
Verifying Refutations with Extended Resolution

Marijn J.H. Heule, Warren A. Hunt Jr., and Nathan Wetzler�

The University of Texas at Austin

Abstract. Modern SAT solvers use preprocessing and inprocessing tech-
niques that are not solely based on resolution; existing unsatisfiability
proof formats do not support SAT solvers using such techniques. We
present a new proof format for checking unsatisfiability proofs produced
by SAT solvers that use techniques such as extended resolution and
blocked clause addition. Our new format was designed with three goals:
proofs should be easy to generate, proofs should be compact, and vali-
dating proofs must be simple. We show how existing preprocessors and
solvers can be modified to generate proofs in our new format. Addition-
ally, we implemented a mechanically-verified proof checker in ACL2 and
a proof checker in C for the proposed format.

1 Introduction

Satisfiability (SAT) solvers have become the core search engine in many tools
used for combinational [1,2] and sequential equivalence checking [3,4], bounded
[5] and unbounded model checking [6], and debugging [7]; thus, it is crucial
that SAT solvers produce correct results. Presently, some of the best solvers use
implementation techniques for which no tools exist to validate the correctness
of their results because existing proof formats can only express a subset of the
implemented techniques. We introduce a new proof format to express refutation
proofs produced by SAT solvers that covers all existing techniques. Additionally,
we implemented new tools to verify these refutation proofs.

State-of-the-art SAT solvers are used for a variety of applications. These ap-
plications rely on SAT solvers to be efficient enough to solve large problems and
provide the correct results. Solvers are often used not only to find a solution for
a Boolean formula, but also to make the claim that no solution exists. If a solver
claims that a formula is satisfiable, we can check a reported solution linearly in
the size of the formula. Yet if a solver claims that a formula has no solutions, we
have to trust that the solver fully exhausted the search space for the problem.
This is complicated by the fact that state-of-the-art SAT solvers employ a large
array of complex techniques to maximize efficiency. Errors can be introduced at
a conceptual level and an implementation level [8].

One approach to gain assurance that a SAT solver is correct is to validate
the output of the SAT solver. A proof trace is a sequence of clauses that are
claimed to be redundant with respect to a given formula. If a SAT solver reports

� The authors are supported by DARPA contract number N66001-10-2-4087.

M.P. Bonacina (Ed.): CADE 2013, LNAI 7898, pp. 345–359, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

346 M.J.H. Heule, W.A. Hunt Jr., and N. Wetzler

that a given formula is unsatisfiable, it can provide a proof trace that can be
checked by a smaller, easier-to-trust program called a proof checker. We only
need to trust the proof checker; such a checker can validate the results of multiple
solvers. Ideally, a proof trace should be compact, easy to obtain, efficient to verify,
expressive enough to capture all solving techniques, and it should facilitate a
simple checker implementation. We can then either trust that the proof checker
is correct or go a step further and formally verify the implementation of the
proof checker. By focusing our efforts on a proof checker, we gain assurance
while avoiding the need to trust or formally verify a variety of solvers with
differing implementations.

SAT solvers have traditionally been checked by emitting a resolution-based
proof that is validated by an external checker [9,10,11]. Validating such
resolution-based proofs is fast and simple; however, emitting proofs in resolution-
based formats is hard and these proofs can be very large. Clausal proofs [10,12]
are an alternative approach to resolution-based proofs, and are primarily checked
using unit propagation. Clausal proofs are compact and easy to emit, yet verifi-
cation tools based on clausal approaches are slower and more complex.

Extended Resolution (ER) [13] is the basis for some techniques used during
learning [14] and preprocessing [15] in state-of-the-art SAT solvers. Refutations
using ER can be exponentially smaller than refutations based solely on resolu-
tion. Examples include the pigeon-hole problems where Haken [16] showed that
resolution proofs are exponential in size, while Cook [17] demonstrated how to
construct polynomial-sized refutations based on ER.

The only (resolution-based) proof-checking tool that can deal with ER is
tracecheck, which checks proofs emitted by the EBDDRES [18,19] solver. It simply
treats ER clauses as input clauses, and thus does not verify them. Moreover, it
is hard to express some techniques, such as bounded variable addition [15], using
(multiple applications of) the extension rule. Other techniques, such as blocked
clause addition [20], are based on a generalization of ER that cannot be expressed
by conventional ER.

To overcome these problems, we propose a new clausal-proof format to com-
pactly express techniques that go beyond resolution. Our proof format is based
on a recently-introduced redundancy property of clauses called Resolution Asym-
metric Tautology (RAT) [21]. All preprocessing and inprocessing techniques used
in contemporary state-of-the-art SAT solvers can be simulated by adding and
removing RAT clauses [21]. It is easy to emit a refutation in our RAT format for
most techniques used in today’s solvers and the proofs are compact. We present
two tools to check proofs in the proposed format: a mechanically verified checker
in the ACL2 theorem prover [22] and a small, fast implementation in C.

Our paper proceeds by presenting some preliminary information in Section 2.
Section 3 deals with redundancy properties of clauses. We provide in Section 4
some motivating examples of why a proof format should exist that supports
techniques based on ER. In Section 5, we detail resolution proofs and clausal
proofs as methods to add clauses that are logically implied by a formula. Our
new proof format is presented in Section 6 and two implementations of checkers

Verifying Refutations with Extended Resolution 347

for this format are discussed in Section 7. We give an evaluation in Section 8,
and we conclude in Section 9.

2 Preliminaries

We briefly review necessary background concepts: conjunctive normal form
(CNF), extended resolution, and Boolean constraint propagation.

