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Abstract. It is often the case that first-order problems contain propositional vari-
ables and that proof-search generates many clauses that can be split into compo-
nents with disjoint sets of variables. This is especially true for problems coming
from some applications, where many ground literals occur in the problems and
even more are generated.

The problem of dealing with such clauses has so far been addressed using ei-
ther splitting with backtracking (as in Spass [14]) or splitting without backtrack-
ing (as in Vampire [7]). However, the only extensive experiments described in the
literature [6] show that on the average using splitting solves fewer problems, yet
there are some problems that can be solved only using splitting.

We tried to identify essential issues contributing to efficiency in dealing with
splitting in resolution theorem provers and enhanced the theorem prover Vampire
with new options, algorithms and datastructures dealing with splitting. This paper
describes these options, algorithms and datastructures and analyses their perfor-
mance in extensive experiments carried out over the TPTP library [12]. Another
contribution of this paper is a calculus RePro separating propositional reasoning
from first-order reasoning.

1 Introduction

In first-order theorem proving, theorem provers based on variants of resolution and
superposition calculi (in the sequel simply called resolution theorem provers) are pre-
dominant. This is confirmed by the results of the last CASC competitions.1 The top
three theorem provers Vampire [7], E-MaLeS and E [9] are resolution-based, while the
fourth one iProver [4] implements both an instance-based calculus and resolution with
superposition.

Resolution theorem provers use saturation algorithms. They deal with a search space
consisting of clauses. Inferences performed by saturation algoritms are of three different
kinds:

1. Generating inferences derive a new clause from clauses in the search space. This
new clause can then be immediately simplified and/or deleted by other kinds of
inference.

2. Simplifying inferences replace a clause by another clause that is simpler in some
strict sense.

3. Deletion inferences delete clauses from the search space.

1 http://www.cs.miami.edu/˜tptp/CASC/J6/
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On hard problems the search space is often growing rapidly, and simplifications and
deletions consume considerable time. Performance of resolution theorem provers de-
grades especially fast when they generate many clauses having more than one literal
(multi-literal clauses for short) and heavy clauses (clauses of large sizes). There are
several reasons for this degradation of performance:

1. The complexity of algorithms implementing inference rules depends on the size of
clauses. The extreme case are algorithms for subsumption and subsumption resolu-
tions. These problems are known to be NP-complete and algorithms implementing
them are exponential in the number of literals in clauses.

2. Storing heavy clauses requires more memory. Moreover, every literal in a clause
(and sometimes every term occurring in such a literal) are normally added to one
or more indexes. Index maintenance requires considerable space and time and op-
erations on these indexes slow down significantly when the indexes become large.

3. Generating inferences applied to heavy clauses usually generate heavy clauses.
Generating inferences applied to clauses with many literals usually generate clauses
with many literals. For example, resolution applied to two clauses containing n1

and n2 literals normally gives a clause with n1 + n2 − 2 literals.

To deal with multi-literal and heavy clauses, one can simply start discarding them after
some time, thus losing completeness [8]. Alternatively, one can use splitting. There are
two kinds of splitting described in the literature: splitting with backtracking (as in Spass
[14]) or splitting without backtracking (as in Vampire [7]).

2 Propositional Variables in Resolution Provers

Both kinds of splitting are implemented using introduction of propositional variables
denoting components of split clauses. When many such variables are introduced, they
give rise to clauses with many propositional literals. Such clauses clog up search space
and slow down expensive operations, such as subsumption. Therefore, the problem of
dealing with propositional literals is closely related to splitting. Apart from variables
arising from splitting, propositional variables are common in many applications, for
example, program analysis. They may also be introduced during preprocessing when
naming is used to generate small clausal normal forms.

The resolution and superposition calculus is very efficient for proving theorems in
first-order logic. In propositional logic, it is not competitive to DPLL. Suppose that we
have a problem that uses both propositional and non-propositional atoms. Then treating
propositional atoms in the same way as non-propositional ones results in performance
problems. For example, if we use the code trees technique for implementing subsump-
tion [13] and make no special treatment for propositional variables, it will work in the
worst case in exponential time even for a pair of propositional clauses, while the best
algorithms for propositional subsumption are linear.

