them, the alignment process implicit in calculating the shifts will still discover
the similarity between contained parts of the two occurrences. This is an impor-
tant advantage of the proposed algorithm because it remedies any localization
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inaccuracies in the change point discovery step. All what we need is that the
CPD algorithm discovers locations within w− w̄ points from the true beginning
or ending of the ARM occurrence. Even if parts of multiple occurrences are con-
tained within the candidate or comparison windows (or both), the algorithm can
automatically select the appropriate occurrence to consider from each.

In practice, it is not necessary to use the complete w−w̄ set of subwindows, as
long as the number of subwindows selected is large enough to cover the complete
window. As a limiting case, we can select the number of subwindows to be w

w̄ .

(a) Comparison and Candidate Windows (b) Dist. Matrix (c) Dist. vs. Shift

Fig. 1. Processing Steps During Best Matches Finding

Fig. 1 shows the processing steps of the proposed algorithm. Fig. 1-a shows
a candidate window and a comparison window during the execution of the al-
gorithm. The ARM occurrence in the candidate window is partial, yet the al-
gorithm will be able to find the best fit between the two windows. Fig. 1-b
shows the distances between pairs of w̄ subwindows. Distances that correspond
to subwindows of the occurrence in the two windows are much smaller than the
distances elsewhere. During actual execution, this matrix need not be built but
is shown here for illustration only. Fig. 1-c shows the mean distance as a func-
tion of the shift needed to align the subwindows. It is clear that the minimum
of the distance happens when shifting the comparison window left by 47 posi-
tions and considering Fig. 1-a this is the correct shift required to match the two
occurrences.

After finishing this step, we have for each one of the candidate subwindows
a list of nearest comparison subwindows and the shift required to minimize the
distance between them. This will be needed in the final step of the algorithm.

3.2 Stitching ARM Occurrences

The final step of the algorithm is to generate a set of ARMs each containing two
or more ARM occurrences from the outputs of the best match finding stage. The
output of this stage is an ARM graph where each clique corresponds to an ARM
and each node to an occurrence. This graph is initialized to an empty graph and
is filled incrementally as will be shown in this section.

The core data structure of this stage is the matching matrix which is con-
structed for each candidate window in order. Assuming we have m candidate
windows and n candidate subwindows in every candidate window (n = w − w̄),
then this matrix is a square m− 1× n matrix with each row corresponding to a
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comparison window and each column corresponding to a subwindow. The value
at element (i, j) is the shift required to align the subwindow represented by the
column i with its nearest subwindow in the comparison window j.

Using the matching matrix, we calculate the number of contiguous subwin-
dows of each comparison window that match a contiguous set of subwinodws in
the candidate window (e.g. having the same shift value in the matrix for more
than one column). If the lengths of the resulting comparison and candidate sub-
sequences (which is called a group) are larger than or equal to lmin (the minimum
acceptable ARM length), a node is added (if not existing) to the ARM graph
representing the comparison subsequence and the corresponding candidate sub-
sequence and an edge connecting them is added. It is at this step that we can
ignore small gaps of different shift values to implement don’t-care sections of
any predefined length.

A comparison window and the corresponding candidate window may have
multiple groups which means that more than one ARM occurrence is at least
partially available in these windows (of the same or different ARMs). Each one
of these groups is added the graph (a new node is added only if the subsequence
it represents is not existing in the graph).

By the end of this process, the ARM graph is populated and each clique of
this graph represents an ARM.

4 Evaluation

The proposed algorithm was evaluated in comparison with other ARM discovery
algorithms using synthetic data for which the exact locations of ARM occur-
rences is known. The algorithm was then applied to detection of gestures from
accelerometer data and motion pattern discovery for a mobile robot simulation.
This section presents these experiments. The source code of the proposed algo-
rithm and the other four algorithms it was compared with as well as the data of
these experiments are available from the authors as a part of a complete change
point discovery and ARM discovery MATLAB/Octave toolbox in the supporting
page of this paper at [3].

