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Departamento de Matemáticas, Departamento de Sistemas Informáticos
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Abstract. We propose the use of a genetic algorithm in order to solve
the rank aggregation problem, which consists in, given a dataset of rank-
ings (or permutations) of n objects, finding the ranking which best rep-
resents such dataset. Though different probabilistic models have been
proposed to tackle this problem (see e.g. [12]), the so called Mallows
model is the one that has more attentions [1]. Exact computation of the
parameters of this model is an NP-hard problem [19], justifies the use of
metaheuristic algorithms for its resolution. In particular, we propose a
genetic algorithm for solving this problem and show that, in most cases
(specially in the most complex ones) we get statistically significant better
results than the ones obtained by the state of the art algorithms.
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1 Introduction

In this paper we focus on a machine learning problem in which instances in the
dataset are permutations or rankings of n objects. This is a problem which has
gained popularity in the last years because it finds applications on several fields:
preference lists [14], voting in elections [8], information retrieval [4], combinato-
rial optimization [3], etc.

Basically, the problem we face is the following one: given a dataset containing
N rankings representing the preferences of N judges (or the output of several
search engines, etc.), can we tackle these data in a compact way for making some
future decisions? That is, can we identify the consensus ranking?

The answer to this question is the well known rank aggregation problem, where
the goal is to obtain the ranking which best represents all the input ones.

Although different probabilistic models have been proposed to deal with this
problem (see e.g. [12]), there is one whose use has gained popularity in the
specific literature: the Mallows model [18]. This model has certain resemblance
to the Gaussian distribution, as it is specified by two parameters: a permutation
π0 which can be seen as the consensus ranking, and a dispersion parameter θ (see
Section 2.2 for details). Exact computation of these parameters can be done from
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a dataset of rankings, though worst-case exponential time is required because of
the NP-hardness of the problem [19].

If π0 is known, then θ can be easily estimated by using a binary search over a
suitable real interval. For this reason, many approaches to estimate the Mallows
model parameters focus on the problem of computing the consensus ranking.
This is the case of the study carried out by Ali and Meila [1], where they analyzed
a big deal of heuristics and exact search algorithms to solve this problem. The
main conclusion is that for small values of n, integer linear programming (ILP)
should be used because it returns the exact solution. However, for large values of
n, in general, an approximate version of the A∗ (branch and bound) algorithm
presented in [19] is the best choice.

Nevertheless, in that study we missed the use of some metaheuristic ap-
proaches. Concretely, the segment of problems with low values of θ and large
n are specially suitable for this kind of algorithms, as our work will show for the
particular case of genetic algorithms. In fact, for this values of the parameters,
the consensus among the input rankings is small, making the search particularly
difficult. In these cases, ILP for attaining the exact solution is infeasible, and also
the number of nodes for the branch and bound algorithm A∗ grows so much that
an approximate version of it must be used. More concretely, this approximate
version limits the size of the queue of nodes to explore, so increasing the risk of
loosing promising paths which eventually could drive to the best solution.

Thus, our aim is to study the applicability of metaheuristics algorithms to the
problem of obtaining the consensus ranking. Concretely, as a first approximation
we propose to use genetic algorithms [13] to guide the search process (see Section
4). In this sense, the authors have developed a comparison study (not included
in this paper) among several genetic algorithms in order to determine the most
suitable one for solving the rank aggregation problem. As a result of such study,
we conclude that the algorithm which we will call GA presents the best behavior
(in comparison to a wide family of generic algorithms included in [17]) to solve
our particular problem. Then, we compare it with the best algorithms tested in
[1], showing that in most of the cases, and specially in the most complex ones,
the GA algorithm obtains statistically significant better results.

The paper is organized as follows. In Section 2 we provide background knowl-
edge on the problem under study and the Mallows model. In Section 3 we briefly
review related proposals and concretely the outstanding algorithms used in the
study carried out in [1]. Section 4 is devoted to describe the details of the POS-
ISM genetic algorithm that we propose to approach the problem. In Section 5
we present an experimental study to test the proposed approach and discuss the
obtained results. Finally in Section 6 we provide some conclusions.

