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Abstract. Difference logic is commonly used in program verification
and analysis. In the context of fixed-precision integers, as used in assem-
bly languages for example, the use of classical difference logic is unsound.
We study the problem of deciding difference constraints in the context of
modular arithmetic and show that it is strongly NP-complete. We discuss
the applicability of the Bellman-Ford algorithm and related shortest-
distance algorithms to the context of modular arithmetic. We explore
two approaches, namely a complete method implemented using SMT
technology and an incomplete fixpoint-based method, and the two are
experimentally evaluated. The incomplete method performs considerably
faster while maintaining acceptable accuracy on a range of instances.

1 Introduction

We consider the problem of adapting classical difference logic over Z [2] to the
congruence class used in modulo-m integer arithmetic, here denoted Z,,,. Under-
standing this class is important for the design of automated reasoning that is
concerned with machine arithmetic. Our particular interest in this arises from
our work on analysis and verification of low-level code. We wish to improve
static analysis techniques for low-level programming languages that use w-bit
fixed-precision integers, that is, we are interested in the particular case m = 2v.
Much of the literature on program analysis and software verification uses dif-
ference logic and similar numeric abstract domains, tacitly assuming unbounded
integers. It is well known that, in that context, difference logic can be decided in
O(|V]|C|) deterministic time, for variables V' and constraints C. In the context
of Z,,, the decision problem becomes strongly NP-complete.

Consider the program fragment shown in Figure [[l Conventional static anal-
ysis with difference bound matrices [4] or octagons [I1] will derive the bounded
difference constraint 0 < y « < 6 and determine that the branch y < z will
never be executed. In a context of fixed-precision integers, owing to possible over-
flow, this conclusion is clearly wrong. Nevertheless, in some sense the derived
invariant is meaningful, as y lies between = and x + 6 on the modular integer
number circle.

The challenge is to ensure that program analysis “understands” machine oper-
ations so as to remain faithful to machine arithmetic. Previous work has mainly
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unsigned int x = x;
unsigned int y = x;
for(int ¢ = 0; ¢ < 6; 7 ++)
if ()
Y+t
if(y < ) ERROR;

Fig.1. Unbounded relational analysis will deem ERROR unreachable; however, on
systems with fixed-width integers, y may wrap to 0 if x is very large

dealt with non-relational abstract domains, notably interval domains [I5IT6S].
Simon and King [I7] considered adapting convex polyhedra to modular arith-
metic by computing a convex approximation relative to a fixed wrapping point.
Other approaches consider instead systems of equations [I3] and disequations [9]
under modular arithmetic. SMT(BV) [10] problems involve a variety of con-
straints over Zow; solvers for these problems typically convert the arithmetic
operations to SAT. These techniques are complete, but may be too slow to be
viable for certain applications, such as invariant synthesis.

One critical issue with classical abstract domains such as interval domains,
octagons, and so on, is that they rely on having a linear ordering, <, on the set
of integers. The only way to capture a non-trivial concept of ordering on Z,, is
to discuss order only with respect to some reference point. For example, we may
decide that x < y means, loosely, that “starting from 0 and moving clockwise
on the number circle, x is encountered no later than y”’—a natural reading
when unsigned integer representation is used. Or, we may decide that it means
“starting from m/2, x is met no later than y”—when signed representation
is used. To complicate matters, many low-level languages, such as LLVM and
assembly languages, fail to provide signedness information, relying on the fact
that arithmetic operations such as addition, subtraction and multiplication are
agnostic with respect to signedness. Navas et al. [I4] point out that analysis of
such languages, in order to maintain precision, has to be signedness-agnostic as
well, which means superposing signed /unsigned assumptions during analysis.

For the remainder of this paper, we assume all inequalities are unsigned.
Signed inequalities x <5y can be expressed in terms of unsigned inequalities:
<y iff o+ <y+ 7. This does, however, require the introduction of shifted
variables ' = (z + ")) mod m and 3’ = (y + "3') mod m.