2.1 Conjunctive Normal Form

For a Boolean variable x, there are two literals, the positive literal, denoted by x,
and the negative literal, denoted by x̄. A clause is a finite disjunction of literals,
and a CNF formula is a finite conjunction of clauses. A clause is a tautology if
it contains both x and x̄ for some variable x. The set of literals occurring in a
CNF formula F is denoted by LIT(F). A truth assignment for a CNF formula F
is a partial function τ that maps literals l ∈ LIT(F) to {t, f}. If τ(l) = v, then
τ(l̄) = ¬v, where ¬t = f and ¬f = t. Furthermore:

– A clause C is satisfied by assignment τ if τ(l) = t for some l ∈ C.
– A clause C is falsified by assignment τ if τ(l) = f for all l ∈ C.
– A CNF formula F is satisfied by assignment τ if τ(C) = t for all C ∈ F .
– A CNF formula F is falsified by assignment τ if τ(C) = f for some C ∈ F .

A CNF formula with no satisfying assignments is called unsatisfiable. A clause
C is logically implied by formula F if adding C to F does not change the set of
satisfying assignments of F . Two formulas are logically equivalent if they have the
same set of solutions over the common variables. Two formulas are satisfiability
equivalent if both have a solution or neither has a solution.

2.2 Resolution and Extended Resolution

The resolution rule states that, given two clauses C1 = (x ∨ a1 ∨ . . . ∨ an) and
C2 = (x̄ ∨ b1 ∨ . . . ∨ bm), the clause C = (a1 ∨ . . . ∨ an ∨ b1 ∨ . . . ∨ bm), can be
inferred by resolving on variable x. We say C is the resolvent of C1 and C2 and
write C = C1 �� C2. C is logically implied by any formula containing C1 and
C2. Resolution can also be applied to sets of clauses. Let Sx be a set of clauses
containing literal x and Sx̄ a set of clauses containing literal x̄. Sx �� Sx̄ is the
set of non-tautological resolvents R := C1 �� C2 with C1 ∈ Sx and C2 ∈ Sx̄.

For a given CNF formula F , the extension rule [13] allows one to iteratively
add definitions of the form x := a ∧ b by adding clauses (x ∨ ā ∨ b̄) ∧ (x̄ ∨ a) ∧
(x̄ ∨ b) to F , where x is a new variable and a and b are literals in the current
formula. Extended Resolution [13] is a proof system, whereby the extension rule is
repeatedly applied to a CNF formula F , followed by applications of the resolution
rule. This proof system surpasses what can be done using only resolution; it can
even polynomially simulate extended Frege systems [23].

348 M.J.H. Heule, W.A. Hunt Jr., and N. Wetzler

2.3 Boolean Constraint Propagation

For a CNF formula F , Boolean constraint propagation (BCP) (or unit propaga-
tion) simplifies F based on unit clauses; that is, it repeats the following until
fixpoint: If there is a unit clause (l) ∈ F , remove all clauses that contain the
literal l from the set F \ {(l)} and remove the literal l̄ from all clauses in F .
The resulting formula is referred to as BCP(F). If (l) ∈ BCP(F) for some unit
clause (l) /∈ F , we say that BCP assigns the literal l to t (and the literal l̄ to f).
If (l), (l̄) ∈ BCP(F) for some literal l ∈ LIT(F) (or, equivalently, ∅ ∈ BCP(F)),
we say that BCP derives a conflict.

Example 1. Consider the formula F = (a) ∧ (ā ∨ b) ∧ (b̄ ∨ c) ∧ (b̄ ∨ c̄). We have
(a) ∈ F , so BCP(F) removes literal ā, resulting in the new unit clause (b). After
removal of the literals b̄, two complementary unit clauses (c) and (c̄) are created.

3 Verification Using the RAT Redundancy Property

Clausal proof checking relies on the addition of redundant clauses to a CNF for-
mula. Refutations are a sequence of clauses, terminating with the empty clause,
that are redundant w.r.t. a given formula. The most basic redundancy property
is T (tautology). RAT is a redundancy property of clauses, computable in poly-
nomial time, that preserves satisfiability; all preprocessing, inprocessing, and
solving techniques in state-of-the-art SAT solvers can be expressed in terms of
addition and removal of RAT clauses [21]. In this section, we provide an overview
of redundancy properties that are covered by RAT.

For a clause C, (asymmetric literal addition) ALA(F,C) computes the unique
clause resulting from repeating the following until fixpoint: if l1, . . . , lk ∈ C and
there is a clause (l1 ∨ · · · ∨ lk ∨ l) ∈ F \ {C} for some literal l, let C := C ∪ {l̄}.
A clause C has property AT (asymmetric tautology) with respect to a CNF
formula F if and only if ALA(F,C) has property T. Clauses with the property
AT are also known as reverse unit propagation (RUP) clauses [10,12]. A clause
C is RUP (or has AT) if unit propagation on an assignment that falsifies C will
result in a conflict. More formally, let C denote the set of unit clauses that falsify
all literals in C. Clause C is RUP if and only if ∅ ∈ BCP(F ∪ C).

Given a CNF formula F and a clause C ∈ F , C has property RP (with
P ∈ {T,AT}) if and only if either (i) C has the property P , or (ii) there is a
literal l ∈ C such that for each clause C′ ∈ F with l̄ ∈ C′, each resolvent in
C �� C′ has P . In the latter case, we say C has RP on l. Clauses with property
RT (resolution tautology) with respect to a CNF formula F are also known as
blocked clauses [20].