2 Preliminaries

Next we provide the notation to be used and some background.
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2.1 Ranks/Permutations

Suppose we have n items labeled 1, 2, . . . , n that are to be ranked. Then, any
permutation π of these items represents a ranking. The space of all the possible
rankings agrees with the Symmetric group Sn:

Definition 1. (Symmetric Group)[9] The symmetric group Sn is the group
whose elements are all the permutations of the n symbols {1, 2, . . . , n}, and whose
group operation is the composition of such permutations, which are treated as
bijective functions from the set of symbols to itself. Since there exists n! different
permutations of size n, the order of the symmetric group is n!.

We will use n−tuples to represent rankings. Thus, by σ = (x1, x2, · · · , xn) we
denote the ranking whose first position is x1, the second is x2, etc, and we use
σ(j) to denote the j-th element of σ.

To solve the rank aggregation problem and also to estimate the consensus
ranking, we need to establish a way for measuring the difference between rank-
ings. To do this we use a distance which allows us to know how similar they
are. Although different distances are available in the literature, we describe here
the Kendall tau distance, because it is usually considered for the definition of
Mallows distribution.

Definition 2. (Kendall Distance[16]) The Kendall distance d(π, σ) between two
rankings π and σ is defined as the total number of item pairs over which they
disagree. There is disagreement over an item pair (i, j) if the relative ordering
of i and j is different in π and σ.

2.2 The Mallows Model

The Mallows model [18] is a distance-based probability distribution over per-
mutation spaces which belongs to the exponential family. Given a distance over
permutations, it can be defined by two parameters: the central permutation π0,
and the spread parameter θ.

Definition 3. (Mallows model) [18] The Mallows Model is the probability dis-
tribution that satisfies, for all rankings π ∈ Sn,

P (π) =
e−θ·d(π,π0)

ψ(θ)
, (1)

where rankings π0 and θ ≥ 0 are the model parameters and ψ(θ) is a normaliza-
tion constant (see [11]).

The parameter θ of the Mallows model quantifies the concentration of the dis-
tribution around its peak π0. For θ > 0, the probability of π0 is the one with
the highest probability value and the probability of the other n! − 1 permuta-
tions decreases with the distance from the central permutation (and the spread
parameter θ). For θ = 0, we just get the uniform distribution. Because of these
properties, the Mallows distribution on the space of permutations is considered
analogous to the Gaussian distribution on the space of permutations.
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2.3 The Kemeny Ranking Problem

As aforementioned, computing the consensus ranking is equivalent to the rank
aggregation problem, also known as the Kemeny ranking problem [15].

Definition 4. (Kemeny Ranking Problem) [1]
Given a set of N rankings (permutations) π1, π2, · · · , πN of size n, the Kemeny
ranking problem consists in finding the ranking π0 that satisfies

π0 = argminπ
1

N

N∑

i=1

d (πi, π) , (2)

where d (π, π′) stands for the Kendall distance between π and π′. π0 in Equation
(2) is the permutation that minimizes the total number of disagreements with the
rankings contained in the set, and is called the Kemeny ranking of the set.

Finding the Kemeny ranking is an NP-hard problem for N≥4 (see e.g. [10]).
The problem of computing this raking is nowadays an active field of research
and several proposals for its exact computation have been presented, of course,
without polynomial running time guarantees. Besides exact algorithms, many of
heuristic nature have been also proposed (see e.g. [1]).

In this work we propose to test the use of genetic algorithms to guide the
search. As we will see in Section 5, by means of this kind of algorithms we are
able to get good solutions to complex problems; more specially to those with
large dimension n and small degree of consensus θ.

