
A Proof Procedure for Hybrid Logic with

Binders, Transitivity and Relation Hierarchies

Marta Cialdea Mayer

Università di Roma Tre, Italy

Abstract. A tableau calculus constituting a decision procedure for hy-
brid logic with the converse modalities, the global ones and a restricted
use of the binder has been defined in a previous paper. This work shows
how to extend such a calculus to multi-modal logic equipped with two
features largely used in description logics, i.e. transitivity and relation
inclusion assertions. An implementation of the proof procedure is also
briefly presented, along with the results of some preliminary experiments.

1 Introduction

This work considers multi-modal hybrid languages (see, for instance, [3]) that,
beyond the standard modalities, nominals, the satisfaction operator and the
binder, include the converse modalities (�−

R and �−
R), the global ones (E and

A) and a feature largely used in description logics, i.e. the possibility of declar-
ing an accessibility relation to be transitive and/or included in another one.
Basic hybrid logic (with nominals only, beyond the modal operators � and �)
will be denoted by HL, and basic multi-modal hybrid logic by HLm. Logics ex-
tending HL or HLm with operators O1, . . . , On (and their duals) are denoted
by HL(O1, . . . , On) and HLm(O1, . . . , On), respectively. Multi-modal languages
including transitivity assertions and/or relation hierarchies are denoted in the
same way, just including Trans (for transitivity) and/or � (for relation inclusion)
among O1, . . . , On.

The satisfiability problem for formulae of any hybrid logic HL(O1, . . . , On) or
HLm(O1, . . . , On) – where Oi ∈ {@,�−,E} is decidable [3]. Unfortunately, due
to the high expressive power of the binder, HL(↓) is undecidable [1, 4].

There are both semantic and syntactic restrictions allowing for regaining de-
cidability of hybrid logic with the binder. Restricting the frame class is a way of
restoring decidability, but the interplay with multi-modalities (or the addition
of other operators) is not always harmless. For instance, HL(↓) over transitive
frames is decidable [18], but HL(@, ↓) and HLm(↓) are not [18, 17].

In [20] it is proved that the satisfiability problem for formulae in HL(@, ↓,E,
�−) is decidable, provided that their negation normal form contains no universal
operator (i.e. either � or �− or A) scoping over a binder, that in turn has scope
over a universal operator. Such a fragment of hybrid logic is denoted by HL(@,
↓,E,�−)\�↓�. The result is proved by showing that there exists a satisfiability
preserving translation of HL(@, ↓,E,�−) \ �↓� into HL(@, ↓,E,�−) \ ↓�, i.e.

M.P. Bonacina (Ed.): CADE 2013, LNAI 7898, pp. 76–90, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Hybrid Logic with Transitivity and Relation Hierarchies 77

the set of formulae in negation normal form where no universal operator occurs
in the scope of a binder. The standard translation of hybrid logic into first
order classical logic [1, 20] maps, in turn, formulae in HL(@, ↓,E,�−) \ ↓� into
universally guarded formulae, that have a decidable satisfiability problem [12].

Decidability of HLm(@, ↓,E,�−) \�↓� can be proved by the same reasoning,
and the separate addition of either relation hierarchies or transitive relations can
easily be shown to stay decidable, by reduction to the first order guarded frag-
ment and by resorting to results already proved in the literature [19]. However,
such results do not directly allow for concluding whether the logic including both
features is still decidable.

This work is a continuation of previous works, where terminating tableau cal-
culi for decidable fragments of Hybrid Logic with the binder have been defined
[8, 9]. In particular, [9] presents a tableau calculus constituting a satisfiability
decision procedure for HL(@, ↓,E,�−)\�↓�. Such a procedure is here extended
to multi-modal hybrid logic HLm(@, ↓,E,�−,Trans, �)\�↓�: a tableau calculus
is presented, which terminates and is sound and complete for formulae in the
fragment HLm(@, ↓,E,�−,Trans, �)\↓�, i.e. formulae in negation normal form
where no occurrence of a universal operator is in the scope of a binder, with the
addition of transitivity assertions and relation hierarchies. A preprocessing step
along the lines of [20] turns the calculus into a satisfiability decision procedure
for the fragment HLm(@, ↓,E,�−,Trans, �)\�↓�. Soundness, completeness and
termination of the tableaux calculus thus imply that the satisfiability problem
for the fragment of multi-modal hybrid logic HLm(@, ↓,E,�−,Trans, �) \ �↓�
is decidable. The proof procedure has been implemented in a prover called
Sibyl, which will be briefly presented along with the results of some preliminary
experiments.

The language of HLm(@, ↓,E,�−,Trans, �) \ �↓� subsumes the description
logic SHOI enriched with restricted occurrences of the binder, and allows for
representing some interesting frame properties, such as, for instance, symmetry
(R− �R), reflexivity (A↓x.�Rx), “at most” restrictions on the number of states
(E↓x1. . . .E↓xn.A(x1 ∨ · · · ∨ xn)), and “at least” restrictions on the number of
R-successors of each state (A↓x.�R↓y1.(x : �R(¬y1 ∧ ↓y2.(x : �R(¬y1 ∧ ¬y2 ∧
↓y3. . . .))))).

This section concludes with a brief introduction to the syntax and semantics
of multi-modal hybrid logic with transitive relations and inclusion assertion.
Well-formed expressions of HLm(@, ↓,E,�−,Trans, �) are partitioned into two
categories: formulae (for which the metasymbols F,G are used) and assertions.