The Calculus RePro To address the problem of dealing with propositional variables,
in this section we will introduce a calculus RePro for dealing with clauses having
propositional literals, and will illustrate some options of Vampire using this calculus.
The calculus separates propositional reasoning from non-propositional.
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Let us call a pro-clause any expression of the form C | P , where C is a clause
containing no propositional variables and P is a propositional formula. Logically, this
pro-clause is equivalent to C ∨P , so the bar sign | can be seen as simply separating the
propositional and non-propositional parts of the pro-clause. We will consider a clause
containing no propositional variables as a special kind of pro-clause, in which P is a
false formula.

Note that a pro-clause C ∨ P is not necessarily a clause, since P can be an arbitrary
formula. Also, any propositional formula P can be considered a special case of a pro-
clause � | P , where � denotes, as usual, the empty clause. We will call any pro-clause
� | P propositional.

The calculus RePro is parametrised by an underlying resolution calculus. That is, for
every resolution calculus on clauses we will define an instance of the calculus RePro
based on this resolution calculus. However, since we are not varying the underlying
calculus in this paper, we will simply speak of RePro as a calculus.

Generating Inferences. For every generating inference

C1 · · · Cn

C
of the resolution calculus the following is an inference rule of RePro:

C1 | P1 · · · Cn | Pn

C | (P1 ∨ . . . ∨ Pn)
.

Simplifying Inferences. Let

C1 · · · Cn ��D
C (1)

be a simplifying inference of the resolution calculus. Speaking the theory of resolution,
this means that C is implied by C1, . . . , Cn, D and D is redundant with respect to
C1, . . . , Cn, C. If P1 ∨ . . .∨Pn → P is a tautology, then the following is a simplifying
inference rule of RePro:

C1 | P1 · · · Cn | Pn ���D | P
C | (P1 ∨ . . . ∨ Pn)

.
(2)

Deletion Inferences. Let

C1 · · · Cn ��D
be a deletion inference of the resolution calculus, that is, D is redundant with respect
to C1, . . . , Cn. If P1 ∨ . . . ∨ Pn → P is a tautology, then the following is a deletion
inference of RePro:

C1 | P1 · · · Cn | Pn ���D | P .

Completeness. It is not hard to derive soundness and completeness of RePro assum-
ing the same properties of the underlying resolution calculus, however completeness
here means something different from completeness in the theory of resolution. The rea-
son for this difference is that RePro contains essentially no rules for dealing with the
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propositional part of clauses. In the completeness theorem below, we assume knowl-
edge of the theory of resolution [1,5]. Also, we do not specify the underlying calculus,
for example, the calculus used in Vampire can be used.

Theorem 1 (Completeness). LetS0, S1, S2, . . . be a fair sequence of sets of pro-clauses
such that S0 is unsatisfiable. Then there exists i ≥ 0 such that the set of propositional
pro-clauses in Si is unsatisfiable too.

The proof is omitted here. Note that this theorem implies that the proof-search in RePro
can be carried out by using any standard fair saturation algorithm to perform RePro
inferences corresponding to the rules of the underlying calculus plus unsatisfiability
checking for the propositional part. This is how it is implemented in Vampire.

To implement such an algorithm for RePro on top of a standard implementation of
the resolution calculus one needs to address the following questions:

(q1) representation of the propositional part of pro-clauses;
(q2) representation of propositional pro-clauses (which can be different from the rep-

resentation of the propositional part of pro-clauses);
(q3) unsatisfiability checking for sets of propositional pro-clauses;
(q4) efficient simplification rules for pro-clauses.

There are some other implementation details to be addressed. For example, the in-
ference selection process in saturation algorithms usually depends on the weights of
clauses (which is usually their size measured in the number of symbols). One can use
different size measures for pro-clauses, especially when their propositional parts are not
necessarily clauses. This adds one more question:

(q5) pro-clause selection.

Before discussing possible answers we will introduce some other rules that can be used
in RePro.
Propositional tautology deletion is a deletion rule of RePro formulated as follows:

���D | P ,

where P is a tautology.
The merge rule of RePro is formulated as follows:

���C | P1 ���C | P2

C | (P1 ∧ P2)

Note that so far this is the only rule that introduces propositional formulas other than
clauses.
The merge subsumption rule of RePro is formulated as follows:

C | P1 ���D | P2

D | (P1 ∧ P2)
,

where C subsumes D. This rule can also introduce propositional formulas that are not
clauses.
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The Calculus ReProR One can also define simplifying rules on pro-clauses in an
alternative way. Namely, the modification is as follows. Consider a simplifying rule
(1) of the underlying resolution calculus. Then the following can be considered as a
simplifying inference rule:

C1 | P1 · · · Cn | Pn ���D | P
C | (P1 ∨ . . . ∨ Pn) D | (P1 ∨ . . . ∨ Pn → P )

.