3 Related Works

In this paper we rely on the excellent experimental comparison carried out by
Ali and Meila [1]. In their study they compare a wide family of algorithms in-
cluding exact Integer Linear Programming, Branch and Bound, specific heuristic
and voting algorithms, and some others approximate algorithms. From their re-
sults/conclusions and taking into account our motivation, we have selected the
best ones which we describe below. In order to do that, let us to introduce a
data structure which make easier their description.

As in [1], given permutations π1, π2, . . . , πN , the precedence matrix Q =
[Qab]a,b=1:n is defined as

Qab =
1

N

N∑

i=1

1(a ≺πi b), (3)

where 1(·) is the indicator function and ≺π means “precedes in the ranking π”.
In other words, Qab represents the fraction of times that item a is ranked before
than item b across all the input rankings.

The following algorithms show the best behaviour according to [1]:
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– Integer Linear Programming (ILP). It is an exact approach based on
a mathematical formulation of the problem [6]. We do not include it in our
experimentation because it runs out of memory for large values of n.

– Branch and Bound (B&B) Search. This algorithm relies on the use of
the well known A∗ algorithm jointly with the admissible heuristics proposed
in [19], which guarantees to obtain the exact solution. However, in the worst
case the search tree has n! paths and the search becomes intractable. As was
showed in [1], it works fine when there is a strong agreement between the
rankings π1, π2, . . . , πN , that is, when θ is large, because in these cases the
algorithm only expands a limited number of nodes.

– B&B with Beam Search. The same algorithm described above but using a
limited size for the queue of nodes to be expanded. In this way, the algorithm
does not run out of memory, but now there is a hight risk, specially in
complex problems, of pruning good paths. Thus, the algorithm becomes an
approximate one, looking for a good tradeoff between memory requirements
and accuracy. Several beam sizes are experimented in [1] and according to
it we have set the beam size as 1000.

– CSS. A graph-based approximate algorithm that implements a greedy ver-
sion of the Branch and Bound method introduced in [5].

– Borda. This is an approximate algorithm which computes the sums of the
columns of Q (3), i.e. qa =

∑
bQab, and then returns the permutation that

sorts qa in descending order [2].
– DK This algorithm is a Branch and Bound solver for the Integer Program

described in [7], enhanced with the improved heuristics presented in [6].

4 Proposed Genetic Algorithm

In this work we study the competence of genetic algorithms (GAs) [13] to face the
problem under study. Undoubtedly, there is room for their application, because
due to the global search they carry out, we can expect to find better solutions
in complex problems. Of course, we know that more CPU time will be required,
but we think this is not a problem, as the estimation/learning of π0 can be done
off-line, being time important only for posterior inference over the learnt model.

GAs are the best representative of evolutionary computation and they work
by maintaining a population of solutions which evolves according to natural se-
lection principles. In practice they are stochastic optimization algorithms where
natural selection is guided by three main operators: selection, crossover and mu-
tation. Figure 1 shows the scheme of a canonical GA. Now, we present the main
design decisions and parameter setting for the proposed GA:

– Individual/Chromosome Representation. As any ranking can be the
consensus ranking π0, our chromosomes or potential solutions are permuta-
tions of the n items. Therefore we search in Sn, whose cardinality is n!.
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BEGIN GA

Make initial population at random

WHILE NOT stop DO

BEGIN

Select parents from the population.

Produce children from the selected parents.

Mutate the individuals.

Extend the population adding the children to it.

Reduce the extended population.

END

Output the best individual found.

END GA.

Fig. 1. Pseudocode of a canonical GA

– Fitness Function. The objective of our GA is to solve the Kemeny ranking
problem (2), therefore the fitness of a given individual π is:

f(π) =
1

N

N∑

i=1

d (πi, π) ,

– Population. Looking for a tradeoff between efficiency and population di-
versity, we have set the population proportional to the problem dimension
(complexity). Thus, our GA will have a population of k ·n individuals, n be-
ing the number of objects to rank, and k > 1 an appropriate integer. After
preliminary experiments with different values, we decided to set k = 20. The
initial population is randomly generated.