Formulae are built out of a set PROP of propositional letters, a set NOM of
nominals, an infinite set VAR of state variables, and a set REL of relation symbols
(all such sets being mutually disjoint), and defined by the following grammar:

F := p | a | x | ¬F | F ∧ F | F ∨ F | �RF | �RF
| �−

RF | �−
RF | EF | AF | a:F | x:F | ↓x.F

where p ∈ PROP, a ∈ NOM, x ∈ VAR and R ∈ REL. In this work, the notation
t:F is used (for t ∈ NOM ∪ VAR) rather than @tF . We use metavariables a, b, c
for nominals, x, y, z for state variables and R,S, P for relation symbols.

78 M. Cialdea Mayer

If F is a formula, x a state variable and a a nominal, then F [a/x] denotes the
formula obtained from F by substituting a for every free occurrence of x (an
occurrence of x is free if it is not in the scope of a ↓x). If a0, . . . , an, b0, . . . , bn
are nominals, then F [b0/a0, . . . , bn/an] denotes the formula obtained from F by
simultaneously replacing bi for every occurrence of ai.

Assertions are either transitivity assertions, of the form Trans(R), for R ∈
REL, or inclusion assertions, of either form R�S or R− �S, for R,S ∈ REL.
Here, R− is intended to denote the inverse of the relation denoted by R, i.e. the
set of pairs of states 〈w,w′〉 such that 〈w′, w〉 is in the relation denoted by R.
Note that inverse relations are allowed only on the left of the � symbol. This is
only a syntactical restriction, since R−�S− is equivalent to R�S, and R�S−

is equivalent to R− �S.
An interpretation M of an HLm(@, ↓,E,�−,Trans, �) language is a tuple

〈W,ρ,N, I〉 where W is a non-empty set (whose elements are the states of the
interpretation), ρ is a function mapping every R ∈ REL to a binary relation on
W (ρ(R) ⊆ W ×W), N is a function NOM → W and I a function W → 2PROP.

If M = 〈W,ρ,N, I〉 is an interpretation, w ∈ W , σ is a variable assignment
for M (i.e. a function VAR → W) and F is a formula, the relation Mw, σ |= F
is defined adding the following clauses to the usual definition of the classical
operators:

1. Mw, σ |= p if p ∈ I(w), for p ∈ PROP.
2. Mw, σ |= a if N(a) = w, for a ∈ NOM.
3. Mw, σ |= x if σ(x) = w, for x ∈ VAR.
4. Mw, σ |= a:F if MN(a), σ |= F , for a ∈ NOM.
5. Mw, σ |= x:F if Mσ(x), σ |= F , for x ∈ VAR.
6. Mw, σ |= ↓x.F if Mw, σ

w
x |= F , where σw

x is the variable assignment such
that σw

x (x) = w and, for y �= x, σw
x (y) = σ(y).

7. Mw, σ |= �RF if for every w′ such that 〈w,w′〉 ∈ ρ(R), Mw′ , σ |= F .
8. Mw, σ |= �RF if there exists w′ such that 〈w,w′〉 ∈ ρ(R) and Mw′ , σ |= F .
9. Mw, σ |= �−

RF if for every w′ such that 〈w′, w〉 ∈ ρ(R), Mw′ , σ |= F .
10. Mw, σ |= �−

RF if there exists w′ such that 〈w′, w〉 ∈ ρ(R) and Mw′ , σ |= F .
11. Mw, σ |= AF if Mw′ , σ |= F for all w′ ∈ W .
12. Mw, σ |= EF if Mw′ , σ |= F for some w′ ∈ W .

Two formulae F and G are logically equivalent when, for every interpretation
M, assignment σ and state w of M: Mw, σ |= F if and only if Mw, σ |= G.
Every formula in HLm(@, ↓,E,�−) is logically equivalent to a formula in negation
normal form (NNF), where negation appears only in front of atoms. Therefore,
considering only formulae in NNF does not restrict the expressive power of the
language.

If A is a set of assertions, an interpretation 〈W,ρ,N, I〉 is a model of A if:

1. for all R ∈ REL such that Trans(R) ∈ A, ρ(R) is a transitive relation;
2. for all R,S ∈ REL, if R�S ∈ A, then ρ(R) ⊆ ρ(S);
3. for all R,S ∈ REL and all w,w′ ∈ W , if R−�S ∈ A and 〈w,w′〉 ∈ ρ(R),

then 〈w′, w〉 ∈ ρ(S).

Hybrid Logic with Transitivity and Relation Hierarchies 79

Finally, if F is a formula and A a set of assertions, {F}∪A is satisfiable if there
exist a model M of A and a state w of M such that Mw |= F (i.e. Mw, σ |= F
for every variable assignment σ).

2 The Tableau Calculus

This section shows how to extend the system described in [9] to the presence
of transitivity and inclusion assertions. The expansion rules that will be intro-
duced to treat assertions are similar to the analogous rules presented by [13–16].
However, their addition to a terminating calculus dealing also with syntactically
restricted occurrences of the binder is a novelty.

The presentation will be as self contained as possible, therefore it overlaps
with the description given in [9] in many points. However, since some of the
basic notions underlying the calculus are quite involved, they are not given a
completely formal account.

A tableau is a set of branches, and a tableau branch is a sequence of nodes
n0, n1, . . . , where each node is labelled either by an assertion or a ground satis-
faction statement, i.e. a formula of the form a:F , where no state variable occurs
free in F . The nominal a in a satisfaction statement a:F is called the outermost
nominal of the formula. Node labels are always formulae in NNF. The reason
why a branch is not simply a set of formulae will be briefly explained in the
sequel.