One can see that the previously defined simplifying rule (2) is a special case of this
one, since, if P1 ∨ . . . ∨ Pn → P is a tautology, the second inferred clause can be
removed. One can also reformulate the deletion rules in the same way. We will denote
the resulting calculus ReProR (the refined RePro). Note that the simplification rules
of the refined calculus introduce non-clauses in the propositional part.

The advantage of the alternative formulation of simplification and deletion rules is
that one clause can be simplified away into a tautology using a sequence of simplify-
ing or deletion rules impossible in the standard formulation of RePro. For example,
a clause A ∨ B | (p ∧ q) is redundant in the presence of A | p and B | q using the
following sequence of subsumption deletion rules:

B | q
A | p �������

A ∨B | (p ∧ q)

����������
A ∨B | (p → (p ∧ q))

A ∨B | (q → (p → (p ∧ q)))

whose conclusion is a tautology.

3 Splitting

In very simple terms, splitting is based on the following idea. Suppose that S is a set of
clauses and C1 ∨ C2 a clause such that the variables of C1 and C2 are disjoint. Then
the set S ∪ {C1 ∨C2} is unsatisfiable if and only if both S ∪ {C1} and S ∪ {C2}
are unsatisfiable. There is more than one way to implement splitting. Before discussing
them let us introduce some definitions.

Recall that a clause is a disjunction L1 ∨ . . . ∨ Ln of literals, where a literal is an
atomic formula or a negation of an atomic formula. A literal or clause is ground if it
contains no occurrences of variables. In the context of splitting we consider a clause
as a set of its literals. In other words, we assume that clauses do not contain multi-
ple occurrences of the same literal and clauses equal up to permutation of literals are
considered equal. Let C1, . . . , Cn be clauses such that n ≥ 2 and all the Ci’s have

pairwise disjoint sets of variables. Then we say that the clause C
def
= C1 ∨ . . . ∨ Cn

is splittable into components C1, . . . , Cn. We will also say that the set C1, . . . , Cn is a
splitting of C. For example, every ground multi-literal clause is splittable. There may
be more than one way to split a clause, however there is always a unique splitting such
that each component Ci is non-splittable: we call this splitting maximal. It is easy to
see that a maximal splitting has the largest number of components and every splitting
with the largest number of components is the maximal one. There is a simple algorithm
for finding the maximal splitting of a clause [6], which is, essentially, the union-find
algorithm.



The 481 Ways to Split a Clause and Deal with Propositional Variables 455

Splittable clauses appear especially often when theorem provers are used for soft-
ware verification and static analysis. Problems used in these applications usually have
a large number of ground clauses (coming from program analysis) and a small number
of non-ground clauses (for example, an axiomatisation of memory or objects).

There are essentially two ways of using splitting in a first-order resolution theorem
prover. One is splitting with backtracking as implemented in Spass [14] and another
splitting without backtracking [6]. Each of them is described in the next subsections,
where we also point out potential efficiency problems associated with each kind of
splitting.

When we discuss the use of splitting in resolution theorem provers, it is very impor-
tant to understand how the use of splitting affects other components of such provers.
The efficiency and power of modern resolution theorem provers comes from two tech-
niques: redundancy elimination (see [1] for the theory and [8] for the implementation
aspects) and term indexing [10]. Another component important for understanding effi-
ciency is the saturation algorithm and especially the clause selection algorithm used to
implement this algorithm.

Redundancy Elimination. Unlike backtracking algorithms used in DPLL, saturation
algorithms are backtracking-free. When clauses are simplified or deleted, these sim-
plifications and deletions do not have to be undone. On the contrary, some forms of
splitting may require backtracking.