Classical integer difference constraints provide lower and upper bounds on
integer differences x y, and these bounds have consequences for order. For
example, for positive k, a constraint x y = k allows us to deduce z > y. When
we move to Z,,, this link between difference and order is lost. For example,
assuming signed arithmetic, [z — 2% 1y 2% 1 1] satisfiesz y = 0 but
not x = y. Hence an important step towards getting a handle on “wrapped”
difference logic is to separate the aspects of proximity and (relative) order.
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bellman ford({V, E)
% Introduce a fresh least element.
Vi=Vu{v}
E'=Eu{{,0,v)|v,eV}
% Initialize relations
D) :=0
for(v; € V)
D(vl) = 0
% Progressively expand the set of paths to each node.
for(ke {1,...,|V]})
for(({v;, w,v;y € E’)
D(v;) = max(D(v;), D(v;) + w)
% Check for any inconsistencies
for((<vi, w, vj> € El)
if(D(UZ) +w > D(Uj))
return UNSAT
return SAT

Fig. 2. Pseudo-code for the Bellman-Ford algorithm for checking satisfiability of a set
of unbounded difference logic constraints

The following contributions are made in this paper:

— We study the complications that arise when reasoning about difference con-
straints takes place in the presence of modular arithmetic.

— We offer a simple proof that, in that context, for m > 2, decidability of
difference constraints is NP-complete.

— We propose a framework for combined reasoning about proximity and order
and use this to develop an efficient but incomplete decision procedure.

— We evaluate the resulting method, comparing it to two more traditional
SMT-based decision procedures.

In Section 2l we recapitulate the classical case. In Section[Blwe discuss “wrapped”
difference constraints and develop the different approaches: a complete method
based on SMT(BV) (bit-vector) technology, one using SMT(DL) (difference
logic), and an incomplete fixpoint-based method. Section Ml contains the evalua-
tion and Section [l concludes.

2 Deciding Difference Logic

The classical method for deciding difference logicﬂ is the Bellman-Ford algo-
rithm [2]. For later reference, we show it in Figure It uses a graph

! The term “separation logic” is sometimes used [I8JI9]. To avoid confusion with
Reynolds-O’Hearn separation logic, we use the alternative “difference logic”.
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w=0
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y>1
z=1

8w 8

(b)

Fig. 3. (a) A set of difference constraints. (b) the corresponding graph representation
(v is a freshly introduced root vertex).

representation of constraints, each variable giving rise to a node, and each dif-
ference constraint giving rise to a weighted directed edge. The algorithm relies
on these inference rules for difference logic (L denotes unsatisfiability):

Inversion: a<y z<piff <z y< «
. o<y <P <z y<fo
Resolution:
oartas <z x< B+ P

a1 < T < Qg < T <
Tightening: LSy froazsy ) Pz

max(ay,a0) <y = <min(G,S2)

a < r< f,a>

Contradiction: y B Z

1

Ezample 1. Consider the set of constraints shown in Figure[Bf(a). The graph cor-
responding to these constraints is given in Figure Bl(b). Note that the constraints
are satisfiable if and only if there are no positive-weight cycles in the graphE
After computing the longest paths of length up to |V|, we have:

{D(") = 0,D(w) =0,D(z) =3,D(y) = 3,D(z) = 3}

However, performing another iteration would still increase the path lengths,
since, for example, D(z) + 1 > D(x). This indicates the presence of a positive-
weight cycle. O

3 Wrapped Difference Constraints

In this section, we consider systems of constraints of the form e y x € S (which
we sometimes write it as y = x € [a, §]) under modular arithmetic. Given that

2 Presentations of difference logic sometimes express the problem in terms of shortest
(rather than longest) paths, in which case unsatisfiability corresponds to negative
(rather than positive) cycles.
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we are concerned with numerical prozimity as well as ordering, we allow these
intervals to cross m; such a wrapped interval [a, 8] is interpreted as followsfl

[, 3] = {dla<dnd<p} if o <p3
NGPI=Vdla<dad<m 1}u{d|0<dnad<p} otherwise

For example, in a modulo-16 context, the wrapped interval [14,2] denotes the
set {0, 1,2, 14, 15}. In this modulo-m context, a one-sided constraint (such as y

x = 3) is essentially meaningless; the usual inequalities under Z,, are implicitly
bounded by 0 and m 1. On the other hand, containment of wrapped intervals
is easily expressed:

[, B] £ [, 8] iff y[er, B] < y[a, ]

We can perform certain operations, similar to those of Section 2l on the number
circle. However, of Section s inference rules, only inversion remains sound.