If n occurs before m in a branch, we write n < m. The label of the node n
is denoted by label(n). The notation (n) a:F is used to denote the node n, and
simultaneously say that its label is a:F . If a node (n) a : F is in a branch, then
the nominal a is said to label the formula F in the branch.

In order to give a more compact presentation of the expansion rules, some
notions and abbreviations will be adopted. Relation symbols will also be called
forward relations (and have positive sign) and the inverse of relation symbols
backward relations (with negative sign). A relation is either a forward or backward
relation. Relations are denoted by boldface letters: R is a meta-symbol used
to denote either R itself or its inverse R−. The following table defines some
shorthands for formulae and assertions that will be used in the sequel.

a ⇒R b ≡def

{
a:�Rb if R = R
b:�Ra if R = R− a:�RF ≡def

{
a:�RF if R = R
a:�−

RF if R = R−

a:�RF ≡def

{
a:�RF if R = R
a:�−

RF if R = R− R�S ≡def

⎧⎪⎪⎨
⎪⎪⎩

R�S if R and S have
the same sign

R− �S if R and S have
different signs

80 M. Cialdea Mayer

Let F be a ground hybrid formula in NNF and A a set of assertions. A tableau
for {F}∪A is initialized with a single branch, constituted by the node (n0) a0:F ,
where a0 is a new nominal, followed by nodes labelled by the assertions in A
and then expanded according to the following Assertion rules:

R�R
Rel0

R�S S�P

R�P
Rel

(note that Rel actually stands for four rules, according to the relation signs).
Such rules complete the inclusion assertions in A by the reflexive and transitive
closure of � . The formula a0:F is the initial formula of the tableau.

A tableau is expanded by application of the rules in Tables 1 and 2, which
are applied to a given branch.

Table 1. Expansion rules: first group

(n) a: (F ∧G)

(m0) a:F
(m1)a:G

(∧) (n) a: (F ∨G)

(m0) a:F | (m1) a:G
(∨)

(n) a: b:F

(m) b:F
(@)

(n)a: ↓x.F
(m)a:F [a/x]

(↓)

(n) a:�RF (m)a ⇒R b

(k) b:F
(�)

(n) a:�RF

(m0) a:�Rb
(m1) b:F

(�)
(n) a:�−

RF

(m0) b:�Ra
(m1) b:F

(�−)

where b is a fresh nominal where b is a fresh nominal
(not applicable if F is a nominal)

(n) a:AF

(m) b:F
(A)

(n) a:EF

(m) b:F
(E)

where b occurs in the branch where b is a fresh nominal

[B]
(n) a: b

B[b/a] (=)

Most rules are standard, and their reading is standard too. Note that when the
formulation of a rule contains (boldface) relations, it actually stands for different
rules, according to the relations signs. The rules of Table 1 are the same as those
presented in [9], but for the fact that the modal rules (�, � and �−) are here

Hybrid Logic with Transitivity and Relation Hierarchies 81

reformulated to address the multi-modal case. The equality rule (=) does not
add any node to the branch, but modifies the labels of its nodes. The schematic
formulation of this rule in Table 1 indicates that it can be fired whenever a
branch B contains a nominal equality of the form a: b (with a �= b); as a result
of the application of the rule, every node label F in B is replaced by F [b/a].

Formulae of the form �RF and AF are called universal formulae; nodes whose
labels have the form a:G, where G is a universal formula, are universal nodes
and the rules � and A are called universal rules. When the A rule is applied
producing a node labelled by a formula of the form b : F , it is said to focus on b
(and b is the focused nominal of the inference). The �, �− and E rules are called
blockable rules, formulae of the form a:�RF , where F is not a nominal, a:�−

RF ,
and a:EF are blockable formulae and a node labelled by a blockable formula is
a blockable node. A formula of the form a:�Rb, where R is a forward relation, is
called a relational formula.

The Trans rule of Table 2 deals with transitive relations and can be seen as a
reformulation (in the presence of inclusion assertions) of the � rule for transitive
modal logics (a particular case of this rule is when R = S). In the Link rule, that
deals with inclusion assertions, R is always a forward relation.

Table 2. Expansion rules: second group

(n) a:�Rb (i)R�S

(m)a ⇒S b
(Link)

(n) a:�SF (m)a ⇒R b (t)Trans(R) (i)R�S

(k) b:�RF
(Trans)

The premiss n of either the � or Trans rules is called the major premiss, and
m the minor premiss of the rule. In an application of the Link rule, n is the logical
premiss. The premisses i and t, in the rules of Table 2, are the side premisses of
the rules.

The formulation of the Trans rule is very close to the corresponding one used
in description logics, where in fact “roles” include both role names (correspond-
ing to relation symbols) and the inverse of role names, and inverse roles may
also occur in role inclusion axioms. The abbreviation a ⇒R b, however, does not
have exactly the same meaning as the corresponding premiss used in the rule
treating transitivity in description logics [13, 14] (a similar approach is adopted
in [15]), consisting of the meta-notion “b is an R-neighbour of a”. There are two
main differences between the two approaches. First of all, the semantical notion
of accessibility between two states is here given a “canonical representation” in
the object language (a choice already made in [8, 9]): the fact that a state a is
R-related to b is represented by the relational formula a:�Rb. Though seman-
tically equivalent to b:�−

Ra, the latter is not a relational formula, i.e. it is not the

82 M. Cialdea Mayer

canonical representation of an R-relation. This is reflected by the fact that the
� rule cannot be applied to a relational formula, while b:�−

Ra can be expanded
by means of the �− rule. Moreover, in the present work, the notation a ⇒R b is
only an abbreviation for a relational formula, which does not take subrelations
into account: it may be the case that a ⇒S b belongs to a given branch B for
some S�R, and yet a ⇒R b does not. The fact that, in the present work, no
meta-notion is used to represent “R-neighbours” is responsible for the presence
of the Link rules, that have no counterpart in [13–15].