– Selection. In order to maintain diversity, we use a selection mechanism
with low selective pressure, concretely a tournament selection [20] of size 2.
Thus, at each iteration we randomly select k · n pairs of chromosomes and
the individual of each pair with better (small) fitness is selected.

– Crossover. To select the crossover (and mutation) operators we have con-
sidered a great deal of choices successfully tested for other problems in the
search space of permutations. Concretely, we have experimented with several
combinations of crossover-mutation operators taken from the study carried
out in [17] for the TSP problem. From our study1 we finally have chosen the
pair of operators POS and ISM for crossover and mutation respectively.
Roughly speaking, the Position based crossover operator (POS) works as
follows: it starts by selecting a random set of positions; the values for these
positions are kept in both parents; the remaining positions are filled by using
the relative ordering in the other parent. For example, consider the parents
(1 2 3 4 5 6 7) and (4 3 7 2 6 5 1), and the positions {2, 3, 5} are selected.

1 We have tested different combinations in the design of the GA: several schemes
(standard and steady-step), selection mechanisms and crossover-mutation pairs of
operators were studied. Because of the lack of space here we only show the results
for our winner model, letting the full comparison for a long version of this paper.
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Then, in the first step children are created as (* 2 3 * 5 * *) and
(* 3 7 * 6 * *), while the unused items have the following relative ordering in
the other parent: (4761) and (1245). In the second step the empty positions
are filled: (4 2 3 7 5 6 1) and (1 3 7 2 6 4 5). The pairs for crossover application
are randomly formed from the selected individuals.

– Mutation. ISM (Insertion mutation) operator is the one that best combines
with POS crossover operator according to our study for this problem. It
randomly chooses an element in the permutation, which is removed from its
current position and inserted in a new one randomly selected.

– Next Population Construction. We use a truncation operator, that is,
the population obtained after crossover and mutation and the previous pop-
ulation are put together in a common pool, and the best k · n adapted
individuals are selected.

– Stopping Criterion. We stop the algorithm when we detect it has con-
verged or is stagnated. Concretely, we stop if after p generations the best
individual has not changed. After several experiments, we have set p = 60.

5 Experiments

In this section we describe the experiments carried out to test the goodness of
our proposal with respect to those showing an outstanding behaviour in [1].

5.1 Datasets

All the datasets in the experiments have been generated using the Mallows
model. For each case we choose a permutation π0 of size n and a value for
θ. Then, N permutations are generated from the resulting Mallows model by
sampling according to the procedure described in [19]. In our case, we have set
π0 as the identity permutation π0 = (1 2 . . . n). Regarding θ, we have tested
four different values: 0.2, 0.1, 0.01 and 0.001. Remember that the greater the
value, the stronger the consensus in the data, and therefore the easier to solve
the resulting Kemeny ranking problem. As our goal is to test the algorithm in
complex problems, we have set n to the following four values: 50, 100, 150 and
200. Regarding the number of instances, in all the cases we have set N = 100
in order to focus on the Mallows model parameters. In a future work we plan to
study the impact of the number of instances (ranks) in the dataset.

Finally, for each of the 16 combinations of the previous parameters (4 θ’s and
4 n’s) we generate 20 different datasets of N instances, in order to average the
results and avoid sampling effects. That is, we experiment with 320 datasets.

5.2 Methodology

The GA and the last four algorithms described in Section 3 are run for each one
of 320 generated dataset. In the case of B&B only the approximate version (beam
search) is used, because the exact one runs out of space in most of the cases.
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Table 1. Mean Kendall distance for each algorithm over different parameter values