Ezample 2. Consider, for k > 1, this set of constraints:
1<y <k, 1<z y<k, 1<z 2<k (1)

Resolving the first two constraints, we get 2 < z = < 2k, or, equivalently,
2k <z 2z < 2. Under standard difference logic, ([{l) would be unsatisfiable:

1<z z<k 2k<x z2z< 2
1<z z<£ 2
1

. . T 247
However, as illustrated here, in the modular-

arithmetic case, this set of constraints is sat-
isfiable if k is sufficiently large. For example,
the constraints are satisfiable in Zg, for k = 7

7
(take, say, x = 1,y = 6,2z = 11). O vt Y

© x+7

The n constraints

) < X2 xl<61,-~-7an 1STp Ty 1<6n 1,Qnp < T1 -’L‘ngﬁn

induce the constraint a <0< 3, wherea=a1+ +azand =01+ + 06,
This latter constraint is unsatisfiable exactly when 0 falls outside [«, 8], a condi-
tion which is reminiscent of the positive-weight cycle condition for conventional
difference logic.

In principle a variant of a shortest-path algorithm could be used to detect these
inconsistent cycles; however, this requires computing the intersection of wrapped
intervals. Consider the two intervals shown in Figure [d(a). The intersection of

3 The definition overloads the square bracket notation: The function  takes a possibly
wrapped interval and expresses its meaning in terms of ordinary intervals.
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Fig.4. (a) A pair of intervals on the number circle, (b) the intersection of the two
intervals and (c) an optimal over-approximation of the intersection

these two intervals is no longer a single interval. Indeed, the intersection of k
wrapped intervals produces up to min(k,’y) disjoint feasible intervals; when

combined with resolution, min(2 ‘;, ") intervals can be generated. For example,

with these constraints:
0<y <2, 0<z y<4,2<y z<m,4<z y<m

we have y 2z €{0,2} and z y € {0,4}, which yields z =z € {0,2,4,6}. There
are four equally good interval approximations of this set.

3.1 Interval Sets

We could represent the feasible relations between two variables exactly by explic-
itly maintaining the set of (disjoint) feasible intervals. To reason about bounded
difference constraints, we require two operations: intersection of interval-sets
(denoted m) and pointwise addition of interval-sets (denoted +).

[, 8] ifaeld,BApBeld,f]

; [a,B'] ifae[d,5] AL €[a,f]

Am A = Ll[a,ﬂ]eA |—|[a’,[3’]eA’ [O/,ﬁ] if O/ e [a,ﬁ] A 6 € [0/761]
[, 8] if & € [a, B] A B € [, 8]

A+ A" = grea o preadla + o/, 8+ 51}

The operation m can be implemented in O(|A|+]A’|) time; + requires O(|A||A'])
time in the worst case. In the case of +, the results are normalized by merging
overlapping intervals. Note that + and m are both commutative and associative.
Also note that the full interval, T, is a neutral element for m, while {[0,0]}
is neutral for +. It would be convenient if the resulting structure formed a
semiring, as this would allow us to use the algebraic shortest distance framework
of Mohri [12]. Unfortunately, while we do have the property

(amb)+cE(a+c)m(b+c)
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it is not the case that + distributes over m. As a counter-example, consider Zg,
and take A = [0,8] and B = [9,0]. We have A+(Am B) = A+[0,0] = A, while
(A+A)m(A+B)=TnT=T. As we shall see in Section B0 this complicates
the operation of longest path algorithms.

3.2 Wrapped-Interval Approximation

For the analysis of programs that use Z,, for a large m (and usually m is 232 or
264), representing the feasible values precisely is impractical. In this section, we
propose the construction of an over-approximation of the set of feasible intervals.