If a clause C has one of the redundancy properties w.r.t. a CNF formula F , one
can add C to F and preserve satisfiability, or remove C from F and preserve un-
satisfiability. We will focus on adding redundant clauses to a given formula either
with the redundancy property AT, which is the strongest redundancy property
that preserves logical equivalence, or RAT, which is the strongest redundancy
property that preserves satisfiability equivalence. Fig. 1 shows the relationships
between clause redundancy properties.

Verifying Refutations with Extended Resolution 349

T

AT

CDCL learning

DP resolution

subsumption

RAT

extended learning

bounded variable addition

RT

extended resolution

blocked clauses
preserve

logical equivalence
preserve

satisfiability

Fig. 1. Relationships between clause redundancy properties that can be computed
in polynomial time. Techniques shown in an area denote the cheapest check one can
apply to verify a proof trace from a SAT solver that uses that technique. All techniques
used in state-of-the-art SAT solvers can expressed as a sequence of RAT clauses [21].
The dashed line separates techniques that preserve logical equivalence and those that
preserve satisfiability.

Example 2. Let formula F = (a ∨ b) ∧ (b ∨ c) ∧ (b̄ ∨ c̄).

– The clause (a ∨ ā) is a tautology because it contains a and ā and therefore
has T and thus AT, RT and RAT.

– The clause (a ∨ c̄) does not have T. However, it has RT (and RAT) with
respect to F on literal a, because F contains no clauses with literal ā. Fur-
thermore, it also has AT because unit propagation under the assignment
(ā ∧ c) results in a conflict.

– The clause (ā ∨ c) has RAT, but not T, AT, or RT. It is clear that (ā ∨ c)
does not have T. Unit propagation under the assignment (a ∧ c̄) does not
result in a conflict, so (ā ∨ c) does not have AT. Also, (ā ∨ c) does not have
RT, because there is a non-tautological resolvent on ā with (a ∨ b) and on c
with (b̄∨ c̄). Finally, there is only one resolvent on literal ā. The resolvent of
(ā∨c) and (a∨b) is (b∨c), which is already in F . Therefore, unit propagation
on the assignment (b̄ ∧ c̄) will result in a conflict. Hence, (ā ∨ c) has RAT.

4 Extended Resolution in Practice

This section provides an overview of several techniques that use Extended Res-
olution or a generalization. We will present these techniques as motivating ex-
amples for our proof format (discussed in Section 6) based on RAT clauses.

4.1 Manually-Constructed Proofs

A classic problem known to be hard for resolution provers is the pigeon-hole
problem. A pigeon-hole problem of size n (denoted by PHn) describes whether

350 M.J.H. Heule, W.A. Hunt Jr., and N. Wetzler

n pigeons can be placed in n− 1 holes such that each hole contains at most one
pigeon. Although the problem is easy for any n from an abstract level, it is hard
to refute the straight-forward translation of pigeon-hole problems into a CNF
formula. The number of resolutions to derive the empty clause is exponential in
n, and SAT solvers also require exponential runtime on these problems.

Let Boolean variable xi,j denote whether pigeon i is in hole j with i ∈ {1..n}
and j ∈ {1..n−1}. The straight-forward SAT translation of PHn consists of a
set of clauses describing that pigeon i is in at least one hole, and a set of clauses
enforcing that if pigeon i is in hole j that pigeon k > i cannot be in hole j.

∧

i∈{1..n}
(xi,1 ∨ xi,2 ∨ · · · ∨ xi,n−1) ∧

∧

i,j∈{1..n−1}

∧

k∈{i+1..n}
(x̄i,j ∨ x̄k,j) (1)

Although the problem is hard for resolution [16], polynomial-size refutations
do exist for the Extended Resolution [13] technique. ER can reduce PHn into
PHn−1. Applying the reduction n−1 times, results in the trivial PH1. The
first step of the reduction is introducing auxiliary Boolean variables yi,j with
i ∈ {1..n−1} and j ∈ {1..n−2}. When all reduction steps are applied, these
variables yi,j encode that pigeon i is in hole j in the PHn−1 problem. Let

yi,j := xi,j ∨ (xn,j ∧ xi,n−1) (2)

The definition can be translated into clauses that have all RT on yi,j .

(yi,j ∨ x̄i,j)∧ (yi,j ∨ x̄n,j ∨ x̄i,n−1)∧ (ȳi,j ∨ xi,j ∨ xn,j)∧ (ȳi,j ∨ xi,j ∨ xi,n−1) (3)

By adding the clauses (3) with i ∈ {1..n− 1}, j ∈ {1..n− 2} to the formula, the
clauses encoding the left set of clauses of (1) with yi,j variables are:

(yi,1 ∨ yi,2 ∨ · · · ∨ yi,n−2) (4)

Notice that the clauses (4) have AT after the presence of (3): First assign
yi,1, yi,2, . . . , yi,n−2 to false, then BCP assigns xi,1, xi,2, . . . , xi,n−2 to false us-
ing (yi,j ∨ x̄i,j). This in turn makes xi,n−1 true by (xi,1 ∨ xi,2 ∨ · · · ∨ xi,n−1).
After these assignments, all the clauses (yi,j∨x̄n,j∨x̄i,n−1) become unit assigning
all xn,1, xn,2, . . . , xn,n−2 to false. Now, (xn,1 ∨xn,2 ∨ · · · ∨xn,n−1) assigns xn,n−1

to true, and a conflict arises because the clause (x̄i,n−1 ∨ x̄n,n−1) is falsified.
The right set of clauses of (1) using yi,j variables is required to finish the

reduction. These (ȳi,j∨ ȳk,j) don’t have RAT. Yet the clauses (ȳi,j∨ ȳk,j∨xi,n−1)
have AT and in the presence of (ȳi,j ∨ ȳk,j ∨ xi,n−1), (ȳi,j ∨ ȳk,j) has AT as well.