The first node of a branch B is called the top node and its label the top
formula of B. Nominals occurring in the top formula are called top nominals.
The notion of top nominal is relative to a tableau branch, because applications
of the equality rule may change the top formula, hence the set of top nominals.

A branch is closed whenever it contains, for some nominal a, either a pair of
nodes (n) a: p, (m) a:¬p for some p ∈ PROP, or a node (n) a:¬a. As usual, it is
assumed that a closed branch is never expanded further. A branch which is not
closed is open. A branch is complete when it cannot be further expanded.

Provided that the initial formula is in HLm(@, ↓,E,�−) \ ↓�, the calculus
enjoys the following important strong subformula property, used to prove both
termination and completeness: every universal formula occurring in a tableau
branch is obtained from a subformula of the top formula F0 of the branch by
possibly replacing operators �R with �S, for some relation S in the language
of F0. Treating nominal equalities by means of substitution, like in [6, 7, 9, 11],
is essential to ensure such a property. By the effect of substitution, however,
distinct node labels may become equal, though the corresponding nodes are still
distinct elements of the branch.

The reason why nodes with the same label do not collapse is that they must
be arrangeable in a tree-like structure, where each node has at most one parent.
The relation on nodes inducing such a structure (see Definition 2) is used to
define indirect blocking (Definition 3). Termination is in fact achieved by means
of a form of anywhere blocking with indirect blocking.

Direct blocking is a relation between nodes in a tableau branch, holding when-
ever the respective labels (formulae) are equal up to (a proper form of) nominal
renaming. Essentially, in order for a node (n)F to (directly) block (m)G in a
branch B, it must be the case that G = F [a1/b1, . . . , an/bn], where a1, . . . , an,
b1 . . . , bn are non-top nominals such that, for all i = 1, . . . , n, ai and bi label
the same set of propositions in PROP and the same formulae of the form �RF .
More precisely:

Definition 1 (Nominal compatibility and mappings). If B is a tableau
branch, then:

1. two nominals a and b are compatible in B if they label the same propositions
in PROP and the same formulae of the form �RF .

2. A mapping π for B is an injective function from non-top nominals to non-
top nominals such that for all a, a and π(a) are compatible in B. Mappings

Hybrid Logic with Transitivity and Relation Hierarchies 83

are extended to act on formulae in the obvious way: π(F) is the formula
obtained by substituting π(a) for a in F , for every nominal a.

3. A mapping π for B maps a formula F to a formula G if π(F) = G and π is
the identity for all nominals which do not occur in F .

4. A formula F can be mapped to a formula G in B if there exists a mapping
π for B mapping F to G.

The (direct) blocking restriction forbids the application of a blockable rule to a
node n, whenever the label of a node m < n can be mapped to label(n).

As already mentioned before, indirect blocking relies on a partial order on the
nodes of a branch B, called the offspring relation and denoted by ≺B , which
arranges them into a family of trees, where non-terminal nodes are blockable
nodes. Every tree is rooted at a node called a root node (a node with no parents
w.r.t. the offspring relation). When a blockable rule is applied, the generated
nodes are children of the expanded node. All the other rules generate siblings of
one of the premisses of the inference (two nodes are siblings either if they are
both root nodes or they have the same parent).

Properly, the offspring relation and blockings are defined by a mutual recur-
sion on branch construction: if B′ is a branch obtained by expanding B, the
definition of ≺B′ assumes that the set of blocked nodes in B is already defined,
and indirectly blocked nodes in B depend on the relation ≺B. This is due to
the presence of the A rule, for which a minor premiss must be defined, since
nodes added to a branch B by an application I of the A rule are siblings of such
a minor premiss (in the new branch B′ obtained from the expansion); but, in
order to determine the minor premiss of I it is necessary to know which nodes
are blocked in B.

The presentation that follows is somewhat simplified, and the reader is referred
to [9] for the more formal approach. Let us assume that when the A rule is
applied, beyond the premiss shown in Table 1, the branch contains a node called
the minor premiss of the rule application (which will be defined further on, in
Definition 5).

Definition 2 (Offspring relation). Let B be a tableau branch.

1. Every node already contained in the initial branch from which B is obtained
(i.e. its top node and all the nodes labelled by assertions) is a root node.

2. If a node n has been added to B by application of a blockable rule to node m,
then m ≺B n (n is a child of m and m is the parent of n).

3. If n has been added to B by application of either a universal rule or the Trans
rule, whose minor premiss is m, then n is a sibling of m (i.e., if m is a root
node, then n is a root node too; otherwise, if k ≺B m, then k ≺B n).

4. If n has been added to B by application of any other rule of table 1 (i.e. any
other single-premiss rule) to node m, then n is a sibling of m.

5. If n has been added to B by application of the Link rule, then n is a sibling
of the logical premiss of the inference.

It is worth pointing out that an application of either the Trans rule or a uni-
versal one produces a sibling of the minor premiss of the inference, and not the

84 M. Cialdea Mayer

major one. This is an essential feature of the offspring relation, needed to prove
termination.

The notions of direct and indirect blocking can now be defined.