We adopt a “wrapped interval” representation [14], approximating the set of
feasible intervals with a single interval. A wrapped interval is any sequence of
consecutive numbers on the modulo-m number circle; for example, with m = 16,
the interval [8,0] is the set {8,9,...,15,0}. Given a set of integers modulo m,
there may be several minimal approximations in the form of wrapped inter-
vals; for example, the set {0,8} may be approximated by [0, 8] or by [8, 0], two
intervals of equal cardinality. To ensure a deterministic choice, we use a total
ordering < over wrapped intervals, ordering them primarily by cardinality and
then lexicographically (we write * @, ¥y for (x @ y) mod m for binary infix
operator ®):

[aaﬁ]ﬁ[alaﬁl]iﬁ.(ﬁ ma)<(ﬁl mO/)V((ﬁ mOZZﬁI mOél)/\OzSO/)

This allows us to define an over-approximation of the meet which selects the
approximation with minimum cardinality, breaking ties by favouring the lexico-
graphically smallest left-bound.

if ag¢ld,f']Ad ¢[a,f] then L
else if [o, 8] E [, 5] then [a, /]
/o ) elseif [/, 8] E [«, 5] then [/, ]
[o A1 A o, 5] = else if "¢ [a, B] then [a, 3]

o
else if ad¢[d,f] then [/, ]
else min_ ([«, ], [, 5'])

T if(f ma)+ (8 ma)=m 1

[e, 8] + [, B'] = { [a+m o, +m 8] otherwise

Notice that, using this approximation, my, lacks several properties provided by
typical lattice operations. m, is absorptive and commutative but not associative.

Ezample 3. With m = 16, consider A = [8,15], B = [12,9], and C' = [0, 10]. We
have (Armp B) mp C = [8,15] r.[0,10] = [8,10]. On the other hand, we have
AHL(B HLC) = [8,15] HL[O,Q] = [8,9] O

Also, my, is not monotone (nor decreasing) with respect to the inclusion ordering
E (however, my, is monotone with respect to the cardinality ordering <).
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Fig.5. (a) When the concrete range covers the entire circumference of the number
circle, the proximity bounds cannot be reduced further. (b) The concrete bounds can,
however, be reduced to the next corresponding proximity bound. (c) If both sets of
endpoints are mutually contained, there can be no reduction.

(en]]

Fig. 6. If the union of the concrete and proximity intervals do not cover the entire
number circle, each can be tightened to the region satisfying both

Ezample 4. Consider the intervals A = [0,10], A’ = [0,8], B = [8,1] on Zj¢4. A’
is clearly a subset of A, however A my, B is incomparable with A’ mp, B. Namely,
Anry B =[8,1], while A’ mg, B = [0,8]. So m, fails to be monotone. |

3.3 Combining Wrapped Difference with Relative Order

The wrapped interval constraints discussed so far express proximity only. They
cannot express constraints such as x < y. This can be fixed, however, by al-
lowing “concrete” interval information. Thus we combine proximity and range
constraints in pairs {[«, 5], [d, D]) with the semantics:

e B1.[d, Dy = {(z,y) € Z3, |y mx€a,flay xe€[d D]}

Note that, with z,y € [0, m 1],the valueofy x canbe anywherebetween m+1
andm 1(2m 1possible values). Hence T = {[0,m 1],[ m+1,m 1]).Fig-
ureBla) depicts an interval pair (assuming m = 16, the pair is {[4,9],[ 15, 15])),
the first interval shown by a solid arc, the second by a dashed arc.
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We normalise interval pairs by propagating information from each component
to the other. Let d,,, be d projected onto the range [0,m 1]. We can use this
to determine how far the lower (respectively upper) bound of the concrete range
must be adjusted to reach the corresponding proximity bound. This difference
is then mapped back onto the concrete range. Note the use of [d, D], the
projection of the interval onto [0,m 1], defined as [d, D],, = [0,m 1] if
D d=m,and [d, D]y = [dm, Dm], otherwise.

norm {[a, 8],[d, D]) =<[o/, #'],[d', D']) where

o _(d if d, € [, ]
ld+(a ., dy) otherwise
oD if D,y € [a, ]
" \D (Dn mpB) otherwise
o, 3] = [a, 5] if « € [d, D] A dp € [, 5]

[, 8] M [d, D], otherwise

Details of the definition are justified by considering the cases shown in Figures
and [0l The following theorem says that norm establishes the tightest possible
consistent bounds.