(ȳi,j ∨ ȳk,j ∨ xi,n−1); (ȳi,j ∨ ȳk,j) (5)

So by adding the clauses (3), (4), and (5) —all having RT or AT, and thus RAT—
we can reduce the PHn problem into a PHn−1 problem. Repeating this n − 1
times results in a refutation. A similar, but much larger proof of unsatisfiability
can be obtained by combining resolution and ER, as in [17].

Verifying Refutations with Extended Resolution 351

4.2 Extended Learning

Our manually-constructed extended resolution proof above illustrates the poten-
tial of introducing new variables; however, it is hard to capitalize on this potential
in practice. Most applications of the extension rule will result in useless variables
which can slow down the search. The most serious study of practical ER during
search looks for a pattern between consecutive conflict clauses [14]. When such
a pattern is found, a new variable is introduced.

The pattern consists of conflict clauses that differ in exactly one literal. Given
two successive conflict clauses C = (l1 ∨ α) and D = (l2 ∨ α) with α being a
disjunction of literals, the extension rule is applied using z := (l̄1 ∨ l̄2). Newly
introduced variables are used to shorten future conflict clauses. Let γ be a dis-
junction of literals. If a conflict clause (l1 ∨ l2 ∨ γ) is found and the variable
z := (l1 ∨ l2) was created in the past, (z ∨ γ) is added to the learned clause
database.

4.3 Bounded Variable Addition

One of the most effective preprocessing/inprocessing techniques is Bounded Vari-
able Elimination (BVE) [24]. This technique tries to reduce the sum of the num-
ber of variables and the number of clauses by eliminating variables. Given a
CNF formula F , let Fl denote the subset of clauses of F that contains literal l.
BVE searches for a variable x, such that it can replace Fx and Fx̄ by the set of
non-tautological resolvents of Fx �� Fx̄ if and only if |Fx �� Fx̄| ≤ |Fx|+ |Fx̄|.

Recently a complementary technique was proposed, called Bounded Variable
Addition (BVA) [15], that introduces new variables. BVA uses the same metric
for substitution: new variables are added while the sum of the number of variables
and clauses strictly decreases. BVE is based on resolution and therefore one can
use existing resolution and clausal proof formats to verify an implementation.
However, BVA cannot be simulated by resolution and simulation by ER is non-
trivial. Yet a proof trace of BVA can elegantly be expressed using RAT clauses.

BVA works as follows. Given a CNF formula F and a new Boolean variable x,
BVA searches for sets of clauses Gx (clauses containing literal x) and Gx̄ (clauses
containing literal x̄), such that all non-tautological resolvents of Gx �� Gx̄ are
in F and |Gx �� Gx̄| > |Gx|+ |Gx̄|. Whenever BVA finds such a Gx and Gx̄, it
replaces the resolvents by: F := (F ∪Gx ∪Gx̄) \Gx �� Gx̄.

Example 3. Consider the formula F = (a∨c)∧(a∨d)∧(a∨e)∧(b∨c)∧(b∨d)∧(b∨e).
For F there exists Gx = (a∨x)∧(b∨x) and Gx̄ = (x̄∨c)∧(x̄∨d)∧(x̄∨e) such that
all non-tautological resolvents of Gx �� Gx̄ are in F and |Gx �� Gx̄| > |Gx|+|Gx̄|.
All clauses added by the extension rule are blocked (have RT) on the new vari-
able. However, this is not the case with BVA. In Example 3, none of the clauses
in Gx and Gx̄ are blocked; all these clauses have RAT on the new variable.
Without loss of generality consider a clause C ∈ Gx. All resolvents R := C �� C′

with C′ ∈ Gx̄ are either tautologies or R is subsumed by F (namely, R ∈ F).
Both tautologies and subsumptions are asymmetric tautologies, and therefore,
C has RT.

352 M.J.H. Heule, W.A. Hunt Jr., and N. Wetzler

5 Existing Proof Formats

Conflict-driven clause learning (CDCL) [25] is the leading paradigm of mod-
ern SAT solvers. A core aspect of CDCL solvers is the addition and removal of
clauses. The main form of reasoning is known as conflict analysis, which adds
clauses. Additionally, state-of-the-art CDCL solvers use preprocessing and inpro-
cessing techniques that both add and remove clauses. Proof formats for CDCL
solvers express how to check that a clause addition step preserves satisfiability.
This section provides an overview of existing formats. In next section, we present
our new format.

We appeal to the notion that lemmas are used to construct a proof of a
theorem. Here, lemmas represent the learned clauses and the theorem is the
statement that the formula is unsatisfiable. From now on, we will use the term
clauses to refer to input clauses, while lemmas will refer to added clauses.

5.1 Resolution Proofs

The early approaches to prove refutations produced by SAT solvers were based
on resolution [9]. The lemmas computed by CDCL solvers can be simulated
by a sequence of resolutions [26]. Let L be a lemma and {C1, . . . , Cn} be the
input clauses. For each L, one must specify a sequence such that L = (((Ci ��
Cj) . . .) �� Ck). This sequence may use added lemmas to construct new lemmas.