Definition 3 (Direct and indirect blocking). Let B be a tableau branch.
The set of directly and indirectly blocked nodes in B is defined by induction on
the (total) order < on the nodes of B:
– n is blocked if it is either directly or indirectly blocked.
– n is directly blocked by m if n is a blockable node, m < n, m is not blocked

and label(m) can be mapped to label(n) in B; n is directly blocked in B if it
is directly blocked by some m in B.

– n is indirectly blocked if it is not directly blocked and it has an ancestor w.r.t.
≺B which is blocked.

An indirectly blocked node is called a phantom node (or, simply, a phantom).

It is worth noticing that a node is a phantom if and only if all its siblings are
phantoms too.

The application of the expansion rules is restricted by the conditions defined
next. Restrictions R1–R4 are essentially the same as those formulated in [9].
The restrictions concerning the new rules are formulated apart (R5–R6).

Definition 4 (Restrictions on the expansion rules). The expansion of a
tableau branch B is subject to the following restrictions:

R1. no node labelled by a formula already occurring in B as the label of a non-
phantom node is ever added to B.

R2. Blockable nodes can be expanded at most once in a branch.
R3. A phantom node cannot be expanded by means of a single-premiss rule

(including the equality rule), nor can it be used as the minor premiss of a
universal rule.

R4. A blockable node n cannot be expanded if it is directly blocked in B.
R5. A phantom node cannot be used as the minor premiss of the Trans rule.
R6. A phantom node cannot be used as the logical premiss of the Link rule.

Finally, we only need to define the minor premiss of an application of the A rule.

Definition 5. If B is obtained from B′ by means of an application I of the A
rule focusing on the nominal b, then the minor premiss of I is the first non-
phantom node in B′ where b occurs.

Note that, as a particular case of restriction R3, the A rule cannot focus on
a nominal which only occurs in phantom nodes in the branch. Consequently,
thanks to restriction R3, every application of the A rule has a minor premiss.

Due to space restrictions, the termination and completeness proofs cannot be
included in this work, but can be found in [10]. Here, only a short proof sketch
is included.

Hybrid Logic with Transitivity and Relation Hierarchies 85

Theorem 1 (Termination). If the initial formula of a tableau is in the frag-
ment HL(@, ↓,E,�−) \ ↓�, then every tableau branch has a bounded depth and
tableau construction always terminates.

Termination if proved by showing that the nodes of a branch B are arranged
by the offspring relation into a bounded sized set of trees, each of which has
bounded width and bounded depth. This holds because a branch is not a set of
formulae, but nodes, and each node has at most one parent. If nodes labelled by
the same formula collapsed into a single branch element, such an element might
have multiple parents.1

The drawback is that the reasoning proving that any node has a bounded
number of siblings is not as simple as it would be if dealing with sets of formulae.
It relies in an essential way on the fact that universal rules do not generate
siblings of their major premisses and, thanks to the mentioned strong subformula
property, the number of universal formulae occurring in a tableau branch is
bounded.

In order to prove that tree depth is also bounded, it is shown that the size of
any set of blockable nodes which may occur in a tableau branch, and such that
none of its elements blocks another one, is bounded. This holds for two reasons.
First of all, the calculus enjoys a weak subformula property: for any non-relational
formula a:F occurring in a tableau branch, F is obtained from a subformula of
the top formula F0 of the branch by replacing free variables with nominals and,
possibly, operators �R with �S, for some relation S in the language of F0.
Secondly, the strong subformula property ensures that the number of nominal
compatibility classes is bounded.

Theorem 2 (Completeness). Let F be a formula and A a set of assertions.
If {F} ∪ A is in HLm(@, ↓,E,�−,Trans, �) \ ↓� and is unsatisfiable, then any
complete tableau for {F} ∪ A is closed.

In order to prove that the calculus is complete, it is shown – like in [9] – how
to extend a subset N 0 of any complete and open branch B in such a way that
every directly blocked node is added a suitable “witness” (the witness(es) of a
blockable node n can be viewed simply as node(s) which could by obtained by
application of the corresponding blockable rule to n). The fact that the labels of
blocked and blocking nodes are not necessarily identical does not allow taking
the witness of the blocking node as a witness of the blocked one. Nor can a
model be simply built from a set of states consisting of equivalence classes of
nominals, where two nominals are in the same class whenever some blocking
mapping maps one to the other: two nominals a and b may be compatible even
if the branch contains a node labelled by a:¬b.

The initial set of the construction, N 0, is the union of the non-phantom nodes
in B and the nodes of the form (n) a:F , with a occurring in some non-phantom
node in B and either F has the form �RG or F ∈ PROP.N 0 is extended by steps,

1 For a similar reason it is not possible to block nominals instead of nodes: two nom-
inals with different parents may become equal by substitution.

86 M. Cialdea Mayer

constructing a (possibly infinite) sequence of sets of nodes N 0 ⊆ N 1 ⊆ N 2 . . . ,
where each N i+1 is obtained from N i by (fairly) choosing a blockable node n
with no witness inN i. The construction ensures that there exists a node n0 ∈ N 0

whose label can be mapped to label(n) in N i. The blocking mapping is then used
to add new nodes and obtain N i+1, in such a way that n has a witness in N i+1.
It is finally shown how to build a model of the initial formula from the union of
the sets N i (due to the presence of assertions, the construction is quite different
from the corresponding one in [9]).