Term Indexing. Even when simplifications are used, the search space can quickly grow
to hundreds of thousands of clauses. To perform inferences on such a large search space
efficiently, theorem provers maintain several indexes storing information about terms
and clauses. These indexes make it easier to find candidates for inferences. In some
cases inferences can be performed only by using the relevant index, without retrieving
clauses used for these inferences. The number of different indexes in theorem provers
varies and can be as many as about 10. Frequent insertion and deletion in an index can
affect performance of a theorem prover. A typical example is when a theorem prover
generates an equality a = b between two constants and uses it to rewrite a into b.
For nearly all indexing techniques used in the resolution theorem provers, every term
and clause containing a must be removed from all indexes and a new term containing
b inserted in them again. Doing this single simplification step on an indexes set with
100,000 clauses can take a very long time.

Clause Selection. Selection of generating inferences in resolution theorem provers
is implemented using clause selection. For selection, clauses are put in one or more
priority queues and selected based on their priorities. Normally, the majority of selected
clauses are taken from the available clauses of the smallest weight.

The use of splitting may heavily affect all these parts of the saturation algorithm
implementation: redundancy elimination, term indexing and clause selection. Let us
discuss this in more detail in the rest of this section.

Splitting without Backtracking. Splitting without backtracking [6] can be imple-
mented using a naming technique. Suppose we have a splittable clause C1 ∨ . . . ∨ Cn

with components C1, . . . , Cn. We introduce new propositional variables p1, . . . , pn−1

to “name” the first n− 1 components. That is, we introduce them together with defini-
tions pi ↔ Ci. Then we use the rule
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�������
C1 ∨ . . . ∨ Cn

C1 ∨ ¬p1 . . . Cn−1 ∨ ¬pn−1 Cn ∨ p1 ∨ . . . pn−1

If the same components appear more than once in a splittable clause, their names can
be reused. In fact, they should be reused, as shown in [6].

The advantage of this approach is that we do not need to perform any backtracking,
which spares us the costs of inserting and deleting clauses from indexes. The only ad-
ditional cost to the implementation of saturation is an index of components required
to reuse names. Such an index is used for all kinds of splitting in Vampire. Checking
whether one component is a variant of another is equivalent to the graph isomorphism
problem, see [6], yet it practice maintaining and using this index requires the time neg-
ligible compared to the overall running time.

Splitting without backtracking is very efficient on some problems but may also be
very inefficient, since it can introduce thousands of propositional variables and long
clauses containing these variables.

Another drawback of this method is that simplifying inferences are not being per-
formed “across branches.” For example, when we split clause f(a) = a ∨ q(a), we
obtain f(a) = a ∨ p, so we cannot use the equality f(a) = a to simplify expressions
such as q(f(a)) by demodulation. In the case of splitting with backtracking, we would
obtain the unit clause f(a) = a, and all the demodulation simplifications would be
performed (though at the cost of having to backtrack them later).

Splitting with Backtracking. Splitting with backtracking is based on the idea of the
DPLL splitting. It uses the labelled clause calculus introduced in [3]. We will first de-
scribe the use of labels and then show how it can be captured by a variation of the
RePro calculus.

When we have a splittable clause C1 ∨ C, where C1 is a minimal component, it is
first replaced by C1, and when we derive a contradiction that follows from C1, we (well,
almost) backtrack to the point of the split and introduce the rest of the clause C. If C1

is ground (and therefore a literal), we may also add, in the spirit of DPLL, ¬C1 at this
point. (Whether we do so is controlled by a Vampire option.)

To implement this technique, we assign a label to every split that we perform, and
augment each clause C by a set of split labels on which it depends. Each newly derived
clause depends on a set of labels that is the union of the sets belonging to its parents.
When a clause is deleted, we need to examine the labels of the clauses which justified
the deletion. If the deletion was justified by some labels on which the deleted clause
itself does not depend, we do not delete the clause, but rather keep it aside to be restored
if we backtrack beyond the label that justified its deletion.

Our implementation of the backtracking splitting can be captured by the RePro cal-
culus, if we restrict the inferences that can be performed at any given point, and intro-
duce a different treatment for simplification inferences.

We do not use any of the RePro rules that would introduce non-clauses into the
propositional part. The propositional parts of pro-clauses are therefore clauses, and their
literals correspond to the labels that the clause has assigned in the labelled calculus.
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We are maintaining a partial model M which is initially empty and to which we add
propositional literals corresponding to active splits. At each point we restrict inferences
of the RePro calculus to the pro-clauses whose propositional part is not satisfied by the
model M .