Comparing ARM discovery algorithms is not a trivial task due to the large
number of possible errors that these algorithms can fall into. Discovered ARMs
may cover a complete real ARM, a part of it, multiple real ARMs or nothing
at all. Another problem is that an algorithm may succeed in covering all real
ARMs but on the expense of adding extra parts from the time series around
their occurrences to its discovered ARMs. There is no single number that can
capture all of these possible problems. Nevertheless, a quantitative comparison
is necessary to assess the pros and cons of each algorithm for specific tasks or
types of time series. In this paper we compare algorithms along six performance
dimensions.

Assume that we have a time-series x with nT embedded ARMs ({Ξi}) where
1 ≤ i ≤ nT and each ARM (Ξi) contains μi occurrences (

{
ξik
}
) for 1 ≤ k ≤ μi.

Assume also that applying an ARM discovery algorithm to x generated nD
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ARMs ({Mj}) where 1 ≤ j ≤ nD and each discovered ARM (Mj) contains
oj occurrences (

{
mj

p

}
) for 1 ≤ p ≤ oi. Given this notation we can define the

following performance measures for this algorithm:
Correct Discovery Rate (CDR): The fraction of discovered ARMs (Mjs) for

which each occurrence mj
p is overlapping one and only one true ARM occurrence

ξik and all these covered true ARM occurrences (ξiks) are members of the same
true ARM (Ξi).

Covering Partial-ARMs Rate (CPR): The fraction of discovered ARMs (Mjs)
not covered in CDR because at least one occurrence is not covering any real motif
occurrence.

Covering Multiple-ARMs Rate (CMR): The fraction of discovered ARMs
(Mjs) for which at least one mj

p is overlapping one real motif Ξi and at least

one other occurrence mj
q is covering a different motif Ξk .

Covering No-ARMs Rate (CAR): The fraction of discovered ARMs (Mjs) for
which all occurrences mj

p are overlapping no true ARM occurrences.
Covered (C): The fraction of the time-series sequences represented by true

ARM occurrences (ξiks) that are covered by at least one discovered ARM occur-
rence mj

p. C will always be between zero and one and represents the sensitivity
of the algorithm.

Extras (E): The length of the time-series sequences represented by discovered
ARM occurrences (mj

ps) that cover no true ARM occurrence ξik. E will always
be a positive number and represents the specificity of the algorithm.

The higher CDR and C and lower CPR, CMR, CAR, and E, the better the
algorithm.

4.1 Synthetic Data

As a first experiment, we evaluated the proposed algorithm against four ARM
discovery algorithms using synthetic data with embedded ARMs. The first com-
parison algorithm is MCFull which was proposed in [10] as an improvement
of the basic sampling algorithm of [1]. The second and third algorithms are
variations of the GSteX (Greedy Stem Extension) system proposed in [9]. This
algorithm utilizes a different approach as it builds the distance graph directly
from short subwindows without the shift estimation step. GSteX uses a large
distance matrix that can easily become superlinear depending on the number of
change points discovered. We also compare the proposed system with PROJEC-
TIONS as explained in [16] and [2]. This algorithm utilizes SAX [5] to discritize
the timeseries then applies random projections based on the work of [18]. This
algorithm does not require the CPD step but it requires the specification of an
exact ARM length as well as a range parameter of near distances.

The test data consisted of 50 timeseries of length between 2000 and 4000
points each (depending on the total number of embedded ARM occurrences)
that were generated randomly from a uniform distribution ranging from -1 to 1.
Depending on the experiment, a number of random ARM patterns were gener-
ated and embedded into the database and noise was then added to the complete
time series. Random ARM patterns are very challenging for our CPD as there
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(a) Average Performance (b) Execution Time in ms/point

Fig. 2. Average Performance of all Algorithms

Fig. 3. Performance of all algorithms averaged over localization errors

is no underlying structure to be utilized in finding the change points. Because
PROJECTIONS can only discover ARMs of a fixed predefined length, we se-
lected lmin = lmax = 60 for all of our experiments.