We conclude with some examples illustrating the calculus in action. The
first simple one below shows the interplay between the Trans and Link rules.
It consists of the closed one-branch tableau represented below for the formula
�S�Sp ∧ �S¬p, together with the assertions Trans(R), R�S, S�R. The no-
tations n �R m or (n1, . . . , nk) �R m, used in the rightmost column below,
means that the addition of node m is due to the application of rule R to node
n (or nodes n1, . . . , nk). Nodes 0–4 constitute the initial tableau. The branch is
closed because of nodes 11 and 15.

(0) a: (�S�Sp ∧�S¬p)
(1) Trans(R)
(2) R�S
(3) S�R
(4) R�R Rel0
(5) S�S Rel0
(6) a:�S�Sp 0 �∧ 6
(7) a:�S¬p 0 �∧ 7

(8) a:�Sb 6 �� 8
(9) b:�Sp 6 �� 9

(10) b:�Sc 9 �� 10
(11) c: p 9 �� 11

(12) a:�Rb (8, 3) �Link 12

(13) b:�Rc (10, 3) �Link 13
(14) b:�R¬p (7, 12, 1, 2) �Trans 14
(15) c:¬p (14, 13) �� 15

Next example illustrates the dynamic nature of blockings. Figure 1 represents a
complete and open tableau branch B for the formula F = (A↓x.�R−�R¬x) ∧
�Rp – which holds in a state w if every state of the interpretation has at least
one R-sibling, and p holds in every state R-related to w – where R is a transitive
relation. In the representation of the branch given below, G = �R−�R¬x and,
in the notation (n,m) �A k, n is the major premiss of the inference and m the
minor one.

The relation ≺B in this branch can be described as follows, where the notation
n ≺B {m1, . . . ,mk} abbreviates n ≺B m1 and . . .n ≺B mk. Nodes 0 . . . 6 are
root nodes, and 6 ≺B {7, 8, 9, 12, 16, 18}, 8 ≺B {10, 11, 13, 14, 15, 17}, 17 ≺B
{19, 20, 23, 33, 35}, 18 ≺B {21, 22, 26, 31}, 20 ≺B {24, 25, 29, 30, 32, 34}, 22 ≺B
{27, 28}, 35 ≺B {36, 37, 38, 41}, 37 ≺B {39, 40}. For instance, node 7 is the
minor premiss of the application of the � rule producing 12, and 10 is the minor
premiss of the application of the Trans rule producing 13, therefore 7 and 12 are
siblings and so are 10 and 13. When the A rule is applied to produce node 15
focusing on the nominal a3, the first non-phantom node where a3 occurs is 10,
so that 10 is the minor premiss of the inference and a sibling of 15.

In order to illustrate blockings, the notation Bn is used to denote the branch
segment up to node n, and ai ≈n aj means that ai and aj are compatible in
Bn (note that, in this example, the formulae to be taken into account to check
compatibilities are p and �Rp). Node 17 cannot be blocked by 6, and 20 cannot

Hybrid Logic with Transitivity and Relation Hierarchies 87

0) a1:F
1) Trans(R)
2) R�R
3) a1:A↓x.G 0 �∧ 3
4) a1:�Rp 0 �∧ 4
5) a1: ↓x.G (3, 0) �A 5

6) a1:�R−�R¬ a1 5 �↓ 6
7) a2:�Ra1 6 �� 7
8) a2:�R¬ a1 6 �� 8
9) a2:�Rp (4, 7, 1, 2) �Trans 9

10) a2:�Ra3 8 �� 10
11) a3:¬ a1 8 �� 11
12) a1: p (9, 7) �� 12

13) a3:�Rp (9, 10, 1, 2) �Trans 13
14) a3: p (9, 10) �� 14

15) a3: ↓x.G (3, 10) �A 15

16) a2: ↓x.G (3, 7) �A 16

17) a3:�R−�R¬ a3 15 �↓ 17
18) a2:�R−�R¬ a2 16 �↓ 18
19) a4:�Ra3 17 �� 19
20) a4:�R¬ a3 17 �� 20

21) a5:�Ra2 18 �� 21
22) a5:�R¬ a2 18 �� 22
23) a4:�Rp (13, 19, 1, 2) �Trans 23
24) a4:�Ra6 20 �� 24
25) a6:¬ a3 20 �� 25

26) a5:�Rp (9, 21, 1, 2) �Trans 26
27) a5:�Ra7 22 �� 27
28) a7:¬ a2 22 �� 28

29) a6:�Rp (23, 24, 1, 2) �Trans 29
30) a6: p (23, 24) �� 30
31) a2: p (26, 21) �� 31
32) a6: ↓x.G (3, 24) �A 32

33) a4: ↓x.G (3, 19) �A 33

34) a6:�R−�R¬ a6 32 �↓ 34

35) a4:�R−�R¬ a4 33 �↓ 35
36) a8:�Ra4 35 �� 36
37) a8:�R¬ a4 35 �� 37

38) a8:�Rp (23, 36, 1, 2) �Trans 38
39) a8:�Ra9 37 �� 39
40) a9:¬ a4 37 �� 40
41) a4: p (38, 36) �� 41

Fig. 1. A complete tableau branch for {(A↓x.�R−�R¬x) ∧ �Rp,Trans(R)}

be blocked by 8, because a1 is a top nominal and mappings can only affect non-
top ones. In the whole branch B, the nodes 18, 34 and 35 are blocked by 17
(note that 17 is not an ancestor of 18), because a3 ≈41 a2 ≈41 a4 ≈41 a6. Their
descendants (21, 22, 26− 28, 31, 36− 41) are therefore phantoms in B. However,
while 34 is not expanded because it is blocked by 17 in B34 (because a3 ≈34 a6),
18 is not blocked in Bi for all i < 31, i.e. until a2: p is added to the branch.
Therefore 18 is expanded. Analogously, 35 is not blocked by 17 until a4: p is
added to the branch (node 41). The branch is complete: every non blocked node
has been expanded or used as the minor premiss of a suitable rule. In particular,
note that the nominals a5, a7, a8, a9 occur only in phantom nodes, therefore the
A rule cannot focus on them.