As resolution is an elementary operation, simple and fast checking algorithms
exist [9,10,11]. However, resolution proofs can be huge (dozens of gigabytes).
It may also be hard to modify a SAT solver to emit a resolution refutation;
for instance, one must determine the clauses on which to apply resolution, and
specifying the order may be difficult. Since only a handful of (mostly outdated)
solvers support resolution-based proofs, a user would need to modify a solver
to emit resolution proofs. Even for the author(s) of a SAT solver this is not an
easy task. In the case one wishes to integrate a portfolio of SAT solvers into a
SMT solver or theorem prover, it would be a daunting task to enhance them all
to emit resolution proofs.

5.2 Clausal Proofs

An alternative approach using clausal proofs was proposed by Goldberg and
Novikov [12]. They observed that each lemma L learned by CDCL conflict anal-
ysis can be checked using BCP. Lemmas, like clauses, are disjunctions of literals.
If BCP(F ∪ L) results in a conflict, i.e., produces the empty clause ∅, then L
is implied by F . Notice that this corresponds to the redundancy property AT.
Lemmas with AT are also known as reverse unit propagation (RUP) lemmas [10].

Clausal proofs are represented as a queue of lemmas (L1, . . . , Lm) such that
Lm = ∅. Given a CNF formula F , a clausal proof of F consists of lemmas Li

that are redundant w.r.t. F . Let F0 = F and Fi := Fi−1 ∪{Li}. Existing clausal
proof formats expect that lemma Li has AT w.r.t. Fi−1. In our proposed format
(see Section 6) lemmas should have the more general RAT redundancy property.

Verifying Refutations with Extended Resolution 353

The elegance of clausal proofs is that they can be expressed in conjunctive
normal form; however, the order of the lemmas is important. Clausal proofs
are significantly smaller when compared to resolution proofs, and only minor
modifications of a SAT solver are required to output such proof records. However,
checking of clausal proofs can be quite expensive. Checking algorithms for clausal
proofs are also typically more complex than those for resolution proofs, making
it harder to trust or prove correctness of the algorithm.

RUPchecker (CNF formula F , queue Q of lemmas)

1 while Q is not empty

2 L := Q.pop()

3 F ′ := BCP(F ∪ L)

4 if ∅ /∈ F ′ then return “checking failed”

5 F := BCP(F ∪ L)

6 if ∅ ∈ F then return “unsatisfiable”

7 return “all lemmas validated”

BCP (CNF formula F)

11 while ∃ (x) ∈ F do

12 for C ∈ F with x̄ ∈ C do

13 C := C \ {x̄}
14 for C ∈ F with x ∈ C do

15 F := F \ {C}
16 return F

Fig. 2. Pseudo-code to check clausal proofs for lemmas with AT (or RUP lemmas)

Fig. 2 shows the pseudo-code of a clausal, proof-checking algorithm for lemmas
with AT. The input is a CNF formula F and a queue Q of lemmas representing
a refutation of F . Lemmas are sorted in chronological order as learned by the
SAT solver. While Q is not empty (line 1), its front lemma L is popped (line 2).
If unit propagation on F using L does not derive a conflict, then we fail to check
that L is logically implied by F and terminate (line 3 and 4). Otherwise, L is
added to F . In case L was unit, the new F is simplified using BCP (line 5). If
unit propagation results in a conflict, a top-level contradiction is found, meaning
that the formula is unsatisfiable (line 6). If the algorithm reaches the end (line
7), all lemmas in Q were validated but no top-level conflict was encountered.

6 The RAT Proof Format

In this section, we propose the new RAT proof format. This is an alternative
clausal-proof format that supports both AT (or RUP) and RAT lemmas.

The main decision regarding a proof format for ER and its generalizations
was whether to use a resolution-style or clausal-style proof format. Apart from
the known disadvantages of resolution-style proofs (recall Section 5.1), there
is another drawback of ER proofs: techniques like blocked clause addition [20],
cannot be expressed using the extension rule. Consequently, if one wants to verify
all known techniques, a clausal-style proof format seems the most viable option.

We considered whether to specify the simplest redundancy property for each
lemma. All redundancy properties are covered by RAT, so it is not necessary to
distinguish between them; however, efficiency may be gained by distinguishing

354 M.J.H. Heule, W.A. Hunt Jr., and N. Wetzler

them. In practice, the majority of lemmas has the AT property; therefore, by
first checking for AT, which is part of the RAT check, we reduce overhead.

In case a lemma does not have AT, our proof format expects the lemma to
have RAT on its first literal. Fig. 3 shows three refutations in the RUP (mid
left) and RAT formats (both on the right). The last RAT refutation shows that
one can introduce new variables in a RAT proof — which is not allowed in RUP
proofs.

CNF formula

p cnf 4 16

1 2 3 4 0

1 2 3 -4 0

1 2 -3 4 0

1 2 -3 -4 0

1 -2 3 4 0

1 -2 3 -4 0

1 -2 -3 4 0

1 -2 -3 -4 0

-1 2 3 4 0

-1 2 3 -4 0

-1 2 -3 4 0

-1 2 -3 -4 0

-1 -2 3 4 0

-1 -2 3 -4 0

-1 -2 -3 4 0

-1 -2 -3 -4 0

smallest RUP proof

1 2 3 0

1 2 0

1 3 0

1 0

2 3 0

2 0

3 0

0

smallest RAT proof

1 0

2 0

3 0

0

RAT proof with ER

5 1 2 0

5 1 -2 0

5 -1 2 0

5 -1 -2 0

-5 3 4 0

-5 3 -4 0

-5 -3 4 0

-5 -3 -4 0

5 1 0

5 0

3 0

0

Fig. 3. An example of a CNF problem in the typical DIMACS format (left) as well
as three refutations; one in the RUP format (mid left) and two in RAT format (right).
The proofs in the middle show a smallest proof (in the number of lemmas) for RUP
and RAT. Whitespaces can be of any length; the spacing is to improve readability. A
0 marks the end of clauses and lemmas. The RUP and RAT formats have the same
syntax. Only the RAT format allows lemmas to have the RAT redundancy property.