Fig. 2(a) shows the overall performance of the five algorithms averaged over all
noise levels in the previous data-set. The best performing algorithm in terms of
correct discovery rate was PROJECTIONS with an average CDR of 0.69 followed
by the proposed algorithm with 0.58 CDR. In terms of covered fractions/extras
balance PROJECTIONS showed the highest covered fraction (highest sensitiv-
ity) but with highest extras fraction (lowest specificity). MCFull followed in
terms of covered fraction but with still low specificity. The proposed algorithm
showed comparable sensitivity to MCFull but with much higher specificity. No-
tice that these results are averaged over all noise levels. Fig. 2(b) shows the
execution time in milliseconds per point for each algorithm. The proposed algo-
rithm achieved an order of magnitude increase in speed compared with PRO-
JECTIONS. For long time series that are encountered in real-world situations,
this improvement in speed and the high specificity of the algorithm may com-
pensate for the small reduction in correct discovery rate.

Fig. 3 shows the overall performance of all algorithms averaged over local-
ization error. Even though the figure shows that the proposed algorithm out-
performs the other algorithms in terms of correct discovery rate and specificity
(E) and with comparable sensitivity to the other best performing algorithms (C),
these results should not be taken at face value. Because in this experiment, CPD
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was performing better than what we would expect in real applications, PRO-
JECTIONS was unfairly penalized due to its inability to utilize this information.
These results represent more of an asymptotic behavior as the performance of
the CPD algorithm improves. Nevertheless, the comparison of the proposed algo-
rithm with MCFull, GSteXS, and GSteXB was fair and show that the proposed
algorithm has higher potential of employing improvements in change point dis-
covery accuracy.

4.2 Real World Evaluations

The first application of the proposed algorithm to real world data was in gesture
discovery. Our task is to build a robot that can be operated with free hand-
gestures without any predefined protocol. The way to achieve that is to have the
robot watch as a human subject is guiding another robot/human using hand ges-
tures. The learner then discovers the gestures related to the task by running our
proposed ARM discovery algorithm to the data collected from an accelerometer
attached to the tip of the middle finger of the operator’s dominant hand. We col-
lected only 13 minutes of data during which seven gestures were used. The data
was sampled 100 times/second leading to a 78000 points 3D time-series. The
time-series was converted into a single space time series using PCA as proposed
in [12]. The proposed algorithm as well as GSteXS were applied to this projected
time-series. The proposed algorithm discovered 9 gestures, the top seven of them
corresponded to the true gestures (with a discovery rate of 100%) while GSteXS
discovered 16 gestures and the longest six of them corresponded to six of the
seven gestures embedded in the data (with a discovery rate of 85.7%) and five
of them corresponded to partial and multiple coverings of these gestures.

As another proof of concept experiment, we employed a simulated differential
drive robot moving in an empty arena of area 4m2. The robot had the same
dimensions as an e-puck robot and executed one of three different motions at
random times (a circle, a triangle and a square). At every step, the robot selected
either one of these patterns or a random point in the arena and moved toward
it. The robot had a reactive process to avoided the boundaries of the arena. Ten
sessions with four occurrences of each pattern within each session were collected
and the proposed algorithm was applied to each session after projecting the
2D time-series into a 1-D time-series as in the previous case. The algorithm
discovered 3 motifs corresponding to the three motion patterns. In this case
there were no partial motifs or false positives and discovery rate was 100%.

5 Conclusions

In this paper, we proposed a new algorithm for discovering approximately re-
current motifs in time series based on shift density estimation. The main insight
behind the algorithm is to convert the problem from a density estimation in
the high-dimensionality time-series subsequences space into a more manageable
density estimation in the single dimensional shift space. The proposed algorithm
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require only the specification of a lower limit on ARM occurrence lengths and
can discover multiple ARMs at the same time.
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