The split labels are seen as fresh propositional variables and the label introduction
at splitting C1 ∨ C can be viewed as naming C1 with a propositional variable. More
precisely, when we split C1 ∨ C | P and use the name p1 for C1, we add pro-clauses
C1 | (¬p1 ∨ P ) and C | (p1 ∨ P ). We also make a note that p1 depends on every
propositional variable in P and add p1 into the partial model M .

At this point, having p1 in M keeps the clause C | (p1 ∨ P ) from participating in
any inferences for now. Also, the original clause C1 ∨C | P is subsumed by the newly
introduced C1 | (¬p1 ∨ P ) modulo the partial model M .

Clause simplification and restoring upon backtracking is the part that does not fit
well into the RePro calculus and for which we need to introduce a special treatment.
Among the pro-clauses with propositional parts not satisfied by the partial model M
we perform simplifications as we would have done it in the base calculus. Except that
there may come a point when we will restore the simplified clause back into the search
space: When a clause C | P is simplified with C1 | P1, . . ., Cn | Pn as premises,
the restoration of the simplified clause in the labelled calculus corresponds to the point
when the formula F ≡ (P1 ∨ . . . ∨ Pn) → P becomes no longer satisfied by the
partial model M . As a matter of fact, F is actually the propositional formula in one
of the conclusions of simplifying inferences in the ReProR calculus. One would be
therefore tempted to use the ReProR calculus to capture the splitting with backtracking.
However, the problem is that the formula F is not a clause, and the labelled calculus we
use to implement backtracking splitting does not easily capture general formulas using
the clause labels.

We therefore rather check with each change of the model M whether the condition
for restoring any of the simplified clauses does occur, and if so, we put the clause back
into the saturation algorithm.

When we derive a propositional pro-clause � | Q, we select an atom p in the clause
Q ≡ Q′ ∨ ¬p so that no atom in Q′ depends on it (if there is more than one such
atom, we choose arbitrarily). Let us remind that there is only one pro-clause with a
positive occurrence of p — the clause C | (p ∨ P ) which we introduced after splitting
C1 ∨ C | P . This clause became inactive as we added p into the partial model M , so it
could not spread the literal p any further. Now we resolve the pro-clauses C | (p ∨ P )
and � | Q′ ∨ ¬p on the atom p to obtain C | (Q′ ∨ P ), delete the clause C | (p ∨ P )
and replace p in M with ¬p.

Note that we have removed p from M which means that the originally split clause
C1 ∨ C | P is restored, even though just to become subsumed again by C | (Q′ ∨
P ). Now there are two possibilities. If Q′ is an empty clause, C1 ∨ C | P will never
be restored as it is subsumed by C | P which has the same propositional part. This
corresponds to the case when we have refuted the first branch of the split without any
additional assumptions. If Q′ is a non-empty clause, the original split clause may be
restored if some of the assumptions on which we refuted the split is backtracked.
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It should be noted that while we can change the polarity of a propositional variable
in the model M from positive to negative, we never change it from negative to positive.
Therefore, once we assign false to a propositional variable, all pro-clauses that contain
it in a negative literal may be deleted.

Drawbacks. The disadvantage of this kind of splitting is that, upon backtracking, we
sometimes have to delete and restore many clauses. This leads to costly index mainte-
nance operations, and also a lot of work can be wasted.

For example, suppose we split a clause a = b∨C where the symbol b is the smallest
in the simplification ordering and does not appear anywhere else in the problem, while
a has many occurrences. Splitting this clause will introduce a unit clause a = b and the
backward demodulation will replace every occurrence of a by b, resulting in massive
updates in all indexes. Since b does not appear anywhere else, the equality will not be
helpful in any way, but all the rewritten clauses will depend on this split. Once we reach
a refutation using the rewritten clauses, we will have to restore all the clases containing
a, once again resulting in massive updates in all indexes. Also note that we may end
up doing a lot of repeated work as the proof search on the branch using a 	= b will be
likely similar to the one on the a = b branch.

4 Implementation and Parameters

In this section we describe various parameters implemented in Vampire and related to
splitting and/or use of propositional variables. We also discuss these parameters in the
context of the questions (q1)–(q5). These parameters and their values are summarised
in Table 1.