7 Implementation

We have implemented1 a RAT checker in ACL2 that is concise in its expression,
and, more importantly, mechanically verified. Our proof of correctness for our
RAT checker hinges on the mechanical proof of the redundancy of the RAT
property presented in Section 3. We did this by modeling the RAT proof-checking
algorithm as an ACL2 function, and then we used the ACL2 mechanical proof-
checking system to assure that our RAT proof-checking algorithm is valid.

1 The material presented in the paper, such as the formal proof, our tools, and the used
benchmarks are available on www.cs.utexas.edu/~marijn/rat/. Our proof contains
roughly 150 ACL2 (definitions and proof request) events.

www.cs.utexas.edu/~marijn/rat/

Verifying Refutations with Extended Resolution 355

Apart from our mechanically verified checker, we implemented a concise RAT
checker in C (about 200 lines of code). Fig. 4 shows its pseudo-code. Our RAT
checker extends the RUP checker pseudo-code (recall Fig. 2) and uses the same
input parameters, initialization (lines 1 and 2), and termination (lines 8 to 10).
Before validating a lemma L, it first checks whether L has AT (line 3). Otherwise,
the expensive RAT check is applied. According to the RAT proof format, lemma
L should have RAT on its first literal l (line 4). We compute for all clauses
C′ ∈ Fl̄ (line 5), the resolvent R := C′ �� L (line 6), and check whether R has
AT (line 7). If all these R have AT, L is added to F (line 8); otherwise, we return
“checking failed”.

RATchecker (CNF formula F , queue Q of lemmas)

1 while Q is not empty

2 L := Q.pop()

3 if ∅ /∈ BCP(F ∪ L) then // check if L has AT, otherwise

4 let l be the first literal in L. // assume L has RAT on l

5 forall C′ ∈ Fl̄ do

6 R := C′ �� L

7 if ∅ /∈ BCP(F ∪R) then return “checking failed”

8 F := BCP(F ∪ L)

9 if ∅ ∈ F then return “unsatisfiable”

10 return “all lemmas validated”

Fig. 4. Pseudo-code to check Resolution Asymmetric Tautology (RAT) proofs

In general, the RAT check (lines 4 to 7) is more expensive than the AT check
(line 3), because one has to do the AT check for each R. However, in practice,
for half the RAT lemmas, Fl̄ is empty and we skip lines 4 to 7.

The main reason why a RAT checker is more complex and less efficient, as
compared to a RUP checker, is the requirement in line 5 to compute Fl̄, the set
of clauses containing literal l̄. In order to do this computation efficiently, the
checker needs to maintain a full occurrence list of all clauses. Alternatively, a
RUP checker could use a watch-pointer data structure.

Notice that for all checks (lines 3 and 7), all literals l′ ∈ L\l will be assigned to
false. One can optimize a RAT checker by first assigning all the literals l′ ∈ L \ l
to false followed by unit propagation and perform the checks on this assignment.
This optimization is implemented in our C checker.

8 Evaluation

To demonstrate the usefulness of the RAT proof format, we experimented with
our tools on the problems discussed in Section 4. We ran our tests on a 4-core
Intel Xeon CPU E31280 3.50GHz, 32 Gb RAM machine running Ubuntu 10.04.

356 M.J.H. Heule, W.A. Hunt Jr., and N. Wetzler

8.1 Manually-Constructed Proofs

The first experiment evaluates the performance of our RAT checking tools on the
manually-contructed proofs of PHn problems presented in Section 4.1. Although
these problems are notoriously hard for SAT solvers, the manually-contructed
proofs are small and can be checked in a fraction of a second using our C imple-
mentation, see Table 1. The ACL2 checker is significantly slower, but was not
written with speed in mind.

Table 1. Evaluation of manually-constructed proofs of PHn problems. The first column
shows the benchmark name. The next two columns show the number of variables in
the input formula and in the proof. The number of original, AT, and RAT clauses, as
well as their sum (total) is shown in the next four columns. The last two columns show
the time (in seconds) to check the proofs using our C and ACL2 implementations.

#variables #clauses time
benchmark input proof input AT RT total C ACL2

PH6 30 70 81 160 145 386 0.003 0.26
PH7 42 112 133 280 301 714 0.005 1.55
PH8 56 168 204 448 560 1,212 0.007 7.91
PH9 72 240 297 672 960 1,929 0.010 34.26
PH10 90 330 415 960 1,545 2,920 0.014 129.78
PH11 110 440 561 1,320 2,365 4,246 0.016 440.69
PH12 132 572 738 1,760 3,476 5,974 0.020 1358.65

8.2 Extended Learning

We modified the solver GlucosER 1.0 [14], which combines CDCL learning and
ER, such that it emits a proof in the proposed RAT format2. We evaluated the C
checking tool on benchmarks where GlucosER has an edge over SAT solvers with-
out ER learning, such as the PHn instances and the Urquhart benchmarks [27].

Table 2 shows the results of the second experiment with our C checking tool.
Compared to the prior results, the C tool requires much more time to verify the
output of GlucosER. Notice that although GlucosER uses ER, it cannot compete
with the manually-constructed proofs on the same problems.