Theorem 1. Let (A’,C’) = norm (A, C). For all A", C" if v(A”,C"y=~(A,C)
then A’ £ A” A C' E C”.

Proof. Consider a pair{[o/, #'], [d', D']) = norm {[«, 8], [d, D]). In the case that
a € [dy, Dp] and d,,, € [o, 8], as illustrated in Figure Bc), neither bound can
be tightened. If [, 5] and [d, D], do not intersect, we have d+ (o 1, dp,) > D,
and the result correctly represents L.

This leaves the case where there is some overlap between [«, 8] and [d, D],
but the intervals do not cross at both ends. In that case, [, 5] m[d, D], is the
largest interval consistent with both [, 8] and [d, D]. If d,, ¢ [a, §], we must
adjust d to the next point on the number circle consistent with [, 5] — that is,
a. The minimum distance d must be shifted is a , dyy, in which case d],, = a.
By similar reasoning, if D, ¢ [«, 3], we must reduce D by D,, ., 8, giving
D! = B. Both d,, and D!, are in [/, 5']. Assume there were some element of
c€ [, B'] such that ¢ ¢ [d', D']m. As c€ [/, 8], we have c € [a, ] A c€ [d, D].
Then c is either in the interval [d,d’), or (D', D]. However, this cannot be the
case, as there are no elements of [, 5] in either interval. Therefore, all elements
of [«/, 8'] must be consistent with [d', D'].

We conclude that norm computes the tightest intervals that preserve the
semantics of the input pair. ]

In the case of the complete interval set representation, [o/, 3] can be computed
with a standard join; the additional case is to avoid losing information when
the intervals overlap in two places (analogous to the case in Figure d{a)). Using
normalisation, we can define the necessary operators on the combined domain:
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<[O‘$’ 696]7 [dwv Dw]> m <[ay7 By]’ [dy’ Dy]> =
norm ([, a] 1 [y, ], [max(ds. d,), min(D,, D))

<[O‘$’ 696]7 [dwv Dw]> + <[O‘ya 62!]’ [dy7 Dy]> =
norm {[a, 8] +[ay, By], [de + dy, Dz + Dy])

3.4 NP-Completeness of Wrapped Difference Constraints

As already observed by Bjgrner et al. [I], wrapped difference constraints are
NP-complete. In this section we give a simpler proof, using, as do Bjgrner et al.,
reduction from graph 3-colourability. We strengthen the result [I] by showing
NP-completeness for all cases m > 2. For m = 2, the problem can be solved in
polynomial time in the same manner as 2-colouring.

First, given an assignment to variables {v1,...,v,}, we can check, in polyno-
mial time, whether each difference constraint is satisfied; so wrapped difference
logic is in NP. It remains to show that the problem is NP-hard.

Assume m > 2; consider a 3-COLOURABILITY instance G = {({vy,...,vp}, E).
We construct a system of |E| + n difference constraints in Z,, over variables
{x,21,..., 20}

— For each vertex v;, introduce the constraint z; € [0, 2] (for m = 3 this is
a vacuous constraint, so it can be omitted).
— For each edge (v;,v;) € E, introduce the constraint x; x; € [1,m 1].

The system of constraints can be generated in linear time. We claim that it is
satisfiable iff G is 3-colourable.

Assume the set of constraints can be satisfied and let v be a satisfying val-
uation. For each z;, we have v(z;) € {v(z),v(x) +m 1,v(x) +., 2}, owing to
the constraint x; « € [0,2]. Taking v(x), v(z) +m 1, and v(z) +,, 2 as three
“colours”, we choose the colour v(x;) for node v;. This gives a 3-colouring of
G, because, for adjacent vertices v; and v;, the colours v(z;) and v(x;) must be
different, owing to the constraint z; z; €[l,m 1].

Conversely, assume that G is 3-colourable. Call the three colours used in the
colouring 0, 1, and 2. We claim that the valuation v which maps = to 0 and z;
to the colour of v; satisfies the generated constraints. The constraints of form
x; x € [0,2] are satisfied by construction. The constraints of form x; =z, €
[1,m 1] are similarly satisfied, as the “difference” between the “colours” of v;
and v; are precluded from being 0.