3 The Sibyl Prover

The calculus described in Section 2 has been implemented in a prover called Sibyl,
that is available at http://cialdea.dia.uniroma3.it/sibyl/. It is written in
Objective Caml and takes as input a file containing a set of assertions and
a set of formulae, checks them for satisfiability and outputs the result. Every
input formula in HLm(@, ↓,E,�−)\�↓� is preprocessed and translated into the
fragment HLm(@, ↓,E,�−)\↓�, by use of the satisfiability preserving translation
defined in [20]. If some formula is not in HLm(@, ↓,E,�−)\�↓�, then Sibyl warns
the user that termination and correctness of the result are not guaranteed. At

http://cialdea.dia.uniroma3.it/sibyl/

88 M. Cialdea Mayer

present, backjumping is the only important optimization technique implemented
in the prover.

In order to test Sibyl for correctness, it could not be compared to other provers
for modal or description logics, since, to the author’s knowledge, the hybrid
binder and relation hierarchies coexist in none of them. For the same reason it
would not make much sense using problems in existing repositories for modal or
description logic. Therefore Sibyl has been run on a set of randomly generated
tests, and the translations of the same tests into first order logic (using the
standard translation of hybrid logic formulae and the straightforward translation
of assertions) have then been given in input to the SPASS prover [21]. Each test
is based on a file generated by hGen [2], modified so as to obtain formulae in
HLm(@, ↓,E,�−) \ �↓� and with the addition of a random set of transitivity
and inclusion assertion. A first group of 1620 tests has been generated with 30%
probability for a relation to be transitive and 30% probability for any pair of
relations R,S to be related by either R�S or R− �S. The tests are grouped
according to their modal degree (varying from 2 to 10), each group containing
tests with 10 to 50 clauses (hGen generates sets of clauses). In order to evaluate
the impact of the presence of assertions on Sibyl’s behaviour, other four groups
of tests have been obtained from the basic set, reducing the number of assertions
in each file, respectively to 75%, 50%, 25% and no assertions at all.

Sibyl and SPASS have been run on these test sets with one minute timeout
and they agree on the outcome of all problems where both provers terminate
successfully. The test sets, the detailed results of the experiments and diagrams
summarizing them can be downloaded from Sibyl web page.

Though the experiments only aimed at testing Sibyl for correctness, they were
also an opportunity to give a preliminary evaluations of its performances com-
pared to SPASS (that was run in default mode, since, from some preliminary
tests, other flag settings appeared either to degrade its performance or have no
significant effect). Quite surprisingly, although SPASS is a mature prover and
Sibyl a newborn, the latter turned out to globally outperform the former. SPASS
could not solve about 13% of the problems in the allowed one minute time, while
Sibyl failed in less than 5.5%. Taking the number of timeouts as a performance
measure, the impact of the number of assertions and the modal degree of formu-
lae has been evaluated. In the tests with no assertions SPASS performs better
than Sibyl: 2.22% timeouts versus Sibyl’s 4.81%. On the other hand, SPASS could
not solve 21.98% tests of the base set (with no reduction of the number of asser-
tions), while Sibyl 6.30%. With respect to the effect of the modal degree on the
behaviour of the provers, in the base set, for instance, SPASS ran out of time in
2.22% tests of modal degree 2, and it reached 32.22% timeouts in the problems
of modal depth 10. In the same set of problems, Sibyl’s failures range from 6.67%
(modal degree 2) to 9.44% (modal degree 10).

The experimental results show that Sibyl’s behaviour only slightly degrades
when the number of assertions and the modal degree increase. In comparison,
the first order prover appears to be much more sensitive to the number of asser-
tions, especially when the modal degree becomes higher. Presumably, this is not

Hybrid Logic with Transitivity and Relation Hierarchies 89

a credit to Sibyl, but rather an instance of the poor behaviour exhibited by first
order theorem provers when fed with non optimized translations of modal for-
mulae. In order to refine such a preliminary analysis, other encoding principles
should be used and tested, and the effect of transitivity and inclusion assertions
should be analysed separately.

4 Concluding Remarks

This work presents a satisfiability decision procedure for hybrid formulae in
HLm(@, ↓,E,�−,Trans, �) \ �↓�, and its implementation in the Sibyl prover.
Transitivity and relation inclusion assertions are treated by expansion rules
which are very close to (though not exactly the same as) the analogous rules
presented in [13–16]. The main result of this work is proving that they can be
added to a calculus dealing also with restricted occurrences of the binder, main-
taining termination, beyond soundness and completeness.

Differently from other terminating tableau calculi for (binder-free) hybrid logic
including the global and converse modalities, blocking concerns here nodes (cor-
responding to formulae) and not nominals (i.e. sets of formulae). In the absence
of the binder, compatibility checks, requiring to exit from the “local” view and
look for other formulae in the branch, are needed only for the formulae outermost
nominals and concern only a subset of the formulae labelled by such nominals.
Indirect blocking, in turn, relies on a particular partial order on nodes, arranging
them in a family of trees of bounded width and bounded depth. Width bound-
edness is guaranteed by the fact that universal nodes (which may be expanded
a potentially unbounded number of times) do not generate “siblings”.