8.3 Bounded Variable Addition

The technique BVA, discussed in Section 4.3, is a helpful preprocessing technique
for several families of benchmarks, including the PHn problems and some hard
bioinformatics [28] benchmarks. We modified a preprocessing tool which includes
a BVA implementation, coprocessor [29], and the Glucose 2.1 solver [30] (the
winner of the SAT 2012 Challenge) to output lemmas in the RAT format. We ver-
ified the merged file consisting of the original problem and the lemmas produced
by the preprocessor and solver.

2 Additionally, we removed the code that allows reuse of variables that have been
eliminated. The removal of this part of the code made it easier to verify and has no
noticeable effect on the performance.

Verifying Refutations with Extended Resolution 357

Table 2. Evaluation of Extended Learning on PHn and Urquhart benchmarks. The
first column shows the benchmark name. The next two columns show the number of
variables in the input formula and in the proof. The number of original, AT, and RAT
clauses, as well their sum (total) is shown in the next four columns. The last two
columns show the time (in seconds) to solve the benchmarks and to check the emitted
proofs using our C checker.

#variables #clauses time
benchmark input proof input AT RT total solving checking

PH10 90 379 415 99,682 867 100,973 5.28 24.72
PH11 110 814 561 260,677 2,112 263,350 13.51 72.08
PH12 132 1,450 738 1,512,453 3,954 1,517,145 145.29 3,521.23

Urq 3 5 45 2,126 446 281,761 6,243 288,450 8.33 17.38
Urq 3 6 54 3,842 688 1,156,477 11,364 1,168,529 52.69 152.36
Urq 3 7 42 1,147 342 102,950 3,315 106,607 2.20 3.95
Urq 3 8 44 1,518 416 149,286 4,422 154,124 3.70 5.86

Table 3 shows the results regarding the performance improvements due to
BVA and the RAT proof checking costs. The performance difference when using
Glucose 2.1 on the original and BVA-preprocessed instances is huge: the largest
instance cannot be solved in 12 hours, while the preprocessed formula is solved
in two minutes. It is important to check that these gains are not caused by a
bug. Our proof checker confirms that the refutation is correct.

Table 3. Evaluation of checking RAT produced by BVA preprocessing on PHn and
bioinformatics (rbclY) benchmarks. The timeout (denoted by —) is 12 hours. The
first column shows the benchmark name. The next three columns show the number
of variables, the number of clauses, and the solving time (in seconds) of the original
formula. The next three columns show the same information for the BVA preprocessed
formula. The last three columns show the number of AT and RAT clauses in the proofs,
as well as the time (in seconds) to check the proofs using our C checker.

original BVA preprocessed RAT proof checking
benchmark #vars #cls time #vars #cls time #AT #RAT time

PH10 90 330 7.71 117 226 1.25 42,853 198 4.19
PH11 110 440 84.42 151 281 12.34 225,959 295 152.82
PH12 132 572 494.29 187 342 8.45 181,603 402 69.01

rbcl 07 1,128 57,446 52.92 1,784 7,598 2.88 72,073 19,681 6.76
rbcl 08 1,278 67,720 1,763.36 1,980 9,004 10.72 151,894 22,830 37.58
rbcl 09 1,430 79,118 — 2,190 10,492 129.20 882,213 26,639 2,631.28

We are working on techniques to decrease the time to check RAT proofs.
Initial results indicate that RAT verification can be realized in a time similar to
the solving time. Improvement to the speed will likely increase the complexity
of the checker implementation.

358 M.J.H. Heule, W.A. Hunt Jr., and N. Wetzler

9 Conclusions

We presented a new clausal proof format for SAT solvers. The crucial differ-
ence is that we allow lemmas to have the redundancy property RAT. Since all
techniques used in state-of-the-art SAT solvers can be simulated by the addition
and removal of RAT lemmas [21], our new format facilitates the verification of
results produced by SAT solvers. For most techniques, it is easy to modify a
solver to emit a proof in our format, which includes CDCL and ER learning,
and bounded variable addition.

Two major challenges remain to conveniently verify the results of SAT solvers.
Our C implementation may be slow when a solver emits a huge proof. It is still
an open question whether only minor modifications to SAT solvers are needed
for all techniques. For example, Gaussian elimination of XOR constraints can
be simulated using ER [18,19] techniques, but these methods require several
modifications for SAT solvers that use Gaussian elimination.

Our new format and our tools are the first, complete approach toward SAT
solver verification. We expect them to be used to check implementations of the
more complex techniques, in particular those based on ER. Our new format and
tools support the development of new techniques that may further capitalize on
the strength of ER.

References

1. Goldberg, E.I., Prasad, M.R., Brayton, R.K.: Using SAT for combinational equiv-
alence checking. In: DATE, pp. 114–121 (2001)

2. Mishchenko, A., Chatterjee, S., Brayton, R.K., Eén, N.: Improvements to combi-
national equivalence checking. In: Hassoun, S. (ed.) ICCAD, pp. 836–843. ACM
(2006)

3. Baumgartner, J., Mony, H., Paruthi, V., Kanzelman, R., Janssen, G.: Scalable
sequential equivalence checking across arbitrary design transformations. In: ICCD.
IEEE (2006)

4. Kaiss, D., Skaba, M., Hanna, Z., Khasidashvili, Z.: Industrial strength SAT-based
alignability algorithm for hardware equivalence verification. In: FMCAD, pp. 20–
26. IEEE Computer Society (2007)

5. Biere, A., Cimatti, A., Clarke, E.M., Fujita, M., Zhu, Y.: Symbolic model checking
using SAT procedures instead of bdds. In: DAC, pp. 317–320 (1999)