It follows that wrapped difference logic is NP-complete. Note that the usual
directionality of edges in the graph generated by difference constraints is irrele-
vant here, since in modulo m arithmetic, z ye[l,m 1llandy ze€[l,m 1]
(and = % y) are equivalent. Also note that the reduction does not synthesize m
from a 3-COLOURABILITY instance. Rather, m is a fixed constant in the transfor-
mation. As 3-COLOURABILITY is strongly NP-complete, and the transformation
is pseudo-polynomial [7], wrapped difference logic is also strongly NP-complete.
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3.5 SMT Encodings: Two Complete Decision Procedures

A common approach for solving problems over Zow is satisfiability modulo bit-
vectors (SMT(BV)) [10]. In an SMT(BV) solver, each w-bit word z is typically
translated into a vector v, of w Boolean variables. Operations on Zsw are encoded
using Boolean formulae to simulate the corresponding hardware circuit.

We can readily couch wrapped difference constraints in terms of SMT(BV).
Letting -,y denote w-bit bit-vector subtraction, encode each constraint directly:

For a constraint z < y: Vg Sy Uy
For a constraint y € [i,j]:  (Vy-bv Vz) ~bv i <uJ-bv i

SMT(BV) solvers typically use complete methods for solving bit-vector con-
straints. These, then, provide a complete decision procedure for wrapped differ-
ence constraints.

An alternative way is to use satisfiability modulo difference logic (SMT(DL)).
Each variable is constrained to the interval [zero, zero + m  1]. We encode the
concretization of a wrapped interval [4, j] as a disjunction of concrete difference
constraints, using similar reasoning to that illustrated in Figure

For a variable z: 0<v, zero<m 1
For a constraint z < y: v, <y vy

m+1<v, v, < m+j
) \Y m+i<vy UmSJ ifjm<im
For a constraint vi<v, v,<m 1

y e lij] - - ,
m TISU VoS MAT) Gtherwise
VISUy V<]

3.6 An Incomplete Decision Procedure

Ideally, we would like an efficient, sound and complete decision procedure. Given
that wrapped difference constraints are NP-complete, it seems highly unlikely
that such a procedure exists. The SMT approaches are sound and complete,
but can exhibit exponential running time. For use in an abstract interpretation
framework, we require the analysis to be efficient, and we can afford to sacrifice
completeness (but not soundness). We must therefore develop a sound over-
approximation which maintains reasonable accuracy without excessive cost.
Given the similarities between wrapped difference constraints and classical
difference logic, it seems likely that variants of shortest-path algorithms would
provide suitable heuristics. Indeed, the problem of detecting a set of inconsistent
wrapped difference constraints is very similar to the algebraic shortest distance
framework of Mohri [I2]. As observed in Section Bl our m and + operators
lack some critical semiring properties; however, the structure of the problem
remains the same. It is worth noting that all edges have an inverse; for any
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Fig.7. The cycle z > w — v — z is inconsistent. However, this information is lost
when applying Bellman-Ford from the root x.

d
oD,
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Fig.8. After running the Floyd-Warshall algorithm (with variables ordered lexico-
graphically), we have ¢ a€ T, rather than the tightest bound of [0, 9]

edge y =z € [a, (], there is a corresponding edge x y € [m fp,m «]. As
the inverse is easily computed, there is no need to store both edges explicitly.
Similarly, we do not need to compute (2 y)+(y x) if we have already computed
(z v+ 2).

In principle, the Bellman-Ford algorithm [2] provides a suitable sound over-
approximation. Unfortunately, in the context of modular arithmetic, it quickly
loses information about infeasible paths.

Ezample 5. Consider the set of constraints in Figure[fl The cycle z - w — v —
z has value [3, 3], which is an inconsistent self-loop (assuming m > 3). However,
applying Bellman-Ford from root node z, we quickly determine that z xe T.
Then, as T + [1,1] = T, we derive the same relation for v z and w z. We
cannot then deduce the existence of an inconsistent cycle. m]

This example suggests that a single-source approach is unlikely to work. An
alternative approach is to use an all-pairs shortest path algorithm to derive the
strongest relation between each pair of variables. The obvious algorithm to use is
the Floyd-Warshall algorithm [5]. However, as mentioned in Section Bl + does
not distribute over m; as a result, a direct application of the Floyd-Warshall
algorithm is not guaranteed to reach a fixpoint with respect to every pair of
variables.