Other works have addressed the issue of representing frame properties and/or
relation hierarchies in tableau calculi for binder-free hybrid logic (for instance,
[5, 15, 16]). The maybe richer calculus of this kind is [15], that considers graded
and global modalities, reflexivity, transitivity and role hierarchies. The converse
modalities are however missing, and inverse relations are not allowed.

The possibility of adding graded modalities (i.e. number restrictions of de-
scription logics) to the calculus presented in this work is an interesting but hard
issue. As a matter of fact, whether restricted occurrences of the binder can co-
exist with graded modalities in a decidable hybrid logic is an open question.

Acknowledgments. The author’s implementation (and debugging) work has
built upon the bachelor or master projects of several students. Beyond those
who worked on Herod [11], Sibyl’s ancestor, the author is especially indebted to
Giulia Di Rienzo, who implemented Sibyl’s first version.

References

1. Areces, C., Blackburn, P., Marx, M.: A road-map on complexity for hybrid logics.
In: Flum, J., Rodŕıguez-Artalejo, M. (eds.) CSL 1999. LNCS, vol. 1683, pp. 307–
321. Springer, Heidelberg (1999)

90 M. Cialdea Mayer

2. Areces, C., Heguiabehere, J.: hGen: A random CNF formula generator for hybrid
languages. In: Methods for Modalities 3 (M4M-3), Nancy, France (2003)

3. Areces, C., ten Cate, B.: Hybrid logics. In: Handbook of Modal Logics, pp. 821–868.
Elsevier (2007)

4. Blackburn, P., Seligman, J.: Hybrid languages. Journal of Logic, Language and
Information 4, 251–272 (1995)

5. Bolander, T., Blackburn, P.: Terminating tableau calculi for hybrid logics extending
K. Electronic Notes in Theoretical Computer Science 231, 21–39 (2009)

6. Cerrito, S., Cialdea Mayer, M.: An efficient approach to nominal equalities in
hybrid logic tableaux. Journal of Applied Non-classical Logics 20(1-2), 39–61 (2010)

7. Cerrito, S., Cialdea Mayer, M.: Nominal substitution at work with the global and
converse modalities. In: Advances in Modal Logic, vol. 8, pp. 57–74. College Pub-
lications (2010)

8. Cerrito, S., Cialdea Mayer, M.: A tableaux based decision procedure for a broad
class of hybrid formulae with binders. In: Brünnler, K., Metcalfe, G. (eds.)
TABLEAUX 2011. LNCS, vol. 6793, pp. 104–118. Springer, Heidelberg (2011)

9. Cerrito, S., Cialdea Mayer, M.: A tableau based decision procedure for a fragment
of hybrid logic with binders. Journal of Automated Reasoning (2012) (published
online, to appear on paper)

10. Cialdea Mayer, M.: Tableaux for multi-modal hybrid logic with binders, transitive
relations and relation hierarchies. Technical Report RT-DIA-199-2012, Diparti-
mento di Informatica e Automazione, Università di Roma Tre (2012)

11. Cialdea Mayer, M., Cerrito, S.: Herod and Pilate: two tableau provers for basic
hybrid logic. In: Giesl, J., Hähnle, R. (eds.) IJCAR 2010. LNCS, vol. 6173, pp.
255–262. Springer, Heidelberg (2010)

12. Grädel, E.: On the restraining power of guards. Journal of Symbolic Logic 64,
1719–1742 (1998)

13. Horrocks, I., Sattler, U.: A description logic with transitive and inverse roles and
role hierarchies. Journal of Logic and Computation 9(3), 385–410 (1999)

14. Horrocks, I., Sattler, U.: A tableau decision procedure for SHOIQ. Journal of
Automated Reasoning 39(3), 249–276 (2007)

15. Kaminski, M., Schneider, S., Smolka, G.: Terminating tableaux for graded hybrid
logic with global modalities and role hierarchies. Logical Methods in Computer
Science 7(1) (2011)

16. Kaminski, M., Smolka, G.: Terminating tableau systems for hybrid logic with dif-
ference and converse. Journal of Logic, Language and Information 18(4), 437–464
(2009)

17. Mundhenk, M., Schneider, T.: Undecidability of multi-modal hybrid logics. Elec-
tronic Notes in Theoretical Computer Science 174(6), 29–43 (2007)

18. Mundhenk, M., Schneider, T., Schwentick, T., Weber, V.: Complexity of hybrid
logics over transitive frames. Journal of Applied Logic 8(4), 422–440 (2010)

19. Szwast, W., Tendera, L.: On the decision problem for the guarded fragment with
transitivity. In: Proc. of the 16th Symposium on Logic in Computer Science (LICS),
pp. 147–156 (2001)

20. ten Cate, B., Franceschet, M.: On the complexity of hybrid logics with binders.
In: Ong, L. (ed.) CSL 2005. LNCS, vol. 3634, pp. 339–354. Springer, Heidelberg
(2005)

21. Weidenbach, C., Dimova, D., Fietzke, A., Kumar, R., Suda, M., Wischnewski, P.:
SPASS version 3.5. In: Schmidt, R.A. (ed.) CADE 2009. LNCS, vol. 5663, pp.
140–145. Springer, Heidelberg (2009)

	A Proof Procedure for Hybrid Logic with Binders, Transitivity and Relation Hierarchies
	1 Introduction
	2 The Tableau Calculus
	3 The Sibyl Prover
	4 Concluding Remarks
	References