n=50

θ=0.2 θ=0.1 θ=0.01 θ=0.001

GA 18781.5∗ 32010.4∗ 55876.9∗ 56846.9∗

B&B 18781.5∗ 32010.4∗ 55892.8− 56866.2−

CSS 18834.2− 32088.3− 56072.0− 57049.9−

Borda 18783.7− 32019.4− 55991.5− 56970.1−

DK 18781.6 32012.8 55958.2− 56954.6−

n=100

θ=0.2 θ=0.1 θ=0.01 θ=0.001

GA 41215.4∗ 78802.6∗ 215224.7∗ 230323.1∗

B&B 41255.4∗ 78810.2− 215298.6− 230498.3−

CSS 41320.1− 79012.6− 215745.0− 231026.6−

Borda 41257.1− 78827.9− 215530.1− 230827.7−

DK 41255.4∗ 78805.8− 215429.4− 230803.8−

n=150

θ=0.2 θ=0.1 θ=0.01 θ=0.001

GA 63717.6∗ 126058.3∗ 458967.2∗ 519673.1∗

B&B 63717.7 126061.0− 459091.7− 520123.3−

CSS 63890.3− 126417.1− 459943.1− 521001.5−

Borda 63724.5− 126096.4− 459513.7− 520699.8−

DK 63717.7 126064.5− 459349.8− 520834.0−

n=200

θ=0.2 θ=0.1 θ=0.01 θ=0.001

GA 86264.8∗ 173430.3∗ 769227.1∗ 923284.0∗

B&B 86268.5− 173439.5− 769463.9− 924155.7−

CSS 86515.4− 173942.9− 770632.3− 925365.5−

Borda 86270.7− 173481.0− 769999.5− 925021.0−

DK 86265.0 173433.6− 769713.6− 925602.1−

Regarding the GA, because of its stochastic nature, we carry out 5 independent
runs for each dataset and the average of the five runs is used for comparison.

The code for B&B, Borda, CSS and DK is the one provided by Ali and Meila
[1] and is written in Java. Starting from that package we have also coded our GA
in Java. Experiments have been carried out in the clusters of the supercomputing
service of the University of Castilla-La Mancha (Spain). Concretely, they run
under Linux operating system and we have been allowed to book a maximum of
20 GB of RAM memory.

5.3 Results

Table 1 shows the obtained results. We have organized them from the easiest to
the most difficult case. Thus, results for the smallest n are in the first rows, and
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results for largest θ are on the left. The content of each cell in the table accounts
for the average of the 20 different datasets sampled for the corresponding (n, θ)
pair. These mean values are expressed in terms of the Kendall distance between
the output (permutation) provided by the algorithm and all the permutations
in the generated dataset. So, the smaller the value, the better the permutation.

To make easier the interpretation of the results, the algorithm (some times
more than one) obtaining the best result for each (n,θ) combination is marked
with a star symbol. Furthermore, for obtaining sound conclusions a statistical
analysis has been carried out. Thus, Wilcoxon test has been used to ascertain
whether the behavior of the tested algorithms is statistically significant. The
algorithm with the best average is used as reference and compared with the
remaining ones using a significance level α = 0.05. Algorithms showing a statis-
tically significant performance worse than the best one are marked with a minus
symbol.

5.4 Results Discussion

The first conclusion is clear: the GA always obtains the best result, beating in all
the cases to CS and Borda algorithms. Regarding B&B and DK, as we can expect
they are competitive with respect to the GA only in the less complex cases, that
is those having large θ and/or small n. However, they perform significantly worse
in the remaining ones.

6 Conclusions

A study about the applicability of GAs to the problem of consensus permutation
estimation in Mallows parameter estimation has been carried out. The proposal
obtains very good results in all the cases, being statistically significantly better
than competing approaches in most cases, specially in the harder ones, that is,
large number of items to be ranked and/or few consensus among the instances
(permutations) in the dataset.

In the near future we plan to go on with this research by following several
lines: (1) increasing the experimental study by testing larger values for n and
considering the impact of the data set number of instances; (2) studying the
behaviour of the GA and competing approaches when the data does not come
from a pure Mallows distribution, but from a mixture of them; and (3) extending
the approach to the generalizedMallows model, while consensus permutation and
θ’s values should be estimated simultaneously.
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