Example 6. Consider a problem in Zjg, with the constraint graph given in Fig-
ure B The algorithm computes the longest paths via first a then b (neither
tightening any constraints). Since d ¢ € [15,15] and ¢ b € [0, 8], paths via ¢
tighten d b to [8,0] m [15,7] = [15,0] (note that ¢ b is still [0,8], and d «a
is still T). Once we compute paths via d, we tighten ¢ b to [0,1]. After the
algorithm has finished, ¢  a has still not yet been tightened to the correct value
of [0,9]. |
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wrapdiff fixpoint({V, E))
Q=g
% Initialize relations
R := {(v;,vj) » T | v;,v; € V}
Adj = {UZ"—>Q|UZ‘€V}
for((v, wv;€ ryeE)
update rel(v;, v;,r 1 R(v;,v;))
while(—Q.empty())
(vi, v;) == Q.pop()
for(vy, € Adj(v;)\{vi})
rik = R(v;, vg) M(R(vs, v;) + R(vj, v))
if(rix. = L) return UNSAT
update rel(v;, v, Tik)
for(vy € Adj(v,)\{v;})
Tk = R(vg,v;) m(R(vg, v;) + R(vi, vj))
if(rp; = 1) return UNSAT
update rel(vg, vj, 7%;)
% If we reach a fixpoint without unsatisfiability,
% assume satisfiability
return SAT

update rel(v;, v;, r;5)
if (ri; # R(vi, v;))
R(’UZ‘,’UJ') =T
Q.insert((v;, v;))
Adj(vi) = Adj(vi) L {v;}
Adj(v;) = Adj(vj) v {v}

Fig.9. Computation of a fixpoint of a set of difference constraints

We could modify the Floyd-Warshall algorithm to continue iterating until a
fixpoint is reached. However, this performs a great deal of redundant work;
particularly given that most such constraint systems are quite sparse, so many
edges are T. Instead, we use a worklist-based algorithm to compute the fixpoint
directly. We maintain a queue of (v;,v;) pairs which have changed, and update
any adjacent (v;,v) or (vg,v;) edges. This method is given in Figure 0 R
maintains the relations between each pair of variables, and @ is the queue of
updated edges. Since c+T = T for all ¢, we need not compute R(v;, v;)+R(v;, vk)
unless both R(v;, v;) and R(v;, vx) are not T. Adj holds, for each vertex v;, the set
of adjacent vertices vi such that R(v;, vg) # T. When an edge (v;, v;) is changed,
we need only test elements in Adj(v;) and Adj(v;). We must, however, ensure
Adj is updated whenever an edge ceases to be T — this is done in update rel. Adj
can be maintained in constant time with O(n?) space and initialization time.
As mentioned, we do not need to keep track of both an edge and its inverse; we
similarly avoid adding (v;,v;) to the queue if (v;,v;) has already been added.
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This procedure is sound, as each step in the algorithm is the application of
an inference of the formz 2C (z y)+ (y  2).

Theorem 2. The procedure wrapdiff fixpoint terminates.

Proof. Using either the disjoint-set lattice or the interval over-approximation,
the m operation is monotone (according to the & and < orderings respectively)
and non-increasing. At each step of wrapdiff fixpoint, either some R(v;,vy) or
R(vi,v;) must decrease, or all entries remain constant and the size of @ de-
creases. As both the disjoint-set and interval domains are finite, there cannot be
any infinite descending chains. Hence wrapdiff fixpoint must terminate. O

The fixpoint time complexity is clearly bounded by O(mn?). However, in practice
the algorithm runs much faster; we suspect a tighter bound exists which is not
dependent on m.

Proposition 1. In cases where a classical difference constraint solver soundly
proves unsatisfiability, wrapdiff fixpoint also proves unsatisfiability.