Splitting. The main parameter controlling splitting is splitting. It has three values:
backtracking, nobacktracking and off. All other options have two values:
on and off.

Clauses may be split either eagerly, before they enter the passive clause container, or
the splitting can be postponed until a clause is selected for activation. This is controlled
by the option split at activation.

The set of split clauses can be restricted in several ways. Optionsplit goal only
restricts splitting only to goal clauses and clauses that are derived from them. Enabling
split input only excludes derived clauses from splitting, allowing splits only on
the clauses which were initially passed to the saturation algorithm.

A different kind of restriction is to add a requirement that both split components
contain fewer positive literals than the original clause. Such splitting will lead to clauses
that are closer to Horn form which allows at most one positive literal per clause. This
setting is enabled by the split positive option.

Splitting with Backtracking. The implementation is based on [14]. We extended it by
use of time stamps and reference counters on clauses. This allows us to implement the
structure for restoring clauses upon backtracking more efficiently — upon backtracking
we only traverse the list of clauses that is to be restored, and let the time-stamping ensure
that we never restore the same clause twice.

If split add ground negation is enabled, upon backtracking caused by split-
ting a ground literal L, we add its negation ¬L as a new clause. The option
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Table 1. Option names, short names and values

option short values

general
backtracking,

splitting spl nobacktracking,
off

split add ground negation sagn on, off
what and when to split

split goal only sgo on, off
split input only sio on, off
split positive spo on, off
split at activation sac on, off

propositional pro-clauses
propositional to bdd ptb on, off
sat solver for empty clause ssec on, off
sat solver with naming sswn on, off

simplifications
sat solver with subsumption resolution sswsr on, off
empty clause subsumption ecs on, off
bdd marking subsumption bms on, off

clause and literal selection
nonliterals in clause weight nicw on, off
splitting with blocking swb on, off

nonliterals in clause weight means that the weight of each clause will be
increased by the number of splits on which it depends.

Propositional Parts of Pro-Clauses. There are several possible implementations of
pro-clauses with a clausal propositional part. However, variants of RePro using non-
clausal propositional parts quickly lead to very complex formulas for which the only
suitable data structure we could think of was ordered binary decision diagrams [2], or
simply BDDs. Thus, we extended the clause objects in Vampire by a reference to the
BDD representing the propositional part of a pro-clause.

Since the refined calculus ReProR requires the use of arbitrary formulas, we also
used BDDs to implement this calculus. We hoped that it will be very efficient for some
problems since many more clauses would be simplified away. In reality ReProR turned
out to be almost dysfunctional. The refined simplification rules created ever more com-
plex propositional formulas with very large BDDs. In many cases these BDDs quickly
used all the available memory. It was also common that nearly all runtime of Vam-
pire was consumed by BDD operations. Therefore, we decided not to use ReProR and
report no results on it in this paper.

The option propositional to bdd (q1) chooses whether BDDs are used to
store propositional parts of pro-clauses. If BDDs are not in use, we treat propositional
literals in the same way as all other literals. It is a separate issue how to deal with
purely propositional clauses. One can also treat them as ordinary clauses. However,
one can choose to pass them to a SAT solver instead. Since every propositional clause
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can be considered as a pro-clause � | P with the empty non-propositional part, op-
tions for dealing with such clauses use empty clause in their names. In the option
sat solver for empty clause (q2,q3) is on, such clauses are passed to a SAT
solver.

When we use BDDs for pro-clauses but not for propositional clauses, whenever we
obtain a BDD for a propositional clause, we must convert this BDD to a set of clauses.
The number of propositional clauses obtained from a BDD can be exponential. To
cope with this problem, we added an option sat solver with naming (q2) that
would make conversion of BDDs to clauses almost linear time by introducing new
propositional variables. An alternative to sat solver with naming is the option
sat solver with subsumption resolutionwhich uses subsumption resolu-
tion to shorten the long clauses generated when converting BDDs to CNF without the
introduction of new propositional variables.

If we decide to represent the propositional pro-clauses as BDDs, the transition from a
first-order pro-clause into propositional is straightforward. We keep at most one propo-
sitional pro-clause by eagerly applying a propositional merging rule

���� | P ���� | P ′

� | (P ∧ P ′)

whenever obtain a new propositional pro-clause � | P ′. This way we know that if the
set of propositional clauses becomes unsatisfiable, we will derive a propositional clause
with associated ⊥ BDD node.