6. Sheeran, M., Singh, S., St̊almarck, G.: Checking safety properties using induction
and a SAT-solver. In: Johnson, S.D., Hunt Jr., W.A. (eds.) FMCAD 2000. LNCS,
vol. 1954, pp. 108–125. Springer, Heidelberg (2000)

7. Chen, Y., Safarpour, S., Marques-Silva, J.P., Veneris, A.G.: Automated design
debugging with maximum satisfiability. IEEE Trans. on CAD of Integrated Circuits
and Systems 29(11), 1804–1817 (2010)

8. Brummayer, R., Lonsing, F., Biere, A.: Automated testing and debugging of SAT
and QBF solvers. In: Strichman, O., Szeider, S. (eds.) SAT 2010. LNCS, vol. 6175,
pp. 44–57. Springer, Heidelberg (2010)

9. Zhang, L., Malik, S.: Validating sat solvers using an independent resolution-based
checker: Practical implementations and other applications. In: DATE, pp. 10880–
10885 (2003)

Verifying Refutations with Extended Resolution 359

10. Van Gelder, A.: Verifying rup proofs of propositional unsatisfiability. In: ISAIM
(2008)

11. Darbari, A., Fischer, B., Marques-Silva, J.: Industrial-strength certified SAT solv-
ing through verified SAT proof checking. In: Cavalcanti, A., Deharbe, D., Gaudel,
M.-C., Woodcock, J. (eds.) ICTAC 2010. LNCS, vol. 6255, pp. 260–274. Springer,
Heidelberg (2010)

12. Goldberg, E.I., Novikov, Y.: Verification of proofs of unsatisfiability for cnf formu-
las. In: DATE, pp. 10886–10891 (2003)

13. Tseitin, G.S.: On the complexity of derivation in propositional calculus. In: Au-
tomation of Reasoning 2, pp. 466–483. Springer (1983)

14. Audemard, G., Katsirelos, G., Simon, L.: A restriction of extended resolution for
clause learning SAT solvers. In: Fox, M., Poole, D. (eds.) AAAI. AAAI Press (2010)

15. Manthey, N., Heule, M.J.H., Biere, A.: Automated reencoding of boolean formulas.
In: Proceedings of Haifa Verification Conference 2012 (2012)

16. Haken, A.: The intractability of resolution. Theor. Comput. Sci. 39, 297–308 (1985)
17. Cook, S.A.: A short proof of the pigeon hole principle using extended resolution.

SIGACT News 8(4), 28–32 (1976)
18. Sinz, C., Biere, A.: Extended resolution proofs for conjoining bdds. In: Grigoriev,

D., Harrison, J., Hirsch, E.A. (eds.) CSR 2006. LNCS, vol. 3967, pp. 600–611.
Springer, Heidelberg (2006)

19. Jussila, T., Sinz, C., Biere, A.: Extended resolution proofs for symbolic SAT solving
with quantification. In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121,
pp. 54–60. Springer, Heidelberg (2006)

20. Kullmann, O.: On a generalization of extended resolution. Discrete Applied Math-
ematics 96-97, 149–176 (1999)

21. Järvisalo, M., Heule, M.J.H., Biere, A.: Inprocessing rules. In: Gramlich, B., Miller,
D., Sattler, U. (eds.) IJCAR 2012. LNCS, vol. 7364, pp. 355–370. Springer, Hei-
delberg (2012)

22. Kaufmann, M., Manolios, P., Moore, J.S.: Computer-Aided Reasoning: An Ap-
proach. Kluwer Academic Publishers, Boston (2000)

23. Cook, S.A., Reckhow, R.A.: The relative efficiency of propositional proof systems.
The Journal of Symbolic Logic 44(1), 36–50 (1979)

24. Eén, N., Biere, A.: Effective preprocessing in SAT through variable and clause
elimination. In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp.
61–75. Springer, Heidelberg (2005)

25. Marques-Silva, J.P., Lynce, I., Malik, S.: 4. In: Conflict-Driven Clause Learning
SAT Solvers. Handbook of Satisfiability, pp. 131–153. IOS Press (February 2009)

26. Beame, P., Kautz, H., Sabharwal, A.: Towards understanding and harnessing the
potential of clause learning. JAIR 22, 319–351 (2004)

27. Urquhart, A.: Hard examples for resolution. J. ACM 34(1), 209–219 (1987)
28. Bonet, M.L., John, K.S.: Efficiently calculating evolutionary tree measures using

SAT. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 4–17. Springer, Hei-
delberg (2009)

29. Manthey, N.: Coprocessor 2.0 – A flexible CNF simplifier. In: Cimatti, A., Se-
bastiani, R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 436–441. Springer, Heidelberg
(2012)

30. Audemard, G., Simon, L.: Predicting learnt clauses quality in modern sat solvers.
In: Boutilier, C. (ed.) IJCAI, pp. 399–404 (2009)

	Verifying Refutations with Extended Resolution
	1 Introduction
	2 Preliminaries
	2.1 Conjunctive Normal Form
	2.2 Resolution and Extended Resolution
	2.3 Boolean Constraint Propagation

	3 Verification Using the RAT Redundancy Property
	4 Extended Resolution in Practice
	4.1 Manually-Constructed Proofs
	4.2 Extended Learning
	4.3 Bounded Variable Addition

	5 Existing Proof Formats
	5.1 Resolution Proofs
	5.2 Clausal Proofs

	6 TheRAT Proof Format
	7 Implementation
	8 Evaluation
	8.1 Manually-Constructed Proofs
	8.2 Extended Learning
	8.3 Bounded Variable Addition

	9 Conclusions
	References