Proof. Classical difference constraints are unsatisfiable if there is some cycle
C = [e1,¢2,...,¢;] in the graph, such that So = Y,C > 0. This conclusion
is only sound if there is a corresponding cycle C' = [ ¢,..., ¢, ;] which
prevents the cycle from wrapping to 0. Let S¢v = Y, C’, and let S¢ = pm +r
such that r € [1,m  1]. The cycle C excludes 0 only if S < (p + 1)m. Note
that for each edge ¢; € C, ¢; ¢, < 0 (otherwise, the cycle [¢;, ¢f] is trivially

%

unsatisfiable).
Consider the behaviour of wrapdiff fixpoint on the corresponding constraints
{[c1, A )ms [c2,E5)m, - -, [hs € ]m }- The interval size ¢  ¢; is non-negative. As

Scr Sc < m, the size of each partial-sum interval | Y7_,[c;, ci],| is less than
m, so the interval cannot wrap. Adding all the edges then yields the inter-
val [Sc, Sc']m, which does not contain 0. If 0 ¢ Zle[ci,c’i]m, we also have
Zlel [ci, & lm M[ck, ¢ lm = L. (Am B # L means there is some z such that
z €A, we€ B. Therefore 0=z+( z)e A+ B.)

Hence, if a cycle exists which allows classical difference logic to soundly con-
clude unsatisfiability, wrapdiff fixpoint will do the same. O

4 Experimental Evaluation

In this section, we evaluate the performance of the two SMT-based methods,
and the incomplete shortest-path approach. For the SMT(BV) approach, we
used the STP solver [6]; for the SMT(DL) encoding, we used the Z3 theorem
prover [3]. The shortest-path algorithm is implemented in C++. The evaluation
was conducted on a 3.00GHz Core2 Duo with 2Gb of RAM running Ubuntu
GNU/Linux 10.04. Reported times are in milliseconds.

We compared the performance of the two approaches on a set of randomly
generated problems over Zgs2 with an increasing number of variables. 100 in-
stances were generated for each problem size between 20 and 200 variables. To
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Table 1. Comparing the SMT(BV) and SMT(DL) approaches with wrapdiff fixpoint.
Time reported (in milliseconds) is the average runtime over 100 instances of each size.

4 |C| TIMEgBY TIMEp. TIMEfiy #U #FP
20 24 50.8 19.2 0.2 24 1
40 48 99.9 24.4 0.4 22 1
60 72 150.0 29.8 0.8 22 1
80 96 197.5 36.4 1.1 29 1
100 120 268.9 43.3 1.7 22 0
120 144 341.3 50.9 2.0 21 0
140 168 404.0 59.0 2.6 22 1
160 192 494.9 65.9 2.8 27 0
180 216 537.7 73.2 3.4 31 1
200 240 675.6 85.5 3.9 25 0

ensure a mix of satisfiable and unsatisfiable instances, the number of constraints
|C| was fixed to 1.2|V|. Of these, | are ordering constraints, the remainder be-
ing uniformly distributed proximity constraints!] Results are given in Table [Il
TIMEgy, TIMEp, and TIMEg, denote the time for each method to solve all in-
stances of the given size. #U indicates the number of unsatisfiable instances,
and #FP the number of instances which the fixpoint-based method incorrectly
reported to be satisfiable.

On these instances, the SMT(DL) encoding is considerably faster than the
SMT(BV) encoding. The incomplete method is generally around 30 times faster
than the SMT(DL) method, while having a very low false positive rate.

5 Conclusion

Difference logic is useful for program verification and analysis. However, for
machine-arithmetic-aware program analysis and verification, classical difference
logic is unsound. We have shown that, when extended to modular arithmetic,
difference constraints are NP-complete even for Z3. We have presented two com-
plete methods based on SMT techniques, and a sound heuristic based on a
fixpoint computation. The heuristic runs substantially faster than the complete
methods, and correctly determines unsatisfiability for the majority of the ran-
dom instances we tested. It would be interesting to develop alternative techniques
which improve precision without sacrificing performance. Further work will in-
volve embedding this method in an abstract interpretation framework for static
analysis.

Acknowledgments. This work was supported through ARC grant
DP110102579. We are grateful to the anonymous reviewers who identified a
number of critical misprints in the draft version and suggested an improved
SMT encoding which we have adopted.

4 The solver and instances are available at ww2.cs.mu.oz.au/~ggange/moddiff/
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