For first-order pro-clauses we may decide to reflect the complexity of the propo-
sitional part in the clause selection process. To this end, enabling the option
nonliterals in clause weight in presence of BDDs increases the size of
clauses by the depths of the BDD of their propositional parts.2

When we derive a propositional pro-clause � | P , clauses C | P ′ such that P → P ′

become redundant. This follows from the RePro version of the subsumption rule as an
empty clause subsumes any other clause:

� | P ���C | P ′ if P → P ′

It would not be feasible to make an implication check between P and the propositional
part of every pro-clause present in the saturation algorithm. We have implemented two
incomplete checks for subsumption by propositional pro-clauses.

The first one focuses on the premises of the derived propositional pro-clause, as there
is a good chance that some of the ancestors will also have P as its propositional part. If
we succeed with some of the premises, we carry on the check with their premises and
further on in the derivation graph, as long as we are succeeding. This check is controlled
by the option empty clause subsumption.

2 The dag size of BDDs would probably better reflect the complexity of propositional formulas,
but computing this measure is not a “local” operation on BDDs — one would need to traverse
the whole BDD subgraph to count the distinct nodes. The depth of a BDD can, however, be
computed by using just the depths of immediate successors. The tree size of a BDD can be
computed locally as well, however it can grow exponentially with the size of the BDD.
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The second of the checks uses the shared structure of the BDDs. When we derive
a propositional pro-clause � | P , we set a subsumed flag in the BDD node corre-
sponding to P . Whenever we see a first-order pro-clause to have a BDD node with
the subsumed flag, we know it is redundant and can be deleted. Moreover, our BDD
implementation is aware of this flag and attempts to “spread” the mark while perform-
ing other BDD operations. For example, when performing a disjunction operation, if
one of the operands has the flag set, it will be set also for the node representing the
disjunction of the operands. This subsumption algorithm is controlled by the option
bdd marking subsumption.

5 Evaluation

There are all together 481 different combinations of values for the Vampire parameters
related to splitting and propositional variables, so analysing the results was far from
trivial. For simplicity, we will call them splitting parameters, though this name is a
bit misleading since some of them are actually related to dealing with propositional
variables.

For benchmarking we used unsatisfiable TPTP problems having non-unit clauses
and rating greater than 0.2 and less than 1. Essentially, the rating is the percentage of
existing provers that cannot solve a problem. For example, rating greater than 0.2 means
that less than 80% of existing theorem provers can solve the problem. Likewise, rating
1 means that the problem cannot solved by the existing provers. However, the rating
evaluation uses a single mode of every prover, so it is possible that the same prover
can solve a problem of rating 1 using a different mode. For this reason, we also added
problems of rating 1 and solvable by Vampire.3 We excluded very large problems since
for them it was preprocessing, but not other options, that affect results the most. This
resulted in 4,869 TPTP problems.

To conduct the experiments, we took a Vampire strategy that is believed to be nearly
the best in the overall number of solved problems, and generated the 481 variations of
this strategy obtained by setting the splitting parameters to all possible values. For each
of these variations, we ran it on the selected problems with a 30 seconds time limit.
This resulted in 2,341,989 runs, which roughly correspond to 1.5 years of run time on
a single core.

We evaluated the experiments in two different ways. First, we looked at the best over-
all strategies for the backtracking and non-backtracking splitting, and how many prob-
lems they solve. However, the number of solved problems for a single (even the best)
setting of parameters is not the main criterion of importance for splitting
parameters.

The reason for this is that it is known that problems are normally best solved by at-
tempting them with a cocktail of strategies. The CASC [11] version of Vampire uses a
sequence of strategies to solve a problem, and using such a sequence is also a recom-
mended mode for the users. Therefore in the second part of evaluation we looked at the
numbers of problems solvable only by particular settings of the splitting parameters.

3 Solvable by Vampire means solvable with at least one of the 481 different strategies.



462 K. Hoder and A. Voronkov

Table 2. Problems solved by each setting of the splitting strategy

splitting strategies worst average best
off 25 2708 2720 2737
backtracking 64 1825 2710 3143
non-backtracking 416 1756 2608 2929

Table 3. Best and worst strategies

worst best
splitting nobacktracking backtracking
propositional to bdd on
split at activation off on
split goal only off off
split input only off off
split positive off off
nonliterals in clause weight off off
bdd marking subsumption off
empty clause subsumption on
sat solver for empty clause off
split add ground negation on

The Best and the Worst Strategies. Only 3,598 (about 74% of all problems) were
solved by at least one splitting strategy. The top-level results are summarised in Ta-
ble 2. The best and the worst strategies are shown in Table 3. Some of the option values
in the table are left out because not all combinations of parameters make sense. For
example, for backtracking splitting we use labeled clauses, not BDDs, so all BDD re-
lated options are left out. As one can see, without splitting all strategies behave very
similar, which is expected, since problems normally contain few propositional sym-
bols. However, the use of splitting makes a very substantial difference, especially for
the best strategies. For example, the best strategy using splitting solved 3143 problems
versus 2737 problems solved without splitting. Another interesting point is a huge gap
between the performance of the worst and the best strategies using the same kind of
splitting. However, the biggest surprise for us was the fact that the best strategies used
splitting with backtracking.

Importance of Particular Parameters. To determine the importance of various split-
ting options, we put the numbers of problems that can be solved only with a particular
value of an option into Table 4. Under (a) we show the number of problems that can be
solved either only by backtracking or non-backtracking splitting. The number of prob-
lems solvable only without any splitting at all is zero. This perhaps surprising result is
due to the fact that splitting can be restricted using the options split input only,
split goal only and split positive to the extent that almost no splits are
actually performed.

The cases (b)–(m) show the numbers of problems requiring a particular value of an
option for some of the following cases: off,backtracking,nobacktracking or
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Table 4. Problems solved only by a single value of an option

a) splitting

off 0
noback 128
back 198

b) split at activation
on off

back 147 73
noback 91 93
all 145 113

c) split goal only
on off

back 31 155
noback 21 207
all 17 159

d) split input only
on off

back 43 414
noback 67 302
all 33 384

e) split positive
on off

back 37 262
noback 28 146
all 35 181

f) propositional to bdd
on off

off 62 45
noback 227 107
all 226 106

g) nonliterals in
clause weight

on off
off 17 11
back 55 45
noback 23 62
all 33 91

h) splitting with
blocking

on off
noback 20 290

i) sat solver for
empty clause

on off
off 8 5
noback 34 21
all 34 21

j) sat solver
with naming

on off
off 2 0
noback 22 0
all 22 0

k) sat solver with
subsumption
resolution

on off
off 2 1
noback 1 2
all 2 2

l) bdd marking
subsumption

on off
off 62 45
noback 227 107
all 226 106

m) empty clause
subsumption

on off
off 5 7
noback 18 46
all 18 46

n) split add
ground negation

on off
back 191 6

all. In the first three cases, the numbers for columns off and on stand for the number
of problems which could be solved for the specified value of splitting only with the option
enabled or disabled. More precisely, e.g. for the column off of option A we give the
number of problems for which there existed values of other options so that problem was
solved with option A disabled, but for all the combinations of parameters the problem
was not solved when the optionA was enabled. The rowall gives numbers of problems
where particular option value was required across all relevant splitting modes.

From the Table 4 (j) it can be seen that the use of naming in clausification of BDDs is
always a good thing to do, as none of the problems required to have this option disabled.
From case (n) it can be seen that it is very rarely the case that adding ground negations
after refuting a splitting branch will harm, as only 6 problems are lost by enabling this
setting, however 191 problems required to have this setting enabled. On the other hand,
for many other options, having the possibility to enable or disable them is important, as
either setting can solve problems which cannot be solved by the other.
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6 Conclusion

We implemented two variants of clause splitting and many ways of implementing them
in a first-order theorem prover, and through extensive experiments we have shown that
the backtracking splitting in our setup gives the best performance. More importantly,
we have also shown the importance of keeping a large portfolio of strategies, because a
large group of problems can be solved only by a variety of different approaches, not by
having only one strategy, even though performing well on average.

Aside of the extensive experimental evaluation, we also presented new families of
calculi RePro and ReProR which separate propositional from first-order reasoning.

All the described parameters are supported by the current version of the Vampire
theorem prover which is available for download at http://www.vprover.org.
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